Ty * An all-inclzsivc I:I:'ok to teach | * Quicr and Easy learning in
I you everything about Oracle Simple Steps
dre(]m eCh PL/SQL Programming * Most preferred choice
2 * Easy, Effective, and waorldwide for learning
Reliable Oracle PL/SQL Programming

Oracle PL/SQL
Programming

" SIMBPLE
STEPS

Premieri2

¢ 10.1.0.2.0 - Production on Fi

) 1982, 28084, Oracle. All rights ¢

ted to:
e Database 18g Enterprise Edition Release
the Partitioning, OLAP and Data Mining op1

JL> SET SERUVEROUTPUT ON

QL> CREATE OR REPLACE PROCEDURE salary (eno II
2 e_sal NUMBER;

9 BEGIN



SCopyright by Dreamtech Press, 19-A, Ansan Road, Daryaganj, New Delhi-110002

This book may not be duplicated in any way without the express written consent of the publisher, except in the
form of brief excerpts or quotations for the purposes of review, The information contained herein is for the
persunal use of the reader and may not be incorporated in uny commercial other books, datat or
any kind of softwere without written consent of the publisher. Making copics of this book or any portion for any

purpose otfier than your own is 2 violation of copyright laws,

Limits of Liability/disclaimer of Warranty: The author and publisher have uscd their best efforts in preparing this
book. The author make no representation or warranties with respect to the accuracy or completeness of the
contents of this book, and specifically disclaim any implied warranties of mcrl:lmnl:bll.lly or fitness of any
particular purpese. There are no warmanties which extend beyond the descripti ined in this paragrap

No warranty may be created or extended by sales representatives or written sales materials. The mumcy and
5 | of the inli ion provided herein and the opinions stated herein are not guaranteed or warranted
o produce any particulars results, and the advice and strategies contained hergin may not be suitable for every
individual. Neither Dreamtech Press nor author shall be liable for any loss of profit or any other commercial
damages, including but not limited to special, incidental ial, or other d

Trademarks: All brand narnes and product names used in this book are trad k i d trd s, or

trade sames of their respective helders. Dreamtech Press is not associated with any product or vendor mentioned
in this book.

ISBN: 10-81-7722-855-2
13-G78-81-7722.855.7
Edition: 2008

Printed at: Printman India, Paiparganj, Delhi.



CONTENTS

Chapter 1 m Introduction to PL/SQL

o B

What is PL/SOLY eeieieiiii
Need of PLSOL
Versions of PL/SQL

Features of PL/SQL. . [
D 6
PL/SQL Variables and Constants 7
PLSOL Control Structures 7
Using SQL within PLSQL 7
PLSQL Collections. 8

PLSOL Records. 8

8
&
9
9
0
1

s

|+

PLSQL Subprograms....
PLSOL PACKaBES . cooivieiiieiiiiiiiiiiiiiiiiieie s
Exception Handling,

New Features added in PUSQL for Oracle 10g

PL/SOL Architecture in Oracle
Summary

_Chapter 2 » PL/SQL Essentials

Describing Block Structure 14
Block Header 14
Declaration Section 15
Execution Section 15
Exception Section 2

Kinds of Blocks 2
Anonymaous Blocks 2
Named Block: 27
Nested Blocks 22

Introducing Datatypes 22
Mumber Types. 22
NUMBER 23
Character and String Types 24
Boolean Type e .
LOB Types 28
Date, Time, and Interval Types....o.oovenne 29
PLSQL Subtyy i, 32

Introducing Lexical Units 32
Delimiters 32
Identifiers 34
Literals 15
Car 36




"SIV

ui

WOk W D REIATATIONG wrsissssvaviiviunssns insriivinsisionssied s snssssaiasscooma s s ARo T e A4 7

s D A N b e B S i i 37
Using NOT NULL Constraint 37
Using Aliases 1]

Introducing Operators ...

18

ASSIZNITVEIIY COPMRIRIR 4 ciiainnssonsisssonsondssotas soissind sansannsadasioinssi s winms pinsa isssskvwomsmpiinimsddobssainssa

Arithmetic Operators

Logical Operators

C ison Operators

1S NULL Operator

Concatenation Operator

LIKE Operator....

Range Operator: BETWEEN........oooveene 41
List Operatar; IN 41
Introducing Attributes 2
Using the %TYPE Attribute 42
Using the %ROWTYPE Attribute 43
Introducing PL/SQL Expressions 43
Boolean Arithmetic Expressions 43
Boolean Character EXpressions......eese s siess s 44
Boolean Date Expressions 44
Datatypes conversion in PLSOL 45
Explicit Conversion 45
Implicit Conversion 45
SUITITIATY - cvonivisincusivnsaan 46

& - gt

Character Functions A8
ASCI Function 44
LENGTH Function 50
INITCAP Function 31
COMNCAT Function 51
LOWER and UPPER Functions 52
INSTR Funetinn 51
LIEIM and BETEIM funclions 53
REPLACE Funclion Siy
SUBSTR Funclion 57
IEANSIATE Function 58

Date Function: 50
TO _DATE Function.. 50
TO_CHAR Function ., : il
ADE: MO THS PRI o i o i ya sk o' sl ausiatid st e e Sy b otk fil
MONTHS BETWEEN Function .62
LAST DAY Function (%]

vi



Contents

MNEXT DAY Function. ..o, 64

N SYSTIMESTAMP Funclion SOPTOUT OO f
B Numeric Functions . a5
- ABS Function 66
— CFI_and FLOOR Functinns 211
POAWWER Function 57

ROUND Function 68

SQRT Function N

MOD Function P

COUNT Function 20

SUM Function 21

SIGHN Function 1
Conversion Functiong i
COMVERT Function 73
TO_NUMBER Function 74

LB F LA OIS ettt st 01wttt smann 75
BEILEMAME Function i
EMPTY_BLORB and EMPTY_CLOB Function: Ih
Miscellaneous FURCHONS .. e 77
CREATEST and LEAST funclions, )
LSER and UID Funclions i

St v B0

Chapter 4" Understanding PL

Describing PLSQL Control Structures 82
Using Conditional Control s a3
IE-THEMN Hi
LE-THEM-EL SE Statement HES
|E-THEM-ELSEIF & it BS
Using CASE Stalements M
Using Sequential Control Statements a8
COTO S a0
MULL S A0
Using Looping Constructs in PLSQL ... e s s snens a1
LOOP Statement a1
EQRE 1 OOP 5 it 93
WHILE 1 O0P Statement a3
Summary Sy

Chapter 5 = Implementing SQL Operations in PL/SQL
Working with DDL and DML Statements in PL/SOL ...
Using the CREATE
Using the INSERT statement 99

vil



Using the SELECT statement ...
Using the UPDATE statement......
Using the DELETE statement...

Using the DROP st i
Transaction Management with PL/SQL
Using the COMMIT statement
Using the ROLLBACK statement.
Using the SAVEPOINT statement

B | =
— ]

" SIMP
STE--

Using the SET TRANSACTION statement 105
Using the LOCK TABLE it 106
Summary .. - 107
Working with PLISGQL Collections 110
Selecting PL/SQL Collection Types 110
Defining Collection Types in PLSOL 111
Declaring Collection Variables 114
Initializing Collections 115
Referencing Collections 116
Assigning Collections 117
Comparing Collections 118
Using Collection Methods 121
Working with PL/SQL Records 128
Defining and Declaring Records 129
Assigning Values to Record = 130
Inserting Records into the Datat m
Updating a Database with Record Values 132
Summary .. . : SPETT TR AT cinasina 133
——
Introducing Cursors 136
Understanding Implicit Cursors 136
Limitations of Implicit Cursors 137
Working with Explicit Cursors 138
Declaring EXplICHt CUPSONS s iiinsicissiuiianioissiiisiiss s it ossasssssssnsassiss bissssds bussavoioss imsibasns 138
Opening Explicit Cursor 139
Obtaining Rows from Explicit Cursor 139
Closing Explicit Cursor 140
Cursar Attributes 141
Explicit Cursor Attributes 141
Implicit Cursor Attributes 146
Cursor FOR loop 148
Cursor Variables 150
Cursor Expressions i 155

viii



Contents

SELECT FOR UPDATE in Cursors 157
Summary 159

Overview of PL/SQL Subprograms . 162
PLUSOL Procedures 162
PL/SQL Functions 164

Woaorking with Subprograms Parameters... . 167
Types of Subprogram P, 167
Using Notation for Subprogram F. 168
Using Parameter MOHEs .o 168
Using Subprogram Aliasing 171

Overloading SUBPIOBIAME i e sr s s e 173
Restriction while applying Overloading i 174

Using Recursion with Subprograms . 175

Using AUTHID Clause 176

Limitations of Subprograms ... s 177

SUMITIATY 1 evvrvsuimsersise s smsssss b s b R bbb bbb s s 177

Chapter 9 = Undersia
Overview of PLISQL Packages.

Package Specification and Package Body
Advantages of Packages
Understanding PL/SQL Packages with Oracle

The STANDARD Package

The DBMS_PIPE Package
The UTL_FILE Package

The UTL_HTTP Package

The DBMS_SQL Package

Native Dynamic SOL vs. DEMS_SQL Package

The DBMS_ALERT Package.

Using PL/SQL Packages
The DBMS_SQL Package
The DBMS_PIPE Package
Creating and Remuoving Pipes

Sending and Reading Messag 195
The UTL_FILE Package. 197
The UTL_HTTP Package 198
The DBMS_ALERT Package. 200
Building your own Package 203

¥




Describing Triggers ..

-
. -

! L L Types of Triggers
a- L DML Trigeers

= & DDL Triggers 21
E Database Event Triggers 212
el F INSTEAD OF Trippers 214

AFTER SUSPEND Triggers 216

m Maintaining Triggers 217
; Enabling or Disabling Triggers 217
Dropping Triggers 218

Renaming Triggers. 219

Handling Autonomous Transactions using Triggers..... 219

5 i 223

Understanding PL/SQL Exceptions
In-Built Exceptions

User-Deiined Exceptions 230
Raising Exceptions in PL/SQL.... 3
The BAISE § 1t 232
The RAISE_APPLICATION_ERROR Procedure 233
Handling PL/SQL Exceptions 234
Handling Exceptions Raised in Declarations ... 235
Handling Exceptions Raised in Handlers 236
Using SQLCODE and SGQLERRM. 238
Catching Unhandled Exceptions 239
P 239

Introducing Object Types 242

Using Object Types 242
Crealing Object Types. 242
Declaring and Initializing Object Types 243

Using methods in Object Types 245
Manipulating Object Types......

Inheritance in PLISOL ...

Method Overriding

PLSQL Collections and Object Types 156
Detining SOL Tvpes equivalent to PLSOL Collection Types 256
Using PUSQL Collections with SQL Object TYPES i sevssssasssnisrassies 258

Summary 262




Urheberrechtlich geschitzies Bild

Urheberrechtlich geschitztes Material



Dalab.\se managemen! is very crucial and tedious work for every organization as databases
contains all important information’s of an organization. Oracle is a database used in almost
every organization for managing data. Oracle is a flexible database that eases the problem of
managing data stored within your system or on Oracle server. Now, the question arizes that how
Oracle manages the data. The answer for this question is PL/50L, which is used for managing
the database. PL/SQL is a very efficient and easier 1o learn database programming language
designed to manage database. Each Oracle version comes with its corresponding version of
PL/SQL. PLASQL s a procedural database programming language that extends the functionality of
Structured Query Language (SQL) and uses them with in its procedural statements. PL/SQL uses
SQL DDL and DML statements to perform operations such as creating, altering, deleting the
database. These are the basic operations required to manage a database. PL/SQL executes SOQL
statements within PL/SQL block, which is the basic unit of PL/SQL. PL/SQL is a very flexible
database programming language that supports the advanced procedural programming concepts
and elements, such as:
O Support for all SQL datatypes along with its PL/SQL defined datatypes, Use of control
statements (I F-ELSE-THEN), iterative structures (FOR-LOCP, WHILE-LODP).
0 Support for subprograms such as procedures and functions, triggers, cursars,
0O Exception handling that lets you create bug free program and helps in managing errors such
as data not found.

SQL can issue only a single statement at a time, which will become more time consuming when
need to execute many SQL statements and leads in low database performance but PL/SQL allows
you to send multiple SQL statement to database simultaneously and thus reduces the overhead
af accessing the database for every single SQL statement. In this way, there are lots of advantages
of using Oracle’s PL/SQL, to know those let's start working with PL/SQL.

To start working with PL/SQL, you must need to know its need, advantages, architecture, and
features. This is all that we cover in this chapter.

What is PL/SQL?

PLSQL is procedural language, which is available with Oracle. PL/SQL is not a standalone
language because it works with Oracle. It is an extension to the SQL (Structured query language,
a database language used 1o perform various functions such as querying and updating data, on a
database). PL in PL/SQL stands for procedural language. PLSQL extends the functionality of SQL
and then combines it with procedural functionality such as loops, procedures, cursors to provide
better and more satisfactory result than SQL.

Now, the question arises that if we already have SQL {a flexible and easy to use query language)
then what is the need to extend the functionality of SQL by PLSQL? You must be curious to
know that why we need PL/SQL and what are the reasons behind its success and in making it a
ubiquitous database programming language. Now, we will depict the need to develop PL/SQL.

Need of PL/SOL

As we know SQL is a very easy and more convenient database query language but besides that it
has some limitations that become the need for developing PL/SQL. In SQL, we have to execute a
single statement at a time. So, if we need to execute multiple statements then Oracle database




Chapter 1: Introduction to PL/SQL

must be called several times to execute all the issued statements that reduce the database
performance. To improve the database performance, PL/SQL is developed. There was a problem
with the security of database as the code is executed on client-side rather than server. We were
not able to handie exceptions that lead in sudden termination of program at runtime.

To overcome all these problems, PL/SQL has been developed. PL/SQL has lots of advantages that
have made it a very successful and omnipresent database programming language that is in wide
use with Oracle. Here are given the advantages of PL/SQL:

O Easily adaptable and SQL supporting
O Enhanced Performance

0 Portability

O Security

We will study all these advantages of PL/SQL in the sequence. Let's start studying all these
advantages in detail. "

Easily adaptable and SQL supporting

PL/SQL supports the entire characteristic and statements available in SQL such as select, insert,
update, delete. Database can easily be created and manipulated by incorporating the SQL
statements in PL/SQL block.

PL/SQL supports all datatypes that are supported by SQL so you do not have to convert SQL
datatypes in PL/SQL datatypes. PL/SQL also allows you to use SQL operators, functions, and so
on.

PL/SQL is easy to learn and understand as most of the characteristics are extended from SQL and
the syntax used in PL/SQL is very simple to learn as it uses lots of keywords that clearly express
the purpose of your cade. Being familiar with any of the programming language such as c, c++
makes it easier to memorize and use the PL/SQL programming syntax.

Enhanced Performance

PL/SQL provides better performance than SQL because one SQL statement can be processed at a
time by database, which means if you have to execute more than one SQL statement than you
have to access database as much as SQL statement you need lo execute, Accessing the database
several times results in the congestion in network as database are penerally stored on server and
thus the time to process SQL statement will automatically increased, which leads in low
performance.

In PL/SQL, more than one SQL statement can be sent to Oracle database for processing because
in PL/SQL, you can collect all the statements in PLSQL block which is the basic structure of
PL/SQL and all the programs in PL/SQL can not be created without PL/SQL block or you can also
use PL/SQL subprograms to collect multiple SQL statements. A subprogram is a PL/SQL block
that consists the sequence of statements 1o perform some specific task, A subprogram can be
called by other PL/SQL programs. Thus, Oracle database will be accessed only once and there
will be no congestion in network, which results in the better performance. See the Fig, PL/SQL-
1.1 to understand the working without using PL/SQL and with using PL/SQL.




S0L Statement

Independent SCL Statement

BEGIN
IF.. . THEN

SOL Statement
ELSE Oracle Datat
Application SOL Statemant with PLISOL
END IF;
END;

:

PL/SQL block with multiple SQL. statements
Fig.PL/SQL-11

In Fig.PL/SQL1.1, it is clearly depicted that before the use of PL/SQL, an application has to
communicate with the database with several independent SQL statements that ultimately leads
in overhead on the database and reduces its performance, while with the use of PL/SQL, you are
passing several SQL statements within single PL/SQL blocks to database at same time and which
SQL statements has to be executed depends on the conditions provided within PL/SQL block. In
this way, PL/SQL in Oracle provides better performance.

Portability
PL/SQL is a portable language; that is, programs created in the Oracle environment can also be
executed on any operating system that supports Oracle. PL/SQL programs follows Write once
and run everywhere (within Oracle environment} slogan.

Security

PL/SQL provides higher security than SQL. PL/SQL stored procedures places the application
code centrally on server rather than placing on client system, By placing the application code
centrally, you can hide the code from other users. You can set the permission to access PL/ISQL
procedure by various users for performing different activities such as updating, deleting a table or
data within a table.

These are some advantages of PL/SQL due tc which PLSQL is a ubiquitous database
programming language. Let's have an overview of the various PUSQL versions to know the
enhancement made in PL/SQL versions released with every new Oracle version.

Versions of PL/SQL

Till today various versions of PL/SQL has been released along with the versions of Oracle. Every
new version of Oracle comes with its own version of PLSQL and every new version comes with
additional characteristics from previous version to provide you better functionality. In this book,
we are considering the Oracle 10g and the PLSQL version that is 10.0 that has been released
with it. Table 1.1 depicts all the versions available till the release of Oracle 10g.




Urheberrechilich geschiitzies Mater



Now, we have discussed that how Oracle’s PL/SQL has been improving to provide better
performance.

Let's study the features of PL/SQL to know all that PL/SQL consists and how it helps in making
database programming easy and efficient. Here, we study these features in brief because all
features will be discussed in detail further in this book. We also discuss the new features
included in the PL/SOL for Oracle 10g.

Features of PL/SOL

Many of the key features in Oracle 10g PL/SQL are same as the previous versions (PL/SQL 9.2).
Still this version has some new improvements due to which the database performance is more
enhanced. PL/SQL has changed the way of database programming and becomes the omnipresent
database programming language.
PL/ASQL allows using SOL statements within PLSQL block. Program flow can be controlled and
multiple SQL statements can be sent to database at the same time. PL/SQL subprograms
(procedures and functions) can be used to make the program easier.
We will discuss all features in details in forthcoming chapters but here we can have an overview
of all the main features of PL/SQL along with the new features added in this version of PL/SQL in
Oracle 10g. Here we discuss the following main features, which are then followed by the new
features added in this version:
o PUSOL Block

PL/SQL Variables and constants
a  PLSQL contral structures
Q  Using SQL within PL/SQL
a  PL/SQL collections
O PLSQL Records
a  PUSQL Subprograms
a  PLASOL packages
0 Exception Handling
Here, we start discussing all these leatures,

PL/SQL Block

A PL/SQL program consists minimum one PLSQL olock. It is not possible to create a PL/SQL
program without PLSQL block that's why PUSQL block is very important and basic unit of
PL/SQL. A PUSQL block has different parts and that parts are Declarative part where you declare
items such as types, variables; it is optional part, Executed part where you write procedural and
SQL statements and is necessary part of PL/SQL block; without it PLSQL block is incomplete,
and final part is Exception handling where you provide the code to handle exceptions; it is also
an optional part.

A PLSQL block has four keywords, DECLARE, BEGIN, EXCEPTION, and END. DECLARE
keyvword is used to break the PLSQL block in declarative part, BEGIN is used to define the
Execution part, EXCEPTION keyword is used to start the exception handling, and END keyword




1: Introduction to PL/SQL

is used to end the PL/SQL block. See the following snippet to understand the PL/SQL block
structure:

Variables and Constants

PL/SQL allows declaring variables and constants so that they can be used in execution part.
Variables and constants must have to be declared before using in statements (Execution part).
Variables and constants can have any SQL (such as NUMBER, CHAR, VARCHAR2) or PLSQL
datatype (BOOLEAN). The only difierence between the declaration of variables and constants is
that while declaring constants, you need to use CONSTANT keyword and value should be
assigned at the time of declaration. In case of variables, values can be assigned in execution part.

Control Structures

It is a very important feature of PL/SQL that lets you allow adding constraints on statements to

send multiple statements 1o database at the same time rather than sending the several

independent statements as we ever did in SQL. PL/SQL provides the following control structures:

O Conditional controls: This control allows you to execute several statements based on
different conditions. You can check those conditions with the help of IF—THEN-ELSE
statement to execute the proper statement. IF clause checks the condition and if the
condition is true then the statement written under THEN clause will be executed otherwise
the control transfers to ELSE clause and that will execute. In this way, conditional control
structure works.

O Iterative controls: Sometimes you need to execute a sequence of statements multiple times,
which was not possible with SQL but PL/SQL provides you iterative controls to complete
your requirement. PL/SQL provides you several loops such as LOOP---END LOOP, FOR
LOOR, WHILE LOOP, All these iterative structures will be explained in Chapter-4.

O Sequential control: This control allows you to transfer the control from one part of program
to another. PL/SQL uses GOTO keyword to support sequential control.

within PL/SQL

has extended all the features of SQL. It allows using all SQL dataypes, operators,
and so on. Using PL/SQL, all the DDL and DML statements can be executed from
within PL/SQL block.



PL/SaL Collections

Like other programming languages such as ¢, c++; PLSQL also allows vou to group elements of
similar datatypes. In ¢, ¢++, group of elements of same datatype is done with the use of arrays,
hash table and so on, but here arrays are called as varrays and hash table are known as
associative arrays. If you are familiar with any other programming language such as ¢, c++ then
tearning PLSQL collections become very easy but i you are not familiar with any other
programming language and it is the firsl language yvou are studying then also have no need to
worry because PLASQL is an easy language to understand. The use of PLSQL collections will be
depicted in the Chapter-6 of this book.

PL/SOL Records

Records are like data structures used in programming languages such as ¢, c++. As data
structures are used to group various elements of different datatypes, in the same way records are
used. The only difference between collections and records is that using collections you can
group element of similar datatype and using records dissimilar datatypes can be grouped. For
example, if you want to collect the information of an emplovee such as hisher name, age,
address, then you can do this by using a single record but if vou use collection then you have to
make various collection (such as varray) 1o group the elements of similar dataype. The use of
PL/SOL records will be depicted in the Chapter-6 of this book.

PL/S0L Subprograms

PLSOIL also allows using procedures and functions as other programming languages. In PLSOL,
procedures and functions are collectively known as subprograms. A PL/SQL subprogram s
simitar to PLSOQL block fanonymous block), except that a subprogram must have some name so
that it can be invoked anywhere in the program or in any other application.

Subprograms are very important in large application as it breaks down the big and complex
application into easily manageable maodules,

Subprograms have promoted the concept of reusability. The same subprogram can be used more
than one time in various applications. Once tested successiully then it can be used directly in
any application without wasting time on wriling it again and again for a new application,

PL/SQL procedures and functions are structurally same but have only one ditference in which a
function has 22Tt clause. Subprograms will explain in detail in Chapter-8 of this book,

PL/SOL Packages

A PLSOL package is known as database object, which is used to bundle logically related PL/SQL
PLAAOL comes with lots of predefined packages such as

|‘I|Jl'l'l|U|’i'k .I.’il‘lr

1 that can be used directly in your application or new packages
with your own specifications which can also be created.

A PUSOL package has two parts, specification and bady, Specification part can be created with
the use ol © SQL statement and use 1o declare constants, variables,
procedures, functions, cursors and exceptions in a package.




1: Introduction to

Package body is created with the use of CREATE PACKAGE BODY, SQL statement and package
body contains procedural and SQL statements. Basic structure to create PL/SQL package is given

This is just an overview of packages in PL/SQL. Packages will be explained in detail in Chapter-9
of this book.

Exceptions are runtime errors that interrupt the execution of PL/SQL program. There are many
such as program is not properly designed, dividing any number by zero for occurrence
of an exception. To avoid the program interruption, PL/SQL provides the mechanism to handle
the exception. To handle exceptions, enclose the program code within BEGIN and END clause
with exception handler in PL/SQL block. £xCEPTION keyword is used to start the exception
handling in PL/SQL block.
PL/SQL also allows you to create your own exceptions along with handling the predefined
exceptions (this type of exception generally occur when any number is tried to be divided by
zero, stack overflow and so on). ZERO_DIVIDE exception will accur when you try to divide any
number by zero.
To create your own exceptions, RAISE statement needs to be used. How to handle exceptions
and how to generate your own exception will be explained in Chapter-11 of this book.
With the end of preceding given feature, you must understand that why PL/SQL is so popular,
now we continue with the new features added in PL/SQL for Oracle 10g.

Features added in PL/SQL for Oracle 10g

features added in this version of PL/SQL have made it more convenient, easier, and more
automatic to use. New features added in this version are as follows:

O Improved Performance: This version of PL/SQL comes with more automated features such
as reuse the expression code, introduction of new datatypes for processing scientific
operations which has involved in improving its performance.

O Support for FORALL statement: FORALL statement lets you allow to process DML
statements more efficiently by iterating over non-consecutive indexes. PL/SQL has INDICES
OF and VALUE OF clauses to iterate over non-consecutive indexes. FORALL statement uses
specified index in a collection to iterate and process the statements,



3 Introducing BINARY_FLOAT and BINARY_DOUBLE floating point datatypes: These are
two new introductions in the datatypes, These datatypes support IEEE 754 format and are of
floating point type. These are used for intensive scientific computation where floating
datatypes are used in calculation.

0 Enhanced Overloading: Overloading has impraved in this version. Subprograms that have
different numeric datatypes as parameter can be overloaded in this version.

O Improved Nested Tables: Now you have more enhanced Nested tables. Using this version,
nested tables can be compared for equality such as you can check that whether a nested
table is a subset of another nested table or not, you can check whether a particular element
is a member of a speciiic nested lable or not.

O Compile Time warnings: These features helps in making a PUSQL program more robust and
well functioning. By using this feature, Oracle issues warnings during PL/SQL program
compilation when found any problem such as passing char value to float column in INSERT
statement. You can use PLSQL WARNINGS initialization parameter and DBEMS WARNING
package to manage compile time warnings.

O Implicit conversion between CLOB and NCLOB: Before introduction of this feature, user
have o use TO _CLOBE and TO_NCLOE o convert into NCLOE and NCLOB into CLOB
hut now user do not have to convert them explicitly because in this version, Oracle makes
implicit conversion between them wherever required.

0 Flashback Query Functions: This feature is used to know the timestamp associated with a
particular SCN (System Change Number) and also 523 at particular moment of time and for
this purpose, you have SCN_TO_TIt AMP and TIMESTAMF_TO_SCN funclions to use.
SCN_TC MESTAME function takes number as parameter and returns the timestamp
associated with that sci while TIMESTAMP TO SCHN function takes time value as
parameter and returns the SCN at that moment.

Here, we have completed discussion on PUSOL features and the new features added in the

PL/SQL for Oracle 10g.

Let's study the basic working structure of PLSQL in Oracle. We are talking about the

architecture of PL/SQL in Oracle. It is necessary to understand the architecture because if you do

not know that how PLSQL process the statements included in PLSGQL block, it becomes difficult

1o understand the PL/SQL programming.

3

PL/SQL Architecture in Oracle

Architecture of PL/SQL represents its basic working in coordination with Oracle. A PL/SQL block
or subprogram consists of both procedural statements and SQL statements, PLSQL architecture
describes the process that how PL/SQL in oracle interprets a PLSQL block or subprograms.
PL/SQL architecture in Oracle 10g consists of PL/SQL block or subprogram, PL/SQL engine, and
Oracle server. PLSQL engine compiles and executes the PL/SQL block or subprogram. Oracle
database or application development tools such as Oracle forms, Oracle reports contains PLISQL
engine, PLSQL engine contains PL/SQL procedural statement executor to execute procedural
statements within a PL/SQL block or subprogram and Oracle server contains SOQL statement
executor to execute SQL statements. PLSQL engine and Oracle server work in co-ordination to
process a PUSQL block or subprogram. Fig PL/SQL-1.2 depicts that how PLSQL engine and
Oracle server work together and process a PL/SQL block or subprogram.




Chapter 1: Introduction to PL/SQL

BEGIN Procedural Stalemanis PL/SQAL Engine
IF... THEN —_—— .
SQL Statement
ELSE Procedural
SOL Statement 50L Statements Statemant
ENDIF: — Exacutor
END;
PLISQL Block

Oracle Server

S0L Statement Execulor

Fig.PL/SQL-1.2

PL/SQL engine accepts pracedural statements and SQL statements as input. PL/SQL engine then
process all procedural statements through procedural statement executor and send the SQL
statements to Oracle database server to process. In this way, a PL/SQL block or subprogram is
processed.

With this, we have completed discussion on PL/SQL Architecture and the way a PL/SQL block or
subprogram processed.

With the end of discussion on PL/SQL architecture, we finish this chapter. By now, yvou must
have enough idea about PL/SQL such as the requirement of PL/SQL and its architecture, Before
closing this chapter, let's have a glance on summary.

Summary
In this chapter, we have studied about:
O The introduction of PL/SQL
The Need and advantages of PL/SQL
The various versions of PL/SQL
Features of the PL/SQL
The PL/SQL Architecture

=l =y w =)

"



Urheberrechtlich geschitztes Bild

Urheberrechtlich geschiitzies Material



In the world of computerization, when we talk about programs then we must also take into
consideration concepts, such as the program structure and datatype. A program may conlain
various variables to store data and those variables must be assigned with some specific
datatypes. Thus, datatypes can be defined as a format to store data. PL/SQL provides various
datatypes, such as TNTEGER, FLOAT that help Oracle to choose a storage format for internal
representation of objects and impose a range of values upon those objects. A PLSQL developer
should have knowledge of the predefined datatypes associated with PL/SQL so that one can
choose appropriate datatype for a variable used in an application. For example, you can choose
PLSQL data type vARCHARZ for name of a human being. Further knowledge of the basic
program structure of PL/SQL also helps us in partitioning the application into easily manageable
sections. This partitioning also helps us to catch and fix flaws in different parts of the program.
We begin this chapter with a discussion on the PL/SQL block structure moving on to further
concepts, such as datatypes, lexical units, and operators whose prior knowledge is essential
before beginning with PL/SQL.

Describing Block Structure

PL/SQL is also known as a block-structured language as a simple PL/SQL program contains many
logical blocks where each block solves a part of the problem. For example, a PL/SQL program
may use any function inside itseli to perform some operation and this function then helps in
solving some part of the problem, which is to be addressed by the same PL/SQL program.

To understand the functioning of a PL/SQL program, we divide its study into blocks and study
each block separately. Every program consists of one or more blocks, where each block contains
related declarations and statements. A PUSOL block can consist of the following sections in this
sequence:

0 Block Header

O Declaration Section

O Execution Section

O Exception Section

Block Header

The block header section contains the name of the block. It is optional and used only when there
is a need to assign any name to a PL/SQL program. Name assigned to a PL/SQL program helps in
calling it in other PL/SQL programs. The PL/SQL block header in PL/SQL block structure is
shown in Fig.PLSQL-2.1.

Hea,

DECLARE )
Dectaratson Sectan
Bl

| Evecution Secten

| EXCEPTICN.
| P bansmom

D

Fig.PLISQL-2.1

14



Chapter 2: PLISQL E: il

After the block header, we need to declare PL/SQL variables (which are further used in a PL/SQL
execution section) in the declaration section.

Declaration Section

We now need to put information in a program block about the variables used in the block, such
as associating datatypes with variables, initializing variables, This objective is achieved using the
declaration section. However, this section is not compulsory. It is used in a block only when we
need to declare variables. If a situation arises where we do not need variables, this section can
be avaided.

The declaration section starts with the DECLARE keyword. After the DECLARE keyword,
declarations of variables are provided.

The syntax for writing this block is as follows:

DECLARE
variable name<space> Datatype;

The execution section follows the declaration section.

Execution Section

Execution section follows the declaration section in the conventional program block. Execution
section is the most important section of the PL/SQL block structure as it is responsible for the
actual execution of the code. In other words, we can say that it is the functional part of the
PL/SQL block.

This section starts with the BEGIN keyword and ends with the END keyword, Between BEGIN
and END keywords, we write the set of instructions or code that we want to execute using
PL/SQL.

It is however not necessary that the code we write in this section must produce an action. The
code gets compiled even if the instructions given in the execution section do not signify an
action,

All DML (Data Manipulation Language) and DDL (Data Definition Language) commands may be
used in this section. Listing 2.1 contains an example of the execution section of the PL/SQL
block.

Listing 2.1: Example of PL/SQL block containing execution section

Listing 2.1 shows the code to retrieve the system date into a variable (v_date_time) of type
DATE.

To retrieve the date, we use SYSDATE (In-Built PL/SQL function).

15



To display the output, we use PUT _LINE procedure of DBEMS_OUTEUT (In-Built PL/SQL
package).

To display the result, we use SET SERVEROUTBUT ON hecause by default SQL *Plus does not
read what a PL/SQL program has written with DEMs_oUuTPUT package. We discuss more about
these concepts further in the book.

Listing 2.1 can be executed in the following two ways:

Q  Using SOL*Plus

O Using iSQL*Plus

Let's explain each way in detail 1o execute a simple PLUSQL program.
Using SQL"Plus

It is used to execute the PL/SQL programs and statements on a single user mode, that is Oracle
PL/SQL installed on a system cannot be shared by multiple users.

Let's see how to execute Listing 2.1 in SQL Plus. To execute the listing, follow the steps given
here:

1. Click start=>All Programs->Oracle-OraDb10g_home1->Application Development->SQL
Plus, as shown in Fig.PL/SOL-2.2.

Fig.PL/SQL-2.2
The Log On window appears, as shown in Fig. PL/SQL-2.3.

16



2. Inthe Log On window, enter the user
Fig.PL/SQL-2.3.

Now, enter the password as tiger in
Then, enter the host string in the Host

Now, cfick the OK button
shown in Fig.PL/SQL-2.4.

o W

6. MNow, write the code shown in
Fig.PL/SQL-2.4.

: Release 10.1.0.2.8 -
{c) 1982, 2aes,
to:
Database 10y Enterprise
the Partitiening, DLAP and

SET SERVEROUTFUT DM
DEC.:

¢ u_date_time DRTE:

d BEGTH

& SELECT (LI
5

& EHD;

LA

7. Now, press the ENTER key to
output will be displayed as shown in

procedure

2: Essentials

as scott in the User Name text box, as shown in

Password text box (Fig.PL/SQL-2.3).
text box, as shown in Fig. PL/SQL-2.3.
-2.3}. The Oracle SQL *Plus window appears, as

2.1 in the Oracle SQL *Plus window, as shown in

on Tue Jan 29 14:31:12 2008

ALl rights resecued.

Release 10.1.9.2.0 - Produection
Miming options

the code. As soon as you press the ENTER key, the
PL/SQL-2.5.

corpleted.

17



This is the process to execute the PL/SQL programs and statements in SQL *Plus.

Using iSAL*Plus Console

18

It is used to execute the PUSQL programs and SQL statements on networked systems, Multiple

users in the same network can access Oracle PL/SQL installed on a system by specifying the

network path (For example, http://localhost: 5560/ isglplus/).

Let's follow the steps given here to execute Listing 2.1 in iSQL*Plus console:

1. Enter the URL tfor example, htep: //localhost 15560/ isqlplus) in the Address bar of
vour web browser (Fig.PL/SQL-2.6) to open the Oracle iSQL*Plus login console
(Fig.PL/SOL-2.7).

D sbart ek - Meic et it pe ot | rpire

P P — =
£ F) G e e @ -5 L O B

M [ e— - "l‘“(_e . " G

Fig.PLISQL-26
Click the Go button, as shown in Fig.PL/SQL-2.6. The iSQL*Flus login console appears
{Fig.PLSQL-2.7).

3. In the iSQL*Plus login console, enter the user name as scott in the Username text field, as
shown in Fig. PLISQL-2.7.

4. Then, enter the password in the Password text field (Fig.PLSOL-2.7). In our case, we have
used the default password that is tiger.
5. Enter the host string that is orcl in Connect Identifier text field, as shown in Fig. PL/ISQL-2.7.

6. Now, click the Login button (Fig.PL/SQL-2.7). The Oracle iSQL*Plus workspace window
appears, as shown in Fig.PL/S(JL-2.8.




Chapter 2: PLISQL Essentials

FigPL/SQL-2.7
7. Write the code written in Listing 2.1 in the workspace window and press the Execute button,
as shown in Fig.PL/SQL-2.8.

CRACLE "

Cam
i
+ a2 i DT, - Dacioreg aralin
SN
SELECT SYSIATE W10 v 4aa st FROM
DENET, DLTRT FAIT_LNE Y bate S0t
=3
Losiaen) | Gow berwl } | Camow )
e

Wbmpace | o | L

Fig.FL/SQL-2.8
The Oracle iSQL*Plus workspace appears once again to display the output, as shown in
Fig-PL/SQL-2.9.

19



ORACLE WP
SOL Plas . S &

P i i

werered va 40T garel

Workspace
Eriee S0, PLESOL el S50 P Hliamnti. (Cew)

SecLars
Py I ——

it

SELECT STSDATE M0y e tmve FROM dost
7, DUTPT FUT LI, fafe, S

e D T ) ]
TR JAN
PUSKL procsde surmasstiy somplsied

e 4o Werbapase | sty | Lismd | Exceascry |t

Fig.PL/SQL-2.9
This is the process to execute the PL/SQL programs using iSQL*Plus console. Now, if you want
to execute some more programs then click the Clear button, as shown in Fig.PL/SQL-2.10.

This will clear the workspace window (Fig.PL/SQL-2.10} and then you can continue working
with other PL/SQL programs.

oRACLE
SQLPlus -

Evsara') | Lot b)) Bt Sirp ) | Esne

[

abagae |

Fig PL/SQL-2.10




2: Essentials

So, these are the two processes to execute the PL/SQL programs. Now, let's continue our
discussion with the next PL/SQL block structure that is exception section,

Section

Exceptions are certain abnormal conditions, which occur sometimes during execution of a
PL/SQL program and cause the program to terminate. Exception section of the program block is
an optional one. All sections of the program block except the execution section are optional
sections. To make a PL/SQL program free from runtime errors or exceptions, you are suggested to
use exception section in PL/SQL programs.

The exception section in a block begins with the keyword ExceEpTION and ends with the
keyword END.

This section basically catches the errors that occur when the program is executed. These errors
are caught using the various functions provided specifically for this purpose. Some functions for
exception handling are provided under the STANDARD or DEMS STANDARD packages. We
read more on exceptions in Chapter 11(Handling Exceptions in PL/SQL).

The following code snippet shows a simple EXCEPTION section of PL/SQL program.

After understanding the block structure of PL/SQL program, let’s study various types of blocks.

of Blocks

Depending on the header section, there are two main categories of blocks—anonymous blocks
and named blocks. A third kind of block known as nested block is also available that can
contain one or more anonymous/named blocks. Let’s now study all these blocks in detail.

Blocks

Anonymous blocks, as the name suggests, are those blocks that do not have a name. Therefore,
we do not have any block header for these blocks; but they have one or more sections, which
are declaration, execution, and exception. Since they do not have a name, we cannot call them,
Due to this, anonymous blocks are also not stored in the database. However, an anonymous
block can call other named blocks.

Uses of anonymous blocks in PL/SQL are:
0 Declaring variables that can be used in the execution section.

0O Declaring cursors that can be used in the execution section. Cursors are used to access
elements stored in a collection. We will study in detail about cursors in Chapter
7{Understanding Cursors in PL/SQL).

21



O Execuling cursor SELECT statement.

Named Blocks

Named blocks are the blocks that have some name. It is obvious that if a block is a named block,
it would contain a block header because the name of the block is defined in a block header.
Therefore, any named block would contain at least two or more block sections. This is because
the execution section is a necessary section for any PL/SQL block and if we make header
compulsory then there would be two compulsory sections in the block, Overall, a named block
can have all the four sections—block header, declaration, execution, and exception.

Nested Blocks

Nested blocks are yet another important kind of PL/SQL blocks. When we have blocks placed
inside other blocks, we call this phenomenon as nesting and such blocks are known as nested
blocks. These nested blocks might further differ from each other depending on several different
criterions. One of such important criterions is the level of nesting. Each Nested block has a
certain depth. This depth is the number of levels to which that block has been nested. For
example, if we have a block within a block, then it is said to be nested to level one. If the block
contained inside the block further contains another block, then the level of nesting increases to
two. Nesting is allowed only in two sections—execution and exception—of the PL/SQL block.
Let's now discuss the various data types available in PL/SQL to store real world entities, such as
numbers, text, and images,

Introducing Datatypes

Having knowledge about datatypes is essential before beginning with application development
in any programming language because datatypes form the most basic building blocks for
developing any program. PL/SQL supports all the predefined datatypes in SQL and also some
additional ones. There has to be a datatype for every variable or parameter in PL/SQL.
Depending on the need of the application, we can choose the datatype that suits us the best.
Warious datatypes available in PL/SQL are:

a  Number Types
O Character and String types
a  Mational Character Types
O Boolean Types
Q  LOB Types
O [Date and Time Types
a  Subtypes
Number Types

Number types are scalar datatypes. The datatypes that hold single value are known as scalar
datalypcs. As the name sugpests, number types are used to store numeric values, These numeric
values may include integers, real numbers. Usually, we use number types for fields that need
numbers as values, such as age, measurement.

22



Chapter 2: PLISQL Essentials

The number types are further divided into following types:

o

0gooo

BINARY_INTEGER
NUMBER
PLS_INTEGER
BINARY_DOUBLE
BINARY_FLOAT

BINARY_INTEGER
BINARY INTEGER stores the signed integer in a two's compliment form. The range of binary
types is from -2147483647 to +2147483647. This type is generally used when we need to
perform arithmetic operations. It has following sub types:

[u]

=]
o
=]
=]

NATURAL: May store integers in range from 0 to 2147483647,
POSITIVE: May store integers in range from 1 1o 2147483647,
NATURALN: Same as NATURAL, but cannot assign null to integer variables.
POSITIVEN: Same as POSITIVE, but cannot assign null to integer variables.

SIGNTYPE: It is used in programming tri-state logic that is an integer variable can only have
value either -1, 0, or 1.

NUMBER

The NUMBER type can hold floating-point values or integers in the range from 1.0x10/-130 to
9.99x10/125. The general syntax of NUMBER type is as follows:

NUMBER [ (precision,scale)]

In the preceding syntax:

Q
[u]

precision: represents the tatal number of digits that a number variable can store.

scale: represents the total number of digits that a number variable can contain to the right of
the decimal. The scale can range from - 84 to 127. We can only use integer literals for
specifying precision and scale.

Now, see the subtypes of the NUMBER type:

O DEC, DECIMAL, and NUMERLC: Used to declare fixed-point numbers with precision up to 38
decimal digits,

O DOUBLE PRECISTION and FLOAT: Used to declare floating-point numbers with precision
up to 38 decimal digits. -

0 REAL: Used to declare floating-point numbers with precision up to 18 decimal digits.

O INTEGER, INT and SMALLINT: Used to declare integers with a precision up to 38 decimal
digits.

PLS_INTEGER

BLS INTEGER type can store signed integers in range from —2147483647 to +2147483647.
PL5_INTEGER datatype is more efficient than NUMBER datatype since PLS_INTEGER values

23



take less storage than NUMBER values and also use hardware arithmetic for operations involving
them. Oracle recommends the use of PLS_INTEGER over BINARY INTEGER for developing
new applications.

BINARY_DOUBLE
BINARY DOUBLE datatype was released for the first time with Oracle 10g release 1. 1t is called
BINARY_DOUBLE because it is an |[EEE-754 double precision floating datatype.
Literals of BINARY DOUBLE type end with d, such as 1.005634d. It is a high precision datatype,
which is generally used to measure system performance. It is used to measure performance
because working with system parameters requires performing several complicated calculations
correct to several decimal places,

BINARY_FLOAT

BINARY FLOAT datatype is newly introduced with the Oracle 10g rclcasc 1. 1t is also used to
perform high precision scientific calculations but unlike BINARY DOUEBLE, it is single precision
float datatype. However, it finds a similar application to BINARY DOUBLE datatype in
measuring performance gains, Literals of 818ARY FLOAT type end with f, such as 3.871.

Character and String Types

The character or string types in PLSOL are used to store everything from single character values
to large strings up to 32K in size. We can use these types to store letters, numbers, or binary
data, We can also store any character supported by the database character set using this type.
Character types are also scalar types. Various different datatypes that are included in this type are
as follows:

2 CHAR

a LONG

0 LONG RAW

a  NCHAR

O NVARCHAR2

O RAW

O ROWID

o UROWID

a3 VARCHAR

a  VARCHAR2
CHAR - .

CHAE s a fixed length datatype. By default, data is stored in bytes. 1t is usually used to store the

basic character type values. Internal representation of characters depends upon database

character set (ASCIIl, EBCDIC. ...}, The general syntax of CHAR data type is as follows:
CHAR[(size[CHAR|BYTE])]

The size literal can have value from 1 to 32767, The size can be in terms of characters or bytes.

Therefore, upper limit of CHAR variable is 32767 bytes but we cannot insert CHAR values

greater than 2000 bytes in CHAR database column. Default value of size is 1,

24




2 Essentials

LONG type is used to store variable-length character strings. It can hold values up to 32760

bytes. Note that the long type in PL/SQL is different from the LONG database column used in

Oracle database. Maximum width of LoNG column in Oracle database is 2147483648 bytes.
we can insert LONG value into ZONG column but we cannot do vice versa.

RAW is similar lo the LONG type but it can also store binary data in addition to storing
strings. B R

You are already aware of ASCIl and EBCDIC character sets, which are used to represent roman
These alphabets are internally stored only in one byte but some characters of Asian
such as Japanese need more bytes for their internal storage representation. Therefore,

provides globalization support to run Oracle applications in many language
environments, Two character sets that are used for internationalizing (or globalizing) an
application are database character set and national character set.

National character set is used for national language data. National character set represents data

two encodings—UTF8 and AL16UTF16. In UTF8 encoding, each character may be stored

1, 2, or 3 bytes depending upon runtime length requirement. In ALT6UTF16 encoding, each

is stored in 2 bytes whether a string consists of ASCIl characters or not. This is more
encoding at runtime.

holds fixed-length national character data. Internal storage representation of string

depends upon specified national character set with specified encoding. The general syntax of

NCHAR data type is as follows:

size in this syntax is an integer literal. The upper limit of size literal is 32767/2 for
AL16UTF16 encoding and 3276773 for UTF8 encoding. The maximum size of NCHAR database
is 2000 bytes; therefore, you cannot insert NCHAR values exceeding 2000 bytes into a
database column.
can assign a CHAR value into a NCHAR variable but opposite assignment results into loss of
bytes.

holds variable-length character data. It is identical to the VARCHARZ type, but takes
character set specified by the National Character Set. The general syntax of NVARCHARZ
as follows:

25



In this syntax, the size is a literal. The upper limit of size literal is 32767/2 for AL16UTF16
encoding and 32767/3 for UTFB encoding. As maximum size of NCHAR database column is
4000 bytes, therefore you cannot insert NCHAR values exceeding 4000 bytes into a NCHAR
database column.

You can assign VARCHARZ value into a NVARCHARZ variable but opposite assignment results
into loss of some bytes,

RAW

The RAE type stores fixed-length binary data, such as a set of graphic characters and can hold
up to 32K (32,767 bytes). The general syntax of RAW types is as follows:

RAW(5ize)

The size is an integer literal and can have values from 1 to 32767. Since the BaW column of
Oracle database can hold only 2 Kilo bytes, therefore, we cannot insert BAW value into RAW
column. We can store RAW value into LONG RAW database column. We also cannot retrieve
value of the LONG RAW column into LONG EAW variable.

ROWID

Every record in a database table internally contains a unique binary value called a ROWID. The
rowid is storage address of the row. The rowids can be of two types—physical and logical.
Physical rowids provide quick access to specific rows. By default, there is one physical rowid for
each row in the database table. Physical row id can be of two formats—10-byte extended rowid
format and 6-byte limited rowid format. You can also retrieve the rowid of a particular row. SQL
* Plus automatically changes binary rowid into character rowid. Execute the following query to
see rowid:

select rowid,ename from bonus where empid=102;
This query generates the following row:

Rowid Ename
AMAL+DAAEAAAAAVAAE  Gaurav
The general format of received rowid is OOOOOOFFFBBBBBBRRR. This rowid format has
following four components:
Q 00000O0: These six O's represent database segment, In our case, it is AAAL+b, This
number is also called data object number.
O FFF: These three F's represent file number that recognizes data file, which consists the row.
In our case, it is ARE.
O BBBBBB: These six B's represent block number that recognizes data block, which consists
the row. In our case, it is ARRRAY.
O RRR: These three R's represent the row in data block.
Logical rowids provide quicker accesses to particular rows. Oracle uses these rowids to make

secondary indexes on indexed tables. If we change location of the row, its logical rowid remains
same,

26



Chapter 2: PL/SQL Essentials

ROWID type can only store physical rowids not logical ones. You need to be careful when
retrieving and storing database rowid into ROWID variable or vice versa. Use ROWIDTOCHAR
function to convert binary value into 18 byle character string when fetching database rowid into
ROWID variable; otherwise, use CHARTOROWID function.

UROWID

UROWID provides support for storing both physical and logical rowids. There is no need to use
conversion functions when retrieving or storing UROWID variable into UrROWID dalabase
column. The UROWID column can stare maximum 4000 bytes,

VARCHAR2

VARCHARZ data type is used to store variable-length character data, The general syntax of
VARCHARZ data type is as follows:

VARCHARZ (size [CHARIBYTE]

The size in this syntax must be integer literal. It can take value from 1 to 32767, VARCHARZ
variables having length shorter than 2000 bytes are known as small VARCHARZ variables. For
these variables, PL/SQL statically allocates memary equal to declared size of variable. For larper
variables, PL/SQL allocates memory dynamically whose size is just enough to store runtime
value. Note that you cannot insert VARCHARZ values grealer than 4000 bytes into VARCHAR2
database column.

We can insert VARCHARZ values into LONG database column but we cannot retrieve value of
LONG database column into VARCHARZ variable.

The subtypes of VARCHAR2 are STRING and VARCHAR. These types have the same range as
that of VARCHARZ type.

VARCHAR

VARCEAR is an ANSl-standard SQL type, synonymous with VARCHARZ. Oracle recommends
using VARCHARZ to protect against future modifications to VARCHAR impacting code.

~ Boolean Types

PL/SQL supports BOOLEAN data type to represent logical values—TEUE, FALSE, and NULL. You
can assign NULL value to a BOOLEAN variable when you do not know either value of the
variable or assigning value to a variable does not make any sense for a particular record in table
or variable. For example, in record of employee who holds designation of a software engineer,
comm_pct variable or field, which represents percentage of commission does not take any
value but for a sales person, commission matters and comm_pet variable has some definite
value. Therefore, comm_pct variable may be assigned to NULL value for software engineer.

Note that you cannot use BOOLEAN variables in SQL queries since SQL does nat support
BOOLEARN data type. This note also implies that you neither insert BOOLEAN values into a
database column nor retrieve column values into BOOLEAN variable.

You cannot use quotes when assigning TRUE, FALSE, or NULL values to a BOOLEAN variable

else you will encounter an error. Listing 2.2 tries to assign TRUE as a character string to a
Boolean variable,

27



Listing 2.2: Assigning character variable to boolean variable

On execution on iSQL*Plus, Listing 2.2 generates following output:

The output shows error expression is of wrang type in line 4,

LOB Types
LoB stands for large object. PL/SQL supports various LOB datatypes, such as BFILE, BLOB,
cLoB, and NCLOB. These datatypes can store text, graphics, audio, and video clips. Size of
BLOB, CLOB, and NCLOBE datatypes ranges from 8 to 128 terabytes but size of BFILE s system
dependent and cannot exceed than 4 gigabytes.
LOB types are manipulated through lob pointers which can point to large objects stored in
external file, inside or outside the row. LOB database columns also store lob locators. When you
fetch a LOB column value, you get only lob pointer. This lob pointer is used to manipulate
corresponding large object. You can use existing package D3MS LOE to perform read and write
operations on LOBs,
You can also convert CLOBs to CHAR, VARCHARZ types or BLOBs to Raw and vice versa,

BFILE Datatype
BFILE datatype is used to store large binary objects in operating system files outside the
database. The pointer stored in EFILE variable points to large binary file on server and contains
full path of binary file. These ¥ ILE variables are read only. Note that you can limit the number
of opened BFILEs by setting Oracle initialization parameter SES510N _MAX _OPEN_FILES. This
parameter is also system dependent.

BLOB Datatype
BLOE dala type is used to store large binary objects in the database, inside or outside the row.
You can use only BLOBs not BFILEs in transactions .You can also either revert back or commit
changes made to BLOBs using DEMS _LOB package.

CLOB Datatype

CLOE data type is used to store large group of character data in the database, inside or outside
the row. CLOBs participate in transactions and you can either revert back or commit changes
made to CLOBs using DBMS_LOB package.

28



Chapter 2: PLISQL. Essentials

NCLOB Datatype
NCLOB data type is used to store both fixed and variable length NCHAR character blocks.
NCLOBs participate in transactions and you can either revert back or commit changes made to
NCLOBs using DBEMS_LOB package.

Date, Time, and Interval Types

Both date and time are stored in one variable called datetime variables and time periods are
stored in anather datatype called interval datatype.

DATE Datatype
DATE data type is used to store fixed length date and time in which time is specified in seconds.
Oracle initialization parameter NLS_DATE_FORMAT determines default date format. Usually,
default date format is ‘DD-MON-YY' where DD is two digit number for day, MON is abbreviation
for month, YY includes last two digits of year.
You can extract time from DATE variable in the following two steps:
O Use SYSDATE built-in function to get current date and time and store it in variable say

date_variable.

O Extract the current time using date_variable-TRUNC(date_variable)
You can perform other operations, such as comparing two dates, arithmetic operations on DATE
variables. For example, SYSDATE+L returns the same time for tomorrow.

TIMESTAMP Datatype

The TIMESTAMP data type extends DATE datatype and store day, month, year, hour, minlte,
and second. The seconds field can store seconds in fractions. The general syntax of TIMESTAMP
datatype is as follows:

TIMESTAMP[(precision}]

Where precision is integer literal between 0 to 9 and specifies number of digits in fractional part
of seconds field. Oracle initialization parameter NLS_TIMESTAMP FORMAT determines the
default timestamp format.

TIMESTAMP WITH TIME ZONE Datatype

The TIMESTAMP WITH TIME ZONE datalype extends TIMESTAMP datatype and also
includes difference between local and Greenwich Mean Time time zones, The general syntax of
this datatype is as follows:

TIMESTAMP[(precision)] WITH TIME ZONE

Where precision determines number of digits in fractional part of seconds field. Oracle
initialization parameter NLS_TIMESTAMP_TZ_FORMAT determines the default timestamp with
time zone format. Following are some examples of TIMESTAMP WITH TIME ZONE values:

29



In this example, time-zone displacement in the first TIMESTAME is +02:00. Second and third
values are same but later specifies time zone by symbalic name, such as US/Pacific. You can see
symbolic names of other zones by executing following query on iSQL*Plus.

SELECT * FROM VITIMEZONE_NAMES;

TIMESTAMP WITH LOCAL TIME ZONE Datatype

The TIMESTAMP WITH LOCAL TIME ZONE data type extends TIMESTAMP data type and
includes time zone displacement. Difierence between TIMSTAMP WITH LOCAL TIME ZONE
and TIMSTAMP WITH TIME ZONE is that value of the TIMSTAMP WITH TIME ZONE is not
stored in a database column while value of TIMSTAME WITH LOCAL TIME ZONE is stored in
the database time zone and is automatically normalized.

We are explaining you normalization with the help of an example. For example, head
department of an organization would like to know about the number of orders placed yesterday
in its difierent departments. All departments are remolely located and they have different time
zones, Therefore, yesterday means different date and times in locations of other departments. If
head of the department declares ORDER. DATE column of TIMESTAMP WITH LOCAL TIME
ZONE data type, then different dates and times of placed orders are automatically converted
(normalized) into time zone of the head of department.

INTERVAL YEAR TO MONTH Datatype

The INTERVAL YEAR TO MONTH datatype is used to store intervals in years and months. The
general syntax of this data type is as follows:

INTERVAL YEAR[(precision)] TO MONTH

Where precision is an integer literal in range 0 to 4 and denotes the number of digits in years
filed. See Listing 2.3 which shows the use of INTERVAL YEAR TO MONTH datatype.

Listing 2.3: Use of INTERVAL YEAR TO MONTH datatype

First assignment statement assigns an interval of 10 years and 1 month to a timeperiod
variable. In second assignment statement, Oracle automatically converts character literal '10-1"
to interval type. Third and fourth assignment statements change timeperiod variable to
contain interval of years and interval of months respectively.

INTERVAL DAY TO SECOND Datatype

The INTERVAL DAY TO SECOND datatype is used to store intervals in days, hours, minutes,
and seconds. The general syntax of this data type is as follows:

30



Chapter 2: PL/SQL Essentials

INTERVAL DAY[(precisionl)]
TO SECOND[(precision2}]

Where precisionl and precision2 tell the number of digits in day and second fields
respectively. Both precisionl and precisicn2 are integer literals and can take values in
the range 0 to 9. Listing 2.4 shows the use of INTERVAL DAY TO SECOND datatype.

Listing 2.4: Use of INTERVAL DAY TO SECOND datatype

This example checks how much extra time an organization spent on a project.

You are already well aware of values that day, month, and year can take. Table 2.1 lists all
values that various fields under date, time, and interval types can take.

-4712 to 9999(cannot be 0) Any nonzero integer
011012 Oto11
HOUR 00t0 23 01023
MINUTE 0010 59 0to59
SECOND 001059.9...9 01059.9...9
TIMEZONE_HOUR 121014 NA.
TIMEZONE_MINUTE 00to 59 NA.
TZNAME Column of vSTIMEZONE_NAMES NA.
TZABBREV Column of VSTIMEZONE_NAMES NA.

31



PL/SQL Subtypes

PL/SQL subtype defines a range of values and a set of operations on variables of predefined
PL/SQL datatype. These restrictions are defined on already existing PL/SQL type. Therefore,
subtype is not any new data type and it is the one that is derived from existing PL/SQL data
types. PLSQL has also defined some subtypes in STANDARD package. For example,
CHARACTER and INTEGER data types in PL/SQL are defined as follows:

SUBTYPE CHARACTER IS CHAR;
SUBTYPE INTEGER IS NUMBER(38,0);

From these definitions, CHARACTER subtype is the same as CHAR datatype but an INTEGER
subtype consists of enly 38 digits.

User defined data types are also declared using following PL/SQL syntax:
SUBTYPE subtypename IS basetype[(const)] [NOT NULL]:

Where subtypename is name of a new sub type, basetype is name of already existing
PL/SQL type, and const specifies size of new sub type. Following example declares subtype
named bdate that can take null value,

SUBTYPE bdate IS DATE NOT NULL

Let's now discuss syntactic elements of PL/SQL, such as delimiters, identifiers, and literals.

Introducing Lexical Units

You can choose characters out of alphabets (A...Z, a...z), numbers (0... 9), symbols (+ - * / < > =|
~Apedr@%, "8 & | ]7]]), tabs, and spaces to write a PL/SQL program. The group of
characters in a PL/SQL line of code is called lexical units. Lexical unit in PL/SQL may contain a
single character or more than one character. "A line of PL/SQL block can contain following
lexical units:

a  Delimiters
a  Identifiers
0 Literals

o  Comments

Delimiters

A delimiter is a symbol or a set of symbols that has predefined meaning in PL/SQL. For example,
+ delimiter represents arithmetic operation and : = delimiter represents assignment operator. See
Tahle 2.2 for delimiters containing only one symbaol.

. Tahle 2.2: Ail one symbol delimiters
Delimiter Name
+ Addition cperator

32



Urheberrechilich geschiitztes Material



Identifiers

An identifier is a name given to constants, variables, exceptions, cursors, cursor variables, sub
programs, and packages. This name should start with a letter that may be followed by more
letters, numbers, dollar signs, underscores, and number signs. The name of identifier cannot
contain hyphen, slashes, and spaces. The identifier can contain less than or equal to 30
characters. You can also use more than one dollar sign, underscores, and number signs.

Some examples of identifiers are A, temp?, name#, time limit, FirstName, and R. Try to
make identifiers descriptive and meaningful. For example, use variable name as percent instead
of pct. Some non-examples of identifiers are time=1limit, either/or, emp name, and igu.

Reserved Words

There exists a long list of identifiers in PL/SQL with each identifier having its specific syntactic
meaning to PL/SQL. These identifiers are called reserved words. If you try to redefine them, then
they cause compilation error. For example, BEGIN and END are reserved words indicating the
beginning and end of block respectively. Here is an example which uses BEGIN word for the
name of variable of DATE type.

When you execute this code snippet on iSQL*FPlus console, an error occurs,

34



Chapter 2: PLISQL Essentials

Predefined Identifiers
Identifiers declared in the STANDARD package are called predefined identifiers but these
identifiers can be redeclared. Redeclaration of identifier overrides the declaration of the same
| identifier in STANDARD package.
I Quoted Identifiers

PL/SQL supports identifiers enclosed in double quotes. These identifiers used to contain a
sequence of characters (excluding double quotes) to be printed. Number of characters in double
quotes cannot exceed 30. For example, "A+B”, "**** lrite a program to find
square root of number *****,

Literals
Literal represents numeric, character, or Boolean value. It is not the name of any variable,
Example of numeric literal is 135 and Boolean literal is TRUE. Literals are divided into following
categories:

Numeric Literal

Character Literal

String Literal

Boolean Literal

O Datetime Literal

OCooo

Numeric Literal

The numeric literals are used in arithmetic expressions, These literals are of two types—integer
and real. An integer literal is a number {sign not compulsory) without decimal point. Examples of
integer literals are 025, 34,-67, and +3456. A real literal is a whole or a fractional number with
decimal point. The sign is not compulsary here also. Examples of real literals are 7.45657,
0.0,-23.67, .6, and 24.0.

Scientific notations also contain some numeric literals, such as 3E5 or 3e5, 3.1414e0, and 5e-3.
In these literals, E or e is 10 and the number after E or e is power of ten. To write a number using
scientific notation, suffix the number with an (E or e) followed by an optionally signed integer.
Note that you cannot assign literal value to a variable greater than the upper limit of the
variable’s datatype.

Character Literal

A character literal is a single character enclosed in single quotes. This single character can be
any character of PL/SQL character set. Examples of character literals are ‘a’, '2’, and " (". Note
that “a’ literal is different from ‘4.

String Literal
A string literal is a sequence of zero or more characters enclosed in single quotes, Examples of

string literals are ‘ABC pvt. Ltd', '$154.99". If you need to use character literals, such as | ‘'m ill,
then add one more apostrophe before apostrophe within a string as shown here— 'T “'m 111’

35



Boolean Literal
Boolean literal takes logical values, such as TRUE, FALSE, and NULL. The NULL literal stands
for missing, unknown, or inapplicable value.

Datetime Literal
Datetime literals can have different types of date time values depending upon the data type.
Listing 2.5 declares various types of datetime literals,
Listing 2.5: Declaring different datetime literals

In this example, d is DATE literal, ts1 is TIMESTAME literal, ts2 is TIMESTAMP WITH TIME
ZoNE literal, iytml is INTERVAL literal specified in years and months, and idts2 is
INTERVAL literal specified in days and seconds.

Comments
The PLSQL compiler does not compile comments in a PLSQL program but this does not mean
that developers should not add comments. Comments are user friendly and help in better
understanding of PL/SQL program. PISQL supports two types of comme.its—single line

comments and multi line comments,

Single Line Comments

Single line comments start with double hyphen (- and ends at the end of line. Usually, they
appear at the end of PL/SQL statements. Here is an example of single line comment.

Two single line comments in this cade snippet explain the meaning of interval literals iytml
and idtsZ. First comment tells the user that 1 1 literal stores interval of ten years and one
month. Second comment tells the user that id==2 literal stores interval of time duration of
around three days, five hours, three minutes, two and 1/100 seconds.

You may use single line comments 1o comment out (or disable) any statement during testing or
debugging of program,

Multi-line Comments
Multi-line comment starts with /* symbol and ends with */. In between these symbols, there may
be ane or more than one lines which explain functionality of the specific portion of PL/SQL
program to user. Listing 2.6 is an example of multi-line comment.

36



Chapter 2: PLISQL Essentials

Listing 2.6: An example of multi-line comment

The multi line comment tells user about author and functionality of the procedure. With the help
of multi line comments, you can disable sections of code during debugging of PL/SQL program.
Let's now discuss how to declare variables and constants with restrictions and assigning
DEFAULT values to them.

Working with Declarations _
You can declare variables and constants which are used to store values in any PL/SQL block, sub
program, or package. Each declaration of variable specifies its data type and name of storage
space allocated by PL/SQL compiler. This name is further used to access or manipulate it.
Following example declares some variables and constants:

This example declares matchdate variable of DATEZ type, noofmatches constant of
INTEGER type, and mancfmatch constant of REAL type. Both constants are also initialized
since the value of constant does not change during execution of the program.

Using DEFAULT Value

Keyword DEFAULT is used in place of assignment operator to initialize variables that have some
specific value. Far example,

variables have some already predefined values.

You may use DEFAULT keyword to initialize cursor and subprogram parameters and fields in a
user-defined record.

Constraint
can impose constraints on a variable, such as variable can accept null value. If you assign
null value to variable declared as woT nULL, PUSQL engine generates predefined
VALUE_ERROR exception. You can declare a variable as NoT NULL as follows:

37



ACCOUNT_NO LONG NOT NULL :=11003533056

This code snippet defines Account_NO variable as NOT NULL.

Using Aliases
Aliases are used when the cursor is defined with the expressions. Aliases can also be used in the
case when you are selecting some values from the database table and want to display the set of
retrieved values through a single variable. That variable is known as alias. Listing 2.7 illustrates
the use of alias in SELECT statement.
Listing 2.7: Use of alias

This example assigns alias full name to first name ||’ '|| last name expression, In
loop, we are accessing full_name from record having full names of first four employees,
Let's now move on to understand and use different types of operators available in PL/SGQL.

Introducing Operators
PL/SQL supports a set of operators which are helpful in building a variety of expressions.
Expressions consist of operators, which act upon operands and generate a result. All expressions
return only one value. We are now discussing all type of operators available in PL/SQL.

Assignment Operator

Assignment operator (=) in PL/SQL is used 1o assign a simple value or expression to a variable
on its left side. Fallowing example assigns value of expression to Quantity variable.

You can assign a value to a suitable variable in any section, such as declaration, execution, or
exception. If you do not assign any value to a variable in declaration section, then it is assumed
to store NULL value.

You can also assign a function call 1o variable so that variable will store the value when returned
by function. Assignment operator is used to hold Dynamic SQL statements into a string variable.

38



Chapter 2: PLISQL Essentials

The EXECUTE IMMEDIATE command takes this string variable and executes the query. Here is
an example:

Arithmetic Operators

PL/SQL supports mathematical operators, such as addition (+), subtraction (=), multiplication {*),
division (/) to build and evaluate arithmetic expressions. Usually, multiplication and division
have higher priority as compared to addition and subtraction. Parentheses can change the order
of evaluation of an expression. For example, when PL/SQL engine evaluates (10+6)/2 expression,
first addition is performed, then division is periormed and the result is 8 not 13. An arithmetic
expression can contain nested parentheses in which deeply nested sub expression is evaluated
first. For example, 10+(6/2+(5-3}) generates 15.

Logical Operators
PL/SQL also supports lagical operators, such as AND, OR, and NOT to form logical expressions.

The AND and OR operators are binary operators as they require two operands but NOT is a
unary operator. Table 2.4 lists truth table for each logical operator.

4: Truth tables of AND, OR, and NOT logical operators

A B AANDB AORB NOTA

TRUE | TRUE TRUE TRUE FALSE
TRUE FALSE FALSE TRUE : FALSE
TRUE NULL NULL " TRUE . JEMISE
FALSE TRUE FALSE TRUE TRUE
FALSE FALSE FALSE FALSE TRUE
FALSE NULL FALSE NULL TRUE
NULL TRUE NULL TRUE NULL
NULL FALSE FALSE NULL NULL
NULL NULL NULL NULL NULL

If we see the truth table of each operator, we find that AND returns TRUE value only if both of
its operands are true, OR returns TRUE if any of its operands is true, and ¥OT operator returns
the logical negation of its operand,

Parentheses may change the order of evaluation of logical expression.

39



L'ompansm Dperaram

Comparison operators are used 1o compare simple values or expressions. These operators are
used in conditional control statements and E clause of SQL DML statements, Table 2.5 lists
all the comparison operators.

Table 2.5: Comparison operators

Operator Purpose

= Checks whether its operands are equal.

<

> Checks whether left side operand is greater than the right side
operand.

<= Checks whether left side operand is less than or equal to the
right side operand.

== Checks whether left side operand is greater than or equal to
the right side operand.

1S NULL Bperator

The I8 BULL operator is used to check whether its operand is null or not. This operator returns
T if the operand is null, otherwise FALSE,

IF var IS5 NULL THEN

Concatenation Operator

Concatenation operator, denoted by double vertical bars (111 concatenates two strings of type,
such as CHAR, VARCHARZ, and CLOS. For example,

set serveroutput on;

BEGIN

DBMS_DUTPUT . PUT_LINEC'I" || "You');

END;

/

This example outpuls string * . Data type of output string depends upon datatypes of the
operands, If CHAR s the {!.11(1 |HIL‘ of both operands, then the output string obtained alter
concatenation will have CHAE data type. If one of the operands has data type CLOE, then result
will be of C data type. If one of operands is VARCHARZ, then result will be of VARCHAR2
data type.

LIKE Operator

LIKE operalor is used to compare single character, string, or CLOB value to a specified pattern,
Case of characters matters during comparison of string with a pattern. If string malches with the
specified pattern, then LIKE operator returns Boolean TRUE; otherwise, it returns FALSE,

40




Chapter 2: PLISQL Essentials

Patterns used with LIKE operator can include two important characters called wildcards—
underscore (_), percent sign (%). The underscore (_} character checks whether there is only one
character present in the actual string between characters surrounding underscore (_) in pattern.
The percent sign (%) character finds whether zero or more characters are present in actual string,
Here is an example:

select * from emp where ename like 'TEN_R';

This query results into following record:

EMPNO ENAME  J0B MGR | HIREDATE SAL COMM DEPTNO
7844 TURNER SALSEMAN 7698 08-SEP-81 1500 0 30
Note
This record already exists in table EMP,

If actual string contains % or_ characters, then you need to define an escape character which is
put before the % or _in pattern, For example:

IF discount LIKE '50\% off' ESCAPE '\' THEN ..

There may be some real time entities in world that may have % or _, such as marks, user ids, or
email ids.

Range Operator: BETWEEN

The BETWEEN operator checks whether value of the variable lies in a specified range. It returns
TRUE in following cases:

O When value of variable equals to lower bound of range

O When value of variable is greater than lower bound and less than upper bound
a  When value of variable equals upper bound

Otherwise, it returns FALSE value.

Let's use BETWEEN operator. See the following query:

select * from emp WHERE SAL BETWEEN 3000 AND 5000;

This query result fetches following records from table emp.

List Operator: IN

The 11 operator differs from BETWEEN operator as it specifies a set of members or values but
BETWEEN operator only specifies lower and upper bounds. This set of values-can contain null
values. This operator is used when the user knows all set of values and wants to retrieve rows of
table corresponding to these values. For example,

41



select * from emp where ename in {'JONES' ,'CLARK','FORD'};

This query fetches and displays rows of emp  table having ename JOMES, CLARK, and FORD,

You have understood all types of operators but there are some PL/SQL expressions containing
aperators rom different categories. To understand evaluation of these expressions, you must be
aware of operator precedence of all operatars. Table 2.6 lists the Operators precedence.

AND Logical AND
OR Logical OR

Now we describe various attributes used to get information about data type and structure of
database entities.

introducing Attributes
PL/SQL variables and cursors have standard attributes that are used 1o access the properties, such
as data type, structure of database tables. PL/SQL supports two attributes—%TvPE  and
SeROWTYPE. Each has a prefix %,

Using the %TYPE Attribute

The "WTYPE attribute is used to define variables with data type same as that of database column.
a column named name in table emp. To declare a variable namel with
attribute as follows;

Suppose that there i
data type of name column, use %

namel emp.nameXTYFE

I database administrator changed the data type of name column, data type of namel variable
will also change at run time.

42



2 Essentials

Attribute

attribute is used with records. A record is composed of a set of related fi
each field has a data value. The %ROWTYEE attribute declares a record type, which is
as the row of a specified table. The declared record can also store the record fetched from

code snippet declares an emp_rec record with fields that have same names and data
as columns in EMP table:

further access values of fields of record in some variable as following:

we put all the operators for building PLSQL expressions.

PL/SQOL Expressions

of operators, which act upon operands and generate a result, An operand can
constant, literal, or function call, which results into a value. PL/SQL supports two
of operators—unary and binary. Unary operators operate on only one operand and binary
operate on two operands. All expressions return only one value. The data type of value

upon datatypes of other operands and type of operator.
can use expressions in both SQL and procedural statements. In most cases, Boolean
are used. Boolean expressions are made up of simple or complex expressions, which
comparisons using relational operators. Logical operators, such as 28D, OR, and ¥OT
connect these Boolean expressions to build more complex expressions. These expressions

result into TRUE, FALSE, or NULL value,

SQL statements, Boolean expressions are first used to find a particular row of a table and the
is executed on that row. In procedural stalements, Boolean expressions are used to
conditions of conditional control statements, such as TF-THEN,

supports three types of Boolean expressions—arithmetic, character, and date.

Arithmetic Expressions

rithmetic expressions involve the quantitative comparisons of numbers, For example,
numl and num2 are two integer variables assigned to integer values 45 and 23

43



This expression results into TRUE value.

Boolean Character Expressions

Boolean character expressions involve comparisons of character values. These
performed on binary representacas v vuees o aineg. <8 €xample,

The expression in this example results into TRUE value. You can make

based. This is done by setting NLS_COMP parameter to ANSL. These comparisons

using collating sequences. A collating sequence represents characters in a character set
numeric codes so that character strings can be compared,

You can make other types of comparisons, such as case-insensitive, accent-insensitive by
changing the value of NLS SORT parameter. If you want to perform case-insensitive
comparison, append CI to end of initial value of NLS SORT parameter. If you want to
perform accent-insensitive comparison, append AT to the end of initial value of NLS_SORT
parameler.

Boolean Date Expressions

Boolean Date expressions involve chronological comparisons of dates. Chronological
comparison of dates means the more recent date would be considered as the larger one between
two dates. For example, consider two DATE variables d1 and d2 in the following code snippet:

In this example, since d2 is more recent than d1, therefore d2 is greater than d1 which results
(d2>d1) expression into TRUE value.

Note

Conversion between difterent types may happen it it makes sense. PL/SUL supports both implicit
and explicit conversion, Let's handle the conversion between different data types of PL/SQL.




Chapter 2: PLISQL Essentials

Datatypes conversion in PL/SQL

There is a need of conversion from one data type to another so that you can access and
manipulate resultant variable. For example, binary rowid is converted into character rowid by
PL/SQL engine so that user can easily understand the location of a particular row. There are two
types of conversions—Explicit conversion and Implicit conversion,

Explicit Conversion
To perform conversion from one data type to another data type by user, PL/SQL provides built-in
functions. For example, functions TO_DATE and TO_NUMBER are used to convert CHAR value

to a DATE and NUMBER value. You can study section Conversion Functions of Chapter 3 of this
book for all types of conversions.

Implicit Conversion
PL/SQL automatically converts one data type into another data type when conversion makes
sense and is logical. Listing 2.8 shows a case of implicit conversion.
Listing 2.8: Using implicit conversion

This example first stores date value into charvarl variable of vArRCHARZ data type and assigns
this variable to datel variable of DATE data type. Then, it assigns datel wvariable to another
charvar? variable of VARCHARZ data type. Both charvarl and charvar2 variables are
displayed to see whether they stare the same value.

When you execute Listing 2.8 on iSQL*Plus, it shows the following output:

The output shows both the variables containing same date 28-DEC-07. Implicit conversion may
also happen when you store values into database columns. See Table 2.7 for all implicit
conversions between different data types that PL/SQL supports,




BIN_INT
BLOB

cHar X

cLos

vRowin ¥

VARCHARZ X q x X x X X X x

Table 2.7 lists all standard implicit conversions where cross sign(X) indicates conversion
between corresponding data type (represented by row] into a data type (represented by column).
Implicit conversion also depends on values that are stored in variables. For example, if you
stored ‘Manday’ in CHAR wvariable, PL/SQL cannot convert it into DATE value.

Summary

In this chapter, we learned about:

a Block Structure of PLSQL program, which consists of four sections—block header,
declaration, execution, and exception.

0O Various different datatypes available in PL/SQL, such as Number, Character, Boolean, LOB,
Date and Time, and sub types with their syntax and uses.

O Lexical units in the program, such as delimiters, Identifiers, Literals, and Comments.

O Different types of operators, such as assignment, arithmetic, logical, comparison,
concatenation, LIKE, and IN.

Q  Various PL/SQL Boolean expressions.

2  How to handle conversion between different data types implicitly or explicitly.

46



Urheberrechtlich geschitztes Bild

Urheberrechtlich geschitzies Material



Funclions are important part of any programming language. A function is a block of code that
takes values, such as String, char, number, and date, as argument and gives the output
according to its functionality. Using functions in a program enhances the efficiency of the
pragram; since you can simply call the required function instead of writing the entire code 10
periorm a specific operation. For example, if you want to calculate the iength of a string, instead
of writing long programming code, you can only use the LENGTH function provided by PL/SQL.

Functions can be divided into two categories, Built-in and custom or user-defined. Various
pragramming languages, such as C, and C++, support Built-in functions that simplify the work of
a programmer by reducing the code size. Similar to these programming languages, PL/SQL also
supports Built-in functions that can be used directly in a program for performing a specific task
rather than writing a long code for that task.

PL/SQL provides lots of Built-in functions to simplify the PLSQL programming and provide better
functionality. The Built-in functions help reduce the complexity of a program by reducing the
size of program code and hiding the logic used to perform any specific task. For example, if you
wanl o convert an upper case string into a lower case string, you need to write the code for
performing this conversion. This increases the length of the program code and makes the
program more complex to manage. With PLSOL Built-in functions, you can perform this same
conversion by calling the LOWER function.

In this chapter, we describe various categories of Built-in functions provided by PL/SQL, which
are:

0 Character functions

O Date functions

O Numeric functions

o Conversion functions

O LOB and Miscellaneous functions

We will study all these function in detail next. Here we start our discussion with character
functions.

Character Functions

Character functions retrieve information of a string and modify its content. For example, the
character functions can be used to calculate the length of a string, convert upper case letters to
lowercase letters, replace a character or a sequence of characters of a string with another
specified character, concatenate two strings, and so on.

Character functions accept CHAR or VARCHARZ values as parameters and return either a number
or a character value. PL/SQL has various buill-in character functions. Some important and
widely-used character functions have been summarized in Table 3.1,

Table 3.1: PL/SOL character functions and their description

Function Description
AsCll Returns the ASCIl value
the function.




Chapter 3: Lh!d;’rs!ﬁudmg PLISQL Built-in Functions

Adter a brief description of some of the character functions, let's understand how these functions
work. Let's study all the functions given in Table 3.1,

ASCIH Function

The ASCIl function accepls a character as a parameter and returns the ASCIE value of that
character. You can also pass a string as a parameter but this function only returns the asc11
value of the very first character in the string.

Syntax for the ASCI function is:
ASCIT (Single_character);
In this syntax:
0 single character is the specified character whose ASCII value has to be retrieved.
Listing 3.1 demonstrates how the ASCIT function works.
Listing 3.1: PL/SQL program to use ASCHI function

SQL>SET SERVEROUTPUT. ON
DECLARE

49



In Listing 3.1, we have declared a variable grad of the NUMBER datatype in the Declare
section of the PL/SQL block. In the Execution section, we have used SQL SELECT statement to
retrieve the value of employee’s GRADE from the table salgrade where HISAL=3000. The
retrieved value is stored in the grad variable.

Finally, we have passed the grad variable in the A5CTIT function to know the ASCII equivalent
of the value stored in that variable.

The output of Listing 3.1 is as follows:
Output:

The output 52 is the ASCII value of 4. If the query executes successfully, then there appears a
message PL/SQL procedure successfully completed, as shown in the output.

LENGTH Function

This function accepts a string as an argument. The string can have special characters as well.
This function returns the length of a string specified as an argument. This function returns NULL
rather than zero if you pass an empty string.

Syntax for the LENGTH function is:
LENGTH (string_value);
In this syntax:
QO string value is the string whose length has to be calculated.

See Listing 3.2 to understand how the LENGTH function works.
Listing 3.2: PL/SQL program to use LENGTH function

In Listing 3.2,first of all, we have declared a variable nam of datatype VARCHARZ in
declare section of the PUSQL block. Now, in the execution section we have used SQL
query to retrieve the ENAME (employee name) from the table EMP where EMPNO=T7844,
retrieved value is stored in variable nam. Next, the variable nam has been passed in the
function to get the length of employee name stored in the variable nam.




Chapter 3: Understanding PL/ISQL Built-in Functions

The output of Listing 3.2 is as follows:
Output:

(] 4
PL/sqL procedure successfully completed.

In this output & shows the length of the employee name retrieved from the table EMP.

INITCAP Function

The INITCAF function accepts a string as an input and converts the first letter of every word in
uppercase and rest of the words in lowercase letters.

Syntax for the INITCAP function is:

INITCAP (string_value);
In this syntax, string value is the string in which the first letter of each word has to be
converted in uppercase and rest all in lowercase.
Listing 3.3 shows how the INITCAF function works.
Listing 3.3: PL/SQL program to use INITCAE function

In Listing 3.3, first we have declared a variable nam of the vARCHAR? datatype. After declaring
the variable, SQL SELECT statement has been used to fetch the employee name into the variable
nam from the table EMP where EMPNO = 7876. At last, we have applied the TNTTCAP function
on the variable nam. When we execute the code shown in Listing 3.3, the output we get is as
follows:

Output:
Adams
PL/SQL procedure successfully completed.

In this output you can notice that the first letter of the name is in uppercase and rest all are in
lowercase letters.

CONCAT Function

The CONCAT function concatenates two strings passed as parameters. This function appends the
second string at the end of first string and then returns the resultant string. If any of the strings
passed is NULL, it returns another string as the result. It will return NULL if both the string passed
are NULL.

51



Syntax for the CONCAT function is:
CONCAT (stringl_vlaue, string2_value);
In this syntax: stringl_value is the string to which the string2 value has to be
appended.
Listing 3.4 shows the PL/SQL program to demonstrate how this function works.
Listing 3.4: PL/SQL program to use CONCAT function

In Listing 3.4, we have declared two variables, nam and naml. The nam1 variable has been
initialized with the value ‘Welcomes You'. After declaring variables, employee name has been
fetched into the nam variable from the EMP table, where employee number is equal to 7844,
Finally, we have applied the CONCAT function to add both the strings that are in variables nam
and naml.

Nete
[ The CONCAT function appends the strings in the order they are passed as parameters.

The output Listing 3.4 is as follows:
Output:
TURNER Welcomes You
PL/S0L procedure successfully completed.
In the output, TURNER Welcomes You, the first string (TURNER) has been fetched from the

table and the second one (Welcomes You) has been declared in the PUSQL program. In this
way, the CONCAT function combines the strings into one.

LOWER and UPPER Functions

Both these fynctions accept a single character or a string as a parameter and convert it to
lowercdse or uppercase characters depending on the function being used. If you use the LOWER
function, then all uppercase characters will be converted into lowercase characters, and if you
use the UPPER function then all lowercase characters will be converted into uppercase
characters.

Nete

52



Chapter 3: Understanding PLISQL Budlt-in Functions

Syntax for the LOWER function is:
LOWER (char_value or string._value);
Syntax for the UPEER function is:
UPPER (char_value or string_value);
In these syntaxes:
0 Char_value represents the single character whose case has to be changed.
O string_value represents the complete string passed to change the case.

The following listing demonstrate how the LOWER and UPPER functions work.
Listing 3.5: Using LOWER and UPPER functions

In Listing 3.5, first we have declared two variables nam and naml of the VARCHARZ datatype.
After declaring all variables, we have used the SELECT statement to fetch the DNAME
(department name) into nam from the table DEET, where DERTNO (department number) is equal
to 20. Then, we have applied the LOWER function on the string stored in the nam variable. and
used the SELECT statement to fetch the DNAME into variable nam1 where DEPTNO is equal to
50. At last, we have applied the UPPER function on the string stored in the naml variable.

The output, when we execute the program shown in Listing 3.5, appears as follows:

Output:

In this outout, the first output (research) is in lowercase letters because of the LOWER function,
whereas the second output (HUMAN RESOURCE) is in uppercase letters, which is the result of the
UPEER function.

INSTR Function

This function is used to find the position of a substring in the main string. This function returns
zero in case the substring is not present in the main string.

Syntax for the INSTR function is:

INSTR (stringl_value, string2_value, starting_position, nth_presence);




In this synax:

s} e is the main string in which the position of the substring has to be found.
o & is the substring whose position has to be searched in the main string.
8] —ion represents the position in main string from which the search has to

be -\I.ms_d |T is an optional argument. I you don’t specify the starting position, the
search wili start from the first character of the main string.

O nth_

represents the nth position of the substring in the main string,

L function works.

ting 3.6 shows how the

L function

Listing 3.6: PL/SCIL program to use

2 datatype, and then we

In Listing 3.6, first we have declared a variabie plac of the
i idepartment location) into that variable from the table DE=? where

fetched the
is equal to 20

variable three times tor three resuits:

Now, 11 junction has been applied on the ¢
O I the first instance, only two parameters—the main string and substring—have been passed.
It will show the first occurrence of substring in the main string

0 Secondly, we have passed 4 parameters, This time we have added the position from where a
search for the substring has to be started in the main string. Here the third and fourth
parameters are 1,1, which means that the search has to be started from the first letter of the
string and up to the {irst occurrence of the substring in the main string.

a At thir
are searching the substring up to its

stance, the parameter passed are same as the in second one except that here we
accurrence in the main string.

The output of Listing 3.6 is as follows:

Output:

DALLAS
2
2

PL/SOL
In the output, you can see that there are four results, The first result, DALLAS, shows the
department location, which we use as the main string in this function. The second resull,
indicates the first occurrence of the ‘A7 substring) in the main stiing. The third result is same as




3 Built-in Functions

the second one because of the fourth parameter due to which the substring has been searched
up to its first occurrence. In the fourth result, the position returned by this function is 5, which
represents the second occurrence of ‘A" in the main string.

functions

are used to trim the string entered as a parameter. The LTRIM function trims the
string from the left side by removing the character specified as parameter in this function. The
RTRIM function, on the other hand, trims the string from the right side.

Syntax for the LTRIM function is:
_ LTRIM (string_value, string_trim);

Syntax for the RTRIM function is:
RTRIM (string_value, string_trim);

In both of the preceding syntaxes

O string_value represents the main string, which has to be trimmed.

0 string_trim specifies the string that will be removed from the left side or right side of the
main string depending on the function you use. In both the functions the second argument is
optional and if you don't specify the second parameter then all leading (LTRIM function) or
trailing (RTRIM function) spaces will be removed from the string.

The following listing shows how this function works.

Listing 3.7: Using LTRIM and RTRIM functions

In Listing 3.7, first, we have declared four variables, nam, d_nam, nam2, and d_naml. The

variable nam has been initialized with a string having some trailing blank spaces while the

variable nam2 has been initialized with a string, which has leading blank spaces. After this, the

DNEME has been fetched into the d_nam and d_naml variables from the table DEPT where

DEPTNO is equal to 50. At last, we have applied the LTRIM and BTRIM functions on the strings
in different variables.

55



The output of Listing 3.7 is as follows:

The output of Listing 3.7 shows four results. In the first result, you can see that all the trailing
spaces have been removed from the string because of the LTRIM function.

In the third result you can see that all leading spaces have been removed by the RTRIM function.
In the second result, the department name human resource has been trimmed from the left
side because of the use of the LTRIM function; and the fourth result shows that the string human
resource has been trimmed from the right side.

REPLACE Function

This function replaces all the occurrences of a substring with the replacement substring from the
main string. This function is very useful when you need to search and replace a particular
sequence of characters with any other sequence of characters,

Syntax for the REFLACE function is:

REPLACE (string_value, string_value_rep, rep_string);

In this syntax:

0 string value represents the main string.

O string_value_rep represents the string that has to be replaced in the main string.

O rep string represents the string with which replacement has to be made. If the parameter
rep_string is not specified then this function simply removes the string value_rep
character sequence from the main string,.

Listing 3.8 shows how the REPLACE function works:

Listing 3.8: PL/SQL program to use REFLACE function

In Listing 3.8, we have declared a variable plac of the VARCHARZ datatype to store the LoC
{location) of the department fetched from the table DEPT where DEETND is equal to 30. After
declaring these variables, we have used the SELECT statement to fetch the 10C, and finally we
have applied the REPLACE function on the string fetched from the table.

56



Chapter 3: Understanding PL/ISQL Built-in Functions

The output of Listing 3.8 is as follows:
Output:

CHICZGO
PL/SQL procedure successfully completed.

In the output of Listing 3.8, you can see that ‘A" in CHICAGO has been replaced by 'z’ and the
output becomes CHICzGO. CHICAGO is the employee location that has been fetched irom the
EME table.

SUBSTR Function
The SUBSTR function fetches the substring from the main string. This function is the most
widely used function in PL/SQL.
Syntax for the SUBSTR function is.
SUBSTR (string_value, start_pos, len_substr);
In this syntax:
O string_value represents the main string in which a substring has to be searched.

O start_pos represents the position in the main string from which the substring has 1o be
extracted.

0 len_substr represents the number of the characlers to be fetched from the main siring.
The len_substr option is optional; if you don’t specify it, this function returns the whole
string from the starting position of the whole string.

Listing 3.9 shows how this function works.
Listing 3.9: PL/SQL program to use SUBSTR function

In Listing 3.9, we have declared a variable nam of the VARCHARZ datatype, and then the ZNAME
(employee name) has been fetched into that variable from the table £MP where EMPHNO=T844, At
last, we have used the SUBSTR function on the fetched string.
The output of Listing 3.9 is as follows:
Output:

URNE

PL/5QL procedure successfully completed.

57



The string fetched from the table is TURNER, and according to the parameters passed in the
function, it has to retrieve a substring starting from the position number 2 to 4 in the main string.
In the output, URNE, characters U and E are the second and fourth position characters,
respectively, of the string TURNER.

TRANSLATE Function

The TRANSLATE function replaces a single character at a time. This function replaces a
character set in a string with another set of characters. For example, if there are two character
strings 123 and 456, this function will replace the 1 with 4, 2 with 5 and so on.

Syntax for the TRANSLATE function is:

TRANSLATE (string_value, string_value_rep, rep_string); SRS S|

In this syntax:

O string_value shows the main string in which the character has to be searched and
replaced.

O string value rep represents the string which has 1o be searched in string value.

O rep string represents the string with which the corresponding character of
string_value_rep will be replaced.

Listing 3.10 shows how this function works.

Listing 3.10: Using TRANSLATE function

The output of Listing 3.10 is as follows:
Output:

1ABEIMAY :

PL/SQL procedure successfully completed. 1
The string fetched from the table is SALESMAN. The strings passed in this function as parameters
are 'SLN' and ‘1BY' . You can see in the output that $ has been replaced by 1, L with 8, and N
with ¥ and we get the resultant string as 1ABE1MAY,

With this, we have completed discussion on the most commonly used character functions
available in PL/SQL. Now, we continue our discussion with Date functions.

58



Chapter 3: Understanding PL/SQL Built-in Functions

Date Functions

The date functions allow you to manipulate dates. Suppose, you want to know the number of
months between any two given dates or need to convert a date string in to a valid date format
according to your requirement, then you must have to write a program for achieving the required
results.

PL/SQL has made these operations simple with the help of built-in date functions. PL/SQL Built-
in date functions accept date as a parameter and return a date or number as a result. PL/SQL
provides various built-in date functions that help manage datettime for a database. Table 3.2
shows some important date functions.

- Description

TO_DATE Converts a string into a date.

Converts a date into a string.

Adds n months in the month of the data passed as a paramater.

NEXT_DAY Returns the next date of the day specified in date string.

Table 3.2 presents some important date functions. Let's continue our discussion by explaining all
these functions in detail.

T0_DATE Function

The T0_DATE function accepts a string and a format parameter as arguments and converts the
string into date according to the format parameter.

Syntax for the TO-DATE function is:
TO_DATE (‘'string_value’, ‘format_para');
In this syntax:

0 string_value shows the string that needs lo be converted into a date.

0 Format_para represents the format parameter according to which the string value
will be converted into a date. The following table (Table 3.3) shows some of the format
parameters, These parameters can be used in various combinations to get the desired result,

59



Table 3.3 Impoitant Format Parameters

Parameter Description

YYYY Reprosents ail 4-digits of the year in the resultant date.

Yy Repressnts last 2-digit of the year in the resultant date.

MM Reprasents the manth in numeric form. For example, Jan as 01.
MON Represents the month in abbreviated form. For ple, July as Jul.
(1] Represents the day.

Listing 3.11 shows how the 70 DATE junction wo

Listing 3.11: PL/SOL program lo use 70 E function

SOL>SET SERVEROUTPUT ON
DECLARE

e_tlat VARCHAR2(20):="121588";

BEGIN

DBMS_QUTPUT. PUT_LINE(TO_DATE( e_dat
END;

/

In Listing 3.11, the variable =
initialized with the string *12
variable,

of the v

The output of Listing 3.11 is as follows:
Output:

15-pEC-83
PL/SOL procedure successfully completed.

In the preceding output, you can see that the date format of the specified string has changed.

T0_CHAR Function

This function accepts a number or a date along with the formal parameter and converls it in a

string .1['('::rdin_u to the tormat parameter :\'p(‘('hit'[l as an argument,

Syntax for the 70 function is:

To_CHAR (wvall, ‘format_para’);
In this syntax:

11 represents either the number or the date value.

intor a string,

60

I datatype has been declared. It is then
LAt last, the To DATE function has been applied on this

t para represents a format parameter according to which vall will be converted




Chapter 3: Understanding PLISQL Built-in Functions

See the following listing to understand how the T0_CHAR function works.
Listing 3.12: PL/SQL program to use TO _CHAE function

In Listing 3.12, a variable dat of the DATE datatype and datl of NUMBER datatype have been
declared. The variable datl has been initialized with some numbers. Then DOJ (employee's
date of joining) has been fetched into the variable dat from the table £MPLOYEE, where
E_NO=7840. Finally, we have used the TO_CHAR function to convert the date and number
values into a string according to the specified format passed as a second parameter in this
function.

The output of Listing 3.12 is as follows:
Output:

In the preceding output, you can see three results. The first results shows the date fetched from
the EMPLOYEE table, the second result shows the date converted into a string, and the third
result shows the number that has been converted into the string.

ADD_MONTHS Function

This function returns a new date with the specified number of months added to the date
specified as input parameter. This function accepts date and a number as parameters.

Syntax for the ADD_MONTHS function is:

ADD_MONTHS (val, 'n_mon);
In this syntax:
0 wval shows the date whose month has to be modified.
0 n_mon represents the number that has to be added in the month of the val.
The following listing shows how this function works.

61



Listing 3.13: PL/SQL program to use ADD_MONTHS function

In Listing 3.13, first we have declared a variable dat of the DATE datatype, and then DOJ has
been fetched in to the dat variable from the table EMPLOYEE, where E_NO=7842, Al last, we
have applied the ADD_MONTHS function on the date fetched from the table.

The output of Listing 3.13 is as follows:

Output:

The first result in the output of Listing 3.13 is the date fetched from the table, and the second
result is the outcome of the ADD_MONTHS function. According to its functionality four months
have been added to the date fetched from the table because the second parameter passed in this
function was 4.

MONTHS_BETWEEN Function

The MONTHS BETWEEN function compares two dates passed as parameters and returns the
number of manths between the specified dates,

Syntax for the MONTHE BETWEEN function is:
MONTHS_BETWEEN (vall, val2);

In the syntax for the MONTHS BETWEEN function, the vall parameter represents the first date and
the val2 represents the second date. See Listing 3.14 to understand its working:

Listing 3.14: PL/SQL program to use MONTHS BETWEEN function

62



Chapter 3: Understanding PLISQL Buill-in Functions

In Listing 3.14, the variables dat and datl of the DATE datatype has been declared; then we
have fetched D0J {employees date of joining) into the variables dat and dat1 from the table
EMELOYEE, where E_NO is equal to 7840 and 7844 for the two variables respectively. At last,
we have displayed the dates fetched from the table into those variables, followed by the dates
passed as parameters into the MONTHS_BETWEEN function.

The output of Listing 3.14 is as follows:

Output:

In the preceding output, the first two values show the dates retrieved from the table and the third
value shows the difference of the monthe hetween two dates retrieved from the table.

LAST DAY Function

This function accepts a date as a parameter and returns the last day of the month on the basis
that parameter.

Syntax for the LAST DAY function is:

LAST_DAY (val);
In this syntax:
O val represents the date value from which the last day of a month will be fetched.
Listing 3.15 shows how the LAST DAY function works.
Listing 3.15: PL/SQL program to use LAST DAY function

In Listing 3.15, first we have declared a variable dat of the DATE datatype, and then, we have
fetched DOJ (Date Of Joining) into that variable from the table EMPLOYEE, where E_NO=7844.
At last, we have passed the dat as parameter in the LAST_DAY function to know the last day of
the month.

The output of Listing 3.15 is as follows:

Output:




In the preceding output, the first result shows the date retrieved from the table and the second
result shows the date on the last day of that month, that is 31.

NEXT_DAY Function
I'his function returns the next day in the date to the day specified in the date string. This function
accepts a date and the weekday as parameters,
Syntax for the NEXT_DAY function is:
NEXT_DAY (val, w_day);
In the preceding syntax:
O val represents the date string whose day value has o be changed.
0w _day represents the weekdays iSunday to Saturday).
Listing 3.16 shows how the NEXT DAY function works.
Listing 3.16: PL/SOL program to use HEXT DAY function

In Listing 3.16, first we have declared a variable dat of the £ datatype that has been used to
store the date fetched from the table employee, where E 80=7842. Now the date fetched into
this variable would be displayed, on which the n2xT_Day function will be applied.
The output of Listing 3.16 is as follows:
Oulput:

15-AuG-07

18-avG-07

PL/SQL procedure

In the preceding output, you can see the date on which the next Saturday (second argument) will
fall.

SYSTIMESTAMP Function

This function returns the time including fractions of seconds and time zone according to your
local database.

Svntax for the : JME function is:

SYSTIMESTAMP;



Chapter 3: Understanding PLISQL Built-in Functions

This function does not require any argument and its output includes date, time with fraction of
seconds, and time zone.

Listing 3.17 shows how the SYSTIMESTAMP function works:
Listing 3.17: PL/SQL program to use SYSTIMESTAME function

The output of Listing 3.17 is as follows:
Output:

With this we complete discussion on most commonly used date functions. Let's continue our
discussion by explaining numeric functions.

Numeric Functions

Numeric functions help you perform mathematical calculations, such as the total salary of
employees, and counting the number of records in a database. These functions accept a number
as a parameter and return a number as the output, PL/SQL provides many built-in numeric
functions some of which have been explained in Table 3.4,

 Table 3.4: Numeric functions
Function Description
ABS Returns the absolute value of a number.
POWER Used to raise the base number by the nth number specified.

Returns the remainder of one number divided by another number.

65



Table 3.4: Numeric functions

Function Description

COUNT Returns the number of rows in a table on the basis of a query.
SUMm Calculates the sum of all the values in an expression.

SIGN Used to know the sign of a number.

Table 3.4 gives a brief description about some of the important numeric functions. Let's study
them in detail.

ABS Function
The ABS function accepts a single number as a parameter and returns its absolute value. For
example, if you want to know the absolute value of -15.45, then this function will return 15.45.
Syntax for the AZ: function is:
ABS (val);
In this syntax:
O val represents the number whose absolute value has to be calculated.
The following listing shows how the ABS function works.
Listing 3.18: PL/SQL program to use AES function

In Listing 3.18, we have passed one positive integer value and one negative integer value in the
ABS function.

The output of Listing 3.18 is as follows:
Output:

CEIL and FLOOR Functions

The CETL function returns the smallest integer value greater than or equal to the value specified
as a parameter; and the FLOOR function returns the largest integer value less than or equal to the
value specified as a parameter. Both, the CETL and FLOOR, functions accept a single parameter
of the number datatype and work in the same manner.

66



Chapter 3: Understanding PL/SQL Built-in Functions

Syntax for the CEIL function is:
CEIL (val);

Syntax for the FLOOR function is:
FLOOR (val);

In both syntaxes, val represents the number parameler.
Listing 3.19 demonstrates how these functions work.
Listing 3.19: Using CEIL and FLOOR functions

The output of Listing 3.19 is as follows:
Output:

POWER Function

This function takes two values as parameters—a base number and the other number as the
power to the base number, The POWER function returns the base value after calculating its power
according to the other argument passed in this function.

Syntax for the POWER function is:

POWER (b_num, p_num);
In this syntax:
O b_num represents the base number.
QO p_num represents the power number with which the base number has to be powered.
Listing 3.20 shows how the POWER function works.
Listing 3.20: PL/SQL program to use POWER function

67



The output of Listing 3.20 is as follows:
Output:

1000
9924,36543
PL/SQL procedure

ROUND Function
The RO funclion acceps cither one or two parameters. First parameter is compulsory and is
the number whose value has to be rounded by some specific decimal points specified as the
second parameter,

o function is:

Syntax tor the
ROUND (r_num, d_num);

In this syntax:

9 r_numrepresents the number which has to be rounded. This parameler is compulsary.

Q d num represents the decimal places according to which r_num will be rounded. It is an
optional parameter, and if you don't specify this parameter, then the ROURD function deletes
the numbers aiter decimal point and returns the output.

Listing 3.21 shows how the function waorks.

i function

Listing 3.21: PL/SQIL program o use 500

The output of Listing 3.21 s as follows:
QOulput:

16

16.256

PL/SOL procedure

In the preceding output, there are two results show-. In the first result, all the numbers after
decimal have been removed because we have not spec
therefore, it has deleted numbers aiter the decimal.

| the second parameter; and

In the second result, there are only three numbers after the decimal point; it is because the
function has retained the numbers up to third place after decimal, as specified in the second
parameter.

SORT Function

The SQET function accepts a number value as a parameter and returns its value after doing
square root of the value passed as the parameter,

68



Chapter 3: Understanding PLISQL Built-in Functions

Note
l This finction never accepts a negative value.

Syntax for the SQRT function is:

SQRT( s_num);
In this syntax:

0 s_num is the number value whose square root has to be calculated. This number value
should be zero or any positive number.

See the Listing 3.22 to understand how it works,
Listing 3.22: PL/SQL program to use SQRT function

The output of Listing 3.22 is as follows:
Output:

MOD Function

The MOD function accepts two parameters—the first number as a dividend and the second
number as the divisor. This function then performs calculation on the values passed as
parameters and returns the remainder as the result.

Syntax for the MOD function is:
Mop (d_numl, d_num2);
In this syntax:
O d_numl represents the dividend.
O d_num? represents the divisor.
Listing 3.23 shows how this function works,
Listing 3.23: PL/SQL program to use MOD function

69



The output of Listing 3.23 is as follows:
Output:

1
1.625

PL/SQL procedure

COUNT Function

This function helps you calculate the total number of rows in a table based on a particular query.
For example, if vou want to know the tatal number of employees in a table or the number of
employees having salary more than 10,000, then this function can be used for retrieving the
results easily. -

HT function is:

Syntax tor the €0
SELECT COUNT (col_name or *) FROM tab_name WHERE condition;

Iy this syntax:

O COUNT (col_name or *} is the method with col _name as its argument. The col _name
represents the column name in which the count of the total number of rows filled with some
values has to be found out. This function does not count a blank row. The * can be used
when you want to calculate the total number of rows in the table with almost one filled entry
in every row,

Take a case for example: All the employees in an organization have been asked to submit their
cell phone numbers by using their online accounts until a specified date. After the specified date,
the HR department wants to know the number of employees that have given there cell phone
numbers. In that case, you have to specify the column name (in bracket of COUNT function)
representing the cell number in the table. This function then counts the number of rows having
cell phone numbers and returns the value.

0 tab_name represents the table name.

0 Condition represents a specific value on the basis of which the counting will be done.
See Listing 3.24 to understand this function,

NT function

Listing 3.24: PL/SOL program to use O

In Listing 3.24, we have used * with the count function to retrieve the total number of employees
in the table EMP.

70



3: Built-in Functions

output of Listing 3.24 is as follows:

Function

suM function allows you to get the sum of the values specified in the expression as a
Syntax of this function is almost same as the COUNT function except that here * does
waork.

Syntax for the SUM function is:

SELECT SUM (col_name) FROM tab_name WHERE condition;
In this syntax:

O SUM (col_name) specifies the column name (col name as shown in bracket) whose
row’s sum you have to calculate.

O tab_name represents the table name.

0 condition specifies a specific value on the basis of which the sum will be calculated.
For example, if you want to calculate the sum of salaries of those employees who receive
10,000 as salary, then you can specify this condition with WHERE clause.

Listing 3.25 shows the working of the suM function.
3.25: PUSQL program to use SUM function

In Listing 3.25, we have used the SAL (employee salary) column name with the sUM function to
the total salary of the employees in the table £p2.

output of Listing 3.25 is as follows:

Function

S1GN function accepts a number value as a parameter and returns its sign. For example, it
returns 1 if the number is more than zero; returns zero, if the number is equal to zero; and
returns -1, if the number is less than zero.

7



Syntax for the SIGN function is:
SIGN (val);

In this syntax, val represents the number value.
Listing 3.26 shows how this function works,
Listing 3.26: PL/SQL program to use SIGN function

In the Listing 3.26, first we have declared a variable & _sign of the NUMBER datatype, which has
been used to store the £_SAL (employee salary) column fetched from the table EMPLOYEE,
where E_NO=7844. We have then passed the employee salary retrieved from the table into the
516N function. At last, we have passed a negative value in this function to check the result,

The output of Listing 3.26 is as follows:

Output:

By this we have finished discussion on numeric functions. Now, we continue our discussion
with conversion functions.

Conversion Functions

The conversion functions are very important feature of a programming language. These functions
are used to convert one datatype into another datatype.PL/SQL provides lots of conversion
functions that can be used explicitly in a PU/SQL program. PLSOL also performs implicit
conversions when you do not perform conversion explicitly. You should perform explicit
conversions, wherever possible, to get the desired output, because sometimes implicit
conversion does not give the desired output. Table 3.5 shows some important conversion
functions.

Table 3.5: Conversion functions ; E

Fuaction Description

CONVERT It converts a string from one character set to another character set.
TO_NUMBER It converts a string to a number.

72



Chapter 3: Understanding PL/SQL Built-in Functions

Let's study these functions in detail.

CONVERT Function

The CONVERT function can accept 2 or 3 parameters, a string value, new character format, and
old character format. The third parameter is optional, If the third parameter is not specified than
this function uses the default character set,

Syntax for the CONVERT function is:
CONVERT (val, n_charset, o_charset);

In this syntax

O wval represents the string value which has to converted from one character set to another
character set.

0 n_charset represents the character set in which the string value has to be converted.

O o _charset represents the character set of the val string value. This is an optional
parameter. Table 3.6 shows of the character sets.

. -I;auripﬁun

US 7 Bit ASCII character set.

Greek 8 Bit Character set.

West European 8 Bit Character Set.

Universal Character Set.
WESHP Woast European 8 bit HP Laser jet Character set.
NEBIS08859P10 North European 150 8659-10 Character set.
WESPC850 West European IBM PC code page-500 8 Bit Character set.
WEBIS08859P1 Woest European IS0 8853-1 8 Bit Character set.
EEBIS08859P2 East European 150 8859-2 Character set.

Listing 3.27 shows how the CONVERSTON function works.
Listing 3.27: PL/SQL program to use CONVERT function

73



END;

/
In Listing 3.27, the variables con and cor yR2 datatype have been declared. The
variable conl has been initialized with a string, and then the ENAME (employee name) has been
retrieved into the variable con from the table =Mz, .

Adter declaring variables and retrieving the ENAME, we have used the CONVERT function to
convert the character set of value passed as parameter with the new character set.

The output of Listing 3.27 is as follows:
Output:

In this output, you can see two results, First result shows the emplovee name that has been
fetched from the database but it is same as in the database. Emplovee name has not been
converted because the default character set may follow the same convention as the character set
specified as parameter.

Second result has been changed according to the new character set passed as third parameter.

T0_NUMBER Function
The TO_NUMBER function accepts a string and a format (according to which the string has 1o be
converted in a numbert as a parameter and returns a number value equivalent to the entered
string.

function is:

Syntax for MU

TO_NUMBER (val, s_format);

In this syntax:

represents the string that has to converted in to a number,

O s format represents the format according to which the string will be converted in to
number,

L function works.

The following listing shows how the TO HuM

Listing 3.28: PL/SQL program to use T0_NUMBER function




Chapter 3: Understanding PLISQL Built-in Functions

In Listing 3.28, the variables con and conl of the VARCHARZ datatype have been declared. The
variable con 1 has been initialized with a string. Then the HTREDATE has been retrieved into
the variable con from the table EMP, where EMPNO=7500. Finally the To_NUMBER function has
been used on those values.

The output of Listing 3.28 is as follows:

Output:

After discussing the important conversion functions, let’s continue our discussion with another
built-in PL/SQL function, the Large Object (LOB) functions.

LOB Functions

Sometimes, you may require 1o store files, such as image files, video files, of very large size, in
the database. Now the question arises how you can store such a large file in the database table?.
PL/SQL provides you with the function called L.oB that allows you to store files up to size of 4GB
into the database. LO2 has two parts, one is LOB locator and another is LOB value.

A database table stores the 1.0B locator which is in fact a pointer to the actual location on LOB
value. Table 3.7 shows description of some LOE functions.

able 3.7:LOB Functions

Function Description

BFILENAME Initializes BFILE large object column in the database table.
EMPTY_BLOB Returns empty locator of BLOB type.

EMPTY_CLOB Returns empty locator of CLOB type.

Let's study these LOB functions in detail.

BFILENAME Function

The BFILENAME function is used to initialize the column of large object type in a database table
to point an external file or it returns the EFILE locator for the LOB binary file. This function
accepts two values as parameters namely, the directory name and the file name.

Syntax for the BFILENAME function is:
BFILENAME (dir_name, f_name);

In this syntax:

O dir name represents a DIRECTORY object that serves as an alias and stores the location of
the file.

75



O £ name represents the file name that contains the large object.
See the following example to understand how BFILEN

Before using directory alias in the BETLE * function, you must be sure that the directory alias
exist, or you need 1o create it before using it. To create a directory alias, you must have DBA
privileges. So to create directory alias login as SYSDBA and then follow the syntax given here:

RME function works:

CREATE DIRECTORY ‘name’ AS ‘location’;
In this syntax, the name parameter represents the directory alias name or the object name and
the location shows the path where the large object binary files will be stored. Let's see how to
create and use directory alias with BFILENAME function:

Creating a Directory

SQL> CREATE DIRECTORY pic AS "E:\picture’;
In the preceding statement, we have replaced the attributes name and location with pic and
E:\picture respectively. After specifying the name and location, press the ENTER key. You
will see the following result,
Result:

Directory Created.

Now, see the Listing 3.29 to use this directory alias with BFILENAME function.
Listing 3.29: Using B ILENAME function

In the Listing 3.29, first we have declared and initialized a variable pict of datatype BFILE.
After that the TNSERT statement has been used to add the employee picture in the table
EMPLOYEE. At last, we have used update statement to change the employee's existing picture
with the new picture.

The output of Listing 3.29 is as follows:
Output:

PL/SQL procedure successfully completed.

EMPTY BLOB and EMPTY CLOB Functions

These functions initialize a 8LOE and a CLOE column in the database table to “empty”. Column
in the table with BLOE or CLOE datatype can not be set as NULL. It must contain a locator that
might point to empty or filled LOB. Before you start working with BLOB or CLOE, either to assign
it a value in PL/SQL program or to use with SQL INSERT and UPDATE statements, set BLOE or
CLOE column to “empty”.

76



Chapter 3: Under {ing PL/SQL Built-in Functions

Besides initializing BLOE or CLOB, these functions also return emply locator of type BLOE and
CLOB respectively. Both of these functions can be used with empty pair or parentheses or
without parentheses.

Syntax for the EMPTY BLOB function is:
EMPTY_BLOB or EMPTY_BLOB ();
Syntax for the EMPTY_CLOB function is:
EMPTY_CLOB or EMPTY_CLOB ()
See Listing 3.30 to understand how to set a LOB column to “empty” and how to use these

functions with SQL statements.
Listing 3.30: Using EMPTY_BLOB and EMPTY_CLOE functions

In Listing 3.30, first we have declared two variables of the datatype BLOE and CLOB respectively,
which are also initialized as empty LOB. After declaring the variables, we have inserted these
variables in to the database table named EMPLOYEE.

Here you can see the output of Listing 3.30.
Output:
PL/sQL procedure successfully completed.

With this we have completed discussion on LOE functions. let's now discuss miscellaneous
functions.

Miscellaneous Functions

Miscellaneous functions are those functions that do not fall into the category of a particular
datatype, for example, character function falls in the category of character data type, and date
functions come under the date datatype category. Let’s study various types of miscellaneous
functions. Table 3.8 shows description of some of the miscellaneous functions.

77



 Table 3.8: Miscellaneaus functions

Function Description

LEAST

USER Returns the name of the current account.
uip Returns the id of the current account.

Let's discuss these functions in detail and learn how to use them in a PL/SQL program.

GREATEST and LEAST functions

These functions work in the same way but in opposite manner, The GREATEST function fetches
the highest value from the list passed as an argument, whereas the LEAST function fetches the
lowest value. Both these functions accept two or more than two values as arguments. There is no
limit to pass values in both these functions.

Syntax for the GREATEST function is:
GREATEST (vall, val2, vain);
Syntax for the LEAST function is:

LEAST (vall, valz, valn);
In these syntaxes, valn represents the nth value passed. It implies that you can pass as many
value as you want in this functions. Now, see the following listing to know how these functions
work.
Listing 3.31: Using GREATEST and LEAST functions

In the Listing 3.31, first the &_dat variable of the DATE datatype has been declared, followed by
fetching HIREDATE into that variable from the table Emplovee. After that the GREATEST and
LEAST functions have been applied on the values fetched from the table.

78



Chapter 3: Understanding PLISQL Built-in Functions

The output of the Listing 3.31 is as follows:
Output:

The preceding output displays six results. The first result shows the system date; second result
shows the date fetched from the table; third result shows the highest value amang the lists of the
values passed in the GREATEST function as arguments; fourth result shows the highest date
among the dates passed in the Gx=alEST function; fifth result shows the lowest value among
the lists of the values passed in the LEAST function; and the sixth result shows the lowest date
amang the dates passed in the LEAST function.

USER and UID Functions

Both of these functions work in the same manner. The USER function is used to know the name
of the current account, such as scott or sys, whereas the UTD function returns the integer value to
identify the user. Both these functions do not require any argument; it is for this reason that they
look like a variable rather than a function.

Syntax for the USER function is:
USER;

Syntax for the UID function is:
uID;

Listing 3.32 shows you how these functions work.
Listing 3.32: Using USER and UID functions

In Listing 3.32, we have declared two variables the u_ser, and u_id of the VARCHARZ and
NUMBER datatype respectively. After that the SELECT statement has been used to retrieve
the user name and the user id into u_ser and u_id respectively from the table EMP, where
EMPNO = 7900.

79



The output of Listing 3.32 is shown as follows:
Output:

With this we conclude our discussion on the built-in functions provided in PLISQL. You will
now be comfortable with using these functions. Let's summarize what we have studied in this
chapter.

Summary

In this chapter, we have studied:
1 The character functions, their types, and examples to demonstrate their working.

O The date functions and their various types, supported date formats, and various exarnples to
show how they work,

The numeric functions and their types along with examples.
The conversion functions

The LOB functions

Miscellaneous functions.

Oouooeo

80



Urheberrechtlich geschitztes Bild

Urheberrechtlich geschitztes Material



In real life, mostly you need to perform an operation based on a condition. For example, you
need to calculate income tax for employees of an organization. For this, you must apply
different formulas for caleulating income tax based on their different salaries and different filing
status, Usually, execution of a PL/SQL program proceeds from top to bottom except no control
structure comes in between, Similar to other high level structured languages C, C++ or Java,
PL/SQL also provides various control structures to deviate the sequential flow of execution of
PLASOQL program depending upon the conditions, execution part of PLSQL program repeatedly
till a specific condition is satisfied, and unconditionally jump to different parts of PL/SOQL
program. In other words, these control structures organize the flow of execution of a PL/SQL
program. This chapter discusses afl types of control structures and explains each of them in
details with examples. Let us study various contral structures available in PL/SQL.

Describing PL/SQL Control Structures

82

Control structures are one of main PL/SQL extensions 1o SQL. Control structures lead 1o well-
structured programming which helps developers to structure the flow of control through a
PL/SQL program. Each control structure has only one entry and exit point. Control structures are
broadly divided into three main categories:

a

“onditional control structures

0O lterative control structures

O Sequential control structures

Let us explain them with the help of flowchart diagrams,

Condinanal

Ao Sequential

|
L

|
L
:
H

L

I i
Fig.'L/SQL- 41

Fig.PL/SQL-4.1 consists of one iflowchart corresponding 1o each control structure,  Each
rectangular box in these flowcharts represents a set of PLSQL statements. The selection structure
starts from testing a condition and executes only one set of stalements according to the value of
condition (T or Fi. Usually, condition is either Boolean variable or an expression which results
into Boolean value. The iteration structure executes the set of statements repetitively until
condition evaluates to true. The sequential control structure executes the set of statements
sequentially.
These structure
FOR-LOOE, ¥




Chapter 4: Understanding PLISQL Control Structures

Using Conditional Control Statements

Conditional control statements facilitate us to take alternative actions depending upon
conditions. Conditional control statements include IF-THEN, IF-THEN-ELSE, IF-THEN-
ELSEIF, and CASE statements. Three IF statements execute a different sequence of statements
depending upon the value of condition. The CASE statement is nothing but simpler way of
writing IF-THEN-ELSEIF stalement. The CASE statement also executes efficiently in
comparison to IF-THEN-ELSEIF statemment. Let us now study each statement in detail.

IF-THEN Statement

The IF-THEN statement is a basic IF statement. This statement executes a set of staternents
when a condition is true. The general syntax of IF-THEN statement is as follows:

In this syntax, the condition between IF and THEN either evaluates to TRUE or FALSE. If it
evaluates to true then only the black of statements between THEN and END will execute.

If condition involves Beolean variable, we can simply place the boolean variable in between 18
and THEN keywords as it itself is either TRUE or FALSE.

Let us create an example which calculates how many hours an employee spent during overtime.
See Listing 4.1 which shows the use of IF-THEN statement.

Listing 4.1: Using TF-THEN statement

Declaration section declares and initializes two variables HoursWorked and OverTime of
NUMEER data type. The IF statement checks whether the number of working hours is (denoted
by HoursWorked variable) greater than defined standard for number of working hours (8) and
then, proceeds to calculate overTime if condition is TRUE. The pUT_LINE method of
DEMS_OUTPUT package is used to display OverTime on *iSQL Pius.

Here you can see the output of the Listing 4.1,

Output:

Hours spent in overtime = 4
PL/SQL procedure successfully completed.

83



After executing Listing 4.1on *iSQL Plus console, you will get the output as ‘Hours spent in
overtime = 4'. This message contains number of hours (4) spend in overtime by a person.
Upon each successful execution of any PL/SQL program, PL/SQL engine also displays PL/SQL
procedure successfully completed message.

IF-THEN-ELSE Statement

The IFP-THEN-ELSE statement's functionality is similar with either/or English language
sentence. The IF-THEN-ELSE statement is little complex than IF-THEN statement. It also
executes another sequence of statements if condition evaluates to FALSE, The syntax of IF-
THEN-ELSE statement is as follows:

keywords are executed based on condition’s value (TRUE or FALSE].

We now extend the same example as covered earlier in section IF-THEN statement by
including ELSE clause. See Listing 4.2 which shows use of IF-THEN-ELSE statement.

Listing 4.2: Using 1F-THEN-ELSE stalement

Here, 2L5% clause means that employee has not worked for overtime in an organization. In the
preceding listing, Zero value of OverTime variable represents this.

Here you can see the output of the Listing 4.2.
Output:

Person does not work for overtime
PL/SQL procedure successfully completed.

After execution Listing 4.2 on SQL *plus console, you will get the output as Person does not
work for overtime in the console. This output comes since HoursWorked variable
initialized to 8 which is standard for number of working hours in a day.




Chapter 4: Understanding PL/SQL Control Structures

IF-THEN-ELSEIF Statement

It is the the most complex IF stalement out of available three IF statemefits. It is used when a
PL/SQL program involves more than two conditions. For example, you can use this statement to
create menu which have many options but use of this statement is deprecated. As this statement
makes code complex and also does not execute efficiently. The general syntax of IF-THEN-
ELSEIF statement is as follows:

In this syntax, all conditions such as condition1, condition2 are mutually exclusive which
means more than one condition cannot be true at a time. Here, block of statements associated
with TRUE condition are executed. You can avoid using this complex IF statement since from
Oracle 9i Database Release 1, another searched CASE statement introduced which performs
same purpose.

We are again extending the example to include ELSE IF clause. See Listing 4.3 which shows
use of IF-THEN-ELSE IF statement.

Listing 4.3: Using LF-THEN-ELSE IF statement

In this listing, we use two different SQL commands, PROMPT and ACCEPT. The PROMPT
command here used to print name of program on iSQL*Plus console. The RCCEPT command
asks user to input the value of variable TotalHours. Declaration section assigns value input by
user to HoursWorked variable and also declares a LessTime variable of NUMBER type. The




ELSE IF clause of this program will execute and display the value of LessTime variable if an
employee works for hours less than 8 and leave office earlier due to some valid reasons.

Here you can see the output of the Listing 4.3.

Output:

After executing Listing 4.3 on *iSQL Plus console, it asks user for number of hours. In this
example, let's enter value 4 and press Enter key lo execute remaining part of Listing 4.3. The
output displays the text written in prompt which just shows the purpose of program. The next
two lines in output shows that second line of Listing 4.3 now initializes the HoursWorked
variable with value entered by user. Main message in output is Person leave office
earlier by 4 hours which contains the number of hours (4) by which person leave office
earlier.

Using CASE Statements

CASE statements let you to choose one set of statements to be executed out of many sets of
statements, Oracle 9i database release 1 and its upper versions to support CASE statements, Let's
discuss different CASE statement in detail.

Simple CASE Statement

A simple CASE statement consists of an expression and blocks of PL/SQL statements; where each
block is associated with a different value. The values of the blocks are specified in the WHEN
clauses, The expression in the CASE statement may also contain function calls. Expression's
value should be of the CHAR, VARCHARZ, or INTEGER types. It cannot be of the BLOE, BFILE,
object type, record, or VARRAY data types. When you execute a given expression, the
expression’s value is compared with the values specified in the WHEN clause. Then, the set of
statements associated with the matched value are executed.

The ELSE clause is optional in CASE statements and is executed when no WHEN clause did not
execute. If you do not specify the ELSE clause, PL/SQL inserts the ELSE RAISE
CASE_NOT FOUND clause into the CASE statement &y default. This clause raises the predefined
Exception CASE NOT FOUND.

Let's create an example which explains the meaning of grade symbols to student by using CasE
statement. See Listing 4.4 which shows the use of CASE statement.

Listing 4.4: Using simple CASE statement




Chapter 4: Understanding PLISQL Control Structures

The grade variable, which can store single character, stores the uppercase character entered by
student. When PL/SOL engine comes across CASE statement, it evaluates grade variable and
compares it with values mentioned in WHEN clause till a match is found. Then, statement
associated with matched WHEN clause executes and displays the meaning of grade entered by a
student.

Here you can see the output of the Listing 4.4.

Output:

After executing Listing 4.4 on *iSQL Plus console, it asks student to enter a grade in uppercase.
In this example, let's enter grade A and press Enter key to execute remaining part of Listing 4.4.
Output displays the text written in command 2ROMPT which just shows the purpose of program.
Main message in oulput is Grade A means Excellent Performance. This message
interprets the meaning of grade A to student in terms of performance.

Nete
['msemmabohemm:amapmmmmsewmmsemm

Searched CASE Statement
The searched CRSE statement consists of blocks of PL/SQL statements and each block is
associated with one boolean expression. Block of statements associated with expression which
results into TRUE value is executed. Note that searched CASE statement does not include any
expression, which comes immediately with CASE keyword in case of simple CASE statement.

Let's perform the same example of grading student’s perfermance but here student will enter his
marks and corresponding conditions in WHEN clauses are also different. See Listing 4.5 which
shows use of searched CASE statement.

Listing 4.5: Using searched CASE statement

87



We assumed that student can get maximum of 100 marks. Note the difference between
conditions mentioned in WHEN clauses in Listing 4.5 and those in WHEN clauses of Listing 4.4.
These conditions are Boolean expressions made up of using relational (>=, <=} and logical
aperators (and). In searched £ statement, condition evaluation also happens in WHEN clause,

Here, you can see the output of the Listing 4
QOutput:

After executing Listing 4.5 on *i50L Plus console, it asks student to enter marks represented by
SMarks variable, In this example, let's enter the value 80 and then press Enter key to continue
the execulion of remaining portion of Listing 4.5. Output displays the text written in command
OMET which just shows the purpose of program. Main message in output is Student
& on the basis of his marks,

This section demonstrates the use of searched CASE statement in case when there are more than
three conditions present in logic of a PLSOL program.

Using Sequential Control Statements
We have seen control structures which allow set of statements to execute only when some
condition is TRUE. PL/SQL also supports two more slatements, G070 and HULL which do not
need any condition to execute themselves, Let us discuss them in detail.

88



Chapter 4: Understanding PLISQL Control Structures

GOTO Statement

The GOTO statement used to transfer the flow of execution in PL/SQL program from one
statement to another statement directly without any condition. The syntax of GOTC statement is
as follows:

GOTO Tabelname;

labelname is the name of label present inside PL/SQL program. The labels are created by using
syntax <<labelname>>. In this syntax, surrounding angle brackets act as label delimiters.

We take an example of checking whether entered number is prime number or not to show you
the use of GOTO statement. See Listing 4.6 for use of GOTO statement.

Listing 4.6: Using GOTO statement

The ACCEPT command asks user to enter a number of INTEGER data type. Declaration section
assigns value entered by user to n variable and also declares a variable msg of VARCHARZ type.
The execution block checks if any of divisions of given number by 2 to integer (less than
rounded value of Square root of given number) returns any reminder. If remainder is 0, then the
number is not prime number. The MOD function is used for getting the remainder. In case of non-
prime number, GOTO statement will execute that transfer control to label named display. Next
statement to this label outputs the message msg. Here you can see the output of the Listing 4.6.

Output:

After executing Listing 4.6 on *iSQL Plus console, it asks user to enter a number. In this example,
let's enter value 991. Output displays the text written in prompt which just shows the purpose of
program. Main message in output is written as ‘931 is a prime number’




Now, check Listing 4.6 for non-prime number. Here you can see the second output of
Listing 4.6.

After executing Listing 4.6 again, let’s enter non-prime number such as 990 and press ENTER
key. You will get 930 is NOT a prime number as output.

There are some limitations of GOTO statement which are as follows:

3 Cannot transier control to label present inside the nested block.

a  Cannot transfer control from outside an 18 statement 1o a label inside this TF statement.
a  Cannot transfer control from an TF statement to a label inside another ITF statement.

a  Cannot be used in EXCEFTION block to transier control to any part of PLSQL program.

NULL Statement

The NULL statement itself does nothing but transfer control to next statement. In case of certain
statements such as 18 and 2xcEeTIoN block, there should have at least one executable
statement for compilation, we can use NULL statement here. Note that NULL statement and
boolean value NULL are not similar. They are used in different contexts.

Let's create an example of increasing percentage of commission of an employee having
designation Sales Person and emplovee id equals to 102, For other employees, we need not to
perform any action. See Listing 4.7 for the use of KULL statement.

Listing 4.7: Using NULL statement

Declaration section declares a Job variable of VARCHAR? type and EmpId variable of NUMBER
type. We initialize EmpId to 102 on which basis the SELECT INTO query is made. After getting
designation of employee into Job variable, TF statement checks whether designation is Sales
Person. The UPDATE query inside I¥ statement multiplies commission percentage (denoted by
comm) by 2. The 2LSE clause meant for other employees, we use NULL statement here to show
no action.

This example operates on a bonus table having one following record.

20



Chapter 4: Understanding PLISQL Control Structires

ename’ Job sal comm | Empid
Gaurav Sales Person 20000 10 102
Here you can see the output of the Listing 4.7.
Qutput:

PL/S0L procedure successfully completed.
After executing Listing 4.7 on *iSQL Plus console, you will get message ‘PL/SQL procedure
successfully completed’. Execute the following query to see whether the record is
updated or not:

SELECT * FROM bonus;

Here is bonus table after execution of the query. Note that the value of percentage of
commission (denoted by comm field) changed from 10 to 20.

The bonus table after executing Listing 4.7 on iSQL*Plus consale will be as follows:

ename Job sal comm ' empid
Gaurav sales Person 20000 20 102

Here is another code snippet which uses BULL statement with EXCEPTION block:

In this syntax, when divide by zero exception occurs, rollback operation is performed. The
ROLLBACK statement cancels the effect of previous transaction. For any other type of exceptions,
we use NULL statement which means do nothing for these exceptions.

Using Looping Constructs in PL/SQL

PL/SQL supports various types of loops to iterate portion of program for many times based on
some condition. However, as a best practice, you must write the type of loap best suited for a
specific requirement. Different types of LOOP statements are as follows:

a LooP

a  FOR-LOOP

a  WHILE-LOOP

Let us discuss each LOOF statement in detail.

LOOP Statement
The LOOP statement is a simple type of loop and specifies that the specified part of the program
is iterated till the specified condition evaluates to true. This statement begins with the 1oop

keyword and ends with the ND  LOGP statement. The general syntax of the LOCP statement is as
follows:

91



In this syntax, set of statements are executed and control again transfers 1o the beginning of loop.

You can use other clauses with the 1
program hlock. For example, you can use the EXIT and
condition, as described next.

stalement to specify conditional iteration of the
TT-% ! clauses to specify the given

EXIT Statement

The EXIT statement used to finish loop without any condition, When this statement is executed,
loop finishes and control transfers to next statement after the loop. Note that the EXIT statement
only works inside a loop.

EXIT-WHEN Statement

The EXIT-WHEN statement also finishes the loop but when specific condition is encountered.
When this statement is executed, condition inside W clause is checked. If this condition is
true, Inop finishes and control transfers 1o next statement after the loop, There should be one
statement present inside the loop to change the value of condition. We can also use IF statement
in place of EXIT-WHEN statement as explained in following example:

IF num > 100 THEN EXIT; ENDIF;
EXIT WHEN num > 100;

The EXIT-
operations,

I statement is si

pler than IF statement in this example but both perform same

We take an example of inserting complaint ids 1o o tatement. See

Listing 4.8 which uses LCOP statement.

Listing 4.8: Using LoOE statement

The 113

0 CemplaintId, which is same as the loop counter

T query inserts the following in every iteration of the loop:

later

0 Description, which represents the string value

If the value of i is greater than the entered value, the & WHEN statement completes the loop.,

92



Chapter 4: Understanding PLISQL Control Structures

Here you can see the output of Listing 4.8.
Output:

After executing Listing 4.8 on *iSQL Plus, the console asks user to enter a number on which
LOOF statement completes. In this example, let's enter the value 3 and press Enter key. Output
displays the text written in command PROMET which just shows the purpose of program. You
can execute the following query on *iSQL Plus console to determine whether loop adds three
rows into complaints table or not:

SELECT * FROM complaints;

The complaints table after execution has following rows:

This section illustrates the use of LOOF, EXIT and EXIT- WHEN statements,

FOR LOOF Statement

The FOR LOOP statement iterates the portion of PL/SQL program for known number of times.
The general syntax of FOR-LOOE is given as follows:

In this syntax, the FOR-LOOPE statement uses double dot operator which is used to specify the
range of counter variable between lowerbound and upperbound. This loop iterates the set of
statements by upperbound - lowerbound number of times. Both lowerbound and
upperbound of loop should be any out of literals, variables and expressions resulting into
numbers. Otherwise PL/SQL arise VALUE ERROR predefined exception. PL/SQL coverts both
bounds to the values of PLS _INTEGER data type.

Note that you cannot change the counter inside the body of FOR loop as you are not allowed to
reference counter in the body of loop.

We now perform the addition of squares of numbers from 1 to n using FOR loop. See Listing 4.9
which illustrates the use of FOR loop.

Listing 4.9: Using FOR loop

93




The ACCEPT command asks user to enter the value of n. Declaration section assigns the value
entered by user to n variable and also declares a msg variable of VARCHAR?2 type. The execution
black contains a FOR LOOE, In every iteration of this loop, square of number is calculated and
added to msum variable. After calculating the sum of squares of integers from 1 to n, we display
this sum by using PUT_LINE procedure.

Here you can see the output of the Listing 4.9.

Output:

After executing Listing 4.9 on *iSQL Plus console, the console asks the user to enter the value of
n. In this example, let’s enter the value 20 and press Enter key. First line of output is the written
in command PROMET which just shows the purpase of program. Main message in output is Sum
of squares of first 20 numbers = 2870 which shows the sum of 1*1+2*2,,...., +
20*20 series.

Let's consider an example which explains the scope of loop counter variable. See Listing 4.10 for
this purpose.

Listing 4.10: Accessing loop counter variable

We used same variable name for loop counter since local declaration supersedes the global
declaration. Here, you can see the output of the Listing 4.10.

Outpul:

924



Chapter 4: Understanding PLISQL Control Structures

PL/sQL procedure successfully completed.
After executing Listing 4.10 on *i5QL Plus console, we concluded that the scope of the loop
counter variable j is destroyed when the FOR loop ends.

You can also access global value of j inside the loop. For this, see Listing 4.11.
Listing 4.11: Accessing global variables inside the loop

We named entire block of statements with label global. Global value of § accessed by using
syntax global.q. The END global statement ends the entire block.

Here you can see the output of the Listing 4.11.
Output:

After executing Listing 4.11 on *iSQL Plus console, we saw in output that when we access the
value of j using global. ], it prints the value of 1 in global block. If we access value of j by
just typing 3, it displays value of 1 local variable.

WHILE LOOP Statement

The WHILE-LOOP statement iterates the set of statements present inside its body until condition
evaluates to TRUE. The general syntax of WHILE-LOOP statement is as follows:

The number of times, a set of statements executed, depends upon the condition and cannot be
determined till loop finishes. There may be a case in which these statements will not execute for
once since condition is examined at the beginning of loop. When condition evaluates to FALSE
or NULL, body of loop is skipped and control transfers to next statement after the loop.

Let's calculate the areas of circles with different radius using WHILE loop. See Listing 4.12 for
use of WHILE LOOP statement.

Listing 4.12: Using WHILE LOOP statement




The condition inside the wEILE and Loop keywords is radius of circle, which should be less
than or equal 1o 10. The expression that calculates the area of circle is pi* radius® radis
The pi va ration, value
of re

ble here is mathematical 21 constant which equals to 3,14, In eact
ariable 1s incremented by 1.

Here you can see the output of the Listing 4.12.
Output:

When we execute Listing 4.12 on *iSQL Plus console, the console displays the areas of all
circles with radius less than 10,

We can also make v oop 1o execute at least once by using following syntax:

As flag variable is set to false, NOT operator makes condition present inside WHILE and LOOP
true, therefare, a set of statements will execute for first time. Bul there must be an assignment
statement which assigns a new value to flag Boolean variable so that the loop does not execute
tor infinite number of limes,

Summary

I this chapter, we have studied about:

0 Conditional Control statements such as [F-THEN, IF-THEN-ELSE, IF-THEN-ELSEIF and CASE
with their examples,

3 Sequential Control statement such as GOTO and NULL with their examples.
O lerative statements such as LOOP, FOR-LOOP, and WHILE-LOOP with their examples,

96



Urheberrechtlich geschitztes Bild

Urheberrechtlich geschitzies Material



In today's scenario, every organization needs to manipulate the data in the database as per the
changing requirements of the organization. Data in the database can be manipulated by using
the Structured Query Language (SOL), but performing manipulation at large scale is not possible
due to limitations of SQL. One of the major limitations of SQL is that it cannot send multiple
statements to a database at the same time, With SQL, we cannot manipulate the retrieved data.
For example, you want to add 1000 rupees in the salaries of those employees who are earning
3000 rupees monthly. The problem with SOL is that you can only fetch the records of the entire
employvees earning 3000 rupees but cannot manipulate those records. To overcome  this
problem, PL/SOL is used to perform SQL operations. PL/SQL extends the entire characteristics
and statements available in SQL, such as select, insert, update, drop, and delete. A database can
be easily created and manipulated by incorporating SQL statements in a PL/SQL block. PL/SQL
supports all the datatypes supported by SQL; therefore, you do not need to convert SQL
datatypes to PL/SQL datatypes.

This chapter describes how SQL can be used within PL/SQL and explains transaction
management,

Working with DDL and DML Statements in PL/SQL

SQOL has two types of statements, which are used to manage a database. Those statements are
DDL (Data Definition Language) and DML (Data Manipulation Language). DDL statements are
used to create, alter, and drop a table in the Oracle database while the DML statements are used
to manipulate the records in the database table, Following are the DDL and DML statements that
we are going to discuss in this section:

O CREATE Statement: used to create a table in the database.

INSERT Statement: used to insert records in the database table.

SELECT Statement: used 1o retrieve values from the database table.

UPDATE Statement: used to modify the database table.

0ooao

DELETE Statement: used to delete a record from the database table.
0 DROP Statement: used to remove the complete table from the database.

You are familiar with using all these statements in SQL. Let's now see how to use these
statements in PL/SOL.

Using the CREATE statement

Itis a DDL statement and the way to use this statement in PL/SQL is same as in SQL. Let’s see the
Listing 5.1 where we are creating a table by the name of £_DETAIL for storing the details of
employees.

Listing 5.1: Creating a Database table

98



Chapter 5: Impl ing SQL Operations in PLISQL

On executing the above statement, you will see the following output.

Table created.

Using the INSERT statement

It is a DML statement, which is used to add record in the database table, In PL/SQL, we can use
this statement multiple times within PL/SQL block for adding multiple records in the database
table as compared to SQL where only one record can be added to the database table at a time.
Let's see Listing 5.2 to know how to use this statement in PL/SQL.

Listing 5.2: Adding record in the £_DETAIL table

In the Listing 5.2, we have inserted two records in the database table that were created in the
Listing 5.1.

Now let’s see the output of the Listing 5.2.

PL/SQL procedure successfully completed.
Using the SELECT statement

It is also a DML statement, which is used to retrieve the values from the database. In PL/SQL, you
have to use ITNTO clause with SELECT while in SQL SELECT statement can also be executed
without INTO clause. Using INTO clause helps in retrieving some specific field from the
database table rather than retrieving all the fields. Let's see Listing 5.3 to know how to use
SELECT statement in PL/SQL.

Listing 5.3: Selecting values from the E_DETAIL table

In Listing 5.3, we have used select statement to retrieve EMP NGO and EMP _BASIC from the
database table E_DETAIL where EMP_NO=100. Let’s see the output of Listing 5.3:

~ EMP_NO = 100 EMP_BASIC = 25000
PL/50L procedure successfully completed.




Using the UPDATE statement
It is also a DML statement, which is used to modifv records in the database table, In PLSQL, we
can use this statement multiple times within PLSQL block to modify multiple records in the
database table while in 3QL only one record can be maodified at a time. Let’s see Listing 5.4 to
know how 1o use this statement in PL/SOL.
Listing 5.4: Madifying records in the table £ D

5QL> BEGIN
UPDATE E_DETATL SET EMP_BASIC
UPDATE E_DETAIL SET EMP_BASIC
END;

/

In Listing 5.4, we have executed
employes’s having > N

atement twice to modify the basic salary of the
andd 1

1 respectively. Let's see the output of Listing 5.4:
PL/SOL procedure successfully completed.

Using the DELETF statement

Itis also a DML statement, which is used to delete record from the database table on the basis of
the condition specitied with » £ clause. Now, suppose you want to delete all the records in
PL/SCIL where basic salary is equal to 10000, tor this purpose let's see Listing 5.5 1o know how
1o delete record from the database table,

Listing 5.5: Removing a record rom £ DETATL table
s0L> BEGIN
DELETE E_DETATL WHERE EMP_BASIC= 10000;
END;
!

Output of Listing 5.5 is as follows:
PL/sSQL procedure successfully compieted.

In PUSQL, vou can use all the DML statements 1o perform some transactions which are not
possible in SOL. Let's see Listing 5.6 to know how to use all DML statements together,

Listing 5.6: Showing the use of all DML statements in a PL/SQL program

50L> DECLAR
ENG NUMBER;
SAL NUMBER
BEGIN
INSERT INTO
INSERT INTO
SELECT EMP_I
UFDATE E_DE
DELETE E_DE
END;

/

100



Chapter 5: Implementing SQL Operations in PLISQL

In Listing 5.6, We have used all the four DML statements in the same PL/SQL block which is not
possible to do in SQL.
First, we have inserted two records in the table £_DETATL.
After that, we have retrieved some values in the variable declared in the declaration part of the
PL/SOL block.
Then, we have exccuted UPDATE statement to modify the salary of an employee whose
employee number has been specified with WHERE  clause.
Then at last we have execuled the DELETE  statement to remove all the records from the
database table where EMP_BASTC=10000.
On executing the Listing 5.6 you will get the following output:

PL/SQL ‘procedure successfully completed.
In this way, we can use DML statements in various combinations to perform some meaningful
task such as selecting and updating the user record. Using DML statements in different
combinations to get the desired result is known as transaction. We will study transactions in
detail ahead in this chapter. Now, we discuss the process to remove a table from database.

Using the DROP statement

It is also a DOL statement and the way to use this statement in PL/SOQL s same as in SQL. For
example, you have created a table in the database but later on felt that there is no need to create
that table then what will you do. In that case, you can use DROF  statement to remove the
unnecessary table from the database. Let's see the following example in which we are deleting a
table EMP_DETATLL.

SQL> DROP TABLE ‘EMP_DETAILL:
On executing the above statement, you will get the following output:
Table dropped.

With this we conclude our discussion upon DDL and DML staterments in PLSOL and SQL
support in PLSQL. You must have observed that under the topic DML statements, you came
across a term transaction which has been defined and in a concise manner, Let's now study
transaction and its management in detail.

Transaction Management with PL/SOL

A transaction is a complete unit of work that includes a series of SQL DML {Data Manipulation

Language) statements, The properties that describe how transactions should work in a database

are collectively known as ACID. The acronym ACID stands for:

O Atomicity: It means that the transactions made to database either completes or fails,

0O Consistency: Transactions should have to maintain data integrity that is no partial
transaction should be made when working as a complete unit.

O Isolation: Multiple transactions can be executed simultaneously; in that case the changes
made by one transaction will be visible to other transactions when the transaction will be
committed.

101



O Durability: It means once the collection is committed successiully, the changes made by
transaction are permanent and safe from failures such as electricity failure during
transaction.

A transaction starts when Oracle encounters the first SQL statement and the transaction ends due

to any one of the following reasons:

Q  User issues either a COMMIT or ROLLBACK statement.

Q  User executes statements such as CREATE, DROP, RENAME, or ALTER. If user executes any
of such statement then Oracle first commits the current transaction and then executes and
cornmits those statements,

2 User is disconnected from the Oracle then the current transaction is committed.
QO Any failure occurs and the transaction is rolled back.
Let's discuss a banking example to understand transaction. Suppose there are two persons
named Adam and Sarah. Adam needs to transfer some amount of money in Sarah’s account. For
that two operatigns must have to be performed during transactions that are deduction of the
maney from Adam’s account and addition in the Sarah’s account.
To perform these two operations, two update statements should work as a single unit. This
complete unit is known as Transacticn and it needs to be commilted to complete the
transaction. If you will not commit the transaction then it may lead to database inconsistency
because it may happen that during transaction one account is updated correctly but while
updating the other account suddenly electricity failure occurs or any other kind of failure occurs
such as memory problem, hard disk crash. Without committing, the transaction can not ensure
that whether the transaction is a success or a failure but if the transaction is committed then at
the time of failure Oracle will role back the transaction and thus maintaining the database
consistency.

In the above example, we have talked about committing and rolling back the transactions, Here,

you can raise a question about how to commit and rollback the transaction? Answer is, the

statements provided by Oracle to manage transaction. Now, we continue discussion by
explaining the statements that are provided by Oracle to manage transaction. Those statemenls
are as follows:

o COMMIT

0 ROLLBACK

O SAVEPOINT

O SET TRANSACTION

0 LOCK TABLE

Let’s now continue discussing all the above given statements in detail. We will study all these

statemnents in the same order as given above.

Using the COMMIT statement

This statement is used to make the changes made by SQL statements within the transaction
permanent. Whenever a transaction is committed a unique SCN (System Change Number) a
specific number in Oracle memory that indicates the location of datafiles is generated, which is
then automatically written to the redo logs files (the files that store all the changes made by
Oracle database). Syntax to use COMMIT is as follows:

102



Chapter 5: Implementing SQL Operations in PL/ISQL

COMMIT WORK;

In the above syntax, the keyword WORK is optionai. This can be used for readability of the
program.

Let's see an example to use COMMIT statement.

In this example, we are considering a consultancy agency that provides recruitment to
candidates registered with them. Now, suppose that this consultancy keeps the records of the
candidates in two files. In one files it keeps the records of those candidates to whom recruitment
has to be provided and in other those has already been recruited.

Now, we have to create a transaction in such a way that if one candidate will get recruitment in
any company then histher record should be deleted from the first table and will add in the
another table automatically.

In this transaction, we will use three statements that are SELECT, DELETE and INSERT and if
any one of the statement is not executed properly or any failure will occur then it leads into
database inconsistency. To ensure that inconsistency will not occur, we have to commit the
transaction. Let’s see the Listing 5.7 to understand how to commit a transaction:

Listing 5.7: Showing how to make the changes permanent

In Listing 5.7, first we have selected a complete record of candidate from the table
RECRUITEMENT on the basis of CID (candidate 1D} when the candidate is recruited.

After that, we have inserted the same record in the table RECRUITED with the company name
where candidate is recruited,

Then, according to the scenario, we have deleted the same record from the table RECRUTTMENT
that we have inserted into the table RECRUITED. After that, we have used COMMIT statement to
make the changes permanent.

Output of Listing 5.7 is as follows:

PL/S0L procedure successfully completed.

103



In this way,
that heips in managing transaction that is

Using the ROLLBACK statement

This statement is used lo unto the changes thal are made during a transaction. This statement is
also used to end the current transaction, ROLLEACK undoes all the changes made up to the last
commit. It is also used 1o take the corrective actions for the failures that occur at the time of
processing the current transaction. Syniax 1o use CE s as follows:

ITT statement is used o complete a transaction. Let’s discuss another statement
L statement.

ROLLBACK WORK;

In the preceding syntax, the keyword W0

is optional.
Let's size the Listing 5.8 to understand RO LI
Li

AUE slatement,

ing 5.8: Rolling back the work done by DML statement

SQL> BEGIN

INSERT INTQ EMP_BONUS { EMP_NO, EMP_BASIC, BAB) WALUES (100, 6000, 7000);
INSERT INTO EMP_BONUS { EMP_NO, EMF_BASIC, BAB) VALUES (103, 6000, 7000);
EXCEPTION

WHEN DUP_VAL_ON_INDEX THEN

ROLLBACK;

END;

In Listing 5.8, we are inserting some values in the table
the 1 T statement byvice,

- We are trying to execute

Here we want Oracle to check for Hw duplicate records in the table and for that we have used a
pre (|['I’IHI'L| exception that is T i IN I Oracle finds anv duplicate record then
the RO ‘K statements will be execated and the changes made by other statement will also
be undone. But if Oracle does not finds any duplicate record then staterment will
BREC ult:|>m|u:r|_\=.

Here in our case, record with the EMP
has rofled back the transaction.

Naze
Exception will be discussed in detail in chapter number 11 of this book.

HO=100 already exists in the table that's why the Oracle

Sometimes vou may execute many stalements in a transaction while speciiying BACK

statement for MaAnaping database consistency,

And, during execution of those statements some problem may occur in the execution of a single
stalement, or il the statement is violating any constraint then the Oracle will rollback the whole
fransaction.

If you want that the whole transaction should not be rolled back and only that statement creating
violation «hullid 1oll back then you can also roll back the same statement. To do that, you have
10 use 5 INT. Lel's study SAVEPCINT in detail.

104



statement

INT is known as undeclared identifier, which is used to store intermediate state in a

It allows a user to undo a part of transaction, SAVEPOINT is used to rollback only

that failed to execute or raised any exception due to any kind of constraints,

we use SAVEFOINT then only the work done by failed statement is lost but the work

done by successful statements in current transaction will remain safe. Let's see Listing 5.9 1o
understand its working.

Listing 5.9: Using SAVEPOINT in transaction

In Listing 5.9 first we executed the DELETE statement to remove a record from the table
EMP_BONUS. Then, we applied a SAVEPOINT to save the changes made by this statement, After
that, we executed an insert statement 1o add a record in the table EMP_BONUS. It may happen
that the record we are trying to insert already exists in the table, in this case it violates the
constraints and statement will fail.

To check the duplicate records in the table, we have used a pre-defined exception and on the
basis of that we have rolled back the transaction to the SAVEPOINT. In the case, Oracle will roll
back the transaction to a SAVEPOINT the following occurs:

O Oracle roll back only the statements run after the SAVEEOTHT.
Q0  Oracle will undo all the changes made by transaction but retain the changes made up to the
SAVEPOINT.

This is all about the SRVEEOTNTS in transaclions. Let's continue our discussion to know how to
set the transaction to read-only or read-write.

Using the SET TRANSACTION statement

The SET TRANSACTION statement can be used only once in a transaction and this must be the
first statement in the transaction. You can set the transaction to read-only or read-write by using
SET TRANSACTION statement. Making a transaction read-only is useful where you want to
execute multiple queries in the transaction and at the same time allow other users to execute
other statements on the same table.

Read-only transactions are beneficial for the queries in the transaction to view only the changes
made before the transaction began. Lel's see Listing 5.10 to use SET TRANSACTION slatement.

Listing 5.10: Making the transaction read only

SCL> DECLARE
sal NUMBER;

105



In Listing 5.10, we have executed the select statement twice and it will provide the same data
irrespective of the changes made 1o the database table used in this transaction.

Here, we want to convey that if any other user will modify the values in the database table while
the first SELECT statement has already been executed and the other has not start yet; at that
time, modification in the database table will not affect the result of the transaction. This is so
because after setting the transaction to read-only this transaction can only read the changes
made before the transaction began.

To end the SE7T TRANSACTION, use COMMIT or ROLLBACK stitemenl. SET TRANSACTION
also has some restrictions over it, these restrictions are as follows:

0 DML statements can not be used with read-only transactions.

O You can not execute queries with the FOR UPDATE clause,

O You can only use the SELECT INTO, OPEN, FETCH, CLOSE, LOCK TABLE, COMMIT and
ROLLEACK statements in the read-only transactions.

With this we have ended discussing SET TRANSACTION statement. Here, you have seen that
while using SET TRANSACTION statement other users are allowed to modify the database
table. Modifying the database table while a transaction has already been in execution, may lead
in unexpected result, if you will not set the transaction to read-only. If you want that other user
can not modify the database while one transaction is already in execution then you can set the
LoCH on the database table to restrict the modification. Let's study about how to set LOCKE on
the database table.

Using the LOCK TABLE statement

This statement can be used 1o lock the database table. A database table can be locked in two
modes that are ROW SHARE mode and EXCLUSIVE mode. During row share mode many users
are allowed to use the same resource, such as a table while in exclusive mode only one user is
allowed 1o use the resource and that resource locked until the transaction is committed or rolls
back. Let's see the syntax o use LOCK TABLE statement.

LOCK TABLE tab_name IN lock_mode;
Here:

O tab_name: It is the name of database table that vou want o lock.

0 lock_mode: It is the mode of lock that can either be RCW SHARE mode or EXCLUSIVE
made. Which lock needs to be applied on the database table depends on your requirement.

106



Chapter 5: Implementing SQL Operations in PLISQL

Now, see how to use LOCK TABLE statement on a table. In the Listing 5.11, we are locking the
table EMP_DETAIL in EXCLUSIVE mode.

Listing 5.11: Showing how to lock the table

Output of the Listing 5.11 is as follows:
PL/sOL procedure successfully completed.

Now, other user can only retrieve the data from the table EMP _DETAIL but can not perform
operations such as INSERT, UPDATE, and DELETE. Here, we have completed discussion on
Transaction management in PL/SQL. With this, we have reached to the end of this chapter. After
studying this chapter, you should be able to execute SQL DDL and DML statements within
PL/SQL block and can also manage transactions. Let’s have a brief summary about all that we
have covered in this chapter.

Summary
In this chapter, we have studied about:
a The SQL supports in PL/SQL
0 Using DDL and DML statements in PL/SQL
O Transaction Management

107



Urheberrechtlich geschiitztes Bild

Urheberrechtlich geschiitztes Material



L/SQL, similar to other programming languages such as C, C++, allows using arrays, list,

collections, and records, to group related values. A group of related values, which may be of
different datatypes, is called a collection, and a group of values with similar datatypes is called a
record. Using collections and records can simplify the work of a programmer, and reduces the
length and complexity of a program. .
Suppose you want to process the salaries of the employees in the EMP_DETALL table. You can
do this easily by using collections, because salary of all the employees must be stored under the
same column, implying that you are working with similar datatype. However, you can use
records to manage all the details of the employees, since different columns in a table may be of
different datatype. Let's now look at how to use collections and records. We start by learning to
wark with PL/SQL collections,

Working with PL/SQL Collections

Collections are single dimensional data structures that function as an ordered group of elements
having the same datatype. For example, salaries of employees in the table EMP_DETRIL is a
collection. Every element in a collection has a specific index number, which is used to access
that element from the collection for processing. You can use collections as PL/SQL datatype and
can also pass them as parameters. Let's discuss about various PL/SOL collection types as well as
learn how to define, declare, initialize, and assign collection types, in detail. We describe them
under the following topics:

0 Selecting PL/SQL Collection Types
O Defining Collection Types

0 Declaring Collection Variables

O Initializing Collections

0 Referencing Collections

O Assigning Collections

0 Comparing Collections

O Using Collection Methods

Let's discuss these topics in detail.

Selecting PL/SQL Collection Types

In programming languages, such as C ar C++, a collection type can be a list, an array, or a hash
table. Similarly, PL/SQL also offers its own collection types. PL/SQL collection types are varray,
nested table and associative array. Selecting a collection type depends on the requirement of
your program. Table 6.1 describes various collection types briefly.

Table 6.1: Collection types in PL/SOL
Collection Name Description




6: Collections and Records

Now, after learning about collection types, let's learn how to use them in a PL/SOL program.

Collection Types in PL/SOL
To create a collection in PL/SQL, you must have to define its type. Collection type can be
defined in the declaration part of PL/SQL block. As we know that there are three different
collection types, so the syntaxes used to define them is also different but the scope and
instantiation rules for all of them are same as they are for other PL/SQL datatypes. Now, let's
study how to define collection types—varray, nested table and associative array— in a program.

Varrays
The syntax to define a varray in a PL/SQL program construct is as follows:
TYPE varray_type IS VARRAY (size) OF element_type [NOT NULL];
In this syntax:
O wvarray_type represents any valid name that will be used while declaring a collection.
O VERRAY shows that you are defining a collection of type VARRAY. You can also use
VARYING ARRAY in place of VARRRY.
O (size) represents a positive integer value, which is used to set the upper bound of the
elements that this collection can contain.
O element_type represents PL/SOL datatype.

11



Q[ NOT NULL] is optional and sets validation so that the elements in the collection can not
have null values,

Listing 6.1 shows how to store ten numeric values:

Listing 6.1: PL/SQL program to define

SQL> DECLARE
TYPE emp_id IS VARRAY (10) OF KUMBER NOT NULL}
BEGIN

NULL;

END;

/

Output of the Listing 6.1 is as follows:
PL/SQL procedure created successfully

The Listing 6.1 shows how you can define a varray in PL/SQL program. You can also define
varrays in database tables. To define a varray in a database table, you require to use CREATE
TYPE statement in place of the TYPE statement,

Syntax to define a varray in a database table is:
CREATE TYPE varray_type AS VARRAY (size) OF element_type;

Syntax to define a varray in a database table is same as the syntax to define a varray in PLSOL
program except that we have added the CREATE TYPE stalement in the beginning of the syntax,
and 15 has been replaced by A5,

See the following example to understand how to define a varray in a database table. It can store

addresses of ten employees,

SQL> CREATE TYPE emp_addl AS VARRAY (10) OF VARCHARZ (200);

Having learned how to define a varray in a database table, let's understand the process to define
nested tables.

Defining Nested Tables
Syntax to define a nested table in a PL/SOL program is:
TYPE nested_table_type IS TABLE OF element_type [NOT NULL];

In this syntax:
Q HNested
a collection.

ble type represents any valid name, which will be used later while declaring

0 TASLE shows that you are defining a collection of type
= represents the PL/SQL datatype,

HuLL] s optional and can be used to set the validation so that the elements in the
L(I“L‘L[Inl‘l can not have null values.

112



Chapter 6: Understanding PLISQL Collections and Records

See the Listing 6.2, which can be used to store some numeric values:
Listing 6.2: PL/SQL program to define Nested Table

Output of the Listing 6.2 is as follows:

PL/SQL procedure created successfully

In the Listing 6.2, we have defined a nested table in PL/SQL program. You can also define nested
tables in your database. Let's see how to define a nested table in a database.

Syntax to define a nested table in « database table is:

CREATE TYPE nested_table_type AS TABLE OF element_type;

Syntax to define nested table in a database table is same as the syntax to define nested tables in
PL/SQL program except that CREATE has been added in the beginning of the syntax and 15 has
been replaced by a5.

The following example shows how to define a nested table in a database table which can store
addresses of employees.

SQL> CREATE TYPE emp_add2 AS TABLE OF VARCHARZ (200);

Let's discuss how to define associative arrays.

Defining Associative arrays
You can define associative arrays in a database. Here's the syntax for the associative array:

TYPE associative_array_type IS TABLE OF element_type [NOT NULL] INDEX BY
key_type;

In this syntax:

a

=]
a

associative_array type represents any valid name, which will be used later while
declaring the collection.

element_type represents the PL/SQL datatype.

[ NOT MWULL] is optional and can be used to set the validation so that the elements in the
collection can not have null values,

INDEX BY clause is used to define associative array.

Key_type represents a numeric value (PLS_INTEGER or BINARY_INTEGER) or
VRRCHARZ2. The datatype, such as RAW, LONG RAW, ROWID, CHAR, and CHARACTER are not
allowed as keys for an associative array.

113



Listing 6.3 shaws how to define an associative array:

Listing 6.3: PL/SQL program to define Associative arrays

Output of the Listing 6.3 is as iollows:
PL/50L procedure created successfully

With this we conclude discussion on defining collection types, Alter understanding how to
define a collection type, let’s learn to declare collection variables.

Declaring Collection Variables

Adter defining the collection types, you need to declare the collection variable of that collection
type. Declaring collection variables is necessary to use the collection type, you have defined.
You define callection types in the declaration part of PLSQL block. Listing 6.4 shows how to
declare collection variabies. Before declaring the collection variables execute the statements
given below to define v and Nested table in database.

SQL> CREATE TYPE emp_addl AS VARRAY (10) OF VARCHARZ (200); /* pefining varray
in Database */

Output of the preceding statement is as follows:

Output of the preceding statement is as follows:

Type created.
Let's see the Listing 6.4 to dechire collection variables,
Listing 6.4: PL/SQL program to declare collection variables

114



Chapter 6: Under fing PLISQL Collections and Records

Output of the Listing 6.4 is as follows:

After declaring the variables, you need to initialize them. Let's see how to initialize collection

Collections

variables can either be initialized in the DECLARE part or in the BEGIN part of

block. All collections are initially NULL. Collection variables (varrays and nested tables)

initialized using the constructor method (a constructor is a system-defined function having

the same name as the collection typel. Let's see the Listing 6.5 to understand how to initialize

collection variables. Before initializing the collection variables execute the statements given
below to define VARRAY and Nested table in database.

of the preceding statement is as follows:

preceding statement is as follows:
Type created.
Listing 6.5: PL/SQL program to Initialize collection

Output of the Listing 6.5 is as follows:
PL/SQL procedure created successfully

After learning how to initialize collection variables, let's study the process to reference a
collection element.

115



Referencing Collections

Relferencing is used 1o access an element from a collection. Syntax to reference an element is as
follows:

Coll_name (subscript):
I this syntax:

_name represents the name of a collection,

} represents the element that has to be processed. There is some specified
mn;,c for subscript, which varies according 1o the collection type. Following are the
subscript ranges according to their collection types:

«  Forvarrrays, the range is 1 to upper bound of the varray.
+  For nested table, the range 1s 1 10 2147483647,

e For associative arrays with numeric key, the range is -2147483647 10 +2 147483647,

+  For associative arrays with nRZ value as key, the range depends on the length of
the value specified during type declaration and database table creation,

Listing 6.6 shows how to perform referencing in a collection.
Listing 6.6: PL/SOL program to use referencing in collections

The output of Listing 6.6 is as follows:

» which counts the number of elements in the

In Listing 6.6, we have used a function cou
nested table and moves the loop up to Ihal munt

116



6: Collections and Records

this we conclude discussion on referencing the collections. Now, sometimes you may need
to assign one collection into another collection, how you can do this is explained next.

Collections

assign a collection into another collection, the element types and the datatype names of both
collections must be same. There are various ways to assign a collection into another collection,
such as using INSERT statement, UPDATE statement, SELECT statement, assignment statement,
and also the subprogram call. Listing 6.7 shows how to assign one collection into another

6.7: PL/SQL program to assign collections

output of Listing 6.7 is as follows:
PL/SQL procedure succesfully completed.

In Listing 6.7:

a  First statement, A :=B, is allowed, because both A and B have the same element type
(NUMBER) and datatype (eid ) name.

0 Second statement, B :=C, is not allowed, because although they have the same element type
but their datatype names are different, that is, the datatype name of B is eid but thatof Cis
esal.

of Listing 6.7 shows that the procedure is completed successiully. It is because we
given the lllegal assignment as a comment. However, if you try to run Listing 6.7 without
the illegal assignment a comment, then the following error message appears:

117



You can also assign a null value to another collection or can also assign values in a collection by
using expressions. See Listing 6.8 to know how to assign an expression and null into another
collection.

Listing 6.8: PL/SOL program to assign expression and null value

In Listing 6.8, we have assigned an expression to an element present at the first position in the
varray, and then displayed the value assigned to the element at first position. After that we have
assigned the nested table 2 (initialized as null) to nested table ¢, and at last we have used the
COUNT method to know the number of elements in the nested table C after assigning the
expression.

Output of Listing 6.8 is as follows:

This is all about assigning Collections, Let's now learn how to compare collections.

Comparing Collections

Sometimes vou may require to know whether a coliection is null or not; or whether the elements
in two collections are similar or not, In PLSQL you can compare two collections to find out
whether they are null or similar. Listing 6.9 shows how to compare two collections.

Listing 6.9: PL/SQIL program to compare collections

118



Chapter 6: Understanding PLISQL Collections and Records

In Listing 6.9, we have declared two variables of nested tables but initialized only one variable,
that is C, and kept B as blank. After that, we have compared B for Null, and then B and C to
check whether they have similar elements or not. The output of Listing 6.9 is as follows:

This is all about comparing collections. Let's see how to use collections with database tables by
performing operations, such as create, insert, update, on a table in the database.
Using a VARRAY

To perform operations on a database table using varrays, you must define, declare, and initialize
the varray. The process to define, declare, and initialize a varray has already been discussed.

Let's learn how to create a table that has a column of the varray collection type.
SQL> CREATE TABLE V_array (ENAME VARCHAR2(30), EADD emp_addl);
The output of this statement is as follows:
Table created.

In the preceding statement, we have created a table named v_array. This table has two
columns; one of them is of VARCHAR2 datatype while the other is of VARRAY datatype. Let’s
now take the table, emp_addl, that we have created earlier (described under the heading
‘Defining varrays’), and insert a record in that table. Listing 6.10 shows the code to insert a
record in the emp_add1 table,

Listing 6.10: PL/SQL program to add records in emp_add1 table

119



Qutput of Listing 6.10 is as follows:
PL/SOL procedure completed successfully.

After understanding how to insert records in a database table, let's understand how to use
120ATE and SELECT statements on a database table having columns of type varray. Listing 6.11
uses UPDATE and “T slatements on a database table.

and

Listing 6.11: PL/SOL program to use UPL CT stalement on emp addl table
SQL> SET SERVEROUTPUT ON

DECLARE

add_varray emp_addl; -- peclaring variable of varray

x emp_addl; -- peclaring variable of vARRay

BEGIN

add_varray := emp_addl ('Street no 12', "H.no 20');-- Initializing varray
variable .

-- updating values in the table v_array

UPDATE V_array set EADD» add_varray WHERE ENAME = "Amit';

-- selecting the updated field from v_array

SELECT EADD into x from v_array where ENAME = "Amit';

for i 9n x.FIRST .. X.LAST LOOP

DBMS_OUTPUT. PUT_LINE (x(i));

END LOOP;

END;

/

In Listing 6.11, we have performed two operations: first we have updated the database table
YV array, and then we have exccuted the T statement to view the updated values.

Output of Listing 6.11 is as follows:

Street no 12
H.no 20
PL/5QL procedure completed successfully.

In the same way as varrays, nested tables can also be used in a database. Bul there is a difierence
in creating the database table with column as nested table type. Lel's create a database table
with the columns of type nested table.

SQL> CREATE TABLE nest_demo (ENAME VARCHARZ (30), EADD emp_add2) NESTED TABLE
EADD STORE AS E_ADDL; .
In the preceding statement, we have created a table named nest demo, This table has two
columns; one of them is of rZ2 type while the other is of nested table type. The
emp_add? has already been created under the heading ‘Defining Nested Table'. Output of the
preceding statement is as follows:

Table created.

This is all about using varray and nested table with database tables. Now, we continue our
discussion by explaining collection methods, In Listing 6.1, we have used a method COUNT to
know the number of elements in a nested table. PL/SOL has various other methods 1o reduce the
programming tasks. Let's study PL/SQL built-in methods that can be used with collections,

120




Chapter 6: Understanding PL/SQL Collections and Records

Using Collection Metfods

PL/SQL provides various built-in methods that make it easy to use collections. These methods
can be functions, such as EXISTS and COUNT or a procedure, such as EXTEND, TRIM, and
DELETE, There are some limitation with buill-in collection methods, such as they can not be
called by using SQL statements; EXTEND and TRIM methods can not be used with associative
arrays, Table 6.2 gives you a brief description of various built-in collection methods.

Let's discuss these methods in detail.

EXISTS

Description

Returns the number of elements in a collection.

Returns the smallest index number in a collection.
Returns the largest index number in a collection.
Returns the index number that precedes index n in a collection.

Returns the index number that succeeds index n in a collection.

Increases the size of a collection.

Trims or di the size of a

Deletes the elements from a collection.

This is a function, which either returns TRUE or FALSE. If any specified element, say nth
element, exists in the collection, then ikreturns ‘true’; otherwise, it returns ‘false’. When the nth
element is out of range, then it returns FALSE rather than raising an exception. This method is
used to avoid the referencing of non-existent elements. See Listing 6.12 to understand how it

wiorks,

Listing 6.12: PL/SQL program to use EXISTS function

121



In Listing 6.12, we have used the EXISTS method in the varray and nested table to check
existence of the element whose subscript has been passed as parameter in this method. We have
used the 1F. .. ELSE contral statement to display the output on the basis of the existence and
non-existence of the element.,

Output of Listing 6.12 is as follows:

COUNT

The count function returns the number of elements that currently exist in a collection. This
method is very useful when you do not know the exact number of elements in a collection. See
Listing 6.13 to understand its working.

Listing 6.13: PL/SQL program to use COUNT function

In Listing 6.13, the count method is used to calculate the number of elements in varray and
nested table.

Output of Listing 6.13 is as follows:

You can use this method where integer value is expected.

122




I3 PLISQL Collections and Records

function returns the number of elements that a varray can contain. In other words,

returns the upper bound of a varray. In case of nested tables and associative arrays,

function returns Null. This method can be used wherever an integer value is expected.
6.14 shows how this function works:

14: PL/SQL program to use LIMIT function

the preceding listing, first we have displayed the total number of elements in varray, and then
total number of elements that a varray can contain. The output of Listing 6.14 is as follows:

of them are functions, FIRST returns the smallest subscript in the collection, and the LasT
returns the last subscript in the collection. If the collection is empty, then these
return null. '
varrays, FIRST always returns 1, but for Nested table, it may or may not returns 1; if the first
has already been deleted from the nested table, then the FIRST function returns 2.

, the LAST function returns the upper bound in case of varrays; but in case of nested
it gives the same result as the COUNT function. If you delete some elements from the
nested table, then the value returned by the LAST function is mare than the value it returns with

of associative arrays with VARCHARZ key values, these functions return the lowest and
VARCHARZ key values. Listing 6.15 shows how these functions work.

6.15: PL/SQL program to use FIRST and LAST functions



In Listing 6.15, the FIRST and the LAST methods are used to iterate the loop in
and then the smallest and largest subscripts of the nested table are displayed.
deleted the first element from the nested table by using the DELETE method;
starting subscript is displayed once again.

The output of Listing 6.15 is as follows:

PRIOR (n) and NEXT (n)
Both these functions return the subscripts of the specified element. 2RI02 (n) returns the
subscript of the element that precedes index n in that collection; while the N2xT method returns
the subscript of the element that succeeds index n of a collection. PRIOR (n) returns null, if n
has no predecessor and NEXT (n) returns null when it has no successor.
In case, associative arrays have elements of type VARCHARZ, these functions return the key
values corresponding to the specified element. Listing 6.16 shows the use of the PRIOR (n) and
the NEXT (n) methods.
Listing 6.16: PL/SQL program to use PRIOR and NEXT functions






EXTEND
This is a procedure, which is used to increase the size of a collection. This method can not be
used in case of associative arrays. This method can only be used with collections that have
already been initialized. You can use this procedure in the following three ways:
0O EXTEND: It appends one null element to the collection.
O EXTEND (n): It appends n null elements to the collection.
a  EXTEND (n, I): It appends the ith element n times in the collection.

Nete
| ifa collection has NOT NULL constraint then null values can not be appended in a colection.

Listing 6.18 shows how the EXTEND procedure works.
Listing 6.18: PL/SQL program to use EXTEND function

In Listing 6.18, we have used the EXTEND method in all three ways—that is, without any
parameter, with single parameter (2}, and with two parameters (2, 3).

Woe have used the COUNT method after the EXTEND method to display the total number of
elements in the collection (here it is a varray) each time the elements are extended.

The output of Listing 6.18 is as follows:

126



Chapter 6: Understanding PL/ISQL Collections and Records

TRIM

TRIM deletes the elements from the end of the collection. This method can be used in the

following ways:

O TRIM: It deletes a single element from the end of a collection.

O  TRIM (n): It deletes n number of elements from the end of a collection. If n is mare than the
number of elements contained in a collection, then it raises SUBSCRIPT BEYOND COUNT
exception. Listing 6.19 shows how it works.

Listing 6.19: PL/SQL program to use TRIM function

In Listing 6.19, first we have displayed the total number of elements in the nested table by using
COUNT method, and then we have trimmed the nested table by one element using the TRIM
method. After that we have again applied the COUNT method on the nested table.

At last, we have trimmed the nested table once again by using TRIM method with parameter.
The output of Listing 6.19 is as follows:

DELETE

DELETE is a procedure, and it is used to delete elements from a collection. This method can not

be applied on the varray collection type. Using the DELETE procedure, unlike TRIM which

deletes elements from the end of the collection, you can delete any specified element from a

collection.

This procedure can be used in the following ways:

O  DELETE: It removes all elements from a collection.

O DELETE (n): It removes the nth element from a nested table or associative array with a
numeric key. If the associative array has elements of string type, then the element
corresponding to that string type is deleted. This method does nothing if n is null.

127




3 DELETE (m, n): It removes all elements in the range m (o n from a collection. This method
will do nothing it m is larger than n or they are null. Listing 6.20 shows how it works.

Lisling 6.20: PL/SQL program to use DELETE function

1

S5QL> SET SERVEROUTPUT ON

DECLARE

TYPE esal IS TABLE OF NUMBER (7) NOT NULL; -- Defining nested table collection
C esal; -- pDeclaring nested table collection variable

BEGIN

C := esal (5000, 5500,6000, 6500,4500)}; -- Initializing nested table
DEMS_CUTPUT.PUT_LINE (' Total number of elements in nested table is ' ||
C.COUNT);

C.DELETE (2); -- using Delete with single parameter

DBMS_OUTPUT.PUT_LINE (' Total number of elements after removing second element
is " || C.COUNT);

C.DELETE (3, 5): -- Using DELETE with specific range of parameters
DBMS_OUTPUT.PUT_LINE (' Total number of elements after removing a range of
element is " || C.COUNT);

C.DELETE; -- using DELETE without parameter

DBMS_OUTPUT.PUT_LINE (' Total number of elements after using DELETE without
parameter is " || C.COUNT);

END;

/

In Listing 6.24), first we have displayed the total number of elements in the nested table by using
the CoUNT method, and then deleted the second element from the table, and again applied the
CcoUNT method to display the count of elements in the nested table.

Now we use the method to remove the specific range of elements from the table and
again use the HT method, Similarly, we have again used the D £ method without any
parameter and then the count method 1o display the count once again.

The output of Listing 6.20 is as follows:

Total number of elements in nested table is §

Total number of elements after removing second element is 4

Total number of elements after removing a range of element js 1
Total number of elements after using DELETE without parameter is 0
PL/50L procedure successfully completed.

With this we complete discussion on collections, and using collection methods. In using
collections, we have some limitations such as we can anly use the elements of same datatypes.
S0, in cases when there are difierent datatypes, you can use Records—a composite data structure
in PL/ASQL. Let's understand in detail about PL/SOL records.

Working with PL/SQL Records

Record is a composite data structure, which contains more than one element that may or may
not have the same datatype but has its own value. Conceptually, records are similar 1o the rows
in a database table and are used to represent logically related information. Let's study about
defining records in detail.

128



Chapler 6: Understanding PL/SQL Collections and Records

Defining and Declaring Records

To define a record, first you need to create its EECORD type and then declare record of that type.
To declare a record, you can also use “ROWTYPE attribute that represents a row in a database
table. Record type is defined and declared in the declaration part of a PLSQL block,
subprogram, or package. You can also specify NOT HULL constraint and default values to fields
in record when creating your own record type.

Syntax to define a record is:

TYPE rec_name IS5 RECORD (fieldl_name DATATYPE NOT NULL := default_value,
field2_name DATATYPE,

'H

In this syntax:

O rec_name represents the lype name that specifies the record.

O fieldl name represents tie fi,s field name. You can create as many fields as you wish. In
the preceding syntax, we have shown two fields.

O DATATYEE represents any PL/SQL datatype except REF CURSOR.

O NOT WULL is optional, but whenever it is used, it must be initialized with some default

value; otherwise, Oracle will generate the error NOT NULL must have an initialization
assignment,

Listing 6.21 shows how to define and declare PL/SOL records.
Listing 6.21: PL/SQL program to define and declare records

In the Listing 6.21, first we have defined a record, and then we have declared a variable of that
record type.

We have also declared a record variable to represent a row in the database table. The table we
have used here is DET. Before creating a record variable to represent a row in a database table,
you must ensure that the table exists in the database, else Oracle will generate an error.

129




Output of the Listing 6.21 is as {ollows:
P1/sqL procedure completed successfully

After defining and declaring the records variables, you have to assign some values to those
variables. Let's discuss the process of assigning values to records variables.

Assigning Values to Records

Syntax to assign values in record variables is:
rec_var_name. fieldname:= value;
In this syntax:
0 rec var name represents the name of record variable.

O fieldname represents the name of the field for which the value has to be assigned. This
field can be the one which is used during ‘Defining Record’ or can be the name of a column
in the database.

0 value represents any value that you want 1o assign to the corresponding field. Before
assigning any value to its corresponding field, you must ensure that it is in proper format. For
example, if you assign string type value to its corresponding field but the actual datatype of
that field is not of string type, then Oracle raises the error identifier must be
declared.

Listing 6.22: shows how to assign the values to records

130



Chapter 6: Under ling PL/SQL Collections and Records

In the Listing 6.22, we have assigned values to various fields using record variables r1 and r2.
Fields name used with the variable r1 are already defined during ‘Defining Record’ while the
fields name used with variable r2 are the name of columns in database table.

Output of the Listing 6.22 is as follows:

PL/SQL procedure completed successfully

After assigning the values, you can perform operations such as inserting and modifying the
database table using records. Now, we move ahead to know how to insert a row in the database.

Inserting Records into the Database

Records can help you insert a complete row in database table by using a single variable—the
Record variable. With records, you have to specify only the record variable with Value clause
instead of specifying all fields with the Value clause. When you use records, it increases
readability and maintainability of your PL/SQL program. Before inserting any value in a database
table using records, you must ensure that the numbers of fields in the records are same as the
number of columns in the database table and that too of compatible datatypes. Listing 6.23
shows how to insert a record into a database.

Listing 6.23: PL/SQL program to add records into the database tables

131



rl.DEFTNO := 40;

-- Assiging values to record variable used to represent the rows in database
table

r2.DEPTNO := BD;

r.DNAME := ‘Quality’;

r2.Loc := ‘0ld pelhi’;

INSERT INTO EMP WALUES rl; -- -- Inserting record { a row) in table EMP
INSERT INTQ DEPT VALUES r2; -- Inserting record ( a row) in table DEPT
END;

/

In Listing 6.23, we have inserted two records in two different tables (EMp and & by using
two different records,

The output of Listing 6.23 15 as follows:
PL/s0L procedure successfully completed.

Now, to check whether these records have been inserted in the table or not, you can execute the
SE T statement.

Let's understand how to update database using records.

Updating a Database with Record Values

Records also allow vou to modify a complete row in a database table by using a Record variable.
For updating a record yvou need to specify a record variable with ¢ clause instead of
speciiying all fields with 587 clavse, Before updating any value in a database table using
records, you must ensure that the number of fields in the records must be same as the number of
columns in the database table and that oo of compatible datatypes. You can us keyword
to represent an entire row. Listing 6.24 shows how to update a record into the T database
table.

Listing 6.24: PL/SQL program 1o update a database with record values

SQL> DECLARE

r2 DEPTXROWTYPE;

BEGIN

r2.DEPTND := 70;

r2.DNAME := ‘Production’;

rz.Loc := ‘old pelhi’;

UPDATE DEPT SET ROW = r2 where DEPTND = 70 ; -- Updating the DEPT table
END;

/

On executing the code shown in Listing 6.24, you get the following output:
PL/SOL procedure successfully completed.

So this is how you can update a database table by using records. With this we conclude our
discussion on PL/SQL records and collections. After completing this chapter, vou should be able
1o use collections and records in your PL/SOL programs and with database tables.

132



Chapler 6: Understanding PLISQL Collections and Records

Summary

In this chapter, we studied:

u]

DCcCoocoo

PL/SQL collections types

Dedining and declaring collections

Initializing and assigning collections

Using various collection methods

PL/SQL records

Defining and declaring records

Inserting and updating the database rows using PL/SQL records

133




Urheberrechtlich geschitztes Bild

Urheberrechtlich geschiitztes Material



Cursors are used lo refer to a particular SQL transaction, which involves processing of
particular SQL statements. Cursors are usually used to execute complex queries on a result
set. A cursor individually retrieves the contents of each row in a rowset within the context of
SQL statements; and avoids the use of array to load data from a rowset into the array. You can
greatly improve the performance of your application by replacing a SELECT statement with a
cursor. When you execute a SELECT statement, a portion of memory is allocated to store the
parsed represertation of the SELECT statement in a PLSQL block. PL/SQL has a provision to
point to this portion of memory by using cursors. This portion of memary is known as context
area. The context area contains the rows returned by a SELECT statement.

In this chapter we will discuss about cursor, its types, how cursors are used to fetch and
manipulate rows, cursor attributes and cursor variables.

Introducing Cursors

Cursors are used to manipulate data of many rows and it is also used as temporary work area in
which you can store result of the SQL statement. The cursors are used as sequential files. To
manipulate cursor, you have to open the cursor using OPEN statement. You can fetch the rows
from cursor using FETCH statement. After fetching the rows, the cursor is closed using CLOSE
statement. Several queries are processed by opening multiple cursors at a time.

PL/SQL supports two types of cursors: Implicit Cursor and Explicit Cursor. This classification is
based on whether the cursor is user defined or not. Let us take a brief look at both types of
cursors,

O Implicit Cursor: It is the cursor that Oracle internally opens when you issue SELECT
INTO or any DML statement. PLSQL uses this cursor for all S0QL DML statements and
queries which return only one row. Two most common exceptions: N0_DATA_FOUND and
TOO _MANY ROWS raised in case of Implicit cursors,

O Explicit Cursor: It is cursor that you can define in your PL/SQL program. This cursor is used
when any query returns more than one row, You can declare explicit cursor in declaration
part of PL/SQL block, sub program, and package. We are going to use explicit cursors in the
rest of this chapter.

After understanding what are cursors, now we are going to cover implicit cursors in detail in next

section.

Understanding Implicit Cursors

PL/SQL automatically provides an implicit cursor when you execute an UPDATE, DELETE or
INSERT statement in your program. Upon executing SELECT statement, PL/SQL employs
implicit cursor for SELECT statement only when the statement returns a single row. This cursor is
called implicit cursor as Oracle itself carries out open, fetch and close operations for this cursor.
You cannat programmatically handle these operations of implicit cursor. See following code
snippet in which implicit cursor is created.

136



Chapter 7: Understanding Cursors in PLISQL

In this example, the UPDATE statement increments the basic salary of employee with emp_no
100 by 1000. PL/SQL automatically creates an implicit cursor to recognize set of rows in table
E_DETATL changed by update statement.

See Listing 7.1 which shows single-row SELECT INTO statement. Here, implicit cursor is also
created.

Listing 7.1: Single-row SELECT INTO statement

As shown in above example, SELECT statement is a single-row query. This statement returns the
total of salaries of all employees in EMP table.

In case SELECT statement returns more than one row, you need to use explicit cursor.

Nete

Limitations of Implicit Cursors

You can also use an explicit cursor for a single-row query. Following are the key limitations of

implicit cursors:

0  Low efficiency

Q  Error prone

0  Low programmatic control

Let's discuss each of these limitation in detail.

O Low efficiency: In PL/SQL version 2.2 and earlier, execution of explicit cursor is faster than
that of implicit cursor. The reason is that execution of implicit cursor is based on standard
execution of a SQL statement. Oracle’s SQL follows ANSI standard. This standard enforces
single-row query to perform two fetches. The first fetch returns desired row. The second
fetch checks whether single-row query has returned more than one row. In case, rowset
contains more than one row, TOO_MANY_ROWS exception is raised. The reason of low
efficiency of implicit cursor is due to this second fetch. While, if you contain single-row
query in explicit cursor, there is need to perform only one fetch.

Q Error prone: We see an implicit SELECT statement may raise TOO_MANY ROWS exception
in case when more than one row is returned. This situation can occur anytime after

137



Chapter 7: Understaniding Cursors in PL/SQL

In preceding code snippet, enois formal parameter. You can provide its value at runtime. The
eno formal par is IN par , 50 you cannot return values in actual parameters, You
cannot impose NOT NULL constraint on formal paramelers. These formal parameters can be
referred only in specified query. Thus, the scope of a parameter is local 1o cursor. Suppose you
open the cursor as:

OPEN c1(102); L

The c1 cursor contains the row corresponding to emp_no 102, If we do not pass any parameter,
then it takes default value 101.

Opening Explicit Cursor :
You need to open the cursor before fetching rows from it. Opening the specified cursor executes
the query and selects the rows which satisfy query criteria, The syntax of PL/SQL statement used
to open the cursor is as follows:

OPEN c1;
A portion of a program which opens the cursor ¢1 is shown in Listing 7.2.
Listing 7.2: Opening a cursor

Listing 7.2 declares a record 7 using $ROWTYPE o confain the rows of cursor c1. We require
record variable z as we are going lo use it when we will fetch the rows. Above listing is
example of opening cursor without parameters.

Nete
| Cursors can be opened only in EXECUTION or EXCEPTION sections of blck,

You can also use named notation for passing paramieter. For example, to open cursor with value
101, you can use open statement as following:

OPEN cl(eno => 101);

If you want to pass more parameters say ¥, Y lo cursor, you can write open statement as
following:

OPEN c2(X =>5 ,Y¥=>10);
Obtaining Rows from Explicit Cursor

FETCH statement is used to fetch or obtain rows from cursor. You can manipulate only current
row out of total fetched rows. When a FETCH statement is executed, cursor pointer moves to

139



next row. The FiTCH statement should put data in variables having compatible datatypes.
Therefore, you should use $TYPE and $ROWTYPE attributes for declaration of these variables.

You can fetch an ertire column into a single variable in the following manner:

FETCH ¢l INTO vrowid; . =

To fetch values of multiple columns of current of a cursor, you need multiple variables. For
example:

FETCH c2 INTO eno,deptno; ]

In this example, variables eno, deptno must have compatible datatypes with corresponding
columns of a table in SELECT statement of cursor c2. These variables must occur in the order
that appears in the SELECT statement. The rows, which are fetched in the cursor, are decided
on existing canditions such as values of variables used in the SELECT statement at the time of
opening the cursor. See Listing 7.3 which uses the FETCH statement.

Listing 7.3: Fetching rows from a cursor

In the above example, when cursor is opened, the value of ene (also called bind variable) at that
time is 101. Therefore, all the rows are selected having emp_no equal to 101. Even if you
change the value of eno later on, still the rows fetched from the cursor correspond to value
emp_no equal to 101, This is because rows are defined at the time of opening the cursor. If you
want to fetch the rows for emp_no equal to 102, then you have to close and reopen the cursor
again.

Closing Explicit Cursor
After manipulating rows with the help of cursor, you must close it. You can close the cursor
using CLOSE statement as shown in following syntax:

CLOSE cl;

When the cursor ¢1 is closed, any other resource such as memory associated with it is released.
Oracle puts limit on maximum number of cursors which can be opened simultaneously. The
default MAX_OPEN_CURSOR initialization parameter determines this limit. You can also change
the value of this parameter.

140




Chapter 7: Understanding Cursors in PL/ISQL

You must close the cursor. In some cases, a program may do abnormal exit due to error in
statement. Therefore, the cursor may remain open. In such case, the programmer has to ensure
that the cursor is closed. You can do so by writing exception handler for exception OTHERS.
Example of such a code is shown in Listing 7.4.

Listing 7.4: Closing a cursor

In the above example, we used exception handler for 0THERS which is executed in case of error
conditions. Closing the cursor in both normal and abnormal termination is the duty of
programmer.

Nete
|"-\'eumptpe!hrmanynperﬂmmmasFE{O§ondosedmmasﬂralsﬁmpﬂonlwwn_ﬂ.mon.

Let us understand explicit and implicit cursor attributes to know information about current row
of cursor.

Cursor Attributes

Cursor attributes provide information about current row of the cursor. You can refer attributes
using following syntax:

cursornameXattribute

Cursor attributes referred only in PL/SQL statements not in SQL statements.

Explicit Cursor Attributes

As we know PL/SQL programmer defines explicit cursor. Each explicit cursor is having four
attributes ¥FOUND, % ISOPEN, ¥NOTFOUND, ¥ROWCOUNT.

For example, if a cursor name is €1 and attribute is # FOUND then it is referred as:
[ cl%FOUND
Let's now learn about each attribute of explicit cursor with an example.

%FOUND Attribute

The $FOUND Attribute provides information about the recent fetch operation. If the recent fetch
statement results into successful fetching of row, it returns TRUE. Otherwise it returns FALSE. If

141



Using this attribute, you can construct condition for WHILE ..LOOP for fetching rows from
cursor. See Listing 7.6 for use of $FOUND in WHILE LOOE.

Listing 7.6: Use of 3 FOUND attribute in WHILE LOOP

142



Chapter 7: Understanding Cursors in PLISQL

Before using c1#FOUND, at least one fetch statement should be executed. Before WHILE loop,
one FETCH statement is required. Inside WHILE loop the FETCH statement is also required to
fetch rows one by one from cursor, WHILE loop is terminated when either last fetch operation is
unable to fetch a new row or counter variable cnt equals to 5.

Here you can see the output of the Listing 7.6

Output:

The fifth maximum basic salary is 7000.

PL/SQL procedure successfully completed. )
On executing Listing 7.6 on *iSQL Plus will display fifth maximum basic salary which is 7000 in
our case,

%NOTFOUND Attribute
The ROTFOUND attribute is complement of * FOUND attribute, The $NOTFOUND returns FALSE
when $FOUND returns TRUE and vice versa. Like FETCH stalement, SNOTFOUND returns NULL
before first fetch statement.
See Listing 7.7 which calculates number of rows in emp detail table using LOOP and
ENOTFOUND attribute.

Listing 7.7: Use of $NOTFOUND attribute

In Listing 7.7, EXIT-WHEN statement will execute when fetch operation is unsuccessful which
makes condition c1$NOTFOUND of this statement TRUE and loop terminates. After closing the
cursor c1, value of ent which represents total number of rows displayed using PUT_LINE
function,

Here you can see the output of the Listing 7.7.

143



Output:

On executing Listing 7.7 on *iSQL Plus will display total number of rows in emp_
which is 5 in our case.
%ISOPEN Attribute

The $ISOPEN attribute returns TT777 (%7 70 n oo™ 2102 it returns FALSE. It is
global cursor when the programmer is not sure whether cursor is opened or not,
code snippet which checks whether cursor is opened or not:

The c1%150PEN condition evaluates to TRUE when cursor c1 is already open or not, if
cursor ¢1 needs to be opened.

%ROWCOUNT Attribute

Tha conuentiem attribito nrmvidas nombar of recoe wwhich ara corranths fatchad fram tha corenre



Chapter 7: Understanding Cursors in PL/SQL

In Listing 7.8, we access the value of *ROWCOUNT using c1%ROWCOUNT expression before
opening the cursor c1, after first and second fetches. We also tried to access it after closing the
cursor c1 that raises the exception INVALID CURSOR, which is handled by exception block.

Here you can see the output of the Listing 7.8

On executing Listing-7.8 on *iSQL Plus, you will get above output. The first line of output will
display total number of rows fetched after opening the cursor. Second and third lines total
number of rows fetched till first and second fetch operations. Accessing 3 ROWCOUNT attribute
after closing the cursor 1 will raise INVALID CURSOR exception which is handled by
exception block. In exception block, we display a message You cannnot acces
$ROWCOUNT attribute after closing the cursor cl touser.

See table 7.1, which summarizes the values of all explicit cursor attributes in different
conditions.



Implicit Cursar Attributes
Implicit cursor attributes are used to test outcome of any DML or SELECT .. INTO slatement.
The attributes always refer to recent SQL statement, If there is no SOU statement before use of
these attributes, the attributes are having NULL values. Implicit cursor attributes include

SOL$FOUND, SQLSNOTFOUND, SQL%IS ;,oand SOLEROWCOUNT. In all these attributes, the
name of cursor is SQL. We are now explaining each implicit attribute.
SOL%FOUND Attribute
FOUND attribute relurns E if any statement such as T ETE, UPDATE or

affects at least one row. Otherwise this atiribute retumns Before execution of
these statements, it returns NULL. See Listing 7.9 which shows the use of 01,3 FOUND attribute.

Listing 7.9: Use of SQL% FOUND attribute

In Listing 7.9, we increment the hasic salary of an employee with emp_no 101 by 5000 using
UPDATE statement and then use SOL:FOUND attribute to know whether UEDATE stalement is
successfully executed.

Following is the output of the Listing 7.9.

Required record is affected.
PL/SQL procedure successfully completed.

The 5QL%FOUND attribute always refers to recent SQL statement. See Listing 7.10 which tells the
effect on value of SOL5FOUND attribute in PL/SQL program that involves a procedure call.

Listing 7.10: Effect on value of £0L

NI attribute

146



Chapter 7: Under ling Cursors in PLISQL

InListing 7.10, calcant is a procedure call and SQL%FOUND attribute refers to SQL statement in
procedure calcamt.

If you want to refer to UPDATE statement, you need lo store the value of SQLEFOUND in some
variable as shown in the following code snippet:

In the above code snippet, x is Boolean variable used to store the value of 3QL3FOUND attribute.

SQL%NOTFOUND Attribute

It performs opposite operation of SQLEFOUND attribute which means if SQLYFOUND returns
TRUE, SQL%NOTFOUND returns FALSE.

When a SELECT ...INTO statement does not return any row, it is useless to use SQLENOTFOUND
because the statement raises exception NO_DATA_FOUND. However, when group function is
used in SELECT..INTO statement, then exception NO_DATA_FOUND is never raised as group
function always returns a value or a null. The 1F condition involving SQLENOTFOUND attribute
is always checked but it is also not TRUE in this case. Listing 7.11 shows the use of
SQLYNOTFOUND attribute if you are using only exception handler OTHERS then you can use
SQL%FOUND attribute shown in listing 7.10.

Listing 7.11: Use of SQL4NOTFOUND attribute

Listing 7.11 uses group function MAX in SELECT INTO statement to find maximum salary from
emp_detail table. This statement returns a row whether emp_deatil table does not contain
any row. Therefore, IF condition is checked and control does not go to EXCEPTION block.

SQL%ISOPEN Attribute

Oracle closes the SQL cursor or implicit cursor when execution of a query completes, therefore,
SQL%ISOPEN attribute always returns FALSE value.

147



SOL%ROWCOUNT Attribute

The SQL%ROWCOUNT attribute returns number of rows affected by TNSERT, UPDATE or DELETE
statement. If no rows are affected or SELECT ..INTO returns no rows, then the value of
SOLSROWCOUNT is zero, When SELECT.INTO stalement returns more than one row, then
exception TOO MANY ROWS is raised and #ROWCOUNT returns value not the number of rows,
which satisfies the condition. Suppose you want to perform an action if more than 20 rows of a
table are updated. You can perform this action usmg SOLAROWCOUNT attribute as shown in the
following code snippet:

If affected number of rows is greater than 20, statement & will execute.
Let us discuss FOR LOOP which derives after concept of cursors.

Cursor FOR loop

A cursor FOR loop is a FOR loop associated with an explicit cursor. You need to use cursor FOR
loop when you want to fetch and process each record of cursor, The concept of cursor FOR loop
originated based on the general way a cursor is used. You usually need to perform the following
steps for using a cursor.

Open the cursor using OPEN statement.

Begin any LOOP statement.

Fetch a row from cursor using FETCH statement,

Check whether another row exist in cursor using  FOUND cursor attribute.
Manipulate the data of fetched row.

End the opened loop.

No W s w =

Finally, close the cursor.

Hence, general usage of cursor enforces to introduce concept of cursor FOR  loop. The cursor
FOR loop implicitly performs most of these steps and hence reduces the code you need to write
for fetching data from cursor. See Listing 7.12 which shows use of cursor FOR loop.

Listing 7.12: Use of cursor FOR loop

148



Chapter 7: Understanding Cursors in PL/SQL

In Listing 7.12, we declared a cursor c1 associated with some query. Loop index z is
automatically declared with data type c1%ROWTYEE. The records are fetched one by one. The
fields of automatically declared record z store the value of the row, which is fetched from the
cursor c1. Inside the FOR LOOP, we accessed emp_name field of record =z.

Here is output of Listing 7.12

On executing Listing 7.12 on iSQL*Plus workspace, you will see names of all employees from
emp_detail table.

Note
You cannot use the name of cursor e.g c1 in the enclosing FOR LOOP.

You can substitute query associated with cursor <1 in place of its name in FOR LOOP. See
Listing 7.13 which substitutes cursor query in FOR LOOE,

Listing 7.13: Using cursor query in FOR LOOP

In Listing 7.13, we added the salaries of all employees one by one in FOR LOOP. Then, we use
PUT_LINE method to display sum of all salaries.
Here is output of Listing 7.13.

En Sum of basic salaries of all employess in ABC organisation is 73500
. PL/saL procedure successfully completed.

When you execute Listing 7.13 on iSQL*Plus workspace, you will get total (73500 in our
case) printed on iSQL*Plus.

The parameters are passed to cursor after the name of a cursor in FOR LOOP. See Listing 7.14
which uses parameterized cursor c1 in FOR LOOP.

149



Listing 7.14: Use of parameterized cursor in FOR LOOP

The Listing 7.14 passes parameter deptno equals to 40 to cursor c1. The cursor FOR 1LOOP
all employees that belong to department number 40.

Here is output of Listing 7.14.

When you execute listing on iSQL*Plus workspace, you will get names that
department number 40. In our case, three emplovees Mandeep, Deepak, and

displayed.

After understanding cursor FOR loop, Let's discuss cursor variables which act as pointers to
result set of cursor and can be passed to PL/SQL stored programs.

Cursor Variables

Cursor variables are used when you want to use cursor facility but do not want to bind cursor to
a specific query. The cursor variable points to current row in the result <~ of the query just like
the cursor. The difference between cursor and cursor variable is that a cursor is bound to only
one specific query while cursor variable can hold many compatible queries. Cursor variables
can be passed as formal parameters to subprograms such as procedures or functions. You can
also open a cursor variable in a subprogram and process it in another subprogram on server side.
Data type of cursor variable is REF CURSOR. REF CURSOR type may be strong or weak. In case
of strong REF CURSOR types, PUSQL compiler associates cursor variable to queries that
generate correct set of columns. In case of weak REF CURSOR types, PLSQL complier can
associate cursor variable to any query. If you are using same REF CURSOR type in every
subprogram of an application, you can declare REF CURSOR type in a package body.

To declare a cursor variable, first you need to create REF CURSOR type in any PL/SQL block,
subprogram, or package. Then you can declare cursor variables of created FEF CURSOR type.
See following code snippet which declares a cursor variable:

150



Chapter 7: Understanding Cursors in PLISQL

In the above cade snippet, empcur is strong REF CURSOR type as it specifies RETURN type
and gencur is weak REF CURSOR type. Therefore, corresponding curl and cur2 are strong
and weak cursor variables.

You can control cursor variables using OPEN-FOR, FETCH, and CLOSE statements. The
statement OPEN FOR associates query with the cursor variable. It is having following syntax:

OPEN cursorvariablename

FOR SELECT statement;
You cannot pass the parameters in the OPEN..FOR statement. Similarly, the SELECT statement
should not use FOR UPDATE clause and can refer PL/SQL variables, parameters and functions.
The OPEN FOR statement opens a cursor variable for different queries. After opening a cursor
variable, if it opens again for a new query, then previous query is lost but if a normal cursor is
opened again, it raises predefined exception CURSOR_ALREADY OPEN.
Just like explicit cursor, FETCH statement is used to fetch data from a cursor variable. Following
is the syntax of FETCH statement, which is similar to that in explicit cursor:

FETCH <cursorvaraiblename>

INTO <variable list>
The variable list should have compatible variables as opened cursor.
The rows in result set are also determined at the time of opening the cursor. If you want to
change set of rows, reopen your cursor.
In case of weak type declaration, you should use appropriate types in FETCH statement as error
occurs at runtime. Therefore, weak type can generate ROWTYPE_MISMATCH exception which is
raised when values of actual and formal parameters are incompatible. You need to make an
exception handler block for this exception and use proper data types to ensure no loss of rows.
In case of strong type, error occurs at compile time.

If you use procedure for fetching the cursor, then variable should have 1IN declaration. If
procedure both opens and fetches rows, then it should have 1N 0UT declaration.

When you execule a FETCH statement before opening or after closing the cursor, exception
INVALID_CURSOR raised.

Just like explicit cursor, CLOSE statement used to close cursor variable.
See Listing 7.15 which shows the example of strong cursor variable.
Listing 7.15: An example of strong cursor variable

151



Listing 7.15 first declares the rec type record having two fields ename and edes. We first
created strong reference type cur num_type with return type rec type and declare cursor
variable cur num of cur_num_type. Then we open the cursor variable for specified query,
fetch the rows into record 2 and access the name and designation of each employee one by one.

Here is autput of Listing 7,15,

When you execute Listing 7.15 on iSQL*Plus workspace, you will see name and designation
of each employee in new lines. This example also prints the number of records retrieved into
cursor ¢,

See Listing 7.16 which shows the use of weak cursor variable.

Listing 7.16: An example of weak cursor variable

152



Urheberrechtlich geschitztes Bild

Urheberrechtlich geschiitztes Material



Here is output of Listing 7.16:

When you execute Listing 7.16 on iSQL*Plus workspace, you will see above output. We divide
this output into two parts and each output begins with a line of its description,

You can pass cursor variables as a parameter to procedures or functions which manipulate them.
See Listing 7.17 which shows the use of cursors and procedures.

Listing 7.17: Passing cursors to procedures

The Listing 7.17 declares a strong cursar variable emp of emp_cur typ REF CURSOR type. In
execution section, we opened the cursor variable emp for two separate SQL queries and pass
each opened instance to procedure process emp cv. The procedure only accesses and prints
the names of employees satisfying each SQL query.

154



Chapter 7: Understanding Cursors in PLISQL

Here you can see the output of Listing 7.17.

When you execute Listing 7.17 on iSQL*Flus workspace, you will see first names of employees
which belong to technical writing department and then names of employees which joined in
ABC organization after 1989 .

Let us understand cursor expressions that are used to execute complex queries.

Cursor Expressions

The cursor expression returns nested cursor specified by cursor query. The syntax of cursor
expression is as follows:

CURSOR(subquery)

The subquery which generates a result set that contains values (of simple data types such as
NUMBER, CHAR) and cursors generated by cursor expression. If you want details abaut inner
cursor, you need to use nested loops which first fetch data from rows of result set and then fetch
data from rows of inner cursor which is present in result set.,

You can write cursor expressions in explicit cursor declarations, REF CURSOR declarations and
REF CURSOR variables.

You need not to worry about opening the nested cursor as it is implicitly opened when rows
fetched from the parent cursor. A User can close nested cursor explicitly or it is closed
automatically in following situations:

a  When user reopens the parent cursor
0  When user closes the parent cursor

O When parent cursor is cancelled
a

If an error arises when executing FETCH statement on parent cursor, nested cursor closed
during clean up operation.

See Listing 7.18 which uses cursor expression.
Listing 7.18: Using cursor expression

155



The Listing 7.18 finds department number as an 10 and cursor from which we can feich all the
employees's names in a specific department. You can access olher details of a particular
employee with the help of inner cursor. The cursor s parent cursor. Inner cursor
emp_detail automatically opened when the parent row tched, Note that we have closed
(:nlyr parent cursor o1,

Here is output of Listing 7.18.

When you execute Listing 7.18 on iSQL*Plus warkspace, vou will get employees belonging to
pdr!i('ulm (J'E'pdrtrm'nl. In our case, we ael t-r'elplnyf}t'.u’.t. names of OPERA

Nete

AL department,

Let's facilitate locking on rows of cursor using SE statement so that other
users cannot change those rows and perform manipulations on rows using WHERE.CURRENT
F clause,




Cursors in

4

FOR UPDATE in Cursors

are now implementing row level locking in Cursors. In row level locking, the row which is

read or modified is locked. The row level locks are finest locks as compared to table level

A locked table or row is known as lock object and stored in lock control block in shared

. When you execute a SELECT query on the database, there are no locks on retrieved

or rows. By default, only those rows are locked which are changed but are still not

Sometimes you want to lock some records before you change them in a program.
provides the FOR UPDATE clause of SELECT statement to perform this locking.

. FOR UPDATE statement is executed to obtain exclusive locks on rows selected
by SELECT statement. You can change these records as each row is fetched from the cursor and
any one else cannot change them when you perform a B0LLEACK or a COMMIT operation. This
statement can be qualified or not. The qualified SELECT..FOR UPDATE statement specifies OF
list with it. We are first using unqualified SELECT FOR UPDATE statement.

Listing 7.19 which uses unqualified SELECT FOR USDATE statement.

Listing 7.19: Use of unqualified SELECT FOR UPDATE statement

In Listing 7.19, the cursor cl uses unqualified 0R UPDATE clause, When you execute this

code snippet, no other user can change any selected rows.

Let's now use qualified SELECT FOR UPDATE statement. The OF list of FOR UPDATE clause

specifies list of name of columns of table. The OF list reminds you what you want to change. Still

the all rows identified by SELECT FOR UPDATE statement are locked. Usually, you need
SELECT FOR UPDATE stalement in case you are retrieving rows from multiple tables.

See Listing 7.20 which uses qualified SELECT FOR UPDATE clause.

Listing 7.20: Use of qualified SELECT FOR UPDATE clause

In Listing 7.20, the cursor c1 uses qualified FOR UPDATE clause. When you execute this code
snippet, other users cannot change values of 1oc column that are contained in result set.

157



You can also associate a NOWAIT keyword to FOR UPDATE clause. This

Oracle to return control immediately to your program if a table is locked by another user,
b +

We are now performing update or delete operations on current row. The WHERE

clause is used inside UPDATE and DELETE statements to make changes to current

from the cursor. The syntax of WHERE CURRNT OF clause in UPDATE statement is

The syntax of WHERE CURRNT OF clause in DELETE statement is as follows:

In both syntaxes, WHERE CURRENT OF clause refers to cursor not the record which is to
fetch the current row. The key benefit of using WHERE CURRENT OF clause is that you do not
need to repeat criteria in WHERE clause in your cursor declaration and associated UPDATE and
DELETE statements. In WHERE CURRENT OF clause, you need to mention criteria only in
WHERE clause of SELECT statement. See Listing 7.21 which uses WHERE CURRENT OF
clause.

Listing 7.21: Using WHERE CURRENT OF clause

In Listing 7.21, you are not referring to particular record in result set .The WHERE CURRENT OF
clause with specified cursor enforce increment, or 5000 to basic salary of employee represented
as current row fetched in record z.

When you will execute SELECT query on emp_detail table, you will find basic salary of each
employee incremented by 5000.

158



Chapter 7: Understanding Cursars in PLISQL

Summary
In this chapter you learnt about:

a

[ M i m R = R R

What are cursors and their different types

How to declare, open, fetch and manipulate rows and close explicit cursors

Use of Implicit and Explicit cursor attributes

Cursor FOR LOOP

Strong and weak cursor variables with examples

Cursor expressions

Implementing row level locking in cursors and performing manipulations on rows of cursor

159



Urhebarrechtlich gesehitztes Bild

Urheberrechtlich geschiitztes Material



L/SQL, like other programming languages, also provides subprograms that works as small

building blocks and helps in creating and managing large applications very easily. A
subprogram consists of a sequence of statements to perform some specific task and also provides
modularity. For example, if you want to calculate the length of a string or want to calculate the
sum of few numbers then you can create subprograms for that purpose. Once the subprogram is
created to perform any specific task and also executed successfully then that subprogram can be
called any where in the same application or in any other application. A subprogram can be used
many times in an application thus it also provides the reusability. If you will made any changes
in the subprograms then that changes will affect only that part of application where that
subprogram has been called. Changes made 1o a particular subprogram will not affect the whole
application thus it makes the application easily manageable.
In this chapter, we will discuss about the subprograms in details that is what are subprograms,
what are subprogram parameters, how to overload subprograms, how to use recursion with
subprograms, etc. Let's start discussing subprograms.

Overview of PL/SQL Subprograms

In the chapter number 2 of this book, we had described PL/SQL blocks. PL/SQL blocks are
broadly divided into two categories that are anonymous block and named block, A PL/SQL
named block is also known as PL/SQL subprogram that can be called anywhere in a PL/SQL
application. PL/SQL subprogram has following two types:

0  Procedures

0 Functions

Let's study a PL/SQL subprogram separately as procedure and function.

PL/SOL Procedures

A PL/SQL procedure is a subprogram, which is used to perform some specific action. Statement
used to create a procedure is CREATE PROCEDURE. A procedure consists of two parts; first part
is known as specification part and another part is known as body. Let's see the format of a
procedure.

Here in the preceding format the specification part consist of the following:

162



In this way we create a procedure. Let's see Listing 8.2 to know how to call a procedure
PL/SQL program.
Listing 8.2: Calling a sample procedure

In Listing 8.2, in the declaration section, we have declared two variables; first to
employee number (eno1) and the second to retrieve the employee basic salary (e

In the execution part, we have passed an employee number in enol; corresponding to
number the procedure created in Listing 8.1 fetch the employee's basic salary.

Then, we have called the procedure created in the Listing 8.1 and has passed the

that procedure.

After that, we have displayed the result.

Let's see the output of the Listing 8.2.

In this way, you can create and call a procedure. Another part of subprogram is function. Now,
we depict functions in PL/SQL.

PL/SQL Functions

A PL/SQL function is a subprogram, which is used 1o perform some computations.

used to create a function is CREATE FUNCTION. A function is structurally similar to a
procedure, except that a function have RETURN clavee, A function consists of two parts; first part
is known as specification part and another part is known as body. Let's see the format of a
function.

164



Chapter 8: Understanding Subprograms in PLISQL

Function like procedure has two parts-Specification and the body. The specification part consists
of the three parts; function name, parameter declaration, and return data type. Let's see the
specification part in detail as follows:

O fun_name: It is representing the name of the function. You can give any name to the
function according to the requirement of your application and ease of remembrance. For
example, if you want to create a function to calculate the sum of few numbers then you can
name that function as sum.

O Parameter declaration: It consists of the following three parts:

+ param_namel: It is representing the parameter name. You can specify any number of
parameters you want or you can also omit the parameters.
+ para_mode: It is representing the parameter mode. Parameter mode can be 1IN or OUT

mode. If you will not specify any parameter mode then 1IN mode will be the default
mode.

* para_type: It is representing the data type of the parameter that can be of any PL/SQL
provided data type. Here, you do not have to specify any constraints with data type such
as length with NUMBER and VARCHARZ data type.

Note
| tis optional, f a procedure does not have any parameter, parenthess is not used.

« return_type: It is representing the data type of the retumn value and is specified using
RETURN clause.

This is all about the specification part of a function. Let's see what the PL/SQL function body

consists of:

O Declaration part: In this part, local variables are declared. Declaration part starts with 15
keyword and continues till the start of BEGIN keyword.

O Execution part: This part can have one or more PL/SQL executable statements, It should
have one or more return statements with an expression that is in the form RETURN (expr).
The expression should return the value of the data type mentioned in the return data type.

O Exception part: This is an optional part and can be aborted. This part contains the statements
used to handle exceptions which are generated in PL/SQL function.

165



Let's see the Listing 8.3 to create a function.
Listing 8.3: Showing a sample function creation

In the Listing 8.3, we have created a function named maxsal to retrieve the maximum
salary earned by an employee.

To do that first, we have declared a variable of type NUMBER, which is used to store the
retrieved from the database table.

Then, we have used select statement with MAX function to fetch the maximum basic salary from
the database table EMP_DETATL.

Then, we have returned the maximum salary retrieved through RETURN statement,
Output of the Listing 8.3 is as follows:
Function created
Let's see Listing 8.4 to know how to call a function.
Listing 8.4: Calling a sample function

In the Listing 8.4, we are calling the function created in the Listing 8.3. In the Listing 8.4,
have declared two variables; m_sal and disp.

Then, we have called the function maxsal in which we have passed the variable m_sal as
parameter.

This parameter is receiving the value returned by the function maxsal in the Listing 8.3.

166



Chapter 8: Understanding Subprograms in PLISQL

Then, we have assigned the received value to variable disp, which is then used to display the
maximum basic salary fetched through the function maxsal.

Let's see the output of the Listing 8.4.

#Highest salary in the table EMP_DETAIL 1is 14000
PL/SQL procedure successfully completed.

With this, we have ended discussion on Overview of PL/SQL subprograms. In this section, we
have discussed about procedures and functions in which we have talked about parameters, Let's
continue our discussion by discussing subprogram parameters.

Working with Subprograms Parameters

PL/SQL subprograms {procedures and function) used parameters to pass the information between
the PL/SQL programs and subprograms. Parameters are equally important as much as the ather
code in the program. You can use any number of parameters in a subprogram but be assured
that the number and type of the parameters must have to be same in both; the subprogram and
the program that will call the subprogram. Let’s study the types of parameters.

Types of Subprogram Parameters

PL/SQL offers two types of parameters that can be used in subprograms. Those parameters are as

follows:

0 Formal Parameters: The parameter used in the implementation or definition of subprogram
are called formal parameters.

O Actual Parameters: The parameter that we used in calling the subprograms are known as
actual parameters.

Let's consider the Listing 8.1 and 8.2 to understand subprogram parameters. In Listings 8.1&8.2,

we have used parameters during creating and calling the procedure. Let's see that which
parameters were formal and which were actual parameters in those listings.

In the Listing 8.1, we have used create procedure statement with parameters to create a
procedure. Statement used in the Listing 8.1 is as follows:

CREATE OR REPLACE PROCEDURE salary (eno IN NUMBER, esal OUT NUMBER)

The parameters eno and esal used in the above statements are formal parameters.
In the Listing 8.2, we have called the procecure created in the Listing 8.1. We have called the
procedure as follows:

salary (enol, e_sall); -- caling the procedure
We have passed two parameters that are encl and e_sall inside the braces. These parameters
are actual parameters,
You must have noticed that during creating and calling a procedure, we have used a different
name for parameters. It is not compulsory to use different name; you can also use the same
name.
Whenever a subprogram is called the actual parameter is substituted in place of formal
parameter. Thus, enol is substituted in place of enc and e_sall foresal.

167



Using Notation for Subprogram Parameters
Notations are the methods that are used to pass the actual parameters. PL/SQL provides three
types of notations that can be used to pass the actual parameters in different ways. Those
notations are as follows:
0 Positional Notation
O Named Notation
0 Mixed Notation
Now, we discuss these notations in details.

Positiunal Notation

It is the notation in which the actual parameter should have the same position as of formal
parameters. If you will change the position then Oracle will raise errors. In Listing 8.1, we have
created a procedure named salary in which we have passed two parameters, eno and esal
respectively. Then, we have called that procedure in the Listing 8. 2. The notation, we have
followed in the Listing 8.2 is positional notation, Here, you can see the way; we have used to
call the procedure.

salary (enol, e_sall); -- using positional notation o

In this case, the formal parameter enc is substituted with enol and esal withe_sall.

Named Notation i

In this methad, the actual parameter is associated with the formal parameter using arrow (=>)
symbol. If vou use this notation then the sequence of parameters does not matter. This noIatlon
enhances the readability and maintainability of your PL/SQL subprogram. :

‘Notation used in Listing 8.2 can also be replaced with named notation, if you do not want to
follow the sequence. If you replace the notations used in the Listing 8.2 with named notations
then, the excerpt having notation in the Listing 8.2 will be as follows:

salary (eno=>enol, esal=se_sall); -- Using named noration

Mixed Notation

You can use both positional and named notation in call. The positional notation must precede
the named notation otherwise Oracle will raise error. In this case, the notation used in the Listing
8.2 can be as follows:

salary (enol, esal=se_sall); -- Using mixed notation

Using Parameter Modes

Parameter modes are used to define the behavior of formal parameters. Paramelers can be
passed in three modes, The default mode for passing parameter is TN mode. If you will not
specify any mode then Oracle will use the default mode. The three different parameter modes
are as follows:

o IN mode

O OUT mode

O IN OUT mode

168



Chapter 8: Understanding Subprograms in PLISQL

Let's study these modes in details. We will study these modes in the same order as given above.

This mode is used to pass the value to a subprogram. Inside the subprogram, IN acts as a
constant and any attempt to change its value causes compilation error. The actual parameter
corresponding to parameter having IN mode «~x be initialized to variables, constants, literals, or
expressions. Let's reconsider the procedure salary created in Listing 8.1. Statement for that
procedure is as follows:

CREATE OR REPLACE PROCEDURE salary (eno IN NUMBER, esal OUT NUMBER)

In this procedure, we have passed the parameter eno in the 1N mode and esal in the CUT mode.

Note
| 0UT mode will be depicted in the next topic.

Let's see Listing 8.5 to know how the actual parameter corresponding to parameter having 11
mode (eno) can be initialized in various ways.

Listing 8.5: Showing the use of actual parameter in context to 1N mode

Output of Listing 8.5 is:
PL/SOL procedure successfully completed.
In the above topic we have also talked about the 0UT mode. Let's study what is that 0UT mode,
why it is used, and how to use this mode?
Out mode

This mode is used to return a value to the PL/SQL program that calls a subprogram. Inside a
subprogram, the parameter having 0UT mode acts as an uninitialized variable. Let's reconsider
the procedure salary created in Listing 8.1. Statement for that procedure is as follows:

CREATE OR REPLACE PROCEDURE salary (eno IN NUMBER, esal OUT NUMBER)
In the above statement, the parameter esal is of OUT mode. The actual parameter for 0UT mode
must be a variable. Lel's see Listing 8.6 to know what will happen if the parameter for 0UT made
is not a variable.

—

169



Listing B.6: Showing the use of actual parameter in context of 0UT mode

In the Listing 8.6, e_sall is the actual parameter and is a variable assigned with
When you execute this listing then the following output will be displayed.

But, if you try to execute this listing after removing the comment beside salary
e_sall+2); -- Not allewed statement then you will get the following error:

This error is trying to convey that the actual parameter for 0UT mode must be a variable not
expression or any other value such as literal.

IN OUT Mode

The IN OUT parameter is used to pass value to a subprogram and for taking the value out of a
subprogram. Inside the subprogram, the parameters used with T8 OUT acts like initialized
variable. Thus, you can refer value of variable or assign it some other value.

The actual parameter for IN OUT formal parameter must be a variable. If any expression or

constant is tried to assign to actual parameter then Oracle will generate the error. Let's see the
Listing 8.7 to know how to use this mode.

170



Chapter 8: Understanding Subprograms in PL/SQL

In Listing 8.7, we have created a procedure sum to calculate the sum of two numbers. We have
used a parameter a with IN OUT mode and is of type number. On executing the Listing 8.7,
output will be as follows:

Procedure created.

MNow, we call the procedure created above in Listing 8.8.
Listing 8.8: Calling the preceding procedure

In the Listing 8.8, we have declared a variable B of type number and have assigned a value to
this variable.

Then, we have called the procedure created in Listing 8.7. On executing the Listing 8.8, output
will be.

sum of the value passed is 20
PL/SQL procedure successfully completed.

This listing is executed properly because the actual parameter used is of type variable but if you
will try to execute the listing after removing the comment beside sum (20) ; then you will get
the following error:

Using Subprogram Aliasing

Aliasing occurs when a global variable is referred in the procedure and is also passed as
parameter to a subprogram. The result of aliasing depends on the type of parameter passing
method being used by the compiler.

The parameters are passed using two methods- pass by-value and pass by- reference. When a
parameter is passed by-value method, the value of an actual parameter is passed to the
subprogram. But, with by-reference method, address attached with the value of actual parameter
is passed. OUT and IN OUT parameters are passed by value while IN parameters are passed by
reference. Let's see Listing 8.9 to understand subprogram aliasing by the method pass by-value.

171



Listing 8.9: Sho ving subprogram aliasing in context to pass by-value

In Listing 8.9, first we have declared a global variable, which is then followed by creating a
procedure named demo.

Then, we have assigned a value to the procedure parameter. Mode of the parameter used is 1IN
ouUT that means in this listing, we use the method pass by-value. After that, we have called the
procedure and have passed the global variable in that procedure as actual parameter,

Let's see the output of the Listing 8.9.

10

PL/SOL procedure successfully completed.
Let's see Listing 8.10 to understand subprogram aliasing by the method pass by-reference.
Listing 8.10: Showing the subprogram aliasing in context to pass by-reference

In the Listing 8.10, first we have declared two global variables.

Then, a procedure named demol has been created in which we have passed two parameters;
first with the 10 made and second with the 0UT mode.

After that, we have called the procedure and have passed the global parameters in that
procedure.

172



output of this listing.

we end out discussion on subprogram aliasing and on working with Subprogram
is also complete. Now, you should be able to understand and use subprogram
very easily.

study about the subprogram overloading that allows you to use same name for more

Subprograms

overloading means using the same subprogram name for different subprograms.
the various subprograms can be same but there should be some difference between
can be set by varying the number of subprograms formal parameter, order, or

Listing 8.11 to understand subprogram overloading.
1: Showing subprogram overloading

173



In Listing 8.11, we have created two functions; first to fetch the employee name corresponding
to the number passed when the function will be called and second fetch the emplayee number
corresponding to the employee name. Both of the function have same name that is ename but
varies in the parameter name and data type. Let's see the output of the Listing 8.11.

In this way, subprograms can be overloaded but they also have some restrictions in overloading.
Let's study about those restrictions.

Restriction while applying Overloading
1. Standalone subprograms can not be overloaded. For example, if vou will try to overload the
function created in Listing 8.3 then you will receive the following error because the function
created in that Listing is a standalone function:

But this problem can be solved if you will create packaged subprograms or by creating

subprograms as we have created in the Listing 8.11.

2. Subprograms having the same name but vary in formal parameter name or mode can not be
overloaded. In that case the following procedures can not be overloaded:

3. Subprograms having the parameters of same data type family that is char and VARCHAR2
can not be overloaded. In that case, following two subprograms can not be overloaded.

174



Here, we have completed discussion on overloading subprograms. Sometimes, it may happen
that you need to call a subprogram by itself then what will you do. Solution to call a subprogram
by itself is recursion. Let’s continue discussing recursion in subprograms.

Using Recursion with Subprograms

Recursion is the process to call a subprogram by itself. When a subprogram is called then a new
instance of items (such as parameters, variable, SQL statements) declared in the subprogram is
created. Let's see Listing 8.12 to generate the Factorial series.

Listing 8.12: Showing the Factorial series in context to recursion

175



Output of the Listing 8.12 is as follows:
Function created.
Now, we call the procedure created to calculate the factorial of a specific number in the
Listing 8.13.
Listing 8.13: Calling the fac function

Let's see the output of the Listing 8.13.

Factorial of five is 120
PL/SQL procedure successfully completed.

Recursive programs are simple to write, but are inherently slow. In recursion, the information is
put in stack for each subprogram call. So it requires a large stack. If a subprogram call is made
within cursor, LOOP-END LOCP or between OPEN CURSOR and CLOSE CURSOR statement,
then for each call a new cursor is opened and the cursor limit may exceed the maximum limit of
QPEN_CURSOR.

With this we have completed discussion on recursions. Now, we discuss about the definer and
invoker rights related to subprograms.

Using AUTHID Clause

This clause is used to set the privileges to execute the subprograms. By default the subprograms
have definers or owner rights, which mean that any reference to database tables are resolved at
compile time. You can set the rights to owner or invoker by using AUTHID clause.

Benefits of using invoker rights is that you can create only one instance of subprogram and many
users can use that subprogram.

AUTHID clause is allowed 1o use in the header of a subprogram, packages, etc. AUTHID clause
must be used just before the 15 or AS keyword in the subprogram declaration. )

You can specify AUTHID CURRENT USER to provide the invoker rights and AUTHID DEFINER
to set the definer rights. Let's see the following snippet to know that how to use AUTHID clause.

176




Urheberrechtlich geschitztes Bild

Urheberrechtlich geschitzies Material



ackages consist of a set of procedures, functions, and variables grouped as a single unit. They

help in building well structured PLSQL applications. Specifically, you need to define
packages in two cases. First case is when you need to create a context or an environment for
many related program units of a specific domain. Second case is that your application has both
private and public variables and its design is top-bottom approach oriented.
Oracle Corporation has increased the number of built-in packages to extend the functionality of
PL/SQL. For example, the built-in package sTANDARD includes the definition of basic operators
and built-in functions. You can also build your own package and include domain specific
functionality inside this package. Some third parties can also build a library of packages which
needs to be installed so that the PL/SQL environment can use them,

This chapter makes you understand what is a package, how to create package specification and
its body, how to use some built-in packages from Oracle and create user defined package.

Overview of PL/SQL Packages

A package is a construct that lets programmers to logically group the application components of
one domain. Similar to subprograms, packages are also used to organize PL/SQL programs or
applications but there are some differences between subprograms and packages. You can only
store packages but subprograms can be both declared locally in a block or stored in a database.
Packages impose fewer restrictions as comparcd to stored subprograms when using
dependencies. Let’s learn how to create user defined packages.

Package Specification and Package Body

Oracle defines the top-bottom approach to create a user defined package which means that you
first need to create its specification and then its body. Package specification is considered as a
prototype of the entire package. This prototype enlists the resources of the package available to
an application. The package body contains the implementation of that prototype. As earlier
discussed, the data dictionary is used to store definition of schema objects. Therefore, the
definition of the user defined package is also stored in data dictionary. Let's learn how to create
a package specification and its body.

Package Specification

Package specification is also known as the package header. You can declare new types,
variables, procedures, functions, cursors, and exceptions in a package specification and can also
refer all these members from other PL/SQL blocks. See Listing 9.1 for a sample package
specification.

Listing 9.1: Creating a sample package specification

180



Chapter 9: Understanding Packages in PLISQL

In Listing 9.1, the package specification of eng_analysis package defines the data type
address_rec, variable lastengno, exception invalid _date, function findname, and
procedure updateenrollstatus. Each object is an element of the package. These
declarations can appear in any order but object declaration must precede its reference. There is
also no need to specify all types of elements, such as exceptions or types. Declarations of
procedures and functions should be forward declarations. A forward declaration describes the
type and name of the subprogram along with its arguments.

Body

The package body contains the implementation of package elements given in the package
specification. The only elements that require the implementation in package body are cursor and
subprograms. The declaration of subprograms in a package specification must match with the
declaration of the same subprograms in the package body. The package body can contain
additional variables and subprograms, which can be used for implementation of package
elements in the specification. These are called private variables or private subprograms and are
not accessible from outside. Package body becomes optional when package header does not
contain forward declarations of subprograms and cursors. Still, we may need to define package
header as all the variables and types in it.are visible outside the package. Notice that the
package body does not compile without successful compilation of package specification of same
package. See Listing 9.2 for sample package body of eng_analysis package

Listing 9.2: Creating body of eng_analysis package

181



In Listing 9.2, the variable engdatel is a private variable, which can be used only inside the
package body. Thus, the following reference in any PL/SQL block or program results in an error:

eng_analysis.engdatel

The body of eng_analysis package defines cursor ¢, checkengno, £indname, functions,
and updateenrollstatus procedure. The package initialization part is executed when any
package element is referred for the first time. Function checkengno is private to package;
therefore, it cannot be referred in any other PL/SQL program.

Any public member declared in a package header is accessed by qualifying the member name
with the package name. In general, the public package elements are referred in other PL/SQL
blocks using the following syntax:

packagename.elementname;

With the help of this syntax, you can now declare the variable mailing_address of
address_rec record type in the program. The syntax to declare variable of type defined in
eng_analysis package is as follows:

mailing_address: eng_analysis.address_rec;

Let's learn how to access other members, such as procedures and functions of eng_analysis
package. Suppose you want to use or access function £ind name in a PL/SQL program, you
can do it using the following syntax:

*® VARCHARZ(4);
wi=eng_analysis.findname(100);

You can also call packaged procedures using positional or named notation like stand alone
stored procedures but packaged procedures should be prefixed by a package name.

In this section, you learned how to create your own package and how to access its members.
MNow, let's go through the advantages of packages.

Advantages of Packages

Package is not a new concept in software engineering. Many software packages are continuously
being built by software firms to solve the problems of developers. Packages help in creating
reliable, maintainable, and reusable code, which help in developing software. These packages
are now also used to build high scalable Oracle PL/SQL based software systems. Packages offer
the following advantages for PL/SQL application or software design:

0 Modularity: As packages group all the logically related items, such as data types, variables,
and subprograms, they are modular in nature. All data types, variables, and subprograms
have the same context. The user can easily understand a package as it can be logically
broken into small program units. The interfaces between packages are also clear and well
defined.

O Information Hiding: Package consists of specification part and implementation part. Only
the specification part is available to users. The implementation part is hidden from the users
for security reasons. Each user can access different functionalities of a package depending

182



Chapter 9: Understanding Packages in PLISQL

upon access rights. The specification part is called public part while the implementation part
is called private part. If the user needs to use packaged subprograms in a calling program,
the user requires only knowledge about declaration of packaged subprograms. The
declaration of subprograms is included in the package specification. This makes the
developers and users more independent as developer can change the subprogram definition
and user can invoke the changed functionality with the same syntax. For example, the
calling program for a package math and function fact is as follows:

Xi=d;

y:=nath.fact(x);
Even if the definition of function fact is changed from recursion to iteration, the calling program
is not changed.
a Global Variables: The variables declared in packages persist across the session. These

variables, which include cursors, can also be used to pass information from one subprogram
to another. Thus, you can assign a value to packaged variable in ane subprogram and use it
in another subprogram.

Simple Application Design: The prototype of the application can be built very fast by only
writing package specification. You can even compile package specification without its body
and write other subprograms and compile them without the package body.

Better Performance: When a package is referred for the first time, then all the package
elements are loaded in memory so that the further reference to the package does not require
disk O. This speeds up the application execution.

Let's study about the most commonly used built-in PL/SQL packages from Oracle 10g.

Understanding PL/SQL Packages with Oracle

Each built-in package has a set of PL/SQL objects and they are automatically installed during the
installation of Oracle database. Each package extends the functionality of PL/SQL. For example,
DBMS _SQL package is used to execute dynamic SQL statements. All the Oracle built-in packages
are classified into following three categories:

a

Q

a

Application Development Packages: The packages under this category are used by
application developers to build Oracle applications.

Server Management Packages: The packages under this category are used by database
administrators for management of database servers.

Distributed Database Packages: The packages under this category are used by both database
administrators and application developers for managing distributed data.

See Table 9.1 which lists all the buili-in packages used in application development with

Ancrrintinm



GEMS RANDGM

Now, let’s discuss some of the most commonly used packages.

184



Chapter 9: Understanding Packages in PLISQL

The STANDARD Package

The STANDARD package defines the predefined data types, exceptions, and subprograms, which
are available to every PL/SQL program. For example, exception NO_DATA_FOUND is defined in
the STANDARD package. This exception arises when either you execute a query, which do not
identify any rows or you reference an uninitialized row during fetching rows from cursor. Most
of the predefined subprograms, such as SUBSTR (to find substring from a string), TO_CHAR
{converl a number 1o character value) are specified in this package. You can also overload most
of the subprograms from package STANDARD. For example, you can averload TO_CHAR function
in the following ways:

PL/SQL identifies that a call is made to a particular subprogram, such as T0_CHAR by matching a
number of arguments and their data types. If the user has defined subprograms having same
name, then the original subprograms can be called by using package name STANDARD as
STANDARD, SUBSTR. Package STANDARD is available in pre compilers, forms, reports, and
various Oracle products,

The DBMS_PIPE Package

The pBMS_PIPE package is used to transmit information from one session to another. The first
session makes use of DEMS_PIPE package to wrap a message into a message buffer and send it
to memory area inside the pipe while the second session receives and unwraps the same
message into variables. Before the introduction of the DEMS_P1PE package, the database used to
act as a communication medium for sending and receiving of messages. With the help of
DBMS PTPE package, your application can also use external routine which do not reside in the
database. All the service routines need to connect to Oracle instance and wait for their requests
on a particular database pipe. Database pipes can be pubiic or private. A public pipe can be
accessed by any user for sending or receiving messages; whereas in case of private pipes, only
the authorized users can send or receive messages during a session,

You must logon as a SYSDBA to execute the following command to give access to normal users:

Grant execute on dbms_pipe to scott;

Table 9.2 lists the commonly used subprograms in this package.

£ Table 8.2: Subprograms in DEMS_PIPE package {
Name Purpose

PROK_MESSAGE Builds message into local message buffer.

185



Chapter 9: Understanding Packages in PLISQL

SET_PROXY Sets URL of proxy server of main server of website to be read.
BEGIN_REQUEST Initiates HTTP request to the specified URL.

SET_HEADER Sets a specific response header with a value.
GET_RESEONSE Gets response from server.

READ_LINE Reads a line of taxt from spacified URL of web page.
END_RESEONSE ; Ends the response.

GET_HEADER_COUNT Gets total number of headers.

GET_HMEADER Gets value of specific response header.

The DBMS_SQL Package

The DBEMS_SQL package is used to execute SQL, DDL, and DML statements dynamically at
runtime. A DDL statement can be used inside the PL/SQL block only with the help of a
DBMS_SQL package; but to issue this statement, you further need some privileges from the
administrator. DEMS _SQL package allows the developer to specify only conditions or portions of
SELECT statement. From these conditions, this package builds the entire SELECT query.

DEMS_SQL package executes the dynamic PL/SQL programs in steps, which are as follows:
1. Store the names of procedures in a database table,
2. Build a Ul for this table so that user provides the inputs to execute a particular procedure.
3. Execute the procedure.
You can hide DBEMS_5QL package from all the users by issuing following command from 5YS
account:
REVOKE EXECUTE ON'DBMS_SQL FROM PUBLIC;
The database administrator can provide access of DEMS_SQL package to a particular user by
issuing following command:
GRANT EXECUTE ON DBMS_SQL TO username;

DBEMS_SOL consists of many standard subprograms and data structures, Table 9.5 lists the
commonly used subprograms inside this package.

Siogracs of DBMS_S0L package .
Purpose
BIND_ABRAY Associates a value to host amay

187



Table 9.5: Commonly used subprograms of DBMS_SQL package

Name Purpose

BIND_VARIABLE Associates a value to host variable
CLOSE_CURSOR Closes the cursor

EXECUTE Executes the SOL statement

FETCH_ROWS Fatches the rows from cursor

OPEN_CURSOR Opens the cursor

PARSE Parse the passed SOL statement

COLUMN_VALUE Retrieves a value from the cursor into a locai variable

Following are some of the unique advantages of DEMS_ 501 package:

a

a

Currently, the DEMS _SQL package is supported in clientside programs, but native dynamic
SQL is not. Every call to the pBMs_soL package from the client-side program translates to a
PL/SQL remote prnceclurc call. These calls occur when you need to bind a variable, define a
variable, or execute a statement.

The DESCRIBE COLUMNS procedure in the DEME S0L package can be used to describe the
columns for a cursor which is opened and parsed through DEMS 501,

The DEMS_5QL package supports statements greater than 32 kilobytes.

The DBMS_S0L package supports stalements with a RE
deletes multiple rows.

The eARSE procedure parses the SQL statement only once. Therefore, the staiement can be
used multiple times with different binding variables.

URNING clause that updates or

You can also execute dynamic SQL statements using statements, such as EXECUTE IMMEDIATE
without using APl of DEMS_SQL package.

Native Dynamic SQL vs. DBMS _SQL Package

Native dynamic SQL enables you 1o place dynamic SQL statements directly into PL/SQL code,
The DEMS_S0L package is a PL/SQL library that offers a programmatic APl to execute SQL
statements dynamically. Following list describes some of differences between them:

Q

Native dynamic SQL is much simpler to use than the DEMS SQL package because it is
integrated with SQL. You can use it in the same way as you currently use static SQL within
PL/SQL code. The DEMS SQL package is not as easy to use as native dynamic SQL. It
involves many procedures and functions that must be used in a strict sequence.

Mative dynamic SQL is comparable with static SQL because PL/SQL interpreter has built-in
support for native dynamic SQL. Therefore, using native dynamic SQL greatly improves the
periormance of programs as compared to the programs that use DEMS SOL package.

188



Chapter 9: Understanding Packages in PLISQL

0O DBMS_SOL package is based on a procedural APl and therefore, there are large procedure
calls and data copy overhead. For example, when you bind a variable, DaMs_ sQL package
copies the bind variable into its space for later use. Similarly, when SETCH statement
executes, the data copies into the space managed by DEMS 301 package and then fetched
data is copied one column at a time.

However, native dynamic SQL bundles the stalement preparation, binding, and execution steps

into a single operation that minimizes the data copying and procedure call overhead and

improves performance.

0 Native dynamic SQL provides support for the user defined types, such as user defined
objects, collections, and REF. The DEMS_S0L package does not support these user defined
types.

0 Native dynamic SQL and static SQL both support fetching into records, but the DaMs SOL
package does not.

The DBMS_ALERT Package

The DBEMS_ALERT package is used to alert the application when a specific database value is
changed by providing notification. These naotifications are called alerts. Alerts are usualiy
signaled using database triggers on specific tables. Alerts are asynchronous and only committed
transactions can signal an alert. You do not need to check frequently now whether any change
has taken place or not. The process of receiving an alert consists of two steps, Initially, the
application registers itself to get an alert on modification of specific data. Then, the application
waits for signaling of alert which tells developer to check again the same data. This package is
also used to give signals to other sessions. It operates independently of any time mechanism.

Table 9.6 lists the commonly used procedures and functions used in this package.

 Table 9.6: Commonly used subprograms of DBMS_ALERT package
Purpose

Deregisters the named alert passed as an argument.

WAITANY Waits for any alert to occur for which the current session is

189



Using PL/SQL Packages

In the last section, we discussed the functionality of packages, such as DBMS SQL,
DBMS_ALERT, UTL_HTTP, UTL FILE, and DEMS_PIPE. Now we are going to use these
packages using some examples.

The DBMS_SQL Package

The DDL and DML statements of SQL can be executed dynamically at runtime with the help of
DBMS_SQL package. Under this section, we create two examples in Listing 9.3 and Listing 9.4,
respectively. First example increments the salaries of employees who belong to department
number 10 of table emp. Second example finds ids and names of employees from table emp
whose salary is greater than 3000.

Listing 9.3 executes the dynamic UPDATE statement using DBMS_SQL package on table emp.
Listing 9.3: Executing dynamic UPDATE statement

Perform the following steps to execute dynamic SQL statement with the help of DBMS_501L
package:
1. Create a cursor to get cursor handle for a dynamic SQL statement.

190



Chapter 9: Understanding Packages in PLISQL

3.
4,
5.

Build the SQL statement and parse it in Oracle version 7 mode. Our SQL statement contains
two bind variables acting as placeholders.

Associate bind variables to actual variables passed in procedure.
Execute the SQL statement.
Close the cursor.

Here is the output of Listing 9.3.

Number of rows updated 3
PL/saOL procedure successfully completed.

When you execute Listing 9.3 on iSQL*Plus console, it will increment the salaries of three
employees and shows the total number of rows updated.

Second example finds ids and names of employees from table emp whose salary is greater than
3000. This example also uses FETCH ROWS, DEFINE COLUMN, and COLUMN_VALUE
subprograms of DBMS_SQL package. Now, let's create the second example. Listing 9.4 shows
the use of APl of DBMS_SQL package.

Listing 9.4: Using APl of DBMS _SQL package

191



BICaien Uidil JUUWL, 1 LU Lase, WO TELUIUS di € Lisp iay e,

You can also execute Dynamic SQL statements using native dynamic SQL. The EXECUTE
IMMEDIATE command is used to execute dynamic SQL statement from inside the PL/SQL block.
See Listing 9.5 which uses EXECUTE IMMEDIATE command.

Listing 9.5: Using EXECUTE IMMEDIATE command .

192



Chapter 9: Understanding Packages in PLISQL

Listing 9.5 counts the number of employees from emp_detail table who work in a particular
department. The Using clause is used to associate department number to be passed to
countemployees function with placeholder :dept inside the string str of EXECUTE
IMMEDIATE statement.

Here is the output of Listing 9.5:
Function created

After executing Listing 9.5 on iSQL*Plus console, you will get the message Function
created which indicates that couucemployees function is successfully created inside the
Oracle database.

See Listing 9.6 which executes countemployees function.
Listing 9.6: Executing countemployees function

Listing 9.6 declares x variable of NUMBER type to accept the return value after making call to
countemployees function.

Here is output of Listing 9.6:

The number of employees who belong to department no. 40 are: 3
PL/SQL procedure successfully completed.

After executing Listing 9.6 on iSQL*Plus console, the console displays the total number of
employees in emp_detail table who work in department number 40. In our case, the total
number of such employees is 3.

The DBMS_PIPE Package

In this section, we are creating four examples. First example creates a named database pipe and
second example removes that pipe. Third and fourth examples send and read messages to and
from a particular database pipe.

Creating and Removing Pipes
You can create and remove both public and private database pipes for a database session using
CREATE_PIPE and REMOVE_PIPE subprograms of DEMS_PIPE package.

See Listing 9.7 which creates public database pipe PIPE_MSG,

193



Chapter 9: Unde ling Packages in PLISQL

Sending and Reading Messages

Database pipes are usually used to store as well as retrieve messages from a specific session. As
we know, database pipes can be public or private. The public pipes are asynchronous. Any
schema object can write the public pipe if it has the execute privilege and it knows the name of
public pipe. Irrespective of the type of database pipe, you need two sessions to send messages
and then receive same messages. The first session (sending session) uses PACK_MEASSGE
procedure to build a message. This procedure adds the message to session’s local message
buffer. The information in this buffer is sent by calling the function send_message along with
the pipe name to be used 1o send the message. The second session (receiving session) uses
receive_message function. This function receives the message along with the pipe name
from which the message is to be received.This session then calls the unpack_message function
to access each item in the message. Once the receiving session reads the buffer information, it is
emptied from the buffer and then it is not available to reader of the same pipe.

See Listing 9.9 which sends messages to database pipe PLSQL$MESSAGE _INBOX.
Listing 9.9: Sending messages to database pipe PLSQLSMESSAGE _INBOX

PIPE. 10 DR IUUR RO TSR W U SIS 1 d IULdl DU, FALR PSS DAGE SUURIURIdITT

puts each message in the local buffer. The SEND_MESSAGE function sends all the three messages

195



Urheberrechtlich geschitztes Bild

Urheberrechtlich geschitztes Material



Chapter 9: Understanding Packages in PLISQL

Listing 9.10 gets messages from PLSQLSMESSAGE INEOX database. As this pipe is public and
uses shared buffer, RESET BUFFER procedure is invoked to reset the contents of shared buffer.
The RECEIVE MESSAGE procedure reads messages from PLEQLSMESSAGE INBOX pipe and
puts them in shared local buffer. The UneaCK MESSAGE procedure retrieves messages from the
local buffer. Then all the messages are displayed.

Here is the output of Listing 9.10.

After executing Listing 9.10 on iSQL*Plus console, the console displays retrieved messages, such
as Message [ 1] Message [ 2] Message [ 3] and the message Messages received
from PLSQLSMESSAGE_INBOX.

The UTL_FILE Package

The UTL_FILE package is used to read and write to and from server-side files. Here, we create
an example which writes some lines of text to a specific text file, Listing 9.11 shows the use of
UTL_FTLE package.

Listing 9.11: Using UTL_FILE package

Listing 9.11 creates a directory OUT_DIR get_nth_line function, which accepts three
parameters—loc_in, file in, and line num in. The loc_ in represents the location of
file with the name specified by tile in paramter. The line num in represents number of
the line to be read. The £ variable of UTL_FILE.FILE_TYPE opens only if the arguments to
FOPEN subprogram are valid. This [ variable acts as a file handle. The FOPEN method assigns a
file handle of file something.txt present in OUT_DIR directory to f variable. Third parameter w
passed to FOPEN method opens the something.txt file to read and write in replace mode. This £
variable is used in UTL_FILE.PUT LINE method to write two lines, such as line one: Santosh
Jena, line two: Mandeep Singh on something.txt file. Finally, we close the file handle.

197



When you execute Listing 9.11 on iSOL*Plus workspace, vou can see following output.

Tine one: Santosh Jena

Tine two: Mandeep Singh
This listing shows something.txt file which has two lines of text, such as line one: Santosh Jena,
line two: Mandeep Singh.

The UTL_HTIP Package

The UTL_HTT? package is used to read web pages and information, such as response headers
and cookies associated with them. In this section, we create two examples to explain the usage
of UTL_#TTE package. First example reads and displays lines of text from a web page.

See Listing 9.12 which reads a web page using APl of UTL_HTTP package.
Listing 9.12: Reading a web page using UTL_HTT® package

P.REQ and UTL_¥
T PROXY procedure sets proxy server of web page. The BEGIN RE
function initiates request to a web page and returns the request object. The GET_RESFONSE
function is used to get response from the server. Inside the loop, the READ LINE procedure
retrieves a line of text and writes it into value character string. When the entire response is read,
END_OF BODY exception is generated. This suggests developer to end the response using
END_ RESEONSE procedure to free memaory.

Listing 9.12 declares two reg and resp variables of UTL
types. The

Here is the output of Listing 9.12.

198






Here is the output of Listing 9.13.

The DBMS_ALERT Package

DEMS_ALERT package is used to give alerts in a session using triggers. In this section, we are
creating an example which gives a different alert when an INSERT, UPDATE, or DELETE
statement is executed on messages table. See Listing 9.14 in which signal trig trigger raises
a signal or alert,

Listing 9.14: Raising an alert using signal_trig trigger

200




To use the trigger you have to register your intezest in an alert so that every time the alert fires,
you receive a message for insert, update, or delete operation.

See Listing 9.15 which registers interest in the raised alert EVENT _MSG_QUEUE in a session.
Listing 9.15: Registering for raised alert in a session

Listing 9.15 subscribes you to the alert.

After you have registered your interest in an alert, you may or may not receive an alert.
Therefore, you need to wait to receive a message. Listing 9.16 shows you how to wait on a
single alert.

Listing 9.16: Waiting on a single alert

In Listing 9.16, we define a message, status variables of VARCH222, and INTEGER data types
respectively, We use DBMS_ALERT. WAITONE procedure to create a polling loop for 30 seconds.
The default value for timeout period is five seconds. Finally, we use an ii-then-else statement to
check if the status was due to a time-out. A time-out occurs when no alert is received. If the
time-out does not occur before an alert is received, it will print the alert. You can see the list of
sent messages in alerts_table table by executing SELECT query.

Triggering analert
To trigger an alert, you have to execute the code as shown in Listing 9.16 in one session, In
another session, you need to run the following listing within thirty seconds. See Listing 9.17,
which raises the trigger signal trig.

202



Chapter 9: Understanding Packages in PLISQL

In Listing 9.19, the salary procedure gets the salary of employee based on passed empno and
writes it into esal OUT variable. The fire employee procedure deletes employee with
specified empno from emp_detail table.

The hireemployee procedure inserts a new record into emp_detail table,

The nth_highest salary function returns nth highest salary, such as highest salary in an
organization or 2™ highest salary in the same organization. This function is already explained in
Chapter 7 of this book.

The raise_salary function raises the salary of employee with specified empno and returns
that employee's new salary.
Here is the output of Listing 9.19.

© prackage body created.

After executing Listing 9.19 on iSQL*Plus console, the console displays message Package
body created which indicates that body of emp manipulate package is successfully
created.

See Listing 9.20 which executes various procedures and functions in emp manipulate
package.

Listing 9.20: Using functionality of emp_manipulate package

Listing 9.20 invokes salary, fire employee, hireemployee procedures and
nth_highest_salary, raise_salary functions with respective values.
Here is the output of Listing 9.20.

Basic salary of the emplyoee having employee number 102 517500
Highest salary is 17500

205



After executing Listing 9.20 on iSQL*Plus console, the console displays the

employee with empno 102, highest salary, 3rd highest salary, new salary of
empno 101.

Summary
In this chapter, we learned about:

a
a
Q

A package and its advantages
Syntax of creating packa:.: ¢

rication and its body.

Use of commonly useo wui-in PL/SQL packages, such as DBMS_SQL, DBMS
DBMS_PIPE, UTL_FILE, and UTL_HTTP from Oracle 10g.

Creating a user defined package having various procedures and functions.



Oracle automatically executes (or fires) certain procedures whenever a database event (such
as creating or updating a table) occurs. These procedures are known as triggers. Triggers can
be created on various types of Oracle events for a database table, database schema, or the
database itself. Triggers are used to maintain integrity constraints in database tables, auditing
information in a data table, and keep information about various events, such as database, system
events (logon, logoff). For example, suppose you want to insert a row in a database table as well
as display a primary key (for example, the employee number) when a record is added. To do
this, you can create a trigger, which will automatically fire when any row is inserted in the
database table. Triggers also help handle autonomous transactions. Autonomaous transactions are
independent transactions initiated by other transactions.

In this chapter, you learn about triggers, their types, using triggers on views, maintaining triggers,
and autonomous transactions, Let's begin by a detailed description of triggers.

Describing Triggers
A trigger is a code, execuled for certain database events, such as DDL, DML operations on a
database table. Triggers can be written on the database table or view. Structurally, triggers are
similar lo procedures and functions. Triggers cannot be stored locally as a program or package;
instead, they have to be stored as standalone objects. Triggers do not accept any argument like
pracedures and functions and are fired implicitly.
Triggers help in maintaining database atomicity. For example, if a DML statement fires a trigger
or a sequence of triggers, and if an error is generated during their execution, the effects produced
by the DML statement and the trigger code are rolled back. In addition, the state of the system is
reverted to the state it was before the statement fired the trigger.
A trigger can be fired due to DML (INSERT, UPDATE, DELETE), DDL (CREATE, ALTER, DROP),
and other database aperations (such as logon, logoff}.
Based on the events performed on the database, there can be several types of triggers. Let's look
at some of the common types.

Types of Triggers

Triggers are of several types and depend on the event performed on the database. Considering
the event, Oracle automatically fires the trigger suitable to that event. In this section, we discuss
the following triggers:

a DML Triggers

a  DDL Triggers

0 Database Event Triggers
Q  INSTEAD OF Triggers

O AFTER SUSPEND Triggers

DML Triggers
DML triggers are those triggers that are fired by DML statements. A DML trigger can be fired
before or after the execution of the DML statement. These triggers can be fired before or after
every row or multiple rows that are being affected by the DML statement.

208



Chapter 10: Working with Database Triggers in PL/SQL

DML triggers can be fired for a single statement or for a combination of DML statements. The
following is the syntax of common types of triggers:

The parameters used in the preceding syntax are:

a

a

a

a

CREATE or REPLACE TRIGGER: specifies the statement used lo create a new trigger or
replace an already created trigger.

trig_name: Specifies the name of the trigger. You can give any name to trigger according to
your requirement.

BEFORE or AFTER: Specifies whether the trigger is to be fired before or after executing the
statement.

INSERT or UPDATE or DELETE: Specifies the DML statement for which the trigger is to be
fired.

tab_name: The table name on which a trigger is to be fired.

FOR EACH ROW: Specified when you want triggers to be activated for each row processed
by a DML statement. If you do not specify this clause, the trigger is activated only once for
the DML statement.

WHEN (...): Specified to avoid unnecessary execution of a trigger.
DECLARE: This section is used to specify a local variable.

BEGIN: Specifies the start of the execution section. Here, you specify SQL statements and
other execution code.

EXCEPTION: In this section, you can use exception handlers to catch exceptions that have
occurred during program execution.
END trig_name: Used to end a trigger.

Let's now view Listing 10.1 to find out how DML triggers work.
Listing 10.1: Creating a sample (ins_wval) DML trigger on TNSERT statement

209



In Listing 10.1, we created a DML trigger named ins_val, which fires when a record is inserted
into the DEPT database table.

In the BEGIN section, we used :NEW.DEPTND lo store the department number for any
new record inserted in  the table. The stored wvalue is  displayed by using

DEMS_OUTEUT.BUT_LINE (). :NEWand :0LD store new and old values respectively.

However, we have to follow certain rules when using : NEW and :0LD. These rules are:

QO :NEW and :0LD can only be used for row-level triggers. That is, if vou do not specify the
FOR EACH ROW statement in a trigger, you cannot use :NEW and :0LD,

0 :0LD should not be used when a trigger is fired on the INSERT statement because there is
no old value to store. For example, in Listing 10.1, we used :0LD; In this case, the
trigger is created normally but won't display any value when it is fired because it does not
have old data to display corresponding to the column number specified with :oLD.

O :NEW should not be used when a trigger is fired for the DELETE statement.
O You can use both :1=W and :0LD in triggers when executing the UPDATE statement.
The output of Listing 10.1 will be:
Trigger created.
Now, to find out how a trigger works, let's insert a record in the DE2T database table. To do this,
we have created Listing 10.2.
Listing 10.2: Inserting a record in DEFT table to check the working of ins_val trigger

The following is the output of Listing 10.2:
Record is entered for employee number 92
PL/SQL procedure successfully completed.

In the output, the statement written in the trigger is displayed when the INSERT statement is
executed on the DEET table. In this way, you can see that triggers are fired according to the DML
operation performed on the corresponding database table,

In Listing 10.1, we have only used the TNSERT statement. However, we can use all the DML
statements in the same trigger. To do this, PL/SQL provides some functions to determine which
DML operation is responsible for firing which trigger. These functions are:

O INSERTING: This function returns true when a trigger is fired by the INSERT statement.
O UPDATING: This function returns true when a trigger is fired by the UPDATE statement.
O DELETING: This function returns true when a trigger is fired by the DELETE statement.
In Listing 10.3, we create a trigger that will use all DML statements,

210



Chapter 10: Working with Database Triggers in PLISQL

Listing 10.3: Creating trigger (iud_val) to use on all DML statements

In Listing 10.3, we created a trigger named iud_val in which we have used all three functions,
that is INSERTING, UPDATING and DELETING.

Depending on the type of DML statement, a trigger will be fired and the function in the BEGIN
section will be executed.

Let's now see what happens when we update the DEPT table. To do this, we have created
Listing 10.4.

Listing 10.4: Modifying a record in DEPT table to check the working of 1ud_val trigger

On executing Listing 10.4, the UPDATING function in the trigger is executed and the following
output is displayed:

With this, we come to the end of our discussion on DML triggers. Let's look at DDL triggers next.

DDL Triggers

Like DML triggers, you can create DDL triggers that fire when DDL statements are executed.
DDL triggers cannot be applied on individual tables; you must create DDL triggers either on the
database or on the current schema.

211



The syntax to create DDL triggers is the same as DML triggers, the only difference being that
DML events are replaced by DDL events (for example, in place of INSERT you write CREATE
or any other DDL event). Moreover, in DDL triggers, you cannot use the FOR EACH ROW
statement, and the table name is replaced by the database name or the current schema.

Listing 10.5 shows you how to create a DDL trigger.

Listing 10.5: Creating a sample (cre_ate) DDL trigger

In Listing 10.5, we created a DDL trigger named cre_ate on the current schema. This trigger
will be fired when a current user executes the CREATE statement.
The output of the Listing 10.5 is:

Trigger Created - - |

MNow, we create a table to check whether the trigger is fired when we execute the CREATE
statement. To do this, we created a table named STUDENT with two fields, sname and age. The
statement to create the table is:

SQL> CREATE TABLE STUDENT (sname vmm(io}. ]
" age NUMBER(2)); : no et d

Executing the statement fires the trigger created in Listing 10.5 and glvcs the following output:

“Execution successful
‘Table Created

In the same way, you can create triggers for other DDL statements as well.

Database Event Triggers

These triggers are fired by Oracle when any database-level or system-level event occurs, such as
when the database is started or shut down. To create database event triggers, you must have
ADMINISTER DATABASE TRIGGER privileges, whicl we will shortly explain in this chapter.
Database event triggers are of the following types:

0 STARTUP: This trigger is fired when the database is opened.

O SHUTDOWN: This trigger is fired just before the shutdown of a database instance. This
trigger will not be fired if the database instance is shut down suddenly.

O SERVERERROR: This trigger is fired when any server related error occurs.
O LOGON: This trigger is fired when a user logs on to Oracle.
O LOGOFF: This trigger is fired when a user logs off from Oracle.

212



Now, Deepak is able to create database event triggers. Before creating an event trigger, we have
to create a database table to store the action of the trigger when it is fired by Oracle. We know
that DEMS_OUTPUT.PUT LINE does not display actions generated by database event triggers.
To view these actions, we create a database table named D_EVENT.

In this table, we create two fields: (USER_NUM of type NUMBER), 1o store the user number and
{0UT_STR of type VARCHARZ), to store messages that we want to add in the table when user
logs on.

Listing 10.6 shows you how to create a database event trigger.

Listing 10.6: Creating a sample trigger (u_connect) on LOGON event

In Listing 10.6, we created a trigger named U_Connect. In this trigger, we used the AFTER
attribute with the LOGON event.

In the execution section, we used the TNSERT statement to add the action performed by the
U_Connect trigger in the D _EVENT database table for the user Deepak. We also used
CURRENT TIMESTSAME to know the user's logon date and time.

On executing Listing 10.6, the following output is displayed:
Trigger created.
Now that you have created the trigger, you want to check if it is working properly. To do so, we

log on as Deepak and execute the SELECT statement on the D_EVENT table to retrieve all the
values from that table. The output of the SELECT statement is:

USER_NUM QUT_STR .

1 successfully logged on at 19-FEB-08 02.20.59.4B84000 PM +05:30
The output of the SELECT statement shows that the trigger has been fired successfully.
In this way, you can also create database event triggers for all database events.
With this, we move on to the next topic where we discuss how to fire triggers on views.

INSTEAD OF Triggers

Triggers used to modify views are known INSTEAD OF triggers. They can only work for DML
events on views because views cannot be maodified directly through DML statements. You
cannot create TNSTEAD OF triggers on DDL and database events. This is because there are
some internal restrictions set by Oracle that do not allow the use of TNSTEAD OF triggers on
DDL and database events. These restrictions mark the triggers as invalid.

If a view is inherently updateable (a view that allows you to perform DML operations on an
underlying table) and also has the INSTEAD OF trigger, Oracle fires the trigger instead of

214



Chapter 10: Working with Database Triggers in PLISQL

executing the UPDATE statement on the view. The BEFORE and RFTER attributes are not used
with INSTEAD OF triggers.

The syntax to create INSTEAD OF triggers is the same as DML triggers. Before defining the
INSTEAD OF trigger on a view, be sure that view exists in the Oracle database. In Listing 10.7,
we create a view named demo_ins to select some values from the DEPT database table.

Listing 10.7: Creating a view (demo_ins)

In Listing 10.7, we create a view named demo_ins to query the DEET table, where DEPTNO
is equal to 21.

Executing Listing 10.7 displays the following output:

View created.
Listing 10.8 shows you how to create a trigger on a view:
Listing 10.8: Creating a sample trigger {inst_of) on view

In Listing 10.8, we create the INSTEAD OF trigger named inst_of on the view created in
Listing 10.7.

In the execution section, we used the INSERT statement to add a record in the DEPT database
table.

In the exception section, we used the built-in DUP_VAL ON_INDEX exception to check for
duplicate values in the database table. If a user enters a duplicate value, the statement ‘Record
already exists, please enter another record’ in the exception handler is executed.

On executing Listing 10.8, the following output is generated:

Trigger created.
Let's now insert a new record in the DEPT database table, as shown in Listing 10.9.
Listing 10.9: inserting a record in table to check the working of inst_of trigger

215



On executing Listing 10.9, the record will be added to the DEPT database table and the
following message is generated:

PL/s0L procedure successfully completed.

To check if the record has been added in the DEPT database table, execule the
staterment on the table,

rHO, the e
trigger will be executed. For example, suppose you enter a record with . which
already exists in the database table, In such a case, the following output will be « nplnyu-tl.

However, if vou enter a record of an already existing “eplion spec |f:ud in the

record already exists, please enter another record
PL/SQL procedure successfully completed.

Let's take up AFTER NI triggers next,

AFTER SUSPEND Triggers

AFTER SUSFEND Iriggers are fired when SOL statements don't have sufficient space 1o complete
their action. As a result, these statements are suspended. For example, suppose you are
importing a large file but the server you are importing the file to fails to allocate sufficient
memary to the file. In such a case, the process is suspended,

Once the process is suspended, it will remain in that state for two hours (which is default
timeout). However, if you want to resume the session sooner, vou can use
method or execute the 2

ds) statement.

AFTER 1D triggers can be created for database schema or for the whole database. To
create these triggers for the whole database, vou must have ADMINISTER E
TRI . privileges,

Listing 10,10 shows you how 1o create an AFTER PEND trigger.

Listing 10.10: Creating a sample (resume_af

5QL> SET SERVEROUTPUT ON

CREATE OR REPLACE TRIGGER resume_after

AFTER SUSPEND ON SCHEMA

BEGIN

DBMS_RESUMABLE.SET_TIMEQUT (&0);

EXCEPTION

WHEN STORAGE_ERROR THEN

DBMS_OUTPUT.PUT_LINE {‘more space required completing the processes's;
END resume_after;

!

In Listing 1000, we created an AFT : trigger named re: : on the
database schema that fires when a session is held up due to any reason, such as insufficient
memaory.

We knaw that the default time for any process to be in suspension is two hours, which is 2 long
period for anyone to stop his or her work,

216




SQL> ALTER TABLE DEPT DISABLE ALL TRIGGERS;
Executing this statement displays the following result:
Table altered.

Now, performing any operation on the DEPT table will not fire triggers since the triggers are
disabled. To check whether the triggers have been disabled, we execute Listing 10.11.

Listing 10.11: Inserting record in DEPT to check the whether trigger on DEPT is disabled or not

In Listing 10.11, we insert a record in the database table DEPT. Executing the listing displays the
following output:

PL/SQL procedure successfully completed.

This message confirms that all triggers on the database have been disabled. Now, to know what
the result will be when we enable all the triggers created on the DEPT table, we enable all the
triggers once again on the table and then insert a record in the table.

To enable the triggers on the DE2T table, execute the following statement:
SQL> ALTER TABLE DEPT EMNABLE ALL TRIGGERS;

Executing this statement displays the following result:
Table altered.

Now, to check whether the triggers have been enabled on the table, see Listing 10.12.
Listing 10.12: Inserting record in DEPT to check the whether trigger on DEPT is enabled or not

On executing Listing 10.12, all the triggers created on the DEPT table for the INSERT event
will be fired and you get the following output:

This output is shows that the triggers have been enabled and fired successfully.

Dropping Triggers
Oracle also allows you to drop triggers. Suppose, you have created a trigger for a specific task
and after completing that task you want to drap the trigger. In that case, use the following syntax
to drop the trigger:

DROP TRIGGER trig_name;

218



Chapler 1(i: Working wilh Database Triggers in PLISQL

In this syntax, trig_name is the name of the trigger you want to drop. Now, suppose a trigger
named ins_val created in Listing 10.1 needs to be dropped. You can do this easily by the
following statement:

SQL> DROP TRIGGER ins_val;
On executing this statement, the following output is displayed:
©, Trigger dropped.

Renaming Triggers

You can also rename triggers in Oracle. Suppose you have created a trigger for a specific task
but the name of the trigger is confusing and you want to change it. In that case, use the following
syntax to rename the trigger:

ALTER TRIGGER old_trig_name RENAME TO new_trig_name;

Where old_trig_name is the name of the trigger you want to change and new_trig_name
is the new name you want for the trigger.

Now, suppose you want to rename the trigger iud_val created in the Listing-10.3. You can do
so easily by the following statement:

SQL> ALTER TRIGGER iud_val RENAME T0 all.chk;
On executing this statement, you get the following output:
Trigger altered.

With this, we have completed discussion on managing triggers. Next, we discuss how triggers
are used for handling the autonomous transactions.

Handling Autonomous Transactions using Triggers

A transaction is a logical unit of work that contains one or more SQL statements while an
autonomous transaction is an independent transaction started by another transaction.
Transaction that start autonomous transactions are known as parent or main transactions. Once
an autonomous transaction has started, it is fully independent, meaning that it shares no locks,
resources, or commit dependencies with the main transaction. An autonomous transaction is
executed without affecting the parent transaction. With an autonomous transaction you can
suspend a parent transaction, perform some SQL operations, commit or rollback the operation,
and then resume the parent transaction. For example, let's suppose you are inserting some
records in a database table through parent and autonomous transactions. Now, suppose the
autonomous transactions have been performed and committed correctly but some errors have
been encountered in the parent transaction. This in no way affects the working of the
autonomous transactions and the changes (that is the records inserted) made in them are saved
since autonomous transactions are independent of the parent transaction.

Let's now create an autonomous transaction. The PLSQL compiler directive PRAGMA

AUTONOMOUS_TRANSACTION is used to define an autonomous transaction. Listing 10.13 shows
you how to create an autonomous transaction.

219



Listing 10.13: Cr=ating an autonomous procedure

In Listing 10.13, we created an autonomous procedure named chk to perform some
In the execution section, we executed the UPDATE statement to update the
based on the employee number received through the formal parameter. Next, we
SELECT statement to retrieve the updated name. Then, we assigned the retrieved
formal parameter of the procedure and displayed the name of the employee. In the
section, we used the exception handler to catch an exception if data is
employee number received through formal parameter.
On executing Listing 10.13, you get the following output:

Procedure created.

In Listing 10.14, we create another procedure to perform some transactions, In this procedure,
we use the autonomous transaction.
Listing 10.14: Creating a procedure to use chk (autonomous procedure)

220



Chapter 10: Working with Database Triggers in PL/SQL

In Listing 10.17, we inserted two records in the TEST table. We committed the record inserted
by the first statement. Then, we inserted another record. However, this time we rolled back the
record inserted in the table.

The output of Listing 10.17 is:

PL/SOL procedure successfully completed.
Now, to check whether the record, which was rolled back has been stared in the TEST or in
TEST1 database table, we executed the SELECT statement for both the tables as follows:

SQL> SELECT * FROM TEST;

The output of this statement is:

Output of this statement is:

According to the output of the first statement, while only the committed record is inserted in the
TEST database table and the rolled back record is not inserted in the table, the TEST1 database
table keeps both the records.

With this, we complete our discussion on handling autonomous transactions using triggers. This
also concludes the chapter. We hope that the chapter has helped you gain enough knowledge to
use triggers. A brief summary the chapter follows.

Summary
In this chapter, we have studied about:
O Triggers and their types.
0 Maintaining triggers.
0O How to handle autonomous transactions using triggers.

223



Exceptiuns are certain abnormal conditions that occur at runtime and can cause the abrupt
termination of a program. In PL/SQL, the errors are treated as exceptions. A program should
be written in the way that it can handle exceptions very efficiently and thus can overcome the
problem of sudden program termination. For example, you have created a PL/SQL program or a
subprogram to fetch some value from the database table corresponding to a primary key. Now,
suppose that data is not available corresponding to that primary key, then Oracle will raise
NO_DATA_FOUND exception (an in-built PLISQL exception} or the exception defined by you.
Now, the question arises that how to handle an exception. Answer for this question is Exception
handler. Now, you definitely want to know that what exception handler is. Let’s continue
discussing exception handling in detail to know more about the facts related with exceptions.

In this chapter, we discuss about the exceptions, their types, and the process to raise and handle
them.

Understanding PL/SOL Exceptions

In PL/SQL, an exception is raised every time an error occurs. The error can occur due to various
problems, such as bad coding, hardware failure, memory faults. For example, if you are trying to
divide any number or expression by zero, then ZERO_DIVIDE exception will raise.

Oracle has provided exception handler to handle errors. Whenever any exceplion is raised,
normal execution of program stops and the control transfers to the exception-handler.

Exception handling helps to manage both expected and unexpected exceptions and thus helps in
making your PL/SQL program robust. You can use either user-defined exception or predefined
exception or both 10 handle the exceptions.

While writing a PL/SQL program, you are recommended to do the following to take the
advantage of exception handling:

O Always add exception handler in a PL/SQL program.

O Always try to use the named exceptions, such as NO_DATA_FOUND, TOO_MANY_ ROWS
rather than using WHEN OTHERS in exception handler. Always test PL/SQL program with
various combination of data to check the program for errors.

Here, we study about the two types of exceptions in detail—the user-defined exceptions and

predefined or inbuilt exceptions.

In-Built Exceptions

When a PL/SQL program violates certain Oracle rules, then exceptions are raised. For example,
if you try to store some values in the database table corresponding to a primary key but values
corresponding to that key already exist in the database table, then Oracle will generate the
DUP_VAL_OM_IMDEX exception.

In Oracle, for every error there is an error number and error message. You can use exception
names to handle exception but exception numbers are not allowed to use. You can use the
functions SQLCODE and SQLERRM to set the actual error numbers. You can also use
EXCEPTION_INIT pragma lo associate exception with Oracle error number. In Table 11.1, we
have summarized some of the In-Built exceptions.

226



Table 11.1: In-Built Exceptions

EXCEPTION NAME

iNVALID_CURSOR

DUP_VAL_ON_INDEX

INVALID_NUMBER

NOT_LOGGED_DN

PROGRAM_ERROR

228

DRACLE
ERROR
NUMBER

ORA-01001

ORA-00001

ORA-01722

ORA-01012

ORA-06501

SOL CODE
VALUE

-1001

-1722

-2

-6501

Exception Dverview

other cursor inside cursor
FOR...LOOP, exception is
raised.

This exception occurs when
you try to perform any cursor
related operation, which is
not allowed by Oracle. For
example, you try lo clese a
cursor which is not opened.

This exception is raised
when you try to store any
duplicate value in the
database table an which you
had set primary  key
constraint. For example, in
the table EMP_DETAIL, you
have applied primary key
constraint on EMP_NO; want
to enter a record with the
EMP_NO=101 but a record
with this number already
exists in the table then
Bracle will raise this
excepuon

This exception occurs in SOL
st=*2anits when conversion
of a string into & number

fails il procedural
statements, Oracle raised
VALUE_ERROR when

conversion fails.

This exception is raised
when you try to execute any
PL/SQL program  without
being connected to Oracle.

This exception occurs due to
some internal problems in
PL/SOL and the execution of
program fails.




11.1: In-Built Excoptions

This is all about the In-Built exceptions. It is recommended to remember all the In-Built
exceplions so that you can take care of their cause while writing any PL/SQL program. It will
reduce the chance of the occurrence of In-Built exceptions. Do you know that Oracle allows you
to define your own exceptions to handle the errors in your own way? The exceptions defined by
you are known as user-defined exceptions,

User-Defined Exceptions
The exceptions that you yoursell can declare to handle unwanted or abnormal conditions are
known as user-defined exceptions. These exceptions are application specific. User-defined
exceptions must have to be declared and raised explicitly. The keyword RATSE is used to raise
the exceptions explicitly. Let's see how to declare a user-defined excent.... .

Declaring user-defined exceptions
User-defined exceptions are declared in the DECLARE section of a PL/SQL block. Syntax to
declare an exception is as follows:
exec_name EXCEPTION;

In the above syntax, exec_name can be any valid name that suits to program requirement. This
name must be followed by the keyword EXCEPTION. Exceptions are declared just like variables
and also follow the same scope rule as variable.

Scope rules for user-defined PL/SOL exceptions

The same exception cannot be declared twice in the same block. When an exception is declared
in the block, it has its scope in that block and in all the blocks, which are enclosed by that block.
See the Listing 11.1 to understand exception scope.

230



The RAISE Statement

This statement is used to raise the user-defined or In-Built exception. A PL/SQL program or
subprogram should raise an exception when it is impossible to complete the processing because
of any abnormal condition. To raise an exception, RAISE statement can be used any where in
your PL/SQL program within the scope of that exception.

Let's see Listing 11.2 1o know how to use RAISE statement.
Listing 11.2: Creating procedure to use RAISE statement

In Listing 11.2, we have created a procedure to add record in the database table named
EMP_DETAIL in which we have used user-defined exception.

To use, user defined exception, first we have declared an exception named sal_les in
between the 15 and BEGIN keyword.

Then, in the execution part, we have used 18, ELSE control statement. We have set control on
the employee basic salary (ebasic) thatisif the ebasic entered by the user is less than 8000,
then the exception sal_les is raised, and the control transfers to the exception handling part
of the procedure.

In case, the salary entered is more than 8000, then the else part of the control statement
executes,

In the else part, we have used TNSERT statement to add the record in the database table.
On execution of Listing 11.2, you will receive the following output:

Procedure Created.

Let's see Listing 11.3 in which we have called the procedure add_record.
Listing 11.3: Calling procedure add_record

232



Chapter 11; Handling Exceptions in PLISQL

On executing Listing 11.3, the output can come in the following two ways:
Q I the employee basic salary entered is more than 8000, then the output is as follows:

PL/5S0L procedure successfully completed.

O If the salary entered is less than 8000, then the exception will raise and the output is as
follows:

Employee basic salary can not be less then B000

This is all about the use of RAISE statement. Besides allowing raising user-defined exceptions,
Oracle also provides the procedure to generate the user-defined errors. Let's see how to generate
user-defined errors.

The RAISE_APPLICATION_ERROR Procedure

This procedure is used to generate the user-defined and application specific errors. This
procedure is defined in the DBMS_STANDARD package. In this procedure, we have to pass three
parameters to generate the user-defined errors. Let's see the syntax to know about those
parameters.

raise_application_error(err_code, err_msg,{TRUE/FALSE});

In this syntax:

O err_code: It is the error code, which is a negative integer and must be in the range of -
20000 to -20999.

O err_msg: Itis the error message and is of string type. Maximum size for an error message
can be 2048 bytes.

O TRUE/FALSE: It is optional. If this parameter is set to TRUE, then the error is added in the
stack of previous errors and if it is set to false, then it replaces all previous errors, Listing 11.4
shows the working of RAISE_APPLICATION ERROR Procedure.

Listing 11.4: Creating procedure to use RAISE_APPLICATION ERROR

In Listing 11.4, we have created a procedure named up_record in which we have passed
parameter, ebasic (Employee basic salary).

In the execution section, we have used IF...ELSE control statement to check ebasic. If the
ebasic passed by the calling program is less than 11000, then the

233



raise application error procedure will execute and the user-defined error with error
code will be displayed. But, if the ebasic is not less than 11000, then the else part will execute.

Let's see Listing 11.5 in which we have called the procedure up_record.

Listing 11.5: Calling procedure up_record

In Listing 11.5, we have executed SELECT statement to fetch the employee basic salary
(EMp_BASIC) from the table EMP DETAIL corresponding to the EME NO=100,

EMP_BASIC fetched from the EMP_DETAIL has been stored in the variable e_basic.

Then, we have called the procedure up_record and passed e basic asaparameterin it
On executing Listing 11.5, the output retrieved is as follows:

When the raise_application_error is executed, the subprogram ends and the error code
and error message returns to the calling program. The code and message in the calling program
can be obtained using the functions SOLCODE and SQLERRM. We discuss these functions
(SQLCODE and SQLERRM) in the next section.

With this, we have completed discussion on Raising Exceptions in PL/SQL. Now, you know what
a PL/SQL exception is and also how to raise exceptions, Now is the time to learn handling
PL/SQL exceptions.

Handling PL/SQL Exceptions

In PL/SQL program or subprogram, when an exception is raised, the execution of that program or
subprogram stops and the control transfers to the exception handling part, where the exception
handler then handles the exception. See Listing 11.6 to know the format to handle exception.

Listing 11.6: PL/SQL program structure to handle exception

234



Chapter 11: Handling Exceptions in PL/SQL

In the exception handling part, you can specify one or more exception handlers depending on
your requirement,

An exception handler consists of the RHEN keyword, which is then followed by exception (user-
defined or In-Built). After that THEN keyword is used, which is then followed by the statement
that you want to display when an exception is handled.

Whenever any exception is raised, the control is transferred to the required exception handler
and the handler gets executed. Aiter executing the handler, the current block terminates and the
control returns to the executing block. R

If the exception part does not have any exception then the exception handler OTHERS is
executed. It is recommended to use OTHERS exception handler in the last of all exception
handlers, so that handling all possible exceptions is guaranteed.

You can also execute the same statement for two or more exceptions in the same handler by
separating them by using or clause, as shown here:

Let's now discuss the various methods of handling exceptions. PL/SQL provides the following
methods to handle exceptions:

0 Handling Exceptions Raised in Declarations

0 Handling Exceptions Raised in Handlers

0 Using SQLCODE and SQLERRM

a  Catching Unhandled Exception

Handling Exceptions Raised in Declarations

Exceptions can also be raised in the declaration part of the PL/SQL block. Exception in the
declaration part occurs when you try to assign some abnormal values in the variable declared.
For example, you have declared a variable X of type NUMBER (2) that is X variable cannot
accept any numeric value whose length is more than 2.

If you try to assign any value whose length is more than 2, then the Oracle will raise the
exception. When exceptions are raised in declaration block then they are not handled in the
current block, and the control transfers to the outer block where those exceptions are handled.
Let's see Listing 11.7 to know how to handle exceptions that occur in declaration part of PL/SQL
block.

235



In the output, you can see that exception has been handled by the outer block. Besides that, we
also write the same exception handler inside the inner block. Output is also trying to convey that
the record we are trying to add in the database table EMP_Detail already exists in the table.
With this, we complete discussion on handling exceptions raised within exception handler.
Now, we continue discussion by depicting the functions used to retrieve the error code and error
message.

Using SQLCODE and SALERRM

Oracle provides 50LC0DE and SOLEREM functions to know the code and message associated
with the error respectively. SOLCODE returns error code as a negative number but for the
Exception NO_DATA FOUND, it returns number +100.

For user-defined exceptions, it returns +1. The function SOLEREM returns the error message that
can be 512 characters long, This message includes code, message, table name, and column
name.

If no exception is raised, then SQLCODE returns zero and SQLERRM returns ORA-0000—
normal, successful, completion. In case of user-defined exceptions, = RM returns ‘User-—
defined Exception’.

SQLCODE and SQLEREM functions are used in exception handler. You can also pass an error
number to SQLERRM; in that case, SQLEREM returns the messages associated with that error
number. But, before passing a number into SQLEREM, ensure that the number should be
negative; otherwise, it will return the message user-defined exception. Listing 11.9 shows how
10 use SQLCODE and SQLERRM.

Note

Listing 11.9: PL/SQL program to use SQLCODE and SQLERRM

In Listing 11.9, first we have declared three variables named code, num of type NUMEER, and
msg of type VARCHARZ respectively.

238



Chapter 11: Hamdling Exceptions in PLISQL

We have limited the length of num variable to 5 that is we cannot assign it any number whose
length is more than 5.

In the execution part, we have assigned some value to num and the length of that value has
exceeded the length declared for num.

Then, in the exception handler, we have used VALUE _ERROR and have initialized the variable
code with SOLCODE and msg with SCLERREM associated with VALUZ _ERROR.

After that, we have displayed those variables. The output of Listing 11.9 is as follows:

The function S0LCODE and SQLEREM  are used specially in exception handler for OTHERS,
because they help in finding the error code and error messages associated with unspecified
errors.

Here, we have completed discussion on using SQLCODE  and SOLERRM. Now, we continue

depicting how to catch unhandled exceptions.

Catching Unhandled Exceptions
In a PL/SQL pragram or subprogram, if you have not used exception handler and exceptions are
raised then Oracle returns unhandled exceptions, If Oracle returns unhandled exceptions, then
the actual outcome depends upon the host environment. In case, PLUSQL programs or
subprograms fail due to unhandled exceptions, then the changes made by them are not rolled
back. If an unhandled exception occurs in PL/SQL block in the precompiler environment, then
all the changes made by the PL/SQL block are rolled back.
PL/SQL does not assign values to oUT parameter, if subprograms fail due to unhandled
exceptions,
To catch unhandled exceptions, use OTHERS handler.
Here, we discussed handling PL/SQL exceptions. Now, vou should be able to use exception
handling in PL/SQL programs and subprograms to make them robust. Before closing this chapter,
let's have a look on all that has been discussed in this chapter,

Summary
In this chapter, we have studied abaut:
O Overview of exceptions and their types.

O Process to raise exceptions,

O Handling exceptions occurring in different parts of a PL/SQL block, such as declaration,
exception handler.

239



In all preceding chapters of this book, variables {objects) of any predefined PL/SQL type are
known as embedded objects. An embedded object completely contains within another object
and represented as a column of a table. For example, nested table is an embedded object
contained in another table. PL/SQL supports also another type of objects known as row objects
to lake advantages of Object oriented Programming. The row objects represented using rows not
columns and are referenced objects. These row objects allow you to represent real world

in PL/SQL. For example, you need to define bank account type which has account
customer name, address, identity variables of simple PUSQL types. As each bank
associated with deposit, withdraw and balance enquiry operations in real life. Creating

type support in PL/SQL allows user to define own methads within them,

This chapter focuses only on row objects. The chapter makes you understand what are

how to create an object type and its body, comparing two objects with each other,
implement inheritance and overriding and how to perform various operations on object tables.

Introducing Object Types

Object-oriented programming helps in creating reusable entities. These entities are
objects. These Objects maps real life discrete units such as bank account, student and so
PL/SQL facilitates object-oriented programming with concept of object types. Users
specify both structure of data and ways of operating on this data inside objects. Each
declared inside object type is called attribute. The ways are procedures and functions
operate on these attributes. These ways are also called methods.

Object types help in breaking real world entity or unit into other logical entities.

Let us move on next section which creates new object types, initializes and manipulate them,

Using Object Types
In this section, we are creating simple object types and some object types with different types of
methods. We have created an object type complexl with procedure print and function
addl. The procedure print displays real and imaginary parts of complex number and
addl adds two complex numbers. We also used MA® and ORDER methods to compare
complex object types.
In declaring and initializing object types section, we build an example which declares
customer typ object type and initializes it with the help of constructor method. We
manipulate objects in various ways such as accessing attributes of object using dot operator,
inserting rows in object table, updating and deleting rows from object table.

Creating Object Types
You can use the object types both as variable in PL/SQL block and type of column in a database

table. For using the object type, you need to create the object type. The general syntax of
creating an object type without sub programs is as follows:

242



Chapter 12: Object Types in PLISQL

var3 type3;
S

In this syntax, name is name of object type. The name object type consists of three variables or
attributes of typel, type2, type3 respectively. The typel, type2, and type3 can be of VARCHARZ,
NUMBER or other already defined object type. In last case, object type becomes nested object
type.

See listing 12.1 which creates object type address,

Listing 12.1: Creating object type address

When you will execute listing on iSQL*Plus, message Type created will be displayed.
 Type created

See listing 12.2 which uses address object type as one of attribute of customer type.
Listing 12.2: Creating nested object type customer

You will get same message type created when you will execute listing 12.2. This listing will
execute successfully if address object type already exits in user’s database such as scott.

Defining data types does not involve any storage allocation. These object types are used in the
similar way as buill-in types in SQL statement,

Declaring and Initializing Object Types
An object type can describe the discrete units that exist in real life. These discrete units can be
an employee, organization, bank account and so on. An object type can be data type of an
attribute, variable, bind variable, field of record, formal parameter, or return value of function.

See listing 12.3 which creates customer_typ object type.
Listing 12.3: Creating customer_typ object type

243



Ne

In listing 12.3, we creale customer_typ object type with custid, custname attributes and
custadr altribute of address object type. The customer_typ object type has one procedure
dis_cust_address with SELF built-in parameter. You can declare this procedure without
parameter SELF as this parameter is implicitly passed upon invocation. The NOCOPY mode
makes temporary storage of nested object types efficient.

See listing 12.4 which creates body of customer_typ object type.
Listing 12.4: Creating body of customer_typ object type

In listing 12.4, we define dis_cust_address procedure which accesses the attributes plot,
street, city, state and pincode of nested object type variable custadr.

See listing 12.5 which declares and initializes variable of customer typ object type.

Listing 12.5: Declaring and initializing variable of customer_typ object type

In listing 12.5, we declare a customer variable of customer typ object type and initialize it
using constructor method. Please refer to Using methods in Object Types section for use of
constructor method. The procedure dis cust_address is invoked using following syntax:

customer.dis_cust_address();
Mote that we invoked the dis_cust_address procedure without passing SELF parameter as it
is implicitly passed.
After executing listings 12.3, 12.4 and 12.5 one by one and in the same order as given in the
chapter, you finally get the following output:

244



Chapler 12: Object Types in PLISQL

The output contains |d and name, address of customer.

Using methods in Object Types
Methods are sub programs which return a value, Inside object type’s definition you can define or
implement various types of methods. These methods are given as follows:
0 Simple Method: Suppose X is PL/SQL variable having type complexl has a method addl.
Itis declared in complex1 type as follows:

MEMBER FUNCTION addl(x complexl) RETURN NUMBER;
You can call its add1 function using following statement:
n i=X.addl();

In above line of code, type of n is same as that of add1 function.

O Constructor Method: The constructor method is a function. It returns new object as its
value. Every object type has a system defined constructor method. The name of constructor
method is same as object type. Following expression is a call to constructor method of
address object type:

address("71", "MGRoad ', 'Nagpur®, '440010') ;

0 Comparison Method: Comparison methods are used to compare objects, They are of two
types: Map method and Order method.

0 Map Method: Map method is used to maintain order between instances of object types. It
implicitly accepts built-in parameter SELF and returns any of types such as DATE, NUMBER,
and VARCHARZ. The built-in parameter SELF is an instance of object type. If two ohjects =
and y are having type complex1, then order decides on basis of value of each complex
number. An example of ¥AP function inside object type is:

MAP MEMBER FUNCTION val RETURN NUMBER;

PL/SQL implicitly uses MAP method when either Boolean expressions or DISTINCT, GROUP BY
and ORDER BY clauses occurred in PLSQL blocks. An object type may contain only one MAP
method,

0 Order Method: The oRDER method is a function which returns a numeric value. It takes
built-in parameter SELF and an object of same type. For example, x and y are two
complex1 objects, any comparison between them such as x>y invokes OEDER method. This
method returns a —ve, 0 or +ve number which indicate SELF is less than, equal to or greater
than ather object. The object type can have one of two comparison methods.

Adding two instances of an object type using methods

You are now aware of various differert methods which can be used in object type. This example
creates two instances of complex1 object type and then adds them using methods.

245



See listing 12.6 which creates complex1 object type.
Listing 12.6: Creating complex1 object type

In listing 12.6, we created complex1 object type which has two r1 and im attributes. The
real part and im is imaginary part of complex number. The complexl object type has
member methods print, addl, and val.

See listing 12.7 which represents the body of complex1 object type.

Listing 12.7: Creating body of complex1 object type

In listing 12.7, we define function addl, procedure print, and MA® function val. The addl
function adds one complex object passed as an argument with another complex object on which
addl function is to be invoked. The print procedure displays the real and imaginary
complex object on which this procedure is to be invoked. The MAP function val

value of complex object using formula sqrt (r1* rl+im*im).

See listing 12.8 which creates two complex1 objects and adds them.

Listing 12.8: Adding two complexl objects

246



12: in

In listing 12.8, we declare three variables x, v, and z of complexl object type. In execution
section, two complex objects are created using constructor method and assigned to variables x
and vy respectively. Then, we invoke print procedure on variables x and y to display real and
imaginary parts of created complex objects. The add1 function accepts y variable, invoked on
variable x adds complex objects represented by x and y. Finally, we display the real and
imaginary parts of complex object represented by z.

After executing listings 12.6, 12.7, and 12.8, you will get following output:

The output shows real and imaginary pars of created complex objects and also shows these
parts after addition.

two instances of an object type
Let's now use MAP and ORDER methods to compare two instances of complexl object type.
This section contains two examples. First example compares two instances of complexl object
type using MAE method. Second example compares two instances of complex2 object types
using ORDER method.
See listing 12.9 which compares two objects of complex1 object type using MAP method.

-

Listing 12.9: Comparing two objects using MAE method

In listing 12.9, when you use x>y in IF condition, it converts this condition into x.val>
v.val. The MAP function on both variables x and vy is invoked and returned values are
compared with each other. Depending upon result of IF condition, print procedure on one of
variables is invoked.

247



On executing listing 12.9 on iSQL*Plus, you will get following output:

The output shows first real and imaginary parts of two complex objects and then again
these parts of greater complex object.

You can also compare two instances of an object type using ORDER method.
See listing 12.10 which shows the usage of 0RDER method to compare two objects.
Listing 12.10: Creating complex2 object type

In listing 12.10, we created complex2 object type similar to complex1 object type
uses ORDER method for comparison.

See listing 12.11 which creates body of complex2 object type.
Listing 12.11: Creating body of complex? object type

Observe the difference between use of 0RDER and MAP methods. The MAP method used
only evaluates the value of complex object but ORDER method compares passed complex
with complex object on which ORDER method is invoked inside its body.

See listing 12.12 which compares two objects using ORDER method.

248



Chapter 12: Obyject Types in PLISQL

Listing 12.12: Comparing two objects using 0RDER method

Listing 12.12 is totally similar to listing 12.9 but when PL/SQL engine encounters expression x>y
in IF condition, the ORDER method is invoked.

After executing listings 12.10, 12.11, and 12.12, you will get the following output:

The output shows first real and imaginary parts of two complex objects and then again displays
these parts of greater complex object.

Manipulating Object Types
In this section, we manipulate attributes and methods of objects in PL/SQL. We perform
operations such as accessing attributes and methods of object types, creating object table and
manipulating its rows,

Accessing Attributes of an object using dot operator
You can access and modify values of attributes of object using dot operator. To access the
attributes of nested objects, you need to use more than one dot operator according to hierarchy.

See listing 12.13 which accesses attributes of customer object.
Listing 12.13: Accessing attributes of customer object

249



12: in

12.15, VALUE function accepts correlation variable which can be row variable or table

with particular row in an object table. The SELECT INTO retrieves the return

of this function into variable of same object type. The customer variable can be further
to invoke its methods and attributes.

listings 12.14 and 12.15 in this sequence, you will get following output:

shows the address of customer with 1D equals to 2.

deleting rows from an object table

you can use UPDATE and DELETE statements to update and delete rows from an
table. See listing 12.16 which updates and deletes rows of customer tab object table.

12.16: Updating and deleting rows of customsr_tab object table

12.16, you need to use table alias for specifying changed values of attributes in WHERE
clauses.
through REF Modifiers

use REF and DEREF modifiers to get pointer to particular object in an object table and
pointer into an object type variable. See listing 12.17 which accesses objects
madifiers.

7: Accessing objects using REF modifiers

251



In listing 12.17, we use REF modifier to get pointer to object type record of
equals tol. We comment lines where attribute name is being accessed from

REF variable in this listing. This is because you cannot access value of attribute from
Therefore, we dereference customer_ref variable into customer variable
INTO statement. As partial SELECT INTO statement does not execute, we, thus,
table DUAL inside it.

On executing listing 12.1Z on iSQL*Plus, you will get following output:

The output shows name of customer with id equals to 2.
Let us create sub types which use the inheritance feature of object oriented programming.

Inheritance in PL/SOL

You can create an object from existing base objects. By default, base objects are declared as
FINAL. To allow inheritance, the base objects should be declared as NOT FINAL.

We are creating an example which implements inheritance in PL/SQL. In this example,
complexl is a base object while complex3 is an inherited object. In complex3 object,
additional method subl is added. Therefore, complex3 inherit attributes r1, im and three
methods of base object complexl.

See listing 12.18 which creates complexl object type.
Listing 12.18: Creating inheritable complex1 object type

Listing 12.18 is similar to listing 12.6 as described earlier, except here we append NOT
keyword to listing 12.18. This keyword causes this object type to be inherited from other
types.

See listing 12.19 which defines the body of complex1 object type.

Listing 12.19: Defining body of complex1 object type

252



Listing 12.19 is exactly same as listing 12.7. We are again showing its code here as it is now
used to implement inheritance.

See listing 12.20 which creates inherited object type complex 3.
Listing 12.20: Creating sub type complex3

In listing 12.20, we created object type complex3 which inherits attributes and methods of
complexl using UNDER keyword., The complex3 object type has its own subl member
function.

See listing 12.21 which creates body of complex3 object type.
Listing 12.21: Creating body of complex3 object type

In listing 12.21, sub type complex3 needs to define unique methods inside itself. The subl
function returns complex3 object type after subtracting two complex objects.

See listing 12.22 which shows the use of complex3 sub type:
Listing 12.22: Using complex3 sub type

253



In listing 12.22, we accessed inherited print procedure on complex3 in addition to
own subl function.

After executing listings 12,18, 12,19, 12.20, 12.21, and 12.22 in same sequence, you will
the following output:

The output shows real and imaginary parts of created complex objects and also
parts after subtraction,

Let us implement overriding after implementing inheritance between object types. This
also explains dynamic method dispatch.

Method Overriding

You can override a method having the same signature as method of super or base type.
signature means that both methods have same name, same number and types of arguments,
same return type. You can override a method in sub type using OVERRIDING keyword.

See listing 12.23 which creates object type complexd.
Listing 12.23: Creating object type complexd

In listing 12.23, complex4 object type is exactly similar to complex2 object type.
See listing 12.24 which defines body of complex4 object type.
Listing 12.24: Defining body of cemplex4 object type

254



12 in

The functionality of listing 12.24 is similar to listing 12.11 except the name of object type is
4 in listing 12.24.

12.25 which creates complexs object type.
12.25: Creating complex5 object type

12.25 is similar to listing 12.20 except it uses OVERRIDING keyward before procedure
You cannot declare procedure with same name as that of base type inside sub type
using OVERRIDING keyword.

12.26 which defines body of complex5 sub type.
Listing 12.26: Defining body of complex5 sub type

listing 12.26, we override the procedure print and it only uses different sentence in output.
See listing 12.27 which uses dynamic method dispatch technique.
Using dynamic method dispatch technique

255



==z
END;
/

In listing 12,27, we first invoke procedure print on variables x and v of
types and then overridden procedure print invoked on variable z of « object type.
Finally, we assign variable z of sub type o lexS to variable x of super type compiexd, This
type casting is also called dynamic method dispatch, Using this type casting, you can assign sub
types to super types and call methods of sub ohjects on base object.

lexd object

ple

After executing listings 12.23, 12,24, 12,25, 12.26, and 12.27, you will get the following output:

real part 3 imag part 4

real part 5 imag part 6

The real part is & the imaginary part is 9
The real part is 8 the imaginary part is 9
PL/SOL procedure successfully completed.

The output shows real and imaginary parts of base and sub objects using base procedure print
and overridden procedure print.

If you neither want to put any code inside methods nor define methods in super type, then
declare super type as not instantiable. Consider an example which involves three object types
shape, circle, and rectangle. The shape is super type and has one area function which calculates
the area of particular shape. The circle and rectangle are sub types of shape super type, The
bodies of circle and rectangle sub types have one area function which calculates the area of
circle and rectangle. Thereiore, it does not make any sense to define area function inside shape
super type as this object type has no dimensions. You can do it using N0OT IHNSTANTIABLE key
word. When the super type is not instantiable, you cannot creale object of that super type. You
have 1o create sub type 1o use the functionality.

Let us learn how to define SCL object types equivalent to PLSOL collection types, manipulate
them and finally store them in the form of abject tables,

PL/SOL Collections and Object Types

You can detine SQL object types equivalent to PLSQL collections and then use these collections
with SQL object types,

Defining SQL Types equivalent to PL/SAL Collection Types

With the help of CREATE staternent, you can store nested tables and varrays in database
tables, The created types may be further used as attributes of SQL object types. You may declare
equivalent types in PL/SQL using SQL type inside variable declaration.

Sea the following statements 1o create a nested table.
CREATE TYPE listofcourses AS TABLE OF VARCHARZ(10):

In the preceding syntax, we created a collection type inested table) Listefeourses which acts
as table of course names.

256



See listing 12.28 which uses VARRAY constructor within a SQL statement.
Listing 12.28: Using VARRAY constructor within a SQL statement,

In listing 12.28, we use listofprojects construclor to store one record
company_branchjroj ects table,

See listing 12.29 which uses nested table constructor inside SQL statement.
Listing 12.29: Using nested table constructor inside SQL statement

In listing 12.29, we insert one record into student_tbl table using listofcourses
table constructor.
Using PL/SQL Collections with $7! 75innt Timan

With the help of collections, you can work with complex dam types in PL/SQL. After

and modifying particular elements in instances of these types, you can use 5QL statements
store them in datlabase table,

Now, see the following syntax and code snippets to inserts some records into
table,

In the preceding syntax, we created a collection type dnames _tbl which acts as
department names.

Output of the preceding syntax is as follows:

Let's create table named departments which uses dnames _tbl collection type.

CREATE TABLE departments(loc VARCHAR2(20),deptnames dnames_thl)
NESTED TABLE deptnames STORE AS int_dnames;

In the preceding code snippet we have created nested table as an attribute of departments
object type.

Output of the preceding syntax is as follows:
Table Created

Let's see the Listing 12.30 to insert some records into departments table.

258



Chapter 12: Object Types in PL/SQL

Listing 12.30: Inserting records into departments table

In the preceding we have inserted three records into departments table using dnames_thl
constructor. Each record represents types of departments in a particular location.

Output of the Listing 12.30 is as follows:
PL/SOL procedure successfully completed.

Now execute the following query to check whether the records have been inserted into
departments table or not:

SELECT * FROM departments;
The SELECT query generates following output:

The output shows rows currently inserted in departments table. Note that each value in
nested table column is a nested table constructar.

See listing 12.31 which uses INSERT, UPDATE, DELETE, and SELECT statements with
dnames_tbl nested table.

Listing 12.31: Using INSERT, UPDATE, DELETE, and SELECT statements with dnames tbl
nested table

259



INSERT INTO TABLE(SELECT deptnames FROM departments WHERE loc='sanglore')

VALUES("sales');

DELETE FROM TABLE(SELECT deptnames FROM departments WHERE Joc='Hyderabad')

WHERE column_value="'Payroll’;

UPDATE TABLE(SELECT deptnames FROM departments WHERE locw='New Delhi')

SET column_value='Finance' WHERE column_value='Production’;

COMMIT;

END;

/
In listing 12.31, we declare variable vd
variable can store a set of department names, The deg
store row of de tments table, The
department names to be stored in ¢
First 551 y ) query retrieves department names into vdnames variable, The FOR LOCP
used 1o display each of department name using symax vdnames (1), Second SELECT INTO
query retrieves entire row in departments table a’orf(u'.pf:r|d|n;1 to Iocalmn MNew Delhi. Second
ForR  LooP  used to  display department names in New Delhi  using syntax

ts and chng_dnames.The vdnames
5 variable declares a record that can
3 names variable used to assign the new set of
s table corresponding lo a location Banglore.

atement to change set of department names for Hyderabad using collection
2 We also can extend the collection ¢ corresponding to location
Banglore using EXTEND procedure and add one more name in it using COUNT function. Then,
this collection is used 1o update the department names in departments table.

, and D

ELETE statements with nested table represented by
es. For this, you need 10 use TARLE operator 1o have effect of INSERT, UPDATE,
a!emmts on nested table produced by sub query, The column_value refers to
particular pame in deptnames collection. You cannot apply DML SQL statements to nested
table directly.

You can also use TN

On executing listing 12.31 on iSQL*Plus, vou will get following output:

Department names:Technical wWriting
Department names:Software Development
New Delhideptnames=Human Resources

New Delhideptnames=Sales

New Delhideptnames=Finance

PL/SOL procedure successTully completed.

The output shows types of departments in banglore and New Delhi after using many
manipulation operations.

Now we are manipulating SQL vARRAY objects with PL/SQL statements, The departments table
now contains a ¥ column. See listing 12.32 to insert some records into departments table.

Now we have dmpped ‘me table namcd departmcnts because we are creahng ﬂ'ns table once agam in the comlng scctlon

Let's see the following syntax and code snippets to insert records into departments table having
VAREAY column:

CREATE TYPE dnames_varray IS VARRAY(7) OF VARCHARZ(30);

260



EWF_BAZIC INTH #_sal PR
I‘l |- I.HI

E-I#‘I'hlulﬂ [

Oracle PL/SQL Programming

Oracle PUSOL Programming in Simple Steps book effectively

explains the concepts of PUSQL programming. It gives short-yet-
complete description of the PL/SQL programming concepts and
explains them step by step. This book provides core information that
every PLSQL developer should know to write PLSQL programs,
interact with Oracle databases, perform complex calculations, and
handle exceptions. Loaded with lots of examples and illustrations to
explain concepts, this book would help you learn PLSQL
programming with minimal effort.

The book covers:

Features of PLISQL language
PLSQL architecture

PL/SOL language elements, such as block structure,
datatypes, declarations, and operators

PL/SQL expressions and d pe cony n
Built-in PL/SQL functions

PL/SOL control structures

SOL operations in PLSOL

Transaction management in PL/SQL

PL/SQL collections, records and objects
Cursors in PLSQL

Procedures and functions in PLSOL
Packages in PLSQL

Triggers in PLSQL

Exceptions and exception handlers in PLSOL
Writing object-oriented PLSQL applications




