USN 06MAT	USN										
-----------	-----	--	--	--	--	--	--	--	--	--	--

Second Semester B.E. Degree Examination, June 2012 Engineering Mathematics – II

Time: 3 hrs. Max. Marks:100 Note: 1. Answer any FIVE full questions, choosing at least two from each part. 2. Answer all objective type questions only on OMR sheet page 5 of the answer booklet. 3. Answer to objective type questions on sheets other than OMR will not be valued. PART - A a. Choose your answers for the following: (04 Marks) The radius of curvature at a point (r, θ) of $r = ae^{\theta \cot \alpha}$ is A) rcosecα B) coseca C) cota D) none of these The radius of the circle of curvature is C) p The value of C of the Lagrange's mean value theorem for $f(x) = \tan^{-1}x$ in [0, 1] is A) 0.125 B) 0.523 C) $\pi/4$ iv) Maclaurin's series expansion of sinx is B) $1 - \frac{x^2}{2!} + \frac{x^3}{3!} + \dots$ D) $1+x+\frac{x^2}{2}+....$ b. Find the radius of curvature for the curve $y = a \log \sec (x/a)$ at any point (x, y). State and prove Lagrange's mean value theorem. (06 Marks) Expand e^{sinx}, using Maclaurin's series upto the term containing x⁴. (06 Marks) Choose your answers for the following: (04 Marks) B) $2/\pi$ D) $\pi/3$ ii) The basic fundamental indeterminate forms are C) both A and B D) none of these iii) Find the critical point of the function f(x, y) = Sinx + Siny + Sin(x + y) is B) $(\pi/3, \pi/3)$ C) $(\pi/2, \pi/2)$ D) none of these iv) In a plane triangle ABC, the maximum value of COSA · COSB · COSC is A) 3/4 B) 3/8 C) 1/8 D) 5/8 $x \to \pi/2$ (2xtanx - π secx). b. Evaluate (04 Marks) Expand e^{ax} sin by in powers of x and y as far as terms of 3rd degree. (06 Marks) d. Show that the maximum value of $xy + a^3 \left(\frac{1}{x} + \frac{1}{y}\right)$ is $3a^2$. (06 Marks)

06MAT21

3	a.	Choose your answers for the following:	(04 Marks)					
		i) $\int_{0}^{2} \int_{0}^{x} (x+y) dxdy$ is equal to						
×		A) 3 B) 4 C) 5 D) none of ii) The volume of the cylinder with base radius 'a' and height 'h' is	fthese					
		A) r^2h B) $\frac{2}{3}rh$ C) πr^2h D) none of	fthese					
		iii) The value of $\beta(m, n)$ is						
		A) $\int_{0}^{\infty} x^{m-1} (1-x)^{n-1} dx$ B) $\int_{0}^{1} x^{m-1} (1-x)^{x} dx$						
		C) $\int_{0}^{1} x^{m-1} (1-x)^{n-1} dx$ D) none of these						
		iv) If n is a positive integer, then $n+1$ is equal to						
		A) $n \mid n$ B) $(n-1) \mid n-1$ C) $n \mid n+1$ D) $n!$						
	b.		cardioid (04 Marks)					
	c.	Evaluate $\int_{0}^{1} \int_{0}^{\sqrt{1-x^2}} \int_{0}^{\sqrt{1-x^2-y^2}} xyz dxdydz.$	(06 Marks)					
	d.	Show that $\int_{0}^{\pi/2} \sqrt{\sin\theta} \ d\theta \ x \int_{0}^{\pi/2} \frac{1}{\sqrt{\sin\theta}} d\theta = \pi.$	06 Marks)					
4	a.	Choose your answers for the following:	04 Marks)					
		i) \vec{F} is said to be solenoidal, if	0.1					
		A) $\int_{c} \vec{F} \cdot d\vec{r} = 0$ B) $\int_{c} \vec{F} \times d\vec{r} = 0$ C) $\vec{F} \times \vec{r} = 0$ D) none of ii) If $\vec{F} = 3xyi + y^{2}j$ and C is the curve, in the xy-plane, $y = x^{2}$ from $(0, 0)$ to $(1 + y^{2})$	1 these					
		ii) If $\vec{F} = 3xyi + y^2j$ and C is the curve, in the xy-plane, $y = x^2$ from $(0, 0)$ to $(1 \int F x dr is :$, 1), then					
		A) Constant B) Variable C) zero D) none o	fthese					
		iii) Green's theorem in the plane is a special case of A) Gauss theorem B) Euler's theorem						
		C) Baye's theorem D) Stoke's theorem.						
		 iv) Stoke's theorem is a relation between A) a line integral and a surface integral B) a surface and volume integral C) two volume integrals D) a line and volume integral. 						
	b.	If $\vec{F} = 3xyi - y^2j$, evaluate $\int_{C} \vec{F} \cdot d\vec{r}$ along the curve $y = 2x^2$ in the xy-plane from	(0, 0) to					
	0	(1, 2).	04 Marks)					
	c.	Evaluate, by Green's theorem, $\int_C (xy + y^2) dx + x^2 dy$, where C is bounded by y	y = x and					
	d.	$y = x^2.$	06 Marks) 06 Marks)					

5	a.	Cho i)	Solution of the difference $C_1e^{ax} + C_2e^{-ax}$	the following: erential equation $(D^2 +$	a^{2}) y = 0 is B) $C_{1} \cos x + C_{2} \sin x$		(04 Marks)
		;;;	C) $(C_1 + C_2x) \cos a$	ax_{*}	D) None of these	hilax	
		ii)		al equation $(D^2 + 3D +$			
			A) $\frac{1}{6}e^x$	B) $\frac{1}{3}e^x$	C) $\frac{e^x}{2}$	D) e ^x	
		iii)	The roots of the A.E	with differential equa	ation $(D^3 + 2D^2 - D -$	2) $y = 0$ are	
			A) $(1, 1, -2)$ C.F of $(D^2 + 1)$ y = :	B) (-1, 1, -2)	C)(1,1,2)	D) (-1, -1	, 2)
		iv)	C.F of $(D^2 + 1) y = 1$	x^3 is			
			A) $(c_1 + c_2 x) e^x$		B) $(c_1x + c_2) e^{-x}$		
			C) $(c_1 \cos x + c_2 \sin x)$	(x) e ^x	D) $(c_1 \cos x + c_2 \sin x)$	nx)	
	b.	Solv	$y = (D^3 + 1) y = e^x$.				(04 Marks)
	c.	Solv	$e^{\frac{d^2y}{dx^2} + \frac{dy}{dx}} = x^2 + 2x$	+4.			(06 Marks)
	d.		un un		nts the equation $y'' + 4$	$x = x^2 \pm a^{-x}$	06 Mordes)
	u.	3017	c by the method of the	idetermined co-efficie	nts the equation y +4	y - x + e . (uo Marks)
6	a.	Cho	ose your answers for	the following:			04 Marks)
		i)	The Wronskin of e ^x				01111110)
		-)			C) 0	D) -2	
		ii)	To transform (ax +	$(x^2 + 1)^2 y'' + (ax + 1)$	C) 0 $y' + y = \phi(x)$ into a	LDF with	constant
		11)	coefficients, put t =	1) y (ax 1)	$y + y = \varphi(x)$ into ϵ	L.D.L WILL	Constant
			A) logx	B) $\log (ax + 1)$	C) e ^t	D) x	
		(iii			-29 x = 0 satisfying the	,	y(0) = 0
		111)	x'(0) = 15 is	de problem x + 4x +	29 X = 0 Satisfying th	ne conditions	X(0) = 0
				B) 3e ^{-2t}	C) 3 Sin5t	D) none o	fthece
		iv)	$(C_1 + C_2x) e^x$ is the		C) 3 Sm3t	D) none o	i these
		11)	A) $(D+1)^2 y = 0$	general solution of	B) $(D-1)^2 y = 0$		
			C) $(D^2 - 1) y = 0$		B) $(D-1)^2 y = 0$ D) $(D^2 + 1) y = 0$		
					D) (D 11) y 0		
	b.	Solv	$e^{-x^2} \frac{d^2y}{dx^2} - x \frac{dy}{dx} + y =$	= log x .			04 Marks)
	c.		$e \frac{d^2y}{dx^2} - 2\frac{dy}{dx} + y = \frac{e^3}{x}$	· · · · · · · · · · · · · · · · · · ·			(06 Marks)
	d.	Solv	re the initial value pro	blem d ² y dy	$+ 2 \operatorname{Cosh} x = 0$, given	y = 0 dy -1	at $\mathbf{v} = 0$
		DOIV	e the illitial value pro	$\frac{dx^2}{dx^2} + \frac{dx}{dx} + 3y$	+ 2 Cosh x - 0, given	$y = 0, \frac{1}{dx}$	at A = 0.
							(06 Marks)
7	a.	Cho	ose your answers for	the following:			04 Marks)
		i)	Laplace transform o				,
					s+1	2(s	+1)
					C) $\frac{s+1}{(s^2-s+2)^2}$	D) $\frac{1}{(s^2 + 2)^2}$	$(2s+2)^2$
		11)	Laplace transform o	f Sin 3t is			
			A) $\frac{s}{s^2 + 9}$	B) $\frac{3}{s^2 + 9}$	C) $\frac{2}{s^2-9}$	D) $\frac{1}{s^2 - 9}$	
		iii)		f f'(t) is			
			A) $s f(s) - f(0)$	B) $s f(s) + f(0)$	C) s $f(0) - f'(0)$	D) s f' (0	- f(0)
		iv)	Laplace transform o	-		-	
			A) $\frac{3!}{s^3}$	B) $\frac{6}{s^2}$	C) $\frac{6}{8^4}$	D) $\frac{5}{8^4}$	
			S	s 3 of	3	S	
				3 01	7		

06MAT21

b. Find L.T of e^{2t} Cos²t.

- (04 Marks)
- c. If f(t) is a periodic function of period 'T', then show that $L\{f(t)\} = \frac{1}{1 e^{-Ts}} \int_0^t e^{-st} f(t) dt$.
 - (06 Marks)

 $d. \quad Find \quad L\bigg\{\frac{e^{-at}-e^{-bt}}{t}\bigg\}.$

(06 Marks)

a. Choose your answers for the following:

(04 Marks)

- i) Inverse Laplace transform of $\frac{1}{s^2 a^2}$ is
 - A) Cosat

- D) Sinhat
- A) $\frac{\cos at}{a}$ B) $\frac{s+2}{s^2-4s+13}$ is

 A) $e^{-2t} \cos 3t + \frac{4}{3}e^{2t} \sin 3t$ B) $e^{2t} \sin 3t + \frac{3}{4}e^{-2t} \cos 3t$ C) $e^{2t} \sin 3t \frac{4}{2}e^{-2t} \cos 3t$ D) $e^{2t} \cos 3t + \frac{4}{3}e^{2t} \sin 3t$

- iii) Inverse Laplace transform of $\frac{s}{(s^2 + a^2)^2}$ is

- $(s^2+a^2)^2$ $A) \frac{1}{2a} t \operatorname{Cosat} \qquad B) \frac{1}{2a} t \operatorname{Sinat} \qquad C) t \operatorname{Cos}^2 at \qquad D) \frac{t}{2} \operatorname{Sinat}$ $iv) \quad L^{-1} \left\{ \frac{1}{s^n} \right\} \text{ is possible only when n is}$ $A) \quad n>1 \qquad B) \quad n \geq -1 \qquad C) \quad n=1,2,\ldots.. \qquad D) \quad n < 1.$ $b. \quad \text{Find the} \quad L^{-1} \left\{ \frac{s^2-2s+1}{s^3} \right\}. \qquad (04)$

(04 Marks)

c. Find $L^{-1} \left\{ \frac{3s+7}{s^2-2s-3} \right\}$

- (06 Marks)
- d. Applying L.T method, solve $x'' 2x' + x = e^{2t}$ given that x(0) = 0 and x'(0) = -1.

First/Second Semester B.E. Degree Examination, June 2012

Engineering Chemistry

Time: 3 hrs. Max. Marks:100

Note: 1. Answer any FIVE full questions, choosing at least two from each part.

- 2. Answer all objective type questions only on OMR sheet page 5 of the answer booklet.
 3. Answer to objective type questions on sheets other than OMR will not be valued.

	a.	Choose the correct answers for the following: i) Which one of the following is not a primary fuel?	(04 Marks)									
		A) coal B) crude oil C) natural gas D) ker	osene									
		ii) The method used for obtaining synthetic petrol is										
		A) catalytic cracking B) bergius process										
		C) refining D) none of these										
		iii) The knocking tendency of hydrocarbon decreases in the following order										
		A) straight chain > cyclo alkanes > aromatic > branched chain										
		B) straight chain > branched chain > cyclo alkanes > aromatic										
		C) aromatic > cyclo alkanes > branched chain > straight chain										
		D) cyclo alkane > aromatic > branched chain > straight chain										
		iv) In photo voltaic cell solar energy is utilized to transform										
		A) solar energy into light and heat energy										
		B) solar energy into electrical energy										
		C) solar energy into electrical and chemical energy D) none of these										
	h	Describe the experimental method of determining calorific value of a solid fuel using both										
	b.											
		calorimeter.	(06 Marks)									
	C.	c. Calculate the gross and net calorific values of coke sample using the following data										
		$M_{abb} = 6$ -1 0.95 10^{-3} 1 0.95 10^{-3} 1 0.95 10^{-3} 1 1 10^{-3} 1										
		Mass of coke = 0.85×10^{-3} kg, mass of water = 2.0 kg, water e	quivalent o									
		calorimeter = 0.6 kg, sp.heat of water = 4.187 kJkg ⁻¹ K ⁻¹ , percentage of hydronic specific	quivalent or rogen in fue									
	d	calorimeter = 0.6 kg, sp.heat of water = $4.187 \text{ kJkg}^{-1}\text{K}^{-1}$, percentage of hydrosample = 5%, increase in temperature = 3.5 K , latent heat = 2457 kJkg^{-1} .	quivalent or rogen in fue (04 Marks)									
	d.	calorimeter = 0.6 kg , sp.heat of water = $4.187 \text{ kJkg}^{-1}\text{K}^{-1}$, percentage of hydrosample = 5% , increase in temperature = 3.5 K , latent heat = 2457 kJkg^{-1} .	quivalent or rogen in fue (04 Marks) cells.									
	d.	calorimeter = 0.6 kg, sp.heat of water = $4.187 \text{ kJkg}^{-1}\text{K}^{-1}$, percentage of hydrosample = 5%, increase in temperature = 3.5 K , latent heat = 2457 kJkg^{-1} .	quivalent of rogen in fuel (04 Marks) cells.									
2		calorimeter = 0.6 kg, sp.heat of water = 4.187 kJkg ⁻¹ K ⁻¹ , percentage of hydrosample = 5%, increase in temperature = 3.5 K, latent heat = 2457 kJkg ⁻¹ . Explain the process of doping of silicon. Give two applications of photovoltaic of the process of doping of silicon.	quivalent of rogen in fuel (04 Marks) cells. (06 Marks)									
2	d.	calorimeter = 0.6 kg, sp.heat of water = 4.187 kJkg ⁻¹ K ⁻¹ , percentage of hydrosample = 5%, increase in temperature = 3.5 K, latent heat = 2457 kJkg ⁻¹ . Explain the process of doping of silicon. Give two applications of photovoltaic of the correct answers for the following:	quivalent of rogen in fuel (04 Marks) cells.									
2		calorimeter = 0.6 kg, sp.heat of water = 4.187 kJkg ⁻¹ K ⁻¹ , percentage of hydrosample = 5%, increase in temperature = 3.5 K, latent heat = 2457 kJkg ⁻¹ . Explain the process of doping of silicon. Give two applications of photovoltaic of the correct answers for the following: i) Daniel cell is a combination of standard electrodes of	quivalent of rogen in fue (04 Marks) cells. (06 Marks) (04 Marks)									
2		calorimeter = 0.6 kg, sp.heat of water = 4.187 kJkg ⁻¹ K ⁻¹ , percentage of hydrosample = 5%, increase in temperature = 3.5 K, latent heat = 2457 kJkg ⁻¹ . Explain the process of doping of silicon. Give two applications of photovoltaic of the correct answers for the following: i) Daniel cell is a combination of standard electrodes of A) Cu and Ag B) Zn and Cd C) Zn and Cu D) Cu	quivalent of rogen in fuel (04 Marks) cells. (06 Marks)									
2		calorimeter = 0.6 kg, sp.heat of water = 4.187 kJkg ⁻¹ K ⁻¹ , percentage of hydrosample = 5%, increase in temperature = 3.5 K, latent heat = 2457 kJkg ⁻¹ . Explain the process of doping of silicon. Give two applications of photovoltaic of the correct answers for the following: i) Daniel cell is a combination of standard electrodes of A) Cu and Ag B) Zn and Cd C) Zn and Cu D) Cu ii) The concentration cell stops working when	quivalent of rogen in fue (04 Marks) cells. (06 Marks) (04 Marks) and Cd									
2		calorimeter = 0.6 kg, sp.heat of water = 4.187 kJkg ⁻¹ K ⁻¹ , percentage of hydrosample = 5%, increase in temperature = 3.5 K, latent heat = 2457 kJkg ⁻¹ . Explain the process of doping of silicon. Give two applications of photovoltaic of the correct answers for the following: i) Daniel cell is a combination of standard electrodes of A) Cu and Ag B) Zn and Cd C) Zn and Cu D) Cu ii) The concentration cell stops working when A) M ₁ > M ₂ B) M ₂ > M ₁ C) M ₂ = M ₁ D) No	quivalent of rogen in fue (04 Marks) cells. (06 Marks) (04 Marks)									
2		calorimeter = 0.6 kg, sp.heat of water = 4.187 kJkg ⁻¹ K ⁻¹ , percentage of hydrosample = 5%, increase in temperature = 3.5 K, latent heat = 2457 kJkg ⁻¹ . Explain the process of doping of silicon. Give two applications of photovoltaic of the correct answers for the following: i) Daniel cell is a combination of standard electrodes of A) Cu and Ag B) Zn and Cd C) Zn and Cu D) Cu ii) The concentration cell stops working when A) M ₁ > M ₂ B) M ₂ > M ₁ C) M ₂ = M ₁ D) No iii) Calomel is the commercial name of	quivalent of rogen in fue (04 Marks) cells. (06 Marks) (04 Marks) and Cd									
2		calorimeter = 0.6 kg, sp.heat of water = 4.187 kJkg ⁻¹ K ⁻¹ , percentage of hydrosample = 5%, increase in temperature = 3.5 K, latent heat = 2457 kJkg ⁻¹ . Explain the process of doping of silicon. Give two applications of photovoltaic of the correct answers for the following: i) Daniel cell is a combination of standard electrodes of A) Cu and Ag B) Zn and Cd C) Zn and Cu D) Cu ii) The concentration cell stops working when A) M ₁ > M ₂ B) M ₂ > M ₁ C) M ₂ = M ₁ D) No iii) Calomel is the commercial name of A) mercuric chloride B) mercurous chloride	quivalent of rogen in fue (04 Marks) cells. (06 Marks) (04 Marks) and Cd									
2		calorimeter = 0.6 kg, sp.heat of water = 4.187 kJkg ⁻¹ K ⁻¹ , percentage of hydrosample = 5%, increase in temperature = 3.5 K, latent heat = 2457 kJkg ⁻¹ . Explain the process of doping of silicon. Give two applications of photovoltaic of the correct answers for the following: i) Daniel cell is a combination of standard electrodes of A) Cu and Ag B) Zn and Cd C) Zn and Cu D) Cu ii) The concentration cell stops working when A) M ₁ > M ₂ B) M ₂ > M ₁ C) M ₂ = M ₁ D) No iii) Calomel is the commercial name of A) mercuric chloride C) mercuric sulphate B) mercurous sulphate	quivalent of rogen in fue (04 Marks) cells. (06 Marks) (04 Marks) and Cd									
2		calorimeter = 0.6 kg, sp.heat of water = 4.187 kJkg ⁻¹ K ⁻¹ , percentage of hydrosample = 5%, increase in temperature = 3.5 K, latent heat = 2457 kJkg ⁻¹ . Explain the process of doping of silicon. Give two applications of photovoltaic of the correct answers for the following: i) Daniel cell is a combination of standard electrodes of A) Cu and Ag B) Zn and Cd C) Zn and Cu D) Cu ii) The concentration cell stops working when A) M ₁ > M ₂ B) M ₂ > M ₁ C) M ₂ = M ₁ D) No iii) Calomel is the commercial name of A) mercuric chloride C) mercuric sulphate iv) The potential of the calomel electrode varies with the concentration of	quivalent of rogen in fue (04 Marks) cells. (06 Marks) (04 Marks) and Cd									
2		calorimeter = 0.6 kg, sp.heat of water = 4.187 kJkg ⁻¹ K ⁻¹ , percentage of hydrosample = 5%, increase in temperature = 3.5 K, latent heat = 2457 kJkg ⁻¹ . Explain the process of doping of silicon. Give two applications of photovoltaic of the correct answers for the following: i) Daniel cell is a combination of standard electrodes of A) Cu and Ag B) Zn and Cd C) Zn and Cu D) Cu ii) The concentration cell stops working when A) M ₁ > M ₂ B) M ₂ > M ₁ C) M ₂ = M ₁ D) No iii) Calomel is the commercial name of A) mercuric chloride B) mercurous chloride C) mercuric sulphate iv) The potential of the calomel electrode varies with the concentration of A) mercuric chloride B) mercurous sulphate	quivalent o rogen in fue (04 Marks) cells. (06 Marks) (04 Marks) and Cd									
2		calorimeter = 0.6 kg, sp.heat of water = 4.187 kJkg ⁻¹ K ⁻¹ , percentage of hydrosample = 5%, increase in temperature = 3.5 K, latent heat = 2457 kJkg ⁻¹ . Explain the process of doping of silicon. Give two applications of photovoltaic of the correct answers for the following: i) Daniel cell is a combination of standard electrodes of A) Cu and Ag B) Zn and Cd C) Zn and Cu D) Cu ii) The concentration cell stops working when A) M ₁ > M ₂ B) M ₂ > M ₁ C) M ₂ = M ₁ D) No iii) Calomel is the commercial name of A) mercuric chloride C) mercuric sulphate iv) The potential of the calomel electrode varies with the concentration of	quivalent of togen in fue (04 Marks cells. (06 Marks (04 Marks and Cd									

2 .		What are reference electrodes? Explain the construction of Ag/AgCl electrode. Give half-cell reactions. (05 Marks)
	c.	An electrochemical cell consists of iron electrode dipped in 0.01M FeSO ₄ solution and copper electrode dipped in 0.1M CuSO ₄ solution. Write the cell representation, cell reaction and calculate emf of the cell at 298 K. Given standard reduction potentials of iron and
		copper electrodes are -0.44 V and 0.34 V respectively. (05 Marks)
	d.	Define single electrode potential. Explain the determination of potential of Zn-electrode dipped in 0.5M ZnSO ₄ , using standard hydrogen electrode. (06 Marks)
3	a.	Choose the correct answers for the following: (04 Marks)
		i) Which of the following is not a rechargeable battery?
		A) lead acid B) Ni-metal hydride C) Ni-Cd D) Zn-MnO ₂
		ii) Which of the following is a reserve battery?
		A) Zn-air B) Ni-metal hydride C) Zn-Ag ₂ O D) Li-MnO ₂
		iii) In hydrogen-oxygen fuel cell which of the following electrolyte is used?
		A) H_2SO_4 B) NH_4OH C) KOH D) CH_3COOH
		iv) The concentration of sulphuric acid to be maintained in lead-acid battery is
	2	A) 10 M B) 5 M C) 15 M D) 2 M
	b.	What are primary, secondary and reserve batteries? Explain the construction and working of
		Zinc-air battery. (08 Marks)
	c.	Explain the construction and working of methanol-oxygen fuel cell. (05 Marks)
	d.	Give the advantages of fuel cells over batteries. (03 Marks
4	a.	Choose the correct answers for the following: (04 Marks)
		i) Water-line corrosion can be explained on the basis of
		A) stress corrosion B) differential aeration corrosion
		C) centralized corrosion D) all of these
		ii) Differential metal corrosion is
		A) galvanic corrosion B) differential aeration corrosion
		C) stress corrosion D) pitting corrosion
		iii) Which of the following metal is used as anode protection to iron?
		A) Zn B) Cu C) Ni D) none of these
		iv) Which of the following acts as oxygen scavenger in cathodic inhibition?
		A) Na_2SO_3 B) Na_2SO_4 C) $ZnSO_4$ D) $NiSO_4$
	b.	Explain differential metal corrosion, with a suitable example. (06 Marks)
	C.	Discuss the effect of the following on the rate of corrosion:
		i) Anodic and cathodic areas ii) Corrosion product iii) Temperature (06 Marks)
	d.	Write a note on anodic protection. (04 Marks)
		PART - B
5	a.	Choose the correct answers for the following: (04 Marks)
		 For an electrolyte mixture containing Cu²⁺, Zn²⁺ and Cd²⁺ the order of electrodeposition is
		A) Cu, Cd, Zn B) Cu, Zn, Cd C) Zn, Cd, Cu D) Cd, Cu, Zn
		ii) When the object to be plated is irregular, the process employed is
		A) electroplating B) electroless plating
		C) electrophoreting D) electropolishing
		iii) Addition of buffer to the plating bath is to
		A) increase the pH of the bath B) decrease the pH of the bath
		C) control the pH of the bath D) none of these
		2 of 4

5	a.	iv)	In electroplating of ch A) wide difference bet	ween anode and catho	ode efficiencies	
			B) imbalance of the ba		respect to Cr(III) and (Cr(VI)
			C) to avoid poor quality D) all of these	ty deposition		
	b.	Expla	ain the decomposition p	notential and over-vol	tage	(04 Marks)
	c.		ain the role of the follow			
		i)	Current density		and or energy deposit	•
		ii)	Throwing power			(06 Marks)
	d.	Expla	ain the electroless platir	ng of copper.		(06 Marks)
				131 11 14. 15320		
6	a.	Choo	se the correct answers	for the following:		(04 Marks)
		i)	Para Azoxy Anisole is			(,
			A) nematic	B) smectic	C) chiral nematic	D) cholesteric
		ii)	Which of the following	g is a lyotropic liquid	crystal?	
			A) para azoxy anisole		B) para azoxy phenet	
			C) cholesteryl benzoa		D) soap-water mixtur	re
		iii)	Which of the following	g is a reference electr		
			A) glass electrode		B) calomel electrode	
		iv)	C) platinum electrode Calorimetry involves t	ha mansurament of al	D) none of these	shramatia light in tha
		10)		B) IR range	C) UV range	D) all of these
	b.	Expla	in with suitable examp			
		1	r			(04 Marks)
	c.	Expla	in the molecular orderi	ing in the following li	quid crystal phases:	
		i)	Nematic phase			
	-1	ii)	Chiral nematic phase			(06 Marks)
	d.	State	Lambert's law and Be	eer's law. Explain th	e colorimetric estimat	
		NH ₃	as the complexing agen	it.		(06 Marks)
7	a.		se the correct answers			(04 Marks)
		i)	The emulsion polymer			
				B) epoxy resin	C) neoprene rubber	D) styrene
		ii)	Te polymer having hig		(1)	D) 1
		iii)	A) polypropylene The monomer ethylene	B) polyethylene	C) pvc	D) polystyrene
		111)		B) bifunctional	C) trifunctional	D) poly functional
		iv)	Which of the followin			D) pory ranctionar
		,		B) polyurethane	C) PMMA	D) PVC
	b.	Expla	in the free radical m			
		exam			1 7	(04 Marks)
	c.	Give	the synthesis and applic	cations of the following	ng:	
		i)	PMMA		al a	
		ii)				
	d	iii				(09 Marks)
	d.	(nive	the structure and applic	ations of conducting	nolvaniline	(03 Marks)

8 'a.	Choose the correct answers for the following:						
	i) Temporary hardness of water is caused due to the presence of (04 Marks)						
	A) MgCl ₂ B) Ca(HCO ₃) ₂ C) CaCO ₃ D) all of these ii) The secondary treatment of sewage involves						
	A) biological treatment C) chemical treatment D) all of these						
	iii) The method used for desalination of water is						
b.	A) lime-soda process C) flash evaporation D) ion-exchange process iv) Which of the following method is used for the estimation of chloride content in water A) Winkler's method B) argentometric method C) PDA method D) SPADNS method 100 ml of water sample required 4 ml of N/50 H ₂ SO ₄ for neutralization to phenolphthalein						
	end point. Another 15 ml of the same acid was needed for further titration to methyl orange end point. Determine the type and amount of alkalinity. (04 Marks) Explain Winkler method of determining dissolved oxygen. Give the reaction involved.						
d.	What is potable water? Give the characteristics of potable water. Explain desalination of water by reverse osmosis process. (06 Marks)						

USN			-				
		1	1		1		1

,	Fi	rst/Second Semester B.E. De	gree Examination, June	2012
		Engineering	g Physics	
Time:	3 hrs.		Ma	ax. Marks:100
	 Ans Ans 	swer any FIVE full questions, choose wer all objective type questions only wer to objective type questions on shad constants: $h = 6.62 \times 10^{-34} J$ -s,	in OMR sheet page 5 of the areets other than OMR will not	nswer booklet. be valued.
		PART	<u>– A</u>	
1 a.	Cho i)	ose your answers for the following: If the de Broglie wave is represented A) group velocity is equal to velocity B) group velocity is equal to phase v	of light	(04 Marks
		C) group velocity is equal to particle	velocity	
		D) phase velocity is greater than velo		
	ii)	The Davisson – Germer experiment p		
		A) particle nature of the waves	B) x-ray diffraction throu	-
	iii)	C) de Broglie's hypothesis In Black-body radiation spectra	D) quantum nature of light	nt
		A) λ_m shifts towards lower wave length	th side as temperature increases	
		B) λ_m shifts towards lower wave leng		
		C) the total area covered by the curve	*	
		 D) the total energy radiated per se temperature. 	cond per unit area is equal to	cubic power of
	iv)	If the energy of an electron is comp following energy equation holds good		nen which of th
		A) $E = \sqrt{m_0^2 c^4 + p^2 c^2}$	$E = \frac{p^2}{2m}$	
		C) $E = pc$	D) $E = \sqrt{m_0 c^2 + p^2 c^2}$	
b.		iming that de Broglie's wave associate	d with a particle is represented b	y a wave group (05 Marks
c.		a relationship between group velocity a g the concept of group velocity derive		
		S		(06 Marks
d.	Con	pare the de Broglie wave length associ	ated with	
	i)	10g bullet travelling at 500 m/s and		
	ii)	An electron with kinetic energy of 10) MeV.	(05 Marks
2 a.	Cho i)	ose your answers for the following: According to uncertainty principle, ar	electron with 1 MeV K.E.	(04 Marks

- - A) Cannot be accommodated within the nucleus
 - B) Can be accommodated with in the nucleus
 - C) Cannot be a part neither of atom nor nucleus
 - D) Non of the these
- The wave function ψ is said to be normalized if

A)
$$\int_{-\infty}^{+\infty} \left| \psi \right|^2 dv$$
 B) $\int_{-\infty}^{+\infty} \left| \psi \right|^2 dv = 0$ C) $\int_{-\infty}^{+\infty} \left| \psi \right|^2 dv = \infty$ D) None of these

,		 iii) For a physical system, the Schrodinger's wave equation is Time-independent A) When potential energy of the system does not depend on time B) When potential energy of the system depends on time C) When potential energy of the system depends both on time and position D) When the total energy of the system is not steady.
		iv) For a particle trapped in an infinite potential well, the possible energy Eigen values A) Vary continuously
		B) Are discrete energy states including zero energy state
		C) Are discrete energy states excluding zero energy state
		D) Non of these.
		Explain physical significance of wave function. (05 Marks)
	c.	Find the energy eigen values of a particle trapped in a one dimensional potential well of infinite height. (07 Marks)
	d.	Compute the first two permitted energy states of an electron trapped in a box of 1A° unit
		wide. (04 Marks)
3	a.	Choose your answers for the following: (04 Marks)
		i) Relaxation time
		A) is the time taken for the drift velocity to decay to 1/e of its initial value when electric field is switched off.
		B) is the time taken for drift velocity to increase by a factor 'e' of initial value when the field is switched on
		C) is the time duration between two successive collisions
		 is the time taken for the drift velocity to decay to zero of its initial value when electric field is switched off.
		ii) The collision time and root mean square velocity of the electron at room temperature
		are 2.5×10^{-14} s and 1×10^5 m/s respectively. The classical value of mean free path of the electron is
		A) 2.5×10^{-19} m B) 0.25 nm C) 25 A° units D) 2.5 nm
		iii) Free electron Fermi gas
		A) is a gas of free electrons moving zig-zag in a lattice
		B) is a gas of interacting electrons moving opposite to applied electric field in a lattice
		C) is a gas of free electrons escaping the metal surface
		D) is a gas of free and non interacting electrons subject to Pouli's exclusive principle
		iv) Fermi energy level is that energy level at which
		A) the probability occupation is full B) the probability occupation is half
		C) the probability occupation is zero D) None of these
	b.	Discuss the breakdown of classical free electron theory with specific reference to mean free path of electrons and molar specific heat of metals. (04 Marks)
	c.	Define density of energy states in metals and derive an expression for the density of energy states. (08 Marks)
	d.	Calculate the mobility of free electrons in silver at room temperature, given that, silver has
		electron density $5.89 \times 10^{+28} / \text{m}^3$ and resistivity of $1.61 \times 10^{-8} \ \Omega \text{m}$. (04 Marks)
4	a.	Choose your answers for the following : (04 Marks) i) The electronic polarizability α_e of a gas atom is
		A) $4\pi \in {}_{0}$ B) $4\pi \in {}_{0}R$ C) $4\pi \in {}_{0}R^{2}$ D) $4\pi \in {}_{0}R^{3}$
		ii) The dipole moment per unit volume of a solid is the sum of all the individual dipole
		moments and is called
		A) Polarization of the solid B) Permitivity of the solid
		C) Electrostatic moment D) None of these
		iii) In a ferroelectric material, as the applied electric field is gradually reduced to zero, the polarization still left is known as:
		A) Coercive polarization B) Remanent polarization
		C) Zero polarization D) Positive polarization
		2 of 4

b. c. d.	iv) The magnetic material in which permanent magnetic dipoles due to electron spin are already aligned in the absence of magnetic field A) Paramagnetic materials B) Ferromagnetic materials C) Ferrimagnetic materials D) Diamagnetic materials Explain the term 'internal field'. Derive an expression for internal field in the case of one dimensional array of atoms in dielectric solids. (07 Marks) What are hard and soft magnetic materials? Give their characteristic properties? (06 Marks) The electronic polarizability of Helium is 0.18 × 10 ⁻⁴⁰ F.m². Calculate the radius of the electron orbit (∈₀ = 8.854 × 10 ⁻¹² Fm⁻¹).
	PART - B
5 a.	Choose your answers for the following: i) If E _u and E _l are energies of upper and lower energy levels of an atom, then, stimulated emission is
	A) a process of emission of a photon of energy $h\gamma = E_u - E_l$
	B) a process of emission of a photon of energy $h\gamma = E_u - E_l$ in addition to incident photon
	C) a process of absorption of a photon of energy $h\gamma = E_u - E_l$ resulting in excitation D) is a process of natural decay
	ii) At radiative thermal equilibrium
	A) upward radiative flux is absent
	B) downwards radiative flux is absent
	C) upward radiative flux is not equal to downward radiative flux
	D) upward radiative flux is equal to downward radiative flux
	iii) If N_u and N_l are population densities of upper and lower energy states respectively; then population inversion is the condition such that
	A) $N_u = N_l$ B) $N_u < N_l$ C) $N_u > N_l$ D) $\frac{N_u}{N_l} = e^{(E_u - E_l)/KT}$
	iv) The principle of construction of hologram is due to A) Diffraction phenomenon B) Scattering phenomenon
	C) Polarization phenomenon D) Interference phenomenon
b.	Derive an expression for spectral energy density at thermal equilibrium in terms of Einstein's coefficients. (08 Marks)
c.	With the help of a neat energy level diagram, describe the construction and working of $He-Ne$ laser. (08 Marks)
6 a.	Choose your answers for the following: i) The propagation mechanism in optical fibers is based on the principle of A) Scattering of light at the boundary between core and cladding
	B) Total internal reflection of light at the boundary between core and claddingC) Dispersion of light in the media of the coreD) None of these
	ii) The transmission attenuation in optical fibers in expressed in
	A) dB loss = $\log_{10} \left(\frac{P_{\text{out}}}{P_{\text{in}}} \right)$ B) dB loss = $-\log_{10} \left(\frac{P_{\text{out}}}{P_{\text{in}}} \right)$
	(III)
	C) dB loss = -10 log ₁₀ $\left(\frac{P_{out}}{P_{in}}\right)$ D) dB loss = 10 log ₁₀ $\left(\frac{P_{out}}{P_{in}}\right)$
	iii) The temperature at which a conductor becomes a super conductor is called
	A) Super conducting temperature B) Curi temperature
	C) Onne's temperature D) Critical temperature
	3 of 4

(05 Marks)

	C.										
	d.										
		refractive index of the core and acceptance angle,	, confinement angle, and critical angle for								
		the boundary between core and cladding.	(05 Marks								
7	a.	. Choose your answers for the following:	(04 Marks								
		i) Which of the following crystal structure is ha	aving the least coordination number?								
		A) Simple cubic	B) Body centred cubic								
		C) Face centered cubic	D) Diamond structure								
		ii) In TRIGONAL crystal systems the axial leng									
			B) $a \neq b \neq c$ and $\alpha \neq \beta \neq \gamma$								
		C) $a = b \neq c \text{ and } \alpha = \beta = 90^{\circ}, \gamma = 120^{\circ}$	D) $a = b = c$ and $\alpha = \beta = \gamma < 120^{\circ} \pm 90^{\circ}$								
		iii) If (hkl) are the miller indices of a plane,	2) a c c and a p 120 750								
		A) then, h, k, l are intercepts on \overline{a} , \overline{b} and \overline{c} as	xes respectively								
		B) then the plane cuts the axes into h, k and l	equal segments respectively								
		C) then, h, k, l represents three non collinear p	the state of the s								
		D) then, they refer to planes which in crys	tal are equivalent even tough their mille								
		indices differ.									
		iv) If 'a' is lattice constant, Δv, volume of each	atom and 'n' is number of atoms per un								
		cell, then the atomic packing factor is	L. C.								
			a^3								
		A) $\frac{n\Delta v}{a^3}$ B) $\frac{na^3}{\Delta v}$	C) $\frac{a^3}{n\Delta v}$ D) n. Δv . a^3								
	b.	1123 V									
	,										
		that the packing factor for bcc and fcc structures are $\sqrt{3}\frac{\pi}{8}$ and $\sqrt{2}\frac{\pi}{6}$ respectively.									
			0 (08 Marks								
	c.	Deduce Bragg's law for x-ray diffraction in crystals.	(04 Marks								
	d.		1278 nm. Calculate the inter planar spacing								
		for (111) and (321) planes.	(04 Marks								
8	a.	61 0 1 0 11 1	(04 Marks								
U	a.	i) The graphite structure is composed of layers of									
			C) Hexoganally D) Septoganally								
		ii) In considering the scaling of electromagnetic									
		electrostatic field strengths	b systems, it is convenient to assume that								
			B) are dependent on scale								
			D) are strong								
		iii) In which of the following media the ultrasonic									
			C) Distilled water D) Alcohol								
		iv) Ultrasonic waves are	z) = 10 monor								
		A) Radio waves with frequency of the order o	f 10 ¹⁰ Hz								
		B) Transverse waves with frequency of the ore									
		C) Longitudinal waves with frequency of the									
		D) Sound waves with frequency more than 20									
	b.	What is scaling of classical mechanical systems?	What are the basic assumptions made in								
		scaling? Give the magnitudes and scaling of four phy	rsical parameters. (08 Marks								
	c.		c waves in liquids. (08 Marks								
		****	(00 tital to								
		4 of 4									

iv) Type-1 super conducting material when placed in a magnetic field will

A) Attract the magnetic field towards its centre

B) Repel all the magnetic field but transfer it into a concentrated zone

D) Not influence the magnetic field

b. Explain Meissner effect.

Ele	ments of Civil Eng
Time:	3 hrs.
Note	e: 1. Answer any FIVE full q 2. Answer all objective type 3. Answers for objective ty 4. Missing data if any may
1 a.b.	i) Temporary dams are c A) Earth dam ii) Boundary between ca A) Traffic seperators iii) Bascule bridge is a A) Deck bridge C) Semi-through brid iv) Geo-technical enginee A) Structural enginee C) Soil mechanics Explain impact of infrastruc
d.	Explain offerry with near ske
2 a.	Choose your answers for the i) An object which has o A) Continuum ii) Moment of a force ale A) Rotational effect C) Irrotational effect iii) A body which does no A) Deformable body iv) Two equal and opposit A) Point force
b.	Write any two Newton's lav
c. d	

06CIV13/23

Max. Marks:100

First/Second Semester B.E. Degree Examination, June 2012 ineering and Engineering Mechanics

uestions, choosing at least two from each part.

- e questions only OMR sheet, page 5, of the answer booklet.
- pe questions on sheets other than OMR will not be valued.
- be suitably assumed.
- PART A e following: (04 Marks) called as C) Coffer dam D) Diversion dam. B) Gravity dam arriage way and foot paths are B) Kerbs C) Shoulders D) Fencing B) Through bridge D) None of these ge ering is also called as ring B) Irrigation engineering D) Hydraulics ctural facilities on socio - economic development of a country. (06 Marks) etches, gravity dam and earth dam. (06 Marks) wo types of bridges. (04 Marks) e following: (04 Marks) nly mass, but no size is called

- - B) Point force
- C) Particle
- D) Rigid body
- out a point is a measure of its

- - B) Translational effect
 - D) None of these.
- t under go any deformation on application of force is
 - B) Rigid body
- C) Elastic body
- D) Plastic body

- B) Couple
- C) Both A and B
- ite, parallel and non-collinear force constitute a D) None of these.
- ws of motion. What are the characteristics of a couple?
 - (05 Marks)
- ole of transmissibility of a force.
- (03 Marks)
- on a rigid body as shown in Fig. Q2(d), reduce this system to
 - ole at A
 - couple at B.

(08 Marks)

On completing your answers, Important Note: 1. USN

06CIV13/23

2 of 4

Fig. Q4(c)

PART - B

Choose your answers for the following: (04 Marks) Relation between action and reaction force is A)They are equal in magnitude and opposite in direction B) They have common line of action C) Act perpendicular to the line of contact D) All the above The non-applied forces are A) Self weight B) Reaction C) Both A and B D) None of these A force which nullifies the effect of forces is called A) Equilibrium B) Equilibrant C) Resultant D) None of these A system that possesses a resultant A) Will be in equilibrium B) Will be under rest C) Not be in equilibrium D) None of these State Lami's theorem. (02 Marks) c. A sphere of weight 5 kN is supported by the Pully 'P' and 2 kN weight passing over a smooth pully as shown in Fig. Q5(c). If $\alpha = 30^{\circ}$, calculate the value of P and θ . (06 Marks) C 215M Fig. Q5(c) Fig. Q5(d) A string is subjected to the forces 4 kN and P as shown in Fig. Q5(d). Determine the magnitudes of P and tension forces induced in various portions of the string. (08 Marks) Choose your answers for the following: (04 Marks) A beam which has one end fixed and other end simply supported is called B) Simply supported beam A) Fixed beam C) Propped cantilever beam D) Cantilever beam If the intensity of load increases linearly along the length of beam, it is A) Uniformly distributed load B) Uniformly varying load C) Moment D) General loading iii) A statically indeterminate beam is a A) Cantilever beam B) Simply supported beam C) Double over hanging beam D) Continuous beam A support, where two reaction components exist which are mutually perpendicular, is A) Simple support B) Roller support C) Hinge support D) Fixed support. Find the support reaction for the cantilever beam loaded as shown in Fig. Q6(b). (08 Marks)

Fig. Q6(C)

Fig. Q6(b)

Choose your answers for the following: (04 Marks) Friction acting on a body which is just on the point or verge of sliding is called A) Limiting friction B) Sliding friction C) Co-efficient of friction D) Cone friction Friction acting on a body when the contact surfaces are completely separated by lubricant is called. B) Film friction C) Viscous friction D) Dry friction A) Non viscous friction iii) Friction force always acts A) Opposite to the motion of the body B) Along the motion of the body C) Perpendicular to the motion D) None of these The coefficient of friction is equal to A) The tangent of cone of friction B) The tangent of angle of friction C) The tangent of angle of repose D) The ratio of resultant to normal. State the laws of friction (04 Marks) Define: i) Angle of friction ii) Co-efficient of striction. (02 Marks) c. A block weighting 10 kN is to be raised by means of 20° wedge as shown in Fig. Q7(d). Find the horizontal force P, which will just raise the block. Assume co-efficient of friction for all surfaces of contact is 0.3. Neglect weight of wedge. BLock Fig. Q7(d) Choose your answers for the following: (04 Marks) Area moment of inertia is A) First moment of area B) Second moment of area C) Radius of gyration D) Area of cross section Radius of Gyration is given by Moment of inertia of a triangle about its base is iii) bh3 12 36 Algebraic sum of first moment of elemental areas of plane figures about centroidal axis is always A) Unity B) Zero C) Total area of elements D) Moment of inertia. State and prove perpendicular axis theorem. (04 Marks) Determine the second moment of area and radius of gyration about the horizontal centroidal axis for the shaded area shown in Fig. Q8(c). (12 Marks) $R_1 = 20 \text{ mm},$

Fig. Q8(c)

 $R_2 = 50$ mm, $R_1 = Radius of circle,$ $R_2 = Radius of semi circle$

First/Second Semester B.E. Degree Examination, June 2012

Elements of Mechanical Engineering

	2	. Answer all objective type questions only of Answer to objective type questions on she	on OMR sheet page 5 o	f the Answer Booklet				
		. Use of steam tables is NOT permitted.	eis other than OMK w	ui noi ve vaiuea.				
		. Any missing data may be suitably assume	ed.					
1	a.	<u>PART</u> - Choose your answers for the following:	<u>- A</u>	(04 Marks				
•	ш.	i) Fossil fuels are		(04 17141 K3				
		A) solid fuel B) liquid fuel	C) gaseous fuel	D) all of these.				
		ii) The water tubes in Babcock-Wilcox bo	, .	D) an of these.				
		A) Improve radiation heat transfer	B) Improve conve	ctive heat transfer				
		C) Accommodate the furnace	, .	d convection of water				
		iii) With increase in pressure, the enthalpy		if convection of water				
		A) increases	B) decreases					
		C) remains same	D) first increases a	and then decreases				
		iv) The specific volume of water, when he		ind then decreases				
		A) first increases and then decreases	B) first decreases a	and then increases				
		C) increases steadily	D) decreases stead					
	b.	List any four sources of energy, with suitable		(04 Marks				
	c.							
		Describe with a neat sketch, the working of a Babcock-Wilcox boiler. Indicate clearly the direction of flow of flue gases. (08 Marks)						
	d.	Find the enthalpy of 1.0 kg of steam at 20 bar	r when	(00 Marks				
		i) it is wet with dryness fraction of 0.9	When					
		ii) it is super heated with its temperature of 3	50°C					
		[Take specific heat of super heated steam as		s of steam at 20 har as				
		$t_{sat} = 212.4$ °C, $h_f = 908.6$ kJ/kg, $h_{fg} = 1888.6$		(04 Marks				
		34, , , , , , , , , , , , , , , , ,		(0.1.2012)				
		Choose your answers for the following:		(04 Marks				
2	a.							
2	a.	i) turbine is an example of impul	se turbine.	(0 / 1/201113				
2	a.	i) turbine is an example of impul. A) De-Laval B) Kaplan	se turbine. C) Francis	D) Lawn sprinkler				
2	a.	A) De-Laval B) Kaplan	C) Francis	D) Lawn sprinkler				
2	a.	A) De-Laval B) Kaplan	C) Francis	D) Lawn sprinkler				
2	a.	A) De-Laval B) Kaplan ii) A gas turbine as compared to a diese	C) Francis l engine takes longer tir	D) Lawn sprinkler				
2	a.	A) De-Laval B) Kaplan ii) A gas turbine as compared to a diese speed because	C) Francis I engine takes longer tin essure	D) Lawn sprinkler				
2	a.	A) De-Laval B) Kaplan A gas turbine as compared to a diese speed because A) gas turbine has lesser maximum processed.	C) Francis I engine takes longer tir essure bearings	D) Lawn sprinkler				
2	a.	A) De-Laval B) Kaplan A gas turbine as compared to a diese speed because A) gas turbine has lesser maximum problems diesel engine has larger number of	C) Francis I engine takes longer tir essure bearings	D) Lawn sprinkler				
2	a.	A) De-Laval B) Kaplan A gas turbine as compared to a diese speed because A) gas turbine has lesser maximum problems diesel engine has larger number of C) gas turbine has larger rotating mass.	C) Francis I engine takes longer tir essure bearings	D) Lawn sprinkler				
2	a.	A) De-Laval B) Kaplan A gas turbine as compared to a diese speed because A) gas turbine has lesser maximum processes. B) diesel engine has larger number of C) gas turbine has larger rotating mass D) gas turbine needs no water cooling.	C) Francis I engine takes longer tir essure bearings d when	D) Lawn sprinkler				
2	a.	A) De-Laval B) Kaplan A gas turbine as compared to a diese speed because A) gas turbine has lesser maximum proceeding. B) diesel engine has larger number of C) gas turbine has larger rotating mass D) gas turbine needs no water cooling. iii) Kaplan turbine is efficient and preferre A) low head and low discharge is avairable.	C) Francis I engine takes longer tir essure bearings d when lable	D) Lawn sprinkler				
2	a.	A) De-Laval B) Kaplan A gas turbine as compared to a diese speed because A) gas turbine has lesser maximum processes. B) diesel engine has larger number of C) gas turbine has larger rotating mass D) gas turbine needs no water cooling. iii) Kaplan turbine is efficient and preferre	C) Francis I engine takes longer tir essure bearings d when lable ilable	D) Lawn sprinkler				
2	a.	A) De-Laval B) Kaplan ii) A gas turbine as compared to a diese speed because A) gas turbine has lesser maximum processes. B) diesel engine has larger number of C) gas turbine has larger rotating mass D) gas turbine needs no water cooling. iii) Kaplan turbine is efficient and preferre A) low head and low discharge is avai B) low head and high discharge is ava C) high head and low discharge is ava	C) Francis I engine takes longer tir essure bearings d when lable ilable	D) Lawn sprinkler				
2	a.	A) De-Laval B) Kaplan ii) A gas turbine as compared to a diese speed because A) gas turbine has lesser maximum processes. B) diesel engine has larger number of C) gas turbine has larger rotating mass D) gas turbine needs no water cooling. iii) Kaplan turbine is efficient and preferre A) low head and low discharge is avair B) low head and high low head lo	C) Francis I engine takes longer tir essure bearings d when lable ilable	D) Lawn sprinkler				
2	a.	A) De-Laval B) Kaplan ii) A gas turbine as compared to a diese speed because A) gas turbine has lesser maximum processes. B) diesel engine has larger number of C) gas turbine has larger rotating mass D) gas turbine needs no water cooling. iii) Kaplan turbine is efficient and preferre A) low head and low discharge is avai B) low head and high discharge is ava C) high head and low discharge is ava D) high head and high discharge is ava	C) Francis I engine takes longer tir essure bearings d when lable ilable	D) Lawn sprinkler me to accelerate to ful				
2	a.	A) De-Laval B) Kaplan ii) A gas turbine as compared to a diese speed because A) gas turbine has lesser maximum processes. B) diesel engine has larger number of C) gas turbine has larger rotating mass D) gas turbine needs no water cooling. iii) Kaplan turbine is efficient and preferre A) low head and low discharge is avain B) low head and high discharge is avain C) high head and high discharge is avain D) high head and high discharge is avain Cooling water is not needed in	C) Francis I engine takes longer tir essure bearings d when lable ilable iilable	D) Lawn sprinkler me to accelerate to ful				

4	0.		a neat sketches, explain compounding of a		(06 Marks)
	C.	with	a neat sketch, explain the construction ar	id working of a closed cycle gas	
	d.	Class	sify water turbines.		(06 Marks)
	a.	Class	sity water turbiles.		(04 Marks)
3	a.	Cho	ose your answers for the following:		(04 Marks)
•		i)	The overall efficiency of an I.C. engine	is	(04 Marks)
		.)	A) mechanical efficiency	B) brake thermal efficiency	
			C) indicated thermal efficiency	D) none of these	
		ii)	The air fuel ratio in a petrol engine is go		
		11)	A) injector	B) governor	
			C) carburetor	D) fly wheel	
		iii)	The ratio of speed of the camshaft to s		r stralea avala
		111)	engine is	peed of the crank shall in a lou	stroke cycle
			A) 1:2	D) 2.1	
			C) 1:1	B) 2:1	
		:)		D) none of these	
		iv)	For the same speed and power, the size of		etrol engine is
			A) same as that of 2-stoke petrol engine		
			B) larger than that of 2-stroke petrol eng		
			C) smaller than that of 2-stroke petrol en	ngine	
		Б. 1	D) all of these.		
	b.		lain with a neat sketch, working of a two s		(06 Marks)
	c.		ngle cylinder two stroke petrol engine dev		
			sure on the piston is 8 bar and mechanical		
			e of the cylinder if stroke to bore ratio is		
		if bra	ake thermal efficiency is 28%. The calorif	ic value of the fuel is 43900 kJ/kg	g. (10 Marks)
4	a.	Choo	ose your answers for the following:		(04 Marks)
		i)	An ideal refrigerant should have		(01111111)
		-/	A) low freezing point	B) low boiling point	
			C) high latent heat of vapourization	D) all of these.	
		ii)	In vapour-absorption refrigeration sys		ressurize the
)	refrigerant	is all asea to p	ressurize the
			A) a pump and generator	B) a compressor	
			C) both of (A) and (B)	D) none of these.	
		iii)	Refrigeration is a process of heat extract		
		111)	A) a hot body and delivered to a cold bo		
			B) a cold body and delivered to a hot bo		
			C) a cold body and delivered to a hot bo		
		i)	D) a hot body and delivered to a cold body	dy without the help of external w	ork.
		10)	Air conditioning is a process of	D)11(1 : 1'4	
			A) control of temperature	B) control of humidity	
	L.	D - C	C) control of cleanliness and air motion		
	b.		ne: i) COP of refrigeration, ii) Ton of re		(04 Marks)
	C.		v a neat sketch of vapour compressor r		
			gerant at all salient points and direction of		(06 Marks)
	d.	Desc	ribe room air conditioner with a simple sk	retch.	(06 Marks)
			The particular section (5)	code poder on	
			2 0	01 4	

PART - B

5	a.	Choo	ose your answers for the				(04 Marks)
		i)	Which of the following	g parts is not present i	in lathe		
			A) spindle		B) knee		
			C) bed		D) slide		
		ii)	Which of the following	ng operations can be c	arried out on lathe		
			A) knurling		B) facing		
			C) thread cutting		D) all of these		
		iii)	is the operati	on of enlarging a hole	by a single point cuttin	g tool.	
		/	A) reaming		B) counter sinking		
			C) boring		D) all of these		
		iv)	Drilling machine can	be specified based on			
		,	A) max.dia. of drill		B) spindle travel		
			C) power of the moto	г	D) all of these		
	b.	With	a neat sketch explain t	aper turning on lathe	by swiveling of compou	ind slide	. (06 Marks)
	c.		sify drilling machines.	apor taring on anim	-,		(04 Marks)
	d.	With	neat sketches explain	· i) counter sinking ii) counter boring, iii) rea	ming.	(06 Marks)
	a.	VV ILII	ficat sketelies, explain	. 1) counter sinking, ii) counter cornig, m, rea	8.	,
6	a.	Cho	ose your answers for th	e following ·			(04 Marks)
0	a.	i)	is a machine	e tool that removes r	metal as the work is fee	against	
		1)	multipoint cutter.	e toor that removes i	netal as the work is lee	a agamo	a rouning
			A) lathe		B) drilling machine		
			C) shaping machining		D) milling machine.		
		ii)	In a horizontal milling	machine the rotating			
		11)	A) cutter	, macmine, the rotating	B) yoke		
			C) arbor		D) over-arm		
		:::>	,	a are natural abracive			
		111)	Which of the followin	ig are natural abrasive	B) corundum		
			A) sand stone		D) all of these		
		:>	C) diamonds	and flat gurfage	D) all of these		
		1V)	grinding produ	ces trat surface.	B) surface		
			A) cylindrical		D) none of these		
	1	D: /	C) form	1' d da m:!!!imo			(04 Marks)
	b.	Disti	inguish between up mil	ing and down mining	-1:11:		(04 Marks)
	C.		a neat sketch, explain				(04 Marks)
	d.	List	the applications and ad	vantages of centreless	grinding.		(04 Marks)
7	a.	Cho	ose your answers for th	e following:			(04 Marks)
		i)	Spot welding is an ex				
		-)	A) gas welding	ampre or	B) resistance welding		
			C) TIG welding		D) arc welding		
		ii)	Which of the following	o can act as a lubrica			
		11)	A) oil	B) grease	C) graphite	D) all o	fthese
		iii)	is the prope	rty which enables oil	to spread over and adhe		
		111)	bearing.	ity willen chaoles on	to opious over una unit		
				B) flack point	C) specific gravity	D) dens	ity
		;\	A) oilinessWhich of the following	B) flash point		2) 00113	
		iv)		ig is definer it of ball b	B) requires less lubric	ation	
			A) less friction			ation	
			C) compact		D) none of these		
				3 of 4	1		

06EME14/24

7	b.	Distinguish between soldering, brazin	ng and welding.	(06 Marks)
	C.	List the basic requirements of a good	lubricant.	(04 Marks)
	d.	Describe with a neat sketch, working	(06 Marks)	
8	a.	Choose your answers for the followi	ng:	(04 Marks)
		i) Belt drives are preferred when	the distance between the shaft centers is	
		A) very small	B) large	
		C) any distance	D) none of these	
		ii) gears connect two not	n-parallel, non-intersecting shafts which	are usually at
		right angles.	Choles in management	
		A) spur	B) bevel	
		C) worm	D) none of these	
		iii) In a clock mechanism Ge	ear train is used to connect minute hand an	nd hour hand.
		A) simple	B) compound	
		C) epicyclic	D) none of these	
		iv) Number of teeth on a wheel pe	er unit of its pitch diameter is called	
		A) addendum	B) deddendum	
		C) diametral pitch	D) circular pitch	
	b.	Derive an expression for the length o	f the belt in a crossed flat belt drive.	(06 Marks)
	c.	Name different gear drives and ment		(04 Marks)
	d.	With neat sketches, explain: i) simpl		(06 Marks)
		, 1 - , 1		

4 of 4

First/Second Semester B.E. Degree Examination, June 2012 **Basic Electronics**

Γime: 3 hrs	• goigh Clin late II is		Max. Marks:100
Note:1. Ar	iswer FIVE full questions choosing	at least TWO	from each part.
2. Ar	iswer all objective type questions on	y on OMR st	neet page 5 of the
Ai	iswer Booklet.		down OMP will not be valued
3. A1	iswer to objective type questions on s	sheets other t	nan OMK wiii noi be viitieu.
	PART	$\Gamma - \mathbf{A}$	paraller of
1 a. Ch	oose your answers for the following:	***	(04 Marks)
i)	In full wave rectification, if the inpu	t frequency is	50 Hz, then output frequency is,
	A) 50 Hz	B)	100 Hz
	C) 150 Hz	D)	None of these
ii)	The diodes which are designed with	adequate pov	ver dissipation capabilities to operate
	in the break down region may be en	iployed as	George automate
	 A) Variable voltage 	B)	Constant current
	C) Constant voltage		Variable current
iii		breakdown vo	Increase
	A) Decrease	B)	None of these
	C) Constant	D)	
iv	If the reverse voltage across the dio	de increases, i	Remains constant
	A) Decreases	B) D)	None of these
	C) Increases		
	aw the VI-characteristics of a diode and	d explain with	(08 Marks)
eq	uation. full wave rectifier circuit uses a capaci	tor filter of 10	
c. A	500 mA at 2% ripple. Calculate dc	output voltag	e peak rectified voltage, rms ripple
of	500 mA at 2% ripple. Calculate de	output voitag	(08 Marks)
VC	ltage on the capacitor and % regulation	1.	
2 a. C	hoose your answers for the following:		(04 Marks)
2 a. C		collector june	ction is
	A) Reverse biased	B)	Forward biased
	C) Not biased	D)	None of these
i	i) The input resistance of a CE-m	node transisto	r is much than its output
1	resistance.		
	resistance.		
	A) More	B)	Less
	A) More C) Larger		Less None of these
į	C) Larger	D) generally used	None of these
i	C) Larger ii) Common collector arrangement is	D) generally used	None of these
	C) Larger Common collector arrangement is A) Impedance matching Courrent amplifier	D) generally used B) D)	None of these I for Voltage amplification None of these
	C) Larger Common collector arrangement is A) Impedance matching Courrent amplifier	D) generally used B) D)	None of these I for Voltage amplification None of these
	C) Larger Common collector arrangement is A) Impedance matching C) Current amplifier iv) The collector current in a transistor	D) generally used B) D)	None of these I for Voltage amplification None of these
	C) Larger Common collector arrangement is A) Impedance matching C) Current amplifier iv) The collector current in a transistor then the leakage current I _{CBO} is,	D) generally used B) D)	None of these I for Voltage amplification None of these
1	C) Larger ii) Common collector arrangement is A) Impedance matching C) Current amplifier iv) The collector current in a transistor then the leakage current I _{CBO} is, A) 10 μA C) 0.78 μA	generally used B) D) or is 5 mA. If B) D)	None of these d for Voltage amplification None of these B = 140 and the base current is 35 μA. 0.714 μA 20 μA
į.	C) Larger ii) Common collector arrangement is A) Impedance matching C) Current amplifier iv) The collector current in a transistor then the leakage current I _{CBO} is, A) 10 μA C) 0.78 μA	generally used B) D) or is 5 mA. If B) D)	None of these d for Voltage amplification None of these B = 140 and the base current is 35 μA, 0.714 μA 20 μA
b. 1	 C) Larger ii) Common collector arrangement is A) Impedance matching C) Current amplifier iv) The collector current in a transiste then the leakage current I_{CBO} is, A) 10 μA C) 0.78 μA For a silicon transistor α = 0.995, en 	generally used B) D) or is 5 mA. If B) D)	None of these d for Voltage amplification None of these B = 140 and the base current is 35 μA, 0.714 μA 20 μA
b. ј	C) Larger ii) Common collector arrangement is A) Impedance matching C) Current amplifier iv) The collector current in a transistor then the leakage current I _{CBO} is, A) 10 μA C) 0.78 μA	D) generally used B) D) or is 5 mA. If B) D) nitter current	None of these of the base current is 35 μ A. O.714 μ A or μ A or μ A or μ A is 10 mA and leakage current I _{CO} is (06 Marks)

(08 Marks)

Choose your answers for the following: The process of making operating point independent of temperature changes or (04 Marks) variations in transistor parameters is known as A) Biasing Stabilization C) Thermal runaway D) None of these The intersection of the dc load line with given base current curve is the A) h-point B) D-point C) Q-point D) None of these iii) Lower stability factors imply lower variation in the current. A) Collector Base C) Emitter D) Both base and emitter. To forward bias the base to emitter junction, the minimum V_{BE} required is for Si transistor. B) 0.7V C) 0.007VD) None of these Define stability factor. Discuss the factors that cause instability of biasing circuits. c. For the circuit shown in Fig. Q3 (c), determine $I_{\text{C}},\,V_{\text{E}},\,V_{\text{C}}$ and $V_{\text{CE}}.$ (08 Marks) (08 Marks) 180K2 R, 56K1 Ra Fig. Q3 (c) Choose your answers for the following: (04 Marks) FET is a controlled device Voltage A) B) Current C) Pulse Power The unit of transconductance gm of an FET is A) volts/ampere B) volts C) ampere/volts D) None of these Latching current in SCR is holding current. A) less than B) more than C) equal to D) none of these iv) JFET has input impedance. A) B) low C) very low D) none of these b. Draw the two transistor equivalent of an SCR and explain working of SCR. c. Draw the VI-characteristic and equivalent circuit of UJT. Explain how UJT can be used as a

relaxation oscillator.

PART - B

	a.	Choose your answers for the following: (04 Marks) The magnitude voltage gain at half power frequencies of an RC-coupled amplifier in	
		times maximum voltage gain	
		A) 0.707 B) 7.07	
		C) 10 D) 17.06	
		ii) With negative feedback, output impedance of an voltage series feedback	
		A) Remains constant B) Decreases	
		C) Increases D) None of these	
		iii) Without bypass capacitor across R _E , the voltage gain	
		A) decreases B) increases	
		C) constant D) none of these	
		iv) The magnitude of product of open loop gain (A) and feedback factor (β) is less that	ın
		one, then the output voltage with frequency.	
		A) Remains constant B) Decreases	
		C) Variable D) None of these	
	b.	A crystal has $L=0.33$ H, $C=0.06$ pF, $R=5$ K Ω and $C_m=1$ PF. Find	
		i) Series resonant frequency	
		ii) Parallel resonant frequency (06 Mark	
	c.	Draw the frequency response of an RC-coupled amplifier and explain it. Mention i	its
		advantages and disadvantages (10 Mark	(s)
1	a.	Choose your answers for the following: (04 Mark	(S)
		i) If the different input signal is applied to the two inputs of op-amp, then mode is	
		A) Common B) Mixed	
		C) Difference D) None.	
		ii) If a sinusoidal voltage is applied to vertical deflection plates only, then we get	_
		on the screen of the CRO.	
		A) Vertical line B) Horizontal line	
		C) Both lines D) None	
		iii) The unit of PSRR is	
		A) Volts B) Amperes	
		C) $\mu V/V$ D) None	
		iv) Maximum rate of change of output voltage with time is called	
		A) CMRR B) Slew rate	
		C) Over rate D) None	
	b.	Define the following terms with respect to op-amp:	
		i) CMRR	
		ii) Input offset voltage	
		iii) Input offset current	
		iv) Input bias current (08 Mark	
	c.	Draw the three input non-inverting summer circuit using an op-amp and derive	
		expression for output voltage. (08 Mark	KS)

7	a.	Choose your answers for the following:			(04 Marks)
	,	i) (ABC·D) ₁₆ = () ₁₀			(04 Marks)
		A) 2748.8125	B)	2741.81	
		C) 2640.2	D)	3641.25	
		ii) (934) ₁₀ = () ₈	D)	3041.23	
		A) 1600	B)	1646	
		C) 1641		1644	
			D)	1044	
		iii) $(11001.110)_2 = ()_{10}$	D)	20.75	
		A) 24.75	B)	20.75	
		C) 40.26	D)	25.75	
		iv) 2's complement of (10011) ₂ is			
		A) 01101	B)	01110	
		C) 01111	D)	11111	
	b.	Draw the block diagram of a superhetrodyne re	eceive	er and explain the functi-	ons of each
		block.			(08 Marks)
	c.	The total power content of an AM wave is 2	.64 1	cW at a modulation fact	or of 80%.
		Determine the power content of,			
		i) Carrier ii) Each side band		1051.80%	(04 Marks)
	d.	Subtract using 2's complement of [78-65].			(04 Marks)
8	a.	Choose your answers for the following:			(04 Marks)
		 The NAND-gate is AND-gate followed by 		ackgroupe (alter 55)	
		A) OR gate	B)	EX-OR gate	
		C) EX-NOR gate	D)	NOT gate	
		ii) $A+(B+C) = (A+B)+C$ islaw.			
		A) Associative	B)	Commutative	
		C) Distributive	D)	None	
		iii) $A + \overline{A}B =$			
				_	
		A) A + A	B)	A	
		C) A + B	D)	None	
		iv) The output is high, when both inputs are no	t equ	al, such a gate is called_	
		A) EX – OR gate	B)	NOT gate	
		C) EX – NOR gate	D)	None	
	b.	Design a full adder circuit and realize, using two l	nalfa	dders.	(08 Marks)
	c.	Simplify the following Boolean expressions and it			ates:
		i) $y = A\overline{B}\overline{C} + \overline{A}\overline{B}\overline{C} + \overline{A}\overline{B} + A\overline{C}$			
		ii) $y = A(\overline{ABC} + A\overline{BC})$			(08 Marks)

* * * * *

n.	1		1	4		13	
п	h	н	₩.		•	12	~

USN										j	
-----	--	--	--	--	--	--	--	--	--	---	--

First/Second Semester B.E. Degree Examination, June 2012 **Basic Electrical Engineering**

	Max. Marks:100
Note: 1. Answer any FIVE full questions, choosing at least two from 2. Answer all objective type questions only on OMR sheet page 3. Answer to objective type questions on sheets other than OMR	5 of the answer booklet.
PART – A 1 a. Choose your answers for the following:	(04 Marks
i) Ohm's law does not hold good for non-metallic conductors s	
A) Copper B) Aluminium	
C) Silver D) Silicon carb	
ii) The direction of magnetic field produced by a linear current	
A) Flemings left hand rule B) Right hand to C) Amper's law D) Lenz's law	inumo ruie
iii) For ideal voltage source, the value of internal resistance is	
A) 1 B) ∞	
C) zero D) None of the	se
iv) Equivalent inductance of series aiding of two coil connection	
A) $L_{eq} = L_1 + L_2 - 2M$ B) $L_{eq} = L_1 + L$	
C) $L_{eq} = L_1 + 2L_2 + M$ D) $L_{eq} = 2L_1 + M$	
b. A resistance R is connected in series with a parallel circuit com-	nprising two resistances o
12 Ω and 8Ω . The total power dissipated in the circuit is 700 watt is 200V. Calculate the value of R.	s when the applied voltag (06 Marks
c. State and explain Faraday's law of electromagnetic induction and	(05 Marks
d. Two coupled coils of self inductances 0.8 H and 0.20 H, have a confirmed the mutual inductance and turns ratio.	o-efficient of coupling 0.9 (05 Marks
2 a. Choose your answers for the following:	(04 Marks
i) The sinusoidal currents are given by $i_1 = 10 \text{ Sin (wt} + \pi/3)$, phase difference between them in degrees is	$i_2 = 15 \text{ Sin (wt - } \pi/4). \text{ Th}$
A) 15° B) 105° C) 60° ii) The peak factor is given by $Kp = $	D) 45°
A) 1.414 B) 1.11 C) 0.707	D) 0.635
iii) When the frequency of the applied voltage in R.L series inductive reactance	
A) decreases B) becomes zero C) increases	D) remains same
iv) The power factor of R.L.C. series circuit, when $X_L > X_C$	D)
A) lagging B) leading C) unity	D) zero
b. Derive equations for the rms value and average value of a sinusoic	ially varying current.
 Derive an equation for the power consumed by a R-C series circui voltage, current and power. 	
d. A circuit consists of a resistance of 20 Ω and an inductance of 0	
A supply of 230V, 50Hz is applied to the circuit. Find the current consumed by the circuit.	

3	a.	Choose your answers		(04 Marks)
			n of instantaneous phase currents on a three phase l	balanced system is
		A) one	B) zero	
		C) infinity	D) none of these	1,000
			d system, the relation between the line voltage and	phase voltage is
		A) $El = Eph$	B) Eph = $\sqrt{3}$ El	
		C) $El = \sqrt{3}$ Eph	D) $El = 3$ Eph	
		iii) In the two-wattn zero, when the lo	neter method of measuring 3-phase power, one of pad angle power factor angle is	the wattmeter reads
		A) 60°	B) 0°	
		C) 90°	D) 30°	
		iv) The expression of	of 3.\phi power equation in terms of phase values	
		A) 3 V _{ph} I _{ph} Sin	ϕ B) $\sqrt{3}$ V _{ph} I _{ph} Cos ϕ	
		C) 3 V _{ph} I _{ph} Cos	$_{\rm S}$ φ D) $\sqrt{3}$ V _{ph} I _{ph} Sin φ	
	b.		diagram, show that two wattmeters are suf	ficient to measure (08 Marks)
	c.		es, each having a resistance of 8Ω and inductive	,
			ii) Delta, across a 3-phase, 440V supply	
		Find:		
		i) Phase current		
		ii) Line current		
		iii) Total power cons	sumed by the circuit in both cases.	(08 Marks)
4	a.	Choose your answers	for the following:	(04 Marks)
			revolution of the disc in energy meter is directly	
		A) power	B) energy	
		C) voltage	D) current	
		ii) Integrating meter	rs are used for the measurement of	
		A) current	B) voltage	
		C) power	D) energy	
			er wattmeter, the moving coil is	
		A) potential coil		
		C) current or pot		
			should provide resistance in earthing path	
		A) medium	B) high	
		C) low	D) none of these	
			agram the working of dynamometer type wattmeter	(08 Marks)
		With a neat diagram ex		(04 Marks)
	d.		erms with reference to fuses:	
		i) Rated current		
		ii) Fusing current		
		iii) Fusing factor.		(04 Marks)
			bullet on little CP tilg Reportation of the Romanio Re-	
			2 of 4	

PART - B

5	a	. Cl	noose your answers for the foll	lowing: (04 Marks)
		i)	The state of converts in	n the dc machine
			A) ac to ac	B) dc to ac
			C) ac to dc	D) dc to dc
		11)	an ection of the force i	n Dc motor is given by
			A) Fleming's left hand rule	B) Fleming's right hand rule
			C) Lenz's law	D) Cork screw rule
		111) Electrical equivalent of the	mechanical power developed by the armature is equal to
			vala	B) EbIa
		. ,	C) Ia ² Ra	D) none of these
		1V	For DC series motor, torque	e is proportional to
			A) la	B) Ia
	,	****	C) V^2	D) none of these
	b.	Wit	th a neat sketch, explain the c	onstruction of the DC machine showing the various parts.
	0			
	C.	GIV	e the classification of DC mo	otor, sketch the various characteristics of shunt and and
		****	and mention their application	ons.
	d.	A 4	pole, 500V shunt motor has	720 conductors wave connected on its amostore the Cit
			and all the state of the state	the flux per pole is 0.03 wh. The armature resistance is
		0.29	2 and the contact drop is 1V p	er brush. Calculate the full load speed. (04 Marks)
6	a.	Cho	oose your answers for the follo	wing:
		i)	The core of the transformer	is laminated to reduce (04 Marks)
			A) friction loss	B) copper loss
			C) hysterisis loss	D) eddy current loss
		ii)	The iron losses depend on th	e maximum value of the
			A) input voltage	B) input current
			C) flux density	
		iii)	If copper loss of a transform	D) frequency ner at 1/2 full load is 200 watts then its full load copper
			loss would be	ner at 172 full load is 200 watts then its full load copper
			A) 200 W	D) 400 W
			C) 1600 W	B) 400 W
		iv)	The copper losses in the tran	D) 800 W sformer vary as the square of the
			A) voltage	stormer vary as the square of the
			C) flux density	B) power
	b.	Deriv	ve an expression for the alac	D) current
	E (SE)	trans	former.	tromotive force induced in the secondary winding of a
		trans	former is maximum.	(05 Marks) ner and derive the condition for which the efficiency of a
			- The state of the	
		0.9 n	f Determine its officient	efficiency of 92% at full load unity p.f. and half load,
		0.5 P	.f. Determine its efficiency at 7	75% of full load and 0.9 p.f. (06 Marks)

1	a.	Cno	ose your answers for the f	ollowing: (04 Marks)					
		i)	A 6 pole, 1000 rpm alter	nator generates emf at a frequency of					
			A) 60 Hz	B) 40 Hz					
			C) 25 Hz	D) 50 Hz					
		ii)	and the second s	e rotor is used for alternator having					
		11)	A) low speed	B) low and medium speed					
			C) high speed	D) none of these					
		iii)		AND THE PARTY OF T					
		111)	A) less than 1	B) 1					
			,	,					
		:>	C) greater than 1	D) none of these					
		1V)		nerated in a 8-pole alternator in one revolution is					
			A) 4	B) 2					
		01	C) 8	D) 16					
	b.	Obta	Obtain expression for emf of an alternator and explain the significance of winding factor.						
		**	1	(06 Marks)					
	C.			With neat figures, give the constructional difference between					
		them		(05 Marks)					
	d.			connected alternator has an armature with 90 slots and 8					
				at 1000 rpm. The flux per pole is 0.05 wb. Calculate the emf					
		gene	rated, if the winding facto	r is 0.97 and pitch factor is unity. (05 Marks)					
8	a.	Choose your answers for the following: (04 Marks)							
		i) In three-phase IM a rotating magnetic field of constant magnitude							
			$\sqrt{3}$						
			A) $\frac{\sqrt{3}}{2}\phi_{\rm m}$	B) 1.5 φ _m					
			_						
			C) $-\frac{\sqrt{3}}{2}\phi_{\rm m}$	D) $-1.5 \phi_{\rm m}$					
			$C_{j} = \frac{1}{2} \phi_{m}$	D) -1.5 ψ _m					
		ii)	A 4 pole, 50Hz induction	n motor runs with a slip of 4%. What is the speed of motor?					
			A) 1500 rpm	B) 1400 rpm					
			C) 1440 rpm	D) 1000 rpm					
		iii)		er full load has a slip of about					
		,	A) 0.03	B) 0.3					
			C) 0.1	D) zero					
		iv)		nduced current is given by					
		14)	A) $f' = f/s$	B) $f' = sf$					
			C) $f' = \sqrt{sf}$	D) $f' = (1 - s) f$					
	b.			magnetic field in an 3\psi induction motor. (06 Marks)					
	c.	Defin	ne a slip. Derive expressio	n for the slip and frequency of rotor current. (05 Marks)					
	d.			s 6 poles and runs at 960 rpm on full load. It is supplied from					
				nd running at 1500 rpm. Calculate the full load slip and the					
			ency of the rotor currents						
		1							

SN		Question Paper	Version:	A
----	--	----------------	----------	---

First/Second Semester B.E Degree Examination, June 2012 Environmental Studies

(COMMON TO ALL BRANCHES)

Time: 2 hrs.]

[Max. Marks: 50

INSTRUCTIONS TO THE CANDIDATES

- 1. Answer all the fifty questions, each question carries **ONE mark**.
- 2. Use only Black ball point pen for writing / darkening the circles.
- 3. For each question, after selecting your answer, darken the appropriate circle corresponding to the same question number on the OMR sheet.
- 4. Darkening two circles for the same question makes the answer invalid.
- 5. Damaging/overwriting, using whiteners on the OMR sheets are strictly prohibited.

ι.	Which of the following a) Fungi	ng is a biotic componen b) Solar light	t of an ecosystem? c) Temperature	d) Humidity	
2.	In an ecosystem, the a) Bidirectional	flow of energy is b) Cyclic	c) Unidirectional	d) Multidirectional	
3.	The first Internationa a) Johannesburg	l Earth Summit was hel b) Rio-de Janerio	d at c) Kyoto	d) Stockholm	
1.	ISO 14000 standards a) pollution managen c) risk management	(D)(D)(D)(D)(D)(D)(D)(D)(D)(D)(D)(D)(D)(b) environmental management d) None of these.		
5.	The major atmospher a) Hydrogen	ic gas layer in stratosph b) Carbon dioxide	ere is c) Ozone	d) Helium.	
ó.	Which of the following a) Solid waste	ng is not the environment b) Water pollution		alization, in general? th d) Air pollution.	
7.	EIA can be expanded a) Environment and I c) Environmentally In	ndustrial Act	b) Environment and Impact Activities d) Environmental Impact Assessment.		
3.	The impact of construa) submerged forests c) damages down stre		b) loss of wild life d) All of these.	habitat	

				06CIV18/2		
9.	Among the fresh wate a) 50 %	r available on the Earth b) 10 %'	h, the percentage of s c) 5 %			
10.	Major sources of fluor a) Ground water	ride is b) Toothpaste	c) River water	d) Food products		
11.	to		•	ntamination of water due		
	a) Phosphates	b) Sulphur	c) Nitrates	d) Arsenic		
12.	The most important fu a) U-235	el used by nuclear pov b) U-248	ver plant is c) U-238	d) U-245		
13.	Bacteriological polluti a) silt and grit c) suspended particals	on of water is due to the	he presence of b) parasitic worms d) floating materials.			
14.	Lead poisoning may can reduction in haemonic mental retardation		b) kidney damage d) all of these.			
15.	Air pollution from aut a) electrostatic precipi c) catalytic converter		olled by fitting b) wet scrubber d) all of these.			
16.	16. Which of the following are non-biodegradable?a) Plasticsb) Domestic sewagec) Detergentsd) Both a and					
17.	Which of the followin a) Carbon monoxide	g is a secondary air po b) Sulphur dioxide		d) Carbon dioxide.		
18.	In which year, the I compulsory subject at a) 2000			environmental education d) 2003		
19.	Environmental protect a) 51-A(8)	ion is a fundamental d b) 48-A	uty of the citizen of I c) 47	ndia under the article d) 21		
20.	Ozone layer is present a) Stratosphere	in b) Mesosphere	c) Thermosphere	d) Troposphere		
21.	Chernobyl nuclear disa a) 1984	aster occurred in the years) 1952	ear c) 1986	d) 1987		
22.	Which of the followin a) Wind energy	g is not a renewable so b) Tidal wave energ		d) Fossil fuels.		
23.	Electromagnetic radiata) Plague	tion can cause b) Malaria	c) Cancer	d) Dengue fever.		
24.	Nuclear power plant in a) Bhardravathi	Karnataka is located b) Sandur	at c) Raichur	d) Kaiga		
25.	Which place in India,	and the second s		d) Tamil Nadu		

.

.

•			06CIV18		
26.	In hydro power plants, power is generate a) Hot springs b) Wind	c) Water	d) Solar energy		
27.	Environmental pollution is due to a) rapid urbanization b) deforestation	c) afforestation	d) both a and b		
28.	Definition of noise is a) Loud sound b) Unwanted sound	c) constant sound d) Sound of high frequency		
29.	Sound, beyond which of the following lead a) 40 dB b) 80 dB	evel, can be regarded as c) 120 dB			
30.	'Minamata disease' is caused by a) Lead b) Arsenic	c) Mercury	d) Cadmium.		
31.	An alternative eco-friendly fuel for autor a) Petrol b) Diesel	d) Kerosene			
32.	Population explosion will cause a) Bio-diversity c) More employment	b) Stress on ecos d) None of these.	b) Stress on ecosystem d) None of these.		
33.	Which of the following is not a solution a) Reducing fossil fuel consumption c) Deforestation	b) Planting more	global warming? b) Planting more trees d) None of these.		
34.	The first of the major environmental protection act to be promulgated in India was a) Air act b) Water act c) Environmental act d) Noise pollution a				
35.	Population explosion will cause a) Socio-economic problems c) Food scarcity	b) Energy crises d) All of these.			
36.	Global warming could affect a) Climate c) Melting of glaciers	b) Increase in sea d) All of these.	b) Increase in sea level d) All of these.		
37.	Acid rain can be controlled by a) Reducing SO ₂ and NO ₂ emission c) Increasing number of lakes		b) Reducing oxygen emissions d) Increasing the forest cover		
38.	The pH value of the acid rain water is a) 5.7 b) 7.0	c) 8.5	d) 7.5		
39.	Major compound responsible for the destruction of stratospheric ozone layer is a) Oxygen b) CFC c) Carbon dioxide d) Methane				
40.	Domesticated animals are used for a) Dairy products b) Production of	f fiber c) Production of	meat d) All of these.		
41.	World ozone day is being celebrated on a) September 5 th b) October 5 th	c) September 16 th	d) September 11 th		
42.	Bhopal gas tragedy was due to the leakaga) Methyl isocynate (MIC) c) Mustard gas	ge of b) Sulphur dioxid d) Methane	le		

43.	The forest (conserva	ntion) Act was enacted i	n the year	06C1
	a) 1986	b) 1974	c) 1980	d) 1972
44.		o movement is b) Sunderlal Bahug	guna c) Vandana Sh	iva d) Suresh Heblika
45.		ference on environmen b) Vienna		
46.	The world environm a) June 5 th	b) November 5 th	on c) April 5 th	d) December 5 th
47.	India has the world's a) Manganese	s largest share of b) Copper	c) Mica	d) Diamond
48.	The hydrological cyca) Water cycle and bc) Hydropower		b) Water and election d) Water character	
49.	An important NGO i a) UNICEF	nvolved in global envir b) Green peace	conmental protection	is d) CPCB
50.	About 3/4 th of the co a) Karnataka	untry's coal deposits ar b) Tamil Nadu	e found in c) Kashmir	d) Bihar & Orissa