Introductory

Visual Basic .NET

THOMSON
—_—— .

Introductory Viswal Basic NET
Copyright © P, K. McBride 2005

The Thomson logo is a registered trademark used herein under licence,

For more information contact Thomson Leamning, High Holbom House, 50-51 Bedford Row, London
WCL 4LR or visit s on the World Wide Web at: burp:Vwww thomsonlearning co.uk

All rights reserved by Thomson Leaming 2005, The text of this publication, or any part thereof, may not be
reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying,
recording, storage in an information retrieval system, or otherwise, without prior permission of the publisher.

The programs presented in this book have been included for their instructional value. They have been tested with
considerable care, but are not guaranteed for sny particular purpese. The author and the publisher do not affer
any winTanties or representations. nor do they accept any liabilities with respect 1o the programs.

British Library Cataloguing-in-Publicatian Data
A catalogue record for this book is available from the British Library.

ISBN 1-8448-0190-X

First Edition published 2005 by Thomson Learning

'-ﬂ Typesct by P. K. McBride, Southampton

Printed and bound in Great Britain by TJ International, Padstow, Cornwall

Disclaimer

The programs presented in this book have been included for their instructional value. They have been tested
with constderable care, but are not guaranteed for any particular purpose. The author and the publisher do
not offer any warrsnties or represcntations, nor do they accept any liabilities with respect 1o the programs,

Contents

Preface _ix
An Introduction to Visual Basic NET x

Visual Basic concepts 1

1.1 Event-driven programming 1
1.2 Terminology 3
1.4 Amanging the Visual Studio 6
LS The Toolbox 9

L6 The Properties window 12
L7 Controlssnd events 1S

1.8 The Help system 16

9 Options 20
1.10 The programming language 21
111

. Attaching code 23
L12 Variahles 24

113 Controls for data storage 27
1.14 Number operators 27

1.15 Assignment operators 28
Llo Exercises 29

Designing and creating programs 30

2.1 Program design 30

2.2 The Launch program 30
23 Theuserinterface 3]
24 Code design 32

2.6 Writing the code 33
2.7 Running and testing 37

2R Printouts i7

29 Exercises 38

Program flow 39

3.1 Controlling the flow 39
32 Logical testing 9

3.3 Branching with If 42

vi Contents

:

Do loops 48

g

Creating a sub 50
Creating a function 51
R ive functi 3

Subs, functions and modules 33
Exercises 53

PEEEEEERERE

F

4 Interacting with the user 55

MsgBoxes 55
InputBoxes 58

%

GroupBoxes 60

The Image Editor 70
Worked example 72

T

o
2
=1

5 ing and debugging 80

Errors and error spotting 80
Debugging tools 83
Breakpoints 83

Keeping watch 84
Stepping through 85
Error-trapping 85

ROREBE

6 Interacting with the system 88

EE

Using the Clipboard 92

File handling dialog boxes 94
Printing 96

Exercises O

EERERE

7 Text processing 99

7.1 String_manipulation 99
7.2 String slicing 101

13 Find and Replace 103
74 Font formatting 106
7.5 Font.Style formatting 107
1.6 Worked example: a simple word processor
17 Exercise 115
8 Graphics 116
8.1 Basic concepts 116
8.2 Line drawing methods 118
8.3 Filled shapes 122
84 Worked example: spots before the eyes 124
8.5 DrawString() 125
8.6 Tidying up drawings 127
8.7 Defining colours 128
8.8 Working with imported graphi 130
39 Ani i 132
8.10 Exercises 136
9 Arrays and collections 137
9.1 Dimensions, el and subscripts 137
9.2 Arrays and loops 138
93 Prime numbers 139
9.5 Collections and control arrays 143
9.6 The tabindex and event handling 149
9.7 E i 154
10 Multiple forms and windows 155
101 A second form 155
102 Code for multiple forms 156
103 Modules and global variables 157
10.4 A two-form project 158
10.5 MDI forms 162
106 Menus in MDI forms 163
107 Window g 164
108 An MDI text editor 165
10.9 Exereises 168
11 Sequential files 169

1.1 Saving data to file 169

1.2 Basic filing 172

1.3 Data analysis and storage 173
11.4 Appending to files 176

11.5 Waorked example: Hangman 179
116 Fxereiae 183

Contents

wii

viii Contents

[

121 Record structures 184

122 Bandam aceess files 185

123 The staff database 187

124 Initialisation and data entry/edit 189
125 Record menu options 190

126 File menu options 193

123 Find and Select 195

128 Exerpises 198

Appendix: Solutions to exercises 199

E

Preface

Aim and need

Approach

For some years, Microsoft Windows has been the standard operating environment
for PCs, and Visual Basic has become the standard programming language for
Windows. As a result, many employers are demanding that computing students are
familiar with Visual Basic, and many courses from NVQ to degree level include
a Visual Basic component. This book has been specially written for these students,
some of whom may have had some programming experience, to provide a concise
and practical introductory-level text on Visual Basie.

The book introduces the concepts and techniques of Visual Basic across a broad
front. 1t then goes deeper into key aspects of the system, bringing in new objects
and language elements as they are needed, and using larger (and more interesting)
example programs for illustration.

Where appropriate, there are short in-text programming tasks to give immediate
practice in the techniques the text is introducing. At the end of most chapters, there
are longer programming exercises. Some of these have sample answers at the end
of the book, others are either too trivial or have too many possible solutions for any
one to be held up as the ‘correct’ answer,

An introduction to Visual Basic.NET

Visual Basic is the language that many developers, including Microsoft, use to
write new applications software. At the last count there were well over a million
Visual Basic applications in commercial use! Look closely at any Windows
database, spreadsheet or word processing package, whether from Microsoft or any
other software house, and you will find that its macro language is either a variety
of Visual Basic, or almost identical to it. For this reason, anyone who wants to
become a Windows expert should master this language, and all Windows users,
beyond the most casual, should have a grasp of it.

Visual Basic is substantially different from traditional programming languages.
With these you could develop a program line by line, testing each command as you
write it. (It's not the most efficient way to write software, but it works.) You could
also take the same linear approach to learning the language, mastering one
command at a time, and steadily building your knowledge. With Visual Basic you
must develop your programs and your understanding across a broader front. You
write a program by assembling the objects that you will use for screen displays and
interaction with the users, adjusting the properties of those objects, determining
which events they will respond to, thinking through the variables you need for
holding data and for passing information from one part of the program to another,
and writing the command lines that will run when events are activated. At each
stage of development, you may add to or change any aspect of the program, but it
must be done with an awareness of how it will affect the other aspects. Objects,
properties, events and code are all interwoven. | have tried to take this same broad
front approach in writing this book.

Visual Basic has been evolving steadily, with each new version offering more
features, The current version, Visual Basic.NET, is a highly sophisticated lan-
guage, which can be used to create ActiveX applets for Web pages or WAP-enabled
mobiles, as well as free-standing applications. It is fully compatible with the other
languages in Microsoft’s Visual Studio set, and its programs can share data and
functions with programs written in any other NET language.

This is an introductory book. Its aim is to help you master the core concepts and
technigues, and to give the reader the confidence to go on afterwards to explore the
many possiblities of this rich and complex language.

P. K. McBride
Summer 2004

Visual Basic concepts

The concepts, techniques and tools for programming inVisual Basic are
so interrelated that you need to understand how they fit together before
you can really get to grips with any single area. This chapter lays a broad
foundation on which to build your understanding of the language.

1.1 Event-driven programming

Traditional programming is essentially linear and based on the flow of execution.
Operations run for a fixed span or until they reach decision points written into the
program, and interrupting an on-going activity is either difficult or impossible to
manage. Programmers are responsible for all aspects of their program, including
the screen display and user interface, and must write the code to do everything. If
they want particularly elegant screen effects, then they have got their work cut out.
Programs are usually designed from top down, perhaps following the Jackson
Structured Programming method, by decomposing complex operations into suc-
cessively simpler ones. Sometimes a modular approach will be taken, creating a
program from a set of more-or-less self-contained functions and procedures. In
theory this makes it possible to reuse modules — perhaps those that produce the
fancy screen effects — in other programs. In practice, there are generally very few
routines that can be reused without major reworking.

Object-oriented programming

Visual Basic is object-oriented (00), i.e. it revolves around ready-made objects,
and it is event-driven, i.e. all the activities in a program are triggered by one event
or another. Each object has its own properties, determining its position, size,
colour, the appearance and nature of its text, and much more. Each object also has
its own event-handling methods. The Visual Basic system knows all about these
already. It knows what a Button is and how it works. It also knows how to handle
images, menus, toolbars, dialog boxes and much else.

The programmer’s job is to determine where, how and when an object appears
on screen, what its text reads, and what happens when an event occurs. That event
might be the opening of a form, the user clicking on a Button or typing text into a

2

Visual Basic concepts

box. The programmer does not have to write code to trap these events - the system
does that automatically. Because the program code runs in response to events, and
as at any point a whole range of events might be possible, the flow of execution is
not as fixed as in a traditional program. Operations do not have to follow a set
sequence and can be easily interrupted, suspended or abandoned.

The process of program design reflects the nature of the system. You begin by
creating the sereen layout (the vser-interface in the jargon), and work outwards
from here, adding first the code that will run in response to specific events and then
any necessary code to co-ordinate the whole program.

The nature of objects

To understand the characteristics of objects, let’s take a real world analogy. Think
of a car. It has certain characteristics including its shape, colour, and speed and
direction (when moving). In OO jargon, these are properties, which may be set at
the time of creation and/or during the program’s execution. It can also do things,
and have things done to it, such as opening and closing doors, driving, turning,
braking and/or crashing. An object’s activities are controlled by methods — blocks
of code. Some methods may be fully written already, so that you can simply utilise
what’s there to do a job. Some methods are little more than shells, containing only
the code to link them to an event or property — it’s then up to you to write the code
for the activity. You can also rewrite or override the code ofa fully written method
if you need 1o modify its activity.

Where do objects come from? Let's go back to the car analogy. Cars are created
to the pattern defined in a blueprint (actually, nowadays it will be a set of CAD files,
but just bear with me on this) and you can produce as many as you need from the
same blueprint. In OO programming, classes are the blueprints for objects. The car
analogy breaks down a bit here, as both the class and the object are blocks of data
and methods. The difference is that, for any single class, there can be any number
of objects derived from it, or instances of it, to use the OO jargon.

An object takes on, or inberits, all the characteristics and code of its class, but
you can change or add to them. You can define new classes of your own based on
existing classes, and - as with objects - the new ones inherit the characteristics of
the base class.

There’s a lot more to object-oriented programming theory than this, but we’ll
come back to it as and when we need it. This is a practical book.

The .Net Framework

Like all the current generation of Microsoft languages, Visual Basic can be used
to create Web applications within the .Net Framework. Amongst other things, this
offers a common runtime environment (whichever language is used), access to data
held in standard structures and the use of XML services. The big advantage of Net
to programmers is that it allows them to produce applications for the Internet
without having to leamn a new language.

1.2 Terminology 3

1.2 Terminology

Form

The form is the central unit in Visual Basic. It is a window, initially blank, on which
you paste confrols (see below) to create your screen or printer display. The form
can be any size or colour, and you can attach to it code that will run when the form
is loaded, closed or when the mouse is clicked or moves over it. A simple program
may use only one form, others may have several forms, cach of which will handle
a different part of the program. One form may be for getting input from the user,
a second for displaying results on the screen, a third for sending output to the
printer. The forms may exist independently, or be displayed within a parent form.

Controls

These are the objects which can be pasted onto a form and range from Labels which
display text, through PictureBoxes for images, to Buttons, CheckBoxes, Menus
and Toolbars, to standard dialog boxes. Their properties, and the events they can
handle, vary 1o suit their nature. Each control can have code attached to it — though
not all will have. A Label or a PictureBox, for example, may well be there simply
to improve the display, and not as the startpoint for any activities.

Subroutine

The code in a program is mainly written in subroutines or subs for short. Most of
these will be attached to a control, but some are free-standing blocks of code. All
subroutines start with the keyword Sub and close with End Sub.

Function

A function is a block of code which calculates a value. Visual Basic comes
equipped with a large bank of ready-made functions for manipulating text,
numbers and other values. You can create your own functions as required.

Module

Code that is attached 10 a form is accessible from anywhere on that form, but a
program may have more than one form. It will sometimes be necessary to have code
that can be reached from any form, and in this case the code would be wrilten in
a module. Modules disappear from view when the program runs — only forms have
an on-screen existence. There may be several modules in one program.

Project

A project is a collection of forms and modules that make up a program — or part of
aprogram (see Solution). When you want to start work on a program, you only have
to open the one project file rather than a whole set of forms and modules.

4 Visual Basic concapls

Solution

Every program has a solution file, which serves to organise its components, but if
required, several projects can be collected into a solution, to create a single
program, These projects may be written in any of the Net languages.

1.3 Visual Studio

Figure 1.1

Visual Studio

Visual Studio is the development environment, the window where you design,
build and debug your programs. In its window, you have everything that you need
for producing programs —apart from your own ingenuity and creativity. The ready-
made screen elements and other objects are all at hand, ready to be dragged and
dropped into place; options, properties and methods are all listed and can usually
be set or selected with a couple of clicks. As Visual Basic is a large system, it makes
life much easier to have its many features so accessible, but note that the Studio can
also be used with other Microsoft programming languages, such as Visual Java and
Visual C#. This has obvious advantages for programmers who work in several
languages, but it does add to the size and complexity of the Studio environment.

Starting work

TheVisual Studio has a multiple window display. This works best on a large screen
—the one in Figure 1.1 has been shrunk to fit on the page! Notice the Dynamic Help

" Micresolt Development Environment [design] - Start Pags

L 23&
10 Help -
Manaona Soksurs Promcts. and
1 Samples
rchorey Foemi Sl Mitracts
M seh Servces. Wiedows Forn
e Epreei; DHTML Sangle
Corsclel Locakend ik Workd Sof
‘Wreadl Enic Sample ADtracts
et the Somoes of Dusaresh 7.
Yol Stunde) SanvCey

Sew Prapect Dpen Project

1.3 Visual Studic 5§

window at the bottom right — the topics listed here reflect what vou are doing at the
time. When the Studio first opens, you are presented with the Start Page. This has
three tabs, Projects, Online Resources and My Profile.

My Profile

Projects is the tab that you would normally use at start up, but when you are in
Visual Studio for the very first time, you should go to My Profile so that you can
customise the Studio.

To set up Visual Studio for your work:

At the Start Page, click on the My Profile tab.

Drop-down the Profile list and sclect Visual Basic Developer.

Check that the other boxes are also set to Fisual Basic.

Help can be displayed within Visual Studio (Internal) or in its own window
{External) - click a radio Button to set your preference.

+ If you change the Show Help option, your PC will think very hard for several
minutes while it reorganises its Help files. Just wait for the update to finish.

E T L

Shiect Brovser tont Pagd | 1%

|

Setting options in Prupy [—— oy rafile
My Profile

Warfy thae the fallowing dettings are personalired far yout

Brafilar

[Vizesl Bavic Davviopar =

Ewyboand ,—
BN, Wriwdl Batic £ =
window Ligors [Vised Barc 6 =]

Haly Fiker: [Vewabane =

e T prearnal tinly T Cmarnal

AR Startupi Bhew Start Page =

Opening a project

If the sample files have been installed, you can use them to practise opening
projects. They demonstrate a variety of programming techniques — though the code
may not make much sense until you have a ble grasp of the language. Open
a project so that you can see what the screen looks like when the Studio is in use.

1 Click Open Project.

6 Visual Basic concepts

2 At the Open Project dialog box, go to the Look in folder. To reach the sam-
ple, you probably need to work down through Program Files > Visual Studio
> VB > VB Samples (or something similar, depending on your setup).

3 Each project is stored in its own folder. Open the folder. You should find a file
with an .s/n (VB Solution) extension, and possibly one with a .vhprof exten-
sion. Select either of those and click Open.

+ Ifthe project has been used recently, it will be listed on the Start Page - simply
click on the name to start.

4 At first, the central window will probably be empty. Look in the Solution
Explorer (at the top right) for a file with a .vh extension. Double-click on this
to open the project’s form in the central window.

Figure 1.3 Open Project)
£ ol hei b e

=T

Lick it

! -
Hstory
:

Opening a project

o"i?l_. o vheron &k Select aither file o

open the project

= P epmne: v 7 b Sk
ke Sakifon :
o5 af Dy - [all rotact Fles (%, e e " v ¥, Cwee

1.4 Arranging the Visual Studio

When you are working on a program in Visual Basic, the screen will look
something like that shown in Figure 1.4, Only the Menu bar and the central Design
and coding window are fixed. All the other components can be moved, resized or
closed if not needed. It means that you can tailor your screen to suit your own way
of working and the job in hand, but it also means that your sereen is unlikely to look
exactly the same as the screenshots in this book.

The Studio’s screen display 1s infinitely flexible. You can open and close
windows, resize them, lay them one on top of another, or set them floating
anywhere on - or off - the Studio area.

Moving windows

A window can be moved by dragging on its title bar, or on its tab if it shares an arca
with another window. While you are dragging, it is shown as an outline and the

14 Aranging the Visual Studio 7

Form design and coding area
Click on the name to open the sel of tools

Solution Explorer

The working screen
— as most of the %5 Caic - Microsoll Visual Besic MET [design] - Calc.vh [Drsign]
elements can be
moved, resized or
hidden, yours may
not look like this
¥ & o8 Peferercet
of 9] fusentdylndo.vt
i @ kot
Toolbox
T 8 1] L s
oigia] |-
o[[s[[s! [+ e n| | ot [Foin
o'o Teopmtel 2 x
U B 1 e [CaletE System wincows Foms utton =]
] k- -
) trare) =
Def mit
Pogup
Arial, Byt
Click on an item to Wl coreeitent
see ils properties] trore)
H MddeCerter
Confrols T_E__ - Imageirdes] irere)
Imageis [nane)
e bt BTt e
T DataTmabuier) T &
5] MerthCalendar B caeru Textiign MddeCarter -
Cipboad fing = STem o= T=oio
Germrd 5 Propertng | @ s
Boady
ot - - - <
Scroll down for the other controls Component tray Proparties window Click a tab to bring its

window to the front

shape of this shows how the window will fit into the display when you release it.
A window can be docked — fixed flush up against the frame — at the top, bottom,
left or right of the Studio window. When the outline is in a docking area, it will align
to the frame, showing you how it will fit.
If the docking area already has a window in it, the new window can share the
space in three ways:
» Tiled one above the other, and sharing the space. The new one will go on top.
o Tiled side by side.
» Layered, one over the other, with a tab at the bottom for switching between
them. When the outline is in the right place for layering, the tab will appear.
If a window is already layered, dragging on the title bar moves the whole set of
layered windows. Drag on the tab if you just want to move the one window.
Ifthe outline is a simple rectangle, and not aligned to any part of the main frame,
this will become a floating window.

8 Visual Basic concepts

Qutlines seen when
maoving windows
over other ones

T Tedtowonaywi ey
= _ other windows el
olE @B F 9 & Gl BRSE)
;E;u-'um-:n'u profect) / T Sokution repefties' {1 praject)
= properties LN properties
® Expiorer - propecties. 8 X -l Beferghoss
L] B) Assempyirfo.vb
- el b
I T8 Soton bropertes’ (1 propect) Ll
* [Referances
L) assemtylnfa. v
[romit
, /
Properties " x
Layered on another I':: verticaky with olher
window = note the tab t-—-l - ows
Properties 3 x

Changing the size

Docked windows are more restricted. One docked at the left or right will occupy
the full depth of the frame. You can change its width by dragging on its inner border.
If there are two or more windows tiled in the docking area, they will together
occupy the full depth and width of the area. You can change their relative sizes by
dragging on the boundary between them. If you drag on the inner border, it affects
the width of the whole docking area.

+ Windows docked at the top and bottom of the screen behave similarly — only
their depth can be changed.

» Floating windows can be resized freely. Point 1o any side or comner to get the
double-headed arrow cursor, then drag to move the frame in or out.

Auto Hide

Auto Hide tucks windows out of the way when they are not in use. It is shown and

controlled by the pin on the right of the title bar.

s When the pin is upright 8 Auto Hide is off and the window stays open. Click
the pin to tum Auto Hide on.

e When the pin is on its side & Auto Hide is on and the window shrinks into the
outer frame when not in use. To open a hidden window, point to its tab in the
outer frame.

Opening and closing windows

If a window isn’t needed, close it — click the Close Button X].
To reopen a window:

1 Open the View menu,

2 Click on the window to open.

Or

Turn on Auto Hide
for those windows
that you rarely use

1.5 The Toolbox 9

Auto Hide is on — when you click anywhere
else on the screen, the window will close.

Click the tab to open the window.

Fert Merasoft Sars Serdf, 8.
FereColos ControfText A r
FarmBorderstyia !,d_ This window ks fixed.

[Farmi Srstem windows Forma fom |
B4 @) =

R e ——— -
+ Use the keyboard shortcuts — they are listed on the View menu.
Or

*+ Click the Buttons in the Standard toolbar to open the Properties g or Toolbox
| windows.

To restore the default display:
1 Go to the Start Page and open the My Profile tab.

2 Select Visual Basic 6 as the Window Layout.

3 Click the Design Button at the top of the central area to return to the Design
window and display the form,

Task 1.1

Get Visual Basic up and running and identify the component windows. If
any are not present, open them from the View menu.

1.5 The Toolbox

This holds five sets of controls. The one that we will be mainly using is the
Windows Forms set which has all the standard Windows facilities, such as
Buttons, scroll bars and dialog boxes, as well as text, image and drawing tools.
There are a lot of them! Even with the Studio window maximised on a high-
resolution screen, there will still be around a dozen that you cannot see (the image
in Figure 1.7 is a collage). Fortunately, those that you are likely to need regularly
are clustered towards the top.

10 \Visual Basic concepts

T ——
Data

The Windows Forms
set of controls — the
labelled ones will all
be used at some
point in this book

Compormrts.
Windows Forms: - o] spleter
Painter I Comantis0own
Label T Mumerkcipbonn NumericUpDown
= TradBer TrackBar
Button - Progresstea
TextBox L. RichTextBox
MainMenu &5 Imagelist ImageList
CheckBox By Helprnder
RadioButton Ky TodlT
GroupBox T CortestMerns Context Menu
PictureBox Ad TodBar ToolBar
Panel EE Stetushar
et ylaon
List Box I OperFisOiskg OpenFileDialog
T saverielisiog SaveFileDialog
ComboBox =] Fi B Dialog
0 FortDusog FontDialog
[CokeDiskg ColorDialog
[Ptk PrintDialog
DateTimePickar [PitPreveniseg | PrintPreviewDialog
MonthCalendar [PrtPrevewcereral
k J o
Vertical ScrollBar (3 PrivtDocumant PriniDocument
Timer 3 PageSetiplisiog PageSetupDialog

To reach the other controls, scroll through the list with the arrows at the top and

bottom of the display.

The Pointer is used for selecting objects that have been placed on the form.
The system reverts to this when you have finished using any other tool.

Most of the control tools are used in a similar way. When one is selected, a crosshair
cursor appears. Place this on the form and drag to create an outline where the control
is to go. If you get the initial position or size wrong, it can be adjusted later with
the Pointer.

Labels, TextBoxes, and RichTextBoxes all hold text, but the Label can only
display and not receive input from the user. A simple TextBox can only handle
plain text — though you can use any size or type of font. A RichTextBox can
take fully formatted text and embedded images.

Buttons are one method of selection or starting operations. They are typically
used where there are only a limited number of options — the choice may be OK
or Cancel, Start or Quit.

Add a MainMenu or a ContextMenu to a form when you want to create a
menu structure on the main Menu bar, or one which opens when you right-
click on an object. Both are create in similar ways (see page 64).

A CheckBox acts as a toggle switch, uming an option on or off.
RadioButtons arc normally used to select one from a set of mutually exclu-
sive options. At any one time there can only be one set on a form, unless they
are enclosed in a GroupBox or Panel.

1.5 The Tooclbox 11

GroupBoxes and Panels are both simply containers for group of controls The
difference between them is that a GroupBox has a caption, but a Panel can
have a vertical scroll bar if necessary. You must use one or other if you have
several sets of RadioButtons on a form, but they can also be used just for
convenience. The controls can all be moved around as a unit, and the frame is
a visual reminder to the user that the controls are related in some way.

A Picture Box holds pictures created with Paint or similar art packages. These
must be in an acceptable format — .bmp, .wmf, jpg, .zif, .ico or .dib.

List Boxes display lists of items, so that the user can see what is available and
select one. If the list is too long to fit in the box, vertical scroll bars will be
added at runtime. Items can only be added to the list during run-time, not at
design time.

A ComboBox combines a drop-down list with a text box in which users can
enter their own data when the program is running.

The DateTime Picker and MonthCalendar offer simple ways for the user to
set the date or time.

The Horizontal and Vertical ScrollBars are used on forms to give a very
flexible way to set values. You set the minimum and maximum values and the
change produced by large and small movements of the slider. When the pro-
gram is running, the position of the slider determines the value returned by the
seroll bar,

The NumericUpDown and TrackBar are variations on the SerollBars. This
NumericUpDown is, in effect, a TextBox with a squashed VScrollBar on the
side. Values can be typed directly into the box, or changed by clicking the up/
down arrows. The TrackBar has a marked scale, and the slider hops from one
tick to another, instead of the smooth continuous change of a ScrollBar,

The Timer is unusual in that it is invisible once the program is running. Its
purpose is to control actions that must take place at or after set intervals. You
could use one 1o set a time limit for a response to a question, or to produce a
ticking clock.

The main use of an ImageList is to hold the icons to be displayed on a Toolbar.
A Toolbar fits in the top area of a form, beneath the Menu Bar (if present).
The tools that you ereate on it will be text-only unless you link in an ImageList.
The OpenFileDialog, SaveFileDialog, FolderBrowserDialog, FontDialog
and ColorDialog produce the standard Windows dialog boxes for managing
files and fonts. When these are placed on a form, they go into the Component
tray at the bottom of the window. They appear on screen when called up from
within the code (see Chapter 6).

The PrintDialog, PrintPreviewDialog and PageSetupDialog are used for
controlling printing. The output is first assembled in a PrintDocument.

12 Visual Basic concepls

Task 1.2

Use the Toolbox to place some controls on your form. Include a Label and
a Command Button, as these will be wanted later in this section. Delete
everything but the Label and the Button by first clicking on them, then
pressing [Delete]. Adjust the size and position of your two objects with the
Pointer, so that you have a layout something like that in Figure 1.8,

Figure 1.8 #2 MyFirst - Microsoft Visual Basic .NET [design] - Ferm1,vb [Design]*

The first job in Gle Eot r-v- Broect Buid [eteg Daa rg—u.r Tods Window Help
creating :Dmgram is B-DedB@] RB0-r - B0 =L :
to put the controls on H = ! ! [.

the form Toobax L st7ax Farmibyb [Design]® | * || Propartes L

Data %

Campurerds

i Forms
To move a control & i [losbon poccdr (] Cortra
click anywhere on it and Al Bacgroundimal | inone)
drag to its new position = Loy Curser Defat

r FatStyle Standard
[l Teathos =] a El Font Marosoft Sans 3
_\' forscoir [l Controftes
B marren /c Butorl =] e
rp.l :'ﬂlfl-" imagellgr. Mddelerter
F RadcButon o (nore)
To resize a control 1 o - ::::;w L_r)"cu -
click on it to get the ! - e e
handles, then drag on 8 =7 . Tt muttant
handle to pull an edge o 150 baaand Tastaign Meddnorter
a

comer in or out F Lition e P

i:j Chucked kiios Conte: 'I:-v_ rone)

59 Comboton Caslogfiesut More

Clgbeard & ud Erabled Tre
Scroll down to reach ;,.g-‘m'"- Féger = =

— : - -

the other controls & 2| S oot . i Apmie]|

fooaty

1.6 The Properties window

This is where you set the properties of objects. To do this:

1 Click on the control, or select its name from the drop-down list at the top of the
Properties window.

2 Select the property to be set from the list. The properties vary with the nature
of the control, but there are always those that cover its visible features and
some aspects of its interaction with the rest of the system.

The properties are organised into headed groups. These can be collapsed if not

wanted, so that you have easier access to those that you do use.

The Properties
window for a button

1.6 The Properties window 13

Drop-down list of controls on the form Systom, Windows. Forrrs. Button -
AMOE
B e -

Hide properties ———— 25
BackColor [contrnl
BackgrouncEmage [{nane]
Crsor

FlatStyle
Compound property - select 1o, .
Font to define the font through a ForaColor
dialog box, or click [7] to display ik i
and change its sub-properties Imageaign e
Imageindex [inone)
Imagedist [rane)
Fight Tolsft Mo
Chek Me
e e
Show properties in this group
B ¢ il at
B st
& Penipe]
(Name) Buttonl
Locked Feise

The properties list for a Button, shown in Figure 1.9, includes:

Text — the text that is written inside it;
Font specifications — typeface, size and styles;
Colors — for the Forecolor (ink) and the Background.

Name — edit this to change the default names of Buttonl, Button2, etc. to
something meaningful. As programs get more complex, memorable names
become more useful. The text for the Text and Name can be edited with the
normal Windows editing technigques.

Setting properties

New values can be typed directly into the property slot, or chosen from a set of
options.

Most options are given in drop-down lists, indicated by
#l (this appears when the property is selected). Some
of these lists are simply a choice of True or False to
turn an effect on or off; others are more extensive.

Where text or an image can be aligned vertically and
horizontally, the options are selected from a graphic
display. Click on the area where you want the item to *
be placed.

14 Visual Basic concepls

Colours

Colours are selected from a palette, also indicated by ®l. The choice is infinite —
you have three different palettes to choose from, and you can define your own if
nothing else suits. The three palettes are:

The colour paleties

48 predefined colours | [T T [

gt

16 custom colours

You shoukd use Web colours for Web |
applications, but they can also be used for | =t
any others - there are 128 to choose from |\—,1.,

System holds the colours that are used by Windows for the screen elements. 1f
you use these, when the program is run on a PC with a different colour scheme,
your colours will change to match the appropriate element of that scheme.
The Web colours are those which can be displayed by browsers. If you are
developing a Web application, you should restrict yourself to this set.
Custom is the most flexible. It has a set of 48 predefined colours, and another
16 which you can define for yourself.

Custom colours are labelled with their Use System colours if you want your
RGB (Red, Green, Blue) values colours to match the Windows
fackioor | | #{u -

|'Cmnn|w-h | Srstem | |

(rEETEr EE

] LemenChifon
I E

Font

Tl gl

font in one opcml‘!un. through ot Tk e
the standard Font dialog box, or | [ieoteia [I T
define them separately. |9t i o 'ﬁ-“ L |
To use the Font dialog box: Shmmhe | WY ok ke i
1 Select Font and click the @ | | WEE5] g
Button. Effects Sangie |
2 Select the font, style and size, r': :::: W
checking the appearance in
the Sample slot. Seut
3 Click OK. G =

1.7 Controls and events 15

To set Font fields individually: e p—
1 Click the @ beside Font to open up the group. | ssdgonanse [} (rone)
efnk
2 To set the Name, select it from the list. :::p Sarsad
3 To set the Size, type a value. This is normally me ;“:-:::-::

given in points, but you can set the Units to
pixels, inches, millimetres or other units.
4 Bold, Italic, Strikeout and Underline are True/
False values — select to turn effects on or off.
5 GdiCharSet and GdiVerticalFont refer to the
graphical design interface system which gives
more flexible ways of rendering fonts — and are best left to the specialists!
6 To set the colour of your text, use the ForeColor property.

~
Task 1.3

Explore the properties of the form and of the controls on your screen.
Change the Label’s:
Text to *Pressure Tester’ — type in new text;
Font size to 18 — use the Font dialog box;
Fore and Back Colors to any others — select from the palettes.

Change the Button’s Caption, to read *Click Me’.)

1.7 Controls and events

Justas each type of control has its own set of properties, some of which are common
to all, so each also has its own set of events, and some of these are common to all
controls. To get a flavour of what events are handled, place an object on the form
and double-click on it. This opens the code window. It is here that you write the
code to be attached to events.

Each event has its own method, or subroutine, and the opening and closing lines
of these are already written for you. The name, in the opening line, is composed of
the names of the control and the event, linked by an underscore. Private atthe
start means that the sub can only be accessed from controls on the same form. If
you want to be able to activate the code from other forms this should be changed
to Public.

There is always a set of () brackets at the end of the name, and enclosed in here
will be the names and definitions of the parameters that are used to carry
information from the event through to your code. With a TextBox's KeyPress
event, for example, the opening line of the sub reads:

Private Sub TextBoxl KeyPress(ByVal sender As Object, ByVal e As
System.Windows,.Forms.KeyPressEventhArgs) Handles TextBoxl.KeyPress

16 Visual Basic concepts

The Methods list in
the code window

%= MyFirst - Microsaft Visual Basic \NET [design] - Form1,vb*

Ble £t Yew Propc Bud [ebug Tools Window Hep
F-a-s00 B S oot = | behotes - REE »
s .
e . f " Formivh® | fhx
Cloboad f) ! .
T =] [i (ectarstions) |
F HarcheCmstiopad -
it . Windows , Fo F Helpfsguested
F HudeSelsctionChanged
n DEaIgnEE g2 F ImaModeChanged
) - F Irvabdatad
ivate Sub —]
S L evrress |
) R TR ity
= F Lavour
End Sub i
F LecationCharged
Privat @
yva.u Slvencthrgs] Randles
Textlo
et = aT
e R Took. End It i
e Ln 8L Col% chi s

When this event is triggered, e (the KeyPressEventArgs) will hold information
about the key that was pressed. (e is a class, rather than a simple variable, and has
the property KeyChar which is the ASCII code of the key.) The code might well
check this to see if the user had pressed a specific key, or one from an acceptable
range.

When the code window first opens, it will display the sub for the most common
event for that type of control. For example, with a Button, you are always offered
the Click event. If this is not the event you want to handle, then you can select
another by dropping down the list. If an event is not in that list, then the control
cannot respond to it.

Task 1.4

Explore the events of the controls on your form. Which ones crop up
regularly? Which ones are specific to certain controls?

1.8 The Help system

The Visual Studio has a very extensive and comprehensive Help system — in fact,
its size can be a problem. You may be offered so much Help that you may not know
where to start!

There are four ways into the Help system: Dynamic Help, Contents, Index and
Search. Each has its own window, and you can have any or all of them open at any
time. Whichever you use, you will be taken to the same set of Help pages. These,
and other aspects of Help can be reached through the Help menu.

The Help page may
contain links to other
Help pages. The
icons at the top of
the Dynamic Help
‘window open the
other Help windows.

18 The Help system 17

Contents

Index

Be [Vew femd Bud [etug ook Window help
@-i-c@0 15 - @
= 0D QB e M S 00NMEHINIRD = | 4
| LARE S -~
| beta

» Detag

Wirdones Forms

Tha fallpwiny topics & o comeman Lk oy can
parfarm whan warking with paletians and prajacts

SR m

Zsttro St Projests

Manaang i Slorace

chanang o Addng & Def sk [
wogerties wd ¢

oxff i) Pt Py

Suluugn Iuems
haman wrh muhiple prafecte

e ansscisted with & specie

Afdng azd Bameymy sab Beferances
Eapate Wab Sarvices in your applic stion and find

Dynamic Help

This reflects what you are doing at the time. When you first start, it will offer Help
on the management of projects and similar getting-started topics. When you are
laying out your forms, it will offer topics on the currently-selected control on a
form; when you are writing code, it will offer Help on the methods and functions
that you are using.

The Dynamic Help window is visible at the bottom right when you start. Once
a project is opened, it will be overlaid by the Properties window.
1 To read a topic, click on its link. The Help page will be displayed in the central
area of the screen.
The Help page may contain links to related or more detailed topics — click on
the links to reach the Help you need.
When you have done with the Help, click on the appropriate tab at the top of
the central area to get back to where you were.

Contents

This organises the Help pages into a *book’, with chapters and sub-sections within
them, It’s a good way into the Help system when you first start — as you can get a
good overview of what is available; and it is also useful when you know more or
less what you need Help on, but don’t necessarily know the right words.

18 Visual Basic concepls

Open the chapters to see the subsection _
Faeebr

names and topic titles, and follow up any

that sound promising. You may needtogo | “_m'h B
down two or three levels to reach a Help | & x‘u::},::umm Ié
page — and even that may be mainly a list R %?“f:mm ?
of links to other pages. + @ fcceistity r Visusl e NET

To use the contents: T %P:nmh:;mmsmm

1 Ensure that the Filtered by option is éam'm“'m I
set to Visual Basic — so you only get 5 Yot it ks ownd 1

5] Usineg the Combined Help Collection Marage S |

the relevant Hel es! 5 4 Produ Suppart |
) P pag g g Samples and Wabtheoughs |
" a o | - Bl with Visual Studo NET
2 C!]c'k = 4 to open a chapter or sub qm“mc. :
section. 3] Deciuion Chart t
. . . wabthroughs I Visusl Basic and Visus C# B
3 Click= @ytocloseaset if there is noth- 3 Common Tosa m Yo Sk st isa G+ |
|

ing there that you want. s ot i i g s

4 Click the topic title or [to open a Help i 8 oo rejoas
page — it will be displayed in the cen- —— @) Croatrg hepleanrs. ”‘M
ey e e) (R
Index
If you know the words for what you are looking for, you W
will find it faster through the Index than through the [=l
Contents. This has an alphabetical list of all the signifi-
cant words in the Help system. Use it to find Help on =
specific controls, properties and methods. L
1 Type in the first few letters of a word. The Index | 57200 riied
will scroll through to that part of the list. o e
2 Select the index entry.
3 The Index Results window will open at the bottom
of the screen. Select a topic to display it in the cen-
tral area, Cok A e rcpary
Chor AN progm Ty
4 Close the Index Results window when itis no longer |o-2oset -
needed.
Search

Use this as an alternative to the Index for finding Help on specific words. As a

search finds every reference to the given word, it will normally produce more

results than the Index, though a higher proportion will be less relevant. There are

four search options:

e Search in titles only will find fewer results, but they will be more relevant.

* Match related words will find singulars and plurals of the same word, e.g.
look for ‘checkbox” and it will also find *checkboxes’.

The Search Results
window can list up to
500 topics — if you
can't see what you
need in the top few,
redefine your search

1.8 The Help system 19

B B Yew Bowet Bl D [ook wnde e
P-o-cad

[Formt Srutar Wi Fores =]
1) [&=

R L T I]

pbdhe _ypeepeety Laka god_Seiesil|
TRt e R A

PALLs fmerion yon Silntd | Talat
et s st Py

Frparty ¥ doe
ag Test

ot Ak g st tha celar o hin Eas shoet,
[

CE MET

Pan Clazy | Bin Minbars | Bass 4 Mumarhpcy | B Shomed s PVisual

siir Dt) P Cobor(vmg (0
e gty

Saaty

Micronsl) Visual Basic NET [design] - Dim Statement

#2 Wiy irutPro et
B 08 P Bowt Bl Do Dok Snde tek
P-5-s00 L] - K
A - Bol- AL

=0
Touku BX || et S | et P | St o (] Dl Stabmmant | | v |[Sewch = % 44l
(% e Lok fom ¥
Congereres E:,"".,m"""'"‘“*" e |

20 \Visual Basic concepls

» Search in previous results allows you to run a search in several stages, e.g. if
you wanted to read about MDI forms (multiple document interface) and win-
dows, you could search first for *MDI forms’ (finding 78 pages), then search
within those pages for ‘windows’ (finding 14 pages).

« Highlight search hits (in topics) puts a blue background on the search words
in the Help pages.

1.9 Options

Figure 1.15

The Options dialog
box

The Studio can be customised to your tastes. Some of the options are largely
cosmetic — e.g. the fonts and colours that are used in the screen display — others have
rather more impact on how you work.

Most should be left at their defaults until you have spent some time with the
system. One or two are worth setting carlier on, and perhaps the most important is
the projects location — the default folder for storing new projects.

To set the project location:

1 Open the Tools menu and select Options...

2 In the Environment folder, select Projects and Solutions.

3 For the Visual Basic projects location either click Browse... and locate the
folder, or type the path to it.

4 Click OK.

While you have the dialog box open, check that the options in the International

Settings area are correct and also check that the Keyboard is set for Visual Basic.

You should also know about the Line numbers option. This can be found in the
All Languages — General section of the Text Editor area. 1f it is switched on, line
numbers are displayed beside the code. These can be useful for debugging and for
navigating around long programs. (There is a Go To command in the Edit menu
which will jump you to any given line number.)

=)
Optiens)
fd Evwormert A Settng

ok Visusl St frojects location:

Documents e T ey p—

Fants arel Colers ™ Show Qutput window whan buld starts
% Show Lask Lt wedom § bl s st srvors
¥ Track Active e in Sclution Expleeer

% Projects e Sohsten Iusd ot Bun Cpbors:

Task Lut % Save ol charges
VW Ertmpsar 1™ Sgve changes to cpen docments arly
S Tet £dter ™ Prampt to pave changes ta opon documents
|22 Database Took ™ Donlt sge changes 19 epen documets
|2 Cebuggng - d startup promcts and depandencies on B
|23 HTML Desigras P s e
S Proects
1 Wirckves Forms Dessgnms o
|¢ »

o I Cancel Felp

1.10 The programming language 21

1.10 The programming language

Some words in the Visual Basic vocabulary will be familiar to those who have
programmed in other languages; others arise from the Windows environment. The
language has a very large vocabulary — there are around 400 keywords, statements,
aperators, methods, functions and properties that are specific to the Visual Basic
library, and many thousands more in the wider Visual Studio set.

If you want to know what is there, open the Help Contents, select Visual
Studio .Net, then Visual Basic and Visual C#, then Reference, then Visual Basic
Language and start opening up the books within that to see the lists. Fortunately
you do not have to learn them all! It is enough to know what is available, in general
terms, as you can look up the exact word and its mode of use in the Help pages.

Types of words

The language can be divided into ten categories.

Constants

These are words which can be used in place of number values, making a program
easier to read -- and to write - as words are often more memorable than numbers,
For example, in a routine to pick up a press on |F1] (key code 11) you could use the
constant vbKeyF1 instead of the number.

Data types

Define the nature of data and how it is to be stored and processed. There are two
types of text, a dozen types of numbers, plus other simple and compound types of
data. Visual Basic is normally tolerant about data types — allowing vou to move data
from one type of variable or object to another, even if part of the data may be lost
in translation. (For example, copying data from a more complex number data type
to a simpler one may reduce its level of accuracy.) You can force Visual Basic to
accept only explicit conversion between types by writing Option Strict On at the
very start of your code.

Functions
These take numbers, strings of text or other forms of data, perform an operation
upon them and return a new value to the program. For example:
wordlen = Len(inputword)
Here Len calculates the length of the text in the variable inputword. If this had held
“Dictionary”, the resulting value of 10 would be passed back to the variable
wordlen, Many of the functions will be familiar to those of you who have used
traditional Basics, but — as with statements — some are specific to this system.
surname = InputBox ("Flease enter your name™)
The InputBox function arises from Windows. This line displays a standard dialog
box, with your prompt, the usual OK and Cancel Buitons, and a text box in which

22 \Visual Basic concepls

to type data. In this example, whatever
is typed is copied across to the variable
surname.

The function is used here in its sim-
plest form. Witha little extra effort you |,
can add a title to the box, ora ? or !
symbaol, or replace the OK with Yes
and No Buttons.

Pease ertes pous name

il

Keywords
Keywords are mainly used for setting options in statements, e.g. the first line of a
procedure usually reads:

Private Sub..

Sub is the statement which marks the start of the procedure; Private is the
keyword that defines the access which other parts of the program can have to the code.

Statements
These are words that do things. Some you may recognise from other Basics, e.g.
ChDir D:\files‘\mydata
which Changes the Directory.
For n = 1 To 10
Next n
where the key words are For ... To ... Next that cause a set of commands
to be executed a set number of times.
Others will be quite new. For instance:
MsgBox "Welcome to this program"
MsgBox generates a standard Windows message box with the
usual OK Button. The text can be whatever you like - in this case
it will display “Welcome to this program".

Methods
Like statements, these perform actions, but methods can only be used with suitable
objects, e.g.:

PictureBoxl.Hide()

TextBoxl.Copy(})
The first hides PictureBox1; the second copies into the Clipboard whatever text
is selected in TextBox 1. Different types of objects have different sets of methods
that can be used with them. For example, you can only copy from objects in which
you can select text.

1.11 Aftaching code 23

Objects

The most important objects for us are the controls, but there are also other types of
objects which do not necessarily have a screen presence. Whether you can see it or
not, every object has a set of properties and methods.

Operators
These include the operators used in arithmetic and in logical expressions, and in
comparisons.

Properties

These define the nature and appearance of objects. Properties can normally be set
at design time - the Properties window being used to define those of controls — but
can also be set during run time, either by the user or by the program.

Events

An event is an occurrence that the Visual Basic system can recognise and respond
to. Events include users’ actions, such as key presses and mouse movements, as
well as changes to data or objects.

1.11 Attaching code

Where code is to be executed in response to an event, it is written into the sub that
handles the event for that object. If you did Task 1.2, you should have a form
containing a Label and a Button. That Button can handle, amongst other events, one
called Click. We will add code so that when the Button is clicked, two messages
appear on the screen. Each will be produced by a different type of code.

The Form wh P % e %
program — edit the Text Pressure Tester
and Fonl properties of

the Label and button so
that they are like the
ones shown here

Double-click on the Button. The code window will appear, with the header line and
an End Sub line which marks the end of the block. The cursor will be between them,
ready for your code:

Private Sub Buttonl_Click(ByVal sender As Object, ByVal e As
System.EventArgs) Handles Buttonl.Click

|

End Sub

24 Visual Basic concepts

Figure 117

The Code window after

adding the code

You will notice that Private Sub, End Sub and some of the words inside the
brackets are in blue. (This is the default colour, but it depends upon your setup.)
Reserved words, which have a special meaning to the system, are shown in a
different colour from other text.
Type in the following - and don't worry about capitals - the system will add
these when it checks the lines, but note that there are no spaces within Label . Texr:
Labell.Text = "Quch"
MsgBox ("Don't click so hard”)

St Fage | Forml i [Desgn]® FemmlLal® I !

=

3 Ciass Form:i 7
“ ___inhecits Syscem.Windows.forms.Form

n
g
rl'l]L'-

¥indows form Desiguer geoerated code |

Frivate Sub Buttenl Clicki(ByVal sender is Chimct, ByVal & is System. =
EventArgs) Hendles Bucconi.Click
.T Labell,Text = “Ouch®
Haghox (“Pon't click S0 hard®)
]— Ind Suk
LEnd Class

The first line is an example of changing the value of a property within a program.
It assigns the text “Ouch” to the Text property of the Label. The second uses the
MsgBox statement.

Run the program, by selecting Debug | Start or press [F5]. Click the Button and
see what happens. Click it as often as you like. The code will continue to respond
to the event as long as the program is running. To end the program, close its
window, or select Stop Debugging from the Debug menu or click the . tool on
the Debug toolbar (this will have appeared automatically).

To save the program for posterity, turn to the File menu and select Save All. The
form and its project wil be saved using the file names and folder location that were
all set up when you first started work.

1.12 Variables

A variable is a named space in memory where data can be stored. The values can
be accessed and/or changed at any point during the program’s execution.

Variables must be declared before they can be used. Declaration tells the VB
compiler what name will be used and what kind of data is to be stored - and
therefore how much space to allocate to it, and how to access the data,

To declare a variable, use the Dim statement, followed by the variable’s name
and type, in the form:

Dim variablename As dataty,

The rules for variable names are simple:
« they must begin with a letter;

+ they may contain any mixture of letters and numbers;

1.12 Variables 25

o they may not include punctuation or other symbols, with the exception of the
under_score;

o they may not have more than 255 characters.

If you make the names meaningful, your code will be easier for you and others to
read, and if you keep them short, you will reduce typing mistakes.

Data types
Visual Basic supports a wide range of data types. The simple data types are:
Short whole numbers, in the range -32,768 to +32,767, held in 16 bits.
Integer whole numbers in the range + or — 2 billion, held in 32 bits.
Long 64 bit whole numbers (ridiculously large).
Single floating point numbers (i.e. with decimal fractions) held accurately
to 7 digits.
Double as Single, but held to 15 digit accuracy.
Decimal numbers in the range +/~ & * 10%, held to 29 digit accuracy.
Char single text character, stored in Unicode format.
String variable length block of text of Unicode characters.
Boolean can hold only the values True or False, given directly or assigned
from the result of a logical test (see Chapter X).
Date dates and time, counted in 100 nanosecond units from the start of the
Gregorian calendar, but held in a readable form, e.g. at the time of
writing, the date value is #24/4/2004 11:14# (see Chapter X).
Object ahighly flexible form of storage that can take data of any type, either
generated within the program or imported from another application.
There are also compound data types, including structures, classes and arrays (see
below).
Examples of variable declarations:
Dim Surname As String
Dim Salary As Decimal
Dim x, y A= Integer
Note: You can declare several variables of the same type in one Dim line.

Arrays

Anarray is a set of variables of the same type, which share the same name, but with
an identifying index number or subscript. The purpose of arrays is simple — by
changing the subscript, the same routine can work on any or every value within an
array. This is one of the things that allows computers to process masses of data.

In Visual Basic variable arrays can be huge. They may have up to 60
dimensions, and a dimension may have up to 32,767 subscripts. However, this does
not mean that you can have 60 dimensions, each with 32,767 subscripts — you will

26 Visual Basic concepts

run out of memory long before this. The practical maximum number of elements
inan array is several million — depending upon the type of variable and the capacity
of your PC. Arrays should be declared with Dim in the general declarations area,
or with Redim (see below) in a sub.

Examples of array declarations:

Dim Results(50) As Integer
This creates a one-dimensional array of 51 integers, numbered from 0 to 50.

Dim Empleyees(D..200) As String
This will hold 201 text items, each of any length (though there is a nominal limit
of 2 billion characters!).

Dim Table(9,1%) As Single
This array has two dimensions, which you could think of as 10 (0 to 9) columns and
20 (0 to 19) rows.

Dim OxeoGrid(3,3,3) As Short
The could be the ‘playing area” for a game of three-dimensional Noughts and
Crosses, with 4 layers of 4 rows and 4 columns.

Dim clients() As String

Dim mainstore(,,) As Double
These two lines create arrays, but without specifying their sizes - you may not
know this at the start of the program. The array will expand to take whatever data
is alloted to it, or its size can be set later with the ReDim command.

Note that all subscript numbering starts from (.

Scope and duration of variables

A variable’s scope ~ the code within which it can be accessed - is normally
restricted to the sub or module in which it was written. A variable declared with a
Dim inasub exists only within that sub and its value is lost when the sub ends. One
declared at the top of a form — above and outside of any subs — can be read or
changed from anywhere within that form, but not from other forms in the program.
One declared in a basic module can be accessed from anywhere (see Chapter 10).
Static
Use this instead of Dim in a sub if you want the variable to retain its value when
the sub ends, so that it is still there when the program flow returns to the sub. For
example, you might have this code attached to a Button called binddd:
Private Sub btnhdd Click{ByVal sender As (bject, ByVal e As
System.EventArgs) Handles btnadd.Click()
Static TotalSoFar As Integer
TotalSoFar = TotalSoFar + NextNumber
End Sub
If TotalSoFar had been set up with Dim, its value would have been reset to zero
every time the Button was clicked. Using Static, we can keep a running total in
TotalSoFar, adding to it each time emdAdd is clicked.

1.13 Controls for data storage 27

ReDim

Use this to set up arrays if you want to be able to change their size during the

execution of the program — the size might depend on how much data the user

wanted to store. Reciim is an active statement, to be used within a sub and not at

the top of a form. Existing data is normally erased from the array. Example:
Redim Marks (StudentNo) As Integer

where StudentNe is a value collected from the user at an earlier point in the

program.

1.13 Controls for data storage

It is important to note that the values stored in controls are accessible to other parts
of a program, and can therefore be used as an alternative to variables, When the user
types something into a TextBox, it is stored in the Text property. This can be used
by code attached to the TextBox, or to any other control. The line:

Labell.Text = Textl.Text
would copy whatever was in the TextBox into the Label.

1.14 Number operators

thn calculating with numbers, you can use these arithmetic operators:
Exponentiation (power)

+ - Plus and minus
! Mod Integer division and remainder
. ! Multiply and divide

The integer division operators may be new to you. Integer division (1) gives the
whole number of times that the number can be divided, and Mod gives the
remainder. e.g.

22\ 5 =4 22 Med 53 = 2

ThN3.2=2 7 Mod 3.2 = 0.6
The minus sign can also be used to mark a negative number.
If the expression contains more than one operator, the calculation follows the
normal rules of precedence, i.e. the operators are processed in the order:

~ = {negative) * / A\ Mod + -
For example:
answer = 2°2 + 4 *~ & / 3 -1

First * exponentiation...
answer = 4 + 4 * 6/ 3 - 1

28 Visual Basic concepis

Next multiplication and division...
answer = 4 + 24 / 3 -1
answer = 4 + 8 - 1
Then addition and subtraction. ..
answer = 11
If required, you can change the order of operations by placing brackets round the
ones to be performed first.
Here we go again:
answer = 2"(2+ 4} * 6 / (3 - 1)
First the bracketed operations...
answer = 26 * &6 / 2
Then * exponentiation. ..
answWer = 64 * 6 / 2
MNext multiplication and division. ..
answer = 192

Practical examples

Test the arithmetic operators by creating this program. It allows you to input any
two numbers then find the result of the arithmetic operations. First set up the form:
1 Place on a form three TextBoxes, named Numberd, Number2 and Result.

2 Next place six Buttons, labelling and naming them to suit the operators + —
* /% and Mod.

3 Place an exit Button to give the program a tidy end.

4 The code on all the Buttons is almost the same. Here’s what you need on the
Plus Button:
Result.Text = Val (Numberl.Text} + Val{NumberZ.Text

5 For the other Buttons, simply change the operator.

The val () function is only essential for the + operator as this can also work
with text (“A”+“B" =*“AB"). It ensures that the contents of the TextBoxes are
treated as number values. Miss it out and you will find that 2 + 2 =22,

115 Assignment operators

To assign a value to a variable we use the ‘=" sign, e.g.
topLimit = 1000
count = count + 1

If the same variable appears on both sides of the expression — i.e. if you are
performing a calculation on a variable and storing the result in it — you can use the

1.16 Exercises 29

assignment operators. These combine the *=" sign with the arithmetic operators:
am - L /= = fm
A simple example would be for handling a running total:
Total += Item
This is the same as:
Total = Total + Item
If you have long variable names, you will appreciate the reduction in the amount
of typing:

UsersCurrentBankBalance -= LatestWithdrawal

Joining text

We have already noted that you can join text strings together with *+". The “&™
{ampersand) does exactly the same job, and has the advantage of making it very
clear in the code that you are joining text not adding numbers, This is more
important when you are working with variables, instead of literal text or number
values.

firstHame = "Roger"
surname = "Dedger"”
fullName = firstName & " " & surname 'why the space?

This results in fullName holding “Rodger Dodger™.

There is also a *&=" assignment operator, which will add text onto the end of
the current string:

Output.Text &= NextWord

1.16 Exercises

1.1

1.2

1.3

14

Set up a form containing a TextBox, a Label and a Button. The Text on the Label
should ask the user to enter a name. Edit the TextBox’s Text property to leave it
blank. Attach code to the Button so that when it is clicked, the Label displays the
user’s name.

Add a Button that will end the program when clicked. The only code needed in the
Click procedure is the single word End.

Edit the various Font properties of the Label, to give large, bright text on a striking
background.

Set up a new form containing one Label and three Buttons. Edit the Buttons® Text

toread “Stop”, “Go” and “End”. Attach code to these Buttons so that the first makes
the Label display *Stop™, the second makes it display “Go”, and the third ends the

program.

Designing and creating programs

The best way to learn a program language is to write programs in it! So, let’s
geton with it. In this chapter we’ll work through the stages— program design,
interface construction, coding and building/testing — to produce a program.

21 Program design

The traditional methods of program design, such as JSP, flowcharts, top-down
design, work well for traditional programming languages. With these, the program
forms a continuous whole with a distinet structure and sequence of activities. The
sequence may branch or loop, but there is always something happening — even if
it is only waiting for an input. With an event-driven, object-oriented language like
Visual Basie, a different approach is needed.

In Visual Basic, most operations are executed in response to an event linked to
an object, and at any one point there could be a number of events which could occur.
The operation may be set to run its full course, or be left open to interruption by
other events. The event may be, for example, a keyboard input, the movement or
click of a mouse, a timer reaching its critical point or the loading of a form. When
the operation is complete, the program reverts to idle-time — waiting for something
to happen. You don't have to write code to cover this, for it is handled by the Visual
Basic system. There are low-level routines already in place to scan the keyboard,
the mouse, the timers and other sources of events. You do not have to write code
to trap the events. Y our job is to specify what happens next. While most events will
be activated by the user, they can also be triggered from within the program itself.
The design method must be capable of handling this interplay of objects, events and
operations. Let's see how it works in practice.

2.2 The Launch program

This first program, designed to launch you into Visual Basic, shows several
different examples of this interplay. T hope that it also shows how little code is
needed to create good effects — in this case, a rocket launch.

Creating an image in
Paint. The Edit > Co
To command allows

to save a selected part
of the canvas as a file.

23 The user interface 31

The launch is produced by changing the Top property (which determines the
vertical position) of a control to make it move up the screen. Other effects are also
produced by changing properties during the execution of the program. Some of
these have a fundamental impact. Notice the way that Enabled can be set to False,
s0 that a control will no longer respond to events, and Visible set to False, to make
a control disappear.

Before you start, take a few minutes to go into Paint and draw yourselfa rocket!
Make it fairly small — around 200 pixels high.

|=1D] =]
£ B ... & =
9“ =] o .
7] B v
o CewSscicn Del N
Py o e
you S| : i
CJ 7 Paste om_
=]
|

2.3 The user interface

This is not just a fancy term for the screen display, though that is part of the
interface. It also covers how the program interacts with the user. How does the user
input data, and what information is returned to the user? In designing the form, we
have to think in terms of what controls are needed and how they should be arranged
for best effect. With the launch program, we want the user to be able to set the flight
speed, to launch the rocket, to start again and to exit from the program.

Launch, reset and exit are all simple jobs that can be handled neatly by B
The launch cannot take place until the speed has been set, so that Button must be
turned ofF at first. The Enahbled property will let us do this, Setting the speed could
be done in a number of ways, of which the simplest is probably to type it into a
TextBox. If its Text property is set to “Enter speed” at the start, then this will give
the necessary prompt to the user. A little label by the speed TextBox would be
useful. Lastly, of course, we must have a PictureBox to handle the rocket image.

Having decided what controls are needed, we can plan their layout. This is best
done on paper first, as part of the overall planning process. While you are thinking
out where things will go, you should also be thinking about how they will interact,
and jotting down notes on the plan. (See Figure 2.2.) The design for the code should
then grow naturally out of the form design.

st 1] []S
initially showing prompt

> 2.2 Launch not enabled until a speed has
The paper plan for the been entered
launch program, with notes

on key events and changes
to ba made to proparties.

| Title Label

Button to reset speed and
[e

Rocket start position ede

2.4 Code design

The code here is almost entirely concerned with changing properties. The lines for
this all take the shape:

control.property = newvalue
(Note the full stop between the control name and the property. Whatever you give
as the newvalue must be enclosed in quotes if it is text.)

As long as you know the name of the control, the property that you want to
change and the new value, these lines present no problems. You can explore the
changes by testing them in the Properties window, while you are working on the
Form design.

We can plan the code with a simple top-down design. With the three Buttons,
the code will be activated by the Click event.

Reset button
reset the Rocket's Top to place it near the bottom of the Form
turn off the Launch button's Enabled
change the Speed TextBox's Text to "Enter speed"”
place the curscr in the text box, ready for the ugser
That last action will be achieved by the line:
txtSpeed.Focus ()
The Focus {} method prepares a control for keyboard input. (And note the empty

brackets at the end of its name — if you miss these out, the Studio’s syntax checker
will add them for you.) Used on a TextBox, Focus() places the cursor there; used

24 Code design 33

on a Button, it highlights it and sets it so that pressing |Enter] acts the same as a
mouse click. It is not essential here, for the users can put the cursor in the text box
themselves, but it makes life easier for them.

Launch button
start to loop
subtract the speed from the the Rocket's Top to lift it
wait a moment - the PC's far too fast
check for other events
loop back until the Rocket is off the screen

Here we can use a Do Loop to keep the rocket moving. The basic structure is:

Do

Loop Until test
This will make the program cycle round the enclosed lines until the test proves true,
and in this case the test will check the Rocket’s Top property. (Sec Chapter 3 for
more on this structure.)

A modemn PC processes information so quickly that you have to find some
means of slowing things down if you want to see movement on screen. The solution
here has been to write a delay loop — it gets the PC to count up to 1,000,000. There
are better ways of producing timed activity which we will look at later,

Unless we do something about it, the execution will lock into the loop until it
reaches its end. As we want our users to be able to change the speed or restart the
launch while the rocket is in flight, we must make the system check for these events,
within the loop. The solution is provided by the DoEvents () method. Its full
name is Application.DoEvents () as it belongs to the Application class —i.e.,
the whole program — rather than to a control within it. The method retums control
to the system, to check if an event has occurred, and if it has, the system will respond
to that event before going back into the loop.

Quit button
end the program
All we need here is the End statement that we met earlier.

Speed text box

enable the Launch button when something is typed in
Among the events handled by TextBoxes are Keypress and TextChanged, both
of which are triggered by the user typing in data. Keypress raises issues that are best
left until later. TextChanged can cope with all we want here. It will pick up any
activity in the TextBox, and we can assume that the user is typing in a valid value.
(If we were trying to make this program idiot-proof, we would assume nothing.)

34 Designing and creating prog

The launch Form,

showing the controls
and their Names

IblPrompt f= Lift off with Visual Basic

tiSpeed = |

picRocket

biNReSe! m— Rest |
BNQUIt ———— it [:

binLaunch

2.5 The form and the controls

The first job is to lay out the controls on the form. In this case, they can go anywhere
that pleases you, as long as you keep a clear flightpath for the rocket. The next job
is to sct their initial properties — including their Names.

Naming controls

If a control is going to be used actively by the program, it should be given a
meaningful name to replace the default Label/, TextBox2 or whatever. The name
should be a reminder of the nature of the control and its purpose in the program.
A common convention in Visual Basic is to start names with a prefix to indicate
the control, followed by one or more words, all run together but each starting with
capitals, e.g. hnQuit.

In this program we have Buttons (bmn), a TextBox (rxf), a Label (Ib) and a
PicturcBox (pic). The names are shown in Figure 2.3.

Setting properties

Type the Text for the Buttons and Label, setting the fonts and colours as you like.

Set the btnLaunch Enabled property to Fafse. When the program starts, its Text
will be displayed in grey, rather than black, and the Button will not respond to a
click. It will be enabled again by the Change event on txtSpeed.

26 Writing the code 35

To get the picture into picRocket, select the Image property of the control and
click the _m] Button to open this dialog box:

] Open
Loading a file into a Lok [B
Picture control k
My Facent @
Dscummrts A
€ 2
Deskicp Py
<) (@)
My Diocuments A I
] =
e ."/I' -k]l
¢ A
My Computer s ol
mark? brp marrt] bmp wanit] brp
uyp!:::m File parre: :n'jr'-ol: =8 = o | Opeen |
Filat of ppa A8l mage fieal™ b " o 2" e b " o] Carcel |

Work your way through the folders to get to the right place, then select the
graphic from the files. Click Open to load the file into the control and to exit from
the dialog box.

2.6 Writing the code

To attach code to an object’s event, double-click on the object to open the Code
window. The system will generate the header and end lines for the sub to handle
the object’s most commonly used event — such as Click for a Button. You switch
to another event, but in this program that will be not be necessary.

Note these points before you start to type in the code:

* You can ignore the lines starting with a quote. These are comment lines to
help explain the code. In this book comments are shown in bold to make them
stand out — on screen they are usually in green. Comments can be written at
the end of active lines, or on lines by themselves — the system ignores any text
after a single quote.

Do not include the first or last lines of the subs — they will be in place already.

« When you are defining an object’s property, afier *=#e==="-

typing the dot at the end of the name, a list of Bt =
properties and methods belonging to the object will :;:&“’

appear. Type the first letters of the property, or use the @ 1aa

arrow keys to select it, then press [Tab] to write it into z_
-
your code. “# Lpdate

= v 3

36

s Press |Enter] or the Down arrow key at the end of each line. The system will
then check your typing and alert you to any errors. Some errors will not be
spotted, e.g. if you mistype the name of a control, Visual Basic may assume
that you mean another control or a variable.

Start with binReset, and type in the lines shown below.

Private Sub btnReset_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles btnReset.Click

picRocket.Top = 200

txtSpeed,.Text = "Enter speed"

' turn off the Launch button

btnlaunch.Enabled = False

' place the curscr in the Speed TextBox

txtSpeed. Focus {)
End Sub

When the btnReset_Click code is done, click back onto the Form and double-click
the next control to which you want to add code.
Private Sub btnlaunch Click(ByVal sender As System.Cbject, HyVal e As

System.EventArgs) Handles btnLaunch.Click
'Timerl.Enabled = True

Dim delay As Leng ' Long variables can take huge numbers
Do
picRocket.Top = picRocket.Top - Val(txtSpeed.Text)
For delay = 1 To 1000000 ' Try different values here
Hext
Application.DoEvents ()
Loop Until picRecket.Top < -250 ' Sat a limit to suit
End Sub

Note the line that changes the Rocket’s Top value.
picRocket.Top = picRocket.Top - Val(txtSpeed.Text)
We want to subtract from it the number held in the Text property of the txtSpeed
box. The val() function converts this to a number value. This is not essential, as
Visual Basic will automatically convert text to numbers in this kind of situation.
Private Sub txtSpeed TextChanged(ByVal sender As System.Cbject, ByVal
e As System.EventArgs) Handles txtSpeed.TextChanged

btnLaunch.Enabled = True ' turn on the Launch button
End Sub

Don’t worry about the header lines

There's a lot in those header lines of subs, most of which can be ignored at
this stage. The brackets specify what kind of information is passed into and
out of the sub, and what it is called. We will be looking at this later on, but
for the moment leave them as they are generated by the system and
concentrate on the code that goes into the body of the sub.

2.8 Printouts ar

Private Sub btnQuit Click(ByVal sender As System.Object, ByVal e &s
System.EventArgs) Handles btnQuit.Click

End
End Sub

2.7 Running and testing

Set the program in motion with the Debug > Start command, or by pressing [F5].
The system will check your code again, and this time it will look at the interaction
between the different lines. If any errors are noted, it will open the code window
at the relevant place, with the error highlighted.

Play with the program. Set the speed and launch the rocket. Use the Reset
Button to reset the rocket on its pad. Try changing the speed, or restarting, while
the rocket is in motion. Test every possible sequence of events.

While you are doing this, think about what is happening beneath the surface,
about the interplay between the objects as events are handled. Take any point in the
program and note what events are waiting to happen.

For instance, after Reset has been pressed, there are three events which could
be triggered:
btnReset Click would get you back to where you were;
txtSpeed TextChanged would enable the Launch Button, and set the speed;

cmdQuit_Click would end the program.

~
Task 2.1

Quit the program. Back at the Design window, double-click the Launch
Button to get into its code. Type a single quote at the start of the DoEvents
line. When you move the cursor off this line, the text will change colour to
show that this is now a comment — not an active part of the code. Run the
program again and try to restart, or change the speed, while the rocket is in
motion. You should find that it is impossible. Without DoEvents, the system
cannot trap events when it is executing code.

2.8 Printouts

When developing programs, it can sometimes be useful to have a full printout of
the code — trying to follow what you are doing to a variable or object in different
parts of a program can be hard if you have to jump backwards and forwards through
the code on screen. It is much simpler when you can read the code from sheets laid
out in front of you.

To get a printout of the program code, go into the Code window and use the
menu command File > Print. I it is a long program, and you only need to see part
of it, set the print range in the dialog box.

38 Designing and creating programs

If required, you can include the details of the controls and their properties in
your printout. Click the & icon by the side of “Windows Form Designer
Generated Code™to open up the lines generated by the system when you placed
and defined the controls.

If you need a picture of the layout of the form, go to the Design window, adjust
itif necessary to display the form fully then press [Alt] + [PrintScreen]. This will
put a copy of the screen display in the Clipboard. Paste it into Paint or any graphics
software, and print from there.

2.9 Exercises

11

22

23

24

Using the techniques illustrated in the Launch program, design and build a program
that will move a picture across the screen. For a more impressive display, create a
background picture and drop this into the BackgroundImage property of the Form,

The aim here is to produce an annotated diagram. Set up a Form with a large
PictureBox above and a large Label below. Draw or scan a picture of a computer,
save the file and load it into the PictureBox's Image. Place small Buttons beside
key components on the PictureBox, with the Texts set to match the components.
Attach code to each of these Buttons so that, when clicked, they display informa-
tion about the component in the Label.

Write a program to convert temperatures from Celsius to Fahrenheit, using the
formula:

DegreesF = DegreesC * 9 / 5 + 32
Hint: Use TextBoxes to take the input in Celsius and display the result in
Fahrenheit. The conversion code can be attached to the TextChanged event of the
Celsius TextBox, or to the Click event of a Button (captioned “Convert”). Include
a “Quit” Button on the Form, to end the program properly.

Adapt the program developed in 2.3 so that it can convert temperatures from either
form to the other. To change Fahrenheit to Celsius use the formula:

DegreesC = (Degreesf - 3Z) * 5 / 9
Hint: If you try to run the conversion routines from the TextChanged events of both
TextBoxes, you will hit a snag. As cach TextChanged routine would alter the value
in the other TextBox, it would trigger its TextChanged event and alter the value in
the box that was being typed in — chaos! Use suitably captioned Buttons instead.

Program flow

The overall flow of a program is largely controlled by the user’s interaction
with the screen objects, as we noted in the last chapter and to which we shall
return again, but if anything interesting is to happen when an object is
selected, we must control the flow of execution within routines.

3.1 Controlling the flow

Program flow can be considered under two main headings — branches and loops.

With a branch, the execution will flow down one of two or more paths,
depending upon the result of a logical test. The relevant structures hereare 1£ . ..
Then ... Else (and variants), and Select Case. The GoTo jump may be used
in conjunction with I£ to skip over a set of lines. GoTo is reviled by purists as its
use can lead to horribly tangled code, but there are times when it offers a convenient
solution.

With loops — the iteration of a block of code — the number of repetitions may be
controlled by a logical test, using one of the many variations of the Do ... Loop.
Where the loop is to run a fixed number of times, the For ... Next structure
offers the simplest solution.

3.2 Logical testing

Logical tests may be performed upon string or numeric expressions, or upon
controls. (The latter raises complications that we will not dwell on here.) The
expressions may contain variables, literal values, functions and arithmetic or other

operators, as long as the expressions produce suitable values. Examples of
expressions:

Surname, X, Y Variables, used alone
“LETMEIN", 99, 0 Literal values
X*2 Calculations including variables and values

LEN(Surname), CHR{Num) Functions producing numeric or string values.

40 Program flow

A test will result in either a True, False or Null value. Null occurs when one or more
of the expressions being tested has a null value, i.c. it involves a variable that does
not hold any value. For most purposes, Null and False can be taken as the same.

Logical tests normally use the comparison operators, e.g. If X > 1000 but you
can test on an expression directly. The expression £ X Then. .. is Trueif X holds
a non-zero value.

Comparison operators
Visual Basic can use these operators to compare values:

= Equal to <> Greater or Less than (not Equal to)
< Less than > Greater than
<= Less than or Equals to >= (reater than or Equal to

Like ‘Fuzzy' string comparisons Is Compares control variables

Functions and arithmetic operators have a higher priority than comparison oper-
ators, which means that expressions are evaluated before the test.

Test Result Why?

W==10*5 False 10*5=350

LEN(*Fred™) < 10 True “Fred” has 4 characters

When used with string expressions, the operators can compare the characters in two
ways based on the Option Compare settings. The default setting is Binary. which
compares ASCII values. This can lead to apparently unusual results.

Test Result Why?

“AT < “B” True ASCIL “A™ = 65 and ASCII “B" = 66

e o False ASCIT “a™ =97

“Bee” < “Beekeeper™ True They are equal up to “Bee”, but the second
goes on, and any character is greater than
nothing.

“Anteater™ > “ant™ False ASCIT “A™ = 65, ASCII “a” =97

Option Compare can also be set to Text, which runs simple alphabetic compari-

sons, where “A” = “a”. To set the option, write it in at the very top of the code:

Opticn Compare Text
Public Class Forml

Where numbers are taken from TextBoxes, they may be treated as strings. When

in doubt, use Val() to force the conversion from string to number,

Test Result Why?

“go™ < “100™ False The test compares text, not number, values
and ASCIT “9" = 57, ASCII 1" = 49,

Val(*99"y<Val(*100") True The Val() functions yield number values

3.2 Logical testing 41

Like

This allows you to make inexact matches, finding strings that only have some
characters in common. The comparisons are made using wildeards — special
characters that can stand for any other single character or set. The wildcards are:

? Any single character
Any single digit
* Zero or more characters

|set] Any character in the set defined by its first and last character

'set] Any character except those in the defined set

Some examples may help.

Surname Like “Sm?th™ True for “Smith” and *Smyth"

Fname Like “*,DTA" True for any file with “.DTA™ extension
Digit Like “[0-9]" True for any digit, but no other characters
LowLetter Like “[a-z]" True for any single lowercase letter
PicNum Like “Fig|0-9]” True for “Fig0™, “Figl”, “Fig2”, etc.
NonDigit Like “[!0-9]" True for anything except the digits

Note that there are quotes around the whole expression.

Is can only be used with control variables and raises points that are too complex
to deal with at this level.

Logical operators

The logical operators are mainly used to combine two or more relational operations

in a test. There are six:

Not Used with a single expression, to reverse its value, so that True be-
comes False and vice versa.

And Links two expressions and is True if both expressions are True.

Or True if either or both expressions are True.

Xor {Exclusive OR) True if one or other — but not both — expressions are True.

AndAlso A more efficient version of And, this stops checking if it finds that the
first expression is False.

OrElse A more efficient version of Or, this stops checking if the first test
proves True,

Brackets in logical expressions
Where a test uses two or more logical operators, they are evaluated in the same
order in which they are listed above. If you want to change the priority — perhaps

42 Program flow

to evaluate an OR before an AND - enclose the OR part in brackets. Examples of
logical operations:
.. A& > 1000 AND Y > 1000...
True if both X and Y are over their limits
..X > 1000 XOR Y > 1000...
True ifeither of them are over their limits, but False if they both are over (or below).
LLWNOT (X > 1000 EQU Y > 1000)
This gives exactly the same results as the previous test — work it out and see.
...X > 100 AND Y > 100 OR X < O...
True if either X and Y are both over their limits, or X is negative — in which case
the Y is irrelevant.
L..Y > 100 AND { X » 100 OR X < 0)...
True if Y is over 100 and X is above or below its limits,

3.3 Branching with If

Though based on the If.Then Else. test found in most languages, Visual
Basics version has several variations and traps for the unwary. In all cases, If is
followed by a logical test and the keyword Then. What happens next varies.

Single line branching

Where only a small amount of code is dependent upon the test, the whole structure
can be conveniently written on a single line, following one or other of these
patterns.

test Then starement (s)-if-true

-

f test Then statement (g}-if-truve Else statement(s)-if-false
Examples:

1f age < 16 Then statug = “Junior®

If password = “itsme" Then Msgbox("Hi") Else Msghox("Bye"):End
In the first example, nothing happens if the age value is 16 or more. In the second,
the presence of the E1se clause means that action is taken if a wrong password is
given. The action here consists of two statements, one producing a message, the
other ending the program. Note that where there are several statements, they are
separated by colons ().

Multi-line Ifs

There is no theoretical limit to the number of statements you can include in a single
line 1 structure, for the whole line can be as long as you like. In practice, long lines
are awkward to view on screen and likely to be a source of error, simply because
you cannot see clearly what they are doing.

3.3 Branching with If 43

If more than one statement is dependent upon the truth or falsity of the test, it
is best to split the structure over several lines.
If test Then
statement-if-true-1
statement-if-true-2
Else : statement-if-false-l1
statement-if-rfalse-2

End If
Note the End 1£ at the end of the structure. This is not needed with a single line
1£, but essential with the multi-line variant. If you write a statement on the same
line as E1se, you need a colon as punctuation (and if you miss it out, the syntax
checker will write it in for you). It is probably simpler, and more readable, to push
the statement after Else down to the next line.

A simple multi-line 1£ might look like this:

If age < L& Then

Status = "Junior™
ClubFees = 7.5

Else
Status = "Senior"
ClubFees = 25

End If

In this case, status and club fees are dependent upon the age of the member, with
only two alternatives, based on the 16 limit. Where there are several altemative
routes to the flow, the structure can be extended by an E1se1 £ clause — or by more
than one - each followed by its own logical test and a Then.

Try this example. Write it into the Click procedure of a Button, run the
program, click on the Button and type in a value.

Elself ... Example

Private Sub Buttonl_Click (ByVal sender As System.Object, ByVal e
As System.EventArgs) Handles Buttonl.Click
Dim salary As Single

salary = InputBox("How much do you want to earn?")
If salary > 50000 Then
MsgBox "Don't go into writing®
Elself salary > 20000 Then
MsgBox "Good luck"
Else
MsgBox "What modest aims!"
End If
End Sub

This form of the structure is appropriate where you want to test a value against
several limits, or where you have second and subsequent tests that are only to be
performed if the first one proves false.

44 Program flow

Nested Ifs

The statement that follows Then or Else can be another 1€ structure. This can
be a single line or a multi-line one ~ in which case it must be closed by its own End
1£. These can get complicated. It is all too easy to lose track of which End 1f
relates to which I£. Good layout will help to keep things clearer.You may have
noticed that [have indented the statements in the examples above, so that the
structure stands out. Where one I£ structure is nested within another, its keywords
should be indented, keeping the 1£, Else and End If inline, and their statements
indented further.

If layout is important for displaying the structure after you have written it,
design is crucial for getting it right in the first place. Start by drawing up a JSP
diagram, or decision tree, so that you are clear about the logic and the nature of each
branch.

For example, suppose you wanted a routine that would work out the correct
form of address, based on the user's age and sex. (We will ignore marital status and
address all adult females as ‘Ms™.)

Figure 3.1

JSP diagram for a

routine to decide the sex = "M"
form-of-address
age>16
Mr | | Master "7 |
Task 3.1

Write a routine to implement this design, using nested Ifs. Type it into a
Form_Click procedure and test out each branch. A possible solution is given
at the end of the chapter.

3.4 Select Case

Where you have many altemnative routes all based on the values that may be held
in one variable, the Select Case structure provides a clearer solution than a set
of 1£s or one long multi-branched 1£. The basic shape is:
Select Case variable
Case values_ I
actions if variable = values 1l
further actions if variable = values 1
Case value 2
actions if variable = values 2

34 Select Case 45

Case Else
actions if variable = any other value

End Select

The layout is important. Each Case must be on a new line, and the actions that
follow from a Case must start on a line below — they cannot be run along the same
line.

Case Value_1 actions ...
This will produce an error report.

Any string or numeric variable can be used ina Select Case. The values that
follow each Case can be a single item, a range joined by the keyword To, or a set
of alternatives linked by commas.

Case Else is optional, but a good way to handle unexpected values. Note that
the structure must be closed by End Select,

This fragment of code is taken from the maths test program, given in full in
section 4.12. It shows the structure at its simplest. The values in the variable
sumtype can only be “+7, “-", “*" or */" and each initiates a single action.

Select Case sumtype

Case "+"
zZ =X +y
Case "-"
Z=xX-Y
Case "*"
zZ=x*y
Case "/"
z=x/y

End Select

Worked example

A more complex Select Case structure is shown below. This handles single
values, ranges and sets. It takes in a character through an InputBox, and delivers
a different message depending upon the nature of the character.

Private Sub Buttonl Click (Byval sender As System.Object, ByVal e

As System.EventhArgs) Handles Buttonl.Click

Dim ¢ As Char

char = InputBox("Enter a character")

Select Case c

Cage "!" ' single value
MsgBox ("Shriek®, 48)
End ' ends the program
Case "0" To "&" ' range "0" to "9" inclusive

MsgBox ("Digit"}

Case "A"™ To "Z", "a" To "z"

' two ranges, capitals and lower case
MagBox ("Letter”)

Case "(", "p", (", "p", vAv, MM ' sat of alternatives
MsgBox ("Bracket")

46 Program flow

Case Else ' for everything else
MsgBox ("Symbol ASCII Code " & Ascilc))
End 3elect

End Sub
Task 3.2
Copy the code into a Button’s Click sub. Test it with a range of values that
will activate cach Case. What happens if you enter a word instead of a single
character?
3.5 GoTo

I think this is only included because there are some old dyed-in-the-wool Basic
programmers who could not contemplate life without it. The fact is that GoTo tends
to produce tangled code and is only needed in Resume statements in error trapping
(see Chapter 5). Anything that vou can do with a GoTe, you can do more easily in
another way. If you want to repeat lines, use a For ... Next ora Locp. If you
want to bypass a block of code, it is neater and simpler to make the block into a sub
(see section 3.8).
But if you really must use GoTo, here's how.
The jump can be forwards or backwards, but must be in the same procedure,
Mark the target point in the code with a label. This can be 2 number or a word,
written with a following colon. It can be on a separate line above, or at the start of
the line containing the first statement in the target block.
The GeTo can be written as a single line statement or incorporated inan I¢ .. .
Then. It is followed by the label name - without the colon. For example, here are
two GoTes —one used to repeat a set of lines, the other to jump out of the loop when
the target value is reached. Compare this tangled code with the more elegant Loops
shown below.
Private Sub Buttonl Click (ByVal sender As System.Ubject, ByVal e
As System.EventArgs) Handles Buttonl.Click
Dim x As Integer
x =10
startloop:
A=x+1
MsgBox (x)
If x = 10 Then GoTo endlocp
GoTo startloop
endloop:
MagBox ("Done™)
End
End Sub

36 For..Next 47

3.6 For... Next

Visual Basic’s For ... Next structure is almost the same as that of traditional
Basics, and more flexible than Pascal’s. In this formal definition, optional features
are enclosed in [brackets]. You will note that much is optional:
For variable = start value To end value [Step size)
statements...
[Exit For]
statements...
Next [variable]

Start_value and end_value can be any numbers, variables or expressions that
produce suitable values. They do not have to be integer, Ifthe Step size is omitted,
the loop counter will be increased by one each time, otherwise the Step canbe any
whole or fractional value, either positive or negative, The variable name after the
Next is not essential, but does make the code easier to read.

Exit For provides an escape route, should you need to break out of the loop
before the end value has been reached. As youwould normally use For ... Next
loops to run through a fixed range of values, this feature will rarely be wanted.

For ... Next loops can be nested within one another, Indenting your code,
and writing the variable names in the Next lines will help to ensure that inner loops
are indeed completed within the outer ones.

A For ... Next loop can be as simple as this:

Fer num = 1 To 10

MsgBox (num)

Hext

Or it may use all the *optional extras’, as in this next example.

Private Sub Buttonl Click{ByVal sender As System.Cbject, ByVal e As
System.EventArgs) Handles Buttonl.Click
Dim num, x, star As Integer
Output.Text = ™"
For num = 1 To 20 Step 2
x = Int(Rnd{) * 30) + 1
For star = 1 To x
Qutput.Text &= "*"
If star > 20 Then Exit For
Next star
Cutput.Text &= Chr(l3) & Chr(10) ' atart a new line
Hext num
End Sub

Task 3.3

Add a RichTextBox (deep enough for at least 10 lines of text) and a Button
to a form. Name the RichTextBox Ouput. Copy the code into a Button's
Click sub. Run the program and click on the Button to find out what it does.
How could you simplify the For num line and still get the same resulis?

48 Program flow

3.7 Do loops

These offer the most flexible way to repeat a set of lines. Weused the Do . .. Loop
Until version in the last chapter, but the structure has a number of variations, They
can be summarised in these formats:
1 Do Until or While test
statements ...

{Exit Do)
Loop
2 Do
statements
[Exit Do]

Loop Until or While test
Some things remain the same - there is always a Do at the start and Loop at the
end, and there must be an exit test somewhere, or the loop will run until it crashes
the system.

If the exit test is written in the Do line, the loop will not be executed if the test
is satisfied; if it is written into the Loop lineg, the loop will be executed at least once.

In either position, the test may use either the Until orwhile keyword. The
two are effectively the same, except that the logic of a While test is reversed.
While test is trueisthesameasUntil test is not true. Use whichever
gives the clearest test.

As a final option, you can omit the test from either start or end and rely on an
Exit Do tobreak outof the loop. This would normally be activated withan I£ test.
The following loops all produce exactly the same results. Notice how the compari-
son operators and test values vary to suit the Until orWhile expressions.

Test at the start

num = 1 or num = 1

Do Until num = 11 Do While num <= 10
Print num Print num
num = num + 1 num = num + 1

Loop Loop

Test at the end
num = 1 or num = 1
Do Do

Print num
num = num + 1
Loop Until num = 11
Test in the middle
num = 1
Do
Print num
If num = 10 Then Exit Do
num = num + 1
Loop

Print num
num = num + 1
Logp While num <= 10

38 Subroutines and functions 49

3.8 Subroutines and functions

Subroutines and functions, both off-the-peg and tailor-made, are central to Visual
Basic. So far, all the subs and functions that we have used have been those built into
the system, or those written to handle events from controls, and you can get a long
way with those alone. However, there are times when you can produce a more
readable and efficient program by writing subs and functions of your own.
Readability is improved because it is easier to make sense of small blocks of code
that do specific jobs, than of long routines that perform a variety of operations.
Efficiency is improved when you need to perform the same operation at several
different places in the program. Writing a common piece of code into a sub, and
calling it from each point, can save a lot of time and effort.

Subs

A sub is a block of code that performs some kind of operation. Up until now you
have probably only used subs that are linked to events. A free-standing sub is used
like a method, such as MsgBox (). It is executed when it is called from somewhere
else in the program, and at the end of its run, the flow will pass back to the point
from which it was called. Values may be passed to the procedure through
parameters (also known as argumenis), and the sub may pass changed values back
to the code that called it, or leave them unchanged.

The essential nature of the sub is defined in its first line. This takes the form:

AccessType Sub name (ByVal/ByRef arg 1 As Type, ByVal/
ByRef arg 2 As Type,...) -
The Access Type determines the scope of the sub. The key onesto note are Private
which specifies that the sub can only be accessed from within the same form or
module, and Pub L ic which allows it to be accessed from anywhere in the program.

The parameters are optional, though the brackets must be there, even if empty.
Byval or ByRef affects what happens to any variables that are passed to the
procedure by the calling code. If Byval is used, only the value of the variable is
passed to the sub, and its original value is unchanged in the calling code. ByRef
passes the variable itself to the sub, so changes made there are retained on return
to the program.

The end of a procedure is marked by End Sub. If necessary, an early exit from
the procedure can be forced by the Exit Sub statement.

Functions

A function is a block of code that returns a value to calling code. They will almost
always take parameters, as the main purpose of functions is to convert values from
one form to another. They appear in the calling code as values being assigned to
variables, or used in expressions, or displayed on screen.

The syntax of function definitions is almost identical to that of a procedure:

AccessType Function name { arguments) As Type

50 Program flow

At some point in the function, there must be a line that copies the calculated value
to the function name, for passing back to the calling code. It takes the shape:

name = value

3.9 Creating a sub

The simplest kind of sub has no parameters. You would use one where you wanted
to be able to run the same block of code from two or more places, ¢.g. where the
same operation can be started from a menu option or a toolbar tool (see Chapter 4).

Here's a trivial example. To make this work, you will need a Label (called
LabelI') as the sub changes the text displayed there, switching between *Hello™ and
“Goodbye”. You will also need a Button — it is from here that you will call the sub.

Go into the code window, and type this code at any convenient point — before
or after any existing sub.

Private Sub ChangeMessage ()

If Labell.Text = "Hello" Then
Labell .Text = "Goodbye"
Else
Labell.Text = "Hello"
End If
End Sub

To see it in action, write a calling line into the Click event of the Button.
Private Sub Buttonl Click({ByVal sender As System.Object,
ByVal e As System.Eventhirgs) Handles Buttonl.Click
ChangeMessage ()
End Sub
Now let’s try it with parameters. This sub takes in a string of text and displays it
in the same Label.
Private Sub NewMessage (ByVal message As String)
Lakell.Text = message
End Sub
It is called by lines like this:
NewMessage ("Calling you from the main program"}
or
Dim myText As String = "Calling all subs!"
WewMessage (myText)
The next thing to explore is the difference between ByVal and ByRef. Try this.
Create the following sub. It accepts into #, the variable declared as a parameter,
whatever integer value is passed from the calling code. It displays the contents of
n, then assigns a new value to it.
Private Sub display(ByVal n As Integer)
MsgBox {"The number passed toc the sub is " & nj
n=20
End Sub

38 Subroutines and functions 59

Rewrite the code in the Button Click event so that it creates an integer variable,
assigns a value to it and passes that to the display() sub. It ends by displaying the
current value in the variable,
Private Sub Buttonl Click(ByVal sender As System.Cbject,
ByVal e Az System.EventArgs) Handles Buttonl.Click
Dim numl As Integer
numl = %3
display(numl)
MsgBox ({"After calling Numl holds " & numl)
End Sub
When you run the program you should see that the value of 99 has been passed to
display() and that the variable still holds this value on return. Whatever is done to
n — the parameter that links to Num [— the changes remain within the sub.
Now change the first line of display () so that the variable is passed ByRef,
and build and run the program again.
Frivate Sub display(ByRef n Az Integer)
This time you should see that the value in Num/ has been changed to 0.
With ByVal, the value only is passed to the sub, so that the variable in the calling
code is untouched.
With ByRef, the address of the variable in the calling code is passed to the sub.
Changing the value of the parameter means changing the value stored at that
address — which is the calling code’s variable’s address.

3.10 Creating a function

The process here is much the same as with a sub, except that we must define the
type of the returned value, and include a line that will return it. Try this example
~ especially if you dislike radians. It converts radians to degrees using the formula:
AngleInDegrees = AnglelnRadians * 360 / 2 * Pi
This works because 360 degrees = 2 * Pi radians. If you prefer, the end part can be
simplified to 180/ Pi.
Function degrees (ByVal rads As Double} As Double
Dim Pi As Double
i =4 * Atnil}
degrees = rads * 180 / Pi ‘pass the result out
End Function

The line beginning with the function name ‘degrees =
that gets the result out of the function.

Write a suitable test routine that includes a line like this:

AnglelnDegs = degrees(CDbl(AngleInRads))
Note that when calling functions, the arguments are enclosed in brackets.

(The cokl () function will not be needed if AnglefnRads is defined as a
Double.)

is crucial. This is the one

52 Program flow

Task 3.4

Write a function that will convert angles in degrees into radians. The formula
is the reverse of the earlier one:

AnglelnRadians = AngleInDegrees * Pi / 180

3.11 Recursive functions

A recursive function is one which calls itself. This can be the most effective way
to handle some kinds of mathematical operations. The two key points to remember
when writing recursive functions are:

+ somewhere there must be a line with the function name on both the left and the
right sides of an = sign, which is where the function calls itself;

s somewhere else there must be a statement that passes a definite value to the
function. This is the escape route. Without it, the function would call itself
endlessly, until it crashed the system.

Factorials provide a clear, simple demonstration. A factorial is a number

multiplied by every other whole number below it, down to 1, e.g.

Factorial 3= 3 x 2 x|
Factorial 4 =4 x 3 < 2 x |
Factorial 5=5%x4x3x2 x|
Think about it, and you will see that Factorial 5 could be found by 5 x Factorial 4;
Factorial 4 by 4 = Facterial 3, and so on.
From this, we can derive the general rule:
Factorial n = n * Factorial (n-1}
As Factorial (1-1) is 0, the rule is different for 1:
Factorial 1 = 1
From these two rules we can define the function.

Function Factorial (num As Double) As Double
If num = 1 Then

Facterial = 1 ' the escape route
Elsze

Factorial = num * Factorial(num - 1) ' calling itself
End If

End Functicn

1 have used Doubles here because they can cope with very large numbers, and
Factorial calculations can produce very large results. To test it, attach this code to
a Button.

dim num, newnun As Double

num = InputBox("Enter number", "Factorial"}

newnum = Facterial (num)

MsgBox (newnum)

3.13 Exercises 53

3.12 Subs, functions and modules

Having created a useful sub or function, it seems a shame to have it restricted to one
program, or to have to rewrite it (or copy it), info every program where you want
to use it. There is a solution. [f'the code is written into a module, which is saved as
a separate file, the file can be added into any other program later. Here’s how.
o Start with the program containing either the Factorial or the Degree function.
s Use Project > Add Module. A new code window, entitled Module!.bas, will
open. Copy the whole of the sub across to the module, using the Project win-
dow to move between the two.
+ With the module window active, use File | Save xxx As, to save the Basic
module to disk. Call it fact bas or degree.bas, as appropriate.
s Close down the project and open a new one, or another existing project.
e Pull in the basic module, with Project > Add File, Write a short picce of code
that will call the function, to check that it is there and working for you.
Any one Basic file can be added to as many different programs as you like, but
remember that any changes you make to the file will affect every program in which
itis used. As one Basic module can have any number of subs and functions within
it, you could write all your general purpose functions in the one file, and add this
to your programs.
You must also bear in mind that if the code contains references to controls, it will
only work when used with programs that have controls of the same type and name,

3.13 Exercises

31

3.2

3.3

Takethe ElseIf example routine from page 43 and rewrite it as a set of single line
1f structures. Note that the branch handled there by the E1seIf clause will need
a compound AND test.

Write a program using two nested For ... Next loops to produce one of these
patterns:

- 1 8 AR

-l 2 ? Ll Ll

Ll 4 5 Ll

el 5 4 Ll

v g g e

L i B 1 Ll

Design and write a times tables tester. It should ask the users what table they want
to be tested on, then set a series of random problems from that table. If a user gets
an answer wrong, the program should show the table before asking the next
question.

54 Program flow

3.5

Hint: Random numbers can be produced by the &nd () function. This generates
decimal fractions in the range 0 to 1. Multiply this by 10 to move the range on to
0 to 9.999, and use the Int () function to convert the result to an integer. The
random number line should read something like:

®x = Int{Rnd() = 10) + 1
The times table should be written into a RichTextBox, or a TextBox with its
Multiline property set to True.

A health and fitness club has four levels of membership charges, based on the age
of the member. 0-16 (Juniors) and 55-80 (Seniors) are both charged at halfthe 17—
54 (Adult) rate of £250 p.a. Members aged 81 or over (Honorary) are allowed in
free. Using a Select Case structure, write a program that will ask for the
member’s age, and display the membership category and charges.

Write a function to calculate the volume of rectangular objects from their length,
width and height.

Solutions to Exercises 3.1, 3.2 and 3.4 are given in the Appendix.

3.14 Solution to task 3.1

Private Sub Buttonl Click(ByVal sender As System.Object, ByVal e As

System.

Dim
Dim
sex

age

EventArgs) Handles Buttonl.Click
sex, title As String

age As Integer

= InputBox{"Enter sex (M/F)")

= InputBox("Enter age")

If gex = "M" Then

If age > 16 Then

title = "Mc™ Else title = "Master®
' first nested If

Elself sex = "F" Then
If age > 16 Then ' start of second
title = "Ms"
Else
title = "Miss"
End If ' and of second
Else

MzgBox "Sex Unknown"
title = "z3"
End If

MagBox ("Your form of address

End Sub

' end of outer If

is " & title)

Interacting with the user

Part of the Windows philosophy is that applications should be user-friendly.
With this in mind, its designers have provided menus, icons, Buttons, scroll
bars and other tools to simplify the interaction with the user. These tools are
available to us in Visual Basic, and we should make full use of them.

4.1 Collecting inputs

Sometimes keyboard entry — the only form of input available in traditional
programming languages — is the most appropriate way to get data from the user. At
other times you can make life easier for the users, and reduce the need for error-
checking in your program, by asking them to select from a list, check an option,
slide a scroll bar or click on a Button.

Explore the alternatives, and whenever you want input, consider which method
will be simplest for the user. A Windows application should be intuitive to use, so
take as your rule “if it feels right, it must be right.”

4.2 MsgBoxes

We have already made use of the InputBox and MsgBox facilities briefly, but
both have additional features that should not be overlooked. A MsgBox canbe used
for input as well as output, and its message can be reinforced by a bright symbol;
default values can be set for InputBoxes and both can carry titles.

Outputs via the MsgBox statement

‘When used for output, MsgBox takes this form:

MsgBox (prompt, buttens, title)
The prompt and title are strings, and can be text (in quotes), variables, string
functions or combinations of these, joined by ampersands (&). If you want the text
to spread over more than one line, include the newline (ASCII 10) and carriage
return (ASCII 13) in it. The simplest way to do this is with the predefined constant
vbCrLe, which is equivalent to “Chr(13) & Chr(10)". (See example below.)

56 Interacting with the user

The buttons option controls the symbol that is shown, which buttons are present
and which is the default. The option can be given as a number value or as a constant,
e.g. to produce a simple Yes/No choice, you could use either of these expressions:

MsgBox ("Really quit?", 4, "Quit")

MsgBox ("Really quit?", MsgBoxStyle.YesNo, "Quit")

The constants are easy to use as the list of possibles is offered to you when you type
a Msgbox expression. However, they only allow you to set one aspect of the
MsgBox options. To set two or more at one time, you must use the typecode
numbers, adding together to give a single value. For example, to get a wamning
symbol, OK and Cancel Buttons, with Cancel (the second button) set as the
default, you would need the typecode 1 + 48 + 256. This could be written into the
statement as the expression 1+48+256, or as the total 305.

Typecodes
Button Codes Constants
OK 0 OKOnly
OK and Cancel 1 OKCancel
Abort, Retry and Ignore 2 AbortRetrylgnore
Yes, No and Cancel 3 YesNoCancel
Yes and No 4 YesNo
Retry and Cancel 5 RetryCancel
Symbols Codes Constants
None 0
(] 16 Critical
Q) 32 Question
éﬁ 48 Exclamation
\i) 64 Information
Default Button Codes Constants
First 0 DefaultButtonl
Second 256 DefaultButton2
Third 512 DefaultButton3

Where MsgBox is only being used for output, the Buttons are irrelevant, so the only
valid Buttons options are 0, 16, 32, 48 and 64.

The box shown here was produced by the code given
below. Note the use of the vbCcrLE constant, that holds the LETERITE
linefeed and carriage return characters, to produce a two-line
message, and the 64 typecode which gives the Information
symbol. To test this, and later examples, type the code into a
Button_Click Sub, then run the program and click the
Button to watch them work.

42 MsgBoxes 57

Dim prompt, title As String

Dim StyleCode As Integer

prompt = "Prompt for the user "™ & vbCrLf & "A second line"
StyleCode = &4 'info graphic

title = "Meaningful Title"

MsgBox (prompt, StyleCode, title)

Note

Ifno symbol is wanted, the buttons option can be omitted altogether — though
if you do want to include a title, you must put in an extra comma, as the
system expects the title to be the third item in the list, e.g.

MsgBox (message,, title)

Inputs via the MsgBox function

If you want to collect a reply from a MsgBox, it must be used in its function form.
result = MsgBox (prompt, typecode, title)

This differs from the statement in that it returns a value, and this must be used or
collected in a variable. The value shows which button was clicked.

Value Button Value Button
1 OK 2 Cancel
3 Abort 4 Retry
5 Ignore 6 Yes
7 No

This box was defined with a typecode of 36, made up of 32
for the question mark and 4 to get the Yes and No buttons.
You will see that it has been written in the code as 32 + 4. It
could equally well have been written as a simple 36.
Here's the code:
Dim typecode As Integer
Dim reply As Integer

typecode = 32 + 4 ' 7 and Yes/No

reply = MsgBox("Really Quit? ", typecocde, "Quit"

If reply = 6 Then End " 6 = "Yas"
Task 4.1

Add a confirmation MsgBox, with OK and Cancel, to any program with a
Quit Button. It should carry the exclamation mark and the two-line message:

Quit selected.
FPlease Confirm

The code should only end the program if OK is selected.

58 Interacting with the user

4.3 InputBoxes

An InputBox can only ever be used in this (function) form:

result = InputBox(prompt, title, default value
Unlike MsgBox, InputBox does not take a typecode. It will always display OK
and Cancel, and cannot hold symbols. The default_value is a string that can be
displayed in the entry slot of the box, and will be returned if the user presses OK.
In the example below, “-99", which is being used to mark the end of the routine,
has been set as the default.

Clicking Cancel, or pressing [Esc], produces a Null value, which can cause
problems — trying to copy this into a number variable would cause an error. [f you
want to use InputBox to get a number, the safe solution is to take the input value
into a string, and check that something is there before passing it to the number
variable.

To run the next example, type this code into a Button_Click sub.

Private Sub Buttonl_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles Buttonl.Click
Dim prompt, title As String
Dim reply As String
Dim numval, total As Single
Do
prompt = "Enter a number or -99 to guit"
title = "Adder"
reply = InputBox(prompt, title, "-9%")
1f reply = "-99" Then
Exit Do
Else
If reply >= "0" And reply <= "9" Then numval = Val{reply)
Else numval = 0
total = total + numval
End If
MsgBox ("Total so far " & total)
Loeop Until numval = =99

default value

End 5ub
An InputBox m—tlardrhiose e TS|
displaying a Ll |

44 ScroliBars 59

4.4 ScrollBars

ScrollBars are familiar to any Windows user and offer a convenient way of

controlling a value that can vary between fixed limits, They could be used, for

example, for setting the Red, Blue and Green values when defining colours (see

Chapter 8), but are an interesting alternative to keyboard input in many situations.
ScrollBars have five key properties:

Value the position of the slider in relation to the ends
Min the value when the slider is at the top, or left, of the bar
Max the value when the slider is at the bottom, or right, of the bar

SmallChange the result of clicking on an arrow

LargeChange the result of clicking on the bar beside the slider.

All values must be within the normal integer range, i.e.0 to 432,767, though in
practice your Max is likely to be much tighter than that.

The next example uses ScrollBars to move a block around the screen — and the
whole program contains only three lines of code! To try it, place these objects on
a new form.

Vertical ScrollBar, down the left side

Horizontal ScrollBar, along the bottom

Panel, of a size that will fit within the limits of the scroll bars

PictureBox, named picBlock, placed within the Frame

Button, captioned “Quit”.

The purpose of the Panel is to provide a running area for the Block. Any object
placed within a Panel cannot be moved out of it, and its Top and Left co-ordinates
will be relative to the Panel, not to the Form beneath.

As the Panel’s size is the same as the ScrollBars’ Max values, we have a simple
translation of ScroliBar values to Block co-ordinates. The Panel should be aligned
as closely as possible with the ends of the ScrollBars, inside the Arrow Buttons. The
Max value of the VSerollBar control should be the same as the Height of the Frame,
and the Max of the HScrollBar the same as the Panel’s Width.

The Block merely needs to be visible on screen, and that can be achieved by
setting the BackColor to a distinctive colour. Make sure that you place it within the
Panel when you first define it.

For the code, go to the procedures listed here and type the single lines in each.

Private Sub HScrollBarl Scroll (ByVal sender As System.Object, Byval e
A3 System.Windows.Forms.ScrollEventArgs) Handles HScrollBarl.Screll
picBlock.Left = HScrollBarl.Value
End Sub

Private Sub VScrellBarl Scroll(ByVal sender As System.Object, ByVal
e As System.Windows,Forms.ScrollEventArgs) Handles VScrollBarl.Scroll
picBlock.Top = VScrollBarl.Value
End Sub

B0 Interacting with the user

The screen display of the
ScrollBar testing program

I ———)

picBlock. Top
it
picBlock.Left
X
| ' 2l o |

Private Sub btnQuit Click(ByVal sender As System.Object, ByVal e
As System.EventArgs) Handles btnQuit.Click

End
End Sub

4.5 GroupBoxes

A GroupBox by itself does very little. The chief purpose of this control is to enclose
other objects, providing a sort of form within a form. Probably their most common
use is to hold sets of RadioButtons or CheckBoxes, as you will see below. Another
sensible use for them is to enclose Labels and TextBoxes where the Label serves
as a prompt for input into the TextBox.

When a GroupBox is made visible or invisible, all the objects within it appear
or disappear; when it is moved, they all move with it. The latter is very useful at
design time, and possibly during the execution of a program.

4.6 RadioButtons

The RadioButtons controls are almost always used in sets, and only one can be
selected at any one time. This means that you cannot have more than one set of
options on one form — you may have placed them as separate sets, but the system
will treat them as one. The solution is to place your RadioButtons within
GroupBoxes, as each grouped set is treated separately. These provide a nice visual
touch to the display as well as being essential to the grouping of RadioButtons.

There are essentially two ways of finding out which RadioButton has been
selected.

Figure 4.3

The Form design for the

Opticn Biock 1 Option Biock 2
Options testing program. ity [Sk
’_-_..-4'7 Fisnch I = At
RadioButtons < " Spuh © M
s ‘roD
GroupBo ——4— T B

46 RadioButtons 61

The first is to use the RadioButton's Checked property. If a RadioButton has been
selected, it will be True. You can therefore use expressions such as:

If RadioButton2.Checked Then...

and the statements that follow this test will only be executed if RadioButton2 has
been selected. This is probably the best approach where there are only two possible
choices, as it leadstoaneat If ... Then ... Else ... structure.

The alternative is to set a variable when the RadioButton is clicked. This is more
suitable where there are a number of possible options, and is the approach that has
been used in the following example. It deals, appropriately enough, with options,
though the options in this case are subject choices.

A student must choose one language, from Option Block 1, and one creative
subject, from Option Block 2. Each block is represented by a GroupBox on the
form, and the RadioButtons should be suitably named.

The variables Choicel and Choice2 are used to collect the choices, and are
declared at the top of the form so that they are available to every sub. Values are
assigned to these variables when the RadioButtons are clicked. When the Show
Choice Button is clicked, their current values should be displayed in the TextBox.

* Form1 =13

|
Show chocet Ot
e ..__._‘

Each RadioButton’s CheckChanged sub follows this pattern:

Private Sub rdoFrench_CheckedChanged(ByVal sender As System.Object,

ByVal e

As System.EventArgs) Handles rdoFrench.CheckedChanged

choicel = "French"

End Sub

The defaults are French and Art. These are set at design time, by selecting True for
their Checked property. If the Checked was to be used directly in the program, no
further action would be needed. As we are handling the selection through variables,
we must also set default values for them. This can be done in the Form_Load sub
— double-click anywhere on the form to get into this sub.

62 Interacting with the user

Private Sub Ferml Load(ByVal sender As System.Object, ByVal e As
System,EventArgs) Handles MyBase.Load

choicel = "French"
choice2 = "Art"
End Sub

The Show Choices Button needs code like this:

Private Sub btnShow_Click(ByVal sender As System.Cbject, ByVal e
Az System,EventfArgs) Handles btnShow.Click

1blChoices.Text "Biock 1 = " & choicel & vbCrLf & "Block 2 = " &
choicel
End Sub
Task 4.2

Set up a form to the design shown above. Name the OptionButtons to match
their captions, starting each name with opf to show that this is an OptionButton
control. Attach to the OptionButtons and the Form the code discussed above,
plus a procedure on Show Choices to display the student’s choices.

4.7 CheckBoxes

The key difference between RadioButtons and CheckBoxes, apart from the shape
of their symbols, is that any number of CheckBoxes in a set may be True at once.
As with RadioButtons, you can test the Checked property of a CheckBox directly.
In the statement:

If CheckBoxl.Checked Then ...
the actions following Then would be executed if Checked was True. And vou must
test the value of Checked, even in a CheckBox's CheckChanged sub, for clicking
will turn the box On and Off, toggling between the two states. This is different from
a RadioButton, where a click always turmns it on.

In the Xmas list example shown here, the user is offered a choice of presents and
asked to check those that he or she would like.

The variable gifis is used as a counter, and increased by 1 each time a CheckBox
is tumed on. When the Done Button is pressed, the code will display a different
message, depending upon the greed of the user.

The Checked property of a CheckBox is changed as soon as it is clicked, and
before the system gets to the Che ckChanged sub. Knowing this, we can write code
for those subs that will add to the gifts count if the box is checked and subtract if
the click has turned it off.

Private Sub chkDosh_CheckedChanged(ByVal sender As System.Object,

ByVal e

As System.EventArgs) Handles chkDosh.CheckedChanged

If checkDosh.Checked Then gifts += 1 Else gifts -= 1

End Sub

4.7 CheckBoxes 63

Figure 4.4

Use CheckBoxes where 1354
more than one option
can be selected What da you want for Xmas?

200w att HiFi System

¥ Lotsof Dosh

Code is easier to understand if you
name controls after their captions. 7 Fenad

These CheckBoxes might be named

chkHIFi, chkDosh, chkFerrari, e
chkRolex, and chkTeddy. I Something smal and cuddy
.| 22

=]

In this simple example, the code on the Done Button concentrates on the gifis total
and largely ignores the states of the individual CheckBoxes. (Note the special
message that is given to those who only want a teddy!) In practice, any program
which used CheckBoxes would also want to react to their specific values.
Private Sub btnDone_Click(ByVal sender As System.Cbject, ByVal e
As System.EventArgs) Handles btnDone.Click
Dim message As String
If gifts > 3 Then
message = "You'll be lucky"
ElselIf gifts = 1 And chkTeddy.Checked Then
message = "Rah, bless!"™
Else
message = "Write to Santa”
End If
MsgBox (message)
End Sub

Task 4.3

Complete the example program, building on the code given above. The gifis
variable should be declared at the top of the form.

64 Interacting with the user

4.8 Menus

Look at any Windows application and you will see that it has a menu system. Why?
Because it is the simplest and clearest way of showing your users the full range of
facilities in your program, and of giving access to those facilities. Creating a menu
is straightforward.

To add a menu bar to an application, drop a MainMenu control onto the form
— don't bother about trying to locate it carefully as it knows where to go. There are
two visible results: at the top of the form you will see a menu bar, blank apart from
a grey “Type Here™ message on the left; and a tray appears at the bottom of the
workspace, with the MainMenu component placed on it.
There are three aspects to setting up a menu system:
o Creating the structure of main menus and submenus;
e Setting the names, options and other properties of the items;
* Writing the code to be activated by the menu choices.
If you were writing a simple word processor —as we will
do in Chapter 7 — you would need a File menu with
options such as New, Open, Save, Print and Exit, a
Format menu, a Help menu and perhaps others. You
can see such a menu system under construction here.

Building a menu structure

A new heading or item for a menu can be added wherever you see “Type Here".
When typing the menu entries, one of the letters — usually the first — should be

set so that it is underlined and can be selected by the [Alt]+ key combination. To

do this, type an ampersand (&) before it. When you move on to the next item, the

& will disappear and the letter will be underlined. Watch out for duplication!

You cannot use the same selecting letter twice in the same menu.

» To start a new main menu: type the heading in the menu bar.
A new “Type Here™ will appear beside it (for the next main
heading) and below it (for a menu item).

+ To add an item to a menu: type below the existing items.

« To start a new submenu: select the entry that leads to the submenu then type
the first item in the “Type Here™ to its right.

« To insert a separator line: right-click on the item below where the separator
is to go, then select Insert Separator from the pop-up menu.

e To edit a menu entry: click on it once to select it, then again to place the
typing cursor into it and edit as normal.

+ To move a menu entry: click on it and drag it to its new position.

o To stop work on the menus: click anywhere else on the form.

« To restart work on the menus: click on any heading in the menu bar.

49 Context menus 65

Setting properties
At this stage you have the shape of the menus and the text for the entries, but little
else. Each item has been allocated a name such as Menultem 1, Menultem2, etc.,
and these should be renamed to identify them clearly. To rename a menu item:
1 Select the item on the menu.
2 Locate the Name field in the Properties window.
3 Replace the allocated name with a meaningful one.
While you are at the Properties window, you can also
set the options. There are two key ones to note: bl el
o Checked puts a tick by the entry, to show that an | cese true
on/off option is on. -
» RadioCheck puts a round bullet by the entry, to
show that this is the chosen option from the set.
These options should be set to True at design time, if

the default settings are on. Otherwise they can be set
during run-time.

Adding code

When the user selects a menu item, whether by clicking or using an [Alt]+ key
combination, it triggers a Click event. The menu command's code could be
written directly there, but if you want to be able to activate the same command from
a toolbar Button — and we do with many of ours — it is better to write the code in
a separate subroutine. In this case, the item’s Click event simply calls the
subroutine, e.g. a File > New command might lead to this:
Private Sub FileNewCheck_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles FileNewCheck.Click
newFile()
End Sub

49 Context menus

A context menu is built in almost the same way as a main menu. The main

differences are that the menu must be linked to an object and there can only be one

main list of options. To create a context menu:

1 Select the ContextMenu control from the Toolbox — you will find it towards
the bottom of the Windows Forms set.

2 Drop the control anywhere on the form. The component will appear on the
tray at the bottom, and the prompt ‘Context Menu® will temporarily replace
any existing headings in the menu bar.

66 Interacting with the user

Figure 4.5 % Wordless - Microsoft Yisual Basic NET [design] - Form1.vb [Design]®

Starting 1o edit a
context menu

-]
PR = - | B D ooy - - dm T

Toobox 5 X it ¥ Formbvh [Design]* | Forel v b x

A Labei Clorse B | Ext

B MarMeru

F Checkiox

& Radoburton
"] Groubox

& Peurete [e |
1 P 3 o

i3] Dataered By ooy

2y LstBen P
23 Chechaduir, a i -
53 Combofior

:::”W = B ar et O CoreesHARRIT ™

B 2. l¢ »
ey

3 Add your menu items - starting submenus if required — in the ‘Type Here’
prompts.

4 Set the names and other properties, and add code as for ordinary menu items,

5 Click anywhere off the menu when you have done. The main menu headings
will reappear.

e Il you need to edit the context menu later, click on its icon or label in the
component band. The menu will again replace the main menu. Right-click on
the label and select Edit Menu, or click directly
into the displayed menu.

6 Select the control that the context menu is to
pop-up from.

7 1In the Properties window, click into the
ContextMenu field, drop down its options and
select the context menu.

» If you want context menus on a number of com-
ponents, you can create a new menu for each
(the simple solution) or set up one ‘dynamic’
menu where the contents alter to suit the selected
control. Look up dynamic context menus in the
Help system if you want to pursue this approach.

Pt ®

Workspace Systerm Wirdows, Forme. RichTe =
(3] o () & -

4.10 Toolbars 67

410 Toolbars

The Collection Editor
as the first button is

being defined

Toolbars are unexpectedly different from menus in the way that they are created
and used. This is probably because a toolbar is a single item, and its Buttons are
segments within it — while on a menu, each entry is a separate item, and the structure
is a container to hold them. You can see this when you set up the toolbar, but it is
also clear when you come to add code — there is only one Click event for the whole
toolbar. All tool Button clicks lead to the same place, 50 you have to write code to
identify which Button has been clicked, before you can respond to it.

It shows up again in the way that toolbar icons are managed. Tools do not have
their own Image property. Instead, there is a separate ImageList, and each tool is
linked to a numbered item in this list. You can set up the ImageList first, or build
a text-only toolbar and add the images later. We’ll start with text, so that we can
get our heads around toolbars before we worry about making them pretty.

To create a toolbar:

1 Select the Toolbar control from the Toolbox and pe——"
drop it onto the form. It will automatically locate
itself just below the menu bar.

2 Select Buttons in the Toolbar’s Properties win- |s
dow and click ... The ToolBarButton Collection
Editor will open. |

3 Click Add. The first Button will appear in the
Members: list.

4 Type the Text to be displayed on the Button, and |
the ToolTip Text, if required,

5 Repeat steps 3 and 4 to add the other Buttons.
6 Click OK to close the Collection Editor window.

TooBarBuiton Collection Cditer

TooBarturtont Broperties:
" 8

e B (DynarcEraperts
+ 8
oo Properties of individual
. ooy ToolbarButtont toolbar buttons are
L Nodfers Friuat accessed through the

ErooownMers_ tnone) Collection Editor

Enstied True

|
|
| Fas
| Fae
| £
| St Bushbuttor
| Hewe
¥ TeclTgTe
fudd Epmoren Visble e

68 Interacting with the user

Figure 4.7

Fia Format

The toolbar, waiting o
Hew D—-enl Save | Q

for its images

The default toolbar Button style is PushButton, but there are three other options

in the Style field:

s ToggleButton, makes it into an on/off switch. If you want to signify that it is
on at the start, set Pushed to True.

» Separator creates a gap between the Buttons.
e DropDownButton attaches a drop-down list to the Button. The list is created

in a context menu, which is linked to the Button by selecting it in the
DropDownMenu field.

Images for icons

Before you can put an image list together, you need to find or create the images.
You can create your own using the Visual Studio Image Editor (or any graphics
package that can produce .bmp files) — though it may make you appreciate the
design skills that have gone into other people’s icons. The ideal image should be
a clear reminder of the purpose of the Button, it should look good and you must be
able to draw with a 16 = 16 grid of dots! If it is the right size and different from the
other Button images, that will do. (See page 70 for more on the Image Editor.)
If you want to get your image list started quickly, there are some standard

images for the filing, and the cut and paste commands, tucked away deep in the
Visual Studio folder. The exact location will depend upon your system, but it
should be something like:

C:\Program Files\Microsoft Visual Studio .NET 2003\SDKw1.1\ QuickStart\
winforms\samples\controlreferencetooltipctivb
If you can’t find the folder down this path, you can locate it by running a search for
one of its images — try looking for clsdfold.bmp (the Closed Folder image).

ImageLists

Creating an image list is similar to creating a toolbar

— this is another collection,

1 Select the ImageList control from the Toolbox —
you will find it just below the RichTextBox.

1 Systom Windows Forms. Iss %

CoorDepth Decthiite

2 Drop it onto the form — it will go into the compo- | prm— el .
nent lray gww \;.‘f 16, 16

3 Locate the Images field in the Properties window B s [transparent

and click .. The Image Collection Editor win- | msmeres
dow will open. B i

(- Imagelist |
4 Click Add. At the Open dialog box, find and open | "= Friand
the first file. TE Proveat]) S Eiaw | |

The Image Collection Editor
with four images in place

The images are easier to handle
if they are in the same order as

the buttons — use the arrows to |
adjust them as necessary. |

Merbees:
o N Svstem.Drovarg Btmao
[T|E Svstem Drawing Birp
IRl Svetern. Draverg Btrse

+
-

410 Toolbars &9

Image Collection Editor

‘System. e aving Btmap Propertes:
= 1
&

o I Carcel I Halp

5 Repeat step 4 to add as many images as needed for the toolbar.
6 Click OK to close the Editor.

Linking images to toolbar buttons

The final stage of creating the toolbar is to link the images to the Buttons. This is
done through the Toolbar control.

1 Select the toolbar and go to the Properties window.
2 Click into the ImageList field and select your newly-created ImageList from

its drop-down list.

3 Click . on the Buttons field to open the ToolBarButtons Collection Editor.

ToolarBution Collection Editar

s
| 0] NewTod
Allocating images to buttons I; CpariTool
in the ToolbarButton [3] Estront
Collection Editor |
|
1
S

70 Interacting with the user

Click on a tool in the Members: list.
Drop down the options for its Imagelndex property — this links to the ImageList.
Select an image.

-1 >

Repeat steps 4 to 6 as required.
8 Click OK to close the Editor.

A toolbar with images in places — all of these except
for the Exit image are from the supplied set.

Code for toolbars

As you will remember, a toolbar has only one c1ick event. How then do you know
which Button has been clicked? The answer lies in this parameter of the click
event:

.ByVal e As System.Windows.Forms,ToolBarButtonClickEventArgs..
The argument e stores the information generated by the Click event. The most
important part of this is in the Button property, which identifies the Button that
was clicked. The expression:

ToolBarl.Buttons.IndexOf (e.Button)

gives the number of the Button, counting from 0. That can then be used in an
1f..Then..or Select Case..structure to direct the flow to the appropriate code.
Here's the toolbar’s Click event sub, in skeleton form. The ‘mew rowutine and
similar comments will be replaced by code later.
Private Sub tBarl ButtonClick(ByVal sender As System.Object,ByVal e As
System.Windows.Forms.ToolBarButtonClickEventArgs) Handles tBarl.ButtonClick
Select Case ToolBarl.Buttons.IndexOf (e.Button)

Case 0 : ' new routine
Case 1 : ' open routine
Case 2 : ' save routine
Case 3 : ' exit routine
End Select
End Sub

411 The Image Editor

Visual Studio has its own Image Editor. This is not a high-level graphics package
— it has the same kind of facilities as Windows Paint, which is a certainly enough
for creating icon images. Try it out. This is an optional extra — if you prefer to use
other graphics software, then please do so.

To create an icon image in the Image Editor:

1 Open the File menu, point to New and select File.

2 At the New File dialog box, select Bitmap File as the type.

Figure 4.10

Drawing a toolbar
button image in
Image Editor. The
tools on the toolbar
and the Image
menu are almost
identical to those of
Paint. Experiment —
you'll soon get the
hang of them.

4.11 The Image Editor 71

*= Wordless - Microsoft Visual Basic (NET [design] - exitbmp

B Eit Yew Powd Dukd Cebug Joch | jeage | Window e
Bl rhm -0 et Cokors - Rmm "
Ble e ®-| 7 S 2 | et i B 31 [o
SR it oo | e] T SOOI | g T
| |] C— Rotate 30 Degrens ChrlsShited P S e gtd =
= t B3 Show Colors Winddow %] o))
] ! 224 |m]
1 Usa Selecton a5 Bnsh e
T [- JE <
| it Colers 16 Coler
: Ayt Cokors
Logd Palecte.
I Save Faistte Plerame Cibesiwordiess)
Draw O a4l [
- Opags i+ B
18
et Settrgs with &
Tocks s
= 2 Ej— i £ procarties [64
2

7

Set the image size in the Properties window

The Image Editor will open in the main workspace, with a new toolbar above
it and a palette on the far left. You will also note that there is now an Image
menu. If the toolbar does not appear, right-click on any blank space in the
toolbar area and tick Image Editor in the list that appears.

The default image size is 48 x 48 pixels. Change this to 16 * 16 in the Proper-
lies window.,

Create your image, using the ‘life-size’ copy on the left as a guide to how it
really looks.

The tools are almost identical to those of Paint, but note that the third Button
from the right line holds the options for line thickness or drawing style of all
tools.

You are limited to 16 colours, but you can define them yourself. Double-click
on a colour in the palette to edit it.

When you are finished, use File > Save Bitmap As... to save the image for
use in your image list. Leave the file type at the default .bmp — the .gifand .jpg
save options are there in case you want to produce images for web pages.

72 Interacting with the user

412 Worked example

This is an arithmetic test program, where the type and difficulty of the problems
can be set by the user. The controls include a ScrollBar, a set of OptionButtons and
a Menu, as well as others covered in earlier chapters. In its code you will find a

Select Case and a variety of If structures.

+ Another point to note here is how the values held by some of the controls are

treated as variables.

It is not possible to draw a straightforward JSP design for the program as the
operations are split among the procedures attached to controls, and the flow of
execution is largely dependent on the user’s interaction with the controls. The best
approach with this, as with most Visual Basic programs, is to start with the form
design and to look at the actions that arise from the use of the controls.

Form design

For this program we want a form that will display an arithmetic problem and accept
and check an answer. It should have a means of changing the type of sum and the
level of difficulty, and should display the score. A layout is shown in Figure 4.11.

Controls and Events

s IbINuml and IbINum2 are Labels to hold numbers generated at random.

IblSumtype is a Label that holds the symbol for the type of sum.

L]
+ ixtAnswer is a TextBox — the only control into which the user can type.
L]

grpType is a GroupBox that contains four RadioButtons, named rdoAdd,
rdoSub, rdoTimes and rdoDiv. Code attached to their Click events will change

IbiSumtype’s Text.
Tools

The form design —
unnamed controls are
purely decorative,

IbINum1 &

IblSumtype

IbINum2

grpType
rdoAdd =

rdoSub —f——F -
rdoTimes —fp— *

rdoDiv —4——"|

IxtAnswer

| hsblLevel

I IblScore

4.12 Worked exampie 73

« hsbLevel is a Horizontal Scroll Bar that sets the level of difficulty. When a
new problem is generated, its value determines the scale of the numbers:
level = Val(hsbLevel.Value}
nl = Int(Rnd() * level) + 1
Its limits are the Min and Max propertics which are set at design time. If the
program is intended for use by young children, the limits might be set at 5 and
10; for older users, armed with calculators, they might be 10 to 100 or more.
« IblScore is a Label to display the score and is updated by the checking code.
The variables that count the number of problems and of correct answers must
be declared at the top of the form so that they are generally available.

Menu commands

These replicate the effects of the controls on the form. Though this is unnecessary,
you will often find similar situations in Windows application programs. It takes
very little code to offer menu, keystroke and toolbar or Button alternatives to
activate the same command, but it does give your users the choice. Some people
like to pick their way through menus, others prefer a quick click on the screen. We
are using menus, Buttons and a toolbar here to give practice in all three.

The menu structure is:

Menu Option Comment
Controls Header
New Problem = Toolbar Button0
Check Answer = Toolbar Buttonl
Type of Sum Header
Add = rdoAdd_Click
Subtract = rdoSub_Click
Times = rdoTimes_Click
Divide = rdoDiv_Click
Exit Header
Yes End program
No Does nothing
The toolbar

The example developed here has only three Buttons: New, Check and End. When
clicked, these will run the subs to generate a new problem, check the answer and
exit from the program. | have left them as text-only; you can add images if you like.

Coding

Much of the code flows naturally from the specifications of the controls, with a
little more detailed design needed for a couple of larger routines.

74 Interacting with the user

General variables and default values

Youneed generally accessible variables to store the correct answer (Ans), the count
of right answers (rtans) and the count of questions (gcount). These should be
declared these variables at the top of the code, above the first sub.

Their initial values should be set in the #orm_Load sub. The defaulttype of sum
and level of difficulty should also be set at this point.

Generating a new problem
This procedure takes the shape:
Generate two random numbers
store them in nl § n2
display them in IblNuml & lblNum2
Work out the correct answer, storing it in the variable Ans
The calculation te depend upon the character in lblSumtype
Clear txtAnswer and place the cursor ready for the response
We need to be able to run this operation from both the menu command and the
toolbar Button. The simplest solution is to ereate a free-standing sub to handle the
operation, and call that from the command or the Button, with the line:
NewProblem()

which calls up the NewProblem sub.

Has [Enter] been pressed?
The answer must be checked. We are offering our user a Check Answer Button and
a menu option, but we should also run the check automatically after an [Enter]
keypress that will tell us that he or she has finished typing the answer. We are going
to have to dig into the parameters to do this.

The#eyPresscodehasane parameter which holdsthe XeyPressEventiras,
Within this is KeyChar, which holds the character that was last pressed. [n this case
we are looking for |Enter] which is Chr(13). That gives us this code:

If e.KeyChar = Chr(13) Then CheckAnswer()
MNote that KeyPress isnot the default event for a TextBox. To open this sub in the
Code window, select txtAnswer from the Class Name drop-down list, on the left
above the code, and then KeyPress from the Method Name list on the right.

Answer checking
The design of the checking code 1s straightforward:

get the wvalue from the answer box
if the answer is correct

se the score

else display the correct answer

= tion count
display the current score and count

412 Worked example 75

In the correct answer and the score display we can use either + or & as a
concatenator to join the variables and the accompanying text. It is not necessary to
convert the numbers to strings first.

"The correct answer was " & Ans

As we need to be able to run this code from three different start points, it should
be written into a free-standing sub. I've called it CheckAnswer().

Changing the SumType

Users can change the SumType either by clicking a RadioButton or through the
menu., Whichever route they choose, the operation takes only simple lines like this:

1blSumType.Text = "+"

As there is so little code, it"s not a problem to duplicate it in both the menu command
and the Button.

Random numbers

The Rnd () function produces a fractional value in the range of 0 to 1. It is pseudo-
random — i.e. every value is as likely as every other, and you cannot predict what
will come next, but it is actually the result of a complex calculation. Values such
as0.4162738746 are rarely much use ina program, but they can easily be converted
into more useful ones by expressions following this pattern:
num = Int(Rnd * range) + base
If you want numbers in the range | to 6, for a Dice simulator, the line would be:
num = Int(Rnd * 6) + 1
The base number is necessary as Int () truncates values — it chops off the decimal
part, leaving just the integer.

™ Form1 El@"‘i

Figure 4.12

The program in action
— here an answer has
just been checked

o P
Sums!
) | = —
syl B i

76 Interacting with the user 410 Worked example

Look what happens with these values:

Rnd Bnd * 6 Int (Rnd * &) Int{Rnd * &) + 1
0.54 3.24 3 4
0.05 0.30] 1
0.90 5.40 5 6

The calculation that produces random numbers always works through the same
sequence, but this is so complex that you cannot predict the next number, as long
as you start at a different place each time. To make the system select a new start
point, based on the system’s clock, place this statement in the Form_Load code:

Randomize ()

The Sums code

Public Class Forml
Inherits System.Windows.Forms.Form
Dim Ans As Integer 'declare general variables
Dim rtans As Integer
Dim gqcount As Integer
+ Windows Form Designer generated code
Private Sub Forml_Load(ByVal sender As System.Cbject, ByVal e As
System.EventArgs) Handles MyBase.Load
Randomize ()
qoount = O
rtans = 0
1blSumType.Text = "4"
hstlevel.Value = 10
End Sub
Private Sub NewFroblem(}
Dim level, nl, n2 As Integer
level = Wval (hsbLevel.Value)

nl = Int{Rnd() * level} + 1
n2 = Int(Rnd{) * level) + 1
If 1blSumType.Text = "/" Then nl *= n2

'ensures that the numbers will divide evenly

1blNuml.Text = nl

1blNum2.Text = n2

Select Case lblSumType.Text
Case "+": Ans = nl + n2
Case "=" : Ans = nl - n2
Case "*" : Ans = nl * n2
Case "/" : Ans = nl / n2

End Select

412 Worked example

txtAnswer.Text = "V
txtAnswer.Focus()
goount += 1
End Sub
Private Sub Checkhnswer()
Dim userAnswer As Integer
userAnswer = Val (txtAnswer.Text)
If userAnswer = Ans Then
MsgBox ("Correct")
rtans += 1
Else
MsgBox {"The answer was " & Ans, MsgBoxStyle.Information)
End If
lblScore.Text = "Score = " & rtans & " out of " & gcount
End Sub

Private Sub rdoAdd CheckedChanged(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles rdoAdd.CheckedChanged
1bl5umType. Text = "%
End Sub
Private Sub rdoSub_CheckedChanged (ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles rdoSub.CheckedChanged
1blSumType,Text = “-"
End Sub

Private Sub rdoTimes_CheckedChanged (ByVal sender As System.Object,

ByVal e As System.Eventhrgs) Handles rdoTimes.CheckedChanged
1bl5umType . Text = "*"
End Sub
Private Sub rdoDiv_CheckedChanged(ByVal sender As System.Object,
ByVal e As System.EventhArgs) Handles rdoeDiv.CheckedChanged
IblSumType ., Text = "/
End Sub
Private Sub menuNewProblem Click(ByVal sender As System.Object,
ByvVal e As System.EventArgs] Handles menuMNewProblem.Click
NewProblem()
End Sub
Private Sub menuCheckAnswer Click(ByVal sender As System.CObject
ByVal e As System.EventiArgs) Handles menuCheckAnswer.Click
CheckAnswer ()
End Sub
Private Sub menuAdd_Click(ByVal sender As System.Cbject, ByVal e
As System.EventArgs)
lbl5umType.Text = "+%
End Sub

7

78 Interacting with the user

413

Private Sub menuSub_Click(ByVal sender As System.Object, ByVal e
As System.EventArgs)

1blSumType.Text = “=-"
End Sub

Private Sub menuTimes Click(ByVal sender As System.Cbject, ByVal e
As Bystem.EventArgs)

1blSumType.Text = "*"
End Sub

Private Sub menuDiv_Click(ByVal sender As System.Cbject, ByVal a
As System.EventAras)

1blSumType.Taxt = "/"
End Sub

Private Sub MenuExitYes Click(ByVal sender As System.Object, ByVal
e As System.Eventirgs) Handles MenuExitYes.Click

End
End Sub

Private Sub txtAnswer KeyPress(ByVal sender As Object, ByVal e As
System.Windows.Forms.KeyPressEventhrgs) Handles txthAnswer.KeyPress

If e.KeyCThar = Chr{i3) Then CheckAnswer()
End Sub

Private Sub ToolBarl ButteonClick(ByVal sender As System.Cbject,
Byval e As System.Windows,Forms,ToolBarButtonClickEventhrgs) Handles
ToolBarl.Buttoo ck

Select Case ToolBarl.Buttons.IndexOf (e.Button

Case 0 : NewProblem()
Case 1 : CheckAnswer ()

Case £ : End
End Select
End Sub

End Class

Exercises

4.1 Design and write a program that could be used for the analysis of a simple
questionnaire. This should only ask a single question, with a fixed set of possible
answers — something along the lines of “What do you think of the canteen food?
(A) Great value for money, (B) Good, (C) Fair, (D) Poor, (E) I'd rather starve.”

Use a set of Options and Buttons marked Next, Display Totals and Quit. When the
Next Button is clicked, your code should scan the Options, add 1 to the appropriate
total and clear the Options ready for the next response. Display Totals should

produce a display of the question and the scores of the replics.

4.2

4.3

413 Exercises 79

Use the Image Editor to create suitable icons then add them to the toolbar in the
Sums program.

Write a program to give a simple demonstration of Options, CheckBoxes,
InputBoxes, MsgBoxes. The options should be selected from a Menu, so a separate
demonstration for Menus will not be needed.

Hint: To keep the screen display clean and simple at runtime, tum off the Visible
property of the Panels, GroupBoxes, Labels and other controls that you will use in
your various demonstrations. They can then be turned back on when a particular
demonstration is selected, and off when it ends.

A possible solution to Exercise 4.1 is given in the Appendix. The others are too
open-ended — if they look OK, and do what is needed, then they must be right!

Testing and debugging

Even the best programmers make mistakes! Fortunately, the Visual Swdio
provides excellent tools for finding and correcting errors.

5.1 Errors and error spotting

There are three main categories of error.

« Syntax errors are mistakes in the way that the language is used — typically
misspelling keywords, giving the wrong type of data to a function, or missing
out part of a command. These are usually spotted by the system, either when
you move the cursor off the line or when it builds the program.

e Logical errors occur when you use the words and structures correctly, but
don’t quite manage to say what you mean. Visual Basic has no means of iden-
tifying these, and unless the error crashes the program or produces visibly
strange results, you will not be aware of them yourself. Commercial software
is all too often released with bugs that only show up when the programs are
pushed to their limits by users. To ensure that you have found and cured all
logical errors, you must design a thorough testing procedure that will explore
every possible route through the program, and every possible combination of
values. Any problems thrown up by the testing can then be investigated using
the debugging tools.

« Runtime errors can occur because of unexpected external events, e.g. the user
inputs the wrong type of data, or the program attempts to load a non-existent
file or communicate with a detached peripheral. You cannot prevent these, but
you can prevent them from crashing your program.

Scanning for errors

When you are writing your code, as soon as you press [Enter] at the end of the
line, or move the cursor off it, the line is scanned for errors. If one is found, it is
given a wavy blue underline. Point at it and a pop-up box will tell you what's
wrong. This will usually point out missing keywords or other punctuation, but
will sometimes give a less-than-helpful *Syntax error” message.

5.1 Errors and error-spotting 81

If no errors are found, the line is rewritten in a standard format. Spaces are
inserted around symbols, and those words that the system recognises as being
part of the Visual Basic vocabulary are forced into mixed upper and lower case
and recoloured.

Do check the revised line. A misspelt keyword will occasionally fail to pro-
duce an error message, because the system assumes you mean something entirely
different. If a word has not been reformatted, first check its spelling, then check
your quotes. One or other will almost certainly be the cause of the problem.

Compile-time error reports

The line scan will pick up errors on individual lines and check the syntax of If,
Case, Loop or similar structures, though it may not always pick up errors in more
complex structures. The ones that the scanner missed or that you failed to notice
will be picked up when the Studio attempts to build the project.

If you see this:

Microzeft Develapment Environment

‘: There wers buid errors. Contirus?

Click No to return to the Code window. At the bottom of the window you will see
a panel listing the errors. These are usually identified by line number — and line
numbers are not normally displayed in the Code window.

To display line numbers:

1 Open the Tools menu, and select Options.
2 Click on Basic in the left pane.
3 Tick Line numbers in the Display arca.

Runtime error reports

There are some errors that will slip through these nets, but bring the program
crashing to a halt at some point during its execution. Typically these errors re-
volve around data types — the data that you are attempting to pass from one vari-
able, function or control to another is of the wrong type for its target. A second
common cause is trying to use a control, a file or other object which doesn’t exist.
You may have misspelt the name, or changed it, or deleted the object during an
earlier edit.

If you are running the program from within the Studio, the line where the error
occurred will be highlighted in green in the Code window. The error will be re-
ported in a message box, offering you the options to Break or Continue. Con-
tinue closes down the program, and opens the Code window at the point where
you were last working. Break takes you into debugging mode, where you can
examine the code and your variables.

82 Testing and debugging

Figur 1 = arrors - Microsofl Visual Basic JNET [break] - Form1.vh [Read Only]

This program crashed when | % 8% i eeatt B TR SO et i

first run. The Break option 2 u- 0o S | et] R m Y
brought us to this display. The
highlighted line is the one
being executed when the
error occurred.

If sex = "R - “m* Then b

1£ age < 1
titls = "mastec®
title = "Rc” |
« | 2
NS

Fudd prcanind in&é < 1] he

If you are running the program from its .exe file, outside the Studio, then you will
get a slightly different error message box. Click the Details Button to get more
details, make a note of them and head back to the Studio to sort out the problem.

List your variables

You will find it easier to deal with these kind of errors if you have a list of
the controls and variables. A moment’s reference to the list can save an
hour’s searching through the code. Being organised really does help!

An error message from a free- A urhandied esception has occued in your appicaon If pou cick,

standing VB program 8 I LA Gl s ks il i LA s S

Cast from string "ty three’ b type 'Shod' |z not vaid.

Soe the end of e mwisage lor dolall on
mﬂmumd-hmmdanmm
TSR (.. e

[Sivstesm vy bl astE scaption: Cast irom sing Yty Shies” 1 type Shot is not valke
Mecaoh Vieualf asic ComplerSarvicat. DoubieTyos PatselSting Valus. Numbe

o Mool VaualBasic CompderS. Shod T V|

~ End of rner excephon iack irace —

a Miczonoh VisusBiasic Conpl Choal skl
lmlrmlmd]mtwfum'lvhhﬁ L

L4 >

5.3 Breakpoints 83

5.2 Debugging tools

The best debugging tools are a piece of paper and a pencil. Use these to design
your program, to list your variables and to dry run the design. Use them thor-
oughly and you won’t have (m)any bugs, or much need for Visual Basic’s debug-
ging tools. These can be accessed through the Debug menu or the Debug toolbar.
(Right-click on the Standard toolbar and tick Debug to display the toolbar.)

Break Restart Step Over Hexadecimal display

The Debugging tools

Continue Step Into Breakpoints
Stop debugging Step Out

If you are getting odd results and cannot understand where they are coming from,
break into the program. Use Run > Break All, the [a] Button or [Ctrl]-[Break] to
suspend the program and go into debugging mode. A green highlight in the code
will show you what was being executed when you broke in — though this will
only be useful if a routine was active at that moment.

5.3 Breakpoints

Breakpoints allow you to bring a program to a halt at a predefined point in a
procedure. When you set a breakpoint in a line of code and run the program,
execution will halt when it reaches that line. The Breakpoints window will open,
with the current line highlighted.

It is simplest to set breakpoints in the Code window while T E—

you are editing. 8y coox
To set a breakpoint: &
1 Right-click on the line where you want to break.
2 Select Insert Breakpoint. |6 acdatch
The line will be given a red highlight and a blob placed by |‘: m:‘nm
its side. : P

To remove breakpoints: | B 5ot et ot

1 Click on the red blob by the line in the Code window. el i
|43 synchronige Class View

Or Prvid N

2 Click [¥] in the Breakpoints window. -
Any number of breakpoints may be set, and Debug > Clear All Breakpoints will
remove them all when the bugs have been ironed out. In practice you would rarely
want more than two or three at once, as too many interruptions make it difficult to

B84 Testing and debugging

The Breakpoints window. New

from here.

B ¥ M DR coumes= T
3 Hame Congon | He Coure
Breakpoints can also be set up v & ETETERTTRE] (o corviven) sk sy

follow the flow of the program. Use breakpoints to track down one bug at a time,
placing one at the last point where you know the code is good, and another further
on. After running the program and checking the state of crucial variables when
each breakpoint is reached, you can then bring them closer together, repeating the
process until you have identified the troublesome block or line of code.

5.4 Keeping watch

Figure 5.5

And now | see the
error of my ways!

A watch will track the values of variables, the properties of controls or the results
of calculated expressions. Here is a trivial example. When I run this sums pro-
gram, it keeps telling me that the answer is wrong, when it is clearly right.

The relevant line reads:

If TextBoxl.Text + TextBox2.Text = TextBox3.Text Then
feedback.text = "Right!"

The simplest way to set a watch is during debugging.
1 Run the program to a breakpoint or break in at a suitable time.
2 Open the Debug menu, point to Windows, then to Watch, then select Watchl

l"ﬂ!‘*bmmwlmmw
3 Debg S - Re= T
wo % TECESY he @,

x
=l
:ua,um't_- !,xlv<j
(= If TextBowl, Text + TextBonz,Taxe = TExEBond Taks Then
feedback. Text = “"Right'®
Else
feedback.Text = “Wrong'"™
Ind If

L

Bacy

56 Emor-trapping B85

(or other ones to add further watches).

3 In the Watch window, type the name of a variable or control or type an expres-
sion in the Name column.

The current value in the variable or the result of the expression based on current
values will be shown in the Value column with the data types in the Type column.

5.5 Stepping through

Sometimes the best way to see what is happening in a program is to slow it down

to a speed at which you can follow it. For this we have the Step commands. They

can be used as a way of starting execution, or restarting after a break.

+ Debug > Step Into (or B#]) will execute one line at a time, allowing you to use
a Watch to check the progress of variables as you go.

-

Debug > Step Over (or) will execute normally any sub or function called
from within the one you are stepping through. This contrasts with Step Into,
which would go off and work through the called routine, line by line.

+ Debug > Step Out or the fig] icon will complete the current routine normally.
In stepping, the Code window opens, and the relevant line is highlighted as it is
executed. As this will probably obscure the active form, be ready to switch be-
tween them as you step.

5.6 Error-trapping

On Error

The On Error statement can trap run-time errors. Use this to track down errors
and to guard against the program crashing when users fail to behave as expected.
It is particuarly valuable in filing operations, as it can trap the ‘File not found’,
‘Drive not ready” and other common — and fatal — mistakes that can occur when
accessing drives.

Errors can only be trapped within a sub or function, so if you have several
places at which fatal errors are possible, each must have its own routine.
The syntax takes the form:
Sub

On Error GoTo labelled line
Exit Sub
labelied line:

display error message or counteract problem
Fesume label or HNext
On Error must be early in the code, before the potential source of emor. The
labelled_line and handling-code will typically be at the end. To avoid running

86 Testing and debugging

into this by mistake, force an early end with Exit Sub.

How you handle the error is entirely up to you. If the purpose of the routine is
to pick up flaws in the design during debugging, then the most sensible thing to
do is to display a message box telling you what the error is. This can be found
from the Err object. Its properties include Number, Source and Description which
together can identifv the error very clearly.

On Error GoTo errmess

errmess:
MsgBox (“The error is " & Err.Description & " Error number ™
& Err.Number & " originating from * & Err.Scurce)

If the routine is there to idiot-proof the final program, then it should identify the
error and either give a user-friendly message or substitute a default value, before
returning to the main code. In either case, the routine must include a Resume
statement. This tells the computer where to restart the flow of execution.

Fesume Next
This will pick up from the line following the one that produced the error. If you
are using this, you should first deal with the error — perhaps by substituting a
default value for the one your user failed to supply. In many cases, the error will
have occurred when getting a filename or other value from the user, and the pro-
cedure will not be able to continue without a valid input. Here the best solution is
to tell your user what the problem is, then Resume at a label placed past the relevant
lines or at the end of the procedure. For example:
Private Sub AgeGroup(}

Dim age As Short

Dim status As 3 ng

Cn Error GoTo errorlines

age = InputBox("Flease enter your age®}
If (age > l6) and (age < £5) Then
status = "Regular"™
Elae
status = "Concession®
End If
Exit Sub
errorsub:

MsgBox ("Invalid number given®)
Resume endline

endline:

End Sub

Try...Catch...Finally
This is used for trapping exceptions — errors thrown up by the system — and is
very similar to On Error. The basic shape is:

Try
code that may produce errors

56 Error-trapping 87

Catch
code to deal with errors
Finally
back to main program flow
A simple Catch responds to all errors, but the Cateh line can specify the type of
exception, and there can be any number of them, each dealing with a different
type, c.g.
Catch CastErr As InwalidCa xception
code to deal with invalid type casting
Catch ArgsErr As ArgumentException
code to deal with invalid arguments
Catch
code to deal with all other errors

Task 5.1

Type the last example into the Click procedure of a form. Run the program
and click. When asked for a number, try typing in a letter and see what
happens. Edit the program and turn all the error-handling lines into com-
ments by placing a single quote at the start. Run and click again, and see what
happens this time when you fail to provide a number.

Interacting with the system

Almost everything involves some interaction with the system. The focus |
here is on five particular aspects - the computer's clock. Timers, the
Windows Clipboard, file handling and printing.

6.1 Date and Time

Visual Basic has a comprehensive set of functions for accessing the system clock
and for handling dates and time. They are efficient and simple to use - though not
without their peculiarities.

There are four properties and two functions that can interact with the clock:

Property Returns Example

Today Date as numbers 03/05/04
TimeOfDay Current time as a date value 15:14:35

Now Date and time 03/05/04 15:14:35
Timer Seconds since midnight 54875.465287
Function Returns Example
DateString Date as formatted string 05-03-2004
TimeString Current time as a string “15:14:35"

These can be used to read the date and/or time.Test them by displaying the values
in a message box, using lines like this:

MsgBox ("Today is " & Today)
Note that the Timer must be given with its full class definition:

Microsoft.VisualBasic.DateAndTime.Timer

Youmay findthat Today and TimeOfDay are displayed in a different format from
that shown here, as it depends upon the settings in the International section of the
Windows Control Panel. Whatever those settings, DateString uses the US
format “Month-Date-Year”.

Today and TimeOfDay canbe used to set the date and/or time. The new values
must be given in Date value form enclosed in #; e.g.

Today = #25/12/2004%

As

6.1 Date and Time

This will set the date to Christmas, if you can’t wait for it any longer. When setting
the time, you can use a 12 or 24-hour ¢lock, and the seconds are optional. The
syntax checker will automatically convert the time value to standard form.
TimeOfDay = #15:05%
TimeQfDay = #03:05 PM#
TimeOQfDay = #15:05:00%
These will all result in the follow expression when you move the cursor off the line.
TimeOfDay = #03:05:00 PM#
DateString and TimeString can also be used to set the date and/or time, but
these take string values. Visual Basic can recognise dates in a number of string
formats. Whether you present it with *3/5/04”, “03-05-04", “3 May 2004", “3rd
May 2004 or any similar combination, it will treat it as the same date.

Calculating with dates

Counting the days until the end of term? Try this,
Private Sub Buttonl Click(ByVal sender As System.Cbject, ByVal e
System.EventArgs) Handles Buttonl.Click
Dim holidate A= Date
Dim myHeliday As Date
Dim holiday As String
Dim days As Short

MsgBox ("Teday is " & Today)

holiday = InputBox("When is your next holiday:™)
holidate = CDate(hcliday)

days = DateDiff(DateInterval.Day, Today, holidate}
MsgBox ("You have ™ & days & " days to wait")

myHoliday = Datehdd(Datelnterval.Day, 10, Today)
MsgBox("I'm off in 10 days - on this date " & myHoliday}

End Sub

This uses three functions for manipulating dates:

e Chate{datestring) converls a date string to a date value;

e DateDiff(intervalType, Datel, Date2) calculates the difference be-
tween two dates, counting in interval Type units, ¢.g. this finds the number of
days to my next birthday:

DateDiff (DateInterval.Day, Today, #05/04/054)

e DateAdd(intervalType, Humber, Date) adds Number of IntervalType
to the Date value to give a new date.

90 Interacting with the system

6.2 Timers

Task 6.1

Type the Holiday caleulator into the Button_Click sub and test it with a
variety of dates in different formats. How comprehensive is Visual Basic's
date recognition?

From time to Timers. Code attached to a Timer control is executed regularly, at a
fixed interval, no matter what is happening elsewhere. The interval can be set at the
Properties window or in the code, and is given in 1/1000ths of a second. Here's a
simple demo program — and you can’t get much simpler than a program that only
has one line of code!
1 Place a Timer control (ﬂ) on a form, along with a Label named [bIClock.
2 Set the Timer’s Interval property to 1000 and Enabled to True.
3 Give IblClock a chunky ‘digital’ font and set its BackColor and BorderStyle

to make it stand out.
4 Double-click on the Timer to open its Tick event handler

in the code window. Add this line:

1blClock = TimeOfDay Label1

5 Build and run, and watch the clock for a while.
The Interval is measured in milliseconds — which is why 1000 gives a one-second
timer — and is stored as a 32-bit integer, so can take any value up to 2 billion or so.
The code on the Tick event is only executed if Enabled is True, and that can be
toggled on or offat any point during the program. What this means is that you can
set a Timer to run its code after any length of interval and either to do so regularly
or as a one-off.

This next example shows more of the flexibility of Timers. It uses two — one
makes a block appear after a random interval, the other starts counting in tenths of
asecond. When the user clicks on the block, the counter stops, and the process starts
again. When you've got the core program running, you might like to add a few
refinements, such as *best time’ and ‘average time’ displays — and a proper exit!
1 Place these four controls on a form (which should be at least 400 = 400):

o a Label, named [bICount, tucked away in a corner

o a PictureBox, named picBlock, 24 = 24, with a distinct BackColor, but

with Visible set to False

o a Timer, timeShow, with Enabled set to True and an Interval of 1000

o a Timer, timeCount, with Enabled set to False and an Interval of 100
2 Add the following code to the appropriate event handlers.

6.2 Timers 91

Public Class Forml
Inherits System.Windows,Form
Dim count As Integer ' general variable for counting

Form

Windows Form Designer generated code

System.EventArgs) Handles timeShow.Tick
picBlock.Top = Int(Rnd{) * 400) " to suit a form of 400x400
plcBlock.left = Int(Rnd() * 400)
picBlock.Visible = True

timeShow.Enabled = False ' turn off this timer

count = Q

timeCount.Enabled = True ' turn on the counter
End Sub

Private Sub timeCount Tick(ByVal sendear As System.Object, ByVal e As
System.EventArgs) Handles timeCount.Tick

lblCount.Text = count ' display the count
count += 1
End Sub

Private Sub picBlock_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles picBlock.Click
timeCount.Enabled = False
timeShow. Interval = Int(Rnd{) * 2000) ' set the interval
turn on the Show timer

turn on the counter

True

timeShow.Enabled =
End Sub

End Class

You can use Timers to create fixed delays, to limit the time the system waits for an
input from the user, or for animation. (See Chapter 8.)

The timer demo
game in action

92 Interacting with the system

6.3 Using the Clipboard

If you — and your users — are happy working with the keyboard shortcuts
{|Ctrl}+]|X] to Cut, [Ctrl]+[C] to Copy, and [Ctrl}+|V] to Paste), then you can use
the standard Windows Clipboard for cutting and pasting text without writing a
single line of code. The shortcuts are there, simply because you are in Windows.
If you want to do the job properly and give your users Cut and Paste Buttons or
menu options, you can access the Clipboard directly, and use its methods and
functions in your prog Graphics, as well as text, can be copied to and from the
Clipboard -we'll stick to text for this demonstration.
There are two crucial routines that work with the Clipboard:
* the setDataObiect method will copy selected data into the Clipboard;
» the GetDataCbiect function will copy it into a data variable, from which it
can then be extracted and copied into a control.

The textis selected in the usual way — by highlighting, either with the mouse or with
[Shift] and the movement keys — and is recognised as selected by the system. With
all the heavy work done by Visual Basic, the actual code is very short.

To see how it works, set up a form containing a RichTextBox, called Textdrea
with its Dack property set to Fill. This makes the RichTextBox fill the form — and
to continue to fill it even if the user changes the size of the window. To select Fill,
just elick on the central block in the drop-down option display for Dock.

Youwill also need a Mainmenu with items named EditCut, EditCopy, EditPaste
and FileExit. We will add more options to the menu later as we extend this program
to produce a text editor - and extend it further in the next chapter to tum it into a
simple word processor.

Figure 6.2

The form for testing
cut and paste - this
will be developed into
a text editor

8.3 Using the Clipboard 93

Copy

Getting data into the Clipboard is simple. RichTextBoxes have a SelectedText
property which is the highlighted text (you will find the same property ina TextBox
control). The Setbataobject method copies this text into the Windows Clip-
board. This is all you need for the EditCopy sub:
Private Sub EditCopy Click(ByVal sender As Cbject, ByVal e
As System.EventArgs) Handles EditCopy.Click
Clipbeard.SetDataObject (TextArea.SelectedText)
End Sub

Cut

The EditCut sub is almost identical. [t uses the same SetDataCbhiect () method,

followed by a simple line to delete the selected text.
Private Sub EditCopy_Click(ByVal sender As Object, Byval e

hs System.EventhArgs) Handles EditCopy.Click
Clipboard.SetDataObject (TextArea.SelectedText
TextArea.SelectedText = "7

End Sub

Paste

Getting data out of the Clipboard is a little trickier. The problem is that any sort of
data can be stored in there, so you need to check that it is suitable for copying into
wherever you are going to put it.

Clipboard data is of the type IDataobiect. If we have a variable of this type,
we can copy the Clipboard contents into it and then check its nature with the
GetDataPresent () method, from the IDataObject class. This compares the data to
agiven format(DataFormats. Text in this case) and returns True ifitis the same.
Dim data As IDataObject = Clipboard.GetDataObject()

If data.GetDataPresent(DataFormats.Text) Then ..

To copy the text from the data object into our Textdrea, we use the GetData ()

method — this needs to be told the format (and it is DataFormats. Text again).
TextArea.SelectedText =data.GetData(DataFormats. Text)

That line will replace the selected text with the contents of the Clipboard, or if

nothing is selected, it will insert the new text at the current cursor position.

We can put these together to make a EditPaste subroutine:

Frivate Sub EditPaste Click(ByVal zender As Object, ByVal
e As System.EventArgs) Handles EditPaste.Click

Dim data As IDataCbiject = Clipboard.GetDataObject()

If data.GetDataPresent (DataFormats.Text) Then

TextArea.SelectedText = data.GetData(DataFormats.Text)

End If

End Sub

94

Interacting with the system

Task 6.2

Implement the Clipboard testing program, adding an Exit routine to the
FileExit menu option. To prove to this uses the standard Clipboard, run the
program, then cut and paste its text between it and any word-processor.

6.4 File handling dialog boxes

We met the colour dialog box in the last chapter. There are another half a dozen of
these components, including dialog boxes for filing, printing, and setting fonts. We
will use the Open, Save, Print and Print Preview dialog boxes in this chapter. All
are handled in much the same way and serve similar purposes — dialog boxes are
used for collecting options and information. The file-handling and printing
operations must be run from elsewhere in the code.

Before we do anything else, we need to add options to the menu of our baby text
editor to give us a means of accessing the code we are about to write, Add Open,
Save, Save As, Print and Print Preview options to the File menu.

The Open dialog box

The Open dialog box will collect the filename and location from the user. But first,

we need to add one to the form,

1 Select the OpenFileDialog control from the Toolbox — you will find it near
the bottom of the set.

2 Drop it onto the form - it will go into the component tray, with a default name
of OpenFileDialogl.

Now we need to bring it into the code. You can make the dialog box appear with

this statement:

OpenFileDialogl.ShowDialog()

But that won't get you very far as it simply makes the box appear. It is more useful
to embed it in the expression:

If OpenFileDialcgl.ShowDialog() = DialeogResult.OK Then..

This displays the dialog box, and waits until the user has selected the file and
pressed OK.

Any of the dialog box’s properties can be set before it is called, or read
afterwards. In practice, all you really need is the resulting FileName. This is passed
to the Open or Load method of the control into which the file is to be loaded. In this
case, it is going into the RichTextBox called Textdrea, and RichTextBoxes have
a LoadFile () method. That give us the line:

TextArea.LoadFile (OpenFileDialogl.FileName}

64 File handling dialog boxes 95

The Open dialog box, Lookjx [) My Documerts z «@oE
with a Rich Text filter [=
3 W tese of

MyRecert | #)recEmntt
Decumerts | B desitcp. i
g | excuses.nf
| My Prctures
Desop |5 e fies
£ ¥isua Sturdes Profects
S My Data Scurces

| My Music
My Documents 'j My :,‘::‘
- £y Videas
My Compuam
. < »
MyNetwork Fie - Qoen
fane I 2]]]
Files of how: [Foch Tent Format | Carcel

It is often useful to set the Filter property, which determines the file types to
display. The filter has two parts: the description and the *.extension, these are
written in quotes, separated by a bar, e.g. to filter for plain text files you would use:
OpenFileDialegl.Filter = "Text |*.txt"
We are using a RichTextBox, and that naturally holds data in rich text format, so
the filter we need here is this:
OpenFileDialogl.Filter = "Rich Text Format|*.rtf"
You may sometimes want to start at a specific folder. If so, set the InitialDirectory
property before calling the dialog box. It’s an unnecessary complication here.
Let's put these lines together to get our file opening routine.
Private Sub FileOpen Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles FileOpen.Click
OpenFileDialogl.Filter = "Rich Text Format|*.rtf"
If OpenFileDialegl.ShowDialog() = DialogResult.OK Then
TextArea.LoadFile (CpenFileDialogl.FileName)
myfilename = OpenFileDialogl.FileName
End If
End Sub
Notice that the filename is stored in the variable myfilename — a String declared at
the top of the code. The program will need to know what the file was called when
it is time to save it again.

The Save As routine

The big difference between opening and saving files is that Windows applications
normally have two routines for saving — Save and Save As. Save As uses the

Interacting with the system

SaveFileDialog to get the filename and/or location for saving a new file or a new
copy ofan existing file. Save simply resaves a file, with the same name, overwriting
the existing copy.

The SaveFileDialog is used in almost the same way as the OpenFileDialog -
which you would expect as they are two sides of the same coin. First get the box
into reach of your program. Locate the SaveFileDialog control in the Toolbox and
drop it into the component tray.

The basic code for the Save As routine follows the pattern of the Open routine.
The Filter is (optionally) set beforehand to limit the display to files of the selected
type, and once OK is clicked, the FileName is passed to Textdrea’s Save routine.
Finally, the filename is stored for later use.

Private Sub FileSavehAs Click(ByVal sender As System.Cbhject, ByVal e
As System.EventhArgs) Handles FileSawveAs.Click

SaveFileDialogl.Filter = "Rich Text Format|*.rtf"

1f SaveFileDialeogl.ShowDialog() = DialogResult.QK Then
TextArea.S5aveFile (SaveFileDialogl.FileName)
myfilename = SaveFileDialogl.FileName

End If

End Sub

The Save routine is rather simpler. The only essential code is:

TextArea,SaveFile (myfilename)

That will save the contents of Textdrea using the name stored in myfilename.
However, we really should check that a name is stored there, and advise the user
to run the Save As routine if necessary. (A most sophisticated program would
automatically switch to the Save As routine for an unsaved file, but we are keeping
things simple here!)
Private Sub FileSave Click(ByVal sender As System.Object, ByVal e
As System.EventArgs) Handles FileSave.Click
If myfilename = "" Then
MagBox ("Please use File Save As")
Else
TexthArea.SaveFile (myfilename)
End If
End Sub

6.5 Printing

Printing is one of the trickier areas of computing. Taking data formatted for output
to one complex machine, reformatting it and copying it out to another complex
machine is inevitably going to raise difficulties. Unfortunately, Visual Basic does
not make it any easier.

Printing revolves around the Print Document in general and its PrintPage ()
method in particular. The Print Document is where the data is assembled for output

65 Printing 97

to the printer; PrintPage () is the method which assembles the data - and you
have to write its code yourself. The example given here will handle a single page
of plain text. Printing multi-page formatted documents raises problems way
beyond the scope of this introductory book.

Start by placing a PrintDocument control on your form — it will drop into the
component tray. If you double-click on it, you will be taken into its PrintPage ()
method in the Code window.

The arguments to PrintPage include e, the PrintPageEventsArgs, which

define the object to be printed. This is a Graphics object, and to get text into it,
we need to use the DrawString() method. The code will take this form:
&.Graghics.DrawString (TextArea.Text, myFont, myBrush, x, ¥)
The purpose of TextArea. Text, myFont and myBrush should be obvious. e refers to
the PrintDocument; x and y here fix the top left corner of the printing area, You can
give these as literal values, but it is better to use the margins of the page. The
PrintDocument has MarginBounds. Top and MarginBounds. Left properties - these
can be copied into variables for convenient handling.

Dim y As Single = e.MarginBounds.Top
Put that all together and we have a very basic PrintPage routine.

Double-click on the PrintDocument control to go into the code window — it will
open at the PrintPage sub.

Private Sub PrintDocu:nentl_Prir.tPage!ByVal sender As System.Object,
ByVal e As System.Drawing.Printing. PrintPageEventArgs) Handles
PrintDocumentl.PrintPage

Dim
Dim
Cim
Dim

¥ As Single = e.MarginBounds.Top

x As Single = e.MarginBounds.Left
myFont As Font = Workspace.Font
myBrush As New SolidBrush(Celor.Black)

e.Graphics.DrawString (TextArea.Text, myFont, myBrush, =, vyl
End Sub

If you simply wanl to print to the default machine, with the default settings, then

all you need is to run the PrintDocument’s Frint {) method:
PrintDocumentl.Print()

Write that into FilePrint menu item’s Click sub, and see what happens.

The Print dialog box

Drag a PrintDialog control from the Toolbox into the component tray before you
do anything else.

Like the Open and Save dialog boxes, this collects data from the user and feeds
it back into the code. Much of the feedback is invisible. The choice of printer,
number of copies and the like are passed automatically between the PriniDialog
and PrintDocument objects through the PrinterSettings. All we have to do is set
up the link between these components at the start.

88 iInteracting with the system

Our revised Print routine, using the dialog box, looks like this:

PrintDialogl.Document = PrintDocumentl
If PrintDialogl.ShowDialog{)} = DialogResult.OK Then

PrintDocumentl.Print ()}

End If

Print Preview

If your print routine is working, then setting up a print preview is a piece of cake.
The PrintPreviewDialog does everything for you — all you need to do is bring the
control onto your form (it will go into the tray with the other dialog boxes), and
write a little bit of code to link the PrintDocument to it. Here's the print preview
routine in its entirety!
PrintPreviewDialegl.Document = PrintDocumentl
PrintPreviewDialogl.ShowDialog()

The Page Setup dialog box

This control is unusable if your PC is set for metric units of measure as it
automatically converts the margin settings into hundredths of an inch,
dividing them by 2.54 when you close the box.

6.6 Exercises

6.1

6.2
6.3

Design and write a program that uses the intermal clock and the Timer property to
test reaction times. Store the time at the start of the test by the statement
starttime = Microsoft.VisvalBasic.DateAndTime.Timer. Note that
the value will be a Doubile.

Use a Timer to produce a countdown from 10 down to 1, at one-sccond intervals.

Create a program that allows the user to load an image file into a PictureBox. The
central line of code will read something like this:
PictureBoxl.Image = Image.FromFile{filenams)

Possible solutions to Exercises 6.1 and 6.2 are given in the Appendix.

7 Text processing

In this chapter, we will tum our text editor into a very basic word proces-
sor, by adding Find and Replace routines, so that text can be manipulated
more efficiently, and some fonts and paragraph formatting facilities.

7.1 String manipulation

Before we can write our Find and Replace commands, we need to dip into Visual
Basic’s string manipulation facilities. There are two distinct sets of these: the
Visual Basic run-time library has around a dozen functions, and the String class
has a larger body of rather more complex methods. The two sets overlap, and
where they do, the library function is usually simpler to implement, while the
String method offers more advanced options.

We will be using two functions and one String method in our Find and Replace
routines. Let’s have a look at those, and glance at some other string manipulators
while we are in the area.

The InStr() function

1nstr() will look for the presence of one string within another, and return the
position of the first matching character. The basic syntax is:
position = InStr(start, basetext, searchtext)
start is the character position at which to start checking. If this is omitted, the
check starts at the beginning. As with all string functions, the first letter is at 1.
This contrasts with String methods, which count letter positions from 0.
Here it is at work:
Dim basetext As String = "The quick brown fox"
Dim searchtext As String = “"brown"
Dim found As Short
found = InStr(l, basetext, searchtext)

After this, found will hold 11.

100 Tex! processing

By moving the start value forward, you can look for further occurrences of the
searchtext. For example:

Dim basetext As 5tring

Dim searchtext As String

Dim found As Short

Dim start As Short = 1

basetext = "The quick brown fox jumped over the lazy dog"
searchtext = "o"
Do

found = InStr(start, basetext, searchtext)
MsgBox ("Found at " & found)
start = found + 1 ' continue from the next character
Loop While start < Len{basetext)
The messagebox will show the values 13, 18, 28 and 43.

Len()

I slipped another function into that last example! Its meaning should have been
casy to guess, from its name and context.

Len{text)

returns the length of the string.

Case functions

“A" is not the same as “a”, but when searching for text, you may not know — or
care — the case of the characters. Switching between upper and lower case is easy.
There are two functions, and they can be used on characters or on whole strings.

Lease()

LCase (char) or LCase (string)

These change the character or string to lower case, e.g.
lowerchar = Lease (“aA")

fowerchar now holds “a".

lowertext = Lcase("AbCAELGhIJKIM")

fowertext now holds “abedefghijkim™.

Ucase()
The equivalent upper case functions are:
UCase (char) or LCase [string)

We can combine these with InStr () to produce a case-insensitive search routine:
found = InStr{start, LCase(basetext), LCase(searchtext))
UCase would work just as well — but don’t use one of each!

7.2 Swing skcing 109

7.2 String slicing

These three functions will copy a chunk from one string into another — the base
string is not changed.

newstring = Mid(bssestring, startchar, number)

Mid () isasimple function. It copies number characters from startchar of oldstring
into newstring. If number is omitted, it copies to the end of the string.
newstring = Microseft.VisualBasic.Left (oldstring, number)

This copies number characters from the left (start) of oldstring into newstring. As
Left could be mistaken for a property of a control, you have to specify
Microsoft. VisualBasic when using Left () function. Mid () is also part of the
same library, but you do not need to specify the namespace when using it.
newstring = Mid(eldstring, 1,number)

does the same job as Left () and is quicker to write!

newstring = Microsoft.VisualBasic.Right{eldstring, number)

This likewise copies number characters from the right-hand end of oldstring into
newstring. And once again, we have a Mid () alternative, though it’s not that
much simpler this time:

newstring = Mid(oldstring, length-number, number)

A Proper() function

We now have enough to create a useful Proper () function - one that makes sure
proper names (of people, places, ete.) have their first character in upper case and
the rest in lower case.

First, the one-step-at-a-time version. This uses two local variables to hold the
initial letter and the rest of the name - both sliced out of the incoming string by
variations on Mid {) . They are each forced into the appropriate case, then the two
are joined together to feed back into the properly-formed string,

Private Function proper(ByVal incoming As String) As String

Dim initial As String

Dim rest As String

initial = Mid(incoming, 1, 1)

initial = UCase(initial)

rest = Mid{incoming, 2}

rest = LCase(rest)

proper = initial & rest
End Functicn
And here's the compact version. This time LCase () and UCase () are wrapped
around the Mid () expressions, and fed to the proper name without going through
temporary variables.

102 Text processing

Private Function proper(ByVal incoming As String) As String
proper = UCase(Mid(incoming, 1, 1)) & LCase(Mid(incoming, 2))
End Function

The Mid() statement

There is also a Mid() statement which copies text info a string, replacing the
existing characters.

Mid{oldstring, startchar, number) = npewstring

For example:
Dim cldstring As String
oldstring = “The guick brown fox"

Mid{oldstring, 11, 5) ="black"

MsqgBox (oldstring)

Mid{oldstring, 11, 3) = "red"

MsgBox (oldstring)

The first MsgBox will display “The quick black fox”, the second one will display
“The quick redck fox”, Which points up one of the limitations of this statement -
you can only really use it to replace a string with another of the same length.
There is a better way of replacing text,

The Replace() method

This is a member of the String class. It will replace one piece of text with another
— of any length - inside a string. The syntax is:

newstring = oldstring.Replace(oldtext, newtext)

Here's that last example, but with Replace () instead of Mid ().

Dim cldstring As String

Dim newstring As String

oldstring = "“The guick brown fox*

newstring = oldstring.Replace("ocrown™, "black"
MsgBox (newstring)

newstring = oldstring.Replace("black"™, "red"

MagBox (newstring)
This time the MsgBoxes read “The quick black fox™ — as before, and “The quick
red fox™ — with “red” neatly replacing the longer “black™.

Other String members

Two other String class members that you might find useful are the Indexof ()
method and the Length property.

IndexOf () is equivalent to the InStr () function, returning the start posi-
tion of one string within another. The syntax is:

place = basetext.Index0Of (searchtext)

7.3 Find and Replace 103

Always remember that String methods start counting from 0, unlike string func-
tions, where the first character is at 1. For example:

Dim basetext As String

Dim searchtext As String

Dim found As Short

basetext = "The quick brown fox"
searchtext = "brown"
found = basetext.IndexOf (searchtext)

This will give found a value of 10.
The Length property

Length produces the same results as the Len () function.
textLength = basetext.length
1f basetext held “The quick brown fox”, rextLength would have a value of 19,

Task 7.1

Look up String class members in the Help system to find out more about this
set of methods and properties. Select at least one method and one property
— other than those we have used so far - and write code to demonstrate them.

7.3 Find and Replace

Let's put these functions and methods to work and develop Find and Replace
routines for our word processor.

Find

This revolves around InStr (), which searches the text for the given string, and
that part of the routine should need little further explanation.

firstChar = InStr{startht, text, target)

This gives us the position of the first character of the matching string, or 0 if there
is no match.

The more interesting code is that which deals with the text after it has been
found. If there is only a single instance of the found text, we can highlight it by
making it the SelectedText of Textdrea. To do this, we need to know where the
selection starts and how long it is. The start position is at | less than where the
match was found (because string functions count from 1, but String members
count from 0).

TextArea.SelectionStart = firstChar - 1
The length is simply the length of the target string:

TextArea.Selectionlength = target.Length

104 Text processing

Setting those two properties defines the SelectedText, and it will be shown high-
lighted when the routine ends.

If we want to be able to find all the occurrences of the matching text, then we
need to add two more things to the routine. The first is a loop to keep working
through the text. That is straightforward, though you must remember to move the
start position on cach time round:
startAt = firstChar + 1
Highlighting the matches is trickier, as the SelectedText can only be a single area,
and also the normal SelectedText highlight does not show up while the routine is
working through the loop. The solution offered here is to recolour the text red —
the current colour is recorded beforehand, so that it can be restored later.
oldeol = Workspace.SelectionColor
TextArea.SelectionColor = Color.Red
TextArea.SelectionColor = oldecol
The full routine follows — but first you need somewhere to place it. Add a Find
item to the Edit menu, naming it EditFind. You might as well add the Replace
item (named EditReplace) while you are at it.

Private Sub EditFind Click(ByvVal sender As System.Object, ByVal e
As System.EventArgs) Handles EditFind.Click

Dim target, text As String

Dim firstChar As Short = 0

Dim startAt As Short = 1

Dim findNext As Short

Dim oldecol As Object

target = InputBox("Text to find", "Find")

If target = Nothing Then Exit Sub

text
Do

= TextArea.Text

firstChar = InStr(startdt, text, target)
If firatChar = 0 Then

MsgBox ("Not found")
Exit Do

Elae

TextArea.S5electiconStart = firstChar - 1
TextArea.Selectionlength = target.Length
oldcol = TextArea.SelectionColor
TextArea.SelectionColor = Color.Red

End If

findNext = MsgBox("Find next?", MsgBoxStyle.YesNo, "Find")
TextArea.SelectionColor = oldcol

startht = firstChar + 1

Loop
End 5ub

Until findNext <> 6

7.3 Find and Replace 105

Replace

All that is really essential here is to collect the text to find and to replace, then
apply the Replace () method — and as this automatically replaces every match-
ing occurrence, we don’t even need to worry about running it through a loop. This
would do the job:

Dim target, text As String

target = InputBox("Text to find", "Find and Replace")

newtext = InputBox("Text to replace it with", "Find and Replace")
Texthrea,Text = TextArea.Text.Replace(target, text)

The routine given here is more complicated than that because I've added some
checks. It uses InStr (), first to see if the targes text is there, and then to locate
every occurrence of it — these are then recoloured, as in the Find routine. The code
then asks for confirmation before doing the replacement.

As it stands, if the user decides not to replace the found strings, this routine
leaves them coloured red. You may want to add a further block to run through the
text again, and turn them back to the original text colour.

Private Sub EditReplace_Click(ByVal sender As System.Object, ByVal e
System.EventArgs) Handles EditReplace.Click

Dim target, text As String

Dim newtext As String

Dim editedtext As String

Dim firstChar As Short = 0

Dim startAt As Short = 1

Dim numChars As Short

Dim confirm As Short

target = InputBox("Text to find", "Find and Replace")

If target = KNothing Then Exit Sub

numChars = target.Length

newtext = InputBox("Text to replace it with"™, "Find and Replace")

text

= Texthrea.Text

firstChar = InStr(startAt, text, target)
If firstChar = 0 Then
MagBox ("Not found"}

Else

' recoleour all occurrences of the matching text

Do

TextArea.SelectionStart = firstChar - 1
TextArea.Selectionlength = target.length
TexthArea.SelectionColor = Color.Red
startAt = firstChar + 1

firstChar = InStr(startAt, text, target)

Loop Until firstChar = 0
confirm = MsgBox("Replace all?", MsgBoxStyle.YesNo, "Replace")

If

confirm = & Then

106 Text processing

TextArea,Text = text.Replace(target,newtext)
End If
End If
End Sub

Formatting tools

Before we add the formatting routines, we
should get the menu items in place so that we |
can test them. The new Format menu is shown
here. This has a Font Style submenu, with
Bold, Italic and Underline options.

7.4 Font formatting

The Font dialog box

The Font dialog box makes font formatting ridiculously easy to implement. All
you have to do is call up the box and copy the font specification from its Font
property into the RichTextBox’s Font property.
Place a FontDialog control in the component tray, along with the other dialog
boxes, and add the following three lines of code into the menu item’s Click sub.
Private Sub FormatFont Click(ByVal sender As System.Object, Byval e
As System.EventArgs) Handles FormatFont.Click
If FontDialogl.ShowDialog() = DialogResult.OK Then
TextArea.SelectionFont = FontDialogl.Font
End If
End Sub
Trying to control individual elements of the font, such as turning bold on or off, is
considerably more complex, as you will see shortly. Let’s get the rest of the easy
stuff out of the way first.

Figure 8.1 Font

The standard Font dialog e I —
box can be called up from
within Visual Basic

AaBbYyZz

Gepge
o
[Womemn

7.5 Font.Style formatting 107

The Color dialog box

0 = 5 + | Basi dolors
This is the standard Windows Coloz: dialog _box, ‘lt S e rErEEE
used here to colour the font, and you'll meetitagainin | rErmm =
Chapter 8, when we look at graphics. Whatever is be- | 18 &7 55 i o =
ing coloured, the dialog box is used in the same way.
All we need to do is place the ColorDialog control
in the component tray, then add a little code to copy the
chosen colour over to the SelectionColor property — n‘f“’r‘“{“j P
this sets the colour of the selected text. rerEFEEr
The Color dialog box as it first Dvry Oumiom Calom 3

(3 I Carcel

Here is the code to set colour:
Private Sub FormatCol Click(ByVal sender As System.Object, ByVal e
As System.EventArgs) Handles FormatCol.Click
If ColorDialegl.ShowDialog() = DialogResult.OK Then
TextArea.SelectionColor = ColorDialogl.Color
End If
End Sub

7.5 Font.Style formatting

You can set the font style options from within the Font dialog box, but we should
also offer Bold, ltalic and Underline on/off switches — as most word processors
do. This will take a little more work because the Bold, Italic and Underline switches
are all stored in the FontStyle property. This is a single byte, and the on/off state
of the switches is held in individual bits within it. You are going to have to use the
bitwise operators to turn them on and off.

Logical (bitwise) operators

The operators And, Or and Xor are mainly used for combining expressions in
logical tests as we saw in Chapter 3, but they can also be used for manipulating
numbers at a binary level,

Here’s a crash course for readers who are new to binary numbers,

Binary numbers
In any number, the value that a digit represents depends upon two things — the
digit itself, and its place in the number. This is true in any system. Look at a
number in our normal (base 10) system. Take the digits of 1066, right to lefi:

o) 6

6 = 6 L

6 = 610 = 60
0o = 0*100 = 0
1 = 171000 = 1000

7.5 FonlStyle formatting 109

We can use this to test the status of bits. Looking back to the FontStyle values, if
you had a variable myStyle which held the style setting, the expression:

If {myStyle And 2) = 2 Then...
will give a True result if the Italics bit is on.

Or

1f you combine two numbers with Or, if either or both of the bits at one place are
1, then that bit in the result is 1.

1o00=1
10001
Dord=0
For example,
89 Or €9 =
Convert to binary:
(128 | 64| 32| 16| 8 | 4 | 2 |1
sa= | 0 1 0 1 1]l o fo |1
69=| 0 1 0 ol ol 1]o |1
L0 1 '] 1 1 1 0 1 =93

We can use Or to make sure that bits are set. Sticking with the FontStyle exam-
ple, this expression:

myStyle = (myStyle Or 1)
will turn on Bold if it is not already on, or leave it on if it is.

Xor

This is the eXclusive Or. This only gives a | result if one or other — but not both
~ of the compared bits is 1.

1 ¥r 0=1

1 Xor 1 =0

0 ¥or 0 =0
For example,

B9 Xor &9 =

Convert to binary:

120 | 64| 32| 16
89 = 0 0 1

69 = 0 1 0 0
0 0 0 1

N S ES

- o (= o
(=R i=l{=0|0]
[S i Y

=28

We can use Xor to ‘flip” bits — toggling them between 1 and 0. This will turn Bold
on if it is off, or off if it is on:

myStyle = [myStyle Xor 1}

110 Text processing

Setting Font.Style with Xor

We noted earlier that the Font.Style property has four components:
Bold = 1 {when on)

Italics = 2 {when on)
Underline = 4 (whenon)
Strikethrough = 8 {(when on) — not implemented here

There are predefined constants with these values, which you can use to set single
options, e.g. FontStyle.Bold has a value of 1. If we Xor these against the existing
style, it will toggle the options on or off. Suppose Bold and Italics are currently
on. Style will have a value of 3. The expression:

TextArea.SelectionFont.5tyle Xor FontStyle.Bold

will result in a value of 2 - toggling Bold off. Look at the bits:

u I B
Font.Style '] 1] 0 0 0 0 1 1 = ltalic on, Bold on
FontStyle. Bold 0 0 0 0 0 0 0 1
new Style Lo Jo[oflo]o [o]1 [0] = naicon Boldoff

Do it again, and the result will be 3 as Bold is toggled back on. That gives us this
routine for Bold — the Italic and Underline versions are basically the same:

Private Sub FontStyleBold Click(ByVal sender As System.Object, ByVal

e As System.EventArgs) Handles FontStyleBold.Click
newStyle = TextArea.SelectionFont.S5tyle Xor FontStyle.Bold
setfont () ‘see below

End

Sub

We are not actually setting the font options here. To redefine the font, we have to
create a new Font object, with the changed options, and copy that to the text's
font. The Font object has three arguments:

Font {Family, Size, 5Style}
Family is the font name (you can also use a generic name, e.g. *Sans”, instead of
specifying an exact font). You could define a new font like this:

headerFont = New Font ("Arial®™, 15, FontStyle.Bold)
We only want to set the style, but you must give all three arguments. The solution
is to pick up the current FontFamily and Size settings from the SelectionFont
property, and reuse them when we define the new font.

Private Sub setfontl)
Dim MyFont As System.Drawing.Font

MyFont = TextArea.SelectionFont '"current settings
TextArea.SelectionFont = New Font(MyFont.FontFamily, MyFont.Size,
newStyle)

End

Sub

7.6 Worked example: a simple word processor 111

7.6 Worked example: a simple word processor

Here is the complete code for our simple word processor. If you started from the
basis of the text editor from Chapter 6 and have added the routines that we have
developed in the last dozen pages, then you should have most of it already -
though not necessarily in the same order.

Public Class Forml
Inherits System.Windows.Forms.Form
Dim myfilename As String
Dim newStyle As System.Drawing.FontStyle

Windows Form Designer generated code

Private Sub FileExit_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles FileExit.Click

End
End Sub

Private Sub FileOpen Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles FileOpen.Click
OpenFileDialogl.Filter = "Rich Text Format|*.rtf"
If OpenFileDialogl.ShowDialog() = DialogResult.OK Then
TextArea.LoadFile (OpenFileDialogl.FileName
myfilename = OpenFileDialogl.FileName
End If
End Sub

Private Sub FileSave Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles FileSave.Click
If myfilename = "" Then
MsgBox ("Please use File Save As")
Else
Texthrea,SaveFile (myfilename)
End If
End Sub

Private Sub FileSavehs Click(ByVal sender As System.Object, ByVal e
As System.EventArgs) Handles FileSaveds.Click
SaveFileDialogl.Filter = “Rich Text Format|*.rtf"
If SaveFileDialogl.ShowDialog() = DialogResult.OK Then
TextArea.SaveFile (SaveFileDialogl.FileName)
myfilename = SaveFileDialogl.FileName
End If
End Sub

Private Sub PrintDocumentl PrintPage(ByVal sender As System.Object,
ByVal e As System.Drawing.Printing.PrintPageEventArgs) Handles
PrintDocumentl.PrintPage

112 Text processing

Dim y As Single = e.MarginBounds.Top

Dim x As Single = e.MarginBounds.Lefr

Dim printFont As New Font("Arial"™, 14)

Dim myBrush As ¥ew SolidBrush(Color.Black

e.Graphics.DrawString (TextArea,Text, New Font ("Arial", 16), myBrush, x, vy}
End Sub

Private Sub FilePrint Click(ByVal sender As System.Cbject, ByVal e
As System.EventArgs) Handles FilePrint.Click
PrintDialogl.Document = PrintDocumentl
If PrintDialogl.ShowDialeg{) = DialogResult.OK Then
PrintDeocumentl.Print ()
End If
End Sub

Private Sub EditCopy_Click(ByVal sender As Object, ByVal e As
Syatem,EventhArgs) Handles EditCopy.Click
Clipboard.SetDataObject (TextArea.SelectedText)
End Sub

Private Sub EditCut_Click(ByVal sender As Object, ByVal e As
System.Eventhrgs) Handles EditCut.Click

Clipboard.SetDataObject (TextArea.SelectedText

wer

TextArea.SelectedText =
End Sub

Private Sub EditPaste_Click({ByVal sender As Object, ByVal e As
System.EventArgs) Handles EditPaste.Click
Dim data As IDataObject = Clipbeard.GetDataObject ()
I1f data.GetDataFresent (DataFormats.Text) Then
TextArea.SelectedText = dara.GetData({DataFormats.Text)
End If
End Sub

Private Sub EditFind Click(ByVal sender As System.Object, ByvVal e As
System.EventArgs}) Handles EditFind.Click

Dim target, text As 5tring

Dim firstChar As Short = 0

Dim startAt As Short = 1

bim findNext As Short

Dim oldecol As Object

target = InputBox("Text to find", "Find")
1f target = Nothing Then Exit Sub

text = TexthArea.Text

Do

firstChar = InStr(startAt, text, target)
1f firstChar = 0 Then
MsgBox ("Not found"

7.6 Worked example: a simple word processor 113

Exit Do

Else
TexthArea.SelectionStart = firstChar - 1
TextArea.Selectionlength = target.Length

oldeol = TextArea.SelectionCeolor
TextArea.SelectionCoelor = Color.Red
End If

findNext = MsgBox("Find the next?", MsgBoxStyle.YesNo, "Find")
TexthArea.SelectionColor = oldcol
startht = firstChar + 1
Loop Until findNext <> &
End Sub

Private Sub EditReplace_Click(ByVal sender As System.Object, ByVal
e As System.EventArgs} Handles EditReplace.Click

Dim target, text As String

Dim newtext As String

Dim editedtext As String

Dim firstChar As Short = 0

Dim startAt As Short = 1

Dim numChars As Short

Dim confirm As Short

target = InputBox("Text to f£ind", "Find and Replace")
If target = Nothing Then Exit Sub
numChars = target.Length
newtext = InputBox("Text to replace it with", "Find and Replace"
text = Texthrea.Text
firstChar = InStr(startAt, text, target)
If firstChar = 0 Then
MsgBox {"Not found®)
Else
Do
TextArea.SelectionStart = firstChar - 1
TextArea,SelectionLength = target.lenagth
TextArea.SelecticonColor = Color.Red
startAt = firstChar + 1
firstChar = InStr(startAt, text, target
Loop Until firstChar = 0
confirm = MsgBox{"Replace all?", MsgBoxStyle.YesNo, "Replace")
If confirm = & Then TextArea.Text = text.Replace(target,
newtext)
End If
End Sub

Private Sub FormatFont_Click(ByVal sender As System.CObject, ByVal
e As System.EventArgs) Handles FormatFont.Click

7.7 Exercises 115

7.7 Exercises

71

7.2

73

Find out about drag and drop editing and implement it in the text editor. (The
Help system is very good on this topic.)

A palindrome is a word or phrase that reads the same left to right and right to left,
e.g. “rats live on no evil star” or *Madam I'm Adam”. (Note that case, spaces and
punctuation are ignored.) Create a function that will return True if a string is a
palindrome.

Let’s code some coding. Proper cryptography is complex, so we'll make do with
letter-shifting — moving the characters a set number of places up the ASCII code,
s0 ‘Basic” would become ‘Fewmg' if 4 was the code number. Write routines
encode and decode text in the text editor.

Possible solutions to Exercises 7.2 and 7.3 are given in the Appendix.

Graphics

8.1 Basic concepts

Todraw any kind of graphic in Visual Basic, you have to work through three stages:
1 Create an object on which to draw.

2 Draw the image using the methods for drawing lines, circles, rectangles, etc.

3 Display the object, with its image.

Most of the code uses properties and methods from the System.Drawing
namespace, and in particular the Graphics, Color, Brush and Pen classes. If
you put this line at the very top of your program — above Public Class Forml..
Imports System.Drawing

.. then you won't have to type System.Drawing every time that you use a
method or property from the namespace.
Let's have a look at the stages in more detail.

The graphics object

This defines the variable canvas as a graphics object — note that System. Drawing
is essential here, even if you have imported it:

Dim canvas as System.Drawing.Graphics

This must then be associated with a form or a suitable control such as a PictureBox,
to give somewhere on which to draw. Visual Basic refers to the current form as Me.

canvas = Me.CreateGraphics()
The two lines can be run together:
Dim canvas as System.Drawing.Graphics = Me.CreateGraphics()

The graphics area has its origin (0, 0) at the top left corner of the form, and all
coordinates are given in pixels.

118 Graphics

Figure 8.1

Two lines produced
by Drawline()

2 |

DrawLine(mypen, 0, 0, 200, 200)

DrawLine(mypen, 50, 250, 400, 250) —___|

8.2 Line drawing methods

DrawRectangle()

The syntax is almost the same as DrawLine ().

GraphicsArea.DrawRectangle(pen, x, y, width, height)

x, v, width, height define the top left comer and the size of the rectangle. Try this
~ you should see a black square, 50 * 50 pixels, with its top left at 50, 50 and a red
rectangle, 300 x 20 pixels, starting at 0, 150.

Protected Overrides Sub OnPaint(ByVal e As System.Windows.Forms.

PaintEventArgs)
Dim canvas As System.Drawing.Graphics
canvas = Me.CreateGraphics()
Dim mypen As New Pen(Color.Black, 4)
canvas,.DrawRectangle (mypen, 50, 50, 50, 50)
mypen.Color = Color.Red
canvas.DrawRectangle (mypen, 0, 150, 300, 20)
End Sub

Two rectangles produced
by DrawRectangle() /B

DrawRectangle(mypen, 50, 50, 50, 50) il

DrawRectangle(mypen, 0, 150, 300,720)

8.2 Line drawing methods 119

DrawEllipse()

The syntax is the same as DrawRectangle (), with the single difference being
that here the width, height define the top left comer and the size of the rectangle
in which the ellipse is to be drawn.
GraphicsArea.DrawEllipse(pen, x, y. width, height)
If width and height are the same, of course, you will get a circle. This next example
produces a small circle and a larger flattened ellipse.
Protected Overrides Sub OnPaint (ByVal e As System.Windows.Forms.
PaintEventArgs)
Dim canvas As System.Drawing.Graphics
canvas = Me,CreateGraphics()
Dim mypen As New Pen(Color.Black, 4)
canvas.DrawEllipse (mypen, 50, 50, 50, 50)
mypen.Color = Color.Red
canvas.DrawEllipse (mypen, 25, 150, 300, 100)
End Sub

Figure 8.3

DrawEllipse() in action

DrawArc()

An arc is a segment of an ellipse, so it’s not surprising that the Drawhrc () method

is an extended version of Drawgllipse (). The syntax is:
raphicsArea.DrawEllipse (pen, %, y, width, height, start, sweep)

x, ¥, width, beight define the bounding rectangle for the whole ellipse.

start is the angle at which the arc begins.

sweep is the angle of the arc.

2700

In DrawArc, angles are measured
in degrees, counting clockwise
and starting from 3 o'clock 180° 0°

120 Graphics

In the demo code for this, I have accompanied each Drawarc () command with a
DrawEllipse () set to show the complete ellipse for the arc.

Protected Overrides Sub OnPaint(ByVal e As System.Windows.Forms.
PaintEventArgs)
Dim canvas As System.Drawing.Graphics

canvas = Me.CreateGraphics(}
Dim mypen As New Pen(Color.Black, 4)

Dim thinpen As New Pen(Color.Gray, 1)
canvas,DrawEllipse (thinpen, 50, 0, 100, 100)
canvas.DrawAre (mypen, 50, 0, 100, 100, 0, 135)
canvas,DrawEllipse (thinpen, 25, 150, 300, 100)
canvas.DrawhArc (mypen, 25, 150, 300, 100, %0, 240)
End Sub

Two arcs with their

matching ellipses

DrawPolygon()

This is a rather more complex method. A polygon is defined by the position of its
vertices, and these are given in points and held in an array. Both need some
explanation.

In Visual Basic, a point is a data structure, consisting of a pair of x, y values. To
set up a point, use the New constructor, giving the coordinates, e.g.

Dim pl = New Point (100, 50}
f1 now refers to the location 100, 50.

Having created the individual points for the polygon, you then have to collect
them into an array. The best way to do this is to copy the points at the time of setting
up the array. The line should look something like this — note that the values for the
array are enclosed in curly brackets:

Dim PolyPoint As Point() = (pl, p2, p3, pd, p5, p6)
This array is then passed to DrawPolygon () as an argument, e.g.
canvas.DrawPolygon(myPen, PolyPoint)

8.2 Line drawing methods 121

This subroutine will draw a hexagonal polygon, with sides of 125 pixels. It should
be called from the OnPaint () subroutine.

Protected Overrides Sub OnPaint (ByWal e As System.Windows.Forms.

PaintEventArgs)

Static Dim canvas As System.Drawing.Graphics

Dim mypen As New Pen(Color.Black, 2}

oim mybrush As New SolidBrush{Color.Blue)

canvas = Me.CreateGraphics()

Dim ptl As New Point (150, 50)

Dim pt2 As Hew Point (250, 100}

Dim pt3 As New Point(250, 225)

Dim pt4 As New Point (150, 275)

Dim pt5 As New Point (50, 225)

Dim pté As New Point(50, 100)

Dim curvePoints As Point{() = {ptl, pt2, pt3, pt4, pt5, pté]
canvas,DrawPolygon (mypen, curveFcints)
End Sub

iqure 8.6 ® Ferm1

A hexagon drawn using
DrawPolygon()

You might like to know that you can calculate the vertices of any regular polygon
using the following formulae.

% = Int{xcentre + Sin(wertex * 2 * PIL / sides) * aize)

y = Int{ycentre + Cos{vertex * 2 * PI / sides) * size)
Where xcentre and vcentre are the coordinates of the centre of the polygon; vertex
is the position number of the vertex, counting anticlockwise from 0; sides is how
many sides there are; and size is the length of a side.

e.g. these find the coordinates of the third point of a 5-sided polygon, centred
at 100, 100 with sides of 50 pixels:

x = Int{l00 + Sin{3* 2 * FI / 5) * 50)

y = Int{100 + Cos(3* 2 * PI / 5) * 30)

124 Graphics

8.4 Worked example: spots before the eyes

Public

This is a trivial program. It scatters circles on the screen at random - at least, the
positions and colours are random; the sizes are fixed, but they can also be
randomised if you care to add the necessary code. The random colours are produced
using the FromRGE () function which we will be looking at in section 8.7. Please
accept, for the moment, that the expression:

.Color.FromArgb (red, green, blue)

uses the values in the variables red, green and blue, to define a colour.

One other things to watch out for. The drawing code runs through a loop, and

we must have a way out of this. The solution lies in the Boolean variable active. This
is declared and set to True at the very start of the program, and is used as the control
variable of the drawing loop. Towards the end of that loop you will see the line:
Application.DoEvents()
This releases the system to check for any events that may be occurring, and the
event we are looking forhere isaclick —onClick() inthe overrides classwill
pick up any click, not just one on a specific control. When the user clicks, active
is set to Falve, and the drawing loop comes to a halt.

Notice the delay loop. Modemn PCs work so rapidly that you normally need to
slow visual effects down so that you can see them. The complex calculation that
is going on here has no effect on the values in the program, it’s just thumb-twiddling
1o slow down the execution of the program.

For delay = 1 To 100000

x = CInt{Math.Sin{CDbl{y}))

This is set for a form of just over 500 pixels square. You can make the form as
large as you like, but do adjust the random lines to suit the size.

Class Forml

Inherits System.Windows.Forms.Formm

Dim

active As Boolean = True

Windows Form Designer generated code

Protected Overrides Sub OnPaint(ByVal e As System.Windows.Forms.
PaintEventArgs)
Static Dim canvas As System.Drawing.Graphics

» mypen As New Pen(Color.Black, 2}

: mybrush As New SolidBrush(Color.Blue)
» red, green, blue As Integer

» %X, ¥ As Integer

y delay As Integer

canvas = Me,CreateGraphics()

Do

red = Int(Rnd(} * 256
green = Int({Bnd{) * 2
blue = Int(Rnd{) * 25

]
56}
8)

B.5 DrawString() 125

mybrush.Color = Color.FromArgb(red, green, blue)
x = Int(Rnd() * 500)
y = Int(Rnd() * 500)
canvas.FillEllipse {mybrush, =, vy, 50, 50)
canvas.DrawEllipse (mypen, x, y, 50, 50)
For delay = 1 To 100000
x = CInt(Math.Sin(CDbl(y)))
Next
Application.DoEvents ()
Loop While active
End Sub

Protected Overrides Sub OnClick(ByVal e As System.EventArgs)
active = False
End 5ub

End Class

The spots program, with the
size set to a 50 pixel circle.
What happens if you bring
another window to the front
while this is running, then bring
this one forward again? What
activates the OnPaint event?

of

The DrawString () method writes formatted text on a graphics area. [ts syntax is:

8.5 DrawString()

GraphicsArea.DrawString (text, font, brush, x, y)
where text is the text to print, fonr defines the name, size, style, etc. of the font, brush
sets the colour and x, y define the top left corner of the print area on the paper. These
can be written directly into the method, or handled through variables.

The font can be specified in great detail — which means it can get quite
complicated — but all that is actually essential is the font name and size. The name

126 Graphics

is a string, and is given as it appears in the Fonts folder or in the Font list of a word
processor, e.g. “Arial”, “Lucida Bright”. Have a look in your folder or Font list to
see what is available on your PC (but note that Visual Basic can only handle True
Type fonts).
Like pens and brushes, fonts are Graphics objects. They can be constructed in
advance, or defined within the drawing method. These two lines:
Dim myFont As New Font("Arial", 18)
canvas.DrawString ("Test", myFont, myBrush, 100, 100}
Have the same effect as this one:
canvas.DrawString ("Test", New Font("Arial™, 16), myBrush, 100,100}
You can see DrawString () at work in the next example. It produces the labelled
axes for a graph. To write the numbers at the tick marks, you need code like this:
canvas.DrawString (tick, myFont, mybrush, tick * 20, 250)
In practice, a little adjustment is needed to nudge the text into the right place.
The amount of adjustment depends upon the size (and to a lesser extent the
name) of the font and the scale of the ticks — these are drawn 20 pixels apart. Be
prepared to alter the values in those lines to suit your display.

Protected Overrides Sub OnPaint(ByVal e As System.Windows.Forms.

PaintEventirgs)

Static Dim canvas As System,Drawing.Graphics

Dim myFont As New Font({"Arial", 10)

Dim mylbrush As New SolidBrush(Color.Black)

Dim barPen As New Pen(Color.Black, 2) ' thicker for the axes
Dim tickPen As New Pen(Coler.Black, 1) ' thin for the tick marks
Dim tick As re

canvas = Me.CreateGraphics{()

' draw the axes
canvas.DrawLine (barPen, 50, 250, 250, 250)
canvas.Drawline (barPen, 50, 50, 30, 250}

Figure 8.10

The output from the DrawString
demo. Experiment with other
fonts, sizes and ranges of axes.

™ formi

B.6 Tidying up drawings 127

For tick = 1 To 10
' draw the ticks
canvas.Drawline (tickPen, 50 + tick * 20, 250, 50 + tick * 20, 240)
canvas.DrawLine (tickPen, 50, 250 - tick * 20, 60, 250 - tick * 20)
' write the labels
canvas.DrawString (tick, myFont, mybrush, 45+ tick * 20, 250)
canvas,Drawstring (tick, myFont, mybrush, 30, 240 - tick * 20}

Next

End Sub

Task 8.2

Plot these points on your axes, labelling them with their letters: A (10,30),
B (25,80), C (50,50) and D (85, 70).

8.6 Tidying up drawings

Among the other methods in the Drawing class are two which can be used for
“tidying up” operations — in two senses of the term.

Clear()

Clear () clears the graphics area by filling it with a flat colour ~ typically the
background colour — erasing any drawing. The syntax is;
GraphicsArea.Clear(color)

For example, if the form’s BackColor was white, this would clear the area:

canvas.Clear (Color.White)

Dispose()

This does a very different sort of tidying up. When you create a New instance of
any object, it takes up space in memory, and it will continue to occupy that space
after you have finished with it unless you tidy it up. In a busy program, the drain
on memory resources can become a problem, Get into the habit of disposing of
objects when you have finished with them to free up their space.

The syntax is:

cbjece.Dispose(}
For example, you will find this in the exit routine of the next program:

myBrush.Dispose()

128 Graphics

8.7 Defining colours

A possible layout for the
FromArgb demo program

Colours from RGB values

So far we have used the palettes for defining colours at design time and the Color
names for defining them during run-time. There are other ways of doing it.

On a computer screen, colours are created by combining red, green and blue
light in differing intensities. The value of each light is held in one byte, and so is
between 0 and 255, giving you a theoretical range of 256' (16+ million) colours,
This is 24-bit colour (3 bytes = 8 bits per byte). The FromArghb () function allows
you to specify a colour from its red, green and blue components. It is used in this
form, where red, green and biue are short integer values or variables:

+«.Color.FromArgb (red, green, blue)

Here's a short demo program which explores it.
On a form place one PictureBox, called picCanvas and three HScrollBars,
hsbRed, hsbBlue and hsbGreen, with accompanying Labels.

LT 1 s
Giew “ J lJ
ne o e

Go to the code window and add this code to the appropriate controls. Note the three
general variables that are declared at the top of the program.

Public Class Forml
Inherits System.Windows.Forms.Form
Dim red, green, blue As Short

Private Sub Forml_Load(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles MyBase,Load
red = 255

blue

= 255

green = 255
picCanvas.BackColor = Color.FromArgb(red, green, blue)

End Sub

130 Graphics

Let's look at the code again to see how it worked.

1f ColorDialogl.ShowDialog() = DRialogResult.OXK Then

The ShowbDialog () method makes the dialog box appear, but you then need a

means of getting the choice from there back to your code. By setting it inan 1€

statement and checking for the OK result, this picks up the point at which it closes

and also ensures that the code only takes the choice if the user has clicked OK.
picCanvas.BackColor = ColorDialogl.Color

A Color dialog box only has one item of information — its Color property. Some
dialog boxes, as you will see in the next chapter, hold several items.

8.8 Working with imported graphics

We first met the idea of assigning graphics to the Image property of controls back
in Chapter 2, and have touched on it a few times since. Let’s have a closer look at
the possibilities of graphics in Visual Basic programs.

Images and Imagelists

Several different types of controls have lmage or Backgroundlmage properties into

which graphics can be imported for display. Some controls, such as Buttons and

Labels also have an ImageList which can store sets of images. You might, for

example, have two altemative images for a Button to represent its normal and

“pushed-in" states, If you are going to do animation, an Imagelist offers a

convenient place to store the set of images and a convenient way to manage the

changes of image when the animation 1s active — all you need to do is change the
index number. For displaying the images, use a Label - not a PictureBox (it won't
have an ImageList).

Using an ImageList is basically straightforward - but you have to do things in
the right order. The key to handling ImageLists is to realise that all the images in
a list will automatically be made the same size, but that you cannot control the size
through the ImageList itself — images will either be the size of the control linked
to the ImageList or the default 16x 16 pixels. Which means that before you start on
the ImageList you need to set up the control which will display the images — and
when doing that you will need to know the size of the images. Here’s the process:
1 Create your first image, cropping the canvas down to the minimum before

saving it. (If you are using Paint, select the area which just encloses the image

and use Edit > Copy To... to save it to file.) Make a note of the size.

2 Create the other images for the set, making sure that they are all the same size
—it's often simplest to load in an existing image from the set, edit it 1o give the
movement change, then save it with a new name.

3 Place a Label on the form, setting its size to suit the images.

4 Add an ImageList control — it will drop into the components tray at the bottom
of the screen.

8.9 Animation 133

image. As developed here, where my Man’s image is 64 pixels wide, an adjustment
of 32 to the Left or Right property produces a reasonable effect. Trial and error is
the best way forward,

The whole of the movement routine is run off a Timer. This gives us continuous
movement, no matter what else is happening on the form, plus an easy way of
adjusting the speed, by linking the Timer Interval to the Scroll Bar.

Form layout

Where you place controls on this form is a matter of choice, and the location of
some controls is quite irrelevant.

The ScrollBar should be set up to range from a Min of 10 to a Max of around
200, with an initial Value of 100. (And once again, trial and error will suggest the
best limits for your animation.) The value from here will be passed to the Timer’s
Interval. The Timer is initially turned off. It is enabled by clicking on the btnLeft
and btnRight Buttons.

The animation form with
the controls in place hsbSpeed
2 walkman - Micresoll Vivual Basic NET [de: fgn] - walkenan, vb [Design]
Fhe [t Yew Project Bubd (ebug Dgts Foms

F-ro-c@l@ LhE

Toakor a2
Dats

® a1 Fge

* Form1

IbiMan

btnStop

S 1mageiinl

0 Tt

I |l

btnlLeft binExit binRight

134 Graphics

The animation code

It takes remarkably little code to produce simple animation.

e The Left and Right Buttons just set the way and turn the Timer on.

» The Stop Button turns the Timer off and sets the image to the standing man.
s The Slider copies its value, when changed, over to the Timer.

s The Timer moves the Label and changes its image.

Public Class Forml
Inherits System.Windows.Forms.Form

Windows Form Designer generated code

Dim manstep As Short = 0
Dim way As String = "None"

Private Sub btnleft Click(ByVal eventSender As System.Object,
ByVal eventArgs As System.EventArgs) Handles btnLefr.Click

way = "Left"

Timerl.Enabled = True
End Sub

Private Sub btnRight Click(ByVal eventSender As System.Object,
ByVal eventArgs As System,EventArgs) Handles btnRight.Click

way = "Right"

Timerl.Enabled = True
End Sub

Private Sub btnStop_Click{ByVal eventSender As System.Object,
ByVal eventArgs As System.EventArgs) Handles btnStop.Click
Timerl.Enabled = False
1blMan.Image = ImageListl.Images(4)
End Sub

Private Sub hsbSpeed Screoll(ByVal eventSender As System.Object,
ByVal eventArgs As System.Windows,Forms.ScrollEventArgs) Handles
hsbSpeed.S5croll

Timerl.Interval = hsbSpeed.Value
End Sub

Private Sub Timerl_Tick(ByVal eventSender As System.Object, ByVal
eventArgs As System.EventArgs) Handles Timerl.Tick

If manstep = 0 Then

manstep = 1
Else
manstep = 0
End If
If way = "Left"™ Then

8.9 Animation 135

1blMan.Left = lblMan.Left - 32
1blMan.Image = ImageListl.Images(manstep)

Else
lblMan.Left = lblMan.Left + 32
lblMan.Image = Imagelistl.Images(manstep + 2}
End If
End Sub

Private Sub cmdExit Click(ByVal eventSender As System.Cbject,
ByVal eventArgs As System.EventArgs) Handles btnExit.Click

End
End Sub
End Class

Figure 8.15

And when you've got it going, do
replace those stick men with some
pictures with a bit more style!

Faster Slower swp |
J | I
e |
Task 8.3

Create your own set of pictures and animate them as described above. Once
you have the program working at this simple level, either add Up and Down
controls, or adapt it to produce smoother movement. What would you have
todoto give the character a life of its own, so that it could move without being
controlled by Buttons?

136 Graphics

8.10 Exercises

8.2

83

Write a program to draw a simple electrical circuit or other line and block image,
labelling the components with DrawString ().

Using the RGB demo as a base, write a program to create a gradient fill, shading
from one selected colour across to another by drawing thin lines of steadily
changing colours. You will need to record the red, green and blue values of the start
and end colours, then calculate the amount of change for cach.

Make a *flick-book” by creating a set of pictures displaying some kind of activity
—a matchstick person doing aerobics, a machine in motion with flashing lights and
whirling wheels, the cow jumping over the moon, or whatever. They should all be
the same size (the smaller they are, the faster they can be manipulated), and stored
in an ImageList. Use a Timer to cycle through them on screen, changing images 10
times a second or faster, looping back to the start after the last has been displayed.

Remember to include some means of stopping the animation, or you could be
forced to use [Ctel]+{Alt]+[Del] to reclaim control of your PC!

A possible solution to Exercise 8.2 is given in the Appendix.

Arrays and collections

Arrays provide a compact and efficient means of handling blocks of data,
“Collections of controls can give a similar eﬁimency to your hmd.lmg of
objecls on forms.

9.1 Dimensions, elements and subscripts

Arrays probably add more to the power of programming than any other feature,
for they make it possible to process a mass of data through a standard routine. With
an array in use, the same procedure will work just as well with 10 or 10,000 items.

An array is a set of variables — of any type — all with the same name, but with
different identifying numbers or subscripts. A simple one-dimensioned array can
be thought of as a numbered list.

Array Contents
Names(0) Fred
Names(1) Jim
Names(2) Sally
Names(3) Dick
Names(4) Karen
Names(5) Jo

This array would have been set up with the line:

Dim Names(6) As String
This has 6 elements, numbered 0 to 5. Each can be accessed individually, to read
or to change its data, by specifying its subscript: e.g.

TextBoxl.Text = Names(2) ' displays Sally

Names (4) = Katy ' replaces Karen with Katy
Note that arrays always start at (), and the highest subscript will be one less than the
number in the Dim statement.

A two-dimensional array may be thought of as a table, with numbered rows and
columns.

138 Arrays and collections

OXo 0 1 2
0 X
1
2 o

This could be the board for Noughts and Crosses, It would be declared with the line:

Dim OX0{(2,2) As String
In the illustration, OX0(0,0) holds *X™", and OX0(2,1) holds “O. There is no rule
that says vou must refer to rows first, then columns. You can think of your array
whichever way round you like — as long as you are consistent,

A three-dimensional array gives youastructure like that of a moder spreadsheet,
with multiple pages, each containing a grid of cells. And for those arrays with four
or more dimensions, you can think up your own analogies. Visual Basic permits
you to have up to 60 dimensions, with subscripts ranging from 0 to 2 billion!
Memory space is a consideration with large arrays. One with three dimensions,
each of 100, has 1,000,000 elements. If it is to hold integers, they will require 2
bytes each; longs and singles take 4 bytes; doubles and currency, 8 bytes; and
strings | byte per character — plus management overheads.

For example:

Dim wages(51,19) As Currency

will set up an array to hold the weekly wages of 20 workers, and will require a little
over 52 * 20 * 8 = 8320 bytes, just over 8Kb.

Dim marks(l0,30,25) As Double

This will hold the marks of 10 classes of students, with up to 30 in a class and 25
assignments per student. It will need 10 * 30 * 25 * 8 = 60,000 bytes of storage.

If the size of the array will not be known at the start of the program — perhaps
because it will be up to the users to specify their storage needs — the dimensions can
be omitted from the Dim line. They can then be given later, when they are known,
with the ReDim statement.

Dim yourdata() ' in general declarations
ReDim yourdata{rows, cols, pages) ' in a later procedure
Here rows, cols and pages would be variables holding user-defined values.

An array can be ReDimmed any number of times, but note that existing data is
lost unless the Preserve option is used, e.g.

FeDim Preserve inputdata(rows, ccls) ' do not empty array

9.2 Arrays and loops

Most data processing in arrays is done through loops, as the routine which works
for one clement works for all. As the number of elements is known, a For . . .Naxt
structure usually proves to be the logical choice.

9.3 Prime numbers 139

Try this simple demonstration. Attach the input and the results routines to two
Buttons, and set up the array at the top of the code to make it global.
Public Class Forml
Inherits System.Windows,.Forms.Form
Dim dataset (10) As Single

Windows Form Designer generated code

Private Sub btnlnput_Click(ByVal sender As System.Object, ByVal e
As System.EventArgs) Handles btnInput.Click
Dim element As Integer
For element = 0 To 9
DataSet (element) = InputBox(“NHext value?”)
Hext element
End Sub

Private Sub btnResults Click{ByVal sender As System.Object, ByVal
@ As System.EZventhArgs) Handles btnResults.Click

Dim element As Integer

Dim total, awerage As Single

For element = 0 To 2

total = total + dataset(element)

Next element

average = total / 10

MsgBox ("Total wvalues = ™ & total & " Average =
End Sub
Ernd Class

& average)

Task 9.1

Place two more command Buttons on the form and attach to them routines
to display the values in the array, and to edit any chosen element.

9.3 Prime numbers

Finding prime numbers has long been a favourite activity of programmers, because
finding bigger numbers faster is a demonstration of the power of a computer and
ofits program. So why don't we join in the fun too, The following program is based
on the fact that a prime number cannot be divided evenly by any other. It starts with
2 as the first prime, and works through the number sequence. As it goes, it divides
each number by every prime it knows about, discarding any that leave no
remainder. The algorithm takes the shape:
If num / primes(n}) = Int{num / primes(n))} Then
primenum = False
(The actual program lines are slightly different as the num value is held in the Label
IbiNum, so that it can be easily displayed.)

140 Asrays and collections

If it reaches the end of the known primes without finding a divisor, then that
number is added to the primes set — and the primes are, of course, held in an array.
The program has two limitations, which will prevent you from using it to get
into the Guinness Book of Records.
+ The first is the size of the array. In the demo program this is set at 1000. You
can push this as high as your computer can manage.
= The second limitation is time. The first couple of hundred primes are found in
a matter of seconds, but the further you go, the longer it takes to check each
number against the ever-growing primes set.
The form layout for this program is shown in Figure 9.1. You will notice that [have
included a Stop Button in the design, so that you can halt the search when you grow
bored. The Button sets the variable finished to True. This causes the search loop to
end, and the results to be displayed.
You will also see that there is a Scroll bar on the TextBox used to display the
results. To get this, set the TextBox's ScrollBars property to Vertical. Without the
scroll bar, the TextBox could only display the first 300 or so primes.

The form layout for
= IbINum
the primes program E_
| - wiFoung
IbINum is used to hold and
to display the number
currently being checked by
the search routine
s |
IblFound is updated as sim | Scroll bar ——
each new prime is identified
Qut F

Public

Class Forml

Inherits System.Windows.Forms.Form

Dim

finished As Boolean

Windows Form Designer generated code

Private Sub btnStart Click(ByVal sender As System.Object, ByVal e As

System.

Dim

EventArgs) Handles btnStart.Click
primes (1000) As Integer

Dim count, num, found As Integer

Dim primelist As S5tring

Dim primenum As Boolean

finished = False

primelist = "Primes: " ' header text for display

num

= 2

.4 Stacks and Reverse Polish arithmetic 141

1blNum, Text = num ' start of number sequence
found = 0
lolFound.Text = found
primes (0) = 2 ' the first known prime
Do ' search routine loop

num += 1

1blNum.Text = num
primenum = True

For count = 0 To found ' divide by known primes
If num Mod primes(count) = 0 Then
primenum = False ' quit when divisor found
Exit For
End If
Next count
If primenum Then ' if no divisor must be prime
found += 1
1blFound.Text = found
primes(found) = num ' add to primes set
primelist &= " " & pum
End If
Application.DoEvents ()

Loop Until finished Or found = 1000
txtOutput.Text = primelist
End Sub
Private Sub btnStop_Click(ByVal sender As System.Object, ByVal e
As System.EventArgs) Handles btnStop.Click
finished = True
End Sub
Private Sub btnQuit Click(ByVal sender As System.Object, ByVal e
As System.EventArgs) Handles btnQuit.Click
End
End Sub

End Class

The Application.DoEvents statement near the end of the loop retums control,
briefly, to the operating system, so that it can check for any Button clicks or other
events. Without it, there would be no way of halting the routine, except through
[Ctrl]+[Break]. Its presence allows the Stop procedure to be activated.

Note that the whole purpose of this is to force an exit from the search loop — the
flow of execution remains within the btnStart_Click procedure, but moves on
to display the results.

9.4 Stacks and Reverse Polish arithmetic

A stack is an area of memory accessed on a Last In, First Out basis. In the jargon,
data is pushed onto a stack and popped off it. The operating system and other
programs written at machine level use the Stack (a predefined part of memory) to
track the flow of execution, and for temporary data storage. When the flow goes

9.5 Collections and confrol arrays 143

s -
- StackBox()

IpINum2 IblAnswer
The form layout for the
Reverse Polish program

IblOp

IbINum1

The labelled controls all play an \

active part, and should be named
as shown — except for the
StackBox collection which is
generated by the code.

Labels

Labesd

btnQuit ————————— o | >>> 2]

you can use ordinary Labels for planning purposes. Place two or three on the form
at the bottom of the area where the array will go. In my design, the controls are
60 = 24 pixels and positioned with their Tops 30 pixels apart, and the Left set to
400. Experiment with your Labels, and if you think a different size or layout looks
better, then be prepared to adjust the values later when we write the code for the
control array. When you are happy with the layout, delete the stand-in Labels.

9.5 Collections and control arrays

Up to version 6, Visual Basic offered easy-to-build and easy-to-use control arrays.
These were one of the delights of the language, and not one that existed in the old
programming languages. They allowed you to group and handle controls en masse
just as you could handle variables through variable arrays. Unfortunately, in the
move to Net, this facility has been lost. You can still organise controls into arrays,
but it takes more effect. In the Visual Basic 6 version of the Reverse Polish
program, the array was produced by defining the first Label on the form, then
copying and pasting it a half a dozen times. In the Net version we have to write a
whole bunch of code to define a new class of objects.

Creating a collection

Visual Basic has a Collections class which holds the basic structure and functions
for managing sets of items. To get a control array we have to create a new class of
‘collectable’ objects, and write code to set their default properties and to provide
a means to add them onto forms and to access them from within the program.

144 Arrays and collections

T

Adding a new class — note Gategores: Temgletes: i =
that it has a .vb extension, | < Lol Profes S = j w 8
the same as a Module. windows Form Clams Modue
They are both files of code. ;
a B =
1 :UI-.:\‘Q'Q Uses Conkral :-i:l;bjﬂ.
' & 9 &
Datadet L Fie XML Schema

4 empty cass declarshon

Bame [#ackel vt

First we have to create a new class.
1 Open the File menu and select Add New Item...

Or
Open the Project menu and select Add Class ...

2 Atthe Add New Item dialog box, sclect Class from the Templates, give it the
name Stacker.vh and click Open.

The collection code

An empty class declaration will open in the code window. Type in these lines:
Public Class stacker

Inherits System.Collections.CollectionBase

Private ReadOnly HostForm As System.Windows.Forms.Form
The first line brings in the core code for collections by linking to the CollectionBase
class. The second creates a Form variable that allows us to link our new control to
the form — 1 have called it HostForm.

We now need to create three procedures. A function to define the new stack/
label object; a New constructor sub to create an instance; and a property to tell us
the index value of the control (i.e. the equivalent of an array subscript).

The AddStack() function
First the function, which | have called AddstackBox (). Only these four lines are
absolutely essential:

Dim aLabel As New System.Windows.Forms.Label
This defines the new control as a Label.

Me.List.Add(aLabel)

HostForm.Controls.Add (aLlabel)
These lines add the object to the internal List of the collection class, and to the set
of controls on the form.

95 Collections and control arrays 145

Return alabel

The value retumed by this function is an instance of the new aLabel control.
The rest of the code sets the initial properties of the new control, including the
Top and Left to fix its position. You should vary these to suit your layout. Mine
all have the Left at 400, and they are space down the screen by this line.
alabel . Top = 330 - Count * 30
Count is the index of the control in the collection’s list. This calculation puts
aLabel(1) at 300, and aLabel{ 10) at 30.
Here is the complete code for the function. Set the decorative and size properties
however you like.
Public Function AddStackBox(} As System.Windows.Forms.Label
! create a new instance of the Label class
Dim aLabel As MNew System.Windows.Forms.Label
' add the label to the collection's internal list
Me.List.Add(aLabel}
' add the label to the controls collecticn of the form
HostForm.Controls,.Add (alabel)
* set initial properties for the label object
alabel.Top = 330 - Count * 30 ' stack from the bottom (max 10)
alabel.Left = 400
alabel.BackColor = Color.White
alabel . BorderStyle = BorderStyle.FixedSingle
alabel.Width = 60
alabel.Height = 24
Return alabel
End Function
You do not have to set the new control’s properties at this point. It works here
because we know how and where we want the controls to appear. A more flexible
approach would be to leave all the properties at their standard defaults, then define
them within the calling control. Alternatively, properties could be passed in
through parameters, like this:
Public Function AddStackBox(ByVal y As Single, ByVal x As Single)
As System.Windows,Forms,Label
alabel.Top = ¥
alabel.Left = x

Thecallto AddStackBox (%, y) would take in the positional values from the code.

The New() constructor

This takes the shape:
Public Sub New(ByVal host As System.Windows.Forms,Form)
HostForm = host
Me . AddStackBox ()
End Sub
This links the form in the calling code (hosr) to the form variable (HostForm), then
uses the AddStackBox () function to add a new aLabel control to it.

9.5 Collections and control arrays 147

The stack pointer, that tracks the progress through the Stack array, has to be
accessed by this and the calculating procedure. It is held in the global variable sp
declared at the top of the program.

The code is a simple translation of the design. You will almost certainly have
to adjust the value in the line that moves biPoint, as this depends entirely on the
size of the IbIStack controls. Mine were 30 pixels apart.

Private Sub txtInput KeyPress{ByVal sender As Object, ByVal e As
Systﬂm.wjndows‘Forns,Ke}PressEventhJS} Handles txtlnput.KeyPress

Dim input As String

I1f e.KeyChar <> Chr{l3) Then Exit Sub

' only process after Enter pressed

input = txtInput.Text ' copy to a variable for easier handling
txtInput.Text = "" ' clear the input
If input = "+" QOr input = "-"0r input = "*" Or input = "/" Then

dopop (input)
Elself IsNumeric(input} Then

If sp = 10 Then ' if there are 10 in the array
MagBox ("5tack owverflow", 48}

Else
Stack.ltem(sp).Text = input ' push number onto stack
ap += 1 ' move the stack pointer
lblPoint.Top =-= 30 ' and the arrow display

End If

End If
End Sub

The pop-and-calculate design can be simplified to this:

5

The structure diagram
for the calculation code i |

Fig

| pop first || pop second | | calculate | 1 push result |

The implementation is a little more complex. We should check that we haven’t
reached the bottom of the stack before attempting to pop: and the different
‘calculate’ operations must be handled by a set of 1£s or a Case structure, The
whole routine could have been included in the KeyFPress code, but splitting it off
into a separate procedure makes the program more readable.
Private Sub dopop(ByVal op As String)
Dim numl, num2, answer As Single

' pop the first number
If sp = 0 Then ' check for overruntrap
MsgBox ("Bottom of stack *, 48
Exit Sub
End If
sp == 1 ' move the stack pointer
lblPoint.Top += 30 ' and the arrow display

148 Arrays and collections

lblNuml.Text = Stack.Item(sp).Text ' pop the first number
numl = Val (1blNuml.Text) ' copy into variable
Stack.Item(sp) .Text = " ' clear the stack box

' pop the second number - identical routine
1f sp = 0 Then

MsgBox ("Bottom of stack ", 48)
Exit Sub
End If
sp -= 1 ' move the stack pointer
1blNum2.Text = Stack.Item(sp).Text ' pop the second number
num2 = Val (lblNum2.Text) ' copy inte variable
'

Stack.Item(sp) .Text = "" clear the stack box
1blOp.Text = op
Select Case op
Case "+" : answer = numl + num2
Case "-" : answer = numl - num2
Case "*" : answer = numl * num2
Case "/" : answer = numl / num2
End Select

LblAnswer.Text = answer
Stack.Item(sp) .Text = answer ' push the answer onto the stack
sp += 1 ' move the display pointer

End Sub

1f you have placed a ‘Quit” Button on the form, it will need an “End’ written into
its Click event handler.

Build and run the program. Test it with the sequence we looked at earlier:

2 3 & = %
This should display 12 after the “** has been processed. 1f that test works, try some
more — but keep them simple as you should be checking them by hand or with a
calculator as part of the testing.

Figure

The Reverse Polish 2
s mm;pr.:numbw 5]

[us J[.}f me J{-J{ nan [RSee

nis

=
[l
)
-
=
)
a—

ki
i

9.6 The tabindex and event handling 149

9.6 The tabindex and event handling

The Calculator Form,
showing the controls.

Here's another way to handle multiple objects with one block of code. There are
two aspects to this and both start in the same place. Go into the code window and
look at the header line for any Click event handler. First look inside the brackets
where you will see this argument:
.+. (ByVal sender As System.Object..)
The sender identifies the object that was clicked, and part of this identification
isits tabindex property (normally used to set the order in which objects take the
focus when the user presses [Tab]). If you had a set of controls — ordinary ones, not
in an array, but with the tabindex values arranged in order — the expression
sender.tabindex would identify which had been clicked.
This leads us to the second point. Look at the end of the header line of an event
handler and you will see something to this effect:
... Handles Buttonl.Click
An event handler can be made to handle any number of events by adding their
names at the end of the line.
... Handles Butteonl.Click, Button2.Click, Button3.Click...
Put those two together and you have the equivalent of a control array, but using
standard controls from the Toolbox. The main extra work is in setting the tabindex
property of the controls to get them into order, and writing their events into your
handler’s header line. Where there are relatively few controls, this approach can be
more efficient as you can set up the form on sereen, and there is less code to write.
Once you get over a dozen, the balance tends to shift in favour of the control array.
As a demonstration of using the tabindex and of multiple event handling, here
is a simple on-screen calculator. The number Buttons have their tabindex property
set to match their displayed value (and their names).

DisplayTxt
Multiply
Buttons named No0 to no9
with their tabindex and Text Divide
properties both setto 0o 9
Subtract
AddBtn
Pointetn — | EquelBin

g
MemOutBtn MemInBtn ClearBtn QuitBtn

150 Arrays and collections

Here is the most efficient way to set up this form:
1 Open a new project.

2 Place a Buiton to make the “0" key - as the first control on the form it will have
a tabindex of .

3 Adjust its size, font and colours to suit yourself, then copy it and paste it re-
peatedly to create the other number ‘keys’.

4 Work through the key Buttons in their tabindex order, setting their Text to
display the appropriate number. The rest of their properties will already have
ben set.

5 Add the rest of the Buttons and other controls in any order — their tabindex
values are not relevant.

Setting the tabindex

If you do not create your controls in the required order, you can change the
tabindex property —it is just a matter of typing in a new value. IT this means
that a key Button and another control will have the same tabindex, that will
not affect the program - the code only use the tabindexes of the keys.

Handling the number keys

A Click on a digit can mean either start a new number, or add another figure to the
number that is building in the display. We can handle this by having a variable,
newnum, which is set to True when an operator is clicked, after which the user will
be starting a new number. newnum must be declared as a global variable.
The pseudocede — the structured program outline — is:
If it's a new number
make that the first digit of the number
turn off the newnum variable
else
add the digit to the end of the existing number
Let’s convert this to code. The first job is to set up a sub that can handle the Click
events for all the number key Buttons. Try this:
1 Double-click on the *0" key to get into its Click event handler. It should
read:
Private Sub NoO_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles Nod.Click
2 Add ‘*nol.Click, NoZ.Click.No%.Click’ to the end of the line. If you
want to change its name, do so — it won't make any difference, but it is useful
to remind yourself that this doesn’t just handle Ne0 . CLick. Mine looks like
this:
Private Sub NoButs{ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles Hel.Click, Nol.Click, NoZ.Click, MNo3.Click,
No4.Click, No5.Click, KWeoe.Click, 7.Click, NeoB.Click, No9.Click

152 Arrays and collections

is in the calculation. It makes sense to handle it all in one procedure with a Case or
If structure to perform the different calculations. Which begs the question, how will
the code know which operator was clicked?
We could set up a multiple event handler, with a header line something like this:
Private Sub Opertors(ByVal sender As System.Cbject, ByVal e As
System,.EventArgs) Handles AddBtn.Click, Subtract.Click, Multiply.Click,
Divide.Click, EqualBtn.Click
And in the code we could use the Text on the Buttons to select the Case action:
Select Case sender.Text
Case "+" : nl += n2
That would work. However, 1've taken a different approach — just to show that
there’s often another way! In this program, all operators are processed by one sub,
called processOp(). This takes as a parameter a number which identifies the
operation — Add is 1, Subtract is 2, etc.
Private Sub processOp{ByVal cperator As Short)
Select Case op
Caze 1 : nl 4= n2
The operator Buttons simply pass the appropriate number to it. Here, for example,
is the AddBin code.
Private Sub AddBtn_Click(ByVal sender As System.Cbject, ByVal e As
System.EventArgs) Handles AddBtn.Click
processOp({l)
End Sub
Here is the complete code for the operators:

Private Sub processOp(ByVal cperator As Short)

If newnum Then ' if last cperator was = and no numbar yat
op = operater ' entered then simply store next operator
Exir Sub

gnd If

1f {(op = 0) Or {op = 5} Then

' no operation yet jed - first ik in display
nl = Val(DisplayTxt.Text)
op = operator

Else
n2 = Val{DisplayTxt.Text}

' process the cperat d batw the ik
Select Case op

Case 1 : nl += n2

Case 2 : nl -= n2

Case 3 : nl *=n2

Case 4 : nl /= n2
End Select
DisplayTxt.Text = nl

op = operator ' store operator
End If
nawnum = True

End Sub

9.6 The tabindex and event handling 153

Private Sub AddBtn_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles AddBtn.Click
processOp(l)
End Sub
Private Sub Subtract Click(ByVal sender As Object, ByVal e As
System.EventArgs) Handles Subtract.Click
processOp(2)
End Sub
Private Sub Multiply Click(ByVal sender As Object, ByVal e As
System.EventArgs) Handles Multiply.Click
processOp(3)
End Sub
Private Sub Divide Click(ByVal sender As Object, ByVal e As
System.EventArgs) Handles Divide.Click
processOp(4)
End Sub
Private Sub EqualBtn_Click(ByVal sender As System.Object, ByVal e
As System.EventhArgs) Handles EqualBtn.Click
processOp(5)
End Sub
The number values and the operator are only actively used inside this procedure,
but must be accessible to ClearBin, so that they can be reset. Their variables must
be declared at the global level. Others needed here are newnum, which we met
earlier, and memory, which we will get to shortly.
Dim nl, n2 As Double
Dim op As Short
Dim newnum As Boolean = True
Dim memory As Double
The code for the four Buttons across the bottom of the calculator is all quite
straightforward.
ClearBtn wipes the display and the stored numbers and sets newnum to True,
ready for the first new number.
Private Sub ClearBtn_Click(ByVal sender As System.Object, ByVal e
As System.EventArgs) Handles ClearBtn.Click
isplayTxt.Text = "
nl =20
n2 =0
newnum = True
End Sub
MeminBtn copies the displayed value into the memory variable, and again sets
newnum to True — we expect to start a new number after storing one in memory.
Private Sub MemInBtn_Click(ByVal sender As System.Cbject, Byval
e As System.EventArgs) Handles MemInBtn.Click
memory = Val(DisplayTxt.Text)
newnum = True
End Sub
MemOQOutBin is almost the exact reverse. It copies the value from the memory into
the display, and sets newnum to False.

154 Arrays and collections

Private Sub MemCutBrtn Click(ByVal sender As System.Cbject, ByVal
e As System.EventArgs) Handles MemQutBtn.Click
DisplayTxt.Text = memory

newnum = False

And finally, there is our normal Exit routine.
Private Sub ExitBStn Click(ByVal sender As System.Object, ByVal e
As System.EventArgs) Handles ExitBtn.Click
End
End Sub

9.7 Exercises

9.1 Add code to the total and average program example given in Section 9.2, so that

it will:
(1) display the contents of the array;
{2) allow the user to change the value held in any element;
(3) work out the maximum and minimum values in the set;
(4) sort the set into order.

9.2 Designand write a program that will take a set of 10 numbers and convert them into
a bar chart and/or pie chart display. For a decent bar chart, you must scale your
values 1o make best use of the available space. Before drawing the bars, find the
largest number in the set and use this and the height of the display area to work out

a suitable scale factor.

9.3 Design and write a program to create a Noughts and Crosses board. The board
should be made from an array of 9 TextBoxes. Players will enter their move by
clicking on a square and typing X or O. The program should check for completed

lines and for a full board and announce the winner or a draw.

Add a procedure to the Noughts and Crosses game so that the computer can play

a sensible game.

Possible solutions to Exercise 9.1, 9.2 and 9.3 are given in the Appendix.

156 Multiple forms and windows

To add a form:

Or

Or

3

4

Open the File menu and select Add New Item...
Open the Project menu and select Add Windows Form...

In the Solution Explorer, right-click on the project name. In the context menu,
point to Add and select Add Windows Form...

All routes lead to the Add New Item dialog box. Make sure that Windows
Form is selected.

If you wish to give the form a more meaningful name, do so - if you have
several forms, renaming them is a good idea.
Click Open.

The form can then have controls added as needed, just as with a normal form.

If you start from the Project Camorsies
menu or the context menu, + 4 Loca Profect Roams

Windows Form will be
selected

& Form for Windows Apleations

Hare | Formz.vb

Though the form is now part of the project, it is not yet linked to the main form. This
is done through the code. Let’s try it.

If you have not already done so, start a new project and add a form to it — you
can leave the name as Form2.

On the main form add a Button, with the text *Go to Form2".
On Form2 add a Button with the text, ‘Back to Forml'.

10.2 Code for multiple forms

Secondary forms are brought into the main one by declaring them as variables. In
fact, you do not link to the form itself, but instead create a new instance of it. The
code has this shape:

10.3 Modules and global variables 157

Dim variable As New Formname
If the secondary form is only accessed from one subroutine, then the Dim line can
be written in there, otherwise it should be declared globally at the top of the code
or in a module. In this example, we can write it into the Button’s Click sub.

Double-click on the Button to open the Code window and type:

bim F2 As New Form2 ' or whatever you called your form
The form can now be referenced through the variable, F2. If required, you can read
or set the properties of elements on that form from within the main form. For
example, you could change the text on the title bar with the line:

F2.Text = "The new form"
When the program starts, the form will not be visible — it does not in fact exist until
created with Dim. To make it visible, use the Show () or ShowDialog () method.
Add this to the Button code:

F2.Show()
While the window is active, the user can switch between the two by clicking on
them.

When you have finished with a secondary form you can Hide () itor Close ()
it to return to the main form.

Double-click on Form2’s Button and type this into its Click sub:

Me.Hide()

How many forms?

With a straightforward Dim declaration, a new instance of the form will be
produced if the routine is activated again. This will not be obvious on screen, as the
windows will open in exactly the same place every time, directly on top of the
existing ones.

If you want to have only one instance of the secondary window, use Static in
your declaration.

Static Dim F2 As New Form2

10.3 Modules and global variables

If there are several secondary forms and you want to be able to pass data between

them, or if you want to be able to use the same subroutines or functions from

different forms, you need a module. This is a separate file, and code stored in here

can be accessed from any other part of the project.

To create a module:

1 Open the Project menu and select Add Module... or start from File menu or
the context menu in Solution Explorer,

2 In the Add New Item dialog box, select Module (if neccessary), change the
name if required and click Open.

158 Multiple forms and windows

If you want to set up a form so that it can be accessed from anywhere in the project,
declare it at the top of the code, using the Punlic keyword instead of Dim, e.g.
Public F2 as Form2
To make a subroutine or function globally-accessible, write it here. Try it. Type in
the proper () function that we developed in Chapter 7:
Private Function proper(ByVal incoming As String) As String
proper = UCase(Mid{incoming, 1, 1)) & LCase (Mid(incoming, 2))
End Function
Now add a TextBox and a Button to each of the forms, adding this code to the
Button (changing the TextBox name if need be):

TextBoxl.Text = proper(TextBoxl.Text)

10.4 A two-form project

Figure 10.3

The main form with
its controls

This next project is a simple example of a multi-window application. It also shows
how you can set up one subroutine so that it handles events generated by several
controls. The main form has six PictureBoxes into which images can be loaded
from file, and where they are displayed as thumbnails, A click on any PictureBox
will open the second form where its image will be displayed full size.

1 Start a new project.

2 Place a PictureBox at Location (0, 0) of Size 160, 120. (If you use a different

size, adjust the other locations to suit.)

® multiples - Microsolt Visual Bazic NET [design] - Form1,vh [Design]*
fle [Yew Powct Quid [Debug Dgte Jods Wndow Hep
B-rin-F@0 P L by B -@Em

B Martrert 0 cpmriinlusiog

Figure 10.4

The second form

10.4 A two-form project 159

3 Set these properties:

Border = FixedSingle
SizeMode = StretchImage
Visible = False

4 Copy the PictureBox. Paste it five times, locating the new boxes at (160, 0),

(320, 0), (0, 120), (160, 120) and (320, 120).
5 Set up a menu with two items: Add Image and Exit.
6 Add an OpenFileDialog — you'll need it for loading images.
To set up the second form:

1 From the Project menu select Add Windows Form... and complete the dialog
box to add the form.

2 Place a PictureBox, setting these properties:

SizeMode = Centerlmage
Dock = Fill

Add a Button, with the Text *Close Window'.

3

M\ﬂ“r

—_

Let’s turn to the code to set this all going. Note that [have named the PictureBoxes
as PicBox] to PicBox6, and the two menu items have been named to match their
text, but that otherwise the controls are all at their default names.

Two of the routines need a little explanation.

Adding images

To load an image from file into a PictureBox, you need to use the method
Image.FromFile (} in code like this:

PictureBoxl.Image =
To get the filename, we use the OpenFileDialog, as we did for text in section 6.4,
but setting its Filter to ‘Image files | *.bmp’.

The tricky bit is knowing which PictureBox to load it into. [have set up a count
variable, which is in a Select Case structure to direct the file into the next
available PictureBox.

Image.FromFile (filename)

160 Multiple forms and windows

Select Case count
Case O
PicBoxl.Image = Image.FromFile(filename)
PicBoxl.Visible = True
Afler cach addition, the count is incremented, but kept within the range 0 to 5.
Here's the code for the Form_Load and for each of the menu commands for Form1,
Publiec Class Forml
Inherits System.Windows.Forms.Form
Dim filename As String
Dim count As Short

t Windows Form Designer generated code

Private Sub Forml Load(ByVal sender As System.Object, ByVal e As
System,EventArgs) Handles MyBase.lLoad

count = 0
End Sub

Private Sub FileAddImage_Click(ByYal sender As System.Cbject, ByVal e As
System.EventArgs) Handles FileAddImage.Click

OpenFileDialogl.Filter = "Image files |*.bmp"

If OpenFileDialogl.ShowDialog = DialogResult.OK Then

filename = OpenFileDialogl.FileName

Else
Exit Sub ' no image file to add
End If
Select Case count
Case O
PicBoxl.Image = Image.FromFile(filename)
PicBoxl.Visible = True
Case 1
PicBox?.Image = Image.FromFile({filename)
PicBox2.Visible = True
Casa 2
PicBox3,Image = Image.FromFile(filename
PicBox3i.Visible = True
Case 3
PicBoxd.Image = Image.FromFile(filename)
PicBoxd.Visible = True
Case 4

PicBox5.Image = Image.FromFile(filename)

PicBox5.Visible = True
Case 5

PicBox6.Image =~ Image.

romFile (filename)

PicBoxé.Vizible Teue
End Select
count += 1 ' increment the count
1f count > 5 Then count = 0

End Sub
Private Sub FileExit Click(ByVal sender As System.Cbject, ByVal e As
System.EventhArgs) Handles FileExit.Click
End
End Sub

10.4 A two-form project 161

Displaying images on Form2

Once a form has been declared as a variable, its components can be accessed, so
the image in PicBox] could be copied into the PictureBox on the second form and
displayed with the lines:
£2.PictureBoxl.Image = PicBoxl.Image
£2.5how ()
Similar code would then be needed on the other five PictureBoxes. You would also
have to think about where to declare the form variable. You could declare f2 in each
of the subroutines, which would give you a new window for every image. If you
only wanted the one secondary window, then you would declare it at the top of the
code.
There is, however, an alternative approach. We can set up a sub to act as event
handler for several controls. Here's how.
1 Go to the Design window for the main form.
2 Double-click on PicBox1 to get into its Click subroutine.
3 At the end of the Sub declaration line, after ‘Handles PicBoxl.Click® add
‘, PicBox2.Click, PicBox3.Click...' and so on. Notice those commas
between the event names.
4 Edit the Sub’s name to remind you that it doesn’t just handle PicBox1.Click.
You should have something like this:
Private Sub PicBoxes_Click(ByVal sender As System.Object, ByvVal e
As System.EventArgs) Handles PicBox1.Click, PicBox2.Click, PicBox3.
Click, PicBox4.Click, PicBox5.Click, PicBox6.Click
How do we know which Picbox has been clicked? The answer is in the parameter
sender, which identifies the object that generated the Click event. The expression
sender. Image will pick the Image property out of the clicked PicBox.
Here's the rest of the code for this subroutine.
Dim £f2 As New Form2
f2.PictureBoxl.Image = sender.Image
£2.5how(}
End Sub

The code on Form2

There is not a lot of this. All we need is a Close() method on the ‘Close Window”
Button, Here is the entire code for the second form,
Public Class Form2
Inherits System.Windows.Forms.Form
Windows Form Designer generated code
Private Sub Buttenl Click(ByVal sender As System.CObject, ByVal e As
System.EventArgs) Handles Buttonl.Click
Me.Close()
Znd Sub
End Class

162 Multiple forms and windows

The form in action. Only six
images can be displayed at
any one time, but you can
use a larger form, or smaller
PictureBoxes and set it up
to handle more.

10.5 MDI forms

With MDI (Multiple Document Interface) forms, the main form is known as the
parent, and a secondary form is referred to as a child - and there are properties that
control and describe the relationships. When declaring a new child form, for
example, it is linked to the parent by a line like this:

NewChild.MDIParent = Me 'Me is the parent form
The child windows open inside the main window, and this has a number of
implications:

» The parent window can have no content, apart from a menu and a toolbar —
you must have one or the other to allow you to do anything.

e Ifthere may be more than one child window, you will need routines to manage
their layout — but happily there are ready-made commands for the standard
Cascade and Tile layouts.

e If you have menus in both the parent and child windows, you will need to
ensure that they fit together in some way.

Parent and child forms

To tum a form into a parent form, you simply set its
IsMdiContainer property to true — you will find it in
the Window Style set, towards the bottom of the list.
Do this before you do anything else at all with the
form! The central area, where controls are placed, will
be emptied to create the space where the child windows | |
will open. 5

IsMdiContainer is towards the bottom PR 1 ey horw ||
of the Form's properties list -

106 Menus in MDI forms 163

A child form is created in exactly the same way as an ordinary secondary form.
Tt will become a child only when the form is defined in the code, by setting its
MdiParent property to Me — the defining form. The crucial lines look like this:
Dim NewChild As New ChildForm
' set the parent form
NewChild.MdiParent = Me
' display the naw form
NewChild.Show()
A child window can be easily accessed from the parent, For example, in the Open
routine, you will see this line:
NewChild.Workspace.LoadFile (OpenFileDialegl.FileName)
This is virtually the same command that we used to load a file into our text editor.
The only difference is that the Workspace object is prefixed by NewChild, the
name of the window.
As there can be any number of child windows, you may need to identify which
one you are working with. The parent form has an AetiveMdiChild property that
knows which child is on top. You can see this at work in the Close routine.

Private Sub CloseChild()

Dim activeChild As Form = Me.Ac eMdichild

If activeChild Is Nothing Then Exit Sub

activeChild.Close() ' close the window

activeChild.Dispose() ' reclaim the memory
End Sub

10.6 Menus in MDI forms

In a typical parent-child application you will have two distinct sets of commands.
When no child window is open, you only need to be able to open a file, start a new
one or exit from the program. Once you have one or more child windows open, you
also need to be able to create and edit the document, save the file and manage the
window layout.

You can put all your commands in the parent window, and leave the child set
disabled until a child window is opened. This works, but there is a neater solution.
We can write the commands into a menu on the child form, but merge this with the
main form’s menu at run-time. Tt cuts out the need to enable and disable the
commands as child windows open and close, but also it lets us place the code for
the child fonn on the child form. (If your code is trying to access a child form from
the main form, it must first work out which child is active, and then include its name
when identifving any controls or variables on the form.) There are two aspects to
merging menus:

« the menu items which are present in both menus - i.e. the headings — must be
put into merge mode;

« the items in the merged menus must be given numbers to indicate their order.
An example will show how this works.

10.8 An MDI text editor 165

the MdiLayout set which will arrange the child windows
in the Cascade, TileHorizontal and TileVertical lay-
outs. These work on the LayoutMdi property of the
parent form, but the code is best written on the child form
— as they are to be called up by items on the child’s
Window menu.

The lines should take this shape:

Me.ParentForm.LayoutMdi (MdiLayout.Cascade)

Cascade
Tia borizortal
Tie Vertical

Privati
BTVRL 3 Cpasciparene st

or

Me.ParentForm.LayoutMdi (MdiLayout.TileHorizontal)
or

Me.ParentForm.LayoutMdi (MdiLayout.TileVertical)

10.8 An MDI text editor

The Parent code

This only has code for starting, opening and closing files, and for exiting from the
program — everything else is written into the child form.
New and Open are written directly into their menu items’ Click event handlers.
The close routine is handled in a separate sub, so that the code can be used by both
the Close and Exit menu items.
Public Class Forml
Inherits System.Windows,Forms,Form

Windows Form Designer generated code

Private Sub FileNewChild Click(ByVal sender As System.Object, ByVal
e As System.EventArgs) Handles FileNewChild.Click

Dim NewChild As New ChildForm ' declare the form variable
NewChild.MdiParent = Me ' set the parent form
NewChild.Show() ' display the new form

End Sub

Private Sub FileOpen_Click(ByVal sender As System.Object, ByVal e
As System.EventArgs) Handles FileCpen.Click
OpenFileDialogl.Filter = "Rich Text Format|*.rtf"

If OpenFileDialogl.ShowDialog() = DialogResult.OK Then
Dim NewChild As New ChildForm ' create a new child
NewChild.MdiParent = Me ' load the file into the child

NewChild.Workspace.LoadFile (OpenFileDialogl.FileName)
NewChild.Text = OpenFileDialogl.FileName
NewChild.Show()
End If

End Sub

Private Sub FileCleoseChild_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles FileCloseChild.Click

166 Multiple forms and windows

CloseChild()

End Sub
Private Sub CloseChild()
Dim activeChild As Form = Me.ActiveMdiChild
If activeChild Is Nothing Then Exit Sub
activeChild.Cleose() ' close the window
activeChild.Dispose() ' reclaim the memory
End Sub

Private Sub FileExit Click(ByVal sender As System.Object, Byval e
As System.EventArgs) Handles FileExit.Click

' cleose every child window

While Not (Me.ActiveMdiChild Is MNeothing)

CloseChild()

End While

End
End Sub

End Class

The Child code

Much of this code is based on the single-window text editor that we developed in
Chapter 7- and some intelligent cut-and-paste could save you quite a bit of typing.
Class ChildForm

Inherits System.Windows.Forms.Form

Fupli

Dim saved As Boolean
Dim MyFileName As String = ""

s

Windows Form Designer generated code

Frivate Sub FileSave Click(ByVal sender As System.Object, Byval a

As System.EventArgs) Handles FileSave.Click

If MyFileName <> "™ Then

Workspace, SaveFile (MyFileName) ' resave current file

saved =~ True

Else

SaveAs () ' go te the Save dialog box

End If

End Sub

Private Sub FileSaveAs_Click{ByVal

System.EventArgs) Handles FileSaveAs.Click
Savehs ()

End Sub

sender As Object, ByVal & As

Brivate Sub Savehs()
SaveFileDialegl.Filter = "Rich Text Format|*.rtf"

Sequential files

We have already seen how TextBoxes, and some other objects, have their
own methods for writing their data to and reading it from files. Here we look
at how variables and other data can be written to file.

11.1 Saving data to file

Visual Basic can handle both sequential and random access files.

A sequential file has no particular structure, but consists of a st of data items
— of the same or different types — stored in the order in which they were written
to the disk. To make sense of the data in the file, it must be read back in the right
order, into the right type of variables.

Sequential files are typically used where there is a mixture of information to be
stored, or for permanent storage of data that is held in an array during program
run-time. Data files created by word-processors or spreadsheets are often be
stored as sequential files.

A random access file will hold a set of records, each with an identical structure
and at an identifiable place in the file. If a record’s position is known, it can be read
directly from the file, edited and returned to the same place.

Database management programs normally hold their data in random access
files, though if the whole database will fit in memory a viable alternative is to
hold the data in an array and store it on disk as a sequential file.

Using a sequential file

Within a program, files are accessed through a file number. The link between the
external (disk) filename and the internal file number is made through the
FileOpen () method. Its syntax takes the form:

FileOpen(filenumber, filename, Openmode.option)

The filenumber can be given directly. It is usually safe to number the first file you
open as 1. If further files are opened while this is still in use, they can then be
numbered 2, 3 and so on.

The filename is a string expression or variable.

170 Sequential files

The Openmode options are:
Append. to add data to the end of an existing file;
Binary, to open a file for binary access;
Input, to read from an existing file;
Qutput, to create a new file, replacing any of the same name;
Random, to open a file for random access (see Chapter 12).

FreeFile

There is a possibility that your file numbers may coincide with others used by other
applications in the computer. If you prefer to be sure that there will be no conflict
with an existing open file, you can get the number of the next free file handle with
the FresFile() function, using the line:

filenum = FreeFile()
At the end of the filing session, the link is ended with the Close statement that
ensures that all data is written safely to disk. It takes the form:

FileClose (filenumber)

Writing and reading data

Onee the file has been opened, data can be written to it with these commands:
Print (filenumber, item, item, ...J)
PrintLine (filenumber, item, item, ...}
Write (filenumber, item, item, ...)
Writeline (filenumber, item, item, ...)
In all cases, there can be any number of items, separated by commas, and they can

be any mixture of variables, literal values or functions - in fact, any text that can
be printed on screen or paper can be written to a file.

Print() and PrintLine()

The print ()} method is designed for use when you are creating files that will later
be sent to the printer, e.g. reports from a database., With Print, the dates, numbers
and currency are formatted using the regional settings in Windows on the PC.

PrintLine() isthe same, except that the carriage return and newline charac-
ters (Chr(13) and Chr{10)) are sent after the last item.

Ifthere is any possibility that you may later need to read data back froma Printed
file, strings will need special handling. Any that contain commas or newline
characters, should be enclosed in quotes for reasons that will be clear in a moment.

Write() and WriteLine()

The Wwrite () method is the one you should normally use when creating data files
to be read by your Basic programs - or by any other database systems. It writes data

11.1 Saving data to file 171

in the standard comma-separated values format. Numbers and dates are written in
their simplest forms, strings are enclosed in quotes and items are separated by
commas. In the WriteLine() variation, the carriage return and newline characters
are sent after the data.

Input()
Data is read back from the file with:
Input(filenumber, wvariable)

The variable must be of the right type. If the file has a succession of different types
of data, you will therefore need a matching series of Input()s to read in each item.
{Anything could be read into a string variable, but you would probably then need
code to convert it into its proper type, and smaller numbers can be read by bigger
number variables.) Prove it to yourself with this demo - it writes four items of
different data types to file, then reads them back. Type it into a Button’s Click sub.

Private Sub Buttonl Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles Buttonl.Click
Dim ShortNum As Short
Dim myDate As Date
Dim biglum As Double

Dim myBool As Boolean

FileOpen{l, "testfile", OpenMode.Output)
Write(l, 7, CDate("17/05/D4"), 123456.789, True)
' writes Short, Date, Double and Boolean data items
FileClose(l)

FileCpen{l, "testfile", OpenMode.Input)

Inpuc{l, ShortNum}

MsgBox (ShortNum)

Input{l, myDate)

MagBox (myDate)

Input(l, bigHNum)

MagBox (bigNum)

Input{l, myBool)
MagBox (myBoaol)
FileClose(l)

End Sub

Build and run this. When you click the Button, you should see a succession of four
MsgBoxes showing the date items. Now return to the code and move the Input and
MsgBox lines for ShortNum to the end of the set. Build, run and try it again, What
happens?

Type the following into a Button's Click procedure to sec the difference
between Write() and Print () in the way they handle strings and commas. It
writes a phrase to disk, closes the file, then reopens it, reads the text back in and
prints it on the form.

172 Sequental files

Private Sub WriteBtn Click(ByVal sender As System.Cbiect, ByVal e As
System.EventArgs) Handles Writebtn.Click

Dim phrase, inastring As String

FileOpen(l, "Delittle", OpenMecde.Output)

phrase = "The rain in Spain, and elsewhere in Iberia, falls mainly on
the plain”

Write{l, phrase)

FileClose(l)

FileOpen{l, "Dolittle", OpenMede.Input)
Input{l, instring)
MsgBox (instring)
FileClose(l)
End 5ub
Click on the form and you should see “The rain in Spain, and elsewhere in Iberia,
falls mainly on the plain™.

Now replace Write(l, phrase} with Princ{l, phrase}. Run the
program again. This time, vou should see only “The rain in Spain™, Input ()
spotted the comma and assumed that it marked the end of the string. If there was
a second Input() at this point, it would collect “and elsewhere in Iberia™.

If' you are using Print() to write strings to files, any text containing commas must
be explicitly enclosed in quotes. It is often easiest to do this via the ASCII code,
as Chr(34). Try it again, this time with the Print () line rewritien like this:

Print({l, Chr(34) & phrase & chr{34)

11.2 Basic filing

This next simple example shows some of the key concepts of handling sequential
files. It writes data to a file, reads it back and removes the file from the disk. The
file has been named “temp.$$8", which should be sufficiently unusual not to
conflict with any files you have already.
To implement it, place three Buttons on a new form, and name them ReadBm,
WriteBim and DelBtn. There are only three subs, each attached to the appropriate
Button.
The first, Write, creates a telephone contacts list by taking in a series of names
and phone numbers and writing them to disk.
Private Sub WriteBtn_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles WritesBtn.Click
Dim person, telno As String
efpen(l, "temp.5", OpenMode.Output)

paerson = InputBox("Name of contact or Enter to stop”)
If person = "" Then Exit Do

11.3 Daia analysis and storage 173

telno = InputBox("Tel no™)
Write(l, person, telno}
Loop
FileClose (i)
End Sub
The second, Read, inputs the data from the file and prints it on the screen. You will
see that the data is read in the same order in which it was written. Try inputting the
data the other way round and see what happens.
Notice the test used on the Loop — Until EOF(1). EOF is End Of File. This
function picks up the code that signals the end of the disk file.
Private Sub ReadBtn_Click(ByVal sender As System.Cbject, ByVal e As
System.EventArgs) Handles ReadBtn.Click
Dim person, telne As String
FileOpen(l, "temp.555", OpenMode.Input)
Do
Input{l, person}
Input {1, telno)
MsgBox (person & " Tel: " & telno)
Loap Until EOF(1)
FileClose (1}
End Sub
The last, Remove, is simply there for tidying purposes — it deletes the file from the
disk using the xi11 () method.
Private Sub DelBtn Click{ByVal sender As System.0Object, ByVal e As
System.EventArgs) Handles DelBtn.Click
Kill{“temp.555"}
End Sub
Kill with care! It really does delete files — they are not passed to the Recycle Bin
in Windows, and cannot be recovered.

Task 11.1

Implement the Read and Write program and test it with a variety of data.
What difference would it make if the relno variable was an Integer?

11.3 Data analysis and storage

This demonstration program performs simple statistical analysis on sets of data,
and allows sets to be saved to and loaded in from disk. The analysis is limited to
giving the maximum, minimum, total and mean values. All are produced and
displayed together. If you wrote the data analysis program set as an exercise in
Chapter 4, you could use that as the base of this example. There are five procedures
in the program, run from a simple menu.

174 Sequential files

Public

aFile sData
Write sCreate
LRead sAnalysze
Esxit

The form is empty apart from the menu and one textbox, with its Multiline property
set to true.

The code

The data sets can be of any size as the dimension of the data array is determined
by the user when creating each new set. The undimensioned array is set up at the
global level, along with a count variable which will be used to store the size.

Class Forml

Inherits System.Windows.Forms.Form
Dim data() As Single ' undimensioned array

Dim count As Integer = 0

The Create routine starts by asking the user for the number of elements in the set,
then dimensions the array with the ReDim statement. Note that the loop then runs
from 0 to count — 1, to match the subscripts fo the new array. The data values are
collected through an InputBox, as it provides the simplest method of getting values.

Private Sub DataCreate Click(ByVal sender As System.Object, ByVal e
Az System.BventArgs) Handles DataCreate.Click
count = InputBox("How many elements?")

EeDim data(count)
Dim element As Integer
For element = 0 To count - 1
data({element) = InputBox{"Entry wvalue for element no " & element

Rext

End Sub

Ideally, there should be another routine to edit or add data to the set, but I'm trying
to keep things simple. Your users will just have to get it right first time!

The Analysis should be self-explanatory, as it uses standard routines to find the
total, average, maximum and minimum values in the data set. You might note the
use of the constant vhCrLf which holds characters 13 and 10 (carriage return and
line feed). These allow the outputs to be written on four separate lines.

Private Sub Datadnalyse Click(ByVal sender As System.Cbject, ByVal e
Az System.EventArgs) Handles DatadAnalyse.Click

Dim
Dim
max
min

For

total, average, max, min As Single
n As Integer

= data (0}

= datal(0)

n =1 To count - 1

I1f datain) > max Then max = data({nj

176 Sequential files

The Read code can be created by copying and editing the Write routine, as the two
can be very similar. You will need to add the ReDim line, and replace
OpenMode.Output and Write () by OpenMode.Input and Input ().

Private Sub FileRead Ciick(SyVal sender As System.Object, ByVal e As

System.EventArgs) Handles FileRead.Click

Dim n As Integer

Dim frame As String

Dim frum As Integer

fname = InputBox("Name of file"™)

frum = FreeFile()

FileOpen (fnum, fname, OpenMode.Input)

Input (£num, count)

ReDim data(count)

For n = 1 To count

Input{l, datain))
Hext
FileClose {fnum)
End Sub

The For loop handles the Input well here, as we know the number of items to be
read. As we saw in the last example, where there is an unknown quantity of data
on the file, we can use a loop that checks for the End Of File, with the EOF function.

Task 11.2

Take the simple data analysis program that you developed earlier and add
these new subs to it. Test each new sub as it is added, and test the whole
program thoroughly when it is complete. What additional features or
error-traps does it need?

11.4 Appending to files

When you open a file for writing in Output mode, the data will overwrite anything
that may be there already. This is what you want if the data is stored in an array
during editing and process, but sometimes you want to keep the existing filed data
intact, and add new data to the end of the file. For this you need to open the file in
Append mode.

This next program is a simple demonstration of this approach. Here, the files are
used for recording sightings of birds, but they could be used for logging any types
ofevent. The program has been stripped down to a minimum, so if you feel the need
to enhance the appearance or to add facilities or error-trapping, please do so!

The form needs a Label, named Display, which is used for showing the contents
of alog when it is opened, and a menu with five entries. We can use these to outline
the code for the program.

114 Appending to files 177

Menu item Operations

New log Get the filename
Open the file in Output mode.

Open log Get the filename
Open the file in Input mode
Input and display the contents
Close the file
Open the file again in Append mode

Add entry Check that a file is open
Get the data for the event and write to file

Close log Close the file
Exit End.
The Open log routine could be simplified by taking out the input and display lines
— display could be hived off into a separate sub.
Here's the full code.

Public Class Forml
Inherits System,Windows.Forms.Form
Dim logname As String = ""
Dim filenum As Integer

Windows Form Designer generated code

Private Sub Newlog Click(ByVal sender As System.Cbject, ByVal e As
System.EventArgs) Handles NewlLog.Click

logname = InputBox({("Name for new leg?")

filenum = FreeFile()

FileCpen{filenum, legname, OpenMcde.Output)

Display.Text = ""
End Sub
Private Sub Openleg_Click(ByVal sender As System.Object, ByVal e As
System.Eventhrgs) Handles OpenLog.Click

Dim entryDate As Date

Dim num As Short

Dim sighting As String

logname = InputBox("Hame of log?")
filenum = FreeFile()
FileOpen{filenum, logname, CpenMode.Input)
Display.Text = "Dare Humber Sighting™ & vbhCrLf
Do

Input (filenum, entryDate)

Input(filenum, num)

Input (filenum, sighting)

115 Worked example: Hangman 179

11.5 Worked example: Hangman

This next example brings together the string manipulation and graphics manage-
ment of Chapter 7 and 8, with the file-handling techniques covered here, to produce
an implementation of the old favourite word game.

Handling hangman'’s files

The program draws on a text file — the word list — and a set of image files. These
are all loaded automatically, as needed, so the code must set the paths and the
filenames to open the files. The program assumes that the text and image files are
all stored in the same folder, and its location is stored in the variable myPath. In the
example, this is defined as “C:\wb\hangman” — replace this with the right path for
your files.

To get a word at the start of a new game, the program opens the file of words,
assembling the filename from the path and name:

wordfile = myPath & "\words.txt"

FileOpen (Fnum, wordfile, OpenMode.Input)
It then reads from the file a random number of times. (I have 26 words in my file,
from * Aardvark” to *Zebra’ — set your random number limits to suit your word list.)

times = Rnd() * 26

For n = 1 To times

Input (Fnum, target)

Hext n
As we will be opening the file again for the next word, it is important to close it after
we have finished inputting.

FileClose (Fnum)

Figure 11.3

A possible layout for the

hangman form, with the H
active controls labelled. angman
picGallows
txtGuess —— ;
Guess a Letter | N
| — binNew

IbiWord —— —;"he Word New Word

|
]
IblBadGuess — | *irB“'-‘ Guesses: ' Qut ‘l_“ binQuit

180 Sequential files

Loading image files is basically simpler - though the command line is a bit heavy!
As part of the New routine, the blank background image (“hang0.bmp) is loaded.
picGallows.Image = System. Drawing. Image.FromFile (myPath & “\hang0.bmp")
It gets a little more complicated when we are loading the images that gradually
build the gallows, These are named “hangl.bmp” to “hang!0.bmp”. This lines
create the filename by joing the start and end parts with the number, held in PicNo.
picname = myPath & "\hang" & PicNo & ".bmp"
The image can then be loaded using the same Fromeile () method as above.

String him up

String manipulation is at the heart of this word games. Let’s look at how it works.
The word is loaded into targer. [t is converted into uppercase — as the guessed letters
are during the game — then copied into workCopy. During the course of the game,
the letters in rarger will be overwritten as they are guessed, so we must keep an
intact copy for checking against.

target = Ulase(target)

workCopy = target
1f we were playing on paper, we would write a set of dashes that letters would be
written on as they were g d. On a computer, a set of dashes can blur into one
long line, so I've used asterisks instead as placeholders for the unknown letters.

Notice how the New String(.) expression can be used to create a string
composed of a number of the same characters:

letters = Len(target)

lblWord.Text = New String("*", letters)
The guess-checking routine is written into the TextChange event of mtGuess, so
that it is activated as soon as someone enters a letter. The letter is converted to
uppercase and stored in guess. The code then loops through the letters in target,
comparing guess with each in tum

For n = 1 To Len(target)

If guess =~ Mid(target, n, 1) Then

Ifthey match, the guessed letter is written into Ih/Word's asterisks at the appropri-
ate point, and targer’s letter is overwritten with an asterisk.

Mid(lblWord.Text, n, 1) = guess

Mid{target, n, 1) = "*v
Writing into [b/Word triggers its TextChange event. We can put a test here to see
if the word has been fully guessed.

If lblWord.Text = workCopy Then MsgBox("You Win")
That’s the core of the checking, though the actual routine has a little bit more to it.
The Boolean variable inword is set to False at the start, and to True if a match is
found. This is then used to control the next part of the code, which adds the latter
to the ‘Bad Guesses:” list and draws the next part of the gallows.

182 Sequential files

found = 0
lblBadGuess.Text = "Bad Guesses: "
picGallows, Image = System.Drawing. Image.FromFile (myPath & "\hang(.bmp")
PicNo = 1
End Sub
Private Sub txtGuess_TextChanged(ByVal eventSender As System.Object,
ByVal eventArgs As System.EventArgs) Handles txtGuess.TextChanged
Dim picname As String
Dim temp As 5tring
Dim n As Short
Dim inword As Boolean
Dim guess As String
If txtGuess.Text = "" Then Exit Sub ' when box is cleared
guess = UCase (txtGuess.Text)
If guess < "A" Or guess > "Z" Then txtGuess.Text = "" : Exit Sub
‘check word
inword = False
For n = 1 To Len(target)
If guess = Mid(target, n, 1) Then
inword = True

Mid(temp, n, 1) = guess ' write it into the word
Mid(target, n, 1) = "*" ' mark it off
found = found + 1
End If
Next n

If Not inword Then
1blBadGuess.Text &= & guess
picname = myPath & "\hang" & PicNc & ".bmp"
picGallows,.Image = System.Drawing.Image.FromFile(picname)

PicNo += 1
If PicNo = 11 Then MsgBox("The word was ™ & workCopy)
End If
txtGuess.Text = ""
End Sub

Private Sub lblWord TextChanged(ByVal sender As Object, ByVal e As
System,EventArgs) Handles lblWord.TextChanged

If lblWord.Text = workCopy Then MsgBox("You Win")
End Sub

Private Sub btnQuit_Click(ByVal eventSender As System.Object, ByVal
-eventArgs As System.EventArgs) Handles btnQuit.Click

End
End Sub

End Class

Figure 11.4

Close to the end of a game
- only two lives left and | H
haven't a clue what this angman

animal might be...

116 Exercises 183

® Form1

Guess a Letter D

l‘l PPOPOTAMU’ | e |

lBad Guesses ERLNRZWQ] o I

11.6 Exercises

11.1

11.2

RadioButtons provide a convenient way of handling responses to multiple-choice
tests, for their captions can display the alternative answers and only one can be
selected. Design and implement a program which will read a file containing
questions, answers and the right answer, taking one question at a time and
displaying it with a set of option Buttons. The file itself can be created in Write or
any word processor that can output an ASCII text file.

Payroll programs often store their data in sequential files, as every record is
accessed at each payrun. Write a program to manage a simplified system. It must
have routines to add and remove employees, as well as to calculate and print the
weekly payslips. The file should contain the employee’s name, reference number,
hourly rate, tax code, total earnings for the year to date and total tax paid to date.
When calculating the week's pay, assume that the first 37 hours are paid at the
normal rate and additional hours at time and a half.

A possible solution to Exercises 11.1 is given in the Appendix. Exercise 11.2 is
very open-ended — if the program works, it must be right!

12.2 Random access files 185

This allocates 30 characters for the name and 12 for the phone number — before
deciding on these limits, the wise designer would have taken a sample of the data
to be stored and found the longest items in each string field. Note that Marks() is
an array. You can have arrays within records and you can have arrays of records.
If the structure is declared in a form, variables of its type can only be declared
within that form. If you have more than one form and want to have variables of the
same structure in different forms, the structure must be defined in a module.
Declaration of variables of the new type, follow the normal pattern.

Dim Student As StudentRecord
Dim Class{(30) As StudentRecord
The first line sets up a variable to hold the details of one student; the second sets
up an array of 01 (0 to 29) record structures.

Within the code, you can treat the whole of the data in a record as a single unit
when copying it to another variable of the same type:
Class (element) = Student
A record can also be written to, and read from, disk by the Filerut () and
FileGet () methods, Both of these handle whole records as units, transferring all
the fields in one operation. When you want to input data, or display it, it must be
done by individual fields, identifying them by their record variable and ficld name,
separated by a full stop.

Display.Text = Student.FullName

Student.Fees = CCur(InputBox("Enter Fees Paid"))

‘When you are working with arrayed records or arrays within records, the identifi-
cation can get long-winded:

Class (StudentNo) .Marks (AssNol = txtMarks.Text

Here we have an array of records called Class; StudentNo identifies the individual
within the class. One of the fields in the record is Marks, and AssNo holds the
number of the assignment.

12.2 Random access files

Opening a file for random access follows the pattern for sequential files, with two

significant variations.

» With sequential files you can only read from or write to them at any one time,
so they must be opened for Input, Append or Output. Random access files can
beread and written at the same time, and are simply opened Openmode . Random.

e The second point to note with these, is that the system needs to know the size
of the record structure, so that it knows how to organise the disk space. The
Len () function — which finds the length of strings — will also give the length
of the record. So far we have used the Fileopen () function with only threc
parameters — file number, name and OpenMode. It can take another three,

186 Records and random access files

setting the access and sharing permissions and the record length. We are not
using the fourth and fifth parameters, but their places must be marked by
commas,

Typical opening lines for a random access file look like this:

reclength = Len(student}

FileOpen(fnum, "student.dat", OpenMode.Random, , recLength)
This sets up a link with a file called “student.dat”™ - creating a new one if there is
no matching file there at the time. The size of each record will be the total number
of bytes in the student type.

FileGet()

Records are read with the Fi LleGet {} method. Itis given the filenumber, the name
of the variable into which data is to be copied and the position of the record in the
file — if you want to change the position
FileGet (Fnum, Student, RecNum)
This will copy the data in the file linked to Fium, into the variable Sudent from
record number RecNum.

You can read the record at the current position with the simpler expression:
FileGet (Fnum, Student,)

Note that trying to read beyond the end of the file will produce an error.

FilePut()

Woriting to the file is handled by the Filerut () method, which follows the same
pattern,

FilePut {Fnum, Student, RecNum)

This would replace any existing data at record number ReeNum, or create a new
record at that position.

FilePut (Frnum, Student,)

This would write at the current position in the file.

Seek()

Positioning in the file can also be handled by the S22k () function. This can be used
in two ways. It will return the position of the current record, when used like this:
ReclNum = Seek{Fnum)

It can also be used to set the position — give it the record number:

Seek({Fnum, RecHum)

Then read or write the record at the new (current) position.

FileGet (Frum, Student,)

12.3 The staff database 187

One last function to note, before moving on to an example, is LOF(). This returns
the Length Of a File, and can be used in conjunction with Len() to work out how
many records there are in a file:

NumberOfRecords = LOF(Fnum) % Len{Record)

12.3 The staff database

Students are often asked to write student database programs. I thought it would
make a change to design one to handle the lecturing staff.

With any database program the design must start from the data itself ~ what do
we want to store, and what do we want to get out of it?

The nature of the data

For each member of staff we will hold:

Name String, 30 characters should be enough
Reference Number also acts as the record number — Integer
Department String, 10 characters are enough

Grade an Integer

Teaching Hours may contain fractions, so Single

From this we can derive the Structure definition:

Structure lecturer
Dim Refno As Integer
<VBFixedString(20)> Dim LName As S5tring
<VBFixedString(10)> Dim Dept As String
Dim Grade As Integer
Dim Hours As Single

End Structure

As the data is held on file, and each record can be accessed when wanted, there is
no need for any global variables, and only a few, to handle the file itself, are needed
at the general level. These are the only ones we need:

Dim staff As lecturer ' record variable

Dim Fnum As Integer ' filenumber

Dim RecCount As Integer ' number of records

Dim reclength As Long = Len(statf) ' length of a record

Dim allrecs As Boolean ' needed by print routines

This gives usa record variable called staff, with the fields staff. RefNo, staff. LName,
staff-Dept, staff.Grade and staff. Houwrs.

Processing required

1 Enter data and keep the records up to date. We therefore need routines to add,
delete and edit records. If TextBoxes are used to collect (and display) data, their
built-in editing facilities will do away with the need for a special edit routine.

12.4 Initialisation and data entry/edit 189

12.4 Initialisation and data entry/edit

Initialisation

This is best done in the Form Load procedure, which will be executed as soon as
the program starts. Initialisation operations are:

open the connection to the data file;

find cut how many records there are on disk;

pick up the first one;

if the file is being accessed for the first time,

allocate a reference number for the first record;
display the record on screen

As we will want an identical display routine at several points in the program, it
makes sense to set this up as a separate procedure. Here's the initialisation code:
Private Sub Forml_Load(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles MyBase,Load
Fnum = FreeFile()
FileOpen (Fnum, "Staff.dta", OpenMode.Random, , , recLength)
RecCount = LOF(Fnum} / reclength
' open at first record - if any
If RecCount > { Then
FileGet (Fnum, staff, 1}
Else
staff.Refno = 1
RecCount = 1
End If
showrec (}
End Sub
The showrec procedure is designed to work on the current record, so that must be
selected and its data read before calling this procedure. It will copy the fields into
the appropriate TextBoxes on the Form. The reference number must not be open
to change, so should be written into a Label or combined with a little heading text
and made into the Form’s Text, to appear in the title bar.
Private Sub showrec()
Me.Text = "Staff Database Hec Ho: " & staff,Refno
txtName,Text = staff,LName
txtlept.Text = staff.Dept
txtGrade.Text = staff.Grade
txtHours.Text = staff.Hours
End Sub

Display and Edit Controls

The TextChange eventofthe TextBoxes can be used to pick up any changes made
to the displayed data. Values can then be copied to the record — after processing.

180 Racords and random access files

+ The Grade and Hours must be converted to numeric values before passing to
the record’s fields, or there will be a *Wrong data type” error.

+ The Name and Dept could be copied straight to the fields, but it is best to remove
any leading spaces first, using the Trim () function. Spaces can creep in and
may complicate search operations.

Private Sub txtName TextChanged{ByVal sender As System.Object, ByVal
e As System.EventArgs) Handles txtName.TextChanged

staff.LName = Trim(txtMName.Text)
End 3Sub

Private Sub txtDept_TextChanged(Byval sender As System.Object, ByVal
e As System.EventArgs) Handles txtDept.TextChanged

staff.Dept = Trim{txtDept.Text)
End Sub

Private Sub txtGrade TextChanged(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles txtGrade.TextChanged

staff.Grade = Val{txtGrade.Text)
End Sub

Private Sub txtHours TextChanged(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles txtHours.TextChanged

staff.Hours = Val(txtHours.Text)
End Sub

12.5 Record menu options

The Add, Next and Previous procedures will all start by writing the current record
to disk, so that any changes made to the current record are stored before another
record is read in or created. (To guarantee that all data is always retained, we should
write the same FilePut line into the start of all procedures.)

Add

This procedure must set up a new record, by allocating a reference/record number
and clearing the staff variable of the current values. The current record is saved at
the start, in case there have been any changes.
The reference number is found by adding one to the record count, so the new
record always goes at the end of the file.
Private Sub RecAdd Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles RechAdd.Click

FilePut (Fnum, staff, staff.Refno) ' write current record to disk
RecCount = RecCount + 1 ' one more record
staff.Refno = RecCount ' create its reference number

staff.LName - "" clear out old data

staff.Dept =

12.5 Racord menu options 191

staff.Grade = 0
staff.Hours = 0

showrec (}

End Sub

=
i

Delete

The Delete procedure, as implemented here, merely blanks out the data, allowing
the reference number to be reused for another person. It does not actually remove
the record. The ‘Deleted” records are marked by “Blank™ in the Lname field. A
check for this in the Print procedure stops such records from being displayed. The
person maintaining the database could look for a Blank record, and overwrite that,
when entering the new details for a new member of staff.

Private Sub RecDelete Click(ByVal sender As System.Object, Byval e
System.EventiArgs) Handles RecDelete.Click

staff.LName = "Blank"

staff.Dept = ""

staff.Grade = 0

staff.Hours = 0

FilePut (Fnum, staff, staff.Refno

showrec ()

End Sub

Gaps in random access files

Visual Basic offers no simple way to delete a record from a random access
disk file. We could close up the gaps left by deletions by reading in all the
records one at a time, writing valid ones to a new file and replacing the old
file with the new, slimmer version. As this changes the reference numbers,
it is not a perfect solution, but you may like to write a CleanFile routine that
would do this. For more efficient random access file handling, vou really
have to start indexing them, but that is beyond the scope of this book.

J

Next

In the Next procedure, we can use the Seek () function to move on to the next
record, checking that there is one before attempting to display it, and giving a “No
More Records™ message at the end of the file.

Private Sub RecNext Click(ByVal sender As System.Cbject, ByVal e As

System.Eventirgs) Handles RecNext.Click

Dim temp As Integer
FilePut (Fnum, staff, staff.Refno) ' store current record
temp = Seek{Fnum) ' find the next

1f temp <= RecCount Then ' check for the end

126 File menu options 193

12.6 File menu options

View All

The View All routine will bring the multi-line TextBox Display into view and print
headings and the details of all records on it. Tt is controlled by the Clase Display
Button which has code to make the Textbox (and the Button) invisible again when
the user has finished viewing.
This code will give you a reasonably neat layout, but only if you use a
monospaced font — one where all characters have the same width, such as Courier.
You will need to count spaces carefully (or keep fiddling with them until they are
right) to get the headings and the records in line.
Notice the line that checks for deleted records. The simple test:
staff.Lname = "Blank"
will not do the job, as Lname is a 30 character string. You can either pad out with
"Blank " with 25 spaces, or trim Lname down to its first five.
If Mid{staff.Lname, 1, 5) <> "Blank" Then
Here's the whole code:
Private Sub ViewAll Clicki(ByVal sender As System.Object, ByVal e As
System.Eventhrgs) Handles ViewhAll.Click
Dim n As Integer

Display.Visible = True ' show the Display TextBox
CloseBtn.Visible = True ' and its contrel butten
Display.Text = "Name Department Grade Hours" & vbCrLf

For n = 1 To RecCount
FileGet (Fnum, staff, n)
If Mid(staff.Llname, 1, 5) <> "Blank" Then
Display.Text &= staff.LName & " " & staff.Dept & " " &
staff.Grade & " " & staff.Hours & vbCrLf
End If
Hext n
End Sub
The CloseBtn Button simply tucks away the Display TextBox and itself.
Private Sub CloseBtn Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles CleseBtn.Click
Display.Visible = False
CloseBtn,Visible = False
End Sub

Print

As there is only one PrintDocument, the code for Print Current Record and Print
All Records is all written in the one PrintPage sub. All that the menu event handlers
do is set the allrecs variable and call up the Print () method.

184 Records and random access files

Private Sub PrintAll Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles PrintAll.Click

allrecs = True

PrintDocumentl.Print ()
End Sub

Private Sub PrintThis_Click(ByVal sender As System.Cbject, ByvVal e
As System.EventArgs) Handles PrintThis.Click

allrecs = False

PrintDocumentl,Print ()
End Sub

The PrintPage routine is based in the one in Chapter 7, but notice these points:

« Afier the header has been printed, the code splits into two blocks — one for all
records and the other for the current record only.

® The DrawString method has parameters to set the print position. Adding 20 to
the y value after each record will space out the lines, and if we write each field
with a separate DrawString, we can arrange them into columns.

Private Sub PrintDocumentl PrintPage(ByVal sender As System.Object,
ByVal e As System.Drawing.Printing.PrintPageEventArgs) Handles
PrintDocumentl.PrintPage

Dim myFont As New Font("Garamond", 12) ' choose your own font

Dim mybrush As New SolidBrush(Color.Black

Dim ypos As Single = 20

Dim n As Integer

e.Graphics.DrawString ("Name Department Grade Hours", myFont,
mybrush, 10, ypos)
If allrecs Then
For n = 1 To RecCount - 1

ypos += 20

FileGet (Fnum, staff, n)

If Mid(staff,Lname <> "Blank", 1, 5} Then
e.Graphics.DrawString(staff.LName, myFont, mybrush, 10, ypos)
e.Graphics.DrawString(staff.Dept, myFont, mybrush, 200, ypos)
e.Graphics,DrawString(staff.Grade, myFont, mybrush, 350, ypos)
e.Graphics.DrawString(staff.Hours, myFont, mybrush, 400, ypos)

End If

Hext

Else

‘allrecs is False, printing current record only
ypos += 20
e.Graphics.Drawstring (staff.LName, myFont, mybrush, 10, ypos)
e.Graphics.DrawString (staff.Dept, myFont, mybrush, 200, ypos)
e.Graphics.DrawString (staff.Grade, myFont, mybrush, 350, ypos)
e.Graphics.DrawString (staff.Hours, myFont, mybrush, 400, ypos)

196 Records and random access files

loop through file
if matching value found
display record
set Found to true
exit from the loop
if found still false at the end
display Not Found message
This translates directly to the code:
rivate Sub FindName Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles FindName.Click

Pim rarget As String
Dim n As Integer
Dim Found As Boolean = False
target = InputBox("Enter Target Name", "Find")
For n = 1 To RecCount
FileGet (Frum, staff, n)
If target = RTrim(staff.LName) Then ' note the trimming
showrec()
Found = True ' signal success
Exit For
End If
Next n
If Not Found Then MsgBox("Record " & target & " not present”, 48)

End Sub

Select

The two Select procedures both follow the same pattern as Find By Name, but
adjusted to cope with the fact that they are hunting for sets of matching records,
rather than an individual one. Instead of stopping when a matching record is found
and displaying it, all matching records are printed on the all records display. The
Finds variable is used here to keep a count of the matches.
First select by department.

Private Sub SelectDept Click(ByVal sender As System.Cbject, ByVal e

System.EventArgs) Handles SelectDept.Click

Dim target As String

Dim Finds As Integer

Oim n As Integer

Display.Vizible = True
CloseBtn.Visible = True

Finds = 0

target = InputBox("Which Department”, "Select"
Display.Text = "Department: " & target & vbCrLf

Display.Text = "Name Grade Hours" & vbCrLf

188 Records and random access files

12.8 Exercises

12.1

Working from the fragments given at the start of this chapter, write a program to
handle student records, using a random access file for storage. The program should
offer the same range of facilities as that in the staff database, plus routines to display
total and average marks.

A pocket diary is a form of random access database, and one that can be
implemented readily in Visual Basic. The functions that convert dates to numbers
and vice versa, can be used to tum diary dates into record numbers, using
statements like:
RecNo = DateValue{GivenDate) - DateValue("31/12/04")

This would produce record numbers for a 2004 diary. GivenDare must be in a
suitable form and include the year number. As a similar expression can convert
record numbers back into dates, you will not need to store dates in the records.

Appendix: Solutions to exercises

Chapter 3
3.1 As only one statement is conditional on each test, these can be written as single-line
Ifs. The over 50,000 and below 20,000 tests are simple, but to spot the middle range
you must test both limits, linking the two expressions with an AND.
Dim salary As Single
salary = InputBox("How much do you want to earn?"
If salary > 50000 Then MsgBox ("Don't go into writing")
If salary > 20000 And salary <= 50000 Then MsgBox ("Good luck")
If salary <= 20000 Then MsgBox ("What modest aims!")
3.2 The trick here is to make use of the fact that the end value in a For ... Next loop can
be a variable. This gives us a link between the outer and inner loops.
Dim outer, inner As Integer
Qutput.Text = ""
For outer = 1 To B
For inner = 1 To outer
Output,Text &= "*"
Next inner
Output.Text &= Chr(13) & Chr(l0} ' start a new line
Next outer
3.4 This takes the member’s age into a TextBox named txtdge, and displays the results in

the Labels (blCartegory and IbiFees. The calculations are done in code attached to the
Button btnCheck.

age = Val (txtAge.Text)
Select Case age
Case 0 To 16
lblCategory = "Junior"
1blFees = ™£125"
Case 17 To 54
lblCategory = "Adult"
lblFees = "£250"
Case 55 To 80

4.1

6.1

to

lblCategory = "Senior"™
lblFees = "£125"
Case Else
lblCategory = "Honorary™
lblFees = "Free"
End Select

Here, the code to check all five of the EiTEl
RadioButtons is written onto the Next But-
ton’s Click. An alternative would be to write
checking code on each RadioButton.

Would this have made any difference to how
the program was used?

A possible layout for the survey form.

Public Class Forml sk (L BrR3 IR E1

Inherits System.Windows.Forms.Form
Dim totaldA, totalB, tetalC, totalD, totalE As Integer

+ Windows Form Designer generated code

Private Sub btnNext_Click(ByVal sender As System.Object, ByVal e
ks System.EventArgs) Handles btnNext.Click

1f rdoA.Checked Then totalA += 1

If rdeB.Checked Then totalB +=

If rdoC.Checked Then totalC +=

If rdoD.Checked Then totalD +=

I1f rdoE.Checked Then totalE +=

rdoA.Checked = True ' set the default
End Sub

Private Sub btnDisplay Click(ByVal sender As System.Object, ByVal
e As System.EventArgs) Handles btnDisplay.Click

lblbisplay.Text = "Results: (A)=" & totalA & " (B)=" & totalB & "
(C)=" & totalC & " (D)=" & totalD & " (E)=" & totalE
End Sub

Private Sub btnQuit Click(ByVal sender As System.0Object, ByVal e
As System.EventArgs) Handles btnQuit.Click

End
End Sub
End Class

1
1
1
1

This has many possible solutions. The following makes a label, named targer, appear
at a random place on the form when the user clicks the Start Button. The starttime is
recorded at this point. Code on the Click event of the target calculates the elapsed
time and displays it on a label, named IbiFeedback.
Public Class Forml

Inherits System.Windows.Forms.Form

Dim starttime, elapsed As Double

+ Windows Form Designer generated code

Introductory Visual Basic .NET

Visual Basic is the dard progr 2 language for Windows. Well over a
million applications are in commercial use, so anyone who wants to become a
Windows expert should master it. and all Windows users should have a grasp of
it. Visual Basic has been evolving steadily with each new version offering mare

features, The current version, Visual Basic .NET is a highly sophisticated language.

This book is written for those students from NVQ through to degree level
studying on a Visual Basic NET course. it provides a concise and practical
introductory guide.

The book introduces the concepts and techniques across a broad front. It then
goes deeper into key aspects, bnngmg in new objects and I.anguige el.emems as
needed, using larger and more 2 2 or

Features
Concise, aimed at courses with a light programming element, building
confidence in the student

+ Graded sequence of learning | aids prog) under
and knowledge
Exercises and tasks allow self-study, enable students to practice
new technigues

* Longer programming exercises at the end of rhaptm some with sample
answers, enable stud o deeper ur tanding

P.K. McBride has been programming and writing about programming since he
first laid a hand on a ZXB1. He has written over 20 books on programming,
covering nearly a dozen varieties of Basic and Visual Basic, as well as assembler,
Pascal, C. Java and JavaScript.

This is the Nﬁmqu&McMrmfthMWmalm
3rd edition (ISBN: 0-8264-5590-5) also available from Th g

1
icated to providing inrovative anproaches 1o Kelong lesrming II IH'
Far your learning solutions

www.thomsonlearning.co.uk 9781844780190

