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Preface

A strong trend today is toward the fullest feasible integration of all elements of manufacturing, including
maintenance, reliability, supportability, the competitive environment, and other areas. This trend toward
total integration is called concurrent engineering. Because of the central role information processing
technology plays in this, the computer has also been identified and treated as a central and most essential
issue. These are the issues that are at the core of the contents of this volume.

This set of volumes consists of seven distinctly titled and well-integrated volumes on the broadly
significant subject of computer-aided design, engineering, and manufacturing: techniques and applica-
tions. It is appropriate to mention that each of the seven volumes can be utilized individually. In any
event, the great breadth of the field certainly suggests the requirement for seven distinctly titled and well-
integrated volumes for an adequately comprehensive treatment. The seven volume titles are:

1. Systems Techniques and Computational Methods
2. Computer-Integrated Manufacturing
3. Operational Methods in Computer-Aided Design
4. Optimization Methods for Manufacturing
5. The Design of Manufacturing Systems
6. Manufacturing Systems Processes
7. Artificial Intelligence and Robotics in Manufacturing

The contributors to this volume clearly reveal the effectiveness and great significance of the techniques
available and, with further development, the essential role that they will play in the future. I hope that
practitioners, research workers, students, computer scientists, and others on the international scene will
find this set of volumes to be a unique and significant reference source for years to come.

Cornelius T. Leondes
Editor



   
Editor

Cornelius T. Leondes, B.S., M.S., Ph.D., is an Emeritus Professor at the School of Engineering and Applied
Science, University of California, Los Angeles. Dr. Leondes has served as a member or consultant on
numerous national technical and scientific advisory boards. He has served as a consultant for numerous
Fortune 500 companies and international corporations, published over 200 technical journal articles,
and edited and/or co-authored over 120 books. Dr. Leondes is a Guggenheim Fellow, Fulbright Research
Scholar, and Fellow of IEEE. He is a recipient of the IEEE Baker Prize, as well as its Barry Carlton Award.
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Tele-Manufacturing:

Techniques and
Applications for Rapid

Prototyping on the
Internet/Intranets

1.1 Introduction
Rapid Prototyping Background • Current Access to 
Prototyping • Slicing a Model for Rapid 
Prototyping • Objective and Motivation

1.2 Preliminaries
Rapid Prototyping Representation • Current Slicing 
Algorithms • Java • Collaborative Design

1.3 Review of Related Works
Slicing Algorithms • Cusp Height and Accuracy • Decreasing 
Processing and Build Time • Observations from the Reviewed 
Research

1.4 Computational Aspects and Procedures
Preparing the STL File for Slicing • Searching for the Start of 
a Contour (Trigger Point) • Determining the Trigger Point 
Edge • Tracing Out the Contour

1.5 Prototype Implementation and Case Studies
System Architecture of the Prototype • Program 
Initialization • Data Input and Manipulation • Search 
Method to Find Trigger Points • Contour Tracing 
Implementation • World Wide Web Access • Results of 
Enhanced Algorithm

1.6 Conclusions

The fundamental aspects of rapid prototyping systems have steadily matured since their inception in the
1980s. Intricacies of CAD model slicing for layered manufacturing are compounded by construction of a
3-D model from 21/2 -D slices. Surface finish problems, processing time, and accuracy are within the scope
of this work, which entails the development of a slicing algorithm that works through the World Wide
Web. Additionally, this process extends the current slicing algorithms to one that is more apt to deal with
file processing time and connections for collaborative design. The use of the World Wide Web will enable
this software to be utilized by others without the need for software at their sites. The software is developed
with tools such as Java, HTML, and the Web.

Utpal Roy
Syracuse University

M. Cargian
Syracuse University
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1.1 Introduction

Manufacturing in today’s world has developed and changed due to new technology and worldwide
competition. As a consequence, a need for quicker and faster development times for products has arisen.
Other design and manufacturing technologies such as concurrent engineering, design for manufacture,
just-in-time production, and computer-aided design (CAD) have pushed the design envelope further.
To reduce the development times, companies need to be able to create prototypes of their new products—
quickly and cost effectively.

Rapid Prototyping Background

In today’s competitive business arena, companies must continually strive to create new and better
products, faster and more efficiently than their competitors. The design and manufacture process is
continually enhanced to be more responsive to changes, as well as quicker to market. Many technologies
and business practices, such as concurrent engineering, just-in-time production, and design for manu-
facture, have been utilized to decrease design time. In addition to these enhancements, over the past
decade, rapid prototyping has evolved to improve the product design cycle. Rapid prototyping is a system
for creating immediate prototypes of a new design or change that is used to evaluate it or in actual
application. 

There are many CAD environments available for creating new engineering designs or concepts. As a
new design or modification to a current design is developed in a package such as CATIA or Pro/Engineer,
this model can then be created in a short time to have an actual prototype for further testing. This
prototype, along with analysis tools, helps to quickly define the success and failures of the new design.

Previously, prototypes could be costly and take a long time to create. Once the prototype is complete,
further modifications may be needed, and again the cost and time increase. With rapid prototyping,
there are costs and time associated with making the object, but at much lower expense to the designer.
Where prototypes may have previously been measured in days and weeks, they now can be measured in
hours.

Rapid prototyping is also known as layered manufacturing (LM) as well as several other names.
The LM process takes the CAD model of an object and virtually slices the object into many two-
dimensional (2-D) patterns of the cross section of the object. This stack of slices is then created by an
LM machine, one layer at a time. Each layer adheres to the layer below it, eventually creating the final
prototype.

Current Access to Prototyping

After creating an object, a designer who wishes to have a prototype made has a few options. The file can
be sent to an outside prototyping agency for price quoting and possible creation. Part of speed of rapid
prototyping is lost due to the time spent communicating with the vendor, sending the object, and having
it processed. Alternatively, the company can choose to invest in its own prototyping hardware, software,
and people to staff it, which can be expensive. Additionally, there are several other factors to consider in
the prototyping equipment, all of which have unique features and attributes that result in different
prototype quality and finish.

Slicing a Model for Rapid Prototyping

A great deal of work and research has been done in the area of slicing the CAD model for rapid
prototyping. These slicing algorithms take a CAD model and, based on a user-defined layer height, slice
the model. Prototypes created in a layer-by-layer process exhibit a staircase effect on some surfaces. As
shown in Fig. 1.1, the difference at the edge of the CAD model and the sliced model is termed the cusp
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height. Ideally, the cusp height should be a minimum for any object. Although the slice height can be
changed by the user of most software packages, and will reduce the cusp height, a decreased fixed slice
height results in longer computing and processing time on the machine. In general, it would be advan-
tageous for the slicing software to minimize the cusp height while performing the slicing procedure as
quickly as possible.

Objective and Motivation

With this brief introduction to rapid prototyping, it can be seen that there are several areas that can be
improved. Two of these improvements are in the accessibility of rapid prototyping software and the slicing
algorithm. 

Currently, any institution wishing to implement rapid prototyping on a project must invest a large
amount of capital in a free-form fabrication apparatus, software, and training, or have their model created
by an outside rapid prototyping agency. 

This slicing module is aimed at being one of the design services for the collaborative product design
environment (CPD) developed in the Knowledge Based Engineering Laboratory at Syracuse University.
This CPD framework allows product design across the Internet by virtual collocation of people and
services. Once the design work is complete within this environment, there are several Web-based services
for testing and analysis of the model. Some of the services available include process planning for the part,
casting analysis, and NC path planning. 

The objective of this work is to develop a module that will allow slicing for rapid prototyping from
this environment. Internet prototyping could allow a required model to be sent instantly over the Internet
and added to the queue of the layered manufacturing machine. The reduction in processing time of the
sliced object needs to be addressed by utilizing a modified slicing algorithm. These objectives are to be
met using a number of tools including, Java and the Internet.

1.2 Preliminaries

The essence for rapid prototyping is the need to obtain fast, cost-effective parts to aid in the design of a
new product. There are several criteria that describe the layer-by-layer manufacturing process, including
file format, slicing algorithms, and manufacturing systems. File format defines the current standards for
object and feature information transfer. The prototype finish is directly affected by the slicing algorithm
and manufacturing process used.

FIGURE 1.1 Comparison of the CAD model to the sliced prototype.
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Rapid Prototyping Representation

The current exchange standard for rapid prototyping is the stereolithography (STL) file. The STL file is
a triangulation of the surface of the object that creates a set of triangles (facets) that represent the surface
of the original model. The triangulation results in a set of nonoverlapping triangles that do not extend
outside of the object’s boundaries but completely cover the entire surface of the CAD object. A sample
tesselated object is shown in Fig. 1.2.

The tessellation results in an unordered, feature- and topology-deficient file. This file does not have
any information on features such as holes, cuts, or protrusions. Additionally, there is no surface or contour
data about the object. The STL file does not contain any information to drive the layered manufacturing
process, leaving the slicing algorithm to find all of the contours. Although the STL file does not help the
slicing process with information, it is the industry standard that most CAD packages can create and is
the neutral format utilized for this Web project.

Current Slicing Algorithms

Many current slicing systems utilize geometric intersections of a plane (horizontal to the stereolithography
platform) with the object to define each slice. Each new slice that needs to be defined is created by moving
the intersecting plane further up the object as in Fig. 1.3. Once the line segments are found from these
intersections, they must be sorted in a head-to-tail fashion, as in Fig. 1.4, to form the contour.

Java

A new tool for the Web is the Java programming language developed by Sun Microsystems, Inc., in 1991
(Cornell and Horstmann, 1996). It is becoming the next language of the Internet, and changes the way the
World Wide Web operates. With Java, Web pages can come alive with graphics, animations, video, and
sound. Java is a full-featured, object-oriented programming language that is adaptable to many situations. 

Within Java, the programmer can create applets (programs that run over the Internet or intranets) or
applications. Applets are stored on an Internet/intranet server, and users download them when they

FIGURE 1.2 Display of the STL file of a faceted object.
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arrive on a Web page which then runs locally on the user’s machine. An interpreter usually found in the
Web browser is required to read and process the neutral Java file. Applications, on the other hand, are
stand-alone programs that do not run inside a browser.

Java programs are stored as bytecodes, intermediary files that allow the Java program to run on
any computer that has an interpreter. There is no longer a barrier caused by differences among
operating systems run on a computer. The code for a Java program can be written once, stored on
a Web server, and then downloaded by the user onto any machine. Because popular browsers now
support Java, and many operating systems are adding Java as a central feature, it is easy to run Java
applets or applications.

One limitation of the current system is a question of security. Most browsers disable Java’s access to
read or write to the local user’s machine. The security feature in the browser limits the Java program to
only access files on the server from which it came. By doing so, a malicious program is prevented from
erasing or damaging the user’s computer or data. If access is required to read and write on the local
computer, Java can develop stand-alone applications. These applications are full-blown applications such
as those created in C++ and can be run directly from the command line.

The possibilities for Java-enabled Web pages are endless. Utilizing this programming language opens
the possibility to the ‘‘diskless’’ computer, where all applications are stored on Internet/intranet servers.

FIGURE 1.3 Previous slicing algorithms that intersect a plane with the STL object to create each contour.

FIGURE 1.4 Resulting unsorted, unordered contour that needs to be arranged to form a complete contour.
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As programs are needed for specific tasks, they would be downloaded from a Web page. Whether or not
Internet-centric computing becomes a reality, Java will have an important role in creating dynamic, useful
Web pages. 

Collaborative Design

The Internet and corporate Intranets have become a powerful tool for communication. Engineers and
designers now have the opportunity to work on projects with people all over the world through the Web.
Research in this area is being done at Syracuse University to make the collaborative design process possible
for product design. Systems are being implemented to connect feature and part information with a
sharable object using tools like VRML. This collaborative product design framework allows designers
from all over the world to work together on a design. 

Once the design takes place in this networked enterprise, an Internet/intranet-based rapid prototyping
module could then be used to process the CAD model to create the object. This program could be linked
directly to a layered manufacturing machine to create the prototype immediately. 

1.3 Review of Related Works

To make the rapid prototyping process more accurate and create better parts, a number of possible enhance-
ments have been studied. Research suggests several main areas that help to improve the rapid prototyping
process, including slicing algorithms, cusp height, part accuracy, and decreasing both processing and build
time. Each of these areas relies heavily on the others because a solution in one area may help or hinder another. 

Slicing Algorithms

A great deal of prototyping time is involved in the slicing of the CAD file. The slicing process has a direct
effect on the length of time to build the prototype, as well as on the quality of the finished product. Any
modifications to the slicing process will help with the speed of the program.

The current algorithms that create slices by intersecting planes with objects can be enhanced. Each
facet that is intersected with a slicing plane, forms a line segment of the contour. Each of these unorganized
line segments is then ordered from head to tail to create the closed contour. One method (Chalasani
et al., 1991) offers an alternative to plane intersection slicing using the scan-line type approach to find
the contours of an object. By utilizing scan-line type slicing, the contour segments are found in a closed
loop. The search starts at an origin point and searches until it ‘‘intersects’’ the object at either an edge
or a vertex. Then, the tracing procedures are executed to generate the contour. This search continues,
finding all of the contours that are present on that slice of the object. Although scan-line type slicing is
more complex, it yields considerable savings. Two reasons explain this: there is no need to store the
contour segments and then sort them at the end, and it reduces the need for difficult geometric calcu-
lations to find the intersections with the facets. After the contours have been traced, a simple hatching
routine is formed to drive the laser in the build process.

At the time this chapter was written, the scan-line type approach had not yet been implemented. This
process requires an exhaustive search of the entire object to find all of the contours on any given layer.
This searching is a computationally expensive procedure.

One enhancement to this method utilizes topological information to increase slicing speed (Rock and
Wozny, 1991). The first information generated by this algorithm is connectivity information about the
facets. Topology building compensates for some of the deficiencies in the STL file by linking the three
edges of each facet with the three neighboring facets. By searching through the STL file, the connections
between facets and their edges can be saved for future use. A sort is used to find the neighboring facet for
each edge. The connectivity information is used during contour tracing to move from one facet to the next.
The facets are then spatially partitioned into areas called bins. These bins store the numbers of the facets
that pass through them. A facet may belong to one bin, several, or all of them, depending on the facet’s
orientation and size. Figure 1.5 shows several facets of an object in relation to the different bins. Facet 1
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in this figure is completely contained within bin 3, whereas facets 2 and 4 are contained within several
bins. Facet 3 lies in all four bins and would be recorded as such in the bin listing.

These two steps of the algorithm are important for reducing slicing time. The next step is to find an
intersection of one of the facets with the slicing plane. Once this is found, the line segments of the contour
are generated by intersecting the slicing plane with the next facets. This intersection determination is
simplified by realizing that the normal to the slicing plane does not change, and the new point can be
found through interpolation. The new point is given by:

The new point is shown in Fig. 1.6. As each edge is used in the tracing procedure, a flag is set so that
the edge is not used again later. However, this method does not help to determine the starting point of
the contour, as it still needs to be determined by intersecting two planes.

Other research (Dolenc and Mäkelä, 1994) determines proper slicing procedures for handling flat
areas. During slicing, it is possible for the slice height to miss the beginning of a flat feature (flat meaning
parallel to the slicing plane). Also, the abrupt change of the slope of the object must be noted to minimize

FIGURE 1.5 The four bins of the object, created in the z-direction.

FIGURE 1.6 Generating a line segment across a facet. 

New point Vertex2 t Vertex1 Vertex2�( )��
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the cusp height. The algorithm presented varied the slice height based on these problems of flat surfaces,
changing slopes, and cusp height.

Cusp Height and Accuracy

One methodology (Kulkarni and Dutta, 1995) varies the slicing thickness based on the geometric cur-
vature of the surface at that slice. In areas where there is a large curvature, the slicing thickness is reduced;
while in non-curved areas, the slice can be thicker to allow faster processing time. The amount of curvature
of a surface is measured based on the changes in the normal to a surface in the area of concern. By
computing the local curvature and comparing to the required cusp height for the model, the authors
adjust the slicing height as necessary.

To demonstrate their work, they use an analytical ellipsoid as a case study. First, the equation of the
ellipsoid is parameterized and an equation for the normal curvature is defined. By maximizing the normal
curvature with a constraint that the slice thickness must remain the same, the maximum curvature and
layer thickness can be found.

Typical solutions previously had been to check the cusp height after slicing and to reslice at an
intermediate level if the cusp height was too great. By utilizing the new method, greater flexibility and
control is allowed over the cusp height. The case study presented shows the limitations of this method
as it is a precise analytical model of an ellipsoid which has a known equation for its representation. The
equation can then be used to test the curvature and set the cusp height accordingly. However, the idea
needs to be extended to other objects and ultimately to any shape at all.

Another possible modification to help part accuracy is to look at the file format in which the object
is stored. When an object is tesselated, the accuracy is only as good as the approximation made by the
STL file. The density of the tessellation can be adjusted to give better part accuracy, but at the expense
of file size and slice time. Another method (Vuyyuru et al., 1994) gives an alternative file format by slicing
the CAD object using non-uniform rational B-spline (NURBS) curves.

Utilizing previous research (Rajagopalan, 1992) in which a SDRC I-DEAS solid model is sliced into
NURBS for each layer, the curve information is stored in a universal file for later processing. Because the
stereolithography apparatus requires two-dimensional vectors to move the laser, the NURBS curves must
be changed to short line segments. Using two different methods, the authors create these line segments
and create the SLI file from it, which drives the laser.

The authors have managed to decrease the file size and increase the finish quality of the part using
this method. It is obvious that the rapid prototyping world needs to move to more accurate parts in less
time. Currently, there is no standard that allows NURBS slices to be created on all platforms with all
CAD packages. The STL file still prevails due to its ease of implementation and acceptance by CAD
vendors. In the World Wide Web project presented in this work, the STL file is used because of its
commonality between platforms.

Other accuracy problems exist in the tolerances that are held within the faceted model and the laser
beam width (Kirschman, 1992). Ideally, the width would be zero, as each contour would then be traced
out exactly. However, this is not the case. Due to the large creation table area relative to the laser, error
is induced as the beam spreads when it is at an angle. Although suggestions are proposed to correct some
of these problems, the other errors associated with layered manufacturing need to be fixed first.

Decreasing Processing and Build Time

As the word rapid implies, other methods must be looked at to make the entire process faster. On small
parts, the process is governed by the ‘‘dip and dunk’’ time of the stereolithography apparatus. The ability
to create several parts on the same platform would aid in creating more parts in less time.

One process (Wodziak et al., 1994) uses a genetic algorithm to optimize the automatic placement of
multiple objects on a platform at one time. The process looks at not only the location on the table, but
also whether it should be rotated first. Other work (Frank and Fadel) has been done on part orientation
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to aid in cusp height minimization and surface finish. An expert system is used and works with two of
the features of the object to determine its orientation.

Another way to decrease processing time is to slice the file using a multi-processor system. Programs
(Kirschman and Jara-Altamonte, 1992) that use the parallel processors are able to decrease the processing
time of the STL file significantly. Other file formats and computer processes will evolve to meet the needs
of rapid prototyping as it grows. A neutral file format needs to be extended to all CAD vendors to be
able to slice any part with the required accuracy and finish.

Other researchers are looking into the Internet/intranets to provide additional functionality for the
rapid prototyping process. Tele-manufacturing (Bailey, 1995) is one term that has been created to
represent the use of rapid prototyping over the Internet. The main area that is presented is the repair
of an incorrect STL file. Due to the lack of topology or order in the facets, the file often needs to be
repaired to handle cracks, overlapping triangles, and zero-thickness surfaces. Although the STL file is
passed across the Internet to the site to be processed, the slicing has not been implemented directly
on the Web.

Observations from the Reviewed Research

The main contribution from the research to be implemented in this work is the use of the scan-line type
approach for generating contours (Chalasani et al., 1991) along with topological information (Rock and
Wozny, 1991). This will be used, in an enhanced form without continuously searching through the entire
object, to quickly trace out each contour. In addition to this, the tele-manufacturing (Bailey, 1995) process
will be extended to a complete Internet slicing program. Although there are suggestions for better file
formats for the unsliced object, the STL file is used to do its neutral file format supported by most CAD
packages.

1.4 Computational Aspects and Procedures

This section presents an alternative method for slicing a stereolithography (STL) file. It uses a modified
method of the trigger point, contour tracing method with topological information. The basic idea
behind this process is to search throughout the object, trying to find an edge or vertex of any facet on
the slicing level, and then trace out the entire contour from there. The algorithm uses vectors between
vertices of the facets to create each line segment of the contour. Generating slices by marching around
the object eliminates finding unsorted line segments of the contour, and reduces processing time by
not calculating complex geometric intersections of planes. An overview of the implementation is shown
in Fig. 1.7.

Preparing the STL File for Slicing

All slicing procedures should be preceded by a check for completeness and accuracy of the STL file. Due
to the topology-deficient format that the object is stored in, it is important to check the file to make sure
it can be sliced. The STL file may not have been tessellated properly, resulting in gaps, improper
triangulation, or intersecting facet edges.

Several criteria have been evaluated for the completeness and accuracy check but most importantly,
each face must have three edges, each edge must have two vertices, each vertex must be part of exactly
two of the face’s edges, and each edge must be part of an even number of faces. If problems exist in the
STL file, they must be corrected before slicing. Algorithms have been developed to fill in the missing data
from these files (Ngoi et al., 1993).

Many layered manufacturing processes require support structures for the base of the object or any
overhangs. These structures should be added to the STL file by a preprocessor before slicing in a method
similar to the one created by Kirschman et al. (1991). Preprocessing adds facets to the STL file, and results
in additional material being added to the object. These structures support other parts of the object so
© 2001 by CRC Press LLC



        
that overhangs or other unsupported features do not break off during the build process. Once manufac-
ture is complete, these areas are removed, leaving the desired prototype.

Searching for the Start of a Contour (Trigger Point)

To minimize the search time, four zones (spatially partitioned bins) are created in the z-direction, which
split the object based on the maximum, minimum, and quarterly points. These zones store the numbers
of the facets that pass through them. A facet may belong to one zone, several, or all of them, depending
on the facet’s orientation and size.

FIGURE 1.7 Flow of slicing system architecture.
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Without contour or feature information on the object, a search of edges on the slicing level is required
to find all possible contours. During the searching and tracing procedures, it is important that the line
segments are never created inside the contour. All contours for prototyping are on the “outside” of an
object of feature. Interior edges that will not be used for contour tracing are shown in Fig. 1.8.

These edges are never used in the contour tracing because they are inside the contour for the first
slice. If these edges were used, they would result in an undesirable slice that does not show the true shape
of the object. To find interior edges, each edge is checked to see if the two facets that share this edge are
parallel to the slicing plane. If so, the edge is interior to the contours of the object and will not be used
for tracing.

The search method starts by selecting an unflagged edge in the slicing zone. The trigger point is found
by comparing each of the unflagged edges in the zone to the following rules:

1. If the edge is completely above or below the slicing level, do not use this edge.
2. If either end point of the edge is on the slicing level, use this vertex as the trigger point.
3. If neither rule 1 nor rule 2, then this edge passes through the slicing level. Find the point on the

edge at the slice height to use as the trigger point. 

The contour is traced from this point moving from one facet to the next around the object until a
contour is traced out. As each segment is created, the edges that were visited are flagged so they are not
used again. Next, the search continues within the same level to find any remaining unflagged edges that
form other contours on this level. It is important that searching continues through all of the facets on
each slicing level to insure that no contours or features are missed.

Determining the Trigger Point Edge

At this step in the algorithm, a possible vertex or edge intersection has been found. To proceed, the edge
that the point lies on must be determined. In addition, a validation process is completed with the edge
information to ensure that the trigger point is actually on an edge of the facet. The edge determination
and validation procedure is comprised of the following steps:

• Three vectors are created between each of the vertices of the facet as shown in Fig. 1.9. 

• Three vectors are created between the trigger point and the vertices of the facet as shown in
Fig. 1.10.

• The three trigger point vectors and the three vertex vectors are then crossed with each other,
resulting in nine cross products.

FIGURE 1.8 Interior edges of the object that will not be used for contour tracing.

Cross product
→

Point Vector[]
→

Facet Vector[]��
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Whenever one of these cross products is zero, the trigger point possibly lies on that edge. In the case
of a vertex trigger point, one of the point vectors will be zero. The other two point vectors will coincide
with two facet vectors. This results in five of the nine cross products being zero.

As shown in Fig. 1.9, point vector[2] and point vector[1] are aligned with facet vector[1] from Fig. 1.10.
When these vectors are crossed, there will be two zero cross products, as is the case for all edge points.

In Fig. 1.11, two examples of trigger points are shown. The first search through the unflagged edges
results in a vertex trigger point at the corner of the object. Later in the search, a trigger point is found
at the hole.

Tracing Out the Contour

Once a trigger point is found, a contour can start to be traced from this point. At each point, information
is only known about the current facet and its neighbors. Because there is no other topological information
to drive the creation of the contour, some procedures must be defined. In general, the contour will be
constructed by creating line segments across each facet around the entire object.

FIGURE 1.9 Vectors created between the trigger point and the vertices.

FIGURE 1.10  Vectors created between the vertices of the facet.
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Sample contour segments are shown in Fig. 1.12. The first trigger point from the search is on vertex 0
of facet 0. The contour will continue by tracing segment 0 to land on the other edge of the facet. Then
facet 1 will be used with the ‘‘new’’ edge trigger point. Segment 1 will then be constructed from edge to
edge of facet 1. The process continues around the object until the complete contour is traced.

When Tracing Begins from a Vertex

For vertex trigger points, there are three possibilities for tracing the next segment of the contour:

1. If the trigger point is “above” both of the other vertices, or completely ‘‘below’’ the other vertices,
then the trigger point does not change and the next facet is used.

2. If only one of the other vertices is at the same z level as the trigger point, move all the way to that
other vertex.

3. If the z level of the trigger point is between the z levels of both of the other points, the segment
is constructed across the facet to an edge point between the other two vertices.

FIGURE 1.11  Establishment of trigger points on the object during the search pattern.

FIGURE 1.12  Contour segments created for vertex and edge trigger points.
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In the first case, the trigger point is on a vertex that is the ‘‘lowest’’ or ‘‘highest’’ point on the facet
relative to the slicing level. As shown in Fig. 1.13, every other point on facet 1 is above the current trigger
point; therefore, the contour will not move because moving to any other point on the facet would not
maintain the current slicing level. The tracing will continue directly to facet 2 using this same point as
the ‘‘new’’ point.

In the second case, another vertex of the facet (not the trigger point vertex) is on the slicing level. In
Fig. 1.14, the trigger point is on vertex 0, while vertex 1 is also on the slicing level.

The new segment of the contour is created directly all the way to the other vertex that is on the same
level. Because these two points are co-planar and on the slicing level, there is no need to do any computations
to determine this segment.

In the third case, the facet is as shown in Fig. 1.15. The trigger point lies on vertex 0. The z value of
vertex 0 is between the z values of the other two vertices. The contour must be traced “across” the facet,
from the vertex to edge 1 on the facet.

When Tracing Begins from an Edge

For the case of an edge trigger point, vectors are used to move to the other edge of the facet. As shown
in Fig. 1.16, the trigger point lies on edge 0. To move to edge 1, and stay on the slicing level, a similar

FIGURE 1.13 Vertex trigger point completely “below” the other vertices of the facet.

FIGURE 1.14 Another vertex of the facet lies on the same slicing level as the trigger point.
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method as implemented by Rock and Wozny (1991) has been followed:

• A vector is constructed from vertex 2 to vertex 1.

• A percentage of the vector is used to move from vertex 2 to the new point on the slicing level on
edge 1.

• The new point is used as the trigger point for the next segment of the contour on the next facet.

1.5 Prototype Implementation and Case Studies

The Internet and corporate intranets provide a wonderful opportunity for collaborative design.
Communication and modeling of a new product can be done over the Web with users participating from
everywhere. This rapid prototyping module is one small part of the collaborative design process. Once
the design has been finalized, this system can be called to create the prototype.

The methodology of Section 1.4 has been implemented in Java to run on the World Wide Web.
Each section of the slicing algorithm has several parts associated with it. The sections of the
program, including data collection, searching, and slicing, are explained here as they have been
implemented.

FIGURE 1.15 The vertex trigger point height lies between the levels of the other two vertices of the facet.

FIGURE 1.16 Moving from an edge trigger point to another edge.
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System Architecture of the Prototype

The required modules for the slicing program are
briefly outlined in Fig. 1.17. Each of these modules
is executed in sequence to start the slicing proce-
dures. Once a contour has been traced, the search
module is called again to continue checking for
other contours. The cycle repeats until the object
has been completely searched.

Program Initialization

HyperText Markup Language (HTML), the lan-
guage of the World Wide Web, is used to set up
the Web page and launch the Java program. Two
windows are created within the page, one running
a program that displays the STL file and another
that does the slicing. Once the programs are called,
Java begins by initializing the window and calling
the start method. The start and init methods han-
dle the operations of the program, including set-
ting display colors, adding buttons, and handling
events that may be triggered during execution.
Some of these events are button pushing, mouse
movements, and mouse clicks. After the initializa-
tion, the start function calls the rest of the modules
needed for the program’s execution.

Data Input and Manipulation

The entire slicing process starts by gathering the
necessary data, proceeding as shown in Fig. 1.18.

The first procedure is to retrieve the STL infor-
mation. A class called triangle, shown in Fig. 1.19,
is created to store the facet information and con-
tains variables to hold the points of the three
vertices as well as the normal of the object. A
method creates triangle objects to hold all of the
facets and stores each triangle in an array. The
class also contains a variable to store the facet
number of the three adjacent facets to each edge
of the triangle.

One of the advantages of Java is the use of the
vector class. This class allows the program to create
an array to the required size only. Because each
STL file will have a different number of facets, it
is important to have enough triangle objects while
minimizing computer memory usage. With the
vector class, an object is created with 20 slots. Each
triangle object is added to the vector as the data is
read in. If there are more facets, the vector object
grows by 10 facets at a time. Finally, the object is
capable of trimming to size so that no extra memory

FIGURE 1.17 Flow of information in the prototype
system.

FIGURE 1.18 Preprocessing of the STL file before
slicing.
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is used up by an array that is larger than the number of facets. The initialization and trim methods are shown
in Fig. 1.20. This figure also shows the code to open a file on the server and read in the data.

A method is used to determine the minimum and maximum points on the object. All of the vertices
of the faceted object are compared to an initial minimum value. If the new point is less than that value,
it is selected as the new minimum point. This continues until all of the vertices have been checked.
Finding the maximum point is done in a similar manner.

To compensate for some of the deficiencies in the STL file, some connectivity information must be
determined. Each facet has three edges that it shares with three other facets. By searching through the STL
file, the connections between facets, and their edges, can be saved for future use. A sort is used to find the
neighboring facet for each edge. These adjacent facets are stored in the neighbor facets array which has three
slots, one for each edge. The neighbor information is used during contour tracing to move from one facet to
the next. Without sorting and storing the adjacent facets, every facet would need to be searched after finding
each segment of every contour—an exhaustive computational procedure. 

Search Method to Find Trigger Points

The search method scans for an intersection point with the object and follows the procedure in Fig. 1.21. Once
the facets are stored, the slicing begins on the lowest level of the object. For each slice height, the appropriate
zone is consulted to search for unflagged edges. Each edge that is unflagged (a � 1 value) is checked against
the search rules to determine a trigger point.

FIGURE 1.19 Portion of Java code for the triangle class.

FIGURE 1.20 Java code that opens the STL file and stores the data in a Vector array.
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For edges that pass through the slicing layer, the
trigger point is found by first constructing a vector
from end point to end point of the edge. Then the
trigger point is found by moving a percentage of this
vector until reaching the slicing level. The entire search
method is described by the following pseudo-code:

method ScanTriangles()
set DX, DY, DZ
for each slice height do 

determine zone
while there are unflagged edges in zone

find trigger point on edge
traceContour()

nextslice��

endMethod

Once a trigger point is determined, the edge or
edges that it lies on are found. The cross products
are found for the facet edge vectors and the trigger point vectors. Cross product information is also used
to verify that this point is a vertex or an edge point, as will be shown in the next section.

Contour Tracing Implementation

The trigger point and current facet are sent to the contour tracing method. The first step for the trigger
point and facet is a validation process to ensure that the point does lie on a vertex or an edge of the facet.
By keeping track of the cross products that are zero, the following validity check is then done:

• For a vertex match, two of the edges will have two zero cross products each, and one edge will
have one. The sum of all the zero cross products will be five.

• In the case of an edge match, one of the edges must have two zero cross products, while the other
two edges do not. The sum of all the zero cross products will be two.

If either of the conditions above are not met, the contour tracing is stopped and program control is
returned to the search method. For either type of matching, the tracing starts on one point of the object
and continues from one facet to another until it returns to the starting point. Once the contour is traced,
it is stored for subsequent processing.

method trace_contour
while contour_start !� segment start do

retrieve facet info (edges, normals, and points)
find next intersection
store line segment
next intersection � segment start

end

To prevent the same contour from being traced again, the edges of the facets are flagged when they
have been used in a contour. There is one flag for each edge in a triangle object. When these edges are
used, by a trigger point or a line segment, the flag is set so the edge is not used again. These flags show
which edges of the facets have already been visited. There are four methods used for flagging: isFlagOn,
flagEdge, eraseContour, and eraseAllEdges. An edge is unflagged when its value is �1.

FIGURE 1.21 Initialization and scanning of STL file.
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The tracing may result in several contours on one layer, each of which is numbered. The flagEdge
method sets the variable for that edge to the contour number. The isFlagOn method checks to see if
the flag is on for that edge. If so, it returns control back to the search program. In the event that a
contour is not completely traced out, the flags must be cleared. The eraseContour method does this
by comparing all of the flagged edges with the current contour number and resetting them to �1, the
unflagged state. Once all contours have been traced, and the program is ready to move to the next
slicing level, all of the edges are returned to the unflagged state with the eraseAllEdges method. All
trigger points and contour segments are checked throughout the tracing process to see if they fall on
a flagged edge.

Vertex Trigger Point Contour Tracing (Cases 1 and 2)

Each of the first two cases of the vertex trigger point are handled in a straightforward manner. In Case
1 above, where the trigger point lies completely above or below the other vertices of the facet, the trigger
point remains the same and the next facet is used. The neighbor facets array is consulted to find the next
facet to use. The point becomes the trigger point on the new facet.

In Case 2 above, the program moves the contour from the vertex to the new vertex that is on the same
slicing level. This new vertex is used as the trigger point for the new facet. In both cases, the edges that
the trace has been on are flagged so that they are not used in future contour searches.

Edge Trigger Point and Vertex Case 3 Trigger Point Tracing

Case 3 above is the same method as edge trigger points. To create the new segment, the z terms of the
other vertices are compared with the trigger point and the edge that will maintain the slicing level is
chosen.

Because the tracing method will now move to the other edge, it must determine which point to move
to on that edge. A vector is constructed between vertex 0 and vertex 1 of Fig. 1.22 and the new point is
found by moving a percentage of that vector to maintain the required slicing level. A variable is set to
determine if the trigger point is above or below (z level) the end of the vector. The new point is now
found by starting at the other vertex and moving by the vector multiplied by the percentage. The new
edge trigger point is used on the next facet.

End of Each Segment

After the new point has been determined and the next facet found, the information for our new
coordinates is written to an array in the addToContour() method. The new point is checked against the
starting point of the contour. If the two points are the same, the contour is complete and the tracing is
stopped. Otherwise, the new point is used as the trigger point on the next facet. The process continues
until the program traverses completely around the contour to the starting point.

FIGURE 1.22 Moving to a new edge.
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World Wide Web Access

The applets for viewing the STL file and for slicing it are stored on a Web server. These two programs
can then be started by loading a Web page which calls the two programs. The HTML code for the Web
page first splits the page into two windows. The Web browser will load the view class applet in the left
window first and read in the STL file and display it on the screen. Then the sliceclass applet starts in the
right window by reading in the file and beginning the slicing procedure.

Results of Enhanced Algorithm

The output from several samples are shown in this section. All of the examples were run on a Pentium
90-MHz computer with 16 MB of RAM using Netscape 2.0. A discussion of the meaning of these results
follows the case studies.

Case Study 1

The first test object was the simple polyhedra with a hole that has been shown throughout this work.
This is a simple object that has 116 facets. As can be seen in Fig. 1.23, most of the facets are used for the
hole and the rounded rear surface. In the right window, a few slices of the object are shown.

This type of object uses vertex matching for the lower and upper slices, while in between it uses edge
matching to find the contours for the hole. 

Case Study 2

Figure 1.24 depicts a more complex object. In this case, there are no flat edges parallel to the slicing
plane. All of the slices are created primarily through edge intersections.

FIGURE 1.23 Simple polyhedra with a hole that has been sliced.
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The tessellation of this object is shown in the left window; the protrusion is going away from the
viewer. As displayed in the right window, even difficult contoured surfaces can be traced quickly.

Case Study 3

This example shows a pinion part which has a number of features. The pinion itself is a long protrusion
with a hole through the center and a number of teeth around the outside of the shaft at different angles.
The output of the program is shown in Fig. 1.25.

Case Study 4

In the final example, a more complex and resulting larger STL file part is used. This is a gear that has
several protrusions to comprise the shaft, as well as a pattern of gear teeth around the radius of the gear.
The STL file has over 2600 facets associated with it. The sliced object is shown in Fig. 1.26. The scan-line
type approach was implemented using both the exhaustive search method (Chalasani et al., 1991) and
the modified unflagged edge starting method. The times presented in Fig. 1.27 were noted for the objects
shown in the case studies.

The times noted reflect the improvement of utilizing unflagged edges to determine a trigger point
to trace from. The exhaustive search method is affected by the number of facets, the size of the part,
and the resulting facet vertices precision. The search will not find suitable matches unless the search
increment is small enough to match the data in the STL file. The unflagged edge method overcomes
this limitation by determining a point that lies on an edge that passes through the slicing plane. Then,
only the edges that have not been used yet are consulted for further possible contours, a much faster
process.

In comparison with the work reported by Rock and Wozny (1991), savings are found in two places.
In one improvement, slicing is enhanced in areas of the object where the surfaces are parallel to the
slicing plane. The bottom slice of Fig. 1.28 is generated using contour tracing case 1 and 2 only, which
require very little computation time.

FIGURE 1.24 A more complex object that requires more edge point calculations.
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FIGURE 1.25 Pinion part with a number of features shown sliced in right view.

FIGURE 1.26 A more complex gear part.
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The second improvement is the method of determining the starting point for tracing. In the
plane-plane intersection method, the normals of the slicing plane and normal of each facet are crossed
to determine a vector parallel to their intersection. Then, this vector and a point on the facet are used
to find this line segment. Using the modified unflagged edge method, these computations are greatly
reduced.

1.6 Conclusions

The proposed algorithm and its implementation have shown an alternative method to extend the rapid
prototyping process. By utilizing the World Wide Web and Java, a slicing algorithm has been constructed that
can be available to anyone. There are still many areas of research and work that need to be continued to
make the process more efficient.

Each of the CAD models once translated to an STL file, can be read and sliced by this program and displayed
through the VIEW.JAVA program. Once displayed, the slicing program begins the process and displays
it on the Web page. The Web-accessible program allows designers to see the faceted and sliced object
without the need for expensive software or dedicated hardware at their physical site. All of this can be
accessed over the World Wide Web, allowing the possibility of a completely sliced file to be sent directly
to a layered manufacturing machine connected to the Internet or intranet. The work presented here
emphasizes four issues of rapid prototyping on the Internet or intranets:

Case Study Number
and Description

Time to Create 10 Slices of the 
Object Using Search Method to 

Determine Trigger Pointa

Time to Create 10 Slices of 
the Object Using Modified 
Unflagged Edge Method

1 - Polyhedra with hole and 
rounded rear surface, (see 
Fig. 1.23) - 116 facets

11.2 minutes 43 seconds

2 - Revolved surface 
(see Fig. 1.24) - 832 facets

1.1 hours 1.95 minutes

3 - Pinion gear 
(see Fig. 1.25) - 1468 facets

2.3 hours 9.2 minutes

4 - Main gear 
(see Fig. 1.26) - 2684 facets

3.4 hours 14.3 minutes

aBased on search increments to 1/100th of object size (x and y-direction).

FIGURE 1.27 Comparison of Slicing Times for Standard and Enhanced Scan-line Type
Algorithms.

FIGURE 1.28 Facets parallel to the slicing plane can be
traced out quickly.
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1. Display of an STL file into a local browser showing a projected view of the object that can be
rotated

2. Implementation of a modified scan line-contour tracing algorithm to slice the object
3. Platform-independent, sharable software that can be accessed over the Internet/intranet, as well

as being able to run locally on a machine; the abilities of the Internet and collaborative design
have been extended to the rapid prototyping process

4. Utilizes Java as a first step toward creating a true Internet-manufacturing process

Additionally, this software is one of the services within the collaborative product design environment.
This module can be called after the CPD evaluation of an object to start the prototyping process.

The framework for this software can be further improved. The graphics of the program can be extended
into a complete design environment to cover the entire rapid prototyping process. Viewing of the object
could be enhanced with shaded views or views of the completed prototype showing the cusp height. The
software will need to be extended to create the hatching patterns and the file that actually drive the layered
manufacturing machine. A module of this type could be added directly to the program at any time using
the contour information.

The continued expansion of the World Wide Web lends this program to possible connections with VRML
or collaborative design environments. The Web is an open-ended medium that can extend the method for
design and research. Modules could be added to the software to allow other information to be obtained as well.

There are many areas of research still left unsolved in the rapid prototyping world. Research areas exist
in part orientation, slicing directly from the CAD file (no STL file), and multiple part optimization.
Additional work will be done in the area of producing more accurate parts directly from the CAD file.
This will require a new common part storage instead of the STL file; perhaps some of the emerging
formats that extend STEP will take its place.

Ultimately, rapid prototyping will evolve into rapid manufacturing. Many of the parts on those systems
are used ‘‘as is’’ for tooling or in a product. As software and hardware increase in speed and accuracy,
additional parts can be made for instant use. Additionally, by harnessing the power of the World Wide Web,
the entire prototyping process can reach new levels of power and application in today’s design process.
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Models of Jobs and Operations • Models of Machines and 
Resources • Usual Assumptions in Scheduling 
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Times • Scheduling and Lot-Sizing • Algorithms and 
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Problems • Reducibility Among Scheduling Problems with 
Setup Times
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Times • Minimizing Makespan in Class Scheduling 
Problems • Flowtime Problems with Sequence-Dependent 
Setups • Additive Changeovers on a Single 
Machine • Flowtime Problems with Sequence-Independent 
Setup Times • Flowtime Problem Extensions

2.4 Summary

2.1 Introduction

Effective scheduling is essential in a vast number of areas of industrial and commercial activity, where
tasks must be accomplished using resources that are in limited supply. The degree to which the objectives
of an organization can be achieved is often greatly influenced by the quality of the schedules followed.
The quality of these schedules is in turn a direct result of the strength and appropriateness of the
scheduling methodologies utilized.

In many situations, mathematical methods can provide indispensable scheduling tools. This chapter
explores the use of mathematical methods in industrial scheduling environments, discussing the modeling
techniques and solution procedures that are commonly reported in operations research literature. In
doing so, this chapter takes a close look at a selected set of scheduling problems involving setup times. 

The major objectives of this chapter are:

1. To present the essential elements of mathematical scheduling problems
2. To introduce various models of setup times and discuss the difficulty they bring to the solution

of scheduling problems
3. To survey scheduling research applicable to certain scheduling problems involving setup times

Simon Dunstall
University of Melbourne

Andrew Wirth
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© 2001 by CRC Press LLC



                                           
4. To address a wide range of mathematically based scheduling methods, in the process of undertaking
the above

5. To assess the applicability of various models and algorithms to different scheduling environments

This chapter was written with the overall aim of providing useful insight for both scheduling researchers
and those less familiar with mathematical scheduling approaches. Given the vast amount of literature
on scheduling with setup times that now exists, this chapter can only serve as a starting point for a study
of this field.

2.2 Development and Solution of Mathematical 
Scheduling Problems

The formulation and solution of a mathematical scheduling problem stems from a desire to control and
optimize the performance of a real-world scheduling situation. A mathematical model is constructed to
represent this situation, sufficiently complex to include the key aspects of the problem, yet simple enough
to be amenable to a good solution. An appropriate set of scheduling aims is identified and typically
expressed as a mathematical objective function whose value represents the quality of the solution (and is
to be optimized). The objective of finding a feasible solution is less commonly reported in scheduling
literature, but is appropriate when dealing with highly complex and constrained systems. A solution
methodology is then adopted in an attempt to optimize the value of this function, subject to the relation-
ships and constraints arising from the model chosen.

This chapter concentrates on scheduling problems that involve deterministic data—data that is assumed
to be perfectly accurate and complete. In practical terms, this means that scheduling data such as the
processing times of jobs and the availability of machines are expressed as a “best estimate” and deterministic
scheduling models make no allowance for uncertainty in these estimates. As such, one may need to be
conservative in estimating data if, for example, processing overruns can lead to schedules becoming
infeasible. Unplanned and unpredictable events, such as machine breakdowns or arrival of new jobs, are
not considered in deterministic scheduling models.

It can be observed that the assumption of deterministic data is a common one. For example, Material
Requirements Planning (MRP) uses deterministic data, as do Critical Path Methods (CPM). On the other
hand, the PERT technique for project management uses stochastic data; each task duration is assigned
an expected value and a variance (derived from pessimistic and optimistic estimates). A restricted range
of stochastic scheduling models and algorithms have been reported in the scheduling literature.

A typical scheduling model of an industrial scheduling environment is comprised of a model of the
processors (machines) used to carry out tasks, a machine model, and a model of the tasks ( jobs) themselves,
a job model. Essential elements of a machine model are the number of machines, their configuration,
their capability, and their processing capacity. Machines may often be items of industrial equipment, yet
the use of the term “machine” is traditional and does not exclude the modeling of workers or computer
systems, for example. A job model will incorporate properties of individual jobs such as processing
characteristics, product type, number of items, total processing time and job due dates. If necessary, the
job model will also address relationships between jobs, such as precedence. The attributes of the job
model will usually be determined or revised on each scheduling occasion (to allow for customer orders,
for example). In contrast, the machine model will often remain unchanged.

Where it is required that the durations of setup times appear in a schedule, the job model and machine
model are complemented by the setup time model. In a scheduling problem, a model of setup times essentially
incorporates (1) a logical structure that is used to determine whether a setup is necessary, and (2) a means of
calculating the duration of a setup when required. A range of setup time models has appeared in the scheduling
literature, and the initial focus of this chapter will be a survey of a number of these setup time models.

Scheduling problems with setup times included in schedules can be compared to scheduling problems
that may consider setups but do not involve the scheduling of setups. Problems of the latter kind are not
of immediate interest in this chapter.
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Inclusion of setup times in a scheduling problem greatly increases the practical applicability of scheduling
problems. Commenting (in 1971) on the apparent gulf between theoretical scheduling research and
industrial scheduling environments, Panwalkar, Dudek, and Smith [65] conclude from the results of an
industrial survey that the applicability of scheduling algorithms can be greatly enhanced by the inclusion
of setup times in scheduling problems. Since the time of this survey by Panwalkar et al., a sizeable body
of research into problems with setup times has been generated by many researchers. 

There exists a broad range of solution methods available for the solution of mathematical scheduling
problems. An algorithm is a procedure followed in order to arrive at a solution, and is based on one (or
more) of these solution methods. Scheduling research focuses on the development of effective algorithms.
The process of algorithm development is based on an analysis of the structure of the problem, followed
by the adaptation of a particular solution method. Some algorithms are assured of returning the optimal
solution to the problem (optimal algorithms), while others do not come with such a guarantee (approx-
imation algorithms or heuristics). 

The primary measures of algorithm performance utilized in scheduling literature are (1) the time required
to arrive at a solution (running time), and (2) the quality of the schedules produced, as measured by a
mathematical objective function deemed appropriate for the situation. It is common for a compromise to
be necessary between these two measures, due to the inherent difficulty of scheduling problems.

The difficulty in scheduling problems lies in their combinatoric nature. Finding the correct order in
which to process the jobs involves making a selection from an extremely large population of solutions.
For example, a scheduling problem that involves sequencing N jobs can have as many as N! potential
solutions. While it is possible to enumerate all possible solutions when the “size” of the problem is very
small, the time required for this approach ordinarily becomes unreasonable for any scheduling problem
of meaningful size. Effective algorithms, therefore, must be structured in a way that allows them to locate
good (near-optimal) solutions with the minimum computational expense.

It is typical even for advanced mathematical scheduling problems to be simplistic in comparison to
the “real-world” scheduling problems that they represent. This is due to the difficulties associated with
computing solutions to the “large” mathematical problems in a reasonable amount of time. Other
common criticisms of mathematically based scheduling approaches include difficulties in reacting to
updates and changes in scheduling information, in adequately dealing with conflicting objectives, and
general user-unfriendliness. In contrast, typical advantages of mathematically based scheduling approaches
are the amenability of algorithms for computing, optimality or near-optimality of solutions, the ability to
handle otherwise incomprehensibly large amounts of data, consistent and repeatable performance, and (in
some cases) relative speed of schedule generation. Additionally, analysis of mathematical scheduling problems
can provide important insights into the “structure” of a scheduling problem, leading to the development
of improved scheduling rules and strategies.

Successful scheduling often relies on an integration of mathematical scheduling with other sources of
knowledge, analysis, and judgment. To this end, Morton and Pentico [63] describe four major
complementary approaches to scheduling:

1. Improved methods for training human experts
2. Expert systems to imitate human experts
3. Mathematical scheduling systems
4. Hybrid systems combining the strengths of other approaches

The same authors categorize scheduling problems into levels, differentiating between classes of problem
according to the scope of the scheduling decisions and the types of decision carried out. The five levels they
present are summarized in Table 2.1. Lawler, Lenstra, Rinnooy Kan, and Shmoys [53] suggest a three-level
categorization encompassing approximately the same range, using the terms strategic-level, tactical-level
and operational-level scheduling.

This chapter concentrates on mathematical scheduling models for operational-level scheduling (i.e.
the final two levels shown in Table 2.1). Much research into scheduling problems with setup times has
been directed at this level of scheduling.
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In scheduling problems, the choice of scheduling horizon (interval into the future to which scheduling
decisions are to apply) is influenced by (1) the natural time-scale of the system being modeled, (2) the
availability of data regarding the activities that must be completed, and (3) the difficulty of the scheduling
problem (associated problem size restrictions can lead to small horizons being chosen). Essentially, choice
of scheduling horizon represents a trade-off between the value of scheduling to a “long” horizon and the
cost associated with this choice.

The intended application of mathematical scheduling approaches is usually the scheduling of an existing
and currently operating production facility. There are, however, other applications of mathematical
scheduling approaches, typically within simulation experiments, such as:

• Determination of the true and optimal capacity of an existing or proposed production facility,
this being a function of the scheduling approach, the processing characteristics of the products
and the “mixture” of products being produced

• Economic and technological analyses of the effect of modifications to a manufacturing system,
such as reduction in setup times, increases in production rates, or revision of process plans

These applications provide important opportunities for mathematical scheduling approaches. The
typical practical disadvantages of mathematical scheduling approaches may often be less significant for
these applications, while the usual advantages of these systems may be well exploited.

Models of Jobs and Operations

In general, a job is comprised of a number of steps, or operations, each of which needs to be carried out
in some part- or fully specified order.

In a multi-operation model, each operation has various processing details associated with it (e.g., work
content and machine identification number) and represents one production task. A job is a collection
of these operations and corresponds to some “thing to be accomplished.” For example, if a job represents
a customer order placed for a set of items of product X, each operation may represent one step in the
manufacturing process for product X.

By contrast, jobs in a single-operation model consist of one operation only, and it is customary not to
distinguish between a job and an operation but instead to use the term “job” universally.

In a mathematical scheduling problem, each job will usually be assigned a numerical index; for example,
an N job problem may have jobs indexed from 1 through N. In some cases, a job is conveniently referred
to using its index only, for example, “job 2” or “job j,” while in others the jth job may be represented by
aj or a similar symbol. The set of jobs to be scheduled is often denoted by J, with N being commonly
used to denote the number of jobs in this set; for example, J � {a1, a2,…, aN} represents a set of jobs
when the aj referencing style is in use.

Where a job is comprised of a number of operations, the kth operation of the jth job can be denoted
by aj,k. Where the set of jobs is divided into B mutually exclusive and exhaustive subsets (i.e. ),
the jth job of the ith subset can be denoted by ai[j] and the total number of jobs in subset Ji denoted by
Ni( ). These means of denoting jobs are summarized in Table 2.2. 

Particular subsets of J often represent distinguishable classes of jobs. When scheduling with setup times, the
formation of classes will typically represent the logical grouping of jobs according to similarities in the processing
requirements of jobs. Hence, setup times can be reduced by scheduling jobs of the same class together. 

TABLE 2.1 Levels of Scheduling

Scheduling Level Examples of Problems

Long-range planning Facility layout and design
Middle-range planning Production smoothing, logistics
Short-range planning Requirements planning, due date setting
Scheduling Job shop routing, lot-sizing, machine scheduling
Reactive scheduling/control Urgent jobs, down machines, late material

Source: Adapted from Morton and Pentico [63].

J �i�1
B Ji�

N � NB
i�1 i�
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Associated with a job will be data ( job properties) relevant to the scheduling problem. The job properties
surveyed in this section will be the most common of these, and are discussed in terms of the single-
operation model.

A common job property is the processing time p of the job. This is the work content of the job expressed
in units of machine time. Processing time is alternatively referred to as a processing requirement (or
similar), and the latter is a more appropriate term within problems where, for example, dissimilar
machines in a bank of parallel machines have different production rates. The use of the symbol pj for
the processing time of a job is consistent with the above aj notation for jobs. 

Another typical job property is the job weight w. This weight corresponds to the importance of a job,
as evaluated by some measure, and is used within an objective function to produce a schedule that
accounts for the relative importance of jobs. 

The ready time (or release date), r, is the instant at which a job becomes available. Processing of a job
cannot begin on any machine prior to the job’s ready time. If all jobs have identical ready times, the
problem is said to involve static job arrivals and is called a static problem; otherwise, dynamic job arrivals
are being modeled and the problem is a dynamic problem. Although they have restricted practical
applicability, static problems are more common than dynamic problems in scheduling literature. The
increased difficulty of scheduling problems involving ready times would appear to be the primary reason
for this.

It is customary to view a due date d as a “target” instant by which processing of the job should be
completed, while a schedule is considered infeasible if a job is completed after its deadline . Many
frequently applied scheduling objectives, such as the minimization of maximum tardiness or number of
late jobs, naturally involve due dates. In contrast, job deadlines appear in scheduling constraints rather
than objectives.

Jobs may consist of a number of identical items, these items being examples of a particular product
produced by the facility. It is commonly assumed that there is no need to consider the individual items
in a job; rather, the job is treated as either indivisible or continuously divisible. If, during a particular
operation, the processing of an item must be finished once it has begun, these common cases are
equivalent to (respectively) one-item-per-job and infinite-items-per job.

Precedence constraints are often important features of scheduling problems. Precedence constraints
can be applied between jobs (e.g., job ai must complete before job aj can be started) and also between
individual operations of a job in a multi-operation model (e.g., operation aj,x must precede operation
aj,y). We concentrate here on precedence relations between jobs.

The expression  indicates that ai must precede aj, that is, the processing of job ai must complete
before the processing of job aj begins. In this precedence relation, job ai is the predecessor of aj, and aj is
the successor of ai. Precedence relationships are transitive; that is,  and  implies .

A precedence graph consists of N nodes, each representing a job, and a set of directed arcs representing
direct precedence relationships. Key types of precedence graphs include assembly trees, branching trees,
and chains (Fig. 2.1). It is not unusual for scheduling problems involving precedence relationships to be
more difficult to solve optimally than “precedence-free” but otherwise identical scheduling problems.

Where jobs (or operations) are related by precedence to one another, they are known as dependent
jobs (or dependent operations); otherwise, they are independent jobs. The majority of single-operation
scheduling problems addressed in the literature assume jobs are independent.

To denote the processing times, ready times, due dates, and deadlines of jobs, the symbol a is replaced
by the appropriate symbol for the job property. For example, job ai,j in a multi-operation model will
have its processing time written as pi,j, while the deadline of job ai[j] in a problem with class-based
referencing will be denoted by .

TABLE 2.2 Job Referencing Summary

Problems without classes jth job aj

Problems with classes jth job of ith class ai[j]

Multi-operation models kth operation of jth job aj,k

d

ai aj→

ai aj→ aj ak→ ai ak→

di j[ ]
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In some scheduling problems, the processing of jobs may be preempted (interrupted) and re-commenced
at some later stage. In the preempt-resume model, no time penalty is paid for preempting a job, so that
the total time devoted to any job is equal to its processing time. At the other extreme, all prior processing
is lost in the preempt-repeat model. It is interesting to compare these models of preemption to the view
that a job is comprised of a number of individual items of a particular product. The preempt-resume
model can be viewed as an infinite-items-per-job case, while the preempt-repeat model can be compared
to the one-item-per-job case.

Julien, Magazine, and Hall [46] introduce two further models of preemption. In the preempt-setup model,
it is assumed that a setup of fixed duration must be carried out each time processing of a job is commenced
or re-commenced. The preempt-setup model is a natural extension of the preempt-resume model, while
the preempt-startup model extends the preempt-repeat model by assuming that a (prespecified) fraction

 of the processing of job aj (begun previously) must be repeated on re-commencement.

Models of Machines and Resources

Undertaking each operation within a job will require the allocation of a number of resources to the
processing task. These resources can be “items” such as tools and machinery, as well as raw materials,
energy, and labor. Some of these resources can be considered to be in limitless supply while others may
be available in limited quantities and/or for limited periods. Additionally, a cost will be associated with the
usage of each resource. Whereas some resource usage costs will either be able to be implied by (and optimized
with) the schedule, or considered unimportant, others may have a considerable unit cost whose total
value is dependent on the schedule followed. In the latter case, it may be desirable to optimize the use
of the resource by directly incorporating the minimization of this cost into the scheduling objective.

It is common in mathematical scheduling problems to assume that the machines (processors) represent
the only limited resources; more specifically, the capacity of each machine at each unit of time is the only
limited resource. Usually, the machine will be able to undertake at most one operation at a time, exceptions
being batch processors such as ovens, vehicles, or painting booths.

Where machines are not considered to be the only resources needing to be coordinated efficiently,
the corresponding scheduling problems are usually quite difficult to solve. Some multi-resource problems
consider the optimization of a “traditional” scheduling objective, such as the minimization of the mean
completion time or makespan, subject to the constraint that one or more additional required resources
is available in limited supply (e.g., Józefowska and Wȩglarz [45]). In other problems with additional
resources, the objective is to minimize the consumption cost of an expensive resource. An example of
such a problem can be found in Janiak and Kovalyov [44], where allocation of the expensive resource
leads to increased processing rates and is required (over time in some quantities) in order for jobs to be
completed prior to their deadlines. These problems are examples of what are commonly referred to as
resource-constrained problems.

FIGURE 2.1 Key types of precedence graphs.
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Single and Parallel Machines

For models of machines in scheduling problems, the single-machine model represents the simplest case.
In a single machine problem, one machine (acting independently) is considered to be the only limited
resource. It is assumed that a single machine has a fixed capacity which allows one task to be processed
at any instant (i.e., a batch processor is not termed a single machine.)

Other simplifying assumptions are typically made in a single-machine problem, the most common
being that the single machine processes at a constant rate and is available and fully functional at all times.
This last assumption is not peculiar to single machine problems—it is an assumption made in the vast
majority of scheduling problems.

The single machine problem is a one-machine one-resource problem, this being a special case of one-machine
problems. One-machine problems are those that deal with any production facility consisting of one processor
acting independently and having a one-operation-at-a-time processing capacity.

A parallel machine problem is a special case of a multi-machine problem. A group of machines are
commonly described as parallel machines if they serve a single input queue of waiting jobs (Fig. 2.2).
Typically, a parallel machine problem involves machines that individually are single machines. 

There are three basic types of parallel machines modeled in scheduling problems: identical parallel
machines, uniform or proportional parallel machines, and unrelated parallel machines. In a problem with
identical parallel machines, all machines operate at the same speed (processing rate) and have the same
processing capabilities. Uniform machines have the same processing capabilities but each has a different
processing rate , with the processing time of job j on machine m given by

 for a given processing requirement pj for job aj.
Unrelated parallel machines represent the most complex of the three “standard” parallel machine types;

such machines do not necessarily have identical processing capabilities, and the processing time of each
job on machine m need not be related to either the processing times of other jobs on the same machine
or to the processing time required on other machines. For each job j and machine m, a “job-dependent
speed”  is specified and used to provide processing time . If a job cannot be processed
on a certain machine, the use of a value of  “near to zero” can prohibit the job from being scheduled
on that machine, due to the extraordinarily large processing time assigned to it.

An interesting extension to the “standard” parallel machine models is the parallel multi-purpose
machine model. Each job or operation of a job can be processed on a particular subset of the parallel

FIGURE 2.2 A representation of parallel machines and a single input queue.
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machines, and the parallel machines are otherwise either identical or uniform. Only a small amount of
scheduling research has been directed toward parallel multi-purpose machine models, although interested
readers are referred to Brucker [11], for example.

Single and parallel machines can be seen as representing individual processing units, or workcenters,
in a plant. Where the execution of entire workorders (i.e., all operations of a job) can be carried out on
one workcenter, these machine models can incorporate almost all of the relevant machine characteristics.

Where jobs consist of multiple operations and require the attention of more than a single workcenter,
it is on some occasions satisfactory to undertake detailed operational-level scheduling of each workcenter
independently as a single or parallel machine. This might be accomplished, for example, by using release
date, due date (or deadline), and job processing data based on a timetable generated by material
requirements planning (MRP) or production activity control (PAC). With this input, the schedule at the
machine can be optimized according to a relevant measure, subject to constraints such as deadlines that
flow naturally from the timetable.

In other situations, a “bottleneck” machine (or bank of parallel machines) in a process can be identified
and scheduled independently, with other processes around it “compensating to suit.” However, the
independent scheduling of one bottleneck workcenter may simply produce other bottlenecks in the system.
There exist advanced and successful techniques for the application of single/parallel machine algorithms
to multi-machine problems; although this is beyond the scope of this chapter, interested readers are
referred to the shifting bottleneck procedure developed by Adams, Balas, and Zawack [1].

Other Multi-machine Models

The applicability of single or parallel machine models is limited. Other multi-machine, multi-operation
models are required to appropriately model many facilities. There are three classical multi-machine
models in addition to the parallel machine model that regularly appear in the scheduling literature, these
being (see Fig. 2.3):

• Flow shops, where all work “flows” from one machine (workcenter) to the next; that is, jobs share
a common operation (processing) order and hence a common routing through the shop. A flow
shop model implies that chain precedence holds between the operations of each job.

• Job shops, where operations of a job must be carried out in a prespecified order (chain precedence)
and on a prespecified machine (or parallel machines), so that individual job routings are fixed,
but can vary between jobs. 

• Open shops, where restrictions are not placed on the operation order (no precedence). Job routings
are part of the decision process, but operation-machine assignments are predetermined.

Some multi-machine environments will be inadequately represented within the “classical” classification
scheme of flow shops, open shops, and job shops. For the purposes of this chapter, however, there is no
need to extend the classification.

Usual Assumptions in Scheduling Models

Although objective functions and setup time models have yet to be discussed, it is already clear that a
scheduling model will potentially incorporate many features. When defining a particular problem, it
would be a tedious process to address every possible feature. Thus, it is useful to provide a set of basic
assumptions for a scheduling problem, and require exceptions to these assumptions to be stated when
defining a problem.

In this chapter, the usual assumptions are as follows:

1. The starting point of the schedule is at time zero, and all assigned work is to be included in the
schedule.

2. The only limited resource is machine capacity, which is one job per machine at any instant.
3. A single machine is to be scheduled, this machine being continuously available, having a capacity

of one job per unit time, and operating at a constant unit speed.
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4. A set of N independent jobs, each comprised of a single operation and available at time zero, is
to be scheduled to the machine.

5. All data is predetermined, and thus known deterministically, with numerical values expressed as
arbitrary integers.

6. Preemption of jobs is not allowed.
7. Machine idle time is allowed.
8. No deadlines are imposed on job completion.
9. Setup times are negligible and need not be modeled.

In this chapter, most problems do incorporate setup times, so that Assumption 9 is very often
replaced.

Objective Functions

Objective functions represent quantitative measures of schedule quality. In a scheduling problem, the
value of the objective function is to be optimized (minimized or maximized, depending on the nature
of the measure).

An “ideal” objective function will be able to represent the true economy of a particular schedule, as
assessed according to all quantifiable costs and benefits. Constructing such a cost function presents a
quite difficult proposition. Subsequent solution of the scheduling problem will typically be beyond the
current capabilities of mathematical methods. For this reason, common (scheduling) objective functions
represent a more restricted assessment of schedule quality. For example, the makespan objective is
concerned with minimizing the total time required to complete a set of assigned jobs; this objective may
minimize total cost under certain circumstances, yet in general can only be expected to address a restricted
subset of the relevant economic considerations in the facility.

It is convenient to view each job as being assigned a cost based on its position in the schedule, fj being
the cost of job j, and wjfj its weighted cost. The weight w may represent a size, importance, or economic
coefficient. An objective function Z may be the sum of these costs (a sum objective, ), the
maximum of these costs (a maxi objective, ), or be some combination of maxi and
sum terms. The cost fj usually depends on the job completion time Cj. Where Z is non-decreasing with

FIGURE 2.3 Flow shops, open shops, and job shops.
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each Cj, the objective function is known as a regular objective function and will exhibit characteristics that
arise from the desire to complete jobs as soon as possible.

The makespan is usually given by the maximum completion time, , and is represented
by the shorthand notation Cmax. Naturally, the utilization of a machine is inversely proportional to the
makespan. Makespan problems can involve static or dynamic job arrivals.

The flowtime of a job is the total time spent by the job in the shop, from arrival to completion of
processing. Scheduling job j to complete at time Cj yields a cost given by fj � Cj 	 rj (symbol Fj often
replacing fj). When due dates are substituted for release dates to yield fj � Cj 	 dj, fj represents the lateness
of job j and is written as Lj.

The weighted flowtime FW of a schedule is equal to the weighted sum of individual job flowtimes,
 for an N job problem. Total flowtime (or unweighted flowtime) F is a special

case of FW with all weights equal to one, while the terms mean flowtime  and weighted mean flowtime
 are self-explanatory. 

In a static problem, all ready times equal zero, and FW is equivalent to the weighted sum of completion
times . For dynamic problems,  (in general) and , yet the same sequence
will optimize both measures. This is seen in Eq. (2.1). The  term is constant for a given set of jobs,
so that a sequence that is optimal for CW is also optimal for FW . 

 (2.1)

This equivalence leads to the terms “flowtime” and “sum of completion times” being synonymous, with
flowtime proving to be a more convenient term.

This and further results provided by Conway, Maxwell, and Miller [20] can be adapted to show that
a solution that is optimal for FW (and CW) is also an optimal solution for the weighted lateness LW and
the weighted sum of waiting times WW objectives, where the waiting time of a job is defined as the time
spent waiting for processing to commence, equal to Wj � Cj 	 pj 	 rj. The FW , LW , CW , and WW measures
are thus termed equivalent.

FW does not include due dates, and is not expected to be a good choice of objective in situations where
the due-date performance of a schedule is critical. Through the equivalence of FW and LW , it is seen that
LW is also not a good objective in these circumstances. Lateness rewards early completion as much as it
penalizes late completion, hence the net effect is one in which due dates are essentially irrelevant in the
objective.

Nevertheless, where the schedule has most due dates set relatively early (the “earliness reward” is
reduced) or most due dates set quite late (few jobs will be late), minimizing the lateness or flowtime
becomes more appealing. The minimization of these measures is, however, more suited to cases where
efficiency of work flow is the primary aim.

The tardiness of a job is given by , and the weighted tardiness 
provides a far better measure of due-date performance than LW . Minimizing maximum tardiness

 is another common objective, and a schedule that minimizes the maximum
lateness Lmax also minimizes the maximum tardiness. The reverse is not true; where all jobs can be
completed by their due dates, Tmax � 0 (and many schedules may be optimal); whereas the minimum
value of Lmax may be negative and the maximum lateness objective acts in these cases to provide the
greatest possible degree of earliness.

Similarly, when all jobs will be tardy (late), a schedule that minimizes LW (and thus FW) will also
minimize TW, because there now exists no “earliness reward.” This result can be generalized: once a point
is reached in a schedule where no remaining job can be completed on time, the remaining jobs can be
scheduled according to minimization of TW, LW , or FW. This is a useful result because minimization of
the latter objectives is typically easier than minimization of TW .
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Tardiness measures the degree to which jobs are late. As suggested by its name, the weighted number
of late jobs objective (NW) aims to maximize the (weighted) number of jobs completed before their due
date. A cost fj � Uj is assigned to each job according to:

and the objective given as .
All of the measures presented thus far are regular. Earliness E is an example of a non-regular objective

function. 

When scheduling with this objective, the impetus is to schedule jobs as late as possible. Thus, either
individual or common job deadlines need to be specified, or inserted machine idle-time needs to be
prohibited. Ordinarily, earliness would seem a curious measure, yet when it is combined with the tardiness
measure to form the earliness/tardiness objective (abbreviated to E/T), a more useful scheduling aim is
represented. 

(2.2)

The E/T objective is non-regular, and is relevant in situations where the thrust of this objective is to
schedule a job as close to its due date (or target date) as possible. As such, a number of researchers reporting
on E/T problems have seen an application of their analysis to “just-in-time” production systems. In Eq.
(2.2), the E/T objective is shown to incorporate separate weights for the earliness and tardiness compo-
nents. These will represent the relative importance or true relative cost of each job being early or late by
one time unit. The assumption of a common due date for all jobs is a regularly modeled feature of many
early-tardy problems.

Earliness/tardiness can be viewed as a single performance measure, or alternatively as an example of
a multiple criteria objective function composed of two (single) criteria in a linear combination. This type
of approach to multiple-criteria optimization is known as the weighting of criteria approach or weighting
method. The use of “fixed” (predetermined) weights, as for the E/T objective, represents a special case of
a more general method that dynamically modifies weights in order to generate a set of non-dominated
solutions. The set of non-dominated solutions is a subset of feasible solutions; for any feasible solution
that is dominated, there will exist a non-dominated solution for which all criteria are unchanged or
improved and at least one criterion is strictly improved (for detailed discussion of this topic, the reader
is referred to Goicoechea, Hansen, and Duckstein [36], for example).

Chen and Bulfin [17] observe that in addition to the weighting of criteria approach, there are two other
approaches to multi-criteria problems relevant to scheduling problems. In the efficient set generation
method, a set of non-dominated schedules is generated by an algorithm, and a decision-maker then chooses
“the best schedule” according to an explicit trade-off of objectives. The secondary criterion approach or
goal approach (with two criteria) designates one criterion as primary and the other as secondary. The
best schedule according to the secondary criterion is selected from the set of alternative optimal schedules
for the primary objective; in other words, the secondary criterion is optimized according to the constraint
that the primary criterion takes its optimal value.
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Essential Results: the SWPT and EDD Rules

The shortest weighted processing time (SWPT) and earliest due date (EDD) rules represent two basic yet
powerful and generally applicable scheduling rules. The SWPT rule was shown by Smith [75] to provide
optimal solutions to the single machine weighted flowtime problem (scheduling N statically available
jobs to one machine to minimize the flowtime, without deadlines), while Jackson [43] established that
the EDD rule solves the equally fundamental single machine maximum lateness problem. Each of these
rules also optimally solve certain special cases of more advanced problems, and they remain relevant
strategies in many others, including those with setup times.

The SWPT states that an optimal sequence for the single machine weighted flowtime problem has
jobs appearing in non-decreasing order of weighted processing time (p/w). Where all job weights are
equal, the SWPT rule reduces to the shortest processing time (SPT) rule. This celebrated result was
established using an adjacent pairwise interchange argument. A schedule that does not satisfy the SWPT
rule can be improved by taking any pair of consecutively scheduled (adjacent) jobs ai and aj which have

 and performing a pairwise interchange (i.e., swap their positions). This interchange must
strictly improve the flowtime.

The SWPT rule provides a dominance relationship between jobs (ai dominates aj if ) and
SWPT order is an optimality condition for this simple problem, as an optimal solution must have jobs
sequenced in SWPT order. A set of optimality conditions is necessary if an optimal solution to a problem
must satisfy them. A set of optimality conditions is sufficient if a schedule satisfying them is guaranteed
to be an optimal solution. For the single machine weighted flowtime problem, SWPT is a sufficient
condition of optimality because there is essentially only one sequence for which the SWPT optimality
condition is satisfied throughout. When speaking of the special structure of a scheduling problem, we
are often making reference to the optimality conditions that hold for this problem.

Although the SPT rule is a special case of the SWPT rule, Smith provides a separate proof for the SPT
rule. This proof displays the important fact that the (unweighted) flowtime objective  for a
single machine problem can be written as:

(2.3)

This expression is constructed by considering that the processing time p(k) of the kth-sequenced job
contributes to the completion times of (N 	 k � 1) jobs; that is, it delays these jobs. Smith [75] observes
the sum of the product of the two sequences N 	 k � 1 and p(k) in Eq. (2.3) will be minimized when
they are monotonic in opposite senses. The sequence N 	 k � 1 is non-increasing, so that the sequence
of processing times should be formed non-decreasing (i.e., ). Expressing flow-
time in the form of Eq. (2.3) or similar has assisted many researchers in deriving important results and
developing algorithms.

Pairwise interchange is also utilized to establish the EDD rule. Any schedule that has two adjacent jobs
ai and aj with  can be improved by interchanging the positions of these two jobs. Therefore, the
EDD rule states that to minimize maximum lateness on a single machine, sequence jobs in non-decreasing
order of due dates.

The same rule also minimizes maximum tardiness, as . As already noted, minimizing
weighted lateness  is equivalent to minimizing weighted flowtime (SWPT rule). Neither the EDD
nor SWPT rules is sufficient for minimizing weighted tardiness  on a single machine, although
each has a part to play in algorithms for this problem.

Choice of an Objective Function

The minimization of makespan for a single machine problem with setup times is exactly equivalent to
the minimization of total setup time, and thus the maximization of machine utilization. For multi-machine
problems, the relationship between makespan, total setup time, and utilization is also strong, although
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with makespan defined as the time by which all machines have finished processing, there does not exist
an exact equivalence. In the industrial survey carried out by Panwalkar, Dudek, and Smith [65], the objective
of minimizing total setup time was rated as the second-highest priority behind due-date performance.

The flowtime objective function is a useful measure of schedule quality when minimization of work-
in-process inventory is desired, or customer satisfaction is assumed to decrease linearly with job
completion time. In the latter case, average (weighted) customer satisfaction can be measured directly
using average (weighted) flowtime. A primary disadvantage of flowtime-based measures is that the
due-date performance of a schedule is not evaluated—a scheduling problem involving minimization
of flowtime will tend to have optimal solutions that emphasize SWPT, which is not associated with
due dates.

Lack of consideration of due dates in the flowtime objective is a particularly acute shortcoming when
job weights are not modeled. When job weights are included, there exists a means of promoting a
close-to-due job to an early position in the schedule, by imparting a high SWPT priority to the job.
Although this type of approach does yield some control over due-date performance, the practicality of
this approach is limited. The imposition of job deadlines can considerably improve the situation; however,
if these (externally set) deadlines cannot be met, an alternative objective to flowtime needs to be con-
sidered. Use of an objective function combining flowtime with a due-date measure such as tardiness or
weighted number of tardy jobs is one such alternative.

Once all remaining jobs (past a certain point in a schedule) are tardy, TW and FW will be minimized
by the same sequence. Hence, flowtime becomes an increasingly relevant measure when scheduling a
busy period—that is, when a facility is heavily loaded and many due dates are not achievable. However,
minimization of flowtime is most suitable when the aim of reducing work-in-process inventory is assigned
a high priority.

Conway et al. [20] provide proof that a strong and useful relationship exists between flowtime and
inventory. For static problems, they provide the result that the ratio of the mean number of jobs in the shop

 to the total number of jobs is equal to the ratio of the average flowtime to the maximum flowtime; that is, 

In this result,  is the average number of jobs taken over the interval .
Hence, when Fmax is constant for a given problem, minimization of unweighted flowtime leads directly

to minimization of the number of jobs-in-process. There are many problems for which Fmax varies between
schedules however, particularly where setup times are involved. Dynamic arrivals complicate the issue
further (Conway et al. [20] consider a dynamic case); nevertheless, flowtime remains a strong indicator
of the work-in-process inventory, and the result generated by Conway et al. (for the static problem) can be
generalized to the weighted case, giving:

where  is the weighted average number of jobs in the shop.
Tardiness is a relevant objective function when customers or downstream processes are sensitive to timely

delivery, with job weights being able to reflect relative importance. When concerned with due dates, TW is
clearly a more appropriate objective function than LW (as LW is equivalent to FW), yet the maxi criteria Tmax

and Lmax are of approximately equal utility. Tardiness problems are typically more difficult to solve than
corresponding flowtime problems.

While combined/multiple criteria objectives such as TW � FW will evidently be superior performance
measures in most situations, the solution of problems involving multiple objectives commonly presents
far greater difficulty than the solution of problems with only one of the objectives.
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Models of Setup Times

In an industrial machine scheduling environment, machine setups (or changeovers) are required whenever
there is a need to change the process settings or configuration of a particular machine. This corresponds
to a change in the state of the machine, and changes in machine state can be classified thus:

1. Machine preparation: setting a machine to a state in which it can undertake processing of jobs,
from some initial shutdown state

2. Machine switching : changing the state of a machine, from that required to process one job (or
class of job) to that required for processing another

3. Machine stoppage: the halting of a machine, removal of incomplete work, maintenance and/or
repair of a machine, followed by a resetting the machine in order to continue processing after a
planned or unplanned stoppage

While machine preparation and machine switching setups are looked at extensively in this chapter,
setups due to machine stoppage are predominantly outside the scope of the analysis, as these are not
ordinarily aspects of deterministic scheduling problems.

In addition to preparation and switching setups, machine shutdowns can also be modeled. These activities
are performed in order to “shutdown” the machine, and these are considered in terms of the additive
changeovers model of setup times.

Typically, the state of a machine is defined by various attributes such as the presence and positions of
tooling mounted on it (e.g., dies, cutting tools, punches) the type of stock material available to it (e.g.,
width of strip metal, color of plastic or paint), and other factors such as machine temperature in the case
of ovens. This represents a complex set of properties.

For the machine scheduling problems discussed in this chapter, it will be assumed that the state of a
machine is sufficiently specified by (the processing characteristics and properties of) the job currently
being processed on the machine. If the machine is considered to be “shutdown” initially, the initial state
of the machine cannot be specified by a job; if necessary, this initial state can be represented by a “dummy
job” a0 assigned appropriate properties.

The assumption that the machine state is determined by (or well described by) the job currently being
processed appears reasonable for many facilities. However, a limitation of this type of setup times model
is that few appropriate mechanisms exist for controlling the state of a machine in order to best cater to
future processing demands. This makes it unsuitable for certain problems.

For example, consider a manufacturing process in which each job requires the use of one tool, and a
machine may hold two tools at any one time in a tool magazine, these currently being tools A and B.
Job aj is to be processed next, using an alternative tool C, and job aj�1 will follow it, using tool A. Evidently,
tool B should be removed from the machine and replaced by tool C. Using the setup model proposed
in this section, the two-tool magazine is not able to be well modeled (e.g., machine switching setups will
be assumed to always remove the current tools and replace them), and optimization choices concerning
the tools to be exchanged are not available. While scheduling problems such as that above are motivated
by a number of significant industrial scheduling situations, their study is not within the scope of this
chapter.

Sequence-Dependent Setup Times

The sequence-dependent setup times model is the most general model available when scheduling
according to the assumption that the machine state is specified by the job currently being processed.
For a one-machine application of this model, the setup time sij between (any) two jobs ai and aj is
assigned a non-negative value, and no relationship is assumed between this setup duration and any
others. There are N(N � 1) setup times for an N job problem with initial setup times. These setup
times can be recorded in a matrix.

When M machines are being scheduled, M setup-time matrices will be required and the duration of a
setup between two arbitrarily chosen jobs ai and aj on machine m is written as sijm. Initial setup times, from
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a bare machine to the first-scheduled job, can be written as s0jm , where j is the index of the first-scheduled
job and m is the machine index. Where s0jm � 0 for all j and m, we have what is known as the “no initial
setups” case.

As the time sij can generally be assigned any non-negative value, the sequence-dependent setup times
model evidently does not explicitly incorporate knowledge regarding the true technological reasons
behind setup durations. This keeps the model mathematically simple, yet the resulting lack of structure
in problems incorporating a “general” sequence-dependent setup times model can make the analysis and
solution of the problem very difficult—the existence of a known setup structure in a scheduling problem
can be taken advantage of when formulating scheduling algorithms.

It is often the case, however, that certain assumptions are made regarding the setup times in problems
with sequence-dependent setup times, a typical assumption being that the triangle inequality holds. A
setup time sij is said to obey the triangle inequality if, given any two jobs ai and aj and any alternative job
ak, the inequality  is satisfied. In other words, setup times will obey the triangle inequality
if it takes less time to directly prepare the machine for processing any job aj than to prepare the machine
for another job ak followed by preparation to class aj.

Problems incorporating setup times satisfying the triangle inequality are generally easier to solve than
those with setup times that do not. It should be noted that when setup times satisfy the triangle inequality,
this does not imply that setup times are symmetric (i.e., sij � sji for all ), and vice versa.
Generally, in fact, setup times are asymmetric.

The assumption that setup times obey the triangle inequality is reasonable in modeling many industrial
scheduling environments. However, there are some scheduling problems based on practical situations
which have setups that do not obey the triangle inequality. Sequence-dependent setup times not satisfying
the triangle inequality typically arise in cases where jobs cause the state of the machine after their
processing to be different from that which existed before their processing.

Our example is adapted from one provided by Pinedo [66]. This problem involves minimizing the
time required to complete a given set of jobs that need to be “cooked” in an oven. Each job aj is associated
with two parameters: Aj being the initial oven temperature necessary for processing job aj and Bj the oven
temperature at the end of the processing cycle for job aj. The setup time between two jobs ai and aj ( )
is given by the absolute difference between Bi and Aj.

Consider an instance of this problem where jobs belong to one of four products, the starting temper-
atures and finishing temperatures of products being given in Table 2.3. If the oven is assumed to have
equal and uniform rates of heating and cooling, the setup times shown in the right-hand section of Table 2.3
can be calculated. A number of these setup times do not obey the triangle inequality; for example,

. It can be noted, however, that although , it is not possible
to begin processing job a1 less than s41 � 250 time units after finishing job a4.

Pinedo provides an analysis of this problem, showing that an optimal solution for it may be gained
in a time bounded by O(N2). This is a moderately surprising result which illustrates that although
problems involving arbitrary sequence-dependent setup times are very difficult, practical situations may
often exhibit special structures that can be exploited to produce efficient solution procedures.

The setup times prevalent in many other practical problems are likely to exhibit structure. Nevertheless,
scheduling researchers might utilize a “general” sequence-dependent setup times model in preference to

TABLE 2.3 Temperatures and Setup Times for the Oven Example

Product
Starting

Temperature
Finishing

Temperature

Changeover Times to Product

From
Product 1

From
Product 2

From
Product 3

From
Product 4

1 100° 200° 100 50 300 250
2 250° 150° 50 100 150 100
3 250° 400° 50 100 150 100
4 300° 350° 100 150 100 50

sij sik skj��

i j 1,…, N{ }�,

i j


s41 250 s42 s21�� 150� � s42 s21 s41��
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more “structured” and “detailed” models of setup times. In part, this is because the assumption of a
particular structure may be seen to sacrifice generality. Researchers who have developed and utilized
detailed models of setup times (e.g., Charles-Owaba and Lambert [16], White and Wilson [77]) have
demonstrated the potential of such models to provide insight into scheduling problems which can lead
to effective solution procedures. In addition, Foo and Wager [29] utilize the sequence-dependent setup
times model but recognize that setup times drawn from real industrial environments display patterns
arising from the technological considerations in setups, and so assess their algorithms using representative
data. 

Inclusion of a “general” sequence-dependent setup times model in a scheduling problem usually results
in a problem that is very difficult to solve optimally (or well), even for a single machine. For example,
when there are N jobs, asymmetric sequence-dependent setup times, and the objective is to minimize
the makespan, the single machine problem is equivalent to the asymmetric traveling salesperson problem
(ATSP) with N cities (as observed by Smith [75]). 

Both the ATSP and the (symmetric) traveling salesman problem (TSP) are well-known problems in
operations research. The ATSP and TSP can be summarized thus: given a map of N � 1 cities (0, 1, 2,…,
N), every city must be visited exactly once in a tour beginning and ending at city 0 (the “home” city),
with the objective being to minimize the total cost of the tour. 

If the cost of traveling from the home city to the first city in the tour is written as d(0,1), the cost of
traveling between the (k 	 1)th and kth city in a tour is written as d(k	1,k), and the cost of traveling
from the last city in the tour to the home city is written as d(N,0), the objective in a TSP or ATSP is
given by Eq. (2.4): 

(2.4)

In the TSP, the cost d(i,j) (from city i to city j) is equal to the cost d(j,i) of traveling in the opposite direction
(traveling costs in the symmetric TSP are typically euclidean distances). The ATSP has the dij � dij

restriction relaxed.
The objective function for the TSP/ATSP can be compared to the objective for a single machine

makespan problem with sequence-dependent setup times 

(2.5)

where s( j	1,j) is the setup time from the job in the jth sequence position to the job in the ( j � 1)th sequence
position, s(0,1) is the initial setup time, and p( j) is the processing time of job in the jth sequence position.
The  term in Eq. (2.5) is a constant for a given instance of the makespan problem, so that when
the cost of returning to the home city from any other city is set to zero, minimization of Eq. (2.4) is
equivalent to minimization of Eq. (2.5) if traveling costs are replaced by setup times.

It can be noted that, in general, it is the ATSP that is equivalent to the single machine makespan
problem with sequence-dependent setup times, due both to the costs of traveling to the home city being
set to zero and the fact that  in general for a machine scheduling problem.

However, when setup times are symmetric, the only difference between the TSP and the makespan
problem is the setting of d(N,0) � 0. When dealing with a cyclic scheduling problem, the makespan includes
a final setup time corresponding to that required for preparing the machine for the next cycle. In terms
of the TSP, this corresponds to a return to the initial city, so that a TSP can be used in this case.

Much effort has been expended over many years in the search for efficient solutions to the TSP and ATSP
(for a guide, see Lawler, Lenstra, Rinnooy Kan, and Shmoys [52] or Reinelt [70]). These solution methods
can be adopted directly when solving the single machine makespan problem with sequence-dependent
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setup times. Currently, no exact (i.e., optimal) algorithm for which the running time is a polynomial
function of the number of cities N has been devised. It is generally believed, but it has not been proven,
that no such exact algorithm can exist (that is, the problem is NP-hard; see Algorithms and Complexity).
Thus, essentially, for every exact algorithm for TSP, the running time grows exponentially with N, the
problem size.

Because the single machine makespan problem with sequence-dependent setups and the TSP are math-
ematically equivalent, the single machine makespan problem with sequence-dependent setups is just as
difficult as the TSP. Thus, in terms of the single machine makespan problem with sequence-dependent
setup times, increasing the number of jobs in the problem ordinarily leads to an exponential increase in
the time required to solve the problem optimally.

The Charles-Owaba and Lambert Model of Setup Times

Charles-Owaba and Lambert [16] propose an alternative to the sequence-dependent setup times model.
In their model, it is assumed that a setup is comprised of one or more machine setup tasks (this assumption
is adopted throughout this chapter). Each machine setup task is associated with a change in a certain
process setting or tooling configuration of the machine. Likewise, each process setting or tooling
configuration change is able to be associated with particular changes in the characteristics of the jobs to
be processed.

In common with other models of setup times investigated in this chapter, the Charles-Owaba and
Lambert model assumes that the machine state is specified by the job currently being processed. From
this assumption it follows that the subset of machine setup tasks required in a particular setup is
determined by considering the characteristics of the job currently being processed and the job being
switched to.

The duration of a machine setup task can be fixed or variable. In the model utilized by Charles-Owaba
and Lambert, durations are assumed fixed, these being the standard times of the machine setup tasks. A
limitation of this assumption is that the degree of change in a job characteristic associated with a machine
setup task does not influence the setup time. Due to this assumption, some facilities cannot be modeled
sufficiently by the model proposed by Charles-Owaba and Lambert; for example, ovens or autoclaves
(with variable temperature settings), or printing presses (with color as a process setting).

A machine setup task that could be required when setting up a machine for processing a particular
job is termed a performable task for that job. The set of performable tasks for a job will be a subset of
the available machine setup tasks, the complement of this subset being the set of non-performable tasks
(for that job). Depending on the current and required configurations of the machine, some or all of the
performable tasks for a job may be eliminated, that is, not necessary and consequently not performed.
In the analysis undertaken by Charles-Owaba and Lambert, similarity in design characteristics is assumed
to indicate similarity in processing characteristics. 

Determination of setup times in the Charles-Owaba and Lambert model is based on inclusion or
omission of the performable tasks for each job aj (in a setup to that job) according to a measure of
similarity in the characteristics of aj and the job that precedes aj in the schedule. When two adjacent jobs
in a schedule (ai and aj) have highly similar processing characteristics, a large proportion of the performable
tasks for job aj might be able to be eliminated. Seeking to eliminate performable tasks by maximizing
the similarity of adjacent jobs in a schedule clearly can lead to efficient schedules being produced.

We term non-eliminable a performable task for some job aj that cannot be eliminated by similarity of
this job to any other. When scheduling, the duration of a non-eliminable task for job aj can be incorpo-
rated into the processing time pj for the job and the non-eliminable task removed from the set of
performable tasks for aj. Commonly occurring examples of non-eliminable tasks include securing a
workpiece in a holder or unloading a part from a machine. Some machine setup tasks may be non-
eliminable for all jobs for which they are performable tasks.

As illustrated by Charles-Owaba and Lambert through a machining process example, the range of the
values for each relevant design characteristic can be divided to create a series of categories (e.g., small,
medium, and large) and each job classified for the purpose of determining similarity (jobs belonging to
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the same category are considered similar). If a suitable design classification and coding scheme is already
in use in the plant, this may be of assistance during this classification process.

Once jobs have been classified, similar jobs (according to any one characteristic) can be identified. At
the time of scheduling, performable tasks are either eliminated or included in a setup based on the
established similarity, and the total duration of a setup is calculated by summing the standard times for
each machine setup task to be undertaken.

An implementation of the approach proposed by Charles-Owaba and Lambert requires:

1. Determination of the set of machine setup tasks, and their standard times
2. Identification of a set of relevant design characteristics (those that will influence setup times), and

development of a suitable classification scheme for these characteristics
3. Establishment of the relationship between machine setup tasks and design characteristics (i.e.,

whether similarity in a design characteristic can lead to the elimination of a particular machine
setup task)

4. Classification of the design features of each job

It would only be necessary to undertake (1), (2), and (3) in a planning stage. This is particularly
important when considering facilities dealing with a variety of products, as alternative approaches
requiring determination of each setup time on a job-by-job basis may become unworkable due to the
time and effort required. 

The Charles-Owaba and Lambert model is far more detailed, although less general, than the “common”
sequence-dependent setup times model. Many of the technological considerations that contribute to the
duration of setup times are captured by the model. This leads to scheduling problems incorporating this
model displaying an identifiable (although complex) structure.

For the Charles-Owaba and Lambert model, the set of machine setup tasks can be denoted by
 and the set of design characteristics denoted by . The setup

time sij from job ai to job aj is given by 

where eiju � 1 if machine setup task xu is performable and not-eliminated, and eiju � 0 if it is a non-
performable task for job aj or is eliminated by similarity in jobs ai and aj. T is a row vector of machine
setup task durations, and Eij is the task elimination vector whose uth element is eiju.

The dissimilarity of two jobs is expressed by a vector Dij. The vth element dijv of Dij is zero if jobs ai

and aj are similar in characteristic yv (1 � v � V), or equal to one if the jobs are dissimilar in this
characteristic. The construction of each Dij can be greatly assisted if part classification and coding data
are available, and it can be noted that Dij � Dji for all i and j. 

Information regarding the potential elimination of machine setup tasks is held in matrix Q. The
element quv in row u of column v is assigned a value of one if dissimilarity in characteristic yv necessitates
machine setup task xu being undertaken (or alternatively, if similarity in characteristic yv can lead to
elimination of task xu). Element quv is set to zero if the necessity for xu is not affected by similarity or
dissimilarity in characteristic yv .

It is therefore evident that the composition of Q is dependent only on the features of the facility being
considered, and thus is independent of the requirements of the jobs being scheduled. In contrast, the
value of elements of Dij are dependent only on the similarity (dissimilarity) of the jobs.

The matrix Q, which applies to the problem as a whole, is then used to generate a set of matrices Qj,
one matrix for each job (or class of jobs). Rows in Qj relating to performable tasks for aj are as they
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appear in Q. Rows in Q that relate to non-performable tasks for aj have all elements set to zero when
forming Qj (Fig. 2.4). 

Consider the setup from some job ai to another job aj. The matrix Qj is generated from Q as in Fig. 2.4,
and one can distinguish the elements of Qj by writing quv,j in place of quv . If quv,j � 1, dissimilarity in
characteristic yv leads directly to task xu being performed when setting up for job aj, regardless of similarity
in other characteristics. Thus, a performable task is eliminated only if ai and aj are similar in every
characteristic v for which quv,j � 1. If quv,j � 0, either the value of characteristic yv is irrelevant to the
requirement of setup task xu, or setup task xu is non-performable (unnecessary) for job aj.

The task elimination vector Eij for a setup from ai to aj is then generated by Boolean multiplication of
Qj and Dij (represented by Qj‘�’Dij in Fig. 2.5). The result of each row-by-column multiplication is either
0 if all element-by-element multiplications equal 0, or 1 otherwise (i.e., a boolean OR operation). Thus,
a machine setup task xu is carried out (eiju � 1) unless all element-by-element multiplications equal zero
(  for all characteristics ).

Although Dij � Dji for all i and j, it is not necessarily true that sij � sji as the two jobs ai and aj may
not share the same set of performable tasks (i.e., the Qi and Qj matrices may not be identical). Also, when
a job is to be installed on an idle machine, it can be assumed that all performable tasks are carried out.

This description of the Charles-Owaba and Lambert setup times model has concentrated on a single
machine. For a multi-machine problem, both T and Q may need to be specified for each machine.

Charles-Owaba and Lambert discuss procedures that can be followed to develop the matrix Q, which
they term the binary interaction matrix. They propose that when considering each quv , a group of
experienced engineers and shop-floor personnel may be asked whether similarity in characteristic yv can
lead to elimination of machine setup task xu. In determining the set of machine setup tasks and relevant
set of job characteristics a similar “team approach” could also provide an efficient and effective means
for obtaining the necessary information.

FIGURE 2.4 The Q and Qj matrices.

FIGURE 2.5 Generation of the Eij vector by Boolean multiplication of the Qj and Dij matrices.

quv j, dijv
 0� y1 … yV,,
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It is also noted by Charles-Owaba and Lambert that the standard times tu need not be obtained through
observation of an existing process; they may be estimated using work measurement techniques or machine
performance data. This allows determination of setup times for a system that is not yet in operation,
allowing an appraisal of the performance of a planned or modified facility.

Class-Based Setup Time Models

A large proportion of the research into scheduling with setup times has been directed toward problems
for which the set of jobs is partitioned into a number of mutually exclusive and exhaustive classes, each
class containing one or more jobs. The corresponding models of setup times assume that setup times
need to be (explicitly) considered when “switching” from the processing of jobs of one class to those of
another. When two jobs of the same class are sequenced consecutively, it is assumed that all necessary
setup tasks have been incorporated into job processing times; thus, setup times are ignored (zero) between
two jobs of the same class.

Furthermore, for a single machine, it is assumed that the duration of a setup depends only on class
membership; to determine the setup time, it is sufficient to specify only the classes of the jobs involved.
For setup times on multiple-machine models, the machine must additionally be specified (we assume
throughout that although setup times may be different, classes are identical at each machine being
scheduled). Thus, it is evident that the formation of classes involves the grouping of jobs according to
similarities in processing characteristics.

The assumptions of a class-based model of setup times are incorporated into Definition 1.

Definition 1
In a problem incorporating a class-based model of setup times, the setup time s(ax, ay, m) between some
jobs ax (of class i) and another job ay (of class k) on machine m is given by:

The value of each sik,m (1 � i, k  � B, 1 � m � M) is an input parameter to the problem and is a
non-negative integer.

It is also commonly assumed that the initial setup time from a “bare machine” to a job of class i is of
duration s0i,m, this time being dependent on class index i and machine index m only. We will also make
this “uniform initial setup” assumption, although a class-based model of setup times can be developed
without it (thus it does not appear in Definition 1).

As a general rule, if the ability to form classes of jobs exists, then such a grouping should be undertaken
and a class-based setup times model used. This is because scheduling problems incorporating these setup
time models are typically easier to solve.

Considering any class with two or more jobs, setup times between any pair of jobs ax and ay belonging
to that class must satisfy the following constraints that arise from Definition 1. For simplicity, we refer
here to a one-machine case. 

(2.6)

(2.7)

(2.8)

Constraint (2.6) ensures that setup times within classes are zero. Constraints (2.7) and (2.8) ensure that
the setup times to a class, and the setup time from a class, depend only on class membership and not
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on properties of individual jobs. For setup times satisfying the “uniform initial setup” assumption, a
fourth constraint is required 

(2.9)

where s(0, aj) is the initial setup time to job aj.

Formation of Classes

The process of class formation is not a common topic of interest in scheduling research. Nevertheless, it
is a process that must be addressed during the application of a class-based setup times model to a
production facility, as well as when assessing the practical applicability of a setup times model.

It is clear that classes can be formed when a number of jobs represent different orders for the same
product, as jobs corresponding to the same product should satisfy constraints (2.6) to (2.8)—other than
in “unusual” circumstances, any machine setup tasks required between jobs of the same product will be
unavoidable (non-eliminable) and their duration may be aggregated with job processing times. Thus,
we will assume that classes of jobs may be formed according to correspondence to identifiable products.
It may also be possible to group different (though similar) products into “product types,” leading to the
formation of “larger” classes. This process is of interest here.

Formation of classes can be carried out using a one-stage process, where jobs are grouped directly
into classes at each scheduling occasion. Alternatively, a two-stage process can be used. In a two-stage
process, products are grouped into product types at a planning stage, and jobs are assigned to product
types at each scheduling occasion.

If a two-stage process is used, the total number of classes can be no more than the total number of
“product types.” This is because (1) some product types may not be represented by a job, and (2) some
rationalization of classes may be possible when one or more classes contain one job only. For one-job
classes, many of the machine setup tasks will be unavoidable and, as a result, the job concerned may be
able to be placed within an alternative class containing relatively dissimilar products. In comparison,
some or all of these machine setup tasks may be eliminated completely if two jobs of this product are
sequenced consecutively; in this case, the jobs are less likely to be grouped with dissimilar products. It
can be noted that although we assume that setups can be successfully decomposed into machine setup
tasks, we do not generally assume that machine setup tasks are assigned standard times.

From a purely mathematical viewpoint, the partitioning of a set of jobs into classes using a one-stage
process should be relatively straightforward, given all setup times (determined by an analysis of the
facility). An algorithm for forming classes according to constraints (2.6) to (2.8), based on known setup
times, can be constructed without difficulty. Relevant setup times will typically need to be obtained from
known product-to-product setup time data. Additionally, the durations of unavoidable machine setup
tasks will need to be incorporated into job processing times before the jobs are partitioned; thus, the
issue of one-job- or many-jobs-per product becomes relevant.

In practice, implementation of this process may be neither straightforward nor successful. Even for a
single machine, N2 setup times will need to be determined, a difficult and time-consuming process if
direct observation or “intuitive” estimation techniques are used. Use of such methods to determine setup
times can also result in setup times that display significant inaccuracies and random variations. Due to
such errors, constraints (2.6) to (2.8) will have a much-decreased likelihood of being satisfied by a pair
of jobs that correspond to similar products that “ideally” are able to be grouped. Allowing some tolerance
in the satisfaction of the constraints may assist, yet on the whole use of this method alone appears
generally insufficient.

Improvement in the setup time determination method may allow this constraint-based approach to
class formation to be more successful. In cases where it is reasonable to assign standard times to machine
setup task durations, the Charles-Owaba and Lambert model of setup times can provide such a method,
for either one-machine or multi-machine problems. The modeling of setups as a set of discrete machine
setup tasks, each with a standard time, will remove many of the causes of random variation in setup

s 0 ax,( ) s 0 ay,( )�
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times and provide a uniform and systematic structure for setup time estimation. After generation of task
elimination vectors, and modification of these to remove non-eliminable tasks, classes may be formed
directly using constraints (2.6) to (2.8).

The inability of the Charles-Owaba and Lambert to incorporate machine setup task durations that
depend on the “degree” of dissimilarity of parts is a disadvantage of this model, which in turn is a
shortcoming in the associated method of class formation. Considering such machine setup tasks sepa-
rately and adding their durations to the modeled setup times represents a potential means of “stretching”
the applicability of the approach. Extensions to the Charles-Owaba and Lambert model can also be
envisaged.

The class formation approach based on the Charles-Owaba and Lambert setup times model may be
unnecessarily complex when compared to alternatives. The attempt to directly satisfy constraints (2.6) to (2.8)
throughout the class formation stage may also represent a disadvantage, as in some cases the number of
classes might be significantly reduced by application of careful judgment in accepting small errors in
constraint satisfaction. The approach also does not indicate with clarity the potential for modifying setup
procedures in order to reduce setup times between particular products/classes.

Alternative approaches to class formation, based on a direct study of the processing characteristics of
products, potentially addresses these issues. Unlike the constraint-based approaches outlined above,
which can directly partition jobs into a set of classes, these alternative “product grouping” approaches
form classes using a two-stage process. Facilities with a relatively stable range of products are more suited
to product grouping methods than those dealing with one-of-a-kind-type production.

An intuitive approach to the product grouping strategy of class formation represents one potential
option. Typically, the shortcomings of an intuitive approach will become apparent when applied to
facilities either handling a large number of products or incorporating a number of machines. For example,
inconsistencies and errors in the grouping of products can be expected to increase somewhat out of
proportion to increases in the number of products or machines being handled. An intuitive method will
not provide setup times, and additionally there is no guarantee that the classes will conform to the
definition of a class-based model of setup times. These are disadvantages potentially shared by all product
grouping approaches.

As discussed by Burbidge [14], the grouping of products into product types is a feature of the production
flow analysis (PFA) approach to planning and implementation of group technology (GT) ideas for man-
ufacturing. The relevant sub-technique of PFA is termed tooling analysis (TA) and the groups formed
are known as tooling families.

Burbidge specifies that one aim of TA is to identify sets of products (tooling families) that can be
produced ‘‘one after the other’’ using the same machine setup; thus, a tooling family corresponds to a
product type as discussed above. This aim is clearly in agreement with Definition 1. A complementary
aim of TA is to eliminate unnecessary variety in the tools used, in order to reduce the investment in
tools. While not a scheduling objective, this is an important aspect of TA.

The tooling analysis technique is summarized by Burbidge as being composed of nine steps, the first
seven of which are relevant here.

1. List parts with operations at each workcenter
2. Divide into sub-sets by type of material
3. Divide into sub-sets by form of material
4. Divide into sub-sets by size of material
5. Divide into sub-sets by material holding tooling
6. For each category found at (5), produce a tooling matrix
7. Find tooling families

In tooling analysis, tooling families are produced at each machine or set of largely identical machines,
as described in Step 1. Difficulties may subsequently develop when multi-stage processes are dealt with,
as the classes formed at each stage may not be identical. Whether this presents a problem in scheduling
depends on the extent of class composition differences and the need for identical classes at each machine.
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A pressing consideration is the issue of setup times between classes satisfying Definition 1. TA is not
geared toward formation of tooling families whose setup times satisfy this definition, and we can only
propose that, in favorable situations, any lack of satisfaction will not be significant.

We are not aware of publications that discuss the formation of scheduling classes from either practical
or simulated data. White and Wilson [77] and Charles-Owaba and Lambert [16] bypass the class formation
process, instead proposing a general sequence-dependent setup times approach to scheduling. White and
Wilson use statistical treatment of observed setup times to establish a predictive equation for setup times,
which can then be used in scheduling, as discussed below. In a similar way, Burns, Rajgopal, and Bidanda [15]
use the existing design classification and coding scheme of a facility to generate (sequence-dependent) setup
times and use TSP to solve the resulting single machine makespan problem. Karvonen and Holmstrom
[47] describe a practical implementation of tooling analysis, although they do not discuss class-based
setup time models nor scheduling algorithms. Given that class-based setup time models are not uncom-
mon in scheduling literature, it appears that the issue of class formation (for class-based models of setup
times) represents an important direction for future research.

Common Class-Based Models of Setup Times

There are three models of setup times that can be considered to be common in scheduling research.
These are the sequence-dependent setup times model (discussed earlier), the sequence-independent setup
times model, and the major–minor setup times model. Problems incorporating variations of these models,
such as the additive changeovers model or the unit setup times model have also been studied. All the models
listed above, except the sequence-dependent setup times model, are almost exclusively class-based models of
setup times.

As noted, in a class-based scheduling problem, the scheduling of a machine setup is required only when
switching between classes. A scheduling problem involving a class-based model of sequence-independent
or sequence-dependent setup times can be termed a class scheduling problem. In the major–minor setup
time model, a further division breaks each class into sub-classes; a major setup is required when
switching between classes, and an additional minor setup is required when switching between sub-
classes. We consider a problem incorporating a major–minor setup times model to be a class scheduling
problem.

The model used by Charles-Owaba and Lambert belongs to less commonly occurring group that we
will term structured sequence-dependent models of setup times. The approach taken by White and Wilson
can also be said to yield structured sequence-dependent setup times. A structured sequence-dependent
setup time model can provide an efficient and logical means of determining setup times, thus these
“complicated” models are well suited for the purpose of providing setup times, even when they are
replaced by a more “common” model in scheduling algorithms.

Sequence-Dependent Setup Times with Classes

The general sequence-dependent setup times model does not assume jobs to be partitioned into classes.
For a problem with N jobs, if at least one class with two or more jobs exists, the class-based model may
be distinguished from the general case. Furthermore, the problem is typically easier to solve when a
division of the job set into classes is undertaken.

The class-based variant of the sequence-dependent setup times model can be mathematically described
thus: the set of N jobs is partitioned into B mutually exclusive and exhaustive classes, each class contains
one or more jobs, and every setup time satisfies Definition 1. The number of jobs assigned to class i (1 �
i � B) will be denoted by Ni (Ni � 1); clearly . These definitions of B and Ni will be used
throughout, for all class-based models of setup times.

Sequence-Independent Setups and Additive Changeovers

The sequence-independent setup times model is a special case of the sequence-dependent model with
classes. The setup for a class k has duration sk that does not depend on the class being switched from;
that is, it is a sequence-independent setup time. Definition 2 states both the sequence-independent setup
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times model and the unit setup times model for a single machine problem. In a multi-machine problem,
a sequence-independent setup time to a given class can be specified for each machine.

Definition 2 
In a single machine problem with sequence-independent setup times, the setup time from some job ax

(of class i) to another job ay (of class k) is given by:

where sk is a non-negative integer and is termed the sequence-independent setup time to class k (1 � i,
k � B). The unit setup times model is a special case of the sequence-independent setup times model
with sk � 1 for all classes k.

Compared to the sequence-dependent setup times model, which has quite general applicability as a
model of setups in industrial scheduling environments, the sequence-independent setup times model is
restrictive. In terms of machine setup tasks, accurate modeling of a facility using a sequence-independent
setup times model requires that every performable and eliminable task associated with a class will be
(1) carried out at each setup to the class, and (2) eliminated when two same-class jobs are sequenced
consecutively. Thus, the degree of dissimilarity between classes must be great (so that no elimination
of performable tasks can be undertaken when switching) and the degree of dissimilarity within classes
must be negligible (only non-eliminable tasks are carried out when not switching).

The additive changeovers model is an extension of the sequence-independent setup times model, and
was initially proposed by Sule [76]. The changeover time (switching time) is given by summing the
sequence-independent teardown time for the outgoing class and the sequence-independent setup time for
the class being switched to. The symbol ti will be used to denote the teardown time of class i. It can be
observed that setup times are not symmetric in either the additive changeovers model or the sequence-
independent setup times model.

Definition 3 
In a single machine problem with additive changeovers, the changeover time from some job ax (of class i)
to another job ay (of class k) is given by:

where ti is the (sequence-independent) teardown time from class i and sk is the (sequence-independent)
setup time to class k.

The additive changeovers model clearly has improved applicability compared to the sequence-independent
setup times model, particularly in cases where changeovers comprise the removal of fixtures and tooling
associated with an outgoing class (teardown) and the installation of same for an incoming class (setup).
The sequence-independent setup times model cannot adequately model this situation unless all teardowns
take a constant time for all classes, whereas the restriction is relaxed in the additive setups model to allow
teardown times to depend on the class being removed.

A useful notation for representing jobs in a problem incorporating a class-based model of setup times
is ai[ j], where i is the index of the class the job belongs to (1 � i � B), and j is the index of this job within
the class (1 � j � Ni). This method of referring to jobs, and the associated notation for job attributes
such as processing time and weight, was introduced in Section 2.2.

A Comparison of Additive Changeovers and Sequence-Dependent Setup Times

The additive changeovers model can be seen to provide some degree of sequence dependency in
changeover times. Nevertheless, most sequence-dependent class-based models cannot be represented by
additive changeovers, even for problems with only two classes (consider the case s01 � s12 � 0, s02 � 0,

s ax ay,( )
sk if  jobs ax and ay belong to different classes i k
( )
0 if  jobs ax and ay belong to same class i k�( ) 

 
 
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s ax ay,( )
ti sk if  jobs ax and ay belong to different classes i k
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s21 � 0 noted by Mason and Anderson [59]). On the positive side, changeovers may “appear” sequence
dependent yet can be successfully modeled as additive changeovers. Table 2.4 gives the setup and teardown
times for an instance of a problem with additive changeovers, and presents the resulting changeover
times, which “look sequence dependent” despite being generated using an additive changeovers model.

A problem with additive changeovers will be easier to solve than a problem with sequence-dependent
setup times; an additive changeovers model should be adopted if possible. Thus, there is significant benefit
in investigating whether “apparently” sequence-dependent setup times actually follow an additive
changeovers structure.

Such an investigation will be a component of a class-formation process, and it is therefore relevant at
this point to adapt constraints (2.6) through (2.9) to the additive changeovers model (incorporating the
“uniform initial setups” assumption). The resulting constraints are (2.10) to (2.13) which any two jobs
ai[x] and ai[y] belonging to a class i (1 � x,y � Ni, 1 � i � B) must satisfy with respect to all other jobs
ak[z] belonging to alternative classes k (1 � k � B, , 1 � z � Nk). 

 (2.10)

(2.11)

(2.12)

(2.13)

An approach that specifically considers processing characteristics may be more successful in determining
the applicability of an additive changeovers model, compared to a “testing” of established setup times
against constraints (2.10) to (2.13); refer to the discussion regarding the formation of classes.

While the additive changeovers model is more complex than the sequence-independent setup times
model, it is fortunate that this added complexity can be accommodated without an increase in difficulty
for a number of scheduling problems. This is because these particular problems can be solved by a process
that first transforms the problem into one with sequence-independent setup times alone and then solves
this “easier” problem. This is discussed further in Section 2.3.

The Major–Minor Setup Times Model
In the sequence-independent, additive, and sequence-dependent setup times models, one level of classi-
fication is present. The major–minor setup times model adds a second level, the sub-class, which is a
further division of the class (Fig. 2.6).

While it is less common than other models of setup times, the major–minor setup times model has
received attention from a number of researchers. Typically, a sequence-independent major setup time si

is required when switching to class i, to which a sequence independent minor setup time si(k) is added
whenever processing switches to sub-class i(k) of class i. Classes are indexed from 1 through B and
sub-classes of class i are indexed 1 through bi. It is assumed that relationships between sub-classes of different
classes have no influence on setup durations, so that a minor setup will also be carried out whenever a

TABLE 2.4 Changeover Durations Resulting from Use of the Additive 
Changeovers Model

Class Setup Teardown

Changeover Time to Class

Initial
Setup

From
Class 1

From
Class 2

From
Class 3

1 3 4 3 • 4 8
2 7 1 7 11 • 12
3 5 5 5 9 6 •

k i


s ai x[ ] ai y[ ],( ) s ai y[ ] ai x[ ],( ) 0� �

s ai x[ ] ak z[ ],( ) s ai y[ ] ak z[ ],( ) ti sk�� �

s ak z[ ] ai x[ ],( ) s ak z[ ] ai y[ ],( ) tk si�� �

s 0 ai x[ ],( ) s 0 ai y[ ],( ) si� �
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major setup is necessary. Each sub-class i(k) contains ni(k) jobs, so that  and, evidently,
 at each ni(k) � 1.

Let the bi[j] be the index of the sub-class that job ai[j] belongs to (1 � bi[j] � bi). The total changeover
time S scheduled between two jobs ai�[j�] and ai[j] is given by:

where 

The major–minor setup times model can be seen as a member of a broader class of setup time models
that may be referred to as hierarchial setup time models. We can refer to a setup time model as being
hierarchial if the set of jobs is successively partitioned into a series of levels. The lowest level (level K)
consists of individual jobs only, the set of all jobs forms the highest level (level 0), while intermediate
levels are comprised of sets of jobs that are mutually exclusive and exhaustive subsets of the sets in the
level above. The major–minor setup times model is therefore seen to extend to a depth of K � 2.

A Classification of Class Scheduling Problems

Various terms have been utilized by researchers to describe and classify problems with class-based models
of setup times. In this chapter we will adopt the following terms and definitions (see Fig. 2.7). 

Class scheduling problems: problems within which jobs are partitioned into classes, with setup times
being required when processing switches between processing jobs of one class and those of another.
Problems with “hierarchical” setup time structures (e.g., major–minor setup time models) are included
in this category. Setup times may follow any class-based setup times model.

Family scheduling problems: class scheduling problems with sequence-independent setup times or
additive changeovers between classes (families) of jobs.

Group scheduling problems: family scheduling problems with the additional restriction that all jobs of
a class must be sequenced together—the group scheduling assumption.
These definitions reflect the terminology commonly used in scheduling literature. 

The terms “family scheduling problem” and “group scheduling problem” have their origins in the
study of group technology (GT) environments. It is sometimes assumed that when scheduling machines
that form part or all of a GT “group” or “cell,” the � products assigned to that group can be partitioned so
that sequence-independent setup times between classes are the only setup times of considerable duration.

FIGURE 2.6 Classes and sub-classes in the major–minor setup times model.
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These classes are termed families by a number of scheduling researchers, and appear to correspond to
the tooling families described in Burbidge’s production flow analysis.

As noted earlier, for setup times to be sequence independent, all performable tasks for any family
(tooling family) must be carried out when switching to that family, while all machine setup tasks must
be eliminated when not switching. Thus, while it is possible that setup times between families are sequence
independent in a GT system, this requirement is restrictive and it is unlikely that sequence-independent
setup times apply within GT systems in general.

Further, some researchers suggest that it is customary and generally beneficial to sequence all jobs of
the same family (tooling family) together when scheduling within a GT environment. The resulting
“group scheduling assumption” gives rise to the “group scheduling problems” term. 

The common assumptions that will be made when discussing class scheduling problems are conve-
niently referred to as the class scheduling assumptions, and are:

1. All setup times satisfy the triangle inequality, but are generally not symmetric. 
2. The first job in the schedule must be preceded by a setup for the class to which it belongs (i.e., an

initial setup is required).
3. The machine may be left idle without the requirement of a teardown to remove the current class

or a setup to reinstate it.
4. Idle time may be inserted.

In class scheduling problems, savings in non-productive time (i.e., changeover time) are possible by taking
advantage of the group nature of jobs—sequencing jobs of the same class together. While the saving of setup
time is important, the impetus to schedule jobs of the same class consecutively is tempered by other
considerations, such as due-date performance for example. As observed by Potts and Van Wassenhove [68],
class scheduling problems comprise decisions both about “batching” (whether or not to schedule similar
jobs contiguously) and the scheduling of these “batches.”

Scheduling and Lot-Sizing

Although jobs in scheduling problems can be considered to represent an “order” of one or more items
of a particular product, they are typically treated in models and algorithms as being either wholly
indivisible (non-preemptable) or continuously divisible (preemptable). Furthermore, in a multi-machine
problem, a commonly adopted assumption is that a job can be processed by at most one machine at a
time, although a job may include multiple items of the same product.

The potentially restrictive nature of this assumption is illustrated in Fig. 2.8, where a job comprising
four items of a product is being processed in turn by three machines in a flow shop. Allowing the decom-
position of jobs into component items has the potential to dramatically improve schedule performance.
This will be true whether credit for completion is attributed only at the completion of the entire order
(the usual case in scheduling problems) or reward is given for completion of each item (not common).
The term lot-streaming has been used to describe the decomposition of jobs into smaller sub-jobs so that
sub-jobs of the same job can be processed on different machines simultaneously.

FIGURE 2.7 The division of the set of class scheduling problems into family and group scheduling problems.
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It is obvious that we can simply reduce the number of items per job to overcome restrictive scheduling
assumptions. This corresponds to the division of an “order” into smaller units. The disadvantage of this
approach is that the number of jobs requiring scheduling will increase in proportion. If established
scheduling algorithms are used to solve the resulting instances of such problems, the execution times of
the algorithms may well become unacceptable. This is because for all difficult scheduling problems (and even
many simple ones), algorithm running times must grow exponentially with the number of jobs considered.

A more suitable strategy may be to explicitly model each job as being comprised of either a number
of individual (and indivisible) items or a number of small groups of items. The symbol qj (qj � 1) can
be used to represent the number of items or small groups in some job aj; qj becomes a property of a job.
Scheduling algorithms can then be customized to deal with the problems as efficiently as possible.

Typically, problems concerned with the scheduling of many items of particular products are lot-sizing
problems. Most lot-sizing problems are significantly different from most scheduling problems. In a lot-
sizing problem, it is the product demands that appear as the primary input to the problem. Typically, a
cost is associated with the formation of each lot of items, this tending to reduce the number of lots
scheduled. The demand for products, in terms of due dates and quantities, provides an opposing force
for the creation of multiple lots. Lots (the outputs of a lot-sizing problem) are very similar in definition
to jobs in a scheduling problem (the inputs to a scheduling problem).

As noted by Potts and Van Wassenhove [68], scheduling literature nearly always assumes that lot-sizing
decisions have already been taken. Lot-sizing literature does not usually consider sequencing issues;
yet in industrial scheduling environments, these two types of decision are strongly interrelated. This
interrelationship is clearly evident and an example of the implications of the interrelationship for a sched-
uling problem is provided by Fig. 2.8. Where setup times are considerable, the interrelationship is reinforced;
these times are modeled directly in scheduling problems, while setup costs are commonly modeled in lot-
sizing problems (avoidance of these costs contributing significantly to the tendency to form larger lots).

Literature on problems involving relevant elements from both scheduling and lot-sizing is surprisingly
uncommon, particularly where setup times are explicitly considered in the schedule. This is unfortunate
given the clear link between the features of such problems and practical scheduling needs and consider-
ations. Potts and Van Wassenhove [68] have assisted in the study of such problems by presenting the
“qj-extension” (above) to the common job model in scheduling, providing a classification scheme for
combined lot-sizing/scheduling, and surveying relevant literature on the topic.

Algorithms and Complexity

When speaking of a scheduling problem, we refer to a model (of a real-world scheduling environment)
and an appropriate objective (relevant to that environment and the expectations made of it). What is
missing is some (or all) of the data from the real-world problem. When all relevant data is incorporated

FIGURE 2.8 Effect of lot streaming on the completion time of each item within a job processed by a flow shop.
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into both the model and the objective function, an instance of the scheduling problem is created. Although
a new scheduling problem will be formulated relatively infrequently, new instances will be dealt with at
each scheduling occasion.

Scheduling problems are solved by the specification of a method that can be used to solve some or all
of the possible instances of the problem. In a mathematical approach to scheduling, this method will be
an algorithm. Instances are solved by an implementation of that algorithm to produce a schedule. The
development of algorithms involves an analysis of the structure of the problem and the adaptation of
mathematical optimization methods to exploit this structure. It is algorithm development that commands
the most interest in scheduling research.

A direct algorithmic solution to a given scheduling problem may not be possible, as the complexity
of the problem may prohibit the successful application of available mathematical methods. Nevertheless,
insights gained from the process of modeling, analysis, algorithm development, and study of solutions
to simpler problems can often be valuable and lead to improved decision-making. It is unfortunate that
most scheduling problems that accurately reflect real industrial environments are extremely difficult to
solve completely (or even partially) using mathematical methods alone.

A primary requirement of a scheduling algorithm is that the schedules produced be feasible (i.e., all of
the practical constraints are satisfied). For most scheduling problems analyzed in this chapter, it is not
difficult to produce an algorithm that generates feasible solutions. The effectiveness of an algorithm is
then measured by its performance, the basic measures being the quality of the schedules produced and
the time taken to generate a schedule.

It is clear that there is considerable benefit in knowing in advance the likely performance of an algorithm,
based on the properties of the problem being solved. If we know that the problem is difficult, then we
might accept sub-optimal solutions if they are obtained in reasonable time, or accept protracted solution
times to obtain optimal solutions. Similarly, if we fail to find an efficient algorithm, it would be helpful
to know if our expectations were too great, based on some known problem difficulty. As discussed by
Garey and Johnson in the introduction to their highly respected book [31], the theory of computational
complexity can allow us to show that a problem is inherently hard; that is, no algorithm can be expected
to produce optimal solutions in reasonable time (for all but the smallest of instances).

Algorithm Running Times

Consider an algorithm that operates on an ordered sequence of N jobs {a1, a2,…, aN} searching for the
adjacent pair of jobs with the greatest difference in processing times. The steps of this and any other
algorithm can be decomposed into elementary operations, such as addition, subtraction, and comparison.
The running time for the algorithm will be directly dependent on the total number of these elementary
operations executed, and the total number of operations required will be a function of the input
parameters of the problem (e.g., the number of jobs, the number of machines and the sum of processing
times). Thus, an upper bound on the number of operations required becomes the running time bound
or time complexity function of the algorithm, and is expressed in terms of the problem size.

That different types of operations will consume unequal amounts of time, and differing computer
systems will execute operations at different speeds, is largely irrelevant—a running time bound expresses
the relationship between the problem and the algorithm (it is a property of the algorithm). Additionally,
a running time bound illustrates the problem parameters which contribute to the size of the problem.
As shown in Fig. 2.9, the number of operations required by the example algorithm is O(N); i.e., the
number of operations is in the order of the number of jobs N and so is no greater than kN for some
constant k. O(N) becomes the running time bound for the algorithm, and the problem size is determined
by the number of jobs N in this case.

The derivation of running time bounds is a routine process in the analysis of algorithms. Some
algorithms have bounds that are polynomials in the problem parameters (e.g., O(N � MN4) as well as
expressions such as O(N log N)), these being polynomial time algorithms; while those algorithms without
polynomial bounds are known as exponential time algorithms (exponential including time-complexity
functions such as (log N)N or NN which grow more rapidly than, say, 2N). 
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Algorithms with polynomial running time bounds are of course able to be set to work on significantly
larger problems, in comparison to exponential time algorithms. Table 2.5 is a condensed form of a table
originally provided by Garey and Johnson [30], which emphatically illustrates the behavior of various
time complexity functions. The running times are calculated from the given time complexity functions,
each algorithm represented taking a millionth of a second to solve a problem of size n � 1.

The Theory of NP-Completeness

Running time bounds (or time complexity functions) are properties of algorithms, expressing the sen-
sitivity of these algorithms to problem size. The theory of computational complexity tells us that there
exist some problems for which (it is generally believed) there cannot be a polynomial time algorithm
that is guaranteed to solve the problem optimally.

The set of decision problems for which polynomial time (optimal) algorithms exist is known as the set P.
A decision problem involves deciding whether a statement is true or false; a decision problem in sched-
uling might be: ‘‘is there a feasible schedule that has a maximum lateness less than K,” for example.
Optimization problems (also known as search problems) are at least as hard as decision problems, as a
decision problem can be solved by solution of an optimization problem (in the example, the optimal
solution can be compared to the bound K).

FIGURE 2.9 Flowchart and running time bound for the sequence searching algorithm.

TABLE 2.5 An Illustration of the Effect of Problem Size on the Running Times of 
Algorithms

Time 
Complexity 

Function

Problem Size n

10 20 30 40 50 60

n3 0.001
seconds

0.008
seconds

0.027
seconds

0.064
seconds

0.125
seconds

2.6
seconds

n5 0.1
seconds

3.2
seconds

24.3
seconds

1.7
minutes

5.2
minutes

13.0
minutes

2n 0.001
seconds

1.0
second

17.9
minutes

12.7
days

35.7
years

366
centuries
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A decision problem is said to be in set NP if a solution to the problem can be verified in polynomial
time. For example, consider the decision problem: ‘‘can a given set of jobs to be sequenced to a single
machine be completed in a makespan less than K.” Given a sequence that is purported to have a
makespan less than the value K, we can verify in polynomial time whether it indeed does, simply by
constructing a schedule from the sequence; thus the decision problem is in NP. All problems in P are
part of the set NP.

It is generally suspected that there are problems that are in NP but not in P ; that is, that polynomial-
time optimal algorithms cannot be found for some problems. That P 
 NP is yet to be mathematically
proven, however. To prove that P � NP, polynomial time algorithms would need to be found for the
“hardest” decision problems in NP, these being the NP-complete problems. It turns out that to show that
P � NP, we would require only one of the NP-complete problems to be shown to be in P, this result
being central to the theory of NP-completeness and based on the concept of reducing one problem to
another.

For two decision problems A and B, it is said that B reduces to B(A � B) if the inputs x for A can be
transformed, in polynomial time by some function g, into inputs g(x) for B such that a “yes” answer is
obtained for A if and only if is a “yes” answer for B. A � B implies that B is at least as hard as A, A and
B are equally hard if A � B and B � A, and A � B and B � C implies A � C.

Cook [21] showed that every problem in NP is reducible to the satisfiability problem (a decision problem
from Boolean logic). This implies that the satisfiability problem is the “hardest” problem in NP, and it
is termed NP-complete in order to distinguish it from “easier” problems. If the satisfiability problem is
solvable in polynomial time, so is every other problem in NP (hence, P � NP). On the other hand, if
any problem in NP is truly unable to be solved in polynomial time, the satisfiability problem can only
be solved in exponential time and P 
 NP. 

Cook’s theorem provides the result that A � SAT for any problem A � NP (SAT being the satisfiability
problem). Given a problem of interest A � NP, if it is shown that SAT � A, problem A is therefore “equally
hard” as the satisfiability problem and so is also NP-complete. Although the satisfiability problem was
the first NP-complete problem, an NP-completeness proof for some problem A can utilize any NP-
complete problem, as all NP-complete problems are equally hard (the transitivity of the ‘�’ relation being
important in allowing this). Essentially, a proof of NP-completeness provides the reduction from the
known NP-complete problem to the problem of interest, and Cook’s theorem provides the reduction in
the opposite direction.

There now are many thousands of problems known to be NP-complete problems, with scheduling
problems being well represented. If a decision problem is NP-complete, an optimization problem is said
to be NP-hard, as it is at least as hard to solve as the decision problem. 

While a problem may generally be NP-complete (or NP-hard), special cases may be polynomially
solvable. For example, the traveling salesperson problem is NP-hard (see [52]); yet if all cities are arranged
in straight line (“on the same road”), the problem is easily (and trivially) solved. Therefore, when reducing
a known NP-complete problem B to a problem of interest A, it is imperative that every instance of B has
a corresponding instance of A; otherwise, we may only be dealing with easily solved special cases of the
NP-hard problem B.

A common in-practice method for establishing NP-completeness for a particular problem A involves
the selection of a known NP-complete problem B, the provision of a transformation between inputs of
A and the inputs of B, and proof that every instance of B has a (one-to-one) corresponding instance of
A. It is not necessary that every instance of A has a corresponding instance in the known NP-complete
problem B—the instances of A may be restricted, with this method of proof being known as proof by
restriction.

Some restriction proofs are obtained simply, particularly for scheduling problems. For example, the
problem of minimizing the makespan on a single machine with static job arrivals and sequence-dependent
setup times is known to be NP-hard, by simple transformation from the TSP. It is obvious that the more
general dynamic version of the problem is also NP-hard, as instances of this problem may be restricted
to those with rj � 0. Essentially, when an already NP-hard scheduling problem is extended to include
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new properties (e.g., ready times), or more complex versions of existing elements (e.g., sequence-dependent
setup times replacing sequence-independent setup times), the extended problem must also be NP-hard.
For problems with setup times, this concept will be explored in detail shortly.

There are some NP-complete problems that have psuedopolynomial-time algorithms. The partition
problem is one such example. Each item aj in a set of items A � {a1, a2,…, an} has a “size” sj, and the
question in this decision problem is: ‘‘is there a subset A� of A such that ?.’’ This
problem can be solved in  operations, so that if the sum of item sizes  is restricted,
the problem is solvable in polynomial time—hence, the algorithm is said to be psuedopolynomial. Many
problems, for example, the TSP or the problem of minimizing the flowtime on a single machine with
release dates, cannot have psuedopolynomial-time algorithms (unless P � NP) and thus are termed
strongly NP-complete (decision problems) or strongly NP-hard (optimization problems).

The practical usefulness of the theory of NP-completeness is that, once a problem is shown to be
NP-complete, approaches to solving the problem are restricted to (1) finding exponential time algorithms
that are guaranteed to solve the problem optimally, or (2) accepting that finding optimal solutions for
problems of practical size may not be possible in reasonable time, and developing algorithms which
merely perform well.

Lower Bounds and Upper Bounds

The derivation of lower bounds and upper bounds on the optimal value of the objective function is often
an important task when analyzing a scheduling problem. A lower bound is a value known to be less than
or equal to the optimal value, and when studying problems we develop a procedure to generate a lower
bound. This procedure can be termed a lower bounding procedure, although typically when speaking of
lower bounds, it is the procedure that is being referred to. Upper bounds are values known to be higher
than optimal, and are commonly simple to obtain using a known feasible solution. A bound is tight if
it is “known” to be close to the optimal value.

As most scheduling problems are assigned objective functions that must be minimized (time, cost),
a lower bound value will usually be an unattainable target, although a procedure that generates tight
lower bounds may return the optimal value on occasion.

Bounds can be generated utilizing only the input data of the instance, or combining this data with
partially constructed schedules. For example, a simple lower bounding procedure for a single machine
makespan problem with setup times may add the processing times of all jobs to provide a lower bound.
If an initial partial schedule has been specified, a lower bound on the makespan of a completed schedule
beginning with this partial schedule can be obtained by adding the current makespan value (for scheduled
jobs) to the sum of processing times of unscheduled jobs.

There are two primary uses of bounds in scheduling research. Lower bounds in particular can be used
to gauge the performance of a non-optimal algorithm by establishing the approximate “position” of the
optimal value, in the absence of a true optimal value. As a lower bound is always less than or equal to
the optimal, and the algorithm will return a value equal to or greater than the optimal, the optimal
is known to be “trapped” between the two values and small differences between lower bound and
algorithm-returned value indicate good algorithm performance. An inability to obtain tight lower bounds
limits the utility of this algorithm testing method.

Within algorithms, lower and upper bounds can also be used to guide the solution process, particularly
in branch-and-bound algorithms, the primary features of which are discussed in the next section.

Optimal Algorithms

Some simple scheduling problems can be solved optimally using rules to construct a schedule, the SWPT
rule for the single machine flowtime problem (mentioned earlier) being an example. However, in the
great majority of cases, scheduling problems are NP-hard, and optimal algorithms for these problems
are typically based on branch-and-bound techniques or dynamic programs. Algorithms of both types are
presented in the sections that follow, while the principles and details of each have been well described
in many texts.

� sj A�� j � sj A A�	� j�
O n� sj A� j( ) � sj A� j
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At this point, we will outline the operation of branch-and-bound algorithms. In a branch-and-bound
algorithm, an optimal solution is found using a search tree. A search tree consists of nodes, which contain
partial or complete solutions. Directed arcs (branches) join nodes containing partial schedules to their
successors. In a simple (yet typical) implementation, successor nodes (child-nodes) contain schedules
produced by extending the partial schedules of their predecessor node (parent-node), and the root
node at the top of the (inverted) tree contains an “empty” schedule. The algorithm begins at the root node
and determines which child-nodes represent feasible partial solutions. This creates the initial node set;
and at various points in the operation of the algorithm, child-nodes will be formed from existing
parent-nodes in a branching process.

At each existing node, the current value of the objective function can be calculated, as can a lower
bound on a complete solution beginning with the initial partial sequence at this node. Using prespecified
criteria usually associated with lower bound values, nodes are chosen as parent-nodes; the chosen method
of parent-node selection can be termed a branching strategy. Once one complete schedule is obtained,
the objective function value at this node represents an upper bound on the optimal solution.

Any node containing a partial (or complete) solution of a greater objective function value than the
upper bound can then be eliminated from further branching (considered fathomed), and the section of
the tree that would otherwise lie beneath this node is pruned. By using lower bounds, pruning can also
occur at any node with a lower bound value greater than the current upper bound; thus, use of a tight
lower bound can dramatically reduce the number of nodes searched and hence the time required to reach
the optimal solution.

In addition, pruning can be assisted by utilizing optimality conditions. Optimality conditions derived
from an analysis of the scheduling problem allow partial or complete schedules to be deemed provably
sub-optimal. In branch-and-bound algorithms, they represent a “test” that can be applied to partial
schedules at nodes, eliminating those that do not have the potential to produce optimal solutions. It can
be noted that most other solution methodologies also utilize optimality conditions in some manner. 

In the worst case, a branch-and-bound algorithm will explore all possible solutions of the problem.
However, when equipped with strong optimality conditions, tight lower bounds, and a suitable branching
strategy, such algorithms have been shown to perform capably.

Heuristics and Approximation Algorithms

The NP-hardness of the vast majority of scheduling problems incorporating realistic models and assump-
tions often necessitates the use of algorithms that run in reasonable time but do not guarantee an optimal
solution. The terms heuristic and approximation algorithm are commonly used to describe these algo-
rithms, and can be used more-or-less synonymously.

Constructive heuristics, as the name suggests, build schedules one-job- or many-jobs-at-a-time, using
heuristic rules arising from an analysis of the problem. At any point, only one partial schedule is considered.
Greedy heuristics represent a common sub-type of a constructive heuristic. As the name suggests, the
action of these heuristics is such that at any decision point, the option corresponding to the greatest
immediate return is chosen, decision points being job completion times or ready times. Dispatch heuristics
follow simple rules that choose the next job to be scheduled and thus are typically greedy, although
queue-based scheduling disciplines such as first-in-first-out (FIFO) are also dispatch heuristics.

A pertinent example of a greedy heuristic is encountered when addressing the single machine makespan
problem with sequence-dependent setup times. In this greedy heuristic, the next job scheduled is chosen
so that the setup time from the currently last scheduled job to this next job is the minimum possible
(so that if job ai is the currently last scheduled job, the next scheduled job aj is that which minimizes the
resulting setup time sij).

Search heuristics are a varied class of heuristics that search for optimal solutions by iteratively modifying
one or more existing solutions to the problem. For combinatorial scheduling problems, the modification
process is such that, in time, improved schedules are found. It is possible that the schedule produced is
globally optimal; however, no guarantee can be given, and all search heuristics exhibit an ability to become
“trapped” by local, rather than global, optima.
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We identify two broad types of search heuristics: local search heuristics and evolutionary algorithms.
Local search heuristics generate a new schedule by undertaking a small modification to a current schedule.
These modifications can be termed moves. Around a particular schedule there will exist a certain set of
possible moves, that is, a neighborhood of moves. The size and scope of this neighborhood is determined
by the range of moves made available within the heuristic specification. A simple and typical move may
involve interchanging the positions of two individual jobs or groups of jobs in the schedule.

At each iteration of a local search heuristic, some or all of the moves in the neighborhood are assessed.
One of these moves is accepted, via the use of a predefined acceptance criterion. This acceptance criterion
may be either deterministic (e.g., in descent heuristics, threshold accepting, or tabu search) or probabilistic
(e.g., in simulated annealing), and typically will assess moves according to the change in objective function
value that will result. The acceptance criterion in a descent heuristic will only accept moves that do not
worsen the objective function value. Simulated annealing, tabu search, and threshold accepting heuristics
are equipped with acceptance criteria that can also allow moves which worsen the objective function
value, and thus allow the heuristic to “escape” from local optima.

A local search heuristic maintains a single solution as current at any one time. The initial schedule
(the current schedule at the beginning of the first iteration) is known as a seed schedule. Multi-start
implementations of local search heuristics undertake the heuristic procedure more than once, using a
different seed schedule on each occasion. By sequentially carrying out the search procedure on a number
of different seed schedules, there is an increased probability that either the global optimum or a good
local optimum will be found. 

The larger the size of the neighborhood, the more time each iteration will be expected to take; yet
while small neighborhoods may have a short time-per-iteration, many more iterations may be required
to reach a reasonably good solution. When implementing local search heuristics, stopping criteria might
need to be imposed, as otherwise a heuristic may fail to terminate. Typical stopping criteria involve limits
on the total number of iterations, limits on the total execution time, or a minimum degree of improvement
over a given number of iterations. 

Evolutionary algorithms, or genetic algorithms, are search heuristics whose operation is modeled after
natural evolutionary processes. A particular solution, or individual, is represented by a string, each element
in a string determining some feature of the solution. Hence, the function of this string is analogous to
that of genetic material in living organisms, and the string can be referred to as a chromosome comprised
of a series of genes, each of which may take one of a range of allowed values (or alleles). We can also refer
to this string as the genotype of the individual. A gene might correspond to a sequence position in a genetic
algorithm for a machine scheduling problem, and the value of this gene will indicate the job to be sequenced
at this position. Alternative encodings of schedules are commonplace, however. The schedule that results
from interpretation of an individual’s chromosome is termed the phenotype of this individual.

A population of individuals is maintained at any one time, the size of this population being predeter-
mined. “Fit” individuals (good schedules) are allowed to reproduce to create new individuals, and “unfit”
(poor) solutions are discarded. Fitness is determined through assessment of an individual’s phenotype,
usually by reference to its objective function value. In reproduction, approximately half the genotype of
each parent is incorporated into the genotype of an offspring. Staleness in the genetic makeup of the
population is able to be countered by allowing mutation, this being the alteration of one or more genes
of an individual according to a randomized process.

A key assumption in evolutionary algorithms is that pieces of chromosomes that translate into good
partial schedules will become more common within the population, due to the combined actions of
fitness assessment and reproduction. This “natural selection” process steers the heuristic toward higher
quality solutions. Although not initially developed for solution of combinatorial problems such as
machine scheduling problems, application of genetic algorithms to these problems has been successful. 

Beam search heuristics are search-tree-based procedures that, unlike branch-and-bound algorithms,
are not designed to give a guarantee of optimality. Pruning in beam search heuristics is not confined to
branches below nodes proved sub-optimal using bounding or optimality condition tests, but extends to
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branches from nodes not considered “likely” to bear good/optimal solutions. Thus, efficiency of these
heuristics is gained by restricting the number nodes explored.

Particular examples of the majority of these heuristic methods will be presented in the course of this
chapter. It can be observed that, as heuristics are often quick-running, a set of heuristics may be
implemented for a problem, with the best of the schedules generated by them accepted. 

Worst-case error bounds can be associated with heuristics, these being analytically derived bounds on
the worst-possible ratio of heuristic solution value to optimal solution value, considering all possible
instances. Establishing worst-case bounds is typically an extremely difficult process for all but the simplest
of heuristics. In addition, worst-case bounds may not convey useful information about the average or
“usual” performance of a heuristic. For these reasons, the vast majority of heuristics reported in sched-
uling literature are not provided with worst-case error bounds, but rather with details of their typical
performance as ascertained by computational experiment.

Assessing the Performance of an Algorithm

The in-practice performance of an algorithm can be experimentally measured by quantitative criteria
such as objective function performance, running time, and data storage demands. Statistical methods
are appropriate tools for carrying out a comparison between algorithms and/or lower bounds based on
the above criteria. Often, the testing procedure will involve the generation of sets of representative
problems using relevant probability distributions.

It is customary in scheduling research to choose many of the values in an instance (e.g., processing
times) from uniform distributions. It is largely accepted that the instances result “test the bounds” of
algorithm performance more rigorously, and that they represent more general cases. However, these
instances may not be representative of instances arising from actual data, and practically-based instances
can often be easier to solve (see, e.g., Amar and Gupta [4]). When attempting to establish a link between
industrial scheduling environments and the scheduling problems that are motivated by them, the gen-
eration of sample instances can pose a dilemma that is compounded when relevant and previously
reported testing has utilized a particular methodology. 

The running time and objective function performance measures are evidently limited in their scope.
The utility or appropriateness of a scheduling algorithm for tackling a practical problem will depend on
factors such as:

• The ability to partially re-execute the algorithm to provide an updated schedule

• The degree to which necessary human intervention can be accommodated in the scheduling decisions

• The means by which secondary criteria (which are important yet not modeled) are able to be
addressed and handled

These algorithm properties are more readily judged using qualitative measures and are difficult to assess
without first selecting an application. Nevertheless, it is possible to make general observations; for
example, Morton and Pentico state that combinatorial scheduling methods (tree-search based algorithms
such as integer programming, branch-and-bound methods, and dynamic programming) have the advan-
tage of providing optimal or near-optimal solutions, yet the disadvantage of not providing ‘‘any ordered
intuition as to how to change the solution for emergency changes, slippages, and so on.” By contrast, a
simple dispatch heuristic will not be expected to perform as well as algorithms of the above type, but
allows, for example, for a relatively simple recalculation of a job’s priority (in the light of revised
information) and subsequent modification of schedules.

A Classification Scheme for Scheduling Problems

To represent problems in a shorthand manner, we adopt a classification scheme based on that introduced
by Graham, Lawler, Lenstra, and Rinnooy Kan [38]. Extensions of this scheme, to cater to more specialized
problems such as those incorporating setup times, have been proposed by a number of authors. Some
of these extensions are included in the scheme utilized in this chapter.
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In the classification scheme, it is assumed that the problem includes N jobs that are to be scheduled
on the machines involved, these jobs being comprised of one or more operations each. A scheduling
problem is written in the form , where � describes the machine environment, � the job attributes,
and � the objective function. Although useful, the scheme is most suited to representation of simpler
scheduling problems, as the amount of detail able to be expressed by the  format is limited. For
complex problems, additional description may be necessary.

The machine environment represented by the field � is comprised of two sub-fields �1 and �2 (� �

�1 �2); the values of these fields and their corresponding meanings provided are in Table 2.6.
Using this scheme, 1���� is a single machine problem, Q���� is a problem with an unspecified number

of uniform machines, and F3���� is a flow shop problem with three workstations in series. In the case
of flow shop problems, for example, the lack of detail in the classification scheme can be inconvenient.
Further specification of the machine environment may be necessary for complex problems. 

The job characteristics field � has a number of sub-fields associated with it, each relating to a particular
job property. The basic set of sub-fields (as given by Lawler, Lenstra, Shmoys, and Rinnooy Kan [53])
are shown in Table 2.7. It can be noted that the particular job properties indicating the empty values (i.e., o)
default to those represented by the usual scheduling assumptions.

As examples, a single machine problem allowing preemption and with assembly-tree precedence
structure will be represented by 1�pmtn, tree��, while a job shop problem with equal (unit) operation
times will be written as J�pij � 1��. Where necessary, other values of each sub-field will be used; for
example, if all release dates are either equal to 0 or a common value r, this can be represented by assigning

 to �3 (e.g., ).
Researchers have used customized and additional sub-fields of � to allow representation of more

advanced scheduling problems. Brucker [11], for example, uses �5 to indicate job deadlines, �6 for
indicating a batching problem, and �7 for information regarding setup times. Potts and Van Wassenhove
[68] introduce a sub-field of � that allows various lot splitting and batching models to be efficiently
represented. Table 2.8 provides extensions to the “standard” � field, which will be of use within this chapter. 

TABLE 2.6 Machine Environment Field Values

Field Field Values Meaning

�1 o
P
Q
R
O
F
J

One-machine problem
Identical parallel machines
Uniform parallel machines
Unrelated parallel machines
Open shop
Flow shop
Job shop

�2 o
M

If �1 
 o, arbitrary number of machines
M machines involved in the problem

TABLE 2.7 Typical Specification of the Job Attributes Field

Field Field Values Meaning

�1 pmtn
o

(Preempt-resume) preemption of jobs is allowed
Preemption of jobs is not allowed

�2 prec
tree

o

General (arbitrary) precedence relationships hold
An assembly-tree or branching-tree precedence structure
No precedence relationships specified

�3 rj

o
Jobs have prespecified release dates
Jobs are available at all times (i.e., static availability)

�4 pj � 1
pij � 1

o

Each job has a unit processing time (single-operation models)
Each operation has a unit processing time (multi-operation models)
Each job/operation is assigned a integer and non-negative processing time

� � �

� � �

rj 0 r,{ }� 1 rj 0 r,{ }� �
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It can be observed that structured sequence-dependent setup times are not differentiated from general
sequence-dependent setup times in the classification scheme. Importantly, the classification scheme does
not contain information about the partitioning of the N jobs into classes and sub-classes. 

A scheduling problem might not incorporate restrictions governing the number of classes (B) or the
number of jobs in each class (Ni), other than those absolutely necessary (1 � B � N, Ni � 1  and

). If specific assumptions are made about the setup times model in a problem, then an
additional sub-field of � (�7) will be included in the classification to indicate this; for example, 1� sij,B �
2�� corresponds to a problem with sequence-dependent setup times and two classes. For problems
incorporating the sequence-dependent setup times model, we will assume that jobs are not partitioned
into classes if �7 is empty (i.e., not used). A division of the job set into two or more scheduling classes
will be assumed for all other models of setup times.

Specification of objective functions using the third field � is comparatively simple. Each objective
function is represented in “shorthand,” and common values of � for single-objective problems include
Cmax (makespan), Lmax (maximum lateness),  (weighted flowtime),  (weighted tardiness), and

 (weighted number of late jobs).
In the classification scheme, we will differentiate between makespan problems where (1) the makespan

is given by the maximum completion time Cmax � maxj�J{Cj}, and where (2) the makespan is defined as
the total machine occupation time (including final teardown operations). The standard notation � �
Cmax will be used for the former, while � � (C � t)max will be used for the latter.

Reducibility Among Scheduling Problems with Setup Times

Given N jobs partitioned into B classes, it is clear that a problem with sequence-independent setup times
is easier to solve than a corresponding problem with additive changeovers, and that a problem with
additive changeovers is in turn simpler than a problem with sequence-dependent setup times. Such
relationships can be shown formally: any problem incorporating a simpler model of setup times can be
written as a special case of a corresponding problem incorporating a more difficult model. 

Fig. 2.10 shows a reducibility between problems with setup times. Directed arcs (arrows) in the top
row  indicate that model x is a special case of model y. As discussed by Lawler et al. [53], knowledge
of such reducibility can be extremely useful in determining the complexity of scheduling problems.

Given  from Fig. 2.10, a problem X containing setup times model x reduces to a correspond-
ing problem Y containing setup times model y (that is, X � Y). If problem X is NP-hard, so is problem
Y; while if problem Y is polynomially solvable, so is problem X. The correctness of this particular
argument requires that all other aspects of problems X and Y are identical. This is a restrictive
condition, and far stronger results can be obtained by simultaneously considering reducibility graphs
relating to other aspects of a problem, such as objective function and machine configuration (see, e.g.,
[38], [49], and [53]).

TABLE 2.8 Extension of the Job Attributes Field

Field Relates to Examples (Entries and Meanings)

�5 Due dates dj

and deadlines 
dj � d

o

Common due date for all jobs
(Arbitrary) deadlines specified for each job
Arbitrary due dates and no deadlines for due-date problems

(e.g., minimising maximum lateness or weighted tardiness)
No deadlines for ‘flow-based problems’

(e.g., problems with flowtime or makespan as the objective)
�6 Setup times sij

si

s�

si : si

o

Sequence-dependent setup times with initial setups
Sequence-independent setup times with soi � si for all i
Additive changeovers
(Sequence-independent) major and minor setup times
No setup times modeled

dj dj

i�

� NB
i �1 i N�

�wC �wT
�wU

x y→( )

x y→
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Problems with major setup times alone are special cases of those incorporating a major–minor model,
where all minor setups have been set to zero. Thus, we can consider a general case where jobs are
partitioned into both classes and sub-classes. Using the elementary result contained in Fig. 2.10, the
reducibility of problems with setup times, including those with sub-classes, can be determined (Fig. 2.11).
The reductions shown in Fig. 2.10 appear in the top row of Fig. 2.11, these being problems without
minor setup times.

Problems with general sequence-dependent setup times between individual jobs correspond to the
hardest problems of those where machine state is determined by the job being processed—hence the
choice of the final node in Fig. 2.11.

The reductions shown in Fig. 2.11 are valid when dealing with either a general case of 1 � B � N, or a
special case where B takes a fixed value within this range. However, some caution is necessary; for example,
if a problem is solvable in polynomial time only in special cases (such as when B � 3), this only implies
that problems which reduce to it are in P when the same special case of B is applied. Naturally, if a special
case of a problem is NP-hard, so is the general case of this problem.

It should be noted that one important relationship between problems with setup times is not displayed
in Fig. 2.11. A problem � with B classes, non-zero minor setup times, and no major setup times is equivalent
to a problem �� without minor setup times and with the number of major classes B� given by ,
(i.e., the number of minor classes in the original problem). Thus, ��o:si�� is equivalent to ��si��, for example.
Although this may imply that setup time models without major setup times are redundant, use of such
models in a problem may maintain the clearest connection between the scheduling model and the real-world
problem; for example, if certain machines are prohibited from processing certain major classes.

The computational complexity of many problems with setup times can be established in a simple
manner using Fig. 2.11 (and further results are possible when this reducibility graph is used in combi-
nation with similar graphs covering other problem classification fields). For example,

FIGURE 2.10 Reducibility between models of setup times.

FIGURE 2.11 Reducibility between models of setup times, including major–minor setup time models.

� bB
i�1 i
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• The problem of minimizing the makespan on a single machine with additive major- and additive
minor-setup times  is known to be polynomially solvable. This implies that

 and all preceding single machine makespan problems are also polynomially
solvable.

• The problem of minimizing the total flowtime on two parallel machines with sequence-independent
setup times  is NP-hard (Cheng and Chen [18]). This implies that all parallel
machine problems with setup times and the total flowtime (or weighted flowtime) objective are
NP-hard.

Fig. 2.11 also illustrates the commonly utilized models of setup times in scheduling research. It is clear
that research work into major–minor setup times problems with other than sequence-independent setup
times may provide an important contribution. This will be particularly true if the problems are seen to
represent common industrial cases.

2.3 Makespan and Flowtime on Single Machines

Section 2.2 discussed many of the fundamental elements of machine scheduling problems, presented
a number of models of setup times, and outlined various solution methodologies that can be used to
solve machine scheduling problems. This section investigates the development of algorithms for machine
scheduling problems, concentrating on single machine problems where makespan or flowtime is the
objective function.

Essentially, there exist two phases in the development of algorithms for machine scheduling problems.
In the first phase, detailed mathematical analysis of the problem is undertaken to gain knowledge about
the structure of the problem. In the second phase, one or more solution methodologies are adopted, and
algorithms devised that take advantage of this structure.

Knowledge of the problem structure will influence decisions regarding the choice of algorithmic
approach. For example, problems displaying little structure often cannot be successfully solved by either
constructive heuristics or optimal algorithms, so that search heuristics might be most attractive. Even
more importantly, exploitation of a problem’s structure allows us to formulate more efficient algorithms.

Problems incorporating makespan or flowtime objectives reflect practical situations where the
primary consideration is the efficiency of material flow. For a given set of jobs to be processed, each
with a prespecified processing time, minimization of makespan is directly equivalent to minimization
of the total time spent on activities other than job processing, that is, non-productive time. For the problems
to be addressed, this non-productive time is due to setup times between jobs; and for dynamic problems,
inserted idle time as well.

When minimizing the makespan, it is clear that a good scheduling tactic is to reduce the total number
of setup operations carried out, and when possible, to minimize the durations of each of these setups.
In cases where a class-based setup time model is an appropriate model for a problem, this strategy
translates into the rule that all jobs belonging to a particular class should be scheduled consecutively, all
jobs belonging to a particular sub-class should be scheduled consecutively, etc.

When minimizing flowtime in a class scheduling problem, different strategies to that utilized for
minimization of makespan are often called for. In particular, significant savings in flowtime can be achieved
by scheduling the jobs of a class in two or more batches (or runs). An initial appreciation of this result can
be gained by considering that the flowtime objective favors the scheduling of the shortest jobs earliest in
the schedule, so that where a class contains both “short” and “long” jobs, it may be beneficial to carry out
the processing of shorter jobs early on, and return later to the processing of longer jobs. This class-splitting
approach clearly represents a different strategy to that which may be suitable for a makespan problem.

It is not typical for deadlines to be imposed on the completion of jobs when makespan or flowtime
objectives are minimized in a mathematical scheduling problem. Therefore, at least as far as individual
jobs are concerned, the due-date performance of a schedule is largely ignored when a makespan or
flowtime objective is utilized. This limits the practical application of scheduling models incorporating

1 s�:s� Cmax( )
1 si:s� Cmax,1 s�:si Cmax

P2 si �C( )
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these objectives to situations where maximization of throughput is paramount, where most jobs are
either already late or can be completed within time, or where job due dates are not of particular concern.
It can be noted, however, that the assignment of priorities to jobs in a flowtime problem (by use of job
weights) can assist in reducing the tardiness of jobs in a schedule. 

The study of problems that do not explicitly consider setup times often provides a basis for an
investigation of the structure of more general problems, which include setup times, and also provides
useful insight into possible strategies for solving them. The (static) problem scheduling N independent
jobs to a single machine in order to minimize the flowtime (1��wC) is a particular example of this. The
SWPT rule, optimal for the 1��wC problem, is a very useful rule in any flowtime problem.

Although 1��wC is polynomially solvable, there are many single machine flowtime problems that are
not. Table 2.9 summarizes the computational complexity of a number of “common” single machine
flowtime problems.

From Table 2.9, it is seen that the imposition of setups, deadlines, general precedence relationships,
or release times can make difficult the solution of an otherwise easy single machine weighted flowtime
problem. Special and restricted cases of some of the above NP-hard problems are solvable in polynomial
time; for example, the 1�sij��wC problem can be solved in O(B2NB) time, so that when the number of
classes (B) is fixed, this complexity function is polynomial in the number of jobs (N). 

Turning to single machine makespan problems (minimizing Cmax), the computational-complexity
picture is improved moderately. Table 2.10 outlines the computational complexity of some common
makespan problems. 

We will expand on some of the results summarized in Table 2.10. Lawler [50] provides an algorithm
that enables 1�prec� fmax to be solved in O(N2) time, where fmax is any maxi form of a regular scheduling
criterion (e.g., Cmax, Lmax, or Fmax). Solving the 1�rj�Cmax problem merely requires the processing of any
available job to be undertaken at any point in time — one such schedule sequences the jobs in non-
decreasing release date order (i.e., earliest release date order). Similarly, the  problem is solved
by ordering the jobs in non-decreasing order of deadlines (EDD order). A  problem can
be solved optimally using Lawler’s algorithm, which will provide a feasible solution if one exists and will
not involve the insertion of any idle time, and hence will give the optimal makespan of .

Where both deadlines and release dates are imposed , minimizing makespan becomes
an NP-hard problem as noted by Garey and Johnson [30]. Nevertheless, allowing preemption yields an
efficiently solvable problem even with precedence constraints [9]. Optimal schedules to static single

TABLE 2.9 Computational Complexity of Single Machine Flowtime Problems

Polynomially Solvable Open NP-Hard

1||�wC ([75])
1| |�C ([75]) 1| |�wC ([55])
1|tree|�wC ([42],[2],[74]) 1|prec|�C ([51],[54])

1|rj|�C ([55],[71])
1|pmtn, rj|�C ([5]) 1|pmtn, rj|�wC ([48])

1|si|�wC 1|Sij|�C ([71])

TABLE 2.10 Computational Complexity of 
Single Machine Makespan Problems

Polynomially Solvable NP-Hard

1|prec|Cmax ([50])
1|rj|Cmax

1|prec, |Cmax ([50])
1|rj, , pmtn|Cmax ([10]) 1|rj, |Cmax ([30])
1|rj, , pmtn, prec|Cmax ([9])
1|s�|Cmax 1|sij|Cmax (TSP)

1|si, |Cmax ([12])
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machine makespan problems with setups can be found efficiently as long as the setup times are not
sequence-dependent and deadlines are not imposed. Computational complexity results developed by
Bruno and Downey [12] can be used to show that the 1�si, dj�Cmax problem is NP-hard, while the
relationship between 1�sij�Cmax and the traveling salesperson problem (TSP) has already been explored.

Preemption and Idle Time

The assumption of static job arrivals is restrictive. Thus, the introduction of ready times (dynamic job
arrivals) is an important extension to static scheduling problems. However, dynamic job arrivals usually
bring increased difficulty to scheduling.

For problems with static job availability and regular objective functions, it is clear that there is no
advantage in considering schedules containing either preemption or idle time (see Conway, Maxwell and
Miller [20]). In contrast, either machine idle time or job preemption, or both, will be present (if allowed)
in good schedules for many problems with dynamic arrivals or non-regular objectives. It should be
appreciated that a job ready time corresponds to the earliest time at which processing of a job may take
place. The setup time for the job may be carried out prior to this time.

There are two fundamental reasons why idle time may be present in “good” schedules for dynamic
problems. There is no choice but to schedule idle time when all available jobs have been processed and
the machine must wait for further jobs to arrive. This type of idle time will appear in problems with and
without preemption. Idle time can also be inserted to keep the machine unoccupied as it waits for an
important job to arrive, if this is a preferred alternative to setting the machine to work on a less-important
(yet available) job. Such inserted idle time can also be scheduled when jobs can be penalized for early
completion (earliness penalties).

Schedules with inserted idle time are sub-optimal for problems with preempt-resume preemption,
regular objectives, and no setup times. This observation holds whether or not ready times are known in
advance [5]. Julien, Magazine and Hall [46] consider a case where setups are able to be interrupted and
no information is known about jobs until they arrive at the system (i.e., there is no look-ahead capability
when scheduling). A sequence-independent setup time of duration sj is required prior to processing any
part of job aj, that is, before starting the job, and when resuming. This leads to a preempt-setup model
of preemption. As there is no look-ahead capability, it is not reasonable to undertake a setup prior to
the arrival of a job (at time rj), as the arrival time and properties of the job are unknown. In this dispatching
environment, where scheduling decisions are made at job completion times and at arrival times, schedules
without inserted idle time are on-line optimal for regular objectives; a schedule being on-line optimal if
it is optimal considering all “known” jobs. Julien et al. show that the shortest weighted effective processing
time (SWEPT) rule is on-line optimal for the weighted flowtime problem. This rule states that the job
with the least value of remaining processing time divided by weight should be scheduled next.

When information is known about the arrival times and processing requirements of dynamically
arriving jobs, optimal schedules for problems with setup times might incorporate idle time even if
preemption is allowed, as shown by the following example. The instance I being solved is of a single
machine flowtime problem with sequence-independent setup times, and is presented in Table 2.11. Both
preemptive and non-preemptive schedules will be considered.

It can be shown that there exists an optimal schedule for this instance within which job a1[1] precedes
job a1[2]; thus we need only consider schedules that have these jobs appearing in this order. Figure 2.12
illustrates a number of feasible schedules for this instance. The schedule with flowtime F � 29 is optimal
for both the preemptive and non-preemptive problems, this schedule containing inserted idle time. 

TABLE 2.11 Instance I, Which is to be Solved 
as a Single Machine Flowtime Problem

Class Setup Jobs

1 s1�2 p1[1]�2 r1[1]�0
p1[2]�2 r1[2]�7

2 s2�1 p2[1]�2 r2[1]�0
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Minimizing Makespan with Sequence-Dependent Setup Times

This section considers the problem of scheduling N statically available independent jobs with individual
sequence-dependent setup times on a single machine in order to minimize the makespan. For this

 problem, the minimization of the makespan is equivalent to minimizing the sum of setup times
in the schedule. Optimization of this problem does not require consideration of individual job completion
times, so that the duration of job processing times does not affect the optimal sequence. We will assume
that the state of the machine after processing the last job is not of concern. 

In Section 2.2 it was illustrated that the  problem is equivalent to the strongly NP-hard
(asymmetric) traveling salesperson problem (ATSP). The focus of this section will be upon relatively
simple heuristic algorithms that illustrate certain basic scheduling strategies useful for solving the

 problem. Golden and Stewart (in [52]), Golden, Bodin, Doyle, and Stewart [37] and Reinelt
[70] {Reinelt1994} provide useful surveys of the literature pertaining to the TSP and ATSP. These surveys
can provide a basis for a more in-depth investigation.

When addressing the  problem, Gavett [32] assumes that the machine is initially processing
a particular job (let this be a0), yet a machine which is shut down initially can be represented by
considering a0 to be a “dummy job.” The setup time s0j from a dummy job a0 to any job aj (1 � j � N)
is assigned a value equal to the initial setup time for aj. This dummy-job representation of the initial
state of the machine is not an uncommon approach; for example, in solving the  problem, Foo
and Wager [29] utilize it when applying a dynamic program for the ATSP developed by Bellman [7] and
independently by Held and Karp [41]. It can also be noted that the notation s0j is used within this chapter
as a standard means of denoting an initial setup for job aj. 

Gavett presents three simple heuristics for solving the  problem, each a dispatch-type
heuristic. These heuristics will be identified here using the prefix ‘G ’	 followed by Gavett’s own identi-
fication.

• Heuristic G 	 NB (‘Next Best’ rule): At each decision point, select the unscheduled job with the
least setup time from the job just completed.

• Heuristic G 	 NB� (‘Multi-start’ version of G 	 NB): For each unscheduled job (a1, a2,…, aN)
create a partial schedule in which this job immediately follows job a0. Apply the G 	 NB heuristic
to each of the N partial schedules produced, and select the best completed schedule as the solution.
Where two or more unscheduled jobs have an equal-least setup time from the job just completed,
create a partial schedule for each possibility.

• Heuristic G 	 NB � (‘Next Best with Column Deductions’ rule): Utilize heuristic G 	 NB, after
the non-eliminable component of each job’s setup time is incorporated into the job processing
time.

One member of the set of solutions generated by the G 	 NB� rule will correspond to the solution
obtained using the G 	 NB rule. Thus, it is not possible for the G 	 NB rule to outperform the G 	 NB�

FIGURE 2.12 Schedules for instance I.
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rule on objective function value. The process of modifying setup times for use in G 	 NB� is straight-
forward. Considering job aj (1 � j � N), the minimum setup time to this job, s*j � mini�{0…N}\ jsij, is
found and subtracted from all setup times sij. Observing that the setup times in a problem with initial
setups can be written as an (N � 1) � N matrix, with rows ( 0, 1,…, N) corresponding to preceding
jobs and columns (1, 2,… ,N) to succeeding jobs, this process is equivalent to subtracting the minimum
value in each column from all values in the column (excepting each sjj element); hence the term column
deductions. A fourth rule, combining column deductions with multi-start , is an extension not considered
by Gavett.

The G 	 NB and G 	 NB� heuristics both have O(N2) running times. At a stage where n jobs have
already been scheduled (n � N), the last of these being ai, there are N 	 n setup times sij to choose from.
Assuming that the comparing, choosing, and other intervening steps take O(1) time each, schedule
construction requires O( (N 	 n)) � O(N2) time, and as the “column deductions” procedure requires
O(N2) time also, the O(N2) bound results. If implemented as described above, the G 	 NB� procedure
is in fact non-polynomial; if all setup times are equal, the G 	 NB� rule will explore all N! possible
sequences (hence O(N!) operations). This worst-case behavior could be countered using simple modifi-
cations to G 	 NB� to give an O(N3) heuristic.

The thorough testing of these heuristics carried out by Gavett utilizes both normal and uniform
distributions for setup times. For problems containing up to 20 jobs, the performance of each heuristic
is assessed relative to optimum values obtained through application of the branch-and-bound algorithm
developed by Little, Murty, Sweeney, and Karel [57]. The mean setup time (�) in each test is taken to
be one time unit. Sample sizes were between 10 and 100 problems at each level of number of jobs N and
standard deviation � . With mean setup times of � � 1, � also represents the coefficient of variation in
setup times (�/�). 

Gavett’s results illustrated that when setup times are normally distributed, the average deviation of the
G 	 NB heuristic from optimal was between 2% and 26%, while the average deviation of the G 	 NB�
heuristic from optimal was between 1% and 18% (these figures being the mean value of 

 expressed as a percentage, where  is the makespan obtained using a heuristic and  the
optimal makespan). The data presented by Gavett illustrates that a strong positive relationship existed
between deviation from optimal and increases in the coefficient of variation of setup times (Fig. 2.13).
The G 	 NB� rule was not tested using normally-distributed setup time data.

For uniformly distributed setup times, the performance of the heuristics diminished (illustrated in
Fig. 2.13). Of the three heuristic rules, the G 	 NB � rule appeared to perform considerably better than
the other two for most problem sizes; although for the greatest number of jobs tested (20), the G 	 NB�
heuristic displayed a slight advantage. As noted by Gavett, this may have been a chance occurrence (as
may be the unusual result for G 	 NB with N � 9). For uniform setup times in particular, it is seen that
“next-best” type rules are not overwhelmingly successful in dealing with the 1�sij�Cmax problem.

The G 	 NB� rule clearly outperformed the G 	 NB rule for most problem sizes and for both setup
time distributions. Nevertheless, Gavett makes the pertinent observation that the “principle” of the G 	 NB

FIGURE 2.13 Experimental data provided by Gavett32: normally distributed setup times (left) and uniformly
distributed setup times (right).
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rule can be used as an on-line dispatch heuristic in cases where reliable setup time data is unavailable
and/or sequencing is being carried out manually on the shop floor. The selection of the next part according
to estimated least setup time becomes the rule.

Using the data from tests with normally distributed setup times, Gavett compared the expected
makespan  calculated from knowledge of the setup times distribution  with the mean
makespan ( ) obtained using the G 	 NB rule. With  being representative of the makespan
obtained through random sequencing of jobs, the ratio  provides a measure of the
expected reduction of total setup time resulting from effective scheduling. In Fig. 2.14,  has been
utilized for a similar comparison using Gavett’s published data, and the marginal saving per (additional)
job is plotted. These marginal savings have been calculated according to the formula 

where MS(n) is the estimated additional saving of setup time obtained by increasing number of jobs n
by one job (i.e., marginal saving); PR(n) is the performance ratio  for n jobs; and
a and b are numbers of jobs (a � b, a, b � {1, 5, 10, 15, 20}). PR(1) is taken to be equal to zero, as no
reduction in setup time is possible with one job only.

As shown in Fig. 2.14, for normally distributed setup times with � � 0.40, the marginal saving in
setup time drops from 8.6% per job (N � 3.0) to 0.9% per job (N � 17.5). Similar trends are evident
for each other coefficient of variation as well as for uniformly distributed setup times, although care
must be taken when drawing conclusions from such a restricted data set.

With diminishing returns per job, there exists a point at which the advantages of considering a
larger number of jobs N on a particular scheduling occasion may be outweighed by the effort of
computing schedules for larger problems. Considering a subset of the jobs, corresponding to those at
the beginning of the “queue,” may represent an effective compromise. It must also be considered that
the makespan objective is purely utilization oriented and does not take into consideration the require-
ments of individual jobs (and the customers whose orders they represent). In a practical environment,
full implementation of schedules may not occur. “New” jobs will become known and available at
various times, re-scheduling processes will revise schedules, and the processing of jobs that had already
been waiting might be postponed.

There exist no mechanisms such as deadlines or job weights in the 1�sij�Cmax problem to ensure that
a waiting job actually gets completed in a dynamic environment with re-scheduling. For example, if
a “next best”-type rule is utilized for scheduling, a job with significant dissimilarity compared to other
waiting jobs will be assigned a large setup time, and might invariably be sequenced near the end of
schedules. To counter this behavior, we might impose a certain batch size N�. A schedule is created for
the first N� waiting jobs, the schedule is carried out in full, and the process is repeated for a new batch.

FIGURE 2.14 Effect of number of jobs N on percentage setup time savings, using data from Gavett [32]: normally
distributed setup times (left) and uniformly-distributed setup times (right).

Cmax Cmax N��( )
Cmax

NB
Cmax

(Cmax 	 Cmax
NB

)�Cmax

Cmax
OPT

MS
a b�

2
------------- 

  PR b( ) PR a( )	
b a	

-------------------------------------�

(Cmax  	 Cmax
OPT

)�Cmax
© 2001 by CRC Press LLC



The improved job-completion performance that results will be obtained at the cost of a minor
reduction in utilization (i.e., makespan minimization). The batch size decision will be aided by results
such as those contained in Fig. 2.14; choosing a batch size of 10 to 15 jobs, for example, may represent
a reasonable compromise. The observed distribution of setup times will play a role in this determination
of batch size.

In each of Gavett’s heuristics, scheduling decisions look forward one job into the schedule. Baker [5]
extends Gavett’s ideas and proposes that the next job be selected on the basis of looking two jobs ahead.
This selection rule may be incorporated into each of the Gavett heuristics, as well as the “column
deductions plus multi-start” rule, although only modification of G 	 NB will be considered.

Heuristic B 	 NB (“Next-best” heuristic utilizing Baker’s two-job look-ahead rule):
The heuristic is similar to G 	 NB except that it deals with pairs of jobs. Let the currently-last scheduled
job be ai. For each pair (aj, ak) of unscheduled jobs, calculate the total setup time sij � sjk. Select the
pair (aj�, ak�) with the least setup time sum and schedule the pair next (i.e. after ai).

The running time of this heuristic is O(N3), compared to O(N2) for the basic B 	 NB rule, as there
are O(N2) setup time pairs to survey at each decision point. Morton and Pentico [63] suggest a further
variation, denoted here by M&P 	 NB.

Heuristic M&P 	 NB (‘Next-best’ heuristic utilizing a variant of Baker’s two-job look-ahead rule):
The heuristic is identical to B 	 NB except that after selecting the pair (aj�, ak�) with the least setup
time sum, only aj� is scheduled next.

The “next-best”-type rules can be compared to the “savings”-based rules utilized by Charles-Owaba
and Lambert [16] and White and Wilson [77] for the same problem. Charles-Owaba and Lambert utilize
their model of setup times (Section 2.2) to define the saving in setup time that results from scheduling
job aj immediately after job ai as:

(2.14)

that is, equal to the sum of the durations of machine setup tasks eliminated by similarity in ai and aj.
Their proposed heuristic selects the next job based on the maximization of the total setup time “saving.”

Heuristic CO&L (Charles-Owaba and Lambert heuristic):
Select the pair of jobs (ai, aj) with the greatest value of , and schedule these as the first and second
jobs, respectively, in the sequence. Then add jobs to the schedule by choosing the job �j yielding the
greatest saving in setup time from the currently last scheduled job ai (i.e., aj with , where
J� is the set of unscheduled jobs).

Equation (2.14) turns out to be a particular case of a general selection rule for TSP-type problems
originally proposed within a heuristic by Clarke and Wright [19] for the vehicle routing problem (VRP).
The Clarke and Wright heuristic uses expression (2.15) to calculate savings, this expression reducing to
(2.14) for the current problem where final teardown times are not modeled (i.e., ; in terms
of the ATSP, there is no cost associated with the return to the “initial city”).

(2.15)

This expression for  can be interpreted as being the setup-time difference between (1) setting the
machine to a bare state 0 once ai completes, then setting the machine for aj, and (2) after processing ai,
directly setting the machine for processing aj. In cases where the makespan is defined to include a final
teardown after completion of the last-scheduled job, expression (2.15) can be used in preference to (2.14).

The heuristic originally proposed by Clarke and Wright for the VRP can be used for the ATSP (hence,
the 1�sij�Cmax problem); the VRP is a more complex problem than the ATSP so that simplification of the
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Clarke and Wright heuristic is possible. Golden et al. [37] present such a variant of Clarke and Wright’s
heuristic. The CO&L heuristic given in this section is a further simplification of the original heuristic.

To compare the performance of next-best heuristics (G 	 NB and variants) to savings heuristics
(CO&L here), we refer to the experimental analysis presented by Golden et al. regarding symmetric TSPs.
The Clarke and Wright heuristic variant presented in that paper is shown to be clearly superior to a
next-best heuristic (equivalent to the G 	 NB heuristic) when tested on five large problems (N � 100).
The savings heuristic attained a maximum deviation from optimal of 6.37%, while the best result obtained
by the next-best heuristic was 13.27% from optimal. While only limited conclusions can be drawn from
these results, it is reasonable to suggest that the CO&L savings heuristic should perform better, on average,
than the next best-type heuristics for the 1�sij�Cmax problem. 

Charles-Owaba and Lambert do not report on experimental analysis of their heuristic. They do provide
a worked example, which also serves as an illustration of their setup-time modeling technique. For the
example containing eight jobs, their heuristic returns the optimal solution and in doing so outperforms
the three heuristics of Gavett as well as the B 	 NB heuristic. It is interesting to note that although the
Charles-Owaba & Lambert setup times model does not necessarily provide symmetric setup times, setup-
time savings calculated using this model are always symmetric (i.e., ). 

White and Wilson utilize an approach based on their study of setup times on a particular model of a
lathe (a “mono-matic” lathe). They begin by developing a model for the prediction of setup times, through
statistical analysis of actual setup time data using a technique known as multiple classification analysis.
The factors {A, B, C,…} thought to influence setup times are proposed, and the various levels of these
factors are determined. The statistical technique is then used to develop a predictive equation for setup
times; the time Sijk  for a setup to a component associated with level i of factor A, j of factor B, etc. is
expressed as:

(2.16)

where  is the grand mean of setup times,  is the error in prediction, ai is the effect of level i of
factor A, bj is the effect of level j of factor B, etc.

When this analysis is applied to the data collected, and after some simplification, White and Wilson
are able to predict setup times on the “mono-matic” lathe using Eq. (2.17). 

(2.17)

which, as they show, is reasonably accurate although not without significant errors when compared to
some setup time observations. In Eq. (2.17), A4 � 1 if the workpiece holder (arbor) is changed, G1 � 1
if spindle gears are changed, and T1 � 1 if the tracer control element (template) is changed. Otherwise,
these variables are zero. N2 and N3 are numerical variables associated with the number of tools inserted
and required, respectively.

This predictive equation is then able to be used for scheduling production on the lathe. A formal
heuristic definition is not provided by White and Wilson, although the idea is simple. As the “template
change value” of 31 is the highest such value, all jobs sharing the same template will be sequenced together.
Within the subset of jobs sharing the same template, jobs sharing the same arbor will be scheduled
together. Hence, this heuristic is largely involved with setup saving. 

As with Charles-Owaba and Lambert’s article, no heuristic testing is undertaken other than an example
showing that the proposed heuristic can provide an optimal solution. Another common aspect between
the two papers is that both heuristics perform significantly better than the simple next-best proposed by
Gavett when applied to the example problems. Both papers illustrate that analysis and subsequent
exploitation of the special structure of sequence-dependent setup times in machine scheduling can lead
to significantly improved schedule quality, compared to what otherwise might be achieved in similar
time by general-purpose heuristics such as the next-best rules.
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A commonality is seen in the White and Wilson and the Charles-Owaba and Lambert setup times
models. Both are concerned with the similarity/dissimilarity of components and the subsequent rela-
tionship this has with setup activities and their durations. Each deals with binary (“yes/no”) measures
of similarity, with the White and Wilson approach also allowing numerical measures to be included. A
particular advantage of the Charles-Owaba and Lambert model however is that setup times may be
predicted using standard (or estimated) machine setup task durations, while the White and Wilson
approach requires the collection of setup time data from an existing system over a period of time. 

It is in the modeling of setup times, and the investigation of the technological basis of these times,
that these two papers make—arguably—the greatest contribution. For the machining processes ana-
lyzed in both articles, it can be noted that the number of parts to be scheduled is relatively small while
setup times are large (several minutes to a few hours). The magnitude of any of these times is likely
to be greater than that required for optimal or near-optimal scheduling using advanced ATSP heuristics.
Thus, such setup time models would provide greatest benefit for solution of problems more complex
than 1�sij�Cmax. And, it is unfortunate that (to our knowledge) published reports of such applications
have not appeared. 

Minimizing Makespan in Class Scheduling Problems

Where jobs are grouped into classes, and the setup times between jobs of the same class are assumed
negligible, all jobs belonging to the same class should be sequenced consecutively if minimizing the
makespan (provided jobs are statically available and do not have deadlines imposed, and setups satisfy
the triangle inequality). The following simple argument proves the result. 

Referring to Fig. 2.15, let jobs b and e, separated by jobs c,…, d in a sequence S1, belong to the same
class so that sbj � sej and sje � sjb for all . Jobs c, d, and f thus belong to classes other than that
of b and e. Exchanging the position of c,…, d with that of e (yielding sequence S2) leads to a net change
� in the total setup time scheduled between the beginning of job b and the completion of job f. 

(2.18)

As sbc � sec, and sdf � sde � sef by the triangle inequality, � takes a non-positive value and thus S2 is at
least as good as S1. Repeated application of such interchanges will lead to a sequence that has all jobs of
each class sequenced consecutively. Expression (2.18) also indicates that when setup times between classes
do not obey the triangle inequality, this “group scheduling rule” may not be valid. Regardless of whether
the triangle inequality is satisfied, the order in which jobs of the same class appear in a schedule is
immaterial when seeking to optimize makespan.

When minimizing the makespan in a (static, no deadlines) class scheduling problem where setup times
satisfy the triangle inequality, the jobs {ai[1], ai[2],…ai[Ni]

} belonging to each class i(1 � i � B) may be
treated as a single composite job with combined processing time .

The formation of composite jobs will significantly reduce the number of (composite) jobs requiring
consideration when scheduling. This can bring great benefits, particularly when the scheduling problem is
NP-hard and the running time of optimal algorithms rises exponentially with N, that is, when class setup times
are sequence dependent. Clearly, when classes are formed into composite jobs, the resulting 1�sij�Cmax problem

FIGURE 2.15 Reduction in makespan in a problem where setup times satisfy the triangle inequality.
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“without classes” can be solved using scheduling algorithms such as those of the previous section. Without the
triangle inequality, the composite-job approach is not valid and it may be necessary to treat each job separately.

Makespan with Additive Changeovers

As described in Section 2.2, the additive changeovers model of setup times incorporates sequence-independent
setup times and sequence-independent teardown times. Changeovers from a class i to a class 
have a duration given by the sum of the teardown ti for class i and the setup sk for class k.

Although each class may, in general, contain more than a single job, the results of the previous section
indicate that to minimize the makespan, all jobs ai[j] belonging to the same class i can be combined into
a composite job ai. Thus, in this section when we refer to “job aii” we are in fact making reference to the
composite job containing all class i jobs.

In (static, no deadlines) single machine makespan problems with additive setup times, savings of
non-productive time are afforded at the beginning and end of a schedule. The potential for these savings
to be made will appear when either:

1. The objective is to minimize the maximum completion time Cmax (i.e., maxj�J{Cj}), or
2. No initial setup is necessary ( ) and the objective is to minimize the machine occupation

time (C � t)max (i.e., maxj�J{Cj � tj})

A relevant application of a model without initial setup times occurs in situations where machine
warm-up time is greater than the setup time for any class. The setup for the first-scheduled class is
consequently “absorbed” into the warm-up time, and thus saved (applicable to cases 1 and 2). Furthermore,
when the teardown for the last class does not influence the makespan, choosing this last-scheduled class
to be one with a “long” teardown can improve the schedule performance (case 1 only).

For the 1�s�,s0i � 0�Cmax problem (the static single machine makespan problem with additive
changeovers and no initial setups), the objective is to minimize 

(2.19)

where p( j), s( j) , and t( j) represent the processing time, setup time, and teardown time of the job occupying
sequence position j ( j � 1,…, N), respectively. 

From Eq. (2.19) it is clear that an optimal solution to this problem maximizes s(1) � t(N), as the value
of the summation term is fixed for a given instance. Let ik be the job with the kth greatest setup time,
and jk be the job with the kth greatest teardown time (1 � k � N). To minimize the makespan, job i1 should
be sequenced first and j1 sequenced last, unless i1 � j1, in which case a sequence providing the minimum
makespan is either {i2 ,…, j1} or {i1 ,…, j2}. Determining i1, i2, j1 , and j2 occupies O(N) time.

When an initial setup is necessary (1�s��Cmax), the solution of the problem reduces to maximizing t(N);
s(1) is removed from the optimization. Similarly, if the objective is to minimize (C � t)max and no
initial setup is necessary, the problem reduces to maximizing s(1). With initial setups, and inclusion of
teardowns in the makespan, any sequence of (composite) jobs is optimal. If scheduling merely with
sequence-independent setup times, all t( j) � 0; unless an initial setup is unnecessary, an arbitrary sequence
of (composite) jobs is once again optimal.

Adding Dynamic Arrivals

The dynamic 1�rj�Cmax problem is easily solved by scheduling the jobs in order of non-decreasing
ready times. With general sequence-dependent setup times, the 1�rj, sij�Cmax problem is clearly NP-hard,
given that 1�sij�Cmax is. However, Bianco, Ricciardelli, Rinaldi, and Sassano [8] have made good progress
in solving the 1�rj,sij�Cmax problem. They report computational experience which illustrates that solution
of 20 job instances is quite within the capabilities of a branch-and-bound approach.

k i k�( )
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It is interesting to note that the more restrictive ready times are, the easier it is to solve the instance.
For example, Bianco et al. test their algorithm using 20 job instances where ready times are (uniformly)
distributed over [0, 100], a significantly larger range than the [5,10] range used to generate sequence-
dependent setup plus processing times. At any point in time, there are relatively few jobs that need be
considered for scheduling in this situation. For these instances, an average of 98% of search nodes generated
by the branch-and-bound procedure were eliminated by two simple dominance criteria, and computation
times were considerable although not unreasonable (mean computation time of 115.3 seconds on a VAX-
11/780 computer). In comparison, it took the same algorithm over 400 seconds on average to solve 15 job
instances when ready times were distributed over [0, 50] and setup plus processing times were distributed
over [1,10]. Only 50.5% of search nodes were eliminated by the dominance criteria in this latter case. 

When additive changeovers are part of the single machine makespan problem, the computational
complexity of the 1�ri[j],s��Cmax and 1�ri[ j],s�,pmtn�Cmax problems appear to be open, although at least
special cases of these problems are efficiently solvable. It should be noted that for a dynamic problem,
the jobs within a class cannot, in general, be considered a composite job. We assume that ready times
govern the earliest possible starting time for job processing and do not impose restrictions on the
scheduling of changeovers.

Where idle time appears in a schedule for a dynamic makespan problem, this should correspond to
situations where no job is currently available for processing. It is clear that there is no benefit in
purposefully delaying the processing of available jobs. When setup times are considered, inserted idle
time must not delay the undertaking of setup or teardown operations if this delay eventually leads to a
job starting later than otherwise possible.

In a dynamic makespan problem where all jobs in a class have a common ready time (i.e., ri[j] � ri,
where ri is the class ready time) and no individual job deadlines are imposed, there is neither need nor
benefit in splitting classes, so that the problem may be simplified by forming composite jobs (unless
setup times are sequence dependent and do not satisfy the triangle inequality). Algorithms for makespan
problems with additive changeovers, class ready times, and dynamic arrivals can be constructed by
incorporating previously introduced ideas for the 1�s��Cmax and 1�rj�Cmax problems.

Starting with the 1�ri[j] � ri,s��(C � t)max problem, if the definition of a composite job ai is modified
so that composite job processing times are given by , then the original 1�ri[j] �
ri,s��(C � t)max problem is able to be solved as a 1�rj�Cmax problem.

Where no initial setup is necessary and the makespan is taken to be the maximum completion time,
(i.e., the 1�ri[j] � ri, s�, s0i � 0�Cmax problem), the objective function (2.19) used for 1�s�, s0i � 0�Cmax is
not appropriate, as there exists the possibility that idle time will be scheduled. The “idea” of Eq. (2.19)
holds, however, and the problem remains efficiently solvable as the optimization decision involves choos-
ing a class iP to be sequenced first and a class iQ to be sequenced last ( ). Given a particular pair
{iP , iQ} selected from the B(B � 1) permutations available, O(B) operations are required to construct a
schedule between these two classes. This schedule construction proceeds by sequencing classes other than
iP and iQ in order of non-decreasing class ready time. Consequently, an algorithm which evaluates the
makespan for every possible pair {iP, iQ} can find the optimal solution in O(B3) time.

For the problem of minimizing machine occupation time (the 1�ri[j] � ri, s�, s0i � 0�(C � t)max problem),
it is sufficient to specify only the first-sequenced class, hence this variant of the dynamic makespan
problem with class release dates can be solved in O(B2) time.

If deadlines are introduced in addition to changeovers and release dates, it is straightforward to show
that the problem 1�ri[j] � ri, si, �Cmax with class ready times and class deadlines is NP-hard.
This is possible using a restriction to either the 1�rj, �Cmax problem without setup times, or the 1�si, �Cmax

problem without release dates.

Makespan with Major–Minor Setup Times

The ideas of the preceding sections can be adapted for the solution of single machine makespan problems
incorporating the major–minor setup times model. Recall that in this model, the setup time between
two jobs is given by the sum of the major setup time sMJR and minor setup time sMNR. The major setup
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time is zero if the two jobs belong to the same class, while the minor setup time is zero if the two jobs
belong to the same sub-class. All jobs belonging to a particular sub-class i(k) are members of the same
class i, so that a minor setup always follows a major setup (1 � i � B, 1 � k � bi).

Typically, both the major and minor setup times are considered sequence independent. This section
addresses the makespan problem where the additive changeovers model applies to both major and minor
setup (changeover) times.

It was seen in preceding sections that minimizing makespan with additive (major) changeovers simply
called for selection of the first-scheduled and last-scheduled classes. When changeovers satisfy the triangle
inequality (as additive changeovers do) and jobs are statically available, all jobs of a class should be sequenced
together. Hence, the total work (time) content of a class is fixed. The opportunity for “saving” in setup time
is thus offered (1) at the beginning of the schedule if the setup for the first-scheduled class can be “absorbed”
into the warm-up time on the machine (no initial setups), and (2) at the end of the schedule, if the final
teardown is not included in the makespan (Cmax objective). Essentially, the class with the greatest teardown
should be scheduled last, and the class with the greatest setup should be scheduled first.

With the introduction of minor setup times, the strategy is unchanged. Both major, minor, and resulting
total changeover times satisfy the triangle inequality in this model, so that to minimize makespan, all jobs
belonging to any given sub-class i(k) should be sequenced consecutively. Similarly, all composite jobs
(sub-classes) belonging to a given class should be sequenced consecutively. In the process of developing
an optimal schedule, we first determine the ordering of sub-classes within classes, and then determine
the ordering of classes within the schedule.

When switching between classes, the setup time is given by S � tMNR � tMJR � sMJR � sMNR. If it has
been determined that a particular class i is to be sequenced last, the greatest saving in makespan is afforded
by scheduling last the sub-class i(k) with the maximum minor teardown time of all sub-classes of i (1 �
k � bi). Likewise, when initial setups (major and minor) are not required, and the first-scheduled class
has been predetermined, a job belonging to the sub-class with the greatest minor setup time should be
sequenced first.

The strategy is then clear. If there are no initial setups, schedule first the class and sub-class that yields
the highest possible value of sMJR � sMNR; and if final teardowns are not included, schedule last the class
and sub-class that yields the highest possible value of tMJR � tMNR. These observations can now be included
into an optimal algorithm to minimize makespan on a single machine with static job availability, additive
changeovers, and no initial setups. If solving the 1�s�:s��Cmax or 1�s�:s�, s0i � 0�(C � t)max problems, a
simplified version of the algorithm can be used.

Algorithm for 1�s�:s�,s0i � 0�Cmax

Step 1: For each class i, determine the sub-class i(kS) with the greatest minor setup time and sub-class
i(kT) with the greatest minor teardown time (1 � kS, kT � bi). Let Si be the maximum total setup time
(major plus minor) to class i, given by Si � si � ; and Ti be the maximum total teardown time
from class i, given by Ti � ti � ti(kT).

Step 2: Let 
(k) be the index of the class with the kth greatest value of maximum total setup time,
and let �(k) be the index of the class with the kth greatest value of maximum total teardown time. If

, consider class 
(1) to be first-scheduled and class �(1) to be last-scheduled of all
classes. Otherwise, compare the values of S
(1) � T�(2) and S
(2) � T�(1); whichever is greater, consider
the relevant classes to be first- and last-scheduled.

Step 3: Schedule first a job belonging to the sub-class i(kS), where i is the class selected in step 2 to
be scheduled first and kS is the sub-class index defined in step 1. Schedule last a job belonging to
sub-class j(kT), where j is the class selected in step 2 to be scheduled last and kT is the sub-class index
defined in step 1. Between these jobs, form a schedule within which all jobs of any given sub-class are
sequenced consecutively, and all sub-classes of any given class are sequenced consecutively.

Dealing with each class in step 1 requires O(bi) operations, as bi minor setup times and bi minor
teardown times are “searched” in finding the maximum value of each. As �

i�1

B

bi � N, step 1 requires
O(N) operations. Step 2 and the first sub-steps of step 3 require O(B) operations, while formation of

si ks( )


 1( ) � 1( )�
© 2001 by CRC Press LLC



a schedule in step 3 is undertaken in O(N) time. Hence, the number of operations required for the
algorithm is O(N).

It can be noted that as long as the “jobs-within-subclasses” and “subclasses-within-classes” rules are
followed, secondary criteria can be incorporated into step 3 of the algorithm without affecting the optimality
with respect to makespan. Given the limitations of the makespan objective, the ability to apply secondary
criteria in this way is welcome.

Flowtime Problems with Sequence-Dependent Setups

Flowtime problems with setup times are typically more difficult to solve in comparison to makespan
problems. Nevertheless, it is interesting to note that the computational complexity of the “basic” 1�si��C
and 1�si��wC problems remains an open question. In contrast, the single machine total flowtime problem
with static job arrivals and sequence-dependent setup times (1�sij��C) has been shown to be strongly
NP-hard (hence, so is its counterpart, the more general 1�sij��wC problem) [71].

Ahn and Hyun [3] show that optimal sequences for the 1�sij��C problem have jobs that belong to the
same class appearing in SPT order. Monma and Potts [62] independently prove the stronger result that
SWPT-ordering of jobs within their classes holds in optimal solutions to the 1�sij��wC problem, subject
to setup times satisfying the triangle inequality. An EDD-based rule for the 1�sij�Lmax problem is also
established by Monma and Potts within the same proof. Theorem 4 presents their result.

Theorem 4 (Theorem 1; Monma and Potts 1989)

For the maximum lateness problem, there is an optimal schedule for which the jobs within each class
are ordered by the earliest due date (EDD) rule. For the total weighted completion time problem, there
is an optimal schedule for which the jobs within each class are ordered by the shortest weighted processing
time (SWPT) rule. That is, for some optimal sequence, if job ai[ j] is scheduled before ai[k] then 

and these jobs are considered to be in “preference order.”

Proof
Consider an optimal schedule of the form S �{D, k, E, j, F}, where jobs j and k belong to the same class
i, and D, E, and F represent arbitrary (partial) sequences of jobs. We wish to show that if jobs j and k
are out of preference order in S, then one of the schedules S� � {D, j, k, E, F} or S
 � {D, E, j, k, F} is
an alternative optimal schedule.

The triangle inequality ensures that pairwise interchanges of job j, job k, and partial sequence E, to
generate sequence S� or S
 from S, will not produce any additional setup time in either schedule. As a
result, setups in S, and subsequently in S� and S
, can be considered as jobs with an arbitrarily large due
date, zero weight, and a duration as given in schedule S. This provides a problem without setup times
and hence allows us to concentrate solely on whether the interchanges that generate the sequences S�

and S
 preserve optimality (use of the SWPT and EDD rules as optimality conditions for problems
without setup times becomes valid).

It is useful to replace the partial sequence of jobs E, including the setup jobs skE and sEj, by a composite
job e (see note below). Both S� and S
 can now be generated from an optimal solution S by interchanging
j, k, and e. Since j is preferred to k, then either k is preferred to e (S� is an optimal solution, and S
 is
not), or e is preferred to j (S
 is an optimal solution, and S� is not). Whichever particular case holds, it
is shown that there is an optimal solution in which jobs j and k are in preference order. ��

Note: For the maximum lateness problem, a composite job h for a sequence of two jobs {i, j} is defined
by ph � pi � pj and dh � min{dj, di � pj}. For the weighted flowtime problem, it is defined as ph � pi � pj

di j[ ] di k[ ] for the 1 sij Lmax problem�

pi j[ ]

wi j[ ]
---------

pi k[ ]

wi k[ ]
---------- for the 1 sij � wC problem( )�
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and wh � wi � wj. A composite job may contain more than two jobs, in which case the definitions can
be easily extended. Substitution of a composite job into a sequence will not change the maximum lateness,
while such a substitution carried out for a flowtime problem increases the objective function by a constant
(whose value depends on the weights and processing times of the jobs involved).

For the 1�sij��C problem, Ahn and Hyun’s proof of the SPT-within-classes rule does not require that
setup times satisfy the triangle inequality. They consider two sequences S � {D, ai[k], E, ai[j], F} and �

{D, ai[ j], E, ai[k], F} (D, E and F as in Theorem 4) and evaluate the difference in flowtime between them
in the case where pi[ j] � pi[k], showing that  is an improved sequence. The SWPT-within-classes rule
represents the only strong optimality condition for the 1�sij��C and 1�sij��wC problems.

Runs and Batches

In a optimal schedule for a problem with class setups, it is often the case that the jobs of each class appear
in two or more “groups” in the schedule. We will use the term runs to describe these “groups,” which can
alternatively be thought of as batches. By convention, the setup preceding a run and the teardown following
a run will be thought of as “belonging” to that run (Fig. 2.16). Viewing schedules as being comprised of a
series of runs is convenient and highly useful in many situations.

For a single machine problem, Rk will be used to denote the kth run in the schedule and the symbol
r will denote the index of the last run in the schedule. Table 2.12 provides useful notation for class
scheduling problems, which will be used in addition to that introduced so far.

A Greedy Heuristic for Sequence-Dependent Setup Times

Gupta [40] proposes a “greedy” heuristic for 1�sij��C. Running in O(BN � N log N) time, the heuristic
builds a sequence by selecting the as-yet unsequenced job that can be completed in the shortest possible
time. The dispatching rule followed by the heuristic can be conveniently referred to as the shortest
effective processing time (SEPT) rule. We will consider a simple extension of this rule, the shortest weighted

FIGURE 2.16 Runs in schedules for (static) class scheduling problems with setups and teardowns.

TABLE 2.12 Additional Notation for Class Scheduling Problems

Notation Meaning

�k Setup time for run Rk

�k Teardown time for run Rk

�k Number of jobs in run Rk (1 � k � r)

k[j] The jth job of run Rk

�k[j] Processing time of job 
k[ j]

�k[j] Weight of job 
k[ j]

k[j] Ready time of job 
k[ j]

Ck[j] Completion time of job 
k[ j]

Bk Starting time of Rk, inclusive of setup time �k

Tk Duration of run Rk, inclusive of setup and teardown 
 for a static problem

Wk The sum of the weights of jobs assigned to run Rk 

r̂

Tk �k �j�1
�k �k j[ ] �k���

Wk �j�1
�k �k j[ ]�

Ŝ

Ŝ
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effective processing time (SWEPT) rule, and imbed it into a version of Gupta’s heuristic. The resulting
heuristic takes the SWPT-within-classes rule into account and operates on the 1�si��wC problem.

The SWEPT rule (for the 1�sij��wC problem) states that at each decision point (job completion time) first
determine, for each class i, the total time �i[j] required to process the job ai[j] with the least value of pi[j]/wi[j]

for this class. The time �i[j] is the job processing time, plus setup time if a setup will be required. Then select
the job with the least value of �i[j]/wi[j]. The procedure given below implements this dispatching rule.

Greedy Heuristic for 1�sij��wC
Step 1. Arrange jobs within classes in non-decreasing order of weighted processing times (SWPT order).
Step 2. Consider each class i which contains at least one unscheduled job; let the job with the least
weighted processing time of unscheduled class i jobs be . Calculate the effective processing time
for job , this being given by � ski � , where k is the class of the currently last-scheduled
job . Select the job with the minimum value of �/w and schedule it next. Repeat this step
until all jobs are scheduled.

“Greedy” heuristics cannot be expected to produce solutions of high quality. For the 1�sij��C problem,
Ahn and Hyun [3] have shown that the flowtime of schedules produced by Gupta’s heuristic are often
considerably greater than optimal flowtimes (see Section 2.3). A significant factor in this performance
is the tendency for an excessive number of setups to be scheduled. Because the SEPT/SWEPT sequencing
rules only “look ahead” to the next job in the schedule (i.e., they are myopic), they are prone to scheduling
setups in situations where it otherwise would be best to continue processing the current class. As observed
by Ahn and Hyun, this greedy approach leads to a solution method which effectively ‘‘ignores the group
nature’’ of the jobs concerned.

The short running time of the heuristic is an advantage, however, particularly as it can be used as a
“seed generator” for more advanced heuristics, such as that proposed by Ahn and Hyun. In addition,
the SWEPT rule incorporated within the heuristic can be easily adapted to deal with more complex
problems, such as the 1�rj,sij��wC problem.

Dynamic Programming Approaches

Dynamic programs for the 1�sij��wC problem, and related flowtime problems, have been proposed by a
number of authors. Table 2.13 provides a summary. Each of the dynamic programs noted in Table 2.13
provides an optimal solution to the problem. The terms “forwards recursion” and “backwards recursion”
will be explained shortly.

TABLE 2.13 Dynamic Programming Approaches to the 1|sij|�wC Problem

Problem Authors

1|pi[j] � pi, wi[j] � wi, sij|�wC Psraftis, 1980 [69]
Backwards recursion, applies also to 

objectives other than flowtime
1|sij|�C Ahn and Hyun, 1990 [3]
Backwards recursion, based on Psaraftis 

formulation
1|sij|�wC Monma and Potts, 1989 [62]
Forwards recursion, adaptable to 1|sij|Lmax

problem
1|sij|�wC Ghosh, 1994 [33]
Backwards recursion, based on 

Psaraftis/Ahn and Hyun formulation
1|sij, B � 2|�wC Potts, 1991 [67]
Forwards recursion, based upon Monma 

and Potts formulation
1|si|�wC Bruno and Sethi, 1978 [13]
Forwards recursion, related DP for 

parallel machine problem also provided

ai ni[ ]
ai ni[ ] �i ni[ ] pi ni[ ]

skk 0 k	�( )
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Although we do not aim to convey a thorough understanding of dynamic programming to readers, by
studying various dynamic programming approaches to the 1�sij��wC problem we hope to outline essential
dynamic programming ideas. Texts such as Dreyfus and Law [25] present a more extensive treatment. 

For an instance of the 1�sij��wC problem with 9 jobs (each provided with a sequence-dependent setup
time), there are 362,880 schedules. Finding the optimal solution by enumerating all schedules and
calculating the flowtime for each is not advisable for this instance, and is certainly not reasonable for
larger problems; given N! schedule, at least O(N!) time would be required. Dynamic programming offers
a more efficient means of determining the optimal solution. 

Consider a situation where, by some means, it is established that jobs a1, a2, a3, and a4 occupy (in some
order) the first four sequence positions in an optimal schedule. When filling the fifth sequence position,
there are 4! � 24 partial schedules containing jobs a1, a2, a3, and a4 that can be built onto. Now, if we know
that the partial sequence S2134 � a2, a1, a3, a4 has a lower flowtime than any other partial sequence of these
four jobs with a4 fourth (e.g., a lower flowtime than S2314 or S1234), then we should always build onto S2134

in preference to any of these alternatives. For each of the three other options for the fourth job (a1, a2, and a3)
there will also be a dominant sequence, that is, that which has the lowest flowtime compared to alternatives.

Thus, of the 24 “candidate” partial schedules (subproblems) containing a1,…, a4 that could be extended,
only four are worth extending. Furthermore, in deciding which job is best to schedule fifth (given a1,…, a3

first, a4 fourth), we are only immediately interested in (1) which are the four preceding jobs, (2) the job
sequenced fourth, so we can calculate the setup time from it, and (3) the completion time of the fourth
job, so that the flowtime of the fifth job can be calculated. These observations encapsulate some of the
key ideas of dynamic programming.

In a dynamic program, a partial schedule is represented by a state. A state contains enough information
to allow the optimal value function (in the example, the optimal flowtime of a sub-problem) to be calculated
with knowledge of (1) the current state, (2) a previous state, and (3) a recurrence relation linking the
optimal value for the current state to that of the previous state.

In the example given above, the dynamic program builds a sequence forwards. It is in fact more
common for dynamic programs to work backwards from the last job to the first. The direction of
progression is dictated by the form of the state and the recurrence relation, so that forwards recursion
and backwards recursion become the appropriate terms.

When solving the (static) one machine class scheduling problem 1�sij��C with B classes, using a
backwards-recursion dynamic program, a relevant state representation is:

 (2.20)

where i is the class of the first-sequenced job in the partial schedule (but not necessarily the first overall)
and n1, n2,… are the numbers of jobs of each class 1, 2,… in the partial schedule. It is this state
representation, or similar, that is used in the dynamic programs by Bruno and Sethi, Psaraftis, Ahn and
Hyun, and Ghosh.

SWPT-ordering of jobs within classes (Theorem 4) tells us which particular jobs are scheduled. Let
jobs-within-classes be indexed in SWPT order, so that pi[ j]/wi[ j] � pi[ j�1]/wi[ j�1] (i � 1,…, B, j � 1,…, Ni).
Given an indexing of jobs in this way, n2 � 3 implies that  and  appear in the
partial schedule, in that order although not necessarily consecutively.

Using Expression (2.20) as a state representation for a three-class problem with 5 jobs in each class,
we can consider state (3, 1, 2; 1) for example. The first job in the partial sequence belongs to class 1; and
as n1 � 3, this job is a1[3], the third-last job in this class. Jobs a1[4], a1[5], a2[5], a3[4], and a3[5] also appear
in the partial sequence in some order.

Immediately-previous states to the current state (3, 1, 2; 1) are:

• (2, 1, 2; 1), where a1[4] begins the previous partial sequence

• (2, 1, 2; 2), where a2[5] begins the previous partial sequence

• (2, 1, 2; 3), where a3[4] begins the previous partial sequence

n1 n2 … ni … nB i;, , , , ,( )

a2 N2 2�[ ] a2 N2 1�[ ], a2 N2[ ]
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Let the optimal value function V for this problem be the total flowtime of the partial sequence, where time �
0 at the starting time of the first job in the partial sequence. We wish to express the value of V for a given
partial sequence (state) in terms of V for the states it is built upon.

Consider adding job a3[3] to the partial sequence (beginning with a1[3]) represented by state (3, 1, 2; 1)
to yield state (3, 1, 3; 3). Job a3[3] will be placed before the already-scheduled jobs and so will “push” the
completion times of these jobs later. Between a3[3] and a1[3], a setup s31 will be required, this along with
the processing time of a3[3] increasing the completion time of each scheduled job by p3[3] � s31. There are
six jobs in (3, 1, 2; 1), so that the flowtime increases by 6(p3[3] � s31) � p3[3], the second term corresponding
to the completion time of a3[3] itself.

As V is to represent the optimal value of (3, 1, 3; 3), it is not correct to say 

as the optimal value of V(3, 1, 3; 3) might follow from a state other than (2, 1, 3; 1). What is correct is
to write 

(2.21)

(2.22)

as (3, 1, 2; 1), (3, 1, 2; 2), and (3, 1, 2; 3) are the three “candidate” states that may precede (3, 1, 3; 3).
Expression (2.22) is in fact a recurrence relation, the “heart” of a dynamic program.

Recurrence relation (2.23) for the three-class problem as a whole is a generalization of (2.22). 

(2.23)

In (2.23), nk� is the number of class k jobs in the preceding state. As state (n1, n2, n3; i) represents a class
i job sequenced first, ni � ni� � 1, while nk�  � nk for all other k. The class i job “added” will be the nith
last job in class i, . The minimum value is selected over the range of class indices
k which can appear as the class-of-the-first-job in previous states; for example, if n2� � 0, then k � 2 would
be excluded because the state (n1, 0, n3; 2) is impossible.

Recurrence relation (2.23) is used in order to get us from the initial state (0, 0, 0; 0), where no jobs
are scheduled (the very end of the schedule) to states (N1, N2, N3; 1), (N1, N2, N3; 2), and (N1, N2, N3; 3)
where all jobs are scheduled.

State (N1, N2, N3; i) corresponds to the situation where job ai[1] is processed first in the complete
schedule, and V(N1, N2, N3; i) is the optimal value of flowtime in this situation. This flowtime does not
include the initial setup time s0i, so that recurrence relation (2.24) is required if this setup is carried out. 

(2.24)

V(N1, N2, N3; 0) is the optimal flowtime when processing starts from a bare machine. If the machine was
initially configured for processing class i, then V(N1, N2, N3; i) is the optimal value; while if no initial
setup time is required, the optimal value is given by min1�i�3{V(N1, N2, N3; i)}.
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Evidently, knowing the optimal flowtime value is not sufficient when the aim is to produce a schedule
for a machine. To find the optimal schedule using the DP, one more element is required, this being a
function P(n1, n2, n3; i) that gives the job scheduled after the first job in the partial schedule.
A function of this type is known as an optimal policy function. Refer, for example, to relation (2.21) and assume
that state (3, 1, 2; 1) “provided” the optimal value for V(3, 1, 3; 3). This implies that P(3, 1, 3; 3) � a1[Ni�2],
this being a1[3] for the 5 jobs-per-class example. Thus, the partial schedule S described by (3, 1, 3; 3) has
a3[3] first and a1[3] second. Given P(3, 1, 2; 1), we can find the third job in S, and so on. This “backtracking”
in order to build the optimal schedule is carried out once the final state has been generated.

As witnessed by the example at the beginning of this section, a dynamic program extends only those
partial sequences which are “optimal within themselves” and hence might lead to an optimal solution
for the complete schedule. In other words, a dynamic program for a machine scheduling problem operates
according to the principle that “the optimal schedule has the property that, whatever the choice of the
first job aj, the remainder of the schedule from aj onward is the optimal schedule for the problem with
aj excluded” ([25]); this often is called the principle of optimality. The solution-building strategy is implied
by the form of the recurrence relations that are used in dynamic programs, relation (2.23) being a
particular example.

The state definition (2.20) the recurrence relation (2.23) and optimal value function V, the SWPT-within-
classes scheduling rule (Theorem 4), and the optimal policy function P are the dynamic program for this
example problem. Moreover, this is representative of the composition of a typical dynamic program.

The Ghosh Dynamic Program for 1�sij��wC
The DP formulation given above for a three-class problem is a special case of the DP proposed by Ghosh
for the 1�sik��wC problem with an unrestricted number of classes. The recurrence relation for the
(backwards-recursive) Ghosh formulation is:

where 

that is, W is equal to the combined weight of all jobs in the partial sequence represented by state
(n1�, n2� , , nB�; k.) Recall that  is the job added to yield (n1, n2, , nB; i) (i.e., the nith-last job
of class i). The Ghosh formulation for the 1�sij��wC problem is the most recently reported DP for a single
machine flowtime problem with sequence-dependent setup times.

The number of states explored by a dynamic program in finding the optimal solution depends
primarily on the size of the problem and the state definition. The following straightforward method of
determining (a bound upon) the number of states is often applicable; for each state variable x determine
the range of possible values rx, then find the product �xrx. For the Ghosh DP with state vector (n1, n2, ,
nB; i), this approach yields B • �

k�1

B

( Nk�1) states, as  i may take values 1,…, B and each nk ranges from 0
to Nk.

When a dynamic program is running, the state information must be stored. The storage requirements
for a dynamic program should be directly proportional to the number of states; thus, for the Ghosh DP,
the amount of memory required will be O(B  �

k�1

B

(Nk � 1)), or O(BNB). It can be noted that the value
of the BNB function is highly sensitive to changes in the number of classes B; the limitations this imposes
will be evident when the experimental study carried out by Ahn and Hyun is discussed shortly.

A running time bound for a dynamic program can be developed using knowledge of the number of
states explored and the number of operations required to construct a state from prior states. For the
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Ghosh DP, calculation of V(n1, n2,…, nB; i) requires O(B) operations, as there are O(B) equations within
the min expression, and evaluation of each should be possible in O(1) time. Thus, Ghosh is able to state
that the number of computations required for the proposed DP is , or more simply
O(B2NB).

The running time bound of O(B2NB) illustrates that the 1�sij��wC problem can be solved in polynomial
time if the number of classes is fixed. In practice, we may say that the problem can be efficiently solved
if B is “small enough” so that the polynomial in N is not of “too large” a degree.

Dynamic Program Performance

The dynamic program developed by Ahn and Hyun for the 1�sij��C problem is very similar to the Ghosh
dynamic program, and shares with it both the running time bound of O(B2NB) and the storage require-
ment of O(BNB). Ahn and Hyun successfully applied their dynamic program to instances containing up
to 150 jobs. Their experiment involved the generation of a set of test instances with varying numbers of
classes and number of jobs per class. Setup times and processing times were generated from uniform
distributions with a range [1, 99], and in every instance each class was assigned the same the number of
jobs (Nmax) as given to other classes (i.e., Ni � Nmax ). The number of classes B was selected from
{2,3,…,8}, the number of jobs per class Ni was selected from {2, 3, 4, 5, 10, 20, 50}, and a sample size
of 20 instances was used at each tested combination of B and Ni. 

The dynamic program’s observed mean execution times, as reported by Ahn and Hyun, are shown
in Table 2.14. Even for relatively small values of B these results show that, on a execution time basis, the
use of the DP becomes increasingly prohibitive as N is increased. This is not unexpected, given the O( )
running time bound and the NP-hardness of the 1�sij��C problem. The O(BNB) storage requirement for
the algorithm is also restrictive, and Ahn and Hyun note that problems with only 8 classes and 4 jobs
per class stretch the 12-MB memory capacity of the computer used; the lack of results in the lower
right-hand side of the table reflects this.

As demonstrated by Ahn & Hyun’s experimental results, the running time and storage requirements
of the dynamic program can be prohibitive for even moderate values of number of jobs N. A more
efficient method for solving the 1�sij��wC problem has yet to be devised.

Ahn and Hyun’s Heuristic

Ahn and Hyun [3] present a heuristic designed to provide near-optimal schedules for the 1�sij��C problem.
This heuristic is in some ways similar to another proposed by Gupta [39] for the problem with two
classes. The Ahn and Hyun heuristic passes through a seed sequence, searching within a neighborhood
of possible moves for an opportunity to improve the sequence. As such, the heuristic is an example of a
local search heuristic, and may be further classified as a descent heuristic.

Passes are made both forwards (from the start of the sequence onward) and backwards (from the end
of the sequence). Multiple passes can be undertaken, depending on the stopping criterion applied. The
procedures for the forwards and backwards passes are quite similar.

In the forwards procedure, an index t corresponds to a position in the current sequence S (1 � t � N),
with t being incremented one-position-at-a-time through the sequence. We will denote the job appearing

TABLE 2.14 Mean Execution Times (in Seconds) for the Ahn and Hyun Dynamic 
Program, Using an HP 9000 Workstation

Number of 
Classes (B)

Number of Jobs in Each Class (Ni)

2 3 4 5 10 20 50

3 0.06 0.13 0.28 0.49 3.24 23.48 401.77
4 0.29 0.98 2.54 5.43 66.51 1025.01
5 1.40 6.46 21.01 53.82 1318.35
6 6.40 39.60 161.26 522.02
7 27.74 229.26 1238.16
8 116.05 1332.23

O(B2
� Nk 1)�( )
B

k�1
�

i	

B2NB
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at some sequence position x (1 � x � N) as job a(x), and note that setup tasks are implied by the sequence,
so that no sequence position is occupied by a setup. The partial sequence preceding job a(t) is labeled as
�, and is considered as the “fixed” part of the schedule. A subsequent partial sequence � begins with a(t)

and contains at least the remainder of the jobs in the same run as a(t) (let this run be Rp). Following �
is another partial sequence A, either an entire run or part of a run; � and A will be interchanged if the
flowtime of the resulting sequence  is less than that of S. The partial sequence � brings up the rear of S,
so that the current sequence is S � {��A�} and the alternative sequence is .

The rules for the formation of partial sequences � and A are formulated in a way that ensures that
SPT-ordering within classes (Theorem 4) is preserved. No class of jobs appearing in A can be allowed to
appear in �, and vice versa—if a class appeared in both � and A, interchange of these partial sequences
would disturb SPT-order. This immediately explains why � contains at least the remainder of the jobs
in the same run as a(t). For a given value of �, the interchange of a number of different � and A partial
sequences can be investigated. In a manner of speaking, the neighborhood is specified by the range of
different � and A interchanges able to be searched.

Partial sequence � initially contains job a(t) and the jobs following it in run Rp. Partial sequence A
begins at sequence position r with some job a(r) and ends at sequence position j (job a( j)) where j � r.
Job a(r) will always correspond to the first job of a run, and a(j) belongs to the same run as a(r)—let this
run be RA. Initially, r � j; that is, the first move investigates the interchange of � and a(r). 

With indices {t, r, j} giving rise to partial sequences {�, �, A, �} as shown in Fig. 2.17, the first
comparison of S � {��A�} with alternative sequence  is carried out. If the flowtime of

, is less than the flowtime F(S) of S,  replaces S, index t is not incremented, and the search for
improvement at this value of t is repeated. Otherwise, index j is incremented by one, expanding partial
sequence A (see Fig. 2.18), and a new flowtime comparison made.

When the indexing of j causes a( j) to the be the first job of a run, jobs a(r) and a( j) belong to different
runs. This is not allowed; thus, the partial sequence � expands to include the jobs up until a( j�1), index r
is updated to r � j, and A is redefined so that it contains only a(r) (Fig. 2.19). 

FIGURE 2.17

FIGURE 2.18

FIGURE 2.19

Ŝ
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Ŝ F Ŝ( ), Ŝ
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If j reaches the value N � 1, there are no interchanges (in the neighborhood) that can improve the
flowtime for this value of t. Index t is incremented by one in this case, and the search recommences.

The primary difference between the forwards and backwards passes is that for a backwards pass, index
t decreases as the pass continues and, likewise, index j takes progressively lower values during a search for
improvement. A block interchange for the backwards procedure can be written as S � �

. With reference to Fig. 2.20, partial sequence A again corresponds to all or part of a run RA,
this time with job a(r) as the last job in the run and job a(j) earlier in RA. Partial sequence � � {a(r�1),…,a(t)}
includes job a(r�1) from the beginning of the run RA�1 following RA, and unlike A may span more than
one run. In the forwards procedure, � is the ‘fixed’ part of the sequence and the flowtime of jobs in �
is not affected by a block-interchange. In comparison, � is the fixed part of the sequence in the backwards
procedure, yet � remains as the partial sequence of jobs that is not affected by a given block interchange.

Ahn and Hyun state a O( ) running-time bound for one iteration (i.e., one pass) of their heuristic,
where B is the number of classes and Nmax the maximum number of jobs in any one class. Ahn and Hyun
do not provide a derivation for this running-time bound, and our own attempts at reproducing this
running-time result have not been completely successful. However, if we assume that the maximum
number of block-interchanges able to be undertaken at any value of t is bounded by O(N), we are able
to derive the bound given by Ahn and Hyun. Using this assumption, it is also possible to establish an
alternative expression for the running time bound, O(BN2). Both forwards and backwards passes of the
heuristic share this running-time bound; thus, for a fixed number of iterations of the heuristic, the overall
running-time is O(BN2).

Although Ahn and Hyun address the total flowtime problem, their heuristic is easily extended to
operate on the 1�sij��wC problem, by utilizing Monma and Potts’ SWPT-within-classes rule and restricting
setup times to those satisfying the triangle inequality. Evaluation of the weighted flowtime form of the
Ahn and Hyun heuristic, albeit with sequence-independent setup times, has been carried out by Crauwels,
Potts, and Van Wassenhove [23] (see Section 2.3).

Seed Schedules, Stopping Criteria, and Experimental Performance

Ahn and Hyun’s heuristic requires a “seed” sequence to be generated, this used as an input to the heuristic.
We assume that Ahn and Hyun use Gupta’s greedy heuristic to generate seeds; however, they do not state
this, and neither do they report on investigations that may have led them to choose one seed generator
over another.

Application of the Ahn and Hyun heuristic requires the imposition of a stopping criterion to determine
the point at which searching should terminate. One stopping criterion proposed by Ahn and Hyun enables
the heuristic to continue until no further improvement is found. An alternative stopping criterion
investigated by Ahn and Hyun limits the heuristic to one forwards and one backwards pass. These can
be referred to as the unlimited-cycles and one-cycle stopping criteria, respectively.

In the worst possible case, the unlimited-cycles stopping criterion can result in a sequence being
generated for every flowtime value between that of the initial seed schedule to that of a final optimal
solution. This leads to exponential-time worst-case behavior of the heuristic, unless all data are integers
and have a magnitude bounded by some constant. In practice, the average-case behavior of the heuristic
using this stopping criterion may not be so poor, yet there is no guarantee. Given that one pass of the
sequence takes O(BN2) time, any stopping criterion that imposes a fixed maximum number of cycles
results in polynomial-time behavior of the heuristic.

FIGURE 2.20 Sequence partitioning and Labeling for the backwards pass of the Ahn and Hyun heuristic.
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We have already presented some of the results of computational experiments reported by Ahn and
Hyun, namely those relating to their dynamic program. When investigating the performance of the
heuristic, Ahn and Hyun use the same instances and test their heuristic against (1) optimal solutions
given by their dynamic program, and (2) solutions obtained using Gupta’s greedy heuristic.

The results reported by Ahn and Hyun show that for the unlimited-cycles case, there is little difference
between the flowtime achieved by the heuristic and the optimal flowtime. For 21 out of the 27 tested
combinations of B and Ni, schedules produced by their heuristic have a flowtime within 0.10% of the
optimal flowtime on average (deviations from optimal are calculated using ). The
worst observed mean deviation from optimal was 0.17% for this variant of the heuristic. Maximum
percentage deviations are also low; the maximum deviation from the optimal solution was typically less
than 1% for each set of test instances, the worst performance being 2.4% attained for an instance of B � 5,
Ni � 10. Plots of mean and maximum percentage deviation results, for both unlimited-cycle and one-
cycle termination criteria, are given in Fig. 2.21

The plot for the unlimited-cycles case shows a very slight relationship between the total number of jobs
N and the deviations from the optimal solution—statistically, the correlation is poor (product-moment
correlation coefficient of �0.13). This substantiates Ahn and Hyun’s claim that the heuristic performance
does not deteriorate when either B or N increases. For the one-cycle stopping criterion, very good results
are also obtained. On average, the first iteration of the heuristic typically approaches well within 1% of the
optimal solution. With this stopping criterion, it is apparent that increases in problem size do lead to an
increase in both mean and maximum deviations from optimal, although the relationship is not strong.

The performance of Gupta’s greedy heuristic does not compare favorably with that of the Ahn and Hyun
heuristic. The mean deviation from optimal for the Gupta heuristic was between 3.5% (B � 7, Ni � 3)
and 7.3% (B � 3, Ni � 50) for problem sizes of 20 jobs or more. Such deviations are well in excess of
the 0.17% maximum mean percentage deviation (over all (B, Ni) combinations) attained by the Ahn and
Hyun heuristic utilizing an unlimited-cycles stopping criterion.

We believe that Ahn and Hyun provide the average time per iteration and the average number of iterations
for their heuristic (unlimited cycles, at each tested (B, Ni) combination). Thus, the observed average
computation time (ACT) is roughly equal to the product of these two numbers (yet E(x) � E(x/y) E(y)
only if y does not vary). The average number of iterations is typically between 2 and 3, one iteration
being one cycle as described above, although for problems with 40 or more jobs, this rises to a maximum
average of 4.7 iterations for B � 3, Ni � 50.

Taking Ahn and Hyun’s tabulated results for tests where N � BNi � 40, estimates of ACT have been
calculated and the data points plotted in Fig. 2.22. This displays both the effect of the number of classes
B and of the total number of jobs N; naturally, an increase in either of these leads to an increase in ACT.
A regression involving all 27 data points, of log (ACT) with log (N), gives ACT � N2.26 (r2 � 0.987).
Interestingly, this function compares well to the O(BN2) running-time bound. 

FIGURE 2.21 Mean and maximum deviations from optimal for the Ahn and Hyun heuristic; stopping criteria of
unlimited cycles (left) and one cycle (right).

FHuer FOpt
�( )�FOpt
© 2001 by CRC Press LLC



Additive Changeovers on a Single Machine

Although many researchers have addressed single machine problems with sequence-independent setup
times, when additive changeovers on single machines are considered, we are only aware of the work of
Mason and Anderson [59]. In this section we address single machine problems with additive changeovers
and regular objectives, including those with release dates ri[ j], due dates di[ j], and deadlines  for each
job ai[ j]. The class scheduling problems such as these, incorporating regular objective functions, can be
termed regular class scheduling problems.

We will show that regular class scheduling problems with additive changeovers can be transformed
and solved as problems with sequence-independent setup times only. This extension of a result developed
by Mason and Anderson for the 1�s���wC problem will allow many other problems with additive
changeovers to be solved using algorithms devised for problems with sequence-independent setup times.
The result significantly enhances the practical applicability of these algorithms.

The class scheduling assumptions listed in Section 2.2 include the assumption that inserted idle time is
permitted in class scheduling problems, yet inserted idle time will appear in optimal (“reasonable”)
schedules for a problem with a regular objective function only when job arrivals are dynamic (i.e., where
jobs have unequal ready times). Additionally, it is clear that a schedule for a dynamic problem can be improved
by reduction or elimination of inserted idle time if a job commences at some instant after its ready time and
idle time is scheduled between it and the preceding job in the sequence. This applies regardless of the class
of the preceding job; that is, setups or teardowns can be scheduled between these jobs (Fig. 2.23). Thus,
we can use the following scheduling rule for regular class scheduling problems.

• For a regular class scheduling problem with dynamic job arrivals, idle time can only be inserted
between a pair of jobs if the latter job commences exactly at its ready time.

FIGURE 2.22 Plot of  “approximate” ACT data for the Ahn and Hyun heuristic (unlimited-cycles stopping criterion).

FIGURE 2.23 Idle time in regular class scheduling problems: (a) between runs, where elimination of unnecessary
idle time is possible, and (b) within a run, where no unnecessary idle time is scheduled.
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In the special case where all jobs are released simultaneously (i.e., at the class ready time ri), this rule
will prohibit idle time being scheduled between jobs of the same class, so that no idle time will appear
within runs.

There is flexibility in the timing of the teardown and setup tasks when a job is scheduled to begin
processing at its ready time, is the first job of a run, and the time available for the teardown and setup
between this job and the preceding job is more than that required. Such flexibility may be welcome in
practice; when the next-sequenced job might arrive early, the teardown and setup should be carried out
as soon as practicable; while if there is the possibility that scheduling decisions may be changed, to cater
for “hot jobs,” for example, setups might be carried out at the latest opportunity. However, for the analysis
of scheduling problems, it is beneficial to impose a rule relating to the scheduling of setups and teardowns
in such situations. We term this rule the setup and teardown scheduling rule for problems with additive
changeovers, or more simply, the STS rule.

• The STS rule states that setups must be scheduled so that they are immediately followed by the
first job of a run, and teardowns must commence as soon as the last job in the run ends (Fig. 2.24).

Any schedule that does not follow this STS rule can be modified to produce a schedule that does, without
changing the sequence of jobs or increasing the value of a regular objective function. Likewise, schedules that
do follow the STS rule can be modified in practice without affecting the quality of the schedule.

In their analysis, Mason and Anderson conclude that for any instance P of the static single machine
flowtime problem with additive changeovers and initial setups (1�s���wC), there is an equivalent instance
P� with sequence-independent setup times only (1�si��wC). The equivalent instance P� is identical to P
except that the setup and teardown times si and ti of instance P are replaced by a setup time si� in P�,
with si� � si � ti.

An optimal sequence for P� is also an optimal sequence for P, and a “good” sequence for P� is an equally
“good” sequence for P. Consequently, it is both convenient and reasonable to solve instances incorporating
additive changeovers by (1) altering the setup times according to si� � si � ti, and (2) solving the instance
of the 1�si��wC problem that results. An optimal algorithm for solving P� will provide an optimal sequence
for P, while a heuristic developed for P� and known to provide schedules of a certain (expected) quality
can be used to provide schedules of the same (expected) quality for instances of P. It may be said that
the 1�s���wC and 1�si��wC problems are equivalent problems.

The reduction of an instance of 1�s���wC to an instance of 1�si��wC is a special case. Mason and Anderson
show that two instances of 1�s�� �wC, P and P�, are equivalent if setup and teardown times satisfy si� �
ti� � si � ti for all classes i, and P and P� are otherwise identical (in particular, each job in P has a unique
and exact equivalent in P�, and vice versa). The equivalence is established by noting that application of
some given sequence to both instances yields weighted flowtimes FW (for P) and FW� (for P�) that satisfy 

FIGURE 2.24 STS rule for problems with regular objectives: only schedule (d) satisfies the rule.
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This difference takes a value which is independent of the schedule, so that minimization of FW� is
equivalent to minimization of FW .

An essential element of Mason and Anderson’s proof that an instance P of 1�s���wC can be successfully
transformed into an instance P� of 1�si��wC is the property that the setup for each run begins at the same time
for both instances when the same sequence is applied. This leads to the observation that the completion times
Ci[j] and  of a job ai[j] (in P and P�, respectively) satisfy the relationship . This
follows from the transformation rule . When generalizing Mason and Anderson’s result
to more complicated scheduling problems, additional transformation rules will be necessary. 

Consider a problem with arbitrary job release dates ri[ j]. If the processing of some job ai[ j], which is
scheduled to begin a run, commences as soon as it is released (at time ri[ j]), the setup for this run will
commence at some time T � ri[ j] � si in P (by the STS rule). When P is transformed into P�, to allow
this run to once again commence at time T requires , thus indicating that ready
times will also have to be modified in transformations from P to P� in more complicated problems.
Similarly, due dates and deadlines also should be modified.

Theorem 5 provides the set of transformation rules necessary for the relationship C�i[j] � Ci[j] � s �i � si

to be satisfied by the completion times of all jobs in any regular class scheduling problem with ready times,
due dates, and/or deadlines. The C�i[j] � Ci[j] � s�i � si relationship is then combined with the transformation
rules to show that (1) for every job, both the flowtime (completion time minus release date) and lateness
(completion time minus due date) take the same values in both P and P�; and (2) a schedule will meet
deadlines in P if and only if they are met in P�.

The notation used in the statement of Theorem 5 includes the “additional” notation given in Table 2.12
(Section 2.3). Symbols will appear primed to indicate values for instance P� with sequence-independent
setups only (e.g.,  is the setup for Rk in P�), and unprimed when associated with original instance P.

Theorem 5

Consider an instance P of a single machine regular class scheduling problem in which the class setup
times and teardown times are given by si and ti, and job ready times, due dates, and deadlines are given
ri[ j], di[ j], and , respectively. Initial setup times are required, and are equal to si for all i. Let P� be a
second instance of the same problem, P� identical to P except that these times are given by , , ,

, and . Without loss of generality, assume that all schedules satisfy the STS rule, and let the
following be satisfied by instances P and P� for all i:1 � i � B and j:1 � j � Ni.

(2.25)

(2.26)

(2.27)

(2.29)

When a given sequence of jobs S is applied to instances P and P�, the completion times Ci[j] and  of
any job ai[j] (in P and P�,  respectively) are related by:

, (2.29)

The flowtime and lateness of any job are identical in P and P�, that is:

(2.30)

(2.31)

and a deadline is satisfied in P� if and only if it is satisfied in P.

Ci j[ ]� Ci j[ ]� Ci j[ ]� s�i si��
si� ti�� si ti��

ri j[ ]� si�� ri j[ ] si��

�k�

dij

si� ti� ti j[ ]�
di j[ ]� di j[ ]�

si� ti�� si ti��

ri j[ ]� si�� ri j[ ] si��

di j[ ]� si�� di j[ ] si��

di j[ ]� si�� di j[ ] si��

Ci j[ ]�

Ci j[ ]� Ci j[ ]� si� si��

Ci j[ ]� ri j[ ]�� Ci j[ ] ri j[ ]��

Ci j[ ]� di j[ ]�� Ci j[ ] di j[ ]��
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Proof
By the STS rule, the completion time of the first job 
k[1] in run Rk is given by: 

(2.32)

(2.33)

where Bk is the starting time of run Rk, while the completion times of other jobs 
k[j] (1 � j � �k) in the
run will be given by:

(2.34)

(2.35)

where  is the ready time of job 
k[j] in instance I. Using Eq. (2.32) and (2.33), it is found that for any
1 � k � r, 

(2.36)

Assume that 

 (2.37)

is satisfied for some 2 � j � �k. Substitution of Eq. (2.26) and (2.37) into Eq. (2.35) yields 

 

so that for 2 � j � �k, 

 (2.38)

Together, Eq. (2.36) and (2.38) provide the result that, for all jobs in a run (
k[j]:1 � j � �k), 

(2.39)

The starting times B1 and  of the first run in the schedule are given by:

which can be used with Eq. (2.26) to show . For later runs Rk (2 � k � r), 

 (2.40)

(2.41)

where �k�1 and  are the teardown times of run Rk�1 in instances P and P�, respectively. If it is assumed
that , then  by Eq. (2.39); substitution of this,

ck 1[ ] Bk �k �k 1[ ]� ��

ck 1[ ]� Bk� �k� �k 1[ ]� ��

ck j[ ] max r̂ k j[ ] ck j�1[ ],{ } �k j[ ]��

ck j[ ]� max r̂ k j[ ] , c k j�1[ ]�{ } �k j[ ]��

r̂ k j[ ]

Bk� Bk implies ck 1[ ]� ck 1[ ]� �k� �k�� �

ck j�1[ ]� ck j�1[ ]� �k� �k��

ck j[ ]� max { r̂k j[ ],� ck j�1[ ]� } �k j[ ]� �k� �k�� ck j[ ]�� �

ck j�1[ ]� ck j�1[ ]� �k� �k implies ck j[ ]�� ck j[ ]� �k� �k�� �

Bk� Bk implies ck j[ ]� ck j[ ]� �k� �k�� �

B1�

B1 max 0 r̂1 1[ ] �1�,{ }�

B1� max{0 r̂1 1[ ]� �k�}�,�

B1 B1��

Bk max ck�1 �k[ ] �k�1 r̂k 1[ ] �k�,�{ }�

Bk� max{c�k 1 �k[ ]� � �k�1, r̂�k 1[ ] �k�}���

�k�1�
Bk�1� Bk�1� ck�1 �k�1[ ]� ck�1 �k�1[ ]� �k�1� �k�1��
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Eq. (2.25) and (2.26) into (2.40) and (2.41), yields Eq. (2.42).

 (2.42)

Thus,  implies , so that by mathematical induction it is shown that 
for all runs Rk (1 � k � r) as . Combining this result with Eq. (2.39) gives:

so that (2.29) holds for all jobs.
Expressions (2.30) and (2.31) for the flowtime and lateness of a job are derived by combining Eq. (2.29)

with Eq. (2.25) to (2.27). Similarly, substitution of Eq. (2.28) into Eq. (2.29) gives:

for deadlines. As the difference between the completion time and deadline of a job is the same for both
instance P and instance P�, a job cannot meet a deadline in one instance and fail to meet it in the other.

Theorem 5 can be used to show that many problems with additive changeovers can be solved as
problems with sequence-independent setup times. To solve P using an algorithm for a single machine
problem with sequence-independent setup times, it is usually sufficient to ensure that:

1. Equations (2.25) to (2.28) are satisfied by an equivalent instance P�; that is, instance P� is con-
structed from P according to these relationships.

2. The objective function is regular, so that the ‘idle time insertion’ rule and the STS rule are valid.
3. In the objective function, job completion times only appear when grouped with due dates as job

lateness values Tj � Cj � dj, or grouped with ready times as job flowtime values Fj � Cj � rj.
4. Constraints are satisfied in P if and only if their equivalents are satisfied in P�.

In relation to item 4 above, it has been illustrated that this requirement is satisfied by deadline
constraints once they are modified for use in P�. Similar analysis would be required for additionally
imposed constraints.

Table 2.15 provides some examples of problems with additive changeovers that can be solved by
transforming the original instance and solving it as an instance without teardowns. Clearly, we cannot
provide an exhaustive list of the problems amenable to this treatment.

It is interesting to note that Mason and Anderson’s original 1� s���wC problem does not satisfy item 3 above,
as job completion times are not “grouped” with due date or ready times in the objective. However, 1�s���wC
can be solved as a 1�si��wC problem due to the equivalence described in Section 2.2 between the objectives of
(1) sum of job completion times �wC, (2) sum of job lateness �w(C � d), (3) sum of job flowtimes �w(C �
r), and (4) sum of job waiting times �w(C � p � r). This equivalence extends the scope of Theorem 5. 

TABLE 2.15 Single Machine Problems that are Solvable as Problems with 
Sequence-Independent Setup Times

Number of late jobs 1|s�|�wU
Maximum lateness with deadlines 1| , s�|Lmax

Tardiness with deadlines and release dates 1|rj, , s�|�wT
Flowtime plus maximum tardiness 1|s�|�wF � Tmax

Bk� max ck�1 �k[ ] �k� 1[ ]�� , r̂ k 1[ ]� �k��{ }�

� max ck�1 �k 1�[ ] �k�1� �k�1 �k�1� r̂k 1[ ] �k�,���{ }

� max ck�1 �k�1[ ] �k�1 r̂k 1[ ] �k�,�{ }

� Bk

Bk�1 Bk�1�� Bk Bk�� Bk Bk��
B1 B1��

ck j[ ]� ck j[ ]� �k� �k for all 1 k r 1 j �k� �,� ���

Ci j[ ]� di j[ ]�� Ci j[ ] di j[ ]��

dj

dj
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The transformation rules of Theorem 5 will ordinarily specify non-zero ready times for jobs, even if
the original problem is a static problem with ri[j] � 0 . This initially alarming result does not lead
to the modified problem becoming a “truly” dynamic problem, however. A problem need only be considered
dynamic if the scheduling of jobs can actually be constrained by ready times, that is, if there exists
at least one job ai[j] with a release date ri[j] greater than the setup time si for its class. Equation (2.26)
can be used to show that ri � si implies , so that both instances will be static if the original
instance is.

Although Theorem 5 deals with problems with initial setup times s0i equal to class setup times si,
problems without initial setups or with  can be handled simply. We will assume that all setup
and teardown times must be non-negative; note that this is consistent with the view that the zero point
in time corresponds to the earliest instant at which scheduling decisions can be effected. Let �i � s0i � si,
calculate �i for all classes i, and let �min � min1�i� B{�i} and �max � max1�i�B {�i}. If �min � 0, all initial
setup times are no more than class setup times. In this case, we can modify initial setup times according
to , or equivalently , and apply Eq. (2.25) to (2.28) as above in
order to create an equivalent problem. The fact that �min � 0 ensures that all initial setup times in P� are
non-negative. Clearly, setting  for all classes removes teardown times, this being our primary
interest here. Alternatively, �min � 0, and utilization of  can lead to initial setup
times that are less than zero. However, if we simply seek to remove teardowns when creating P�, 
for all classes so that  for all i.

Interestingly, the solution of problems with additive changeovers as problems with sequence-indepen-
dent setup times is not possible with the Cmax objective. The is due to the 
expression providing unequal change in completion times for jobs belonging to different classes. More
importantly, Theorem 5 deals only with regular measures. Scope exists, however, for development of
similar results for non-regular measures such the earliness or earliness/tardiness objectives.

To conclude this section, we introduce another result attributable to Mason & Anderson, this result
being loosely related to the above analysis. Mason and Anderson show that an instance of the

 problem can be solved as an instance of . A sequence-
dependent setup time sik from class i to k can be viewed as a sequence-independent teardown time for
class i, and the  rule can then be applied to develop an instance of .
Theorem 5 can be utilized to extend this result; any problem with two classes, sequence-dependent
setup times, no initial setups, and an objective relevant to Theorem 5 can be solved as a problem with
sequence-independent setup times. If initial setups are non-zero, this transformation is not valid however.

Flowtime Problems with Sequence-Independent Setup Times

The static single machine flowtime problem with sequence-independent setup times (1�si��wC) has been
studied by a number of researchers, and a range of solution methodologies for combinatorial problems
have been applied to it. We will continue our review of solution methodologies by looking at the
branch-and-bound algorithms for the 1�si��wC problem (as reported by Mason and Anderson [59] and
Crauwels, Hariri, Potts, and Van Wassenhove [22]) and particular neighborhood search approaches
(Mason [58] and Crauwels, Potts, and Van Wassenhove [23]). These algorithms will be investigated after
the structure of the 1�si��wC problem is surveyed. 

The SWPT-within-classes rule developed by Monma and Potts for the 1�sij��wC problem is clearly
an optimality condition for the simpler 1�si��wC problem. We will therefore assume without loss of
generality that (1) jobs are indexed within their classes so that pi[j]/wi[j] � pi[j�1]/wi[j�1] (1 � i � B,
1 � j � � i), and (2) that jobs will always be sequenced in this index order, so that ai[j] will always
precede ai[j�1].

Mason and Anderson [59] establish two additional optimality conditions for the 1�si��wC problem.
These prove to be extremely useful in the development of algorithms for the 1�si��wC problem. 

For any run, the weighted mean processing time (WMPT) is given by the total time of the run (sum of
processing and setup times) divided by the total weight in the run (sum of job weights), so that the

i j,	

ri� si��

s0i si�

s0i� ti�� s0i ti�� s0i� si�� s0i si��

t�i 0�
s0i� ti�� s0i ti��

si� si�
s0i� 0�

Ci j[ ]� Ci j[ ]� si� si��

1 sij s0i, 0 B, 2� � �wC 1 si B, 2� �wC

si� ti�� si ti�� 1|si B, 2|�wC�
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WMPT of a run Rk can be written as: 

Mason and Anderson show that there exists an optimal sequence for the 1�si��wC problem that has runs
appearing in non-decreasing order of WMPT, that is, in shortest weighted mean processing time order (SWMPT).

Theorem 6 (Mason and Anderson)

In an optimal sequence for the 1|si|�wC problem, runs appear in shortest weighted mean processing
time order, that is:

for 1 � k � r.

Proof
Consider two runs Ru and Ru�1, adjacent in a schedule and not in SWMPT order; that is, WMPT(Ru) �
WMPT(Ru�1). Interchanging the positions of these two runs will not increase the weighted flowtime of
jobs in other runs, while each job in Ru�1 has its completion time reduced by at least Tu and each job in
Ru has its completion time increased by at most Tu�1. Thus, the change in weighted flowtime is given by: 

and as WMPT(Ru) � WMPT(Ru�1), it follows that Wu�1Tu � WuTu�1 and �FW � 0, this representing an
improvement in the flowtime of the schedule. Consequently, a schedule that does not satisfy the SWMPT
rule can be improved, and so is suboptimal.

The third optimality condition for the 1�si��wC problem, which complements the SWPT-within-classes
rule for jobs and the SWMPT rule for runs, describes a necessary relationship between the last job 
of a run Ru and the first job 
v[1] of a following run Rv of the same class.

Theorem 7 (Mason and Anderson)

In an optimal sequence for the 1�si��wC problem, jobs belonging to different runs of the same class satisfy 

(2.43)

where Ru and Rv are runs of the same class (1 � u � v � r).

Proof
Let � be the partial sequence {Ru�1,…,Rv�1}, that is, the sequence between jobs  and 
v[1], and let

 and , so that T is the total time scheduled between  and 
v[1],
and W is the combined weight of jobs in �. If the left-hand-side of Eq. (2.43) is not satisfied, so that

, we can interchange the positions of  and � to achieve a change in flowtime
of at least 

which is negative and thus represents an improvement in the schedule’s flowtime. If run Ru consists
only of job , further improvement is obtained when the setup �u is removed from the schedule.

WMPT Rk( )
Tk

Wk

-------
�k

�k j[ ]
j�1

�i

��

�k j[ ]
j�1

�i

�
-----------------------------� �
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Tk

Wk
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Tk�1

Wk�1

------------� WMPT Rk�1( )� �

�FW WuTu�1 Wu�1Tu��


u �u[ ]

�u �u[ ]

�u �u[ ]
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�v Tk
k�u�1

v�1

��
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�
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�v 1[ ]

�v 1[ ]
-----------� �


u �u[ ]
T �v � T
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k�u�1 k� 
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Where S does not satisfy the right-hand inequality, the positions of � and 
v[1] can be interchanged to
improve the flowtime. The change in flowtime generated by this interchange is given by:

which is negative when the right-hand inequality of Eq. (2.43) is not satisfied. In the case where �v � 1 and
v � r (i.e., Rv is not the last run), the flowtime is decreased by more than �FW as a result of the interchange. 

By viewing the work sequenced between any two runs Ru and Rv of the same class as a composite job
of processing time  and weight , Theorem 7 represents an extended SWPT rule; the
jobs belonging to a given class and the total work sequenced between each pair of these jobs must follow
SWPT order.

Lower Bounds

Sahney [72], Mason and Anderson [59], and Crauwels, Hariri, Potts, and Van Wassenhove [22] use lower
bounds within branch and bound algorithms for the 1�si��wC problem. Sahney’s problem can be viewed
as a 1�si��wC problem with two classes, and the lower bound used by Sahney is generalized by Mason
and Anderson; thus, only the latter will be discussed here. 

Given an initial and predetermined partial sequence of scheduled jobs S, Mason and Anderson’s procedure
generates a lower bound for the flowtime of the best complete schedule formed by appending a partial sequence
of currently unscheduled jobs to S. The flowtime of jobs belonging to S can be calculated directly, so that it
is the determination of a lower bound on the flowtime of currently unscheduled jobs which is of interest.

The completion time of a job ai[j] in any feasible sequence for a static flowtime problem with setup
times can be written as:

where  is the contribution due to changeovers and  that due to the processing times of jobs.
Given a sequence, these contributions can be easily calculated for each job. The weighted flowtime of
the sequence can be written as the sum of these contributions, . For example, we can
calculate FW from  and  for the schedule shown in Fig. 2.25 (where all weights equal one).

For any sequence, the value taken by the processing-times contribution does not depend on the
number or durations of setup times. Likewise, the contribution due to changeovers does not depend
on the processing times of jobs. This allows processing times to be considered as zero when calculating

, and setup times to be taken as zero when finding . 
A valid lower bound for a complete schedule for an instance of the 1�si��wC problem can be established

by finding lower bounds  and  for  and , respectively, for jobs yet to be scheduled. A
lower bound for the contribution can be found by ignoring setup times for unscheduled jobs and
sequencing these jobs in non-decreasing order of p/w, that is, in shortest weighted processing time (SWPT)
order.  can be established by (1) considering each class to be a composite job with processing time
si and a weight wi equal to the sum of weights of unscheduled jobs of that class, and (2) sequencing these
classes in non-decreasing order of si/wi. The flowtime of this sequence yields . 

FIGURE 2.25 Example schedule for calculation of flowtime contributions  and .
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Where a partial schedule exists, the class of the currently last-sequenced job is excluded from calculation
of . Taking account for a predetermined partial sequence also requires the incorporation of the
latest known completion time into the completion time of each unscheduled job. 

To calculate Mason and Anderson’s lower bound requires O(N log N) time, this being the effort required
to sort jobs into SWPT order (sorting of setup times by si/wi takes O(B log B) time, and calculation of

and  requires O(N) operations each). When lower bounds are calculated repetitively (e.g.,
within an branch-and-bound algorithm) savings in computation can be made because the jobs need
only be sorted once, at an initial stage. At nodes in the search tree, the calculation of the lower bound
can be completed in O(N) operations (by surveying the ordered list of jobs in O(N) time and updating
an ordered list of setup times in O(B) time). 

The prime attribute of the Mason and Anderson lower bound is that it can be calculated quickly. Its
on-average proximity to the optimal solution is not outstanding; for example, where setup times and
processing times are distributed uniformly over [0, 100] and [1, 100], respectively, Mason and Anderson’s
experimental results show that the lower bound value is approximately 86% of the optimal solution value.
Where the maximum setup time is reduced to be a tenth of the maximum processing time, the quality
improves, however, to within about 4.5% of the optimal solution. 

The lower bound developed by Crauwels, Hariri, Potts, and Van Wassenhove achieves significantly greater
proximity to the optimal flowtime, at the cost of inflated lower bound computation times; the time
complexity function for their lower bound is O(NT), where T is an upper bound on the completion
time of the last job in a schedule for the given instance of 1�si��wC. It is therefore evident that the running
time of this lower bound is directly influenced by the magnitude of setup and processing time durations;
hence, this time complexity function is pseudo-polynomial. The practical applicability of an algorithm
(e.g., a branch-and-bound algorithm) incorporating this lower bound may be limited due to the effect
setup and processing time durations will have on running times.

The Crauwels et al. lower bound is based upon Lagrangian relaxation of an integer programming
formulation of the 1�si��wC problem. We provide this formulation below; in this formulation, J is the
set of jobs, T is the set of time intervals , and B is the set of classes . Crauwels
et al. note that an upper bound for T is given by . 

 (2.44)
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It can be observed that xi[j],t � 1 if job ai[j] is being processed during interval t and ybt � 1 if a setup
for class b is carried out during interval t.

Integer programming is not generally considered to be viable approach to the solution of the type of
scheduling problems discussed in this chapter (i.e., the large integer programs cannot be solved in
reasonable time). However, in this and a number of other cases, strong and useful lower bounds have
been obtained from Lagrangian relaxation of integer programming formulations. For our current
purposes, we merely note that in the case of Crauwels et al.’s lower bound for 1�si��wC, it is the machine
capacity constraints (2.44) that are relaxed in the process of obtaining a lower bound. By relaxing (2.44),
the Lagrangian problem decomposes into a separate sub-problem for each class, each of these sub-problems
being efficiently solved using dynamic programming. 

There exists another class of lower bounds that are applicable to the 1�si��wC problem. The concept
of these lower bounds is simple. In any schedule for a 1�si��wC problem, all jobs belonging to any class
i are preceded by at least one setup for that class. The contribution of class i setup times to the completion
times of class i jobs is therefore no less than si time units. To obtain a lower bound, we distribute a total
of si time units worth of processing time among class i jobs. In other words, we inflate job processing
times from initial values pi[j] to new values p�i[j] according to:

where 0 � �i[j] � 1 and . This process is carried out for all classes, and setup times are
subsequently set to zero. By distributing setup times in this way, we generate an instance I� of a problem
without setup times. Given that 0 � �i[j] � 1 and  are the only restrictions placed on the
distribution of setup times, there will exist an infinite number of ways to distribute setup times (i.e.,
different distribution schemes, each specified by a set of �i[j] values). 

If instance I� is to be solved as a 1���wC problem, it can be solved optimally in O(N log N) time using
the SWPT rule. Alternatively, we can recognize that in an optimal sequence for the 1�si��wC problem
jobs appear in SWPT order. Thus, after distributing the setup time, we can impose precedence constraints
between jobs in I� to force jobs to appear in the same order as they would in the optimal sequence for
I. These precedence constraints will be chain precedence constraints (see Fig. 2.1, Section 2.2), and I�
will also be optimally solvable in O(N log N) time, as an instance of 1�tree��wC. 

In either approach, the flowtime of the optimal schedule for I� is a lower bound for the optimal
flowtime for the original instance I of the 1�si��wC problem. Further, the “idea” of such distributive lower
bounds can also be applied to many other flowtime problems with setup times, including the 1�si,ri[j]��wC
and R�si��wC problems.

When I� is generated such that it is an instance of 1���wC, Dunstall, Wirth, and Baker [27] show that
there is one distribution scheme that dominates all alternatives. This is the cascade distribution scheme,
and the resulting lower bound can be termed the cascade lower bound. In the cascade lower bound,
setup time is distributed with the aim of providing the same weighted processing time (p�/w) for all jobs
in the class. If not enough setup time is available, the k jobs that originally had the least weighted
processing time (i.e., least p/w) will receive distributed setup time. The weighted processing times of each
of these k jobs are identical, as shown in Fig. 2.26.

The dominance of the cascade distribution scheme over other distribution schemes, when I� is an
instance of 1���wC, is an interesting result that indicates the appropriateness of this distribution scheme
when dealing with both the 1�si ��wC problem and more advanced problems with setup times. The cascade
lower bound can be improved slightly by noting that some jobs receiving setup time will not be delayed
by a full setup time to their class. An additional amount of flowtime can be added to the lower bound
to account for this. 

It can be shown that the “improved” cascade lower bound and the lower bound based on generation
of I� as an instance of 1|tree|�wC are, in fact, equivalent. These “distributive” lower bounds can also be
shown to dominate the Mason and Anderson lower bound. Computational analysis has illustrated that
the “distributive” lower bounds clearly outperform the Mason and Anderson lower bound (see [27]).
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Dominance Rules

From the three optimality conditions, Mason and Anderson develop a number of dominance relationships
for sequence construction. These are given as Rules 1 through 5 below. Crauwels, Hariri, Potts, and Van
Wassenhove [22] develop an additional dominance relationship, Rule 6, from the same basis. When used
within branch-and-bound algorithms for the 1�si ��wC problem, these dominance rules have greatly assisted
the pruning of the search tree, allowing the algorithms to return optimal solutions within reasonable
time. Furthermore, they represent highly useful tools for the design and implementation of heuristics.

1. In an optimal sequence for the 1�si ��wC problem, where Ru and Rv are runs of the same class (u � v),

 (2.45)

Thus, if extending a partial sequence with the addition of a new run of some class i, we should
add jobs to this run at least until we use up all class i jobs (i.e.,  is scheduled) or the next
unscheduled job of this class has a weighted processing time greater than the current weighted
mean processing time of the run.

2. Consider a partial sequence S within which the last run is Rv, the last scheduled job is ai[j], and
WMPT(Rv�1) � WMPT(Rv). If j � Ni, job ai[j�1] should be added to the end of Rv. If j � Ni, the
partial sequence S cannot satisfy Theorem 6 and is sub-optimal.

3. In an optimal sequence for the 1� si ��wC problem, where Ru and Rv are runs of the same class (u � v), 

(as shown by Mason and Anderson in their Corollary 4.1). Thus, if we are extending a partial
sequence S by adding a new run Ru�1, and S currently terminates with a run Ru of some class i,
the weighted processing time  of the first job 
u�1[1] of Ru�1 can be no greater
than the weighted processing time of the next unscheduled job of class i.

4. If we wish to extend a partial sequence S by starting a new run Rv of class i, we must ensure that
the two inequalities of Theorem 7 will be satisfied between Rv and the latest scheduled run Ru of
the same class in S (if Ru exists).

5. If there are two or more jobs from the same class with the same pi[j]�wi[j] ratios, then there is an
optimal solution in which all such jobs appear consecutively.

6. Consider a partial sequence S, and let the last run in S be Rv, this run containing jobs of some
class i. Let nk be the number of jobs of class k which appear in S, 0 � nk � Nk, and assume without

FIGURE 2.26 An illustration of the cascade lower bound. 
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loss of generality that these are the first jobs nk jobs of class k. Let a class  belong to set U
if nk � Nk, this being the set of classes that currently contains unscheduled jobs. If partial sequence
S is such that

(2.46)

then if ni � Ni, job  must be appended next to S. If ni � Ni, partial sequence S cannot be
optimal.

Some explanation of Rule 6 is necessary. The bracketed expression in (2.46) is the WMPT of a run
formed of all unscheduled jobs of class k (k � U). Such a run satisfies Rule 1, and has the maximum
WMPT of any run of class k jobs that satisfies this rule. If ni � Ni, Tv/Wv cannot be reduced by addition
of class i jobs. Let k� be the class providing the minimum in (2.46). It is not possible to schedule the
remaining class k� jobs so as to satisfy Rule 1 and Theorem 6; hence, S is sub-optimal.

Branch-and-Bound Approaches

The branch-and-bound approach to 1�si��wC developed by Mason and Anderson utilizes Dominance Rules
1 to 5 in combination with their lower bound. Lower bound values are used to direct the search, and pruning
of branches is undertaken with the use of the dominance rules as well as upper bounds calculated from
complete schedules. Mason and Anderson study the performance of both this algorithm and a similar
algorithm that makes use of the dominance rules and upper bounds alone (a depth-first search algorithm).

Crauwels, Hariri, Potts, and Van Wassenhove build upon Mason and Anderson’s work and study a
very similar branch-and-bound algorithm that utilizes their Lagrangian relaxation-based lower bound,
Dominance Rules 1 to 6, and a further dominance rule (to be described shortly). The same authors also
study a branch-and-bound algorithm that is significantly different from that of Mason and Anderson.
We will not deal with this latter approach here, as data provided by Crauwels et al. illustrates that the
Mason and Anderson-type approach gives superior performance. Neither will we consider the approach
taken by Sahney [72] (see also [73]) for the special case where only two classes are to be scheduled. 

Mason and Anderson observe that the SWPT-within-classes rule implies that when extending partial
sequences of jobs, we need only choose the class of job to schedule next. The actual job scheduled will
be that with the lowest value of weighted processing time of all jobs yet to be sequenced. In addition,
Crauwels et al. note that two jobs ai[j] and ai[k]that belong to the same class and have identical weighted
processing times can be formed into a single “composite job” with weight wi[j] � wi[k] and processing time
pi[j] � pi[k]. This can be done as an alternative to direct utilization of Rule (5) in the sequence construction
process. The optimal sequence for an instance with such composite jobs is also optimal for the original
instance with the relevant jobs scheduled separately. We will assume that this pre-processing to form
composite jobs has been carried out. 

In the Mason and Anderson branch-and-bound algorithm for 1�si��wC, each node in the search tree
is associated with a partial sequence corresponding to the first part of the schedule. This partial sequence
is extended as the search branches from parent nodes to a child nodes. Complete sequences are generated
at the lowest levels of the search tree. The elimination of branches that cannot lead to optimal sequences
is enabled through comparison of lower bounds to upper bounds and by application of dominance rules.
Clearly, the flowtime of a complete sequence provides an upper bound on the optimal flowtime. 

In addition to upper bounds and Rules 1 to 6, Crauwels et al. also use what they term a “dynamic
programming dominance rule.” This rule can be applied to eliminate a node representing a partial
sequence S1 if (1) another node exists whose partial sequence S2 contains the same jobs, (2) S1 and S2

share the same last job, (3) the completion time of this last job is no more in S2 than it is in S1, and
(4) the weighted flowtime of S2 is no greater than that of S1. 

k i�

Tv

Wv

------- min
k U�

sk pj�ni�1 k j[ ]�Ni

�

w
Ni

j�ni�1 k j[ ]�
---------------------------------------------

 
 
 
 
 

�

ai ni�1[ ]
© 2001 by CRC Press LLC



The partial sequence at the root node of the search tree is empty, and branching from this node may
be up to B nodes, one for each class in the instance. At these first-level nodes, a run of the appropriate
class is formed. The run is constructed according to Rule 1, this rule governing the minimum size of a
run. It is clear that a new node need not be added each time a single job is appended to a partial sequence;
rather, new nodes are generated only when alternative sequencing decisions arise. 

When expanding from a parent-node deeper in the search tree, formation of a child-node may be
considered for each class with unscheduled jobs. “Immediate” elimination of some of these “potential”
nodes may be possible, if Rules 3 and 4 are not satisfied. When branching to child-nodes not eliminated
by the above, the partial sequence of the parent-node is extended, and Rules 1, 2, and 6 are relevant when
extending partial sequences. If the child-node is not eliminated as sub-optimal during the extension of
the partial sequence, a lower bound for a complete sequence beginning with the child-node’s partial
sequence can be calculated. Further elimination may be possible if the lower bound at a node exceeds
the current upper bound.

Mason and Anderson explain that the branching strategy used within their algorithm can be termed
“restricted flooding” and refer to the description of this approach provided by Rinnooy Kan [71]. When
choosing the “path” to take when branching from a parent-node, the branch corresponding to the least
lower bound is chosen and this child-node becomes the next parent-node. If a particular child-node is
fathomed, the search returns to its parent-node and, if possible, expands the branch corresponding to
the next-best lower bound. Otherwise, the search backtracks to the next-highest level, etc.

In Mason and Anderson’s implementation, upper bounds are only calculated from complete sequences
generated at the lowest levels of the search tree. In the implementation by Crauwels et al., an initial upper
bound is also determined, using a heuristic solution. Furthermore, Crauwels et al. use a procedure for
generating upper bounds at intermediate nodes. Potentially, this acts to further prune the search tree, as
tighter upper bounds are located sooner. In the Crauwels et al. lower bound, Lagrange multipliers (for
the lower bound) are obtained from feasible schedules, and the closer to optimal the feasible schedule, the
tighter the lower bound can be expected to become. Thus, as the upper bound is associated with the
best-known feasible schedule, calculation of upper bounds at intermediate nodes has a second important
function in the Crauwels et al. implementation. 

Both Mason and Anderson and Crauwels et al. provide results of computational testing. Mason and
Anderson generate 100 instances for each possible combination of number of jobs N � {10, 20, 30} and
number of classes B � {1, 2, , 30}. A uniform distribution was used to give the number of jobs in each
class (Ni), subject to the constraint that . In comparison, the main set of instances used
by Crauwels et al. has N � {30, 40, 50} and B � {4, 6, 8, 10} with each class receiving either  or

 jobs. The sample size utilized by Crauwels et al. was 50 instances per combination of B, N and
range of setup times (see below). Further dissimilarity in test conditions is seen in choices of ranges of
processing times, setup times, and weights. Mason and Anderson set all weights to one, while Crauwels et
al. distribute weights uniformly over [1, 10]. Both sets of authors distribute processing and setup times
uniformly, yet different ranges are utilized, as seen in Table 2.16.

Fortunately, the testing carried out by both sets of authors is extensive and a number of conclusions
can be drawn directly from each set of published results. We are most interested here in the size of the
search tree, measured by the average number of nodes (ANN), and the average computation times (ACT). 

As noted by Mason and Anderson, the maximum possible number of nodes in a search tree for the 1� si��wC
problem is given by , this being the number of schedules satisfying the SWPT-within-classes
rule only. By considering the potential magnitude of this number, it is evident that effective pruning of
the search tree is vital. This pruning is facilitated by the dominance rules and lower bound strength.

The ANN is an excellent measure of the extent of pruning and thus the power of the dominance rules
and lower bounds. ANN data reported by Crauwels et al. allows us to gauge the relative strength of the
Mason and Anderson lower bound in comparison to the Crauwels et al. lower bound. The ANN for the
branch-and-bound algorithm incorporating the Crauwels et al. lower bound is typically far less than that
for the otherwise identical algorithm using Mason and Anderson’s lower bound; Fig. 2.27 illustrates this
for the “medium” range of setup times.

…
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From data provided by Mason and Anderson, it is possible to indicate the extent to which utilization
of their lower bound assists in pruning the search tree, compared to the pruning possible in the depth-
first search procedure, which applies dominance rules only. In Fig. 2.28 it is seen that the lower bound
(in the branch-and-bound algorithm) does help to decrease the size of the search tree, yet it is also evident
that the dominance rules account for much of the search tree pruning. The data in Fig. 2.28 relates to a
“medium” range of setup times.

TABLE 2.16 Processing Time and Setup Time Ranges Used in 
Branch-and-Bound Algorithm Testing

Author Processing Times Setup Times

Mason and Anderson [1, 100] ‘Small’ [0, 10]
‘Medium’ [0, 100]

Crauwels et al. [1, 10] ‘Small’ [1, 5]
‘Medium’ [1, 10]
‘Large’ [2, 20]

FIGURE 2.27 Ratio of branch-and-bound ANN values for the “medium” range of setup times (plotted from data
provided in [22]).

FIGURE 2.28 Ratio of branch-and-bound (B&B) and depth-first-search (DFS) ANN values (plotted from data
provided in [59]).
© 2001 by CRC Press LLC



Mason and Anderson’s article contains a more extensive analysis of such data. An interesting result is
that for the “small” range of setup times, the difference in search tree sizes is more pronounced. Mason
and Anderson conclude that the reason for this effect is that reducing the ratio of setup to processing
times ( ) weakens the dominance rules. This hampers the depth-first search procedure more severely than
it does the branch-and-bound (which can rely on the lower bound for pruning). For both algorithms, the
reduction in the value  and the associated weakening of the dominance rules leads to increased problem
difficulty, as measured by both search tree sizes and computation times.

ANN data supplied by Crauwels et al. follows the same trend: reduction in  leads to an increase
in ANN. As observed by Crauwels et al., when setup times are large in comparison to processing times,
the “splitting” of a class into many runs is very expensive; thus, there will be a tendency to schedule most
jobs of a class together and the combinatorial characteristics of the problem are reduced. In contrast,
low values of  make multiple runs more attractive.

Consideration of Figs. 2.27 and 2.28 together illustrate the idea that application of strong dominance
rules and tight lower bounds can lead to successful branch-and-bound approaches to scheduling
problems.

The increased restriction of search tree size by the Lagrangian lower bound does not necessarily lead
to shorter branch-and-bound computation times, due to the greater computational effort required in
calculating this lower bound. Certainly, the Lagrangian lower bound can be time-consuming when the
durations of tasks in the instance are distributed over a large range (due to the O(NT) bound). 

However, when setup and processing times are at most 10 time units, the Crauwels et al. algorithm is
on average at least as fast as the Mason and Anderson algorithm for 29 of the 36 problem sets tested with 30,
40, or 50 jobs (i.e., for all setup time ranges), according to ACT data reported by Crauwels et al.* The algorithm
equipped with the Mason and Anderson lower bound is faster on average for seven of the problem sets,
and each of these has the smallest number of classes in the test program (four classes). The Crauwels
et al. algorithm has an ACT of less than 1 second in all except two of these seven problem sets.

Fig. 2.29 clearly illustrates the relative “explosion” of average computation times experienced by the
Mason and Anderson algorithm as N or B is increased. The maximum reported ACT for the Mason and
Anderson algorithm is 68.9 seconds for problems with N � 50, B � 10, and “small” setup times. In contrast,
the maximum reported ACT for the Crauwels branch-and-bound algorithm when applied to a 50 job
problem was 2.6 seconds (“small” setup times, B � 8). It is obvious that the Mason and Anderson lower

FIGURE 2.29 Ratio of branch-and-bound ACT values for the ‘medium’ range of setup times (plotted from data
provided in [22]).

*To the best of our knowledge, the data reported here will appear in the article by Crauwels et al.
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bound exerts far too little control over the search tree size as N increases. This makes the branch-and-bound
algorithm incorporating this lower bound very unattractive for N larger than 50.

Distributing processing and setup times over a “wide” range will have quite an adverse effect on observed
computation times for the Crauwels et al. lower bound. Essentially, an increase by some factor K in mean
setup time  and mean processing time  (i.e., mean task duration) should lead to a proportional increase
in lower bound running time. This will, in turn, affect the running time of the algorithm (measured by ACT).

Figure 2.30 has been constructed using data provided by Crauwels in a personal communication. For
this plot, instances have been generated with “medium” setup times, and all times in the instance are
scaled up by the chosen value of K. The ACT ratio is the value of ACT at some scaling factor K divided
by the value of ACT in the case where K � 1. It is seen in this figure that there is indeed a strong
relationship between the scaling factor and the algorithm running time, with the number of classes B
also affecting the relationship. Associated ANN data (not plotted) shows that the ANN does not show
significant variation with K. This suggests that problem difficulty is not affected by scaling.

Dynamic Programming Approaches

Dynamic programs proposed for the more general 1�sij��wC problem can evidently be used to solve the
1�si��wC problem, given that sequence-independent setup times are a special case of sequence-dependent
setup times. Thus, each of the dynamic programs noted in Section 2.3 could be utilized for 1�si��wC,
with the most efficient of these approaches requiring  time.

Heuristic Approaches

Both Gupta’s heuristic ([39], Section 2.3) and Ahn and Hyun’s heuristic ([3], Section 2.3) can be utilized
to solve the 1�si��wC problem once minor modification is made to cater for job weights in the
objective. Furthermore, a number of heuristics have been specifically developed for the problem with
sequence-independent setup times. Of most interest here are the genetic algorithm devised by Mason
[58] and the local search heuristics developed by Crauwels, Potts, and Van Wassenhove [23]. We will
discuss each of these heuristics within this section, in order to complete our investigation into common
algorithmic methods for solving machine scheduling problems with setup times.

As observed in Sections 2.2 and 2.3, local search heuristics seek optimal schedules by iteratively
modifying complete sequences. The search continues until a prespecified termination criterion is fulfilled;
for example, a maximum number of iterations is exceeded. It should be noted that a search heuristic can
usually be credited only with a pseudo-polynomial running time bound, particularly if the maximum
number of iterations is not predetermined.

FIGURE 2.30 Effect of mean task duration scaling on branch-and-bound performance, plotted from data provided
by Crauwels.
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Crauwels, Potts, and Van Wassenhove develop tabu search, simulated annealing, and threshold accepting
heuristics for the 1�si��wC problem. Two different neighborhoods for these heuristics are investigated by
Crauwels et al., these being the shift sub-batch neighborhood and the shift job neighborhood. The shift
sub-batch neighborhood is identical to that used by Ahn and Hyun within their heuristic for 1�sij��wC
(Section 2.3). The shift job neighborhood is a smaller neighborhood, where alternative sequences are
produced by either shifting the last job of a run to the beginning of the next run of the same class, or the
first job of a run to the end of the previous run of the same class. SWPT ordering of jobs is preserved by
all moves in both neighborhoods, while SWMPT ordering of runs and the extended SWPT rule may not be.

Two processes are used to generate seed schedules in the Crauwels et al. local search heuristics. The
first is an adaptation to the 1�si��wC problem of Gupta’s greedy heuristic for 1�sij��wC (as described in
Section 3.3). A schedule is produced using the modified Gupta heuristic, and then runs are sorted in
SWMPT order to produce a better schedule. This schedule will satisfy both the SWPT-within-classes rule
and SWMPT rule for runs (and our own computational testing shows that these seed schedules are
typically within 6% of the optimal solution).

For multi-start implementations of the local search heuristics, further seeds are generated using a
second process. In this, the jobs of a class are first sorted into SWPT order. Each job is considered in
turn and a decision made randomly as to whether the job will constitute the last job in a run; Dominance
Rule 1, presented earlier, is used to prohibit certain jobs from being the last in a run. The runs thus
formed are then arranged into a sequence that satisfies the SWMPT rule and that does not contain
adjacent runs of the same class.

The primary differences between the Ahn and Hyun heuristic and each of the three local search heuristics
developed by Crauwels et al. are seen in the methods used to accept modified sequences. Ahn and Hyun’s
descent heuristic accepts the first move found that strictly improves the flowtime. Such moves may be called
improving moves, and can be compared to deteriorating moves, which worsen the value of the objective
function, and neutral moves, which generate a new sequence that has the same objective function value as
the sequence it replaced. Descent heuristics have no ability to escape from local optima because they only
accept improving moves. Search heuristics that can accept deteriorating moves do exhibit this ability. 

For any deteriorating move, there is a corresponding improving move that reinstates the previous
sequence. Thus, it is insufficient to simply alter a descent heuristic so that it accepts deteriorating moves
when no improving moves are possible (as a deteriorating move will often be “undone” on the next
iteration). If deteriorating moves are to be accepted, more intelligent modifications to descent heuristics,
such as those found in a tabu search heuristic, are required.

Essentially, a tabu search heuristic “remembers” which deteriorating moves have been undertaken, and
disallows their reversal; that is, such “reversing moves” are tabu. The memory of a tabu search heuristic is a tabu
list. There exist many different strategies for constructing and maintaining tabu lists; some issues to be considered
are the method by which moves are characterized, the length of the tabu list (i.e., how far back it remembers),
and the way in which the tabu list is maintained and referenced by the heuristic. Readers are referred to the
tutorial papers by Glover ([34],[35]), which discuss the features of tabu search heuristics at greater length.

Crauwels et al. investigate a number of variants of tabu search heuristics for the 1�si��wC problem.
Using some initial computational testing, they select a particular variant as most successful, and use it within
their major computational testing which compares the different local search approaches. This tabu search
heuristic uses the shift job neighborhood, has multiple starts (N/3 seed schedules), and uses a tabu
list that prevents moves which shift certain jobs. After a move is carried out, the job that was moved is
recorded at the beginning of the tabu list, and ordinarily cannot be moved again within a certain number
of moves (when N � 70, this is approximately 7 moves, as the tabu list is 7 jobs long). The primary
stopping rule used in the Crauwels et al. tabu search heuristic allows 2N iterations to be performed. The
SWPT-within-classes rule is always preserved during the operation of the heuristic. A partial reordering
of runs according to SWMPT order is undertaken after each move, yet SWMPT order will not necessarily
be present throughout as a reordering of runs containing only one job might correspond to an execution
of moves that are tabu.
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The simulated annealing and threshold accepting heuristics use an alternative acceptance strategy.
Unlike tabu search, which accepts the best improving move or a least-worst deteriorating move on any
iteration, any moves can be accepted in simulated annealing (with a certain probability favoring improving
moves), while deteriorating moves are undertaken in threshold accepting as long as the increase in the
objective function value is not in excess of the threshold value. In [26], Eglese discusses many relevant
aspects of simulated annealing heuristics, and Dueck and Scheuer [26] introduce threshold accepting
heuristics and report on their success in solving the TSP with such an algorithm.

Acceptance probabilities for deteriorating moves in simulated annealing algorithms commonly take
the form p(�) � exp(��/T), where � is the increase in objective function due to the move (for minimi-
zation problems) and T is the temperature parameter (the “simulated annealing” term literally arises from
the original application, that being simulation of metal annealing processes). It is clear from this probability
function that all neutral and improving moves are to be accepted.

Higher temperatures increase the chances that a particular deteriorating move will be accepted. By
varying the temperature during the progress of a simulated annealing algorithm, control is gained over
the balance between diversification of the search into new areas of the solution space and concentration
of the search in the current area. Particular simulated annealing algorithms are characterized by the
schemes used to vary the temperature. The most successful scheme for the 1�si��wC problem appears to
vary the temperature in a periodic manner (which is specified within the article by Crauwels et al.). This
is in contrast to the more common procedure of decreasing the temperature throughout the process.

Computational results of Crauwels et al. also show that the shift sub-batch neighborhood, in combination
with multiple seed schedules, yields the most promising performance for simulated annealing heuristics.
In the preferred (multi-start) simulated annealing heuristic for 1�si��wC, up to 2N/R complete passes are
made through the sequence (R being the number of starts, R � 4 being chosen for testing), and at each
point all moves in the neighborhood are assessed and potentially carried out. The temperature variation
scheme is such that temperature is altered on each new pass through the sequence. The threshold value
used for acceptance of deteriorating moves in the threshold accepting heuristic is varied in a similar
periodic manner within the Crauwels et al. implementation. The simulated annealing and threshold
accepting heuristics proposed by Crauwels et al. differ only in the acceptance criteria used.

There is considerable difference between the local search heuristics of the above type and evolutionary
algorithms. We will use the example of the 1�si��wC problem to illustrate some of the issues and considerations
relevant when applying the concept of evolutionary algorithms to machine scheduling problems.
Although the concept of evolutionary algorithms is simple, a thorough discussion of their application
requires an analysis far more extensive than that able to be undertaken here (e.g., see Mattfeld [60] or
Michalewicz [61]).

A major task in the development of a genetic algorithm for a machine scheduling problem is the
determination of an appropriate and effective genotype, as well as a scheme that translates a chromosome
into a schedule (as a whole, we will call this an encoding for the problem). It can be appreciated that a
chromosome definition should allow representation of at least those schedules which satisfy known
dominance relationships for the problem; otherwise, we may unwittingly exclude optimal solutions from
the search space. It can also be suggested that all possible schedules should be able to be represented by
chromosomes. However, allowing all possible schedules to be represented can lead to an inefficient search,
as much of the known structure of the problem may be ignored (in fact, it is difficult to formulate genetic
algorithms that make good use of problem structure, this being a valid criticism of these methods).

Mason investigates three encoding schemes for 1�si��wC that use dominance relationships to varying
degrees. All three schedule in accordance with the SWPT-within-classes rule. Computational results
provided by Mason show that, without question, the most successful coding scheme (class-run decoding)
is that which more fully utilizes the known problem structure. In the class-run decoding method, all
the required information for forming runs of a particular class is found in a continuous section of
chromosome; gene information indicates which jobs should begin a new run of their class. Runs are
formed using the encoded information and then arranged in SWMPT order to generate a schedule (i.e.,
the phenotype of the individual).
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Dominance Rule 1 for the 1�si��wC problem, which governs the “minimum size” of a run, plays an
essential role in both the definition and decoding of a genotype in the class-run coding scheme. Rule 1
enables us to determine which jobs must be part of the first run in an optimal schedule, and further, the
minimum number of jobs to be assigned to a run starting with any job ai[j]. Define �min (ai[j]) as the
minimum number of jobs in a run of class i which begins with job ai[j (assuming jobs are sequenced
according to the SWPT-within-classes rule, and indexed in SWPT order), so that:

and �min (aij) � Ni � �j � 1 if no value of k satisfies the inequality.
We can calculate �min(ai[1]) for each class i, and assign ki �Ni � �min(ai[1]) genes in a chromosome to

class i. The total length of a chromosome will be given by . Genes may be viewed as instructions for
the construction of runs, and take binary values (i.e., 0 or 1). An allele of 0 indicates that the next
unallocated job should be added to the run currently under construction, and an allele of 1 indicates
that the next unallocated job should begin a new run. These instructions are followed from the start of
the relevant chromosome section onward, and when dealing with some class i, we first construct a run
R[1] beginning with ai[1] and containing �2 � �min(ai[1]) jobs. The first gene is then consulted. If an allele
of 0 is present, the next unallocated job  is added to R[1]. Otherwise, if this allele is 1, 
begins a new run (R[2]) containing �2 � �min( ) jobs, that is, jobs  to . The next
instruction is obtained from the following gene, etc., until all jobs have been assigned to runs.

Figure 2.31 illustrates this chromosome decoding process, for an example instance given by Mason
which has all job weights set to 1. We are concerned with run construction for some class i in the instance,
this class having 8 jobs and a setup time of 4. As shown in the included table, �min(ai[1]) � 2, so that 6
genes of the chromosome are allocated to this class.

It is clear from Fig. 2.31 that the decoding scheme is such that genes near the end of the chromosome
section may be not used in run construction on some occasions. This redundancy of genes is not ideal,
and it can also be noted that the some sequences can be represented by more than one genotype. The
class-run coding scheme is quite problem specific, taking advantage as it does of many particular attributes
of the 1�si|�wC problem. The nature of machine scheduling problems is such that this specialization is largely
unavoidable when attempting to construct efficient heuristics. Interestingly, any sequence is feasible for
the 1�si��wC problem, as long as it contains every job once and once only. When solving more complex
problems, the means by which infeasible solutions are either discarded, penalized, or repaired is an
important issue that needs to be addressed.

Specification of a chromosome representation and chromosome decoding is one major aspect of
genetic algorithm development for machine scheduling problems. The wise selection of reproductive and
mutative processes is also of great importance when developing effective genetic algorithms for these
problems (we will discuss only the former here). 

Reproduction in genetic algorithms for combinatorial problems can be a complex issue. Essentially,
parent individuals “mate” and generate offspring, these offspring combining elements of the genotype
of both parents. The basis of a reproductive process in a genetic algorithm is the crossover operator. Some
simple and common crossover operators are shown in Fig. 2.32. For each operator shown, the crossover
point (or points) are determined at random and the genetic material for the offspring copied from that
of the parents (alternatively at either side of the crossover point). 

Although Fig. 2.32 illustrates crossover in a case where alleles are binary, these principles also apply
for the allele “alphabets” of greater cardinality that are commonly used in machine scheduling problems.
However, more complex crossover operators (such as order-based crossover operators, devised by Davis
[24]) can yield better results in these cases. 
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Appropriate choice of crossover operator can greatly affect the performance of a genetic algorithm.
Likewise, the method used to select individuals for passing on to the next generation (the “selection
scheme”), as well as factors such as mutation rate, can also affect genetic algorithm performance
significantly. Clearly, experimental trials can be used to identify the most promising variants of a genetic
algorithm. Using this approach, Mason identifies one-point crossover as a successful operator for the
1�si��wC problem using class-run encoding. Other important specifications of Mason’s successful
class-run-encoded genetic algorithm are: a population of 50 individuals, an “elitist” strategy for selecting
the next generation, a mutation probability of �m � 0.001, and a crossover probability of �c � 0.6 (this
being the probability that crossover will be applied to a selected individual; a value of 0.6 is a common
choice in the literature). 

FIGURE 2.31 Examples of chromosome decoding in Mason’s genetic algorithm using the class-run coding scheme.

FIGURE 2.32 An illustration of three common crossover operators. The resulting offspring obtains a chromosome
formed of the shaded sections in the parent chromosomes (diagram adapted from Mattfeld [60]).
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Crauwels et al. report on extensive computational testing of the search heuristics outlined above.
The branch-and-bound algorithm (of Crauwels, Hariri, Potts, and Van Wassenhove [22]) described earlier
is used to provide optimal solutions. Processing times, weights, and setup times are generated for test
instances in a manner identical to that followed for evaluation of the branch-and-bound algorithm
(including the use of “small,” “medium,” and “large” ranges of setup times). Tested combinations of
N and B are given in Table 2.17. At each level of B, N and range of setup times, 50 test problems were
generated.

An important result made clear by the reported test data from Crauwels et al. is that each of the local
search methods can be adapted to provide a heuristic for the 1�si��wC problem that exhibits very good
objective function performance at acceptable computation times. On average, it is the tabu search
algorithm that is most effective over the range of instances solved. This is illustrated by the “grand
averages” shown in Table 2.18, this data obtained from Tables 5 and 6 of the article by Crauwels, Potts, and
Van Wassenhove [23].

In Table 2.18, NO refers to the number of optimal solutions found (out of 50 test instances), while
MPD and ACT refer to the maximum percentage deviation and average computation time, respectively.
DS(N/3), SASP(4), TASP(4), and TSJJ(N/3) are the previously described “preferred” versions of the Ahn
and Hyun heuristic, simulated annealing, threshold accepting, and tabu search heuristics, respectively.
The number of starts given to each heuristic is shown in parentheses. GA(2) is Mason’s genetic algorithm
with class-run encoding and 2 starts. Fig. 2.33 illustrates the performance of the search heuristics for the
largest instances solved by Crauwels et al. 

Crauwels et al. are able to conclude that their tabu search heuristic is the most effective when the
number of classes is relatively small, while for larger values of B Mason’s genetic algorithm tends to
perform better. We note their concluding observation that a hybrid method that invokes tabu search for
low B/N values and the GA for high B/N values should provide quality solutions over a wide range of
1�si��wC instances. 

We note at this point that much caution is required when “extrapolating” results of computational
studies involving search heuristics for a particular problem to other problems, or even alternative data
sets for the same problem. The performance of search heuristics is affected by neighborhood choice,
choice of search parameters such as temperature and number of starts, and the structure of the problem.
A search method that performs well for one problem may or may not be equally successful when adapted
to a different problem. 

Finally, we note other heuristic approaches to the single machine flowtime problem with sequence-
independent setup times. Williams and Wirth [78] provide an O( ) constructive heuristic for the problem,
which is shown to provide reasonable performance for the 1�si��C problem when compared to Gupta’s
heuristic. Descent heuristics are also provided by Baker [6], Dunstall, Wirth, and Baker [27], Mason
[58], and Crauwels, Hariri, Potts, and Van Wassenhove [23]. The latter heuristic is used to provide both
an initial upper bound and a set of Lagrange multipliers for use within the branch-and-bound algorithm
discussed earlier.

TABLE 2.17 Combinations of B and N Tested by Crauwels, Potts, 
Van Wessenhove

Number of jobs N 40, 50 60, 70 100
Number of classes B 4, 6, 8, 10 4, 8, 15 4, 6, 8, 10, 15, 20

TABLE 2.18 Summary of Heuristic Performance for the 1|si|�wC Problem

DS(N/3) SASP(4) TASP(4) TSJJ(N/3) GA(2)

Problems NO MPD ACT NO MPD ACT NO MPD ACT NO MPD ACT NO MPD ACT

N�40 to 70 45 0.08 8.3 45 0.1 8.2 43 0.1 8.5 48 0.05 5.1 43 0.2 8.4
N�100 39 0.06 71.1 37 0.09 57.8 27 0.01 54.1 42 0.05 44.7 31 0.19 54.4

N4
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Flowtime Problem Extensions

Static flowtime problems on single machines with setup times have attracted attention from a number of
researchers. Details of many of the important approaches to such flowtime problems with sequence-dependent
and sequence-independent setup times models have been discussed.

Clearly, algorithms for the 1�sij��wC problem can be used to solve any problem incorporating the
major–minor setup times model. Nevertheless, Liao and Liao illustrate that the special structure of the
1�si:si��wC problem can be exploited to provide efficient heuristics specifically tailored for this problem.
These authors propose a novel heuristic approach to the problem that iteratively uses dynamic programming
to solve subproblems with two classes or sub-classes only. This heuristic has a polynomial running-time
bound, and over a range of test problems exhibits acceptable computation times (on the order of a few
seconds) and excellent objective function performance. In addition, Nowicki and Zdrzalka [64] formulate
a “general” tabu search algorithm for static single machine problems with regular objective functions,
sequence-independent major setup times, and “weakly” sequence-dependent minor setup times; a minor
setup time of fixed duration s is required between jobs of the same class if the job being switched to has
a lower index. Nowicki and Zdrzalka report encouraging computational experience with weighted
tardiness and maximum weighted lateness objectives. 

The assumption of static job availability is restrictive, yet unfortunately little research has been carried
out on flowtime problems with setup times and dynamic job arrivals. Research efforts in this direction will
thus make worthwhile contributions to the machine scheduling field. Although the 1�ri[j], si��C problem
(for example) can be expected to be significantly more difficult to solve than the 1�rJ��C or 1�si��C problems,
research into these “simplified” problems can be drawn on to assist study of the more “advanced” dynamic
problem with setup times. This is a continuing area of interest for the authors. Similarly, there are a number
of other aspects of practical scheduling problems that have not yet been addressed in the literature pertaining
to the scheduling of single machines with setup times and the flowtime or makespan objective.

FIGURE 2.33 Search heuristic computational results for 100 job instances with a “medium” range of setup times
(plotted using data published in [23]).
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2.4 Summary

Section 2.3 considered a range of machine scheduling problems with setup times. Through the study
of these problems, we have illustrated the way in which knowledge of the “structure” of machine
scheduling problems can be developed using mathematical analysis, and have shown adaptations of
many common algorithmic methods to the solution of problems with setup times. Each of the models
of setup times introduced in Section 2.2 have been represented in the set of problems studied. Furthermore,
the approaches to problem analysis and solution described in Section 2.3 are highly representative of
those commonly found in scheduling research. Thus, we believe that we have achieved the goals set
forth in the introduction (Section 2.1). 

We have not addressed problems with multiple machines, and have not looked in detail at objective
functions that are directly concerned with the due date performance of jobs. This we can accept as a
criticism; yet by concentrating on single machines and a restricted set of objectives, we hope to have
conveyed with increased clarity the way in which machine scheduling problems with setup times can be
formulated, analyzed, and successfully solved. 

There can be no doubt as to the important and necessary role that effective scheduling plays in enabling
the best utilization of limited resources such as time, labor, and machine capacity. It is also clear that
scheduling is a complex activity that is often very difficult to undertake effectively. Mathematical scheduling
approaches provide methods and analyses that can be extremely valuable in the practical scheduling processes
undertaken throughout commerce and industry. 

The ongoing challenge for scheduling research is to increase the relevance of  “mathematical scheduling
theory” to “practical scheduling problems.” Although not discussed at length in this chapter, exploration
of new means of incorporating mathematical scheduling methods into processes for in-practice scheduling
represents one important aspect in this quest. This relevance can also be increased by deploying math-
ematical scheduling techniques in the solution of problems with greater practical applicability. Setup
times are prominent features of many practical scheduling problems. Thus, when attempting to bridge
the gap between scheduling research and practical scheduling problems, analysis of machine scheduling
problems with setup times is of crucial importance.
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Classification of NC Milling Machines • The Need for 5-Axis 
Machining • Components of a 5-Axis Machine

3.2 Kinematics of a 5-Axis Milling Machine
Forward Kinematics of a Tilt-Rotary Table Type 5-Axis Milling 
Machine • Inverse Kinematics of a Tilt-Rotary Table Type 5-
Axis Milling Machine • Forward Kinematics of a Wrist Type 
5-Axis Milling Machine • Inverse Kinematics of a Wrist Type 
5-Axis Milling Machine

3.3 Surface Machining
Tool Path and Trajectory Planning • Tool Positioning • Tool 
Path Simulation, Verification, and Correction

3.4 Conclusion

5-Axis machining offers several advantages over the traditional 3-axis machining in producing complex
sculptured surfaces; it reduces the machining time and improves the surface finish. This chapter provides
a comprehensive review of the main issues in this new technology. It presents a unified approach to
describing the kinematics of typical 5-axis machine configurations. It also provides a state-of-the-art
review of current research issues, including tool path planning, tool positioning strategies, tool path
simulation and verification, and gouge detection and correction.

3.1 Introduction

Computer numerically controlled (CNC) machining is utilized extensively in producing parts with
complex sculptured surfaces. It is used indirectly to produce these parts, by machining the dies and
molds in which they are drawn or cast, or directly in the production of specialized parts such as turbine
blades. In all cases, the workpiece surface data, generated in a computer aided design (CAD) package
is passed to a computer aided manufacturing (CAM) package or module to generate the tool path.
Traditionally, these surfaces have been produced on 3-axis machines using ball nose cutters. It has
been demonstrated by many researchers, including the present authors, that switching from 3-axis to
5-axis technology can result in substantial savings in machining time, coupled with improved surface
finish.

Because of the potential for improved productivity, the interest in 5-axis machining has escalated in
the past decade. Yet the authors are not aware of any single publication that offers a comprehensive review
of this subject. This chapter is an attempt to accomplish this task. Our knowledge in the field of 5-axis
machining has been gained through working experience in the field and reading as many as possible of
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the numerous publications in the literature. The list of references at the end of the chapter is but a small
sample of the available body of work.

The first part of this chapter provides the reader with the essentials to better understand 5-axis
machining technology. It includes the salient features that distinguish 5-axis from 3-axis machining. The
chapter also gives a uniform presentation of the kinematics of the two most common 5-axis machine
configurations. Knowledge of these kinematics is crucial to the proper implementation of the concepts
presented in this chapter and those in the literature.

The second part of the chapter reviews some of the cutting-edge research in 5-axis surface machining.
These include new tool path planning and tool positioning strategies to improve surface finish and reduce
production time, techniques for tool path simulation and verification, and algorithms for gouge detection
and avoidance. In particular, it highlights the recent efforts at the University of Waterloo by the present
authors in the above areas. 

Classification of NC Milling Machines

CNC milling machines are usually described by the number of axes of motion. A 3-axis milling machine
is capable of moving a cutting tool in three directions relative to the workpiece. Through the use of ball
nose end mills and special fixtures, these machines are very flexible and can be used for low- and high-
volume manufacturing. A 5-axis milling machine can position a tool in three-dimensional space and control
its orientation. They are especially useful for low-volume, high-complexity parts. Moving from 3-axis to
5-axis machine tool technology means much more than adding two rotational axes to a 3-axis machine.
5-axis machining requires a considerable investment in the cost of the 5-axis machine itself. Equally impor-
tant is the extra training required for the personnel who program and operate these complex machines.

The investment of moving from 3-axis machining technology to 5-axis technology may seem daunting
at first. However, 5-axis machining provides flexibility and efficiency that cannot be obtained with 3-axis
milling. A 5-axis machine can produce parts with more complex geometry using a single setup without
the need for complex and expensive fixtures. Such machines can produce special geometry, eliminating
the use of specialized cutters often used in 3-axis machining. A 5-axis machine can produce many parts
which are impossible to produce otherwise, such as the highly twisted impellers found in aircraft turbine
engines. Most importantly, 5-axis machines are substantially better at producing free-form surfaces than
3-axis machines.

The Need for 5-Axis Machining

A 5-axis machine gives the cutting tool access to most features of a part without changing the machine
setup, as shown in Fig. 3.1. This is commonly known as 5-sided machining [1]. For example, a 5-axis
machine can drill holes in the sides of a part by simply rotating the part. This eliminates specialized

FIGURE 3.1 Five-sided machining.
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fixtures or setup changes which would be required to produce such parts on a 3-axis machine. In the
automotive industry, the extra positioning capability can be used to produce parts with odd geometry,
such as cylinder port ducts and engine blocks. 5-axis machines can also produce flat surfaces at arbitrary
orientations by tilting a standard flat end mill. A 3-axis machine would require a special form cutter to
produce the same geometry.

5-axis machining originated in the aerospace industry where 5-axis machines produce many of the
twisted ruled surfaces that appear in jet engine parts such as impellers. These surfaces can be machined
efficiently in one setup on a 5-axis machine using the side of the tool (the flank) rather than the bottom
of the tool. Thus, it is often called flank milling. A 3-axis machine would have to use the tool tip (point
milling) to produce the same surface and may require several different workpiece setups to machine the
entire blade. The improved accuracy of the product and substantial decrease in the production costs
more than justify the additional cost associated with 5-axis machining.

5-axis machines provide a significant advantage in free-form (sculptured) surface machining. In
traditional 3-axis machining, a ball nose end mill machines the surface using many closely spaced passes
of the cutting tool. Each pass of the tool leaves a cylindrical impression on the workpiece. These
impressions cannot reproduce a free-form surface exactly. To machine these impressions, the ball nose
end mill performs much of its cutting near the bottom center of the tool where the tangential speed of
the cutting surface is lowest, producing a poor surface finish. After 3-axis machining, hand grinding and
polishing are usually required to achieve a smooth surface. A 5-axis machine can tilt a flat end mill with
respect to the surface, which leaves an elliptical-shaped impression on the workpiece. By changing the
angle of tilt, the dimensions of this impression can be altered to provide a better approximation of the
intended surface. In addition, cutting takes place at the edge of the tilted tool where the cutting speed is
the highest, producing a better surface finish than a ball nose cutter.

Reducing the finish machining time through fewer passes of the cutting tool reduces the overall cost
of production in this very significant area in modern manufacturing. These free-form surfaces are a
common component of modern consumer goods, which are usually produced using tools and dies. The
manufacture of dies and molds is a $20 billion industry in the United States alone. The production of a
single small die can take up to 1300 hours and, of this time, about 66% is spent on CNC finish machining
and hand grinding and polishing. In this area, 5-axis machining is vastly superior to 3-axis machining
because it requires less passes of the cutting tool and produces a superior surface.

Components of a 5-Axis Machine

The four integral components of a 5-axis machining system are: the type of milling machine, the machine
controller, the CAD/CAM software, and the personnel. Not all 5-axis machining systems are suitable for
all tasks. The selection and proper utilization of equipment is critical to achieving the gains in efficiency
available through 5-axis machining.

Configurations of a 5-Axis Milling Machine

The variety of 5-axis machine configurations all have their own advantages. The most important issues
to consider are the rigidity of the system, the work volume, and the system accuracy. In addition, features
such as automatic tool changers, and feed and spindle speeds are as important in 5-axis machines as they
are in 3-axis machines. 

Rigidity is desirable in all milling machines because it increases positioning accuracy and permits
higher metal removal rates. Rigidity can be a problem with 5-axis machines because rotational joints are
usually more flexible than linear sliding joints. Generally, a more rigid machine will be more expensive.
Determining the required rigidity depends on the types of material being cut and the size of cuts being
performed. 

The working volume of the machine is also important. It is defined by the range of the joint motions.
This range of motion determines the maximum workpiece size and affects accessibility of the tool to
certain features on the workpiece. 
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Accuracy is critical in a 5-axis machine. Positioning errors in the rotational axes are magnified,
depending on distance from the center of rotation. As a result, the error associated with the machine
varies according to the position in the work volume. This phenomenon makes it difficult to predict
the expected accuracy of a workpiece. Many 5-axis machines are actually retrofitted 3-axis machines.
Misalignment of the additional rotational axes can severely impact the accuracy of the resulting
machined surface. 

The Machine Controller

A CNC machine controller controls the machine, runs G-code programs, and provides the user interface
between the machine and the operator. The controller should be capable of full 5-axis simultaneous
motion. This means that during a cutting motion, all five axes travel in a linear fashion from position
to position. For example, at the halfway point of the motion, all axes should be halfway. This ensures
that the machine will cut in a smooth, predictable fashion. Some controllers are only capable of 5-axis
positioning. In these cases, the controller will not perform linear interpolation and the axes will not move
simultaneously. This makes the controller simpler, but reduces the ability of the machine to perform
such operations as free-form surface machining or flank milling. The controller should also be able to
process data as fast as possible. For 5-axis machining of a free-form surface, many closely spaced tool
positions may be required. This could mean that over a stretch of a few millimeters, the controller may
have to change the machine position 100 times. If the controller cannot process these positions fast
enough, it will have to reduce the feed rate. This will slow down the machining process and alter the
surface finish. Controllers should also be able to lock the positions of axes for heavy cuts during 5-sided
machining operations.

CAD/CAM Software

CAD/CAM software provides the interface between the human user and the CNC machine. These
machines are programmed with the required tool trajectory using a special command set called G-codes.
These G-codes are a de facto standard in the CNC machine industry. G-code programs can be written
manually for simple parts. However, in most case CAM software is used to produce G-code programs
directly from CAD models. A CAM package typically produces a G-code program in two stages. First,
tool paths consisting of generic cutter locations (CLDATA) are generated. The CLDATA consists of a list
of tool positions in the workpiece coordinate system. The cutter locations must then be converted into
G-code programs using a post-processor specific to the NC machines that will produce the part. 

The selection of a suitable CAD/CAM package for 5-axis machining is important. Many CAM
packages are geared to two and a half dimensions. Such packages can perform simultaneous motion
in the xy plane but only positioning motion in the z direction. This is adequate for simple machined
parts. However, these packages cannot produce free-form surfaces. Many CAM packages claim to be
capable of 5-axis machining. However, the available features of these systems vary greatly. Most of
these packages can perform 5-axis positioning that is suitable for 5-sided machining. However, they
cannot perform 5-axis free-form surface machining. Some CAM packages can machine free-form
surfaces in 5 axes by placing the cutter tip on the surface and aligning the tool axis with the surface
normal. For concave surface areas, this will cause gouging of the tool into the design surface. These
packages may allow offsetting of the tool to limit gouging but at a loss in surface accuracy. The most
sophisticated CAM packages can perform tilted end milling, where the tool is tilted at an angle from
the surface normal and the tool tip is placed in contact with the surface. This provides more efficient
metal removal. However, the current state of 5-axis machining technology available in CAM packages
is lagging behind many advanced 5-axis machining techniques presented in the literature. 

In addition to CAD/CAM packages for producing tool paths, numerical verification software plays an
important role in 5-axis machining. The complex nature of 5-axis machine tool motions can be simulated
to detect possible interference problems between the machine, tool, workpiece, and fixtures. Software
can also be used to simulate the material removal process. This is particularly useful for detecting gouges.
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When gouging of the design surface is detected, the tool position must be changed to eliminate the gouge.
Material removal simulation can also be used to estimate the scallop size that will be left by the cutting
process. This helps in the determination of the optimum cutter size and cross feed.

Training Personnel 

The final component of a 5-axis machining system is the personnel who will program and operate the
machine. 5-axis machining is more complex than 3-axis machining and requires a good understanding
of the machine motion. The production of parts using 5-axis machines requires good three-dimensional
skills for visualizing and building appropriate tool paths. Thorough training in the operation of the CAM
software is important because of the multiple approaches to 5-axis machining, especially in the areas of
surface machining. Special care must be taken when setting up the machine to correctly determine tool
lengths and workpiece placement relative to the rotating joints.

3.2 Kinematics of a 5-Axis Milling Machine

The benefits of 5-axis machining arise from the ability of the machine to position the cutting tool in
an arbitrary orientation with respect to a workpiece. This ability is exploited by the authors of numerous
papers. The reader is typically shown an illustration of a tool floating in space above a workpiece. The
mechanics of actually placing a tool in the desired location is in many cases not discussed. This
phenomenon is largely due to the nature of 5-axis machining and to the nature of research. 5-axis
machining is highly dependent on the configuration of the target machine. Almost every 5-axis CNC
machine requires a different post-processor to account for the effect of the machines rotational axes.
In fact, the post-processor requires information about the workpiece setup and tooling before it can
convert generic cutter location data into specific machine-dependent G-code. Even after post-processing,
the same tool path executed on different CNC machines will produce noticeably different results. For
these reasons, this section on machine kinematics has been included in this chapter. 

5-axis milling machines are classified by the combination and order of their linear (T) and rotational
(R) axes. For example, a machine with three translations and two rotations would be specified as a TTTRR
machine. There are many possible combinations of these axes that can be used to produce a 5-axis milling
machine. However, as Kiridena [26] points out, there are in fact only three commonly used machine
configurations:

1. RRTTT: a tilt-rotary table mounted on three linear axes usually referred as a the tilt-rotary type
5-axis machine

2. TTTRR: three linear axes with the cutter oriented by two rotary axes, commonly called a wrist
type or Euler type 5-axis machine

3. RTTTR: a rotary table mounted on three linear axes and a single rotary axis for the tool

These three types of 5-axis configurations are illustrated in Fig. 3.2. The other possible configurations
such as TRTTR are generally not used because of the difficulty in designing a machine with a mixture
of rotational and linear axes that meets the stiffness requirements for a milling machine. Each of the
configurations shown has its own advantages and disadvantages. The wrist type machines are the simplest
to program, can be built to accommodate very large workpieces, but tend to be less rigid than the other
configurations. They are best suited to surface machining. Tilt-rotary table type machines excel at 5-sided
machining and tend to be stiffer than other configurations. However, they are more prone to setup error
and may not be able to accept large workpieces. 

When programming a CNC machine, the motion of each joint must be specified in order to achieve
the desired position and orientation of the tool relative to the workpiece. This is referred to as the
inverse kinematics problem. The programmer will also need to know the resulting position and
orientation of the tool for a given set of joint commands in order to verify that the tool path is correct.
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This is referred to as the forward or direct kinematics problem. The following sections describe the
forward and inverse kinematics of the tilt-rotary table type 5-axis milling machine and the wrist type
5-axis milling machine.

Forward Kinematics of a Tilt-Rotary Table Type 5-Axis Milling Machine

When modeling a tilt rotary table type 5-axis machine, it is convenient to consider the coordinate
systems illustrated in Fig. 3.3. In this figure, the machine coordinate system, Cm, is fixed to the most
positive location in the work volume of the CNC machine tool. All commands sent to the machine are in
terms of the machine coordinate system. All other coordinate systems are for human convenience. The
programmed coordinate system, Cp, is located by the vector, m, relative to the machine coordinate
system during the workpiece setup prior to machining. It is essential that this vector be set such that

FIGURE 3.2 Typical 5-axis machine configurations.

FIGURE 3.3 Kinematics of a tilt rotary table type 5-axis machine.
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the center of rotation of the tilt-rotary table is coincident with the tool tip. After this vector is set, a
command sent to the controller to move to position (0, 0, 0) in the programmed coordinate system
will place the tool tip at the center of rotation. The tilt-rotary table coordinate systems, Ctr, and the
rotating coordinate systems, CA and CC, are attached to the center of rotation of the tilt-rotary table.
Note that there are many different ways to configure a tilt-rotary table, depending on the initial position
of the rotary axes. The most basic configurations assume that the table is initially horizontal or vertical.
This analysis assumes that the table is initially horizontal. The workpiece coordinate system, Cwp, moves
with the tilt-rotary table. The workpiece offset vector, wp, gives the position of the workpiece coordinate
system relative to the tilt-rotary table coordinate systems. 

When a cutter location file is post-processed, the post-processor uses the workpiece offset vector, wp,
to convert the cutter location data into G-codes. Each G-code position command consists of X, Y, Z,
A, and C components that describe the tool position relative to the programmed coordinate system.
The tilt-rotary table coordinate systems are translated by the X, Y, and Z, commands relative to the
programmed coordinate system, and the workpiece coordinate system will be rotated by the A and C
commands about the x and z axes in tilt-rotary table coordinate systems. The CNC controller converts
commands given in the programmed coordinate system to the machine coordinate system using the
machine offset vector, m. 

To model the kinematics of the CNC machine, homogeneous transformations are used to establish
the relationship between the defined coordinate systems. For this exercise, a point, , will be ultimately
transformed from the workpiece coordinate system into the machine coordinate. The superscript on the
point will refer to the coordinate system in which the point is defined and the subscripts indicate a
particular component of the vector. The position of a point, , in the workpiece coordinate system,
Cwp, expressed in the tilt-rotary table coordinate system, Ctr, is given by:

Next, the point, , now in the tilt-rotary table coordinate system, Ctr, is transformed into the
programmed coordinate system, Cp, as follows:

Finally, the point, in the programmed coordinate system, Cp, is translated into the machine coordinate
system, Cm, using the machine offset vector, m:
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where  is the point in the machine coordinate system. By combining all the transformation matrices
together, a point in the workpiece coordinate system, , can be expressed in the machine coordinate
system by:

This transformation determines the relationship between a point in the workpiece coordinate system
and the machine coordinate system. This relationship is required in order to simulate the metal removal
on a specific CNC machine. The post-processor needs the inverse of this relationship to determine the
joint positions required to place the tool at the correct location in the workpiece coordinate system. 

Inverse Kinematics of a Tilt-Rotary Table Type 5-Axis Milling Machine

The tool path used in 5-axis machining will consist of a set of tool positions, tpos, and a corresponding
set of tool orientation vectors, taxis, in the workpiece coordinate system. The post-processor must convert
this information into angular (A, C) and linear (X, Y, Z) components to place the tool in the correct
orientation and position relative to the workpiece in the programmed coordinate system. Because the tool
orientation in a tilt-rotary type machine is fixed on the z-axis in the programmed coordinate system, the
correct orientation is achieved by rotating the workpiece about the A and C axes until the tool orientation
vector lines up with the z-axis. In other words, the tool orientation vector, taxis, is [0, 0, 1] in the tilt-
rotary coordinate system. In this way, the rotations A and C can be found by solving for A and C in the
transformation matrix. 

However, because these are transcendental equations, it is difficult to determine the correct sign of the
results.  For instance, the first row in the matrix can be used to conveniently solve for the C rotation. 

Care is needed to determine the correct sign of the result. Furthermore, a 5-axis machine can position
and orient the tool correctly in two different ways using a negative or positive A rotation. For example,
a tool orientation vector, taxis, of [0.577, 0.577, 0.577] can be achieved by A and C rotations of (45°,
54.731°) or (�135°, �54.731°). For these reasons, it is better to calculate the magnitude of the rotations
first and then determine the correct signs of the rotations based on the quadrant of the tool orientation
vector. The following algorithm determines the correct A and C values assuming the tool orientation vector
always points upward and the A rotation is always negative. Using this approach, the angle between the
tool orientation vector and the positive z-axis is:
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and the angle between the tool orientation vector and the y-axis is:

The correct angles can now be determined based on the quadrant of the tool orientation vector in the
workpiece coordinate system as shown in Fig. 3.4. 

After the rotations have been determined, the translation can be found by transforming the tool
position into the workpiece coordinate system and rotating the resulting vector by A and C. The resulting
displacements are the axis commands X, Y, Z needed to place the tool at the correct location on the
rotated workpiece and can be determined as follows:

Forward Kinematics of a Wrist Type 5-Axis Milling Machine

The kinematics of a wrist type 5-axis machine are easier to model because the workpiece coordinate
system is never rotated. Figure 3.5 shows the coordinate systems used when modeling a wrist type
5-axis milling machine. As always, the machine coordinate system, Cm, is fixed to the most positive
location in the work volume. The programmed coordinate system, Cp, is located by the vector, m, such
that the center of rotation of the wrist is initially coincident with workpiece coordinate system. The
wrist coordinate systems Cw and the rotating coordinate systems CA and CC are attached to the wrist’s
center of rotation. The tool offset vector t gives the position of the tool tip relative to the wrist
coordinate system.

FIGURE 3.4 Selection of quadrant for rotations.
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Cutter location data will be converted to G-code by the post-processor once the tool length is known.
A G-code position command sent to the 5-axis machine controller will consist of X, Y, Z, A, and C
components used to command the joints. The wrist is translated by the X, Y, Z, position command
relative to the programmed coordinate system and the tool is rotated about the wrist by the A and C
commands. These commands are converted to the machine coordinate system by the CNC controller.

Using vector algebra, the position of the tool tip, t, in the wrist coordinate system, Cw, is given by:

Similarly, the tool tip, , in the wrist coordinate system, Cw, can be transformed into the programmed
coordinate system, Cp, as follows:

Finally, the tool tip, , in the programmed coordinate system, Cp, can be transformed into the machine
coordinate system, Cm, by:

FIGURE 3.5 Kinematics of a 5-axis wrist type milling
machine.
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By combining all the transformation matrices together, a tool tip can be expressed in the machine
coordinate system by:

This transformation determines the location of the tool tip in the machine coordinate system. 

Inverse Kinematics of a Wrist Type 5-Axis Milling Machine

In the same manner as for the tilt-rotary table, the generic tool paths must be post-processed into suitable
joint commands. Again, the vector tpos stores the tool tip position and the vector taxis stores the tool
orientation. For the wrist type machine, the correct orientation is achieved by rotating the tool about
the A and C axes until the tool lines up with the tool orientation vector. These values can be determined
by solving for A and C in the set of equations given below.  

where  is the normalized tool tip vector in its initial position. However, difficulties arise in this method
because the equations are transcendental and two possible sets of rotations can be used to position the
tool. Instead, the same approach outlined in the section on tilt-rotary table will be used. The angle
between the tool negative z-axis in the workpiece coordinate system is:

and the angle between the tool orientation vector and the y-axis is:

The correct angles can now be determined based on the quadrant of the tool orientation vector in the
workpiece coordinate system as shown in Fig. 3.6. 

After the rotations have been determined, the translation can be found by translating the wrist
coordinate system along the tool axis by the tool offset length, t, from the tool position in the workpiece
coordinate system. 
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3.3 Surface Machining

Sculptured surfaces are generally produced in three stages: roughing, finishing, and benchwork. Roughing
cuts are used to remove most of the material from a workpiece while leaving the part slightly oversized.
Finish machining of a sculptured surface removes material from the roughed-out workpiece and attempts to
machine the part to its final dimensions. The resulting surface is left with a large number of scallops,
as shown in Fig. 3.7. Benchwork consisting of grinding and polishing is used to remove these scallops.
The time spent on finishing and benchwork is dependent on the size of these scallops. The scallop size
is related to the tool pass interval, also known as the cross-feed; reducing the tool pass interval will
decrease the scallop size at the expense of increased machining time. A recent survey by LeBlond Makino
of Mason, Ohio [2], stated that a small mold will typically require 57 hours of roughing, 127 hours of
finishing, and 86 hours of grinding and polishing. Over 78% of the total production time is spent on
finishing, grinding, and polishing. Clearly, there is a need for faster machining techniques that produce
smaller scallops, and hence require little or ultimately no benchwork. 

The tool path used to machine a surface is generally produced in three stages. First, tool path planning
is used to determine the path the tool will take as it machines a surface. Tool path planning research is
primarily concerned with the spacing between points on the tool path and determining the tool pass
interval. Second, tool positioning strategies are used to determine the cutter location and orientation at
specific points on the tool path. The objective of a tool positioning strategy is to minimize the material
remaining between the tool and the design surface as the tool moves along the tool path. Finally, gouge
detection and correction algorithms are used to determine if the tool has penetrated the desired surface
and eliminate this penetration.

Tool Path and Trajectory Planning

An NC tool path used to machine a sculptured surface consists of a set of tool positions. The NC controller
interpolates sequentially between these points as the tool moves from point to point. The tool path is
usually designed so that the tool makes several tool passes across the surface. The tool pass interval, or
cross-feed, affects the size of the scallops. Furthermore, the interpolation between individual tool positions

FIGURE 3.6 Selection of quadrant for rotations.
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on a tool pass may cause the tool to leave the design surface. An ideal tool path will result in a surface
with uniform and small-sized scallops evenly distributed across the surface. The size of the scallops will
have been determined before machining. In the next section, the tool pass interval will be considered,
followed by a discussion of the spacing between individual tool positions along a tool pass.

Tool Pass Interval Determination

The tool pass interval along with the tool type and surface characteristics determine the size of the scallop
left on the surface. For the most part, research in this area has focused on tool pass determination for
ball-nosed end mills. Very little work has been done in tool pass interval calculations for more complex
tool geometries which are becoming more prevalent in 5-axis surface machining. Fortunately, many of
the ideas formulated for ball-nosed tools can be extended to other types of tools. 

The tool path generation algorithms for parts designed with sculptured surfaces can be broadly
characterized as either constant or non-constant parameter techniques. Much of the initial work in tool
path planning concentrated on constant parameter tool paths; see, for example, [47]. A constant para-
meter tool path is usually generated from a parametric surface description of the form shown below:

where u and v are the parameters of the surface definition. By maintaining one of the parameters constant
while varying the other parameter, a tool path consisting of a number of constant parameter curves on
the surface can be defined. This approach is computationally efficient because the tool path is easily
determined from the surface definition. However, the relationship between the parametric coordinate and
the corresponding physical (Cartesian, (x, y, z)) coordinates is not uniform [5]. Therefore, the accuracy
and efficiency of a constant parameter tool path may vary with the surface description. Figure 3.8 shows a
typical fan-shaped example of this type of tool path. At the top of the part, the tool paths are far apart
and will produce a poor surface finish. At the bottom of the part, an unnecessarily large number of tool
motions were used to machine the part to a specified surface tolerance. 

FIGURE 3.7 Scallops left after machining.
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Most current research in tool path planning is focused on developing non-constant parameter tool
paths with tool pass intervals determined by an estimate of the required scallop height. Choi et al. [7]
and Huang and Oliver [17] performed tool path planning in the xy plane in the Cartesian coordinate
system. Cutting curves are defined by intersections of a group of parallel cutter planes. An example of
this type of tool path is shown in Fig. 3.9. This tool path does not suffer from the problem of divergence. 

FIGURE 3.8 Constant parameter tool path.

FIGURE 3.9 Non-constant parameter tool path.
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The tool pass interval was calculated by considering a plane called the tool pass interval plane, which
is perpendicular to the cutter planes containing two adjacent tool positions as shown in the Fig. 3.10.
The methodology Huang and Oliver [17] use for calculating the pass interval used for a concave surface
is briefly explained here. The intersection curve of the surface with the tool pass interval plane can be
approximated as a circular arc [8, 48] between the two cutter contact points CC1, and CC2 whose radius,
�, is the radius of curvature of the surface at CC1 in the tool pass interval plane. From the geometry of
the figure, it can be deduced that the tool pass interval, l, is:

where h is the scallop height. The calculation of the tool pass interval is carried out for every cutter
contact point on a tool pass. The smallest tool pass interval is used to calculate the next cutter plane. All
scallop heights will be within tolerance provided the scallop height approximation is close and the smallest
tool pass interval is selected. However, some sections of the surface may have scallops which are smaller
than necessary.

Recent work in tool path planning has concentrated on non-constant tool pass interval techniques that
maintain a constant scallop height between pass intervals. Tool path planning methods that keep a constant
scallop height between tool passes have been developed by Suresh and Yang [49] and by Lin and Koren
[33]. Both approaches start with an initial master tool pass. In most cases, the boundary of a surface patch
or an iso-parametric curve on the design surface is selected as the master tool pass. Succeeding tool passes
are generated by calculating a pass interval that will result in a specified scallop height for every point on
the master tool path. This new set of points forms the next tool pass, which in turn becomes the new
master tool pass. The main difference between the two techniques lies in the methods used to calculate
the pass interval. Using differential geometry, Suresh and Yang [49] have developed a set of equations
based on the tool radius, scallop height and surface curvature in the direction perpendicular to the tool
pass cutting plane to calculate the pass interval for a specified scallop height. Their method results in a
set of complex equations that must be solved numerically. Lin and Koren [33] base their tool pass

FIGURE 3.10 Tool pass interval calculation for a convex surface.
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calculation on the work of Vickers and Quan [53]. The resulting expression approximates the tool pass
interval based on the desired scallop height, the tool radius, and the curvature at the cutter contact point. 

 Most of the research into tool pass interval calculation has focused on surface machining using a ball-
nosed cutter. However, there is still a need for constant scallop height tool paths for other types of tools for
use in 5-axis machining. The main stumbling block is a lack of methods for calculating scallop heights for
these more complicated situations. Bedi et al. [4] address the issue of scallop height estimation with a toroidal
and flat end mill. The authors note that a toroidal cutter can be approximated by a ball nose end mill of the
appropriate radius at the cutter contact point. They then use the scallop height expressions developed by
Vickers and Quan [53] to approximate the scallop heights produced by flat and toroidal end mills. 

Lee and Chang [29] address the more difficult problem of scallop height estimation during 5-axis surface
machining with a flat end mill. The authors approach the problem by considering tool positions on adjacent
tool passes. The cutting edge of the tool at positions CC1 and CC2 is projected onto a plane, Po, normal
to the feed direction containing both cutter contact points, as illustrated in Fig. 3.11. Because the cutting
edge of an end mill is a circle, the projected shape will be an ellipse. Lee and Chang [29] refer to this ellipse
as the effective cutting shape. The intersection point, M, between the two effective cutting shapes is first
found. The intersection curve, C, between the design surface and the plane, Po, is approximated as a circular
arc using the curvature of the surface in the plane. The scallop height, h, is found by taking the distance
between the point M and the intersection curve. Lee and Chang [29] used this methodology to estimate
the scallop height between tool passes to ensure that the scallops were within a specified tolerance. 

To date, most research on scallop height has considered tool and surface geometry. The missing
ingredient is tool motion. The assumption that the scallop height can be determined based on static tool
positions may be reasonable in 3-axis machining where motions are generally piecewise linear. However,
tool paths used to machine surfaces tend to be nonlinear. Effective cutting profiles need to be swept along
the tool path rather than projected onto a plane.

Spacing of Tool Positions

The second important issue in tool path planning is to determine the spacing between successive tool
positions along a tool pass. The NC machine controller receives the tool path as a sequence of joint
commands, for example (X, Y, Z, A, C). The NC controller performs linear interpolation between a set

FIGURE 3.11 Scallop height estimation when surface machining in 5-axis with a flat end mill.
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of (X, Y, Z, A, C) points to form the actual tool path. The tool path will not be a set of line segments
because a 5-axis milling machine contains rotational axes. The tool path planner must ensure that the
tool remains within tolerance with the design surface as it moves between cutter location points by
selecting a small enough spacing between tool positions. If, however, the tool positions are too closely
spaced, the time needed to generate the tool path and the storage requirements for the data may be
excessive. More importantly, if the rate of data transfer between the NC controller and NC machine is
too slow, the milling machine may be forced to wait for the next positioning command. This data
starvation problem can result in reduced machining rates and jerky motion.

There has been a considerable body of research devoted to determining the best spacing between tool
positions in 3-axis surface machining. The objective of that research is to determine the maximum
allowable separation between tool positions that will maintain a required tolerance between the tool and
the surface as the tool moves from one position to the next. All available work in that area assumes that
the tool moves linearly between successive tool positions. Many tool path planning techniques use the
nominal chordal deviation as a measure of the machining error [15, 17] as shown in Fig. 3.12. 

A straightforward method of determining the nominal chordal deviation is to calculate P3, by taking
the halfway point between P1 and P2 in parametric space and determining the perpendicular distance
between P3 and the line defined by the chord. This method will produce a reasonable approximation of
the chordal deviation provided the surface has fairly uniform parametric variation. However, if the
parametric variation is non-uniform, the error in this approximation can be significant. Loney and Ozsoy
[34] and Wysocki et al. [61] developed numerical techniques for calculating the nominal chordal deviation
based on a curve subdivision technique and a cast-and-correct method, respectively. 

 As Huang and Oliver [17] point out, using the nominal chordal deviation as an estimate of machining
error can lead to an underestimation of the true machining error if the normals n1 and n2 are not parallel
and if both normals are not perpendicular to the chord. The true machining error can only be determined
by considering the trajectory of the entire tool as it moves along the path as shown in Fig. 3.13.

As the tool moves from P1 to P2, the true machining error occurs between the surface and the common
tangent joining both tool positions. The technique developed by Huang and Oliver [17] uses the nominal
chordal deviation as an initial estimate of the true machining error. Iterations of the orthogonal projection
method [41] are then used to converge to the true machining error.

The trajectory error is the result of the inability of present day NC controllers to do more than linear
interpolation between data points. Another approach to solving this problem is to modify the NC controller
to perform more sophisticated methods of interpolating between tool positions. Chou and Yang [10] have
developed the equations to trace any arbitrary curve in Cartesian space for a wrist type 5-axis milling machine
given that the NC programmer can control the velocity and acceleration of each joint continuously in time. They
fit the tool path with a polynomial, resulting in a parametric description of the tool path X(u), Y(u), Z(u),
A(u), C(u). Expressions for velocity and acceleration in terms of u are then developed to produce the desired
tool path for a given feed rate. Chou and Yang have also developed expressions for the jerk that may be of
use for predicting vibrations, excessive wear, and tracking errors. They used these equations to simulate the
position, velocity, acceleration, and jerk of a tool path described by a 3rd-order parametric space curve.

FIGURE 3.12 Nominal chordal deviation.
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Other than the work by Chou and Yang [10], we are not aware of any research into trajectory error
that takes into account the nonlinear trajectories produced by a 5-axis milling machine as it interpolates
between tool positions. At present, 5-axis part programmers must rely on their judgment to determine
appropriate spacing between tool positions.

Tool Positioning

Tool positioning strategies are used to determine how a tool will be placed relative to the design surface.
The main objective of these strategies is to remove as much material from the workpiece as possible
without cutting into the desired surface (gouging) and therefore minimizing the amount of material
remaining on the desired surface. Finish machining and benchwork can consume up to 76% of the time
needed to produce a surface [2]. Improvements in tool positioning strategies can result in significant
cost-savings in the production of complex surfaces. 

A number of tool positioning strategies have been developed to improve the placement of different
types of tools relative to the design surface such that the material left behind for subsequent polishing is
minimized. The most commonly used tools in the machining of molds and dies are shown in Fig. 3.14;
they are the ball nose cutter with radius r ; the flat bottom end mill of radius R; and the toroidal cutter
which is characterized by two radii, the radius of the insert r and the radial distance between the center
of the tool and the center of the insert R. As the tools rotate, the cutting surfaces of the above cutters are
a sphere, a cylinder, and a torus corresponding to the ball nose, the flat, and the toroidal cutters,
respectively. A review of the most relevant tool positioning techniques is presented next.

Ball Nosed

Historically, sculptured surfaces have been machined using ball-nosed end mills. The easiest way to
position a ball-nosed end mill is by offsetting the tool center a distance equal to the cutter’s radius along
the surface normal, as shown in Fig. 3.15. Provided the minimum radius of curvature of the surface is
greater than the radius of the ball-nosed end mill, no gouging will occur. The tool orientation has no
effect on the geometry of the cutting surface of the ball relative to the design surface. In other words,
scallop size reduction cannot be accomplished by changing the orientation of the tool. A surface
machined in 3-axis with ball will have the same-sized scallops a surface machined in 5-axis for the same
tool pass interval.

However, benefits from 5-axis machining with a ball-nosed tool are still possible when the problems
of center cutting and accessibility are considered. Center cutting occurs when the cutting edge near or

FIGURE 3.13 True machining error vs. nominal chordal deviation.
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at the tool axis is required to cut material. The cutting speed in this region of the tool approaches zero.
This results in high cutting forces when operations such as plunging and ramping down are required.
In 5-axis, the tool can simply be inclined in the feed direction to eliminate center cutting. In many
instances, the tool may not be able to reach some location in a workpiece. For example, in 1991, Tekeuchi
and Idemura [50] addressed the problem of accessibility using a solid modeling approach. Their approach
assumed a fixed inclination angle for machining. The machining process was then simulated using solid
modeling techniques. At every cutter location, interference checking was performed. The operator was
prompted to reposition the tool in the appropriate manner if interference was detected. This approach
allowed the authors to machine exceedingly complex shapes such as a complete impeller.

FIGURE 3.14 Cutting tools typically used for 5-axis surface machining.

FIGURE 3.15 Positioning a ball nosed end mill on a surface.
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Inclined Tool

Most current research on 5-axis tool positioning strategies is focused on machining a surface with a flat
or toroidal end mill inclined relative to the surface normal as shown in Fig. 3.16. This inclination angle
is often referred to as the Sturz angle(�). This approach was made popular by Vickers and Bedi [52] and
Vickers and Quan in 1989 [53] when the authors pointed out that an inclined end mill could approximate
a surface profile. By varying the inclination of the tool, �, the effective radius, reff, of the tool could be
varied as shown in the following equation.

A ball-nosed end mill, on the other hand, only has a constant effective radius. The cross-feed for an
inclined tool was calculated in the same manner as a ball-nosed end mill by approximating the inclined
end mill as a ball-nosed end mill with a radius equal to the end mill’s effective radius. The authors
performed a number of cutting tests on flat surfaces and ship hull molds, demonstrating that machining
with an inclined end mill was considerably faster than machining with a ball-nosed end mill. One reason
for the improvements was a higher effective cutting speed. A flat end mill always cuts at its periphery
where cutting speeds are highest. A ball-nosed end mill cuts with a portion of the tool closer to its axis
where speeds are lower. This approach has been shown in numerous papers to be highly effective and
has been adopted by many high-end commercial CAD/CAM systems [28]. However, the two main
drawbacks to this method are the arbitrary method used to select an inclination angle and the use of a
constant inclination angle for an entire surface. Subsequent investigations were primarily concerned with
these two issues. These investigations are reviewed below.

Cho et al. [6] modified the inclination angle in 1993 using a Z-map technique. In the Z-map technique,
the XY plane is represented by a discrete set of (x, y) points. The tool and workpiece are represented by
discrete z values at each (x, y) location. Interference was checked by detecting if any of the z values for
the desired surface were above the z values of the tool. Tool inclination adjustments were performed in
semi-automatic fashion by rotating the tool about the cutter contact point based on the weighted average

FIGURE 3.16 Machining with an inclined tool.
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of the interfering points. This process was repeated twice at every cutter location point. If interference
still occurred, the programmer was prompted to manually adjust the tool orientation. In 1994, Li and
Jerard [30] pointed out that representing solids as discrete sets of point is very inefficient and that high
model resolution was not possible because of data size restrictions. Li and Jerard’s approach was to
represent the tool and workpiece as planner models that could represent the tool and workpiece far more
accurately. By considering interference between points, lines, and planes, Li and Jerard were able to adjust
the tool orientation automatically. 

In 1992, Jensen and Anderson [22] proposed a method for calculating an optimal tool angle based
on local surface curvature. The local geometry of a surface near a point, P, is characterized by its
minimum and maximum curvatures, �min and �max, respectively as shown in Fig. 3.17. These curva-
tures describe circles of radii �min and �max in two perpendicular planes. The directions of minimum
and maximum curvature, 	min and 	max, form a right-handed coordinate system with the surface at
P. See, for example, Faux and Pratt [13] or Farin [12] for a complete description of the differential
geometry of surfaces. 

Curvature matching as shown in Fig. 3.18. matches the effective radius of a point on the surface with
the radius of maximum curvature. The tool is placed on the surface such that the feed direction lines up
with the direction of minimum curvature on the surface. The tool is inclined in the direction of minimum
curvature such that the effective radius of the tool at the cutter location equals the minimum radius of
curvature of the surface. The authors also noted that the profile of a torus is a 4th-order curve, while
the profile of an end mill is only a 2nd-order curve. Therefore, a better match between the surface and
a toroidal end mill should be possible.

In 1993, Jensen et al. [23] extended this work to the toroidal end mill and developed a numerical
procedure for calculating cross-feeds (see Fig. 3.19). However, the authors made no attempt to machine
an actual workpiece. Had they done so, they would have realized that it is not always practical to line up
the feed direction with the directions of minimum curvature because these lines tend to follow irregular
curves, producing impractical tool paths [28]. Rao et al. [43, 44] developed a similar technique in 1994
that they called the principal axis method (PAM). They used their technique to machine various surface
patches and investigated the effect of tool path direction on the technique. 

FIGURE 3.17 Curvatures of a point on a surface.
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In 1994, Kruth et al. [28] used curvature matching as a first approximation for their tool inclination
calculation. The authors recognized the importance of the workpiece global geometry, not just local
curvature. Even with curvature matching, gouging can still occur when the surface curvature is changing
radically. Kruth et al. checked to see if any portion of the cutting tool was penetrating the desired surface
by numerically approximating the distance between the tool and the surface. The tool inclination angle
was altered based on the location and depth of gouging. 

Another tool positioning strategy called curvature catering was proposed by Wang et al. [57, 58] in 1993
for a cone-shaped tool shown in Fig. 3.20. The authors derived their theory by intersecting the plane formed

FIGURE 3.18 Curvature matching with a flat end mill.

FIGURE 3.19 Curvature matching with a toroidal end mill.
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by the bottom of the tool and a 3rd-order Taylor’s series approximation of the surface. The circle formed
by the bottom of the tool and the resulting intersection line is matched as closely as possible. The results
of this analysis are exactly the same as those obtained by Jensen and Anderson [22] for a flat end mill. The
best inclination angle occurs when the effective radius of the tool is matched to the minimum radius of
curvature of the surface. Li et al. [31, 32] deal with the issues of tool path generation, tool pass interval
calculation, and gouging when using curvature catering. The main advantage of this technique over cur-
vature matching with a toroidal end mill is the ability to machine convex surfaces as well as concave surfaces.

Multi-point Machining

All the previously discussed tool positioning strategies attempt to maximize metal removal by considering
the local geometry of a point on the surface and a point on the tool. In 1995, Warkentin, Bedi, and Ismail
[59] proposed a tool positioning strategy called multi-point machining (MPM), which matches the geom-
etry of the tool to the surface by positioning the tool in a manner that maximizes the number of contact
points between the surface and the tool. The authors demonstrated the potential of the idea using it to
machine spherical surfaces. This idea is best explained using the ‘‘drop the coin” concept. A coin is placed
in a spherical surface. For stability, the coin must touch the surface tangentially at every point on the coin’s
circumference. As the coin slides along the surface, the surface is generated along the entire circumference
of the coin. If the coin is now replaced by the bottom of a milling cutter, the surface will be generated along
a circle of contact between the tool and the surface. The authors were able to machine spherical surfaces
with virtually no scallops in a fraction of the time required by conventional machining techniques.

In 1996, multi-point machining was extended to general concave surfaces with a toroidal end mill by
Warkentin, Ismail, and Bedi [60]. The intersection theory described by Markot and Magedson [35] and
Krieziz [27] was used to examine the nature of multi-point contact between a torus and a concave
parametric surface described by the following set of equations. These findings were used to develop an
efficient technique to find multi-point contact tool positions.

FIGURE 3.20 Curvature catering technique.
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A point, P, on the surface was selected to form a local coordinate system consisting of the surface normal,
n, and directions of minimum and maximum curvature, 	min and 	max, at P. The tool’s cutting surface
was represented by a torus, and a concave surface was intersected for different tool positions, as shown
in Fig. 3.21. At each trial tool position, the intersection produced loop(s) of intersection or no intersection.
Points of tangency are the boundary solution between these two possibilities. Therefore, points of
tangency were assumed to occur in the center of small loops of intersection. Multi-point tool positions
were located when a trial tool position produced more than one tangent point. 

By experimentation it was found that, at most, two contact points existed between the cutting tool and
a concave surface. Figure 3.22 shows the pattern of loops of intersection between a torus with R � 7.9375 mm
and r � 4.7625 mm and the test surface as the tool inclination was increased in the direction of minimum
curvature at the point u, v � (0.5, 0.5). The center of each loop marks the approximate location of a tangent
point. These contact points were arranged symmetrically in pairs about the direction of minimum curvature.
The two loops of intersection on the absisca correspond to the case when the tool axis was aligned with the
surface normal at point P. As the inclination angle increased, the separation between contact points decreased
until the two cutter contact points merged into a single cutter contact point.

Figure 3.23 shows the effect of the cutter contact separation on the surface deviations. These surface
deviations were produced by determining the difference between the surface and a tool position using
the mow-the-grass technique. The mechanics of the mow-the-grass technique are discussed later in the
section on verification. The individual surface deviations were then projected onto the yz plane. The
curves shown in the figure consist of the silhouettes of the projected deviations. These deviation profiles
vary significantly from those produced by single-point machining techniques. Typically, single-point
machining techniques produce deviation profiles that have a single minimum at the cutter contact point.
Multi-point deviation profiles contain as many minima as cutter contact points, with maxima between
the cutter contact points. In the present case, two minima and a single maximum produce ‘‘W”-shaped
deviation profiles. As the cutter contact points separation w increases, the maximum deviation from the
design surface underneath the tool increases. 

The cutter contact separation adds an additional complexity to tool pass interval calculations. The
tool path planner must also determine a cutter contact separation that will keep the center portion of
the deviation profiles in tolerance with the surface, as illustrated in Fig. 3.24. There are two mechanisms
producing scallops in a multi-point tool path. The larger rounded scallops are produced by the area of

FIGURE 3.21 Location of a multi-point tool position.
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the tool between the contact points, and the smaller sharper deviations are produced by the periphery
of the tool. Unfortunately, at the present time, a method for predicting multi-point scallop heights prior
to machining or simulation does not exist. Preliminary results suggest that a cutter contact point
separation of between 60% and 80% of the tool pass interval will maintain the same height for both
types of scallops. 

Intersection theory was used to investigate the nature of contact between the tool and the design
surface. The results of the investigation led to the development of an algorithm for determining multi-
point tool positioning. This algorithm consists of two parts. In the first part, an approximate tool position
and orientation is calculated based on the geometry of the two contact points, CC1 and CC2. The resulting
tool configuration places the tool in tangential contact with CC1. However, because the curvature of
surface under the tool is not constant, there is no guarantee that there is tangential contact at CC2.

FIGURE 3.22 Arrangement of cutter contact points between a toroidal cutter and a concave surface.

FIGURE 3.23 Effect of cutter contact point separation w on surface deviation for a toroidal end mill with
R � 7.9375 mm and r � 4.7625 mm. 
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The second part of the method refines the initial solution. The tool is then rotated while maintaining
tangential contact at CC1 until tangential contact occurs at CC2.

Machining simulations of the test surface have been performed to compare the performance of the
discussed tool positioning strategies. Figure 3.25 summarizes the results of these simulations. A toroidal
cutter was used for multi-point, principle axis, and inclined tool machining simulations. The tool
dimensions were R � 5.0 mm and r � 3.0 mm. A 16.0-mm diameter ball-nosed tool was used for the
ball-nosed machining simulations. A 6° inclination angle was selected for the inclined tool machining
because it was the minimum angle required to avoid gouging the surface. The cutter contact separation
for the multi-point machining was 70% of the tool pass interval. Simulations were performed for tool
pass intervals ranging from 1 mm to 10 mm in 1-mm increments. At every tool pass interval, ranking
of the different strategies in terms of minimum scallop height was conducted and it was found, in
descending order, to be: multi-point, principle axis, inclined tool, and lastly machining with a ball-nosed
cutter. For example, if the surface tolerance was 0.01 mm, the required tool pass intervals would be 8.7,
6.6, 2.4, and 0.5 mm for the multi-point, principle axis, inclined tool, and ball-nosed techniques,
respectively. For this particular surface, multi-point machining is clearly superior.

FIGURE 3.24 A multi-point scallop profile.

FIGURE 3.25 Comparison of maximum scallop heights produced by different tool positioning strategies.
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However, like the principle axis technique, increased performance comes at the expense of increased
computational effort and surface requirements. It took 121, 58, and 53 seconds on a 166-MHz Pentium
processor to perform the tool positioning computations for the multi-point, principle axis, and inclined
tool methods, respectively, for a tool path with maximum scallop heights of 0.01 mm. Ironically, tool
positioning for the ball-nosed tool required 256 seconds due to the large number of tool passes required.
Furthermore, the multi-point and principle axis techniques require surfaces for which the curvature must
be calculated accurately, while the inclined tool and ball-nosed techniques can be implemented with only
surface normal information.

Tool Path Simulation, Verification, and Correction

As with any other type of program, NC codes must be debugged to avoid milling errors such as gouging,
undercutting, collision with fixtures, etc. The two traditional methods used to check NC code depend
heavily on human observation and intuition. The most common method is to perform trial cuts on a
soft, inexpensive material under the observation of a skilled technician. The trial workpiece can then be
measured manually or with a coordinate measuring machine (CMM) to determine the acceptability of
the trial piece. Generally, several modifications and trial pieces are needed. This is both a labor and capital
intensive process. The second common approach is to visually check a drawing of a tool path. The
judgment of the acceptability of a tool path is largely dependent on the skill of the part programmer. A
visual inspection of the tool path is generally followed with trial cuts.

Recognizing the need to automate the process of checking NC code, a large body of research has been
devoted to this task. Jerard et al. [21] defines the terms simulation, verification, and correction to describe
the important aspects of software designed to validate NC code. To this list we would add gouge detection.
Simulation is used to model the geometric aspects of metal removal. Verification is used to determine if
the simulated surface meets the requirements of the design. Gouge detection is the process used to
determine if a tool position has penetrated the design surface. The techniques used for simulation and
validation are often used for this purpose. If an error is found in a tool path, a correction strategy is
invoked to modify the offending tool position.

Simulation and Verification

Solid modeling is the classic approach used for simulation and verification. Voelcker and Hunt [54] did
an exploratory study on the feasibility of using constructive solid modeling for the simulation of NC
programs, and Fridshal et al. [14] modified the solid modeling package, TIPS, to perform NC simulations.
The general procedure used in most solid modeling-based NC simulators can be summarized in three
steps. First, the user constructs solid models representing the workpiece and the swept volume of the tool
as it moves between tool positions. The swept volume of the tool is then subtracted from the workpiece
model using a Boolean operation. This ‘‘as-milled” part is then compared to the model of the desired part
using Boolean operations for verification. The difficulties with this process lie in the mathematics of
swept volumes and the number of Boolean operations required.

The mathematical description of a swept volume can be calculated by invoking the theory of envelopes
[13]. When a tool undergoes simultaneous motion in 5-axis, the resulting path of the tool tip describes
a highly nonlinear path in space and time, P(x, y, z, t) � 0. Coordinates x, y, z are used to describe the
shape of the tool at any instance and t describes the position of the tool on the tool path. The envelope
or swept volume can then be calculated by determining the surface that is tangent to P(x, y, z, t) � 0 at
every instant in time. Due to the complexity of the result, these equations are impractical to solve for all
but the simplest cases. The problem is further compounded by the number of volumes needed to simulate
a tool path that may contain tens of thousands of individual tool positions. 

For these reasons, researchers have turned to more approximate techniques of simulating and verifying
tool paths. View-based methods have been proposed by Wang and Wang [55, 56], Van Hook [51], and
Atheron et al. [3]. These methods employ a variation of the z-buffer method used in computer graphics,
as illustrated in Fig. 3.26. In these methods, a vector normal to the computer graphics screen is drawn
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through each pixel. The intersection points of these vectors with the workpiece model are stored in a z-buffer.
Metal removal is simulated by performing Boolean operations between the tool and the z-buffer. 

View-based simulations are very fast and interactive. The user can interact with the simulation by
panning, zooming, and rotating the image. However, it is not always easy to detect and quantify errors.
Errors not visible in the graphic screen cannot be detected. Generating a new view requires rerunning
the entire simulation. Furthermore, the user must rely on his/her eye to detect the error and determine
its magnitude. Kim et al. [25] suggest a modified z-buffer method they call a z-map for performing
simulation and verification that eliminates this problem. In the z-map techniques, the simulation and
display of the results are separated. The workpiece is modeled as a set of discrete columns in Cartesian space
as shown in Fig. 3.27. Each z-column is stored as a number in an array called the z-map. Simulation is
performed by intersecting lines defined by the z-columns with the tool motions. After each intersection,
the value in the z-map is compared with the intersection result. If the intersection result is smaller than
the z-map value, the value in the z-map is replaced by the intersection value. When the simulation is
completed, the z-map can be displayed to visually inspect the results and then compared with the design
surface to determine the magnitude of surface deviations.

 The drawback with this type of simulation and any other z-buffer-based simulation is that the
resolution of the simulation depends on the size of the z-buffer. For example, a 16-bit z-buffer can hold
up to 65,536 levels. To overcome this problem, a number of methods based on the mow-the-grass concept
have been proposed and described by Drysdale et al. [11] and Jerard et al. [19–21]. In this method, shown
in Fig. 3.28, vectors extend (grow) from the desired surface at regular intervals. During the simulation,
these vectors are intersected with the tool motions and the length of the vector is reduced to the
intersection point. An analogy can be made to mowing a field of grass. As the simulation continues, the
blades of grass represented by the vectors are ‘‘mowed down.” On completion, the amount of material
left above the surface or gouged out of the surface can be computed from the final length of the grass.
This information can be displayed by color mapping the grass height onto the design surface. 

Although the approximate methods of simulation and verification are computationally less demanding
than solid modeling approaches, they still require considerable computer resources. They involve intersect-
ing lines with objects in order to model metal removal. To have a reasonable representation of the final
machined surface, a large number of vectors (blades of grass) or positions in a z-buffer are required, which

FIGURE 3.26 View space-based simulations.
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can quickly lead to large memory requirements. The number of these vectors depends on the size of the
workpiece being modeled and the size of the expected surface deviations. In our experience, if scallop height
and gouging are the phenomena of interest, a spacing between vectors of at least 10 times smaller than the
tool pass interval will be required for a good representation of the machined surface. For example, a
workpiece 0.5 m by 0.5 m milled with a 25.4-mm ball-nosed end mill with a tool pass interval of 0.5 mm
will require a vector every 0.05 mm, for a total of 1 million evenly spaced vectors. In addition to the
memory requirements of the model, considerable time must be spent on performing the intersections.

FIGURE 3.27 The Z-map technique. 

FIGURE 3.28 The mow-the-grass concept. 
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The number of intersections depends on the number of tool positions and the number of vectors underneath
the tool at each position. Given that that tool positions are typically spaced at least every 1.0 mm along a tool
path, the example workpiece will require 500,000 tool positions. Each tool position will have approximately
2000 vectors in its shadow. The resulting simulation will require  intersection calculations. 

Gouge Detection and Correction

Often, NC programmers do not require or have the time for a full simulation and verification cycle. They
are not concerned with producing a model of the machined surface. Instead, they concentrate on checking
to see that each tool position is in tolerance of the surface. The result of their simulation will not tell the
users the expected size of the scallops but will ensure that the surface is not gouged, undercut, or within
tolerance. Examples of research in this area include the works of Takeuchi and Idemura [50], Li and
Jerard [30], Rao et al. [44], Kruth and Klewais [28], and McLellan et al. [37]. These authors have all
adopted different strategies for 5-axis gouge detection and correction. 

Takeuchi and Idemura [50] use a boundary representation (B-rep) for the simulation of the tool
motion over the design surface. A set of checkpoints is defined on the tool. At every tool position, an
inside/outside test is performed between the checkpoints and the model of the workpiece to detect if
gouging has occurred. Automatic correction is accomplished by rotating the tool about the cutter contact
point. At the gouging position, the checkpoints are used to determine the direction and magnitude of
the rotation. If this process fails, the user is prompted to manually correct the offending tool position.
Li and Jerard [30] use a similar approach to detect gouging when generating tool paths for 5-axis
machining with a flat-bottom end mill. 

Rao et al. [44] use a variation of the mow-the-grass technique in the immediate vicinity of a cutter
contact point to perform gouge detection when using the principle axis method. This tool positioning
strategy relies on the minimum radius of curvature of the surface to calculate a tool inclination angle.
A smaller radius of curvature produces a larger tool inclination angle. Theoretically, gouging should not
occur when using this tool positioning strategy, provided that the curvature of the design surface does
not change in the region underneath the tool. A gouge implies that the curvature underneath the tool
has increased. Therefore, the algorithm developed by Rao et al. [44] artificially increases the curvature
used in the tool positioning calculations incrementally until gouging is eliminated. 

McLellan et al. [37] have developed a geometric algorithm for determining how close the tool is to a
surface or how far the tool has penetrated into the design surface. The algorithm is loosely based on the
theory of intersections discussed by Markot and Magedson [35]. Surfaces in close proximity contain
so-called characteristic points. These points always occur in pairs, one point on each surface. The surface
normals at these points are collinear. In a local sense, the closest points between two non-intersecting
surfaces are the characteristic points. Similarly, in a region were two surfaces intersect, the characteristic
points are the points where maximum penetration occurs. It should be noted that surfaces can have
many different pairs of characteristic points. The algorithm developed by McLellan et al. [37] basically
searches the tool’s cutting surface and the design surface for characteristic points. If a characteristic point
results in gouging, the location is stored for correction purposes. When a gouge is detected, the user has
the option of using three different gouge avoidance strategies. The preferred method is to incline the
tool. Based on the position and depth of the gouge, an optimal tilting direction and angle are calculated.
If this strategy fails, the tool may also be lifted in the direction of the tool axis or the normal to the
surface. Although lifting the tool is the surest way to eliminate gouging, McLellan et al. [37] note that
unwanted material will be left on the surface in the region of the cutter contact point. 

The difficulties with this gouge detection algorithm based on characteristic points arise when there is
more than one characteristic point. Such a situation arises when the tool is touching a surface tangentially
at a cutter contact point and gouging the surface at another point. The algorithm may not converge to
the point of interest (gouge point). Instead, the algorithm may converge on the cutter contact point and
the presence of gouging will not be detected. McLellan et al. [37] have solved this potential problem by
restarting the algorithm at different points on the tool. If the algorithm converges to the cutter contact
point from every start point, there is assumed to be no gouging. 
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3.4 Conclusion

5-axis machining has been demonstrated to be an efficient way of producing sculptured surfaces. It
reduces the machining time and improves the surface finish. Tool path planning focuses on determining
the tool pass interval and spacing between tool positions such that predictable scallops are evenly
distributed across the machined surface. The main challenge of this research is to develop methods of
predicting scallop height based on tool pass interval. For the most part, this issue has been resolved for
ball-nosed end mills, but is still a problem when using a flat or toroidal end mill. Research efforts are
underway to develop new strategies for tool positioning that match the tool profile closer to the design
surface and thus reduce the need for further finishing operations. Tool positioning strategies that use
curvature information, such as curvature matching, the principle axis method, and multi-point machin-
ing method in particular, were found, for the limited tests conducted, to be superior to currently used
strategies. A final verdict, however, will require extensive testing on other surfaces. Research efforts are
also underway to develop faster techniques for tool path simulation and verification. The ultimate
objective of these techniques is to help detect and avoid gouging and interference—a major concern that
casts skepticism on 5-axis machining. The current techniques require considerable investment in com-
puter hardware to be of practical use in industry. Even with today’s fast computers, a simulation and
verification cycle can take several hours. More research is needed to develop and implement techniques
for simulation and automatic tool path validation and correction. 

Industrial acceptance of 5-axis machining will materialize only if the above research efforts lead to
satisfactory solutions that could be amalgamated into existing CAM packages. In addition to software,
acceptability will also depend on building more rigid machines with controllers capable of more
sophisticated methods of interpolating between points on a tool path.
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4.5 Conclusions

4.1 Introduction 

Today, the analysis of machining processes is more important than ever before. The increasing use of
numerically controlled machine tools, along with increasingly sophisticated computer control methods, makes
the selection of cutting conditions, which ensures effective machining, much more pressing. Experimentally
obtained machining data is another important ingredient, but this can be extremely costly in terms of both
time and material.

Predicting forces and temperatures is one of the most common objectives for modeling machining
processes. Forces exerted by the tool on the workpiece can cause deflections that lead to geometric errors
or difficulty in meeting tolerance specifications. Reaction forces of the workpiece on the tool can, if large
enough, cause failure of the tool. The product of the force and velocity vectors is used to predict power
requirements for sizing a new machine tool, or for estimating the production rates. Temperature predictions
are used to estimate a tool’s useful life or a change in mechanical properties of the workpiece. Both of these
considerations are important for economical operation of the process, as well as safety and performance
of the machined product.

Since 1906 when Taylor’s paper was first published, many researchers have investigated the basic
mechanics of the machining process. Despite their efforts, the basic mechanics aspects of the machining
process are still not clearly understood, primarily due to the difficulty in modeling the contact, and
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work-material deformation with large plastic strain and friction, high temperature and strain rates, and
their coupling effects.

In the past decade, there has been a considerable amount of research applying finite element modeling
to predict chip flow, stresses, and temperatures in metal machining. A thermo-viscoplastic cutting model
(Kim and Sin, 1996) is one among various possible cutting models, and only a first step toward developing
an ideal cutting model that enables one to predict machining performance without resorting to cutting
experiments. With the goal of developing an efficient and accurate cutting model, and promoting the
finite element method for machining process modeling, this chapter introduces the basic concepts of a
thermo-viscoplastic cutting model.

4.2 Review of Cutting Model

Shear Plane Model

The shear plane model, which was the first proposed cutting model, assumes that the plastic deformation
appears only in a shear plane, and the remainder undergoes rigid body motion (Merchant, 1944). The
goal of this method is to predict the shear angle, the chip thickness, and the force generated. Minimizing
the cutting energy with respect to the shear angle yields the direction of the shear plane. Various research
has been carried out, especially for predicting the shear angle, and several useful equations have been
proposed (Shaw et al., 1953; Nakayama and Arai, 1976; Wright, 1982).

Slip Line Field Method

The slip line field solution is more inclusive in the sense that the deformation zone is not a simple shear
plane but a finite region. Using plasticity theory for the plane strain case, slip line fields are constructed
around the primary shear zone from experiments and the shear plane can be found to be in the direction
of maximum shear stress. Some headway has been made in considering cutting temperature with the
flow stress of the workpiece allowed to vary with strain and strain rate. These analyses have, however,
largely been dependent on the experimental observations. Moreover, major attention has focused on
orthogonal machining, in which a single straight-edged cutting tool removes a chip under plane strain
conditions. Among the studies in this area are the works of Kececioglu (1958), Morcos (1980), and Oxley
(1989).

FEM Applied to Cutting

With the advent of digital computers, the finite element method (FEM) became a powerful tool that
could overcome the computational difficulties associated with modeling the machining process. One
of the first analyses on metal cutting using the FEM was presented by Klamecki (1973), in which he
simulated the incipient chip formation process of a three-dimensional cutting process with the assump-
tion of an elastic-plastic bi-linear strain hardening workpiece. Lajczok (1980) developed a simplified
model for orthogonal cutting without the chip region to calculate the residual stresses in the workpiece.
Tool forces were measured experimentally and utilized in the model, with the stress distributions on
the chip-tool interface based on the Zorev model. Usui and Shirakashi (1982) used the FEM to simulate
steady-state cutting, while the shear angle and chip geometry were assumed in advance. They showed
that the prediction of orthogonal cutting process without any actual cutting experiments was possible
if the flow properties and the friction characteristics were available. The analysis, however, was limited
to a rate-independent deformation behavior. Iwata, Osakada, and Terasaka (1984) developed a rigid-
plastic finite element model for orthogonal cutting in a steady-state condition with very low cutting
speeds, wherein fracture of the chip was predicted by employing a criterion based on stress history.

Recently, there has been increased research on analyzing the cutting process using the FEM. Most
cutting models using the FEM can be classified into two categories: the chip formation cutting model,
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and the steady-state cutting model. More recently, as demand for ultraprecision machining increased,
studies on microcutting using molecular dynamics simulation has also been conducted (Ikawa et al.,
1991; Shimada et al., 1993). In these works, however, only a feasibility study is provided on nanometric
or the ultimate accuracy attainable in the mechanical material removal process.

Chip Formation Cutting Model

Principal advantages of the chip formation cutting model are that the tool can be simulated from incipient
to steady-state cutting and that the chip geometry and residual stresses in the workpiece can be predicted.
One of the disadvantages, however, is that the model requires large computational time to reach
steady-state conditions. In addition, a material failure and parting mechanism must be provided to allow
the chip to separate from the workpiece. This necessitates an additional material failure criterion for chip
separation.

The first model for orthogonal cutting utilizing simulated chip formation from the incipient stage to
the steady state was due to Strenkowski and Carroll (1985). In their study, no heat was assumed to be
conducted between chip and workpiece. The values of the chip separation criterion based on effective
plastic strain were used to simulate the cutting process, without comparison to experiments. When it
exceeded a specified value at the nodes closest to the tool tip, the nodes would be separated to form the
machined surface and chip underneath. They found that different values selected for chip separation
criterion based on the effective plastic strain affect the magnitude of the residual stresses in the machined
surface of the workpiece. Strenkowski and Mitchum (1987) presented the modified cutting model. They
analyzed the transition from indentation to incipient cutting and used their results to evaluate the values
for the chip separation criterion. Their results showed that the criterion value, based on the effective
plastic strain, increases with depth of cut.

Lin and Lin (1992) developed a thermo-elastic-plastic cutting model. The finite difference method
was adopted to determine the temperature distribution within the chip and the tool. In their model, a
chip separation criterion based on the strain energy density was introduced. They verified that the chip
separation criterion value based on the strain energy density was a material constant and was independent
of uncut chip thickness. With this cutting model, Lin and Pan (1993) simulated an entire orthogonal
cutting process with tool frank wear from incipient stage to the steady state. The agreement between
simulation and experimental results for cutting forces, friction force, the chip thickness, and contact
length was found to be acceptable. Lin and Liu (1996) analyzed an orthogonal finish machining using
tungsten carbide and diamond tools that had different coefficients of thermal conductivity. Comparing
the cutting forces predicted by the model with those obtained by experiment for orthogonal finish
machining, they showed that the model could simulate the orthogonal finish machining process for
different tool materials.

Ueda and Manabe (1993) simulated the oblique cutting process as the first step in the three-dimensional
deformation analysis of cutting. With a displacement-based criterion, the chip formation process is
continuously simulated from the beginning of the cutting until the steady state. When the distance
between the tool tip and the nodal point located immediately in front exceeded a predefined critical
value of separation, the nearest element was separated. However, the physics of a displacement-based
chip separation criterion has not been clearly characterized. The results of the rigid plastic finite element
analysis are qualitatively compared with in situ scanning electron microscope observation of the cutting
experiments.

Zhang and Bagchi (1994) developed conditional link elements handling chip separation from the
workpiece. A displacement-based chip separation criterion was used to selectively null the link elements
as the tool progressed. The validity of this model was examined by comparing the calculated cutting
force, feed force, shear angle, and plastic deformation with those from experiments. But because this
model ignored the temperature and strain rate effects, it was only useful for low-speed machining.

Hashemi et al. (1994) presented the first cutting model that did not assume a predefined cutting
path. A unique chip fracture algorithm was implemented to permit tool travel between any set of
nodes and to allow segmentation of the chip. Although a number of important features such as friction,
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temperature effects, and workpiece strain hardening were neglected and an overly coarse mesh that
restricted the number of potential tool pathways was used, this model was thought to be a considerable
achievement.

Steady-State Cutting Model

Developing a steady-state cutting model may be a more effective approach, from the viewpoint of
computational efficiency. This approach, primarily using an Eulerian coordinate frame, has been suc-
cessfully applied to other manufacturing processes, such as metal forming. Although this cutting model
requires that the boundaries of the chip free surface be known in advance or adjusted interactively during
the simulation, it may be used to study steady-state cutting without the need to simulate the lengthy
transition from incipient to steady-state cutting conditions, and without the need for a chip separation
criterion. Other advantages are that fewer elements are necessary to discretize the chip and workpiece,
and that the location of the chip separation line need not be known in advance.

The first application of the approach to metal cutting using a viscoplastic material model was reported
by Strenkowski and Carroll (1986). This model is the so-called Eulerian cutting model. As this approach
considers each element to be a fixed control volume, such that the mesh does not move with the flowing
material as with the Lagrangian approach, the boundaries of the chip must be known in advance. These
researchers later (1988) investigated the correlation between the Lagrangian and Eulerian frames. Both
approaches showed reasonably good correlation with experimental results for cutting forces, residual
stresses and strains, and chip geometry. With the Eulerian approach, Strenkowski and Moon (1990)
analyzed steady-state orthogonal cutting with the capability to predict chip geometry and chip-tool
contact length for purely viscoplastic materials.

In 1991, Komvopoulos and Erpenbeck investigated steady-state cutting effects of cratered tools with
built-up edges. They examined the effects of material constitutive behavior for rate-independent elastic-
perfectly plastic materials and rate-sensitive elastic-plastic isotropically strain hardening material. The
analysis assumed an initially stress-free steady-state chip geometry and modeled a relatively short
progression of the tool. A displacement-based chip separation criterion was used, and good correlation
with experimental results was achieved.

Moriwaki et al. (1993) developed a rigid plastic finite-element model to simulate the orthogonal micro-
cutting process and examined the effects of the tool edge radius to depth of cut in the micro-cutting
process. They also analyzed the flow of cutting heat and temperature distribution. In analyzing temperature,
however, they did not consider the variation of the flow stress with temperatures and the velocities in
workpiece and chip and, hence, their study was for very low cutting speeds.

Shih and Yang (1993) developed a plane strain steady-state cutting model using a displacement-based
chip separation criterion. Consideration of strain rate, temperature, and friction effects was combined
with a clever remeshing scheme to allow efficient analysis of very long cutting lengths. To improve the
accuracy of residual stresses, workpiece cooling was considered. Recently, a more realistic stick-slip
friction model was incorporated, together with an unbalanced force reduction technique that stabilized
the chip separation process (Shih, 1995). Contour plots and an Eulerian description of the material
deformation were also presented to gain better understanding of the metal cutting mechanics
(Shih 1996).

Joshi et al. (1994) calculated the strain rates and stresses in the primary shear deformation zone and
compared them with the known experimental results for orthogonal steady-state machining. The material
behavior in the metal cutting process was modeled by a viscoplastic constitutive equation. 

Wu et al. (1996) developed a thermo-viscoplastic model of the orthogonal machining process based
on a three-field, mixed, finite element method. This method was highly accurate for coarse meshes,
computationally very cheap, and did not suffer from locking for incompressible materials. It also satisfied
the nontrivial stress boundary condition better than the compatible displacement model. From this
model, detailed information about the stress, strain rate, temperature, cutting forces, chip thickness,
shear angle, contact length, chip geometry, and heat conduction could be obtained. Simulations were
performed for aluminum 6061 alloy and pure titanium.
© 2001 by CRC Press LLC



       
Kim and Sin (1996) developed a cutting model by applying the thermo-viscoplastic FEM to analyze
the mechanics of the steady-state orthogonal cutting process. The model was capable of dealing with free
chip geometry and chip-tool contact length. The coupling with thermal effects was also considered. In
analyzing temperature distributions, the “upwind” scheme was employed and hence it was possible
to analyze high-speed metal cutting. For 0.2% carbon steel, good correlation between experiments and
simulations was found.

Basic Problems in Analyzing the Machining Process

Flow Stress of Work Material

The problem of modeling material behavior in the cutting process is very important, and previous studies
can be divided into the following categories: rigid-plastic (Iwata et al., 1984; Moriwaki et al., 1993; Ueda and
Manabe, 1993), elastic-plastic (Klamecki, 1973; Lajczok, 1980; Usui and Shirakashi, 1982; Strenkowski
and Carrol, 1985; Komvopoulos and Erpenbeck, 1991; Zhang and Bagchi, 1994), and viscoplastic (Strenkowski
and Carrol, 1986; Strenkowski and Moon, 1990; Joshi et al., 1994). Temperature effects have also been
considered in some models, which include thermo-elastic-plastic (Lin and Lin, 1992; Lin and Pan, 1993; Lin
and Liu, 1996), thermo-elastic-viscoplastic (Shih and Yang, 1993; Shih, 1995; 1996), and thermo-viscoplastic
(Wu et al., 1996; Kim and Sin, 1996) materials.

In conventional machining, deformation of the workpiece takes place at high temperatures, and in
this case material properties can vary considerably with temperatures. Elevated temperatures can cause
the change of flow stress of the workpiece material, and have a dominating influence on the rate of wear
of the tool and on the generation of a thermo-deformation layer in the machined surface. Thus, the
consideration of temperature effects in the analysis of metal cutting is very important. Because materials
at elevated temperatures are usually rate sensitive, a complete analysis of the machining process requires
two considerations: the effect of the rate sensitivity of materials, and the coupling of the metal flow and
heat transfer analyses. One of the methods of obtaining the flow stress in machining is by using machining
test directly (Stevenson and Oxley, 1970; 1971). Alternatively, high-speed compression tests (Oyane et al.,
1967) or high-speed torsion tests (Stevenson, 1975) can be used.

Up to now, attention has mainly been limited to plain carbon steel work material. It will be necessary
to extend this work, obtaining high strain, high strain rate, high temperature flow stress properties, to
other materials for analyzing the machining process. The lack of material data limits the application of
finite elements in the quantitative analysis of machining.

Friction Force in Chip-Tool Interface

As the friction force is strongly related to the chip
formation process and tool performance, it is
essential to consider the chip-tool contact phe-
nomenon in developing an accurate cutting
model. Stress distributions (Usui and Takeyama,
1960; Chandrasekar and Kapoor, 1965; Kato et al.,
1972; Doyle et al., 1979; and Bagchi and Wright, 1987)
from the photoelastic technique, split tool tech-
niques, or transparent sapphire tool technique show
a nonuniform stress distribution on the rake face.
A typical stress distribution on the rake face is
shown in Fig. 4.1. The normal stress increases
monotonically toward the tool edge, but the shear
stress increases first and then reaches a nearly constant value. That is to say, there are two distinct regions
on the rake face: sliding and sticking. In the sliding region, the normal stress is relatively small and dry
friction is preserved. In the sticking region, the normal stress is so high that the real and apparent areas
of contact are equal and the frictional stress is approximately constant. Based on experimental research

FIGURE 4.1 A typical stress distribution on the rake
face.
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results, a constant coefficient of friction (i.e., Coulomb’s friction law) is used in the sliding region, and
a constant frictional stress in the sticking region as an approximation. This can be represented as:

when  (4.1)

when (4.2)

where  is the frictional stress, is the normal stress, � is the coefficient of friction, and k is the shear
stress of the chip material.

The above friction model has been generally used for most cutting models applying the FEM. With
this approach, constant frictional stress can be obtained from the flow stress of the chip. However, it is
very difficult to determine the coefficient of friction because the frictional conditions in the sliding region
are different from those of the conventional frictional test. The bottom surface of the chip is a newly
formed surface with high strain hardening; the hardness of the chip can be twice as high as that of the
workpiece because of the plastic deformation in the chip. This hardness variation may cause changes in
the friction coefficient.

There are other ways to determine frictional stresses; for example, machining tests (Shirakashi and Usui,
1973) and specially designed tests (Ikawa et al., 1984). These methods give us nearly true information for
frictional stresses on the rake face, but only few such experimental data are available for specific conditions.

4.3 Thermo-viscoplastic Cutting Model

Material Behavior at High Strain Rate and Temperature

Material behavior that exhibits rate sensitivity is called viscoplastic. According to the von Mises criterion,
the deviatoric stress component is related to the strain rate component by the following equation
(Malvern, 1969):

(4.3)

(4.4)

Here, is the proportional constant, � is the viscosity, �Y is the yield stress in tension, and  is the
second invariant of the strain rate tensor. For a perfectly plastic material, the first term in Eq. (4.4), which
represents the viscosity of the material, is zero; while for a viscous liquid, the plasticity term (i.e., the
second term) is zero, as here there is no critical stress for yielding. Equation (4.3) can be rewritten as follows:

(4.5)

where is the second invariant of the deviatoric stress tensor. The second invariants of the strain rate
tensor and the deviatoric stress tensor are defined as follows:

(4.6)

(4.7) 
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For a von Mises material model,  and  are also called the effective (flow) strain rate and the effective
(flow) stress, respectively.

Governing Equations

The governing equations for deformation of viscoplastic material are formally identical to those of plastic
materials, except that the effective stress is a function of strain, strain rate, and temperature.

Velocity Equation

Consider a viscoplastic deformation of material with surface S and volume V under prescribed surface
traction f over the surface Sf and prescribed velocities  over the surface Sv . If we choose the velocity
field as the main unknown, the problem to solve in the general case is the following:

Equilibrium equation:  (4.8)

Constitutive equation: (4.9)

Boundary conditions: on Sv (4.10)

on Sf  

Compatibility condition: (4.11)

Temperature Equation

The equation describing the heat transfer processes occurring during orthogonal cutting is the steady,
two-dimensional energy equation:

(4.12)

Boundary conditions:

 (4.13)

where kc, �, and Cp are, respectively, the thermal conductivity, density, and specific heat;  is the rate of
heat generation per unit volume. ST , Sq and Sh are surfaces where, respectively, the temperature, heat flux,
and heat transfer coefficient are defined, and n is the outward normal to the boundary. Tb is the stationary
temperature on the boundary and To is the ambient temperature.  can be written as

(4.14)

where the heat generation efficiency 
 represents the fraction of mechanical energy transformed into
heat, and is usually assumed to be 0.9.
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Finite Element Discretization

Velocity Equation

With a weak form of the equilibrium and the incompressibility constraint given by , the basic
equation for the finite element discretization is given by:

(4.15)

where CK is the penalty constant and is a very large number (105 to 106).
The unknown velocity field v is discretized in terms of the interpolation functions:

(4.16)

where  is the velocity vector at node n with components , and Nn is a global interpolation function
that takes the value 1 at node n and 0 for any other node. The strain rate tensor can be evaluated from
Eq. (4.16)

(4.17)

and the B operator is defined from Eq. (4.17):

(4.18)

or in matrix form as

(4.19)

The effective strain rate can be represented in matrix form as follows:

(4.20)

The diagonal matrix D for plane strain problem is:

(4.21)

The volumetric strain rate is given by

(4.22)

and 

C
T
 � [1 1 1 0]B (4.23)
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Then, the basic equation, Eq. (4.15), is discretized and a set of nonlinear simultaneous equations is
obtained:

Kv � R (4.24)

where

(4.25)

(4.26)

After the usual finite element assembly procedure, the set of global unknowns (velocities) must be
calculated iteratively. Iteration continues until the nonlinear simutaneous equations converge, which is
to require that

(4.27)

The convergence criterion E is problem dependent.

Temperature Equation

The temperature T at any point in a finite element can be expressed in terms of the corresponding nodal
point values as:

(4.28)

where N is the matrix of shape functions and T is the vector of nodal temperatures. The Galerkin method
with the weighting function, Wi allows us to write:

(4.29)

After application of the Green-Gauss theorem, the above equation becomes:

(4.30)

The last term of Eq. (4.30) is written by the boundary condition as follows:

(4.31)

Then, Eq. (4.30) can be represented by the following equation:

(4.32)
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where (4.33)

 (4.34)

Special Numerical Features

Treatment of Rigid Region

In the machining process, situations do arise in which rigid zones exist; the plastic deformations are
concentrated on the primary and secondary deformation regions. The rigid zones are characterized by
a very small value of effective strain rate in comparison with that in the deforming body. Because the
effective strain rate appears in the denominator of the stiffness matrix, the system of Eq. (4.24) becomes
very ill-conditioned when the rigid regions are included in the analysis. This numerical problem is
overcome by assuming that the stress-strain rate relationship in Eq. (4.9) is approximated by:

(4.35)

where  is the limiting strain rate and takes an assigned value. Too large a value of the limiting strain
rate results in a solution in which the strain rate of the rigid zone becomes unacceptably large. On the
other hand, if we choose too small a value of limiting strain rate, then the convergence of the iteration
solution deteriorates considerably. For some applications (Gangjee, 1987; Todt, 1990), a value of  two
orders of magnitude less than the average effective strain rate works well. 

Treatment of Neutral Point

In the machining process, a stagnation point of the flow exits on the non-perfectly sharp tool cutting
edge with material above the stagnation point flowing into the chip and material below the stagnation
point flowing back into the workpiece. The velocity, and hence the frictional stress, changes direction at
the neutral point. Because the location of the neutral point is not known a priori, special numerical
techniques must be used when applying the friction boundary conditions. This problem is frequently
observed in metal forming, such as ring compression, rolling, and forging. Among several methods, we
use a modified form of the friction stress term proposed by Chen and Kobayashi (1978) as:

(4.36)

where  is the modified friction stress,  is the friction stress,  is the sliding velocity of a material
at the tool-workpiece interface, and  is a small positive number compared to . 

Incompressibility Condition

Because the penalty constant, which is used to remove the incompressibility, is very large, the second
term of the global stiffness matrix Eq. (4.25) dominates in the velocity equilibrium equation. If the second
term is non-singular, only the trivial solution v � 0 may be possible. One of the methods making the
second term singular is to use reduced and selective integration. This method was successfully applied
to the incompressible visco-flow problems by Malkus and Hughes (1978). A second-order Gaussian
quadrature integration is used for the first term and a first-order point formula for the second term.

The proper choice of penalty constant is important in successful simulation. Too large a value of CK

can cause difficulties in convergence, while too small a value results in unacceptably large volumetric
strain. Numerical tests show that an appropriate value can be estimated by restricting volumetric strain
rate to 0.0001 to 0.001 times the average effective strain rate.

H kc
�WT

�xi

-----------�N
�xi

-------- �CpviW
T �N

�xi

--------�  Vd hWTN  Sd
Sh

��
V

��

F W TQ̇ V WTq S WThT0 Sd
Sh

��d
Sq

��d
V

��

	̇ij
3
2
--  

	̇o

�o

-----sij , with �o � 	, 	̇o, T( ), for 	̇ 	̇o�� �

	̇o

	̇o

Tf �f
2
�
----tan�1

|vs|
vo

------- 
 �

Tf �f vs

vo vs
© 2001 by CRC Press LLC



Upwind Scheme 

It is well known that the standard discretization of energy equations involving a convection term, when
the velocity is high, may give rise to spurious oscillations that completely blur out the solution of the
problem. Those oscillations were first observed when finite-difference methods were used while studying
heat and mass transfer problems.

We choose the weighting functions as shown in Fig. 4.2 (Heinrich et al., 1977). We can write, for
example, the shape function Ni for node i in a quadrilateral element as:

(4.37)

Similarly, the weighting functions can be written as:

(4.38a)

(4.38b)

(4.38c)

In the above, the subscript j (or k) is that of the adjacent node lying along the same element side and

(4.39)

In this chapter, as a full upwind scheme is used, 
ij is either 1 or �1 and is determined by the
direction of the average velocity vector along the element side ij. 

Boundary Condition Problems

Velocity Field: Free Surface and Chip-Tool Contact

The geometry and boundary conditions shown in Fig. 4.3 are used to model orthogonal cutting. From
rake angle, clearance angle, tool edge radius, and depth of cut, the geometries of the tool and
workpiece are determined. The boundary conditions include a cutting velocity (v) and no flow normal
to the base of the control volume or tool surface (D-E). A-B, C-D, E-F are free surfaces of the chip, and
the boundaries of the chip free surfaces must be determined iteratively during simulation as they are
initially unknown.

FIGURE 4.2 Weighing functions. Reprinted from Kim, H.W. and Sin, H-C., Development of a thermo-viscoplastic
cutting model using finite element method, Int. J. Mach. Tools Manuf., 36(3), 1996, 379–397, with kind permission
from Elsevier Science Ltd., The Boulevard, Lanford Lane, Kidlington, OX5 1GB, UK.
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In this chapter, the free surface of the chip can be calculated by requiring that the normal component
of the surface velocity be zero. This method was originally proposed by Zienkiewicz et al. (1978) and
applied to an extrusion problem. If a fixed point of known coordinate values on a free surface exists,
from that point the coordinates of free surface can be calculated by integrating as follows:

(4.40)

where x� and y� are the coordinates of the surface and 
S represents the direction of velocity vector. 
The contact length is a critical parameter in coupling the thermal and material flow aspects of the

cutting model because it defines the thermal conduction path between chip and tool. Using the condition
that the normal stress at every node along the chip-tool interface is negative, the contact length can be
calculated. The calculation procedures are as follows:

• Assume the initial chip configuration and chip-tool contact length.

• Calculate the velocities of all nodes and stresses of the nodes along the chip-tool interface by the
finite element method.

• Calculate the coordinates of free surfaces from Eq. (4.40). If some nodes penetrate the tool
face, they are assumed to be in contact with the tool and the free surfaces are recalculated. A
positive stress at any node along the interface means that the chip has separated from the rake
face of the tool. Where the chip separates from the tool is then treated as a free surface, and its
position is recalculated.

• Continue until the normal velocity component on the free surfaces of the chip is found to be zero
and the normal stress at every node along the chip-tool interface is negative.

Temperature Field

Temperature boundary conditions are shown in Fig. 4.4. Most external surfaces that contact the air are
taken to be adiabatic, that is, heat losses to the surroundings by convection and radiation are assumed to
be zero. On the right-hand side and the lower boundary of the workpiece, temperature gradients normal
to the boundary are very small and hence are taken to be zero. On the left-hand boundary of the workpiece,
room temperature is assumed.

Infinite elements (Peter, 1980) are introduced to represent the areas of tool that are much larger in
comparison with the deformation areas of the workpiece. The elements on the boundaries of AB in
Fig. 4.4 are infinite elements in the longitudinal direction. The shape function of the infinite element

FIGURE 4.3 Velocity boundary condition used for the cutting model. Reprinted from Kim, H.W. and Sin, H-C.,
Development of a thermo-viscoplastic cutting model using finite element method, Int. J. Mach. Tools Manuf., 36(3), 1996,
379–397, with kind permission from Elsevier Science Ltd., The Boulevard, Lanford Lane, Kidlington, OX5 1GB, UK.
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is given by the following equation to represent the infinity of the element in �-direction:

(4.41)

where i is the nodal number and Ni is the shape function of the normal element; gi is called the decay
function and is given as follows:

(4.42)

�o � �1 represents some origin point in �-direction and m is set to 1.2 in this study.

Effective Strain Calculation

The solution is velocity or strain rate in the steady state. Thus, the effective strain can be calculated by
the following procedure.

All values of effective strain rate at the center points of finite elements can be interpolated by those
on nodal points. Take the two neighboring points Pi and Pi�1 on a flow line in Fig. 4.3 as examples. After
checking to see which element the point Pi belongs to, velocity components Vi on the point Pi can be
determined by linear interpolation. This check is made numerically using the natural coordinate system.
The next point Pi�1 on the flow line is calculated from:

(4.43)

where �t denotes the time increment and can be adjusted appropriately. After checking to see which
element the point Pi�1 belongs to, the effective strain rate on the point can be calculated by linear
interpolation. The interpolated strain rate is added incrementally to the value of effective strain at the
previous location as:

(4.44)

Using the above procedure, a new grid system is constructed by the points on the selected flow lines.
Finally, the effective strain at the center of a finite element can be obtained through linear interpolation
of the values on the new grid system.

FIGURE 4.4 Temperature boundary condition used for the cutting model.
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Computational Procedures

Four iterative cycles are performed during a cutting process simulation. The first solves the viscoplastic
equations for the velocity and strain rate distributions in the chip and workpiece. At ambient temperature
conditions and assumed strain distribution in the chip and workpiece, the nodal velocity and strain rate
distributions are calculated by the direct iteration method using the FEM. After each iteration, the strain
rate is compared to the initial value. The iterations are continued until the initial and calculated strain
rates coincide. Once the velocities have been determined, the temperature is calculated. It is considered
that the heat generation in the chip and workpiece is due to plastic deformation and frictional heating
and that the chip-tool contact length defines the thermal conduction path between chip and tool. Because
the elevated temperatures will significantly alter the material and thermal properties, an iterative solution
is again required until the temperatures converge. Next, chip geometry is determined. After the solution
of the viscoplastic and temperature equations, the computed velocities on the surface of the chip are
checked to ensure that they are parallel to the free surface. If this condition is not satisfied, the coordinates
of the chip free surface are updated, the grid is remeshed and the velocity and temperature distributions
are computed again. The final step is to calculate the strain distributions. Flow lines and strain distribu-
tions are determined by linear interpolation. The iterations are continued until the initial and calculated
strains converge. In calculating the temperature and strain distributions, it was found that the procedure
converged fairly rapidly, usually within four or five iterations. Figure 4.5 shows the flowchart of the
cutting process simulation program.

FIGURE 4.5 Flowchart of cutting analysis. Reprinted from Kim, H.W. and Sin, H-C., Development of a thermo-
viscoplastic cutting model using finite element method, Int. J. Mach. Tools Manuf., 36(3), 1996, 379–397, with kind
permission from Elsevier Science Ltd., The Boulevard, Lanford Lane, Kidlington, OX5 1GB, UK.
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4.4 Application

Material Properties and Friction Forces Determination

We used the method proposed by Oxley and Hasting (1976) to determine the flow stress �. It is as follows. 
The flow stress of the workpiece can be represented by the well-known stress-strain relation:

(4.45)

where 	 is the uniaxial flow strain, �1 is the stress, and n is the strain hardening index. For each of the
plain carbon steels considered, the results of Oyane et al. (1967) show that a velocity-modified temper-
ature parameter Tmod gives a good fit with the experimental results for a given temperature and strain
rate, and that the values of �1 and n thus obtained can be plotted against Tmod to give curves representing
the flow stress properties of each of the steels. The velocity-modified temperature parameter is defined by:

(4.46)

where T is the temperature,  is the uniaxial strain rate, and � and  are material constants. By
representing these curves mathematically and using rescaling functions, continuous changes in �1 and n
over the ranges of velocity-modified temperature and carbon content considered have been represented
by a relatively simple set of functions. The �1 and n curves obtained from these functions are given in
Fig. 4.6. The material constants, � and  are 0.09 and 1/s, respectively.

In calculating temperatures, the appropriate temperature-dependent thermal properties were determined
in the following way. The influence of carbon content on specific heat is found to be small and the following
equation (Oxley 1989)

(4.47)

can be used for all of the steels. However, there is a marked influence of carbon content on thermal
conductivity, and for the 0.2% carbon steel it is given as (Oxley 1989):

(4.48)

FIGURE 4.6 Flow stress results plotted against velocity-modified temperature: (a) flow stress, �1; (b) strain hardening
index, n. Reprinted from Kim, H.W. and Sin, H-C., Development of a thermo-viscoplastic cutting model using finite
element method, Int. J. Mach. Tools Manuf., 36(3), 1996, 379–397, with kind permission from Elsevier Science Ltd.,
The Boulevard, Lanford Lane, Kidlington, OX5 1GB, UK.
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For the friction force, the following equation proposed by Usui and Shirakashi (1982) is used: 

(4.49)

where � is the experimental constant determined by tool and workpiece, �n is the normal stress, and k
is the shear stress. Equation (4.49) satisfies the following two boundary conditions:

• As normal stress increases, friction force approaches shear stress.

• When normal stress is decreased to zero, Coulomb’s law is realized.

(4.50)

Numerical Simulation Example

The thermo-viscoplastic cutting model was used to simulate the cutting of 0.2 % carbon steel. Cutting
conditions and tool configuration are shown in Table 4.1. Figure 4.7 represents the initially assumed chip
geometry. Chip geometry is adjusted iteratively during the simulation using the free surface condition

TABLE 4.1 Cutting Conditions and Tool Configuration for the Simulation

Cutting speed (m/s) 2.16
Depth of cut (mm) 0.2
Rake angle (degree) 12
Tool edge radius (mm) 0.1
Clearance angle (degree) 5
Width of cut (mm) 1

Reprinted from Kim, H.W. and Sin, H-C., Development of a thermo-viscoplastic cutting model
using finite element method, Int. J. Mach. Tools Manuf., 36(3), 1996, 379–397, with kind per-
mission from Elsevier Science Ltd., The Boulevard, Lanford Lane, Kidlington, OX5 1GB, UK.

FIGURE 4.7 Finite element model with initial chip geometry for 12° rake angle, 5° clearance angle, 0.01 mm tool
edge radius, and 0.02 mm depth of cut. Reprinted from Kim, H.W. and Sin, H-C., Development of a thermo-
viscoplastic cutting model using finite element method, Int. J. Mach. Tools Manuf., 36(3), 1996, 379–397, with kind
permission from Elsevier Science Ltd., The Boulevard, Lanford Lane, Kidlington, OX5 1GB, UK.
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and contact condition. This cutting model can predict velocity, stress, strain, and strain rate distributions
in the chip and workpiece, and temperature distribution in the chip and tool. The outputs from the
cutting model are shown in Table 4.2.

Figure 4.8 shows the velocity vectors in the chip and workpiece, and the chip geometry. The velocity
vectors are tangential to the free surface of the chip, thus confirming the validity of the predicted chip
geometry. Contours of effective strain rate are shown in Fig. 4.9. The maximum effective strain rate reaches
its maximum value of 60,751/s ahead of the tool edge. It exhibits a large gradient in the finite shear zone
ahead of the tool edge and increases toward the tool edge. Figure 4.10 shows the contours of maximum
shear stress. They have a maximum of 612 MPa, and also exhibit a finite region in the shear zone ahead
of the tool. Figure 4.11 shows the contours of temperature in the chip and tool. Temperatures in the chip-
tool contact region are higher than those in any other. The effective strain contours in Fig. 4.12 have a
maximum of 3.13. It can be seen that the deformation in the chip is not constant and is getting larger
toward the tool edge.

Figure 4.13 shows the measured and simulated principal forces and thrust forces for the speed of 2.16 m/s
and the depth of cut from 0.07 mm to 0.2 mm. As expected, the principal forces and the thrust forces
increase with increasing depth of cut. Good correlation is found for the principal forces and the thrust
forces over the entire range of depth of the cut tested. In Fig. 4.14, the contours of effective strain rate
for the depth of cut of 0.1 mm are compared with those for 0.2 mm. As the depth of cut increases,

TABLE 4.2 Simulation Results

Principal force, Fc (N) 375.18
Thrust force, Ft (N) 120.82
Chip thickness, t2 (mm) 0.50
Chip-tool contact length, ln (mm) 0.38
Temp. in chip-tool contact, Tint (°C) 651.44
Maximum temperature, Tmax (°C) 680.66

Reprinted from Kim, H.W. and Sin, H-C., Development of a thermo-viscoplastic cutting model
using finite element method, Int. J. Mach. Tools Manuf., 36(3), 1996, 379–397, with kind
permission from Elsevier Science Ltd., The Boulevard, Lanford Lane, Kidlington, OX5 1GB, UK.

FIGURE 4.8 Predicted chip geometry and velocity vectors. Reprinted from Kim, H.W. and Sin, H-C., Development
of a thermo-viscoplastic cutting model using finite element method, Int. J. Mach. Tools Manuf., 36(3), 1996, 379–397,
with kind permission from Elsevier Science Ltd., The Boulevard, Lanford Lane, Kidlington, OX5 1GB, UK.
© 2001 by CRC Press LLC



© 2001 by CRC Press LLC

FIGURE 4.9 Contours of predicted effective strain rate. Reprinted from Kim, H.W. and Sin, H-C., Development
of a thermo-viscoplastic cutting model using finite element method, Int. J. Mach. Tools Manuf., 36(3), 1996, 379–397,
with kind permission from Elsevier Science Ltd., The Boulevard, Lanford Lane, Kidlington, OX5 1GB, UK.

FIGURE 4.10 Contours of predicted maximum shear stress. Reprinted from Kim, H.W. and Sin, H-C., Develop-
ment of a thermo-viscoplastic cutting model using finite element method, Int. J. Mach. Tools Manuf., 36(3), 1996,
379–397, with kind permission from Elsevier Science Ltd., The Boulevard, Lanford Lane, Kidlington, OX5 1GB, UK.

FIGURE 4.11 Contours of predicted temperature. Reprinted from Kim, H.W. and Sin, H-C., Development of a
thermo-viscoplastic cutting model using finite element method, Int. J. Mach. Tools Manuf., 36(3), 1996, 379–397,
with kind permission from Elsevier Science Ltd., The Boulevard, Lanford Lane, Kidlington, OX5 1GB, UK.
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the maximum effective strain rate decreases but the deformation region does not change much. It is
consistent with Stevenson and Oxley’s experimental observation (1969; 1970). Figure 4.15 shows the
measured and simulated principal forces and thrust forces for the depth of cut of 0.1 mm. The two
cutting speeds tested are 2.16 m/s and 3.02 m/s. It can be seen that the principal forces and the thrust
forces decrease as the cutting speed increases. The simulated values and the experimental values are in
good agreement in the range of the cutting speed tested. Figure 4.16 shows the contours of the effective
strain rate for the cutting speed of 2.16 m/s compared with those of 3.02 m/s. As the cutting speed
increases, the deformation region extends larger in the workpiece and the maximum effective strain rate
increases. It is also consistent with Stevenson and Oxley’s experimental observation (1969; 1970). The
thickness and the curl radius of the chip decrease with increasing cutting speed. Similar agreement was
found for the depth of cut of 0.2 mm and cutting speeds of 2.16 m/s and 3.02 m/s.

For the cutting temperature, it is very interesting to compare the simulation results with Tay et al.’s
results (1974; 1976). They first described the use of the FEM for calculating machining temperature
distributions in 1974. This procedure depended on a strain rate field being available for each set of

FIGURE 4.12 Contours of predicted effective strain. Reprinted from Kim, H.W. and Sin, H-C., Development of a
thermo-viscoplastic cutting model using finite element method, Int. J. Mach. Tools Manuf., 36(3), 1996, 379–397,
with kind permission from Elsevier Science Ltd., The Boulevard, Lanford Lane, Kidlington, OX5 1GB, UK.

FIGURE 4.13 Comparison of predicted and measured cutting forces with depth of cut for a cutting speed of 2.16
m/s. Reprinted from Kim, H.W. and Sin, H-C., Development of a thermo-viscoplastic cutting model using finite
element method, Int. J. Mach. Tools Manuf., 36(3), 1996, 379–397, with kind permission from Elsevier Science Ltd.,
The Boulevard, Lanford Lane, Kidlington, OX5 1GB, UK.



conditions; quick-stop tests on specimens printed with fine grids were conducted for this purpose.
A simplified version was later described (1976). However, their method is not predictive because it
requires inputs that cannot be arrived at from material properties but must be obtained from metal-
cutting tests for the specific combination of tool and workpieces, tool geometry, and cutting condi-
tions used.

Figure 4.17 shows the simulated temperature distributions compared with Tay et al.’s results (1974).
Very good agreement is found, especially for the maximum temperature and the location of maximum
temperature as shown in Table 4.3. In Fig. 4.18, the temperature distributions for relatively high cutting
speed from Tay et al.’s results (1976) are given, along with the corresponding simulated results. Good
agreement is also found for the temperature distributions, the maximum temperature, and the location
of maximum temperature.

FIGURE 4.14 Effect of depth of cut on the contours of effective strain rate: (a) t1 � 0.1 mm; (b) t1 � 0.2 mm.
Reprinted from Kim, H.W. and Sin, H-C., Development of a thermo-viscoplastic cutting model using finite element
method, Int. J. Mach. Tools Manuf., 36(3), 1996, 379–397, with kind permission from Elsevier Science Ltd., The
Boulevard, Lanford Lane, Kidlington, OX5 1GB, UK.

FIGURE 4.15 Comparison of predicted and measured cutting forces with cutting speed for depth of cut of 0.1
mm. Reprinted from Kim, H.W. and Sin, H-C., Development of a thermo-viscoplastic cutting model using finite
element method, Int. J. Mach. Tools Manuf., 36(3), 1996, 379–397, with kind permission from Elsevier Science Ltd.,
The Boulevard, Lanford Lane, Kidlington, OX5 1GB, UK.
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FIGURE 4.16 Effect of cutting speed on the contours of effective strain rate: (a) v � 2.16 m/s; (b) v � 3.02 m/s.
Reprinted from Kim, H.W. and Sin, H-C., Development of a thermo-viscoplastic cutting model using finite element
method, Int. J. Mach. Tools Manuf., 36(3), 1996, 379–397, with kind permission from Elsevier Science Ltd., The
Boulevard, Lanford Lane, Kidlington, OX5 1GB, UK.

TABLE 4.3 Comparison with Tay et al.’s Results (1974)

FEM simulation Tmax (°C) 607.2
Location of Tmax (mm) 0.525

Tay et al.’s results Tmax (°C) 615
Location of Tmax (mm) 0.560

Reprinted from Kim, H.W. and Sin, H-C., Development of a thermo-
viscoplastic cutting model using finite element method, Int. J. Mach. Tools
Manuf., 36(3), 1996, 379–397, with kind permission from Elsevier Science
Ltd., The Boulevard, Lanford Lane, Kidlington, OX5 1GB, UK.

FIGURE 4.17 Temperature distribution for the comparison with Tay et al.’s results (1974): (a) predicted temperature
distribution; (b) Tay et al.’s results. Reprinted from Kim, H.W. and Sin, H-C., Development of a thermo-viscoplastic
cutting model using finite element method, Int. J. Mach. Tools Manuf., 36(3), 1996, 379–397, with kind permission
from Elsevier Science Ltd., The Boulevard, Lanford Lane, Kidlington, OX5 1GB, UK.
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4.5 Conclusions

The basic concepts for a thermo-viscoplastic cutting model have been described in some detail for the
practical application to the simulation of machining processes. After a review of the literature, it is shown
how the finite element method (FEM) can be implemented to allow development of the cutting model.
A number of special problems arise during development of numerical methods to realize such a capability.
A successful application is illustrated through orthogonal cutting simulation for 0.2% carbon steel. For
an orthogonal steady-state cutting process, we believe the thermo-viscoplastic cutting model allows one
to understand the cutting mechanism and to accurately predict cutting forces, cutting temperatures, chip
thickness, chip curling, etc.

Although there is active research on modeling the machining process, there are numerous research
topics that should be incorporated into the ideal cutting model. In the future, one can expect develop-
ments in the following fields:

• For Lagrangian approaches, modeling the plane strain to plane stress transition during chip
formation, establishing the chip separation criterion, and reducing the computational time

• For Eulerian coordinate frames, considering the elastic effect, that is, computing the residual
stresses of the machined surface

• Developing the cutting model with oblique cutting processes

• Analyzing the machining process with negative rake angles, variable rake face configuration, built-
up edge, and cutting fluid effects considered

• Consideration of tool behavior and wear

• Analyzing and modeling the machining process for ‘‘difficult-to-machine’’ materials such as nickel-
based alloys

• Obtaining accurate data on flow stress at high stress, strain rate, and temperature for most
engineering materials

• Determining the friction characteristics between chip and tool that is suitable for machining
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5.1 Introduction 

Economy of scope aims at prearranging productive means tailored to artifacts with customer-driven
quality. The statement leads to several prescriptions for optimising the return on investments, such as
just-in-time schedules, quick-response planning, lean engineering, quality functions deployment, flexible
specialization, proactive maintenance, and other clever tricks to expand offers, improve quality, and
reduce time-to-market with maximum exploitation of the available resources. Setups correspond to quite
a different philosophy as compared to the largely experimented economy-of-scale paradigms, whose
primary goal is production preservation with the highest output delivery, therefore accepting that hidden
capacity (functions and resources redundancy) could be set aside as a spare option. 

The innovation, leading to “intelligent” manufacturing, is supported by information technology; it
cannot, however, be established without thorough changes of mind for the setting of material processes
and the fitting of governing logic. These changes are outcomes to real-time management of production
plans and instrumental resources and are enabled through process monitoring, to provide transparent
access to every relevant variable, joined to the online availability of pertinent diagnosis frames. Symptom
assessment and trend detection are essential wedges of knowledge-intensive setup started by computer
integration, to deal with instrumented rigs, endowed by consistent data fusion and signature restitution
techniques leading to data properly established according to objective (metrology) standards. 

Costs of maintenance are a source of increasing concern for many companies, annually reaching levels
up to 3–10% of the equipment cost. Demands will result in changes of work organisation, with upkeeping
becoming not less critical than manufacturing itself. The existing organisation now already looks for
preventive and predictive maintenance jointly enabled; in fact, the inefficiency of foredoing arises from
resort to conservative schedules (as opposed to the equipment-measured needs); prediction based on
failure symptoms, on the other hand, hinders reliable continuity, as maintenance is undertaken when
misfits are established. Thereafter, the availability of instrumented devices and efficient measurement
setups leads to revising the monitoring precepts, aiming at preserving “normal” running conditions
conservativeness while prosecuting the life periods as long as conformance to specification is assessed.
The expression “monitoring maintenance,” indeed, means ability of observing the set of critical process
quantities; in fact, monitoring supplies real-time visibility of the ongoing production and provides full
records of product quality. Summing up, in view of the process-keeping policies, the following attitudes
distinguish:

• postaudit: maintenance operates once breakdowns already occurred;

• preventive: maintenance makes use of process external variables (overall elapsed time, actual
operation intervals, etc.) and to a priori reliability data;

• predictive: maintenance surveys the process variables, to detect failure symptoms and then to enable
restoring actions;

• proactive: maintenance oversees the behaviour regularity by controlling actions.

With proactive maintenance, it is expected that corrective actions are commissioned for preserving safe
running, avoiding the waste of (off-process) preventive schedules and the pitfalls of already established
degradation.

Comparison between the maintenance policies is not discussed. Attention is, instead, focused on the
innovations brought forth by “intelligent” manufacturing and the related issues of “intelligent”
measurements. These lead to economical returns to enable “quality” manufacturing, aiming at producing
(with zero-defects) exactly these artifacts that buyers look for, with the highest added value (with respect
to competitors). Flexibility, as the first option, supports variable product mixes; as the second one, it has
to grant process adjustment to trim products to customer satisfaction; the latter also means that flexibility
supplies adaptivity for regulation and restore, aiming at failures risk removal and defective health com-
pensation; maintenance is viewed on a completely new basis, to replace a ‘failure reactive,’ by a ‘soundness
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proactive’ philosophy, namely, to reinstate the process and preserve ‘normal running conditions’ by means
of control actions which avoid situations leading to machinery faults or degradation.

The present chapter deals with the evolution brought forth by the interlacing of manufacturing and
measuring processes, supported by computer intelligence options. “Intelligent” manufacturing or
“intelligent” measurements are outcomes, appearing as technology-driven issues. Return on investment
is a comparatively more elaborate issue, largely depending on integrating the knowledge frames into
standard relational contexts which only provide reliable foundation to engineering activities. The chapter
sections develop as follows. An overview on monitoring maintenance is given first, emphasising the
innovation aimed at the proactive mode opportunities, with focus on the interlacing of measuring and
manufacturing for automatic diagnostics setting. The next section introduces the standard assessment
of artifact properties, including the “quality-at-the-large” concept to acknowledge the “fitness-to-purpose”
of delivered items, along their expected operation life. The subsequent section deals with traditional tasks
in dimensional testing, to explore knowledge integration issues that jointly enable the transparency of a
product’s quality data and the requirements of process upkeeping. A section is then devoted to developing
a total-quality diagnostic frame, with focus on a case application requiring innovative measurement
setups in terms of signature detection, feature restitution, scale setting and mapping processes. A final
section is concerned with the maintenance of the monitoring setup itself, as soon as the options of
“intelligent” instrumentation are available.

5.2 Monitoring Maintenance

A manufacturing facility needs trim, support, restore, and repair actions to maintain the involved resources,
in order to preserve the running conditions aiming at total quality of the processed throughput. Earlier mass
production was consistent with the preemptive rules of preventive maintenance, based on the a priori
estimation of the failure rate figures and the pre-setting of operation periods within the MTBF bounds; stops,
as well, were established with convenient safety margins, to grant production delivering by resources redun-
dancy. Buyer-driven production is presently based on flexible specialisation and quick response planning;
quality and due-date are achieved by adaptive production schedules, generated by integrating control and
management, with the options of  “intelligent” manufacturing, while effectiveness is enabled through leanness. 

The evolution in maintenance organisation, for the above reasons, is becoming a relevant opportunity
and is usefully characterised, Fig. 5.1, by distinguishing: 

• the off-process setups: by restoration rules, when, at breakdown, the resources are turned off from
duty-state; or by preemptive rules, at fixed timing or given amount of life consumption, provided
by (estimated) reliability data

• the on-process setups: by predictive rules, as resources are monitored to detect the onset of failure
symptoms; or by proactive rules, to keep normal conditions by controlling ongoing functional
prerequisites

Latter options for monitoring operations require instrumented processes interfaced with knowledge
databases aimed at specialised diagnosis setups, respectively, related to: 

• Ill-running (situations or trends) monitoring, to prevent breakdown by early detection of the
symptoms of the anomalies

• Continuous process monitoring and control of the safe-running situations or trends, to preserve
the conformance to specifications of every engaged resource

Intelligent instruments make feasible monitoring maintenance plans, with detection of functional
performance signatures, consistently related to operation thresholds and not simply to detection of
symptoms related to already established misfits. Upkeep actions are, then, said to aim at proactive mode,
as situation and/or trend monitoring provides information to preserve fit-with-norm conditions.
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The onset of anomalies is avoided with reliable leads, since trimming or restoring actions are performed
as a case arises, possibly during idle or hidden times, by resolving at the root the failure causes. Proactive
maintenance concerns include product, process, and measurement quality:

• product quality (‘fitness for purposes’ or ‘conformance to specification’) is the basic feature to
assure market competitiveness of the artifacts

• process quality means ‘zero-defects’ production and is the principal requirement to reach
manufacturing effectiveness

• measurement quality means transparency, within known uncertainty patterns, of the process
variables and the generating influence effects

The extent of view has accordingly to cover the interconnected diagnostic frames and give uniform
descriptions of the relational context and unifying methodologies for the quantitative assessment
of the observed attributes. The ISO 9001 standards provide the references for tests and controls of
products, processes, and measurement devices. The procedural instructions are made available at
each range (Fig. 5.2), aiming at: 

• Product diagnosis: tolerance and geometric inspections (by dimensional trial and mapping, etc.);
functional approvals (by patterns recognition, etc.); structural tryings (by nondestructive tests,
etc.); etc.

Mode Assessment Strategies Example

POST-AUDIT at 
breakdown, as
case arises

To acknowledge the non-
working condition, 
as the case arises

# Opportunistic 
re-establishment after 
failures

The driver is on foot; car needs 
maintenance

PREVENTIVE 
according to 
estimated 
reliability

To pre-establishe safe 
running periods based
on previous experience

# Periodic recover
and/or component 
replacements

The careful driver maintains the car 
at regular 10000-km intervals

PREDICTIVE 
prediction of 
failure symptoms

To monitor the current 
behaviour for system
failures detection

# Discontinuous restoring
at misfits detection

The driver has the car repaired when 
he finds out downgrades (lower 
speed, power loss, cooling fluid 
overheating, etc.)

PROACTIVE 
controlling
‘normal conditions’ 
operations

To check safe-tunning 
characteristics online 
and to preserve normal 
condition

# Upkeep at operation 
thresholds, by resolving 
failure root cause

Experience characterises normal 
condition: small deviations lead the 
driver to control the car operativity 
(slightly different noise, higher fuel 
consumption, harder steering, etc.)

FIGURE 5.1 Maintenance organization modes.

FIGURE 5.2 Diagnostic frames interconnection: product, process, measurement.
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• Process diagnosis: exploring resource fitness (tool monitoring, etc.); identifying the causal
influences (feedback from product to process, etc.); managing the failure prediction (inference by
experimental evidence, etc.); etc.

• Measurement diagnosis, to obtain, for instance: standard uncertainty restitution (enabling
automatic gauging procedures, etc.); validation of the instrumental setup (by, e.g., ISO 10012-Part
II-driven traceability, etc.); etc.

The build-up of monitoring maintenance by predictive/proactive mode is discussed more in connection
with methodological issues than with instrumental aids. Computer technology already offers smart hard-
ware and software; the big hindrance is efficient exploitation of data, by transforming “supervision” into
(reactive or proactive) “retro-fit.” The promotion of conservative running conditions requires full under-
standing of the past, present, and future behaviours of the manufacturing facilities and execution of redress,
compensation, and repair operations as soon as the execution need is recognised, before degradation
symptoms appear. These two steps, to understand for diagnosis and to upkeep for quality, are logically
joined, or their separation means such awkward issues as: 

• Maintenance without monitoring is like taking drugs with no concern for health data. 

• Monitoring without maintenance is like recording illness and looking for miracles. 

Performance Prognosis and Health Diagnostics

The basic idea behind monitoring is to measure one or more indicators and assess the actual “health” of
the system. Mechanical facilities and machinery have performance that can be classified into different ranges
when compared to ideal fit-with-norms. Gradual departures from normal settings can be detected by
condition monitoring; then proactive maintenance applies at given thresholds, avoiding the risk of misfits
(namely, termination of the equipment’s ability to perform its required functions). Lack of appropriate
knowledge of fit-with-norms behaviour would require one to measure symptoms of function degradation
and to forecast the course of the deterioration; the approach turns out to be reactive, as prognosis is put
into practice by misfit occurrences. 

Keeping plans, scheduled with online measurements, makes it possible to adapt deeds to actual needs
and to ensure that beforehand specified-performance is preserved. In this way, proactive programming is
enabled, with benefits such as: 

• Transparent equipment life extension, within “fit-with-norms” conditions

• Product quality with highest return in customer satisfaction

• Improved up-time and reduced unplanned outages (maximal plant productivity)

• Less expensive upkeep, with continuous control and minimal waiting time

• Longest “safe-life” horizons with standard health and steady output quality

Proactive maintenance of machinery and plants over their lifecycles is recognised by industry as a subject
of growing concern. The option, as properly assessed by the safe-life figure G(t) can deliver large economies
to companies, reduce natural resource depletion, and prevent unnecessary wasted efforts in replacing facilities
that can, via proper upkeep, continue to perform their required functions for considerably longer periods of
time. The switching, from fault detection to health diagnostics (and disease avoidance), requires field-oriented
expertise, new measuring equipment, and sophisticated data-processing abilities. 

The reliable and accurate assessment of current, fully operative (fit-with-norms) life in machinery is,
in fact, made possible by aids such as: 

• Intelligent measurement setups (yielding adaptive setting, self-calibration, parameter estimation
by genetic algorithms, automatic restitution of data uncertainty, etc.)
© 2001 by CRC Press LLC



            
• Computer-aided testing modules: ARMA, ARMAX, NARMAX, etc. models; automated feature
extraction; data fusion and process identification; etc.

• Advanced signal processing techniques such as time-frequency analysis, evolutionary spectra sig-
natures, wavelet mapping images, etc.

• Adaptive pattern matching schemes, e.g., fuzzy controllers, neural networks, etc. 

on condition that the knowledge of the relational contexts characterising machinery and plant behaviour
is available and properly exploited due to the user’s expertise. 

Performance prognosis over the current operation horizons, is, in fact, still the job of trained experts.
The listed aids can open the way to automatic assessments provided that standardisation is progressively
expanded on the reference knowledge used to build objective diagnoses. Basically, this leads (see Fig. 5.3)
to the organisation of the data track (along the measuring chains) and to the explicit setting of a
conditional track (along the cognitive mapping restitution chains), with due concern for the selected
mode for performing the monitoring operations.

A diagnosis frame benefits of the recent advances in intelligent instrumentation, based on intercon-
nected information flows, crossing the data line of the measurements to establish conditioned prognoses;
actually, we distinguish: 

• A priori data: system hypotheses about the observed quantities, characteristics of the instrumental
set-up, estimates on surroundings influences, etc. 

• Observed data: detected signals and restituted signatures, according to the conditioning measurement
chain and/or learning procedure 

• A posteriori data: situations and/or trends acknowledgement, symptoms classification, etc., with
due regard of the a priori relational schemes

Industrial diagnostics have been the object of many technical papers; among others, we quote the
following: (AGU.97), (BaK.97), (BeB.97), (BiK.97), (Bro.94), (CHA.92), (Ell.97), (IwM.77), (Juu.97),
(KhS.97), (KoK.97), (LMR.93), (MCR.96), (MiR.87), (MiR.93), (MMC.96), (MRC.97), (OND.97),
(PoT.86), (Rao.97), (Shi.88), (Shi.89b), (ShN.97), (SMN.73), (VoS.97), (YWS.92). The conditioning con-
texts typically explore continuous or discrete probabilistic models (Gauss-Markov processes or chains);

FIGURE 5.3 Automatic diagnosis setups.
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parametric statistical models (adaptive AR or ARMA weighing filters, with steady failure rate); and
opportunistic self-fitting models (neural nets, fuzzy logic identifiers, etc.). Monitoring diagnostic mode
distinguishes, as previously pointed out, predictive rules (based on decay patterns) from proactive rules
(based on fitness-for-norms control). Symptoms, finally, are detected as spot properties (by situations
acknowledgment), or as time drifts (trends by respect to given thresholds), to provide performance mea-
surements and health (disease) estimates. Resorting to standards for the conditioning contexts (further to
the processing contexts) is, possibly, the most intriguing innovation brought forth by intelligent measurements. 

The Situation/Trend Monitoring of Processes

Now consider the data obtained by process monitoring, distinguishing outputs of processing contexts
and issues of conditioning contexts. The soundness or, reciprocally, decay condition of the equipment
operativity is analysed with respect to time observations. Prognosis is derived by situation checks (point
or source assessments) or by behaviour responses (stimulus or transform tests), grounded on explanatory
models, inferred by previous experiments and system hypotheses. Results dependability has systematic
validation when data restitution refers to standards.

Failure state and damage progression only occasionally fit in with fully self-consistent causal frames;
often, data are collected with redundancy; symptoms are cross-verified as the most plausible issue of the
system hypotheses. Industrial diagnostics take advantage of automatic restitution procedures, incorporating
learning, inference, judgmental, and validation loops. The knowledge build-up distinguishes a few kinds
of activity modes: 

• monitoring: signal acquisition, signatures extraction, features detection, etc.

• diagnosis: recognition/prediction of current characterising situations/trends

• keeping: symptoms acknowledgment, regulation, and reintegration planning, etc.

• learning: revision of databases, upgrading of conditioning frames, etc.

For diagnostic purposes, a system is a set of entities and relations, characterised by pertinent knowledge
bases and common behavioural modes: the entities correspond to state variables, process degrees-of-freedom,
etc.; the relations are contexts, labelled by temporality, likelihood, reasonableness, causality, etc.; the
knowledge base is expressed by system hypotheses, empirical know-how, etc.; the current behaviour is
characterised by means of actual measurements. The diagnosis paradigm bears trustfulness when
identification and learning loops systematically provide objective issues.

A diagnostic frame, Fig. 5.4, covers the following main stages: process monitoring and signatures
detection; damage prognosis and keeping plans; maintenance actions and pathology checks (knowledge
build-up). Each stage instrumentally profits from information technology. Aspects are reviewed by
referring to examples. 

Signatures Detection

The monitoring range is directly related to the experimental setup and has to face opposing requests:
to collect every relevant information so that the characterisation of the machinery cannot elude proper
assessments; to reject useless data so that only pertinent signatures are detected for optimising the
monitoring duty. 

As an example reference, Fig. 5.5, the diagnostical frame for turbine rotors of power plants is considered
[MiR.89]. Bearing monitoring, for example, avails itself of three acquisition chains: synchronous-fast;
asynchronous-fast; conditional-slow. Time hierarchy uses “slow” trends (typically, temperature data) as
the triggering background and “fast” signatures (typically, vibration data) as evolutionary foreground.
The subject has already been tackled by several studies. For example, the modular programme SARM
[MiR.90b] makes use of both source and transform signatures. Diagnosis concerns—for proactive
maintenance, the control of running set-points to preserve normal conditions; for predictive maintenance,
the detection of incipient anomalies as a trigger to start restoring actions. 
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FIGURE 5.4 Block schema of a general diagnosis frame.

FIGURE 5.5 Block schema of a rotor diagnosis frame.
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Upkeeping Planning

Instrumental supervision aims at avoiding the conservative setups of the programmed restoration at
previously fixed time intervals, by enabling, instead, upkeeping duties to be accomplished (by proactive
mode) to preserve normal running conditions. Situation and trend monitoring are both considered to
regulate and reinstate. Risk analysis, with the outcomes for testing, classification, ranging, etc., aims
at condition setting to start revisions and/or regenerations with safe margins before any possible
damage; to improve the reliability of the setting, trend monitoring helps in estimating, along with error
signals, their progression rate so that reparation can be programmed in advance and, possibly, delayed,
according to the condition monitoring rules, with due account of the failure risk increase and of the
damage onset probability. 

Intelligent manufacturing refers to programmed maintenance, as a beforehand guess, for the setting of
the tactical horizons, to run optimal schedules on steady production plans; for effectiveness, it switches: to
proactive regeneration, while establishing the strategic horizons, with zero-defect schedules; and to predictive
restoration, when facing execution horizons and, to any evenience, occurrence of incipient anomalies cannot
be removed. All in all, monitoring maintenance, at higher sophistication, is built with the support of
knowledge intensive environments; it exploits system hypotheses for feed-forward plans and uses process
data for closing proactive control to preserve safe running conditions and for enabling reactive actions at
(programmed either unexpected) discontinuities for resetting purposes. 

Check and Learning Schemes

Industrial diagnoses, most of the time, make reference to mainly empirical knowledge that needs be
tested, widened, specialised, improved, etc. along the life cycle of the investigated machinery; these goals
are generally achieved by a learning loop, according to two approaches (Fig. 5.6): 

• Conditions elucidation: a consistent set of system hypotheses is anticipated and checks are planned
to acknowledge when critical issues develop 

• Features assessment: normal vs. anomalous behaviours are inferred by experimenting and recognising
regularity, as far as standard issues are preserved

The first approach can follow causal (structured conditions) or heuristic (judgmental frames) tracks.
The second is typically based on self-learning rules, with uncertainty to be compressed concerning both
modelling contexts and measurement restitution; this means that need of repair or retrieval actions resort
to the detection of changes in the behaviour when these out-span some given threshold. With the former
approach, the restoring actions are related to absolute scales, which might be changed only by modifying
the mapping schemes (selected according to a representational paradigm). 

The expansion of low-cost instrumentation suggests increased monitoring and referencing more and
more, to updated information and to discriminating checks. The design of new equipment, accordingly,
will modify, aiming at mechatronics solutions, with a relevant role played by the exploitation of data
continuously gathered on-process and of prognoses established from experimental evidence. This turns

FIGURE 5.6 Knowledge loops and prognoses drawings. 
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into a changeover of the testing setup, with instrumental checks and learning performed automatically
and with results given as standard issues of the process situation/trend monitoring system. 

The Relational Frames: Heuristics vs. Causality

By mechatronics, technology opens up adaptive resources, with the ability of adding information as soon as
recognised to affect the underlain process. The relational context can be separated into deep-knowledge or
shallow-knowledge frames. The former uses structured models and algorithmic procedures; the latter,
heuristic models and plausibility manifolds; mixed-mode options are also used, which combine statistical
inference and judgmental guess or learning loops and empirical validations. Access to relational frames offers
alternatives to draw prognoses: current diagnostics could expand, hoarding data or picking meaningful
signatures by acknowledgment cycles, moving with: 

• Correspondence analysis: by creating taxonomies and ordering the features 

• Consistence analysis: by selecting pertinent bounds and activating procedural methods 

The synthesis is performed by clustering, contingency arraying z proximity mapping, pattern recognition,
etc., according to heuristic or causal decision rules. 

Diagnoses are stated automatically (with intelligent instrumentation) by comparing detected signatures
and (already assessed) symptom patterns; prognoses are issued, via statistical (regression analysis, etc.)
or heuristic (expert modules, etc.) inference, through computer loops that condition actual measurements
and stored results by means of the hypothesised relational models. Monitoring, by itself, implies oversee
actions to detect situations or trends. Recognition of nature or cause of a given observed behaviour and
forecasting the processes course with or without some planned controls are further actions requiring
selective reasoning and decision supports. The field has fast-moving frontiers, in connection with the
evolution of AI tools. 

Earlier diagnosis has been related to the ability of assessing origins and reasons of (occurred) failures;
causal frames, instanciated by fault trees, have been the main elucidation technique, based on data
provided by previous experimentation. Thus, the use of sensor systems appears as a complement to
improve reliability assessments and failure occurrences forecast, based on larger amount of in-process
measurements. Data redundancy and fuzziness are better tackled by heuristic frames, supported by
knowledge based modules, which avoid conflicting issues by proposing plausible choice with regard to
some selected relational context. The innovation is brought forth by the ability of processing knowledge
(data with conditioning frames) and not merely data (coded information). 

Knowledge architectures distinguish (Fig. 5.7): 

• A data level, with the declarative knowledge initially procured and continuously updated and
widened during the machinery’s lifecycle 

• A schemata level, with the procedural knowledge provided by field experts and coded, as reference
methods, for processing the data 

• A govern level, with the decisional aids (inference motor) to select consistent methods once the
updated descriptions are acknowledged

Coding at the data level is simplified by object programming. Objects are elemental knowledge, with
{field, method, (belief)} for the declarative and procedural information (and the related confidence
bound). The instructions remain hidden, unless activated by the govern level; methods, by that way,
supply algorithmic or logic sequences, or give rise to analog reasoning, taxonomies, procedural rules,
thus, in general, to heuristic correspondences. Computer aids in industrial diagnostics primarily use
expert modules, with included inference motors to address execution progress, according to a selected
decision architecture.

The domain develops as an application of AI and, for software implements, reference is done to the existing
technical literature. Special emphasis should focus on the ability to provide visibility on the uncertainty or,
© 2001 by CRC Press LLC



                
reciprocally, on the belief that currently acquired knowledge bears. Automatic instruments perform explicit
restitution of data (nominal measurements) and of data-band (confidence bounds); the fact requires deeper
attention because: “cognitive” scales (according to the representational theory of measurements) are defined
for standard assessments of quality; and: “intelligent” measurements are enabled for concurrently adapting
processing chains and steering decision logic. The technical papers in the field are quickly increasing and
examples include: (AlN.91), (BDI.95), (Bar.91), (BrG.97), (Bro.94), (CMR.96), (CMR.97a), (CJM.90),
(JLF.97), (LMR.93), (MiR.89), (MiR.90b), (MiR.93), (MiR.94), (Mor.84), (MRC.97), (OND.97), (PhO.95),
(PoT.86), (Pul.91), (Rao.97), (RKP.95), (Shi.88), (ShN.97), (SMG.97), (TeB.94), (UOS.92), (ZNF.96). 

Maintenance Policies: Preventive, Predictive, Proactive

Upkeeping plans bear practical validation by the economic return of avoiding costs due to facilities failure.
Preventive plans are established during the design stages, when reliability data are selected for granting
the fitness-for-purposes of each device. The maintenance policy built on preemptive rules aims at the
availability, D(t): 

(5.1)

where MTBF is mean time between (forecast) failure; MTFF is mean time to forecast failure; and MTTR
is the mean time to repair. 

Obviously, a safe estimate of MTFF considers the distribution of empirical results and reduces the
operation intervals, MTBF, depending on the acceptable risk level. 

On-process monitoring provides updated details; maintenance based on predictive rules can delay the
restoring operations by obtaining larger availability spans, D(t): 

(5.2)

where MTBF is the mean time between failure (symptom); MTTF is the mean time to failure; MTTR is
the mean time to repair; and MTCM is the mean time to condition maintenance. 

Condition monitoring maintenance does not uniquely depend on the a priori information (used by
totally preemptive rules) and computes MTBF and MTTF figures with updated information obtained all
along the device work-life; (preventive) maintenance is thus delayed and performed only when useful,

FIGURE 5.7 Knowledge bases (declarative, procedural) and decision aids.
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namely, when the failure rate starts having an upward trend. By restoring, the failure rate figure is made
to recover the original steady value. With life-cycle design, knowledge-intensive setups are devised from
the artifact development stage and monitoring maintenance concepts are becoming standard option in
engineers’ practice. This leads to modification of the instrumental setup, aimed at detecting the devi-
ations from the normal running conditions and at using the data for online reintegration each time some
given threshold is overrun and the facility output fails to match the conformance-to-specification
requests. 

The approach refers to the quantity MTTT, mean time to threshold. If the artifact is consistently
designed, with the proper knowledge frame, monitoring provides the link toward a proactive (based on
fit-for-norms condition), from predictive (based on reactive mending) setting. The quantity MTBT,
mean time between threshold, is acknowledged to plan upkeeping operations, which will preserve the
machine’s functional capabilities (and the expected output quality); the resulting safe life-span figure,
G(t), depending on diagnostical on-process data, is reckoned as: 

(5.3)

where MTBT is the mean time between threshold; MTTT is the mean time to threshold; MTTU is the
mean time to upkeeping; and MTAM is the mean time to pro-active maintenance. 

The quantity MTTT is used to state the artifact intrinsic or bestowed properties; MTTU depends on
restoring capabilities; MTAM expresses the process-driven modulation of the maintaining actions. The
estimation of MTTT is performed by selecting prudent thresholds with respect to the current MTTF
figures. The safe life span, G(t), is evaluated, referring to the data provided by properly designed
diagnostic tools, as a function of a cautious estimation of MTBT, instead of the previously considered
MTBF. The change from the availability D(t) to the safe life span G(t) concept is, possibly, an obvious
suggestion. It cannot be obtained unless the artifact’s life-cycle properties are actually described by a
well-acknowledged model and are kept under control. 

Monitoring Architectures: Diagnoses Organization

Industries expect effective support by monitoring maintenance resources setups. To that aim, a functional
model, combining manufacturing and measuring actions, should be detailed (Fig. 5.8) with specification
of the involved data flows. On the manufacturing side, the main input concerns the product/process
characterisation and the main output deals with the product features and process set-points; auxiliary data
flows are required, at the input, to specify tolerances, supplies’ data, procedures, methods, etc.; and at the
output, to obtain productivity, performance, returns, etc. On the measuring side, the main input is
represented by the measurements (situation and trend signatures) of the monitoring equipment, and the

FIGURE 5.8 Concept schema of monitoring maintenance setups.
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main output provides the diagnostic information (with elucidation of the originating causes); auxiliary
inputs are the system hypotheses, the setting of the process-to-products relations, etc.; and auxiliary outputs
cover the suggestions for improvement, the records to prove the delivered quality, etc.

The processes are conveniently referred to as “jobs”; data are acquired at the end of each job. For our
goal, quality data are the representation of product features in a (standard) format, capable of being
compared to product specification (and to fitness for use). Conventional quality data are given in
Boolean (go/no go) or in (finite-length) numerical formats. Diagnostic frames need to perform cross-
linked product-and-process measurements; proper information is generally provided by coarse quantised
data, with resolution (over-all uncertainty) corresponding to the (process) value band. Thus: 

• The product-approved tolerated interval is divided into m bands, e.g., m � 5; for example: 

– A (unbiased) nominal reference band (NO)
– Approved slightly defect (SD), defect (D), etc. bands
– Approved slightly excess (SE), excess (E), etc. bands

• The product rejected features could similarly be ranked by bands; for example: 

– Small (large) defect rejected (DR) and excess rejected (ER) bands 
– Overflow (defect or excess) values, out of the instrument spans 

Monitoring yields sequences of discrete values. The time evolution considers results over fixed observation
windows and the following typical courses can be distinguished (Fig. 5.9): 

• Unbiased constant values: steady course within the nominal reference band 

• Biased constant values: course with data (partially or totally) in the off-set bands 

• Step-up (step-down) values: constant courses with a single abrupt up- (down-) shift 

• Repeated step-up (step-down) values: drifting courses with upward (downward) trend 

• Periodic step values: cyclic courses with periodic up- and downshifts 

• (Steady average) scattered values: random manufacturing quality

The technical literature involving diagnostics development, as already pointed out, is increasing very
fast. Typical references include: (AlP.79), (BDI.95), (BDL.97), (BLS.97), (Cem.97), (ChC.97), (FoS.91),
(IMR.93), (JiD.90), (JVR.90), (KJE.91), (LaD.84), (MCB.90), (MiC.85), (MiR.90b), (MiR.94), (Mor.84),
(PhO.95), (Pul.91), (RuT.82), (Shi.89a), (SeM.90), (SMG.97), (SoB.97), (YuH.88). 

FIGURE 5.9 Reference courses of process monitoring time behaviour.
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Learning and knowledge accumulation are working means of monitoring setups for artifacts quality
assurance and process upkeeping control. As for diagnoses, it is useful to define (Fig. 5.10) a set of
specialised databases, a set of knowledge-based modules, and a set of data processing blocks; namely: 

• Databases: these are permanent or upgraded storages comprising system hypotheses, measurements,
and updated prognoses; for example: 

– Technical specification, describing product, process, and (currently updated) bounds between
the two

– Experimental information, including (raw) monitoring data, (product) quality data, and (process)
diagnosis data

• Expert modules: these supply decision aids for setting/resetting the measuring and manufacturing
processes; for example: 

– Monitoring rig shaping, to select measuring chains, signature detection, and quality data
restitution schemes, pertinent quality indices, etc.

– Diagnostic rig shaping, to work out quality problem cause-finding, process ability decision,
fit-with-norms upkeeping suggestions, etc.

• Processing blocks: these perform acquisition, analysis, abstraction, selection, etc. tasks on the
current memory data; for example: 

– To determine product features, for quality approval checks as compared to technical specifi-
cation and for preparing tendency forecasts

– To recognise product/process bonds, to explain issued quality problems, and to draw conclu-
sions on the originating causes

– To assess process restore/upkeep actions, for selecting upgrade/control functions to preserve
fit-with-norm conditions, or to alleviate misfits

The control rig operativity follows from acknowledging current quality requirements (experimental
data vs. product/process specification) and by enabling feedback actions consistent with the desired
maintenance policy. The proactive mode refers to (situation or trend) thresholds, employed for quality
management during manufacturing, in view of finding influences and suggesting remedies from the
information loop: 

FIGURE 5.10 Block schema of monitoring maintenance equipment. 

Technical
specification

Product
data

Process
data

Product to
process
relations

Quality
constraints

Processing
blocks

Signature
detection

Prognosis
restitution

Performance
evaluation

Upkeeping
planning

Decision
support

Diagnosis
acknowledging

Monitoring
updating

Measurement
setting

Knowledge
management

Experimental
information

Monitoring
data

Diagnostic
data

Quality
data

Performance
data

MANUFACTURING MEASURING
© 2001 by CRC Press LLC



                
• Understanding the problem: to select the signatures, to look at data courses, to stratify and compare
data, to classify issues and forecasts leading to fit-to-norm standards

• Analysing the causes: to determine the involved factors, to choose the conditioning relational
frames, to verify the consistency of the chosen diagnostics 

• Enabling the improvement actions: to evaluate upkeeping policy effectiveness, to examine the
upgrading issues of process parameters remodulation 

The information loop requires fairly sophisticated knowledge frames to associate product features,
process parameters, and improvement actions. Typical opportunities include investigating multiple pat-
tern issues by cross-examination of redundant quality data to draw interpretations and verify their sound-
ness; singling out cause/effect structures, by iterating the information loops with alternative
monitoring/diagnostic rigs; performing instrumentation up-keeping, by including measurement uncer-
tainty assessments for upgraded monitoring quality, etc. The list reveals the inter-related nature of manu-
facturing and measuring each time monitoring maintenance is accounted for. It also raises questions of the
possibility of collecting sufficient data and of building consistent knowledge to grant proactive keeping (or
predictive restoring) feedbacks. Answers largely depend on the availability of intelligent instruments, as
soon as the area experts are in the position to offer the knowledge frame of a sufficient diagnostics. 

5.3 Quality Manufacturing

The durables industry faces the typical situations of affluent societies, wherein several potential buyers
exist in a market that is approaching saturation by the offers of equivalent competitors. An enterprise can
preserve or improve its marginal share ratio of worldwide trade, provided the “quality” figure of the
product mixes is suitably distributed to win satisfaction of increasing sets of purchasers. Goods become
increasingly sophisticated, grouping many sub-items that combine several technologies. Quality
manufacturing means “customer satisfaction” (technically assessed fitness for purposes) and, for efficiency,
“zero-defects” (conformance to specifications of all artifacts) needs be preserved. This requires recurrent
collation with consumers and continual updating and upgrading of offers. Integrated design is thus
becoming the extra knack, to customise goods with properties enhancing desirability with respect to
competitors. The issues are properly recognised and a large literature exists in the field; for example:
(AlP.79), (BDI.95), (CIM.97), (CIS.97), (DrC.95), (KuM.93), (Mic.92a), (Mic.92b), (RIL.92), (RuT.82),
(SuM.85), (SwM.95), (TDR.97), (VoW.97), (WSH.92), (ZNF.96). 

Buyer education and fair-trade rules impose crisp assessments of artifact properties; quality engineering
must be a standard accomplishment, based on approval tests, referring to objective scales. Manufac-
turers must join flexible specialisation and productive break-up; effectiveness is given by the ability
of sharing competencies and combining sub-supplies to reach diversified quality by integrated design
and incorporation of special components and technologies, most of the time purchased by external
suppliers. An enterprise can expect to succeed in expanding its trade position provided that the quality
figures of the product mixes are distributed to meet customer demands. “Quality” is a complex
attribute, which should be present throughout the life cycle, up to artifact replacement and environ-
mental protection rules. Its measurement often exploits engineer scales and conventionally standardised
restitution procedures. The nondestructive tests are, performed by certified personnel to assess the
structural properties of mechanical components. The concept can usefully be extended to measure
the “quality-at-the-large” figures, having explicit interest in granting objective protection to suppliers
and consumers according to fair-trade rules.

The “quality-at-the-large” goal is leading to design accomplishments, with falls off on artifact life-long
properties, such as safety, reliability, performance, energy saving, anti-pollution, or other technicalities
liable to improve the quality of a given offer, beside potential buyers. Some of the properties may be fixed
by registered authorities with compulsory rules or prior registration precepts. Others are established to
improve ergonomic operativity or the friendliness feeling of the running conditions, and, more generally,
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to ameliorate the comfort as users benefit from the option. Design-for-comfort belongs to the field of adding
user satisfaction outfits, which can be attached to a device, to distinguish one offer from others. The
betterments are sometimes minor gadgets, sometimes useful contrivances, or real improvements. As a result,
the appeal of an artifact depends on several details, for example: proper styling as visual pattern or sound
emission; functional performance with reliable display of the actual running state; usage friendliness with
transmission of a safety feeling; etc. The extra features have a value for buyers and a cost for manufacturers;
both obtain a benefit when the price is equally spaced between value and cost. The statement, on one side,
bears engineering relevance, whether specified by technology-driven assessments. On the other hand, the
level of friendliness feeling or of aesthetic character to be transmitted to users is quite subjective; design-
for-comfort is, for instance, a critical business, too frequently tackled with carelessness and leading to hardly
predictable issues. As long as the characterising features remain subjective, fair trade rules are not established
at least according to quality measurement precepts. 

Quality Measurements: Cognitive Scales

The above considerations show the evolution from the earlier business-driven ideas, such as CWQC
(companywide quality control), to the new goals in quality engineering, which grant objective tests, for
buyers and sellers protection, ruled by legal metrology. The quality will aim at fitness-for-purpose
(according to user’s needs) with reference to the product expected life cycle; its assessment (Fig. 5.11)
has to be established by objective standards, possibly, with technical certification issued by proper
accreditation schemes. The consciousness of the drawbacks of unsuitably stated quality scales is still
lagging; several manufacturers are mainly concerned with managing quality as a business-internal option
to improve competitiveness and do not realise that the constraints for a compatible development will
increase in number and cannot evade the objectivity of technology-driven specifications. 

The equivalence “quality � value” is theorised by (free-market) econometric models, presuming highly
qualified manufacturing enterprises, highly aggressive consumer organisations, and highly effective
accreditation bodies. The resulting environment could become highly conflicting, with unfairly poised
opportunities among partners, unless the quality of details bears reference standards. The metrologically
consistent setup is, possibly, established by the representational theory of measurements (Mic.92a),
(Nar.85), (Rob.79) to define proper scales and measuring methods and by extending the use of such
indices as a legal bound of any commercial dispute. 

The selection and the standardisation of quality indices are far from being generally accepted. Perhaps
this development of legal metrology is still facing the hindrances first met by Napoleon’s committees,
when they were trying to fix, all over Europe, the scales of the basic physical quantities. Therefore, we
will move with sample presentations that do not presume strict standard traceability of the measured
entities, rather than the objective repeatability of the tests. The approach progresses along a simple track: 

• The “detail,” reporting the quality-at-large concept to be evaluated, is recognised

• The related “signature” is defined by a mapping law and proper instruments/methods

• The restitution scale is verified to systematically repeat with reliable uncertainty

• The representation soundness is verified and the conditioning context specified

The representational theory of measurement (Fig. 5.12) (MCR.96) supplies simple criteria and rules
for defining metrologically consistent scales. Quality, or more precisely, any specific detail, is made to
correspond to the set of functional and aesthetic features, with technical (e.g., reliability) or emotional
(e.g., ergonomy) relevance, which characterise the offered item in connection to customer’s satisfaction.

checking for quality vouching for quality
functional approval testability assurance conform to specs.
life-cycle operativity reliability certification fitness for purposes

metrology references legal standards

FIGURE 5.11 The patterns for the artifact quality acknowledgment.
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It may become necessary to rank these features by means of synthesised cognitive references, properly selected
to simplify the issuing of standard rating by evaluation teams (through patterned assessment tests). In the
future, in fact, evolution of legal metrology, from the unified scales of physical quantities (to weigh, e.g.,
mass) to the replicated measuring rigs and methods (to assess, e.g., material strength), will lead, by that
way, to standardised sets of measurands with cognitive scales used as reference (to rank, e.g., comfort feeling).
Representational scales will be recognised by means of empirical assessments (e.g., by patterned interview
methods) and not, necessarily, by means of system hypotheses providing fully structured causal contexts.
The details of artifacts measured according to (properly acknowledged or only hypothesised) non-
destructive tests, for instance, are examples of technically sound, “quality-at-the-large” indices. The sample
metrological frame built on vibro-acoustical images, as well, belongs to such a domain; it provides explan-
atory hints of offspring in quality manufacturing, when established into objective frames. 

Representation paradigms meet increasing interest for technical fields, particularly in quality engineering,
to develop accreditation schemes based on conventional scales that could not be stated with relational frames
inferred from existing physical laws. By the representational approach, in fact, the measurement of ordered
conjoint structures (entity X and predicate P), is performed by the abstract factorisation of the ordering rule
into the constituents’ orderings. The decomposition follows from conditions on the relational independence,
which allow the scales to operate separately on the empirical structure X and on the (single or replicated)
predicate structure P. The connectivity (or similar assumption) of partial orderings is not strictly necessary.
The generality of the results granted by this approach makes the coding formalism quite powerful. The
extension to cover uncertainty has been investigated more recently. It explores the ordering by weak transitivity
with value-band restitution: the coding abstraction remains unaltered, allowing the reference aid to deal with
experimental data. In any case, the approach brings forth the idea that every entity (physical or cognitive) can
be mapped into a numerical scale (Fig. 5.12): sizes (extensive entities) have partition rules for generating
magnitude symbols (cardinal numbers); ranks (intensive entities) have ordering rules for generating range
symbols (ordinal numbers). 

Quality Metrology and Abstract Standardisation Rules

The representational theory further supports unifying views to deal with (ordered) conjoint structures,
possibly having predicate sub-structures related by connective and instanciation operators whose
elucidation is afforded by semi-groups (weak transitivity formulations, qualitative reasonings, etc.).
This helps singling out numerical structures and uncertainty assessments by a constructive approach
(Fig. 5.13). Uncertainty assessments are similarly stated by well-formed formulas (even if, at the moment,
little investigation is available): qualitative (ordinal) scales and quantitative (cardinal) scales, indeed, are

According to the representation paradigm, the measurement is "the objective assignment of order-symbols (numbers)
to attribute objects or events, in such a way as to describe relations between them (by means of the metrological scale,
provided together with the selected mapping)". 
By representation, totally ordered relational structures, �X,.,R1,R2,…�, are associated with appropriate types of
scales (ordinal, interval, ratio, absolute, etc.) by means of well-formed formulas. 
For engineering applications, the coding formalisms deserve consistency checks, to specify dimensional (reference
units) and statistical (influence uncertainty) restitution. 
The extensive entities have positive concatenation structures, with partition-based additivity; the basic homomor-
phism maps �X,.,R0� into �X,.,Re�,�,��; the set of the additive representations is a ratio scale and the results are
expressed in cardinal numbers. These are the coding schemata for quantity and are acknowledged by the accounting
operation, used for direct measurements (partition into replication of unit elements). Negative numbers require
context interpretation (with, e. g., the meaning of ‘not-possessed’ vs. ‘in-house’ quantities). 
The intensive entities have straightforward representation; the relational context is monotonic, with sequence
scales corresponding to ordinal numbers. These, thereafter, are the coding schemata for quality and introduce the
abstract scales, for the extended standards of the representational theory. 

FIGURE 5.12 Prerequisites of measurement representational scales.
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actually given by finite format (quantised) figures, with resolution-repeatability indices expressed by value
bands; interval computation and set algebra provide basic aids to propagate the detected uncertainty;
and the use of multiple-coding variables merges crisp and fuzzy data into unified forms, making sense
to scale with semi-order representation. In this way, the analysis of uncertainty can start, aiming at
modelling the relational binds that properly fit the empirical (observed) occurrences. Abstractly, the
confrontation of diagnostics against structural uncertainty yields specialised plans aiming at: monitoring,
surveillance, prognoses, upkeep, govern, manage, etc., with steps to assess consistent descriptions and
steps to perform progressive learning. 

Intelligent measurements have already been characterised by their ability to deal with standard
conditioning contexts and not only with standard processing contexts. Knowledge propagation by purely
syntactic patterns (according to mathematical logic) is, however, feasible for elemental goals only (Fig. 5.14);

Definition: the representation scales are order mapping of conjoint structures: �X�P��: 
- Obtained by an abstract factorisation rule (from �, into: entity �X and predicate �P )
- Leading to numerical structures with strong transitivity

For practical purposes: the metrological scale is a conventional structure formed by: 
(a) An empirical relational system (namely, the entity under observation), joint to 
(b) An associated numerical relational system (namely, the metrics), and together forming 
(c) An homomorphism (namely, the measurement, within the selected representational paradigm). 

Operatively, a measurement paradigm is thus based on the assumption of being able to prove: 
The mapping meaningfulness: the given conditions on the empirical systems are sufficient for the existence of an
objective assignment of symbols (numerical systems); 
The system testability: the above said conditions shall be checked experimentally, in order to assure the trustfulness
of the measurement methods; 
The scale construability: the representation should have a constructive proof, which provides a method for the
measurements, by means of direct theoretical background (physical metrology) or by means of a universal testing
instrument (technical metrology). 
The constructive approach provides well-formed formulas and also describes uncertainty. 
Uncertainty is assigned by a nominal value with a joint set (probability or membership function, etc.): 
– The ‘empirical into the numerical structure’ homomorphism is given by weak transitivity formulations; 
– The measurement is expressed by a meaningful realisation and its associated uncertainty (value band). 

FIGURE 5.13 Constructive approach of representational scales.

The learning, by relational schemata based on first-level mathematical logic patterns, uses only: 
• Elemental symbols: constants, variables, predicates, identity (�), order (�, 	), semi-order �, �), separation
(• & •), connectives (¬ not; and), instanciators (  for all;  there exist); 
• Derived logical connectives: or: [(A B) = ¬(¬A ¬B)];  → if ... then: [¬A  B]; ↔ if and only if: [(A → B)

 (B → A)]. 
The build-up of logic images by first-order patterns grants syntactic consistency; the logic images are formal
structures for which any coded expression is directly interpretable. First-order representations are akin to automata
style: coding of a variety of structured modes leads to ordinal or to concatenation patterns, with joint and branching
connections stated without ambiguity. 
To preserve the representation with well-formed formulas (that can be directly translated into actions), the
structural complexity of first-level relational frameworks, unhappily, grows to unrealistic levels. The interpretation
efficiency requires different formalisms, based on conceptual models, whose validation is mainly based on semantic
and on pragmatic verifications. 
The learning, by schemata based on higher-level logic, uses (causal) procedures: 
The empirical structures are derived from conceptual models (algorithmic or heuristic relational frames); 
The standards are derived by patterning the decisional frames.

FIGURE 5.14 Patterned learning by first- or higher-level logics.
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the problems of engineers’ interest, up to now, have profited by “hard” framing and solutions have been
obtained by exploiting conceptual models. This “hard” framing characterises lots of engineers’ scales, based
on the standardisation of the reference instrumental setup. Well-known examples include hardness scales
(Vickers, Brinell, etc.), noise pollution (according to shaping wave-band filters, etc.), etc. The evolution
towards “intelligent” instrumentation makes it possible to standardise both the data processing blocks and
the decision judgmental modes. It follows that learning can progress by patterned rules, also with high-level
logics, provided the “hard” framing of conceptual model selection is transparently fixed. Sample comments
are discussed in connection with the standardisation of acoustic signatures. 

Signatures extracted from noise or sound emission have already been exploited for diagnosis (RKP.95),
(JiD.90), (IwM.77), (detection of ill-operating conditions, etc.) or for specifying safe running levels
(SMG.97), (YWS.92) (noise pollution, inside given ‘limits’). The acoustic emission of individual artifacts
(engines, doors, dash panel triggers, etc.) can, moreover, be turned into a distinguishing feature and also
used as an advertising message (KJE.91). This more subtle goal presumes to model sound generation
phenomena, in order to oversee the release of quality devices. The quantitative description might further
be referred to by integrated design, aimed at the development of new (market-driven) devices, endowed
by given sound images, objectively assessed by ranking the comfort feeling levels (or other quality index). 

The appraisal of acoustic images associated with artifacts, to resorts, etc. bestows large relevance to psy-
chological factors. Judgments can be pursued by the patterned interview method, with purport depending
on the ability of preserving constant environmental conditions during the evaluation trials. For such goals,
the jury databases need to be built completely with preregistered signals and ordered using sound synthesisers
based on standard methods to generate the reference set of synthetic sound images with know accuracy.
Standardization by patterning the decision logic (Fig. 5.14) indeed becomes a nondisposable request; the
lack of objectivity jeopardises fair competition of manufacturers and proper protection of consumers. 

The storing of sets of measured signals is a useful means to classify, analyse, and back-generate families
of acoustic images with standard emission features. The shaping of the sound patterns of actual devices
(e.g., door closure, safety locking, etc.), to yield reference sets of acoustic images, is a considerably more
complex task. The procedure is actually undertaken by a series of constructive steps, such as: 

• Phenomena classification to define rank orders and rating scales, possibly based on psychological
motivations

• Behaviour modelling, with causal and heuristic frames to condition both device dynamics and
actuation patterns

• Parameter setting of the relational representations to provide reference means for developing
devices with the proper sound image

In the first step, the sound images are assessed by objective scales, provided that tests are performed
with metrological consistency. The second step leads to proper functional models for the equipment’s
transform/behaviour, making it easy to predict, by computer simulation, actual command sequences and
time evolution. These models typically include causal blocks (to duplicate the structural dynamics) and
logic blocks (to emulate the decision patterns). Then, the third step exploits the fitted-out models by
modifying the parametric setting to investigate differences in acoustic emission obtained by reshaping
the equipment. 

The measurement of synthetic indices to assess artifact quality will enter into practice as soon as metrology
standards are issued and accepted with proper traceability of both the processing (transforms applied along
the data flows) and the conditioning contexts (decision supports provided through the control flows) when
cognitive scales are used. The ideas are expounded upon in the following, by means of an explanatory example,
for the case application of the acoustic signatures, considering the sound image of a minor component for
car fitting. At the moment, most of the time, sets of conventional measurements are simultaneously carried
on to give a description of the artifacts’ properties with the clear assessment of the individual details, even
if the approach makes it difficult to graduate the quality as “fitness-for-purpose” or satisfaction of a given
customer. The next section is given over to reviewing aspects of the process integration of the measurement
equipment for the effective exploitation of quality data, issued by standard scales, as arises with the
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exploitation of the modern CMM. Subsequent paragraphs in this chapter section are concerned with
introducing concepts on the use of synthetic indices to measure comfort properties by means of (mainly)
conventional scales. These concepts are starting ideas for the developments suggested in Section 5.5
where the use of non-standard signal-mapping procedures is examined. 

Quality Approval Trials: An Example of Development

Quality inspection by synthetic index is an increasingly important opportunity. An example situation is
considered for explanatory purposes. Panel instruments of every cockpits or other work—or even,
leisure—front seats are triggered by knobs or levers, sometimes with multiple key positions to enable
several actions. For most cars, for instance, the push-buttons and swing pullers are distributed on the
dash-board and should be accessed without looking at them so as not to divert the driver’s attention
from road. Sound is a relevant means to provide details on the action accomplishment, in order to:

• Distinguish the addressed device from the originating signature 

• Understand the final situation (activated/disabled) of the command

• Recognise the safety and trustfulness ability of the dashboard 

• Acknowledge the “class” shared by vehicle, cabin, panel, etc.

• Extract practical data by inborn/inurement reflex 

Self-confidence and reliability are indeed important. Self-discriminating abilities and high-standing
marks are similarly essential preconditions to weigh outfit soundness. From the propagated sound,
the driver obtains the feeling not only of the effectiveness of a chosen device, but also the influentiality
and friendfulness of the purchased artifacts as a whole. These kind of items, moreover, are usually
bought from (several) purveyors; technical specifications thus need be turned over to the suppliers,
with a clear indication of properties and quality ranges that will be possessed, on duty, during running
conditions. The developments and findings concerning engineering tasks need to enter the way of
quality metrics; the final setting of a new car, accordingly, will go through an expanding number of
measurements, with attention on the quality-at-the-large options because users wish, further to failures
removal, the feeling that every device has fully healthy assets, provided by readily understandable
messages. 

Refer to the acoustic image related to the sliding actuator of a ceiling-light fixture (CGM.97), (Fig. 5.15),
placed within reach of the driver’s hand. It typically corresponds to a three-position switch: on; off; on, with
open doors. Its characterisation presumes a set of technical specifications, related to: 

• Driving force: a standard lever actuation law is assumed (progressive effort by a single finger,
centrally applied to the lever)

FIGURE 5.15 A sliding actuator of car ceiling-light devices.
© 2001 by CRC Press LLC



• Interconnection between device and ceiling: a direct packing or a gasket linking modify the fixture
behaviour

• Interaction with the surrounding framing: the nonlinear cross-couplings are deferred as second-order
effect analysis

In keeping with the existing practice, the driving acoustic patterns are explored by means of spectral
measurements joined to analysis of the noise sources. Foreground specifications concern time signa-
tures and harmonic spectra, with background data on time-frequency distributions to correlate the
frequency components during the actuation cycle and to avoid irksome peaks. The analysis has a
threefold purposs: 

• To measure the acoustic emission by means of proper representational mapping

• To obtain the reference features for synthesising equivalent sound images

• To certify the quality of the restituted attribute by consistent metrology patterns

Once the testing conditions are defined, the acoustic image is measured according to proper time-
frequency standards. These sound images are pulsed, nonpersistent waves. Usual spectral analysis, based,
on time-varying windows, leads to “tonal” features only. But agreeableness also depends on “timbric”
features (i.e., on emission dithering trends) and time-frequency analysis should be based on generalised
spectra (e.g., obtained by Gabor transforms) or on wavelet decompositions (with proper functional bases,
for duly accurate analysis and synthesis). Alternatively, the standardised sets of measurands, used as a
reference for patterned assessment tests, can be expanded to cover the practical range of all traded devices
(to make consistent comparisons). This second option is, perhaps, cumbersome, but still preferred today
because generalised spectral analysis does not currently possess mapping standards and unified scales
and is, therefore, avoided unless it is necessary to compress the relevant data into very synthetic signatures,
as in the case developed in Section 5 of this chapter. 

This sample study deals with usual frequency spectra, measured according to standard phonometry
(Fig. 5.16) by means of the conventional B-scale of noise metrology. The collection of the combined
information—sound emission waveforms � related frequency signatures—is performed to provide an
extended collection of data to be proposed as jury reference. A more effective representation scheme
(e.g., wavelet-based) could be considered in parallel, to assess “best” data compression into “synthetic”
sound images. Once the physical meaningfulness of generalised spectra is accepted (and used), these more

FIGURE 5.16 Acoustic images of the ceiling-light device.
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effective mappings can be used as process standard replications, providing a means to establish a consistent
scale for the collective ranking of the traded devices (according to details further discussed in the following). 

The example discussion has introduced a situation that enterprises will in the future face more and
more, namely: the capability of improving the ‘quality’ of a given artifact in connections with very subtle
prerequisites, that, nether-the-less, are critical to keep the competitiveness of the business. The “quality-
at-the-large” indices need be reached at the design stage and the analysis requires objective assessments,
combining detailed modelling of the operation behaviour of the devices, with measurement of the relevant
influence variables by means of objective observation schemes. By hazy data, muddled ideas follow and
confused developments are addressed. Conventionally, today noise metrology is already well stated.
Instruments, however, involve reference restrictions for detection, processing and restitution. Sensing devices
are, typically, followed by limited resolution A/D converters and data buffering abilities. For signals pro-
cessing, programmable units are good opportunity, aiming at adaptive filtering while storing, as long as
useful, observed data, intermediate results and final signatures; signals are provided as ordered (quantised)
data-blocks; standard algorithmic or logic modules can be addressed. This means that the digital instruments
makes easy to compute features, obtained as non-linear outputs of multiple-inputs systems, by acknowl-
edged processing sequences and transparent conditioning logics; next steps will certainly follow, based on
more effective data-processing techniques and standardised decision patterns. 

Quality Indices and Design-for-Comfort

The design-for-comfort process is conditioned by the actual performance of the considered device
(e.g., the ceiling-light fixture) in operation (as car outfit). Requirements should be turned over to the
suppliers of the components, with proper indication of the quality ranges to be certified. On the other
hand, habitableness and friendliness feeling are quite subjective attributes. To be turned by the
manufacturer into an advertising message transmitted to users, the acoustic image of any devices (from
engine, to key-board push buttons) has to become distinctive feature of a particular car and any new
artifact should be designed to share the distinguishing patterns. This fact suggests that design-for-comfort
paradigms could evolve to higher sophistication, with concept and approval stages intimately bounded
to assess and to verify each phase of the design cycle. The development and testing should fulfill a twofold
duty: 

• To obtain quality patterns according to buyer requirements, with efficient control of all production
properties

• To improve quality patterns, in terms of averaged figures and variances, to win upper-class
consumers

The case study, at the first step, is based on standard spectral measurements, in conjunction with detailed
analysis of the noise sources, to provide objective assessments of the given equipment technical
appropriateness: foreground specifications concern the total emission with back conditions on the spectral
distribution to avoid irksome peaks. A considerably more complex goal is represented in the second step
by the shaping of the acoustic emission of the particular equipment (push-buttons, door closures, safety
lockings, etc.), to be used for providing hints on how to redesign it and to reach the wanted betterments.
The spectral analysis must then be generalised or replaced by more specialised data restitution techniques;
the design-for-comfort approach, accordingly, needs evolve, exploiting parametrised models and investi-
gating how structural or operational changes could be addressed to modulate the details of the device to
reach the requests. 

Reconsider the case of car ceiling-light fixtures. The analysis is performed with the parametric CAD
Pro/Engineering code, to model (Fig. 5.17) the sliding pin and related guides. Pro/Mechanics aids in
performing kinematical animation and structural analysis, to obtain, for instance (Fig. 5.18), the vibration
modes up to fourth order. Solid modelling of the sliding pin is fundamental to fix the modes; surface
shaping and finishing at finger coupling is almost as relevant to fix the effort gradient and to address the
driving actuation law according to proper patterns. The situation is further modified by the profile given
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to the guiding ridges of the slider slot. The analysis of the forcing terms is usually a very subtle job, with
several hints provided by empirical knowledge. Once the study of stand-alone components is complete,
the investigation turns to the assembled device. The modelling, at this stage, affords well-defined causal
frames and the CAD help is valuable in identifying the parts coupling (compliance and damping) effects. 

The interlacing of design and test is clear, as a specimen needs to be available to confirm the assumptions
used to state the basic model. Improvements are investigated by modifying the modelled components,
up to the requested behaviour. Most of the basic information must be gathered at the equipment level;
this is usually produced by external suppliers (as compared to car manufacturers) and should equivalently
be used for several series of vehicles (after customisation) so that the “class” of given offers is recognised.
The subsequent characterisation of the (car body) assembled device (the ceiling-connected light-fixture)
is then investigated only when something goes wrong and quality has to be recovered with additions
(and extra costs). Obviously, direct packing is preferable to simplify assembly work and reduce errors risks.
The integrated design duty follows. The modelling of structural components is done, having resort
to finite elements code, based on parametric settings; the dynamics must account for different
restraining links and multiple driving forces. Joined or combined parts have cross-coupling influences
and the nonlinear damping effects are rarely predictable unless proper experimental data are available.
The sets of sound signatures and/or extrapolated families of acoustic images become an effective means
of identifying the parameters, by trimming the inertial elements and the compliance or damping terms. 

The availability of new devices with the properly selected acoustic image deserves design abilities,
shared by the car manufacturer and the device supplier through cooperative efforts based on transparent

FIGURE 5.17 A CAD solid model of the sliding pin.

FIGURE 5.18 Typical behavioural patterns obtained by the CAD solid model.
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access to the conditioning technicalities to obtain the predicted properties by minimal cost and time-to-market.
Integrated design cannot start without guesses to predict the sound emission of highly complex structural
assemblies. At this stage, the reduction to equivalent lumped parameters models is more properly under-
taken; but the equivalence is consistently reached on condition that devices are already typified (actual
dynamics is limited to a given inputs class), so that the vibro-acoustic behaviour is assessed for the
assembled vehicle, within defined duty ranges only. Once the equivalent model is stated, however,
consistent variations to the structure can be studied, to obtain adapted sound images according to some
desired patterns. Based on these premises, the procedure is a validation tool, as for the concept design,
leading to innovative solutions; for example, to reach a given comfort rank in terms of timbric features.
The development closes at this stage, thanks to the incorporation of quality data, directly assessed by
product/process trials and objectively shared by part supplier, assembly integrator, and artifact user. 

Product Life-Cycle Checks and Automatic Testing

The presented case shows the relevance of quality-at-large indices for redesign (and reengineering)
purposes, as worldwide enterprises would vie with competitors into fair-trade surroundings. This
representational approach provides formal rules to establish standards also for cognitive scales and the
options of intelligent measurement appear as important contrivance to support (or replace) the certified
personnel duty, by standardising the monitoring and the diagnostics of the measurement process itself
with automatic acquisition, processing, restitution, and validation instruments. Options in standardisa-
tion are further considered in Section 6, cross-referencing to established ISO standards. Hereafter, aspects
are recalled, in view of quality-at-large ideas, simply to give evidence of how widely these are exploited
in engineering practice. Indeed, the artifact approval testing moves more and more out of the manufac-
turer’s sphere of action, being required as a life-cycle request. The execution of properties checks by
(geometric, structural, functional, etc.) inspections is thus becoming an expanding business, which
needs be performed by (registered) professionals, following metrologic standards or, at least, properly
assessed measurement schemes. Returns obtained by standardising the measurement (instruments and
procedures) setup could affect many fields. This subject, once again, is quite broad and even a survey
outspans the limits of the present chapter. As an example case, nondestructive testing (NT) is mentioned,
because it is traditionally related to industrial diagnostics.

Conventional NTs are aimed at assessing presence and seriousness of structural misfits or defects, by
means of (non-invasive) measurements of related properties. The set of verifications covers cracks,
cavities, inclusions, porosities, dislocation pile-ups, gradients (of composition, of grains’ stretching, of
welding penetration, etc.), galvanic coating detachments, surface slivers, etc. As a general rule, the results
in NT belong to the field of assessing weak indicators. Measurement quality depends on the metrological
consistency of the instrumental setups and of the restitution schemes. The large relevance played in the
past by personnel qualification is more and more switched toward instruments, due to computer inte-
grated solutions. Still, the selection of the sensor interface and display features is a critical job, to be faced
by specialists (certified 3rd-level professionals). 

The classification of NT techniques is conventionally performed by means of transducing methods
at the detecting front (Fig. 5.19), giving rise to a series of measurement devices for visual tests,
electromagnetic radiation tests acoustic radiation tests, etc. With the expansion of intelligent instru-
mentation, a better classification should include the restitution procedures to give explicit account of
the aids for self-calibration, for results consistency checks, for uncertainty computation, etc. Presently,
large efforts are being put forth by instrumentation manufacturers, mainly in view of the friendliness
of displayed outputs, by the introduction of the computerised restitution. This option is useful, as it
avoids interpretation fuzziness, but should be normalised so that all devices (automatically) yield
consistent results. 

Calibration remains a critical operation to be executed by referring to known sample defects. Traceability
is an open question, unless for results affected by sufficiently large value band, or for diagnostic purposes
of a given artifact, where the process trimming is generally sufficient for the time propagation of
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self-consistency. The idea of formalising an operation on-the-field logic which standardises the
accomplishments of the quality systems is proposed as a management tactic to improve effectiveness
(see the QFD method); it should be completed by the specification of the reference metrics and by the
records of the conditioning procedures used for the quantitative restitution of the (nominal) results and
of the associated (instrumental) uncertainty. The subject is further considered in Section 6. 

5.4 Condition Monitoring and Facilities Upkeeping

The goal—quality manufacturing—is conditioned by product approval checks, based on objective
experimental assessments and, therefore, requires one to extend the metrology concern with reference
standards for all attributes entailing industrial interest; the option �monitoring maintenance� is conditioned
by the re-use of quality data, to establish online diagnoses and to accomplish on-process all expedient
actions, which preserve the “normal” running condition of the involved facilities. The economy of scope
looks for efficiency by optimally managing the available functions and resources with the queasy compliance
of sticking to the core business: unexploited opportunities are nuisances, as well as the addition of not
actually useful devices or accomplishments. Concepts are clear; the practice faces difficulties at the level
of principles (e.g., for fixing new metrics and selecting innovative measuring chains); and at the level of
ordinary courses (e.g., for the integration of diagnostics at the shop-floor for recovery effectiveness). 

The development of the subject in this section addresses the latter level topics; the instrumental setting
is basically established on conventional devices and methods; in fact: the measurements concern usual
quantities, such as the ones of length metrology; the diagnoses are obtained according to the conditions
elucidation approach, when the specification of quality patterns and the related tolerated ranges are
available as absolute data. The underlying manufacturing processes typically present tolerance patterns
that readily provide a standard frame for classifying artifact quality by absolute ranks. The relevant
innovation depends on data integration capabilities; therefore, it is useful to keep the attention on the
equipment and its interfacing endowments, moving from collections of data commonly in use for product
inspections. 

Dimensional tests have traditionally been used to perform approval checks, in order to accept (or
reject) artifacts according to the previously established tolerances. Results are example “quality data,”
verified as “spot” properties. Today, coordinate measurement machines are offered as integrated testing
stations that make possible combined series of inspections, with duty adapted cycles, in order to: 

• Stratify and compare data, aiming at the cross-examination of anomalies

• Investigate multiple patterns for singling out plausible causes 

Inspection Method Result Documentation Restitution Aids
Visual and optical inspection Written reports (photographs) Machine vision, 

video technology
Leak testing Written reports (photographs) Mass spectrography,

bubble emission
Liquid penetrant testing Written reports (photographs) Image processing
Magnetic particles testing Written reports (photographs) Image processing,

pattern recognition
Radiography-radiation testing Film and paper radiography 3-D reconstruction,

computer tomography
Electromagnetic testing Written reports/records Signatures detection,

pattern recognition
Ultrasonic testing Written reports/records Signatures detection,

pattern recognition
Acoustic emission testing Written reports/records Signatures detection and

acknowledgment

FIGURE 5.19 Classification of NT techniques in terms of front-end transducers.
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• Propagate the uncertainty figures with assessment of measurement confidence

• Perform, in general, the typical duties of intelligent instruments

The computer-integrated environment is such a clever option that it will not be limited to artifact
diagnoses; rather, it should be turned to equip manufacturing and measuring processes for enabling
full online diagnoses. Fields with high economic impact, such as in the automotive market, have already
seen large investments in intelligent automation and are increasingly concerned with quality control.
In such a case, the metrologic assessment of all parts that compose a car body has high relevance for
the performance of the automated process, to reach aesthetic and functional goals by transparent
methods and certified issues. Effective dimensional metrology fits-out are therefore required to provide
on-process monitoring with integrability ranges as any other functions of the factory automation. This is,
perhaps, a not fully developed issue. Investments in inspection means, indeed, have been performed, in the
past, mainly in secluded equipment and dedicated gauges (as reviewed in next sub-section); with intelligent
automation, the exploitation of the shop-floor information system must be fully enabled because efficiency
improvement and cost reduction are, as usual, incumbent challenges.

Product Inspection and Properties/Functional Checks

Artifact approval tests have been in use as quality checks of industrial businesses, to grant the standard
delivery of mass production. With steadily reset manufacturing processes, statistical control brings suffi-
cient assurance in terms of tolerated bands; the circumstances suggest how to organise inspections on the
products in such a way as to provide feedback information for the optimal setting of the processes. The
outcome is referred as product monitoring and is the central scope of quality engineering. It is equivalently
(but more efficiently) achieved through process monitoring, which measures the process-to-product
properties and performs process keeping and retro-fitting to preserve to zero-defect manufacturing. With
automation, a further step namely measurement diagnosis, is added to grant data quality of the overseeing
rig and to accomplish calibration and restoring tasks. 

The monitoring of industrial artifacts involves several quantities: geometric attributes, mechanical
strength, functional performance, pollution level, or any property assessed by standard scales. Aimed at
product diagnosis, paradigmatic issues are offered by: 

• Dimensional properties and related angular/linear displacement measuring rigs 

• Mechanical strength reliability and related structural-trying instrumental settings

• Operation running characteristics and related functional testing equipment

The state-of-the-art and the equipment for tolerance and geometric tests allow effective arbitration
between data acquisition rate and processing versatility. For explanatory purposes, devices used for
dimensional inspection are collected (Fig. 5.20) in terms of increasing flexibility, by distinguishing
levels: 

• Single-engagement, single-purpose devices

• Parallel-engagement, multiple-sensing devices

• Single-engagement, programme-adapted instruments

• Task-driven, programmable measurement devices

• Multiple-axes, task-adaptive measurement centres

The domain of dimensional metrology bears paradigmatic relevance when dealing with product
inspection duties, and sophisticated sample developments are recalled in the following paragraphs that
enter into some technical details in view of monitoring functions enabled by automatic measuring devices;
properties checks and functional inspection of artifacts are common practice, that can be extended more
and more by intelligent manufacturing. 
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The artifacts’ mechanical properties are sometimes checked at the end of manufacturing. More generally,
measurements are performed all along the device life cycle in order to assess the persistency of suitable
reliability levels. Special relevance is reserved for non-invasive techniques, based on indirect observation,
with transducing elements, of the attribute to be measured. The field is expanding, due to the innovative
pace of sensors and signal processors. The traditional area of nondestructive testing is fast changing, and a
synthesis of principal methods and basic diagnostic abilities has been summarised. 

The functional inspection also needs to monitor the artifacts in operating condition. Measurement
techniques depend on the driving set-points, the performance demands, the surrounding conditions, etc.,
and are strictly related to the type of product’s to be inspected. Testing quite often profits from the availability
of intelligent instruments and computer integrated procedures, which make it possible to carry out indi-
vidual checks of low-cost industrial artifacts (washing machines, household electrical appliances, etc.) or
of generic supplied parts (combustion engines, electrical motors, etc.) to grant their operation performance.
With, again, only explanatory purposes, the functional testing rigs are compared (Fig. 5.21) in terms of
increasing versatility, by distinguishing the set of separate results simultaneously obtained: power consump-
tion for standard duty cycles; current peaks at critical occurrences; energy saving attitude; averaged yields;
performance, efficiency, safety, etc. figures; pollution, acoustic, etc. emission ranges; and others. Properties
checking evolves with a hierarchic knowledge setting that distinguishes between: 

FIGURE 5.20 Classification of dimensional inspection equipment.

Fixed gauge:

Multiple dimension caliper:

One-axis measuring devices:

Measurement robots:

Coordinate measuring machines:

• mechanical tracer point
• instrumented tracer point: i.e., LVDT
• local visualization + central data logging
  = production monitoring
• re-toolability

• parallel survey of dimensions
• optional automatic loading and release of the piece
• re-configurability

• only for symmetric pieces
• in series dimensional measurements
• re-configurability

• usually architectured for a particular product category
• possibility of measurement on production line
• possibility to work in cooperation

• maximum flexibility with high precision
• usually operating in a controlled environment
• several machine architectures:
  - overhanging: small pieces, maximum accessibility
  - bridge: small to medium pieces, high precision
  - movable crossbeam: large pieces

High flexibility,
rich data processing

Low flexibility,
poor data processing

Dimensional checks: instrumental opportunities
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• Monitored quantities: pressure, temperature, torque, velocity, vibration, noise emission, etc.

• Reference features: overpressures, overheatings, overspeed, etc.; acoustic signatures, lubricant con-
sumption, etc.; wear, backlash, etc. 

Product monitoring, leading to standard functional checks, is a comparatively well-established field.
Indeed, many technical requirements are fixed by compulsory rules (electromagnetic compatibility, safety
limits, pollution ranges, recycling prescriptions, etc.); some bear relevant economical issues (operation
and maintenance costs, disposal and dismantling norms, etc.); while others can simply make one offer
more interesting in a worldwide market. In this chapter, attention is focused on quality inspection by
means of synthetic indicators, defined to measure “quality-at-the-large” figures; the topic was introduced
using the sample development of the car light box, to show a way to establish engineering scales for
measuring the “comfort” that buyers may obtain by a particular artifact; it is further developed in next
Section 5.5. 

Measuring Equipment for Automatic Dimensional Inspection

Industrial dimensional metrology and geometric testing have traditionally used a series of calipers or
other gages, previously prepared for the inspection of the parts, the sub-assemblies, and the individual
artifacts to verify their agreement with tolerances. These implements are produced with reference to
master pieces, manufactured to provide the “standards”; both calipers and masters need to be checked
periodically for the persistency of their metrological fitness. The situation becomes critical with large
and rapidly varying product mixes. Each component to be inspected requires related masters and
gages, before even starting production plans, making unlikely any quick-response programme. The
trend toward efficiency (Fig. 5.20) profits from information technology, once again with precision
mechanics, to propose the flexible gaging units or cells, unique measuring equipment for families of
varying pieces. 

Flexible gaging units are the evolution of known coordinate measurement machines, with the inclusion
of computer control and the adaptation for shop-floor operativity. Typical measuring equipment
(Fig. 5.22) is characterised by high-accuracy (cartesian) arm and wrist, for the proper mobility of the
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FIGURE 5.21 Classification of Functional Inspection Equipment.
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sensorised tip. Pieces of any shape, comprised by the workspace, can be inspected, giving rise to absolute
geometric restitutions. The gauging programme is ready to be accomplished as soon as the design of the
component is complete, no matter the prototypes or master pieces. The comparison of calipers and
flexible gauging units (FGUs) (Fig. 5.23) shows that drastic change, with respect to established habits,
appears in view of factory automation; the approval checks are done in an absolute reference frame, whose
origin and orientation are located, by proper rules, integral to each (solid) piece. The results are immediately
available for further processing (statistical treatments, diagnoses, retrofitting, etc.) and for storing to keep
records of the current situations and trends. Today, gauging units are equipped with usual PCs and the
software outfit easily covers all practical needs, including: 

• Automatic recognition and qualification of the sensor, inserted at the tip

• Quick selection procedures for generating basic metrologic elements

• Syntactic editor for off-line programming, with internal functional checks

• Extended database of form features, reference shapes, 3-D frames, etc.

• Extended database for dimension, attitude, and geometric tolerances

• Library of algorithmic procedures for reckoning 3-D solid frames

FIGURE 5.22 Flexible gauging unit, FGU. (Courtesy
of Brown & Sharpe.)

Calipers Flexible Gaging Units 
Dedicated rigs, providing assessments with 

respect to master pieces
Calibrated devices, providing asolute solid 

geometric assessments
Imply certification and recertification charges, to 

keep inspection soundness
Require metrological confirmation with 

traceability of the gaging charts
Deserve storing, dispatching, and handling 

operations for enabling the service
Are standing instruments and need to be 

included by the shop logistic service
Issued as final development phase (once the 

proper masters are available)
Immediately ready, once 3-D models are 

generated by a CAD package

FIGURE 5.23 Sample comparative properties of the flexible gauging units.
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• Options for addressing and recognising different pieces of a pallet

• Options for the fast link of part-programmes to inspect sequences of pieces

• Preparation of measurement protocols, with personalised formats and messages

• Diagnostic-oriented self-calibration checks (see, e.g., the Fig. 5.45) 

• Restitution of tolerances according to standards (ISO 1101, ANSI Y 14.5, etc.)

• Options for multi-point correlation, for data fusion, for threshold analysis, etc.

• Reckoning of statistical indices, as cumulative and as incremental figures

• Real-time supervision of the production process, by data feeding back

• Other similar action, compatible with the data processing module

All in all, machine uncertainty and measurement precision are also related to the test goals and to the
part programme. Repeatability depends on the probe and the speed, and might be preserved to remain
below 1 �m. Once the measuring cycle is established, the reference positions and directions need be
acknowledged accordingly, using a frame solid to the piece; results are then independent of the fastening
methods. The measurement restitution will undergo proper trimming and compensation updatings. In
fact, each flexible gauging unit requires a previous accurate calibration assessment to compute the error
distribution for the different workspace locations; then, departure from axis linearity, amount of bending
and twisting deflections, offsetting of the frame directions, etc., are recorded and the software compen-
sations are superposed on the actual outputs. Similar trimming is performed to account for drifts or
wavering of the temperature along the structural elements; several sensors are distributed to reckon timely
updatings. In this way, equipment uncertainty is primarily avoided by software compensation and
calibration operations duly performed according to standard procedures (that can be run automatically
on properly sensorised and fixtured units). 

The online restitution capabilities and the on-process control chances deserve special attention. The
charts of the statistical quality control are computed and displayed with the desired numeric and graphic
formats (with concern for any particular standardisation; e.g., FORD Q 101, etc.). Measurements can be
shared by several gauging units operating in parallel. Then, a centralised data evaluation system might
oversee the shop production, to generate in real-time: control charts, time records, statistical indi-
cators, uncertainty checks, oriented analyses (process capability, quality trend, etc.), etc.; and to supply
feed-back data for resetting the manufacturing facilities. Consider, for example, the checks on the
grinding issues of a blade fastener (Fig. 5.24); the part programme requires the localisation of the different
form features by measuring over 30 points; for feedback corrections, both situation and trend evaluations
are considered: 

• The situation checks organise by value bands: no corrections are done for central band data;
actions by the grinding machine controller are suggested to remove the bias of approved bands
data; outside actions by the shop controller are suggested, aimed at verifying tool wear-out, parts
provision, fixtures condition, etc.

• The trend checks look after the monitored courses (Fig. 5.9) comparing results and pre-set time
histories, in view of proactive maintenance; the time response of the closed-loop regulated
process is, as well, obtained by trend monitoring, with due account for the scheduled product
flow. 

The setting of the central band is asked to omit corrections inside the process intrinsic randomness; the
identification of the process time delay is required to avoid iterating the corrections, before assessing their
effects. The example retrofit can be easily adapted to different cases of NC machines (lathes, millers, etc.),
with proper concern for peculiarities (serial corrections deserve absolute reference to not propagate errors;
slanting surfaces need be weighed by the slope coefficient; etc.). This is important for factory automation
and becomes an effectiveness factor, with return on investment, as the proper integration rank is achieved. 
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Shop-floor Cells for On-process Automatic Testing

The discussion in the present section is further delineated by referring to an example development,
namely, the dimensional monitoring of (compliant) thin-wall pieces in the automotive industry. Excepting
engine and transmission, a vehicle is built assembling components having sculptured geometry; for
technical (structural, aerodynamical, etc.) and styling (aesthetics, habitableness, etc.) reasons, tolerances
apply on 3-D shapes, with relevant fall-off on production costs (once the quality data are fixed). The
inspection bodies, assemblies, parts, etc. deals with a wide variety of materials (metal sheets, glasses,
plastic pieces, etc.), form features (affected by handling and positioning deflections, etc.), geometric sizes
(with prescriptions on out-of-all spans, on local internal ranges, etc.), and further constraints on the
amount, the rate, and the accuracy of the data acquisition. On these premises, the multi-axes coordinate-
measurement machines was developed as a typical mechatronics issue, based on merging four (main)
competencies: high-accuracy mechanics, multi-axes control, software programming, and sensor technology. 

Today, instruments and methods are largely shared by field experts, yet continuous improvements
are scheduled to adapt measurement units and stations according to the requirements of intelligent
manufacturing. Basically, one should distinguish the measurement robots (Fig. 5.25), corresponding to
the philosophy of modular operation units, positioned along the manufacturing lines with flow-shop
organisation, from the measurement centres, (Fig. 5.26) more related to the high flexibility arrangements
of job-shop setups, based on the technological versatility of the FMS. Both solutions refer to cartesian
architectures for the navigation path and exploit three degrees-of-freedom wrists to settle the probe
attitude; they mainly distinguish with respect to the workspace size and accessibility. 

With the first setting, the horizontal beam runs along the vertical slide of a pillar, which is free to
move along the longitudinal track. The strokes, practically unlimited in length and over a few meters in
height, allow the transversal approach of sculptured surfaces on the top, inside and beneath the car body.
Vertical rams offer lower internal features accessibility and do not permit under-body inspection. Typi-
cally, two pillars are coupled; the exploration with the symmetric arm ensures balanced longitudinal
travel, supplies multi-axes inspection options, and, by paralleling the tasks, a dramatic reduction of duty-
cycles is achieved. To operate on the shop-floor, the setup has to be ruggedised, aimed at behaviour
independence from the surroundings, by containing the measurement station to a pressurised cell with

FIGURE 5.24 Blade fastener: inspection details of the part programme.
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loading and unloading stands. The (continuous or indexable) wrist transforms each arm into a five-axes
robot. At both beam tips, different probes are used. 

The second setting is directly derived from coordinate-measurement machines technology, by mini-
mising price and optimising performance. The bridge architecture is preserved, with vertical ram giving
full accessibility to  components (sheet metal pieces, glass elements, internal plastic panels, bumpers,
etc.). Useful upgrading is given by the structural innovation of slant guides to support the crossbars,
which ensure wider bearing separation (better roll trimming), joined to less weight and lower centroid,
for equal stiffness ratio. This leads to high speed and accuracy figures, while offering low-cost machines,
affordable by even small firms of the supplying market. 

FIGURE 5.25 Measurement robots inspection cell. (Courtesy of Brown & Sharpe.)

FIGURE 5.26 Automatic inspection station. (Courtesy Brown & Sharpe.)
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With intelligent manufacturing, the shop-floor organisation aims at the economy of scope paradigms
and the measurement machines targets have to move ahead according to new goals, such as: 

• Quick-response planning: with inspection programmes and fixtures ready when new components
are at the prototype stage; with automatic measuring stations, installed in the shop, capable of
operating in severe surroundings; with online data restitution, to make possible proactive
upkeeping; etc.

• Just-in-time scheduling: with real-time dimension checks, to preserve zero-defect delivery; with
the accuracy of the inspection rooms transferred to on-process tests; with distributed monitoring
actions to avoid the addition of final approvals; etc. 

• Total-quality diagnostics: with oversee functions covering the overall production; with sampling
frequency tuned to the manufacturing rate and increasing as deviation from normal conditions
appears; etc. 

The automated measurement machines are obliged, accordingly, to evolve and to include the new
requirements in terms, namely, of: 

• Accuracy: the maximum measuring uncertainty shall remain, for the environmental registered
conditions, within certified standards (otherwise, results are meaningless). 

• Flexibility: the switching in real-time between every pieces of the production mix is required
(otherwise, the investment would out-grow the enterprise’s budget). 

• Efficiency: the speed should grant statistical consistency of the collected data, to make possible
the certification of the delivered artifacts. 

• Versatility: the re-setting, in front of pieces with totally different shape or size, must be done by
refixturing, with resort to series of modular units. 

• Integrability: the equipment will share (physical and logic) resources with the main manufacturing
flow, by supporting uniform interactivity modes. 

The sample architectures, Figs. 5.23, 5.25, and 5.26, reveal the change in dimensional inspection
equipment, aimed at their inclusion online in order to keep the process under control. In fact, it is
absolutely required that data be evaluated in real-time, with statistical consistency of the results. Under
these conditions, monitoring allows one to prevent the production of out-of-tolerance parts and to
establish proactive prognoses to avoid possible anomalies of the process. The overseeing function, based
on predefined criteria, automatically generates alarms when given thresholds show the drifting out of
stick-to-norms requisites; with factory automation, the upkeeping actions can directly follow as soon as
the (unmanned) inspection cells generate the warning messages. 

Dimensional Monitoring for Compliant Pieces Approval Tests

The monitoring stand outfit is completed by the selection of sensing and fixturing rigs and by the
activation of the processing and govern functions. Being concerned with compliant pieces, it is mandatory
to check that the nominal geometry is assumed prior to inspection; thus, the individual parts need be
handled and supported by fixtures with dedicated re-shaping and holding capabilities, while ensuring
proper accessibility to the measurement points. This duty is not without difficulties; in fact, the produc-
tion process can often generate pieces with large position uncertainty and the measuring routines must
recognise the intrinsic deviations or the deflection swerves with respect to the strain spread. Therefore,
the measurements need be collected through structured probe paths (to exploit local textures of 3-D
bodies) and the results should be assessed in view of their statistical consistency. The probe attitude (and
not only the path followed by the inspection sequence) is critical for that duty; continuous wrists are
thus required (as indexable wrists do not always grant smooth orientation). 

Contact probing remains the more widely used technique because it joins reliability and accuracy, as
required by the existing standards (Fig. 5.27.) The inspection sequences are established to assess the
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position of the selected elements of each sculptured surface, both as absolute and relative locations. The
non-contact probing, based on laser triangulation, is usefully combined in high-performance cells; vision
technology provides benefits to supervising functions, to address the probe path and to speed-up the
duty cycle. Sensor innovation progressed rapidly in recent years and some changes are likely to appear
in the future, particularly as new technologies reach comparable reliability and accuracy in the restitution
of dimensional data. 

Fixtures, capable of granting for each compliant piece its nominal geometry, are very complex objects,
deserving time-consuming design and rising to high final costs. It could result that most of the time
this auxiliary equipment is not ready for part prototypes and might only be partially available at the
start of production. Any change in the pieces, moreover, requires demanding fixture updatings, making
it difficult to assess the actual benefits (or drawbacks) brought forth by the modification. A better
approach looks for adaptive modular fixtures. These are built by means of a kit of modular devices.
Once located in the workspace, the measuring robot can be used as an accurate manipulation device,
to modify the modular support until the desired shapes are obtained. The concept of adaptive fixturing
devices is valuable during development and at pre-series stages, when the product has to be modified
and trimmed to particular goals, with due attention to the effectiveness of the results. 

The flexibility of the overall hardware resources is exploited on condition that one has proper software
aids (Fig. 5.28). The inspection plans will be generated and assessed in close connection with the

FIGURE 5.27 The typical ruby-sphere contact probe.

FIGURE 5.28 Programming options of coordinate-measurement machines.
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manufacturing process. The sculptured surfaces are specified since the design phases, but are actually
brought out with manufacturing. The inspection-oriented CIME packages, thereafter, must be capable
of supplying the measuring part programme (while generating the production part programme) on the
basis of the 3-D models and of simulating the typical inspection cycles to detect (possible) criticalities,
without requiring the availability of the parts (nor even of the related manufacturing facilities). Then,
as soon as the real inspection duties are performed, the self-diagnostics of the programmes is enabled
for the consistency checks of the procedures. The self-diagnostics, as further discussed in Section 5.6, are
aimed at providing control, in real-time, of the reliability of the main process and of the measurement
process. For online duty, the metrologic consistency of data cannot be fully stated through sufficient
a posteriori statistics (to grant real-time operativity and monitoring maintenance actions); it is achieved
by exploiting the a priori specification of the part geometry to perform on-process data smoothing
interpolation and correlation analysis. 

The dimensional monitoring stations are, last but not least, specific resources of the intelligent
manufacturing environment (Fig. 5.29). They should be integrated within the enterprise information system
at all levels. At the organisational level, the resources are managed according to the CIME requirements
criteria. At the coordination level, the schedules are integrated to optimise the throughput efficiency. At
the execution level, the shop-floor control will ensure the recovery and reintegration actions to exploit
flexibility for the proactive maintenance goals. The integrated control-and-management module of the
automatic measurement stations must be capable of a number of tasks and overseeing functions to give
transparency of duty progression and to support the interaction of the station with external occurrences
(routine actions [e.g., pieces loading and unloading, adaptive fixtures resetting] or unexpected contingencies
[e.g., dispatching delay, misfit alarm]). Local controllers are presently engaged in ruling the different active
safety plans, quite necessary in view of the very high operation speed of the equipment.

The basic philosophy underlying on-process corrective actions, enabled by real-time dimensional parts
inspections, was summarized above, with reference to “stiff” objects, coming from computer-controlled
machining centres. For the compliant pieces of the automotive industry, dimensional checks affect more
extended situations. Shapes and tolerances of the (plastic strain) processing rigs have great relevance to
the quality of the final metal sheet components. Focus on parts monitoring, in this case, has centrality;
the collected data on the die geometry has, in fact, direct fall-off on the quality of the (drawing) process
or on the tolerances of the (forged) products. Once the manufacturing resources are made ready, with
their exacting requirements, the monitoring of production provides the warning for the proactive mode

FIGURE 5.29 Example application: approval checks for car body shaping.
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maintenance of the processing rigs to preserve the desired tolerances. The details on how (in practice)
these accomplishments are met can immediately follow from the sample discussion above. The integra-
tion of monitoring data is also useful for modifying the subsequent series of tasks, by joining the pieces
into assemblies with the aid of proper clamping fixtures, in such a way that tolerance compensation
is reached. 

5.5 Trend Monitoring and Fit-with-Norms Restoring

The diagnoses inferred in the domain of dimensional inspections move away from data of the traditional
metrology. Increasing industrial interest is likely to develop, aimed at diagnoses exploring drastic changes
of the references, with an effective involvement of the representational scales. The topics are introduced
in this section in relation to an example application, where the approval checks require the functional
grading of the produced artifacts. Diagnoses mainly develop according to the features assessment approach,
when self-learning is required in order to buildup sufficient knowledge for assessing fit-with-norms
behaviour, leading to approved quality. The underlying manufacturing flows are typically depicted as
contexts, evolving as sequences of jobs (information is updated in between each job); the space of the
signatures is obtained from large time datablocks, drawing out the process features. Behavioural conti-
nuity can properly be used to detect the “wild” occurrences, or to forecast the progressive drifts from
the approved “standard” conditions. 

On these premises, a total quality environment can empirically be established on the basis of continuous
observation of the relevant attributes of the manufacturing processes and by performing situation and/or
trend monitoring maintenance aimed at preserving the conditions of zero-defects production. Company-
wide quality control has consequences, related to the intelligent task-assessment paradigm, aimed at
manufacturing efficiency based on flexible specialisation, with decentralised decisional manifolds
(MMC.96). The actual effectiveness of continuous control on the manufacturing processes, enabled by
a production-wide diagnostical framework, depends heavily on the capability of extracting reliable data
during very short test phases and of feeding back the corrective actions, so that every off-set from fit-
with-norms is forced to vanish. Basically, aiming at monitoring maintenance, the quick-response demand
is achieved with the fast drawing out of pertinent signatures and the well-timed reintegration cycle; aimed
at the release of ‘certified’ quality, the functional grading for all artifacts should be carried over with
transparent criteria. Happily, this second accomplishment does not require added cost to operate after
standardisation of the measuring methods.

The Experimental Setup for Vibro-acoustic Signatures Diagnostics

The example case, hereafter used for explanatory purposes, refers to approval tests on the totality of
the assembled vehicle engines, performed to detect trends and to enable trimming actions that
reinstate the standards of zero-defects manufacturing over the entire processing facility. Vibro-acoustic
emission is already widely exploited to assess functional figures (AlP.79) during approval tests or to
analyse engine life-cycle health. Quality measurement requires one to acknowledge subsets of
signatures that identify each individual anomaly, as contrasted with standard running settings. The
checks are complex; links between signatures and physical phenomena are not without question.
Once each typical ill-running symptom (e.g., internal rattle, bench knock, wild ping, crankshaft
rumble, valve tappet slap, rod knocking, etc.) is detected, the resetting of the manufacturing flow must
be done, based on the prescribed reference models. These symptoms are normally discovered by
trained experts, listening to engines’ acoustic emission over long trials against brake equipment, when
the dynamical phenomena reach and preserve their characterising steady-state running conditions
(pitch patterns). The tests could cover several minutes; sometimes, they need be repeated for several
rotation speeds before reaching reliable separation of the superposed effects. In other terms, the
detection performed by human experts requires complex and time-consuming operations and can
cover only subsets of mass-produced items. 
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A total-quality diagnostical frame (TQDF) needs to identify the relations that bind design-and-
manufacturing variables and product quality actual figures, to establish upkeeping rules of the productive
facilities, for preserving steady quality production. Tests, on all items, should last a few seconds for real-
time consistency with flow-shop organisations. Vibro-acoustic analysis is expected to offer a powerful
means for setting effective diagnostical frames; it develops with measurement schemes without interfering
with the engine behaviour; the setting is a two-step business: 

• First, the diagnostical frame must be validated, selecting the signatures to be detected, the thresholds
to be maintained, etc., by off-process trials leading to the identification of effective (as for metrological
consistency) monitoring schemes, suitable for real-time operation.

• Then only, can the instrumental setup be included on-process, to assess if the normal-conditions
are properly kept; the monitoring maintenance is thus enabled to preserve the running operations
by control and reintegration loops. 

The off-process step must be accomplished first to select signatures that might be recognised as a
distinguishing feature of a given engine functional behaviour. One needs to remember that approval tests
are used, in this context, not only to accept an engine according to (certified quality) standards, but as
well to strictly control the considered manufacturing process. The second step is afforded as soon as the
causes of incipient anomalies and the off-sets (with respect to normal conditions) to be removed are
understood. The real-time control loops generally require several measurements. Moreover, they need
to include the sets of approval tests on the products, mainly for trimming purposes; thereafter, a total-quality
diagnostical frame (TQDF) supplies, at the shop-floor level, the fit-up to continuously enable a proactive
philosophy. Hereafter, the setting of the TQDF, to be integrated in the monitoring rig of an engine
mass-production plant, is discussed insofar as selection of signatures is concerned, with due regard for
features responsiveness and timing requirements.

New measurement schemes are required which join high data-compression capabilities (since the
totality of the engines need to be tested in fully operative running condition) and oriented consistency
(for reliable fit-with-norms assessment and process normal-condition keeping). For real-time control,
free acceleration/deceleration checks supply consistent monitoring means, as soon as the symptoms to
be detected and the actually measured signatures are reliably associated. Therefore, the reference diagnostics
must be established after off-line experimentation, to understand the relational frame in view of proactive
maintenance; namely, to assess:

• The overall phenomenic contexts, with sophisticated experimental facilities to grant metrologic
consistency and calibration reliability of the monitoring equipment

• The (finally) selected signatures appropriateness, to prove the theoretical foundation of the restitution
procedures and to clarify their practical meaningfulness

Let us review the first aspect. A general-purpose experimental facility (Fig. 5.30) performs vibro-acoustic
measurements to collect (PoT.86) quality data (IMR.93) of the individual engines. Basically, it uses sampled
(with 50-kHz rate) and digitised signals; datablocks are stored for after-processing. Further information is
simultaneously gathered, such as the synchronisation pulses (every 720 motor-angle); the thermodynamic
status (air, water, and exhaust gas temperatures); the instantaneous angular velocity (observing thresholds
on the flywheel); etc. The facility authorises several different checks (RuT.76) at quality diagnostics, it
should be noted that each type of abnormal behaviour in terms of performance (max. torques, current
specific efficiency, power peaks, etc.) or of operation (rod knocking, internal rattle, wild ping, etc.) also
depends on the running condition. 

The possibility of performing comparative measurements is important during the build-up step of the
TQDF. A typical general-purpose test sequence (Fig. 5.31) would include several steps. Only results of
STEP 7 directly interests the total-quality programme to be run online and on-process; the other data,
however, are required for setting and assessing the diagnostics frame. Now, the vibro-acoustic images of
the free acceleration/deceleration test cannot be extracted by usual data processing. Thus, alternative
options have been experimented, built with modulation windows, that may be suitably adapted for the
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application (IMR.93), or based on the exploitation of the wavelet transform (Dan.88), (LeM.86), (Ma.l89),
(RiD.91). Measurements according to both approaches require:

• Selection of the reference functional base and specification of the filtering gains 

• Development of the representational mapping and of the data restitution code 

• Assessment of the characterising signature space and of the related metric

FIGURE 5.30 Experimental stand for engine quality data assessment. 

STEP 0: Preparation of the test rig, by loading the pallet carrying the engine to be inspected.
STEP 1: Inspection of the engine; branching the measurement gauges, coupling to the electrical drive, etc.
STEP 2: Training the engine  at low speed (around 10 rpm) to detect serious faults (spurious “lost” parts, etc.). 
STEP 3: Driver disconnection and functional start-up/coast-down coupled to a brake: bump tests; check of individual

cylinders at low speed; point-measurements (pressures, temperatures, etc.).
STEP 4: Control of combustion uniformity; measurement of compression ratios of each cylinder, recording of

the power delivered to the brake; measurement of emission outlets. 
STEP 5: Multiple steady-state referencing (for diesel engines): combustion and emission checks at requested

running conditions. 
STEP 6: Setting the combustion control instrumentation and the feedback gains of catalysed injection engines:

gauging of the l-probe, trimming the sparking plugs. 
STEP 7: Brake disconnection and execution of the free acceleration/deceleration tests (between 700 and 7000

rpm in about 20 sec) for assessing the TQDF. 
STEP 8: Repetition of tests 3 (minimum speed) and 4 (standard steady-state), after warm-up (with 'high'

temperatures conditions). 
STEP 9: Branching-off the engine; unloading the pallet; test closes and a new inspection is ready to start. 

FIGURE 5.31 Typical measuring sequence with a general-purpose facility.
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The feasibility of the diagnostical frame moves through (LMR.93) two orders of checks: the processing
code is verified to understand each mapped representation soundness; and the signature spaces are
generated to record the vibro-acoustic signals of “standard” and of “anomalous” engines and to recognise
the differences. The methods are then ready to be used by the TQDF and, when appropriate, the upstream
control for the process resetting and the downstream alarm for the product trimming are issued. 

The Online Detection of Non-persistent Vibro-acoustic Images

Free acceleration/deceleration tests actually reduce to last no more than a few seconds. They shall be
performed directly along the manufacturing lines (Fig. 5.32) after the final assembly stand. The measured
images refer to transient periods and could include the (eventually existing) troubles only at level
of incipient phenomena; their detectability depends on energy storage build-up laws. Under these
conditions, the signal restitution procedures cannot be reduced to frequency monitoring; rather, it requires
generalised spectral analysis techniques. In fact, the signature consistency presents theoretical and practical
problems: 

• Only non-persistent acoustic signals are gathered, to detect timbric modulations. 

• The engine defects appear as local modifications of fit-with-norm running images.

Hindrances are removed by data restitution procedures, tuned to separate the features from the current
signal non-persistency, using independent mapping of both time and frequency modulations. The
underlying system hypotheses supporting computer-based signature extraction procedures can roughly be
referred to as timbre-mapping of the vibro-acoustic signals, as contrasted with simple pitch analysis. Trained
experts, indeed, refer to complex (with regard to steady-state frequency spectra) signatures that combine
modulation effects yield by superposing the troubles (to be detected) on the standard dynamical behaviour
of the engine. In general, in fact, the diagnostics heavily depend on the tuning-by-training ability (a
self-learning procedure). As soon as the feature is properly characterised, however, the detection of the
identifying signature can be specialised, standardising a diagnostics not directly related to human hearing
abilities, when this authorises higher reliability and better data compression, while performing the selective
timbre analysis. Hints on the restitution procedures are summarised for both evolutionary spectra and
wavelet transforms, to introduce the online monitoring maintenance ideas. 

A timbre analysis can use weighed harmonic patterns, based on the evolutionary spectra concept, or time-
frequency wavelet transforms, based on modulated convolutions. The weighed spectra bear metrologic con-
sistency; patterns keep the physical interpretation of averaged power distribution over the frequency domain.
The spectral estimates, moreover, can be performed on a single process realisation provided that the time
evolution of the mapped patterns is sufficiently slow with respect to the needed frequency resolution to detect
the feature. In other words, acquisition and restitution procedures cannot be validated independently; whereas,
weighting spectral parameters and acceleration slopes need to be tuned to each other, to set the diagnostics. 

FIGURE 5.32 On-process TQDF based on free acceleration/deceleration tests.
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With the wavelet transform, the intrinsic cross-conditional effects of acquisition and restitution are
provided by the algorithm itself. The selection of the functional base provides the means for particula-
rising the representations, leading to the most effective mapping of the property to be detected. The
extracted signatures are then conventionally ranked with respect to the automatically constructed scale.
Results bear metrologic objectivity on condition that one has standardised the (joint) acquisition and
restitution method. The next two sections provide introductory comments on both techniques; the literature
in the field is quite large and, for details, we defer to the quoted references.

The Evolutionary Power Density Signatures

For stationary processes, the spectral analysis is performed in keeping with the power density PSD
estimate, ; this is the mean power distribution or averaged quadratic signature over the current
observation window, since it measures, globally for a given time span, the signal square intensity. For
time-varying processes, the PSD expresses the scaled weight that the collected harmonics (while varying
with continuity) contribute to the phenomenon, on the normalised time span. The interpretation bears
mapping consistency, joint to diagnostics relevance, for the evolutionary power density, EPSD, ,
as it expresses the time behaviour of power spectral distribution estimates (Pri.88), averaged over the
current observation window. EPSD measurement, however, faces subtle metrologic problems and the
technical literature does not provide standard restitution procedures, limiting the consistency of actual
results (as compared to the stationary situations) due to the individual processing instruments. The
approach is based on evaluating the quantity  at time t, using the raw estimate over the local
observation window (of duration Tw):

(5.4)

and introducing a modulation window-wave v(t) over the time span TV: 

(5.5)

One can further define: To, overall recording window; Tx, periodogramme span, within which phenomena
are referred to as quasi-stationary; and �fx, expected spectral resolution, that is, conventional frequency-
band assuring that the signature detection is fulfilled with reliable assessment of each individual trouble.
Then, synthetically, the following inequality chain holds: 

(5.6)

meaning that (see Fig. 5.33): 

• The local observation window must be wide enough to ensure the required spectral resolution;
therefore, .

• The modulation averaging window should yield to a stable spectral estimate and, thus, .

• The averaging window, however, should not obscure dithering trends or process-inherent time
evolution, requiring that .

• The overall record should grant the possibility of verifying the quasi-stationarity conditions,
making .
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Further note that on one side, to fade away the random noise, Tv should be much wider than ; on
the other side, to reduce the systematic errors, time and frequency resolution should both be optimised,
making: 		  and , ��  , and therefore bringing  as close as possible to .

Referring to the selection of the windows’ shape, the existing technical literature on the subject is quite
loose; the following suggestions can be pointed out: 

• The round-off of the running observation window w(t) is important for smoothing away the
mapped side lobes, provided the systematic discrepancy of the main lobe is kept under control.
A cosinussoidal window seems to be a practical reference, in view of standardising the restitution
procedure.

• The local weights may usefully refer to uniform main averaging and exponential-decay
bilateral averaging. The fading symmetrical effects of modulation, when referred to any
central point (consistent to quasi-stationary conditions), provide unbiased information on
the trend behaviour. 

Within the previously quoted considerations, the EPSD is measured according to the expression: 

(5.7)

where 

This leads, in terms of expected value, to a spectral figure locally averaged with respect to time (with
weighing factor v) and with respect to frequency (with windowing effect w). In addition: 

(5.8)

FIGURE 5.33 Characterisation of windowing combined effects.
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provides a guess of the (relative) variance of the current estimates. On such grounds, the restitution can
be put forward on standard processing equipment, with unified scales for the EPSD estimates and for
the related uncertainty figures. The technical literature on the evolutionary spectral analysis is quite
extended; typical references dealing with time-frequency decomposition include: (AuG.9), (Bar.97),
(Coh.89), (CrR.83), (CWD.91), (CWF.76), (DaG.91), (Gab.46), (GFG.91), (HlB.92), (JiD.90), (Juu.97),
(Kay.87), (Mar.86), (Mec.92), (MiR.90a), (Pri.66), (Pri.88), (Wor.90), among many others. 

The Wavelet Transform of Timbric Signatures

Wavelet transform, on the other hand, is an already known data-processing technique, with specialised
application in the domain of the timbre analysis of sounds (for voice recognition, synthetic music generation,
etc.). It is characterised by the ability of assessing non-persistent signatures even if these represent very
limited power fractions of the overall acoustic emission. The property depends on the use of modulated
observation windows: the width span is depicted by a scaling parameter a; the timbre feature localisation
is defined by the running parameter t. The scaling factor performs a type of frequency translation: small a
evidences high-frequency features; large a evidences low-frequency trends. 

The wavelet transform can be done with different functional families bases, typically selected to be
orthogonal (for computation benefits) and complete (for smoothed back-syntheses). The modulated
Gaussian waves are widely used as a starting reference, being good processing means to establish a standard
for quality assessment schemes. Their functional characterisation is found in literature (Mey.90), for
example, in the form: 

(5.9)

expressed moving from time waveforms or from the related Fourier transform; where, in particular, the
functional base is described by: 

(5.10)

The continuous wavelet transform of a real finite-energy signal f(t) is then given by: 

(5.11)

The time-frequency selectivity of the wavelet mapping is easily perceived, referring to the shape of
the weighing factors for two functions of a discrete-parameter collection (Fig. 5.34) having scaling factor
ao � 2 and a not vanishing translation factor (to � 0), so that: 

(5.12)

where the ordering factor m can be both positive and negative. With (large and) negative m, the function
is wide and big translation steps t�a are appropriate; with (large and) positive m, the function is steep
and small translation steps are needed for covering the same interval. 

By now, several wavelet-transform codes exist, with mapping algorithms based on alternative functional
bases. Aimed at standardising the restitution procedures, the use of quantised (or even binary) orthogonal
sets of functions looks promising. For example, the wavelet-based images, reckoned with the Shensa
modification of the Mallat scheme (Wal.92), are issued by an efficient computer procedure that avoids
spectral limitation (with mapping at the dyadic lattice only) by interpolating along the current time t in
such a way to provide suitable resolution and to localise every relevant timbre feature. 
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The technical literature on wavelet transforms cover quite extended fields; example contributions are:
(ABM.91), (AGH.88), (BCD.92), (Bea.75), (BCD.92), (Chi.92), (CMW.91), (DaG.91), (DaL.88), (Dau.88),
(Dau.90), (Dav.91), (FMZ.90), (FoS.91), (FrJ.90), (Haa.10), (LeM.86), (MaH.92), (Mal.89a), (Mal.89b),
(MaM.91), (Mar.86), (MaZ.89), (Mey.90), (RiV.91), (She.90), (Str.89), (Tut.88), (VeH.90), (Wal.92),
(WoO.92), (Wor.90), (ZaZ.91), (ZHL.90). 

Sample Outputs and Case Discussion

The two restitution schemes, leading to evolutionary spectra or to wavelet mapping, have been tested
and validated using as reference data the sets of signals obtained by the vibro-acoustic monitoring of
engines (MiR.93), (MiR.94), on a fixtured stand, as mentioned (Fig. 5.30). The comparative investigation
of the restitution procedures requires a general-purpose setup (Fig. 5.35) for assessing, respectively, the
influences (and for mastering the effects, with due concern for standardisation) of weighed averaging for
the EPSD estimation and of time-frequency modulation for wavelet mapping. The setting of the diag-
nostics requires extended experimentation on several engines. This preliminary step cannot be omitted
for enabling company-wide quality control plans; it corresponds to the initial assessing of the quality
metrics to be used for on-process monitoring of the engine’s totality. For mass-production, the quality
data are, in addition to the enterprise-based goal of pace-wise betterment, also (MMC.96) a customer-
oriented request, as market will turn to be ruled by certification paradigms that will limit (or even
suppress) trade vehicles out of approved (and standardised) technical tolerances.

For practical purposes, the instrumental restitution of the characterising images bears great importance
to grant unambiguous interpretation. This should be considered when establishing the standards for
plotting the EPSD signatures. The graphic presentation of wavelet-transformed spectra, as well, is not
without problems, because mapping of a two-dimensional function vs. two independent variables is
required. An example EPSD image is shown in Fig. 5.36, where results, related to an engine with valve
rattle, are given. A simple linear scale is inadequate, due to the quick increase in the vibration amplitude.
A good discrimination is offered by a normalised linear scaling (as shown on the right of the figure),
which provides the time trends of the spectral shape (and not its absolute value). The information on
the actual amplitude is provided by a logarithmic scaling (on the left of the figure), with the drawback
of the compression of the dynamical range. The two displays have, indeed, complementary properties.
The spectral signatures allow reliable detection of valve rattle, even if the free acceleration test (from 800
to 6000 rpm) is reduced to last as short as 5 sec. The signature has an impulsive-like behaviour, not
strictly related to the engine speed; it is thus evident all along the test. 

FIGURE 5.34 Shapes of typical wavelets used for the mapping.
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The features given by wavelet mapping present further problems because their patterns are not usual
as compared with the spectral display. A parametric representation can be used, giving the level plotting
of amplitude and phase vs. the time sweep t and the width scale a. The level plotting is obtained by
means of a chromatic mapping (actually [LMR.93] with an 8-colour resolution scale, from red to violet),
which provides useful indications after black-and-white reproduction of the example outputs of Figs.
5.37 and 5.38. Both diagrams have the independent time sweep t (in ms) on the horizontal axis and the
nondimensional width scale a (expressed as fc/f, where fc is the sampling frequency of 50 kHz) on the

FIGURE 5.35 Example of block schema for the investigation of diagnoses frames.

FIGURE 5.36 Evolutionary spectra of an engine with valve rattle: (a) dB scale; (b) linear scale, normalised to unit
power. 
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vertical axis. The signal processed for the first presentation (Fig. 5.37) corresponds to engines having
strong crankshaft rumble in the 3560–3650 rpm range. As compared with the reference behaviour of
good-quality engines, the phase mapping shows level bifurcations at resonances between the engine bench
transversal waves and crankshaft torsional vibrations. The wavelet spectral image of Fig. 5.38 assesses the
different situation of an engine with the rumble in the 4200–4400 rpm range, which does not correspond
to a crank-shaft torsional eigen frequency. Internal energy storages do not build up and the phase diagram
will not show the characteristic bifurcations. 

The example results show that product monitoring can become a feasible option, under conditions
that “sufficient” knowledge on phenomena and instrumental setups are assembled. Special attention
should focus on “intelligent” measurements and on the new opportunities offered by combined “product-
and-process” monitoring, jointly with the “measurement” monitoring. Checks to accept/reject internal
combustion engines in terms of functional properties are, at the moment, performed for enterprise
internal goals, in view of manufacturing betterments. Measurement efficiency is the primary business
and the mentioned developments deserve special interest. 

5.6 Maintenance of the Monitoring System

Aimed at “quality” assessed by weak indicators, user satisfaction is mediated by business constraint,
such as the one stated by the quality function deployment (QFD) approach (Fig. 5.39); namely, by
enabling operation on-the-field logic, that, in keeping with the established praxis, organises on sets of

FIGURE 5.37 Wavelet image of an engine with rumble in the range 3560 to 3650 rpm.
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FIGURE 5.38 Wavelet image of an engine with rumble in the range 4200 to 4400 rpm.
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FIGURE 5.39 Breakdown of quality function deployment schedules.
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hierarchically linked tasks and sub-tasks, rather than on the measurement of sets of quantitatively
achieved issues.

The breakdown shows the information frames of strategic or tactical or executional actions, as they
appear to headquarters, during the management of the enterprise goals, with business-driven objectives
to exploit the potentialities of internal quality audits. As soon as strong consumer movements and
worldwide competition is established, however, the market will require metrologic consistency and will
impose third-party ruled standards and technology-driven certified quality (Mic.92a). This means that,
as long as a self-consistent legal metrology is defective, to certify quality one must undergo the extra cost
of the acknowledgment by external accreditation systems, which only may sustain fair trade conditions,
with protection of the bona fide manufacturers and consumers. 

The outlines show that quality management presents evident economical returns, on condition that
product-and-process properties are assessed by measuring meaningful indices, liable of yielding quanti-
tative information for the upgrading operations. This may suggest an engineering (quantitative) approach
to the QFD method; as soon as the enterprise strategies are approved, in fact, the method is worth to
provide tactical details for monitoring process and product and for acknowledging the current status
provided that appropriate metrics are available. The QFD scheme, indeed, is a means (not a goal); the
quality assessment by quantitative restitution is a step ahead which, when enabled, splits over two
accomplishments, namely: 

• Situational analyses, to give visibility of the local situations by measuring the quality indices on
statistical consistent samples (to specify the performance over tactical spans) 

• Relational analyses, to transparently account for the conditioning effects on the process by means
of models that, to some extent, need presume causality and driving agents 

Thereafter, the management and the maintenance of the measuring instrument by means of quality
systems standards will establish registered metrics and, at both levels, will provide formal references
for the enterprise fulfillment; basic hints address existing deep-knowledge conditional frames. The
extension to “cognitive” assessments and to quantitative mappings adds charges on the monitoring
and diagnostics of the measurement process itself, to grant objective opposability of results, since the
visibility of the decisional manifold overseeing the data processing flow will simultaneously be
assured; sample comments are introduced below. The next section reviews options of “intelligence” in
instrumentation. 

Intelligent Measurements and Instrumental Reliability

The connection between manufacturing and measuring in monitoring maintenance justifies the role
played by instrument innovation for return on investment obtained by exploiting knowledge-intensive
environments on full quantitative bases. The terms “manufacturing” and “measuring” are given broad
reach, to cover all material constructive duties (including artifact design) and all data processing duties
(aimed at managing quality). Innovation leads to “intelligent” measurements (Fig. 5.40) meaning the
extension of computer-aided testing (CAT) techniques by interlacing data flow (with detection, processing,
and restitution) and control flow (with rig shaping and consistency check). Such interlacing makes
possible the automation of sets of actions originally charged to operators, with standard consistency and
reliability of the applied procedures and of the delivered results. On these grounds, the most important
properties of intelligence (Fig. 5.41) are: 

• The automatic setting and resetting ability for the measuring chain: the data flows take tracks
singled out by series of requirements; for example, kind of results to be obtained; environmental
constraints; supervening occurrences; need for stratifying and comparing issues; etc. 

• The automatic evaluation of the measurement quality: the uncertainty (intrinsic of the measurand,
due to external influence quantities or to instrumental deficiencies) is processed concurrently with
(nominal) data and provided with standard formats. 
© 2001 by CRC Press LLC



As general rule, the CAT setups evolution is characterised at different levels, namely: 

• Material resources: hardware equipment, measurement chains, etc. 

• Processing blocks: programmes, coded instructions and addressing logic, etc. 

• Decision methods and judgmental modes: rules for self-calibration, resetting, etc. 

• Modal gatekeeper: supervising, steering, govern, management units, etc. 

The availability of explicit control flows provides visibility to the acquisition, detection, filtering, mapping,
restitution, etc. procedures applied to measurement signals. Resorting to intermediate buffers and

FIGURE 5.40 Block schema of intelligent instrumentation.

 �	 self-verification, self-diagnosis and self-calibration, for instrument validation; 
 �	 pre-conditioning of monitoring data, based on system hypothesis; 
 �	 integration of different sensors data or other transmitted information; 
 �	 flexibility in visualisation, archival and printing of data; 
 �	 multiple signal processing alternatives, with parallel/branching options; 
 �	 possibility to introduce operator decision in the choice of the measurement strategy; 
 �	 support for the data restitution and uncertainty evaluation; 
 �	 other similar actions for data processing or for decision-keeping. 

FIGURE 5.41 Functional adaptivity of intelligent instruments.
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specialised databases, distributed and multiple processing resources, and hybrid (algorithmic/heuristic)
programming, etc. makes it easy to establish virtual instruments or to run virtual tests, by modifying the
real-time bonds, authorising data stratification and supplying decision aids to select transform and
representation frames. 

Diagnoses develop, thereafter, with “smart” sensors, information “fusion” abilities, “function” adap-
tivity, etc., thus, in general, with a series of (merely) instrumental options that simplify features drawing,
pattern recognition, and retrofit selection. The formal approach of the representational theory of mea-
surement helps to standardise the functional adaptivity of intelligent instruments; and this (Fig. 5.40)
mainly means: 

• Representation adaptivity: by supplying metrologic scales, automatically modified with due
account for the traceability of the reference standards 

• Mapping adaptivity: by addressing, in the data processing library, the right transforms with regard
to the desired signatures 

Moreover, CAT fitting shares advantages (and drawbacks) of the digital mode. The signals have
properly coded formats, with transparent mastering of the resolution and reliable propagation of the
(local) uncertainty. The processing blocks are (actually) sets of instructions, with properly assessed
input/output characteristics; their modifications, due to programmes, can be monitored and/or
back-tracked to ensure visibility to the (actually used) method. The keeping of CAT devices is easily
established by defining proper virtual tests, performing the related checks, and enabling self-restoring
and self-calibration activities, whenever required, in order to support instrument management (Fig.
5.42) through automatic accomplishments. This option is very important because the maintenance of
the monitoring setup, according to proactive mode rules, in a nondisposable requirement to ensure
reliable prognoses. 

Monitoring and diagnostics of the measurement process further provide information on the currently
enabled conditional contexts and this helps, in the learning phases, to verify appropriateness and
effectiveness of the (hypothesised) relational frames, when, in particular, knowledge-based architectures
are prearranged for concurrently adapting processing blocks and decision aids. The switch to “intelligent
measurements” is an option offered by computer technology to increase monitoring potentialities in
view of complex duties; a reference instance might be phrased as follows (CMR.97): 

FIGURE 5.42 Flowchart for instrument management.
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• Instead of the routine request: �obtain the measurement of given quantities, within a specified process�
• It should be answered to the request: �perform the quantitative characterisation of the observed

process, from a selected standpoint� 

For diagnostics of mechanical systems, the acoustic, fatigue, thermal, vibratory, wear-out, etc. stand-
points are common requirements for goal-attuned assessments. Complexity is understood realising that,
to answer the first request, one presumes that: the standards for the metrological mapping of the physical
process is established and thus the scale of the quantities to be measured is consistently fixed; the
instrumental chain uses devices whose attitude of correctly performing the measurements has been
assessed and it is thus simply required to check their calibration. With the second request, convenient
decisional and processing autonomy of the intelligent system is required because: the current selection of
models to represent phenomena is deferred after on-process checks and can be continuously updated;
instrument appropriateness is obtained by in situ tests, with the possibility of reducing the goals within
actually reachable bounds. On these premises, the capabilities of the intelligent measuring techniques
clearly appear; the development of standards precisely in the area of the maintenance of the monitoring
systems is an obvious extension in bringing, as previously pointed out, the QFD method a step ahead. 

Quality Maintenance of the Measuring Instrumentation

The assignment of quality to products or services (at competitive costs) is strongly influenced by man-
ufacturing, inspection, confirmation, and settling actions. Company-based requisites are very important
elements that need be improved for the efficient control of quality and cost of the output. A reference
assessment needs to consider typical conditioning facts, such as the following. 

• The final quality and cost of a product or service are directly related to requirements as defined
at the initial presetting and development stage.

• The actual quality and cost are specifically related to the processes and organisation used during
the generation of the product or service.

• The process quality strongly depends on the characteristics of instruments, resources, and tech-
nologies, and it is affected by enterprise management.

• The quality costs tend to migrate from more controlled to less controlled phases (with the side
condition that: “you can’t control what you can’t measure”) 

All in all, a knowledge-intensive setup exists and runs efficiently, on the condition that the monitoring
system itself complies with the clauses of total quality, supplemented by rules for quantitative assessment
established on metrologic consistency with provision of pertinent confirmation aids (Fig. 5.43). The current
reference document for the requirements is the ISO 10012 Standard, which is organised in two parts: 

1. The system for the metrology confirmation of the equipment 
2. The management and control rules of the measurement process 

The first part deals with the technical assessment of the instruments, the second with the monitoring,
diagnostics, and certification of the measurement process. Both stem from paragraph 4.11 of the
ISO 9000s series, concerning the equipment for measurement and testing. ISO 10012 explores the
subject in more detail than the ISO 9000s, giving guidelines for implementation. 

Let us discuss the first part. It essentially pursues different kinds of requirements that apply to all the
involved (traditional or “intelligent”) instruments: 

1. Design of the monitoring system. The equipment should be reliable and capable of the accuracy
sufficient to assess the product quality (conformance to specification). 

2. Technical correspondence. The measurement engineer should establish, maintain, and document
the organised record to assess, confirm, and use the instrumentation, stating the responsibility
and including the internal auditing; within such a system, technical decisions are involved, concerning: 
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a. The scheduling of calibration tests; 
b. The drawing up of written procedures;
c. The retrieval and use of data, for the evaluation of the uncertainty;
d. The recovery procedures, to face the non-conformity;
e. The logistics prescriptions: labelling, handling, and safeguard. 

3. Technical certification. The supplier should be able to document every property of the results,
including the data traceability and the uncertainty evaluation. Implementing such a system,
according to registered metrics rules, requires two main activities: 
a. The interfacing with external, properly accredited, metrological infrastructures; 
b. The setting of an internal, duly empowered, dissemination system. 

The balancing of these two activities, tailored to the enterprise’s characteristics, becomes essential to optimise
cost and efficiency. Concerning the internal dissemination service, proper facilities, qualified personnel, and
pertinent procedures should be provided. The assessment of the measuring instrumentation will, accord-
ingly, be stated (Fig. 5.42) once the programmed maintenance strategy is acknowledged and scheduled. 

The concern about equipment metrologic confirmation involves routine maintenance rules. Among
all actions needed for correctly using the measuring instruments, calibration plays a central role; it aims,
first, at the following three non-removable goals: 

• To verify the conformity of an instrument to some acknowledged specifications (this is more
properly called “verification,” and gives a YES/NO result) 

• To provide the updated input-output restitution mapping or gauging relationship

• To give information for the evaluation of the current (instrumental) uncertainty 

FIGURE 5.43 Example computer aided calibration
setup.
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The overall set of calibration data, when properly stored and processed, provides information on the
state of instrument health, while still within tolerance bounds, to establish proactive upkeeping plans.
This is a strict request, as proper running of the measuring system is a reliability precondition for any
diagnostical setting. 

A fourth goal for the instrument calibration follows thereafter; namely: 

• To provide information to preserve conservative normal conditions for every device

In view of instrument proactive maintenance, the effective setting of calibration procedures should
take into account the following:

• To reduce the number of the calibration tests to a minimum and to reduce the time of each test;
this may be done by providing automation support to the operator

• To reduce the risk of mistake, by ergonomic interfaces

• To make proper use of the a priori information, again to reduce costs

• To use innovative ideas, such as party calibration, to improve the diagnostics settings 

The computer aided calibration (for example, Fig. 5.43) can benefit from integrating different strategies,
including prior information and party calibration (MiR.96a), with the comparison of performance
directly enabled as an instrumental attribute. 

Summing up, aiming at assessing the quality data of given artifacts consignments, the ISO 9001 (point
4.11) is the guide to establishing the main prerequisites (Fig. 5.44) to grant instrumental fitness; these
precepts need include combined checks, with integration of:

• Design phases: to select consistent metrological methods and to set the related equipment 

• Administration rules: to have resort to reference standards for the traceabilty of the obtained
results 

• Execution sequences: to document testing appropriateness and results-reliable compatibility

Measurement Process Control: Sample Results and Assessments

The interlacing of manufacturing and measuring is not without purport in view of managing the related
functions. In fact, the technical competencies are always the basic prerequisites for effectiveness validation
based on economical checks; the fuzziness is, possibly, wider when dealing with “total quality,” or similar
subjects, quite extensively proposed, by Western World corporations, as business or administration means
to equip the enterprises with more effective visibility of the inside organisation. With quality engineering
and metrology standards issued for fair trade legalisation, the situation is likely to change, as observed,
whether or not, for example, the QFD method is further extended to deal with quantitatively assessed

• To design the testing environment: "the approval checks to assess the conformance to the given specifications
of an artifact need: - to establish the measurements to be performed and the related confidence bounds; - to
select the testing equipment fit to obtain the information with the proper accuracy and consistency;" 

• To guarantee instrumental fit-out correctness: "the assessment of the instrumental fitness requires the previous
calibration of all equipment by means of approved standards (or, these lacking, the gauging criteria ought be
specified) and the concomitant acknowledgement of every disturbing factors or biasing effects;" 

• To support measurement duties uprightness: "the checks on the experimental surroundings imply to verify that:
- all instruments are properly employed as for duty ranges as for uncertainty consistency; - the environmental
conditions are at any time compatible with the testing plans." 

FIGURE 5.44 Precepts for the Metrological Confirmation of Measurements.
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schemes. The overall subject is, therefore, complex and in evolution. The management and the control
rules of the measurement process are, similarly, not yet fully specified; individual cases only can be faced
properly and referring to particular solutions. 

We will present few ideas always aiming at registered metrics assessments only, with special example
discussions for explanatory purposes. The standard ISO 10012, part 2: “Measurement Process Control”
is the written reference document to be considered. In that standard, the measurement is viewed as the
main process to be addressed for doing overseeing actions, being aware, of course, that “the measuring
equipment is only one of many factors affecting measurements,” once place of work and condition of
use are included. The precepts (Fig. 5.44) previously given at the equipment level should be reconsidered,
again at the process level. On these premises, for consistency, the management and control of the
measurement process in based on the monitoring of every relevant fact, according to series of accom-
plishments, such as: 

• Proper design of the equipment and related procedures, accounting for all factors that may influence
its performance

• Before-hand confirmation of all the involved instrumentation, as specified in the previous
paragraph

• Establishment of a surveillance system, capable of complying with prospective risks of failure, with
the record of normal conditions departure, as cases arise 

• Presetting corrective actions in case of threshold overpass, as compared to the accepted operating
conditions

• Keeping records of every relevant events

• Certification that staff has proper qualification and that the overall system is audited periodically 

Leaving aside the many other organisational aspects of quality systems in view of only the metrological
consistency of the accomplishments, it is stressed that the above monitoring system has a twofold
purpose: 

• To ensure the reliability of the measuring process (instrument quality being presumed) 

• To provide information for evaluating the measurement uncertainty

As already pointed out, due to quick changes in the domain, the topic is explored by means of sample
problems. 

While implementing the effective instrument control and diagnostics for on-duty operation, major
problems are encountered in order to dispose of suitable standards for online check and to ensure proper
reference for estimating the local measurement error: 

(5.15)

ideally, for every x0 to be measured.
The difficulty of the task highly depends on the kind of the manufacturing process and of the checks

that need be accomplished. For example, consider the following cases: 

1. For the dimensional tests, on spot-like arrangements: the following situations arise: 
a. For limited flexibility instruments (such as calipers), the usual dimensional gauges may be

appropriate; 
b. For highly flexible instruments, such as the CMM, simplified self-calibrating methods can be

foreseen; 
c. For both cases, an already tested replica of the object to be measured may be used; for instance,

for a CMM, a simple three-ball artifact (Fig. 5.45) may be monitored in different positions,

e t( ) y t( ) x0��
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so that after proper processing of data, based on angle assessments, the influence on the
measuring machine performance is obtained. 

2. For the measurement on continuous processes, the problem may be more critical because it may
be difficult to have online, actual standards of quantities, such as temperature, pressure, flow rate,
and the like; possible solutions might be: 

a. The timely connection with portable calibrators, which however requires one to switch off the
sensors from the measurand; 

b. The addition of check channels, which grant automatic remote bypassing or dummy connec-
tion; for instance, source check-channel solutions (Fig. 5.46), as suggested by P. Stein (Ste.96),
can be used: a remotely operated valve (left) makes easy to disconnect a pressure sensor from
the measurand environment to check the instrument zero; alternatively, a dummy channel is
used, which duplicates a pressure sensor, being exposed to the same influence quantities (e. g.,
exposed to the same temperature and vibrations), then, the monitoring of disturbing variables
is accomplished with continuty; 

c. The exploitation of redundant instrumentation:
i. By means of transducers of the same kind, providing a virtual standard obtained by proper

averaging over the output of the set of redundant transducers; 
ii. By means of transducers of different kind, which may be even more reliable (Fig. 5.47) but

that sometimes require special (and not yet commercial) restitution devices. 

Self-calibration based on sensor redundancy is the only feasible track, when extreme measurement
conditions are met, as it happens (CMR.97) in the example procedure doing the instrumental gauging
by averaging over several accelerometers channels; the self-tuning, proposed in this example, exploits
the information (Fig. 5.48) on the estimated frequency response (gain and phase) and on the related
coherence function. In this application, performance of the accelerometers had to be checked for the
monitoring at very low levels (below 1 g) and low frequency (under 10 Hz). The calibration was
performed by averaging over six measuring channels of the same kind. Once the reference gauge for
the error monitoring was established, data could be processed by suitable statistical tools, such as variance
analysis (CIS.97). 

FIGURE 5.45 Simple tricks for CMM diagnostics, based on self-calibration checks.

FIGURE 5.46 Pressure measuring system check by remote-control connection.
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Finally, after that the outputs of the measurement process are checked for reliability within the on-duty
condition, the estimation of uncertainty can take place. This again is an emerging task in an industrial
environment and proper user-oriented procedures should be provided and implemented. One such
procedure (CMR.97b) is shown in Fig. 5.49. 

The above remarks show that quality and measurement connections deserve growing interest and the
technical literature on the subject is quickly expanding; a few references are: (CIS.97), (FrR.95), (HoE.88),
(KuM.93), (Mic.92a), (MiR.87), (MiR.90a), (MMC.96), (Shi.89b), (TDR.97), (Yau.97), (ZNF.96). 

FIGURE 5.47 Thermocouple plus noise thermal sensor,
for redundant measurements.

FIGURE 5.48 Example of sensor self-calibration results
(useful band: 2–10 Hz).

FIGURE 5.49 Flowchart of a user-oriented package for
uncertainty evaluation.
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5.7 Conclusions

Quality manufacturing appears to be the winning option on worldwide markets, where competing
enterprises face educated and demanding buyers, within fair-trade conditions fixed by legal metrology
and environmental protection provided by authorities’ rules. For effectiveness, the issue is strictly related
to the ability of joining product diagnosis, process diagnosis, and measurement diagnosis so that visibility
is granted, at every level, by quantitative statements. High standing artifacts could be (mainly, in the
past) the object of special care, with extra costs from conception and development, to construction and
approval checks. With mass production, industrial artifacts have reached constant average specification
due to standardardisation of the manufacturing means. Pursuit of consumer wants is, today, sought by
items variability, jointly looking for merit and cheap offers. The achievement stems from “intelligent”
setups, namely computer integrated outfits. These, in fact, make possible “knowledge-intensive” envi-
ronments and help in defining extensions of the conventional (legal) metrology, to provide objective
effectiveness to “quality data.”

The evolution, brought forth by information technology, is in the chapter related to issues in computer
integrated testing, with example achievements; for example: 

• For measurement diagnostics, showing, in Section 5.6, the prescriptions aiming at the metrological
confirmation of the instruments

• For process diagnostics, giving the supporting ideas, in Section 5.2, of the maintenance policies
looking to proactive settings

• For product diagnostics, stating, in Section 5.3, the quality-at-the-large concept, based on rep-
resentational theory of measurements

The achievements are mainly related to the ability of standardising CAT fit-outs and, through them, of
providing visibility on the accomplished processing operation and on the enabled decision logic. 

Quite happily, information technology supplies hardware and software fixtures up to the high
sophistication range; efficient exploitation of options is, perhaps, lagging behind in terms of integrated
organisation, with inconsistency zones remain on critical topics such as: 

• How to rule measurement methods and devices, aiming at certified quality 

• How to manage measurement monitoring and related quality diagnostics

Correct statement of the problems and balanced planning out of the solving actions are nondisposable
requirements to obtain return on investment, along with clever tricks such as monitoring maintenance
setups. 

Manufacturing and measuring tasks are means to obtain certified quality products. On reciprocal
sides, artifact quality testifies to the fitness-for-purpose of productive cycles, and measurements quality
proves the appropriateness of monitoring flows. Clearly, the correct setting of the measuring process
rises to implicit accomplishment; the precepts on the quality and reliability of the monitoring systems
are specified by the ISO 9000 series and they are further explained by the Guide ISO 10012. Then,
aiming at the instrumental requisites, the ISO 10012, First Part (Fig. 5.50) distinguishes, for process
reliability, between the charges to procure the appropriate services and the ones needed to preserve
their on-duty fitness. 

The proper statement of measurement monitoring precepts rises to higher relevance, in front of
complex instrumental rigs, when multiple information needs to be collected and combined to work out
quality data, concurrently assessing the properties of the product (to assure certified quality), of the
process (to check the fit-with-norms condition), of the process-to-product relational frame (to enable
the upkeeping actions), and, of the instrumental setup (to oversee on measurement quality). The subject
is facing quick evolving contexts, with lots of new opportunities arising, with the goal being to have
properly assessed (instrument, process and product) diagnostics. 
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The challenging nature of the evolving contexts provides important prospects for measurement
theory and practice; notably, whether the representational approach is considered. This has introduced
measurement of “quality-at-the-large” figures, as the case happens when vibro-acoustic signatures are
exploited for characterising mechanical device behaviour. Sound features, indeed, are related to tone and
to timbre analysis abilities, but only pitch analysis can be fulfilled by conventional phonometry. Timbric
features are, instead, possibly depicted by phase or frequency modulation of broad-band waves; if
modulation and modulated signals have spectral overlapping, however, their restitution by pitch analysis
quickly grows to a redundant set of information, as resolution needs be properly assessed. Whether these
circumstances arise, thus, data compression effectiveness remains a subject of study (and standards might,
in the future, be issued for series of bounded classes of phenomena). 

The capability of providing metrologic consistency to “weak measurement” by means of cognitive scales
gives alternatives to acknowledge the sound signatures. As soon as measurement effectiveness becomes
a central requirement, “new” (e.g., wavelet-based) decompositions will develop, as compared to the
conventional frequency analysis, to introduce more general rank figures (based on order-tracking,
dyadic-sequentiality, etc. techniques), ‘automatically’ assigned by the instrumental restitution (e.g., by
the spectral mapping with orthonormal sequentially grouped binary wavelets). The “new” options, indeed,
are an ineluctable choice for monitoring maintenance applications, as information density and time
constraint pop in as technical requirements. The transition between the different metrics depends on
several facts. Harmonic analysis is possibly preferred, at the release of “certified” quality devices. The
example of Section 5.3 is thus carried out with conventional spectra, obtained by phonometric measure-
ments. This is necessary, as noise emission (legal) characterisation is now performed that way, with
eventually, formal extensions (e.g., Wigner-Ville distribution) which do not give up with the quite
traditional duality: ‘time-trends-harmonic-patterns.’

The example presentation in Section 5.5 deals, instead, with the ability to establish an objective metric
with sets of nonconventional signatures. Engine monitoring will possibly become an imperative request
(in front of environmental protection acts) and data quality will have to be released for the selling of
cars; then ‘new’ measurement methods and ‘new’ rigs will be required (and will spread over), based
on techniques such as the one discussed. At the moment, the developments have been pushed to the
level of a feasibility study and a prototypal measuring process has undergone experiment. It is quite
obvious that the final selection of a processing method for standardisation has to move across several
further validations. 

The discussion in Section 5.4, on the automatic dimensional measuring process, was limited to example
situations. In this case, the metrologic context is fully assessed and the basic innovation is represented

• The equipment suppliers are required, in terms of delivered components, to:
- Guarantee that the on-duty instruments possess fit-for-purpose metrological characteristics; 
- Establish and upkeep documentation records for the tests planning, with specification of operators’ respon-

sibility and of confirmation requirements; 
- Technically oversee calibration charges by: confirmation planning out; current uncertainty checking; trace-

ability upkeeping; records up-dating; etc.; 
- Face the maintenance, restoring, etc. actions, as un-fitness arises; 
- Supplement the instruments shopfloor logistics: - storing and dispatching; - labelling; - sealing up; - etc.

• The equipment users are required, in terms of performed tests, to:
- Analyse the observation schemes in terms of output demands and to design the fit-for-use measuring chain; 
- Ensure the instruments metrologic fitness (as previously stated); 
- Accomplish measurement monitoring and reintegration, with records of trends and assessment of the uncer-

tainty; 
- Arrange in advance the procedures for the treatment of the (possible) misfits; 
- Vouch for the personnel capacity, as for qualification levels, with responsibility empowerment and audit

charges provision. 

FIGURE 5.50 Precepts to grant the measuring fit-out.
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by the integration of the detected information for attuning the manufacturing process in order to preserve
zero-defect production. The trimming of the monitoring system has many technicalities (e.g., pieces
compliance secludes data accuracy, unless reshaping fixtures are used) and the implementation of total-quality
diagnostics becomes a business for concurrently managing the data flow (of the dimensional measure-
ments) and the control flow (of the consistency checks). CAT equipment, in principle, provides the
hardware and software requisites: data mapping, into scaled representations, is transparently done, with
account for measured data and conditioning transforms, so that standardisation is fully embedded in
the instrumental (hardware and software) chain. The innovation moves toward the fusion of measuring
functions into manufacturing with due account for the decision support which could be provided
automatically by “expert” modules. 

The control and diagnostics of a measurement process are facing more and more subtle requirements
as the options of “intelligent” measurements expand. The topics discussed in this chapter, therefore, are
quickly changing. In fact, the data restitution procedures, grounded on shallow-knowledge conditioning
frames, are enabled by AI methods, which make it possible to emulate mental processes and to automat-
ically perform a series of judgmental operations. The outputs of weak-measurement schemes (based on
cognitive psychology elements) should be tested, to verify their level of consistency with reference to both
the a priori system hypotheses and the previously collected experimental results. The tests of meaning-
fulness may, sometimes, defer the acceptance of given results until the reference conditioning knowledge
is sufficiently expanded to assert the trustfulness of the consistency analysis. When performed by means
of weak measures, the evaluation of quality becomes the result of adaptive procedures, with the require-
ment of keeping transparency of the data processing operations in order to give evidence to the judgmental
conditioning mappings. With “intelligent instruments and automatic data processing schemes, the pitfalls
of conclusion inconsistency are avoided, by deferring the final statements to further analysis and by
iterating or diversifying the collection of experimental data with modified and adapted measurement
methods and rigs. 
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6.1 Introduction

Developing frameworks for inspection and reverse-engineering applications is an essential activity in
many engineering disciplines. Usually, too much time is spent in designing hardware and software
environments in order to be able to attack a specific problem. One of the purposes of this work is to
provide a basis for solving a class of inspection and reverse-engineering problems.

CAD/CAM (computer aided design/manufacturing) typically involves the design and manufacture
of mechanical parts. The problem of reverse engineering is to take an existing mechanical part as the point
of departure and to inspect or produce a design, and perhaps a manufacturing process, for the part.
The techniques that we explore can be used for a variety of applications. We use an observer agent
to sense the current world environment and make some measurements, then supply relevant infor-
mation to a control module that will be able to make some design choices that will later affect
manufacturing and/or inspection activities. This involves both autonomous and semi-autonomous
sensing.

The problem of inspection typically involves using a CAD representation of the item to be inspected,
and using it to drive an inspection tool such as the coordinate measuring machine (CMM). An example
of this is found in [9]. While the work described there is intended to allow the inspection of complicated
sculpted surfaces, we limit ours to an important class of machined parts. Within this class, we hope to
reduce the time necessary for inspection by more than tenfold, taking advantage of the part’s recursive
nature and its feature description.

We use a recursive dynamic strategy for exploring machine parts. A discrete event dynamic system (DEDS)
framework is designed for modeling and structuring the sensing and control problems. The dynamic recursive
context for finite state machines (DRFSM) is introduced as a new DEDS tool for utilizing the recursive nature
of the mechanical parts under consideration. This chapter describes what this means in more detail.

6.2 Objectives and Questions

The objective of this research project is to explore the basis for a consistent software and hardware
environment, and a flexible system that is capable of performing a variety of inspection and reverse-engineering
activities. In particular, we will concentrate on the adaptive automatic extraction of some properties of the
world to be sensed and on the subsequent use of the sensed data for producing reliable descriptions of the
sensed environments for manufacturing and/or description refinement purposes. We use an observer agent
with some sensing capabilities (vision and touch) to actively gather data (measurements) of mechanical
parts. We conjecture that discrete event dynamical systems (DEDS) provide a good base for defining
consistent and adaptive control structures for the sensing module of the inspection and reverse-engineering
problem. If this is true, then we will be able to answer the following questions:

• What is a suitable algorithm to coordinate sensing, inspection, design, and manufacturing?

• What is a suitable control strategy for sensing the mechanical part?

• Which parts should be implemented in hardware vs. software?

• What are suitable language tools for constructing a reverse-engineering and/or inspection strategy?

DEDS can be simply described as: dynamic systems (typically asynchronous) in which state transitions
are triggered by discrete events in the system.

It is possible to control and observe  hybrid systems (systems that involve continuous, discrete, and
symbolic parameters) under uncertainty using DEDS formulations [13, 16].

The applications of this work are numerous: automatic inspection of mechanical or electronic components
and reproduction of mechanical parts. Moreover, the experience gained in performing this research will
allow us to study the subdivision of the solution into reliable, reversible, and easy-to-modify software
and hardware environments.
© 2001 by CRC Press LLC



             
6.3 Sensing for Inspection and Reverse Engineering

This section describes the solution methodology for the sensing module and discusses the components
separately. The control flow is described and the methods, specific equipment, and procedures are also
discussed in detail.

We use a vision sensor (B/W CCD camera) and a coordinate measuring machine (CMM) with the
necessary software interfaces to a Sun Sparcstation as the sensing devices. The object is to be inspected
by the cooperation of the observer camera and the probing CMM. A DEDS is used as the high-level
framework for exploring the mechanical part. A dynamic recursive context for finite state machines
(DRFSM) is used to exploit the recursive nature of the parts under consideration.

Discrete Event Dynamic Systems

DEDS are usually modeled by finite state automata with partially observable events, together with a
mechanism for enabling and disabling a subset of state transitions [3, 12, 13]. We propose that this model
is a suitable framework for many reverse-engineering tasks. In particular, we use the model as a high-level
structuring technique for our system.

We advocate an approach in which a stabilizable semi-autonomous visual sensing interface would be
capable of making decisions about the state of the observed machine part and the probe, thus providing
both symbolic and parametric descriptions to the reverse-engineering and/or inspection control module.
The DEDS-based active sensing interface is discussed in the following section. 

Modeling and Constructing an Observer

The tasks that the autonomous observer system executes can be modeled efficiently within a DEDS
framework. We use the DEDS model as a high-level structuring technique to preserve and make use of
the information we know about the way in which a mechanical part should be explored. The state and
event description is associated with different visual cues; for example, appearance of objects, specific 3-D
movements and structures, interaction between the touching probe and part, and occlusions. A DEDS
observer serves as an intelligent sensing module that utilizes existing information about the tasks and
the environment to make informed tracking and correction movements and autonomous decisions
regarding the state of the system.

To know the current state of the exploration process, we need to observe the sequence of events
occurring in the system and make decisions regarding the state of the automaton. State ambiguities are
allowed to occur; however, they are required to be resolvable after a bounded interval of events. The goal
will be to make the system a strongly output-stabilizable one and/or construct an observer to satisfy
specific task-oriented visual requirements. Many 2-D visual cues for estimating 3-D world behavior can
be used. Examples include image motion, shadows, color, and boundary information. The uncertainty
in the sensor acquisition procedure and in the image processing mechanisms should be taken into
consideration to compute the world uncertainty.

Foveal and peripheral vision strategies could be used for the autonomous “focusing” on relevant
aspects of the scene. Pyramid vision approaches and logarithmic sensors could be used to reduce the
dimensionality and computational complexity for the scene under consideration. 

Error States and Sequences

We can utilize the observer framework for recognizing error states and sequences. The idea behind this
recognition task is to be able to report on visually incorrect sequences. In particular, if there is a predetermined
observer model of a particular inspection task under observation, then it would be useful to determine if
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something goes wrong with the exploration
actions. The goal of this reporting procedure is to
alert the operator or autonomously supply feedback
to the inspecting robot so that it can correct its
actions. An example of errors in inspection is
unexpected occlusions between the observer camera
and the inspection environment, or probing the
part in a manner that might break the probe. The
correct sequences of automata state transitions can
be formulated as the set of strings that are acceptable by
the observer automaton. This set of strings represents
precisely the language describing all possible visual
task evolution steps.

Hierarchical Representation

Figure 6.1 shows a hierarchy of three submodels.
Motives behind establishing hierarchies in the DEDS
modeling of different exploration tasks include reduc-
ing the search space of the observer and exhibiting
modularity in the controller design. This is done through the designer, who subdivides the task space of the
exploring robot into separate submodels that are inherently independent. Key events cause the transfer of the
observer control to new submodels within the hierarchical description. Transfer of control through the observer
hierarchy of models allows coarse to fine shift of attention in recovering events and asserting state transitions.

Mapping Module

The object of having a mapping module is to dispense with the need for the manual design of DEDS
automata for various platform tasks. In particular, we would like to have an off-line module, which is to
be supplied with some symbolic description of the task under observation and whose output would be the
code for a DEDS automaton that is to be executed as the observer agent. A graphical representation of the
mapping module is shown in Fig. 6.2. The problem reduces to figuring out what is an appropriate form
for the task description. The error state paradigm motivated regarding this problem as the inverse problem
of determining acceptable languages for a specific DEDS observer automaton. In particular, we suggest a
skeleton for the mapping module that transforms a collection of input strings into an automaton model.

The idea is to supply the mapping module with a collection of strings that represents possible state
transition sequences. The input highly depends on the task under observation, what is considered as
relevant states and how coarse the automaton should be. The sequences are input by an operator. It
should be obvious that the “garbage-in-garbage-out” principle holds for the construction process; in
particular, if the set of input strings is not representative of all possible scene evolutions, then the
automaton would be a faulty one. The experience and knowledge that the operator have would influence

FIGURE 6.2 The mapping module.

FIGURE 6.1 Hierarchy of tasks.
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the outcome of the resulting model. However, it should be noticed that the level of experience needed
for providing these sets of strings is much lower than the level of experience needed for a designer to
actually construct a DEDS automaton manually. The description of the events that cause transitions
between different symbols in the set of strings should be supplied to the module in the form of a list.

As an illustrative example, suppose that the task under consideration is simple grasping of one object
and that all we care to know is three configurations: whether the hand is alone in the scene, whether
there is an object in addition to the hand, and whether enclosure has occurred. If we represent the
configurations by three states h, ho, and hc , then the operator would have to supply the mapping module
with a list of strings in a language, whose alphabet consists of those three symbols, and those strings
should span the entire language, so that the resulting automaton would accept all possible configuration
sequences. The mapping from a set of strings in a regular language into a minimal equivalent automaton
is a solved problem in automata theory.

One possible language to describe this simple automaton is:

and a corresponding DEDS automaton is shown in Fig. 6.3.
The best-case scenario would have been for the operator to supply exactly the language L to the

mapping module with the appropriate event definitions. However, it could be the case that the set of
strings that the operator supplies does not represent the task language correctly, and in that case some
learning techniques would have to be implemented which, in effect, augment the input set of strings
into a language that satisfies some predetermined criteria. For example, y� is substituted for any string
of y’s having a length greater than n, and so on. In that case, the resulting automaton would be correct
up to a certain degree, depending on the operator’s experience and the correctness of the learning
strategy.

Sensing Strategy

We use a B/W CCD camera mounted on a robot arm and a coordinate measuring machine (CMM) to
sense the mechanical part. A DRFSM implementation of a discrete event dynamic system (DEDS)
algorithm is used to facilitate the state recovery of the inspection process. DEDS is suitable for modeling
robotic observers as it provides a means for tracking the continuous, discrete, and symbolic aspects of the
scene under consideration [3, 12, 13]. Thus, the DEDS controller will be able to model and report the
state evolution of the inspection process.

In inspection, the DEDS guides the sensing machines to the parts of the objects where discrepancies
occur between the real object (or a CAD model of it) and the recovered structure data points and/or
parameters. The DEDS formulation also compensates for noise in the sensor readings (both ambiguities
and uncertainties) using a probabilistic approach for computing the 3-D world parameters [16].
The recovered data from the sensing module is then used to drive the CAD module. The DEDS
sensing agent is thus used to collect data of a passive element for designing structures; an exciting
extension is to use a similar DEDS observer for moving agents and subsequently design behaviors
through a learning stage.

FIGURE 6.3 An automaton for simple grasping.

L h+ho
+  hc

+  
�
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The Dynamic Recursive Context for Finite State Machines

The dynamic recursive context for finite state machines (DRFSM) is a new methodology to represent and
implement multi-level recursive processes using systematic implementation techniques. By multi-level
process, we mean any processing operations that are done repetitively with different parameters. DRFSM
has proved to be a very efficient way to solve many complicated problems in the inspection paradigm using
an easy notation and a straightforward implementation, especially for objects that have similar multi-level
structures with different parameters. The main idea of the DRFSM is to reuse the conventional DEDS finite
state machine for a new level after changing some of the transition parameters. After exploring this level,
it will retake its old parameters and continue exploring the previous levels. The implementation of such
machines can be generated automatically by some modification to an existing reactive behavior design tool,
called GIJoe [4], that is capable of producing code from state machine descriptions (drawings) by adding
a recursive representation to the conventional representation of finite state machines, and then generating
the appropriate code for it.

Definitions

Variable transition value: Any variable value that depends on the level of recursion.
Variable transition vector: The vector containing all variable transitions values, and is dynamically
changed from level to level.
Recursive state: A state calling another state recursively, and this state is responsible for changing
the variable transition vector to its new value according to the new level.
Dead-end state: A state that does not call any other state (no transition arrows come out of it).
In DRFSM, when this state is reached, it means to go back to a previous level, or quit if it is the
first level. This state is usually called the error-trapping state. It is desirable to have several dead-end
states to represent different types of errors that can happen in the system.

DRFSM Representation

We will use the same notation and terms of the ordinary FSMs, but some new notation to represent
recursive states and variable transitions. First, we permit a new type of transition, as shown in Fig. 6.4,
(from state C to A); this is called the recursive transition (RT). A recursive transition arrow (RTA) from
one state to another means that the transition from the first state to the second state is done by a recursive
call to the second one after changing the variable transition vector. Second, the transition condition

FIGURE 6.4 A simple DRFSM.
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from a state to another may contain variable parameters according to the current level; these variable
parameters are distinguished from the constant parameters by the notation V (parameter name). All
variable parameters of all state transitions constitute the variable transition vector. It should be noticed
that nondeterminism is not allowed, in the sense that it is impossible  for two concurrent transitions to
occur from the same state. Figure 6.5 is the equivalent FSM representation (or the flat representation) of
the DRFSM shown in Fig. 6.4, for three levels, and it illustrates the compactness and efficiency of the
new notation for this type of process.

A Graphical Interface for Developing DRFSMs

In developing the framework for reverse engineering, it has proven desirable to have a quick and easy means
of modifying the DRFSM that drives the inspection process. This was accomplished by modifying an existing
reactive behavior design tool, GIJoe, to accommodate producing the code of DRFSM DEDS.

GIJoe [4] allows the user to graphically draw finite state machines, and output the results as C code.
GIJoe’s original method was to parse transition strings using lex/yacc-generated code. The user interface
is quite intuitive, allowing the user to place states with the left mouse button, and transitions by selecting
the start and end states with left and right mouse buttons. When the state machine is complete, the user
selects a state to be the start state and clicks the Compile button to output C code.

The code output by the original GIJoe has an iterative structure that is not conducive to the recursive
formulation of dynamic recursive finite state machines. Therefore, it was decided to modify GIJoe to suit
our needs. Modifications to GIJoe include:

• Output of recursive rather than iterative code to allow recursive state machines

• Modification of string parsing to accept recursive transition specification

• Encoding of an event parser to prioritize incoming events from multiple sources

• Implementation of the variable transition vector (VTV) acquisition (when making recursive transitions)

Example code from the machine in Fig. 6.6 can be found in Appendix A. We used this machine in
our new experiment, which will be mentioned in a later section.

The event parser was encoded to ensure that the automaton makes transitions on only one source of
input. Currently acceptable events are as follows:

• Probe: probe is in the scene

• NoProbe: no probe is in the scene

FIGURE 6.5 Flat representation of a simple DRFSM.
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• ProbeClose: probe is within the “close” tolerance to the current feature specified by the VTV

• ProbeFar: probe is farther from the current feature than the “close” tolerance specified by the VTV

• ProbeOnFeature: probe is on the feature (according to vision)

• ProbeNotOnFeature: probe is close, but not on the feature (according to vision.)

• VisionProblem: part string has changed, signifying that a feature is occluded (need to move the camera)

• ProblemSolved: moving the camera has corrected the occlusion problem

• TouchedFeature: probe has touched the feature (according to touch sensor)

• NoTouch: probe has not touched the feature (according to touch sensor)

• ClosedRegion: current feature contains closed region(s) to be inspected (recursively)

• OpenRegion: current feature contains open region(s) to be inspected (iteratively)

• TimeOut: machine has not changed state within a period of time specified by the VTV

• Done: inspection of the current feature and its children is complete; return to previous level

Additional events require the addition of suitable event handlers. New states and transitions may be
added completely within the GIJoe interface. The new code is output from GIJoe and may be linked to
the inspection utilities with no modifications.

The VTV, or variable transition vector, is a vector containing variables that may be dependent on the
current depth of recursion. It is currently read from a file.

The code produced by the machine in Fig. 6.6 was first tested using a text interface before being linked
with the rest of the experimental code. The following is a transcript showing the simulated exploration
of two closed regions A and B, with A containing B:

inspect [5] ~/DEDS => bin/test_drfsm
enter the string: A(B()) 

A(B())

THE VARIABLE TRANSITION VECTOR

100.000000 50.000000 
in state A 

FIGURE 6.6 GIJoe window w/DRFSM.
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has the probe appeared? n % NoProbe is true
has the probe appeared? n 
has the probe appeared? y % Probe is true

in state B 
has the probe appeared? y 
enter the distance from probe to A: 85 % Probe is Far
has the probe appeared? y 
enter the distance from probe to A: 45 % Probe is Close

in state C 
enter the string: A (B())
enter the distance from probe to A: 10 
is the probe on A? y

in state D 
is the probe on A? y % Probe on Feature
has touch occurred? y 

in state E 
Making recursive call...

THE VARIABLE TRANSITION VECTOR

100.000000 50.000000 

in state A 
has the probe appeared? y % Probe is true

in state B 
has the probe appeared? y 
enter the distance from probe to B: 95 % Probe is Far
has the probe appeared? y 
enter the distance from probe to B: 45 % Probe is Close

in state C 
enter the string: A(B()) 
enter the distance from probe to B: 10 
is the probe on B? y 

in state D 
is the probe on B? y % Probe on Feature
has touch occurred? y 

in state E 
in state END 
in state END

Inspection Complete.

inspect[6] ~/DEDS =>

The obtained results, when linked with the rest of the experimental code, were as expected. Future
modifications may include the addition of “output” on transitions, such as “TouchOccurred/Update-
Model,” allowing easy specification of communication between modules. It should be clear, however,
that the code generated by GIJoe is only a skeleton for the machine, and has to be filled by the users
according to the tasks assigned to each state.
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In general, GIJoe proved to be a very efficient and handy tool for generating and modifying such machines.
By automating code generation, one can reconfigure the whole inspection process without being familiar
with the underlying code (given that all required user-defined events and modules are available).

How to Use DRFSM 

To apply DRFSM to any problem, the following steps are required:

1. Problem analysis: divide the problem into states, so that each state accomplishes a simple task.
2. Transition conditions: find the transition conditions between the states.
3. Explore the repetitive part in the problem (recursive property) and specify the recursive states.

However, some problems may not have this property; in those cases, a FSM is a better solution.
4. VTV formation: if there are different transition values for each level, these variables must be

defined.
5. Error trapping: using robust analysis, a set of possible errors can be established; then, one or more

dead-end state(s) are added.
6. DRFSM design: use GIJoe to draw the DRFSM and generate the corresponding C code.
7. Implementation: the code generated by GIJoe has to be filled out with the exact task of each state,

the error handling routines should be written, and the required output must be implemented as well.

Applying DRFSM in Features Extraction

An experiment was performed for inspecting a mechanical part using a camera and a probe. A predefined
DRFSM state machine was used as the observer agent skeleton. The camera was mounted on a PUMA
560 robot arm so that the part was always in view. The probe could then extend into the field of view
and come into contact with the part, as shown in Fig. 6.19.

Symbolic representation of features: for this problem, we are concerned with open regions (O) and
closed regions (C). Any closed region may contain other features (the recursive property). Using parenthesis
notation, the syntax for representing features can be written as follows:

� feature � :: C(� subfeature �) |C()
� subfeature � :: � term �, � subfeature � | � term � 
� term � :: O | � feature �

For example, the symbolic notation of Fig. 6.7 is:

FIGURE 6.7 An example for a recursive object.

C(O,C(O,C(),C(O)),C())
© 2001 by CRC Press LLC



        
Figure 6.8 shows the graphical representation of this recursive structure which is a tree-like structure.
Future modifications to DRFSMs includes allowing different functions for each level.

6.4 Sensory Processing

For the state machine to work, it must be aware of state changes in the system. As inspection takes place,
the camera supplies images that are interpreted by a vision processor and used to drive the DRFSM.

A B/W CCD camera is mounted on the end effector of a Puma 560 robot arm. The robot is then
able to position the camera in the workplace, take stereo images, and move in the case of occlusion
problems. The part to be inspected is placed on the coordinate measuring machine (CMM) table. The
probe then explores the part while the mobile camera is able to observe the inspection and provide
scene information to the state machine.

The vision system provides the machine with specific information about the current state of the
inspection. This is done through several layers of vision processing and through the cooperation of 2-D,
2 -D, and 3-D vision processors.

The aspects of the image that need to be given to the state machine include:

• Number of features

• Contour representation of each feature

• Relationships of the features

• Depth of features

• Approximate depth estimates between features

• Location of the probe with respect to the part

Two-dimensional Image Processing

Two-dimensional (2-D) features of the part are extracted using several different visual image filters. The
camera captures the current image and passes it to the 2-D image processing layer. After the appropriate
processing has taken place, important information about the scene is supplied to the other vision layers
and the state machine.

FIGURE 6.8 Graph for the recursive object.
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The images are captured using a B/W CCD camera, which supplies 640 � 480 pixels to a VideoPix
video card in a Sun Workstation. The 2-D processing is intended to supply a quick look at the current
state of the inspection and only needs a single image, captured without movement of the Puma.

The images are copied from the video card buffer and then processed. The main goal of image
processing modules is to discover features. Once features are discovered, contours are searched for among
the feature responses.

Extracting Contours

Contours are considered important features that supply the machine with information necessary to build
an object model and drive the actual inspection. There are two types of contours, each with specific
properties and uses, in the experiment:

1. Open contour: a feature of the part, like an edge or ridge that does not form a ‘closed’ region.
Lighting anomalies may also cause an open contour to be discovered.

2. Closed contour: a part or image feature that forms a closed region; that is, it can be followed from
a specific point on the feature back to itself. A typical closed contour is a hole or the part boundary.

We are concerned with finding as many “real” contours as possible while ignoring the “false” contours.
A real contour would be an actual feature of the part, while a false contour is attributed to other factors
such as lighting problems (shadows, reflections) or occlusion (the probe detected as a part feature).

If we are unable to supply the machine with relatively few false contours and a majority of real contours,
the actual inspection will take longer. The machine will waste time inspecting shadows, reflections, etc.

We avoid many of these problems by carefully
controlling the lighting conditions of the experiment.
The static environment of the manufacturing
workspace allows us to provide a diffuse light source
at a chosen intensity. However, simple control of
the lighting is not enough. We must apply several
preprocessing steps to the images before searching
for contours, including:

1. Threshold the image to extract the known
probe intensities.

2. Calculate the Laplacian of the Gaussian.
3. Calculate the zero-crossings of the second

directional derivative.
4. Follow the “strong” zero-crossing edge

responses to discover contours.

Zero-crossings

The Marr-Hildreth operator [11] is used to find
areas where the gray-level intensities are changing
rapidly. This is a derivative operator, which is simply

FIGURE 6.10 A contour discovery example.

FIGURE 6.9 Edge finding in the two-dimensional
image can give hints about where to look for three-
dimensional features. The open contour here is generated
where two faces meet. The corresponding contour is then
explored by both the stereo layer and the CMM machine.
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the thresholded image convolved with the Laplacian of a Gaussian. The operator is given by:

where � is a constant that scales the Gaussian blur over the image. For large numbers, � acts as a low-pass
filter. Smaller values retain more localized features but produce results that are more susceptible to noise.
This scale can be related to an image window by:

where w is the actual window size in pixels. On average, we trade more accuracy for noise and rely on a
robust edge follower and the intrinsic properties of contours to eliminate noise.

The zero-crossing operator calculates orientation, magnitude, and pixel location of all edge responses.
This is helpful for the contour following algorithm that uses all three pieces of information.

Contour Properties

An edge response is only considered to be a contour if it satisfies two conditions: (1) each response must
exceed a previously specified minimum value, and (2) the length of each edge must exceed a previously
specified minimum pixel count.

Edges are followed iteratively. An edge is followed until its response falls below the minimum or we
arrive at our starting position, in which case the contour is known to be closed. If a branch in the contour
is encountered, the branch location is saved and following continues. We attempt to follow all branches
looking for a closed contour. Branches are considered to be part of a contour because they may represent
an actual feature of the part (a crack extending from a hole, for example) and should be inspected.

Once the region contours are found, they can be used in the stereo vision correspondence problem
for model construction. They are also given to the machine to help drive the actual inspection process.
Some closed contours and the image in which they were found are seen in Fig. 6.11.

Visual Observation of States

The visual processor supplies the proper input signals to the DRFSM DEDS as the inspection takes place.
These signals are dependent on the state of the scene and are triggered by discrete events that are observed
by the camera.

The visual processor layer is made up of several filters that are applied to each image as it is captured.
Several things must be determined about the scene before a signal is produced: the location of the part,

FIGURE 6.11 An image and its contours.
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the location of the probe, the distance between them, the number of features on the part, and the distance
to the closest feature.

First, the image is thresholded at a gray-level that optimizes the loss of background while retaining
the part and probe. Next, a median filter is applied that removes small regions of noise. The image is
then parsed to find all segments separated by an appropriate distance and labels them with a unique
region identifier.

We are able to assume that the probe, if in the scene, will always intersect the image border. The probe
tip is the farthest point on the probe region from the border. This holds true because of the geometry
of the probe. An image with one region that intersects the border is the case in which the probe is touching
the part.

If we have more than one region, we must discover the distance between the tip of the probe region
and the part. This is done through an edge following algorithm that gives us the x, y positions of the
pixels on the edge of each region. We then find the Euclidean distances between the edge points and the
probe tip. The closest point found is used in producing the signal to the state machine.

Once this information is known, we are able to
supply the correct signal that will drive the
DRFSM DEDS. The machine will then switch
states appropriately and wait for the next valid
signal. This process is a recursive one, in that the
machine will be applied recursively to the closed
features. As the probe enters a closed region,
another machine will be activated that will inspect
the smaller closed region with the same strategy
that was used on the enclosing region.

Deciding Feature Relationships

Having found all of the features, we now search for
the relationships between them. In the final repre-
sentation of intrinsic information about the part,
it is important to know which feature lies “within”
another closed feature.

Consider a scene with two features, a part with
an external boundary and a single hole. We would
like to represent this scene with the string: “C(C())”.
This can be interpreted as a closed region within
another closed region.

To discover if feature F2 is contained within F1

given that we know F1 is a closed feature, we select
a point (x2, y2) on F2 and another point (x1, y1) on
F1. Now, we project the ray that begins at (x2, y2) and
passes through (x1, y1). We count the number of
times that this ray intersects with F1. If this is odd,
then we can say F2 is contained within Fl; otherwise
it must lie outside of F1 (see Figs. 6.12 and 6.13)

This algorithm will hold true as long as the ray
is not tangential at the point (x1, y1) of feature F1.
To avoid this case, we simply generate two rays that
pass through (x2,  y2) and a neighboring pixel on F1.
If either of these have an odd number of intersec-
tions, then F2 is contained in feature Fl.

FIGURE 6.12 A closed region within another.

FIGURE 6.13 A closed region outside another.
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An alternate method was also used to determine whether a region is inside another. A point on the
contour to be checked was grown. If the grown region hit the frame, that would imply that the region
is not contained; otherwise, it would be contained inside the bigger contour, and the grown region would
be all the area within the bigger contour.

Knowing what features are present in the part and their relationships with each other will allow us to
report the information in a string that is sent to the state machine. This process will be explained in
detail in the next section.

Constructing the Recursive Relation

One of the problems encountered in this experiment was converting the set of relations between closed
regions to the proposed syntax for describing objects. For example, the syntax of Fig. 6.14 is:

and the relations generated by the image processing
program are:

These relations can be represented by a graph as
shown in Fig. 6.15. The target is to convert this
graph to an equivalent tree structure, which is the
most convenient data structure to represent our
syntax.

As a first attempt, we designed an algorithm to
convert from graph representation to tree represen-
tation by scanning all possible paths in the graph
and putting weights to each node according to
number of visits to this node. In other words,
update the depth variable of each node by travers-
ing the tree in all possible ways and then assign the
nodes the maximum depth registered from a tra-
versal, and propagate that depth downward. Then,
from these depth weights, we can remove the unnec-
essary arcs from the graph by keeping only the arcs
that have a relation between a parent of maximum
depth and a child, and eliminating all other parent
arcs, thus yielding the required tree (Fig. 6.16).

However, we have developed a better algorithm that scans the relations; counts the number of occurrences
for each closed region name mentioned in the left side of the relations, giving an array RANK(x), where
x � {A,B,C,…}; and selects the relations (x1 � x2) that satisfy the following condition:

RANK(x1) 	 RANK(x2) � 1

C(C(C(),C()),C())

FIGURE 6.14 A hierarchy example.

B A  � 1( )→
C A  � 2( )→
D B  � 3( )→
D A  � 4( )→
E B  � 5( )→
E A  � 6( )→

FIGURE 6.15 The graph associated with the example
in Fig. 6.14.
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This guarantees that all redundant relations will not be selected. The complexity of this algorithm is
O(n), where n is the number of relations. Applying this algorithm to the relations of Fig. 6.14, we
obtain:

RANK(A) � 0
RANK(B) � 1
RANK(C) � 1
RANK(D) � 2
RANK(E) � 2

The selected relations will be:

B � A
C � A
D � B
E � B

Now, arranging these relations to construct the syntax gives:

which is the required syntax. A tree representing this syntax is easily constructed and shown in Fig. 6.16.
The next step would be to insert the open regions, if any, and this is done by traversing the tree from the
maximum depth and upward. Any open region can be tested by checking any point in it to see whether
it lies within the maximum-depth leaves of the closed regions’ tree hierarchy (the test is easily done by
extending a line and checking how many times it intersects a closed region, as in the test for closed regions
enclosures). Then, the upper levels of the hierarchy are tested in ascending order until the root is reached
or all open regions have been exhausted. Any open region found to be inside a closed one while traversing
the tree is inserted in the tree as a son for that closed region. It should be noticed that this algorithm is
not a general graph-to-tree conversion algorithm; it only works on the specific kind of graphs that the
image processing module recovers. That is, the conversion algorithm is tailored to the visual recursion
paradigm.

FIGURE 6.16 The tree associated with the example in Fig. 6.14.

A(B()) A(B(),C()) A(B(D()),C()) A(B(D(),E()),C())→ → →
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Extraction of Depth Information and World Coordinates

A crude initial model is found using stereo vision. The camera model used is a pinhole camera as shown
in Fig. 6.17, corrected for radial distortion. Depths are found with such models using the disparity
between feature locations in a pair of views according to the following formula:

where xl and xr are coordinates on the image plane, f is the focal length, and D is the disparity. Additional
aspects of the camera model are discussed in the section on camera calibration.

The stereo algorithm currently in use requires no correspondence between individual features in the
stereo image pair [1]. Instead, corresponding regions are found, and the disparity in their centers of mass
is used for depth computation. In our experiment, closed regions are found in two images and their
relationships are determined. Each closed region is described by its boundary, a contour in image
coordinates. It is assumed for the initial model that these contours are planar. Given this assumption,
the parameters p, q, and c of a plane must be solved for in the equation

To do this, each region is split into three similar sections in both left and right images. The center of
mass is computed for each section, and the system of equations solved for p, q, and c. These values are
stored with the region for later output of the CAD model (we use the 
_1 CAD package). It should be
noted that if the centers of mass are collinear, this system will not be solvable (three non-collinear points
define a plane). Also, if the centers of mass are close together, the error in discretization will cause substantial
error in computation of plane parameters. In other words, if the three points are close together, an error
of one pixel will cause a substantial error in the computed orientation of the plane. The effect of a one-
pixel error is reduced by selecting points that are “far” apart. Thus, the technique used to split regions,
determining the locations of these points, is a crucial part of the algorithm.

The most obvious and perhaps simplest technique splits contours by dividing them into three parts
horizontally (see Fig. 6.18.) Because many machined features (such as holes) will produce collinear
centers of mass when partitioned this way, a different technique is used. It is attempted to divide
each contour into three parts of equal length (see Fig. 6.18). One region may partitioned purely by

FIGURE 6.17 Pinhole camera model.
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length, but to partition the other exactly would require solution of the correspondence problem. Fortunately,
the effects of error in correspondence are made minimal when averaged over a section. The first pixel in
the left image’s region is matched with one in the right image by translating it along a vector between the
centers of mass of the regions and finding the closest pixel to this position in the right image.

In practice, this was found to work fairly well for the outermost region. However, using the same technique
for smaller inner regions, error is much greater because the three centers of mass used to determine the
plane parameters are closer together. A further assumption may be made, however: that the inner regions
are in planes parallel to the outer region. Using this assumption, it is not necessary to split the regions
into three parts, and the plane equation can be solved for c using the center of mass of the entire region.
If it is assumed that all planes are parallel to the table (world x-y plane), the outermost region can be treated
in like manner.

For our initial experiment, the following assumptions were made.

• The robot z axis is perpendicular to the table on which the robot is mounted.

• The table is a planar surface, parallel to the floor.

• The CCD plane of the camera is parallel to the back of the camera case.

• All object contours are in planes parallel to the table.

The experimental setup is shown in Fig. 6.19. The
camera was oriented with its optical axis approxi-
mately perpendicular to the table. This was first done
by visual inspection. Then, for more accuracy, a level
was used on the back of the camera case and the
robot tool was rotated until the camera appeared
level. The robot tool frame was then recorded (as
Left). This frame was used consistently to capture
images for the remainder of the experiment. At that
point, the problem had been constrained to finding
the angle between robot x and image x. This was
necessary because the stereo algorithm is based on
disparity only in the image x direction.

FIGURE 6.18 Region splitting algorithms.

FIGURE 6.19 Experimental setup.
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To accomplish the constrained motion, the following algorithm was implemented:

• Move the camera to the recorded frame.

• Take an image.

• Threshold it.

• Compute the center of mass of an object in the scene (there should be only one) in image
coordinates.

• Move the camera in the robot-x direction.

• Take an image.

• Threshold it.

• Compute the new center of mass of an object in the scene in image coordinates.

• Compute the angle between the vector (new-old) and the image x-axis.

• Compute a new frame accounting for this angle and record it.

• Move to the new frame, recompute the center of mass, and display it.

At this point, the rotation part of the transform from camera coordinates to world coordinates is
known, and the translational part must be determined. X- and Y-components of the translation are taken
to be zero, making the world coordinate origin centered in the left frame image. The Z-component was
determined by taking an image pair of a paper cut-out (thickness assumed to be zero). The Z-coordinate
of this object should be the distance from the image plane to the table. This was then used to complete
the homogeneous transform from camera coordinates to world coordinates:

Several stereo image pairs were then captured using the Left and Right frames, and then used by the
stereo code to produce 
_1 models with the objects described in world coordinates. For a cube measuring
1 inch (25.4 mm) on a side, the resulting 
_1 model was similar to a cube (lighting effects are observable),
and dimensioned to 26.74 mm � 25.5 mm � 25.7 mm (h � l � w). This corresponds to percent errors
of 5.2, 0.4, and 1.2, respectively. Some example images and corresponding models are shown in later sections.

Camera Calibration

Real-world cameras differ substantially from the ideal camera model typically used for discussion of
stereo vision. Lens distortion, offsets from the image center, etc. are sources of error in computing range
information. The camera calibration technique chosen for this project takes many of these factors into
account. Developed by Roger Tsai, and implemented by Reg Willson of CMU [18, 20], this technique
has been described as:

• Accurate

• Reasonably efficient

• Versatile

• Needing only off-the-shelf cameras and lenses

• Autonomous (requiring no operator control, guesses, etc.)

The technique solves for the following parameters:

• f-focal length

• k-lens distortion coefficient

1.0 0.0 0.0 0.0

0.0 1.0	 0.0 0.0

0.0 0.0 1.0	 234.1

0.0 0.0 0.0 1.0
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• (Cx, Cy) image center

• Uncertainty scale factor (due to camera timing and acquisition error)

• Rotation matrix

• Translation vector

of which we use the focal length, distortion coefficient, and image center. The equations used are as
follows:

where dx and dy are the center-to-center distances between adjacent sensor elements on the CCD plane
in the x and y directions (obtained from Panasonic); Xu and Yu are undistorted image plane coordinates;
x, y, and z are in the camera coordinate system; and Xd and Yd are distorted image plane coordinates.
The effects of the distortion coefficient can be seen in Figs. 6.20 to 6.23.

In the classical approach to camera calibration,
computing the large number of parameters
requires large-scale nonlinear search. In Tsai’s
method, however, the problem’s dimensionality is
reduced by using the radial alignment constraint
to split the search into two stages [18]. In the first
stage, extrinsic parameters such as Translation and
Rotation parameters are found. The second solves
for the intrinsic parameters ( f, k, etc.).

The implementation used accepts a data file
containing points that are known in both image
coordinates and world coordinates. For Tsai’s
original paper, data was obtained from a calibra-
tion grid measured with a micrometer and 400X
microscope. For our purposes, a paper grid of 1-mm
diameter dots spaced 1 cm apart was made using
AutoCad and a plotter (see Fig. 6.24). A plotter
was used rather than a laser printer in hopes of
minimizing such errors as the stretching effect
found in the output of worn laser printers. The
calibration algorithm is quite sensitive to systematic
errors in its input. It should be noted that for Tsai’s
algorithm, the camera’s optical axis should be at an
angle greater than 30° from the plane in which the
calibration points occur. The calibration data was generated in the following manner:
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FIGURE 6.20 Raw image.

FIGURE 6.21 Corrected image, kappa � .0005.
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• Capture calibration image (dot locations
are known in world coordinates)

• Threshold calibration image.

• Visit each calibration image “dot” in a
systematic way:

— Select a pixel interior to the dot.
— Compute the center of mass of the

8-connected region.
— Output the world x-y-z, image x-y

information to the calibration data file.

For our first experiment, 25 calibration points were
used. Typical results are shown in Appendix B.

For future experiments, a more refined calibration
data collection system may be used, possibly using
the CMM as a tool to generate data points. This
will facilitate outputting stereo range information
in the CMM’s coordinate system.

Depth Estimation Using an 
Illumination Table

Using stereo techniques for estimating the depths of
an object’s contours can be very accurate, but it is
limited in that it cannot compute the depth of an
occluded contour (i.e., the bottom of a hole or
pocket). As shown in Fig. 6.25, the algorithm will give
the depths for both contours correctly in case A, while
in case B the depth of both contours will be the same.

It was attempted to solve this problem using a
predefined illumination table that relates the
intensity of a point on the object to the distance
between this point and the camera. When the stereo
algorithm detects two nested contours with the
same depth, this table would be used to estimate
the depth of the inner region. This method is very simple to implement, but it proved to have some
drawbacks. For example, it is very sensitive to the lighting conditions, i.e., any variation in the lighting
conditions will result in the invalidation of the lookup table. Also, objects being observed must have
consistent surface properties. In the following section, attempts to overcome these problems are described.

Table Construction

This table is constructed off-line before running the experiment. The following assumptions were made:

• The object is formed of the same material, hence the illumination at any point is the same
(assuming well distributed light and no shadows).

• The same camera with the same calibration parameters are used during the experiment.

• The lighting conditions will be the same during the experiment.

We can consider these to be valid assumptions because the manufacturing environment is totally
controlled, thus, we know the object material and we set the lighting conditions as desired.

FIGURE 6.22 Corrected image, kappa � .00357 (used
in our experiment).

FIGURE 6.23 Corrected image, kappa � .05.

FIGURE 6.24 Thresholded calibration grid.
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This table will be constructed only once, and will then be used for all our experiments, as long as they
satisfy our assumptions. However, if we wish to examine an object with different materials, or we want
to change the lighting conditions, we will have to construct a new table using the new object and the
new lighting conditions. To construct this table, the robot arm that holds the camera is moved vertically
in incremental steps, according to the required accuracy. At each increment, an image is taken and the
intensity at the center of the image is measured; see Fig. 6.26 for the experimental setup.

Modifications

The initial implementation of this method did not produce the expected results because of the noise in
the images taken at each depth. Several enhancements were added to this method to reduce the effect of
noise. First, instead of measuring the intensity at one point, we take the average of the intensities of a
set of points that constitutes a rectangular window. By changing the window size, we can control the
smoothing degree of the measured intensity. The second enhancement is also based on averaging, by
taking several images at each height and taking the average of the calculated average window intensities.
After applying these two modifications, the effect of noise was greatly reduced.

Another modification was to move the light source with the camera to increase the difference in the
measured intensity at each height, which, in turn, should have increased the resolution of our table.

FIGURE 6.25 The problem when using stereo in depth estimate.

FIGURE 6.26 Constructing the illumination table off-line.
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One last enhancement was incorporated based on the perspective-projective transform from world points
to image points. The window size used to calculate the average intensity at each height should be the same;
but according to the image formation equations using the pinhole camera model, the corresponding window
in the image will change according to the distance between the camera (image plane) and the object.
From Fig. 6.27, using simple trigonometry, we obtain the following relation between the image window
size and the distance z between the object and the camera:

which shows that the image window size is inversely proportional to the distance between the object and
the camera. Thus, we must calculate the new window size at each height, which will be the number of
pixels used for averaging.

Figure 6.28 shows a graph for the constructed illumination table used in our experiment. It shows that
the intensity decreases when the distance between the object and the camera increases, but it also shows
that any change in the lighting condition will give different results for the illumination table.

This method also has some pitfalls. First, it is very sensitive to any light change, as shown in Fig. 6.28.
Second, the difference in illumination values for two close depths is very small. For example, in our
experiment, the total range of differences within 10 cm was less than 30 gray-levels. Finally, it still
has small amounts of noise at some points. We are now developing another method for determining
depth from focus. This method involves calculating distances to points in an observed scene by
modeling the effect that the camera’s focal parameters have on images acquired with a small depth
of field [7].

6.5 Sensing to CAD Interface

An important step in the reverse-engineering process is the accurate description of the real-world object.
We generate an α_1 model from a combination of three types of scene information:

FIGURE 6.27 Changing window size assuming pinhole camera model.
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• Two-dimensional images and feature contours

• Stereo vision depth information

• Touch information from the CMM (still to be implemented)

Using each sensing method, we are able to gather enough data to construct the accurate CAD model
necessary for reverse engineering (see Fig. 6.29.) The two-dimensional images provide feature detection
that is in turn used by the stereo system to build feature models. Finally, the CMM eliminates uncertainty
through the exploration of the features.

The state machine and the sensors are able to produce a set of data points and the respective enclosure
relationships. Each feature is constructed in α_1 independently, and the final model is a combination of
these features. This combination is performed using the recursive structure of the object by forming the
corresponding string for that object and generating the code by parsing this string recursively. The third
dimension is retrieved from the stereo information and the illumination table as described previously.
An example for a reconstructed part is shown in Fig. 6.30.

This interface is one of the most important modules in this work, because it is the real link between
inspection and reverse engineering. We have chosen α_1 as the CAD language because it has very powerful
features, in addition to the fact that it has interfaces with some manufacturing machines, which allows
us to actually manufacture a hard copy of the part. This will be our next step, so that the output of our
next experiment will be another part, hopefully identical to the original part.

Contours to Splines

In the initial stage of our sensing to CAD interface, we translated the ranged contours we found into
spline curves.

Both closed and open contours are represented as ordered sets of points. The contour points are used
as control points on a spline curve in the α_1 system. It is important not to use all of the contour points
while fitting the spline. In many cases, there are more than a thousand points in the original image. This
gives an over-constrained solution.

FIGURE 6.28 Two different results when changing the lighting conditions.
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Thinning Contours

We must supply a list of control points to α_1 that will fit a spline accurately to the original real-world
feature. Therefore, we must decide which points contribute to the actual shape of the feature and which
points are simply redundant.

Obviously, regions of high curvature are important to the overall shape of the feature, while low
curvature regions will not play as important a role. We fit lines to each contour and represent them as
polyline segments in α_1. Each line only consists of its endpoints rather than all the image points along
its length. All of the line segments and splines that make up a particular contour are combined together
using the α_1 profile curve.

An example is shown in Fig. 6.31. The straight lines in this closed contour are found, and the corner
points are used as “important” points to the α_1 model. Points along the top arc are all used so that

FIGURE 6.29 The role of an internal CAD model in the inspection machine.

FIGURE 6.30 A rough α_1 surface model extracted from the machine vision.
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a spline can be fit to them accurately. The final region
is represented as the combination of the lines and
curves that makes up its length.

Contours to Machined Features

Although the lines and splines representation
proved useful, another representation was found to
be needed to describe our machined parts. A set of
machinable features, as implemented in the α_1
modeling system [2], has been selected for this rep-
resentation. This set includes profileSides (for
describing the outside curve), profilePockets (for
describing interior features generated by milling),
and holes (for describing features generated by drilling). Although not within the scope of current
research, the method being described is extensible to include other features, such as slots, bosses, etc.
Using this subset, most parts which meet the requirements of the visual processing algorithms can be
transformed to a machinable 
_1 representation.

The Algorithm

The transformation algorithm is as follows:

• Input: raw images, part string, and ranged contour representation

• Convert part string to tree representation (see Fig. 6.32)

• Generate stock using bounding box (see Fig. 6.33)

• Generate profileSide for outermost contour (see Fig. 6.34)

• Class each subfeature as positive or negative relative to its predecessors (see Fig. 6.35)

• Recursively descend the part tree, starting with the outermost contour’s children:

• If negative, check for positive subfeatures relative to it (if there are none, produce a hole or
profile pocket depending on curvature; otherwise, there must be a profile pocket with an island;
produce both)

• Otherwise, check to see if this island needs to be trimmed

• Output: 
_1 model composed of machinable features

Note that this algorithm assumes that the outermost contour is the highest. This limitation can be
overcome by a simple check at the start, and subsequent treatment of the outer contour as a feature
within a blockStock feature.

FIGURE 6.32 Sample tree representation.

FIGURE 6.31 L1, L2, and L3 are fit to lines before they
are used in α_1. S1 has too much curvature and all of its
points are used to describe a piecewise spline.
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Data Points to Arcs and Lines

Contours are converted to holes or 
_1 profile
curves, defined by combinations of arcs and lines.
This is accomplished using the curvature along the
contour. Areas in which the curvature is zero (or
below a small threshold) for a specified distance
along the contour are considered to be line segments.
Areas in which the curvature is constant for a spec-
ified distance are considered to be arcs. Curvature,
k, at a point on a curve is defined to be the instan-
taneous rate of change of the curve’s slope, �, with
respect to curve length, s [15]:

where

Slope is taken to be the orientation of the gradi-
ent of the difference of Gaussians (DOG) function.
The DOG function is an approximation to the
Laplacian as mentioned in the Zero-Crossings sec-
tion of this chapter. The derivatives of slope are
computed using a forward difference technique,
and the results are smoothed a user-controlled
number of times. A graph of curvature vs. distance
along a curve can be seen in Fig. 6.36. For each arc
segment, a circle is fitusing a least-squares fit [14],
and then the endpoints of the arc segment are
grown until the distance from the contour to the
fitted circle exceeds a tolerance. This process is
repeated until growing has no effect or another
segment is reached. A similar method is used for
the line segments. Segment data is stored as a linked
list (see Fig. 6.37).

A Hough transform technique was considered for
fitting curves. Although very easy to implement (one
was implemented in about an hour for comparison),
it was found to be too expensive in terms of memory.
See Appendix C for a comparison between the tech-
nique used and the Hough transform.

Arcs and Lines to Machined Features

If a negative feature contains a positive feature, then it must be a profilePocket with an island (the positive
feature). The island is trimmed to the height of the positive feature with a profileGroove. If the negative
feature contains no positive feature and is composed of only one arc segment, then it can be represented
by a hole. To be a hole, the arc’s radius must match one of a list of drill sizes within a tolerance. If a hole
contains no other features, and the interior of the raw image is below a threshold, it can be considered
to be a through-hole.

FIGURE 6.33 Stock and profileSide.
k s( ) d� s( )/ds�

FIGURE 6.34 ProfileSide.
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FIGURE 6.35 Positive (island) and negative (hole and
pocket) features.
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Some aspects of machined features are difficult to measure accurately using our current image
processing algorithms. For example, fillets between line segments in a profilePocket may not be within
the accuracy of our vision, but are necessary for machineability. In cases such as these, default values
are selected so as to have minimal deviation from the reverse-engineered model, yet allow the model
to be machined. It is anticipated that some aspects (such as chamfers and threads) may be detected,
although not accurately measured with vision.

In its current implementation, each contour is treated as, at most, one machined feature (some
contours may be islands and therefore part of another contour’s feature). Future work will allow
contours to be made from multiple features if appropriate. For example, combinations of drilled

FIGURE 6.36 Curvature, and first and second derivatives.
© 2001 by CRC Press LLC



holes, slots, and pockets may be produced (see Fig. 6.38), based on a machining/inspection time/cost
analysis, which will include such factors as time needed to select and load tools (operator), change
tools, etc. This problem has some characteristics that may be best solved through artificial intelligence
or optimization techniques.

Results

Although the model at this intermediate stage is still crude, it was considered a useful test to have a part
manufactured from it. This intermediate stage model will later be updated with CMM data as described
in the section on Integration Efforts.

FIGURE 6.37 Contour segment data structure.

FIGURE 6.38 Possible combinations.

FIGURE 6.39 Stereo image pair from which ranged contours are computed.
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The right portion of Fig. 6.40 shows the result
of applying this method to an actual part. The
original part model is shown in the left portion of
that figure and the stereo image pair used in image
processing is shown in Fig. 6.39. Note that although
the original CAD model was available in this case,
it is used only for demonstration purposes, not as
part of the reverse-engineering process. The
reverse-engineered model was used to create a pro-
cess plan and machine a part on the Monarch
VMC-45 milling machine. The original part and
reproduction can be seen in Fig. 6.41.

6.6 System Integration

The Initiation Experiment

This experiment was performed to integrate the
visual system with the state machine. An appropriate
DRFSM was generated by observing the part and
generating the feature information. A mechanical
part was put on a black velvet background on top
of the coordinate measuring machine table to sim-
plify the vision algorithms. The camera was placed
on a stationary tripod at the base of the table so
that the part was always in view. The probe could
then extend into the field of view and come into
contact with the part, as shown in Fig. 6.42.

Once the first level of the DRFSM was created, the experiment proceeded as follows. First, an image was
captured from the camera. Next, the appropriate image processing takes place to find the position of the
part, the number of features observed (and the recursive string), and the location of the probe. A program
using this information produces a state signal that is appropriate for the scene. The signal is read by the
state machine and the next state is produced and reported. Each closed feature is treated as a recursive
problem; as the probe enters a closed region, a new level of the DRFSM is generated with a new transition
vector. This new level then drives the inspection for the current closed region.

The specific dynamic recursive DEDS automaton generated for the test was a state machine G (shown
in Fig. 6.43.); where the set of states X � {Initial, EOF, Error, A, B, C, D} and the set of transitional
events � � {1, 2, 3, 4, 5, 6, 7, 8, 9, eof}. The state transitions were controlled by the input signals supplied
by intermediate vision programs. There are four stable states A, B, C, and D that describe the state of the

FIGURE 6.40 Original and reverse-engineered part models.

FIGURE 6.41 Original and reproduction.

FIGURE 6.42 Experimental setup.
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probe and part in the scene. The three other states—Initial, Error, and EOF—specify the actual state of
the system in special cases. The states can be interpreted as:

Initial State: waiting for first input signal

A: part alone in scene

B: probe and part in scene, probe is far from part

C: probe and part in scene, probe is close to part

D: probe touching or overlapping part (recursive state)

Error: an invalid signal was received

EOF: the end of file signal was received

The Second Experiment

In the second experiment, we use a robot arm (a PUMA 560), a vision sensor (B/W CCD camera)
mounted on the end effector, and a probe to simulate the coordinate measuring machine (CMM) probe,
until the necessary software interface for the CMM is developed. There are several software interfaces on
a Sun Sparcstation, for controlling all these devices (see Fig. 6.44.)

A DRFSM DEDS algorithm is used to coordinate the movement of the robot sensor and the probe.
Feedback is provided to the robot arm, based on visual observations, so that the object under consider-
ation can be explored. This DRFSM was generated by GIJoe, as shown in Fig. 6.6. The DEDS control
algorithm will also guide the probe to the relevant parts of the objects that need to be explored in more
detail (curves, holes, complex structures, etc.) Thus, the DEDS controller will be able to model, report,
and guide the robot and the probe to reposition intelligently in order to recover the structure and shape
parameters. The data and parameters derived from the sensing agent are fed into the CAD system for
designing the geometry of the part under inspection. We used the 
_1 design environment for that
purpose. Using the automatic programming interface we have developed for 
_1, we generate the required
code to reconstruct the object using the data obtained by the sensing module.

Running the Experiment

The first step in running this experiment is setting the lighting conditions as desired (same conditions
when constructing the reflectance map table), then initializing the robot and the camera and set them
to initial positions. The experiment starts by taking images for the object from two positions, to

FIGURE 6.43 State machine used in test.
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generate two sets of contours to be fed into the stereo module for depth estimation. Using the stereo
module with the assistance of the reflectance map table and the camera calibration module, an initial
set of world coordinates for these contours is generated. Next, the DRFSM DEDS machine drives the
probe and the robot arm holding the camera to inspect the object using the information generated
from the stereo module and the relation between the object’s contours. Figure 6.45 shows the DRFSM
for this experiment. 

This machine has the following states:

• A: the initial state, waiting for the probe to appear.

• B: the probe appears, and waiting for it to close. Here, close is a relative measure of the distance
between the probe and the current feature, since it depends on the level of the recursive structure.
For example, the distance at the first level, which represents the outer contours or features, is
larger than that of the lower levels.

• C: probe is close, but not on feature.

• D: the probe appears to be on feature in the image, and waiting for physical touch indicated from
the CMM machine.

• E: (the recursive state) physical touch has happened. If the current feature represents a closed
region, the machine goes one level deeper to get the inner features by a recursive call to the initial
state after changing the variable transition parameters. If the current feature was an open region,
then the machine finds any other features in the same level.

• F: this state is to solve any vision problem happens during the experiment. For example, if the
probe is occluding one of the features, then the camera position can be changed to solve this
problem.

• ERROR 1: usually, there is time limit for each part of this experiment to be done. If for any reason,
one of the modules does not finish in time, the machine will go to this state, which will report
the error and terminate the experiment.

FIGURE 6.44 An experiment for inspection and reverse engineering.
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A set of final world coordinates for the contours is obtained and fed to the 
_1 interface, which in
turn generates the required code for generating an 
_1 model for the the object. Figure 6.46 shows a
block diagram for this experiment with the results after each step.

Experimental Results, Automated Inspection

Two machine parts were used in the experiment to test the inspection automaton. The pieces were placed
on the inspection table within view of the camera. Lighting in the room was adjusted so as to eliminate
reflection and shadows on the part to be inspected.

Control signals that were generated by the DRFSM were converted to simple English commands and
displayed to a human operator so that the simulated probe could be moved.

The machine was brought online and execution begun in State A, the start state. The camera
moved to capture both 2D and 3D stereo vision information and a rough 
_1 model was constructed
to describe the surface, as shown in Fig. 6.47. The reconstruction takes place in state A of the
machine. The constructed model is used by the machine in subsequent states. For example, the
distance between the probe and the part is computed using this model and the observed probe
location.

After initiating the inspection process, the DRFSM transitioned through states until the probe reached
the feature boundary. The state machine then called for the closed region to be recursively inspected
until finally, the closed regions are explored and the machine exits cleanly. Figures 6.48, 6.49, and 6.50
depict some exploration sequences.

6.7 Summary of Current Developments

This summary concludes the chapter by outlining some of the goals and progress within the project. We
first describe some goals and methodology, and then outline current and past activities.

FIGURE 6.45 The DRFSM used in the second experiment.
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Goals and Methodology

We use an observer agent with some sensing capabilities (vision and touch) to actively gather data
(measurements) of mechanical parts. Geometric descriptions of the objects under analysis are generated
and expressed in terms of a CAD System. The geometric design is then used to construct a prototype of
the object. The manufactured prototypes are then to be inspected and compared with the original object
using the sensing interface and refinements made as necessary.

FIGURE 6.46 Block diagram for the experiment.

FIGURE 6.47 The two stereo images and the final 
_1 model that was found in the experiment.
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FIGURE 6.48 Test sequence (1).

FIGURE 6.49 Test sequence (2).

FIGURE 6.50 Test sequence (2) (contd.).
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The application environment we are developing consists of three major working elements: the sensing,
design, and manufacturing modules. The ultimate goal is to establish a computational framework that
is capable of deriving designs for machine parts or objects, inspect and refine them, while creating a
flexible and consistent engineering environment that is extensible. The control flow is from the sensing
module to the design module, and then to the manufacturing component. Feedback can be re-supplied
to the sensing agent to inspect manufactured parts, compare them to the originals, and continue the
flow in the loop until a certain tolerance is met (see Fig. 6.51). The system is intended to be ultimately
as autonomous as possible. We study what parts of the system can be implemented in hardware. Some
parts seem to be inherently suited to hardware, while other parts of the system it may be possible to put
in hardware; but experimentation will provide the basis for making that decision. Providing language
interfaces between the different components in the inspection and reverse-engineering control loop is
an integral part of the project.

Current Developments

We use a robot arm (a PUMA 560), a vision sensor (B/W CCD camera) mounted on the end effector,
and will be using the coordinate measuring machine (CMM) with the necessary software interfaces to
a Sun SparcStation as the sensing devices. A DRFSM DEDS algorithm is used to coordinate the
movement of the robot sensor and the CMM. Feedback is provided to the robot arm, based on visual
observations, so that the object(s) under consideration can be explored. The DEDS control algorithm
will also guide the CMM to the relevant parts of the objects that need to be explored in more detail
(curves, holes, complex structures, etc). Thus, the DEDS controller will be able to model, report, and
guide the robot and the CMM to reposition intelligently in order to recover the structure and shape
parameters.

FIGURE 6.51 Closed-loop reverse engineering.
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The data and parameters derived from the sensing agent are then fed into the CAD system for designing
the geometry of the part(s) under inspection. We use the 
_1 design environment for that purpose. The
goal is to provide automatic programming interfaces from the data obtained in the sensing module to
the 
_1 programming environment. The parametric and 3-D point descriptions are to be integrated to
provide consistent and efficient surface descriptions for the CAD tool. For pure inspection purposes, the
computer aided geometric description of parts could be used as a driver for guiding both the robotic
manipulator and the coordinate measuring machine for exploring the object and recognizing discrep-
ancies between the real part and the model. The computer aided design parameters will then to be used
for manufacturing the prototypes.

The software and hardware requirements of the environment are the backbone for this project.
We selected parts of the system for possible hardware implementation. The DEDS model, as an
automaton controller, is very suitable for Path Programmable Logic (PPL) implementation. A
number of the visual sensing algorithms could be successfully implemented in PPL, saving con-
siderable computing time. There is a lot of interfacing involved in constructing the inspection and
reverse-engineering environments under consideration. Using multi-language object-based com-
munication and control methodology between the three major components (sensing, CAD, and
CAM) is essential.

Past, Current, and Future Activities

Completed Activities

• Designed the DRFSM DEDS framework for recursive inspection

• Implemented image processing modules for recognizing features and probe position on the
parts

• Designed and implemented visual structure recovery techniques for machine parts (using stereo,
contour, and illumination map data) and implemented calibration routines

• Designed and implemented a sensing to CAD interface for generating 
_1 code for bodies
from depth, contour (and data reduction) illumination map, and the recursive feature
relationships

• Implemented the DRFSM DEDS automata for recursive inspection (using robot-held camera,
probe, and actual parts)

• Designed sensor and strategy-based uncertainty modeling techniques for the robot-held camera,
for recovering the DEDS transitional “events” with uncertainty

• Designed and implemented a modification to an existing reactive behavior design tool (GIJoe) to
accommodate “dumping” the code of DRFSM DEDS from a graphical interface (used to draw the
inspection control automaton)

• Implemented feature identification for subsequent manufacturing (from sensed data, i.e., what
does set(s) of sensed data points “mean” in terms of manufacturing features)

• Manufactured parts from camera reconstructed 
_1 surfaces

Current Activities

• Designing the DEDS to VLSI design language interface (a graphical interface)

• Designing and implementing the software “uncertainty” module for subsequent hard-wiring into
a chip

• Using focusing, motion, moments, shading, and more accurate robot and camera calibration
techniques to enhance the visual processing

• Feature interaction identification for manufacturing (i.e., how can sensed features best be represented
for manufacturing)
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• Modifying the sensing to CAD interface for allowing CMM sensed data, in addition to visual data

• Implementing the DRFSM DEDS automata for recursive inspection and reverse engineering (using
moving camera, CMM and actual parts)

• Implementing “safety” recursive DEDS for checking the sensing activities, for example, positions
of probe, part, and camera

Future Activities

• Implement the VLSI modules for the DRFSM DEDS controller

• Implement the “uncertainty” chip

• Manufacture parts from camera and CMM reconstructed 
_1 surfaces (with feature interaction
identification built in)

• Writing and using a common shared database for storing data about the geometric models and
the rules specifying the communication between the different phases

• Implement sensor-based noise modeling modules for the robot-held camera and the CMM (hard-
ware and software)

6.8 Integration Efforts

The following explains some of the integration efforts within the different areas of the project.

Robotics and Sensing

We intend to develop a software interface for the CMM machine, and a discrete event dynamic system
(DEDS) algorithm will be used to coordinate the movement of the robot sensor and the CMM. The
DEDS control algorithm will also guide the CMM to the relevant parts of the objects that need to be
explored in more detail (curves, holes, complex structures, etc.).

As a starting point to develop this interface,
we will work with the Automated Part Inspection
(API) package. API is a semi-automatic feature-
based part inspector that is fully integrated with
the 
_1 system. This package, some of which can
be seen in Fig. 6.52, enables a user with an 
_1
model composed of machined features to simulate
and/or drive the CMM to inspect the machined
part. Using our intermediate feature-based model
to guide the inspection as if it were the original, we
will be able to incorporate the sense of touch into
our knowledge base. With a new, more accurate
model, we can loop back to the beginning of the
inspection process until we have captured every
aspect of the parts we inspect to the tolerances
we desire.

Computer Aided Design and 
Manufacturing

We intend to develop the CAD interface to be
more accurate and to accept more complicated
models. The goal is to enhance the automatic FIGURE 6.52 The API user interface.
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programming interface between the data obtained in the sensing module to the 
_1 programming
environment. The parametric and 3-D point descriptions are to be integrated to provide consistent and
efficient surface descriptions for the CAD tool. For pure inspection purposes, the computer aided geometric
description of parts could be used as a driver for guiding both the robotic manipulator and the coordinate
measuring machine for exploring the object and recognizing discrepancies between the real part and the
model.

The computer aided design parameters are then to be used for manufacturing the prototypes.
Considerable effort has been made for automatically moving from a computer aided geometric model
to a process plan for making the parts on the appropriate NC machines and then to automatically
generate the appropriate machine instructions [6]. We use the Monarch VMC-45 milling machine as
the manufacturing host. The 
_1 system produces the NC code for manufacturing the parts.

VLSI, Uncertainty Modeling, and Languages

The software and hardware requirements of the environment are the backbone for this project. We
intend to select parts of the system implementation and study the possibility of hard-wiring them.
There has been considerable effort and experience in VLSI chip design [5, 8] and one of the sub-
problems would be to study the need and efficiency of making customized chips in the environment.
The DEDS model, as an automaton, is very suitable for path programmable logic (PPL) implementa-
tion. A number of the visual sensing algorithms could be successfully implemented in PPL, saving
considerable computing time. Integrated circuits for CAGD surface manipulation is an effort that is
already underway. We intend to investigate a new area: the possibility of implementing the DEDS part
of the system in integrated circuitry.

Another important part to be implemented in hardware, is the “uncertainty” chip, which will provide
fast decisions about the accuracy of our measurements. This is important for deciding whether the part
needs more inspection steps or not. The uncertainty model depends on the nature of the part being
inspected, the sensor, the strategy being used to sense the part, and the required accuracy.

There is a lot of interfacing involved in constructing the inspection and reverse-engineering
environments under consideration. The use of multi-language object-based communication and
control methodology between the three major components (sensing, CAD, and CAM) is essential.
We intend to use a common shared database for storing data about the geometric model and the
rules governing the interaction of the different phases in the reproduction and inspection paradigms
[10, 17]. We have already used a graphical behavior design tool [4] for the automatic production
of the sensing DEDS automata code, from a given control language description. A sensing → CAD
interface has been developed as well.

6.9 Conclusions

We propose a new strategy for inspection and/or reverse engineering of machine parts and describe a
framework for constructing a full environment for generic inspection and reverse engineering. The
problem is divided into sensing, design, and manufacturing components, with the underlying software
interfaces and hardware backbone. We use a recursive DEDS DRFSM framework to construct an
intelligent sensing module. This project aims to develop sensing and control strategies for inspection and
reverse engineering, and also to coordinate the different activities between the phases. The developed
framework utilizes existing knowledge to formulate an adaptive and goal-directed strategy for exploring,
inspecting, and manufacturing mechanical parts.
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Appendix A: Sample GI Joe Output

int State_B(VTV_ptr) 
vtype *VTV_ptr; 
{

int DoneFlag; 
EventType Event; 
vtype *newVTV_ptr; 
int EventMask�0;

#ifdef VERBOSE

printf(“in state B\n”);

#endif
if (VTV_ptr �� NULL) {

#ifdef VERBOSE

fprintf(stderr, “*** ERROR: null vtv in state B\n”);
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#endif

exit (4);
};
EventMask |� TimeOutMask;
EventMask |� NoProbeMask;
EventMask |� ProbeCloseMask;
EventMask |� ProbeFarMask;
DoneFlag 5 FALSE;
while (!DoneFlag) {

Event � Get_DRFSM_Event(EventMask, VTV_ptr);
if (Event . type �� TimeOut) {

DoneFlag � TRUE;
if (Event . fn !� NULL) DoneFlag � (*(Event . fn))();
State_ERROR(VTV_ptr);

}
else if (Event . type �� NoProbe) {

DoneFlag � TRUE;
if (Event . fn !� NULL) DoneFlag � (*(Event . fn))();
State_A(VTV_ptr);

}
else if (Event . type �� ProbeClose) {

DoneFlag � TRUE;
if (Event . fn !� NULL) DoneFlag � (*(Event . fn))();
State_C(VTV_ptr);

}
else if (Event . type �� ProbeFar) {
}

}
}

Appendix B: Sample Calibration Code Output

Coplanar calibration (full optimization)

data file: a . pts

f � 8.802424 [mm]
kappa1 � 0.003570 [1/mm^2]

Tx � 	25.792328, Ty � 77.376778, Tz � 150.727371 [mm]

Rx � 	134.988935, Ry � 	0.127692, Rz � 	0.068045 [deg]

R
 0.999997 0.000737 0.002416
	0.001188 	0.706972 0.707241

0.002229 	0.707242 	0.706968

sx � 1.000000
Cx � 276.849304, Cy � 252.638885 [pixels]
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Tz/f � 17.123394

calibration error: mean � 0.331365,
standard deviation � 0.158494 [pixels]

Appendix C: Comparison Between Hough Transform
and Curvature Technique

The curvature technique as implemented for this application is described in flowchart form in Fig. C.1.
Using a similar analysis for a basic Hough transform implementation (just to detect circles) shows that
it would require:

• MMM assignments (to initialize memory)

• NMM

– 5 addition operations
– 3 multiplication operations
– 1 sqrt operations
– 6 assignments
– 3 comparisons

• MMM integers for memory

where M is the precision.

FIGURE C.1 Flowchart of the implemented curvature technique.
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Assuming pixel accuracy, M is approximately N/
. N, for this application, can be taken to be contour
length, bounded by . Thus, the Hough tranform may be considered of order N3 while the
curvature technique used is at most order N2. Not included in the Hough evaluation is that it would be
necessary to do some sort of mode detection to determine the number of circles found.

It is anticipated that the fitting algorithm may be extended to include other conic sections than circles,
and additionally that it may be extended to use three dimensional coordinates. While the Hough transform
is a very useful technique, we anticipate that its memory and order requirements will grow too rapidly
to meet our future needs.

NlinesNsamples
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7.7 Baan’s Enterprise Modeler
7.8 Summary

7.1 Introduction

Enterprises face integration problems due to necessary internal adaptations to cope with severe competition
in the global marketplace. To survive at the global market, efficient operation and innovative management
of change are essential. Enterprises need to evolve and be reactive, so that change and adaptation should
be a natural dynamic state rather than something occasionally forced onto the enterprise. Enterprise
engineering is the discipline that identifies the need for change in enterprises and carries out that change
expediently and professionally. Enterprise engineering intends to cater for continuous evolution and to
achieve a certain level of enterprise integration. Enterprise integration propagates the integration of all
enterprise resources to optimize business operations. That is, enterprise integration involves the collec-
tion, reduction, storage, and use of information, the coordination of product flows, the organization of
machines, the integration of human actions, etc.

Recently, some reference architectures have been defined that aim to provide the necessary frameworks
for enterprise integration. They are based on the idea that large parts of enterprise integration projects
are similar in every type of enterprise. These parts could be standardized and supported by methodologies,
tools, and other products that facilitate integration projects (Bernus et al., 1996).

The objective of this chapter is to investigate the practical value of enterprise reference architectures
concerning the integration of production systems. For this, three enterprise reference architectures have

Arian Zwegers
Baan Development

Henk Jan Pels
Eindhoven University of Technology
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been studied: namely CIMOSA, GRAI/GIM, and PERA. In addition, the CIMOSA reference architecture
has been applied during an industrial reorganization project.

The outline of this chapter is as follows. Section 7.2 outlines the objectives and ideas behind reference
architectures for enterprise integration. An essential point is that enterprise reference architectures aim
to support the whole life cycle of an enterprise integration project rather than just the (architectural)
design activities. 

CIMOSA is the best-known and most studied of the three enterprise reference architectures. In
addition, it is also the one with the most impact at the standardization committees. CIMOSA is examined
more closely in order to obtain a good understanding of the concepts of reference architectures for
enterprise integration. Section 7.3 gives an explanation of CIMOSA’s view on enterprise integration and
how to accomplish it. Furthermore, CIMOSA’s two most important elements, the modeling framework
and the integrating infrastructure, are shortly discussed.

Section 7.4 presents an application of CIMOSA during a reorganization project at a machine tool
manufacturer. The role of the CIMOSA modeling framework in the design of a functional control
architecture is illustrated. Due to immature specifications, the assistance of the CIMOSA integrating
infrastructure was rather limited.

Subsequently, the practical value of CIMOSA is discussed. Although the discussion focuses on
CIMOSA, most statements apply to most enterprise reference architectures. Section 7.5 shows that the
realization of CIMOSA’s true objective, namely a dynamic, flexible, adaptive enterprise by execution of
models, is far away. 

The two other major reference architectures for enterprise integration, GRAI/GIM and PERA, are
presented in Section 7.6. Whereas CIMOSA lacks a true engineering methodology, these two reference
architectures are accompanied by well-defined methodologies.

Finally, Section 7.7 shows an alternative approach in the field of enterprise resource planning (ERP)
that does realize some of the targets of enterprise integration thinking. The Dynamic Enterprise Modeler
of Baan Company allows users to make changes in models that are directly reflected in changes in the
underlying Baan ERP applications.

7.2 Enterprise Reference Architectures

Several problems occur during the (re-)design of an integrated manufacturing system. Because such a
system cannot be bought off-the-shelf, each company has to develop its own. Williams et al. (1994a)
notice that designing an integrated manufacturing system meets with a number of difficulties. Several
viewpoints must be taken into account; not only the technical point, but also the economic, social, and
human points of view have to be considered. By definition, CIM systems are very complex, and the
development of such systems is often quite expensive and risky. Most systems are not designed from
scratch; the existing systems have to be considered in the development process, so that newly developed
systems are integrated with the old ones. In addition, Aguiar and Weston (1995) claim that the activities
performed during each phase of the life cycle are essentially derived from ad hoc procedures, so that the
quality of the resultant system will depend considerably on the experience of the persons involved. The
problem is accentuated due to poor formalism with which those activities are usually carried out. This
often leads to solutions that do not adequately address business requirements, experience low repeatability
of successful results, and reveal a lack of traceability of design decisions, etc.

The objective of enterprise reference architectures is to offer the framework that solves the problems
mentioned above, and with which an enterprise might develop its integrated manufacturing system. The
idea behind enterprise reference architectures is that a large part of integration projects is in fact similar
and common in every type of enterprise (Williams et al., 1994a). This part could be standardized and
utilized instead of re-developing it from scratch. Once standardized, generally accepted reference archi-
tectures can be supported by tools, methodologies, and a range of compatible products, thus making the
entire integration project more time- and cost-efficient.
© 2001 by CRC Press LLC



      
Wyns et al. (1996) state that the benefits of reference architectures lie, among others, in unified and
unambiguous terminology, in envisaged simplicity of designing specific systems, and in high quality by
relying on proven concepts. In addition, a reference architecture models the whole life history of an
enterprise integration project. It indicates and justifies how and at what stage in the development process
external constraints and engineering design decisions are introduced, thereby providing traceability
between solution-independent requirements and final realizations. It provides the framework in which
enterprise integration methodologies work.

The IFAC/IFIP Task Force on Architectures for Enterprise Integration has developed an overall frame
work to organize existing enterprise integration knowledge. The proposed framework was entitled
GERAM—Generalized (or Generic) Enterprise Reference Architecture and Methodology. GERAM is
about those methods, models, and tools that are needed to build and maintain the integrated enterprise.
GERAM defines a toolkit of concepts for designing and maintaining enterprises for their entire life cycle.
The scope of GERAM encompasses all the knowledge needed for enterprise engineering. Thus, GERAM
provides a generalized framework for describing the components needed in all types of enterprise
engineering processes. GERAM provides a description of all elements recommended in enterprise
engineering and integration (IFAC/IFIP, 1997).

Fig. 7.1 shows the components of the GERAM framework. The most important component is the
Enterprise Reference Architecture, which defines enterprise-related concepts recommended for use
in enterprise engineering projects. The reference architecture should point toward purposeful organization
of enterprise concepts (Nell, 1996); it should identify and structure concepts for enterprise integration,
most notably life-cycle activities and architectural concepts such as abstraction, hierarchy, and views.
GERAM distinguishes between the methodologies for enterprise engineering and the modeling languages
that are used by the methodologies to describe and specify the structure, content, and behavior of the
enterprise. These languages will enable the modeling of the human part in the enterprise operation as
well as the part of business processes and supporting technologies. The modeling process is supported
by guidelines, and the results of the process are enterprise models that represent all or part of the enterprise
operations, including its manufacturing or service tasks, its organization and management, and its control
and information systems. These models should be used to improve the ability of the enterprise to evaluate
operational or organizational alternatives (e.g., by simulation), and thereby improve its current and future
performance.

The methodologies and the languages used for enterprise modeling are supported by enterprise
modeling tools. The modeling process is enhanced by using reference models that provide reusable models
of human roles, processes, and technologies. The operational use of enterprise models is supported by
specific modules that provide prefabricated products such as human skill profiles for specific professions,
common business procedures (e.g., banking and tax rules), or IT infrastructure services.

FIGURE 7.1 Components of the GERAM framework.
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By means of the GERAM framework, the overlaps and differences of enterprise reference architectures
can be identified. After all, the ways in which enterprise reference architectures try to achieve their
objectives differ from one reference architecture to the other. The following components are the minimal
set of elements a reference architecture should include:

1. Enterprise engineering methodologies, which can be thought of as roadmaps and instructions of
how to go about an enterprise integration project or program

2. Modeling languages, which are needed to support enterprise integration, and should be placed in
relation to each other by means of the reference architecture

3. A modeling methodology, which comprises a set of guidelines that define the steps to be followed
during a modeling activity

In addition, the following components are elements that should preferably accompany an enterprise
reference architecture:

4. Modeling tools, which are computer programs that help the construction, analysis, and, if applicable,
the execution of enterprise models as expressed in enterprise modeling languages

5. Reference models, which contain a formal description of a type (or part of an) enterprise
6. Generic enterprise modules, which are products that implement (parts of) a reference model; for

example, an integrating infrastructure, or components thereof

7.3 CIMOSA

Introduction

The goal of the ESPRIT project AMICE (reverse acronym of European Computer Integrated Manufacturing
Architecture) was to develop an Open System Architecture for CIM (CIMOSA). The project started in
the mid-1980s and finished after some extensions in the mid-1990s. CIMOSA should facilitate continuous
enterprise evolution and make necessary operational improvements manageable. At the same time,
CIMOSA should provide a strategy to deal with legacy systems to protect current and planned investment
in an enterprise’s production process. CIMOSA aims to offer support for enterprise integration, more
precisely for “business integration” and “application integration” (AMICE, 1993a).

Business integration is concerned with the coordination of operational and control processes to satisfy
business objectives. In every enterprise, processes are present that provide supervisory control of the
operational processes and coordinate the every-day execution of activities. CIMOSA aims to integrate these
processes by process-oriented modeling of enterprises. Modeling these processes and their interrelations
can be used in decisions regarding the requested level of business integration.

Application integration, which affects the control of applications, is concerned with the usage of
information technology to provide interoperation between manufacturing resources. Cooperation
between humans, machines, and software programs must be established by the supply of information
through inter- and intra-system communication. CIMOSA tries to support integration at this level by
defining a sufficient infrastructure to permit system-wide access to all relevant information regardless
of where the data reside.

In addition to business and application integration, a third level of integration is discerned by the
AMICE project, namely physical system integration. This level is concerned with the interconnection of
physical systems and has led to a number of standards, such as OSI and MAP. CIMOSA supports this
type of integration by adherence to the standards.

CIMOSA Approach

CIMOSA provides a framework that guides designers in the design and implementation of CIM systems.
In addition, it aims to guide vendors in the development of CIM system components, so that these
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components can be added and removed at will. It does not provide a standard architecture to be used
by the entire manufacturing industry, but rather a reference architecture from which a particular
enterprise can derive particular architectures that fulfill its needs. As such, CIMOSA adheres to a
descriptive, rather than a prescriptive methodology (AMICE, 1993a). Fig. 7.2 gives an overview of the
CIMOSA concepts.

The CIMOSA modeling framework enables one to describe a particular enterprise. Accompanying
methods, called “model creation processes,” guide engineers in the creation and maintenance process to
obtain and maintain a consistent system description. CIMOSA supports the explicit description of
enterprise processes at different levels of abstraction for strategic, tactical, and operational decision-
making. Simulation of alternatives and evaluation of design decisions enhances the decision support.
CIMOSA supports incremental modeling of the enterprise rather than following an overall top-down
approach. In short, CIMOSA allows the end user to define, prototype, design, implement, and execute
its business processes according to his/her needs. 

CIMOSA facilitates a system life cycle that guides the user through model engineering and model
execution. The life cycle starts with the collection of business requirements in a requirements definition
model, and goes, through the translation of the requirements into a system design model, to the
description of the implemented system. These phases are followed by a model release for operation and
model execution for operational control and monitoring. However, various methodologies consisting
of various system life-cycle phases are possible to instantiate particular models from the reference
architecture. These methodologies are supported by tool sets, which are defined by enterprise engineering
implementation models.

Model engineering and model execution are supported by the CIMOSA integrating infrastructure.
This infrastructure provides a set of generic services that process the released implementation model,
provide access to information, and connect to resources. In addition, the integrating infrastructure hides
the heterogeneity of the underlying manufacturing and information technology.

In the next two subsections, the two most important parts of CIMOSA—namely, the CIMOSA
modeling framework and the CIMOSA integrating infrastructure—are explained in more detail.

FIGURE 7.2 Overview of the CIMOSA concepts (AMICE, 1993a.)
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CIMOSA Modeling Framework

In Fig. 7.3, the modeling framework is represented by the CIMOSA cube. The cube offers the ability to
model different aspects and views of an enterprise (AMICE, 1993a,b). This three-dimensional framework
has a dimension of genericity, a dimension of enterprise models, and a dimension of views:

• The dimension of genericity (and stepwise instantiation) is concerned with the degree of particu-
larization. It goes from generic building blocks to their aggregation into a model of a specific
enterprise domain.

• The dimension of modeling (and stepwise derivation) provides the modeling support for the system
life cycle, starting from statements of requirements to a description of the system implementation.

• The dimension of views (and stepwise generation) offers the possibility to work with sub-models
representing different aspects of the enterprise.

CIMOSA Integrating Infrastructure

The CIMOSA integrating infrastructure enables CIMOSA models to be executed, and it allows the control
and monitoring of enterprise operations as described in the models. Furthermore, it provides a unifying
software platform to achieve integration of heterogeneous hardware and software components of the
CIM system. Applications use the generic services of the integrating infrastructure, so that they need no
longer contain the specifics of the data-processing environment. This provides increased portability and
flexibility of the applications and reduces the maintenance tasks considerably.

The integrating infrastructure consists of a
number of system-wide, generic services. The
business services control the enterprise operations
according to the model. The information services
provide for data access, data integration, and data
manipulation. The presentation services act as a
standardized interface to humans, machines, and
applications. A product that is connected to the
presentation services can be attached and removed
without changing any other part of the informa-
tion technology environment. Figure 7.4 displays
the integrating infrastructure and the above-
mentioned services. Other services are the common
services and the system management services that

FIGURE 7.3 CIMOSA modeling framework.
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FIGURE 7.4 CIMOSA integrating infrastructure.
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provide for system-wide data communication and facilities to set up, maintain, and monitor the
components of the integrating infrastructure.

7.4 Application of CIMOSA at Traub

Introduction

The ESPRIT project VOICE (Validating OSA in Industrial CIM Environments) validated the CIMOSA
results by the development of manufacturing control and monitoring solutions according to the CIMOSA
concepts in three types of industries. The VOICE project consisted of vendors, system integrators, research
institutes, and industrial partners. In each of the three industrial pilots, a different aspect of the manu-
facturing process was addressed. This section focuses on one of these pilots, namely the Traub pilot.
Traub’s motivation regarding the validation of CIMOSA was to examine whether CIMOSA is a useful
tool to support the restructuring process of the existing manufacturing organization and to support the
new organization with implemented information technology (Gransier and Schönewolf, 1995). Besides
some mentioned references, the main sources of this section are VOICE meetings and reports.

Traub AG is a German manufacturer of machine tools. The products cover conventional machines as
well as NC machines for turning and milling. The economic downturn in the market and the world-wide
recession have forced all machine tool manufacturers to improve their cost situation and shorten the
terms of delivery. Customer demands are characterized by an increased diversification of products,
resulting in decreasing numbers of series production. Enormous sales efforts and the introduction of
new products are not the only guarantee for survival. Enhanced demands to become more flexible and
efficient forced Traub to reorganize its production department (Schlotz and Röck, 1995).

Figure 7.5 shows Traub’s production control system before the reorganization. At that time, it consisted
of a mainframe with the Production Planning System, an IBM RS/6000 for area control functionalities,
and several cell controllers. Traub undertook global production planning for a year and a half in advance.
In this planning, machine types, options, and number of products were incorporated. Every 10 days, a
partial planning was made, which consisted of timed orders for design, purchase, and production control.
It was possible to control the order flow from the area controller by releasing orders, standing in a “10 days
order pool.” Dedicated applications established the transmission of NC-programs between the area
controller and the cell controllers. The worker at the NC-machine obtained a list of order data, and could
transfer and edit NC-programs from and to the machines, and transmit the optimized programs to the
area controller. Order progress and other monitoring data could be automatically sent from the machines
to the area controller or by entering a message on a terminal. Monitoring information was sent to the
mainframe at the production planning level from terminals on the shop floor located at several places
near the machines.

One of the problems associated with the old situation at Traub was its flexibility to respond to changes
in customer needs. Shorter delivery times with simultaneous reduction of stocks were already forcing
Traub to shorten machining times and to link all processes in design, planning, and shop floor more
closely. Even more, it frequently became necessary to rearrange plans at short notice because of changes
in demand, machine downtimes, missing production facilities, urgent contracts with large customers,
absence of staff, or rejects. Rescheduling of manufacturing jobs became difficult due to the limited
feedback from the shop floor, and expenditures for short-notice re-work and machine modifications
increased sharply.

In particular, the preparatory sectors were the areas where increased deadline pressure and the tendency
toward smaller and smaller batch sizes added to planning complexity and expenditure. Most notably, tool
management became problematic because the lack of up-to-date information concerning the availability
of machine tools and their components also reduced the production capacity while operators waited for
resources. Furthermore, production management had to cope with a growing amount of specialized tools
necessary to produce individually designed machine parts. There were nine machine centers, that each
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having a stock of approximately 120 tools. Each tool consists of eight to ten components. At that time,
there was no registration of which tool or component was in which machine (Schönewolf et al., 1992).

Reorganization Objective

The most important target of the reorganization was to optimize the order throughput time. To achieve
this, a number of changes had to be implemented related to the cooperation on optimized order scheduling
between the area controller and the cell controllers. Other changes concern tool management, monitoring
data acquisition, etc. In this sub-section, only a few major changes are discussed.

The old, process-oriented manufacturing departments such as turning, milling, and grinding were
changed for a more flexible organization. The new organization is based on the principles of cellular
manufacturing, which involves the creation of clusters of machines that are designed and arranged to
produce a specific group of component parts (Black, 1983). In particular, Traub expected the cellular
manufacturing principles to result in a decrease in setup times.

An area control system was required that had to perform the fine planning of manufacturing device
utilization under rescheduling conditions with the help of a production scheduling simulation tool. This
area control system had to be linked enterprisewide with existing production planning, CAD, and CAM
applications. It had to control not only the manufacturing processes, but also the delivery of material,
tools, and equipment. Furthermore, it had to take into account the actual status of each NC-machine.
This information had to be transferred online—without any influence of the working people—directly
from the machine controller to the planning application of the area controller.

Fine-planning had to be supported by efficient tool management to get a tool-optimized order sequence
to decrease the setup time for each machine. This system would provide information on the location

FIGURE 7.5 Traub’s production control system before the reorganization.
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and states of tools by means of a tool identification system and a central database with tool information.
It was necessary to integrate the tool logistics application with the entire existing infrastructure (Schlotz
and Röck, 1995).

Requirements Definition

Traub defined requirements in a functional sense for the application to be developed, and in a technological/
physical sense for the application’s underlying infrastructure. In other words, requirements were defined
for both the functional and technology aspects of the various components in the manufacturing system.
In addition, requirements were imposed on the reengineering process, influenced by financial and time
aspects. 

Traub described its requirements from a functional point of view in terms of a scenario. In this scenario,
the needed functions and information flows, and their places in the total manufacturing system, were
outlined. For example, part of the scenario for the fine-planning activity (precision planning) was
described as follows.

“The work sequences released are assigned to the individual machines during the automatic precision
planning. During a planning sequence, only the machine capacity is taken into account. Starting from the
terminating time given by the order pool system, timing is done backwards. If the calculated starting time
lies in the past, the timing is done forwards while considering the transition time. If the given terminating
time is not observed during this forward scheduling, this is explicitly displayed in the system. No alternative
machine groups are considered in the automatic precision planning” (Schönewolf et al., 1992).

Requirements for the technology to be used were given as well. Besides Traub’s current needs, requirements
took into consideration the existing manufacturing system, strategic aspects such as standards, the factory
environment, and production process constraints. Traub mainly defined its requirements of the infra-
structure in terms of the CIMOSA integrating infrastructure; for example:

• “Multiple machines must be connected to a homogeneous system (presentation services). 

• Connectivity to multiple databases on heterogeneous networks must be achieved from different
kinds of computer systems (information services).

• The network must be transparent (common services)” (Schönewolf et al., 1992).

Architectural Design

After requirements were defined, the design of the CIM system commenced. The design activities of
Traub’s reorganization project could be distributed over two phases: architectural design and detailed
design. In the architectural design phase, the system’s functional and technology architectures were
defined, supported by the CIMOSA framework. In the detailed design phase, the system was worked out
in more detail, based on the defined architectures.

Area control was positioned between the production planning level (not in the scope of the reorganization
project) and the shop floor. As an autonomous decision center in a distributed order planning structure,
it processes the order pool coming from the production planning system, and performs scheduling and
management tasks for machine-level planning. The incoming orders are scheduled for a 10-day period
on the various machine groups. For each machine group, the area controller performs a daily planning
to achieve an optimized order schedule with time slices of 2 days. The new order sequence on a machine
is calculated on the basis of the available tools and the list of needed tools, which is extracted from the
NC programs for the new orders. Tools available at NC machines or in the tool store can be requested.
Tool handling is supported by the tool management process.

Being intermediate between production planning and shop floor, area control not only has to provide
the shop floor with orders, but also allows feedback of information from the shop floor to the production
planning system. Then, this system can use data that reflects the actual situation in the shop floor to
optimize the planning process. Based on online messages from the cell control level, the area controller
also supports processing and visualization of data such as the actual status of orders.
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The scheduled orders in the time frame of 2 days are sent to the cell controller for execution. Tool
management has allocated the tools required for the orders, and the NC programs are downloaded
from the NC program server. Subsequently, the cell controller acts as an autonomous decision center,
responsible for the execution of the orders, the collection of machine and operational data, and monitoring
the shop-floor processes.

Traub defined its production control and tool management system by means of modeling this system
and its environment with the CIMOSA requirements level. First, Traub built a user model with the
Systems Analysis and Design Technique, because a tool and knowledge covering this modeling method
was available. Later, Traub converted the user model to a CIMOSA model at the requirements definition
level. For modeling at the requirements level, Traub used the modeling tool “GtVOICE,” which is
described by Didic et al. (1995). Traub specified the functions and their interrelations for both the tool
logistic system and its direct neighbors. By modeling, Traub structured its system component functions,
defined the components’ allowed inputs and outputs, and specified the relations between these compo-
nents. That is, by modeling at requirements definition level, a functional architecture was designed.

Figure 7.6 shows a CIMOSA model that presents a global view of Traub’s production control functions.
The principal control functions are captured in CIMOSA domains, the constructs that embrace the main
enterprise processes. Figure 7.6 gives the identified domains and their relations in the form of domain
relationships. Non-CIMOSA domains are parts of the enterprise that have not been considered for the
moment and that could be detailed in the future, such as “Purchase” and “DNC-Node,” or that are closed
applications that cannot be described, such as the “Area Control” application. Usually, these applications
are legacy systems.

Traub also made some models that showed more details than Fig. 7.6. Figure 7.7 is a partial refinement
of the previous figure, showing domains and domain processes. CIMOSA represents main enterprise
functionalities as domain processes. CIMOSA offers a modular modeling approach; the system can be
extended with new domain processes, and system modifications can be limited to few domain processes.
Enterprise operation is structured into a set of interoperating domain processes exchanging results and
requests. They encapsulate a well-defined set of enterprise functionality and behavior to realize certain
business objectives under given constraints. In the Traub case, examples of concurrent processes are the

FIGURE 7.6 Overview of Traub’s production control functions. (Reprinted from Zwegers et al., Evaluation of
Architecture Design with CIMOSA, Figure 2, Elsevier Science, 1997. With permission.)
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processing of tool data and the preparation of tools. These processes are represented in domain “Tool
Management” by two independent domain processes, namely “Tool Data Processing” and “Prepare Tools.”
Note that the domain processes in Fig. 7.7 influence each other’s behavior.

Domain processes are the root of the decomposition tree. They employ business processes that are
in the middle of the tree. The leaves are called enterprise activities and are employed by business
processes or, if there are no business processes, by domain processes. The behavior of a certain business or
domain process is defined by rules, according to which enterprise activities belonging to this process
are carried out. Enterprise activities represent the enterprise functionality as elementary tasks, and
they are defined by their inputs, outputs, function, and required capabilities. Fig. 7.8 presents a
part of the behavior of domain process “Order Processing.” For clarity, some relationships have been
deleted. Events, which are either received from or sent to other domain processes, are represented by
a Z-shape; enterprise activities are shown as boxes labeled “EA.” Note that there are no business
processes specified for this domain process. The large triangles indicate behavioral rules according
to which enterprise activities or business processes are carried out. Fig. 7.8 was constructed using the
GtVOICE tool.

Note that the requirements definition level of the CIMOSA modeling framework is used at architectural
design activities and not during the requirements definition process. The reason is that CIMOSA does
not support a “true” definition of requirements in the sense as described in the previous subsection.
Instead, the CIMOSA requirements definition level offers support in structuring a manufacturing system,
that is, in defining a functional architecture.

Along with defining a functional architecture, Traub also outlined a technology architecture that
was influenced by the existing infrastructure. When defining functional components, one immediately

FIGURE 7.7 Partial refinement of Traub’s domains. (Source: From Zwegers et al., Evaluation of Architecture Design
with CIMOSA, Figure 3, Elsevier Science, 1997. With permission.) 
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maps these components on technological ones; the functional architecture is depicted on the technology
architecture. For example, when a designer defines a control function, he/she decides to execute this
function by a certain type of software module. In addition, the designer determines the interaction of
this component with other technology modules.

Together with its partner, FhG-IPK (Fraunhofer-Institut für Produktionsanlagen und Konstruktion-
stechnik) in Berlin, Traub built a testbed for demonstrating the viability of the new production concepts.
Traub initially defined three production management domains that it considered in its manufacturing
system (or rather in its testbed), namely tool management, order planning (“cell control” in Fig. 7.6),
and machine handling. Subsequently, Traub distributed these three functions over an area controller, a
cell controller, and attached machines. 

The technology architecture of the testbed is shown in Fig. 7.9. The area control level comprised
a DecStation 5100 for long-term order planning and tool management. The area controller’s user
interface was implemented via the X.11 protocol on a terminal that was connected to the area
controller via TCP/IP on Ethernet. Communication with the cell controller was established via MMS.
The cell controller was a 486 PC running OS/2, enabling cell controller applications to run in a
multi-tasking environment. A MAP network connected the cell controller with shop-floor devices.
The cell controller received orders from the area controller, after which it processed the orders,
controlling the shop-floor devices via MMS. These devices consisted of a robot controller connected
to an industrial robot, a Traub NC-machine, and a PLC that controlled a conveyor and a round-
table. Whereas the PLC had a MAP interface and connected directly to the MAP network, the NC-
machine and the robot controller communicated with the network via a “protocol converter.” The
converter presented functionalities of both the NC-machine and the robot controller as MMS virtual
machine devices to the MAP network. The machine and the robot controller connected to the
protocol converter via V.24/LSV2.

FIGURE 7.8 Process behavior of domain process “Order Processing” (partly). (Source: From Zwegers et al., Eval-
uation of Architecture Design with CIMOSA, Figure 4, Elsevier Science, 1997. With permission.)
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Detailed Design

In the second design phase, Traub specified its production control system in more detail, elaborating on
the architectures that were defined in the architectural design phase. Both architecture definitions were
further decomposed and worked out into detailed system specifications.

By means of the CIMOSA design specification level, a designer is able to detail a manufacturing system’s
functionality, taking the model at requirements level as the starting point. The requirements definition
modeling level supports a user in the definition of his/her system’s functional architecture, whereas the
role of the design level is to restructure, detail, and optimize the required functionality in a consistent
model. System optimization can be supported by simulation, taking all business and technical constraints
into account. By specifying a model at the design level, a designer describes the full functionality of a
CIM system, while staying within the definition of the functional architecture. If the model at the design
specification level reveals inconsistencies, or the model lacks optimization, it might be necessary to adjust
the model at the requirements definition level.

In addition to detailing the functionality of the system, the designer specifies the technology to be
employed to achieve the required system functionality. Simply stated, CIMOSA prescribes that for each
of the most detailed specified functions, called functional operations, a specified resource is assigned that
provides the required capabilities. The prime task of the design specification modeling level is to establish
a set of (logical) resources that together provide the total set of required capabilities. Some of these
required capabilities are offered by the generic services of the integrating infrastructure.

For example, Traub made a model at the design specification level, elaborating on the previously made
model at the requirements definition level. Traub specified the required information structure, it defined its
most elementary functions, and it assigned resources to these functions. During the creation of the models, the
function and information views were used extensively, whereas the resource and organization views

FIGURE 7.9 Technology architecture of Traub’s testbed.
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were barely addressed. It was not sensible to consider other factors such as responsibility (specified
by constructs of the organization view) before Traub was satisfied with the new control structure
regarding functionality and information flow. Part of the specified information structure is depicted
in Fig. 7.10.

A refinement of specified functions is accompanied by a refinement of the technology that provides the
desired functions. An enterprise looks for adequate products, either commercial ones or user developed.
The technology components, which are defined in the architectural design phase, are specified completely.
The definitions of the CIMOSA integrating infrastructure support this specification. Then, the products that
fulfill the design specifications are selected, considering enterprise policies and constraints. CIMOSA
states that the final build/buy decisions should result in a model that describes the implemented system.
Appropriately, CIMOSA calls this model the implementation description model. However, because the
AMICE consortium defined this part of the modeling framework after Traub reorganized its production
department, Traub does not have any experience with it.

To implement a prototype, Traub identified candidates that might help to implement software modules
or that might be used as complete software modules within the testbed. From the system specification
and the analysis of possible candidates, Traub defined products, toolkits, and tools to implement the
functionalities of the area controller and the cell controller. Furthermore, network interfaces were adopted
and products fulfilling integrating infrastructure services were chosen. For example, Oracle 6 was selected
as the product that had to provide the information services. It was connected by an SQL gateway to
EasyMAP, which was used to provide the testbed’s communication services. The communication services
are part of the common services. In a later stage, FhG-IPK’s communication platform was chosen in
order to offer the desired communication services to the operational system.

Implementation

The final phase contains the implementation and release for operation of the specified CIM system.
Implementation is based on the results and decisions of the previous phases.

Implementation activities comprise those tasks needed to bring the system into operation. During the
implementation phase, Traub procured and built the necessary new physical components. Note that the
word “physical” should not be taken too literally; in software engineering, for example, there are no such
things as “physical components.” The components were tested on the testbed and the correctness of the
underlying logical model was verified. Traub decided to implement its physical system in an evolutionary

FIGURE 7.10 Model at particular design specification level, information view (partial). (Source: From Zwegers
et al., Evaluation of Architecture Design with CIMOSA, Figure 5, Elsevier Science, 1997. With Permission.)
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way, with stable intermediate forms. In this way, Traub hoped to achieve a stable implementation of all
products and their interactions. When the system passed the tests with satisfactory results, the system
was prepared for transfer to production.

Traub felt that user acceptance was a major concern. It realized that the complex changes of the
manufacturing system had to be put carefully to the operators in the production environment. Therefore,
after testing single components as prototypes in the test environment, training sessions for the users of
the area controller and the cell controller were held. To make the workers familiar with the new system,
parts were transferred to the production without being integrated in the existing system. In addition,
the graphical user interface was adapted according to users’ needs, which was done to get a greater
acceptance. When Traub believed that the operators were ready to use the new technologies, the new
components were integrated in the existing system and released for operation.

Finally, the accepted production control system was released for operation. Figure 7.11 shows the
technology architecture of Traub’s production control system as implemented during the reorganization
project.

The Role of CIMOSA in Traub’s Reorganization Process

During the reorganization of Traub’s production department, the role of CIMOSA was twofold: the CIMOSA
modeling framework assisted the definition of a functional architecture, whereas the CIMOSA integrating
infrastructure supported the design of the technology architecture of the control system’s infrastructure.

The CIMOSA models allowed Traub to analyze and redesign its functional control architecture. During
architectural design, Traub was able to acquire knowledge of its current manufacturing control system
by means of modeling at the requirements definition level. This knowledge was needed to analyze the
existing system. Then, the model was changed to take required modifications into account. By means of
the specification of operational and control functions, their inputs and outputs, and interfaces between
functions, a functional architecture was defined.

FIGURE 7.11 Technology architecture of Traub’s implemented production control system. (Source: From
Schlotz, C., and Röck, M., Reorganization of a Production Department According to the CIMOSA Concepts, Figure 7,
Elsevier Science, 1995. With permission.)
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The definition of a sound functional architecture, upon which the further design of the system is based,
is one of the keys to business integration. CIMOSA takes a modular approach to integration; that is, enterprise
operation is modeled as a set of cooperating processes that exchange results and requests. Only this
exchanged data needs to have a representation that is common between the cooperating processes. By
employing models for identification, analysis, and coordination of existing and new functions, required
functional architectures can be designed that define modular components and their interfaces. When the
detailed design and implementation of the CIM system follow the architectural specifications, the requested
integration of business processes will be obtained. This way, the required level of business integration is
achieved, which is reflected by the coordination of operational and control processes.

CIMOSA aims to support application integration by its integrating infrastructure. Cooperation between
humans, software programs, and machines must be established. Whereas business integration can be
regarded as the integration of functional components, application integration affects the integration of
technology components. The integrating infrastructure aims to provide services that integrate the
enterprise’s heterogeneous manufacturing and information systems to satisfy the business needs as
identified with the help of the modeling framework. The CIMOSA specification of the integrating
infrastructure can be seen as a reference model. Components designed and implemented according to
this reference model should provide desired features such as interoperability, portability, connectivity,
and transparency.

Due to the immature specification of most integrating infrastructure services, Traub only considered
the communication services. An example of an implementation that fulfills the CIMOSA specifications
is the communication platform developed by the FhG-IPK. This platform has been developed according
to the needs of Traub and the other two industrial VOICE partners, and was based on the communication
services of the CIMOSA integrating infrastructure. Lapalus et al. (1995) provide additional information
about the communication platform and application integration.

7.5 The Practical Value of CIMOSA

In this section, the practical value of CIMOSA is central. Its theoretic value is undoubtedly large, because
many ideas, developments, and products are inspired by it. In fact, many contemporary products seem
to be largely influenced by the CIMOSA concepts. Its value for industry is evaluated by means of the sets
of essential and desirable elements that reference architectures should be accompanied by. Section 7.2 states
that a reference architecture should be accompanied by modeling languages, a modeling methodology,
and enterprise engineering methodologies. Furthermore, it is desirable that a reference architecture be
supported by reference models, modeling tools, and generic enterprise modules. A special feature of
CIMOSA, as compared to other enterprise reference architectures, is that it aims to execute models; that
is, to control and monitor enterprise operations as described in the models.

On the Eligibility of the Reference Architecture

Architectural concepts such as hierarchy, views, and abstraction are represented in CIMOSA’s modeling
framework. The functional specifications are hierarchically decomposed by means of the domain process,
business process, and enterprise activity constructs. The modeling framework provides an open set of
(at the moment) four views to focus on different enterprise aspects. As for abstraction, going from the
requirements definition level, via the design specification level, to the implementation description level,
can be considered as moving from a focus on the functional, via the technology, to the physical domain.
However, the level of detail increases as well. That is, CIMOSA relates a low level in the design process
to implementation details. It does not support the specification of a true technology architecture, but
only the detailed specification of technology modules.

The CIMOSA modeling framework supports designers during the specification and analysis of functional
architectures of production control systems. A reference architecture should allow the specification of
functional control architectures, either by refinement of reference models or by design from scratch.
Reference models were not used during the Traub reorganization project; instead, models were made
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from scratch. These models proved their usefulness by revealing some bottlenecks and inconsistencies in
the organization (Schlotz and Röck, 1995).

Zwegers et al. (1997) show that most characteristics of functional control architectures can be specified
by means of the CIMOSA modeling framework. Domain processes, events, and object views are adequate
constructs to specify concurrent processes and the exchange of information and products between these
processes. By defining domain processes and establishing relations between them, any type of control
architecture can be modeled. In addition, the modular nature of domain processes makes CIMOSA
models extensible and modifiable. 

On the Complexity of the Modeling Framework

Industry—almost unanimously—regards the modeling framework as too complex. In Traub’s view, the
high complexity of the CIMOSA modeling framework requires well-trained engineers (Schlotz and Röck,
1995). Traub practically used only the framework’s function and information view; the resource view
was barely addressed and the organization view was not used at all. The organization view, for example,
was seen as a view to manage systems, not to design them. In addition, the great number of constructs
and their sometimes-ambiguous definitions hamper a practical application. A tool was needed to
unambiguously define the meaning of constructs.

On the Novelty of the Model Creation Processes

A modeling framework should be accompanied by guidelines, called “model creation processes” by
CIMOSA. A designer must be guided to navigate through the modeling framework in a consistent and
optimized path, to ensure complete, consistent, and optimal models. During the modeling process for
the Traub application, no such modeling guidelines were available. Recently, some guidelines have been
defined, but their practical value for industry has not yet been established.

At the moment, CIMOSA provides a methodology to guide users in the application of its modeling
framework. Zelm et al. (1995) describe this so-called CIMOSA Business Modeling Process. As for mod-
eling at the requirements definition level, for example, the top-down modeling process begins with the
identification of domains, the definition of domain objectives and constraints, and the identification of
relationships between the domains. Afterward, the domains are decomposed into domain processes,
which are further decomposed in business processes and enterprise activities. The modeling process at
the requirements definition level ends with some analyses and consistency checking.

More recently, new methodologies have been proposed that aim to be improvements or alternatives to
the CIMOSA Business Modeling Process. For example Reithofer (1996) proposes a bottom-up modeling
methodology for the design of CIMOSA models. He claims that the CIMOSA Business Modeling Process
can hardly be focused on processes and activities that are relevant to solve a concrete problem. His bottom-
up modeling approach should not have this disadvantage. In addition, Janusz (1996) asserts that existing
CIMOSA models of particular enterprises are not complete, not consistent, and not optimal. Also, these
models often describe only functions or sub-processes limited by department borders of an enterprise.
Therefore, Janusz developed an algorithm that filters out process chains of an existing CIMOSA model.
Using the algorithm, the completeness and the consistency of the considered process chains can be checked.

On the Inadequacy of the Enterprise Engineering Methodology

CIMOSA lacks a “true” engineering methodology, which provides instructions of how to go about an
enterprise integration project or program. Williams et al. (1994a) notice that CIMOSA does have a “life
history” for CIM systems (namely, the CIMOSA system life cycle) but that this description has not been
extended into a “true” methodology. Zwegers and Gransier (1995) give a description of the engineering
approaches adopted by the three industrial partners of the VOICE project, which used CIMOSA during
their reengineering trajectories. However, these engineering approaches have not been extended into a
methodology either. Possible users are not supported by knowledge on how to apply CIMOSA to carry
out integration projects. This point cannot be over emphasized; an enterprise reference architecture
without matching methodology defeats its own purpose.
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On the Availability of the Modeling Tools

A modeling language should be supported by a software tool. During the creation of models, problems
might occur regarding the size and complexity of the architectural models. Models become too big to
be overlooked by the user—and they become inconsistent. Furthermore, the modeling process without
tool support is tardy, and maintainability and extendibility of the models are jeopardized.

Some tools have been developed for modeling with CIMOSA, such as GtVOICE (Didic et al., 1995)
and SEW-OSA (Aguiar et al., 1994). GtVOICE was developed by the VOICE project. This tool ensures
model consistency and reduces modeling time by easy model modification and extension. In addition,
it provides non-ambiguous interpretation of CIMOSA constructs and a uniform way to present models
among CIMOSA users. Finally, GtVOICE makes communication with other tools feasible, such as an
SQL data server and a rapid prototyping toolkit.

SEW-OSA (System Engineering Workbench for CIMOSA) was developed at the Loughborough
University of Technology in England. It combines the CIMOSA concepts with Petri net theories, object-
oriented design, and the services of an infrastructure called CIM-BIOSYS (Aguiar et al., 1994). Both
SEW-OSA and GtVOICE support the design of CIMOSA models according to the CIMOSA Business
Modeling Process as described by Zelm et al. (1995).

On the Absence of Reference Models

Perhaps most important for industry are guidelines that support designers to make the right architectural
choices; that is, choices that result in flexible, effective systems. Industry needs guidelines for the archi-
tectural design of systems, to discard inadequate options early in the design process and to enable the
selection of the best options. Clearly, such guidelines are not present at present. However, it is not an
objective of CIMOSA to provide such a prescriptive methodology. The CIMOSA modeling framework
aims to support system designers with descriptive modeling of enterprise operation; it is a descriptive
rather than prescriptive framework.

Nevertheless, the CIMOSA modeling framework offers the ability to develop reference models with
its partial modeling level. Best-practice reference models are the encapsulations of the prescriptive
guidelines mentioned above. As such, they are recognized as major tools to support CIM system development
projects (Faure et al., 1995). They should be based on architectural principles, such as modularity, structural
stability, and layers. Aguiar and Weston (1995) signal the need to populate workbenches with a library of
reference models. However, virtually no CIMOSA-compliant reference models are currently available. 

CIMOSA lacks the guidelines and reference models needed to make a transition from requirements
to specification. After all, it prescribes how to make a specification of a system, but is does not prescribe
how to design the system. It offers the architecting concepts, but not the architecting principles nor the
business knowledge. It gives the ruler and compass to draw a house, but it does not give the construction
theory.

On the Promises of the Integrating Infrastructure

The promises of the CIMOSA integrating infrastructure appear too good to be true. Integration of
hardware and software components, model execution, vendor independence, reduced maintenance, and
increased application portability and flexibility appeal to companies facing a heterogeneous world.
However, the CIMOSA specifications of the services as used by Traub (AMICE, 1993b) reveal many gaps.
In addition, no commercial products supporting the CIMOSA specifications are currently available.
Nevertheless, enterprises appear to be more attracted by application integration promised by the integrating
infrastructure than by business integration as actually supported by the modeling framework.

On the Illusion of Model Execution

After time, models produced during an enterprise integration project are almost certain to lose their validity.
Enterprise integration is an ongoing process rather than a one-off effort. However, there is little chance for
an enterprise to maintain an up-to-date picture of itself as time goes by. Much of the effort initially invested
in modeling an enterprise’s processes is lost as reality diverges from those models (Bernus et al., 1996).
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Traub, for example, foresees a considerable effort in keeping its models consistent with the implementation,
also due to the complexity of the CIMOSA modeling framework (Schlotz and Röck, 1995). Note that
the consistency aspect is not a CIMOSA-related issue, but rather a common problem for all enterprise
reference architectures.

To remedy this obstacle, enterprise models must actually be used to drive operation control and
monitoring rather than being kept on the shelf. The transition from specification to an operational system
requires an infrastructure that supports “model execution” and therefore must consist of what CIMOSA
calls “business services.” The realization of the aims behind the business services as originally conceived
might just as well prove to be an illusion for a long time. Bernus et al. (1996), for example, regard the
achievement of business services as a goal for the future.

CIMOSA fails to fulfill the objectives of model execution. The result of the specification phase (i.e.,
documentation in the form of models) is useful for (one-time) business integration. Without a real
integrating infrastructure with services such as the business services, however, it is not sufficient to fulfill the
objectives of the enterprise integration philosophy. Applying CIMOSA does not result in operational
systems, let alone in flexible, adaptive, efficient systems; the translation from the models into a real system
must be made. Given the fact that it does not offer guidelines and reference models that support designers
in the transition from requirements to specification, CIMOSA should merely be seen as a framework for
the generation of documentation.

7.6 Two Other Enterprise Reference Architectures

Williams et al. (1994b) claimed that there were only three major enterprise reference architectures known
at that time. This section discusses the other two enterprise reference architectures—in addition to
CIMOSA—that Williams et al. referred to: namely, the GRAI Integrated Methodology and the Purdue
Enterprise Reference Architecture.

GRAI/GIM

The GRAI laboratory of the University of Bordeaux, France, has been rather active in the field of enterprise
reference architectures. Along with developing its own ideas, the GRAI laboratory has contributed to the
ESPRIT projects IMPACS and AMICE. Here, the main elements of what has become known as the GRAI
Integrated Methodology (GIM) are described: namely, a “global model,” a modeling framework, and a
structured approach to guide the application of the methodology.

The global model describes the invariant parts of a CIM system: the subsystems, their relationships,
and their behavior. The global model (sometimes called the “macro reference model” or “reference
model”) is based on the concepts of three activity types and their corresponding executional subsystems.
These three subsystems are:

1. Physical subsystem, which performs the activities of product transformation using human and
technical resources

2. Decisional subsystem, which guides production toward its goals
3. Informational subsystem, which feeds the other subsystems with information

Sometimes, a fourth subsystem is distinguished, namely the functional subsystem (Doumeingts et al.,
1987; 1992).

The modeling framework uses IDEF0 formalisms to model the physical and functional subsystems,
GRAI formalisms for the decisional subsystem, and MERISE formalisms for the informational subsystem.
The GRAI formalisms are described below; for the other formalisms, the reader is referred to (Doumeingts
et al., 1995). The GRAI formalisms consist of the GRAI grid and the GRAI nets. The GRAI grid allows
one to model a decision system. It is displayed as a table-like frame, and it uses a functional criterion to
identify production management functions and a decision-cycle criterion to identify decisional levels.
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Each function is decomposed into several levels according to the decision horizon H and revision period
P. A decision period is a time interval through which decisions are valid; a revision period is a time
interval at the end of which decisions are revised. The building block of a grid is a decision center that
is the intersection of a production management function and a decisional level. Decision centers are
mutually connected by decision links and information links. The GRAI nets allow one to model the
various activities of each decision center identified in the GRAI grid. The results of one discrete activity
can be connected with the support of another discrete activity. Because this is done for each decision
center, the links between decision centers are shown (Chen et al., 1990).

GIM’s structured approach aims to cover the entire life cycle of the manufacturing system. Figure 7.12
shows that the approach consists of four phases: initialization, analysis, design, and implementation.

FIGURE 7.12 GIM structured approach. (Source: From Doumeingts et al., Methodologies for Designing CIM Systems:
A Survey, Figure 20, Elsevier Science, 1995. With permission.) 
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Initialization consists of defining company objectives, the domain of the study, the personnel involved,
etc. The analysis phase results in the definition of the characteristics of the existing system in terms
of four user-oriented views. The design phase is performed in two stages: user-oriented design and
technical-oriented design. User-oriented design employs the results of the analysis phase to establish
requirements for the new system, again in terms of the four user-oriented views. Technical-oriented design
consists of transforming the user-oriented models of the new system design to technical-oriented models.
These models express the system requirements in terms of the required organization, information technology,
and manufacturing technology. Finally, the new system is implemented (Doumeingts et al., 1995).

GRAI/GIM covers the whole life cycle of a manufacturing system, except the operation and decommission
phases. Its four views differ from CIMOSA’s; it introduces a decisional and physical view. However, the
models of the physical view do not describe physical attributes; they describe functional attributes of
physical elements. The four model content views used during the analysis and user-oriented design phases
are translated to three implementation views during the technical-oriented design phase. Concerning
modeling languages, GRAI/GIM is less formal than CIMOSA. After all, CIMOSA aims to achieve model
execution, and that requires formal modeling languages. GRAI/GIM uses several known modeling tech-
niques such as IDEF0 and MERISE, and it developed the GRAI grids and nets. Although the GRAI
laboratory has completed many projects with its modeling framework, there is no modeling methodology
described in the literature. Obviously, this does not imply that there is no such methodology. GIM’s
structured approach offers an enterprise engineering methodology. However, this structured approach
is focused on the initial phases of a system life cycle; GRAI/GIM mainly supports designers during the
analysis and design phases.

As for modeling tools, there is no tool known in the literature that supports modeling with the
GRAI/GIM modeling framework. The same applies to reference models. GRAI/GIM is based on a “global
model,” a kind of generic model of an enterprise. However, no reference models that encapsulate industry-
type or area-specific knowledge are known. GRAI/GIM does not aim to provide generic enterprise modules
such as parts of an integrating infrastructure.

PERA

The Purdue Enterprise Reference Architecture (PERA) and its accompanying Purdue Methodology were
developed at Purdue University, (Nest Lafayette, IN). This university has also taken a leading role in the
definition of reference models for computer integrated manufacturing.

The Purdue Methodology is based on an extensive Instructional Manual that guides the preparation
of Master Plans. According to the methodology, an overall Master Plan is necessary before attempting to
implement any CIM program. A Master Plan includes a CIM Program Proposal (i.e., a set of integrated
projects whose completion will ensure the success of the desired integration of the enterprise). The Purdue
Enterprise Reference Architecture provides the framework for the development and use of the Instructional
Manual, the resulting Master Plan, and the ultimately implemented CIM Program Proposal. PERA is the
glue that holds together all aspects of the CIM program (Williams, 1994).

Figure 7.13 shows that the Purdue Enterprise Reference Architecture is characterized by the layered
structure of its life-cycle diagram. Starting with the Enterprise Business Entity, it leads to a description
of management’s mission, vision, and values for the entity under consideration. From these, the opera-
tional policies are derived for all elements of concern. Two—and only two—kinds of requirements are
derived from the policies, namely, those defining information-type tasks and physical manufacturing
tasks. Tasks become collected into modules or functions, which at their turn are connected into networks
of information or of material and energy flow. Then, technology choices are made; the role of the human
in the information architecture and in the manufacturing architecture is defined. The result of the technology
choices are three implementation architectures: namely, the information systems architecture, the human
and organizational architecture, and the manufacturing equipment architecture. After functional and
detailed design, the life cycle goes through the construction and operation phases, after which it is
disposed of (Williams, 1994).
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A specific feature of PERA is the emphasis it puts on the role of humans. By defining the functions that
will be performed by humans, the information and manufacturing architectures are converted into the
information systems architecture, the human and organizational architecture, and the manufacturing
equipment architecture. Figure 7.14 illustrates that this definition involves three “lines.” The automatability
line shows the absolute extent of pure technological capability to automate tasks and functions, and is
limited by the fact that many tasks and functions require human innovation and cannot be automated with
presently available technology. The humanizability line shows the maximum extent to which humans can
be used to implement tasks and functions, and is limited by human abilities in speed of response, physical
strength, etc. The extent of automation line shows the actual degree of automation carried out or planned
in the system. This third line defines the boundary between the human and organizational architecture and
the information systems architecture on the one hand, and the boundary between the human and organi-
zational architecture and the manufacturing equipment architecture on the other side. Its location is
influenced by economic, political, social, and technological factors (Rathwell and Williams, 1996).

PERA explicitly takes into account the role of the human in a manufacturing system. In addition, it
does not distinguish between model content views such as function, information, and resource, but rather
between purpose views (information and manufacturing architecture) and implementation views
(human and organizational architecture, information systems architecture, and manufacturing equipment
architecture). The Purdue Methodology offers an enterprise engineering methodology that covers all
phases of a system life cycle. Of the three enterprise reference architectures described in this chapter,
PERA is clearly accompanied by the most extensive methodology. As for modeling languages, PERA offers
only the task module construct. Information system tasks, manufacturing tasks, and human-based tasks

FIGURE 7.13 Phases and layers of the Purdue Enterprise Reference Architecture. (Source: From Williams, T., The
Purdue Enterprise Reference Architecture, Figure 1, Elsevier Science, 1994. With permission.)
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are modeled by means of this construct. By combining the various task modules into networks, a type
of data-flow or material and energy flow diagram results. There are no modeling methodologies known.

In addition, no modeling tool is known in literature. Although the only construct is quite simple,
models might become large and, without a tool, their accuracy over time is jeopardized. Earlier, the
developers of PERA had defined a reference model for computer-integrated manufacturing (Williams,
1989). This reference model is restricted to the automatable functions of an enterprise, and all functions that
might require human innovation are considered as external entities. PERA does not provide components of
an integrating infrastructure or any other generic enterprise modules.

GRAI/GIM and PERA provide some solutions to some of CIMOSA’s shortcomings. In particular, they
provide well-defined engineering methodologies: GRAI/GIM offers its structured approach, and PERA is
accompanied by the Purdue Methodology. For enterprise integration, however, it is necessary to keep an
up-to-date picture of an enterprise as time goes by. None of the three reference architectures can guarantee that.

7.7 Baan’s Enterprise Modeler

Recently, some of the concepts of enterprise integration have been implemented in tools for the configuration
and implementation of enterprise resource planning (ERP) solutions. For example, the market leader in
ERP applications, the German company SAP AG, has developed a tool called “Business Engineer.” This
configuration and implementation tool is based on the R/3 reference model. The R/3 reference model
describes business processes that are most commonly needed in practice and that can actually be
implemented with SAP’s R/3 system (Keller and Detering, 1996). Business Engineer aims to streamline
implementation of R/3, and to adapt an existing configuration to new needs or changed circumstances.
It allows users to configure their own enterprise model, and to automatically tie the functionality of R/3
into the enterprise model (SAP, 1997).

In this section, the Enterprise Modeler, which is part of Baan Company’s OrgwareTM tool set, is
described in detail. Baan Company is currently one of the world’s largest suppliers of ERP solutions.
It recognized that enterprises attempting to implement ERP systems went through a serial process
of first modeling the enterprise’s processes and organization, then implementation, and finally manual
configuration of the actual system. The usual result of this static process is that customer investment in

FIGURE 7.14 Humanizability, automatability, and extent of automation to define the three implementation architectures.
(Source: From Rathwell, G.A. and Williams, T.J., Use of the Purdue Enterprise reference architecture and methodology
in industry (the Fluor Daniel example), in: Proceedings of the IFIP TC5 Working Conference on Models and Method-
ologies for Enterprise Integration, Bernus, P. and Nemes, L., Eds., pp. 12–44, 1996. With permission from Kluwer
Academic/Plenum Publishers.)
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modeling activities has not returned the expected value in the actually implemented system. This is
because the statically defined system is no longer in line with the new needs of the business. Therefore, Baan
Company developed Orgware, a set of tools and concepts that allows an enterprise to adapt its Baan ERP
application real-time to changing market needs. Even more, it supports a fast implementation and
optimization of a system (Huizinga, 1995).

Dynamic Enterprise Modeling (DEM) concepts comprise the foundation of Orgware. Basically, DEM
comes down to developing a model of an enterprise and using this model to adapt the enterprise’s
processes. As such, it does not differ from the objectives of enterprise reference architectures. However,
because Orgware is integrated with Baan’s ERP product, there is a direct link between the models and
their realization in the Baan software.

The Enterprise Modeler is one of Orgware’s main components. Examples of other components are
implementation methods and assisting IT services. A user makes four types of models with the Enterprise
Modeler; namely, business control models, business function models, business process models, and
organization models. In a business function model, a functional decomposition of business functions is
presented. It is the starting point for process selection and configuration. A business process model
describes formal processes and procedures, and is the basis for configuration of Baan software. An
organization model is a description of the organizational structure of an enterprise. The business control
model links the other three models, and it provides modeling teams as a starting point for modeling at
a high level (Boudens, 1997). Figure 7.15 presents an overview of Dynamic Enterprise Modeling with
the Enterprise Modeler.

A central feature of the Enterprise Modeler is its use of reference models. In a repository, functions,
procedures, rules, and roles are defined. The rules connect functions and procedures to each other. From
the components in the repository, reference models are assembled that are specifically designed by
industry consultants for a particular industry sector. For example, in the reference organization model
for engineer-to-order enterprises, an organizational structure is outlined that is based on the best practices
of that type of industry. In the reference business function and process models, optimization relationships
and roles are added respectively (Huizinga, 1995).

Models for a specific enterprise called “project models” can be instantiated from the reference models.
Phases are added to the project function model that provide for a phased implementation of the Baan
system; some functions are, for example, only wanted after optimization of the procedures. Employees

FIGURE 7.15 Dynamic Enterprise Modeling with the Enterprise Modeler.
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are added in the project organization model. Subsequently, employees are linked to roles, thereby providing
the connection between the process and organization models. Finally, a configurator generates user-
specific menus and authorizations from the project models, and automatically configures the Baan system
by setting parameters.

A clear advantage of Baan’s Orgware product compared to enterprise reference architectures is its
linkage with the underlying Baan ERP applications. Models made by the Enterprise Modeler mirror the
implementation and configuration of the Baan system. Moreover, changes in the models are directly
reflected in changes in the Baan system. Enterprise reference architectures, on the other hand, lack an
integrating infrastructure with business services. Models made by these reference architectures might
reflect the enterprise’s current systems and processes, but changes in these models must be “manually
translated” to changes of the modeled processes and applications.

Orgware’s advantage of being linked with the underlying Baan ERP applications is also its disadvantage:
it covers only Baan products. The Enterprise Modeler allows one to model manual procedures and
applications by vendors other than Baan sessions. Clearly, it cannot automatically configure these other
applications. Although ERP products tend to cover more and more, they do not comprehend the processes
of an entire enterprise. Shop-floor control processes, for example, are not covered. In addition, the
Enterprise Modeler does not model a company’s IT infrastructure. For example, it cannot support distrib-
uted Baan applications. A product such as Orgware is a major improvement in the implementation of
ERP applications and, as such, it provides a contribution to the realization of the enterprise integration
philosophy. For the objectives of enterprise integration to become true, however, more is needed than
that: model execution by an infrastructure with real business and presentation services.

7.8 Summary

Reference architectures for enterprise integration aim to provide the necessary frameworks with which
companies might adapt their operation due to changing internal and external conditions. This chapter has
investigate the practical value of these enterprise reference architectures for the integration of production
systems. Three reference architectures have been studied; namely, CIMOSA, GRAI/GIM, and PERA. Their
overlaps and differences can be identified by means of the GERAM framework. Reference architectures should
at least be accompanied by engineering methodologies, modeling languages, and modeling methodologies. In
addition, modeling tools, reference models, and some generic enterprise modules are desirable components.

CIMOSA strives for the facilitation of continuous enterprise evolution. It intends to offer support for
business integration by means of its modeling framework, and for application integration by means of
its integrating infrastructure. Starting with the reference architecture and possible reference models, a
designer can make a CIMOSA model of its enterprise operations. The CIMOSA integrating infrastructure
processes the released model, so that operations are executed according to the model.

CIMOSA was applied during a reorganization project at Traub AG, a German tool manufacturer. The
modeling framework assisted Traub in the definition of a functional control architecture. Due to immature
specification of the integrating infrastructure, only the specification of the communication services was
helpful to Traub.

The CIMOSA reference architecture does not cover a full life cycle and lacks an accompanying engineering
methodology. However, CIMOSA does provide an eligible, although quite complex, framework for the
specification and analysis of functional architectures for production control systems. It prescribes how
to make a specification of the system, but it does not prescribe how to design the system. In addition, a
designer must personally make the translation from models to a real system. Therefore, CIMOSA should
be merely seen as a framework for the generation of documentation.

GRAI/GIM and PERA provide some solutions to some of CIMOSA’s shortcomings. In particular, they
provide well-defined engineering methodologies. For enterprise integration, however, it is necessary to
keep an up-to-date picture of an enterprise as time goes by, which is something the three reference
architectures cannot guarantee.
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A product that ensures up-to-date models of an enterprise is Baan Company’s Enterprise Modeler. Based
on repository and reference models, a designer makes models of its enterprise. Because the Enterprise
Modeler is integrated with the Baan applications, it automatically configures these applications based on the
models. Changes in the models are immediately reflected by changes in the configuration of the applications.
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and Diagnosis Using
Wavelet Transforms
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The Principles of Wavelet Transforms • The Properties of 
Wavelet Transforms • Discrete Binary Orthogonal Wavelet 
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8.3 Use Wavelet Transforms for Feature Extraction
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Criteria • The Procedure for Automatic Feature Extraction

8.4 Use Wavelet Transform for Monitoring
8.5 Use Wavelet Transform for Diagnosis
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8.7 Conclusions

In Computer Integrated Manufacturing (CIM) systems, machines and processes must be continuously
monitored and controlled to ensure proper operation. Because of the complexity of the machines and
processes, monitoring and diagnosis are usually difficult, involving the use of many techniques, among
which signal processing is very important. Through signal processing, the critical information from
the signal is captured and correlated to the health conditions of the machines and processes. There are
many signal processing methods available, and their effectiveness is dependent on the characteristics of
the signals.

Wavelet transform is a recently developed signal processing method. It has been successfully applied
in many areas, for example; image processing, speech recognition, and data compression. This chapter
introduces the basic principles of wavelet transforms and its applications for engineering monitoring
and diagnosis. The chapter contains seven sections. Section 8.1 briefly introduces the history of wavelet
transform along with its basic idea. Section 8.2 describes the mathematical backgrounds of wavelet
transforms and several commonly used wavelet transforms, followed by a demonstration example. Section
8.3 describes the critical step of engineering monitoring and diagnosis: feature extraction. Through
feature extraction, the characteristics of sensor signals are captured and related to the system conditions.
Sections 8.4 and 8.5 present the methods for engineering monitoring and diagnosis, respectively. Section 8.6
presents two application examples of wavelet transform in engineering monitoring and diagnosis: one
is chatter monitoring in a turning and the other is tool condition in drilling. Finally, Section 8.7 contains
the conclusion.

Ruxu Du
University of Miami
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8.1 Introduction

According to Webster’s New World Dictionary of the American Language, monitoring, among several other
meanings, means checking or regulating the performance of a machine, a process, or a system. Diagnosis,
on the other hand, means deciding the nature and the cause of a diseased condition of a machine,
a process, or a system by examining the symptoms. In other words, monitoring is detecting suspicious
symptoms, while diagnosis is determining the cause of the symptoms. There are several other words
and phrases that have similar or slightly different meanings, such as fault detection, fault prediction,
in-process evaluation, online inspection, identification, and estimation.

Monitoring and diagnosis is an integrated part of Computer Integrated Manufacturing (CIM)
systems. To ensure proper operation, machines and processes in CIM systems must be continuously
monitored and controlled. For example, in an automated machining cell, tool condition monitoring
is very important because broken tools or worn-out tools will inevitably produce scratch parts.

Due to the complexity of the machines and processes, monitoring and diagnosis are usually difficult,
involving the use of many techniques from sensing to signal processing, decision-making, and cost-effective
implementation. In general, and despite the differences among machines, processes, and systems, engi-
neering monitoring and diagnosis follow a similar structure as shown in Fig. 8.1. As shown in the figure,
the health condition of a system (referred to as the system condition) may be considered as the input of
the system and the sensor signals as the outputs of the system, which are also affected by noise. Through
signal processing, the features of the signals (called feature signals) are captured. Finally, based on the
feature signals, the system conditions are estimated. Clearly, signal processing is very important, without
which the critical information (the feature signals) could not be captured.

Depending on the applications, various sensor signals can be used; for example, force, pressure,
vibration (displacement and acceleration), temperature, voltage, current, acoustics, acoustics emission,
optic image, etc. The variation of a signal predicts changes in the health conditions of a machine or a
process. For example, the excessive temperature increase in an electrical motor usually correlates to either
electrical problems such as a short-circuit or mechanical problems such as scratched bearing. Unfortunately,
the signals are also affected by the process working conditions and various noises. In the above example,
the variations in the process working condition may include rotating speed and the load of the motor;
and the noise disturbances may include power supply fluctuation and sampling noise. The effects of
working conditions and noise disturbance can be minimized by means of signal processing. In general,
for engineering monitoring, diagnosis, and control, the sensor signals appear as functions of time. All
of the information contained in the signal is hidden in the complicated arabesques appearing in its
graphical representation. The objective of signal processing is to capture the features signal that charac-
terize the system conditions.

FIGURE 8.1 A unified model for engineering monitoring and diagnosis.
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Depending on the characteristics of the signals, different signal processing methods should be used.
One of the most commonly used signal processing methods is the Fourier transform, which effectively
captures the characteristics of linear time-invariant periodic signals (called stationary signals). The
characteristic features of the stationary signals include the peak frequencies, as well as the energy and
the damping at each peak frequency. Because of the development of Fast Fourier Transform (FFT),
Fourier analysis has become an industrial standard in many engineering fields such as the vibration
analysis of rotating machinery and the regulation of electrical circuits. However, there are nonlinear
and/or time-variant signals (non-stationary signals) that contain much more information than can be
characterized by the peak frequencies, energy, and damping. In this case, it is necessary to use other
methods, such as wavelet transform.

Wavelet transform is a relatively new method of signal processing that has recently been applied to various
science and engineering fields with great success. Its development was nursed by a number of researchers
such as Daubechies, Meyer and Mallat in late 1980s and early 1990s (Daubechies, 1988; 1992; Meyer, 1989;
Mallat, 1989a, b). They proposed the mathematical definition of wavelet transform, discovered the basic
features of wavelets, developed discrete wavelet transform algorithms, and solved several practical problems
in speech recognition and computer vision. Since then, a great deal of  research has been carried out and
the successful applications have been reported in the literature.

According to the literature, most wavelet transform applications are associated with computer vision
(image processing) and speech recognition. It has been shown that, using wavelet transform, one can
extract the characteristic features from a given image and compress the image into a feature representation
containing much less data. For example, DeVore, Jawerth, and Lucier (1992) studied the relationship
between the original image and the image reconstructed from the wavelet feature representation and
showed that the wavelet transform is near-optimal for a large class of images. Coifman and Wickerhanster
(1992) proposed an entropy-based algorithm to extract features from sound waves based on wavelet
packet transform. They showed an example of feature extraction for the word “armadillo,” although they
did not show the efficiency of the extraction and the compression ratio. Interestingly, the reconstruction
of the signal from wavelet features may be unstable, as shown in Hummel’s simulation (1989). Another
example is the Ranganath’s enhancement filter used in processing chest radiograph (Ranganath, 1991).
However, the applications of wavelet transform in engineering monitoring and diagnosis have been
limited. In fact, little research has been found. One of them was the work by Tansel and McLauglin
(1993), who used wavelet transform and artificial neural network for tool condition monitoring in deep-
hole drilling. They showed that the wavelet transform can be used to extract useful features from vibration
signals but did not show the effectiveness of the selected features. In Wu and Du (1996), wavelet packet
transform was used for tool condition monitoring in turning and drilling.

In general, the use of wavelet transform for engineering monitoring and diagnosis consists of two steps:
feature extraction and decision-making. Feature extraction can be viewed as signal compression, which
transforms the original signal (usually a large set of data) into a number of features (a much smaller set).
This will inevitably result in the loss of information from the original signal. Due to the nature of the problems
in computer vision and speech recognition, most studies on wavelet transform have concentrated on extracting
features that represent the original signal near 100%. However, for engineering monitoring and diagnosis,
the sensor signals are typically contaminated by noise. Therefore, it is desirable to extract the features that
represent the characterisstics of the process (information) and to separate these features from the noise.
Evaluating the effectiveness of the extracted features is referred to as feature assessment. Feature assessment
has been discussed in several articles. For example, Ornstein and Weiss (1993) proposed a method relating
the features to the entropy of a system. Rioul and Flandrin (1992) developed a feature assessment method
based on signal energy representations as a function of time and scale. Cho and et al. (1992) proposed the
use of coherence spectra, and Chen and et al. (1991) suggested the use of the autocorrelation function of
residues. All these techniques have their advantages and limitations.

Decision-making can be viewed as a process that correlates the feature signals to the system conditions. It
is usually done through supervised learning: operators instruct the computer of the possible patterns
in the feature signals and relate them to the system conditions; then, the computer fine-tunes the patterns
© 2001 by CRC Press LLC



                                                                  
to best-fit the data. Typical computer decision-making methods include pattern recognition, fuzzy logic,
decision tree, and artificial neural network. Ideally, there exists a one-to-one correlation between feature
signals and system conditions. When such a correlation is found, engineering monitoring and diagnosis
will be most effective and efficient (Du, Elbewatwi, and Wu, 1995). In fact, this is the motivation for
studying the wavelet transforms: use wavelet transform to capture the feature signals that are closely
correlated with the system conditions, and hence to make intelligent monitoring and diagnosis decisions.

8.2 Wavelet Transforms

The Principles of Wavelet Transforms

It is well known that an energy-limited signal (i.e., a square integratable signal), f(t), can be represented
by its Fourier transform F(�) as:

(8.1)

where

(8.2)

Note that F(�) and f(t) constitute a pair of Fourier transforms. Equation (8.2) is called the Fourier
transform of f(t) and Equation (8.1) is called the inverse Fourier transform. From a mathematical point
of view, Eq. (8.1) implies that the signal f(t) can be decomposed into a family of harmonics ei�t and the
weighting coefficients F(�) represent the amplitudes of the harmonics in f(t).

Wavelet transform is defined in a similar manner. However, instead of using the harmonics ei�t, the
wavelet transform uses a series of wavelet bases:

(8.3)

where s � 0 represents the scale, � �  represents the translation, and � (o) is called mother wavelet.
Mother wavelet can be in various forms, such as Morlet’s function, Mexican hat function, piecewise
constant wavelet function (Rioul, 1993), as well as Lemarie and Battle’s function (Mallat, 1989a).
Nevertheless, the integrals of � (o) and its moments (1st, 2nd,…,(m � 1)th) must be zero; that is:

(8.4)

Following the wavelet bases, the signal f(t) can be represented as follows (Daubechies, 1990; Mallat 1989a):

(8.5)
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where, c� is a normalization constant depending on the mother wavelet, and Ws[ f(�)] is the wavelet
transform defined as:

(8.6)

Similar to Fourier transform, Ws[ f(�)] and f(t) constitute a pair of wavelet transforms: Eq. (8.6) is called
the wavelet transform and Eq. (8.5) is referred to as the inverse wavelet transform (also called recon-
struction formula). Analogy to Fourier transform, Eq. (8.6) implies that the wavelet transform can be
considered as signal decomposition. It decomposes the signal f(t) onto a family of wavelet bases; and the
weighting coefficients, Ws[ f(�)], represent the amplitudes at given time � with scale s. This is the so-called
Grossmann-Morlet wavelet.

From a physical point of view, Fourier transform is well suited for stationary signals. In Fourier
transform, stationary signals are decomposed canonically into linear combinations of waves (sines and
cosines). However, Fourier cannot describe the transient events in the nonstationary signals because the
transient events can hardly be approximated by sines and cosines. This necessitates the use of wavelet
transform. In wavelet transforms, nonstationary signals can be decomposed into linear combinations of
wavelets. To show this, let us first examine how the wavelets are formed. The wavelets, �s�(t), are constructed
from the mother wavelet, � (o), through the process of translation and dilation. Fig. 8.2 shows a typical
example of mother wavelet shaped as a Mexican hat. The translations of the mother wavelet are shown
in Fig. 8.3. They form a series of time windows, �0i(t), i 
 1, 2,…, which can capture the signal features
at specific times. Note that �00(t) 
 � (t). Fig. 8.4 illustrates the dilation of the mother wavelet, �j0(t), j

 1, 2,…, and their corresponding spectra. It is seen that the dilation changes the frequency window so
that specific frequency components of the signal can be captured. With a combination of translation and
dilation, the wavelets form a series of time windows and frequency bands from which all kinds of feature
signals can be captured. Hence, wavelet transforms effectively describe the nonstationary signals.

FIGURE 8.2 The mother wavelet shaped as a Mexican hat.

FIGURE 8.3 The translations of the mother wavelet.
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Because of the variability in nonstationarity, the wavelet techniques, which are specific to the non-
stationarity of the signal, include wavelets of the “time-frequency” and “time-scale” types. “Time-frequency”
wavelets are suited, most specifically, to the analysis of quasi-stationary signals, while “time-scale”
wavelets are adequate for signals having a fractal structure. In the following discussion, we focus on the
time-scale type of wavelet transform as defined in Eq. (8.5) for two reasons. First, in most engineering
monitoring and diagnosis applications, the sensor signals have fractal structures (i.e., the signals have
transient, trend, and/or multiple and varying frequencies and amplitudes). For example, in a drilling
operation, a drill gradually engages and penetrates a workpiece and then withdraws from the workpiece.
Consequently, the corresponding spindle motor current varies following a pattern of going up and
down. Such a nonlinear signal can be best characterized by time-scale wavelet transforms. Second, time-
scale wavelet transforms can be easily and efficiently implemented. This is discussed further in a later
section.

The Properties of Wavelet Transforms

The properties of wavelet transforms may vary, depending on the mother wavelet. However, it can be
shown that all wavelet transforms possess four important properties (Meyer, 1989):

1. Multi-resolution: Wavelet transform decomposes a signal into various components at different
time windows and frequency bands, all of which form a surface in the time-frequency plane. The
size of the time window is controlled by the translation, while the length of the frequency band
is controlled by the dilation. Hence, one can examine the signal at different time windows and
frequency bands by controlling the translation and the dilation. This is called multi-resolution. It
is interesting to note that multi-resolution is a unique feature of wavelet transform. Those who
are familiar with time-frequency distributions may recall that time-frequency distributions can
also describe the time-frequency information of the signal. However, in time-frequency distribu-
tions, both the time window and frequency band are fixed.

2. Localization: As shown in Fig. 8.4, the dilation changes the shapes of the wavelet bases. The
smaller the dilation j, the sharper the shape. On the other hand, as shown in Fig. 8.3, the
translation shifts the wavelet bases with time. By controlling the dilation and the translation,
specific features of a signal at any specific time-frequency window can be explicitly obtained.
This is called localization, which magnifies specific features of the signal. For example, if we
want to capture a wide frequency band signal feature that occurs with a time delay, then we
could use �12(t),�13(t),…, or �22(t),…, etc. as filters. These filters can filter out the other
components of the signal and hence locate the interested features of the signal. In comparison,
in time-frequency distributions, the information in every time-frequency window can only be
equally weighted.

3. Zoom-in and zoom-out: As shown in Fig. 8.4, the time window and the frequency band of the
wavelet bases change correspondingly through the dilation. The wider the time window, the
narrower the frequency band, and vice versa. For example, when the time window changes

FIGURE 8.4 The dilations of the mother wavelet and their corresponding spectra.
© 2001 by CRC Press LLC



    
from �00(t) to �10(t), the frequency band changes from �00(�) 
 �(�) to �10(�). This is called
zoom-in and zoom-out. It implies that wavelet transforms are capable of capturing both the short-
time, high-frequency information and the long-time, low-frequency information of the signal.
This is desirable because, with a large time window, we can still capture specific frequency com-
ponents. In comparison, in Fourier transform and time-frequency distributions, the increase of
time window results in an increase of frequency band, and hence may result in the loss of accuracy.

4. Reconstruction: A signal f(t) can be reconstructed from its wavelet transform at any resolution
without information loss. This will be discussed later.

In fact, it can be shown that Fourier transform and time-frequency distributions are special cases of
wavelet transforms (Daubechies, 1990). With their capability of multi-resolution, localization, zoom-in
and zoom-out, and reconstruction, the wavelet transforms allow us to see both the “forest” and the “tree”
and, hence, are much more effective for signal processing for nonstationary signal processing. 

Discrete Binary Orthogonal Wavelet Transform

Binary orthogonal wavelet transform is one of the earliest developed and commonly used wavelet
transforms. It is a discrete wavelet transform designed for digital signals (Meyer, 1989; Rioul, 1993). In
discrete wavelet transforms, the scale parameter s is taken as an integer power of two, that is, s 
 ,
j 
 1, 2,…; and the time parameter t is taken as a series of integers k (i.e., ); that is:

(8.7)

where, j, k 
 1, 2,….This is the Daubechies wavelet.
One of the most commonly used discrete wavelet transforms is the binary orthogonal wavelet trans-

form. Let Aj[o] and Dj[o] be a pair of operators. At the jth resolution, Aj[ f(t)] represents an approximation
of the signal f(t), and Dj[ f(t)] represents the information loss, or the so-called the detail signal (Mallat,
1989). Then, it can be shown that (Meyer, 1989):

(8.8)

(8.9)

where, �j(t) is a smooth scaling orthogonal bases, �j(t) is an orthogonal wavelet bases, and ‘‘�’’ denotes
convolution. Furthermore, �j(t) and �j(t) are correlated through a pair of conjugate quadrature mirror
filters h(t) and g(t) defined below:

(8.10)

(8.11)

Following the reference (Meyer, 1989), we can use the filters defined below:

It should be pointed out that using different filters will result in different wavelet results. It is often
necessary to combine Eq. (8.8) to (8.11); thus, we have the binary wavelet transform:
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(8.12)

(8.13)

or,

(8.14)

where, t 
 1, 2,…, N; j 
 1, 2,…, J; and J 
 log2N.
The binary wavelet transform has the following features:

1. At the jth resolution, a signal f(t) is decomposed into two parts: an approximation Aj[f(t)] and
a detail signal Dj[ f(t)]. Both can be calculated by the convolution of the previous approximation
Aj�1[f(t)]. Therefore, the discrete binary orthogonal wavelet transform can be computed recursively
through a “pyramid algorithm” as illustrated in Fig. 8.5.

2. From a mathematical point of view, the filters g(t) and h(t) are a pair of quadrature mirror
filters: h(t) is a low-pass filter and g(t) is a high-pass filter. At each recursion step in Eq. (8.14)
the approximation Aj[ f(t)] is obtained from the previous approximation passing through the
low-pass filter, while the detail signal Dj[ f(t)] is obtained from the previous approximation
passing through the high-pass filter. Hence, Aj[ f(t)] represents the low-frequency components
of original signal f(t), and Dj[ f(t)] represents the high-frequency components of the original
signal f(t). Moreover, with the increase of resolution j, the center frequencies of the filters
decrease by a ratio of .

3. Because of the orthogonality of �(t) and �(t), the lengths of Aj[f(t)] and Dj[f(t)] are half of the length
of Aj�1[f(t)]. That is, at each recursion, the signal is compressed to half its size in its approximation.
And because the signal f(t) has a finite number of samples N, the binary wavelet transform is limited
in resolution. The maximum resolution on which the wavelet transform can be performed is:

(8.15)

At each resolution, however, the wavelet representation, always
has the same number of data as the signal f(t). Hence, the wavelet representation contains the
same amount of information as the original signal f(t), although half the information is compressed
in the approximation, while the other half is in the detail signal.

FIGURE 8.5 The pyramid algorithm of the binary wavelet transform.
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4. Because the wavelet transform is a complete representation of the signal, the original signal f(t)
can be reconstructed by means of an inverse wavelet transform or the reconstruction formula
below:

(8.16)

where, j 
 J � 1, J � 2,…, 1, 0. This reconstruction algorithm is illustrated in Fig. 8.6.

Wavelet Packet

Let operators H and G be the convolution sum defined below:

(8.17)

(8.18)

Then, Eq. (8.14) can be rewritten as follows:

(8.19)

(8.20)

It is seen that the binary wavelet transforms use the operators H and G for the approximation Aj�1[ f(t)]
only, but not the detail signal Dj�1[ f(t)]. If the operators H and G are applied to both Aj�1[ f(t)] and
Dj�1[ f(t)], then it results in the wavelet packet transform [Coifman and Wickerhanster, 1992]:

(8.21)

(8.22)

Let Pj
i(t) be the ith packet on the jth resolution; then, the wavelet packet transform can be computed by

the recursive algorithm below:

(8.23)

FIGURE 8.6 The reconstruction algorithm of the binary wavelet transform.
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where t 
 1, 2,…, 2J�j, i 
 1, 2,…, , j 
 1, 2,…, J, and J 
 log2N. The wavelet packet transform
algorithm can be represented by a binary tree as shown in Fig. 8.7. From the figure, it is seen that the
signal f(t) can be decomposed into a small number of large packets at lower resolutions ( j 
 1 or 2) or
a large number of small packets at higher resolutions ( j 
 5 or 6). On the jth resolution, there are a total
of 2j packets and each packet contains 2J�j data points.

As a modified version of binary wavelet transform, the wavelet packet transform has the same properties
as the former. Also, there exists the inverse wavelet packet transform, or the signal reconstruction:

(8.24)

where j 
 J � 1, J � 2,…, 1, 0; i 
 , 2j�1, … , 2, 1; and the operators  and  are the conjugate of
H and G:

(8.25)

(8.26)

This is the same as for the binary orthogonal wavelet transform. It is interesting to note that the signal
reconstruction can be done either by using the packets with the same size on the same resolution, or by
using the packets with different sizes on different resolutions.

It is interesting to note that the wavelet packets can be computed individually. For example, if only
two packets (t) and (t) need to be computed, then instead of computing the entire wavelet packet
transform resolution by resolution, one can use the following equations:

(8.27)

(8.28)

This reduces the computing load to 28.75% compared to computing the entire wavelet packet transform.
In addition to the nice features inherited from the wavelet transforms, the wavelet packet transform

has a couple of additional advantages, including allowing less signal details and easy digital implementation.
In the discussions that follow, we will use wavelet packet transform. As an example, Fig. 8.8 shows the
wavelet packet transform of a nonstationary signal. The original signal f(t) is shown in Fig. 8.8a. In Fig.
8.8b, the signal is decomposed onto various number of packets at different resolutions. The reconstructed
signal using all the packets at resolution 5 is shown in Fig. 8.8c. It is seen that Figs. 8.8a and 8.8c are
essentially the same.

FIGURE 8.7 The pyramid algorithm of the wavelet packet transform.
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To conclude this section, it is worthwhile to point out that there are several wavelet software packages
available on the market, such as the wavelet toolbox in MATLAB. The reader may find them useful and
rather easy to use. Dozens of wavelet Web sites around the world can be found on the Internet, including
www.amara.com. These Web sites provide updated information on wavelet research and applications, as
well as free software.

8.3 Use Wavelet Transforms for Feature Extraction

The Feature Extraction Method

For engineering monitoring and diagnosis, features
extraction is very important. This is due to the fact
that many sensor signals are nonstationary signals. To
ensure the accuracy and reliability of the monitoring,
it is very important to extract the characteristic
features of the signals that describe the defects of the
system but are not affected by the system working
conditions and noise (the system noise and the
sampling noise). Using the wavelet packet transform,
the signal features can be effectively extracted. From
a mathematical point of view, the feature extraction
can be considered as signal compression. Recalling
the fact that wavelet packets represent the compressed
signals, it is desirable to use the wavelet packets as the
extracted features. As pointed out earlier, each wavelet
packet represents a certain part of the signal in a
specific time-frequency window. Apparently, not all
the wavelet packets contain useful information, espe-
cially at higher resolutions. Continuing the example
in Fig. 8.8, it is seen that at higher resolution, only a
few packets contain large amounts of information.
For example, at resolution 6, out of 64 packets, only
6 packets, (t), (t), (t), (t), (t), and

(t), contain relatively large amounts of infor-
mation, while the other packets are essentially zeros.
Therefore, we can use the wavelet packets that contain
large amounts of information as the features, which
are called feature packets. From a mathematical point
of view, the feature packets contain the principle
components of the signal. Hence, using wavelet fea-
ture packets, we are able to extract the principle com-
ponents of the signal. The feature extraction process
is called compression because the selected wavelet
packets contain less data than the original signal.
Specifically, at the resolution j, there are  packets;
choosing M feature packets, (t), i 
 i1, i2,…, iM,
will preserve (M/ ) portions of the data. Hence, the
ratio (M/ ) is called the compression ratio.

Using the M feature packets (t), i 
 i1, i2,…, iM,
and setting the other packets in the same resolu-
tion to zero, we then obtain a reconstructed signal. FIGURE 8.8 An example of wavelet packet transform.
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Continuing the example above, using the feature packets and setting the other packets to zero, the reconstructed
signal is shown in Fig. 8.8d. It is seen that the principle components of the signal are indeed preserved.

Finally, to compute the feature packets, one does not need to compute the entire wavelet packet
transform. This is due to the fact that if a packet at lower resolution does not contain useful information
(principle components of the signal), then its succeeding decomposition in the higher resolutions will
not contain useful information and, hence, can be discarded. For the above example, the computations
include only the following:

At the 1st resolution: (t), (t)

At the 2nd resolution: (t), (t), (t)

At the 3rd resolution: (t), (t), (t)

At the 4th resolution: (t), (t), (t), (t)

At the 5th resolution: (t), (t), (t), (t)

At the 6th resolution: (t), (t), (t), (t), (t), (t)

This can be recognized from Fig. 8.8b. It should also be pointed out that each step of the wavelet transform
computation involves only simple addition and multiplication (to carry out the convolution). Therefore,
the feature packets can be computed fast and hence be used for online applications.

The Feature Assessment Criteria

The effectiveness of the feature packets can be evaluated based on the reconstructed signal. Let Q(t) 

(t), the estimate of (t), be a reconstructed signal using M feature packets (t), i 
 i1, i2,…, iM,

while the other packets in the same resolution are set to zero. Then, the effectiveness of the selected
feature packets can be assessed by examining the difference between Q(t) and f(t). Intuitively, if the
selected features are appropriate, then Q(t) will be close to f(t). Ideally, the difference should be a white
noise, which implies that the selected features completely capture the information of the signal. Quan-
titatively, the feature packets can be assessed by the two criteria described below.

1. The cross-correlation between Q(t) and f(t). The cross-correlation between Q(t) and f(t) is defined
by:

(8.29)

where RQf (k) 
 E[Q(t)f (t � k)] is the cross-covariance between Q(t) and f (t), and Rf (k) 

E[ f (t)f (t � k)] is the variance of f (t). This definition is slightly different to the definition of
cross-correlation in statistics where both the variances of f (t) and Q(t) would be used in the
denominator. It is designed to stress how close the original signal f (t) and its reconstruction
Q(t) are in time domain. If Q(t) is equal to f (t), then �Qf (k) 
 1, for k 
 0, 1,…, N � 1. On
the other hand, if there is no correlation between Q(t) and f (t), then �Qf (k) 
 0. However,
�Qf (k) may be greater than 1 or smaller than �1, since the denominator Rf (k) may not always
be larger than RQf (k). Assuming that the selected feature packets are { (t), i 
 i1, i2,…, iM},
then they are effective if �Qf (k) approach 1, for the first few ks, (k 
 0, 1, …, K ), since it
implies the principle components of Q(t) and f (t) are the same. Note that �Qf (k) 
 1 is also
undesirable because this would mean the original signal was being completed reproduced by the
extracted features, which includes not only the useful information but also the noises. As an example,
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Fig. 8.9a shows the cross-correlation corre-
sponding to Fig. 8.8c and Fig. 8.9b shows the
cross-correlation corresponding to Fig. 8.9d.

2. The cross-coherence between Q(t) and f(t).
The cross-coherence between Q(t) and f(t)
is defined as follows:

(8.30)

where SQf(�) is the cross-power-spectrum
between Q(t) and f(t), and Sf (�) is the
power spectrum of f(t). Similar to the cross-
correlation function defined above, the
cross-coherence defined in Eq. (8.30) is
slightly different to that in statistics. It
stresses the difference between f(t) and its
reconstruction Q(t). If the reconstruction Q(t)
has the same characteristics in frequency
domain as that of f(t), then 
Qf(�) 
 1 for
all �. On the other hand, if there are no
common frequency components between
Q(t) and f(t), then 
 0. Note that

Qf(�) may be greater than one. Similar to
that of the cross-correlation, the cross-
coherence measures how the selected fea-
tures resemble the original signal in frequency
domain. If the cross-coherence is very small
(say 0.3), then the selected feature packets
do not contain enough frequency informa-
tion. Note that 
Qf (�) 
 1 is undesirable as
well because it means that the selected fea-
tures completely reconstruct the original
signal, including noises. The best selected
features contain the information of the sig-
nal but not the noise. Consequently, the
cross-coherence will be close to one but not
equal to one. As an example, Fig. 8.9c shows
the cross-coherence function corresponding to Fig. 8.8c, and Fig. 8.9d shows the cross-coherence
function corresponding to Fig. 8.9d.

The use of a particular feature assessment criterion is dependent on the application. If the time-domain
information in the application is the focus of the investigation, then �Qf (k) should be used. On the other
hand, if the frequency-domain information is more important, then 
Qf (�) should be used.

The Procedure for Automatic Feature Extraction

In summary, as shown in Fig. 8.10, the procedure for automatic feature extraction consists of four steps:

Step 1: Calculate the wavelet packet transform of the training samples. Suppose that K set of sensor
signals, { fk(t), t 
 1, 2,…, N; k 
 1, 2,…, K}, is obtained from a system condition. The first
step is to apply wavelet packet transform to the signal fk(t), which generates wavelet packets:
{ (t), t 
 1, 2,…, 2J�j; k 
 1, 2,…, �, i 
 1, 2,…, } at the jth resolution.

FIGURE 8.9 The cross-correlation and the cross-
coherence functions for the example in Fig. 8.8.
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Step 2: Calculate the energy of the wavelet packets. The energy of a wavelet packet is defined by [15]:

(8.31)

It describes the amount of information that the wavelet packet contains.
Step 3: Select the feature wavelet packets according to energy. Rearrange the packets according to the 

descendent order of energy:

FIGURE 8.10 The procedure for feature extraction.
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 Then select the first M packets as the feature packets, which are denoted as { (t), i 
 i1, i2,…,iM}. 
As a rule of thumb, one can start with M 
 2.

Step 4: Evaluate the selected feature packets. Using the feature packets and setting the other packets to
zero, a reconstruction Q(t) can be obtained by using Eq. (8.24). Next, apply the feature assessment
criteria above; if the given assessment criteria are satisfied, then the feature extraction is completed.
Otherwise, add the next feature packet into the feature packets (i.e., M 
 M 	 1) and repeat the
above steps until a satisfactory result is obtained.

It should be noted that each feature packet contains a set of data. Hence, it is often useful to use certain
indices to describe the characteristic of the data. These indices include the peak-to-valley value:

(8.32)

and the crest factor:

(8.33)

where

The other indices, such as mean, variance, kurtosis, can also be used.

8.4 Use Wavelet Transform for Monitoring

As pointed out in Section 8.1, monitoring requires accuracy (sensitive to the system malfunctions under
various system working conditions and disturbances) and speed (fast response to the system malfunc-
tions). These can be achieved using wavelet feature packets.

In general, engineering monitoring consists of two phases: learning and real-time monitoring. The goal of
learning is to set up the alarm thresholds for real-time monitoring. Assuming that K sets of training signals,
{fk(t); t 
 1, 2,…, N; k 
 1, 2,…, K}, are obtained under normal system condition (note that in monitoring,
we only care if the system is normal or abnormal), then the learning can be conducted as follows:

1. Determine the wavelet feature packets. This can be done using the procedure given in Section 8.3.
It should be pointed out that the energy of the wavelet packets is a very important index for
monitoring, but can only be obtained from a complete signal. Hence, it cannot be directly used
for real-time monitoring although it can be used for learning. 

2. Reconstruct the signals using the feature packets. Using the feature packets, { (t), i 
 i1, i2, …,
iM}, and setting the other packets to zero, the reconstructed signal can be obtained by the recon-
struction equation formula in Eq. (8.24).

3. Calculate the statistics of the reconstructed signals. Assuming the reconstructed signals are {Qk(t); t 

1, 2,…, N; k 
 1, 2,…, K}, then their mean series and variance series can be determined as follows:

(8.34)
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To save memory, the mean series and the variance series can be calculated recursively. The formula
to calculate the mean series is:

(8.36)

 (8.37)

The variance series involves nonlinear calculation. First, rearrange Eq. (8.35) as follows:

(8.38)

Using Eq. (8.35), it follows that:

(8.39)

Therefore, the recursive formula is:

(8.40)

(8.41)

4. Calculate the alarm thresholds. Based on the mean series and the variance series, the alarm
threshold(s) can be determined as follows:

(8.42)

(8.43)

where � is a constant associated with the confidence level, and TU(t) and TL(t) are upper and
lower bounds of the thresholds, respectively.  The alarm thresholds form a threshold band. At any
given time t, suppose the probability distribution of Q(t) is Gaussian; then with � 
 3, there will
be a probability of 99.98% that the signal is retained within the threshold band. When � 
 2 is
undertaken, there will be a probability of 95.54% that the signal is within the threshold band.

From the learning phase, the monitoring thresholds are determined. As an example, Fig. 8.11 shows the
alarm thresholds corresponding to the example in Fig. 8.8. It is seen that the alarm thresholds have the
same shape as the principle components of the signal and completely enclose the original signal. Based on
the alarm thresholds, the real-time monitoring can then be conducted by checking the threshold crossing:

(8.44)

(8.45)
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In practice, one can use different values of � to set multiple alarm levels. For example, use � 
 2 to
warning and use � 
 3 to alarm. Furthermore, it should be noted that because the thresholds are
established based on the principle components of the training samples, it tends to be smaller, especially
when the training samples are limited. To minimize a false alarm, upon the detection of warning, one
can choose higher values such as � 
 4. 

Note that the monitoring is done by checking the monitoring signal point-by-point. It requires only
simple comparison, and thus can be done very fast and can be used for real-time monitoring. Moreover,
to further improve the accuracy of monitoring, when a warning is detected, one can calculate the wavelet
packet transform of the signal and compare the feature packets to that of the training samples. If a
significant difference is found, than an alarm should be issued. For the example above, such a monitoring
index is:

(8.46)

One of the distinct features of this method is that it uses only the training samples from normal system
conditions. The system malfunctions, which may be in many different forms, are considered as the
complementary of the normal condition. To determine what the system malfunction is, one can use the
diagnosis method presented in the following section.

8.5 Use Wavelet Transform for Diagnosis

Using the wavelet transform for engineering diagnosis is also based on wavelet feature packets. Suppose
the feature packets have been found, and the diagnosis is to determine the correlation between system
conditions and feature packets. Ideally, there would exist a one-to-one correlation between a system
condition and one or several feature packets. In this case, there is little need for further computation.
However, when there is no simple one-to-one correlation (e.g., one system condition is related to several
wavelet packets), it will be necessary to use classification schemes such as pattern recognition, fuzzy
classifications, decision trees, and neural networks.

Diagnosis also consists of two phases: learning and decision-making. Learning is to establish a
correlation between the feature signals and the system conditions from available learning samples.
Decisionmaking is to determine the system condition of a new sample based on the correlation established
in learning. This is illustrated in Fig. 8.12. From the figure, it is seen the correlation between feature signals

FIGURE 8.11 The alarm thresholds for the example in Fig. 8.8.
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(x 
 [x1, x2,…, xm]) and corresponding system conditions  can be described by:

(8.47)

where R is the correlation function. Accordingly, learning is to find R from available learning samples
xk, k 
 1, 2,…, N, (note that their corresponding system conditions are known). On the other hand,
decision-making is to find the corresponding system condition h of a new sample (x) from R, that is:

(8.48)

Different methods will develop different types of correlation. For example, when pattern recognition
is used, the correlation function will be patterns. On the other hand, when an artificial neural network is
used, the correlation function will be a neural network. Depending on the correlation, different learning
and decision-making methods would be used. In this section, we present a simple and effective method:
the pattern recognition method. The other methods can be found in the literature, such as Du, Elbestawi,
and Wu (1995).

Pattern recognition methods have been widely used in engineering monitoring and diagnosis
(Monostori, 1986; Houshmand and Kannatey Asibu, 1989; Elbestawi et al., 1989). In general, pattern
recognition methods can be divided into two groups: statistical  pattern recognition methods (also called
non-deterministic pattern classification methods) and distribution-free methods (also called deterministic
pattern classification methods) (Kandel, 1982). Again, we will limit our discussions to distribution-free
methods.

The distribution-free pattern recognition methods are based on the similarity between a sample x and
the patterns that describe the system conditions. From a geometry point of view, the feature signals (when
we use the wavelet transforms, they are the feature packets, or the indices of the feature packets) span a m-
dimensional space. In the space, each system condition hj is characterized by a pattern vector pj 
 [pj1,
pj2,…, pjm]T. On the other hand, a sample x is also a vector in the space. The similarity between the sample
and a pattern can be measured by the distance between the two vectors. The minimum distance can then
be used as the criterion for classifying the sample. Fig. 8.13 demonstrates a simple example, where the three
feature are �1, �2, and �2; and the three system conditions are described by patterns p1, p2, and p3. Given
a sample x, the distances between the sample and the patterns are d1, d2, and d3, respectively. Since d1 is the
smallest, it is estimated that the sample corresponds to the system condition h1.

There are a number ways to define patterns and distances. Hence, there are various distribution-free
pattern recognition methods. Some of the most frequently used methods include the Mahalanobis
method, the linear discriminate method, and the Fisher method. In the Mahalanobis method, the patterns
are the means of the learning samples (i. e., pj 
 �j, where �j is the mean of the samples whose system
condition is hj), and the distance is defined as:

(8.49)

FIGURE 8.12 An illustration of the correlation between feature signals and system conditions.
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where Sj is the standard deviation matrix. The linear discriminate method, also called the K-mean method,
uses the same pattern, but the distance is defined as:

(8.50)

where wj 
 {w1j, w2j, …, wmj} and cj 
 {c1j, c2j,…,cmj} are the weight and center of pattern j, respectively. In
the learning phase, using an iteration procedure, the weights and the centers are determined by minimizing:

(8.51)

where �ij is a delta function defined below:

Similarly, the Fisher method uses the same patterns, but the distance is defined as:

(8.52)

where bj is determined by maximizing:

(8.53)

FIGURE 8.13 Illustration of distribution-free pattern recognition methods.
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In the classification phase, the system condition of a new sample is estimated as follows:

(8.54)

The effectiveness of a pattern recognition method depends not only on the classification function, but
also on a number of factors such as the distribution of the learning samples and the definition of system
conditions. For example, tool wear in machining processes can be manifested in numerous forms, and
each can result in different consequences. Therefore, the monitoring and diagnosis decision is often not
based on the system condition, but rather to what degree that the system is in that condition. In this
case, advanced methods such as fuzzy logic and artificial neural network may be more effective. For
details of these methods, the reader is referred to the related chapter of this series.

8.6 Application Examples 

To demonstrate the use of wavelet transforms for engineering monitoring and diagnosis, two examples
are presented below: chatter monitoring in turning and tool wear diagnosis in drilling.

Chatter Monitoring in Turning

Chatter is defined as excessive vibration during machining operations. It may be caused by either
resonance vibration or nonlinear cutting force and vibration interaction. The experiments for chatter
monitoring in turning were conducted on an engine lathe as shown in Fig. 8.14 with the cutting conditions
listed in Table 8.1.

The monitoring signal was the vibration (acceleration) signal measured from the tailstock of the lathe.
During the turning of a long slim steel bar, chatter gradually developed. At the beginning of the cut,
the cutting was stable. When the cutter approached the middle of the workpiece, where the structure
is weaker, chatter began to develop, at which time the vibration amplitude escalated. This interim
period lasted about 0.5 second. Then, chatter was fully developed, at which the vibration amplitude
reached a limit. The purpose of chatter monitoring was to detect the onset of the chatter, (i.e., the
interim period).

FIGURE 8.14 The experimental setup of chatter monitoring in turning.
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During stable cutting, hard spots of workpiece material, unsteady mechanical movements, and unbalance
of rotating parts could all cause the fluctuation of cutting forces, which in turn caused vibration with small
amplitude but the vibration was quickly damped out. Thus, the vibration signal was characterized by the
small vibration amplitude in the time domain and wide band frequencies in the frequency domain. This
was confirmed by our experiment as shown in Fig. 8.15a. In the interim period, the vibration signal is
characterized by an increase in amplitude in the time domain and the excitation of machine tool vibration
modes in the frequency domain. Figure 8.16a shows a typical signal from the interim period. When chatter
was fully developed, the vibration signal was dominated by the machine tool vibration, as shown in Fig.
8.17a. Figures 8.15b, 8.16b, and 8.17b are the wavelet packet transforms corresponding to the signals
in Figs. 8.15a, 8.16a, and 8.17a. It is seen that for stable cutting, the energy level in every packet is rather
close, as shown in Fig. 8.15b. In the interim period, several wavelet packets contained a significantly larger
amount of energy. For example, at the 5th resolution, the energy in packets (t) and (t) was much
higher compared to the other packets on the same resolution as shown in Fig. 8.16b. When chatter was
fully developed, the energy in packets (t) and (t) became predominant, as shown in Fig. 8.17b. From
a physical point of view, the packets (t) and (t) were associated with the machine tool vibration
modes. Therefore, they were sensitive to the onset of chatter and were selected as the feature packets for
monitoring chatter in turning.

TABLE 8.1 The Experimental Conditions for the Turning 
Example

Work Length 600 mm
Diameter 35 45 mm
Material #45 steel

Cutter Rank angle 10 13°
Flank angle 8 10°
Material Uncoated carbide

Cutting condition Speed 660 RPM
Feed  mm/rev.
Depth of cut  mm

FIGURE 8.15 The vibration signal under normal
cutting (a) and its wavelet transforms(b).
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To evaluate the effectiveness of the selected features (the wavelet packets (t) and (t)), the feature
assessment criteria proposed earlier were used and the results are shown in Table 8.2. From the table, the
following observations can be made.

1. The information lost from the original signal (in both the time domain and the frequency domain)
was related to the compression ratio and the number of wavelet packets used. For example, using two
feature packets, at the compression ratio 1/16, the information retained in the time domain was 74%

FIGURE 8.16 The vibration signal under interim cutting
and its wavelet transforms.

FIGURE 8.17 The vibration signal under chatter and its
wavelet transforms.
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and the information retained in the frequency domain was 83%. At the compression ratio 1/32, the
information retained in the time domain was 66% and the information retained in the frequency
domain was 77%. In general, when the compression ratio increased by 1/2, 6 9% of the information
was lost. Hence, to retain more than 70% of the time domain information and 80% of the frequency
domain information, the compression ratio 1/16 was chosen.

2. At the compression ratio of 1/16, the wavelet packets (t) and (t) represented 74% of the
time domain information and 83% of the frequency domain information. This indicated that
the information lost might be different in the time and frequency domains. Hence, if the time
domain features are more important, then the time domain assessment criteria should be
stressed. On the other hand, if the frequency domain features are more important, the frequency
assessment criteria should be stressed. When monitoring chatter, frequency domain informa-
tion is very important because at the onset of chatter, the machine tool vibration will dominate
the vibration signal. PQ f 0.70 and 
Q f 0.80 represented a desirable combination.
Consequently, using the automatic feature selection procedure presented in Section 3.3, the
wavelet packets (t) and (t) were selected as the feature packets.

3. Based on the selected packets, (t) and (t), Fig. 8.18a shows the reconstructed signal under
chatter. Compared to the original signal in Fig. 8.17a, it is seen that the two signals are indeed
rather similar. From Fig. 8.18b, it is seen that the cross-correlation function PQf (k) is close to 0.8,
which clearly indicates the strong correlation. Figs. 8.18c and 8.18d are the power spectrum of f(t)
and the power spectrum of the reconstructed signal Q(t), respectively. It is seen that the selected
packets represent the major characteristics of f(t) in the frequency domain as well.

As pointed out earlier, feature packets can be further compressed by indices such as RMS and peak-to-valley
to facilitate monitoring decision-making. In summary, the chatter monitoring procedure is given below:

.

TABLE 8.2 Feature Assessment Values of the Vibration Signals under Chatter 
Conditions

Compression Ratio

1 1/2 1/4 1/8 1/16 1/32 1/64

1 0.95 0.91 0.82 0.74 0.66 0.35
1 0.98 0.97 0.91 0.83 0.77 0.38
0 0.05 0.09 0.18 0.26 0.34 0.65

Wavelet packets

Information retained 
in time domain

100% 74% 66%

Information retained 
in frequency domain

100% 83% 77%

�Qf 0( )

Qf 265.5 Hz( )
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if T5
13

 � 21 or T5
13

 � 21

then stable cutting

else

if T5
13

 � 270 or T5
13

 � 200

then onset of chatter

else chatter 

endif

endif
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Note that in the above procedure, the monitoring
thresholds (21, 270, and 200) were obtained from
experiment samples as shown in Figs. 8.15, 8.16,
and 8.17. This procedure was tested using 12
different experiment samples under various cutting
conditions and it maintains a 100% success rate.

Tool Wear Diagnosis in Drilling

The experiments for tool wear diagnosis in drill-
ing were conducted on a horizontal drilling
machine as illustrated in Fig. 8.19 with the experi-
ment conditions summarized in Table 8.3 .

Tool wear monitoring in drilling is a difficult
task. First, the wear of a drill can be in various
forms; for example, there may be uneven wear at
different cutting edges. Second, the drill can be
self-sharpening during drilling because of the
change in the rake angle. In practice, the complex-
ity of the problem is compounded by various factors
such as machine tool run-out, fixture vibration,
chip formation, coolant, and material inhomoge-
nuity. Hence, even under identical cutting condi-
tions, the life of a drill varies. The drill life can be
judged by the power consumption (or torque).
The life cycle can be divided into four states: new
drill, initial wear (flank wear less than 0.1 mm),
normal wear (flank wear around 0.15 mm), and
worn drill (flank wear larger than 0.15 mm). Fig-
ure 8.20a shows the vibration signal (accelera-
tion) corresponding to a new drill (the sampling
frequency is 1 kHz). Figures 8.21a, 8.22a, and 8.23a
are the vibration signals obtained when drilling the
52rd, 4600th, and 5100th hole, respectively, using
the same drill, which corresponded to the other
states of tool wear: initial wear, normal wear, and
worn out. The corresponding wavelet packet

FIGURE 8.19 The experimental setup of tool wear diagnosis in drilling.

FIGURE 8.18 The reconstruction of the signal in
Fig. 8.17 and reconstruction assessment.
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transforms were shown in Figs. 8.20b to 8.23b. From these figures, it is seen that the new drill produced
smooth cutting and, hence, results in small vibration. Consequently, there is no predominant wavelet
packet, as shown in Fig. 8.20b. Then, there is a period of time during which higher wear rate could
be observed. This is due to the fact that the shape edges of a drill might be easily worn off and this
period was called initial wear. At this time, the drill might produce unsmooth cuts and thus cause an
increase in vibration. As a result, the wavelet packets  and , which corresponded to the machine
tool vibration, contained a relatively larger amount of energy as shown in Fig. 8.21b. Next, the drill
enters the normal wear state; it cut smoothly and, hence, as shown in Fig. 8.22b, there are no
predominant wavelet packets. The normal wear state lasts a period of time during which the drill
gradually wears out. Finally, when the drill is worn out, the cuts became rough. As shown in Fig. 8.23b,
the energy in feature packets  and  raised to a higher level. 

TABLE 8.3 The Experimental Conditions for the Drilling Example

Work Depth of drilling 13.97 mm
Diameter of drilling 10.67 mm
Material Cast iron

Cutter Type twist
Relief angle 10°
Material Uncoated carbide

Cutting condition Speed 1030 RPM
Feed 0.0127 mm/rev.

FIGURE 8.20 The vibration signal and its wavelet transform when drilling using a new drill.
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FIGURE 8.21 The vibration signal and its wavelet transform when drilling using a drill with initial wear.

FIGURE 8.22 The vibration signal and its wavelet transform when drilling using a drill with normal wear.
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From a total of 68 experimental samples, using the feature selection procedure presented in Section
8.3, two wavelet packets  and  were identified as the feature packets for tool wear monitoring
under the assessment criteria PQ f 0.70 and 
Q f 0.90. The selected packets were very effective. As
shown in Fig. 8.24, which corresponds with to Fig. 8.23, the selected packets represented more than 70%
information in the time domain, and the power spectrum of the reconstructed signal was nearly the
same as that of the original signal (note, the frequency 256 Hz was the natural frequency of the machine
tool).

To diagnose the state of tool wear, the feature packets (t) and (t) are further compressed using
the peak-to-valley (  and ) and crest factor (  and ) of the packets, and then classified using
the Fisher pattern recognition method described in Section 8.5. This is to set:

Through the learning from 68 experiment samples, it was found that:

Based on the test of 24 different experiment samples, the success of diagnosis of the state of wear is 100%.

FIGURE 8.23 The vibration signal and its wavelet transform when drilling using a worn drill.
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8.7 Conclusions

Based on the discussions above, the following conclusions can be drawn.

1. The wavelet packet transform is a powerful tool for engineering monitoring and diagnosis. It can
capture important features of the sensor signal that are sensitive to the change of system conditions
(e.g., chatter and different states of tool wear) but is insensitive to the variation of process working
conditions and various noises. Accordingly, accurate and reliable monitoring and diagnosis deci-
sions can be made.

2. The wavelet packet transform decomposes a sensor signal into different components in different
time windows and frequency bands. The feature wavelet packets are those containing the principle
components of the original signal. The feature packets can be obtained using an automatic feature
selection procedure.

3. The effectiveness of the selected packets can be assessed in both time and frequency domains. It
is recommended that the selected packets should preserve 70% of the time domain information
and 80% of the frequency domain information from the original signal. To do this, the maximum
compression ratio is 1/32, because higher compression ratios mean more information loss.

FIGURE 8.24 The reconstructed signal and assessment
of the signal in Fig. 8.24.
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4. The feature wavelet packets can be characterized by quantities such as peak-to-valley value, crest
factor, mean, root mean squares, and variance. The quantities can be used for real-time monitoring.
On the other hand, when these quantities are correlated to the various system conditions, it
is necessary to use classification methods such as pattern recognition to diagnose the system
conditions.

5. The presented method was tested by two practical examples: chatter monitoring in turning and
tool wear diagnosis in drilling. Both tests resulted in 100% success.
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