

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

Linux
Administration

Handbook

®

Evi Nemeth
Garth Snyder
Trent R. Hein

with Lynda McGinley, Ben Whaley,
Adam Boggs, Jeffrey S. Haemer, Tobi Oetiker,

Fritz Zaucker, Scott Seidel, Bryan Buus,
Ned McClain, and David Schweikert

SECOND EDITION

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and the publisher was aware
of a trademark claim, the designations have been printed with initial capital letters or in all capitals.

Red Hat Enterprise Linux and the Red Hat SHADOWMAN logo are registered trademarks of Red
Hat Inc., and such trademarks are used with permission.

Ubuntu is a registered trademark of Canonical Limited, and is used with permission.

Fedora is a trademark of Red Hat Inc., and is used with permission.

Novell, the Novell logo, the N logo, and SUSE are registered trademarks of Novell Inc. in the United
States and other countries.

The authors and publisher have taken care in the preparation of this book, but make no expressed
or implied warranty of any kind and assume no responsibility for errors or omissions. No liability
is assumed for incidental or consequential damages in connection with or arising out of the use of
the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases
or special sales, which may include custom covers and content particular to your business, training
goals, marketing focus, and branding interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international@pearsoned.com

Visit us on the Web: www.prenhallprofessional.com

Library of Congress Cataloging-in-Publication Data

Nemeth, Evi.
Linux administration handbook / Evi Nemeth, Garth Snyder, Trent R.

Hein.—2nd ed.
p. cm.

Includes index.
ISBN 0-13-148004-9 (pbk. : alk. paper)
1. Linux. 2. Operating systems (Computers) I. Snyder, Garth. II. Hein, Trent R. III. Title.
QA76.76.O63N448 2006
005.4'32—dc22

2006030150

Copyright © 2007 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copy-
right, and permission must be obtained from the publisher prior to any prohibited reproduction,
storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical,
photocopying, recording, or likewise. For information regarding permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
One Lake Street
Upper Saddle River, NJ 07458
Fax: (201) 236-3290

ISBN 0-13-148004-9
Text printed in the United States on recycled paper at Courier in Stoughton, Massachusetts.
First printing, October 2006

www.prenhallprofessional.com

iii

Contents

FOREWORD TO THE FIRST EDITION xxxiii

PREFACE xxxiv

ACKNOWLEDGMENTS xxxvii

SECTION ONE: BASIC ADMINISTRATION

CHAPTER 1 WHERE TO START 3

Suggested background . 4
Linux’s relationship to UNIX . 4
Linux in historical context. 5
Linux distributions . 6

So what’s the best distribution? . 8
Distribution-specific administration tools . 9

Notation and typographical conventions . 9
System-specific information . 10

Where to go for information. 11
Organization of the man pages. 12
man: read manual pages . 13
Other sources of Linux information . 13

How to find and install software. 14

iv Linux Administration Handbook

Essential tasks of the system administrator . 16
Adding, removing, and managing user accounts . 16
Adding and removing hardware. 16
Performing backups . 17
Installing and upgrading software . 17
Monitoring the system . 17
Troubleshooting . 17
Maintaining local documentation . 17
Vigilantly monitoring security . 17
Helping users . 18

System administration under duress . 18
System Administration Personality Syndrome . 18

Recommended reading . 19
Exercises . 20

CHAPTER 2 BOOTING AND SHUTTING DOWN 21

Bootstrapping . 21
Automatic and manual booting . 22
Steps in the boot process . 22
Kernel initialization . 23
Hardware configuration . 23
Kernel threads . 23
Operator intervention (manual boot only). 24
Execution of startup scripts. 25
Multiuser operation . 25

Booting PCs . 25
Using boot loaders: LILO and GRUB. 26

GRUB: The GRand Unified Boot loader . 26
LILO: The traditional Linux boot loader. 28
Kernel options . 29
Multibooting on PCs . 30
GRUB multiboot configuration . 30
LILO multiboot configuration . 31

Booting single-user mode . 31
Single-user mode with GRUB . 32
Single-user mode with LILO . 32

Working with startup scripts . 32
init and run levels . 33
Red Hat and Fedora startup scripts . 36
SUSE startup scripts . 38
Debian and Ubuntu startup scripts . 40

Contents v

Rebooting and shutting down . 40
Turning off the power . 41
shutdown: the genteel way to halt the system . 41
halt: a simpler way to shut down . 42
reboot: quick and dirty restart . 42
telinit: change init’s run level . 42
poweroff: ask Linux to turn off the power . 42

Exercises. 43

CHAPTER 3 ROOTLY POWERS 44

Ownership of files and processes . 44
The superuser . 46
Choosing a root password . 47
Becoming root. 48

su: substitute user identity . 48
sudo: a limited su . 48

Other pseudo-users . 51
bin: legacy owner of system commands . 51
daemon: owner of unprivileged system software . 51
nobody: the generic NFS user . 51

Exercises. 52

CHAPTER 4 CONTROLLING PROCESSES 53

Components of a process. 53
PID: process ID number . 54
PPID: parent PID . 54
UID and EUID: real and effective user ID. 54
GID and EGID: real and effective group ID . 55
Niceness . 55
Control terminal . 56

The life cycle of a process . 56
Signals. 57
kill and killall: send signals . 60
Process states . 60
nice and renice: influence scheduling priority . 61
ps: monitor processes . 62
top: monitor processes even better . 65
The /proc filesystem. 65
strace: trace signals and system calls. 66
Runaway processes. 67
Recommended reading . 69
Exercises. 69

vi Linux Administration Handbook

CHAPTER 5 THE FILESYSTEM 70

Pathnames . 72
Filesystem mounting and unmounting . 73
The organization of the file tree . 75
File types. 76

Regular files . 78
Directories . 78
Character and block device files . 79
Local domain sockets . 80
Named pipes . 80
Symbolic links . 80

File attributes. 81
The permission bits . 81
The setuid and setgid bits . 82
The sticky bit . 82
Viewing file attributes . 82
chmod: change permissions . 84
chown: change ownership and group . 86
umask: assign default permissions . 86
Bonus flags . 87

Access control lists . 88
ACL overview . 88
Default entries . 91

Exercises . 92

CHAPTER 6 ADDING NEW USERS 93

The /etc/passwd file . 93
Login name . 94
Encrypted password . 96
UID (user ID) number . 96
Default GID number. 97
GECOS field . 98
Home directory . 98
Login shell . 98

The /etc/shadow file. 99
The /etc/group file . 101
Adding users . 102

Editing the passwd and shadow files . 103
Editing the /etc/group file. 104
Setting an initial password . 104

Contents vii

Creating the user’s home directory . 105
Copying in the default startup files . 105
Setting the user’s mail home . 106
Verifying the new login . 106
Recording the user’s status and contact information . 107

Removing users. 107
Disabling logins. 108
Managing accounts. 108
Exercises. 110

CHAPTER 7 ADDING A DISK 111

Disk interfaces. 111
The PATA interface . 112
The SATA interface . 114
The SCSI interface . 114
Which is better, SCSI or IDE? . 118

Disk geometry . 119
Linux filesystems . 120

Ext2fs and ext3fs . 120
ReiserFS . 121
XFS and JFS . 122

An overview of the disk installation procedure . 122
Connecting the disk . 122
Formatting the disk . 123
Labeling and partitioning the disk. 124
Creating filesystems within disk partitions . 125
Mounting the filesystems . 126
Setting up automatic mounting . 127
Enabling swapping . 129

hdparm: set IDE interface parameters . 129
fsck: check and repair filesystems . 131
Adding a disk: a step-by-step guide . 133
Advanced disk management: RAID and LVM. 138

Linux software RAID . 139
Logical volume management . 139
An example configuration with LVM and RAID. 140
Dealing with a failed disk . 144
Reallocating storage space. 146

Mounting USB drives. 147
Exercises. 148

viii Linux Administration Handbook

CHAPTER 8 PERIODIC PROCESSES 150

cron: schedule commands. 150
The format of crontab files . 151
Crontab management. 153
Some common uses for cron . 154

Cleaning the filesystem . 154
Network distribution of configuration files . 155
Rotating log files . 156

Other schedulers: anacron and fcron . 156
Exercises . 157

CHAPTER 9 BACKUPS 158

Motherhood and apple pie . 159
Perform all dumps from one machine. 159
Label your media . 159
Pick a reasonable backup interval . 159
Choose filesystems carefully . 160
Make daily dumps fit on one piece of media . 160
Make filesystems smaller than your dump device . 161
Keep media off-site . 161
Protect your backups . 161
Limit activity during dumps . 162
Verify your media . 162
Develop a media life cycle . 163
Design your data for backups . 163
Prepare for the worst . 163

Backup devices and media. 163
Optical media: CD-R/RW, DVD±R/RW, and DVD-RAM 164
Removable hard disks (USB and FireWire) . 165
Small tape drives: 8mm and DDS/DAT . 166
DLT/S-DLT . 166
AIT and SAIT. 166
VXA/VXA-X . 167
LTO . 167
Jukeboxes, stackers, and tape libraries . 167
Hard disks . 168
Summary of media types . 168
What to buy . 168

Setting up an incremental backup regime with dump . 169
Dumping filesystems . 169
Dump sequences . 171

Contents ix

Restoring from dumps with restore . 173
Restoring individual files. 173
Restoring entire filesystems . 175

Dumping and restoring for upgrades . 176
Using other archiving programs. 177

tar: package files . 177
cpio: archiving utility from ancient times . 178
dd: twiddle bits . 178

Using multiple files on a single tape . 178
Bacula . 179

The Bacula model . 180
Setting up Bacula . 181
Installing the database and Bacula daemons . 181
Configuring the Bacula daemons . 182
bacula-dir.conf: director configuration. 183
bacula-sd.conf: storage daemon configuration . 187
bconsole.conf: console configuration . 188
Installing and configuring the client file daemon . 188
Starting the Bacula daemons. 189
Adding media to pools. 190
Running a manual backup . 190
Running a restore job. 192
Monitoring and debugging Bacula configurations . 195
Alternatives to Bacula . 197

Commercial backup products . 197
ADSM/TSM . 197
Veritas . 198
Other alternatives . 198

Recommended reading . 198
Exercises. 198

CHAPTER 10 SYSLOG AND LOG FILES 201

Logging policies . 201
Throwing away log files . 201
Rotating log files . 202
Archiving log files . 204

Linux log files . 204
Special log files . 206
Kernel and boot-time logging. 206

logrotate: manage log files . 208

x Linux Administration Handbook

Syslog: the system event logger . 209
Alternatives to syslog . 209
Syslog architecture . 210
Configuring syslogd. 210
Designing a logging scheme for your site . 214
Config file examples . 214
Sample syslog output . 216
Software that uses syslog . 217
Debugging syslog . 217
Using syslog from programs . 218

Condensing log files to useful information . 220
Exercises . 222

CHAPTER 11 SOFTWARE AND CONFIGURATION MANAGEMENT 223

Basic Linux installation . 223
Netbooting PCs . 224
Setting up PXE for Linux . 225
Netbooting non-PCs. 226
Kickstart: the automated installer for Enterprise Linux and Fedora 226
AutoYaST: SUSE’s automated installation tool . 230
The Debian and Ubuntu installer . 231
Installing from a master system . 232

Diskless clients . 232
Package management. 234

Available package management systems . 235
rpm: manage RPM packages . 235
dpkg: manage Debian-style packages . 237

High-level package management systems. 237
Package repositories . 239
RHN: the Red Hat Network. 240
APT: the Advanced Package Tool . 241
Configuring apt-get . 242
An example /etc/apt/sources.list file . 243
Using proxies to make apt-get scale . 244
Setting up an internal APT server . 244
Automating apt-get . 245
yum: release management for RPM. 246

Revision control . 247
Backup file creation . 247
Formal revision control systems . 248
RCS: the Revision Control System . 249
CVS: the Concurrent Versions System . 251
Subversion: CVS done right . 253

Contents xi

Localization and configuration. 255
Organizing your localization . 256
Testing . 257
Local compilation . 258
Distributing localizations . 259
Resolving scheduling issues . 260

Configuration management tools . 260
cfengine: computer immune system . 260
LCFG: a large-scale configuration system. 261
The Arusha Project (ARK) . 261
Template Tree 2: cfengine helper . 262
DMTF/CIM: the Common Information Model . 262

Sharing software over NFS . 263
Package namespaces . 264
Dependency management. 265
Wrapper scripts . 265
Implementation tools. 266

Recommended software . 266
Recommended reading . 268
Exercises. 268

SECTION TWO: NETWORKING

CHAPTER 12 TCP/IP NETWORKING 271

TCP/IP and the Internet . 272
A brief history lesson . 272
How the Internet is managed today. 273
Network standards and documentation . 274

Networking road map . 275
Packets and encapsulation . 276

The link layer. 277
Packet addressing . 279
Ports . 281
Address types . 281

IP addresses: the gory details . 282
IP address classes . 282
Subnetting and netmasks . 282
The IP address crisis. 285
CIDR: Classless Inter-Domain Routing . 287
Address allocation . 288
Private addresses and NAT . 289
IPv6 addressing. 291

xii Linux Administration Handbook

Routing . 293
Routing tables . 294
ICMP redirects . 295

ARP: the address resolution protocol . 296
Addition of a machine to a network. 297

Hostname and IP address assignment. 298
ifconfig: configure network interfaces . 299
mii-tool: configure autonegotiation and other media-specific options 302
route: configure static routes . 303
Default routes . 305
DNS configuration . 306
The Linux networking stack . 307

Distribution-specific network configuration . 307
Network configuration for Red Hat and Fedora . 308
Network configuration for SUSE . 309
Network configuration for Debian and Ubuntu . 310

DHCP: the Dynamic Host Configuration Protocol . 311
DHCP software . 312
How DHCP works. 312
ISC’s DHCP server . 313

Dynamic reconfiguration and tuning . 314
Security issues . 316

IP forwarding. 316
ICMP redirects . 317
Source routing . 317
Broadcast pings and other forms of directed broadcast 317
IP spoofing . 317
Host-based firewalls . 318
Virtual private networks . 318
Security-related kernel variables . 319

Linux NAT . 319
PPP: the Point-to-Point Protocol . 320

Addressing PPP performance issues . 321
Connecting to a network with PPP. 321
Making your host speak PPP . 321
Controlling PPP links . 321
Assigning an address . 322
Routing . 322
Ensuring security . 323
Using chat scripts . 323
Configuring Linux PPP . 323

Linux networking quirks . 330
Recommended reading . 331
Exercises . 332

Contents xiii

CHAPTER 13 ROUTING 334

Packet forwarding: a closer look . 335
Routing daemons and routing protocols . 337

Distance-vector protocols . 338
Link-state protocols . 339
Cost metrics . 340
Interior and exterior protocols . 340

Protocols on parade . 341
RIP: Routing Information Protocol . 341
RIP-2: Routing Information Protocol, version 2 . 341
OSPF: Open Shortest Path First . 342
IGRP and EIGRP: Interior Gateway Routing Protocol 342
IS-IS: the ISO “standard”. 343
MOSPF, DVMRP, and PIM: multicast routing protocols 343
Router Discovery Protocol . 343

routed: RIP yourself a new hole . 343
gated: gone to the dark side . 344
Routing strategy selection criteria . 344
Cisco routers . 346
Recommended reading . 348
Exercises. 349

CHAPTER 14 NETWORK HARDWARE 350

LAN, WAN, or MAN? . 351
Ethernet: the common LAN . 351

How Ethernet works. 351
Ethernet topology . 352
Unshielded twisted pair. 353
Connecting and expanding Ethernets . 355

Wireless: nomad’s LAN . 359
Wireless security. 360
Wireless switches . 360

FDDI: the disappointing, expensive, and outdated LAN . 361
ATM: the promised (but sorely defeated) LAN . 362
Frame relay: the sacrificial WAN . 363
ISDN: the indigenous WAN . 364
DSL and cable modems: the people’s WAN . 364
Where is the network going?. 365
Network testing and debugging . 366
Building wiring . 366

UTP cabling options. 366
Connections to offices . 367
Wiring standards . 367

xiv Linux Administration Handbook

Network design issues . 368
Network architecture vs. building architecture . 368
Existing networks . 369
Expansion. 369
Congestion . 369
Maintenance and documentation . 370

Management issues. 370
Recommended vendors . 371

Cables and connectors . 371
Test equipment . 371
Routers/switches . 372

Recommended reading . 372
Exercises . 372

CHAPTER 15 DNS: THE DOMAIN NAME SYSTEM 373

DNS for the impatient: adding a new machine. 374
The history of DNS . 375

BIND implementations . 376
Other implementations of DNS . 376

Who needs DNS?. 377
The DNS namespace. 378

Masters of their domains . 381
Selecting a domain name . 382
Domain bloat . 382
Registering a second-level domain name . 383
Creating your own subdomains . 383

How DNS works . 383
Delegation . 383
Caching and efficiency . 384
The extended DNS protocol . 386

What’s new in DNS. 386
The DNS database. 389

Resource records. 389
The SOA record. 392
NS records . 395
A records . 396
PTR records . 396
MX records . 397
CNAME records . 399
The CNAME hack . 400
LOC records. 401
SRV records . 402
TXT records . 403
IPv6 resource records. 404

Contents xv

IPv6 forward records . 404
IPv6 reverse records . 405
Security-related records . 405
Commands in zone files . 405
Glue records: links between zones . 407

The BIND software . 409
Versions of BIND . 410
Finding out what version you have . 410
Components of BIND . 411
named: the BIND name server. 412
Authoritative and caching-only servers . 412
Recursive and nonrecursive servers . 413
The resolver library . 414
Shell interfaces to DNS. 415

Designing your DNS environment. 415
Namespace management. 415
Authoritative servers . 416
Caching servers . 417
Security. 417
Summing up . 418
A taxonomy of DNS/BIND chores . 418

BIND client issues. 418
Resolver configuration. 418
Resolver testing . 420
Impact on the rest of the system. 420

BIND server configuration . 420
Hardware requirements. 421
Configuration files . 421
The include statement. 423
The options statement. 423
The acl statement . 429
The key statement . 430
The trusted-keys statement . 430
The server statement . 431
The masters statement . 432
The logging statement . 432
The zone statement . 432
The controls statement . 436
Split DNS and the view statement . 438

BIND configuration examples . 439
The localhost zone . 439
A small security company . 441
The Internet Systems Consortium, isc.org . 444

Starting named . 446

xvi Linux Administration Handbook

Updating zone files . 447
Zone transfers . 447
Dynamic updates . 448

Security issues . 451
Access control lists revisited . 451
Confining named . 453
Secure server-to-server communication with TSIG and TKEY. 453
DNSSEC . 456
Negative answers. 463
Microsoft and DNS . 464

Testing and debugging . 466
Logging . 466
Sample logging configuration . 470
Debug levels . 471
Debugging with rndc . 471
BIND statistics. 473
Debugging with dig . 473
Lame delegations . 475
doc: domain obscenity control . 476
Other DNS sanity checking tools . 478
Performance issues . 478

Distribution specifics . 478
Recommended reading . 481

Mailing lists and newsgroups . 481
Books and other documentation . 481
On-line resources . 482
The RFCs . 482

Exercises . 482

CHAPTER 16 THE NETWORK FILE SYSTEM 484

General information about NFS . 484
NFS protocol versions . 484
Choice of transport . 485
File locking. 486
Disk quotas . 486
Cookies and stateless mounting . 486
Naming conventions for shared filesystems. 487
Security and NFS. 487
Root access and the nobody account. 488

Contents xvii

Server-side NFS. 489
The exports file. 490
nfsd: serve files . 492

Client-side NFS . 492
Mounting remote filesystems at boot time. 495
Restricting exports to insecure ports. 495

nfsstat: dump NFS statistics . 495
Dedicated NFS file servers . 496
Automatic mounting . 497

automount: mount filesystems on demand . 497
The master file. 498
Map files . 499
Executable maps . 499

Recommended reading . 500
Exercises. 501

CHAPTER 17 SHARING SYSTEM FILES 502

What to share . 503
nscd: cache the results of lookups . 504
Copying files around . 505

rdist: push files . 505
rsync: transfer files more securely . 508
Pulling files . 510

NIS: the Network Information Service . 511
Understanding how NIS works . 512
Weighing advantages and disadvantages of NIS . 514
Prioritizing sources of administrative information . 515
Using netgroups . 517
Setting up an NIS domain . 517
Setting access control options in /etc/ypserv.conf. 519
Configuring NIS clients . 519
NIS details by distribution . 520

LDAP: the Lightweight Directory Access Protocol . 520
The structure of LDAP data . 521
The point of LDAP . 522
LDAP documentation and specifications . 523
OpenLDAP: LDAP for Linux . 523
NIS replacement by LDAP . 525
LDAP and security . 526

Recommended reading . 526
Exercises. 527

xviii Linux Administration Handbook

CHAPTER 18 ELECTRONIC MAIL 528

Mail systems. 530
User agents. 531
Transport agents . 532
Delivery agents . 532
Message stores. 533
Access agents . 533
Mail submission agents . 533

The anatomy of a mail message . 534
Mail addressing . 535
Mail header interpretation . 535

Mail philosophy. 539
Using mail servers. 540
Using mail homes . 542
Using IMAP or POP . 542

Mail aliases . 544
Getting mailing lists from files . 546
Mailing to files . 547
Mailing to programs. 547
Aliasing by example . 548
Forwarding mail . 549
The hashed alias database . 551

Mailing lists and list wrangling software . 551
Software packages for maintaining mailing lists . 551
LDAP: the Lightweight Directory Access Protocol . 555

sendmail: ringmaster of the electronic mail circus. 557
Versions of sendmail . 557
sendmail installation from sendmail.org . 559
sendmail installation on Debian and Ubuntu systems 561
The switch file . 562
Modes of operation. 562
The mail queue . 563

sendmail configuration. 565
Using the m4 preprocessor . 566
The sendmail configuration pieces . 567
Building a configuration file from a sample .mc file . 568
Changing the sendmail configuration . 569

Basic sendmail configuration primitives . 570
The VERSIONID macro . 570
The OSTYPE macro . 570
The DOMAIN macro . 572
The MAILER macro . 573

Contents xix

Fancier sendmail configuration primitives . 574
The FEATURE macro . 574
The use_cw_file feature . 574
The redirect feature . 575
The always_add_domain feature. 575
The nocanonify feature . 576
Tables and databases . 576
The mailertable feature . 578
The genericstable feature. 579
The virtusertable feature . 579
The ldap_routing feature . 580
Masquerading and the MASQUERADE_AS macro . 581
The MAIL_HUB and SMART_HOST macros . 583
Masquerading and routing . 583
The nullclient feature . 584
The local_lmtp and smrsh features . 585
The local_procmail feature . 585
The LOCAL_* macros . 586
Configuration options . 586

Spam-related features in sendmail . 588
Relaying . 589
The access database . 591
User or site blacklisting . 594
Header checking . 595
Rate and connection limits . 596
Slamming . 597
Miltering: mail filtering . 597
Spam handling . 598
SpamAssassin . 598
SPF and Sender ID . 599

Configuration file case study. 599
Client machines at sendmail.com . 599
Master machine at sendmail.com . 600

Security and sendmail . 603
Ownerships . 603
Permissions . 604
Safer mail to files and programs. 605
Privacy options . 606
Running a chrooted sendmail (for the truly paranoid) 607
Denial of service attacks . 608
Forgeries . 608
Message privacy . 610
SASL: the Simple Authentication and Security Layer . 610

xx Linux Administration Handbook

sendmail performance . 611
Delivery modes . 611
Queue groups and envelope splitting . 611
Queue runners. 613
Load average controls . 613
Undeliverable messages in the queue . 613
Kernel tuning. 614

sendmail statistics, testing, and debugging . 615
Testing and debugging. 616
Verbose delivery . 617
Talking in SMTP . 618
Queue monitoring . 619
Logging . 619

The Exim Mail System . 621
History . 621
Exim on Linux . 621
Exim configuration. 622
Exim/sendmail similarities. 622

Postfix . 623
Postfix architecture. 623
Receiving mail . 624
The queue manager . 624
Sending mail . 625
Security. 625
Postfix commands and documentation . 625
Configuring Postfix . 626
What to put in main.cf . 626
Basic settings . 626
Using postconf . 627
Lookup tables . 627
Local delivery. 629
Virtual domains . 630
Virtual alias domains . 630
Virtual mailbox domains. 631
Access control . 632
Access tables . 633
Authentication of clients . 634
Fighting spam and viruses. 634
Black hole lists . 635
SpamAssassin and procmail . 636
Policy daemons . 636
Content filtering . 636
Debugging . 637
Looking at the queue . 638

Contents xxi

Soft-bouncing . 638
Testing access control . 638

Recommended reading . 639
Exercises. 640

CHAPTER 19 NETWORK MANAGEMENT AND DEBUGGING 643

Network troubleshooting . 644
ping: check to see if a host is alive . 645
traceroute: trace IP packets . 647
netstat: get network statistics . 649

Inspecting interface configuration information . 649
Monitoring the status of network connections . 651
Identifying listening network services. 652
Examining the routing table . 652
Viewing operational statistics for network protocols . 653

sar: inspect live interface activity . 654
Packet sniffers . 655

tcpdump: king of sniffers . 656
Wireshark: visual sniffer . 657

Network management protocols . 657
SNMP: the Simple Network Management Protocol . 659

SNMP organization . 659
SNMP protocol operations . 660
RMON: remote monitoring MIB . 661

The NET-SMNP agent . 661
Network management applications . 662

The NET-SNMP tools . 663
SNMP data collection and graphing . 664
Nagios: event-based SNMP and service monitoring. 665
Commercial management platforms. 666

Recommended reading . 667
Exercises. 668

CHAPTER 20 SECURITY 669

Is Linux secure? . 670
How security is compromised . 671

Social engineering. 671
Software vulnerabilities . 672
Configuration errors . 673

Certifications and standards . 673
Certifications . 674
Standards . 675

xxii Linux Administration Handbook

Security tips and philosophy . 676
Packet filtering . 677
Unnecessary services . 677
Software patches . 677
Backups . 677
Passwords. 677
Vigilance. 677
General philosophy. 678

Security problems in /etc/passwd and /etc/shadow . 678
Password checking and selection . 679
Password aging . 680
Group logins and shared logins . 680
User shells . 680
Rootly entries. 681
PAM: cooking spray or authentication wonder? . 681

POSIX capabilities. 683
Setuid programs . 683
Important file permissions . 684
Miscellaneous security issues . 685

Remote event logging . 685
Secure terminals . 685
/etc/hosts.equiv and ~/.rhosts . 685
Security and NIS . 685
Security and NFS. 686
Security and sendmail . 686
Security and backups . 686
Viruses and worms . 686
Trojan horses. 687
Rootkits . 688

Security power tools . 688
Nmap: scan network ports . 688
Nessus: next generation network scanner. 690
John the Ripper: find insecure passwords. 690
hosts_access: host access control . 691
Samhain: host-based intrusion detection . 692
Security-Enhanced Linux (SELinux) . 693

Cryptographic security tools . 694
Kerberos: a unified approach to network security. 695
PGP: Pretty Good Privacy . 696
SSH: the secure shell . 697
One-time passwords. 698
Stunnel . 699

Firewalls . 701
Packet-filtering firewalls . 701
How services are filtered . 702

Contents xxiii

Service proxy firewalls . 703
Stateful inspection firewalls . 703
Firewalls: how safe are they? . 704

Linux firewall features: IP tables . 704
Virtual private networks (VPNs) . 708

IPsec tunnels . 709
All I need is a VPN, right? . 710

Hardened Linux distributions . 710
What to do when your site has been attacked . 710
Sources of security information . 712

CERT: a registered service mark of Carnegie Mellon University 712
SecurityFocus.com and the BugTraq mailing list . 713
Crypto-Gram newsletter . 713
SANS: the System Administration, Networking, and Security Institute 713
Distribution-specific security resources . 713
Other mailing lists and web sites . 714

Recommended reading . 715
Exercises. 716

CHAPTER 21 WEB HOSTING AND INTERNET SERVERS 719

Web hosting basics . 720
Uniform resource locators . 720
How HTTP works . 720
Content generation on the fly . 722
Load balancing . 722

HTTP server installation . 724
Choosing a server . 724
Installing Apache . 724
Configuring Apache . 726
Running Apache . 726
Analyzing log files. 727
Optimizing for high-performance hosting of static content 727

Virtual interfaces . 727
Using name-based virtual hosts . 728
Configuring virtual interfaces. 728
Telling Apache about virtual interfaces . 729

The Secure Sockets Layer (SSL) . 730
Generating a certificate signing request . 731
Configuring Apache to use SSL . 732

Caching and proxy servers . 733
The Squid cache and proxy server . 733
Setting up Squid . 734

Anonymous FTP server setup. 734
Exercises. 736

xxiv Linux Administration Handbook

SECTION THREE: BUNCH O' STUFF

CHAPTER 22 THE X WINDOW SYSTEM 741

The X display manager. 743
Running an X application . 744

The DISPLAY environment variable . 744
Client authentication . 745
X connection forwarding with SSH . 747

X server configuration . 748
Device sections . 750
Monitor sections. 750
Screen sections . 751
InputDevice sections. 752
ServerLayout sections. 753

Troubleshooting and debugging . 754
Special keyboard combinations for X . 754
When good X servers go bad. 755

A brief note on desktop environments . 757
KDE. 758
GNOME . 758
Which is better, GNOME or KDE? . 759

Recommended Reading . 759
Exercises . 759

CHAPTER 23 PRINTING 761

Printers are complicated . 762
Printer languages . 763

PostScript . 763
PCL . 763
PDF . 764
XHTML . 764
PJL . 765
Printer drivers and their handling of PDLs. 765

CUPS architecture. 767
Document printing . 767
Print queue viewing and manipulation . 767
Multiple printers . 768
Printer instances . 768
Network printing . 768
The CUPS underlying protocol: HTTP . 769
PPD files . 770
Filters . 771

Contents xxv

CUPS server administration . 772
Network print server setup . 773
Printer autoconfiguration . 774
Network printer configuration . 774
Printer configuration examples . 775
Printer class setup. 775
Service shutoff . 776
Other configuration tasks . 777
Paper sizes . 777
Compatibility commands . 778
Common printing software. 779
CUPS documentation . 780

Troubleshooting tips . 780
CUPS logging. 781
Problems with direct printing. 781
Network printing problems . 781
Distribution-specific problems . 782

Printer practicalities . 782
Printer selection . 782
GDI printers . 783
Double-sided printing . 783
Other printer accessories. 783
Serial and parallel printers . 784
Network printers . 784

Other printer advice . 784
Use banner pages only if you have to . 784
Provide recycling bins . 785
Use previewers . 785
Buy cheap printers . 785
Keep extra toner cartridges on hand . 786
Pay attention to the cost per page . 786
Consider printer accounting. 787
Secure your printers . 787

Printing under KDE . 788
kprinter: printing documents . 789
Konqueror and printing . 789

Recommended reading . 790
Exercises. 790

CHAPTER 24 MAINTENANCE AND ENVIRONMENT 791

Hardware maintenance basics . 791
Maintenance contracts. 792

On-site maintenance . 792
Board swap maintenance . 792
Warranties . 793

xxvi Linux Administration Handbook

Electronics-handling lore . 793
Static electricity . 793
Reseating boards . 794

Monitors. 794
Memory modules . 794
Preventive maintenance. 795
Environment . 796

Temperature . 796
Humidity . 796
Office cooling. 796
Machine room cooling . 797
Temperature monitoring. 798

Power . 798
Racks . 799
Data center standards. 800
Tools . 800
Recommended reading . 800
Exercises . 802

CHAPTER 25 PERFORMANCE ANALYSIS 803

What you can do to improve performance . 804
Factors that affect performance . 806
System performance checkup . 807

Analyzing CPU usage . 807
How Linux manages memory. 809
Analyzing memory usage . 811
Analyzing disk I/O . 813
Choosing an I/O scheduler . 815
sar: Collect and report statistics over time . 816
oprofile: Comprehensive profiler . 817

Help! My system just got really slow!. 817
Recommended reading . 819
Exercises . 819

CHAPTER 26 COOPERATING WITH WINDOWS 821

Logging in to a Linux system from Windows. 821
Accessing remote desktops . 822

Running an X server on a Windows computer . 823
VNC: Virtual Network Computing . 824
Windows RDP: Remote Desktop Protocol . 824

Running Windows and Windows-like applications . 825
Dual booting, or why you shouldn’t . 826
The OpenOffice.org alternative . 826

Contents xxvii

Using command-line tools with Windows . 826
Windows compliance with email and web standards . 827
Sharing files with Samba and CIFS . 828

Samba: CIFS server for UNIX . 828
Samba installation . 829
Filename encoding . 830
Network Neighborhood browsing . 831
User authentication . 832
Basic file sharing . 833
Group shares . 833
Transparent redirection with MS DFS . 834
smbclient: a simple CIFS client . 835
The smbfs filesystem . 835

Sharing printers with Samba. 836
Installing a printer driver from Windows. 838
Installing a printer driver from the command line . 839

Debugging Samba. 840
Recommended reading . 841
Exercises. 842

CHAPTER 27 SERIAL DEVICES 843

The RS-232C standard . 844
Alternative connectors. 847

The mini DIN-8 variant . 847
The DB-9 variant . 848
The RJ-45 variant . 849
The Yost standard for RJ-45 wiring . 850

Hard and soft carrier . 852
Hardware flow control . 852
Cable length . 853
Serial device files . 853
setserial: set serial port parameters. 854
Software configuration for serial devices . 855
Configuration of hardwired terminals . 855

The login process . 855
The /etc/inittab file . 856
Terminal support: the termcap and terminfo databases 858

Special characters and the terminal driver . 859
stty: set terminal options. 860
tset: set options automatically . 861
Terminal unwedging . 862
Modems . 862

Modulation, error correction, and data compression protocols. 863
minicom: dial out . 864
Bidirectional modems . 864

xxviii Linux Administration Handbook

Debugging a serial line . 864
Other common I/O ports . 865

USB: the Universal Serial Bus . 865
Exercises . 866

CHAPTER 28 DRIVERS AND THE KERNEL 868

Kernel adaptation . 869
Drivers and device files . 870

Device files and device numbers. 870
Creating device files . 871
sysfs: a window into the souls of devices . 872
Naming conventions for devices . 872

Why and how to configure the kernel . 873
Tuning Linux kernel parameters . 874
Building a Linux kernel . 876

If it ain’t broke, don’t fix it . 876
Configuring kernel options . 876
Building the kernel binary . 878

Adding a Linux device driver . 878
Device awareness . 880

Loadable kernel modules. 880
Hot-plugging . 882
Setting bootstrap options. 883
Recommended reading . 884
Exercises . 884

CHAPTER 29 DAEMONS 885

init: the primordial process. 886
cron and atd: schedule commands . 887
xinetd and inetd: manage daemons . 887

Configuring xinetd. 888
Configuring inetd . 890
The services file . 892
portmap: map RPC services to TCP and UDP ports . 893

Kernel daemons. 893
klogd: read kernel messages . 894

Printing daemons . 894
cupsd: scheduler for the Common UNIX Printing System 894
lpd: manage printing . 894

File service daemons. 895
rpc.nfsd: serve files . 895
rpc.mountd: respond to mount requests . 895

Contents xxix

amd and automount: mount filesystems on demand 895
rpc.lockd and rpc.statd: manage NFS locks . 895
rpciod: cache NFS blocks . 896
rpc.rquotad: serve remote quotas. 896
smbd: provide file and printing service to Windows clients 896
nmbd: NetBIOS name server . 896

Administrative database daemons. 896
ypbind: locate NIS servers . 896
ypserv: NIS server . 896
rpc.ypxfrd: transfer NIS databases . 896
lwresd: lightweight resolver library server . 897
nscd: name service cache daemon . 897

Electronic mail daemons . 897
sendmail: transport electronic mail . 897
smtpd: Simple Mail Transport Protocol daemon . 897
popd: basic mailbox server . 897
imapd: deluxe mailbox server . 897

Remote login and command execution daemons . 898
sshd: secure remote login server . 898
in.rlogind: obsolete remote login server . 898
in.telnetd: yet another remote login server . 898
in.rshd: remote command execution server . 898

Booting and configuration daemons . 898
dhcpd: dynamic address assignment . 899
in.tftpd: trivial file transfer server . 899
rpc.bootparamd: advanced diskless life support . 899
hald: hardware abstraction layer (HAL) daemon . 899
udevd: serialize device connection notices . 899

Other network daemons . 900
talkd: network chat service. 900
snmpd: provide remote network management service 900
ftpd: file transfer server . 900
rsyncd: synchronize files among multiple hosts . 900
routed: maintain routing tables. 900
gated: maintain complicated routing tables . 901
named: DNS server . 901
syslogd: process log messages . 901
in.fingerd: look up users . 901
httpd: World Wide Web server . 901

ntpd: time synchronization daemon . 902
Exercises. 903

xxx Linux Administration Handbook

CHAPTER 30 MANAGEMENT, POLICY, AND POLITICS 904

Make everyone happy. 904
Components of a functional IT organization . 906
The role of management . 907

Leadership . 907
Hiring, firing, and personnel management . 908
Assigning and tracking tasks. 911
Managing upper management . 913
Conflict resolution . 913

The role of administration. 915
Sales. 915
Purchasing . 916
Accounting. 917
Personnel . 917
Marketing. 918
Miscellaneous administrative chores. 919

The role of development . 919
Architectural principles . 920
Anatomy of a management system . 922
The system administrator’s tool box . 922
Software engineering principles . 923

The role of operations . 924
Aim for minimal downtime . 925
Document dependencies . 925
Repurpose or eliminate older hardware . 926

The work of support . 927
Availability . 927
Scope of service . 927
Skill sets . 929
Time management . 930

Documentation . 930
Standardized documentation . 931
Hardware labeling. 933
User documentation. 934

Request-tracking and trouble-reporting systems . 934
Common functions of trouble ticket systems. 935
User acceptance of ticketing systems. 935
Ticketing systems . 936
Ticket dispatching . 937

Disaster recovery. 938
Backups and off-line information . 939
Staffing your disaster . 939
Power and HVAC . 940
Network redundancy . 941

Contents xxxi

Security incidents . 941
Second-hand stories from the World Trade Center . 942

Written policy . 943
Security policies . 945
User policy agreements . 946
Sysadmin policy agreements. 948

Legal Issues . 949
Encryption . 949
Copyright . 950
Privacy . 951
Click-through EULAs. 953
Policy enforcement. 953
Control = liability . 954
Software licenses. 955
Regulatory compliance . 956

Software patents . 957
Standards . 958

LSB: the Linux Standard Base. 959
POSIX . 959
ITIL: the Information Technology Interface Library . 960
COBIT: Control Objectives for Information and related Technology 960

Linux culture . 961
Mainstream Linux . 962
Organizations, conferences, and other resources . 964

Conferences and trade shows . 965
LPI: the Linux Professional Institute . 967
Mailing lists and web resources . 967
Sysadmin surveys . 968

Recommended Reading. 968
Infrastructure . 968
Management . 969
Policy and security . 969
Legal issues, patents, and privacy . 969
General industry news . 970

Exercises. 970

INDEX 973

ABOUT THE CONTRIBUTORS 999

ABOUT THE AUTHORS 1001

This page intentionally left blank

xxxiii

Foreword to the First Edition

I was quite excited to preview this Linux-only edition of the UNIX®System Adminis-
tration Handbook. The third edition of USAH included coverage of Red Hat Linux,
but it was only one of four very different variants of UNIX. This version of the book
covers several major Linux distributions and omits most of the material that’s not
relevant to Linux. I was curious to see how much of a difference it would make.

A lot, it turns out. Linux distributions draw from a common pool of open-source
software, so they’re far more similar to one another than are other versions of UNIX.
As a result, the text seems to have become considerably more specific. Instead of
suggesting various ways your system might behave, the authors can now tell you ex-
actly how it does behave.

At the same time, it’s clear that all the richness and variety of UNIX software are still
represented here. Just about all of the world’s popular software runs on Linux these
days, and Linux sites are finding themselves faced with fewer and fewer compro-
mises. As big-iron vendors like IBM, Oracle, and Silicon Graphics embrace Linux, it
is rapidly becoming the universal standard to which other versions of UNIX are
compared (and not always favorably!).

As this book shows, Linux systems are just as functional, secure, and reliable as their
proprietary counterparts. Thanks to the ongoing efforts of its thousands of develop-
ers, Linux is more ready than ever for deployment at the frontlines of the real world.
The authors of this book know that terrain well, and I am happy to leave you in their
most capable hands. Enjoy!

Linus Torvalds
April 2002

xxxiv

Preface

When we wrote the first edition of this book (about five years ago), Linux was just
beginning to prove itself in the corporate world. We hoped that Linux Administra-
tion Handbook would help spread the news that Linux was a first-tier operating
system capable of matching off against offerings from Sun, HP, and IBM.

Now Linux is IBM. For anyone awaiting an unambiguous signal that the Linux wa-
ters were safe for corporate swimmers, IBM’s 2004 announcement of Linux support
across its entire server line must have been quite comforting. No one was ever fired
for buying IBM; these days, Linux in general is an equally safe proposition.1

We set out to write a book that would be the professional Linux system administra-
tor’s best friend. Where appropriate, we’ve adapted the proven concepts and materi-
als from our popular book, UNIX System Administration Handbook. We’ve added a
truckload of Linux-specific material and updated the rest, but much of the coverage
remains similar. We hope you agree that the result is a high-quality guide to Linux
administration that benefits from its experience in a past life.

None of the other books on Linux system administration supply the breadth and
depth of material necessary to effectively use Linux in real-world business environ-
ments. Here are the features that distinguish our book:

• We take a practical approach. Our purpose is not to restate the contents of
your manuals but rather to summarize our collective experience in system
administration. This book contains numerous war stories and a wealth of
pragmatic advice.

1. At least on servers. Today’s battleground is the desktop, a domain over which Microsoft Windows still
maintains a near-lock. The outcome of that struggle remains difficult to predict. As of this writing,
Windows still provides a more polished user interface. But it’s hard to argue with “free.”

Preface xxxv

• This is not a book about how to run Linux at home, in your garage, or on
your PDA. We describe the use of Linux in production environments such
as businesses, government offices, and universities.

• We cover Linux networking in detail. It is the most difficult aspect of sys-
tem administration and the area in which we think we can be of most help.

• We do not oversimplify the material. Our examples reflect true-life situa-
tions with all their warts and unsightly complications. In most cases, the
examples have been taken directly from production systems.

• We cover five major Linux distributions.

OUR EXAMPLE DISTRIBUTIONS

Like so many operating systems, Linux has grown and branched in several different
directions. Although development of the kernel has remained surprisingly central-
ized, packaging and distribution of complete Linux operating systems is overseen by
a variety of groups, each with its own agenda.

We cover five Linux distributions in detail:

• Red Hat® Enterprise Linux® 4.3 ES

• Fedora™ Core 5

• SUSE® Linux Enterprise 10.2

• Debian® GNU/Linux 3.2 “Etch” (testing release of 9/06)

• Ubuntu® 6.06 “Dapper Drake”

We chose these distributions because they are among the most popular and because
they represent the Linux community as a whole. However, much of the material in
this book applies to other mainstream distributions as well.

We provide detailed information about each of these example distributions for every
topic that we discuss. Comments specific to a particular operating system are marked
with the distribution’s logo.

THE ORGANIZATION OF THIS BOOK

This book is divided into three large chunks: Basic Administration, Networking, and
Bunch o’ Stuff.

Basic Administration presents a broad overview of Linux from a system adminis-
trator’s perspective. The chapters in this section cover most of the facts and tech-
niques needed to run a stand-alone Linux system.

The Networking section describes the protocols used on Linux systems and the tech-
niques used to set up, extend, and maintain networks. High-level network software
is also covered here. Among the featured topics are the Domain Name System, the
Network File System, routing, sendmail, and network management.

xxxvi Linux Administration Handbook

Bunch o’ Stuff includes a variety of supplemental information. Some chapters dis-
cuss optional software packages such as the Linux printing system. Others give advice
on topics ranging from hardware maintenance to the politics of running a Linux in-
stallation.

Each chapter is followed by a set of practice exercises. Items are marked with our
estimate of the effort required to complete them, where “effort” is an indicator of
both the difficulty of the task and the time required.

There are four levels:

no stars Easy, should be straightforward
Harder or longer, may require lab work
Hardest or longest, requires lab work and digging
Semester-long projects (only in a few chapters)

Some of the exercises require root or sudo access to the system; others require the
permission of the local sysadmin group. Both requirements are mentioned in the
text of the exercise.

OUR CONTRIBUTORS

We’re delighted that Adam Boggs, Bryan Buus, and Ned McClain were able to join us
once again as contributing authors. With this edition, we also welcome Ben Whaley,
Tobi Oetiker, Fritz Zaucker, Jeffrey S. Haemer, David Schweikert, and Scott Seidel as
contributors and friends. Their deep knowledge of a variety of areas has greatly en-
riched the content of this book. Above all, we thank and acknowledge Lynda McGin-
ley, who in addition to taking ownership of a substantial amount of text also worked
tirelessly to organize and facilitate our contributors’ work.

CONTACT INFORMATION

Please send suggestions, comments, and bug reports to linux@book.admin.com. We
answer most mail, but please be patient; it is sometimes a few days before one of us
is able to respond. Because of the volume of email that this alias receives, we regret
that we are unable to answer technical questions. To get a copy of our current bug
list and other late-breaking information, visit our web site, www.admin.com.

We hope you enjoy this book, and we wish you the best of luck with your adventures
in system administration!

Evi Nemeth
Garth Snyder
Trent R. Hein

October 2006

www.admin.com

xxxvii

Acknowledgments

Many folks have helped with this book in one way or another, assisting with every-
thing from technical reviews or suggested exercises to overall moral support. These
people deserve special thanks for hanging in there with us:

Our editors at Prentice Hall, Catherine Nolan and Mary Franz, deserve not only our
thanks but also an award for successfully dealing with flaky authors and a support-
ing cast that sometimes seemed to run to thousands of contributors.

Mary Lou Nohr once again did an exceptional job as copy editor. She is a car crushing
plant and botanical garden all rolled into one. We’d like to say that we’ll gladly work
with her again in the future, but future tense is not permitted.

Mark G. Sobell’s thoughtful and patient indexing work paid off in spades. We’re very
happy with the result, and the help is much appreciated.

Finally, Evi thanks and apologizes to the myriad beachside bars and cafes of the
Caribbean whose free wireless connections she hijacked by anchoring her boat at
the point of maximum signal strength. As she sat oblivious to the paradise around
her and wrestled with book chapters, she swore this would be her last edition. But
who’s she kidding?

Bo Connell Jon Corbet Jim Lane
Sam Leffler Cricket Liu Derek Martin
Laszlo Nemeth Eric Robinson Sam Stoller
Paul Vixie Aaron Weber Greg Woods

This page intentionally left blank

SECTION ONE

BASIC ADMINISTRATION

This page intentionally left blank

3

W
h

e
re

 t
o

 S
ta

rt

1 Where to Start

We set out to write a book that could be a system administrator’s trusty companion,
affording the practical advice and basic system administration theory that you can’t
get from reading manual pages. As a result, this book is designed to complement—
not replace—the existing body of Linux documentation.

This book helps you in five ways:

• It reviews the major administrative systems, identifying the different
pieces of each and explaining how they work together.

• It introduces general administrative techniques that we have found,
through experience, to be efficient and beneficial.

• It helps you choose solutions that continue to work well as your site grows
in size and complexity.

• It helps you sort good ideas from bad and educates you about assorted
atrocities of taste committed by distributors.

• It summarizes common procedures so that you don’t have to dig through
the excessive detail of the manuals to accomplish simple tasks.

It’s impossible to perform these functions with perfect objectivity, but we think we’ve
made our biases fairly clear throughout the text. One of the interesting things about
system administration is that reasonable people can have dramatically different no-
tions of what constitute the most appropriate policies and procedures. We offer our
subjective opinions to you as raw data. You’ll have to decide for yourself how much
to accept and to what extent our comments apply to your environment.

Where to Start

4 Chapter 1 – Where to Start

1.1 SUGGESTED BACKGROUND

We assume in this book that you have a certain amount of Linux or UNIX experi-
ence. In particular, you should have a general concept of how Linux looks and feels
from the user’s perspective before jumping into administration. Several good books
can get you up to speed; see the reading list on page 19.

You perform most administrative tasks by editing configuration files and writing
scripts, so you must be familiar with a text editor. To the dismay of many, using
Microsoft Word as one’s only text editor is a significant impediment to effective sys-
tem administration.

We strongly recommend that you learn vi (which is seen most commonly on Linux
systems in its rewritten form, vim). It is standard on all UNIX and Linux systems,
and though it may appear a bit pallid when compared with glitzier offerings such as
emacs, it is powerful and complete. We also like pico, which is a simple and low-
impact “starter editor” that’s good for new sysadmins. It’s included in many distri-
butions. Be wary of nonstandard editors; if you become addicted to one, you may
soon tire of dragging it along with you to install on every new system.

One of the mainstays of administration (and a theme that runs throughout this book)
is the use of scripts to automate administrative tasks. To be an effective administra-
tor, you must be able to read and modify Perl and sh scripts (which in the Linux
world are really bash scripts). Scripts that you write from scratch can be written in
the shell or scripting language of your choice.

See cpan.org for a com-
plete selection of useful
Perl software.

For new scripting projects, we recommend Perl or Python. As a programming lan-
guage, Perl is a little strange (OK, more than a little). However, it does include many
features that are indispensable for administrators. The O’Reilly book Programming
Perl by Larry Wall et al. is the standard text; it’s also a model of good technical writ-
ing. A full citation is given on page 20.

Many administrators prefer Python to Perl, and we know of sites that are making a
concerted effort to convert from Perl to Python. Python is a more elegant language
than Perl, and Python scripts are generally more readable and easier to maintain. A
useful set of links that compare Python to other scripting languages (including Perl)
can be found at

www.python.org/doc/Comparisons.html

We also recommend that you learn expect, which is not a programming language
so much as a front end for driving interactive programs. You will most likely pick
up expect quite rapidly.

1.2 LINUX’S RELATIONSHIP TO UNIX

Using the names Linux and UNIX together in one sentence is like stepping into a
political minefield, or perhaps like blundering into a large patch of quicksand. Here
is our short version of the facts, stated as clearly and objectively as we can make them.

www.python.org/doc/Comparisons.html

W
h

e
re

 t
o

 S
ta

rt

1.3 Linux in historical context 5

Linux is a reimplementation and elaboration of UNIX. It conforms to the POSIX
standard, runs on several hardware platforms, and is compatible with most existing
UNIX software. It differs from most other variants of UNIX in that it is free, open
source, and cooperatively developed, with contributions having come from thou-
sands of different individuals and organizations. Linux incorporates technical re-
finements that did not exist in the original versions of UNIX, so it is more than just a
UNIX clone. It is also a legally distinct entity and cannot be properly be referred to
as “UNIX.”

It’s worth noting that Linux is not the only free UNIX-like operating system in the
world. FreeBSD, NetBSD, and OpenBSD, all offshoots of the Berkeley Software Dis-
tribution from UC Berkeley, have ardent followers of their own. These OSes are gen-
erally comparable to Linux in their features and reliability, although they enjoy
somewhat less support from third-party software vendors.

Linux software is UNIX software. Thanks largely to the GNU Project, most of the
important software that gives UNIX systems their value has been developed under
some form of open source model. The same code runs on Linux and non-Linux sys-
tems. The Apache web server, for example, doesn’t really care whether it’s running
on Linux or HP-UX. From the standpoint of applications, Linux is simply one of the
best-supported varieties of UNIX.

UNIX and Linux systems have been used in production environments for many
years. This book, unlike most others on Linux administration, focuses on the effec-
tive use of Linux in a production environment—not just as a single-user desktop.1

1.3 LINUX IN HISTORICAL CONTEXT

Linux originated in 1991 as a personal project of Linus Torvalds, a Finnish graduate
student. He originally conceived the project as a modest offshoot of Minix, a model
operating system written by Andrew S. Tanenbaum. However, Linux generated sub-
stantial interest in the world at large, and the kernel soon took on a life of its own. By
exploiting the power of cooperative development, Linus was able to tackle a much
more ambitious agenda. Kernel version 1.0 was released in 1994; as of this writing
(September 2006), the most recent stable version of the Linux kernel is 2.6.17.

Because Linux owes much to its UNIX ancestors, it’s not quite fair to locate the dawn
of the Linux era in 1991. The history of UNIX goes back several decades to 1969,
when UNIX originated as a research project at AT&T Bell Labs. In 1976, UNIX was
made available at no charge to universities and thus became the basis of many oper-
ating systems classes and academic research projects.

Berkeley UNIX began in 1977 when the Computer Systems Research Group (CSRG)
at the University of California, Berkeley, licensed code from AT&T. Berkeley’s releases

1. A “production” environment is one that an organization relies on to accomplish real work (as opposed
to testing, research, or development).

6 Chapter 1 – Where to Start

(called BSD, for Berkeley Software Distribution) started with 1BSD for the PDP-11
and culminated in 1993 with 4.4BSD.

As UNIX gained commercial acceptance, the price of source licenses rose rapidly.
Eventually, Berkeley set the long-term goal of removing AT&T’s code from BSD, a
tedious and time-consuming process. Before the work could be completed, Berke-
ley lost funding for operating systems research and the CSRG was disbanded.

Before disbanding, the CSRG released its final collection of AT&T-free code, known
as 4.4BSD-Lite. Most current versions of BSD UNIX (including FreeBSD, NetBSD,
Mac OS X,2 and OpenBSD) claim the 4.4BSD-Lite package as their grandparent.

Most other major versions of UNIX (including HP-UX and Solaris) are descendants
of the original AT&T lineage. Linux doesn’t share code with the AT&T or BSD flavors
of UNIX, but from a functional perspective it falls somewhere between the two.

1.4 LINUX DISTRIBUTIONS

See the section starting
on page 962 for addi-
tional comments on
distributions.

Linux differs from other variants of UNIX in that the core kernel project defines only
an OS kernel. The kernel must be packaged together with commands, daemons, and
other software to form a usable and complete operating system—in Linux terms, a
“distribution.” All Linux distributions share the same kernel lineage, but the ancil-
lary materials that go along with that kernel can vary quite a bit among distributions.

Those “ancillary materials” consist of a vast collection of software developed over
the last 30 years by thousands of individuals. It has been argued, with some justifica-
tion, that the act of referring to the completed operating system simply as “Linux”
fails to acknowledge the contributions of those developers and the historical context
in which they worked. Unfortunately, the most commonly suggested alternative,
“GNU/Linux,” has its own political baggage and has been officially endorsed only by
the Debian distribution. The Wikipedia entry for “GNU/Linux naming controversy”
outlines the arguments on both sides.

Distributions vary in their focus, support, and popularity. Table 1.1 lists the most
popular general-purpose distributions. Distributions are listed in alphabetic order,
not in order of preference or popularity.

Many smaller distributions are not listed in Table 1.1, and many unlisted special-pur-
pose distributions are targeted at groups with specialized needs (such as embedded
system developers).

One useful distribution not found in Table 1.1 is Knoppix (www.knoppix.com), a
version of Linux that lives on a bootable CD-ROM. Its primary value lies in its utility
as a recovery CD for a Linux system rendered unbootable by a security compromise
or technical problem. The bootable CD concept has proved so popular that most
major distributions are moving in that direction. Now that Ubuntu can boot from

2. Strictly speaking, the Mac OS X kernel is a variant of Mach, a hybrid system that includes both BSD
sections and parts that are rather non-UNIX in flavor.

www.knoppix.com

W
h

e
re

 t
o

 S
ta

rt

1.4 Linux distributions 7

the distribution CD, Knoppix is becoming less important. An updated list of boota-
ble Linux distributions can be found at www.frozentech.com/content/livecd.php.

Red Hat has been a dominant force in the Linux world for most of the last decade,
and its distributions are predominant in North America. In 2003, the original Red
Hat Linux distribution was split into a production-centered line called Red Hat En-
terprise Linux (which we sometimes refer to as RHEL in this book) and a commu-
nity-based development project called Fedora. The split was motivated by a variety
of technical, economic, logistic, and legal reasons, but so far the distributions have
remained similar. RHEL offers great support and stability but is effectively impossi-
ble to use without paying licensing fees to Red Hat.

The CentOS Project (www.centos.org) collects source code that Red Hat is obliged to
release under various licensing agreements (most notably, the GNU public license)
and assembles it into a complete distribution that is eerily similar to Red Hat Enter-
prise Linux, but free of charge. The distribution lacks Red Hat’s branding and a few
proprietary tools, but is in other respects equivalent. CentOS aspires to full binary
and bug-for-bug compatibility with RHEL.

CentOS is an excellent choice for sites that want to deploy a production-oriented
distribution without paying tithes to Red Hat. A hybrid approach is also feasible:
front-line servers can run Red Hat Enterprise Linux and avail themselves of Red
Hat’s excellent support, while desktops run CentOS. This arrangement covers the
important bases in terms of risk and support while also minimizing cost and admin-
istrative complexity.

SUSE, now part of Novell, has recently taken the path of Red Hat and forked into two
related distributions: one (openSUSE) that contains only free software; and another
(SUSE Linux Enterprise) that costs money, includes a formal support path, and offers
a few extra trinkets. In the past there seemed to be an effort to hide the existence of

Table 1.1 Most popular general-purpose Linux distributions

Distribution Web site Comments

CentOS www.centos.org Free analog of Red Hat Enterprise Linux
Debian www.debian.org A popular noncommercial distribution
Fedora fedora.redhat.com De-corporatized Red Hat Linux
Gentoo www.gentoo.org Source-code based distribution
Mandrivaa www.mandriva.com One of the most user-friendly distros
openSUSE www.opensuse.org Free analog of SUSE Linux Enterprise
Red Hat Enterprise www.redhat.com Super-corporatized Red Hat Linux
Slackware www.slackware.com Stable, basic, bare-bones distribution
SUSE Linux Enterprise www.novell.com/linux Strong in Europe, multilingual
TurboLinux www.turbolinux.com Strong in Asia, multilingual
Ubuntu www.ubuntu.com Cleaned-up version of Debian

a. Formerly Mandrakelinux

www.frozentech.com/content/livecd.php
www.centos.org
www.centos.org
www.debian.org
www.gentoo.org
www.mandriva.com
www.opensuse.org
www.redhat.com
www.slackware.com
www.novell.com/linux
www.turbolinux.com
www.ubuntu.com

8 Chapter 1 – Where to Start

the free version of SUSE, but Novell has been more up front about this edition than
SUSE’s previous owners. Now, you can go right to www.opensuse.org for the latest
information. Nothing in this book is specific to one SUSE distribution or the other,
so we simply refer to them collectively as “SUSE.”

The Debian and Ubuntu distributions maintain an ideological commitment to com-
munity development and open access, so there’s never any question about which
parts of the distribution are free or redistributable. Debian survives on the zeal and
goodwill of the GNU community, while Ubuntu currently enjoys philanthropic
funding from South African entrepreneur Mark Shuttleworth. Ubuntu will even
send you free CDs in the mail, no postage required.

So what’s the best distribution?

A quick search on the net will reveal that this is one of the most frequently asked—
and least frequently answered—Linux questions. The right answer for you depends
on how you intend to use the system, the varieties of UNIX that you’re familiar with,
your political sympathies, and your support needs.

Most Linux distributions can do everything you might ever want to do with a Linux
system. Some of them may require the installation of additional software to be fully
functional, and some may facilitate certain tasks; however, the differences among
them are not cosmically significant. In fact, it is something of a mystery why there
are so many different distributions, each claiming “easy installation” and “a massive
software library” as its distinguishing feature. It’s hard to avoid the conclusion that
people just like to make new Linux distributions.

On the other hand, since our focus in this book is the management of large-scale
Linux installations, we’re partial to distributions such as Red Hat Enterprise Linux
that take into account the management of networks of machines. Some distributions
are designed with production environments in mind, and others are not. The extra
crumbs of assistance that the production-oriented systems toss out can make a sig-
nificant difference in ease of administration.

When you adopt a distribution, you are making an investment in a particular ven-
dor’s way of doing things. Instead of looking only at the features of the installed soft-
ware, it’s wise to consider how your organization and that vendor are going to work
with each other in the years to come. Some important questions to ask are:

• Is this distribution going to be around in five years?

• Is this distribution going to stay on top of the latest security patches?

• Is this distribution going to release updated software promptly?

• If I have problems, will the vendor talk to me?

Viewed in this light, some of the more interesting, offbeat little distributions don’t
sound quite so appealing. On the other hand, the most viable distributions are not
necessarily the most corporate. For example, we expect Debian (OK, OK, Debian
GNU/Linux!) to remain viable for quite a while despite the fact that Debian is not a
company, doesn’t sell anything, and offers no formal, on-demand support.

www.opensuse.org

W
h

e
re

 t
o

 S
ta

rt

1.5 Notation and typographical conventions 9

A comprehensive list of distributions, including many non-English distributions,
can be found at www.linux.org/dist, lwn.net/Distributions, or distrowatch.com.

In this book, we use five popular distributions as our examples: Red Hat Enterprise
Linux 4.3 ES, Fedora Core 5, SUSE Linux Enterprise 10.2, Ubuntu 6.06 (“Dapper
Drake”), and the current (as of September 2006) testing release of Debian GNU/Linux
3.2 (“Etch”). These systems represent a cross-section of the enterprise Linux market
and account collectively for a majority of the installations in use at large sites today.

Distribution-specific administration tools

Many distributions include visually oriented tools (such as the Red Hat Network
Administration Tool or SUSE’s YaST2) that help you configure or administer se-
lected aspects of the system. These tools can be very useful, especially for novice
administrators, but they do tend to obscure the details of what’s actually going on
when you make changes. In this book, we cover the underlying mechanisms that the
visual tools refer to rather than the tools themselves, for several reasons.

For one, the visual tools tend to be proprietary, or at least distribution-specific—
they introduce variation into processes that may actually be quite consistent among
distributions at a lower level. Second, we believe that it’s important for administra-
tors to have an accurate understanding of how their systems work. When the system
breaks, the visual tools are usually not helpful in tracking down and fixing problems.
Finally, manual configuration is often just plain better: it’s faster, more flexible, more
reliable, and easier to script.

1.5 NOTATION AND TYPOGRAPHICAL CONVENTIONS

In this book, filenames, commands, and literal arguments to commands are shown
in boldface. Placeholders (e.g., command arguments that should not be taken liter-
ally) are in italics. For example, in the command

cp file directory

you’re supposed to replace file and directory with the names of an actual file and an
actual directory.

Excerpts from configuration files and terminal sessions are shown in a fixed-width
font.3 Sometimes, we annotate interactive sessions with italic text. For example:

$ grep Bob /pub/phonelist /* Look up Bob’s phone # */
Bob Knowles 555-2834
Bob Smith 555-2311

Outside of these specific cases, we have tried to keep special fonts and formatting
conventions to a minimum as long as we could do so without compromising intelli-
gibility. For example, we often talk about entities such as the Linux group named dae-
mon and the printer anchor-lw with no special formatting at all.

3. Actually, it’s not really a fixed-width font, but it looks like one. We liked it better than the real fixed-
width fonts that we tried. That’s why the columns in some examples may not all line up perfectly.

www.linux.org/dist

10 Chapter 1 – Where to Start

In general, we use the same conventions as the manual pages for indicating the syn-
tax of commands:

• Anything between square brackets (“[” and “]”) is optional.

• Anything followed by an ellipsis (“…”) can be repeated.

• Curly braces (“{” and “}”) mean that you should select one of the items
separated by vertical bars (“|”).

For example, the specification

bork [-x] { on | off } filename …

would match any of the following commands:

bork on /etc/passwd
bork -x off /etc/passwd /etc/termcap
bork off /usr/lib/tmac

We use shell-style globbing characters for pattern matching:

• A star (*) matches zero or more characters.

• A question mark (?) matches one character.

• A tilde or “twiddle” (~) means the home directory of the current user.

• ~user means the home directory of user.

For example, we might refer to the Debian startup script directories /etc/rc0.d,
/etc/rc1.d, and so on with the shorthand pattern /etc/rc*.d.

Text within quotation marks often has a precise technical meaning. In these cases, we
ignore the normal rules of English and put punctuation outside the quotation marks
so that there can be no confusion about what’s included and what’s not.

System-specific information

Information in this book generally applies to all of our example distributions unless
a specific attribution is given. Details particular to one distribution are marked with
the vendor’s logo:

Red Hat® Enterprise Linux® 4.3 ES

Fedora™ Core 5

SUSE® Linux Enterprise 10.2

Ubuntu® 6.06 “Dapper Drake”

Debian® GNU/Linux 3.2 “Etch” (testing release of 9/06)

These logos are used with the kind permission of their respective owners. However,
the distributors have neither reviewed nor endorsed the contents of this book.

W
h

e
re

 t
o

 S
ta

rt

1.6 Where to go for information 11

1.6 WHERE TO GO FOR INFORMATION

Linux documentation is spread over a number of sources, some of which you will
find installed on your system and some of which live out on the net. The biggies are

• Manual pages (man pages), read with the man command

• Texinfo documents, read with the info command

• HOWTOs, short notes on various subjects (www.tdlp.org)

• Guides, longer treatises on various subjects (www.tdlp.org)

• Distribution-specific documentation

• Web pages associated with specific software projects

The man pages and Texinfo documents constitute the traditional “on-line” docu-
mentation (though, of course, all the documentation is on-line in some form or an-
other). These docs are typically installed with the system; program-specific man
pages usually come along for the ride whenever you install a new package.

Man pages are concise descriptions of individual commands, drivers, file formats,
or library routines. They do not address more general topics such as “How do I in-
stall a new device?” or “Why is my system so slow?” For those questions, consult the
HOWTOs.

Texinfo documents were invented long ago by the GNU folks in reaction to the fact
that the nroff command to format man pages was proprietary to AT&T. These days
we have GNU’s own groff to do this job for us, and the nroff issue is no longer
important. Unfortunately, many GNU packages persist in documenting themselves
with Texinfo files rather than man pages. In addition to defining an unnecessary sec-
ond standard for documentation, Texinfo proves to be a rather labyrinthine little hy-
pertext system in its own right.

To escape from Texinfo hell, pipe info’s output through the less command to evade
info’s built-in navigation system. As a side effect, this procedure also lets you take
advantage of the searching features built into less.

Fortunately, packages that are documented with Texinfo usually install man page
stubs that tell you to use the info command to read about those particular packages.
You can safely stick to the man command for doing manual searches and delve into
info land only when instructed to do so. info info initiates you into the dark myster-
ies of Texinfo.

HOWTOs and guides are maintained by The Linux Documentation Project, reach-
able on-line at www.tldp.org. The LDP is a central repository for all sorts of useful
Linux information. It also centralizes efforts to translate Linux-related documents
into additional languages.

Some free, on-line LDP guides of particular relevance to system administrators are
The Linux System Administrators' Guide by Lars Wirzenius, Joanna Oja, Stephen
Stafford, and Alex Weeks; the Advanced Bash-Scripting Guide by Mendel Cooper;

www.tdlp.org
www.tdlp.org
www.tldp.org

12 Chapter 1 – Where to Start

The Linux Network Administrator's Guide, Second Edition, by Olaf Kirch and Terry
Dawson; and Linux System Administration Made Easy by Steve Frampton.

Unfortunately, many of the LDP documents are not assiduously maintained. Since
Linux-years are a lot like dog-years in their relation to real time, untended docu-
ments are apt to quickly go out of date. Always check the time stamp on a HOWTO
or guide and weigh its credibility accordingly.

Many of the most important parts of the Linux software base are maintained by neu-
tral third parties such as the Internet Systems Consortium and the Apache Software
Foundation. These groups typically generate adequate documentation for the pack-
ages they distribute. Distributions sometimes package up the software but skimp on
the documentation, so it’s often useful to check back with the original source to see
if additional materials are available.

Another useful source of information about the design of many Linux software pack-
ages is the “Request for Comments” document series, which describes the protocols
and procedures used on the Internet. See page 274 for more information.

Organization of the man pages

The Linux man pages are typically divided into nine sections as shown in Table 1.2.

Some sections are further subdivided. For example, section 3M contains man pages
for the system’s math library. Sections 6 and 9 are typically empty. Many systems
have a section of the manuals called “l” for local man pages. Another common con-
vention is section “n” for software-specific subcommands (such as bash built-ins).

nroff input for man pages is usually kept in the directories /usr/share/man/manX,
where X is a digit 1 through 9, or l or n. The pages are normally compressed with
gzip to save space. (The man command knows how to uncompress them on the fly.)
Formatted versions of the manuals are kept in /var/cache/man/catX. The man com-
mand formats man pages as they are needed; if the cat directories are writable,

Table 1.2 Sections of the Linux man pages

Section Contents

1 User-level commands and applications
2 System calls and kernel error codes
3 Library calls
4 Device drivers and network protocols
5 Standard file formats
6 Games and demonstrations
7 Miscellaneous files and documents
8 System administration commands
9 Obscure kernel specs and interfaces

W
h

e
re

 t
o

 S
ta

rt

1.6 Where to go for information 13

man also deposits the formatted pages as they are created, generating a cache of
commonly read man pages.

The man command actually searches a number of different directories to find the
manual pages you request. You can determine the search path with the manpath
command. This path (from Fedora) is typical:

$ manpath
/usr/kerberos/man:/usr/local/share/man:/usr/share/man/en:/usr/share/man

If necessary, you can set your MANPATH environment variable to override the de-
fault path. You can also set the system-wide default in /etc/man.config (RHEL and
Fedora) or /etc/manpath.config (SUSE, Debian, and Ubuntu).

man: read manual pages

man title formats a specific manual page and sends it to your terminal with less (or
whatever program is specified in your PAGER environment variable). title is usually
a command, device, or filename. The sections of the manual are searched in roughly
numeric order, although sections that describe commands (sections 1, 8, and 6) are
usually searched first.

The form man section title gets you a man page from a particular section. Thus, man
tty gets you the man page for the tty command, and man 4 tty gets you the man
page for the controlling terminal driver.

man -k keyword prints a list of man pages that have keyword in their one-line synop-
ses. For example:

$ man -k translate
objcopy (1) - copy and translate object files
dcgettext (3) - translate message
tr (1) - translate or delete characters
snmptranslate (1) - translate SNMP OID values into more useful information
tr (1p) - translate characters
gettext (1) - translate message
ngettext (1) - translate message and choose plural form
...

Other sources of Linux information

There’s a great big Linux-lovin’ world out there. We couldn’t possibly mention every
useful collection of Linux information, or even just the major ones, but a few signif-
icant sources of information are shown in Table 1.3 on the next page.

Don’t be shy about accessing general UNIX resources, either—most information is
directly applicable to Linux. A wealth of information about system administration is
available on the net, in many forms. For example, you can type sysadmin questions
into any of the popular search engines, such as Google, Yahoo!, or Ask. A list of other
“starter” resources can be found in Chapter 30, Management, Policy, and Politics.

14 Chapter 1 – Where to Start

Many sites cater directly to the needs of system administrators. Here are a few that
we especially like:

• www.ugu.com – the UNIX Guru Universe; lots of stuff for sysadmins

• www.stokely.com – a good collection of links to sysadmin resources

• www.tucows.com – Windows and Mac software, filtered for quality

• slashdot.org – “the place” for geek news

• www.cpan.org – a central source for Perl scripts and libraries

• securityfocus.com – security info; huge, searchable vulnerability database

Another fun and useful resource is Bruce Hamilton’s “Rosetta Stone” page at

bhami.com/rosetta.html

It contains pointers to the commands and tools used for various system administra-
tion tasks on many different operating systems.

1.7 HOW TO FIND AND INSTALL SOFTWARE

Linux distributions divide their software into packages that can be installed inde-
pendently of one another. When you install Linux on a new computer, you typically
select a range of “starter” packages to be copied onto the new system.

This architecture simplifies many aspects of system configuration and is one of
Linux’s key advantages over traditional versions of UNIX. Unfortunately, this design
also complicates the task of writing about these distributions because it’s never re-
ally clear which packages are “part of ” a given distribution. Is a package “included”
if it’s on the installation CDs but isn’t part of the default installation? Only if it’s on
every computer running that distribution? If it’s on the “bonus” CDs that come only
with the supersize version of the distribution?

In this book, we generally describe the default installation of each of our example
distributions. When we say that a particular package isn’t included in the default
installation, it doesn’t necessarily mean that the package won’t be on your system or

Table 1.3 Linux resources on the web

Web site Description

linux.slashdot.org Linux-specific arm of tech news giant Slashdot
lwn.net Linux and open source news aggregator
www.freshmeat.net Large index of Linux and UNIX software
www.kernel.org Official Linux kernel site
www.linux.com Linux information clearing house (unofficial)
www.linux.org Another Linux information clearing house (unofficial)
www.linuxhq.com Compilation of kernel-related info and patches
www.linuxworld.com On-line magazine from the Computerworld folks
www.tldp.org The Linux Documentation Project
www.tucows.com Multiplatform software archive with Linux content

www.ugu.com
www.stokely.com
www.tucows.com
www.cpan.org
www.freshmeat.net
www.kernel.org
www.linux.com
www.linux.org
www.linuxhq.com
www.linuxworld.com
www.tldp.org
www.tucows.com

W
h

e
re

 t
o

 S
ta

rt

1.7 How to find and install software 15

that it isn’t supported by your distribution. Here’s how to find out if you’ve got it, and
if not, how to get it.

First, use the shell’s which command to find out if a relevant command is already in
your search path. For example, the following command reveals that the GNU C com-
piler has already been installed on this machine in /usr/bin:

$ which gcc
/usr/bin/gcc

If which can’t find the command you’re looking for, try whereis; it searches a
broader range of system directories and is independent of your shell’s search path. Be
aware also that some systems’ which command does not show you files that you do
not have permission to execute. For example:

$ which ipppd
/usr/bin/which: no ipppd in (/bin:/usr/bin:/sbin:/usr/sbin)
$ whereis ipppd
ipppd: /usr/sbin/ipppd
$ ls -l /usr/sbin/ipppd
-rwx------ 1 root root 124924 Aug 3 2000 /usr/sbin/ipppd

Another alternative is the incredibly useful locate command, which consults a pre-
compiled index of the filesystem to locate filenames that match a particular pattern.
It is not specific to commands or packages but can find any type of file. For example,
if you weren’t sure where to find the signal.h include file (which is the authoritative
source for Linux signal definitions), you could try

$ locate signal.h
/usr/include/asm/signal.h
/usr/include/linux/signal.h
/usr/include/signal.h
/usr/include/sys/signal.h

locate’s database is usually regenerated every night by the updatedb command,
which runs out of cron. Therefore, the results of a locate don’t always reflect recent
changes to the filesystem.

If you know the name of a package you’re looking for, you can also use your system’s
packaging utilities to check directly for the package’s presence. For example, on a
Red Hat, Fedora, or SUSE system, the following command checks for the presence of
the Python scripting language:

$ rpm -q python
python-1.5.2-27

See Chapter 11, Software and Configuration Management, for more information
about our example distributions’ packaging commands.

If the package you’re interested in doesn’t seem to be installed, the first place to look
for it is your distribution’s automatic package management system. Every distribu-
tion supports some form of Internet-based system for updating old packages and

16 Chapter 1 – Where to Start

finding new ones. The most common systems are yum and APT, both of which are
described in the section High-level package management systems, which starts on
page 237.

For example, on a Debian system, which uses APT, the following command could be
used to obtain and install the most recent version of Python:

apt-get install python

Most Linux software is developed by independent groups that release the software in
the form of source code. Linux distributors then pick up the source code, compile it
appropriately for the conventions in use on their particular system, and package the
resulting binaries. It’s usually easier to install a distribution-specific binary package
than to fetch and compile the original source code. However, distributors are some-
times a release or two behind the current version.

The fact that two distributions use the same packaging system doesn’t necessarily
mean that packages for the two systems are interchangeable. Red Hat and SUSE both
use RPM, for example, but their filesystem layouts are somewhat different. It’s always
best to use packages designed for your particular distribution if they are available.

If all else fails, try looking for the package at a download site such as freshmeat.net
or doing a Google search on the name of the package.

1.8 ESSENTIAL TASKS OF THE SYSTEM ADMINISTRATOR

The sections below briefly summarize some tasks that system administrators are
typically expected to perform. These duties need not necessarily be performed by
one person, and at many sites the work is distributed among several people. How-
ever, at least one person must understand all the chores and make sure that some-
one is doing them.

Adding, removing, and managing user accounts

See Chapter 6 for more
information about
adding new users.

The system administrator adds accounts for new users and removes the accounts of
users that are no longer active. The process of adding and removing users can be
automated, but certain administrative decisions (where to put the user’s home di-
rectory, on which machines to create the account, etc.) must still be made before a
new user can be added.

When a user should no longer have access to the system, the user’s account must be
disabled. All the files owned by the account should be backed up to tape and dis-
posed of so that the system does not accumulate unwanted baggage over time.

Adding and removing hardware

See Chapters 7, 28, and
23 for more informa-
tion about these topics.

When new hardware is purchased or when hardware is moved from one machine to
another, the system must be configured to recognize and use that hardware. Hard-
ware-support chores can range from the simple task of adding a printer to the more
complex job of adding a disk array.

W
h

e
re

 t
o

 S
ta

rt

1.8 Essential tasks of the system administrator 17

Performing backups

See Chapter 9 for more
information about
backups.

Performing backups is perhaps the most important job of the system administrator,
and it is also the job that is most often ignored or sloppily done. Backups are time
consuming and boring, but they are absolutely necessary. Backups can be automated
and delegated to an underling, but it is still the system administrator’s job to make
sure that backups are executed correctly and on schedule (and that the resulting me-
dia can actually be used to restore files).

Installing and upgrading software

See Chapter 11 for
more information
about software
management.

When new software is acquired, it must be installed and tested, often under several
operating systems and on several types of hardware. Once the software is working
correctly, users must be informed of its availability and location. As patches and
security updates are released, they must be incorporated smoothly into the local en-
vironment.

Local software should be installed in a place that makes it easy to differentiate local
from system software. This organization simplifies the task of upgrading the operat-
ing system since the local software won’t be overwritten by the upgrade procedure.

Monitoring the system

Large installations require vigilant supervision. Daily activities include making sure
that email and web service are working correctly, watching log files for early signs of
trouble, ensuring that local networks are all properly connected, and keeping an eye
on the availability of system resources such as disk space.

Troubleshooting

Linux systems and the hardware they run on occasionally break down. It is the ad-
ministrator’s job to play mechanic by diagnosing problems and calling in experts if
needed. Finding the problem is often harder than fixing it.

Maintaining local documentation

See page 930 for sug-
gestions regarding
documentation.

As the system is changed to suit an organization’s needs, it begins to differ from the
plain-vanilla system described by the documentation. It is the system administra-
tor’s duty to document aspects of the system that are specific to the local environ-
ment. This chore includes documenting any software that is installed but did not
come with the operating system, documenting where cables are run and how they
are constructed, keeping maintenance records for all hardware, recording the status
of backups, and documenting local procedures and policies.

Vigilantly monitoring security

See Chapter 20 for
more information
about security.

The system administrator must implement a security policy and periodically check
to be sure that the security of the system has not been violated. On low-security
systems, this chore might involve only a few cursory checks for unauthorized access.
On a high-security system, it can include an elaborate network of traps and auditing
programs.

18 Chapter 1 – Where to Start

Helping users

Although helping users with their various problems is rarely included in a system
administrator’s job description, it claims a significant portion of most administra-
tors’ workdays. System administrators are bombarded with problems ranging from
“My program worked yesterday and now it doesn’t! What did you change?” to “I
spilled coffee on my keyboard! Should I pour water on it to wash it out?”

1.9 SYSTEM ADMINISTRATION UNDER DURESS

System administrators wear many hats. In the real world, they are often people with
other jobs who have been asked to look after a few computers on the side. If you are
in this situation, you may want to think a bit about where it might eventually lead.

The more you learn about your system, the more the user community will come to
depend on you. Networks invariably grow, and you may be pressured to spend an
increasing portion of your time on administration. You will soon find that you are
the only person in your organization who knows how to perform a variety of impor-
tant tasks.

Once coworkers come to think of you as the local system administrator, it is difficult
to extricate yourself from this role. We know several people who have changed jobs
to escape it. Since many administrative tasks are intangible, you may also find that
you’re expected to be both a full-time administrator and a full-time engineer, writer,
or secretary.

Some unwilling administrators try to fend off requests by adopting an ornery atti-
tude and providing poor service. We do not recommend this approach; it makes you
look bad and creates additional problems.

Instead, we suggest that you document the time you spend on system administration.
Your goal should be to keep the work at a manageable level and to assemble evidence
that you can use when you ask to be relieved of administrative duties. In most orga-
nizations, you will need to lobby the management from six months to a year to get
yourself replaced, so plan ahead.

On the other hand, you may find that you enjoy system administration and that you
yearn to be a full-time administrator. Your prospects for employment are good.
Unfortunately, your political problems will probably intensify. Refer to Chapter 30,
Management, Policy, and Politics, for a preview of the political aspects of system ad-
ministration.

System Administration Personality Syndrome

One unfortunate but common clinical condition resulting from working as a system
administrator is System Administration Personality Syndrome. The onset of this con-
dition usually begins early in the third year of a system administrator’s career and the

W
h

e
re

 t
o

 S
ta

rt

1.10 Recommended reading 19

syndrome can last well into retirement. Characteristic symptoms include but are not
limited to

• Acute phantom pagerphobia: the disturbing feeling that your pager has
gone off (when it really hasn’t) and that your peaceful evening with your
significant other is about to abruptly end, resulting in a 72-hour work mar-
athon without food

• User voodoographia: the compulsive creation of voodoo-doll representa-
tions of the subset of your user population that doesn’t seem to understand
that their persistent lack of planning doesn’t constitute an emergency in
your world

• Idiopathic anal tapereadaplexia: the sudden, late-night urge to mount
backup tapes to see if they’re actually readable and labeled correctly

• Scientifica inapplicia: the strong desire to violently shake fellow system
administrators who seem never to have encountered the scientific method

Many curative therapies can be used to treat this unfortunate condition. The most
effective are a well-developed sense of humor and the construction of a small but
well-endowed office wine cellar. You might also consider the more meditative ap-
proach of silently staring off into space and clicking your heels together whenever
the words “Is the server down again?” are spoken in your vicinity. If all else fails, take
a vacation.

1.10 RECOMMENDED READING

The best resources for system administrators in the printed realm (aside from this
book :-) are the O’Reilly series of books. The series began with UNIX in a Nutshell
over 20 years ago and now includes a separate volume on just about every important
UNIX and Linux subsystem and command. The series also includes books on the
Internet, Windows, and other non-UNIX topics. All the books are reasonably
priced, timely, and focused. Tim O’Reilly has become quite interested in the open
source movement and runs a conference, OSCON, on this topic as well as confer-
ences on other trendy techie topics. OSCON occurs twice yearly, once in the United
States and once in Europe. See www.oreilly.com for more information.

Although a variety of introductory Linux books are on the market, we have not yet
found one that we could recommend without reservation. In general, you’re better
off looking for the UNIX “classics.” Almost everything you read will apply equally
well to Linux.

SIEVER, ELLEN, AARON WEBER, AND STEPHEN FIGGINS. Linux in a Nutshell (5th Edi-
tion). Sebastopol, CA: O’Reilly Media, 2006.

LAMB, LINDA, AND ARNOLD ROBBINS. Learning the vi Editor (6th Edition). Sebastopol,
CA: O’Reilly & Associates, 1998.

www.oreilly.com

20 Chapter 1 – Where to Start

POWERS, SHELLY, JERRY PEEK, TIM O’REILLY, AND MIKE LOUKIDES. UNIX Power Tools
(3rd Edition). Sebastopol, CA: O’Reilly Media, 2003.

WALL, LARRY, TOM CHRISTIANSEN, AND JON ORWANT. Programming Perl (3rd Edi-
tion). Cambridge, MA: O’Reilly Media, 2000.

CHRISTIANSEN, TOM, AND NATHAN TORKINGTON. Perl Cookbook (2nd Edition). Sebas-
topol, CA: O’Reilly Media, 2003.

GANCARZ, MIKE. Linux and the Unix Philosophy. Boston: Digital Press, 2003.

SALUS, PETER. The Daemon, the GNU & the Penguin. Groklaw. 2006.

This fascinating history of the open source movement by UNIX’s best-known histo-
rian is being serialized at groklaw.com under the Creative Commons license. It’s cur-
rently about 75% complete. The URL for the book itself is quite long; look for a cur-
rently link at groklaw.com or try this compressed equivalent: tinyurl.com/d6u7j.

1.11 EXERCISES

E1.1 What command would you use to read about the sync system call (not
the sync command)? How would you read sync’s local man page that was
kept in /usr/local/share/man?

E1.2 Does a system-wide config file control the behavior of the man command
at your site? What lines would you add to this file if you wanted to store
local material in /doc/man? What directory structure would you have to
use in /doc/man to make it a full citizen of the man page hierarchy?

E1.3 What are the main differences between man and info? What are some
advantages of each?

E1.4 What is the current status of Linux kernel development? What are the hot
issues? Who are some of the key players? How is the project managed?

E1.5 Research several Linux distributions (see page 7 for a starter list) and rec-
ommend a distribution for each of the following applications. Explain
your choices.

a) A single user working in a home office
b) A university computer science lab
c) A corporate web server

E1.6 Suppose you discover that a certain feature of Apache httpd does not ap-
pear to work as documented on Fedora Core 5.

a) What should you do before reporting the bug?
b) If you decide that the bug is real, whom should you notify and how?
c) What information must be included to make the bug report useful?

21

B
o

o
ti

n
g

2 Booting and Shutting Down

Linux is a complex operating system, and turning Linux systems on and off is more
complicated than just flipping the power switch. Both operations must be performed
correctly if the system is to stay healthy.

Although the bootstrapping process has always been somewhat mysterious, it was
simpler in the days when manufacturers controlled every aspect of the system’s hard-
ware and software. Now that we have Linux running on PC hardware, the boot proce-
dure has to play by PC rules and deal with a large variety of potential configurations.

This chapter appears early in the book, but it refers to material that is not discussed
in detail until many hundreds of pages later. In particular, familiarity with the mate-
rial in Chapter 5, The Filesystem, Chapter 28, Drivers and the Kernel, and Chapter 29,
Daemons, will prove helpful. If your system already boots without any problem, you
may want to skip this chapter and come back to it later.

2.1 BOOTSTRAPPING

Bootstrapping is the standard term for “starting up a computer.” The operating sys-
tem’s normal facilities are not available during the startup process, so the computer
must “pull itself up by its own bootstraps.” During bootstrapping, the kernel is
loaded into memory and begins to execute. A variety of initialization tasks are per-
formed, and the system is then made available to users.

Boot time is a period of special vulnerability. Errors in configuration files, missing
or unreliable equipment, and damaged filesystems can all prevent a computer from

Booting

22 Chapter 2 – Booting and Shutting Down

coming up. Boot configuration is often one of the first tasks an administrator must
perform on a new system. Unfortunately, it is also one of the most difficult, and it
requires some familiarity with many other aspects of Linux.

When a computer is turned on, it executes boot code that is stored in ROM. That code
in turn attempts to figure out how to load and start the kernel. The kernel probes the
system’s hardware and then spawns the system’s init process, which is always pro-
cess number 1.

Several things must happen before a login prompt can appear. Filesystems must be
checked and mounted, and system daemons started. These procedures are managed
by a series of shell scripts that are run in sequence by init. The startup scripts are
often referred to as “rc files” because of the way they are named; the “rc” stands for
“runcom” or “run command,” a historical remnant of the CTSS operating system
circa 1965. The exact layout of the startup scripts and the manner in which they are
executed vary among systems. We cover the details later in this chapter.

Automatic and manual booting

Linux systems can boot in either automatic mode or manual mode. In automatic
mode, the system performs the complete boot procedure on its own, without any ex-
ternal assistance. In manual mode, the system follows the automatic procedure up to
a point but then turns control over to an operator before most initialization scripts
have been run. At this point, the computer is in “single-user mode.” Most system
processes are not running, and other users cannot log in.

In day-to-day operation, automatic booting is used almost exclusively. A typical boot
procedure for a modern machine is for a user to turn on the power and wait for the
system to come on-line. Nevertheless, it’s important to understand the automatic
boot procedure and to know how to perform a manual boot. You’ll usually have to
boot manually when some problem breaks automatic booting, for example, a cor-
rupted filesystem or an improperly configured network interface.

Steps in the boot process

A typical Linux bootstrapping process consists of six distinct phases:

• Loading and initialization of the kernel

• Device detection and configuration

• Creation of kernel threads

• Operator intervention (manual boot only)

• Execution of system startup scripts

• Multiuser operation

Administrators have little control over most of these steps. We effect most bootstrap
configuration by editing the system startup scripts.

B
o

o
ti

n
g

2.1 Bootstrapping 23

Kernel initialization

See Chapter 28 for
more information
about the kernel.

The Linux kernel is itself a program, and the first bootstrapping task is to get this
program into memory so that it can be executed. The pathname of the kernel is usu-
ally /vmlinuz or /boot/vmlinuz.

Linux implements a two-stage loading process. During the first stage, the system
ROM loads a small boot program into memory from disk. This program then ar-
ranges for the kernel to be loaded.

The kernel performs memory tests to find out how much RAM is available. Some of
the kernel’s internal data structures are statically sized, so the kernel sets aside a fixed
amount of real memory for itself when it starts. This memory is reserved for the ker-
nel and cannot be used by user-level processes. The kernel prints on the console a
message that reports the total amount of physical memory and the amount available
to user processes.

Hardware configuration

One of the kernel’s first chores is to check out the machine’s environment to see what
hardware is present. When you construct a kernel for your system, you tell it what
hardware devices it should expect to find; when the kernel begins to execute, it tries
to locate and initialize each device that you have told it about. The kernel prints out
a line of cryptic information about each device it finds.These days, distributions in-
clude kernels that work on most machine configurations, requiring minimal (if any)
customization.

The device information given at kernel configuration time is often underspecified.
In these cases, the kernel tries to determine the other information it needs by prob-
ing the bus for devices and asking the appropriate drivers for information. The driv-
ers for devices that are missing or that do not respond to a probe will be disabled. If a
device is later connected to the system, it is also possible to load or enable a driver for
it on the fly. See Chapter 28, Drivers and the Kernel, for details.

Kernel threads

Once basic initialization is complete, the kernel creates several “spontaneous” pro-
cesses in user space. They’re called spontaneous processes because they are not cre-
ated through the normal system fork mechanism; see page 56 for more details.

See page 62 for more
information about ps.

The number and nature of the spontaneous processes vary from system to system.
Under Linux, there is no visible PID 0. init (always process 1) is accompanied by
several memory and kernel handler processes, including those shown in Table 2.1
on the next page. These processes all have low-numbered PIDs and can be identified
by the brackets around their names in ps listings (e.g., [kacpid]). Sometimes the
process names have a slash and a digit at the end, such as [kblockd/0]. The number
indicates the processor on which the thread is running, which may be of interest on
a multiprocessor system.

24 Chapter 2 – Booting and Shutting Down

Among these processes, only init is really a full-fledged user process. The others are
actually portions of the kernel that have been dressed up to look like processes for
scheduling or architectural reasons.

Once the spontaneous processes have been created, the kernel’s role in bootstrap-
ping is complete. However, none of the processes that handle basic operations (such
as accepting logins) have been created, nor have most of the Linux daemons been
started. All of these tasks are taken care of (indirectly, in some cases) by init.

Operator intervention (manual boot only)

See Chapter 3 for more
information about the
root account.

If the system is to be brought up in single-user mode, a command-line flag (the
word “single”) passed in by the kernel notifies init of this fact as it starts up. init
eventually turns control over to sulogin, a special neutered-but-rabid version of
login that prompts for the root password.1 If you enter the right password, the sys-
tem spawns a root shell. You can type <Control-D> instead of a password to bypass
single-user mode and continue to multiuser mode. See page 31 for more details.

See Chapter 5 for more
information about file-
systems and mounting.

From the single-user shell, you can execute commands in much the same way as
when logged in on a fully booted system. However, on SUSE, Debian, and Ubuntu
systems, only the root partition is usually mounted; you must mount other filesys-
tems by hand to use programs that don’t live in /bin, /sbin, or /etc.

In many single-user environments, the filesystem root directory starts off being
mounted read-only. If /tmp is part of the root filesystem, a lot of commands that use
temporary files (such as vi) will refuse to run. To fix this problem, you’ll have to begin
your single-user session by remounting / in read/write mode. The command

mount -o rw,remount /

usually does the trick.

Red Hat and Fedora’s single-user mode is a bit more aggressive than normal. By the
time you reach the shell prompt, these distributions have tried to mount all local file-
systems. Although this seems helpful at first, it can prove problematic if you have a
sick filesystem.

Table 2.1 Some common Linux kernel processes

Thread Purpose

kjournald Commits ext3 journal updates to disk a

kswapd Swaps processes when physical memory is low
kreclaimd Reclaims memory pages that haven’t been used recently
ksoftirqd Handles multiple layers of soft interrupts
khubd Configures USB devices

a. There is one kjournald for each mounted ext3 filesystem.

1. See the man pages for inittab and sulogin for more information. Sadly, even modern versions of Red
Hat and Fedora do not by default require a password to enter single-user mode.

B
o

o
ti

n
g

2.2 Booting PCs 25

The fsck command is normally run during an automatic boot to check and repair
filesystems. When you bring the system up in single-user mode, you may need to
run fsck by hand. See page 131 for more information about fsck.

When the single-user shell exits, the system attempts to continue booting into mul-
tiuser mode.

Execution of startup scripts

By the time the system is ready to run its startup scripts, it is recognizably Linux.
Even though it doesn’t quite look like a fully booted system yet, no more “magic”
steps are left in the boot process. The startup scripts are just normal shell scripts,
and they’re selected and run by init according to an algorithm that, though some-
times tortuous, is relatively comprehensible.

The care, feeding, and taxonomy of startup scripts merits a major section of its own.
It’s taken up in more detail starting on page 32.

Multiuser operation

See page 855 for more
information about the
login process.

After the initialization scripts have run, the system is fully operational, except that
no one can log in. For logins to be accepted on a particular terminal (including the
console), a getty process must be listening on it. init spawns these getty processes
directly, completing the boot process. init is also responsible for spawning graphical
login systems such as xdm or gdm if the system is set up to use them.

Keep in mind that init continues to perform an important role even after bootstrap-
ping is complete. init has one single-user and several multiuser “run levels” that de-
termine which of the system’s resources are enabled. Run levels are described later in
this chapter, starting on page 33.

2.2 BOOTING PCS

At this point we’ve seen the general outline of the boot process. We now revisit sev-
eral of the more important (and complicated) steps.

PC booting is a lengthy ordeal that requires quite a bit of background information to
explain. When a machine boots, it begins by executing code stored in ROMs. The
exact location and nature of this code varies, depending on the type of machine you
have. On a machine designed explicitly for UNIX or another proprietary operating
system, the code is typically firmware that knows how to use the devices connected
to the machine, how to talk to the network on a basic level, and how to understand
disk-based filesystems. Such intelligent firmware is convenient for system adminis-
trators. For example, you can just type in the filename of a new kernel, and the firm-
ware will know how to locate and read that file.

On PCs, this initial boot code is generally called a BIOS (Basic Input/Output System),
and it is extremely simplistic compared to the firmware of a proprietary machine.
Actually, a PC has several levels of BIOS: one for the machine itself, one for the video

26 Chapter 2 – Booting and Shutting Down

card, one for the SCSI card if the system has one, and sometimes for other peripher-
als such as network cards.

The built-in BIOS knows about some of the devices that live on the motherboard,
typically the IDE controller (and disks), network interface, keyboard, serial ports,
and parallel ports. SCSI cards are usually only aware of the devices that are connected
to them. Thankfully, the complex interactions required for these devices to work
together has been standardized in the past few years, and little manual intervention
is required.

Modern BIOSes are a little smarter than they used to be. They usually allow you to
enter a configuration mode at boot time by holding down one or two special keys;
most BIOSes tell you what those special keys are at boot time so that you don’t have
to look them up in the manual.

The BIOS normally lets you select which devices you want to try to boot from, which
sounds more promising than it actually is. You can usually specify something like
“Try to boot off the floppy, then try to boot off the CD-ROM, then try to boot off the
hard disk.” Unfortunately, some BIOSes are limited to booting from the first IDE
CD-ROM drive or the first IDE hard disk. If you have been very, very good over the
previous year, Santa might even bring you a BIOS that acknowledges the existence of
SCSI cards.

Once your machine has figured out what device to boot from, it will try to load the
first 512 bytes of the disk. This 512-byte segment is known as the master boot record
or MBR. The MBR contains a program that tells the computer from which disk par-
tition to load a secondary boot program (the “boot loader”). For more information
on PC-style disk partitions and the MBR, refer to Chapter 7, Adding a Disk.

The default MBR contains a simple program that tells the computer to get its boot
loader from the first partition on the disk. Linux offers a more sophisticated MBR
that knows how to deal with multiple operating systems and kernels.

Once the MBR has chosen a partition to boot from, it tries to load the boot loader
specific to that partition. The boot loader is then responsible for loading the kernel.

2.3 USING BOOT LOADERS: LILO AND GRUB

What would life be like without choices? Two boot loaders are used in the Linux
world: LILO and GRUB. LILO is the traditional boot loader. It is very stable and well
documented but is rapidly being eclipsed by GRUB, which has become the default
boot loader on Red Hat, SUSE, and Fedora systems. In fact, current Red Hat and
Fedora distributions do not include LILO at all. On the other hand, Debian still uses
LILO as its boot loader of choice.

GRUB: The GRand Unified Boot loader

GRUB is particularly popular among users who run a variety of operating systems
(such as Windows, OpenBSD, FreeBSD, etc.) on the same machine or who are actively

B
o

o
ti

n
g

2.3 Using boot loaders: LILO and GRUB 27

working on kernel development. GRUB is also useful for folks who change their sys-
tem configuration frequently. Unlike LILO, which must be reinstalled into the boot
record or MBR every time it is reconfigured, GRUB reads its configuration file at
boot time, eliminating an easy-to-forget administrative step.

You install GRUB on your boot drive by running grub-install. This command takes
the name of the device from which you’ll be booting as an argument. The way GRUB
names the physical disk devices differs from the standard Linux convention (al-
though GRUB can use standard Linux names as well). A GRUB device name looks
like this:

(hd0,0)

The first numeric value indicates the physical drive number (starting from zero), and
the second numeric value represents the partition number (again, starting from
zero). In this example, (hd0,0) is equivalent to the Linux device /dev/hda1. Ergo, if
you wanted to install GRUB on your primary drive, you would use the command

grub-install '(hd0,0)'

The quotes are necessary to prevent the shell from trying to interpret the parenthe-
ses in its own special way.

By default, GRUB reads its default boot configuration from /boot/grub/grub.conf.
Here’s a sample grub.conf file:

default=0
timeout=10
splashimage=(hd0,0)/boot/grub/splash.xpm.gz
title Red Hat Linux (2.6.9-5)
 root (hd0,0)
 kernel /boot/vmlinuz-2.6.9-5 ro root=/dev/hda1

This example configures only a single operating system, which GRUB boots auto-
matically (default=0) if it doesn’t receive any keyboard input within 10 seconds
(timeout=10). The root filesystem for the “Red Hat Linux” configuration is the
GRUB device (hd0,0). GRUB loads the kernel from /boot/vmlinuz-2.6.9-5 and dis-
plays a splash screen from the file /boot/grub/splash.xpm.gz when it is loaded.

GRUB supports a powerful command-line interface as well as facilities for editing
configuration file entries on the fly. To enter command-line mode, type c from the
GRUB boot image. From the command line you can boot operating systems that
aren’t in grub.conf, display system information, and perform rudimentary filesys-
tem testing. You can also enjoy the command line’s shell-like features, including
command completion and cursor movement. Anything that can be done through
the grub.conf file can be done through the GRUB command line as well.

Press the <Tab> key to obtain a quick list of possible commands. Table 2.2 on the
next page lists some of the more useful commands.

28 Chapter 2 – Booting and Shutting Down

For detailed information about GRUB and its command line-options, refer to the
official manual:

www.gnu.org/software/grub/manual/

LILO: The traditional Linux boot loader

LILO is configured and installed with the lilo command. lilo bases the installed con-
figuration on the contents of the /etc/lilo.conf file. To change your boot configura-
tion, you simply update /etc/lilo.conf and rerun lilo. You must reconfigure LILO
every time the boot process changes—in particular, every time you want to add a
new boot partition, and every time you have a new kernel to boot.

You can install LILO either into the MBR of the disk or into the boot record of the
Linux root partition.

Here’s a basic lilo.conf file for a Linux system that has both a production kernel and
a backup kernel:

boot=/dev/hda # Put boot loader on MBR
root=/dev/hda1 # Specify root partition
install=/boot/boot.b
map=/boot/map
delay=20 # 2 sec for user interrupt
image=/vmlinuz # Kernel to boot

label=linux # Label to refer to this entry
read-only

image=/vmlinuz-backup # Backup entry
label=backup
read-only

Each possible boot scenario has a label. At boot time, you can tell LILO which one to
use by entering the appropriate label. The first label to appear in lilo.conf becomes
the default.

The default scenario (named linux) boots the file /vmlinuz. The read-only tag spec-
ifies that the kernel should mount its root filesystem read-only. This option should
always be present; the startup scripts will take care of remounting the partition read-
write at the appropriate time. This system is also configured to boot a backup kernel,

Table 2.2 GRUB command-line options

Command Meaning

reboot Soft-reboot the system
find Find a file on all mountable partitions
root Specify the root device (a partition)
kernel Load a kernel from the root device
help Get interactive help for a command
boot Boot the system from the specified kernel image

www.gnu.org/software/grub/manual/

B
o

o
ti

n
g

2.3 Using boot loaders: LILO and GRUB 29

/vmlinuz-backup. It’s always a good idea to have such an alternative; a broken ker-
nel configuration can lead to an unbootable system.

Running lilo without any arguments generates and installs the boot loader and tells
you which entries are available. It puts a star next to the default image. However, if
you have made an error in the lilo.conf file, lilo usually won’t discover the problem
until halfway through the installation of the boot loader. When this happens, the boot
loader is in a confused state. Do not reboot until you’ve run lilo successfully.

To avoid getting into this situation, you can run lilo -t to test the configuration with-
out really installing it. If everything looks kosher, you can then run lilo for real. It is
something of a mystery why lilo does not run this pretest for you by default.

lilo’s output when run with the config file above is:

lilo
Added linux*
Added backup

When the system boots, LILO prints the following prompt:

LILO:

It then waits 2 seconds (20 tenths of a second, set with the delay tag), boots the
kernel /vmlinuz, and mounts the first partition of the first IDE disk as the root par-
tition. You can see a list of defined boot scenarios by pressing the <Tab> key:

LILO: <Tab>
linux backup
LILO:

To boot using an alternate scenario, just enter its label at the prompt.

Kernel options

LILO and GRUB allow command-line options to be passed to the kernel. These op-
tions typically modify the values of kernel parameters, instruct the kernel to probe
for particular devices, specify the path to init, or designate a specific root device.
Table 2.3 shows a few examples.

Table 2.3 Examples of kernel boot-time options

Option Meaning

init=/sbin/init Tells the kernel to use /sbin/init as its init program
init=/bin/bash Starts only the bash shell; useful for emergency recovery
root=/dev/foo Tells the kernel to use /dev/foo as the root device
single Boots to single-user mode

30 Chapter 2 – Booting and Shutting Down

Multibooting on PCs

Since many operating systems run on PCs, it is fairly common practice to set up a
machine to be able to boot several different systems. To make this work, you need to
configure a boot loader to recognize all the different operating systems on your disks.
In the next few sections, we cover some common multiboot stumbling blocks and
then review some example configurations.

Each disk partition can have its own second-stage boot loader. However, there is
only one MBR. When setting up a multiboot configuration, you must decide which
boot loader is going to be the “master.” For better or worse, your choice will often be
dictated by the vagaries of the operating systems involved. LILO and GRUB are the
best options for a system that has a Linux partition. GRUB is superior to LILO in a
multibooting situation.

GRUB multiboot configuration

A multiboot GRUB system is much like its single-boot counterpart. Install all the
desired operating systems before making changes to /boot/grub/grub.conf.

A grub.conf configuration for booting Windows looks different from one for boot-
ing a UNIX or Linux system:

title Windows XP
rootnoverify (hd0,0)
chainloader +1

The chainloader option loads the boot loader from a the specified location (in this
case, sector 1 on the first partition of the primary IDE drive). The rootnoverify op-
tion guarantees that GRUB will not try to mount the specified partition. This option
keeps GRUB from messing with partitions it can’t understand, such as NTFS parti-
tions or partitions outside the area that GRUB can read.

The grub.conf file below can boot Windows XP from partition 1, Red Hat Enter-
prise Linux from partition 2, and Fedora from partition 3:

default=0
timeout=5
splashimage=(hd0,2)/boot/grub/splash.xpm.gz
hiddenmenu
title Windows XP

rootnoverify (hd0,0)
chainloader +1

title Red Hat
root (hd0,1)
kernel /boot/vmlinuz

title Fedora
root (hd0,2)
kernel /boot/vmlinuz

B
o

o
ti

n
g

2.4 Booting single-user mode 31

LILO multiboot configuration

To configure a multiboot system that uses LILO in the MBR (e.g., Linux with Win-
dows XP), begin with the standard LILO configuration as outlined on page 28. You
can then go back and add entries for the other operating systems to /etc/lilo.conf.

Here’s the lilo.conf entry you need to boot Windows from the first partition of your
first IDE disk:

other = /dev/hda1
label = windows
table = /dev/hda

A complete lilo.conf file that boots Windows from partition 1, Linux from partition
2, and FreeBSD from partition 3 would look something like this:

boot = /dev/hda # install on the MBR of 1st IDE drive
delay = 20 # Wait 2 sec. for user's boot choice
default = linux # If no input, boot linux from 2nd partition
image = /boot/vmlinuz-2.6.9

root = /dev/hda2
label = linux
read-only

other = /dev/hda1 # boot from 1st partition
label = windows
table = /dev/hda

other = /dev/hda3 # boot from 3rd partition
label = freebsd
table = /dev/hda

You’ll need to rerun lilo after putting these entries into lilo.conf. Remember to run
lilo -t first to test the config file. See page 124 for more partitioning information.

Vendors (or volunteers) often release patches for Linux distributions, and the kernel
is no exception. Security vulnerabilities, bugs, and features are added on a regular
basis. Unlike other software packages, however, kernel patches are not updated, but
rather are installed side-by-side with the existing kernel. This helps administrators
back out of an upgrade easily if a kernel patch breaks their system. As time goes by,
the LILO and GRUB boot menus fill up with all the different versions kernel. It’s
usually safe to use the default selection, but be aware of this potentially simple fix if
your system doesn’t boot after patching.

2.4 BOOTING SINGLE-USER MODE

Single-user mode is a great way to change the system configuration or perform
maintenance tasks without worrying about affecting (or being troubled by) other
users. It’s also a lifesaver when you’re working on a broken system.

32 Chapter 2 – Booting and Shutting Down

See page 33 for
more information
about run levels.

It’s most common to enter single-user mode by passing arguments to the boot loader.
However, you can usually enter single-user mode from another run level by running
the command telinit 1. It isn’t necessary to reboot unless you’re debugging a boot-
dependent problem.

As a precautionary measure against a possibly unstable system, the filesystem root
directory starts off being mounted read-only. This may be counterproductive to your
mission if you’re trying to fix a problem with a configuration file or command that
lives in the root filesystem or if you need to execute a command that modifies files.
To fix this problem, remount the root filesystem in read/write mode with

mount -o remount -w /

The exact procedure for invoking single-user mode at boot time differs between
GRUB and LILO.

Single-user mode with GRUB

You don’t need to use the command line to boot single-user mode under GRUB. The
GRUB authors realized that boot options should be easily modifiable and decided
on the ‘a’ key as the appropriate tool. At the GRUB splash screen, highlight the de-
sired kernel and press ‘a’ to append to the boot options. To boot single-user mode,
add the single flag to the end of the existing kernel options. An example for a typical
configuration might be

grub append> ro root=LABEL=/ rhgb quiet single

Single-user mode with LILO

Distributions provide different ways of getting to the LILO command prompt. If
you’ve installed LILO in favor of GRUB on Red Hat, Fedora, or SUSE, choose the
command-line menu option from the fancy graphic user interface. Debian and
Ubuntu users should press and hold the shift key just after the BIOS has performed
its memory checks and other system self-tests.

At the LILO prompt, enter the label of the configuration you want to boot (as spec-
ified in lilo.conf) followed by -s or single. For example, the default configuration
shipped with Debian is called “linux”, so to boot that configuration into single-user
mode, you’d use

LILO: linux single

2.5 WORKING WITH STARTUP SCRIPTS

After you exit from single-user mode (or, in the automated boot sequence, at the
point at which the single-user shell would have run), init executes the system startup
scripts. These scripts are really just garden-variety shell scripts that are interpreted
by sh (well, bash, really). The exact location, content, and organization of the scripts
vary considerably from system to system.

B
o

o
ti

n
g

2.5 Working with startup scripts 33

Some tasks that are often performed in the startup scripts are

• Setting the name of the computer

• Setting the time zone

• Checking the disks with fsck (only in automatic mode)

• Mounting the system’s disks

• Removing old files from the /tmp directory

• Configuring network interfaces

• Starting up daemons and network services

Most startup scripts are quite verbose and print a description of everything they are
doing. This loquacity can be a tremendous help if the system hangs midway through
booting or if you are trying to locate an error in one of the scripts.

On systems of yore, it was common practice for administrators to modify startup
scripts to make them do the right thing for a particular environment. However, fine-
grained packaging of software and frequent Internet updates have forced the adop-
tion of a more robust approach. These days, systems accommodate numerous small
startup scripts installed by individual pieces of software, and the scripts read their
local configuration information from separate files. The local configuration files usu-
ally take the form of mini sh scripts that set the values of shell variables; these vari-
ables are then consulted by the scripts.

init and run levels

Traditionally, init defines seven run levels, each of which represents a particular
complement of services that the system should be running:

• Level 0 is the level in which the system is completely shut down.

• Level 1 or S represents single-user mode.

• Levels 2 through 5 are multiuser levels.

• Level 6 is a “reboot” level.

Levels 0 and 6 are special in that the system can’t actually remain in them; it shuts
down or reboots as a side effect of entering them. The general multiuser run level is
2 or 3. Run level 5 is often used for X Windows login processes such as xdm. Run
level 4 is rarely used, and run levels 1 and S are defined differently on each system.

Single-user mode was traditionally init level 1. It brought down all multiuser and
remote login processes and made sure the system was running a minimal comple-
ment of software. Since single-user mode permits root access to the system, how-
ever, administrators wanted the system to prompt for the root password whenever it
was booted into single-user mode. The S run level was created to address this need:
it spawns a process that prompts for the root password. On Linux, the S level serves
only this purpose and is not a destination in itself.

There seem to be more run levels defined than are strictly necessary or useful. The
usual explanation for this is that a phone switch had 7 run levels, so it was thought
that a UNIX system should have at least that many. Linux actually supports up to 10
run levels, but levels 7 through 9 are undefined.

34 Chapter 2 – Booting and Shutting Down

The /etc/inittab file tells init what to do at each of its run levels. Its format varies
from system to system, but the basic idea is that inittab defines commands that are
to be run (or kept running) when the system enters each level.

As the machine boots, init ratchets its way up from run level 0 to the default run
level, which is also set in /etc/inittab. To accomplish the transition between each
pair of adjacent run levels, init runs the actions spelled out for that transition in
/etc/inittab. The same progression is made in reverse order when the machine is
shut down.

Unfortunately, the semantics of the inittab file are somewhat rudimentary. To map
the facilities of the inittab file into something a bit more flexible, Linux systems im-
plement an additional layer of abstraction in the form of a “change run levels” script
(usually /etc/init.d/rc) that’s called from inittab. This script in turn executes other
scripts from a run-level-dependent directory to bring the system to its new state.

These days, most Linux distributions boot to run level 5 by default, which may not
be appropriate for servers that don’t need to run X. The default run level is easy to
change. This excerpt from a SUSE machine’s inittab defaults to run level 5:

id:5:initdefault:

System administrators usually don’t have to deal directly with /etc/inittab because
the script-based interface is adequate for most applications. In the remainder of
this chapter, we tacitly ignore the inittab file and the other glue that attaches init to
the execution of startup scripts. Just keep in mind that when we say that init runs
such-and-such a script, the connection may not be quite so direct.

The master copies of the startup scripts live in the /etc/init.d directory. Each script
is responsible for one daemon or one particular aspect of the system. The scripts un-
derstand the arguments start and stop to mean that the service they deal with should
be initialized or halted. Most also understand restart, which is typically the same as
a stop followed by a start. As a system administrator, you can manually start and
stop individual services by running their associated init.d scripts by hand.

For example, here’s a simple startup script that can start, stop, or restart sshd:

#! /bin/sh
test -f /usr/bin/sshd || exit 0
case "$1" in

start)
echo -n "Starting sshd: sshd"
/usr/sbin/sshd
echo "."
;;

stop)
echo -n "Stopping sshd: sshd"
kill `cat /var/run/sshd.pid`
echo "."
;;

B
o

o
ti

n
g

2.5 Working with startup scripts 35

restart)
echo -n "Stopping sshd: sshd"
kill `cat /var/run/sshd.pid`
echo "."
echo -n "Starting sshd: sshd"
/usr/sbin/sshd
echo "."
;;

*)
echo "Usage: /etc/init.d/sshd start|stop|restart"
exit 1
;;

esac

Although the scripts in /etc/init.d can start and stop individual services, the master
control script run by init needs additional information about which scripts to run
(and with what arguments) to enter any given run level. Instead of looking directly
at the init.d directory when it takes the system to a new run level, the master script
looks at a directory called rclevel.d, where level is the run level to be entered (e.g.,
rc0.d, rc1.d, and so on).

These rclevel.d directories typically contain symbolic links that point back to the
scripts in the init.d directory. The names of these symbolic links all start with S or
K followed by a number and the name of the service that the script controls (e.g.,
S34named). When init transitions from a lower run level to a higher one, it runs all
the scripts that start with S in ascending numerical order with the argument start.
When init transitions from a higher run level to a lower one, it runs all the scripts
that start with K (for “kill”) in descending numerical order with the argument stop.

This scheme gives administrators fine-grained control of the order in which services
are started. For example, it doesn’t make sense to start SSH before the network inter-
faces are up. Although the network and sshd are both configured to start at run level
2 on a Fedora system, the network script gets sequence number 10 and the sshd
script gets sequence number 55, so network is certain to be run first. Be sure to
consider this type of dependency when you add a new service.

To tell the system when to start a daemon, you must place symbolic links into the
appropriate directory. For example, to tell the system to start CUPS at run level 2
and to stop it nicely before shutting down, the following pair of links would suffice:

ln -s /etc/init.d/cups /etc/rc2.d/S80cups
ln -s /etc/init.d/cups /etc/rc0.d/K80cups

The first line tells the system to run the /etc/init.d/cups startup script as one of the
last things to do when entering run level 2 and to run the script with the start argu-
ment. The second line tells the system to run /etc/init.d/cups relatively soon when
shutting down the system and to run the script with the stop argument. Some sys-
tems treat shutdown and reboot differently, so we have to put a symbolic link in the
/etc/rc6.d directory as well to make sure the daemon shuts down properly when the
system is rebooted.

36 Chapter 2 – Booting and Shutting Down

Red Hat and Fedora startup scripts

Red Hat and Fedora’s startup scripts have historically been on the messy side. Em-
bedded in the code, you might see a variety of comments like this one:

Yes, this is an ugly, but necessary hack

At each run level, init invokes the script /etc/rc.d/rc with the new run level as an
argument. /etc/rc.d/rc usually runs in “normal” mode, in which it just does its thing,
but it can also run in “confirmation” mode, in which it asks you before it runs each
individual startup script.

Red Hat and Fedora have a chkconfig command to help you manage services. This
command adds or removes startup scripts from the system, manages the run levels
at which they operate, and lists the run levels for which a script is currently config-
ured. See man chkconfig for usage information on this simple and handy tool.

Red Hat also has an rc.local script much like that found on BSD systems. rc.local is
the last script run as part of the startup process. Historically, rc.local was overwrit-
ten by the initscripts package. This has changed, however, and it is now safe to add
your own startup customizations here.

Here’s an example of a Red Hat startup session:

[kernel information]
INIT: version 2.85 booting
Setting default font (latarcyrhev-sun16): [OK]

Welcome to Red Hat Linux
Press 'I' to enter interactive startup.

Starting udev: [OK]
Initializing hardware... storage network audio done
Configuring kernel parameters: [OK]
Setting clock (localtime): Tue Mar 29 20:50:41 MST 2005: [OK]
…

Once you see the “Welcome to Red Hat Enterprise Linux” message, you can press the
‘i’ key to enter confirmation mode. Unfortunately, Red Hat gives you no confirmation
that you have pressed the right key. It blithely continues to mount local filesystems,
activate swap partitions, load keymaps, and locate its kernel modules. Only after it
switches to run level 3 does it actually start to prompt you for confirmation:

Welcome to Red Hat Enterprise Linux WS
Press 'I' to enter interactive startup.

Starting udev: [OK]
Initializing hardware... storage network audio done
Configuring kernel parameters: [OK]
setting clock (localtime): tue mar 29 20:50:41 mst 2005: [OK]
Setting hostname rhel4: [OK]
Checking root filesystem
/dev/hda1: clean, 73355/191616 files, 214536/383032 blocks

[OK]
Remounting root filesystem in read-write mode: [OK]

B
o

o
ti

n
g

2.5 Working with startup scripts 37

Setting up Logical Volume Management: [OK]
Checking filesystems
Mounting local filesystems: [OK]
Enabling local filesystem quotas: [OK]
Enabling swap space: [OK]
INIT: Entering runlevel: 3
Entering interactive startup
Start service kudzu (Y)es/(N)o/(C)ontinue? [Y]

Interactive startup and single-user mode both begin at the same spot in the boot-
ing process. When the startup process is so broken that you cannot reach this point
safely, you can use a rescue floppy or CD-ROM to boot.

You can also pass the argument init=/bin/sh to the kernel to trick it into running a
single-user shell before init even starts.2 If you take this tack, you will have to do all
the startup housekeeping by hand, including manually fscking and mounting the
local filesystems.

Much configuration of Red Hat’s boot process can be achieved through manipula-
tion of the config files in /etc/sysconfig. Table 2.4 summarizes the function of some
popular items in the /etc/sysconfig directory.

Several of the items in Table 2.4 merit additional comments:

• The hwconf file contains all of your hardware information. The Kudzu ser-
vice checks it to see if you have added or removed any hardware and asks
you what to do about changes. You may want to disable this service on a

2. We once had a corrupted keymap file, and since the keymap file is loaded even in single-user mode,
single-user was useless. Setting init=/bin/sh was the only way to boot the system to a usable single-
user state to fix the problem. This can also be a useful trick in other situations.

Table 2.4 Files and subdirectories of Red Hat’s /etc/sysconfig directory

File/Dir Function or contents

clock Specifies the type of clock that the system has (almost always UTC)a

console A mysterious directory that is always empty
httpd Determines which Apache processing model to use
hwconf Contains all of the system’s hardware info. Used by Kudzu.
i18n Contains the system’s local settings (date formats, languages, etc.)
init Configures the way messages from the startup scripts are displayed
keyboard Sets keyboard type (use “us” for the standard 101-key U.S. keyboard)
mouse Sets the mouse type. Used by X and gpm.
network Sets global network options (hostname, gateway, forwarding, etc.)
network-scripts Contains accessory scripts and network config files
sendmail Sets options for sendmail

a. If you multiboot your PC, all bets are off as to how the clock’s time zone should be set.

38 Chapter 2 – Booting and Shutting Down

production system because it delays the boot process whenever it detects
a change to the hardware configuration, resulting in an extra 30 seconds of
downtime for every hardware change made.

• The network-scripts directory contains additional material related to net-
work configuration. The only things you should ever need to change are the
files named ifcfg-interface. For example, network-scripts/ifcfg-eth0 con-
tains the configuration parameters for the interface eth0. It sets the inter-
face’s IP address and networking options. See page 299 for more informa-
tion about configuring network interfaces.

• The sendmail file contains two variables: DAEMON and QUEUE. If the
DAEMON variable is set to yes, the system starts sendmail in daemon
mode (-bd) when the system boots. QUEUE tells sendmail how long to
wait between queue runs (-q); the default is one hour.

SUSE startup scripts

Although SUSE’s startup system resembles that of RHEL and Fedora, SUSE’s startup
scripts are one area in which it really outshines other Linux variants. SUSE’s scripts
are well organized, robust, and well documented. The folks that maintain this part
of the operating system deserve a gold star.

As in Red Hat and Fedora, init invokes the script /etc/init.d/rc at each run level,
providing the new run level as an argument. Package-specific scripts live in the
/etc/init.d directory, and their configuration files live in /etc/sysconfig. An excel-
lent introduction to the SUSE startup process can be found in /etc/init.d/README.

Although both SUSE and RHEL/Fedora concentrate their boot configuration files in
/etc/sysconfig, the specific files within this directory are quite different. (For one
thing, SUSE’s files are generally well commented.) Options are invoked by setting
shell environment variables, and these variables are then referenced by the scripts
within /etc/init.d. Some subsystems require more configuration that others, and
those needing multiple configuration files have private subdirectories, such as the
sysconfig/network directory.

The windowmanager file is a typical example from the sysconfig directory:

Path: Desktop/Window manager
Description:
Type: string(kde,fvwm,gnome,windowmaker)
Default: kde
Config: profiles,kde,susewm
#
Here you can set the default window manager (kde, fvwm, ...)
changes here require at least a re-login
DEFAULT_WM="kde"

Type: yesno
Default: yes
#

B
o

o
ti

n
g

2.5 Working with startup scripts 39

install the SUSE extension for new users
(theme and additional functions)
#
INSTALL_DESKTOP_EXTENSIONS="yes"

Each variable is preceded by YaST-readable3 configuration information and a verbose
description of the variable’s purpose. For example, in the windowmanager file, the
variable DEFAULT_WM sets the desktop window manager used by X.

SUSE did a particularly nice job with the network configuration files found in the
subdirectory /etc/sysconfig/network. This directory contains both global configu-
ration files (which set options pertinent to all network interfaces) and network-spe-
cific files. For example, the network/routes file contains global routing informa-
tion. On a typical SUSE installation, its contents might look like this:

Destination Dummy/Gateway Netmask Device
default 192.168.10.254 0.0.0.0 eth0

Routes that should be present only when a particular interface is up and running can
be specified in a file called ifroute-ifname. For example, on an interface called eth1,
the file would be named ifroute-eth1 and its contents might be

Destination Dummy/Gateway Netmask Device
10.10.0.0/24 10.10.0.254

The netmask and device can be specified if you wish, but the startup scripts will infer
the correct values.

SUSE also includes a chkconfig command for managing startup scripts. It’s entirely
different from the version provided by Red Hat, but it’s an effective tool nonetheless
and should be used in favor of manual script management.

Whether you choose to use YaST or chkconfig or maintain your startup scripts by
hand, it’s a good idea to look through /etc/sysconfig and ponder its contents.

A typical SUSE boot session looks like this:

[kernel information]
INIT: version 2.85 booting
System Boot Control: Running /etc/init.d/boot
Mounting /proc filesystem done
Mounting sysfs on /sys done
Mounting /dev/pts done
Boot logging started on /dev/tty1(/dev/console) at Tue Mar 29 14:04:12 2005
Mounting shared memory FS on /dev/sh done
Activating swap-devices in /etc/fstab...
Adding 1052248k swap on /dev/hda2. Priority:42 extents:1 done
Checking root file system...
...

3. YaST is a SUSE-specific graphical configuration utility that maintains many aspects of a SUSE system.
See page 230 for more information.

40 Chapter 2 – Booting and Shutting Down

Debian and Ubuntu startup scripts

If SUSE is the ultimate example of a well-designed and well-executed plan for man-
aging startup scripts, Debian is the exact opposite. The Debian scripts are fragile,
undocumented, and outrageously inconsistent. Sadly, it appears that the lack of a
standard way of setting up scripts has resulted in chaos in this case. Bad Debian!

At each run level, init invokes the script /etc/init.d/rc with the new run level as an
argument. Each script is responsible for finding its own configuration information,
which may be in the form of other files in /etc, /etc/default, another subdirectory of
/etc, or somewhere in the script itself.

If you’re looking for the hostname of the system, it’s stored in /etc/hostname, which
is read by the /etc/init.d/hostname.sh script. Network interface and default gateway
parameters are stored in /etc/network/interfaces, which is read by the ifup com-
mand called from /etc/init.d/networking. Some network options can also be set in
/etc/network/options.

Debian and Ubuntu have a sort of clandestine startup script management program
in the form of update-rc.d. Although its man page cautions against interactive use,
we have found it to be a useful, if less friendly, substitute for chkconfig. For exam-
ple, to start sshd in run levels 2, 3, 4, and 5, and to stop it in levels 0, 1, and 6, use:

$ sudo /usr/sbin/update-rc.d sshd start 0123 stop 456

2.6 REBOOTING AND SHUTTING DOWN

Linux filesystems buffer changes in memory and write them back to disk only spo-
radically. This scheme makes disk I/O faster, but it also makes the filesystem more
susceptible to data loss when the system is rudely halted.

Traditional UNIX and Linux machines were very touchy about how they were shut
down. Modern systems have become less sensitive (especially when using a robust
filesystem such as ext3fs), but it’s always a good idea to shut down the machine nicely
when possible. Improper shutdown can result in anything from subtle, insidious
problems to a major catastrophe.

On consumer-oriented operating systems, rebooting the operating system is an ap-
propriate first course of treatment for almost any problem. On a Linux system, it’s
better to think first and reboot second. Linux problems tend to be subtler and more
complex, so blindly rebooting is effective in a smaller percentage of cases. Linux sys-
tems also take a long time to boot, and multiple users may be inconvenienced.

You may need to reboot when you add a new piece of hardware or when an existing
piece of hardware becomes so confused that it cannot be reset. If you modify a con-
figuration file that’s used only at boot time, you must reboot to make your changes
take effect. If the system is so wedged that you cannot log in to make a proper diag-
nosis of the problem, you obviously have no alternative but to reboot.

B
o

o
ti

n
g

2.6 Rebooting and shutting down 41

Whenever you modify a startup script, you should reboot just to make sure that the
system comes up successfully. If you don’t discover a problem until several weeks
later, you’re unlikely to remember the details of your most recent changes.

Unlike bootstrapping, which can be done in essentially only one way, shutting
down or rebooting can be done in a number of ways:

• Turning off the power

• Using the shutdown command

• Using the halt and reboot commands

• Using telinit to change init’s run level

• Using the poweroff command to tell the system to turn off the power

Turning off the power

Even on a desktop system, turning off the power is not a good way to shut down. You
can potentially lose data and corrupt the filesystems.

Many machines feature “soft power,” which means that when you press the power
button, the machine actually runs some commands to perform a proper shutdown
sequence. If you’re not sure whether a machine has this feature, don’t poke the power
button to find out! It’s better to run the shutdown sequence yourself.

That said, however, powering off is not the end of the world. It’s OK to turn off the
power in an emergency if you can’t afford the time to bring machines down grace-
fully. Old-style machine rooms often had a panic button that turned everything off
at once. Our sysadmins once triggered it with a poorly aimed Nerf football.

shutdown: the genteel way to halt the system

shutdown is the safest, most considerate, and most thorough way to initiate a halt or
reboot or to return to single-user mode.

You can ask shutdown to wait awhile before bringing down the system. During the
waiting period, shutdown sends messages to logged-in users at progressively shorter
intervals, warning them of the impending downtime. By default, the warnings sim-
ply say that the system is being shut down and give the time remaining until the
event; you can also supply a short message of your own. Your message should tell
why the system is being brought down and should estimate how long it will be be-
fore users can log in again (e.g., “back at 11:00 a.m.”). Users cannot log in when a
shutdown is imminent, but they will see your message if you specified one.

shutdown lets you specify whether the machine should halt (-h) or reboot (-r) after
the shutdown is complete. You can also specify whether you want to forcibly fsck the
disks after a reboot (-F) or not (-f). By default, Linux automatically skips the fsck
checks whenever the filesystems were properly unmounted.

42 Chapter 2 – Booting and Shutting Down

For example, a shutdown command that reminds users of scheduled maintenance
and halts the system at 9:30 a.m. would look something like this:

shutdown -h 09:30 "Going down for scheduled maintenance. Expected
downtime is 1 hour"

It’s also possible to specify a relative shutdown time. For example, the following com-
mand will effect a shutdown 15 minutes from when it is run:

shutdown -h +15 "Going down for emergency disk repair."

halt: a simpler way to shut down

The halt command performs the essential duties required to bring the system down.
It is called by shutdown -h but can also be used by itself. halt logs the shutdown, kills
nonessential processes, executes the sync system call (called by and equivalent to the
sync command), waits for filesystem writes to complete, and then halts the kernel.

halt -n prevents the sync call. It’s used by fsck after it repairs the root partition. If
fsck did not use -n, the kernel might overwrite fsck’s repairs with old versions of the
superblock that were cached in memory.

reboot: quick and dirty restart

reboot is almost identical to halt, but it causes the machine to reboot instead of halt-
ing. reboot is called by shutdown -r. Like halt, it supports the -n flag.

telinit: change init’s run level

You can use telinit to direct init to go to a specific run level. For example,

telinit 1

takes the system to single-user mode.

When you use telinit, you do not get the nice warning messages or grace period that
you get with shutdown, so most of the time you’ll probably want to avoid it. telinit
is most useful for testing changes to the inittab file.

poweroff: ask Linux to turn off the power

The poweroff command is identical to halt, except that after Linux has been shut
down, poweroff sends a request to the power management system (on systems that
have one) to turn off the system’s main power. This feature makes it easy to turn off
machines remotely (for example, during an electrical storm).

Unfortunately, there is no corresponding poweron command. The reason for this
apparent oversight is left as an exercise for the reader.

B
o

o
ti

n
g

2.7 Exercises 43

2.7 EXERCISES

E2.1 Why is it important to run lilo -t before installing the LILO boot loader?
How do you boot a kernel named something other than vmlinuz?

E2.2 Why shouldn’t a Linux system be turned off with the power button on the
computer case? What are some of the alternatives?

E2.3 Use the GRUB command line to boot a kernel that isn’t in grub.conf.

E2.4 Explain the concept of run levels. List the run levels defined in Linux, and
briefly describe each. What is the relationship between run level 1 and
run level S?

E2.5 Write a startup script to start the “foo” daemon (/usr/local/sbin/foo), a
network service. Show how you would glue it into the system to start au-
tomatically at boot time.

E2.6 Obtain and install the mactime program by Dan Farmer and Wietse Ven-
ema (it’s part of the TCT toolkit). Run mactime to create an initial data-
base of the time stamps associated with your system files. Reboot the ma-
chine. Run mactime again and determine which files have been modified
by your booting the machine. Which files were accessed but not modi-
fied? (Requires root access.)

E2.7 If a system is at run level 4 and you run the command telinit 1, what steps
will be taken by init? What will be the final result of the command?

E2.8 Draw a dependency graph that shows which daemons must be started be-
fore other daemons on your Linux system.

E2.9 List in order the steps used to create a working multi-OS system that in-
cludes Linux and Windows. Use GRUB and the Windows boot loader.

44

3 Rootly Powers

Every file and process on a Linux system is owned by a particular user account. Other
users can’t access these objects without the owner’s permission, so this convention
helps protect users against one another’s misdeeds, both intentional and accidental.

System files and processes are most commonly owned by a fictitious user called
“root,” also known as the superuser. As with any account, root’s property is protected
against interference from other users. To make administrative changes, you’ll need to
use one of the methods of accessing the root account described in this chapter.

The root account has several “magic” properties. Root can act as the owner of any
file or process. Root can also perform several special operations that are off-limits to
other users. The account is both powerful and, in careless or malicious hands, poten-
tially dangerous.

This chapter introduces the basics of superuser access for administrators. Chapter
20, Security, describes how to avoid unwanted and embarrassing superuser access
by others. Chapter 30, Management, Policy, and Politics covers the relevant political
and administrative aspects.

3.1 OWNERSHIP OF FILES AND PROCESSES

Every file has both an owner and a “group owner.” The owner of the file enjoys one
special privilege that is not shared with everyone on the system: the ability to mod-
ify the permissions of the file. In particular, the owner can set the permissions on a

Rootly Powers

R
o

o
tl

y
P

o
w

e
rs

3.1 Ownership of files and processes 45

file so restrictively that no one else can access it.1 We talk more about file permis-
sions in Chapter 5, The Filesystem.

See page 97 for
more information
about groups.

Although the owner of a file is always a single person, many people can be group
owners of the file, as long as they are all part of a single Linux group. Groups are
traditionally defined in the /etc/group file, but these days group information is
more commonly stored on an NIS or LDAP server on the network; see Chapter 17,
Sharing System Files, for details.

The owner of a file gets to specify what the group owners can do with it. This scheme
allows files to be shared among members of the same project. For example, we use a
group to control access to the source files for the www.admin.com web site.

Both ownerships of a file can be determined with ls -l filename. For example:

$ ls -l /staff/scott/todo
-rw------- 1 scott staff 1258 Jun 4 18:15 /staff/scott/todo

This file is owned by the user “scott” and the group “staff.”

Linux actually keeps track of owners and groups as numbers rather than as text
names. In the most basic case, identification numbers (UIDs for short) are mapped
to user names in the /etc/passwd file, and group identification numbers (GIDs) are
mapped to group names in /etc/group. The text names that correspond to UIDs and
GIDs are defined only for the convenience of the system’s human users. When com-
mands such as ls want to display ownership information in a human-readable for-
mat, they must look up each name in the appropriate file or database.

The owner of a process can send the process signals (see page 57) and can also re-
duce (degrade) the process’s scheduling priority. Processes actually have at least
seven identities associated with them: a real, effective, and saved UID; a real, effec-
tive, and saved GID; and under Linux, a “filesystem UID” that is used only to deter-
mine file access permissions. Broadly speaking, the real numbers are used for ac-
counting and the effective numbers are used for the determination of access
permissions. The real and effective numbers are normally the same.

Saved IDs have no direct effect. They allow programs to “park” an inactive ID for
later use, thus facilitating the parsimonious use of enhanced privileges. The filesys-
tem UID is generally explained as an implementation detail of NFS and is usually
the same as the effective UID.

See page 81 for more
information about
permission bits.

Although it is not normally possible for a process to alter its ownership credentials,
there is a special situation in which the effective user and group IDs can be changed.
When the kernel runs an executable file that has its “setuid” or “setgid” permission
bits set, it changes the effective UID or GID of the resulting process to the UID or
GID of the file containing the program image rather than the UID and GID of the
user that ran the command. The user’s privileges are thus “promoted” for the execu-
tion of that specific command only.

1. In fact, the permissions can be set so restrictively that even the owner of a file cannot access it.

www.admin.com

46 Chapter 3 – Rootly Powers

Linux’s setuid facility allows programs run by ordinary users to make use of the root
account in a limited and tightly controlled way. For example, the passwd command
that users run to change their login password is a setuid program. It modifies the
/etc/shadow (or /etc/passwd) file in a well-defined way and then terminates. Of
course, even this limited task has potential for abuse, so passwd requires users to
prove that they know the current account password before it agrees to make the re-
quested change.

3.2 THE SUPERUSER

The defining characteristic of the root account is its UID of 0. Linux does not pre-
vent you from changing the username on this account or from creating additional
accounts whose UIDs are 0, but both are bad ideas. Such changes have a tendency to
create inadvertent breaches of system security. They also engender confusion when
other people have to deal with the strange way you’ve configured your system.

Traditional UNIX allows the superuser (that is, any process whose effective UID is
0) to perform any valid operation on any file or process.2 In addition, some system
calls (requests to the kernel) can be executed only by the superuser. Some examples
of such restricted operations are

• Changing the root directory of a process with chroot
• Creating device files

• Setting the system clock

• Raising resource usage limits and process priorities3

• Setting the system’s hostname

• Configuring network interfaces

• Opening privileged network ports (those numbered below 1,024)

• Shutting down the system

An example of superuser powers is the ability of a process owned by root to change
its UID and GID. The login program and its window system equivalents are a case in
point; the process that prompts you for your password when you log in to the system
initially runs as root. If the password and username that you enter are legitimate, the
login program changes its UID and GID to your UID and GID and starts up your user
environment. Once a root process has changed its ownerships to become a normal
user process, it can’t recover its former privileged state.

Linux systems are theoretically capable of subdividing the privileges of the root ac-
count according to the POSIX standard for “capabilities.” For various reasons, in-
cluding problems with the current implementation, this facility is not as helpful or
as relevant to system administrators as it might initially appear. For more comments
on capabilities, see the discussion on page 683.

2. “Valid” is an important weasel word here. Certain operations (such as executing a file on which the
execute permission bit is not set) are forbidden even to the superuser.

3. As of kernel version 2.6.12, a new resource limit allows users other than the superuser to raise process
priorities if the system administrator allows this.

R
o

o
tl

y
P

o
w

e
rs

3.3 Choosing a root password 47

3.3 CHOOSING A ROOT PASSWORD

See page 690 for more
information about
password cracking.

The root password should be at least eight characters in length; seven-character pass-
words are substantially easier to crack. On systems that use DES passwords, it doesn’t
help to use a password longer than eight characters because only the first eight are
significant. See the section Encrypted password starting on page 96 for information
about how to enable MD5 passwords, which can be longer than eight characters.

It’s important that the root password be selected so as not to be easily guessed or
discovered by trial and error. In theory, the most secure type of password consists of
a random sequence of letters, punctuation, and digits. But because this type of pass-
word is hard to remember and usually difficult to type, it may not be optimally secure
if administrators write it down or type it slowly.

Until recently, a password consisting of two randomly selected words separated by a
punctuation mark was a pretty good compromise between security and memorabil-
ity. Unfortunately, such passwords can now be cracked fairly quickly; we now advise
against this scheme.

These days, we suggest that you form a root password by boiling down a phrase of
“shocking nonsense,” defined by Grady Ward in an earlier version of the PGP Pass-
phrase FAQ:

“Shocking nonsense” means to make up a short phrase or sentence that is
both nonsensical and shocking in the culture of the user. That is, it contains
grossly obscene, racist, impossible or otherwise extreme juxtapositions of
ideas. This technique is permissible because the passphrase, by its nature, is
never revealed to anyone with sensibilities to offend.

Shocking nonsense is unlikely to be duplicated anywhere because it does not
describe a matter of fact that could be accidentally rediscovered by someone
else. The emotional evocation makes it difficult for the creator to forget. A
mild example of such shocking nonsense might be, “Mollusks peck my gallop-
ing genitals.” The reader can undoubtedly make up many far more shocking
or entertaining examples for him or herself.

You can reduce such a phrase to a password by recording only the first letter of each
word or by some similar transformation. Password security will be increased enor-
mously if you include numbers, punctuation marks, and capital letters.

You should change the root password

• At least every three months or so

• Every time someone who knows the password leaves your site

• Whenever you think security may have been compromised

• On a day you’re not planning to party so hard in the evening that you will
have forgotten the password the next morning

48 Chapter 3 – Rootly Powers

3.4 BECOMING ROOT

Since root is just another user, you can log in directly to the root account. However,
this turns out to be a bad idea. To begin with, it leaves no record of what operations
were performed as root. That’s bad enough when you realize that you broke some-
thing last night at 3:00 a.m. and can’t remember what you changed; it’s even worse
when an access was unauthorized and you are trying to figure out what an intruder
has done to your system. Another disadvantage is that the log-in-as-root scenario
leaves no record of who was really doing the work. If several people have access to
the root account, you won’t be able to tell who used it when.

For these reasons, most systems allow root logins to be disabled on terminals and
across the network—everywhere but on the system console.4 We suggest that you
use these features. See Secure terminals on page 685 to find out what file you need to
edit on your particular system.

su: substitute user identity

A slightly better way to access the root account is to use the su command. If invoked
without any arguments, su will prompt for the root password and then start up a
root shell. The privileges of this shell remain in effect until the shell terminates (by
<Control-D> or the exit command). su doesn’t record the commands executed as
root, but it does create a log entry that states who became root and when.

The su command can also substitute identities other than root. Sometimes, the only
way to reproduce or debug a user’s problem is to su to their account so that you re-
produce the environment in which the problem occurs.

If you know someone’s password, you can access that person’s account directly by
executing su username. As with an su to root, you will be prompted for the pass-
word for username. You can also first su to root and then su to another account; root
can su to any account without providing a password.

It’s a good idea to get in the habit of typing the full pathname to the su command
(e.g., /bin/su) rather than relying on the shell to find the command for you. This
will give you some protection against programs called su that may have been slipped
into your search path with the intention of harvesting passwords.5

sudo: a limited su

Since the privileges of the superuser account cannot be subdivided (at least, not ar-
bitrarily), it’s hard to give someone the ability to do one task (backups, for example)
without giving that person free run of the system. And if the root account is used by

4. Ubuntu Linux goes even further. By default, the system has no valid root password and requires the use
of sudo, detailed later in this section.

5. For the same reason, we highly recommend that you not include “.” (the current directory) in your
shell’s search path. Although convenient, this configuration makes it easy to inadvertently run
“special” versions of system commands that a user or intruder has left lying around as a trap. Naturally,
this advice goes double for root.

R
o

o
tl

y
P

o
w

e
rs

3.4 Becoming root 49

several administrators, you really have only a vague idea of who’s using it or what
they’ve done.

The most widely used solution to these problems is a program called sudo that is
currently maintained by Todd Miller. It’s included by default on all our example dis-
tributions but is also available in source code form from www.courtesan.com.

sudo takes as its argument a command line to be executed as root (or as another
restricted user). sudo consults the file /etc/sudoers, which lists the people who are
authorized to use sudo and the commands they are allowed to run on each host. If
the proposed command is permitted, sudo prompts for the user’s own password and
executes the command.

Additional sudo commands can be executed without the “sudoer” having to type a
password until a five-minute period (configurable) has elapsed with no further sudo
activity. This timeout serves as a modest protection against users with sudo privi-
leges who leave terminals unattended.

sudo keeps a log of the command lines that were executed, the hosts on which they
were run, the people who requested them, the directory from which they were run,
and the times at which they were invoked. This information can be logged by syslog
or placed in the file of your choice. We recommend using syslog to forward the log
entries to a secure central host.

A log entry for randy executing sudo /bin/cat /etc/sudoers might look like this:

Dec 7 10:57:19 tigger sudo: randy: TTY=ttyp0 ; PWD=/tigger/users/randy;
USER=root ; COMMAND=/bin/cat /etc/sudoers

The sudoers file is designed so that a single version can be used on many different
hosts at once. Here’s a typical example:

Define aliases for machines in CS & Physics departments
Host_Alias CS = tigger, anchor, piper, moet, sigi
Host_Alias PHYSICS = eprince, pprince, icarus

Define collections of commands
Cmnd_Alias DUMP = /sbin/dump, /sbin/restore
Cmnd_Alias PRINTING = /usr/sbin/lpc, /usr/bin/lprm
Cmnd_Alias SHELLS = /bin/sh, /bin/tcsh, /bin/bash, /bin/ash, /bin/bsh

Permissions
mark, ed PHYSICS = ALL
herb CS = /usr/sbin/tcpdump : PHYSICS = (operator) DUMP
lynda ALL = (ALL) ALL, !SHELLS
%wheel ALL, !PHYSICS = NOPASSWD: PRINTING

The first five noncomment lines define groups of hosts and commands that are re-
ferred to in the permission specifications later in the file. The lists could be included
literally in the specs, but the use of aliases makes the sudoers file easier to read and
understand; it also makes the file easier to update in the future. It’s also possible to
define aliases for sets of users and for sets of users as whom commands may be run.

www.courtesan.com

50 Chapter 3 – Rootly Powers

Each permission specification line includes information about

• The users to whom the line applies

• The hosts on which the line should be heeded

• The commands that the specified users can run

• The users as whom the commands can be executed

The first permission line applies to the users mark and ed on the machines in the
PHYSICS group (eprince, pprince, and icarus). The built-in command alias ALL al-
lows them to run any command. Since no list of users is specified in parentheses,
sudo will only run commands as root.

The second permission line allows herb to run tcpdump on CS machines and dump-
related commands on PHYSICS machines. However, the dump commands can only
be run as operator, not as root. The actual command line that herb would type would
be something like

$ sudo -u operator /sbin/dump 0u /dev/hda2

The user lynda can run commands as any user on any machine, except that she can’t
run several common shells. Does this mean that lynda really can’t get a root shell? Of
course not:

$ cp -p /bin/bash /tmp/bash
$ sudo /tmp/bash

Generally speaking, any attempt to allow “all commands except…” is doomed to
failure, at least in a technical sense. However, it may still be worthwhile to set up the
sudoers file this way as a reminder that root shells are frowned upon. It may discour-
age casual use.

The final line allows users in group wheel to run lpc and lprm as root on all machines
except eprince, pprince, and icarus. Furthermore, no password is required to run
the commands.

Note that commands in /etc/sudoers are specified with full pathnames to prevent
people from executing their own programs and scripts as root. Though no examples
are shown above, it is possible to specify the arguments that are permissible for each
command as well. In fact, this simple configuration only scratches the surface of the
beauty and splendor that is the sudoers file.

To modify /etc/sudoers, you use the visudo command, which checks to be sure no
one else is editing the file, invokes an editor on it, and then verifies the syntax of the
edited file before installing it. This last step is particularly important because an in-
valid sudoers file might prevent you from sudoing again to fix it.

The use of sudo has the following advantages:

• Accountability is much improved because of command logging.

• Operators can do chores without unlimited root privileges.

• The real root password can be known to only one or two people.

R
o

o
tl

y
P

o
w

e
rs

3.5 Other pseudo-users 51

• It’s faster to use sudo to run a single command than to su or log in as root.

• Privileges can be revoked without the need to change the root password.

• A canonical list of all users with root privileges is maintained.

• There is less chance of a root shell being left unattended.

• A single file can be used to control access for an entire network.

See page 690 for
more information
about John the Ripper.

There are a couple of disadvantages as well. The worst of these is that any breach in
the security of a sudoer’s personal account can be equivalent to breaching the root
account itself. There is not much you can do to counter this threat other than to cau-
tion your sudoers to protect their own accounts as they would the root account. You
can also run John the Ripper regularly on sudoers’ passwords to ensure that they are
making good password selections.

sudo’s command logging can be subverted by tricks such as shell escapes from
within an allowed program or by sudo sh and sudo su if you allow them.

3.5 OTHER PSEUDO-USERS

Root is the only user that has special status in the eyes of the kernel, but several
other pseudo-users are defined by the system. It’s customary to replace the en-
crypted password field of these special users in /etc/shadow with a star so that their
accounts cannot be logged in to.

bin: legacy owner of system commands

On some older UNIX systems, the bin user owned the directories that contained the
system’s commands and most of the commands themselves as well. This account is
often regarded as superfluous these days (or perhaps even slightly insecure), so mod-
ern systems (including Linux) generally just use the root account. On the other hand,
now that the bin account is “standard,” it can’t really be done away with either.

daemon: owner of unprivileged system software

Files and processes that are part of the operating system but that need not be owned
by root are sometimes given to daemon. The theory was that this convention would
help avoid the security hazards associated with ownership by root. A group called
“daemon” also exists for similar reasons. Like the bin account, the daemon account
is not used much by most Linux distributions.

nobody: the generic NFS user

See page 488 for more
information about the
nobody account.

The Network File System (NFS) uses the nobody account to represent root users on
other systems for purposes of file sharing. For remote roots to be stripped of their
rootly powers, the remote UID 0 has to be mapped to something other than the local
UID 0. The nobody account acts as the generic alter ego for these remote roots.

Since the nobody account is supposed to represent a generic and relatively powerless
user, it shouldn’t own any files. If nobody does own files, remote roots will be able to
take control of them. Nobody shouldn’t own no files!

52 Chapter 3 – Rootly Powers

A UID of -1 or -2 was traditional for nobody, and the Linux kernel still defaults to
using UID 65534 (the 16-bit twos-complement version of -2). Some distributions
assign a low-numbered UID to nobody (for example, Red Hat and Fedora use 99),
which makes more sense than 65534 now that we have 32-bit UIDs. The only snag is
that exportfs does not seem to pay attention to the passwd file, so you must explic-
itly tell it with the anonuid option to use a different UID for nobody.

3.6 EXERCISES

E3.1 Use the find command with the -perm option to locate five setuid files on
your system. For each file, explain why the setuid mechanism is necessary
for the command to function properly.

E3.2 Create three “shocking nonsense” passphrases but keep them to yourself.
Run your three passphrases through md5sum and report these results.
Why is it safe to share the MD5 results?

E3.3 Enumerate a sequence of commands that modify someone’s password
entry and show how you could cover your tracks. Assume you had only
sudo power (all commands allowed, but no shells or su).

E3.4 Create two entries for the sudoers configuration file:

a) One entry that allows users matt, adam, and drew to service the printer,
unjam it, and restart printer daemons on the machine printserver

b) One entry that allows drew, smithgr, and jimlane to kill jobs and re-
boot the machines in the student lab

E3.5 Install sudo configured to send its mail tattling about misuse to you. Use
it to test the sudo entries of the previous question with local usernames
and machine names; verify that sudo is logging to syslog properly. Look
at the syslog entries produced by your testing. (Requires root access;
you’ll most likely have to tweak /etc/syslog.conf, too.)

53

C
o

n
tr

o
ll

in
g

 P
ro

ce
ss

e
s

4 Controlling Processes

A process is the abstraction used by Linux to represent a running program. It’s the
object through which a program’s use of memory, processor time, and I/O resources
can be managed and monitored.

It is part of the Linux and UNIX philosophy that as much work as possible be done
within the context of processes, rather than handled specially by the kernel. System
and user processes all follow the same rules, so you can use a single set of tools to
control them both.

4.1 COMPONENTS OF A PROCESS

A process consists of an address space and a set of data structures within the kernel.
The address space is a set of memory pages1 that the kernel has marked for the pro-
cess’s use. It contains the code and libraries that the process is executing, the process’s
variables, its stacks, and various extra information needed by the kernel while the
process is running. Because Linux is a virtual memory system, there is no correla-
tion between a page’s location within an address space and its location inside the
machine’s physical memory or swap space.

The kernel’s internal data structures record various pieces of information about each
process. Some of the more important of these are:

• The process’s address space map

• The current status of the process (sleeping, stopped, runnable, etc.)

1. Pages are the units in which memory is managed, usually 4K on PCs.

Controlling Processes

54 Chapter 4 – Controlling Processes

• The execution priority of the process

• Information about the resources the process has used

• Information about the files and network ports that the process has opened

• The process’s signal mask (a record of which signals are blocked)

• The owner of the process

Some of these attributes may be shared among several processes to create a “thread
group,” which is the Linux analog of a multithreaded process in traditional UNIX.
Though they may share an address space, the members of a thread group have their
own execution priorities and execution states. In practice, few processes of interest
to system administrators use multiple threads of execution, and even those that do
(such as BIND 9’s named) don’t generally require administrative attention at this
level of granularity.

Many of the parameters associated with a process directly affect its execution: the
amount of processor time it gets, the files it can access, and so on. In the following
sections, we discuss the meaning and significance of the parameters that are most
interesting from a system administrator’s point of view. These attributes are common
to all versions of UNIX and Linux.

PID: process ID number

The kernel assigns a unique ID number to every process. Most commands and sys-
tem calls that manipulate processes require you to specify a PID to identify the target
of the operation. PIDs are assigned in order as processes are created.

PPID: parent PID

Linux does not supply a system call that creates a new process running a particular
program. Instead, an existing process must clone itself to create a new process. The
clone can then exchange the program it is running for a different one.

When a process is cloned, the original process is referred to as the parent, and the
copy is called the child. The PPID attribute of a process is the PID of the parent from
which it was cloned.2

The parent PID is a useful piece of information when you’re confronted with an un-
recognized (and possibly misbehaving) process. Tracing the process back to its ori-
gin (whether a shell or another program) may give you a better idea of its purpose
and significance.

UID and EUID: real and effective user ID

See page 96 for
more information
about UIDs.

A process’s UID is the user identification number of the person who created it, or
more accurately, it is a copy of the UID value of the parent process. Usually, only the
creator (aka the “owner”) and the superuser are permitted to manipulate a process.

2. At least initially. If the original parent dies, init (process 1) becomes the new parent. See page 56.

C
o

n
tr

o
ll

in
g

 P
ro

ce
ss

e
s

4.1 Components of a process 55

The EUID is the “effective” user ID, an extra UID used to determine what resources
and files a process has permission to access at any given moment. For most processes,
the UID and EUID are the same, the usual exception being programs that are setuid.

Why have both a UID and an EUID? Simply because it’s useful to maintain a distinc-
tion between identity and permission, and because a setuid program may not wish to
operate with expanded permissions all the time. The effective UID can be set and
reset to enable or restrict the additional permissions it grants.

Linux also keeps track of a “saved UID,” which is a copy of the process’s EUID at the
point at which the process first begins to execute. Unless the process takes steps to
obliterate this saved UID, it remains available for use as the real or effective UID. A
conservatively written setuid program can therefore renounce its special privileges
for the majority of its execution, accessing them only at the specific points that extra
privileges are needed.

Linux also defines a nonstandard FSUID process parameter that controls the deter-
mination of filesystem permissions. It is infrequently used outside the kernel.

The implications of this multi-UID system can be quite subtle. If you need to delve
into the details, David A. Wheeler’s free on-line book Secure Programming for Linux
and Unix HOWTO is an excellent resource. It’s available from www.dwheeler.com.

GID and EGID: real and effective group ID

See page 97 for
more information
about groups.

The GID is the group identification number of a process. The EGID is related to the
GID in the same way that the EUID is related to the UID in that it can be “upgraded”
by the execution of a setgid program. The kernel maintains a saved GID similar in
intent to the saved UID.

The GID attribute of a process is largely vestigial. For purposes of access determina-
tion, a process can be a member of many groups at once. The complete group list is
stored separately from the distinguished GID and EGID. Determinations of access
permissions normally take account of the EGID and the supplemental group list, but
not the GID.

The only time at which the GID gets to come out and play is when a process creates
new files. Depending on how the filesystem permissions have been set, new files
may adopt the GID of the creating process. See page 82 for more information.

Niceness

A process’s scheduling priority determines how much CPU time it receives. The ker-
nel uses a dynamic algorithm to compute priorities, taking into account the amount
of CPU time that a process has recently consumed and the length of time it has been
waiting to run. The kernel also pays attention to an administratively set value that’s
usually called the “nice value” or “niceness,” so called because it tells how nice you
are planning to be to other users of the system. We take up the subject of niceness in
detail on page 61.

www.dwheeler.com

56 Chapter 4 – Controlling Processes

In an effort to provide better support for low-latency applications, Linux has added
“scheduling classes” to the traditional UNIX scheduling model. There are currently
three scheduling classes, and each process is assigned to one class. Unfortunately,
the real-time classes are neither widely used nor well supported from the command
line. System process all use the traditional niceness-based scheduler. In this book we
discuss only the standard scheduler. See www.realtimelinuxfoundation.org for more
discussion of issues related to real-time scheduling.

Control terminal

Most nondaemon processes have an associated control terminal. The control termi-
nal determines default linkages for the standard input, standard output, and stan-
dard error channels. When you start a command from the shell, your terminal nor-
mally becomes the process’s control terminal. The concept of a control terminal also
affects the distribution of signals, which are discussed starting on page 57.

4.2 THE LIFE CYCLE OF A PROCESS

To create a new process, a process typically copies itself with the fork system call.
fork creates a copy of the original process that is largely identical to the parent. The
new process has a distinct PID and has its own accounting information.

fork has the unique property of returning two different values. From the child’s point
of view, it returns zero. The parent receives the PID of the newly created child. Since
the two processes are otherwise identical, they must both examine the return value
to figure out which role they are supposed to play.

After a fork, the child process will often use one of the exec family of system calls to
begin execution of a new program.3 These calls change the program text that the pro-
cess is executing and reset the data and stack segments to a predefined initial state.
The various forms of exec differ only in the ways in which they specify the command-
line arguments and environment to be given to the new program.

Linux defines an alternative to fork called clone. This call creates sets of processes
that share memory, I/O spaces, or both. The feature is analogous to the multithread-
ing facility found on most versions of UNIX, but each thread of execution is repre-
sented as a full-fledged process rather than a specialized “thread” object.

See Chapter 2 for
more information
about booting and
the init daemon.

When the system boots, the kernel autonomously creates and installs several pro-
cesses. The most notable of these is init, which is always process number 1. init is
responsible for executing the system’s startup scripts. All processes other than the
ones the kernel creates are descendants of init.

init also plays another important role in process management. When a process com-
pletes, it calls a routine named _exit to notify the kernel that it is ready to die. It
supplies an exit code (an integer) that tells why it’s exiting. By convention, 0 is used
to indicate a normal or “successful” termination.

3. Actually, all but one are library routines, not system calls.

www.realtimelinuxfoundation.org

C
o

n
tr

o
ll

in
g

 P
ro

ce
ss

e
s

4.3 Signals 57

Before a process can be allowed to disappear completely, Linux requires that its death
be acknowledged by the process’s parent, which the parent does with a call to wait.
The parent receives a copy of the child’s exit code (or an indication of why the child
was killed if the child did not exit voluntarily) and can also obtain a summary of the
child’s use of resources if it wishes.

This scheme works fine if parents outlive their children and are conscientious about
calling wait so that dead processes can be disposed of. If the parent dies first, how-
ever, the kernel recognizes that no wait will be forthcoming and adjusts the process
to make the orphan a child of init. init accepts these orphaned processes and per-
forms the wait needed to get rid of them when they die.

4.3 SIGNALS

Signals are process-level interrupt requests. About thirty different kinds are defined,
and they’re used in a variety of ways:

• They can be sent among processes as a means of communication.

• They can be sent by the terminal driver to kill, interrupt, or suspend pro-
cesses when special keys such as <Control-C> and <Control-Z> are typed.4

• They can be sent by the administrator (with kill) to achieve various results.

• They can be sent by the kernel when a process commits an infraction such
as division by zero.

• They can be sent by the kernel to notify a process of an “interesting” con-
dition such as the death of a child process or the availability of data on an
I/O channel.

A core dump is
a process’s memory
image. It can be used
for debugging.

When a signal is received, one of two things can happen. If the receiving process has
designated a handler routine for that particular signal, the handler is called with in-
formation about the context in which the signal was delivered. Otherwise, the kernel
takes some default action on behalf of the process. The default action varies from
signal to signal. Many signals terminate the process; some also generate a core dump.

Specifying a handler routine for a signal within a program is referred to as “catching”
the signal. When the handler completes, execution restarts from the point at which
the signal was received.

To prevent signals from arriving, programs can request that they be either ignored or
blocked. A signal that is ignored is simply discarded and has no effect on the process.
A blocked signal is queued for delivery, but the kernel doesn’t require the process to
act on it until the signal has been explicitly unblocked. The handler for a newly un-
blocked signal is called only once, even if the signal was received several times while
reception was blocked.

4. The functions of <Control-Z> and <Control-C> can be reassigned to other keys with the stty com-
mand, but this is rare in practice. In this chapter we refer to them by their conventional bindings.

58 Chapter 4 – Controlling Processes

Table 4.1 lists some signals with which all administrators should be familiar. The up-
percase convention for signal names derives from C language tradition. You might
also sometimes see signal names written with a SIG prefix (e.g., SIGHUP) for simi-
lar reasons.

There are other signals not shown in Table 4.1, most of which are used to report ob-
scure errors such as “illegal instruction.” The default handling for signals like that is
to terminate with a core dump. Catching and blocking are generally allowed because
some programs may be smart enough to try to clean up whatever problem caused the
error before continuing.

The BUS and SEGV signals are also error signals. We’ve included them in the table
because they’re so common: ninety-nine percent of the time that a program crashes,
it’s ultimately one of these two signals that finally brings it down. By themselves, the
signals are of no specific diagnostic value. Both of them indicate an attempt to use or
access memory improperly.5

The signals named KILL and STOP cannot be caught, blocked, or ignored. The KILL
signal destroys the receiving process, and STOP suspends its execution until a CONT
signal is received. CONT may be caught or ignored, but not blocked.

TSTP is a “soft” version of STOP that might be best described as a request to stop.
It’s the signal generated by the terminal driver when <Control-Z> is typed on the

Table 4.1 Signals every administrator should know

Name Description Default
Can

catch?
Can

block?
Dump
core?

1 HUP Hangup Terminate Yes Yes No
2 INT Interrupt Terminate Yes Yes No
3 QUIT Quit Terminate Yes Yes Yes
9 KILL Kill Terminate No No No
a BUS Bus error Terminate Yes Yes Yes

11 SEGV Segmentation fault Terminate Yes Yes Yes
15 TERM Software termination Terminate Yes Yes No

a STOP Stop Stop No No No
a TSTP Keyboard stop Stop Yes Yes No
a CONT Continue after stop Ignore Yes No No
a WINCH Window changed Ignore Yes Yes No
a USR1 User-defined Terminate Yes Yes No
a USR2 User-defined Terminate Yes Yes No

a. Varies depending on the hardware architecture; see man 7 signal.

5. More specifically, bus errors result from violations of alignment requirements or the use of nonsensical
addresses. Segmentation violations represent protection violations such as attempts to write to read-
only portions of the address space.

C
o

n
tr

o
ll

in
g

 P
ro

ce
ss

e
s

4.3 Signals 59

keyboard. Programs that catch this signal usually clean up their state, then send
themselves a STOP signal to complete the stop operation. Alternatively, programs
can ignore TSTP to prevent themselves from being stopped from the keyboard.

Terminal emulators send a WINCH signal when their configuration parameters
(such as the number of lines in the virtual terminal) change. This convention allows
emulator-savvy programs such as text editors to reconfigure themselves automati-
cally in response to changes. If you can’t get windows to resize properly, make sure
that WINCH is being generated and propagated correctly.6

The signals KILL, INT, TERM, HUP, and QUIT all sound as if they mean approxi-
mately the same thing, but their uses are actually quite different. It’s unfortunate that
such vague terminology was selected for them. Here’s a decoding guide:

• KILL is unblockable and terminates a process at the kernel level. A process
can never actually “receive” this signal.

• INT is the signal sent by the terminal driver when you type <Control-C>.
It’s a request to terminate the current operation. Simple programs should
quit (if they catch the signal) or simply allow themselves to be killed, which
is the default if the signal is not caught. Programs that have a command-
line should stop what they’re doing, clean up, and wait for user input again.

• TERM is a request to terminate execution completely. It’s expected that the
receiving process will clean up its state and exit.

• HUP has two common interpretations. First, it’s understood as a reset
request by many daemons. If a daemon is capable of rereading its configu-
ration file and adjusting to changes without restarting, a HUP can gener-
ally be used to trigger this behavior.

Second, HUP signals are sometimes generated by the terminal driver in an
attempt to “clean up” (i.e., kill) the processes attached to a particular ter-
minal. This behavior is largely a holdover from the days of wired terminals
and modem connections, hence the name “hangup”.

Shells in the C shell family (tcsh et al.) usually make background processes
immune to HUP signals so that they can continue to run after the user logs
out. Users of Bourne-ish shells (ksh, bash, etc.) can emulate this behavior
with the nohup command.

• QUIT is similar to TERM, except that it defaults to producing a core dump
if not caught. A few programs cannibalize this signal and interpret it to
mean something else.

6. Which may be easier said than done. The terminal emulator (e.g., xterm), terminal driver, and user-
level commands may all have a role in propagating SIGWINCH. Common problems include sending
the signal to a terminal’s foreground process only (rather than to all processes associated with the ter-
minal) and failing to propagate notification of a size change across the network to a remote computer.
Protocols such as TELNET and SSH explicitly recognize local terminal size changes and communicate
this information to the remote host. Simpler protocols (e.g., direct serial lines) cannot do this.

60 Chapter 4 – Controlling Processes

The signals USR1 and USR2 have no set meaning. They’re available for programs to
use in whatever way they’d like. For example, the Apache web server interprets the
USR1 signal as a request to gracefully restart.

4.4 KILL AND KILLALL: SEND SIGNALS

As its name implies, the kill command is most often used to terminate a process. kill
can send any signal, but by default it sends a TERM. kill can be used by normal users
on their own processes or by the superuser on any process. The syntax is

kill [-signal] pid

where signal is the number or symbolic name of the signal to be sent (as shown in
Table 4.1) and pid is the process identification number of the target process. A pid of
–1 broadcasts the signal to all processes except init.

A kill without a signal number does not guarantee that the process will die, because
the TERM signal can be caught, blocked, or ignored. The command

kill -KILL pid

will “guarantee” that the process will die because signal 9, KILL, cannot be caught.
We put quotes around “guarantee” because processes can occasionally become so
wedged that even KILL does not affect them (usually because of some degenerate I/O
vapor lock such as waiting for a disk that has stopped spinning). Rebooting is usually
the only way to get rid of these processes.

Most shells have their own built-in implementation of kill that obeys the syntax de-
scribed above. According to the man page for the stand-alone kill command, the
signal name or number should actually be prefaced with the -s flag (e.g., kill -s HUP
pid). But since some shells don’t understand this version of the syntax, we suggest
sticking with the -HUP form, which the stand-alone kill also understands. That way
you needn’t worry about which version of kill you’re actually using.

If you don’t know the PID of the process you want to signal, you’d normally look it
up with the ps command, which is described starting on page 62. Another option is
to use the killall command, which performs this lookup for you. For example, to
make the xinetd daemon refresh its configuration, you could run

$ sudo killall -USR1 xinetd

Note that if multiple processes match the string you supply, killall will send signals
to all of them.

The vanilla kill command actually has a similar feature, but it does not seem to be as
smart as killall at matching command names. Stick with killall.

4.5 PROCESS STATES

A process is not automatically eligible to receive CPU time just because it exists.
You need to be aware of the four execution states listed in Table 4.2.

C
o

n
tr

o
ll

in
g

 P
ro

ce
ss

e
s

4.6 nice and renice: influence scheduling priority 61

A runnable process is ready to execute whenever CPU time is available. It has ac-
quired all the resources it needs and is just waiting for CPU time to process its data.
As soon as the process makes a system call that cannot be immediately completed
(such as a request to read part of a file), Linux will put it to sleep.

Sleeping processes are waiting for a specific event to occur. Interactive shells and sys-
tem daemons spend most of their time sleeping, waiting for terminal input or net-
work connections. Since a sleeping process is effectively blocked until its request has
been satisfied, it will get no CPU time unless it receives a signal.

Some operations cause processes to enter an uninterruptible sleep state. This state
is usually transient and not observed in ps output (indicated by a D in the STAT
column; see page 62). However, a few degenerate situations can cause it to persist.
The most common cause involves server problems on an NFS filesystem mounted
with the “hard” option. Since processes in the uninterruptible sleep state cannot be
roused even to service a signal, they cannot be killed. To get rid of them, you must
fix the underlying problem or reboot.

Zombies are processes that have finished execution but not yet had their status col-
lected. If you see zombies hanging around, check their PPIDs with ps to find out
where they’re coming from.

Stopped processes are administratively forbidden to run. Processes are stopped on
receipt of a STOP or TSTP signal and are restarted with CONT. Being stopped is sim-
ilar to sleeping, but there’s no way to get out of the stopped state other than having
some other process wake you up (or kill you).

4.6 NICE AND RENICE: INFLUENCE SCHEDULING PRIORITY

The “niceness” of a process is a numeric hint to the kernel about how the process
should be treated in relationship to other processes contending for the CPU. The
strange name is derived from the fact that it determines how nice you are going to be
to other users of the system. A high nice value means a low priority for your process:
you are going to be nice. A low or negative value means high priority: you are not
very nice. The range of allowable niceness values is -20 to +19.

Unless the user takes special action, a newly created process inherits the nice value
of its parent process. The owner of the process can increase its nice value but cannot
lower it, even to return the process to the default niceness. This restriction prevents

Table 4.2 Process states

State Meaning

Runnable The process can be executed.
Sleeping The process is waiting for some resource.
Zombie The process is trying to die.
Stopped The process is suspended (not allowed to execute).

62 Chapter 4 – Controlling Processes

processes with low priority from bearing high-priority children. The superuser may
set nice values arbitrarily.

It’s rare to have occasion to set priorities by hand these days. On the puny systems
of the 1970s and 80s, performance was significantly affected by which process was
on the CPU. Today, with more than adequate CPU power on most desktops, the
scheduler usually does a good job of servicing all processes. The addition of sched-
uling classes gives developers additional control in cases where low response la-
tency is essential.

I/O performance has not kept up with increasingly fast CPUs, and the major bottle-
neck on most systems has become the disk drives. Unfortunately, a process’s nice
value has no effect on the kernel’s management of its memory or I/O; high-nice pro-
cesses can still monopolize a disproportionate share of these resources.

A process’s nice value can be set at the time of creation with the nice command and
adjusted later with the renice command. nice takes a command line as an argument,
and renice takes a PID or a username. Confusingly, renice requires an absolute pri-
ority, but nice wants a priority increment that it then adds to or subtracts from the
shell’s current priority.

Some examples:

$ nice -n 5 ~/bin/longtask // Lowers priority (raise nice) by 5
$ sudo renice -5 8829 // Sets nice value to -5
$ sudo renice 5 -u boggs // Sets nice value of boggs’s procs to 5

To complicate things, a version of nice is built into the C shell and some other com-
mon shells (but not bash). If you don’t type the full path to the nice command, you’ll
get the shell’s version rather than the operating system’s. This duplication can be
confusing because shell-nice and command-nice use different syntax: the shell
wants its priority increment expressed as +incr or -incr, but the stand-alone com-
mand wants an -n flag followed by the priority increment.7

The most commonly niced process in the modern world is xntpd, the clock synchro-
nization daemon. Since CPU promptness is critical to its mission, it usually runs at a
nice value about 12 below the default (that is, at a higher priority than normal).

If a process goes berserk and drives the system’s load average to 65, you may need to
use nice to start a high-priority shell before you can run commands to investigate the
problem. Otherwise, you may have difficulty running even simple commands.

4.7 PS: MONITOR PROCESSES

ps is the system administrator’s main tool for monitoring processes. You can use it
to show the PID, UID, priority, and control terminal of processes. It also gives infor-
mation about how much memory a process is using, how much CPU time it has

7. Actually, it’s even worse than this: the stand-alone nice will interpret nice -5 to mean a positive increment
of 5, whereas the shell built-in nice will interpret this same form to mean a negative increment of 5.

C
o

n
tr

o
ll

in
g

 P
ro

ce
ss

e
s

4.7 ps: monitor processes 63

consumed, and its current status (running, stopped, sleeping, etc.). Zombies show
up in a ps listing as <defunct>.

The behavior of ps tends to vary widely among UNIX variants, and many implemen-
tations have become quite complex over the last few years. In an effort to accommo-
date people who are used to other systems’ ps commands, Linux provides a trisexual
and hermaphroditic version that understands many other implementations’ option
sets and uses an environment variable to tell it what personality to assume.

Do not be alarmed by all this complexity: it’s there mainly for kernel developers, not
for system administrators. Although you will use ps frequently, you only need to
know a few specific incantations.

You can obtain a general overview of all the processes running on the system with ps
aux. Here’s an example (we removed the START column to make the example fit the
page and selected only a sampling of the output lines):

$ ps aux
USER PID %CPU%MEM VSZ RSS TTY STAT TIME COMMAND

root 1 0.1 0.2 3356 560 ? S 0:00 init [5]
root 2 0 0 0 0 ? SN 0:00 [ksoftirqd/0]
root 3 0 0 0 0 ? S< 0:00 [events/0]
root 4 0 0 0 0 ? S< 0:00 [khelper]
root 5 0 0 0 0 ? S< 0:00 [kacpid]
root 18 0 0 0 0 ? S< 0:00 [kblockd/0]
root 28 0 0 0 0 ? S 0:00 [pdflush]

...
root 196 0 0 0 0 ? S 0:00 [kjournald]
root 1050 0 0.1 2652 448 ? S<s 0:00 udevd
root 1472 0 0.3 3048 1008 ? S<s 0:00 /sbin/dhclient -1
root 1646 0 0.3 3012 1012 ? S<s 0:00 /sbin/dhclient -1
root 1733 0 0 0 0 ? S 0:00 [kjournald]
root 2124 0 0.3 3004 1008 ? Ss 0:00 /sbin/dhclient -1
root 2182 0 0.2 2264 596 ? Ss 0:00 syslogd -m 0
root 2186 0 0.1 2952 484 ? Ss 0:00 klogd -x
rpc 2207 0 0.2 2824 580 ? Ss 0:00 portmap

rpcuser 2227 0 0.2 2100 760 ? Ss 0:00 rpc.statd
root 2260 0 0.4 5668 1084 ? Ss 0:00 rpc.idmapd
root 2336 0 0.2 3268 556 ? Ss 0:00 /usr/sbin/acpid
root 2348 0 0.8 9100 2108 ? Ss 0:00 cupsd
root 2384 0 0.6 4080 1660 ? Ss 0:00 /usr/sbin/sshd
root 2399 0 0.3 2780 828 ? Ss 0:00 xinetd -stayalive
root 2419 0 1.1 7776 3004 ? Ss 0:00 sendmail: accepi

…

Command names in brackets are not really commands at all but rather kernel
threads scheduled as processes. The meaning of each field is explained in Table 4.3
on the next page.

Another useful set of arguments is lax, which provides more technical information.
It is also slightly faster to run because it doesn’t have to translate every UID to a

64 Chapter 4 – Controlling Processes

username—efficiency can be important if the system is already bogged down by
some other process.

Shown here in an abbreviated example, ps lax includes fields such as the parent pro-
cess ID (PPID), nice value (NI), and resource the process is waiting for (WCHAN).

$ ps lax
F UID PID PPID PRI NI VSZ RSS WCHAN STAT TIME COMMAND
4 0 1 0 16 0 3356 560 select S 0:00 init [5]
1 0 2 1 34 19 0 0 ksofti SN 0:00 [ksoftirqd/0
1 0 3 1 5-10 0 0 worker S< 0:00 [events/0]
1 0 4 3 5-10 0 0 worker S< 0:00 [khelper]
5 0 2186 1 16 0 2952 484 syslog Ss 0:00 klogd -x
5 32 2207 1 15 0 2824 580 - Ss 0:00 portmap
5 29 2227 1 18 0 2100 760 select Ss 0:00 rpc.statd
1 0 2260 1 16 0 5668 1084 - Ss 0:00 rpc.idmapd
1 0 2336 1 21 0 3268 556 select Ss 0:00 acpid
5 0 2384 1 17 0 4080 1660 select Ss 0:00 sshd
1 0 2399 1 15 0 2780 828 select Ss 0:00 xinetd -sta
5 0 2419 1 16 0 7776 3004 select Ss 0:00 sendmail: a

…

Table 4.3 Explanation of ps aux output

Field Contents

USER Username of the process’s owner
PID Process ID
%CPU Percentage of the CPU this process is using
%MEM Percentage of real memory this process is using
VSZ Virtual size of the process
RSS Resident set size (number of pages in memory)
TTY Control terminal ID
STAT Current process status:

R = Runnable D = In uninterruptible sleep
S = Sleeping (< 20 sec) T = Traced or stopped
Z = Zombie

Additional flags:
W= Process is swapped out
< = Process has higher than normal priority
N= Process has lower than normal priority
L = Some pages are locked in core
s = Process is a session leader

START Time the process was started
TIME CPU time the process has consumed
COMMAND Command name and argumentsa

a. Programs can modify this info, so it’s not necessarily an accurate representation of the actual
command line.

C
o

n
tr

o
ll

in
g

 P
ro

ce
ss

e
s

4.9 The /proc filesystem 65

4.8 TOP: MONITOR PROCESSES EVEN BETTER

Since commands like ps offer only a one-time snapshot of your system, it is often
difficult to grasp the “big picture” of what’s really happening. The top command
provides a regularly updated summary of active processes and their use of resources.

For example:

top - 16:37:08 up 1:42, 2 users, load average: 0.01, 0.02, 0.06
Tasks: 76 total, 1 running, 74 sleeping, 1 stopped, 0 zombie
Cpu(s): 1.1% us, 6.3% sy, 0.6% ni, 88.6% id, 2.1% wa, 0.1% hi, 1.3% si
Mem: 256044k total, 254980k used, 1064k free, 15944k buffers
Swap: 524280k total, 0k used, 524280k free, 153192k cached

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
3175 root 15 0 35436 12m 4896 S 4.0 5.2 01:41.9 X
3421 root 25 10 29916 15m 9808 S 2.0 6.2 01:10.5 rhn-applet-gui

1 root 16 0 3356 560 480 S 0.0 0.2 00:00.9 init
2 root 34 19 0 0 0 S 0.0 0 00:00.0 ksoftirqd/0
3 root 5 -10 0 0 0 S 0.0 0 00:00.7 events/0
4 root 5 -10 0 0 0 S 0.0 0 00:00.0 khelper
5 root 15 -10 0 0 0 S 0.0 0 00:00.0 kacpid

18 root 5 -10 0 0 0 S 0.0 0 00:00.0 kblockd/0
28 root 15 0 0 0 0 S 0.0 0 00:00.0 pdflush
29 root 15 0 0 0 0 S 0.0 0 00:00.3 pdflush
31 root 13 -10 0 0 0 S 0.0 0 00:00.0 aio/0
19 root 15 0 0 0 0 S 0.0 0 00:00.0 khubd
30 root 15 0 0 0 0 S 0.0 0 00:00.2 kswapd0

187 root 6 -10 0 0 0 S 0 0 00:00.0 kmirrord/0
196 root 15 0 0 0 0 S 0 0 00:01.3 kjournald

...

By default, the display is updated every 10 seconds. The most active processes appear
at the top. top also accepts input from the keyboard and allows you to send signals
and renice processes, so you can observe how your actions affect the overall condi-
tion of the machine.

Root can run top with the q option to goose it up to the highest possible priority.
This can be very useful when you are trying to track down a process that has already
brought the system to its knees.

4.9 THE /PROC FILESYSTEM

The Linux versions of ps and top read their process status information from the
/proc directory, a pseudo-filesystem in which the kernel exposes a variety of inter-
esting information about the system’s state. Despite the name /proc (and the name
of the underlying filesystem type, “proc”), the information is not limited to process
information—all the status information and statistics generated by the kernel are
represented here. You can even modify some parameters by writing to the appropri-
ate /proc file—see page 874 for some examples.

66 Chapter 4 – Controlling Processes

Although some of the information is easiest to access through front-end commands
such as vmstat and ps, some of the less popular information must be read directly
from /proc. It’s worth poking around in this directory to familiarize yourself with
everything that’s there. man proc also lists some useful tips and tricks.

Because the kernel creates the contents of /proc files on the fly (as they are read),
most appear to be empty when listed with ls -l. You’ll have to cat or more the con-
tents to see what they actually contain. But be cautious—a few files contain or link
to binary data that can confuse your terminal emulator if viewed directly.

Process-specific information is divided into subdirectories named by PID. For ex-
ample, /proc/1 is always the directory that contains information about init. Table
4.4 lists the most useful per-process files.

The individual components contained within the cmdline and environ files are
separated by null characters rather than newlines. You can filter their contents
through tr "\000" "\n" to make them more readable.

The fd subdirectory represents open files in the form of symbolic links. File descrip-
tors that are connected to pipes or network sockets don’t have an associated file-
name. The kernel supplies a generic description as the link target instead.

The maps file can be useful for determining what libraries a program is linked to or
depends on.

4.10 STRACE: TRACE SIGNALS AND SYSTEM CALLS

On a traditional UNIX system, it can be hard to figure out what a process is actually
doing. You may have to make educated guesses based on indirect data from the file-
system and from tools such as ps. By contrast, Linux lets you directly observe a pro-
cess with the strace command, which shows every system call the process makes and

Table 4.4 Process information files in /proc (numbered subdirectories)

File Contents

cmd Command or program the process is executing
cmdline a Complete command line of the process (null-separated)
cwd Symbolic link to the process’s current directory
environ The process’s environment variables (null-separated)
exe Symbolic link to the file being executed
fd Subdirectory containing links for each open file descriptor
maps Memory mapping information (shared segments, libraries, etc.)
root Symbolic link to the process’s root directory (set with chroot)
stat General process status information (best decoded with ps)
statm Memory usage information

a. May be unavailable if the process is swapped out of memory.

C
o

n
tr

o
ll

in
g

 P
ro

ce
ss

e
s

4.11 Runaway processes 67

every signal it receives. You can even attach strace to a running process, snoop for a
while, and then detach from the process without disturbing it.8

Although system calls occur at a relatively low level of abstraction, you can usually
tell quite a bit about a process’s activity from strace’s output. For example, the fol-
lowing log was produced by strace run against an active copy of top:

$ sudo strace -p 5810
gettimeofday({1116193814, 213881}, {300, 0}) = 0
open("/proc", O_RDONLY|O_NONBLOCK|O_LARGEFILE|O_DIRECTORY) = 7
fstat64(7, {st_mode=S_IFDIR|0555, st_size=0, ...}) = 0
fcntl64(7, F_SETFD, FD_CLOEXEC) = 0
getdents64(7, /* 36 entries */, 1024) = 1016
getdents64(7, /* 39 entries */, 1024) = 1016
stat64("/proc/1", {st_mode=S_IFDIR|0555, st_size=0, ...}) = 0
open("/proc/1/stat", O_RDONLY) = 8
read(8, "1 (init) S 0 0 0 0 -1 4194560 73"..., 1023) = 191
close(8) = 0
...

Not only does strace show you the name of every system call made by the process,
but it also decodes the arguments and shows the result code returned by the kernel.

In this example, top starts by checking the current time. It then opens and stats the
/proc directory and reads the directory’s contents, thereby obtaining a list of pro-
cesses that are currently running. top goes on to stat the directory representing the
init process and then opens /proc/1/stat to read the init’s status information.

4.11 RUNAWAY PROCESSES

See page 817 for more
information about
runaway processes.

Runaway processes come in two flavors: user processes that consume excessive
amounts of a system resource, such as CPU time or disk space, and system processes
that suddenly go berserk and exhibit wild behavior. The first type of runaway is not
necessarily malfunctioning; it might simply be a resource hog. System processes are
always supposed to behave reasonably.

You can identify processes that use excessive CPU time by looking at the output of
ps or top. If it is obvious that a user process is consuming more CPU than can rea-
sonably be expected, investigate the process. Step one on a server or shared system is
to contact the process’s owner and ask what’s going on. If the owner can’t be found,
you will have to do some poking around on your own. Although you should nor-
mally avoid looking into users’ home directories, it is acceptable when you are try-
ing to track down the source code of a runaway process to find out what it’s doing.

There are two reasons to find out what a process is trying to do before tampering
with it. First, the process may be both legitimate and important to the user. It’s unrea-
sonable to kill processes at random just because they happen to use a lot of CPU.

8. Well, usually. In some cases, strace can interrupt system calls. The monitored process must then be pre-
pared to restart them. This is a standard rule of UNIX software hygiene, but it’s not always observed.

68 Chapter 4 – Controlling Processes

Second, the process may be malicious or destructive. In this case, you’ve got to know
what the process was doing (e.g., cracking passwords) so you can fix the damage.

If the reason for a runaway process’s existence can’t be determined, suspend it with a
STOP signal and send email to the owner explaining what has happened. The process
can be restarted later with a CONT signal. Be aware that some processes can be ru-
ined by a long sleep, so this procedure is not always entirely benign. For example, a
process may wake to find that some of its network connections have been broken.

If a process is using an excessive amount of CPU but appears to be doing something
reasonable and working correctly, you should renice it to a higher nice value (lower
priority) and ask the owner to use nice in the future.

Processes that make excessive use of memory relative to the system’s physical RAM
can cause serious performance problems. You can check the memory size of pro-
cesses by using top. The VIRT column shows the total amount of virtual memory
allocated by each process, and the RES column shows the portion of that memory
that is currently mapped to specific memory pages (the “resident set”).

Both of these numbers can include shared resources such as libraries, and that makes
them potentially misleading. A more direct measure of process-specific memory
consumption is found in the DATA column, which is not shown by default. To add
this column to top’s display, type the f key once top is running and select DATA from
the list. The DATA value indicates the amount of memory in each process’s data and
stack segments, so it’s relatively specific to individual processes (modulo shared
memory segments). Look for growth over time as well as absolute size.

Runaway processes that produce output can fill up an entire filesystem, causing nu-
merous problems. When a filesystem fills up, lots of messages will be logged to the
console and attempts to write to the filesystem will produce error messages.

The first thing to do in this situation is to stop the process that was filling up the disk.
If you have been keeping a reasonable amount of breathing room on the disk, you can
be fairly sure that something is amiss when it suddenly fills up. There’s no command
analogous to ps that will tell you who’s consuming disk space at the fastest rate, but
several tools can identify files that are currently open and the processes that are using
them. See the info on fuser and lsof that starts on page 74 for more information.

You may want to suspend all suspicious-looking processes until you find the one
that’s causing the problem, but remember to restart the innocents when you are done.
When you find the offending process, remove the files it was creating.

An old and well-known prank is to start an infinite loop from the shell that does:

while 1
mkdir adir
cd adir
touch afile

end

C
o

n
tr

o
ll

in
g

 P
ro

ce
ss

e
s

4.13 Exercises 69

This program occasionally shows up running from a publicly accessible system that
was inadvertently left logged in. It does not consume much actual disk space, but it
fills up the filesystem’s inode table and prevents other users from creating new files.
There is not much you can do except clean up the aftermath and warn users to pro-
tect their accounts. Because the directory tree that is left behind by this little jewel is
usually too large for rm -r to handle, you may have to write a script that descends to
the bottom of the tree and then removes directories as it backs out.

If the problem occurs in /tmp and you have set up /tmp as a separate filesystem, you
can reinitialize /tmp with mkfs instead of attempting to delete individual files. See
Chapter 7 for more information about the management of filesystems.

4.12 RECOMMENDED READING

BOVET, DANIEL P. AND MARCO CESATI. Understanding the Linux Kernel (3rd Edition).
Sebastopol, CA: O’Reilly Media, 2006.

4.13 EXERCISES

E4.1 Explain the relationship between a file’s UID and a running process’s real
UID and effective UID. Besides file access control, what is the purpose of
a process’s effective UID?

E4.2 Suppose that a user at your site has started a long-running process that is
consuming a significant fraction of a machine’s resources.

a) How would you recognize a process that is hogging resources?

b) Assume that the misbehaving process might be legitimate and doesn’t
deserve to die. Show the commands you would use to put it “on ice”
(stop it temporarily while you investigate).

c) Later, you discover that the process belongs to your boss and must con-
tinue running. Show the commands you would use to resume the task.

d) Alternatively, assume that the process needs to be killed. What signal
would you send, and why? What if you needed to guarantee that the
process died?

E4.3 Find a process with a memory leak (write your own program if you don’t
have one handy). Use ps or top to monitor the program’s memory use as
it runs.

E4.4 Write a simple Perl script that processes the output of ps to determine the
total VSZ and RSS of the processes running on the system. How do these
numbers relate to the system’s actual amount of physical memory and
swap space?

70

5 The Filesystem

Quick: which of the following would you expect to find in a “filesystem”?

• Processes

• Serial ports

• Kernel data structures and tuning parameters

• Interprocess communication channels

If the system is Linux, the answer is “all of the above.” And yes, you might find some
files in there, too.1

Although the basic purpose of a filesystem is to represent and organize the system’s
storage resources, programmers have been eager to avoid reinventing the wheel
when it comes to managing other types of objects. Frequently, it has proved to be
natural and convenient to map these objects into the filesystem namespace. This
unification has some advantages (consistent programming interface, easy access
from the shell) and some disadvantages (filesystem implementations akin to Fran-
kenstein’s monster), but like it or not, this is the UNIX (and hence, the Linux) way.

The filesystem can be thought of as comprising four main components:

• A namespace – a way of naming things and organizing them in a hierarchy

• An API2 – a set of system calls for navigating and manipulating objects

1. It’s perhaps more accurate to say that these entities are represented within the filesystem. In most cases,
the filesystem is used as a rendezvous point to connect clients with the drivers and servers they are seeking.

2. Application Programming Interface, a generic term for the set of routines that a library, operating sys-
tem, or software package provides for programmers to call.

The Filesystem

T
h

e
 F

il
e

sy
st

e
m

 71

• A security model – a scheme for protecting, hiding, and sharing things

• An implementation – software that ties the logical model to actual hardware

NFS, the Network File
System, is described in
Chapter 16.

Linux defines an abstract kernel-level interface that accommodates many different
back-end filesystems. Some portions of the file tree are handled by traditional disk-
based implementations; others are fielded by separate drivers within the kernel. For
example, NFS filesystems are handled by a driver that forwards the requested opera-
tions to a server on another computer.

Unfortunately, the architectural boundaries are not clearly drawn, and there are quite
a few special cases. For example, device files provide a way for programs to commu-
nicate with drivers inside the kernel. They are not really data files, but they’re han-
dled by the basic filesystem driver and their characteristics are stored on disk. Per-
haps the details would be somewhat different if the filesystem were reimplemented
in light of the last few decades’ experience.

See www.namesys.com
for more information
about ReiserFS.

Another complicating (but ultimately beneficial) factor is that Linux supports more
than one type of disk-based filesystem. In the modern best-of-breed category are the
ext3fs filesystem that serves as most distributions’ default, along with ReiserFS, JFS
from IBM, and XFS from SGI. The older ext2fs, precursor to ext3fs, is still supported
by all distributions and will remain supported for a long time.

There are also many implementations of foreign filesystems, such as the FAT and
NTFS filesystems used by Microsoft Windows and the ISO 9660 filesystem used on
CD-ROMs. Linux supports more types of filesystem than any other variant of UNIX.
Its extensive menu of choices gives you lots of flexibility and makes it easy to share
files with other systems.

The filesystem is a rich topic that we approach from several different angles. This
chapter tells where to find things on your system and describes the characteristics of
files, the meanings of permission bits, and the use of some basic commands that view
and set attributes. Chapter 7, Adding a Disk, is where you’ll find the more technical
filesystem topics such as disk partitioning. Chapter 16, The Network File System, de-
scribes the file sharing systems that are commonly used with Linux. You may also
want to refer to Chapter 26, Cooperating with Windows, which discusses the software
Linux systems use to share filesystems with computers running Microsoft Windows.

With so many different filesystem implementations available for Linux, it may seem
strange that this chapter reads as if there were only a single Linux filesystem. We can
be vague about the implementations because most modern filesystems either try to
provide the traditional filesystem functionality in a faster and more reliable manner
or they add extra features as a layer on top of the standard filesystem semantics.
(Some filesystems do both.) For better or worse, too much existing software depends
on the model described in this chapter for that model to be discarded.

www.namesys.com

72 Chapter 5 – The Filesystem

5.1 PATHNAMES

The filesystem is presented as a single unified hierarchy3 that starts at the directory /
and continues downward through an arbitrary number of subdirectories. / is also
called the root directory.

The list of directories that must be traversed to locate a particular file, together with
its filename, form a pathname. Pathnames can be either absolute (/tmp/foo) or
relative (book4/filesystem). Relative pathnames are interpreted starting at the cur-
rent directory. You might be accustomed to thinking of the current directory as a
feature of the shell, but every process has one.

The terms file, filename, pathname, and path are more or less interchangeable (or at
least, we use them interchangeably in this book). Filename and path can be used for
both absolute and relative paths; pathname generally suggests an absolute path.

The filesystem can be arbitrarily deep. However, each component of a pathname
must have a name no more than 255 characters long, and a single path may not con-
tain more than 4,095 characters. To access a file with a pathname longer than this,
you must cd to an intermediate directory and use a relative pathname.4

The naming of files and directories is essentially unrestricted, except that names are
limited in length and must not contain the slash character or nulls. In particular,
spaces are permitted. Unfortunately, UNIX has a long tradition of separating com-
mand-line arguments at whitespace, so legacy software tends to break when spaces
appear within filenames.

Spaces in filenames were once found primarily on filesystems shared with Macs and
PCs, but they have now metastasized into Linux culture and are found in some stan-
dard software packages as well. No two ways about it: administrative scripts must be
prepared to deal with spaces.

In the shell and in scripts, spaceful filenames can be quoted to keep their pieces
together. For example, the command

$ less "My excellent file.txt"

preserves My excellent file.txt as a single argument to less. You can also escape
individual spaces with a backslash. The filename completion feature of the common
shells (usually bound to the <Tab> key) does this for you.

When you are writing scripts, a useful weapon to know about is find’s -print0 op-
tion. In combination with xargs -0, this option makes the find/xargs combination
work correctly regardless of the whitespace contained within filenames. For exam-
ple, the command

3. The single-hierarchy system differs from that used by Windows, which retains the concept of disk-spe-
cific namespaces.

4. In case this isn’t clear: most filesystem disk formats do not themselves impose a limit on the total
length of pathnames. However, the system calls that access the filesystem do not allow their string
arguments to be longer than 4,095 characters.

T
h

e
 F

il
e

sy
st

e
m

5.2 Filesystem mounting and unmounting 73

$ find /home -size +1M -print0 | xargs -0 ls -l

prints a long ls listing of every file in the /home partition over one megabyte in size.

5.2 FILESYSTEM MOUNTING AND UNMOUNTING

The filesystem is composed of smaller chunks—also called filesystems—each of
which consists of one directory and its subdirectories and files. It’s normally appar-
ent from the context which type of “filesystem” is being discussed, but for clarity, we
use the term “file tree” to refer to the overall layout of the filesystem and reserve the
word “filesystem” for the chunks attached to the tree.

Most filesystems are disk partitions, but as we mentioned earlier, they can be any-
thing that obeys the proper API: network file servers, kernel components, memory-
based disk emulators, etc. Linux even has a nifty “loopback” filesystem that lets you
mount individual files as if they were distinct devices.

Filesystems are attached to the tree with the mount command. mount maps a di-
rectory within the existing file tree, called the mount point, to the root of the newly
attached filesystem. The previous contents of the mount point become inaccessible
as long as another filesystem is mounted there. Mount points are usually empty di-
rectories, however.

For example,

mount /dev/hda4 /users

installs the filesystem stored on the disk partition represented by /dev/hda4 under
the path /users. You could then use ls /users to see that filesystem’s contents.

A list of the filesystems that are customarily mounted on a particular system is kept
in the /etc/fstab file. The information contained in this file allows filesystems to be
checked (fsck -A) and mounted (mount -a) automatically at boot time. It also serves
as documentation for the layout of the filesystems on disk and enables short com-
mands such as mount /usr (the location of the filesystem to mount is looked up in
fstab). See page 127 for a complete discussion of the fstab file.

Filesystems are detached with the umount command. You cannot unmount a filesys-
tem that is “busy”; there must not be any open files or processes whose current di-
rectories are located there, and if the filesystem contains executable programs, they
cannot be running.

Linux kernels 2.4.11 and above define a “lazy” unmount option (invoked with
umount -l) that removes the filesystem from the naming hierarchy but does not
truly unmount it until all existing file references have been closed. It’s debatable
whether this a useful option. To begin with, there’s no guarantee that existing refer-
ences will ever close on their own. In addition, the “semi-unmounted” state can
present inconsistent filesystem semantics to the programs that are using it; they can
read and write through existing file handles but cannot open new files or perform
other filesystem operations.

74 Chapter 5 – The Filesystem

If the kernel complains that a filesystem you are trying to unmount is busy, you can
run fuser to find out why. When invoked with the -mv flags and a mount point, fuser
displays every process that’s using a file or directory on that filesystem:

$ fuser -mv /usr
USER PID ACCESS COMMAND

/usr root 444m atd
root 499m sshd
root 520m lpd
. . .

The letter codes in the ACCESS column show what each process is doing to interfere
with your unmounting attempt. Table 5.1 describes the meaning of each code.

To determine exactly what the offending processes are, just run ps with the list of
PIDs returned by fuser. For example,

$ ps -fp "444 499 520"
UID PID PPID C STIME TTY TIME CMD

daemon 444 1 0 Apr11 ? 00:00:00 /usr/sbin/atd
root 499 1 0 Apr11 ? 00:00:23 /usr/sbin/sshd

lp 520 1 0 Apr11 ? 00:00:00 [lpd]

The quotation marks force the shell to pass the list of PIDs to ps as a single argument.

fuser can also report on the use of specific files (as opposed to entire filesystems); the
syntax is fuser -v filename. fuser also accepts the -k option to kill (or send a signal
to) each of the offending processes. Dangerous—and you must be root (or use sudo;
see page 48).

An alternative to fuser is the lsof utility by Vic Abell of Purdue University. It runs on
many different UNIX and Linux variants, making it especially useful to call from
scripts that must run on a variety of systems. lsof is a more complex and sophisti-
cated program than fuser, and its output is correspondingly verbose.

Scripts in search of specific pieces of information also have the option to read files in
/proc directly. However, lsof -F, which formats lsof ’s output for easy parsing, is an
easier and more portable solution. Use additional command-line flags to request
just the information you need.

Table 5.1 Activity codes shown by fuser

Code Meaning

f The process has a file open for reading or writing.
c The process’s current directory is on the filesystem.
e The process is currently executing a file.
r The process’s root directory (set with chroot) is on the filesystem.
m The process has mapped a file or shared library (usually an inactive executable).

T
h

e
 F

il
e

sy
st

e
m

5.3 The organization of the file tree 75

5.3 THE ORGANIZATION OF THE FILE TREE

Filesystems in the UNIX family have never been very well organized. Various incom-
patible naming conventions are used simultaneously, and different types of files are
scattered randomly around the namespace. In many cases, files are divided by func-
tion and not by how likely they are to change, making it difficult to upgrade the
operating system. The /etc directory, for example, contains some files that are never
customized and some that are entirely local. How do you know which files to preserve
during the upgrade? Well, you just have to know...

Innovations such as /var have helped solve a few problems, but most systems are still
a disorganized mess. Nevertheless, there’s a culturally correct place for everything.
It’s particularly important not to mess with the default structure of the file tree under
Linux because software packages and their installation tools often make broad as-
sumptions about the locations of files (as do other sysadmins!).

See Chapter 28 for
more information
about configuring
the kernel.

The root filesystem includes the root directory and a minimal set of files and subdi-
rectories. The file containing the kernel lives within the root filesystem in the /boot
directory; its name normally starts with vmlinuz.5 Also part of the root filesystem
are /dev for device files (except /dev/pts, which is mounted separately), /etc for crit-
ical system files, /sbin and /bin for important utilities, and sometimes /tmp for
temporary files.

See page 124 for some
reasons why partition-
ing might be desirable
and some rules of
thumb to guide it.

The directories /usr and /var are also of great importance. /usr is where most stan-
dard programs are kept, along with various other booty such as on-line manuals and
most libraries. It is not strictly necessary that /usr be a separate filesystem, but for
convenience in administration it often is. Both /usr and /var must be available to
enable the system to come up all the way to multiuser mode.

/var houses spool directories, log files, accounting information, and various other
items that grow or change rapidly and vary on each host. Since /var contains log
files, which are apt to grow in times of trouble, it’s a good idea to put /var on its own
filesystem if that is practical.

Home directories of users are often kept on a separate filesystem, usually mounted
in the root directory. Separate filesystems can also be used to store bulky items such
as source code libraries and databases.

Some of the more important standard directories are listed in Table 5.2 on the next
page (alternate rows are shaded to improve readability).

The evolving Filesystem Hierarchy Standard (www.pathname.com/fhs) attempts to
codify, rationalize, and explain the standard directories. It’s an excellent resource to
consult when you’re trying to figure out where to put something. We discuss some
additional rules and suggestions for the design of local hierarchies on page 258.

5. It was once common for /boot to be a separate filesystem, mostly because the kernel had to be located
near the beginning of the boot disk to be accessible to the BIOS. Modern PCs no longer have this prob-
lem, and /boot is more typically part of the root filesystem.

www.pathname.com/fhs

76 Chapter 5 – The Filesystem

5.4 FILE TYPES

Linux defines seven types of files. Even when developers add something new and
wonderful to the file tree (such as the process information listed under /proc), it
must still be made to look like one of these seven types:

• Regular files

• Directories

• Character device files

Table 5.2 Standard directories and their contents

Pathname Contents

/bin Commands needed for minimal system operability
/boot Kernel and files needed to load the kernel
/dev Device entries for disks, printers, pseudo-terminals, etc.
/etc Critical startup and configuration files
/home Home directories for users
/lib Libraries and parts of the C compiler
/media Mount points for filesystems on removable media
/opt Optional application software packages (not yet widely used)
/proc Information about all running processes
/root Home directory of the superuser (often just /)
/sbin Commands for booting, repairing, and recovering the system
/tmp Temporary files that may disappear between reboots
/usr Hierarchy of secondary files and commands

/usr/bin Most commands and executable files
/usr/include Header files for compiling C programs
/usr/lib Libraries; also, support files for standard programs
/usr/local Local software (software you write or install)

/usr/local/bin Local executables
/usr/local/etc Local system configuration files and commands
/usr/local/lib Local support files
/usr/local/sbin Statically linked local system maintenance commands
/usr/local/src Source code for /usr/local/*

/usr/man On-line manual pages
/usr/sbin Less essential commands for system administration and repair
/usr/share Items that might be common to multiple systems (read-only)

/usr/share/man On-line manual pages
/usr/src Source code for nonlocal software packages (not widely used)

/var System-specific data and configuration files
/var/adm Varies: logs, system setup records, strange administrative bits
/var/log Various system log files
/var/spool Spooling directories for printers, mail, etc.
/var/tmp More temporary space (preserved between reboots)

T
h

e
 F

il
e

sy
st

e
m

5.4 File types 77

• Block device files

• Local domain sockets

• Named pipes (FIFOs)

• Symbolic links

You can determine the type of an existing file with ls -ld. The first character of the ls
output encodes the type. The following example demonstrates that /usr/include is a
directory:

$ ls -ld /usr/include
drwxr-xr-x 27 root root 4096 Jul 15 20:57 /usr/include

ls uses the codes shown in Table 5.3 to represent the various types of files.

As you can see from Table 5.3, rm is the universal tool for deleting files you don’t
want anymore. But how would you delete a file named, say, -f? It’s a perfectly legiti-
mate filename under most filesystems, but rm -f doesn’t work because the -f is inter-
preted as an rm flag. The answer is either to refer to the file by a more complete path-
name (such as ./-f) or to use rm’s -- argument to tell it that everything that follows is
a filename and not an option (i.e., rm -- -f).

Filenames that contain control characters present a similar problem since reproduc-
ing these names from the keyboard can be difficult or impossible. In this situation,
you can use shell globbing (pattern matching) to identify the files to delete. When
you use pattern matching, it’s a good idea to get in the habit of using the -i option to
rm to make rm confirm the deletion of each file. This feature protects you against
deleting any “good” files that your pattern inadvertently matches. For example, to
delete a file named foo<Control-D>bar, you could use

$ ls
foo?bar foose kde-root

$ rm -i foo*
rm: remove `foo\004bar'? y
rm: remove `foose'? n

Table 5.3 FIle-type encoding used by ls

File type Symbol Created by Removed by

Regular file - editors, cp, etc. rm

Directory d mkdir rmdir, rm -r

Character device file c mknod rm

Block device file b mknod rm

Local domain socket s socket(2) rm

Named pipe p mknod rm

Symbolic link l ln -s rm

78 Chapter 5 – The Filesystem

Note that ls shows the control character as a question mark, which can be a bit de-
ceptive.6 If you don’t remember that ? is a shell pattern-matching character and try
to rm foo?bar, you might potentially remove more than one file (although not in
this example). -i is your friend!

To delete the most horribly named files, you may need to resort to rm -i *.

Another option for removing files with squirrely names is to use an alternative inter-
face to the filesystem such as emacs’s dired mode or a visual tool such as Nautilus.

Regular files

A regular file is just a bag o’ bytes; Linux imposes no structure on its contents. Text
files, data files, executable programs, and shared libraries are all stored as regular
files. Both sequential and random access are allowed.

Directories

A directory contains named references to other files. You can create directories with
mkdir and delete them with rmdir if they are empty. You can delete nonempty di-
rectories with rm -r.

The special entries “.” and “..” refer to the directory itself and to its parent directory;
they may not be removed. Since the root directory has no parent directory, the path
“/..” is equivalent to the path “/.” (and both are equivalent to /).

A file’s name is stored within its parent directory, not with the file itself. In fact, more
than one directory (or more than one entry in a single directory) can refer to a file at
one time, and the references can have different names. Such an arrangement creates
the illusion that a file exists in more than one place at the same time.

These additional references (“links”) are indistinguishable from the original file; as
far as Linux is concerned, they are equivalent. Linux maintains a count of the num-
ber of links that point to each file and does not release the file’s data blocks until its
last link has been deleted. Links cannot cross filesystem boundaries.

References of this sort are usually called “hard links” these days to distinguish them
from symbolic links, which are described below. You create hard links with ln and
remove them with rm.

It’s easy to remember the syntax of ln if you keep in mind that it mirrors that of cp.
The command cp oldfile newfile creates a copy of oldfile called newfile, and ln
oldfile newfile makes the name newfile an additional reference to oldfile.

It is important to understand that hard links are not a distinct type of file. Instead of
defining a separate “thing” called a hard link, the filesystem simply allows more than
one directory entry to point to a file. In addition to the file’s contents, the underlying
attributes of the file (such as ownerships and permissions) are also shared.

6. ls -b shows the special characters as octal numbers, which can be helpful if you need to identify them
specifically. <Control-A> is 1 (\001 in octal), <Control-B> is 2, and so on.

T
h

e
 F

il
e

sy
st

e
m

5.4 File types 79

Character and block device files

See Chapter 28 for
more information
about devices and
drivers.

Device files allow programs to communicate with the system’s hardware and periph-
erals. When the kernel is configured, modules that know how to communicate with
each of the system’s devices are linked in.7 The module for a particular device, called
a device driver, takes care of the messy details of managing the device.

Device drivers present a standard communication interface that looks like a regular
file. When the kernel is given a request that refers to a character or block device file,
it simply passes the request to the appropriate device driver. It’s important to distin-
guish device files from device drivers, however. The files are just rendezvous points
that are used to communicate with the drivers. They are not the drivers themselves.

Character device files allow their associated drivers to do their own input and out-
put buffering. Block device files are used by drivers that handle I/O in large chunks
and want the kernel to perform buffering for them. In the past, a few types of hard-
ware were represented by both block and character device files, but that configura-
tion is rare today.

Device files are characterized by two numbers, called the major and minor device
numbers. The major device number tells the kernel which driver the file refers to, and
the minor device number typically tells the driver which physical unit to address.
For example, major device number 6 on a Linux system indicates the parallel port
driver. The first parallel port (/dev/lp0) would have major device number 6 and
minor device number 0.

Drivers can interpret the minor device numbers that are passed to them in whatever
way they please. For example, tape drivers use the minor device number to deter-
mine whether the tape should be rewound when the device file is closed.

You can create device files with mknod and remove them with rm. However, it’s
rarely necessary to create device files by hand. Most distributions use udev to auto-
matically create and remove device files as hardware is detected by the kernel. udev
keeps /dev tidy by limiting the number of spurious device files and by ensuring that
the device numbers assigned to files are consistent with those expected by the kernel.
See Chapter 28, Drivers and the Kernel, for more information.

An older script called MAKEDEV makes a good backup for udev in case you ever
do need to create device files by hand. The script encodes the conventional names
and device numbers for various classes of device so that you need not look up these
values yourself. For example, MAKEDEV pty creates the device files for pseudo-
terminals.

If you ever need to determine what major and minor device numbers are used by a
driver, you can find this information in the driver’s man page in section 4 of the
manuals (e.g, man 4 tty).

7. These modules can also be loaded dynamically by the kernel.

80 Chapter 5 – The Filesystem

Local domain sockets

Sockets are connections between processes that allow them to communicate hygieni-
cally. Linux provides several different kinds of sockets, most of which involve the use
of a network. Local domain sockets are accessible only from the local host and are
referred to through a filesystem object rather than a network port. They are some-
times known as “UNIX domain sockets.”

See Chapter 10 for
more information
about syslog.

Although socket files are visible to other processes as directory entries, they cannot
be read from or written to by processes not involved in the connection. Some stan-
dard facilities that use local domain sockets are the printing system, the X Window
System, and syslog.

Local domain sockets are created with the socket system call and can be removed
with the rm command or the unlink system call once they have no more users.

Named pipes

Like local domain sockets, named pipes allow communication between two pro-
cesses running on the same host. They’re also known as “FIFO files” (FIFO is short
for the phrase “first in, first out”). You can create named pipes with mknod and
remove them with rm.

Symbolic links

A symbolic or “soft” link points to a file by name. When the kernel comes upon a
symbolic link in the course of looking up a pathname, it redirects its attention to the
pathname stored as the contents of the link. The difference between hard links and
symbolic links is that a hard link is a direct reference, whereas a symbolic link is a
reference by name; symbolic links are distinct from the files they point to.

You create symbolic links with ln -s and remove them with rm. Since they can con-
tain arbitrary paths, they can refer to files on other filesystems or to nonexistent files.
Multiple symbolic links can also form a loop.

A symbolic link can contain either an absolute or a relative path. For example,

ln -s archived/secure /var/log/secure

links /var/log/secure to /var/log/archived/secure with a relative path. It creates the
symbolic link /var/log/secure with a target of “archived/secure”, as demonstrated
by this output from ls:

$ ls -l /var/log/secure
lrwxrwxrwx 1 root root 18 2005-07-05 12:54 /var/log/secure -> archived/secure8

The entire /var/log directory could be moved somewhere else without causing the
symbolic link to stop working (not that moving this directory is advisable).

8. The file permissions that ls shows for a symbolic link, lrwxrwxrwx, are dummy values. Permission to
create, remove, or follow the link is controlled by the containing directory, whereas read, write, and
execute permission on the link target are granted by the target’s own permissions. Therefore, symbolic
links do not need (and do not have) any permission information of their own.

T
h

e
 F

il
e

sy
st

e
m

5.5 File attributes 81

It is a common mistake to think that the first argument to ln -s has something to do
with your current working directory. It is not resolved as a filename by ln; it’s simply
used verbatim as the target of the symbolic link.

5.5 FILE ATTRIBUTES

Under the traditional UNIX and Linux filesystem model, every file has a set of nine
permission bits that control who can read, write, and execute the contents of the file.
Together with three other bits that primarily affect the operation of executable pro-
grams, these bits constitute the file’s “mode.”

The twelve mode bits are stored together with four bits of file-type information. The
four file-type bits are set when the file is first created and cannot be changed, but the
file’s owner and the superuser can modify the twelve mode bits with the chmod
(change mode) command. Use ls -l (or ls -ld for a directory) to inspect the values of
these bits. An example is given on page 82.

The permission bits

Nine permission bits determine what operations may be performed on a file and by
whom. Traditional UNIX does not allow permissions to be set per-user (although
Linux now supports access control lists in all major filesystems; see page 88). In-
stead, three sets of permissions define access for the owner of the file, the group
owners of the file, and everyone else. Each set has three bits: a read bit, a write bit,
and an execute bit.

It’s convenient to discuss file permissions in terms of octal (base 8) numbers because
each digit of an octal number represents three bits and each group of permission
bits consists of three bits. The topmost three bits (with octal values of 400, 200, and
100) control access for the owner. The second three (40, 20, and 10) control access
for the group. The last three (4, 2, and 1) control access for everyone else (“the
world”). In each triplet, the high bit is the read bit, the middle bit is the write bit, and
the low bit is the execute bit.

Each user fits into only one of the three permission sets. The permissions used are
those that are most specific. For example, the owner of a file always has access deter-
mined by the owner permission bits and never the group permission bits. It is possi-
ble for the “other” and “group” categories to have more access than the owner, al-
though this configuration is rarely used.

On a regular file, the read bit allows the file to be opened and read. The write bit
allows the contents of the file to be modified or truncated; however, the ability to
delete or rename (or delete and then recreate!) the file is controlled by the permis-
sions on its parent directory, because that is where the name-to-dataspace mapping
is actually stored.

82 Chapter 5 – The Filesystem

The execute bit allows the file to be executed. There are two types of executable files:
binaries, which the CPU runs directly, and scripts, which must be interpreted by a
shell or some other program. By convention, scripts begin with a line similar to

#!/usr/bin/perl

that specifies an appropriate interpreter. Nonbinary executable files that do not spec-
ify an interpreter are assumed (by your shell) to be bash or sh scripts.9

For a directory, the execute bit (often called the “search” or “scan” bit in this context)
allows the directory to be entered or passed through while a pathname is evaluated,
but not to have its contents listed. The combination of read and execute bits allows
the contents of the directory to be listed. The combination of write and execute bits
allows files to be created, deleted, and renamed within the directory.

The setuid and setgid bits

The bits with octal values 4000 and 2000 are the setuid and setgid bits. When set on
executable files, these bits allow programs to access files and processes that would
otherwise be off-limits to the user that runs them. The setuid/setgid mechanism for
executables is described on page 45.

When set on a directory, the setgid bit causes newly created files within the directory
to take on the group ownership of the directory rather than the default group of the
user that created the file. This convention makes it easier to share a directory of files
among several users, as long as they all belong to a common group. This interpreta-
tion of the setgid bit is unrelated to its meaning when set on an executable file, but
there is never any ambiguity as to which meaning is appropriate.

You can also set the setgid bit on nonexecutable plain files to request special locking
behavior when the file is opened. However, we’ve never seen this feature used.

The sticky bit

The bit with octal value 1000 is called the sticky bit. It was of historical importance as
a modifier for executable files on early UNIX systems. However, that meaning of the
sticky bit is now obsolete and modern systems silently ignore it.

If the sticky bit is set on a directory, the filesystem won’t allow you to delete or rename
a file unless you are the owner of the directory, the owner of the file, or the superuser.
Having write permission on the directory is not enough. This convention helps make
directories like /tmp a little more private and secure.

Viewing file attributes

The filesystem maintains about forty separate pieces of information for each file, but
most of them are useful only to the filesystem itself. As a system administrator, you

9. The kernel understands the #! (“shebang”) syntax and acts on it directly. However, if the interpreter is
not specified completely and correctly, the kernel will refuse to execute the file. The shell then makes a
second attempt to execute the script by calling sh.

T
h

e
 F

il
e

sy
st

e
m

5.5 File attributes 83

will be concerned mostly with the link count, owner, group, mode, size, last access
time, last modification time, and type. You can inspect all of these with ls -l (or ls -ld
for a directory).

An attribute change time is also maintained for each file. The conventional name for
this time (the “ctime,” short for “change time”) leads some people to believe that it is
the file’s creation time. Unfortunately, it is not; it just records the time that the at-
tributes of the file (owner, mode, etc.) were last changed (as opposed to the time at
which the file’s contents were modified).

Consider the following example:

$ ls -l /bin/gzip
-rwxr-xr-x 3 root root 57136 Jun 15 2004 /bin/gzip

The first field specifies the file’s type and mode. The first character is a dash, so the
file is a regular file. (See Table 5.3 on page 77 for other codes.)

The next nine characters in this field are the three sets of permission bits. The order
is owner-group-other, and the order of bits within each set is read-write-execute.
Although these bits have only binary values, ls shows them symbolically with the let-
ters r, w, and x for read, write, and execute. In this case, the owner has all permissions
on the file and everyone else has only read and execute permission.

If the setuid bit had been set, the x representing the owner’s execute permission
would have been replaced with an s, and if the setgid bit had been set, the x for the
group would also have been replaced with an s. The last character of the permissions
(execute permission for “other”) is shown as t if the sticky bit of the file is turned on.
If either the setuid/setgid bit or the sticky bit is set but the corresponding execute bit
is not, these bits appear as S or T.

The next field in the listing is the link count for the file. In this case it is 3, indicating
that /bin/gzip is just one of three names for this file (the others are /bin/gunzip and
/bin/zcat). Every time a hard link is made to a file, the count is incremented by 1.

All directories will have at least two hard links: the link from the parent directory
and the link from the special file “.” inside the directory itself. Symbolic links do not
affect the link count.

The next two fields in the ls output are the owner and group owner of the file. In this
example, the file’s owner is root, and the file also belongs to the group named root.
The filesystem actually stores these as the user and group ID numbers rather than as
names. If the text versions (names) can’t be determined, then these fields contain
numbers. This might happen if the user or group that owns the file has been deleted
from the /etc/passwd or /etc/group file. It could also indicate a problem with your
NIS or LDAP database (if you use one); see Chapter 17.

84 Chapter 5 – The Filesystem

The next field is the size of the file in bytes. This file is 57,136 bytes long, or about
56K.10 Next comes the date of last modification: June 15, 2004. The last field in the
listing is the name of the file, /bin/gzip.

ls output is slightly different for a device file. For example:

$ ls -l /dev/tty0
crw-rw---- 1 root root 4, 0 Jun 11 20:41 /dev/tty0

Most fields are the same, but instead of a size in bytes, ls shows the major and minor
device numbers. /dev/tty0 is the first virtual console, controlled by device driver 4
(the terminal driver).

One ls option that’s useful for scoping out hard links is -i, which makes ls show each
file’s “inode number.” Without going into too much detail about filesystem imple-
mentations, we’ll just say that the inode number is an index into a table that enu-
merates all the files in the filesystem. Inodes are the “things” that are pointed to by
directory entries; entries that are hard links to the same file have the same inode
number. To figure out a complex web of links, you need ls -li to show link counts
and inode numbers along with find to search for matches.11

The system automatically keeps track of modification time stamps, link counts, and
file size information. Conversely, permission bits, ownership, and group ownership
change only when they are specifically altered.

Some other ls options that are important to know are -a to show all entries in a
directory (even files whose names start with a dot), -t to sort files by modification
time (or -tr to sort in reverse chronological order), -F to show the names of files in a
way that distinguishes directories and executable files, -R to list recursively, and -h
to show file sizes in a human-readable form (e.g., 8K or 53M).

chmod: change permissions

The chmod command changes the permissions on a file. Only the owner of the file
and the superuser can change its permissions. To use the command on early UNIX
systems, you had to learn a bit of octal notation, but current versions accept either
octal notation or a mnemonic syntax. The octal syntax is generally more convenient
for administrators, but it can only be used to specify an absolute value for the permis-
sion bits. The mnemonic syntax can modify some bits while leaving others alone.

The first argument to chmod is a specification of the permissions to be assigned,
and the second and subsequent arguments are names of files on which permissions

10. K stands for kilo, a metric prefix meaning 1,000; however, computer types have bastardized it into
meaning 210 or 1,024. Similarly, a computer megabyte is not really a million bytes but rather 220 or
1,048,576 bytes. The International Electrotechnical Commission is promoting a new set of numeric
prefixes (such as kibi- and mebi-) that are based explicitly on powers of 2. At this point, it seems
unlikely that common usage will change. To add to the confusion, even the power-of-2 units are not
used consistently. RAM is denominated in powers of 2, but network bandwidth is always a power of 10.
Storage space is quoted in power-of-10 units by manufacturers and power-of-2 units by everyone else.

11. Try find mountpoint -xdev -inum inode -print.

T
h

e
 F

il
e

sy
st

e
m

5.5 File attributes 85

should be changed. In the octal case, the first octal digit of the specification is for the
owner, the second is for the group, and the third is for everyone else. If you want to
turn on the setuid, setgid, or sticky bits, you use four octal digits rather than three,
with the three special bits forming the first digit.

Table 5.4 illustrates the eight possible combinations for each set of three bits, where
r, w, and x stand for read, write, and execute.

For example, chmod 711 myprog gives all permissions to the owner and execute-
only permission to everyone else.12

The full details of chmod’s mnemonic syntax can be found in the chmod man page.
Some examples of mnemonic specifications are shown in Table 5.5.

The hard part about using the mnemonic syntax is remembering whether o stands
for “owner” or “other”; “other” is correct. Just remember u and g by analogy to UID
and GID; only one possibility will be left.

You can also specify the modes to be assigned by analogy with an existing file. For
example, chmod --reference=filea fileb makes fileb’s mode the same as filea’s.

chmod can update the file permissions within a directory recursively with the -R
option. However, this is trickier than it looks, since the enclosed files and directories
may not all share the same attributes (for example, some might be executable files

Table 5.4 Permission encoding for chmod

Octal Binary Perms Octal Binary Perms

0 000 – – – 4 100 r– –
1 001 – – x 5 101 r–x
2 010 –w– 6 110 rw–
3 011 –wx 7 111 rwx

12. If myprog were a shell script, it would need both read and execute permission turned on. For the script
to be run by an interpreter, it must be opened and read like a text file. Binary files are executed directly
by the kernel and therefore do not need read permission turned on.

Table 5.5 Examples of chmod’s mnemonic syntax

Spec Meaning

u+w Adds write permission for the owner of the file
ug=rw,o=r Gives r/w permission to owner and group, and read permission to others
a-x Removes execute permission for all categories (owner/group/other)
ug=srx,o= Makes the file setuid and setgid and gives r/x permission to the owner

and group only
g=u Makes the group permissions be the same as the owner permissions

86 Chapter 5 – The Filesystem

while others are text files). The mnemonic syntax is particularly useful with -R be-
cause any bits whose values you don’t set explicitly are left alone. For example,

$ chmod -R g+w mydir

adds group write permission to mydir and all its contents without messing up the
execute bits of directories and programs.

chown: change ownership and group

The chown command changes a file’s ownership and group ownership. Its syntax
mirrors that of chmod, except that the first argument specifies the new owner and
group in the form user:group. You can omit either user or group. If there is no group,
you don’t need the colon either, although you can include it to make chown set the
group to user’s default group. The form user.group is also accepted, for historical
reasons, although it’s a bit degenerate since usernames can include dots.

To change a file’s group, you must either be the owner of the file and belong to the
group you’re changing to or be the superuser. You must be the superuser to change a
file’s owner.

Like chmod, chown offers the recursive -R flag to change the settings of a directory
and all the files underneath it. For example, the sequence

chmod 755 ~matt
chown -R matt:staff ~matt

might be used to set up the home directory of a new user after you had copied in the
default startup files. Make sure that you don’t try to chown the new user’s dot files
with a command such as

chown -R matt:staff ~matt/.*
The pattern will match ~matt/.. and will therefore end up changing the ownerships
of the parent directory and probably the home directories of other users.

Traditional UNIX uses a separate command, chgrp, to change the group owner of a
file. Linux has chgrp too. It works just like chown; feel free to use it if you find it
easier to remember.

umask: assign default permissions

You can use the built-in shell command umask to influence the default permissions
given to the files you create. The umask is specified as a three-digit octal value that
represents the permissions to take away. When a file is created, its permissions are
set to whatever the creating program requests minus whatever the umask forbids.
Thus, the individual digits of the umask allow the permissions shown in Table 5.6.

For example, umask 027 allows all permissions for the owner but forbids write per-
mission to the group and allows no permissions for anyone else. The default umask
value is often 022, which denies write permission to the group and world but allows
read permission.

T
h

e
 F

il
e

sy
st

e
m

5.5 File attributes 87

See Chapter 6 for
more information
about startup files.

You cannot force users to have a particular umask value because they can always
reset it to whatever they want. However, you can put a suitable default in the sample
.profile and .cshrc files that you give to new users.

Bonus flags

Linux’s ext2fs and ext3fs filesystems define some supplemental attributes you can
turn on to request special filesystem semantics (“request” being the operative
word, since many of the flags haven’t actually been implemented). For example, one
flag makes a file append-only and another makes it immutable and undeletable.

Since these flags don’t apply to filesystems other than the ext* series, Linux uses spe-
cial commands, lsattr and chattr, to view and change them. Table 5.7 lists the flags
that actually work (currently only about 50% of those mentioned in the man page).

With the possible exception of the “no backup” flag, it’s not clear that any of these
features offer much day-to-day value. The immutable and append-only flags were
largely conceived as ways to make the system more resistant to tampering by hackers
or hostile code. Unfortunately, they can confuse software and protect only against
hackers that don’t know enough to use chattr -ia.13 Real-world experience has
shown that these flags are more often used by hackers than against them.

The S and D options for synchronous writes also merit a special caution. Since they
force all filesystem pages associated with a file or directory to be written out imme-

Table 5.6 Permission encoding for umask

Octal Binary Perms Octal Binary Perms

0 000 rwx 4 100 –wx
1 001 rw– 5 101 –w–
2 010 r–x 6 110 ––x
3 011 r–– 7 111 –––

Table 5.7 Ext2fs and ext3fs bonus flags

Flag Meaning

A Never update access time (st_atime; for performance)
a Allow writing only in append mode (only root can set)
D Force directory updates to be written synchronously
d No backup—make dump ignore this file
i Make file immutable and undeletable (only root can set)
j Keep a journal for data changes as well as metadata
S Force changes to be written synchronously (no buffering)

13. The capability mechanism described on page 683 can make it harder to turn off these bits, but the fea-
ture is not widely used.

88 Chapter 5 – The Filesystem

diately on changes, they might seem to offer additional protection against data loss
in the event of a crash. However, the order of operations for synchronous updates is
unusual and has been known to confuse fsck; recovery of a damaged filesystem
might therefore be made more difficult rather than more reliable. Filesystem jour-
naling, as supported by ext3fs, is usually a better option. The j option can force data
journaling for specific files, albeit at some performance cost.

5.6 ACCESS CONTROL LISTS

The 9-bit owner/group/other access control system has proved to be powerful
enough to accommodate most administrative needs. Although the system has clear
limitations, it’s very much in keeping with the UNIX traditions (some might say,
“former traditions”) of simplicity and predictability.

Virtually all non-UNIX operating systems use a substantially more complicated way
of regulating access to files: access control lists, or ACLs. ACLs have no set length
and can include permission specifications for multiple users or groups. The more
sophisticated systems allow administrators to specify partial sets of permissions or
negative permissions; some also have inheritance features that allow access to de-
pend on more than one ACL at a time. These systems are clearly more powerful than
the traditional UNIX model, but they are also an order of magnitude more complex,
both for administrators and for software developers.

See page 126 for more
information about the
mount command and
filesystem mounting.

As a result of efforts to include ACLs in the POSIX specification, many variants of
UNIX have come to support a relatively standard ACL mechanism that operates in
parallel with the traditional UNIX 9-bit model. Under Linux, ACLs are supported by
ext2, ext3, ReiserFS, XFS, and JFS. They are usually disabled by default; use the -o
acl option to mount to turn them on.

For completeness, we describe the Linux ACL model here. But don’t be seduced by
the pretty colors—ACLs are not necessarily “better” than traditional file permis-
sions, and knowledgeable administrators should use them with a degree of trepida-
tion. Not only are they complicated and tiresome to use, but they can also cause
problems in conjunction with NFS, backup systems, and programs such as text edi-
tors. ACLs tend toward entropy and so become unmaintainable over time.

See page 828 for
more information
about Samba.

Perhaps the most plausible reason for using ACLs is to increase compatibility with
other operating systems. In particular, the Samba suite used for file sharing with
Windows systems is ACL-aware and makes a good-faith effort to translate between
the ACLs of Linux and Windows.

ACL overview

Linux ACLs are a mostly straightforward extension of the standard 9-bit model.
Read, write, and execute permission are the only capabilities the system deals with.
Embellishments such as the setuid and sticky bits are handled exclusively through
the traditional mode bits.

T
h

e
 F

il
e

sy
st

e
m

5.6 Access control lists 89

ACLs allow the rwx bits to be set independently for any combination of users and
groups. Table 5.8 shows what the individual entries in an ACL can look like.

Users and groups can be identified by name or by UID/GID. The exact number of
entries that an ACL can contain varies with the filesystem implementation and
ranges from a low of 25 with XFS to a virtually unlimited number with ReiserFS and
JFS. The ext2 and ext3 filesystems allow 32 entries, which is probably a reasonable
limit for manageability in any case.

The getfacl command displays a file’s current ACL, and the setfacl command mod-
ifies or sets it. Use setfacl -b file to clear the ACL, setfacl -m aclspec file to modify or
extend it, and setfacl -x aclspec file to delete specific entries in the list. (Omit the
permission specification portion of the aclspec when using -x.) The aclspec can con-
tain more than one list entry as long as the entries are separated with a comma.

Files with ACLs retain their original mode bits, but consistency is automatically en-
forced and the two sets of permissions can never conflict. The following example
demonstrates that the ACL entries update automatically in response to changes
made with chmod:

$ touch /tmp/example
$ ls -l /tmp/example
-rw-rw-r-- 1 garth garth 0 Jun 14 15:57 /tmp/example
$ getfacl /tmp/example
getfacl: Removing leading '/' from absolute path names
file: tmp/example
owner: garth
group: garth
user::rw-
group::rw-
other::r--
$ chmod 640 /tmp/example
$ getfacl --omit-header /tmp/example
user::rw-
group::r--
other::---

Table 5.8 Entries that can appear in an access control list

Format Example Sets permissions for

user : :perms user::rw- The file’s owner
user :username :perms user:trent:rw- A specific user
group: :perms group::r-x The group that owns the file
group:groupname :perms group:staff:rw- A specific group
other : :perms other::--- All others
mask: :perms mask::rwx All but owner and other a

a. Masks are somewhat tricky and are explained later in this section.

90 Chapter 5 – The Filesystem

This enforced consistency allows older software with no awareness of ACLs to play
reasonably well in the ACL world. However, there’s a twist. Even though the group::
ACL entry in the example above appears to be tracking the middle set of traditional
mode bits, this will not always be the case.

To understand why, suppose that a legacy program clears the write bits within all
three permission sets of the traditional mode (e.g., chmod ugo-w file). The inten-
tion is clearly to make the file unwritable by anyone. But what if the resulting ACL
were to look like this?

user::r--
group::r--
group:staff:rw-
other::r--

From the perspective of legacy programs, the file appears to be unmodifiable, yet it
is actually writable by anyone in group staff. Not good. To reduce the chance of am-
biguity and misunderstandings, Linux has adopted the following rules:

• The user:: and other:: ACL entries are by definition identical to the “owner”
and “other” permission bits from the traditional file mode. Changing the
mode changes the corresponding ACL entries, and vice versa.

• In all cases, the effective access permission afforded to the file’s owner and
to users not mentioned in another way are those specified in the user:: and
other:: ACL entries, respectively.

• If a file has no explicitly defined ACL or has an ACL that consists only of
one user::, one group::, and one other:: entry, these ACL entries are identi-
cal to the three sets of traditional permission bits. This is the case illus-
trated in the getfacl example above. (Such an ACL is termed “minimal”
and need not actually be implemented as a logically separate ACL.)

• In more complex ACLs, the traditional group permission bits correspond
to a special ACL entry called “mask” rather than the group:: ACL entry.
The mask limits the access that the ACL can confer upon all named users,
all named groups, and the default group.

In other words, the mask specifies an upper bound on the access that the ACL can
assign to individual groups and users. It is conceptually similar to the umask, ex-
cept that the ACL mask is always in effect and specifies the allowed permissions
rather than the permissions to be denied. ACL entries for named users, named
groups, and the default group can include permissions bits that are not present in
the mask, but the kernel simply ignores them.

As a result, the traditional mode bits can never understate the access allowed by the
ACL as a whole. Furthermore, clearing a bit from the group portion of the traditional
mode clears the corresponding bit in the ACL mask and thereby forbids this permis-
sion to everyone but the file’s owner and those who fall in the category of “other.”

T
h

e
 F

il
e

sy
st

e
m

5.6 Access control lists 91

When the ACL shown in the previous example is expanded to include entries for a
specific user and group, setfacl automatically supplies an appropriate mask:

$ setfacl -m user::r,user:trent:rw,group:admin:rw /tmp/example
$ ls -l /tmp/example
-r--rw----+ 1 garth staff 0 Jun 14 15:57 /tmp/example
$ getfacl --omit-header /tmp/example
user::r--
user:trent:rw-
group::r--
group:admin:rw-
mask::rw-
other::---

As seen here, setfacl generates a mask that allows all the permissions granted in the
ACL to take effect. If you want to set the mask by hand, include it in the ACL entry list
given to setfacl or use the -n option to prevent setfacl from regenerating it.

When access is attempted, the effective UID is compared to the UID that owns the
file. If they are the same, access is determined by the user:: permissions in the ACL.
Otherwise, if there is a matching user-specific ACL entry, permissions are deter-
mined by that entry in combination with the ACL mask. If no user-specific entry is
available, the filesystem tries to locate a valid group-related entry that provides the
requested access; such entries are also processed in conjunction with the ACL mask.
If no matching entry can be found, the other:: entry prevails.

If you use the traditional chmod command to manipulate the group permissions on
an ACL-bearing file, be aware that your changes affect only the mask. To continue
the previous example:

$ chmod 770 /tmp/example
$ ls -l /tmp/example
-rwxrwx---+ 1 garth staff 0 Jun 14 15:57 /tmp/example
$ getfacl --omit-header /tmp/example
user::rwx
user:trent:rw-
group::r--
group:admin:rw-
mask::rwx
other::---

The ls output in this case is misleading. Despite the apparently generous group per-
missions, no one actually has permission to execute the file by reason of group mem-
bership. To grant such permission, you must edit the ACL itself.

Default entries

In addition to the ACL entry types listed in Table 5.8, the ACLs for directories can
include “default” entries that are propagated to the ACLs of newly created files and
subdirectories created within them. Subdirectories receive these entries both in the

92 Chapter 5 – The Filesystem

form of active ACL entries and in the form of defaults. Therefore, the original defaults
may eventually propagate down through several layers of the directory hierarchy.

The connection between the parent and child ACLs does not continue once the de-
fault entries have been copied. If the parent’s default entries change, the changes are
not reflected in the ACLs of existing subdirectories.

5.7 EXERCISES

E5.1 What is a umask? Create a umask that would give no permissions to the
group or the world.

E5.2 What is the difference between hard links and symbolic (soft) links?
When is it appropriate to use one or the other?

E5.3 Read the man page for the /etc/fstab file. Write an entry that automati-
cally mounts a Windows NTFS partition, /dev/hda1, at startup. Use the
mount point /mnt/win_c.

E5.4 When installing a Linux system, it’s important to partition the hard drive
such that each filesystem (/var, /usr, etc.) has adequate space for both
current and future needs. The “Foobar Linux” distribution uses the fol-
lowing defaults:

/ 100MB
/var 50MB
/boot 10MB
<swap> 128MB
/usr remaining space

What are some potential problems with this arrangement on a busy
server box?

E5.5 Why is it a good idea to put some partitions (such as /var, /home, and
swap) on a separate drive from other data files and programs? What about
/tmp? Give specific reasons for each of the filesystems listed.

E5.6 Write a script that finds all the hard links on a filesystem.

E5.7 Give commands to accomplish the following tasks.

a) Set the permissions on the file README to read/write for the owner
and read for everyone else.

b) Turn on a file’s setuid bit without changing (or knowing) the current
permissions.

c) List the contents of the current directory, sorting by modification time
and listing the most recently modified file last.

d) Change the group of a file called shared from “user” to “friends”.

93

A
d

d
in

g
 N

e
w

 U
se

rs

6 Adding New Users

Adding and removing users is a routine chore on most systems. These tasks are sim-
ple, but they are also boring; most administrators build tools to automate the process
and then delegate the actual work to an assistant or operator.

These days we are seeing a resurgence of centralized servers with logon accounts for
hundreds of people in addition to the distributed server with as few as two users.
Administrators need a thorough understanding of the account system in order to
manage network services and configure accounts appropriately for the local com-
puting environment.

Account hygiene is also a key determinant of system security. Infrequently used ac-
counts are prime targets for attackers, as are accounts with easily guessed pass-
words. Even if you use your system’s automated tools to add and remove users, it’s
important to understand the changes the tools are making.

In this chapter we’ll first examine the underlying model that the automated tools im-
plement, then describe the tools themselves (useradd, userdel, etc.). The default
useradd tool is actually quite good and should be sufficient for most sites’ needs.
Unfortunately, userdel is not quite as thorough as we would like.

6.1 THE /ETC/PASSWD FILE

The /etc/passwd file is a list of users recognized by the system. The system consults
the file at login time to determine a user’s UID and home directory, among other

Adding New Users

94 Chapter 6 – Adding New Users

things. Each line in the file represents one user and contains seven fields separated
by colons:

• Login name

• Encrypted password or password placeholder (see page 96)

• UID (user ID) number

• Default GID (group ID) number

• “GECOS” information: full name, office, extension, home phone

• Home directory

• Login shell

For example, the following lines are all syntactically valid /etc/passwd entries:

root:lga5FjuGpZ2so:0:0:The System,,x6096,:/:/bin/sh
jl:x:100:0:Jim Lane,ECT8-3,,:/staff/jl:/bin/sh
dotty:1Ce8QpAQI$L.DvJEWiHlWetKTMLXFZO/:101:20::/home/dotty:/bin/tcsh

These days it is not acceptable to leave encrypted passwords in plain view. With fast
hardware, they can be “cracked” in minutes. All versions of UNIX and Linux allow
you to hide the encrypted passwords by placing them in a separate file that is not
world-readable. This is known as a shadow password mechanism, and it is (appro-
priately) the default on most systems.

The shadow password system makes more sense when explained as an extension of
the traditional /etc/passwd (as it historically was), so we defer our discussion of this
feature until page 99. A more general discussion of the security implications of
shadow passwords can be found on page 678.

The contents of /etc/passwd are often shared among systems with a database such
as NIS or LDAP. See Chapter 17, Sharing System Files, for more information.

The following sections discuss the /etc/passwd fields in more detail.

Login name

See page 511 for
more information
about NIS.

Login names (also known as usernames) must be unique and no more than 32 char-
acters long. They may contain any characters except colons and newlines. If you use
NIS, login names are limited to 8 characters, regardless of the operating system.

Some older versions of UNIX limit the permissible characters to alphanumerics and
impose an 8-character length limit. At heterogeneous sites, it’s a good idea to heed
the most restrictive limits. Such a policy will avert potential conflicts with older soft-
ware and will guarantee that users can have the same login name on every machine.
Remember, just because you have a homogeneous environment today doesn’t mean
that this will be the case tomorrow.

Login names are case sensitive; however, RFC822 calls for case to be ignored in
email addresses. We are not aware of any problems caused by mixed-case login
names, but lowercase names are traditional and also easier to type.

A
d

d
in

g
 N

e
w

 U
se

rs

6.1 The /etc/passwd file 95

Login names should be easy to remember, so random sequences of letters do not
make good login names. We suggest that you avoid nicknames, even if your organi-
zation is relatively informal. They’re really not that much fun, and they tend to draw
scorn; names like DarkLord and QTPie belong in front of @hotmail.com. Even if your
users have no self-respect, at least have some thought for your site’s overall credibility.

Since login names are often used as email addresses, it’s useful to establish a stan-
dard way of forming them. It should be possible for users to make educated guesses
about each other’s login names. First names, last names, initials, or some combina-
tion of these all make reasonable naming schemes.

See page 544 for more
information about
mail aliases.

Any fixed scheme for choosing login names eventually results in duplicate names or
names that are too long, so you will sometimes have to make exceptions. In the case
of a long name, you can use your mail system’s aliasing features to equate two ver-
sions of the name, at least as far as mail is concerned.

For example, suppose you use an employee’s first initial and last name as a para-
digm. Brent Browning would therefore be bbrowning, which is 9 characters and
therefore potentially incompatible with some systems. Instead, you could assign
the user the login brentb, leaving bbrowning as an aliases file entry:

bbrowning: brentb

If your site has a global mail alias file, each new login name must be distinct from any
alias in this file. If it is not, mail will be delivered to the alias rather than the new user.

It’s common for large sites to implement a full-name email addressing scheme (e.g.,
John.Q.Public@mysite.com) that hides login names from the outside world. This is a
fine idea, but it really doesn’t obviate any of the naming advice given above. If for no
other reason than the sanity of administrators, it’s best if login names have a clear
and predictable correspondence to users’ actual names.

Login names should be unique in two senses. First, a user should have the same
login name on every machine. This rule is mostly for convenience, both yours and
the user’s.

See page 685 for a
discussion of login
equivalence issues.

Second, a particular login name should always refer to the same person. Some com-
mands (e.g., ssh) can be set up to validate remote users according to their login
names. Even if scott@boulder and scott@refuge were two different people, one
might be able to log in to the other’s account without providing a password if the
accounts were not set up properly.

Experience also shows that duplicate names can lead to email confusion. The mail
system might be perfectly clear about which scott is which, but users will often send
mail to the wrong address.

96 Chapter 6 – Adding New Users

Encrypted password

A quick reminder before we jump into the details of passwords: most systems now
keep encrypted passwords in /etc/shadow rather than /etc/passwd. However, the
comments in this section apply regardless of where passwords are actually kept.

Passwords are stored in an encrypted form. Unless you can execute encryption algo-
rithms in your head (we want to meet you), you must either set passwords by using
the passwd command (yppasswd if you use NIS) or by copying an encrypted pass-
word string from another account.

If you edit /etc/passwd by hand to create a new account, put a star or an x in the
encrypted password field. The star prevents unauthorized use of the account until
you have set a real password. Never leave this field empty—that introduces a jumbo-
sized security hole because no password is required to access the account. Even if
you are using shadow passwords, it’s wise to be a bit anal retentive about password
hygiene in the /etc/passwd file. You never know when some obsolete program or
script is going to peek at it in order to make some kind of security decision.1

Major Linux distributions recognize multiple methods of password encryption, and
they can determine the encryption method used for each password by examining the
encrypted data. It isn’t necessary for all passwords on the system to use the same form
of encryption.

Most Linux distributions default to using MD5 encryption. MD5 is slightly crypto-
graphically better than the former DES standard, and the MD5 scheme allows pass-
words of arbitrary length. Longer passwords are more secure—if you actually use
them. Since the use of MD5 won’t hurt and might help, we recommend it for all
systems that support it.

Encrypted passwords are of constant length (34 characters long for MD5, 13 for DES)
regardless of the length of the unencrypted password. Passwords are encrypted in
combination with a random “salt” so that a given password can correspond to many
different encrypted forms. If two users happen to select the same password, this fact
usually cannot be discovered by inspection of the encrypted passwords. MD5 pass-
words are easy to spot because they always start with 1.

SUSE defaults to Blowfish encryption for new passwords. Like MD5, this is a strong
algorithm and a very reasonable default. However, you can’t copy SUSE’s Blowfish
passwords to non-SUSE systems since only SUSE understands them. You can iden-
tify Blowfish passwords by their prefix of $2a$.

UID (user ID) number

UIDs are unsigned 32-bit integers. However, because of interoperability issues with
older systems, we suggest limiting the largest UID at your site to 32,767 (the largest
signed 16-bit integer) if possible.

1. Jon Corbet, one of our technical reviewers, commented, “If you don’t know when security decisions are
being made, you’re already in trouble. Administrators should not be surprised by such things.”

A
d

d
in

g
 N

e
w

 U
se

rs

6.1 The /etc/passwd file 97

By definition, root has UID 0. Most systems also define pseudo-users bin, daemon,
and lots of others. It is customary to put such fake logins at the beginning of the
/etc/passwd file and to give them low UIDs; never assign these logins a real shell. To
allow plenty of room for any nonhuman users you might want to add in the future,
we recommend that you assign UIDs to real users starting at 500 (or higher).

See page 48 for
more information
about sudo.

It is never a good idea to have multiple accounts with UID 0. While it might seem
convenient to have multiple root logins with different shells or passwords, this setup
just creates more potential security holes and gives you multiple logins to secure. If
people need to have alternate ways to log in as root, you are better off if they use a
program such as sudo.

Avoid recycling UIDs for as long as possible, even the UIDs of people that have left
your organization and had their accounts permanently removed. This precaution
prevents confusion if files are later restored from backups, where users may be iden-
tified by UID rather than by login name.

See Chapter 16 for
more information
about NFS.

UIDs should be kept unique across your entire organization. That is, a particular UID
should refer to the same login name and the same person on every machine. Failure
to maintain distinct UIDs can result in security problems with systems such as NFS
and can also result in confusion when a user moves from one workgroup to another.2

It can be hard to maintain unique UIDs when groups of machines are administered
by different people or organizations. The problems are both technical and political.
The best solution is to have a central database that contains a record for each user
and enforces uniqueness. (We use a home-grown database to address this problem.)
A simpler scheme is to assign each group within an organization a range of UIDs
and let each group manage its own set. This solution keeps the UID spaces separate
(a requirement if you are going to use NFS to share filesystems) but does not address
the parallel issue of unique login names. LDAP is becoming a popular management
tool for UIDs as well.

Default GID number

Like a UID, a group ID number is 32-bit integer. GID 0 is reserved for the group
called “root”. GID 1 is the group “bin” and GID 2 is the group “daemon”.

See page 82 for more
information about set-
gid directories.

Groups are defined in /etc/group, with the GID field in /etc/passwd providing the
default (or “effective”) GID at login time. The default GID is not treated specially
when access is determined;3 it is relevant only to the creation of new files and direc-
tories. New files are normally owned by the user’s effective group. However, in direc-
tories on which the setgid bit (02000) has been set and on filesystems mounted with
the grpid option, new files default to the group of their parent directory.

2. Another NFS-related issue is the “nobody” UID that is traditionally used to hamper access by remote
root users. See page 488 for details.

3. Linux considers all group memberships when performing access calculations. Kernels before 2.6.4
allow a maximum of 32 group memberships, but more recent kernels impose no limit.

98 Chapter 6 – Adding New Users

GECOS field4

The GECOS field is commonly used to record personal information about each user.
It has no well-defined syntax. The GECOS field originally held the login information
needed to transfer batch jobs from UNIX systems at Bell Labs to a mainframe run-
ning GECOS (the General Electric Comprehensive Operating System); these days,
only the name remains. A few programs will expand an ‘&’ in the GECOS field to the
user’s login name, which saves a bit of typing. Both finger and sendmail perform
this expansion, but many programs do not. It’s best not to rely on this feature.

Although you can use any formatting conventions you like, finger interprets comma-
separated GECOS entries in the following order:

• Full name (often the only field used)

• Office number and building

• Office telephone extension

• Home phone number

See page 520 for
more information
about LDAP.

The chfn command lets users change their own GECOS information. chfn is useful
for keeping things like phone numbers up to date, but it can be misused: a user can
change the information to be either obscene or incorrect. Most college campuses
disable chfn. GECOS information is the perfect candidate for LDAPification.

Home directory

Users’ shells are cd’ed to their home directories when they log in. If a user’s home
directory is missing at login time, the system prints a message such as “no home
directory.”5 If DEFAULT_HOME is set to no in /etc/login.defs, the login will not be
allowed to continue; otherwise, the user will be placed in the root directory.

Be aware that if home directories are mounted over a network filesystem, they may
be unavailable in the event of server or network problems.

Login shell

The login shell is normally a command interpreter such as the Bourne shell or the C
shell (/bin/sh or /bin/csh), but it can be any program. bash is the default and is used
if /etc/passwd does not specify a login shell. On Linux systems, sh and csh are really
just links to bash (the GNU “Bourne again” shell) and tcsh (a superset of the C shell),
respectively. Many distributions also provide a public-domain version of the Korn
shell, ksh.

Users can change their shells with the chsh command. The file /etc/shells contains a
list of “valid” shells that chsh will permit users to select; SUSE enforces this list, but

4. When Honeywell took over the computer division of GE, GECOS was changed to GCOS; both spellings
survive today

5. This message appears when you log in on the console or on a terminal, but not when you log in
through a display manager such as xdm, gdm, or kdm. Not only will you not see the message, but you
will generally be logged out immediately because of the display manager’s inability to write to the
proper directory (e.g., ~/.gnome).

A
d

d
in

g
 N

e
w

 U
se

rs

6.2 The /etc/shadow file 99

Red Hat just warns you if the selected shell is not on the list. If you add entries to the
shells file, be sure to use absolute paths since chsh and other programs expect them.

6.2 THE /ETC/SHADOW FILE

The /etc/shadow file is readable only by the superuser and serves to keep encrypted
passwords safe from prying eyes. It also provides account information that’s not
available from /etc/passwd. The use of shadow passwords is standard on some dis-
tributions and configured as an optional package on others. Even when shadow
passwords are optional, it’s a good idea to treat them as if they were standard.

When shadow passwords are in use, the old-style password fields in /etc/passwd
should always contain an x.

The shadow file is not a superset of the passwd file, and the passwd file is not gen-
erated from it; you must maintain both files (or use tools such as useradd that main-
tain them both on your behalf). Like /etc/passwd, /etc/shadow contains one line for
each user. Each line contains nine fields, separated by colons:

• Login name

• Encrypted password

• Date of last password change

• Minimum number of days between password changes

• Maximum number of days between password changes

• Number of days in advance to warn users about password expiration

• Number of days after password expiration that account is disabled

• Account expiration date

• A reserved field that is currently always empty

See page 109 for
more information
about usermod.

The only fields that are required to be nonempty are the username and password.
Absolute date fields in /etc/shadow are specified in terms of days (not seconds)
since Jan 1, 1970, which is not a standard way of reckoning time on UNIX systems.
Fortunately, you can use the usermod program to set the expiration field.

A typical shadow entry looks like this:

millert:1buJ6v3Ch$BwLIoF5eaCh9Nv.OEzD3T0:13348:0:180:14::14974:

Here is a more complete description of each field:

• The login name is the same as in /etc/passwd. This field connects a user’s
passwd and shadow entries.

• The encrypted password is identical in concept and execution to the one
previously stored in /etc/passwd.

• The last change field records the time at which the user’s password was last
changed. This field is generally filled in by passwd.

100 Chapter 6 – Adding New Users

• The fourth field sets the number of days that must elapse between password
changes. The idea is to force authentic changes by preventing users from
immediately reverting to a familiar password after a required change. How-
ever, we think this feature could be somewhat dangerous when a security
intrusion has occurred. We recommend setting this field to 0.

• The fifth field sets the maximum number of days allowed between pass-
word changes. This feature allows the administrator to enforce password
aging; see page 680 for more information. The actual enforced maximum
number of days is the sum of this field and the seventh (grace period) field.

• The sixth field sets the number of days before password expiration that the
login program should begin to warn the user of the impending expiration.

• The seventh field specifies how many days after the maximum password
age has been reached to wait before treating the login as expired. The
exact purpose of this feature is not clear.

• The eighth field specifies the day (in days since Jan 1, 1970) on which the
user’s account will expire. The user may not log in after this date until the
field has been reset by an administrator. If the field is left blank, the account
will never expire.

• The ninth field is reserved for future use.

Now that we know what each of the fields means, let’s look at our example line again:

millert:1buJ6v3Ch$BwLIoF5eaCh9Nv.OEzD3T0:13348:0:180:14::14974:

In this example, the user millert last changed his password on July 18, 2006. The
password must be changed again within 180 days, and millert will receive warnings
that the password needs to be changed for the last two weeks of this period. The
account expires on December 31, 2010.

You can use the pwconv utility to reconcile the contents of the shadow file to those
of the passwd file, picking up any new additions and deleting users that are no longer
listed in passwd. pwconv fills in most of the shadow parameters from defaults spec-
ified in /etc/login.defs.

The following example illustrates the format of the login.defs file. The comments
do a good job of explaining the various parameters. This particular example is from
a Fedora system; the default contents vary quite substantially among distributions,
as do the parameters that can be specified.

REQUIRED
Directory where mailboxes reside, _or_ name of file, relative to the
home directory. If you _do_ define both, MAIL_DIR takes precedence.
QMAIL_DIR is for Qmail

QMAIL_DIR Maildir
MAIL_DIR /var/spool/mail

A
d

d
in

g
 N

e
w

 U
se

rs

6.3 The /etc/group file 101

MAIL_FILE .mail

Password aging controls:
PASS_MAX_DAYS Maximum # of days a password may be used.
PASS_MIN_DAYS Minimum # of days allowed between password changes.
PASS_MIN_LEN Minimum acceptable password length.
PASS_WARN_AGE Number of days warning given before a password expires.

PASS_MAX_DAYS 99999
PASS_MIN_DAYS 0
PASS_MIN_LEN 5
PASS_WARN_AGE 7

Min/max values for automatic uid selection in useradd

UID_MIN 500
UID_MAX 60000

Min/max values for automatic gid selection in groupadd

GID_MIN 500
GID_MAX 60000

If defined, this command is run when removing a user.
It should remove any at/cron/print jobs etc. owned by
the user to be removed (passed as the first argument).

USERDEL_CMD /usr/sbin/userdel_local

If useradd should create home directories for users by default
On RH systems, we do. This option is ORed with the -m flag on
useradd command line.

CREATE_HOME yes

6.3 THE /ETC/GROUP FILE

The /etc/group file contains the names of UNIX groups and a list of each group’s
members. For example:

wheel:x:10:trent,ned,evi,garth,lynda,boggs,millert
csstaff:*:100:lloyd,evi
student:*:200:dotty

Each line represents one group and contains four fields:

• Group name

• Encrypted password or contains an x, indicating a gshadow file

• GID number

• List of members, separated by commas (be careful not to add spaces)

As in /etc/passwd, fields are separated by colons. Group names should be limited to
8 characters for compatibility, although Linux does not actually require this. While it
is possible to enter a group password (to allow users not belonging to a group to

102 Chapter 6 – Adding New Users

change to it by using the newgrp command), this is rarely done.6 Most sites put stars
in the password field, but it is safe to leave the password field blank if you wish. The
newgrp command will not change to a group without a password unless the user is
already listed as being a member of that group. All our example distributions come
configured with /etc/gshadow files, which are analogous in concept to /etc/shadow
but of considerably less importance (group passwords are rarely used).

As with usernames and UIDs, group names and GIDs should be kept consistent
among machines that share files through a network filesystem. Consistency can be
hard to maintain in a heterogeneous environment since different operating systems
use different GIDs for the same group names. We’ve found that the best way to deal
with this issue is to avoid using a system group as the default login group for a user.

If a user defaults to a particular group in /etc/passwd but does not appear to be in
that group according to /etc/group, /etc/passwd wins the argument. The group
memberships granted at login time are really the union of those found in the passwd
and group files. However, it’s a good idea to keep the two files consistent.

To minimize the potential for collisions with vendor-supplied GIDs, we suggest start-
ing local groups at GID 500 or higher.

The UNIX tradition is to add new users to a group that represents their general cate-
gory such as “students” or “finance.” However, it’s worth noting that this convention
increases the likelihood that users will be able to read one another’s files because of
slipshod permission setting, even if that is not really the intention of the owner. To
avoid this problem, we prefer to create a unique group for each user. You can use the
same name for both the user and the group. You can also make the GID the same as
the UID.

A user’s personal group should contain only that user. If you want to let users share
files by way of the group mechanism, create separate groups for that purpose. The
idea behind personal groups is not to discourage the use of groups per se—it’s sim-
ply to establish a more restrictive default group for each user so that files are not
shared inadvertently.

The useradd utilities on all of our example distributions except SUSE default to
placing users in their own personal groups.

6.4 ADDING USERS

Before you create an account for a new user at a corporate, government, or educa-
tional site, it’s very important that the user sign and date a copy of your local user
agreement and policy statement. (What?! You don’t have a user agreement and pol-
icy statement? See page 946 for more information about why you need one and what
to put in it.)

6. The only reason we are aware of that someone might want to use the newgrp command under Linux is
to set the default group of newly created files.

A
d

d
in

g
 N

e
w

 U
se

rs

6.4 Adding users 103

Users have no particular reason to want to sign a policy agreement, so it’s to your
advantage to secure their signatures while you still have some leverage. We find that
it takes more effort to secure a signed agreement after an account has been released.
If your process allows for it, have the paperwork precede the creation of the account.

Mechanically, the process of adding a new user consists of four steps required by the
system, two steps that establish a useful environment for the new user, and several
extra steps for your own convenience as an administrator.

Required:

• Edit the passwd and shadow files to define the user’s account.

• Add the user to the /etc/group file.

• Set an initial password.

• Create, chown, and chmod the user’s home directory.

For the user:

• Copy default startup files to the user’s home directory.

• Set the user’s mail home and establish mail aliases.

For you:

• Verify that the account is set up correctly.

• Add the user’s contact information and account status to your database.

Starting on page 108, we discuss the useradd command and its brethren, which au-
tomate some of these steps. However, in the next few sections we go over the steps as
you’d execute them by hand. This is mostly so that you can see what the supplied
tools are doing. In real life, it’s generally preferable (faster and less error prone) to
run useradd or a similar home-grown script.

You must perform each step as root or use a program such as sudo that allows you to
run commands as root. See page 41 for more information about sudo.

Editing the passwd and shadow files

To safely edit the passwd file, run vipw to invoke a text editor on a copy of it. The
default editor is vi, but you can specify a different editor by setting the value of your
EDITOR environment variable. The existence of the temporary edit file serves as a
lock; vipw allows only one person to edit the passwd file at a time, and it prevents
users from changing their passwords while the passwd file is checked out. When the
editor terminates, vipw replaces the original passwd file with your edited copy.

On Fedora and RHEL systems, vipw automatically asks if you would like to edit the
shadow file after you have edited the passwd file. SUSE, Debian, and Ubuntu sys-
tems use vipw -s for this function.

For example, adding the following line to /etc/passwd would define an account
called “tyler”:

tyler:x:2422:2422:Tyler Stevens, ECEE 3-27, x7919,:/home/tyler:/bin/sh

104 Chapter 6 – Adding New Users

We’d also add a matching entry to /etc/shadow:

tyler:*: : : : : :14974:

This shadow line for tyler has no encrypted password or password aging, and it sets
the account to expire on December 31, 2010.

Editing the /etc/group file

We should next create an entry in the /etc/group file for tyler’s personal group,
which we will also call “tyler”. This group should have GID 2422 to match tyler’s
UID of 2422. This is the default GID we assigned to him in the passwd file.7

tyler::2422:tyler

Strictly speaking, tyler will be in group 2422 whether or not he is listed in /etc/group,
because his passwd entry has already given him this membership. The kernel
doesn’t care about the contents of /etc/passwd and /etc/group; it only cares about
UID and GID numbers. The main purpose of recording personal groups in the group
file is to make sure that commands such as ls display the names of these groups
correctly. Of course, it’s always nice to have an authoritative list of the groups you
have created and the users they include.

If we wanted to assign tyler to additional groups, we would simply add his login
name to additional groups within the /etc/group file.

Setting an initial password

Root can change any user’s password with the passwd command:

passwd user

or

$ sudo passwd user

Rules for selecting good
passwords are given on
page 679.

passwd prompts you to enter a new password and asks you to repeat it. If you choose
a short, all-lowercase, or otherwise obviously unsuitable password, passwd will
complain and ask you to use something more complex. Most Linux systems also
check prospective passwords against a dictionary for added security.

The mkpasswd utility that comes with Don Libes’s expect package makes it easy to
generate random passwords for new users. For better or worse, the assignment of a
random password “forces” new users to change their passwords immediately, as the
random ones are difficult to remember.8 Don’t confuse expect’s mkpasswd with the
standard mkpasswd command, which simply encodes a given string as a password.

7. This naming and numbering is purely conventional; see page 102.

8. The passwords are not truly random, but rather pseudorandom. If one or more passwords in a pseudo-
randomly generated sequence are cracked, it may be possible to reverse-engineer the sequence and
discover additional passwords. Possible, but probably unlikely in the real world. We’re relatively com-
fortable with this risk.

A
d

d
in

g
 N

e
w

 U
se

rs

6.4 Adding users 105

Never leave a new account—or any account that has access to a shell—without a
password.

Creating the user’s home directory

Any directory you create as root is initially owned by root, so you must change its
owner and group with the chown and chgrp commands. The following sequence of
commands would create a home directory appropriate for our example user:

mkdir /home/tyler
chown tyler:staff /home/tyler
chmod 700 /home/tyler

Copying in the default startup files

You can customize some commands and utilities by placing configuration files in a
user’s home directory. Startup files traditionally begin with a dot and end with the
letters rc, short for “run command,” a relic of the CTSS operating system. The initial
dot causes ls to elide these files from directory listings unless the -a option is used;
the files are considered “uninteresting.” Table 6.1 lists some common startup files.

Table 6.1 Common startup files and their uses

Command Filename Typical uses

csh/tcsh .login Sets the terminal type (if needed)
Sets biff and mesg switches

.cshrc Sets up environment variables
Sets command aliases
Sets the search path
Sets the umask value to control permissions
Sets cdpath for filename searches
Sets the prompt, history, and savehist variables

basha .bashrc Similar to .cshrc for bash

.bash_profile Similar to .login for bash

vim .vimrc Sets vim editor options
emacs .emacs Sets emacs editor options

Sets emacs key bindings
mail/mailx .mailrc Defines personal mail aliases

Sets mail reader options
xrdbb .Xdefaults Specifies X11 configuration: fonts, color, etc.
startxb .xinitrc Specifies the initial X11 environment

.Xclients Specifies the initial X11 environment (RHEL, Fedora)
xdmb .xsession Specifies the initial X11 environment

a. bash will also read .profile or /etc/profile in emulation of sh.

b. Exact details of X Windows vary with the implementation and window manager in use; see Chapter
22 for more details.

106 Chapter 6 – Adding New Users

If you don’t already have a set of good default startup files, /usr/local/lib/skel is a
reasonable place to put them. Copy in some files to use as a starting point and mod-
ify them with a text editor. You may wish to start with vendor-supplied files from the
/etc/skel directory, if your system provides them. Be sure to set a reasonable default
value for umask; we suggest 077, 027, or 022, depending on the friendliness and size
of your site.

Depending on the user’s shell, /etc may contain system-wide startup files that are
processed before the user’s own startup files. For example, bash reads /etc/profile
before processing ~/.bash_profile. For other shells, see the man page for the shell in
question for details.

It has become common for the system-wide startup files for shells to look in the
/etc/profile.d directory for additional configuration snippets to execute. This con-
vention provides a clean way for software packages to specify shell-level defaults.
For example, the /etc/profile.d/colorls.* files on Fedora and RHEL are responsible
for the technicolor ls output on those systems. (Yes, they can be safely deleted.)

The command sequence for installing startup files for the new user tyler would look
something like this:

cp /usr/local/lib/skel/.[a-zA-Z]* ~tyler
chown tyler:staff ~tyler/.[a-zA-Z]*
chmod 600 ~tyler/.[a-zA-Z]*

Note that we cannot use

chown tyler:staff ~tyler/.*
because tyler would then own not only his own files but also the parent directory “..”
(/home) as well. This is a very common and dangerous sysadmin mistake.

Setting the user’s mail home

It is convenient for each user to receive email on only one machine. This scheme is
often implemented with an entry in the global aliases file /etc/mail/aliases or the
sendmail userDB on the central mail server. See Chapter 18 for general information
about email; the various ways to implement mail homes are discussed starting on
page 542.

Verifying the new login

To verify that a new account has been properly configured, first log out, then log in
as the new user and execute the following commands:

$ pwd /* To verify the home directory */
$ ls -la /* Check owner/group of startup files */

You will need to notify new users of their login names and initial passwords. Many
sites send this information by email, but for security reasons that’s usually not a good
idea. A new user’s account can be compromised and back-doored before the user has

A
d

d
in

g
 N

e
w

 U
se

rs

6.5 Removing users 107

even logged in. This is also a good time to point users toward additional documenta-
tion on local customs, if you have any.

See page 946 for more
information about
written user contracts.

If your site requires users to sign a written policy agreement or appropriate use pol-
icy, be sure this step has been completed before releasing the account. This check will
prevent oversights and strengthen the legal basis of any sanctions you might later
need to impose.Be sure to remind new users to change their passwords immediately.
If you wish, you can enforce this by setting the password to expire within a short
time. Another option is to have a script check up on new users and be sure their
encrypted passwords in the shadow file have changed.9

Recording the user’s status and contact information

In an environment in which you know all the users personally, it’s relatively easy to
keep track of who’s using a system and why. But if you manage a large and change-
able user base, you’ll need a more formal way to keep track of accounts. Maintaining
a database of contact information and account statuses will help you figure out who
someone is and why they have an account, once the act of adding them has faded
from memory. It’s a good idea to keep complete contact information on hand so that
you can reach users in the event of problems or misbehavior.

6.5 REMOVING USERS

When a user leaves your organization, that user’s login account and files should be
removed from the system. This procedure involves the removal of all references to
the login name that were added by you or your useradd program. If you remove a
user by hand, you may want to use the following checklist:

• Remove the user from any local user databases or phone lists.

• Remove the user from the aliases file or add a forwarding address.

• Remove the user’s crontab file and any pending at jobs.

• Kill any of the user’s processes that are still running.

• Remove the user from the passwd, shadow, group, and gshadow files.

• Remove the user’s home directory.

• Remove the user’s mail spool.

Before you remove a user’s home directory, be sure to relocate any files that are
needed by other users. Since you often can’t be sure which files those might be, it’s
always a good idea to make an extra backup of the user’s home directory and mail
spool before deleting them.

Once you have removed a user, you may want to verify that the user’s old UID owns
no more files on the system. To find the paths of orphaned files, you can use the find
command with the -nouser argument. Because find has a way of “escaping” onto

9. Because the same password can have many encrypted representations, this method verifies only that
the user has reset the password, not that it has actually been changed to a different password. There is
no practical way to force users to actually change their passwords except by maintaining a database of
all prior values.

108 Chapter 6 – Adding New Users

network servers if you’re not careful, it’s usually best to check filesystems individu-
ally with -xdev:

find filesystem -xdev -nouser

If your organization assigns individual workstations to users, it’s generally simplest
and most efficient to reinstall the entire system from a master template before turn-
ing the system over to a new user. Before you do the reinstallation, however, it’s a
good idea to back up any local files on the system’s hard disk in case they are needed
in the future.

6.6 DISABLING LOGINS

On occasion, a user’s login must be temporarily disabled. A straightforward way to
do this is to put a star or some other character in front of the user’s encrypted pass-
word in the /etc/shadow file. This measure prevents most types of password-regu-
lated access because the password no longer decrypts to anything sensible. Com-
mands such as ssh that do not necessarily check the system password may continue
to function, however.

On all of our example distributions except SUSE, the usermod -L user and usermod
-U user commands provide an easy way to lock and unlock passwords.

An alternative (and perhaps more secure) way to achieve a similar end is to replace
the user’s shell with a program that prints a message explaining why the login has
been disabled and provides instructions for rectifying the situation. This pseudo-
shell should not be listed in /etc/shells; many daemons that provide nonlogin access
to the system (e.g., ftpd) check to see if a user’s login shell is listed in /etc/shells and
will deny access if it is not (which is the behavior you want). Unfortunately, this mes-
sage may not be seen if the user tries to log in through a window system.

There is another problem with this method of disabling logins, however. By default,
sendmail will not deliver mail to a user whose shell does not appear in /etc/shells.
It’s generally a bad idea to interfere with the flow of mail, even if the recipient is not
able to read it immediately. You can defeat sendmail’s default behavior by adding a
fake shell named /SENDMAIL/ANY/SHELL/ to the /etc/shells file (although there
may be unwanted side effects from doing so).

6.7 MANAGING ACCOUNTS

The useradd command adds users to the passwd file (and to the shadow file if ap-
plicable). It provides a command-line-driven interface that is easy to run by hand or
to call from a home-grown adduser script. The usermod command changes the
passwd entries of existing users. The userdel command removes a user from the
system, optionally deleting the user’s home directory. The groupadd, groupmod,
and groupdel commands operate on the /etc/group file.

A
d

d
in

g
 N

e
w

 U
se

rs

6.7 Managing accounts 109

For example, to create a new user “hilbert” with useradd (using the system defaults),
you could simply run:

useradd hilbert

This command would create the following entry in /etc/passwd. Note that useradd
puts a star in the password field, effectively disabling the account until you assign a
real password.

hilbert:*:105:20::/home/hilbert:/bin/bash

For some reason, SUSE uses a similar but independently developed set of user and
group manipulation commands. The commands have the same names, but there are
subtle differences in the meanings of some options and in the default behaviors. For
example, most distributions create a dedicated personal group for new users if you
do not specify otherwise on the command line. SUSE’s useradd puts new users in
group 100. (In the default configuration, it also adds them to the groups “video” and
“dialout.” Hmm.)

useradd is generally more useful when given additional arguments. In the next ex-
ample, we specify that hilbert’s primary group should be “faculty” and that he should
also be added to the “famous” group. We also override the default home directory
location and ask useradd to create the home directory if it does not already exist:

useradd -c "David Hilbert" -d /home/math/hilbert -g faculty -G famous -m
-s /bin/sh hilbert

This command creates the following passwd entry:

hilbert:x:1005:30:David Hilbert:/home/math/hilbert:/bin/sh

(the assigned UID is one higher than the highest UID on the system) and the corre-
sponding shadow entry:

hilbert:!:11508:0:99999:7:0::

It also adds hilbert to the “faculty” and “famous” groups in /etc/group, creates the
directory /home/math/hilbert, and populates it in accordance with the contents of
the /etc/skel directory.

On all of our example distributions except SUSE, you can determine the default set-
tings for useradd by running useradd -D. You can also use the -D flag in combina-
tion with other arguments to set those defaults.

Even on SUSE, the defaults are stored in /etc/default/useradd and can be edited
directly if you prefer.

usermod modifies an account that already exists and takes many of the same flags
as useradd. For example, we could use the following command to set an expiration
date of July 4, 2007, on hilbert’s account:

usermod -e 2007-07-04 hilbert

110 Chapter 6 – Adding New Users

The userdel command deletes user accounts, effectively undoing all the changes
made by useradd. To remove hilbert, we would use the following command:

userdel hilbert

This command removes references to hilbert in the passwd, shadow, and group
files. By default, it would not remove hilbert’s home directory.10 The -r option makes
userdel remove the user’s home directory as well, but even at its most aggressive,
userdel still performs only the last three tasks from the “user deletion chores” list.

Although the useradd and userdel commands are convenient, they are usually not
sufficient to implement all of a site’s local policies. Don’t hesitate to write your own
adduser and rmuser scripts; most larger sites do. (Perl is generally the appropriate
tool for this task.) Your homebrew scripts can call the standard utilities to accomplish
part of their work.

6.8 EXERCISES

E6.1 How is a user’s default group determined? How would you change it?

E6.2 Explain the differences among the following umask values: 077, 027, 022,
and 755. How would you implement one of these values as a site-wide
default for new users? Can you impose a umask standard on your users?

E6.3 What is the purpose of the shadow password file?

E6.4 List the steps needed to add a user to a system without using the useradd
program. What extra steps are needed for your local environment?

E6.5 Determine the naming convention for new users at your site. What are the
rules? How is uniqueness preserved? Can you think of any drawbacks?
How are users removed?

E6.6 Find a list of names (from a local on-line telephone directory, perhaps)
and use it as the input to a script that forms login names according to the
naming convention at your site. How many users can you accommodate
before you have a collision? How many collisions are there overall? Use the
data to evaluate your site’s naming convention, and suggest improvements.

E6.7 Write a script to help monitor the health of your /etc/passwd file. (Parts b
and e require root access unless you’re clever.)

a) Find any entries that have UID 0.
b) Find any entries that have no password (needs /etc/shadow).
c) Find any sets of entries that have duplicate UIDs.
d) Find any entries that have duplicate login names.
e) Find any entries that have no expiration date (needs /etc/shadow).

10. At our site, we generally preserve deleted users’ home directories for a few weeks. This policy mini-
mizes the need to restore data from backup tapes if a deleted user should return or if other users need
access to the deleted user’s work files.

111

A
d

d
in

g
 a

 D
is

k

7 Adding a Disk

It’s hard to believe that with the last few decades’ advances in chip, network, and
software technology, we’re still using essentially the same long-term data storage
technology that was popular 40 years ago. Densities have increased (and prices de-
creased) by several orders of magnitude, but the basic idea remains unchanged.

Unfortunately, new uses for disk space have continued to appear, especially with the
wide acceptance of the Internet. In many cases, disk space is still at a premium.
MP3s, streaming video, and other multimedia content keep system administrators
scrambling to keep up. Proper disk management is as important as ever.

Many server systems connect their disks through a standard peripheral bus called
SCSI (the Small Computer Systems Interface, pronounced “scuzzy”). An alternative
interface called Integrated Drive Electronics (IDE) is standard on desktop and laptop
PCs. We begin this chapter with a general discussion of the SCSI and IDE standards
and the structure of modern hard disks. We then discuss the general mechanisms
for formatting and partitioning disks and the procedure for initializing filesystems.
Finally, we discuss advanced features such as RAID and volume managers.

7.1 DISK INTERFACES

These days, only a few interface standards are in common use, although several new
technologies are on the horizon. It’s important to select disk drives that match the
interfaces of the system on which they will be installed. If a system supports several
different interfaces, use the one that best meets your requirements for speed, redun-
dancy, mobility, and price.

Adding a Disk

112 Chapter 7 – Adding a Disk

• PATA (also known as IDE) was developed as a simple, low-cost interface
for PCs. It was originally called Integrated Drive Electronics because it put
the hardware controller in the same box as the disk platters and used a rela-
tively high-level protocol for communication between the computer and
the disks. This is now the standard architecture for modern disks, but the
name lives on. IDE disks are medium to fast in speed, high in capacity, and
unbelievably cheap. See the next section for more information about IDE.

• Serial ATA, SATA, is the successor to conventional IDE. In addition to sup-
porting much higher transfer rates, SATA simplifies connectivity with
tidier cabling and a longer maximum cable length. SATA has native sup-
port for hot-swapping and (optional) command queueing, two features
that finally make IDE a viable alternative to SCSI in server environments.

• Though not as common as it once was, SCSI is one of the most widely
supported disk interfaces. It comes in several flavors, all of which support
multiple disks on a bus and various speeds and communication styles.
SCSI is described in more detail on page 114.

• Fibre Channel is a serial interface that is gaining popularity in the enter-
prise environment thanks to its high bandwidth and to the large number
of devices that can be attached to it at once. Fibre Channel devices con-
nect with a fiber optic or twinaxial copper cable. Current speeds are 100
MB/s and up. Common topologies include loops, called Fibre Channel
Arbitrated Loop (FC-AL), and fabrics, which are constructed with Fibre
Channel switches. Fibre Channel can speak several different protocols,
including SCSI and even IP. Fibre Channel devices are identified by a hard-
wired ID number called a World Wide Name that’s similar to an Ethernet
MAC address.

• The Universal Serial Bus (USB) has become popular for connecting devices
such as keyboards and mice, but current versions have enough bandwidth
to support disk and CD-ROM drives. USB is common on PCs and enables
you to easily move a disk among systems.

IDE and SCSI are by far the dominant players in the disk drive arena. They are the
only interfaces we discuss in detail.

The PATA interface

PATA (Parallel Advanced Technology Attachment), also called IDE, was designed to
be simple and inexpensive. It is most often found on PCs or low-cost workstations.
IDE became popular in the late 1980s. Shortly thereafter, ATA-2 was developed to
satisfy the increasing demands of consumers and hard drive vendors.

ATA-2 adds faster programmed I/O (PIO) and direct memory access (DMA) modes
and extends the bus’s Plug and Play features. It also adds a feature called logical
block addressing (LBA), which (in combination with an enhanced PC BIOS) over-
comes a problem that prevented BIOSes from accessing more than the first 1024

A
d

d
in

g
 a

 D
is

k

7.1 Disk interfaces 113

cylinders of a disk. This constraint formerly limited disk sizes to 504MB. Who
would have thought a disk could get that big!

Since the BIOS manages part of the bootstrapping process, you formerly had to cre-
ate a small bootable partition within the first 1024 cylinders to ensure that the ker-
nel could be loaded by an old BIOS. Once the kernel was up and running, the BIOS
was not needed and you could access the rest of your disk. This silly maneuver is
unnecessary on modern hardware since LBA gets rid of cylinder-head-sector (CHS)
addressing in favor of a linear addressing scheme.

ATA-3 adds extra reliability, more sophisticated power management, and self-moni-
toring capabilities. Ultra-ATA attempts to bridge the gap between ATA-3 and ATA-4,
adding high-performance modes called Ultra DMA/33 and Ultra DMA/66 that ex-
tend the bus bandwidth from 16 MB/s to 33 MB/s and 66 MB/s, respectively. ATA-4
is also a much-needed attempt to merge ATA-3 with the ATA Packet Interface (ATAPI)
protocol, which allows CD-ROM and tape drives to work on an IDE bus.

Newer additions to the family, ATA-5 and ATA-6, include enhanced performance
management and error handling, both of which improve performance in a multiuser
environment such as Linux. ATA-7 is expected to be the final update to parallel ATA.
It supports data transfer rates as high as 133 MB/s.

IDE disks are almost always used internally (unless you consider a disk hanging out
the side of the computer for testing purposes “external”). The maximum cable length
for an ATA-2 bus is a mere 18 inches, which can make it difficult even to reach your
system’s top drive bay. In addition to the short cable length, an IDE bus can accom-
modate only two devices. To compensate for these shortcomings, most manufactur-
ers put more than one IDE bus on their motherboards (typically two, referred to as a
primary and secondary).

Older IDE devices were accessed in a connected manner, which meant that only one
device could be active at a time. Performance on these legacy IDE drives was best if
you spread these devices over multiple buses. The Extended IDE standard circum-
vents this limitation by simulating two IDE interfaces on a single interface, allowing
two drives to be active at a time. Of course, the devices cannot simultaneously send
data over the cable, but this applies to SCSI as well.

The IDE connector is a 40-pin header that connects the drive to the interface card
with a ribbon cable. Newer IDE standards such as Ultra DMA/66 use a different ca-
ble with more ground pins and therefore less electrical noise. If a cable or drive is
not keyed, be sure that pin 1 on the drive goes to pin 1 on the interface card. Pin 1 is
usually marked with a small “1” on one side of the connector. If it is not marked, a
rule of thumb is that pin 1 is usually the one closest to the power connector. Pin 1 on
a ribbon cable is usually marked in red. If there is no red stripe on one edge of your
cable, just make sure you have the cable oriented so that pin 1 is connected to pin 1,
and mark it clearly for next time.

114 Chapter 7 – Adding a Disk

If you have more than one device on an IDE bus, you must designate one as the
master and the other as the slave. A “cable select” jumper setting on modern drives
(which is usually the default) lets the devices work out master vs. slave on their own.
No performance advantage accrues from being the master. Some older IDE drives
do not like to be slaves, so if you are having trouble getting one configuration to
work, try reversing the disks’ roles. If things are still not working out, try making
each device the master of its own IDE bus.

When considering IDE hardware, keep the following points in mind:

• New IDE drives work on older cards, and old IDE drives work on newer
cards. Naturally, only the features common to both devices are supported.

• At 18 inches, the cable length is exceedingly short, which can make adding
an extra device to the bus a stretch. If you experience random flakiness,
check the cable length.

• New cable design techniques use rounded cabling instead of the more
common ribbon cable for IDE devices. The new cables effectively tidy up a
chassis and improve airflow.

The SATA interface

As data transfer rates for PATA drives increased (especially with the advent of ATA-7),
the standard’s disadvantages started to become obvious. Electromagnetic interfer-
ence and other electrical issues began to cause reliability concerns at high speeds.
Serial ATA, SATA, was invented to address these problems. Although SATA has con-
ceptually been around since 2000, it has only recently began to make an appearance
on consumer workstations.

SATA smooths many of PATA’s sharp edges. Although the initial SATA drives are
only slightly faster than ATA-7 at 150 MB/s, SATA-2 will ultimately support 600
MB/s transfer rates by 2008.1 Other notable changes include superior error check-
ing, the ability to hot-swap drives, native command queuing, and sundry perfor-
mance enhancements. Finally, SATA eliminates the need for master and slave desig-
nations because only a single device can be connected to each channel.

SATA overcomes the 18-inch cable limitation of PATA and introduces new cable and
connector standards of 7 and 15 conductors, respectively.2 These cables are infinitely
more flexible and easier to work with than their ribbon cable predecessors—no
more curving and twisting to fit drives on the same cable!

The SCSI interface

Several chipsets implement the SCSI standard, so vendors sometimes put SCSI sup-
port right on the motherboard. SCSI defines a generic data pipe that can be used by

1. Will we have disk drives that can actually read and write data at 600 MB/s? No, but even now, the bus is
no longer a limiting factor.

2. That’s right: for some reason, the power cable is more complicated than the data cable.

A
d

d
in

g
 a

 D
is

k

7.1 Disk interfaces 115

all kinds of peripherals. In the past it was used for disks, tape drives, scanners, and
printers, but these days most peripherals have abandoned SCSI in favor of USB. The
SCSI standard does not specify how a disk is constructed or laid out, only the man-
ner in which it communicates with other devices.

The SCSI standard has been through several revisions, with SCSI-3 being the cur-
rent version. SCSI-1 was developed in 1986 as an ANSI standard based on the Shugart
Associates System Interface (SASI), which was a commercially available system bus.
SCSI-2 was developed in 1990. It is backward compatible with SCSI-1 but adds several
performance features. These features include command queuing, which allows de-
vices to reorder I/O requests to optimize throughput, and scatter-gather I/O, which
permits direct memory access (DMA) from discontiguous memory regions.

You might see the terms “fast” and “wide” applied to SCSI-2 devices; these terms
mean that the bus speed is doubled or that the number of bits transferred simulta-
neously is larger, typically 16 or 32 bits instead of the usual 8.3 Wide SCSI chains
can also support up to 16 devices; narrow SCSI allows only 8. Fastness and wideness
are separate features that are commonly used together for synergistic increases.

SCSI-3 is actually a family of standards. It includes specifications for various physi-
cal media, including the traditional parallel buses and high-speed serial media such
as Fibre Channel and IEEE 1394 (“FireWire”). It also defines the SCSI command sets
and introduces enhancements to support device autoconfiguration, multimedia ap-
plications, and new types of devices.

Although the SCSI-3 specification has been under development since 1993, it has
still not been finalized. Many of its features, however, have already made their way
to the marketplace, often under the name “Ultra SCSI.” SCSI-3 encompasses SCSI-2,
so a certain degree of backward compatibility is built in. Keep in mind, however,
that putting an older device on a newer bus can slow down the entire bus. It will
also affect the maximum cable length.

Table 7.1 on the next page summarizes the different SCSI versions and their associ-
ated bus bandwidths and cable lengths.

The maximum cable length for single-ended Ultra and wide Ultra SCSI depends on
the number of devices in use. For eight devices, 1.5 meters is the maximum; if only
four devices are used, the bus can be extended to 3 meters. Wide Ultra SCSI supports
all sixteen devices only in differential mode.

Many types of connectors are used for SCSI devices. They vary, depending on the
version of SCSI in use and type of connection: internal or external. Narrow SCSI de-
vices have 50 pins, and wide SCSI devices have 68 pins. Internal devices typically
accept a 50-pin header or a 68-pin male mini-micro connector attached to a ribbon
cable. External drives usually connect to the computer with a high density 50- or 68-
pin mini-micro connector.

3. 32-bit SCSI buses are not very common. Some may require multiple cables, referred to as the A cable
and the B cable.

116 Chapter 7 – Adding a Disk

An interesting variant that’s especially useful for hot-swappable drive arrays is the
single connector attachment (SCA) plug. It’s an 80-pin connector that includes the
bus connections, power, and SCSI configuration, allowing a single connector to
meet all the drive’s needs.

Exhibit A shows pictures of the most common connectors. Each connector is shown
from the front, as if you were about to plug it into your forehead.

Exhibit A Common SCSI connectors (front view, male except where noted)

Table 7.1 The evolution of SCSI

Version Freq. Width Speed Length Diff. length

SCSI-1 5 MHz 8 bits 5 MB/s 6m 25m
SCSI-2 5 MHz 8 bits 5 MB/s 6m 25m
Fast SCSI-2 10 MHz 8 bits 10 MB/s 3m 25m
Fast/wide SCSI-2 10 MHz 16 bits 20 MB/s 3m 25m
Ultra SCSI 20 MHz 8 bits 20 MB/s 1.5ma 25m
Wide Ultra SCSIb 20 MHz 16 bits 40 MB/s 1.5ma 25m
Wide Ultra2 SCSIb 40 MHz 16 bits 80 MB/s –c 25m (HVD) d

12m (LVD)
Wide Ultra3 SCSIe 80 MHz 16 bits 160 MB/s –c 12m (LVD)

a. Varies; see the comments in the text.

b. Wide Ultra SCSI and wide Ultra2 SCSI are sometimes called Fast-20 wide SCSI and Fast-40
wide SCSI, respectively.

c. These versions of SCSI use only differential signalling.

d. HVD is high voltage differential and LVD is low voltage differential. HVD is used for the earlier
SCSI versions and is not defined above Ultra2 SCSI.

e. Wide Ultra3 SCSI is sometimes called Ultra-160. Similar standards that double and triple the
data transfer rates are Ultra-320 and Ultra-640, respectively. Most new drives are Ultra-320.

Centronics
50 pins, SCSI-1/2, external

Ribbon connector (female)
50 pins, SCSI-1/2, internal

Mini-micro, aka HD50
50 pins, SCSI-2, external

Wide mini-micro, aka HD68
68 pins, SCSI-2/3, int/ext

SCA-2
80 pins, SCSI-3, internal

1

1

1

1

1
68

80

50

50

50

A
d

d
in

g
 a

 D
is

k

7.1 Disk interfaces 117

SCSI buses use a daisy chain configuration, so most external devices have two SCSI
ports. The ports are identical and interchangeable, so either one can be the input. For
some reason, scanner vendors seem to consider themselves exempt from the nor-
mal laws of physics and sometimes provide only one SCSI port. If not internally
terminated, these devices require a special type of terminator.

Internal SCSI devices are usually attached to a ribbon cable; only one port is needed
on the actual SCSI device because connectors can be clamped onto the middle of the
ribbon cable. When using a ribbon cable, make sure pin 1 on the SCSI bus is con-
nected to pin 1 on the hard drive. (Pin 1 is usually marked with a red stripe.)

Each end of the SCSI bus must have a terminating resistor (“terminator”). These re-
sistors absorb signals as they reach the end of the bus and prevent noise from reflect-
ing back onto the bus. Terminators take several forms, from small external plugs that
you snap onto a regular port to sets of tiny resistor packs that install onto a device’s
circuit boards. Most modern devices are autoterminating.

One end of the bus normally terminates inside the host computer, either on the SCSI
controller or on an internal SCSI drive. The other end usually terminates on an exter-
nal device or on the SCSI controller if there are no external devices. If you experi-
ence seemingly random hardware problems on your SCSI bus, first check that both
ends of the bus are properly terminated. Improper termination is one of the most
common SCSI configuration mistakes, and the errors it produces can be obscure
and intermittent.

Each device has a SCSI address or “target number” that distinguishes it from the
other devices on the bus. Target numbers start at 0 and go up to 7 or 15, depending
on whether the bus is narrow or wide. The SCSI controller itself counts as a device
and is usually target 7 (even on a wide bus, for backward compatibility). All other
devices must have their target numbers set to unique values. It is a common error to
forget that the SCSI controller has a target number and to set a device to the same
target number as the controller.

A SCSI address is essentially arbitrary. Technically, it determines the device’s prior-
ity on the bus, but in practice the exact priorities don’t make much difference. Some
systems pick the disk with the lowest target number to be the default boot disk, and
some require the boot disk to be target 0.

If you’re lucky, a device will have an external thumbwheel with which the target num-
ber can be set. Other common ways of setting the target number are DIP switches
and jumpers. If it is not obvious how to set the target number on a device, consult
the hardware manual. Most hardware specifications can be found on the manufac-
turer’s web site these days; trying to set up a random disk formerly involved quite a
lot of trial and error.

The SCSI standard supports a form of subaddressing called a “logical unit number.”
Each target can have several logical units inside it. A plausible example is a drive ar-
ray with several disks but only one SCSI controller. However, logical units are seldom

118 Chapter 7 – Adding a Disk

used in real life. When you hear “SCSI unit number,” you should assume that it is
really a target number that’s being discussed until proven otherwise. If a SCSI device
contains only one logical unit, the LUN usually defaults to 0.

SCSI buses are generally quite easy to configure, but a variety of things can go wrong:

• Many workstations have internal SCSI devices. Check the listing of cur-
rent devices before you reboot to add a new device.

• After you have added a new SCSI device, check the listing of devices dis-
covered by the kernel when it reboots to make sure that everything you
expect is there. Most SCSI drivers do not detect multiple devices that have
the same SCSI address—an illegal configuration. SCSI address conflicts
can lead to very strange behavior.

• Some expansion boxes (enclosures with a power supply and one or more
SCSI devices) terminate the bus inside the box. If devices are attached after
the expansion box has been attached, you can have reliability problems
with any of the devices on the SCSI chain. Always double-check that you
have exactly two terminators and that they are both at the ends of the bus.

• The thumbwheel used to set a device’s SCSI address is sometimes con-
nected backwards. When this happens, the thumbwheel will change the
SCSI address, but not to the displayed value.

• When figuring the length of your SCSI-2 bus, be sure to count the cables
inside devices and expansion boxes. They can be quite long. Also remem-
ber that the permissible length is reduced if you are adding older SCSI
devices to a newer SCSI bus.

• Never forget that your SCSI controller uses one of the SCSI addresses!

Which is better, SCSI or IDE?

In past editions of this book, SCSI has been the obvious winner for server applica-
tions. However, with the advent of SATA drives, SCSI simply does not deliver the
bang for the buck that it used to. SATA drives compete with (and in some cases out-
perform) equivalent SCSI disks in almost every category. At the same time, the
SATA devices are dramatically cheaper and far more widely available.

One advantage of SCSI drives is an integrated processor on the controller, which
frees the system’s CPU to focus on other things. On busy systems, this can mean big
performance gains. Of course, it’s up to you to decide whether the gain is worth the
significant monetary cost.

In some situations SCSI is advisable or even mandatory:

• If you absolutely must have the best possible performance, go SCSI. Disk
drive manufacturers use the IDE/SCSI divide to help them stratify the disk
drive market. Some IDE drives may outperform SCSI on peak throughput,
but SCSI almost always delivers better sustained throughput.

A
d

d
in

g
 a

 D
is

k

7.2 Disk geometry 119

• Servers and multiuser systems require SCSI. The SCSI protocol is unparal-
leled in its ability to manage multiple simultaneous requests efficiently. On
a busy system, you’ll see a concrete and measurable improvement in per-
formance.

• If you want to connect many devices, SCSI wins again. SCSI devices play
well with others; IDE devices hog and fight over the bus.

7.2 DISK GEOMETRY

The geometry of a hard disk and the terminology used to refer to its various parts
are shown in Exhibit B. This information is proffered mainly to improve your gen-
eral knowledge. Modern disk drives are still based on this same basic design, but
the software no longer knows (or needs to know) much about the physical construc-
tion of the drive.

A typical hard drive consists of spinning platters coated with a magnetic film. Data
is read and written by a small head that changes the orientation of the magnetic par-
ticles on the surface of the platters. The data platters are completely sealed so that no
dust or dirt can get in. This feature makes fixed hard disks far more reliable than
removable media.

In the very early days of computer hardware, disk drives usually had one platter.
Storage capacity was increased by an increase in the diameter of the platter. On the
wall of one of our user areas, we used to display an ancient disk platter over four feet
in diameter that held approximately 280K of data.

Today, hard disks usually have several small platters stacked on top of one another
rather than having a single large platter. Both sides of the platters store data, al-
though one side of one platter usually contains positioning information and cannot
be used for storage. Single-platter densities are currently up around 130GB.

Exhibit B Disk geometry lesson

120 Chapter 7 – Adding a Disk

Platters rotate at a constant speed. They are read from and written to by little skating
heads that move back and forth like the needle on a record player. The heads float
very close to the surface of the platters but do not actually touch it. The distance
between the head and the spinning platter can be compared to an F–16 fighter jet
flying at full speed 10 feet above the ground. If a head does touch a platter, this event
is called a head crash; it can be very destructive.

Rotational speeds have increased dramatically over time. Older disks ran at 3,600
RPM or 5,400 RPM. Currently, 7,200 RPM is the mass-market standard, and 10,000
RPM and 15,000 RPM drives are popular at the high end. Higher rotational speeds
decrease latency and increase the bandwidth of data transfers but may potentially
introduce thermal problems stemming from increased heat production. Be sure
you have adequate air circulation if you plan to purchase a cutting-edge drive.

At least one head is required for each surface. The heads on early drives had to move
huge distances, but the modern geometry of small, stacked platters is more efficient.
The diameter of disks continues to decrease, from a standard of 14 inches 20 years
ago, to 5¼ inches 10 years ago, to 3½ inches and smaller today.

Moving the head to the correct position to read a particular piece of data is called
seeking. Each position that a head can occupy as the disk spins under it is called a
track. Tracks are further divided into sectors, which are usually 512 bytes long.

A set of tracks on different platters that are the same distance from the spindle is
called a cylinder. If all the heads move together, as is typical on most mass-market
drives, the data stored in a single cylinder can be read without any additional move-
ment. Although heads move amazingly fast, they still move much slower than the
disks spin around. Therefore, any disk access that does not require the heads to seek
to a new position will be faster.

7.3 LINUX FILESYSTEMS

Linux filesystem support has evolved rapidly as Linux has absorbed features from a
variety of different operating systems. The kernel’s Virtual File System (VFS) layer is
particularly handy on PCs because it provides the framework needed to mount
“native” filesystems such as the infamous Windows FAT filesystems.

Ext2fs and ext3fs

The second extended filesystem, known commonly as ext2fs, was for a long time the
mainstream Linux filesystem. It was designed and implemented primarily by Rémy
Card, Theodore Ts’o, and Stephen Tweedie. Although the code for ext2 was written
specifically for Linux, it adopts many concepts from the BSD FFS filesystem de-
signed and implemented by Kirk McKusick and team in 1984.

The third extended filesystem, ext3fs, is a remarkable extension to ext2fs that was
originally developed by Stephen Tweedie. It is now the default filesystem used by

A
d

d
in

g
 a

 D
is

k

7.3 Linux filesystems 121

most distributions. Ext3fs adds journaling capability to the existing ext2fs code, a
conceptually simple modification that increases reliability enormously. Even more
interestingly, the ext3fs extensions have been implemented without changing the
fundamental structure of ext2fs. In fact, you can still mount an ext3fs filesystem as
an ext2fs filesystem—it just won’t have journaling enabled.

It’s possible to convert an existing ext2fs filesystem to an ext3fs filesystem with
tune2fs. For example, if you had an ext2fs filesytem on /dev/hda4, you could con-
vert it with

tune2fs -j /dev/hda4

You would then need to modify the corresponding entry in /etc/fstab to read ext3
rather than ext2 (see page 127 for more information on the fstab file).

Ext3fs sets aside an area of the disk for the journal file. When a filesystem operation
occurs, the required modifications are first written to the journal file. When the
journal update is complete, a “commit record” is written to mark the end of the en-
try. Only then is the normal filesystem modified. If a crash occurs during the update,
you can use the journal log to reconstruct a perfectly consistent filesystem.

Journaling reduces the time needed to perform filesystem consistency checks (see
the fsck section on page 131) to approximately one second per filesystem. Barring
some type of hardware failure, the state of an ext3fs filesystem can almost instantly
be assessed and restored.

Ext3fs is the only filesystem we describe in detail in this chapter.

ReiserFS

ReiserFS, written by Hans Reiser, is another up-and-coming filesystem for Linux
and is the favorite filesystem for the SUSE distribution. Like ext3fs, it is also a jour-
naling filesystem and hence can maintain filesystem consistency despite incidents
such as system crashes and unplanned reboots (which may be common in a laptop
or desktop workstation environment). ReiserFS version 4 was released in August
2004 and is included in the default installation of Ubuntu. Fedora and SUSE are still
using an earlier release for now.

In addition to its journaling capabilities, Reiser4 provides a modular filesystem in-
terface through which application developers and system administrators can specify
how files should be handled (and secured) at a very granular level. This feature in-
creases the security of files in specialized environments. ReiserFS is sponsored by
DARPA4 and is the only open source filesystem that claims to be architected for mil-
itary grade security.

New algorithms in Reiser4 are more space-efficient than their predecessors. Other
filesystems (as well as earlier versions of ReiserFS) use balanced tree algorithms to
allocate blocks of disk space. Although this tried-and-true approach has proved

4. The Defense Advanced Research Projects Agency, the same entity that funded the creation of the Internet.

122 Chapter 7 – Adding a Disk

solid, there is typically a tradeoff between speed and disk usage. Reiser4’s “dancing
tree” algorithm doesn’t force administrators to choose sides.

XFS and JFS

Two other contenders in the “modern, mainstream Linux filesystem” category are
SGI’s XFS and IBM’s JFS. Both are supported natively by current kernels and distri-
butions, and both are high-performance journaled filesystems. Both filesystems have
proponents, but neither seems to be as widely used as ext3fs or ReiserFS.

It’s difficult to explain with any degree of certainty why this is so, but the fundamen-
tal problem seems to be that these filesystems are rather poorly differentiated from
ext3fs and ReiserFS. To be sure, the implementation details vary, and each filesystem
has modest domains of superiority (e.g., XFS has superior fragmentation and extent
management). Nevertheless, the performance of the major contenders is similar,
and applications that allow any individual filesystem to really shine are rare.

If you would like to evaluate these filesystems in detail, you can find more informa-
tion on the web. For JFS, see jfs.sourceforge.net. XFS is at oss.sgi.com/projects/xfs.

7.4 AN OVERVIEW OF THE DISK INSTALLATION PROCEDURE

The procedure for adding a new disk involves the following steps:

• Connecting the disk to the computer

• Formatting the disk if necessary (usually not)

• Labeling and partitioning the disk

• Creating filesystems within disk partitions

• Mounting the filesystems

• Setting up automatic mounting

• Setting up swapping on swap partitions

The following sections elaborate on these basic steps. Starting on page 133, we show
the complete process from start to finish for an example disk drive.

Connecting the disk

The way a disk is attached to the system depends on the interface that is used. The
rest is all mounting brackets and cabling. If the disk is IDE, try to configure the
system with only one IDE disk per bus. Double-check your cable orientation and
the master/slave settings on each disk. If the disk is SCSI, double-check that you
have properly terminated both ends of the SCSI bus, that the cable length is less than
the maximum appropriate for the SCSI variant you are using, and that the new SCSI
target does not conflict with the controller or another device on the bus. For more
details, see the system-specific sections toward the end of this chapter.

Before you can access a new disk, you need device files in /dev that point to it. Linux
automatically creates files for most common disk devices. See page 79 for general
information about device files.

A
d

d
in

g
 a

 D
is

k

7.4 An overview of the disk installation procedure 123

It is possible to destroy a filesystem in seconds by writing randomly on the disk, so
you should set the permissions on disk device files restrictively. Consider giving
read access to the group owner (“operator” or “disk”); this setup allows operators
without superuser privileges to run the dump command but prevents mere mortals
from reading from the raw device.

Formatting the disk

Vendors quote disk capacities in terms of the number of unformatted bytes. About
10% of that capacity is typically used to mark the disk surfaces so that the hardware
and software can find the data that is written there. When purchasing disks, always
think in terms of formatted size and compare prices accordingly.

Disk sizes are specified in megabytes that are millions of bytes, as opposed to mem-
ory, which is specified in megabytes of 220 (1,048,576) bytes. The difference is about
5%.5 Be sure to check your units when estimating and comparing capacities.

The formatting process writes address information and timing marks on the platters
to delineate each sector. It also identifies “bad blocks,” imperfections in the media
that result in areas that cannot be reliably read or written. Modern disks have bad
block management built in, so neither you nor the driver need to worry about it.6

All hard disks come preformatted, and the factory formatting is usually more pre-
cise than any formatting you can do in the field. It is best to avoid doing a low-level
format if it is not required. If you encounter read or write errors on a disk, first check
for cabling, termination, and address problems, which can cause symptoms similar
to those of a bad block. If after this procedure you are still convinced that the disk is
bad, you might be better off replacing it with a new one rather than waiting long
hours for a format to complete.

IDE disks are usually not designed to be formatted outside the factory. However,
you may be able to get special formatting software from the manufacturer, usually
for Windows. Make sure the software matches the drive you plan to format and fol-
low the manufacturer’s directions carefully.

SCSI disks format themselves in response to a command that you send from the host
computer. The procedure for sending this command varies from system to system.
On PCs, you can often send the command from the SCSI controller’s BIOS.

Various utilities let you verify the integrity of a disk by writing random patterns onto
it and then reading them back. Thorough tests take a long time (hours) and tend to
be of little prognostic value. Unless you suspect that a disk is bad and are unable to
simply replace it (or you bill by the hour), you should skip these tests. Barring that, let
the tests run overnight. Don’t be concerned about “wearing out” a disk with overuse
or aggressive testing. Disks are designed to withstand constant activity.

5. Of course, the prefix “mega” really does mean “million,” so the practice is not entirely indefensible.

6. However, any bad blocks that appear after a disk has been formatted will not be “handled”; they can
manifest themselves in the form of read and write errors and lost data.

124 Chapter 7 – Adding a Disk

Labeling and partitioning the disk

After a disk has been formatted and its bad sectors remapped, it must be divided into
chunks called partitions. Partitioning allows the disk to be treated as a group of inde-
pendent data areas rather than as one vast expanse of blocks. Partitioning also allows
“bonus” items such as the boot blocks and the partition table itself to be hidden from
high-level software (e.g., the filesystem). The layout of the disk is simplified by the
kernel; other software works with the cleaned-up abstraction of partitions.

Partitions make backups easier, prevent users from poaching each other’s disk space,
improve performance, and confine potential damage from runaway programs. The
partition table is kept on the disk in a record called the label. The label usually occu-
pies the first few blocks of the disk. Its exact contents vary, but it generally contains
enough information to get the system booting.

Partitions are, in concept, distinct and separate from one another. However, the file
/dev/sda is the disk’s block device file, essentially an image of the entire disk. User-
level commands can access the disk “directly” through this device file. For example, a
user-level process can write the disk’s label or duplicate its contents to a backup disk
by using the dd command. Of course, this special file must be used carefully since it
allows every partition on the disk to be screwed up at once.

Some systems go even farther down this treacherous path and allow you to define
multiple overlapping sets of partitions. For example, partitions 1, 2, and 3 might di-
vide up the disk one way, while partitions 4 and 5 do it another way. You’re expected
to use one set of self-consistent partitions and simply ignore the others. In real life,
such overlapping partitions invite operator errors and are a potential cause of ran-
dom data corruption.

Modern systems tend to use fewer partitions than their predecessors, but on most
systems you will have at least two:

• The root partition: Everything needed to bring the system up to single-
user mode is kept here. A replica of this partition stored on a different disk
can be useful in emergencies.

• The swap partition: A swap area stores pages of virtual memory when not
enough physical memory is available to hold them. Every system should
have at least one swap partition.

Opinions differ on the best way to split disks into partitions. Here are some hints:

• If you have multiple disks, make a copy of the root filesystem on one of
them and verify that you can boot from it.

• As you add memory to your machine, you should also add swap space.
Allocate swap space as needed to accommodate the workload on your sys-
tem. See page 809 for more information about virtual memory.

A
d

d
in

g
 a

 D
is

k

7.4 An overview of the disk installation procedure 125

• Splitting swap space among several disks increases performance. This tech-
nique works for filesystems, too; put the busy ones on different disks. See
page 814 for notes on this subject.

• If you intend to back up a partition, don’t make it bigger than the capacity
of your backup device. See page 161.

• Try to cluster information that changes quickly on a few partitions that are
backed up frequently.

• Putting /tmp on a separate filesystem limits the files to a finite size and
saves you from having to back them up.

• Since log files are kept in /var, it’s a good idea for /var to be a separate disk
partition. Leaving /var as part of a small root partition makes it easy to fill
the root and bring the machine to a halt.

• It can be useful to define /home as a separate partition. Even if the root
partition is corrupted or destroyed, user data has a good chance of
remaining intact. Conversely, the system can continue to operate even
after a user’s misguided shell script fills up /home.

Creating filesystems within disk partitions

Even after a hard disk has been conceptually divided into partitions, it is still not
ready to hold files. The filesystem needs to add a little of its own overhead before
the disk is ready for use.

To install an ext3fs filesystem within a disk partition, use mke2fs -j. (There is no
mke3fs command; the -j option tells mke2fs to create an ext3fs journal.) Unless you
are doing something strange, you should be able to build the filesystem by specifying
nothing but mke2fs -j and the partition name. Be careful with mke2fs; a mistake can
destroy your system, rendering data recovery extremely difficult, if not impossible.

An ext3fs filesystem consists of five structural components:

• A set of inode storage cells

• A set of scattered “superblocks”

• A map of the disk blocks in the filesystem

• A block usage summary

• A set of data blocks

The journal is allocated as if it were a regular file in the root of the new filesystem, so
it is not really a distinct structural component.

Each filesystem partition is divided into block groups. Structures such as inode ta-
bles are allocated among the block groups so that blocks that are accessed together
can be stored close to each other on the disk. This grouping reduces the need to seek
all over the disk when accessing blocks in the same file.

126 Chapter 7 – Adding a Disk

Inodes are fixed-length table entries that each hold information about one file. Since
space for inodes is set aside when the filesystem is initially structured, you must de-
cide in advance how many of them to create. It is impossible to predict exactly how
many files (inodes) will someday be needed; filesystem building commands use an
empirical formula to guesstimate an appropriate number, based on the size of the
partition and an average file size.

You can adjust the number of inodes either up or down when you create the filesys-
tem: more inodes for filesystems with lots of small files (such as source code reposi-
tories) and fewer inodes for filesystems with a few large files (such as a filesystem
containing a database).

A superblock is a record that describes the characteristics of the filesystem. It con-
tains information about the length of a disk block, the size and location of the inode
tables, the disk block map and usage information, the size of the block groups, and a
few other important parameters of the filesystem. Because damage to the superblock
could erase some extremely crucial information, several copies of it are maintained
in scattered locations (at the beginning of each block group).

For each mounted filesystem, the kernel keeps both an in-memory copy of the super-
block and several on-disk copies. The sync system call flushes the cached super-
blocks to their permanent homes on disk, making the filesystem consistent for a
split second. This periodic save minimizes the amount of damage that would occur if
the machine were to crash when the filesystem had not updated the superblocks.
sync also flushes modified inodes and cached data blocks. Syncs are traditionally
done at intervals of 30 seconds, but ext3fs syncs every 5 seconds.

A filesystem’s disk block map is a table of the free blocks it contains. When new files
are written, this map is examined to devise an efficient layout scheme. The block
usage summary records basic information about the blocks that are already in use.

Mounting the filesystems

A filesystem must be mounted before it becomes visible to processes. The mount
point for a filesystem can be any directory, but the files and subdirectories beneath it
are not accessible while a filesystem is mounted there. See page 73 for more infor-
mation about mounting filesystems.

After installing a new disk, you should mount new filesystems by hand to be sure
that everything is working correctly. For example, the command

mount /dev/sda1 /mnt

would mount the filesystem in the partition represented by the device file /dev/sda1
on the directory /mnt, which is a traditional path used for temporary mounts. If the
filesystem is brand new, its contents should look something like this:

ls /mnt
lost+found

A
d

d
in

g
 a

 D
is

k

7.4 An overview of the disk installation procedure 127

The lost+found directory is automatically created when you build a filesystem. It is
used by fsck in emergencies; do not delete it. The lost+found directory has some
extra space preallocated so that fsck can store “unlinked” files there without having
to allocate additional directory entries on an unstable filesystem.

You can verify the size of a filesystem with the df command. Here’s an example:

$ df /home
Filesystem 1K-blocks Used Available Use% Mounted on
/dev/hda5 4128448 697968 3220768 18% /home

The default units reported by df are 1K blocks, but you can use the -h option to
request human-readable values (e.g., 2.4G).

Setting up automatic mounting

You will generally want to configure the system to mount local filesystems automat-
ically at boot time. The file /etc/fstab contains a list of devices that correspond to
filesystems.

An fstab file that included the filesystem above might look something like this:

LABEL=/ / ext3 defaults 1 1
none /dev/pts devpts gid=5,mode=620 0 0
/dev/hda5 /home ext3 defaults 1 2
none /proc proc defaults 0 0
none /dev/shm tmpfs defaults 0 0
/dev/cdrom /media/cdrom iso9660 ro,noauto,owner 0 0
/dev/hda3 /usr ext3 defaults 1 2
/dev/hda6 /var ext3 defaults 1 2
/dev/hda2 swap swap defaults 0 0

There are six fields per line, separated by whitespace. Each line describes a single
filesystem. The fields are traditionally aligned for readability, but alignment is not
required.

See Chapter 16 for
more information
about NFS.

The first field gives the device name or the label that was associated with it by e2label
(the LABEL= form). The fstab file can include mounts from remote systems, in which
case the first field contains an NFS path. The notation server: /export indicates the
/export directory on the machine named server. Filesystems that have no actual
backing store (such as /proc and /dev/shm above) have the placeholder none in the
device field.

The second field specifies the mount point, and the third field names the type of
filesystem. The exact type name used to identify local filesystems varies, depending
on your system configuration. The names ext2 and ext3 are used for ext*fs, and
reiserfs denotes ReiserFS.

The fourth field lists the mount options. The keyword defaults indicates a combina-
tion of the options rw, suid, dev, exec, auto, nouser, and async (see the man page
for mount for details on each of these options). You may want to include acl to turn
on access control lists as well; see page 88.

128 Chapter 7 – Adding a Disk

The ext3 journal management mode is set with the option data=mode, where mode
is one of ordered, writeback, or journal. The mode is an operational choice, not a
property of the filesystem itself; that’s why it appears in fstab and not as an argu-
ment to mke2fs.

The options define three different tradeoffs between performance and reliability:

• The default mode, ordered, guarantees that the filesystem is always consis-
tent and that as a result, files will never be corrupted by a crash. This is the
best choice for most environments.

• The writeback mode can result in corrupted files after a crash but is faster
in some cases. This is actually the way most journaling filesystems work,
and it isn’t substantially riskier than the default ext2fs behavior.

• The journal mode uses a larger journal file, which may slow down recov-
ery on reboot but can be faster when used with a database application.

The fifth field in the fstab file specifies a “dump frequency” value that can theoreti-
cally be used by backup products but usually isn’t.

fsck is described
on page 131.

The sixth field specifies the pass in which fsck should check the filesystem. Filesys-
tems with the same value in this field are checked concurrently if possible. This field
was very important before the advent of journaling filesystems when fsck was a
time-consuming process, but it is less so now. Do not set two non-journaled filesys-
tems on the same disk to the same value or you will cause the disk head to seek back
and forth so much that performance will be significantly degraded. Only filesystems
on separate disks should be checked in parallel.

mount, umount, swapon, and fsck all read the fstab file, so it is important that the
data presented there be correct and complete. mount and umount use the fstab file
to figure out what you want done if you specify only a partition name or mount point
on the command line. For example, using the fstab file just shown, the command

mount /media/cdrom

would be the same as typing

mount -t iso9660 -o ro,noauto,owner /dev/cdrom /media/cdrom

The command mount -a mounts all regular filesystems listed in the fstab file; it is
usually executed from the startup scripts at boot time. The -t flag constrains the
operation to filesystems of a certain type. For example,

mount -at ext3

would mount all local ext3 disk filesystems. The mount command reads fstab se-
quentially. Therefore, filesystems that are mounted beneath other filesystems must
follow their parent partitions in the fstab file. For example, the line for /var/log
must follow the line for /var if /var is a separate filesystem.

A
d

d
in

g
 a

 D
is

k

7.5 hdparm: set IDE interface parameters 129

The umount command for unmounting filesystems accepts a similar syntax. You
cannot unmount a filesystem that a process is using as its current directory or on
which files are open. There are ways of getting around this constraint; see page 73.

Enabling swapping

One of the early advantages of UNIX was its implementation of virtual memory. With
this feature, the operating system can pretend that the machine has more memory
than it actually does. If processes try to use this “extra” memory, the system’s disks
are brought into use as a kind of ultra-slow RAM. Juggling the contents of memory
to and from disk is known as paging. Ideally, enough physical memory will be avail-
able to the system that this painfully slow activity never occurs.

Raw partitions, rather than structured filesystems, are normally used for swap space,
making swapping more efficient. Instead of using a filesystem to keep track of the
swap area’s contents, the kernel maintains its own simplified mapping from mem-
ory blocks to disk blocks. It’s also possible to swap to a file in a filesystem partition,
but with older kernels this configuration is slower than using a dedicated partition.

See page 814 for more
information about
splitting swap areas.

The more swap space you have, the more virtual memory your processes can allocate.
The best virtual memory performance is achieved when the swap area is split
among several drives (or better yet, among several SCSI buses).

You can manually enable swapping to a particular device, but you will generally want
to have this function performed automatically at boot time. Swap areas can be listed
in the fstab file, the same file that’s used to enumerate mountable filesystems. A
swap entry looks something like:

/dev/hda2 swap swap defaults 0 0

During startup, the swapon command is run to enable swapping on all swap parti-
tions listed in the fstab file.

7.5 HDPARM: SET IDE INTERFACE PARAMETERS

The hdparm program interacts with the Linux IDE driver to obtain and alter disk
parameters. Among other things, hdparm can set drive power options, enable or
disable DMA, set the read-only flag, and print detailed drive information. You can
realize significant performance gains by tuning a few of these disk parameters. This
utility is IDE specific and does not work on SCSI or USB drives.

The syntax is

hdparm [options] [device]

Running hdparm with no options prints the current state of some of the more inter-
esting settings.

130 Chapter 7 – Adding a Disk

$ sudo /sbin/hdparm -d /dev/hdb

/dev/hdb:
multcount = 0 (off)
IO_support = 0 (default 16-bit)
unmaskirq = 0 (off)
using_dma = 0 (off)
keepsettings = 0 (off)
readahead = 256 (on)
geometry = 36481/255/63, sectors = 300069052416, start = 0

From a disk performance perspective, these settings leave a lot to be desired.

• Direct memory access (DMA) is disabled. All modern disks can send data
directly to memory, bypassing the CPU. It’s almost always a good idea to
enable DMA, but it does cause the occasional piece of poorly designed
hardware to fail. Always test first on a system that isn’t in production.

• 32-bit I/O support is disabled. Without 32-bit I/O, data transits the PCI bus
in 16-bit chunks, potentially cutting performance in half.

• Interrupt unmasking is turned off. Turning on this (somewhat obscure)
feature allows the disk driver to unmask pending interrupts while servic-
ing a current disk interrupt.

hdparm includes a built-in drive performance test to help evaluate the impact of
these settings. With these default values on an older IDE drive, our system produced
the following results:

$ sudo /sbin/hdparm -Tt /dev/hdb

/dev/hdb:
Timing cached reads: 228 MB in 2.41 seconds = 94.70 MB/sec

 Timing buffered disk reads: 6 MB in 4.62 seconds = 1.30 MB/sec

Cached reads indicate the speed of data transfer on the IDE bus (independent of the
throughput from the physical disk media), while buffered reads include the over-
head of reading from the physical platters. As you might expect, the physical disk is
a lot slower than the bus. Even so, 1.3 MB/s is pretty dismal.

Since DMA is such an important feature of modern hardware, it deserves immediate
tuning attention. Newer drives support multiple DMA modes. Table 7.2 summarizes
the speeds of the various DMA modes for each of the common DMA technologies.

Table 7.2 Maximum transfer rates (in MB/s) for various DMA modes

Mode 0 1 2 3 4 5 6

PIO 3.3 5.2 8.3 11.1 16.7
SDMA 2.4 4.2 8.3
MDMA 4.2 13.3 16.7
UDMA 16.7 25.0 33.3 44.4 66.7 100.0 133.0

A
d

d
in

g
 a

 D
is

k

7.6 fsck: check and repair filesystems 131

Using the table, we can easily identify the appropriate argument to pass to hdparm.
We enable DMA using UDMA2 by entering the following hdparm command:

$ sudo /sbin/hdparm -d1 -Xudma2 /dev/hdb

/dev/hdb:
setting using_dma to 1 (on)
setting xfermode to 66 (UltraDMA mode2)
using_dma = 1 (on)

We enable 32-bit I/O support:

$ sudo /sbin/hdparm -c1 /dev/hdb

/dev/hdb:
setting 32-bit IO_support flag to 1
IO_support = 1 (32-bit)

Finally, the interrupt-unmasking value is binary. We turn it on with

$ sudo /sbin/hdparm -u1 /dev/hdb

/dev/hdb:
setting unmaskirq to 1 (on)
unmaskirq = 1 (on)

We can determine the effect of these changes by rerunning hdparm’s benchmark:

$ sudo /sbin/hdparm -Tt /dev/hdb

/dev/hdb:
Timing cached reads: 256 MB in 2.00 seconds = 127.83 MB/sec
Timing buffered disk reads: 40 MB in 3.01 seconds = 13.30 MB/sec

A few hdparm configuration tweaks resulted in significant increases in both values.

Experiment with different values on your drive to find the optimal settings. It’s wise
to run the benchmarks several times on each setting to get the most accurate data.

7.6 FSCK: CHECK AND REPAIR FILESYSTEMS

Modern filesystems are surprisingly reliable, and even the nonjournaling implemen-
tations seem to do a remarkable job of coping with unexpected system crashes and
flaky hardware. However, filesystems can be damaged or become inconsistent in a
number of ways.

Any time the kernel panics or the power fails, small inconsistencies may be intro-
duced into the filesystems that were active immediately preceding the crash. Since
the kernel buffers both data blocks and summary information, the most recent im-
age of the filesystem is split between disk and memory. During a crash, the memory
portion of the image is lost. The buffered blocks are effectively “overwritten” with
the versions that were most recently saved to disk.

There are a couple of approaches to fixing this problem. Minor damage can usually
be fixed with the fsck command (“filesystem consistency check,” spelled aloud or

132 Chapter 7 – Adding a Disk

pronounced “fs check” or “fisk”). This isn’t a very architecturally elegant way of ap-
proaching the issue, but it works pretty well for all the common inconsistencies.

Journaling filesystems such as ReiserFS and ext3fs write metadata out to a sequen-
tial log file that is flushed to disk before each command returns. The metadata even-
tually migrates from the log to its permanent home within the filesystem. If the sys-
tem crashes, the log can be rolled up to the most recent consistency point; a full
filesystem cross-check is not required. fsck is still run at boot time to ensure that the
filesystem is in a consistent state, but it runs much faster than when checking a tra-
ditional ext2 filesystem. This feature can save you many hours of boot time on a sys-
tem with large filesystems.

If some form of journaling is not available, you must wait for fsck to work its magic.
The five most common types of damage are

• Unreferenced inodes

• Inexplicably large link counts

• Unused data blocks not recorded in the block maps

• Data blocks listed as free that are also used in a file

• Incorrect summary information in the superblock

fsck can safely and automatically fix these five problems. If fsck makes corrections to
a filesystem, you should rerun it until the filesystem comes up completely clean.

Disks are normally checked at boot time with fsck -p, which examines all local file-
systems listed in /etc/fstab and corrects the five errors listed above. Linux keeps track
of which filesystems were unmounted cleanly and checks only the “dirty” ones. If
some form of journaling is enabled, fsck simply tells you that the filesystem is jour-
naled and rolls up the log to the last consistent state.

You can also run fsck -p on a particular filesystem. For example:

fsck -p /dev/sda5

When fsck -p reads the fstab file to find out which filesystems to check, it obeys the
sequence indicated by the last field of each entry. Filesystems are checked in increas-
ing numeric order. If two filesystems are on different disks, they can be given the
same sequence number; this configuration makes fsck check them simultaneously,
minimizing the time spent waiting for disk I/O. Always check the root partition first.

See the tune2fs man
page for a few (less use-
ful) options.

Linux can be set to force a filesystem check after it has mounted a filesystem a cer-
tain number of times even if all the unmounts were “clean.” This precaution is good
hygiene, and in most cases the default value (usually 20 mounts) is acceptable. How-
ever, on systems that mount filesystems frequently, such as desktop workstations,
fscks every 20 mounts may become tiresome. To increase the interval to 50 mounts,
use the tune2fs command:

$ sudo /sbin/tune2fs -c 50 /dev/sda3
tune2fs 1.35 (28-Feb-2004)
Setting maximal mount count to 50

A
d

d
in

g
 a

 D
is

k

7.7 Adding a disk: a step-by-step guide 133

Errors that do not fall into one of the five categories above are potentially serious.
They cause fsck -p to ask for help and then quit. In this case, run fsck without the -p
option. When run in manual mode, fsck asks you to confirm each of the repairs that
it wants to make. The following list shows some of the errors that fsck considers dan-
gerous enough to warrant human intervention:

• Blocks claimed by more than one file

• Blocks claimed outside the range of the filesystem

• Link counts that are too small

• Blocks that are not accounted for

• Directories that refer to unallocated inodes

• Various format errors

Unfortunately, it is difficult to patch a disk by hand without extensive knowledge of
the implementation of the filesystem. Never attempt to write directly to the filesys-
tem through the device files.

In practice, this state of affairs means that you have little choice but to accept the fixes
proposed by fsck. You can minimize problems by carefully recording the messages
that fsck produces, since they can sometimes tip you off about the file or files that are
causing problems. If fsck asks for permission to delete a file, you should try to copy
it to a different filesystem before allowing fsck to proceed. Be aware that any time
you attempt to access a damaged filesystem, you risk panicking the system.

See Chapter 9 for infor-
mation about backups.

If a damaged filesystem (one that fsck cannot repair automatically) contains valu-
able data, do not experiment with it before making an ironclad backup. You can try
to dump the disk, but since dump expects to be reading an undamaged filesystem,
the resulting image may be missing data (or the command may crash). The best
insurance policy is to dd the entire disk to a backup file or backup disk.

If fsck finds a file whose parent directory cannot be determined, it puts the file in
the lost+found directory in the top level of the filesystem. Since the name given to a
file is recorded only in the file’s parent directory, names for orphan files are not
available and the files placed in lost+found are named with their inode numbers.
The inode table does record the UID of the file’s owner, so getting a file back to its
original owner is relatively easy.

7.7 ADDING A DISK: A STEP-BY-STEP GUIDE

In this section we walk through the configuration of a new disk drive. We set up the
drive with several partitions, including one for swap space. On the remaining parti-
tions, we create ext3fs filesystems.

After you install a new disk, it’s a good idea to make sure the system can see the new
device before you boot up the kernel. If it’s an IDE disk, check to be sure the disk is
recognized in the BIOS setup display, which you usually access by typing a magic
key sequence before the system boots. Consult the manuals that came with your com-

134 Chapter 7 – Adding a Disk

puter or motherboard for specific information on BIOS configuration for IDE de-
vices. In most cases, no special configuration is necessary.

Many SCSI cards also have a BIOS setup screen that you can invoke before the sys-
tem boots. If this option is available, you scan the SCSI bus to make sure the new
device appears. If this procedure hangs or produces a warning message, it’s possible
that you picked a SCSI ID that was already in use or that you did not install termi-
nators in the right places.

You can also use the SCSI BIOS to do a low-level format of a disk. This operation
takes a long time on some disks and cannot be interrupted, so plan ahead.

See page 878 for
more information
about installing
device drivers.

If your SCSI card does not have its own user interface, you can always just try to boot
the system and note the messages displayed by the kernel. If you do not see any
messages from a SCSI driver, you may need to install the driver before the disk can
be recognized by the kernel.

In our case, we saw the following messages from our BusLogic SCSI host adaptor.

scsi0 : BusLogic BT-948
scsi : 1 host.
 Vendor: SEAGATE Model: ST446452W Rev: 0001
 Type: Direct-Access ANSI SCSI revision: 02
Detected scsi disk sda at scsi0, channel 0, id 3, lun 0
scsi0: Target 3: Queue Depth 28, Asynchronous
SCSI device sda: hdwr sector=512 bytes. Sectors=91923356 [44884 MB] [44.9 GB]
sda: unknown partition table

We ignore warnings about the partition table since this is the first time the disk has
been used. Once the system has finished booting, we can move on to partitioning
the disk.

Before partitioning, we must first check to see if device files for the disk already
exist (they should). In Linux, the names for SCSI disk device files are of the form
/dev/sdXN, where X is a lowercase letter that identifies the drive (a is the lowest-
numbered SCSI disk, b is the second lowest, and so on7) and N is the partition num-
ber, starting at 1. When referring to the whole disk, simply omit the partition num-
ber. There are no character (raw) disk devices in Linux.

In this example, our disk is the first one on the SCSI chain. The first partition is there-
fore /dev/sda1, and the disk as a whole is referred to as /dev/sda. If these device files
didn’t exist, we could create them with MAKEDEV or mknod.

The disk is now ready to be partitioned. As in most PC operating systems, the tool
used for partitioning under Linux is called fdisk. Though all versions of fdisk do
approximately the same thing (they implement Microsoft’s standard partitioning
system), there are many variations among them. You would be wise to read the man
page for your particular system to be sure it matches what we show here.

7. Note that this letter refers to the order of the target numbers of the SCSI devices, not to the target num-
bers themselves. If you add or remove a disk, all the drive letters change!

A
d

d
in

g
 a

 D
is

k

7.7 Adding a disk: a step-by-step guide 135

fdisk /dev/sda
Device contains neither a valid DOS partition table, nor Sun, SGI or OSF disklabel
Building a new DOS disklabel. Changes will remain in memory only,
until you decide to write them. After that, of course, the previous
content won't be recoverable.

The number of cylinders for this disk is set to 5721.
There is nothing wrong with that, but this is larger than 1024,
and could in certain setups cause problems with:
1) software that runs at boot time (e.g., LILO)
2) booting and partitioning software from other OSs
 (e.g., DOS FDISK, OS/2 FDISK)

Since we are using this disk only on our Linux system, we can ignore the helpful
warning. In the past, it has sometimes been important to make the first partition
small to ensure that it will work with an old BIOS and will work with other operating
systems that might be installed on the system.

The fdisk program is interactive; pressing m displays a list of all its commands. The
ones we use here are:

• n, or new, to create a new partition

• t, or type, to change the type of a partition

• p, or print, to print the partition table

• w, or write, to write the partition table to disk

Since our disk does not yet have partitions, we start by creating a new one. If your
disk has partitions defined from a former life, you may have to remove them with
fdisk’s delete command before you can create new ones. The fdisk program does
not change anything on disk until you tell it to write the partition table.

The partition table has room for four “primary” partitions that can hold data. Alter-
natively, you can create an “extended” partition, which is a primary partition that
points to another partition table, giving you another four “logical” partitions. Al-
though the use of extended partitions can overcome the normal four-partition re-
striction, it is simplest to stick with primary partitions if only a few will be needed,
and that’s what we do in this case:

Command (m for help): new
Command action

e extended
p primary partition (1-4): p

Partition number (1-4): 1
First cylinder (1-5721, default 1): 1
Last cylinder or +size or +sizeM or +sizeK (1-5721, default 5721): +2G

Command (m for help): print
Disk /dev/sda: 255 heads, 63 sectors, 5721 cylinders
Units = cylinders of 16065 * 512 bytes

Device Boot Start End Blocks Id System
/dev/sda1 1 255 2048256 83 Linux

136 Chapter 7 – Adding a Disk

We create a swap partition similarly, except that we change the type from “Linux” to
“Linux swap.” Although the kernel does not care about the partition type, some pro-
grams and scripts try to use the type to figure out what each partition is. We specify
a size of 2GB, which is probably overkill for most applications, but since we have
disk space to spare, we might as well be generous. mkswap will warn us if it cannot
use all of the space we have allocated.

Command (m for help): new
 e extended
 p primary partition (1-4): p
Partition number (1-4): 2
First cylinder (256-5721, default 256): 256
Last cylinder or +size or +sizeM or +sizeK (256-1275, default 1275): 511
Command (m for help): type
Partition number (1-4): 2
Hex code (type L to list codes): 82
Changed system type of partition 2 to 82 (Linux swap)

The third partition, which contains the rest of the disk, is defined similarly. We re-
view the partition table one last time before writing it.

Command (m for help): print
Disk /dev/sda: 255 heads, 63 sectors, 5721 cylinders
Units = cylinders of 16065 * 512 bytes

Device Boot Start End Blocks Id System
/dev/sda1 1 255 2048256 83 Linux
/dev/sda2 256 511 2056320 82 Linux swap
/dev/sda3 512 5721 41849325 83 Linux

A star appears next to the number of blocks if the partition does not end on a cylin-
der boundary. We could either delete the partition and recreate it by entering a num-
ber of cylinders (as above) or live with the fact that a small bit of disk space may be
unusable. We are happy with the new partition table, so we write the label out to disk:

Command (m for help): write
The partition table has been altered!
Calling ioctl() to re-read partition table.
Syncing disks.

We’re now ready to create filesystems. To create a an ext3fs filesystem, we simply run
mke2fs -j and specify the device name as an argument.

mke2fs -j /dev/sda1
mke2fs 1.36 (05-Feb-2005)
Filesystem label=
OS type: Linux
Block size=4096 (log=2)
Fragment size=4096 (log=2)
245280 inodes, 489974 blocks
...
Superblock backups stored on blocks:
 32768, 98304, 163840, 229376, 294912

A
d

d
in

g
 a

 D
is

k

7.7 Adding a disk: a step-by-step guide 137

Writing inode tables: done
Creating journal (8192 blocks): done
Writing superblocks and filesystem accounting information: done

This filesystem will be automatically checked every 34 mounts or
180 days, whichever comes first. Use tune2fs -c or -i to override.
done

In creating your filesystem, you could also use the -J option to explicitly specify ei-
ther the size of the journal file that will reside on the new filesystem (-J size=x) or
the identity of an external device that will contain the journal file (-J device=y).
Typical installations locate the journal file (which must be between 1,024 and
102,400 filesystem blocks) inside the filesystem itself.

The process for creating the larger filesystem is the same, but it takes significantly
longer. If you know that you will not need all of the inodes that mke2fs allocates by
default, you can reduce the number of inodes per group, speeding up the mke2fs and
giving you more space for real data. Likewise, you may wish to increase the number
of inodes for filesystems that will house a large number of very small files. It’s much
better to have too many inodes than too few, since running out of inodes will pre-
vent you from creating any more files. You cannot add more inodes after the filesys-
tem has been created. If you run into this situation, you’ll need to dump the data on
the filesystem to tape or to a file on another partition, rerun mke2fs with a larger
number of inodes (-i), and then restore the data to the partition. Days of fun!

We run fsck on our filesystems to make sure they were created properly. The -f flag
forces fsck to check new filesystems rather than assuming that they are clean.

fsck -f /dev/sda1
fsck 1.36 (05-Feb-2005)
e2fsck 1.36 (05-Feb-2005)
Pass 1: Checking inodes, blocks, and sizes
Pass 2: Checking directory structure
Pass 3: Checking directory connectivity
Pass 4: Checking reference counts
Pass 5: Checking group summary information
/dev/sda1: 11/245280 files (9.1% non-contiguous), 16629/489974 blocks

We can mount new filesystems as soon as their mount points are created:

mkdir /bkroot
mount /dev/sda1 /bkroot
df /bkroot
Filesystem 1k-blocks Used Available Use% Mounted on
/dev/sda1 1981000 13 1878575 0% /bkroot

To ensure that the system mounts the new filesystems at boot time, we add a line for
each one to the /etc/fstab file. Each line lists, as required, the name of the device, the
mount point, the filesystem type, the mount options, the backup frequency, and
the pass number for fsck.

138 Chapter 7 – Adding a Disk

/dev/sda1 /bkroot ext3 defaults 0 1
/dev/sda3 /new ext3 defaults 0 2

A boot loader must be written to the disk device to make it bootable. Depending on
the installation, either the lilo or the grub command does the actual installation.
See page 26 for more information about configuring and installing a boot loader.

The final step is to create the swap space and add it to the system. We initialize swap
partitions with mkswap, which takes the device name of the partition as an argu-
ment. It is no longer necessary to specify the size of the swap partition. With the
swap area created, we enable it with the swapon command. swapon also verifies that
the swap area was properly added.

mkswap /dev/sda2
Setting up swapspace version 1, size = 2105667584 bytes
swapon /dev/sda2
swapon -s
Filename Type Size Used Priority
/dev/hda5 partition 133020 688 -1
/dev/sda2 partition 2056316 0 -2

As with regular filesystems, we must add the new swap partition to the /etc/fstab
file so that the system remembers it the next time we reboot. The following entry is
appropriate for our example disk:

/dev/sda2 swap swap defaults 0 0

Finally, we reboot to test the changes that were made to the /etc/fstab file and to
make sure that the new filesystems and swap space come on-line correctly.

7.8 ADVANCED DISK MANAGEMENT: RAID AND LVM

The procedures we’ve discussed so far for adding new disks, filesystems, and swap
areas are similar to those used on most UNIX systems. However, Linux has some
additional tricks up its sleeve that many operating systems are still only dreaming
about. Two distinct technologies, software RAID and logical volume management,
give Linux disk management an additional layer of flexibility and reliability.

Hard disks fail frequently, and even with current backups, the consequences of a
disk failure on a server can be disastrous. RAID, Redundant Array of Independent
Disks, is a system that uses multiple hard drives to distribute or replicate data across
several disks. RAID not only helps avoid data loss but also minimizes the downtime
associated with a hardware failure (often to zero) and potentially increases perfor-
mance as well. RAID systems can be implemented in hardware, but the Linux sys-
tem implements all the necessary glue with software.

A second and equally useful tool called LVM (logical volume management) helps ad-
ministrators efficiently allocate their available disk space among partitions. Imagine
a world in which you don’t know exactly how large a partition needs to be. Six
months after creating a partition you discover that it is much too large, but a neigh-

A
d

d
in

g
 a

 D
is

k

7.8 Advanced disk management: RAID and LVM 139

boring partition doesn’t have enough space... Sound familiar? LVM allows space to
be dynamically reallocated from the greedy partition to the needy partition.

Although these tools can be powerful when used individually, they are especially
potent in combination. The sections below present a conceptual overview of both
systems and an example that illustrates the detailed configuration.

Linux software RAID

We recently experienced a disk controller failure on an important production server.
Although the data was replicated across several physical drives, a faulty hardware
RAID controller destroyed the data on all disks. A lengthy and ugly tape restore pro-
cess ensued, and it was more than two months before the server had completely re-
covered. The rebuilt server now relies on the kernel’s software to manage its RAID
environment, removing the possibility of another RAID controller failure.

RAID can do two basic things. First, it can improve performance by “striping” data
across multiple drives, thus allowing several drives to work simultaneously to supply
or absorb a single data stream. Second, it can duplicate or “mirror” data across mul-
tiple drives, decreasing the risk associated with a single failed disk. Linux RAID has
some subtle differences from traditional RAID, but it is still logically divided into
several levels:

• Linear mode provides no data redundancy or performance increases. It
simply concatenates the block addresses of multiple drives to create a sin-
gle (and larger) virtual drive.

• RAID level 0 is used strictly to increase performance. It uses two or more
drives of equal size to decrease write and access times.

• RAID level 1 is the first level to offer redundancy. Data is duplicated on two
or more drives simultaneously. This mode mirrors the data but harms per-
formance because the information must be written more than once.

• RAID level 4 competes with (and consistently loses to) RAID level 5. It
stripes data but dedicates a disk to parity information, thereby incurring
wait times when writing to the parity disk. Unless you have a very good
reason to use RAID 4, ignore it in preference to RAID 5.

• RAID level 5 is the Xanadu of RAID. By striping both data and parity infor-
mation, it creates a redundant architecture while simultaneously improv-
ing read and write times. RAID 5 requires at least three disk drives.

Software RAID has been built into the Linux kernel since version 2.0, but early ver-
sions were buggy and incomplete. We recommend avoiding implementations older
than those in the 2.4 kernel.

Logical volume management

LVM is an optional subsystem that defines a sort of supercharged version of disk
partitioning. It allows you to group individual disks into “volume groups.” The ag-

140 Chapter 7 – Adding a Disk

gregate capacity of a volume group can then be allocated to logical volumes, which
are accessed as regular block devices. Logical volume management lets you do the
following:

• Use and allocate disk storage more efficiently

• Move logical volumes among different physical devices

• Grow and shrink logical volume sizes on the fly

• Take “snapshots” of whole filesystems

• Replace on-line drives without interrupting service

The components of a logical volume can be put together in various ways. Concate-
nation keeps each device’s physical blocks together and lines the devices up one after
another. Striping interleaves the components so that adjacent virtual blocks are ac-
tually spread over multiple physical disks. By reducing single-disk bottlenecks, strip-
ing can often provide higher bandwidth and lower latency.

An example configuration with LVM and RAID

Our previous example illustrated the configuration of a basic disk. In this section we
walk through a setup procedure that includes both RAID and LVM. This kind of
setup is especially useful for production servers.

Our objective is to create a RAID 5 array out of three empty disks. On top of this
RAID array, we define two LVM partitions, web1 and web2. This structure gives us
several advantages over a traditional system:

• RAID 5 confers redundancy; if one of the disks fails, our data remains
intact. Unlike RAID 4, it doesn’t matter which disk fails!

• Thanks to LVM, the partitions are resizable. When an enthusiastic web-
master fills up web2, we can easily steal some extra space from web1.

• More disk space could eventually be needed on both partitions. The design
allows additional disks to be added to the RAID 5 array. Once this has been
done, the existing LVM groups can be extended to include the additional
space, all without recreating any partitions.

After showing the initial configuration, we describe how to handle a failed disk and
show how to resize an LVM partition.

On our example system, we have four equally sized SCSI disks:

fdisk -l

Disk /dev/sda: 18.2 GB, 18210036736 bytes
255 heads, 63 sectors/track, 2213 cylinders
Units = cylinders of 16065 * 512 = 8225280 bytes

Device Boot Start End Blocks Id System
/dev/sda1 * 1 13 104391 83 Linux
/dev/sda2 14 144 1052257+ 82 Linux swap
/dev/sda3 145 2213 16619242+ 8e Linux LVM1G

A
d

d
in

g
 a

 D
is

k

7.8 Advanced disk management: RAID and LVM 141

Disk /dev/sdb: 18.2 GB, 18210036736 bytes
255 heads, 63 sectors/track, 2213 cylinders
Units = cylinders of 16065 * 512 = 8225280 bytes

Device Boot Start End Blocks Id System

Disk /dev/sdc: 18.2 GB, 18210036736 bytes
255 heads, 63 sectors/track, 2213 cylinders
Units = cylinders of 16065 * 512 = 8225280 bytes

Device Boot Start End Blocks Id System

Disk /dev/sdd: 18.2 GB, 18210036736 bytes
255 heads, 63 sectors/track, 2213 cylinders
Units = cylinders of 16065 * 512 = 8225280 bytes

Device Boot Start End Blocks Id System

The first SCSI disk, /dev/sda, contains our system partitions. The other three (sdb,
sdc, and sdd) have no partition tables.

To begin, we create the partitions on each of our SCSI disks. Since the disks are iden-
tical, we execute the same set of commands for each.

fdisk /dev/sdb
...
Command (m for help): new
Command action
 e extended
 p primary partition (1-4): p
Partition number (1-4): 1
First cylinder (1-2213, default 1): <Enter>
Using default value 1
Last cylinder or +size or +sizeM or +sizeK (1-2213, default 2213): <Enter>
Using default value 2213

Command (m for help): type
Selected partition 1
Hex code (type L to list codes): fd
Changed system type of partition 1 to fd (Linux raid autodetect)

Command (m for help): write
The partition table has been altered!

Calling ioctl() to re-read partition table.
Syncing disks.

After writing the partition labels for the other two disks, it’s time to get our hands
dirty and build the RAID array. Most modern distributions use the single mdadm
command for RAID management. Previous versions of RHEL used the raidtools
suite, but since mdadm is both more powerful and easier to use than raidtools,
that’s what we demonstrate here.

142 Chapter 7 – Adding a Disk

The following command builds a RAID 5 array from our three SCSI partitions:

mdadm --create /dev/md0 --level=5 --raid-devices=3 /dev/sdb1 /dev/sdc1
/dev/sdd1

mdadm: array /dev/md0 started.

While the array is being built, the file /proc/mdstat shows progress information:

cat /proc/mdstat
Personalities : [raid5]
md0 : active raid5 sdb1[3] sdc1[1] sdd1[2]
35566336 blocks level 5, 64k chunk, algorithm 2 [3/2] [_UU]
 [====>................] recovery = 22.4% (3999616/17783168) finish=5.1min

speed=44800K/sec
unused devices: <none>

This file always reflects the current state of the kernel’s RAID system. It is especially
useful to keep an eye on this file after adding a new disk or replacing a faulty drive.
(watch cat /proc/mdstat is a handy idiom.)

Once assembly of the array is complete, we see a notification message in the
/var/log/messages file:

RAID5 conf printout:
--- rd:3 wd:3 fd:0
disk 0, o:1, dev:sdb1
disk 1, o:1, dev:sdc1
disk 2, o:1, dev:sdd1

The initial creation command also serves to “activate” the array (make it available
for use), but on subsequent reboots we need to activate the array as a separate step,
usually out of a startup script. RHEL, Fedora, and SUSE all include sample startup
scripts for RAID.

mdadm does not technically require a configuration file, although it will use a con-
figuration file if one is supplied (typically, /etc/mdadm.conf). We strongly recom-
mend the use of a configuration file. It documents the RAID configuration in a stan-
dard way, thus giving administrators an obvious place to look for information when
problems occur. The alternative to the use of a configuration file is to specify the
configuration on the command line each time the array is activated.

mdadm --detail --scan dumps the current RAID setup into a configuration file. Un-
fortunately, the configuration it prints is not quite complete. The following com-
mands build a complete configuration file for our example setup:

echo DEVICE /dev/sdb1 /dev/sdc1 /dev/sdd1 > /etc/mdadm.conf
mdadm --detail --scan >> /etc/mdadm.conf
cat /etc/mdadm.conf
DEVICE /dev/sdb1 /dev/sdc1 /dev/sdd1
ARRAY /dev/md0 level=raid5 num-devices=3 UUID=21158de1:faaa0dfb:

841d3b41:76e93a16
 devices=/dev/sdb1,/dev/sdc1,/dev/sdd1

A
d

d
in

g
 a

 D
is

k

7.8 Advanced disk management: RAID and LVM 143

mdadm can now read this file at startup or shutdown to easily manage the array. To
enable the array at startup by using the freshly created /etc/mdadm.conf, we would
execute

mdadm -As /dev/md0

To stop the array manually, we would use the command

mdadm -S /dev/md0

We’ve now assembled our three hard disks into a single logical RAID disk. Now it’s
time to define logical volume groups on which we can create expandable (and
shrinkable) filesystems. LVM configuration proceeds in a few distinct phases:

• Creating (defining, really) and initializing physical volumes

• Adding the physical volumes to a volume group

• Creating logical volumes on the volume group

The LVM2 suite of tools addresses all of these tasks and facilitates later management
of the volumes. man lvm is a good introduction to the system and its tools.

In LVM terminology, the physical volumes are the “things” that are aggregated to
form storage pools (“volume groups”). “Physical volume” is a somewhat misleading
term, however, because the physical volumes need not have a direct correspondence
to physical devices. They can be disks, but they can also be disk partitions or (as in
this example) high-level RAID objects that have their own underlying structure.

LVM commands start with letters that make it clear at which level of abstraction
they operate: pv commands manipulate physical volumes, vg commands manipu-
late volume groups, and lv commands manipulate logical volumes.

Older versions of LVM required you to run the vgscan command as an initial step,
but this is no longer necessary. Instead, you start by directly initializing each physi-
cal device with pvcreate. For this example, we use the /dev/md0 RAID 5 device we
just created.

pvcreate /dev/md0
Physical volume "/dev/md0" successfully created

This operation destroys all data on the device or partition, so we were exceedingly
careful! Although we’re using only a single physical device in this example, LVM al-
lows us to add multiple devices of different types to a single volume group.

Our physical device is now ready to be added to a volume group:

vgcreate LVM1 /dev/md0
Volume group "LVM1" successfully created

To step back and examine our handiwork, we use the vgdisplay command:

vgdisplay LVM1
--- Volume group ---
VG Name LVM1

144 Chapter 7 – Adding a Disk

System ID
Format lvm2
Metadata Areas 1
Metadata Sequence No 1
VG Access read/write
VG Status resizable
MAX LV 0
Cur LV 0
Open LV 0
Max PV 0
Cur PV 1
Act PV 1
VG Size 33.92 GB
PE Size 4.00 MB
Total PE 8683
Alloc PE / Size 0 / 0
Free PE / Size8683 / 33.92 GB
VG UUID nhkzzN-KHmY-BfV5-6F6Y-3LF8-dpd5-JM5lMp

The last steps are to create logical volumes within the LVM1 volume group and make
partitions on the volumes. We make both of the logical volumes 10GB in size:

lvcreate -L 10G -n web1 LVM1
Logical volume "web1" created

lvcreate -L 10G -n web2 LVM1
Logical volume "web2" created

Now that we’ve created two logical volumes, web1 and web2, in our LVM1 volume
group, we can create and mount our filesystems.

mke2fs -j /dev/LVM1/web1
...
mke2fs -j /dev/LVM1/web2
...
mkdir /web1 /web2
mount /dev/LVM1/web1 /web1
mount /dev/LVM1/web2 /web2

The filesystems are finally ready for use. We add the new filesystems to /etc/fstab
and reboot the system to ensure that everything comes up successfully.

Dealing with a failed disk

Our nicely architected system looks pretty now, but because of the multiple layers at
which the system is operating, things can get ugly in a hurry. When a hard drive fails
or a partition is corrupted (or simply fills up), it’s essential that you know how to
repair it quickly and easily. You use the same tools as for the initial configuration
above to maintain the system and recover from problems.

Consider the case of a failed hard disk. Because RAID 5 provides some data redun-
dancy, the RAID 5 array we constructed in the previous sections will happily con-
tinue to function in the event of a disk crash; users will not necessarily be aware of

A
d

d
in

g
 a

 D
is

k

7.8 Advanced disk management: RAID and LVM 145

any problems. You’ll need to pay close attention to the system logs to catch the prob-
lem early (or have a program that does this for you; see page 220).

mdadm offers a handy option that simulates a failed disk:

mdadm /dev/md0 -f /dev/sdc1
mdadm: set /dev/sdc1 faulty in /dev/md0

tail /var/log/messages
May 30 16:14:55 harp kernel: raid5: Disk failure on sdc, disabling device.

Operation continuing on 2 devices
kernel: RAID5 conf printout:
kernel: --- rd:3 wd:2 fd:1
kernel: disk 0, o:1, dev:sdb1
kernel: disk 1, o:0, dev:sdc1
kernel: disk 2, o:1, dev:sdd1
kernel: RAID5 conf printout:
kernel: --- rd:3 wd:2 fd:1
kernel: disk 0, o:1, dev:sdb1
kernel: disk 2, o:1, dev:sdd1

As shown here, the system log /var/log/messages contains information about the
(simulated) failure as soon as it occurs. Similar information is available from the
RAID status file /proc/mdstat. At this point, the administrator should take the fol-
lowing actions:

• Remove the disk from the RAID array.

• Schedule downtime and shut down the computer (if necessary).

• Replace the physical drive.

• Add the new drive to the array.

To remove the drive from the RAID configuration, use mdadm:

mdadm /dev/md0 -r /dev/sdc1
mdadm: hot removed /dev/sdc1

Once the disk has been logically removed, you can replace the drive. Hot-swappable
drive hardware lets you make the change without turning off the system or rebooting.

If your RAID components are raw disks, you should replace them with an identical
drive only. Partition-based components can be replaced with any partition of simi-
lar size, although for bandwidth matching it’s best if the drive hardware is similar. (If
your RAID configuration is built on top of partitions, you must run fdisk to define
the partitions appropriately before adding the replacement disk to the array.)

In our example, the failure is just a simulation, so we can add the drive back to the
array without replacing any hardware:

mdadm /dev/md0 -a /dev/sdc1
mdadm: hot added /dev/sdc1

Linux rebuilds the array and reflects the progress, as always, in /proc/mdstat.

146 Chapter 7 – Adding a Disk

Reallocating storage space

Even more common than disk crashes are cases in which users or log files fill up
partitions. We have experienced everything from servers used for personal MP3
storage to a department full of email packrats.

Suppose that in our example, /web1 has grown more than we predicted and is in
need of more space. Resizing LVM partitions involves just a few short steps. The
exact commands depend on the filesystem in use. The steps in the following exam-
ple are for an ext3 filesystem. The steps are:

• Examine the current LVM configuration

• Resize the partitions with lvextend and ext2online
• Verify the changes

Fortunately, we left some extra space in our volume group to grow /web1 with, so we
do not have to scavenge space from another volume. We use vgdisplay to see the
space available on the volume group and df to determine how to reallocate it:

vgdisplay LVM1
--- Volume group ---
VG Name LVM1
System ID
Format lvm2
Metadata Areas 1
Metadata Sequence No 3
VG Access read/write
VG Status resizable
MAX LV 0
Cur LV 2
Open LV 2
Max PV 0
Cur PV 1
Act PV 1
VG Size 33.92 GB
PE Size 4.00 MB
Total PE 8683
Alloc PE / Size 5120 / 20.00 GB
Free PE / Size3563 / 13.92 GB
VG UUID nhkzzN-KHmY-BfV5-6F6Y-3LF8-dpd5-JM5lMp

df -h /web1
Filesystem Size Used Avail Use% Mounted on
/dev/mapper/LVM1-web1 9.9G 7.1G 2.3G 76% /web1

These commands show 13.92GB free in the volume group and 76% usage of /web1.
We’ll add 10GB to /web1.

First we use lvextend to add space to the logical volume, then ext2online to resize
the filesystem structures to encompass the additional space.

A
d

d
in

g
 a

 D
is

k

7.9 Mounting USB drives 147

lvextend -L+10G /dev/LVM1/web1
 Extending logical volume web1 to 20.00 GB
 Logical volume web1 successfully resized
ext2online -d /dev/LVM1/web1
...
ext2_close

That’s it! Examining the output of df again shows the changes:

df -h /web1
Filesystem Size Used Avail Use% Mounted on
/dev/mapper/LVM1-web1 20G 7.1G 12G 38% /web1

ReiserFS users must unmount the partition before running lvextend. Additionally,
a tool creatively known as resize_reiserfs is used in place of ext2online to resize the
filesystem.

7.9 MOUNTING USB DRIVES

Floppy disks have finally gone the way of the dodo, and good riddance. In their place
are friendly, fast, and fun USB drives. These devices come in many flavors: personal
“thumb” drives, digital cameras, iPods, and large external disks, to name a few. Re-
cent Linux distributions include native kernel support for all these handy gizmos.

When connecting a USB drive, first make sure that Linux recognizes the device. The
following command lists the USB devices the kernel has discovered:

$ sudo /sbin/lsusb
Bus 001 Device 003: ID 0781:7108 SanDisk Corp.
Bus 001 Device 001: ID 0000:0000

In this case, a SanDisk drive has been attached. If no devices are listed but the device
is plugged in, the kernel may not have USB support and will need to be recompiled.

Next, find out how the kernel has identified the drive and what device file it is using
to represent it. The kernel messages are recorded through syslog.

$ sudo tail -n 20 /var/log/messages | grep kernel8

Jul 27 20:52:13 harp kernel: USB Mass Storage support registered.
Jul 27 21:02:57 harp kernel: usb 1-2: USB disconnect, address 2
Jul 27 21:14:09 harp kernel: ohci_hcd 0000:00:0f.2: wakeup
Jul 27 21:14:09 harp kernel: usb 1-2: new full speed USB device using addr 3
Jul 27 21:14:09 harp kernel: scsi3 : SCSI emulation for USB Storage devices
Jul 27 21:14:09 harp kernel: Vendor: SanDisk Model: Cruzer Titanium Rev: 2000
Jul 27 21:14:09 harp kernel: Type: Direct-Access ANSI SCSI revision: 02
Jul 27 21:14:09 harp kernel: SCSI device sde: 512-byte hdwr sectors (520 MB)
Jul 27 21:14:09 harp kernel: sde: Write Protect is off
Jul 27 21:14:09 harp kernel: sde: assuming drive cache: write through
Jul 27 21:14:10 harp kernel: sde: sde1
Jul 27 21:14:10 harp kernel: Attached scsi removable disk sde at scsi3, channel

0, id 0, lun 0

8. Look in /var/log/kern.log on Debian and Ubuntu systems.

148 Chapter 7 – Adding a Disk

The kernel messages indicate that this is a 520MB SanDisk Cruzer Titanium. (If
you’re in the market, this an excellent USB key!) The kernel has associated the device
/dev/sde with the disk, and the disk contains only a single partition, sde1.

The drive needs to be mounted by Linux before it can be used. Create a mount point
and mount the drive:

$ sudo mkdir /mnt/usb
$ sudo mount /dev/sde1 /mnt/usb

The drive is now mounted on /mnt/usb and is ready for use. To ease the process the
next time you use the drive, you could add the following line to /etc/fstab:

/dev/sde1 /mnt/usb auto users,noauto,uid=ben,gid=users 0 0

The listed options autodetect the filesystem type and allow the user ben to mount
and write to the drive.

7.10 EXERCISES

E7.1 Which SCSI connectors go with which variants of the specification? Ig-
noring the differences in connectors, what are the compatibility issues
among the various SCSI versions?

E7.2 What’s the difference between formatting a disk and partitioning a disk?
What’s the difference between partitioning and creating a filesystem?

E7.3 List the command and arguments you would use to create a filesystem on
a disk in each of the following circumstances.

a) The disk will be used as storage for home directories.
b) The disk will be used as swap space.
c) The disk will store the mail queue at a large spam house.
d) The disk will hold a MySQL InnoDB database.

E7.4 The LVM tool suite is powerful but can be confusing if not well under-
stood. Practice adding, removing, and resizing disks in a volume group.
Show how you would successfully remove a device from one volume
group and add it to another.

E7.5 Using printed or Internet resources, identify the best-performing SCSI
and IDE drives. Do the benchmarks used to evaluate these drives reflect
the way that a busy Linux server would use its boot disk? How much of a
cost premium would you pay for SCSI, and how much of a performance
improvement (if any) would you get for the extra money?

E7.6 Add a disk to your system. Make one partition on the new disk a backup
root partition; install a kernel and boot from it. Keep a journal of all the
steps required to complete this task. You may find the script command
helpful. (Requires root access.)

A
d

d
in

g
 a

 D
is

k

7.10 Exercises 149

E7.7 What is a superblock and what is it used for? Look up the definition of
the ext3fs superblock structure in the kernel header files and discuss
what each of the fields in the structure represents.

E7.8 Use mdadm and its -f option to simulate a failed disk in a RAID array.
Remove the disk from the array and add it back. How does /proc/md-
stat look at each step?

E7.9 What fields are stored in an inode on an ext3fs filesystem? List the con-
tents of the inode that represents the /etc/motd file. Where is this file’s
filename stored? (Tools such as hexdump and ls -i might help.)

E7.10 Examine the contents of a directory file with a program such as hex-
dump or od. Each variable-length record represents a file in that direc-
tory. Look up the directory entry structure and explain each field, using
an example from a real directory file. Next, look at the lost+found di-
rectory on any filesystem. Why are there so many names there when the
lost+found directory appears to be empty?

E7.11 Write a program that traverses the filesystem and prints the contents of
the /etc/motd and /etc/termcap files. But don’t open the files directly;
open the raw device file for the root partition and use the seek and read
system calls to decode the filesystem and find the appropriate data
blocks. /etc/motd is usually short and will probably contain only direct
blocks. /etc/termcap will probably require you to decode indirect
blocks. Hint: when reading the system header files, be sure you have
found the filesystem’s on-disk inode structure, not the in-core inode
structure. (Requires root access.)

150

8 Periodic Processes

The key to staying in control of your system is to automate as many tasks as possible.
For example, an adduser program can add new users faster than you can, with a
smaller chance of making mistakes. Almost any task can be encoded in a Perl, Py-
thon, shell, or expect script.

It’s often useful to have a script or command executed without any human interven-
tion. For example, you might want to have a script verify (say, every half-hour) that
your network routers and bridges are working correctly and have it send you email
when problems are discovered.1

8.1 CRON: SCHEDULE COMMANDS

Under Linux, periodic execution is normally handled by the cron daemon. cron
starts when the system boots and remains running as long as the system is up. cron
reads one or more configuration files containing lists of command lines and times at
which they are to be invoked. The command lines are executed by sh, so almost any-
thing you can do by hand from the shell can also be done with cron.2

cron originally appeared in the UNIX family tree in the 1970s. Linux distributions
include a version known as ISC cron or “Vixie-cron,” named after its author, Paul
Vixie. It’s is a modern rewrite that provides added functionality with less mess.

1. Many sites go further than this and send a text message to an administrator’s pager as soon as a prob-
lem is detected.

2. /bin/sh under Linux is really a link to the bash shell, an enhanced (and reimplemented) version of the
traditional Bourne shell found on UNIX systems. You can configure cron to use other shells as well.

Periodic Processes

P
e

ri
o

d
ic

 P
ro

ce
ss

e
s

8.2 The format of crontab files 151

A cron configuration file is called a “crontab,” short for “cron table.” cron looks for
crontab files in three places: /var/spool/cron (/var/spool/cron/tabs on SUSE and
/var/spool/cron/crontabs on Debian), /etc/cron.d, and /etc/crontab.

Crontab files for individual users are stored underneath /var/spool/cron. Typically,
there is (at most) one crontab file per user: one for root, one for jsmith, and so on.
Crontab files are named with the login names of the users they belong to, and cron
uses these filenames to figure out which UID to use when running the commands
that each file contains. The crontab command transfers crontab files to and from
this directory.

Crontab files that schedule system maintenance tasks and other tasks defined by the
system administrator are stored in the file /etc/crontab and in other files found in
the /etc/cron.d directory. These files have a slightly different format from the per-
user crontab files because they allow commands to be run as an arbitrary user. cron
treats the /etc/crontab and /etc/cron.d entries in exactly the same way. In general,
/etc/crontab is intended as a file for the system administrator to maintain by hand,
whereas /etc/cron.d is provided as a place where software packages can install any
crontab entries they might need.

When cron starts, it reads all of its config files, stores them in memory, and then goes
to sleep. Once each minute, cron wakes up, checks the modification times on the
crontab files, reloads any files that have changed, and then executes any tasks sched-
uled for that minute before returning to sleep.

For reasons that are unclear, cron has been renamed crond on Red Hat.

cron logs its activities through syslog, using the facility “cron,” with most messages
submitted at level “info.” Default syslog configurations generally send cron log data
to its own file.

8.2 THE FORMAT OF CRONTAB FILES

All the crontab files on a system share a similar format. Comments are introduced
with a pound sign (#) in the first column of a line. Each noncomment line contains
six or seven fields and represents one command:

minute hour day month weekday [username] command

The first six fields are separated by whitespace, but within the command field
whitespace is taken literally. The username is found only in /etc/crontab and in files
from the /etc/cron.d directory; it specifies on whose behalf the command should be
run. This field is not present or necessary in the user-specific crontab files (those
stored in /var/spool/cron) because the UID is implied by the filename.

The minute, hour, day, month, and weekday fields tell when to run the command.
Their interpretations are shown in Table 8.1 on the next page.

152 Chapter 8 – Periodic Processes

Each of the time-related fields may contain

• A star, which matches everything

• A single integer, which matches exactly

• Two integers separated by a dash, matching a range of values

• A comma-separated series of integers or ranges, matching any listed value

Value ranges can include a step value. For example, the series 0,3,6,9,12,15,18 can be
written more concisely as 0-18/3. You can also use text mnemonics for the names of
months and days, but not in combination with ranges.

The time specification

45 10 * * 1-5

means “10:45 a.m., Monday through Friday.” A hint: never put a star in the first field
unless you want the command to be run every minute.

There is a potential ambiguity to watch out for with the weekday and day fields. Ev-
ery day is both a day of the week and a day of the month. If both weekday and day are
specified, a day need satisfy only one of the two conditions in order to be selected.
For example,

0,30 * 13 * 5

means “every half-hour on Friday, and every half-hour on the 13th of the month,” not
“every half-hour on Friday the 13th.”

The command is the sh command line to be executed. It can be any valid shell com-
mand and should not be quoted. command is considered to continue to the end of
the line and may contain blanks or tabs.

A percent sign (%) is used to indicate newlines within the command field. Only the
text up to the first percent sign is included in the actual command; the remaining
lines are given to the command as standard input.

Here are some examples of legal crontab commands:

echo The time is now `date` > /dev/console
mail -s Reminder evi@anchor % Don't forget to write your chapters.
cd /etc; /bin/mail -s "Password file" evi < passwd

Table 8.1 Crontab time specifications

Field Description Range

minute Minute of the hour 0 to 59
hour Hour of the day 0 to 23
day Day of the month 1 to 31
month Month of the year 1 to 12
weekday Day of the week 0 to 6 (0 = Sunday)

P
e

ri
o

d
ic

 P
ro

ce
ss

e
s

8.3 Crontab management 153

And here are some complete examples of crontab entries:

30 2 * * 1 (cd /users/joe/project; make)

This entry will be activated at 2:30 each Monday morning. It will run make in the
directory /users/joe/project. An entry like this might be used to start a long compi-
lation at a time when other users would not be using the system. Usually, any output
produced by a cron command is mailed to the “owner” of the crontab.3

20 1 * * * find /tmp -atime +3 -exec rm -f { } ';'

This command will run at 1:20 each morning. It removes all files in the /tmp direc-
tory that have not been accessed in 3 days.

55 23 * * 0-3,6 /staff/trent/bin/checkservers

This line runs checkservers at 11:55 p.m. every day except Thursdays and Fridays.

It is also possible to specify environment variables and their values in a crontab file.
See the crontab(5) man page for more details.

8.3 CRONTAB MANAGEMENT

crontab filename installs filename as your crontab, replacing any previous version.
crontab -e checks out a copy of your crontab, invokes your editor on it (as specified
by the EDITOR environment variable), and then resubmits it to the crontab directory.
crontab -l lists the contents of your crontab to standard output, and crontab -r re-
moves it, leaving you with no crontab file at all.

Root can supply a username argument to edit or view other users’ crontabs. For ex-
ample, crontab -u jsmith -r erases the crontab belonging to the user jsmith.

Without command-line arguments, most versions of crontab will try to read a
crontab from standard input. If you enter this mode by accident, don’t try to exit
with <Control-D>; doing so will erase your entire crontab. Use <Control-C> in-
stead. Some versions have been modified to require you to supply a dash as the file-
name argument to make crontab pay attention to its standard input.

Two config files, /etc/cron.deny and /etc/cron.allow, specify which users may sub-
mit crontab files. If the allow file exists, then it contains a list of all users that may
submit crontabs, one per line. No unlisted person can invoke the crontab command.
If the allow file doesn’t exist, then the deny file is checked. It, too, is just a list of
users, but the meaning is reversed: everyone except the listed users is allowed access.
If neither the allow file nor the deny file exists, most systems allow only root to sub-
mit crontabs. (Debian and Ubuntu default to allowing submissions by all users.)

It’s important to note that access control is implemented by crontab, not by cron. If
a user sneaks a crontab file into the appropriate directory by other means, cron will
blindly execute the commands that it contains.

3. That is, the user after whom the crontab file is named. On most (but not all) systems, the actual owner of
crontab files is root.

154 Chapter 8 – Periodic Processes

8.4 SOME COMMON USES FOR CRON

A number of standard tasks are especially suited for invocation by cron, and these
usually make up the bulk of the material in root’s crontab. In this section we look at
a variety of such tasks and the crontab lines used to implement them.

Linux systems often come with crontab entries preinstalled, mostly in /etc/cron.d. If
you want to deactivate the standard entries, comment them out by inserting a pound
sign (#) at the beginning of each line. Don’t delete them; you might want to refer to
them later.

In addition to the /etc/cron.d mechanism, Linux distributions also preinstall
crontab entries that run the scripts in a set of well-known directories, thereby pro-
viding another way for software packages to install periodic jobs without any editing
of a crontab file. For example, scripts in /etc/cron.daily are run once a day, and
scripts in /etc/cron.weekly are run once a week.

Many sites have experienced subtle but recurrent network glitches that occur be-
cause administrators have configured cron to run the same command on hundreds
of machines at exactly the same time. Clock synchronization with NTP exacerbates
the problem. The problem is easy to fix with a random delay script or config file
adjustment, but it can be tricky to diagnose because the symptoms resolve so
quickly and completely.

Cleaning the filesystem

Some of the files on any Linux system are worthless junk (no, not the system files).
For example, when a program crashes, the kernel may write out a file named core
that contains an image of the program’s address space.4 Core files are useful for soft-
ware developers, but for administrators they are usually a waste of space. Users often
don’t know about core files, so they tend not to delete them on their own.

NFS, the Network File
System, is described
in Chapter 16.

NFS is another source of extra files. Because NFS servers are stateless, they have to
use a special convention to preserve files that have been deleted locally but are still in
use by a remote machine. Most implementations rename such files to .nfsxxx where
xxx is a number. Various situations can result in these files being forgotten and left
around after they are supposed to have been deleted.

Many programs create temporary files in /tmp or /var/tmp that aren’t erased for one
reason or another. Some programs, especially editors, like to make backup copies of
each file they work with.

A partial solution to the junk file problem is to institute some sort of nightly disk
space reclamation out of cron. Modern systems usually come with something of this
sort set up for you, but it’s a good idea to review your system’s default behavior to
make sure it’s appropriate for your situation.

4. The word “core” means “memory.” This term originated on early computer systems, which used as
memory elements little ferrite donuts mounted on a woven mesh.

P
e

ri
o

d
ic

 P
ro

ce
ss

e
s

8.4 Some common uses for cron 155

Below are several common idioms implemented with the find command.

find / -xdev -type f '(' -name core -o name 'core.[0-9]*' ')' -atime +7
-exec rm -f { } ';'

This command removes core images that have not been accessed in a week. The
-xdev argument makes sure that find won’t cross over to filesystems other than the
root; this restraint is important on networks where many filesystems may be cross-
mounted. If you want to clean up more than one filesystem, use a separate command
for each (note that /var is typically a separate filesystem).

The naming convention for core files can be set by the system administrator through
the /proc/sys/kernel/core_pattern file. The find command above handles only the
default names (core or core.PID). The -type f argument is important because the
Linux kernel source contains a directory called core, and you wouldn’t want to be
deleting that.

find / -xdev -atime +3 '(' -name '#*' -o -name '.#*' -o -name '*.CKP' -o
-name '*~' -o -name '.nfs*' ')' -exec rm -f { } ';'

This command deletes files that have not been accessed in three days and that begin
with # or .# or .nfs or end with ~ or .CKP. These patterns are typical of various sorts
of temporary and editor backup files.

For performance reasons, some administrators use the noatime mount option to
prevent the filesystem from maintaining access time stamps. That configuration will
confuse both of the find commands shown above because the files will appear to
have been unreferenced even if they were recently active. Unfortunately, the failure
mode is to delete the files; be sure you are maintaining access times before using
these commands as shown.

cd /tmp; find . ! -name . ! -name lost+found -type d -mtime +3
-exec /bin/rm -rf { } ';'

This command recursively removes all subdirectories of /tmp not modified in 72
hours. Plain files in /tmp are removed at boot time by the system startup scripts, but
some systems do not remove directories. If a directory named lost+found exists, it
is treated specially and is not removed. This is important if /tmp is a separate file-
system. See page 133 for more information about lost+found.

If you use any of these commands, you should make sure that users are aware of your
cleanup policies.

Network distribution of configuration files

See Chapter 17 for
more information
about sharing
configuration files.

If you are running a network of machines, it’s often convenient to maintain a single,
network-wide version of configuration files such as the mail aliases database (usu-
ally /etc/mail/aliases). Master versions of these files can be distributed every night
with rsync, rdist, or an expect script.

156 Chapter 8 – Periodic Processes

Sometimes, postprocessing is required. For example, you might need to run the
newaliases command to convert a text file of mail aliases to the hashed format used
by sendmail if the AutoRebuildAliases option isn’t set in your sendmail.cf file. You
might also need to load files into an administrative database such as NIS.

Rotating log files

Linux does a good job of managing most of its log files, but some files grow without
bound until they are manually reset. There are various ways to prevent logs from
overflowing, the simplest being to simply truncate them at periodic intervals.

A more conservative strategy is to “rotate” log files by keeping several older versions
of each one. This scheme prevents log files from getting out of control but never
leaves you without any recent log information. Since log rotation is a recurrent and
regularly scheduled event, it’s an ideal task for cron. See Rotating log files on page
202 for more details.

8.5 OTHER SCHEDULERS: ANACRON AND FCRON

In general, cron does not compensate for commands that are missed while the sys-
tem is down or for large discontinuities in the flow of time. However, Vixie-cron
does make a good-faith effort to do the right thing for jobs that are scheduled on a
less-frequently-than-hourly basis when the time changes by less than three hours. It
does a good job at handling small adjustments such as those related to daylight sav-
ing time in the United States.

Laptops and other machines that are powered on sporadically have a more strained
relationship with cron and can benefit from some backup. A nice complement to
cron can be found in anacron, which is an interval-based scheduler. If anacron is
not included in the default installation, you can install it through your system’s de-
fault package management system.

Instead of specifying that a particular command be run at 2:00 a.m. on Monday
mornings, in the anacron world you simply ask that it be run every week. Unlike
cron, anacron maintains a record of each command’s most recent execution time,
so it can simply compare this time, the specified interval, and the current time to
determine whether the command needs to be run again.

anacron provides several features that help prevent a newly booted machine from
submerging under a wave of simultaneous maintenance tasks. Each task can have its
own startup delay, and anacron can serialize the commands it runs so that only one
command is active at a time.

Interval scheduling is probably more generally useful than fixed-time scheduling for
administrative tasks. Unfortunately, anacron requires its intervals to be expressed
in days, and this fact limits anacron’s utility as a first-line scheduling tool.

anacron itself must be run out of cron. Although anacron’s scheduling granularity
is days, it makes sense to run anacron more frequently than once a day—if you

P
e

ri
o

d
ic

 P
ro

ce
ss

e
s

8.6 Exercises 157

knew cron would be able to consistently run anacron at the same time each day, you
probably wouldn’t be using anacron in the first place. Similarly, it makes sense to
run anacron at system startup as well.

A more aggressive revamping of cron that includes anacron-like features can be
found in fcron; see fcron.free.fr. Unlike anacron, fcron aims explicitly to replace
Vixie-cron. It permits a number of sophisticated timing specifications that are not
expressible in the cron and anacron configuration languages. Nevertheless, one has
to wonder whether the practical value of these features justifies fcron’s added com-
plexity and the hassle of using a nonstandard scheduler.

8.6 EXERCISES

E8.1 A local user on your system has been abusing his crontab privileges by
running expensive tasks at regular intervals. After asking him to stop sev-
eral times, you are forced to revoke his privileges. List the steps needed to
delete his current crontab and make sure he can’t add a new one.

E8.2 Think of three tasks (other than those mentioned in the chapter) that
might need to be run periodically. Write crontab entries for each task and
specify into which crontab files the entries should go.

E8.3 Choose three entries from your system’s crontab files. Decode each one
and describe when it runs, what it does, and why you think the entry is
needed. (Requires root access.)

E8.4 Write a script that keeps your startup files (~/.[a-z]*) synchronized
among all the machines on which you have an account. Schedule this
script to run regularly from cron. (Is it safe to blindly copy every file
whose name starts with a dot? Should files being replaced on the destina-
tion machines be backed up before they are overwritten?)

E8.5 Using the man pages for the du, sort, and head commands as references,
write a script that determines which 10 home directories are the largest
on the system. Schedule the script to run every Monday night at 12:00 a.m.
and have it mail its output to you. Hint: you’ll want to use a reverse nu-
meric sort. (Requires root access.)

158

9 Backups

At most sites, the information stored on computers is worth more than the computers
themselves. It is also much harder to replace. Protecting this information is one of the
system administrator’s most important (and, unfortunately, most tedious) tasks.

There are hundreds of creative and not-so-creative ways to lose data. Software bugs
routinely corrupt data files. Users accidentally delete their life’s work. Hackers and
disgruntled employees erase disks. Hardware problems and natural disasters take out
entire machine rooms.

If executed correctly, backups allow an administrator to restore a filesystem (or any
portion of a filesystem) to the condition it was in at the time of the last backup.
Backups must be done carefully and on a strict schedule. The backup system and
backup media must also be tested regularly to verify that they are working correctly.

The integrity of backup media directly affects your company’s bottom line. Senior
management needs to understand what the backups are actually supposed to do, as
opposed to what they want the backups to do. It may be okay to lose a day’s work at
a university computer science department, but it probably isn’t okay at a commodity
trading firm.

We begin this chapter with some general backup philosophy, followed by a discussion
of the most commonly used backup devices and media (their strengths, weaknesses,
and costs). Next, we discuss Linux backup and archiving commands and suggest
which commands are best for which situations. We then talk about how to design a
backup scheme and review the mechanics of the popular dump and restore utilities.

Backups

B
a

ck
u

p
s

9.1 Motherhood and apple pie 159

Finally, we take a look at Bacula, a free network backup package, and then offer
some comments about commercial alternatives.

9.1 MOTHERHOOD AND APPLE PIE

Before we get into the meat and potatoes of backups, we want to pass on some gen-
eral hints that we have learned over time (usually, the hard way). None of these sug-
gestions is an absolute rule, but you will find that the more of them you follow, the
smoother your dump process will be.

Perform all dumps from one machine

Many backup utilities allow you to perform dumps over the network. Although there
is some performance penalty for doing dumps that way, the increase in ease of ad-
ministration makes it worthwhile. We have found that the best method is to run a
script from a central location that executes rdump (by way of rsh or ssh) on each
machine that needs to be dumped; you can also use a software package (commer-
cial, free, or shareware) to automate this process. All dumps should go to the same
backup device (nonrewinding, of course).

If your systems are too large to be backed up by a single device, you should still try
to keep your backup system as centralized as possible. Centralization facilitates ad-
ministration and enables you to verify the integrity of the backup. Depending on the
media you are using, you can often put more than one media device on a server
without affecting performance.

Label your media

Label each piece of backup media clearly and completely—an unlabeled tape is a
scratch tape. Directly label each piece of media to uniquely identify its contents. On
the cases, write detailed information such as lists of filesystems and dump dates.

You must be able to restore critical servers’ root and /usr filesystems without look-
ing at dump scripts. Label the media accordingly, listing the filesystems they contain,
the format of the backups, the exact syntax of the commands used to create them,
and any other information you would need to restore the system without referring to
on-line documentation.

Free and commercial labeling programs abound. Save yourself a major headache and
invest in one. If you purchase labels for your laser printer, the label vendor can usu-
ally provide (Windows) software that generates labels. Better yet, buy a dedicated
label printer for Windows. They are inexpensive and work well.

Pick a reasonable backup interval

The more often backups are done, the less data is lost in a crash. However, backups
use system resources and an operator’s time. You must provide adequate data integ-
rity at a reasonable cost of time and materials.

160 Chapter 9 – Backups

On busy systems, it is generally appropriate to back up filesystems with home direc-
tories every workday. On systems that are used less heavily or on which the data is
less volatile, you might decide that performing backups several times a week is suffi-
cient. On a small system with only one user, performing backups once a week is prob-
ably adequate. How much data are your users willing to lose?

Choose filesystems carefully

Filesystems that are rarely modified do not need to be backed up as frequently as
users’ home directories. If only a few files change on an otherwise static filesystem
(such as /etc/passwd in the root filesystem), you can copy these files every day to
another partition that is backed up regularly.

If /tmp is a separate filesystem, it should not be backed up. The /tmp directory
should not contain anything essential, so there is no reason to preserve it. In case
this seems obvious, we know of one large site that does daily backups of /tmp.

Make daily dumps fit on one piece of media

See Chapter 8 for
more information
about cron.

In a perfect world, you could do daily dumps of all your user filesystems onto a sin-
gle tape. High-density media such as DLT, AIT, and LTO make this goal practical for
some sites. You can automate the process by mounting your backup media every
day before leaving work and letting cron execute the backup for you. That way,
dumps occur at a time when files are not likely to be changing, and the dumps have
minimal impact on users.

As our work habits change and telecommuting becomes more popular, the range of
“good” times to do backups is shrinking. From our logs, we see that between 3:00
a.m. and 6:00 a.m. is the best time. However, backing up 80TB of data in three hours
isn’t going to happen.

Another major problem is the rapid expansion of disk space that has resulted from
reductions in the price of hard disks. You can no longer purchase a stock desktop
machine with less than 100GB of disk space. Why clean up your disks and enforce
quotas when you can just throw a little money at the problem and add more disk
space? Unfortunately, it’s all too easy for the amount of on-line storage to outstrip
your ability to back it up.

If you can’t fit your daily backups on one tape, you have several options:

• Buy a higher-capacity backup device.

• Buy a stacker or library and feed multiple pieces of media to one device.

• Change your dump sequence.

• Write a smarter script.

• Use multiple backup devices.

Your automated dump system should always record the name of each filesystem it
has dumped. Good record keeping allows you to quickly skip forward to the correct

B
a

ck
u

p
s

9.1 Motherhood and apple pie 161

filesystem when you want to restore a file. It is also a good idea to record the order of
the filesystems on the outside of the tape. (We’ve said it before and we’ll say it again:
be sure to use the nonrewinding device to write to media with multiple dumps.)

Make filesystems smaller than your dump device

dump and other readily available utilities are perfectly capable of dumping filesys-
tems to multiple pieces of media. However, if a dump spans multiple tapes, an oper-
ator or tape library robot must be present to change the media, and the media must
be carefully labeled to allow restores to be performed easily. Unless you have a good
reason to create a really large filesystem, don’t do it.

Keep media off-site

Most organizations keep backups off-site so that a disaster such as a fire cannot de-
stroy both the original data and the backups. “Off-site” can be anything from a safe
deposit box at a bank to the President’s or CEO’s home. Companies that specialize in
the secure storage of backup media guarantee a secure and climate-controlled envi-
ronment for your archives. Always make sure your off-site storage provider is repu-
table, bonded, and insured. There are on-line (but off-site) businesses today that
specialize in safeguarding your data.

The speed with which backup media are moved off-site should depend on how often
you need to restore files and on how much latency you can accept. Some sites avoid
making this decision by performing two dumps to different backup devices, one
that stays on-site and one that is moved immediately.1

Protect your backups

Dan Geer, a security consultant, said, “What does a backup do? It reliably violates file
permissions at a distance.” Hmmm.

Secure your backup media. They contain all your organization’s data and can be
read by anyone who has physical access to them. Not only should you keep your me-
dia off-site, but you should also keep them under lock and key. If you use a commer-
cial storage facility for this purpose, the company you deal with should guarantee
the confidentiality of the tapes in their care.

Encryption of backup media is an option to consider. Many commercial backup
utilities make encryption relatively painless. On the other hand, you must make sure
that the encryption keys cannot be lost or destroyed and that they are available for
use in an emergency.

Some companies feel so strongly about the importance of backups that they make
duplicates, which is really not a bad idea at all.

1. A large financial institution located in the World Trade Center kept its “off-site” backups one or two
floors below their offices. When the building was bombed (the first time), the backup tapes (as well as
the computers) were destroyed. Make sure “off-site” really is.

162 Chapter 9 – Backups

Limit activity during dumps

Filesystem activity should be limited during dumps because changes can cause your
backup utility to make mistakes. You can limit activity either by doing the dumps
when few active users are around (in the middle of night or on weekends) or by
making the filesystem accessible only to the backup utility. (This latter precaution
sounds fine in theory, but it is rarely practiced. Users want 24/7 access to all filesys-
tems. These days it is impossible to do a backup with no disk activity.)

See page 496 for
more information
about file servers.

Dedicated file servers such as those manufactured by Network Appliance provide
on-line backups with snapshots of the filesystem at regular, tunable intervals. This
feature enables safe backups to be made of an active filesystem and is one of the im-
portant advantages of using a dedicated file server.

Verify your media

We’ve heard many horror stories about system administrators who did not discover
problems with their dump regime until after a serious system failure. It is essential
that you continually monitor your backup procedure and verify that it is functioning
correctly. Operator error ruins more dumps than any other problem.

The first check is to have your backup software attempt to reread tapes immediately
after it has finished dumping.2 Scanning a tape to verify that it contains the expected
number of files is a good check. It’s best if every tape is scanned, but this no longer
seems practical for a large organization that uses hundreds of tapes a day. A random
sample would be most prudent in this environment.

See page 173 for
more information
about restore.

It is often useful to generate a table of contents for each filesystem (dump users can
use restore -t) and to store the results on disk. These catalogs should be named in a
way that relates them to the appropriate tape; for example, okra:usr.Jan.13. A week’s
worth of these records makes it easy to discover what piece of media a lost file is on.
You just grep for the filename and pick the newest instance.

In addition to providing a catalog of tapes, successfully reading the table of contents
from the tape is a good indication that the dump is OK and that you will probably be
able to read the media when you need to. A quick attempt to restore a random file
gives you even more confidence in your ability to restore from that piece of media.3

You should periodically attempt to restore from random media to make sure that
restoration is still possible. Every so often, try to restore from an old (months or
years) piece of dump media. Tape drives have been known to wander out of align-
ment over time and become unable to read their old tapes. The media can be recov-
ered by a company that specializes in this service, but it is expensive.

A related check is to verify that you can read the media on hardware other than your
own. If your machine room burns, it does not do much good to know that the backup

2. You can use restore -C to verify a dump tape against a directory tree.

3. For example, restore -t reads only the table of contents for the dump, which is stored at the beginning
of the tape. When you actually restore a file, you are testing a more extensive region of the media.

B
a

ck
u

p
s

9.2 Backup devices and media 163

could have been read on a tape drive that has now been destroyed. DAT tapes have
been particularly susceptible to this problem in the past but more recent versions of
the technology have improved.

Develop a media life cycle

All media has a finite life. It’s great to recycle your media, but be sure to abide by the
manufacturer’s recommendations regarding the life of the media. Most tape manu-
facturers quantify this life in terms of the number of passes that a tape can stand: a
backup, a restore, and an mt fsf (file skip forward) each represent one pass. Nontape
technologies have a much longer life that is sometimes expressed in mean-time-to-
failure (MTTF).

Before you toss your old tapes in the trash, remember to erase or render them un-
readable. A bulk tape eraser (a large electromagnet) can help with this, but be sure
to keep it far, far away from computers and active media. Cutting or pulling out part
of a backup tape does not really do much to protect your data, because tape is easy to
splice or respool. Document-destruction companies shred tapes for a fee.

Design your data for backups

With disks so cheap and new storage architectures so reliable, it’s tempting not to
back up all your data. A sensible storage architecture—designed rather than grown
willy nilly as disk needs increase—can do a lot to make backups more tractable. Start
by taking an inventory of your storage needs:

• The various kinds of data your site deals with

• The expected volatility of each type of data

• The backup frequency you require to feel comfortable with potential losses

• The political boundaries over which the data are spread

Use this information to design your site’s storage architecture with backups and po-
tential growth in mind. Keeping project directories and users’ home directories on a
dedicated file server can make it easier to manage your data and ensure its safety.

Prepare for the worst

After you have established a backup procedure, explore the worst case scenario: your
site is completely destroyed. Determine how much data would be lost and how long it
would take to get your system back to life (include the time it would take to acquire
new hardware). Then determine whether you can live with your answers.

9.2 BACKUP DEVICES AND MEDIA

Many failures can damage several pieces of hardware at once, so backups should be
written to some sort of removable media. Backing up one hard disk to another on
the same machine provides little protection against a controller failure, although it is
certainly better than no backup at all. Companies that back up your data over the

164 Chapter 9 – Backups

Internet are becoming more popular for organizations that encrypt their data, but
most backups are still stored locally.

Many kinds of media store data by using magnetic particles. These media are sub-
ject to damage by electrical and magnetic fields.You should beware of the following
sources of magnetic fields: audio speakers, transformers and power supplies, un-
shielded electric motors, disk fans, CRT monitors, and even prolonged exposure to
the Earth’s background radiation. All magnetic tapes eventually become unreadable
over a period of years. Most tape media will keep for three years, but if you plan to
store data longer than that, you should either use another medium or rerecord the
data onto tape.

The following sections describe some of the media that can be used for backups. The
media are presented in rough order of increasing capacity.

Manufacturers like to specify their hardware capacities in terms of compressed data;
they often optimistically assume a compression ratio of 2:1 or more. In the sections
below, we ignore compression in favor of the actual number of bytes that can physi-
cally be stored on each piece of media.

The compression ratio also affects a drive’s throughput rating. If a drive can physi-
cally write 1 MB/s to tape but the manufacturer assumes 2:1 compression, the
throughput magically rises to 2 MB/s. As with capacity figures, we have ignored
throughput inflation below.

Although cost and media capacity are both important considerations, it’s important
to consider throughput as well. Fast media are more pleasant to deal with, and they
allow more flexibility in scheduling backups.

In the previous edition of this book we mentioned floppy disks, both traditional and
supercapacity (e.g., Zip disks), as potential backup media. These media had their
heyday, but since you can hardly buy a laptop with a floppy drive any longer, we now
exclude these items from our list. Although floppies are useful for exchanging data,
their high media cost make them a poor choice for backups.

Optical media: CD-R/RW, DVD±R/RW, and DVD-RAM

At a cost of about $0.40 each, CDs and DVDs are an attractive option for backups of
small, isolated systems. CDs hold about 650MB and DVDs hold 4.7GB. Dual-layer
DVDs, which are just becoming mainstream, clock in at about 8.5GB.

Drives that write these media are available for every common bus (SCSI, IDE, USB,
etc.) and are in many cases are so inexpensive as to be essentially free. CD media
used to be free as well, but the glut seems to be over. Now that CD and DVD prices
have equilibrated, there’s no reason to use CDs rather than DVDs except that CD
readers are still more common in the world at large.

Optical media are written through a photochemical process that involves the use of
a laser. Although hard data on longevity has been elusive, it is widely believed that
optical media have a substantially longer shelf life than magnetic media. However,

B
a

ck
u

p
s

9.2 Backup devices and media 165

even the write-once versions (CD-R, DVD-R, and DVD+R) are not as durable as
manufactured (stamped) CDs and DVDs.

CD-R is not a particularly good choice for normal backups, but it’s good for archiving
data you might want to recover a long time in the future. CD-RW works well for
regularly archiving small amounts of personal data.

Today’s fast DVD writers offer speeds as fast as—if not faster than—tape drives. The
write-once versions are DVD-R (developed by Pioneer in 1997) and DVD+R (devel-
oped by a coalition in 2002). DVD-RW, DVD+RW, and DVD-RAM are rewritable.
The DVD-RAM system has built-in defect management and is therefore more reli-
able than other optical media. On the other hand, it is much more expensive.

Manufacturers estimate a potential life span of hundreds of years for these media if
they are properly stored. Their recommendations for proper storage include indi-
vidual cases, storage at a constant temperature in the range 41°–68°F with relative
humidity of 30%–50%, no exposure to direct sunlight, and marking only with wa-
ter-soluble markers. Under average conditions, a reliable shelf life of 1–5 years is
probably more realistic.

As borne out by numerous third-party evaluations, the reliability of optical media
has proved to be exceptionally manufacturer dependent. This is one case in which it
pays to spend money on premium quality media. Unfortunately, quality varies from
product to product even within a manufacturer’s line, so there is no safe-bet manu-
facturer. In recent years Taiyo Yuden has topped the reliability charts, but only with
media manufactured in Japan; Taiyo Yuden media manufactured in other countries
has a less consistent record.

A recent entry to the optical data storage market is the Blu-Ray disc, whose various
flavors store from 25–100 GB of data. The high capacity is a result of the short wave-
length (405 nm) of the laser used to read and write the disks (hence the “blue” in
Blu-Ray). The first players were available in the United States in June 2006. This is a
technology worth watching and promises to become a good solution for backups.

Removable hard disks (USB and FireWire)

External storage devices that connect through a USB or FireWire (IEEE1394) ports
have become common. The underlying storage technology is usually some form of
hard disk, but flash memory devices are common at the low end (the ubiquitous
“jump drives”). Capacities range from less than 1MB to 600GB and up. The limit on
flash memory devices is currently about 4GB.

The main limitation of these drives is the speed of the bus, but with the release of
USB 2.0 and FireWire 800, both flavors have achieved respectable throughput in the
50–90 MB/s range.

The lifetime of flash memory devices is mostly a function of the number of write
cycles. Midrange drives supposedly allow several million cycles.

166 Chapter 9 – Backups

Small tape drives: 8mm and DDS/DAT

Various flavors of 8mm and DDS/DAT tape drives compose the low end of the tape
storage market. Exabyte 8mm tape drives were early favorites, but the drives tended
to become misaligned every 6–12 months, requiring a trip to the repair depot. It was
not uncommon for tapes to be stretched in the transport mechanism and become
unreliable. The 2–7 GB capacity of these tapes makes them inefficient for backing up
today’s desktop systems, let alone servers.

DDS/DAT (Digital Audio Tape) drives are helical scan devices that use 4mm car-
tridges. Although these drives are usually referred to as DAT drives, they are really
DDS (Digital Data Storage) drives; the exact distinction is unimportant. The origi-
nal format held about 2GB, but successive generations have significantly improved
DDS capacity. The current generation (DAT 72) holds up to 32GB of data at a trans-
fer rate of 3.5 MB/s. The tapes should last for 100 backups and are reported to have a
shelf life of 10 years.

DLT/S-DLT

Digital Linear Tape/Super Digital Linear Tape is a mainstream backup medium.
These drives are reliable, affordable, and capacious. They evolved from DEC’s TK-50
and TK-70 cartridge tape drives. DEC sold the technology to Quantum, which pop-
ularized the drives by increasing their speed and capacity and by dropping their
price. In 2002, Quantum acquired Super DLT, a technology by Benchmark Storage
Innovations that tilts the recording head back and forth to reduce crosstalk between
adjacent tracks.

Quantum now offers two hardware lines: a performance line and a value line. You
get what you pay for. The tape capacities vary from DLT-4 at 800GB to DLT-4 in the
value line at 160GB, with transfer rates of 60 MB/s and 10 MB/s, respectively. Manu-
facturers boast that the tapes will last 20 to 30 years—that is, if the hardware to read
them still exists. How many 9-track tape drives are still functioning and on-line
these days?

The downside of S-DLT is the price of media, which runs about $30–45 per tape. A
bit pricey for a university; perhaps not for a Wall Street investment firm.

AIT and SAIT

Advanced Intelligent Tape is Sony’s own 8mm product on steroids. In 1996, Sony
dissolved its relationship with Exabyte and introduced the AIT-1, an 8mm helical
scan device with twice the capacity of 8mm drives from Exabyte. Today, Sony offers
a higher-capacity version of AIT-1 and their follow-on technology AIT-4, which
claims capacity of 200GB and a 24 MB/s maximum transfer rate.

SAIT is Sony’s half-height offering, which uses larger media and has greater capacity
than AIT. SAIT tapes holds up to 500GB of data and sport a transfer rate of 30 MB/s.
This product is most popular in the form of tape library offerings.

B
a

ck
u

p
s

9.2 Backup devices and media 167

The Advanced Metal Evaporated (AME) tapes used in AIT and SAIT drives have a
long life cycle. They also contain a built-in EEPROM that gives the media itself
some smarts. Software support is needed to make any actual use of the EEPROM,
however. Drive and tape prices are both roughly on a par with DLT.

VXA/VXA-X

Exabyte’s current offerings include VXA and VXA-X technologies. The VXA drives
use what Exabyte describes as a packet technology for data transfer. The VXA-X
products still rely on Sony for the AME media; the V series is upgradable as larger-
capacity media becomes available. The VXA and X series claim capacities in the
range of 33–160 GB, with a transfer rate of 24 MB/s.

LTO

Linear Tape-Open was developed by IBM, HP, and Quantum as an alternative to the
proprietary format of DLT. LTO-3, the latest version, has a 400GB capacity at a speed
of 80 MB/s. LTO media has an estimated storage life of 30 years but is susceptible to
magnetic exposure. The cost of media is about $80 for the 400GB tapes.

Jukeboxes, stackers, and tape libraries

With the low cost of disks these days, most sites have so much disk space that a full
backup requires many tapes, even at 100GB per tape. One possible solution for these
sites is a stacker, jukebox, or tape library.

A stacker is a simple tape changer that is used with a standard tape drive. It has a
hopper that you load with tapes; it unloads full tapes as they are ejected from the
drive and replaces them with blank tapes from the hopper. Most stackers hold about
ten tapes.

A jukebox is a hardware device that can automatically change removable media in a
limited number of drives, much like an old-style music jukebox that changed records
on a single turntable. Jukeboxes are available for all the media discussed here. They
are often bundled with special backup software that understands how to manipulate
the changer. Storage Technology (now Sun Microsystems) and Sony are two large
manufacturers of these products.

Tape libraries are a hardware backup solution for large data sets—terabytes, usually.
They are large-closet-sized mechanisms with multiple tape drives (or CDs) and a
robotic arm that retrieves and files media on the library’s many shelves. As you can
imagine, they are quite expensive to purchase and maintain, and they have special
power, space, and air conditioning requirements. Most purchasers of tape libraries
also purchase an operations contract from the manufacturer to optimize and run
the device. The libraries have a software component, of course, which is what really
runs the device. Storage Technology (Sun Microsystems) is a leading manufacturer
of tape libraries.

168 Chapter 9 – Backups

Hard disks

The decreasing cost of hard drives makes disk-to-disk backups an attractive option
to consider. Although we suggest that you not duplicate one disk to another within
the same physical machine, hard disks can be a good, low-cost solution for backups
over a network.

One obvious problem is that hard disk storage space is finite and must eventually be
reused. However, disk-to-disk backups are an excellent way to protect against the
accidental deletion of files. If you maintain a day-old disk image in a well-known
place that’s shared over NFS or CIFS, users can recover from their own mistakes
without involving an administrator. Other popular options are today’s high-volume
FireWire and USB disks for backing up individual desktops. The Cintre ZDisc
1-Button Instant Backup is a 3.5" external USB 2.0 hard drive, an attractive option at
around $100.

Summary of media types

Whew! That’s a lot of possibilities. Table 9.1 summarizes the characteristics of the
media discussed in the previous sections.

W. Curtis Preston has compiled an excellent reference list of backup devices by man-
ufacturer. It’s available from www.backupcentral.com/hardware-drives.html.

What to buy

When you buy a backup system, you pretty much get exactly what you see in Table
9.1. All the media work reasonably well, and among the technologies that are close

Table 9.1 Backup media compared

Medium Capacitya Speeda Drive Media Cost/GB Reuse? Random?b

CD-R 650MB 4MB/s $15 20¢ 32¢ No Yes
CD-RW 650MB 4MB/s $20 30¢ 48¢ Yes Yes
DVD±R 4.7GB 10MB/s $50 40¢ 9¢ No Yes
DVD+R DLc 8.5GB 10MB/s $50 $2 24¢ No Yes
DVD±RW 4.7GB 10MB/s $50 80¢ 17¢ Yes Yes
DDS-4 (4mm) 20GB 10MB/s $300 $5 25¢ Yes No
DLT/S-DLT 160GB 10MB/s $1,000 $20 13¢ Yes No
AIT-4 (8mm) 200GB 6MB/s $2,500 $40 20¢ Yes No
SAIT-1 500GB 30MB/s $6,500 $126 25¢ Yes No
VXA-172 86GB 12MB/s $600 $30 35¢ Yes No
VXA-320 160GB 12MB/s $800 $60 35¢ Yes No
LTO-3 400GB 30MB/s $3,000 $65 16¢ Yes No

a. Uncompressed capacity and speed
b. Allows random access to any part of the media?
c. Dual-layer

www.backupcentral.com/hardware-drives.html

B
a

ck
u

p
s

9.3 Setting up an incremental backup regime with dump 169

in price, there generally isn’t a compelling reason to prefer one over another. Buy a
system that meets your specifications and your budget.

DDS, AIT, and LTO drives are excellent solutions for small workgroups and for indi-
vidual machines with a lot of storage. The startup costs are relatively modest, the
media are widely available, and several manufacturers are using each standard. All
of these systems are fast enough to back up beaucoup data in a finite amount of time.

DLT, AIT, and LTO-3 are all roughly comparable. There isn’t a clear winner among
the three, and even if there were, the situation would no doubt change within a few
months as new versions of the formats were deployed. All of these formats are well
established and would be easy to integrate into your environment, be it a university
or corporation.

In the following sections, we use the generic term “tape” to refer to the media chosen
for backups. Examples of backup commands are phrased in terms of tape devices.

9.3 SETTING UP AN INCREMENTAL BACKUP REGIME WITH DUMP

The dump and restore commands are the most common way to create and restore
from backups. These programs have been around for a very long time, and their be-
havior is well known. At most sites, dump and restore are the underlying commands
used by automated backup software.

You may have to explicitly install dump and restore on your Linux systems, depend-
ing on the options you selected during the original installation. A package is avail-
able for easy installation on all our example systems. The current Red Hat and Fe-
dora Core releases offer a system administration package at installation time that
includes dump.

Under Linux, nothing is statically linked, so you need the shared libraries in /lib to
do anything useful. Static linking makes it easier to recover from a disaster because
restore is then completely self-contained.

Dumping filesystems

dump builds a list of files that have been modified since a previous dump, then packs
those files into a single large file to archive to an external device. dump has several
advantages over most of the other utilities described in this chapter:

• Backups can span multiple tapes.

• Files of any type (even devices) can be backed up and restored.

• Permissions, ownerships, and modification times are preserved.

• Files with holes are handled correctly.4

• Backups can be performed incrementally (with only recently modified files
being written out to tape).

4. Holes are blocks that have never contained data. If you open a file, write one byte, seek 1MB into the
file, then write another byte, the resulting “sparse” file takes up only two disk blocks even though its
logical size is much bigger. Files created by Berkeley DB or ndbm contain many holes.

170 Chapter 9 – Backups

The GNU version of tar used in Linux provides all these features as well. However,
dump’s handling of incremental backups (discussed later) is a bit more sophisticated
than tar’s. You may find the extra horsepower useful if your needs are complex.

Actually, the most compelling reason to choose dump over tar in a Linux environ-
ment has nothing to do with Linux at all. Unfortunately, the version of tar shipped
with most major UNIX distributions lacks many of GNU tar’s features. If you must
support backups for both Linux and UNIX variants, dump is your best choice. It is
the only command that handles these issues (fairly) consistently across platforms,
so you can be an expert in one command rather than being familiar with two. If you
are lucky enough to be in a completely homogeneous Linux environment, pick your
favorite. dump is less filling, but tar tastes great!

The dump command understands the layout of raw filesystems, and it reads a filesys-
tem’s inode table directly to decide which files must be backed up. This knowledge of
the filesystem makes dump very efficient, but it also imposes a few limitations.5

See Chapter 16 for
more information
about NFS.

The first limitation is that every filesystem must be dumped individually. If you have
a disk that is partitioned, you must dump each partition separately. The other limita-
tion is that only filesystems on the local machine can be dumped; you cannot dump
an NFS filesystem mounted from a remote machine. However, you can dump a local
filesystem to a remote tape drive with dump’s evil twin, rdump.

The most important feature of dump is its support for the concept of an “incremen-
tal” backup. Although you could back up the entire system each day, doing so is
usually not practical. With incremental dumps, you can back up only files that have
changed since the last backup.

When you do a dump, you assign it a backup level, which is an integer from 0 to 9. A
level N dump backs up all files that have changed since the last dump of level less
than N. A level 0 backup places the entire filesystem on the tape. With an incremen-
tal backup system, you may have to restore files from several sets of backup tapes to
reset a filesystem to the state it was in during the last backup.6

Another nice feature of dump is that it does not care about the length of filenames.
Hierarchies can be arbitrarily deep, and long names are handled correctly.

The first argument to dump must be the incremental dump level. dump uses the
/etc/dumpdates file to determine how far back an incremental dump must go. The
-u flag causes dump to automatically update /etc/dumpdates when the dump com-
pletes. The date, dump level, and filesystem name are recorded. If you never use the
-u flag, all dumps become level 0s because no record of having previously dumped
the filesystem is ever created. If you change a filesystem’s name, you can edit the
/etc/dumpdates file by hand.

5. dump requires access to raw disk partitions. Anyone allowed to do dumps can read all the files on the
system with a little work.

6. Actually, dump does not keep track of files that have been deleted. If you restore from incremental
backups, deleted files are recreated.

B
a

ck
u

p
s

9.3 Setting up an incremental backup regime with dump 171

See page 870 for infor-
mation about device
numbers.

dump sends its output to some default device, usually the primary tape drive. To
specify a different device, use the -f flag. If you are placing multiple dumps on a single
tape, make sure you specify a nonrewinding tape device (a device file that does not
cause the tape to be rewound when it is closed—most tape drives have both a stan-
dard and a nonrewinding device entry).7 For the system’s first SCSI tape drive, Linux
uses /dev/st0 for the rewinding device and /dev/nst0 for the nonrewinding device.

If you choose the rewinding device by accident, you end up saving only the last file-
system dumped. Since dump does not have any idea where the tape is positioned,
this mistake does not cause errors. The situation only becomes apparent when you
try to restore files.

When you use rdump to dump to a remote system, you specify the identity of the
remote tape drive as hostname:device; for example,

rdump -0u -f anchor:/dev/nst0 /spare

Permission to access remote tape drives should be controlled through an SSH tun-
nel. See page 697 for more information.

In the past, you had to tell dump exactly how long your tapes were so that it could
stop writing before it ran off the end of a tape. Modern tape drives can tell when they
have reached the end of a tape and report that fact back to dump, which then re-
winds and ejects the current tape and requests a new one. Since the variability of
hardware compression makes the “virtual length” of each tape somewhat indetermi-
nate, it’s always best to rely on the end-of-tape indication if your hardware supports
it. If not, you can specify the tape length in kilobytes with the -B option.

dump -5u -B 2000000 -f /dev/nst0 /work
DUMP: Date of this level 5 dump: Wed May 8 16:59:45 2006
DUMP: Date of last level 0 dump: the epoch
DUMP: Dumping /dev/hda2 (/work) to /dev/nst0
DUMP: mapping (Pass I) [regular files]
DUMP: mapping (Pass II) [directories]
DUMP: estimated 18750003 tape blocks on .23 tape(s)
.…

The flags -5u are followed by the flags -B (length of the tape: 20 GB) and -f (tape
device: /dev/nst0). The last argument, which is mandatory, is the name of the file-
system to be dumped (/work).

Dump sequences

Because dump levels have meaning only in relation to other levels, dumps can be
performed according to various schedules.

7. All the entries for a tape unit use the same major device number. The minor device number tells the
tape device driver about special behaviors (rewinding, byte swapping, etc.).

172 Chapter 9 – Backups

The schedule that is right for you depends on:

• The activity of your filesystems

• The capacity of your dump device

• The amount of redundancy you want

• The number of tapes you want to buy

In the days when it took many tapes to back up a filesystem, complicated dump se-
quences were useful for minimizing the number of tapes consumed by each day’s
backups. As tape capacities have grown, it has become less useful to make fine dis-
tinctions among dump levels.

Because most files never change, even the simplest incremental schedule eliminates
many files from the daily dumps. As you add additional levels to your dump sched-
ule, you divide the relatively few active files into smaller and smaller segments.

A complex dump schedule provides the following three benefits:

• You can back up data more often, limiting your potential losses.

• You can use fewer daily tapes (or fit everything on one tape).

• You can keep multiple copies of each file, to protect against tape errors.

In general, the way to select a sequence is to determine your needs in each of these
areas. Given these constraints, you can design a schedule at the appropriate level of
sophistication. We describe a couple of possible sequences and the motivation be-
hind them. One of them might be right for your site—or, your needs might dictate a
completely different schedule.

A simple schedule

If your total amount of disk space is smaller than the capacity of your tape device, you
can use a completely trivial dump schedule. Do level 0 dumps of every filesystem each
day. Reuse a group of tapes, but every N days (where N is determined by your site’s
needs), keep the tape forever. This scheme costs you

(365/N) * (price of tape)

per year. Don’t reuse the exact same tape for every night’s dump. It’s better to rotate
among a set of tapes so that even if one night’s dump is blown, you can still fall back
to the previous night.

This schedule guarantees massive redundancy and makes data recovery easy. It’s a
good solution for a site with lots of money but limited operator time (or skill). From
a safety and convenience perspective, this schedule is the ideal. Don’t stray from it
without a specific reason (e.g., to conserve tapes or labor).

A moderate schedule

A more reasonable schedule for most sites is to assign a tape to each day of the week,
each week of the month (you’ll need 5), and each month of the year. Every day, do a
level 9 dump to the daily tape. Every week, do a level 5 dump to the weekly tape. And

B
a

ck
u

p
s

9.4 Restoring from dumps with restore 173

every month, do a level 3 dump to the monthly tape. Do a level 0 dump whenever
the incrementals get too big to fit on one tape, which is most likely to happen on a
monthly tape. Do a level 0 dump at least once a year.

The choice of levels 3, 5, and 9 is arbitrary. You could use levels 1, 2, and 3 with the
same effect. However, the gaps between dump levels give you some breathing room
if you later decide you want to add another level of dumps.

This schedule requires 24 tapes plus however many tapes are needed for the level 0
dumps. Although it does not require too many tapes, it also does not afford much
redundancy.

9.4 RESTORING FROM DUMPS WITH RESTORE

The program that extracts data from tapes written with dump is called restore. We
first discuss restoring individual files (or a small set of files), then explain how to
restore entire filesystems.

Restoring individual files

The first step to take when you are notified of a lost file is to determine which tapes
contain versions of the file. Users often want the most recent version of a file, but that
is not always the case. For example, a user who loses a file by inadvertently copying
another file on top of it would want the version that existed before the incident oc-
curred. It’s helpful if you can browbeat users into telling you not only what files are
missing but also when they were lost and when they were last modified. We find it
helpful to structure users’ responses with a request form.

If you do not keep on-line catalogs, you must mount tapes and repeatedly attempt to
restore the missing files until you find the correct tape. If the user remembers when
the files were last changed, you may be able to make an educated guess about which
tapes the files might be on.

After determining which tapes you want to extract from, create and cd to a tempo-
rary directory such as /var/restore where a large directory hierarchy can be created;
most versions of restore must create all the directories leading to a particular file
before that file can be restored. Do not use /tmp—your work could be wiped out if
the machine crashes and reboots before the restored data has been moved to its orig-
inal location.

The restore command has many options. Most useful are -i for interactive restores
of individual files and directories and -r for a complete restore of an entire filesystem.
You might also need -x, which requests a noninteractive restore of specified files—
be careful not to overwrite existing files.

restore -i reads the table of contents from the tape and then lets you navigate through
it as you would a normal directory tree, using commands called ls, cd, and pwd. You
mark the files that you want to restore with the add command. When you finish
selecting, type extract to pull the files off the tape.

174 Chapter 9 – Backups

See page 178 for a
description of mt.

If you placed multiple files on a single tape, you must use the mt command to posi-
tion the tape at the correct dump file before running restore. Remember to use the
nonrewinding device!

For example, to restore the file /users/janet/iamlost from a remote tape drive, you
might issue the following commands. Let’s assume that you have found the right tape,
mounted it on tapehost:/dev/nst0, and determined that the filesystem containing
janet’s home directory is the fourth one on the tape.

mkdir /var/restore
cd /var/restore
ssh tapehost mt -f /dev/nst0 fsf 3
rrestore -i -f tapehost:/dev/nst0
restore> ls
. :
janet/ garth/ lost+found/ lynda/
restore> cd janet
restore> ls
afile bfile cfile iamlost
restore> add iamlost
restore> ls8

afile bfile cfile iamlost*
restore> extract
You have not read any volumes yet.
Unless you know which volume your files are on you should
start with the last volume and work towards the first.
Specify next volume #: 1
set owner/mode for '.'? [yn] n

Volumes (tapes) are enumerated starting at 1, not 0, so for a dump that fits on a single
tape, you specify 1. When restore asks if you want to set the owner and mode for “.”,
it’s asking whether it should set the current directory to match the root of the tape.
Unless you are restoring an entire filesystem, you probably do not want to do this.

Once the restore has completed, you need to give the file to janet:

cd /var/restore
ls janet
iamlost
ls ~janet
afile bfile cfile
cp -p janet/iamlost ~janet/iamlost.restored
chown janet ~janet/iamlost.restored
rm -rf /var/restore
mail janet
Your file iamlost has been restored as requested and has
been placed in /users/janet/iamlost.restored.

Your name, Humble System Administrator

8. The star next to iamlost indicates that it has been marked for extraction.

B
a

ck
u

p
s

9.4 Restoring from dumps with restore 175

Some administrators prefer to restore files into a special directory, allowing users to
copy their files out by hand. In that scheme, the administrator must protect the pri-
vacy of the restored files by verifying their ownership and permissions. If you choose
to use such a system, remember to clean out the directory every so often.

If you created a backup with rdump and are unable to restore files from it with
restore, try running rrestore instead. To minimize the chance of problems, use the
same host that wrote the tape to read it.

restore -i is usually the easiest way to restore a few files or directories from a dump.
However, it does not work if the tape device cannot be moved backwards a record at
a time (a problem with some 8mm drives). If restore -i fails, try restore -x before
jumping out the window. restore -x requires you to specify the complete path of the
file you want to restore (relative to the root of the dump) on the command line. The
following sequence of commands repeats the previous example, but with -x:

mkdir /var/restore
cd /var/restore
ssh tapehost mt -f /dev/nst0 fsf 3
rrestore -x -f tapehost:/dev/nst0 ./janet/iamlost

Restoring entire filesystems

With luck, you will never have to restore an entire filesystem after a system failure.
However, the situation does occasionally arise. Before attempting to restore the file-
system, be absolutely sure that whatever problem caused the filesystem to be de-
stroyed in the first place has been taken care of. It’s pointless to spend numerous
hours spinning tapes only to lose the filesystem once again.

Before you begin a full restore, create and mount the target filesystem. See Chapter
7, Adding a Disk, for more information about how to prepare the filesystem. To start
the restore, cd to the mount point of the new filesystem, put the first tape of the most
recent level 0 dump in the tape drive, and type restore -r.

restore prompts for each tape in the dump. After the level 0 dump has been restored,
mount and restore the incremental dumps. Restore incremental dumps in the order
in which they were created. Because of redundancy among dumps, it may not be
necessary to restore every incremental. Here’s the algorithm for determining which
dumps to restore:

Step 1: Restore the most recent level 0 dump.

Step 2: Restore the lowest-level dump made after the dump you just
restored. If multiple dumps were made at that level, restore the
most recent one.

Step 3: If that was the last dump that was ever made, you are done.

Step 4: Otherwise, go back to step 2.

176 Chapter 9 – Backups

Here are some examples of dump sequences. You would need to restore only the lev-
els shown in boldface.

0 0 0 0 0 0
0 5 5 5 5
0 3 2 5 4 5
0 9 9 5 9 9 3 9 9 5 9 9
0 3 5 9 3 5 9

See Chapter 7 for
more information
about mke2fs and
mount.

Let’s take a look at a complete command sequence. If the most recent dump was the
first monthly after the annual level 0 in the “moderate” schedule on page 172, the
commands to restore /home, residing on the physical device /dev/sda1, would look
like this (the device names are hardware dependent):

/etc/mke2fs -j /dev/sda1 QUANTUM_PD1050S
/etc/mount /dev/sda1 /home
cd /home
/* Mount first tape of level 0 dump of /home. */
restore -r
/* Mount the tapes requested by restore. */
/* Mount first tape of level 3 monthly dump. */
restore -r

If you had multiple filesystems on one dump tape, use the mt command to skip for-
ward to the correct filesystem before running each restore. See page 178 for a de-
scription of mt.

This sequence would restore the filesystem to the state it was in when the level 3
dump was done, except that all deleted files would be ghoulishly resurrected. This
problem can be especially nasty when you are restoring an active filesystem or are
restoring to a disk that is nearly full. It is quite possible for a restore to fail because
the filesystem has been filled up with ghost files.

9.5 DUMPING AND RESTORING FOR UPGRADES

We recommend that when you perform a major OS upgrade, you back up all file-
systems with a level 0 dump and, possibly, restore them. The restore is needed only
if the new OS uses a different filesystem format or if you change the partitioning of
your disks. However, you must do backups as insurance against any problems that
might occur during the upgrade. A complete set of backups also gives you the option
to reinstall the old OS if the new version does not prove satisfactory. Fortunately,
with the progressive upgrade systems used by most distributions these days, you are
unlikely to need these tapes.

Be sure to back up and restore any system-specific files that are in the root filesystem
or in /usr, such as /etc/passwd, /etc/shadow, or /usr/local. Linux’s directory orga-
nization mixes local files with vendor-distributed files, making it quite difficult to
pick out your local customizations.

B
a

ck
u

p
s

9.6 Using other archiving programs 177

You should do a complete set of level 0 dumps immediately after an upgrade, too.
Most vendors’ upgrade procedures set the modification dates of system files to the
time when they were mastered rather than to the current time. Ergo, incremental
dumps made relative to the pre-upgrade level 0 are not sufficient to restore your
system to its post-upgrade state in the event of a crash.

9.6 USING OTHER ARCHIVING PROGRAMS

dump is not the only program you can use to archive files to tapes; however, it is
usually the most efficient way to back up an entire system. tar, cpio, and dd can also
move files from one medium to another.

tar: package files

tar reads multiple files or directories and packages them into one file, often a tape
file. tar is a useful way to back up any files whose near-term recovery you anticipate.
For instance, if a user is leaving for six months and the system is short of disk space,
you can use tar to put the user’s files on a tape and then remove them from the disk.

tar is also useful for moving directory trees from place to place, especially if you are
copying files as root. tar preserves ownership and time information, but only if you
ask it to. For example,

tar -cf - fromdir | (cd todir ; tar --atime-preserve -xpf -)

creates a copy of the directory tree fromdir in todir. Avoid using “..” in the todir argu-
ment, since symbolic links and automounters can make it mean something different
from what you expect. We’ve been bitten several times.

tar does not follow symbolic links by default, but it can be told to follow them. tar
can also be told to include only files that were modified since a given date, a useful
option for creating your own incremental backup scheme. Consult the tar man page
for this and other nifty features.

One problem with some non-Linux versions of tar is that pathnames are limited by
default to 100 characters. This restriction prevents tar from archiving deep hierar-
chies. If you’re creating tar archives on your Linux systems and exchanging them
with others, remember that people with the standard tar may not be able to read the
tapes or files you create.

tar’s -b option lets you specify a “blocking factor” to use when writing a tape. The
blocking factor is specified in 512-byte blocks; it determines how much data tar buff-
ers internally before performing a write operation. Some DAT devices do not work
correctly unless the blocking factor is set to a special value, but other drives do not
require this setting.

On some systems, certain blocking factors may yield better performance than others.
The optimal blocking factor varies widely, depending on the computer and tape drive

178 Chapter 9 – Backups

hardware. In many cases, you will not notice any difference in speed. When in doubt,
try a blocking factor of 20.

Linux tar expands holes in files unless you use the -S option when creating the orig-
inal archive. Linux tar is relatively intolerant of tape errors.

cpio: archiving utility from ancient times

cpio is similar to tar in functionality. It dates from the beginning of time and is not
used much any longer.

Like tar, cpio can move directory trees. The command

find fromdir -depth -print | cpio -pdm todir

makes a copy of the directory tree fromdir in todir. The GNU version of cpio used in
Linux allows multiple tape volumes, but most versions do not. Only the superuser
can copy special files. Even if you are familiar with cpio from another system, we
recommend that you review the man page carefully because the options vary
greatly among systems.

dd: twiddle bits

dd is a file copying and conversion program. Unless it is told to do some sort of con-
version, dd just copies from its input file to its output file. If a user brings you a tape
that was written on some non-Linux system, dd may be the only way to read it.

One historical use for dd was to create a copy of an entire filesystem. However, a
better option these days is to mke2fs the destination filesystem and then run dump
piped to restore. dd can sometimes clobber partitioning information if used incor-
rectly. It can only copy filesystems between partitions of exactly the same size.

dd can also be used to make a copy of a magnetic tape. With two tape drives, say,
/dev/st0 and /dev/st1, you’d use the command

$ dd if=/dev/st0 of=/dev/st1 cbs=16b

With one drive (/dev/st0), you’d use the following sequence:

$ dd if=/dev/st0 of=tfile cbs=16b
/* Change tapes. */
$ dd if=tfile of=/dev/st0 cbs=16b
$ rm tfile

Of course, if you have only one tape drive, you must have enough disk space to store
an image of the entire tape.

9.7 USING MULTIPLE FILES ON A SINGLE TAPE

In reality, a magnetic tape contains one long string of data. However, it’s often useful
to store more than one “thing” on a tape, so tape drives and their Linux drivers con-
spire to provide you with a bit more structure. When dump or some other command

B
a

ck
u

p
s

9.8 Bacula 179

writes a stream of bytes out to a tape device and then closes the device file, an end-
of-file marker is automatically placed on the tape. This marker separates the stream
from other streams that are written subsequently. When the stream is read back in,
reading stops automatically at the EOF.

You can use the mt command to position a tape at a particular stream or “file set,” as
mt calls them. mt is especially useful if you put multiple files (for example, multiple
dumps) on a single tape. It also has some of the most interesting error messages of
any Linux utility. The basic format of the command is

mt [-f tapename] command [count]

There are numerous choices for command. They vary from platform to platform, so
we discuss only the ones that are essential for doing backups and restores:

rew rewinds the tape to the beginning.

offl puts the tape off-line. On most tape drives, this command
causes the tape to rewind and pop out of the drive. Most
scripts use this command to eject the tape when they are done,
clearly indicating that everything finished correctly.

status prints information about the current state of the tape drive
(whether a tape is loaded, etc.).

fsf [count] fast-forwards the tape. If no count is specified, fsf skips for-
ward one file. With a numeric argument, it skips the specified
number of files. Use this command to skip forward to the cor-
rect filesystem on a tape with multiple dumps.

bsf [count] should backspace count files. The exact behavior of this direc-
tive depends on the tape drive hardware and its associated
driver. In some situations, the current file is counted. In oth-
ers, it is not. On some equipment, bsf does nothing silently. If
you go too far forward on a tape, your best bet is to run mt
rew on it and start again from the beginning.

Consult the mt man page for a list of all the supported commands.

If you’re fortunate enough to have a robotic tape library, you may be able to control
its tape changer by installing the mtx package, an enhanced version of the mt com-
mand. For example, we use it for unattended tape swapping with our groovy HP
6x24 DAT tape cartridge system. Look ma, no hands!

9.8 BACULA

Bacula is an enterprise level client/server backup solution that manages backup, re-
covery, and verification of files over a network. Bacula runs on a variety of UNIX
and Linux systems, including all our example distributions. It also backs up data
from multiple operating systems, including Microsoft Windows.

180 Chapter 9 – Backups

In the previous edition of this book, Amanda was our favorite noncommercial
backup tool. If you need Amanda information, see the first edition of this book or
www.amanda.org. The feature list below explains why Bacula is our new favorite.

• It has a modular design.

• It backs up UNIX, Linux, and Windows systems.

• It supports MySQL, PostgreSQL, or SQLite for its back-end database.

• It supports an easy-to-use, menu-driven command-line console.

• It’s available under an open source license.

• Its backups can span multiple tape volumes.

• Its servers can run on multiple platforms.

• It creates SHA1 or MD5 signature files for each backed-up file.

• It verifies backup jobs.

• It supports tape libraries and autochangers.

• It can execute scripts or commands before and after backup jobs.

• It centralizes backup management for an entire network.

The Bacula model

To deploy Bacula, you should understand its major components. Exhibit A illus-
trates Bacula’s general architecture.

Exhibit A Bacula components and their relationships

The Bacula director is the daemon that coordinates backup, restore, and verification
operations. You can submit backup or restore jobs to the director daemon by using
the Bacula console. You can also ask the director daemon to query the Bacula stor-
age daemon or the file service daemons located on client computers.

You communicate with the director daemon through the Bacula console, which can
be run either as a GNOME GUI or as a command-line tool. The console can run any-
where; it doesn’t have to be located on the same computer as the director daemon.

A storage daemon is the Bacula component that reads and writes tapes or other
backup media. This service must run on the machine that is connected to the tape

Catalog

Console

Director
daemon Client file

daemon

Storage daemon

www.amanda.org

B
a

ck
u

p
s

9.8 Bacula 181

drive or storage device used for backups, but it does not have to be installed on the
same server as the director (although it can be).

A Bacula file daemon runs on each system that is to be backed up. File daemon im-
plementations for each supported operating system send the appropriate file data
and attributes to the storage daemon as backup jobs are executed.

The final Bacula component is the catalog, a relational database in which Bacula
stores information about every file and volume that is backed up. The catalog makes
Bacula fast and efficient during a restore because the entire backup history is avail-
able on-line; Bacula knows what storage volumes are needed to restore a particular
file set before it reads a single tape. Bacula currently supports three different data-
bases: MySQL, PostgreSQL, and SQLite. The catalog database need not reside on the
same server as the director.

An additional, optional component is the Bacula Rescue CD-ROM. This component
is a separately downloadable package that creates individualized, bootable rescue
CDs for Linux systems to use during disaster recovery. The CDs contain a statically
linked copy of the system’s file daemon as well as customized shell scripts that incor-
porate configuration information about the system’s disks, kernel, and network in-
terfaces. If a Linux system has a catastrophic failure, you can use its rescue CD to
boot the system, repartition the disk, and connect to the Bacula director to perform
a full system restore over the network.

Setting up Bacula

Because of Bacula’s complexity, advanced feature set, and modular design, there are
many ways to set up a site-wide backup scheme. In this section we walk through a
basic Bacula configuration.

In general, five steps get Bacula up and running:

• Install a supported third-party database and the Bacula daemons.

• Configure the Bacula daemons.

• Install and configure the client file daemons.

• Start the Bacula daemons.

• Add media to media pools with the Bacula console.

Our example setup consists of two machines, harp and bull. The machine harp is the
client; it runs only a file daemon. The remaining four Bacula components (director
daemon, storage daemon, catalog, and console) all run on the server bull. The stor-
age device is a SureStore LTO1 tape library. Our backup schedule consists of weekly
full backups followed by daily incremental backups. MySQL is used for the catalog.

Installing the database and Bacula daemons

Before we can install Bacula, we must first install the back-end database for its cata-
log. For easiest integration with Bacula, we recommend MySQL with its default con-
figuration paths.

182 Chapter 9 – Backups

Stability and reliability are a must when dealing with a backup platform, so once you
have installed the database, we recommend that you download and install the latest
stable source code from the Bacula web site. Step-by-step installation documenta-
tion is included with the source code in the docs directory. The documentation is
also on-line at www.bacula.org, where it is available in both HTML or PDF format.
Helpful tutorials and developer guides can also be found there.

After unpacking the source code, we ran

./configure --with-mysql --prefix=/etc/bacula

followed by make to compile the binaries, and finally make install to complete the
installation.

Once Bacula has been installed, the next step is to create the actual MySQL database
and the data tables inside it. We made sure MySQL was running, then cd’ed to the
installation directory (/etc/bacula) and ran three shell scripts that were created as
part of the make install procedure. The grant_mysql_privileges script grants the
Bacula user access privileges to MySQL. The create_mysql_database script creates
the Bacula database, and finally, the make_mysql_tables script populates the data-
base with the required tables.

Configuring the Bacula daemons

Before we begin a more detailed discussion of our example setup, we first define
some key Bacula terms:

• “Jobs” are the unit of Bacula activity. They come in two flavors: backup
and restore.

• “Pools” are groups of physical media that store jobs. Our example configu-
ration uses two pools, one for full backups and another for incrementals.

• “Filesets” are lists of partitions and files. Filesets can be explicitly included
or excluded in backup or restore jobs.

• The “bootstrap” file is a special text file, created by Bacula, that contains
information about files that should be restored. Bootstrap files are created
during the restore command or during a backup if the Write Bootstrap
parameter is defined for the backup job.

• “Messages” are inter-daemon communications (log entries, really) regard-
ing the status of daemons and jobs. Messages can also be sent by email and
written to log files.

The config files reside in the directory specified with the --prefix option during in-
stallation, typically /etc/bacula. In the next sections, we cover the options for the
director daemon (bacula-dir.conf), the storage daemon (bacula-sd.conf), and the
console (bconsole.conf).

www.bacula.org

B
a

ck
u

p
s

9.8 Bacula 183

We do not cover all the possible configuration parameters in our sample configura-
tion files. Instead, we begin each section with a general overview and then point out
some parameters that we think are either particularly useful or hard to grasp.

bacula-dir.conf: director configuration

The bacula-dir.conf file is the most complex of Bacula’s configuration files. We look
below at its ten logical sections: Director, Catalog, JobDefs, Job, FileSet, Schedule,
Pool, Client, Storage, and Messages. More detailed information about each section
and its parameters can be found in the on-line documentation.

Each resource section is enclosed in curly braces. Comments are introduced with a #
sign in all Bacula configuration files.

Sample Bacula director configuration file, /etc/bacula-dir.conf

Director {
Name = bull-dir
DIRport = 9101
Query File = "/etc/bacula/query.sql"
Working Directory = "/var/Bacula/working"
Pid Directory = "/var/run"
Maximum Concurrent Jobs = 1
Password = "B@cu1@Lik3s,fRu17"
Messages = Standard

}

The Director resource is more or less the mother ship of the Bacula sea. Its parame-
ters define the name and basic behavior of the director. Options set the communica-
tion port through which the other daemons communicate with the director, the lo-
cation in which the director stores its temporary files, and the number of concurrent
jobs that the director can handle at once.

The Password parameter defines the password the console program uses to authen-
ticate itself to the director. An identical password must be set in the Director re-
source of the console configuration file, bconsole.conf. Although the password ap-
pears in plaintext in the config files, it is never transmitted over the network.

In our example configuration, the director and console are hosted on the same ma-
chine. However, a password is still required in both configuration files.

Generic catalog service

Catalog {
Name = ATE
DBName = bacula;
user = bacula;
password = "fRu17,B0wL"

}

The Catalog resource section identifies the database in which Bacula stores its op-
erational records. For simplicity, we defined one catalog for all jobs. Bacula does

184 Chapter 9 – Backups

support multiple catalogs, however, and this feature is useful if you prefer to main-
tain a separate database for each client group. Currently, all catalog databases must
reside within the same physical database server.

The DBName parameter is the name of the catalog database. This database is set up
during installation according to the database options passed to configure. Bacula’s
prebuilt database creation scripts can be found in the src/cats directory of the Bac-
ula source code distribution.

Job definitions

Job {
Name = "harp"
Level = Full
Write Bootstrap = "/atrust/admin/backups/bootstraps/harp.bsr"
Client = harp
File Set = harp
Storage = SureStore
Pool = SSFullPool
Incremental Backup Pool = SSIncrementalPool
Schedule = Nightly

}

A Job resource defines the default parameters for a particular backup job. In general,
there is one Job definition per client. Most of the parameters are self-explanatory,
but a few merit additional discussion.

Write Bootstrap tells Bacula where to write bootstrap information about the
backup for use during a restore. Bootstrap files list the files and volumes needed for
a restore job. They are not mandatory but are highly recommended. Bootstrap files
are overwritten during full backups and appended during incremental backups.

The Client, File Set, Storage, Pool, and Schedule parameters are all forward refer-
ences to resources defined later in the bacula-dir.conf file.

File set definitions

FileSet {
Name = "harp"
Include {

Options {
signature=MD5
compression=GZIP

}
File = "/"
File = "/boot"
File = "/usr"
File = "/usr/local"
File = "/var"

}
Exclude = { /proc /tmp /.journal /.fsck }

}

B
a

ck
u

p
s

9.8 Bacula 185

A FileSet resource defines the files and directories to be included in or excluded
from a backup job. Each file set can define multiple Include and Exclude parame-
ters along with individual Options. By default, Bacula recursively backs up directo-
ries but does not span partitions. Take care to list all the partitions you want to back
up in separate File parameters.

Many additional Options are supported, including regular expressions and wild
card characters. Two noteworthy options are signature (set to SHA1 or MD5),
which computes a hash value for each file backed up, and compression, which com-
presses data before writing it to tape. The signature option increases the CPU over-
head for backups but may prove valuable during a suspected security incident.

Schedule {
Name = "Nightly"
Run = Level=Full Pool=SSFullPool 1st-5th tue at 20:10
Run = Level=Incremental Pool=SSIncrementalPool wed-mon at 20:10

}

Schedule resources define timetables for backup jobs. The Name parameter and at
least one Run parameter are needed for automatic backup jobs, but multiple Run
parameters may be included in a single Schedule. Here, the full backups run on the
first and fifth Tuesday of each month at 8:10 p.m., and the incremental backups run
every week from Wednesday through Monday at 8:10 p.m.

The date and time specifications are the only required part of the Run parameter,
but as you can see from this example, you can sneak in additional parameter values.
These values then override the default parameters set in the Job specification. Here,
we set the backup Level and media Pool to use for each backup.

Refer to the on-line Bacula documentation for a complete list of date/time specifica-
tion keywords and job parameters.

Pool definitions -- first pool is default

Pool {
Name = SSFullPool
Pool Type = Backup
Recycle = yes
Accept Any Volume = yes

}

Pool {
Name = SSIncrementalPool
Pool Type = Backup
Recycle = yes
Accept Any Volume = yes

}

The Pool resource groups backup media, typically tapes, into sets that are used by
specific backup jobs. In this example we run weekly full backups and daily incremen-
tals, so we created two Pool resources. Many options tweak the behavior of the Pool

186 Chapter 9 – Backups

resource; two particularly useful parameters are Recycle and Accept Any Volume.
If the Recycle parameter is set to yes, Bacula automatically uses purged volumes
whose recycle flag is set when it needs an appendable volume for a backup job. The
Accept Any Volume parameter specifies whether Bacula can write to any append-
able volume within the pool. If this option is set to no, Bacula fills volumes sequen-
tially and does not accept an appendable volume out of sequence.

Client {
Name = harp
Address = 192.168.7.2
FDPort = 9102
Catalog = ATE
Password = "Ch@ch1s@Fru17"
File Retention = 3 months
Job Retention = 36 months
AutoPrune = yes

}

Client resources identify the computers to be backed up. One is required for each
computer. The File Retention and Job Retention parameters specify how long file
and job records for this client are kept in the catalog. If the AutoPrune parameter is
set, then expired data is deleted from the catalog. Pruning affects only the catalog
records and not the actual files stored on backup tapes.

Definition of file storage devices

Storage {
Name = SureStore
Address = bull.atrust.com
SDPort = 9103
Password = "Fru1t&V3gg1es"
Device = SureStoreDevice
Autochanger = yes
Media Type = LTO1

}

The Storage resource describes how to communicate with the storage daemon,
which controls the backup devices. In our example, we have a SureStore LTO1 tape
library connected to our primary Bacula server (bull.atrust.com). The storage dae-
mon has its own configuration file that is reviewed below.

Messages {
Name = Standard
mailcommand = "/sbin/bsmtp -h localhost -f \"\(Bacula\)

bacula@atrust.com\" -s \"Bacula: %t %e of %c %l\" %r"
operatorcommand = "/sbin/bsmtp -h localhost -f \"\(Bacula\)

bacula@atrust.com\" -s \"Bacula: Intervention needed for %j\" %r"
mail = Bacula@atrust.com = all, !skipped
operator = bacula-pager@atrust.com = mount
console = all, !skipped, !saved
append = "/var/log/bacula.log" = all, !skipped

}

B
a

ck
u

p
s

9.8 Bacula 187

The Messages resource tells Bacula how to handle specific message types generated
by each Bacula daemon. Multiple Messages resources can be defined and then as-
signed to specific jobs in their Job resources.

This resource type is very configurable; a complete list of variables and commands
can be found in the on-line documentation. The configuration above sends infor-
mation about the status of daemons and jobs to the console and to a standard log
file, as well as distributing it through email.

bacula-sd.conf: storage daemon configuration

Storage daemons accept data from file daemons and transfer it to the actual storage
media (or vice versa, in the case of a restore). Four resources must be defined within
the bacula-sd.conf file: Storage, Device, Messages, and Director. Here is a com-
plete example configuration:

Storage daemon configuration file, bacula-sd.conf

Storage {
Name = bull-sd
SDPort = 9103
Working Directory = "/var/bacula/working"
Pid Directory = "/var/run"

}

Device {
Name = SureStoreDevice
Media Type = LTO1
Archive Device = /dev/nst0
Autochanger = yes
Changer Device = /dev/sg0
Changer Command = "/etc/bacula/mtx-changer %c %o %S %a %d"
AutomaticMount = yes;
Always Open = yes;
Removable Media = yes;
Random Access = no;

}

Messages {
Name = Standard
director = bull-dir = all

}

Director {
Name = bull-dir
Password = "Fru1t&V3gg1es"

}

A storage daemon configuration file must contain only one Storage resource.

These resources are relatively straightforward. They define some basic working pa-
rameters, such as the daemon’s network port and working directory, and identify
the director daemon to which the storage daemon should send messages.

188 Chapter 9 – Backups

The Device resource characterizes the actual backup device. In our case, it is an LTO
(Linear Tape-Open) drive with an automatic tape changer. You can define multiple
Device resources. The Archive Device parameter names the device file for the tape
drive; note that /dev/nst0 is a nonrewinding device, which is almost invariably what
you want. The automatic tape changer has its own device file; in addition to specify-
ing that, we also set the Autochanger parameter. The Always Open parameter tells
Bacula to keep the device open unless an administrator specifically requests an un-
mount. This option saves time and tape stress because it avoids rewinding and posi-
tioning commands between jobs.

bconsole.conf: console configuration

You use the console program to communicate with the director to schedule jobs,
check the status of jobs, or restore data. You can start the console from the installa-
tion directory by typing ./bconsole.

bconsole.conf tells the console how to communicate with the Bacula director dae-
mon. The parameters in this file must correspond to those given in the Director
resource in the director’s configuration file (bacula-dir.conf), with the exception of
the address parameter.

Console configuration file, bconsole.conf

Director {
Name = bull-dir
DIRport = 9101
address = bull.atrust.com
Password = "B@cu1@Lik3s,fRu17"

}

Installing and configuring the client file daemon

The file daemon on backup clients communicates with the Bacula storage daemon
as backups and restores are executed. This daemon must be installed and configured
on every computer that is to be backed up with Bacula.

For Windows clients, prebuilt binaries can be downloaded from the Bacula web site.
Bacula is great for backing up Windows data files, but it’s not so good at creating a
bomb-proof level 0 backup of a Windows system. Unfortunately, Bacula has no con-
cept of Windows open file locks or of the Windows registry or system state, so addi-
tional steps must be taken to ensure that this data is saved before a Bacula dump is
performed. The on-line documentation does a good job of addressing these issues.

On UNIX and Linux systems, you can install the daemon by copying the Bacula
source tree to each client and running

./configure --enable-client-only --prefix=/etc/bacula

Then run make and make install.

B
a

ck
u

p
s

9.8 Bacula 189

After the binaries have been installed, configure the file daemon by editing the
/etc/bacula/bacula-fd.conf file:

File daemon configuration for harp, bacula-fd.conf

Director {
Name = bull-dir
Password = "Ch@ch1s@Fru17"

}

"Global" file daemon configuration specifications

FileDaemon {
Name = harp
FDport = 9102
Working Directory = /var/bacula/working
Pid Directory = /var/run

}

Send all messages except skipped files back to the director

Messages {
Name = Standard
director = bull-dir = all, !skipped

}

The config file is broken into three parts. The first part consists of the Director re-
source, which tells the file daemon which director can schedule backups from this
client’s file daemon. The Director resource also includes the Password parameter,
which must be identical to the password listed in the Client resource within the di-
rector’s own configuration file. The second part is the FileDaemon resource, which
names the client and specifies the port on which the file daemon listens for com-
mands from the director daemon. The final component is the Messages resource,
which defines how local messages are to be handled.

Starting the Bacula daemons

Now that we have our server daemons installed and our client configured, the next
step is to fire up the daemons by running the startup script in the server’s installa-
tion directory (./bacula start). This same command is also used on each client to
start the file daemon. This script should also be linked to the appropriate run-level
startup scripts in the rc and init.d directories.

Once the Bacula daemons are running, you can use the console program (bconsole
in the installation directory) to check their status, add media to pools, and execute
backup and restore jobs. You can run bconsole from any computer as long as it has
been properly installed and configured.

$ sudo ./bconsole
Password: <entered password>
Connecting to Director bull:9101
1000 OK: bull-dir Version: 1.38.11 (29 June 2006)
Enter a period to cancel a command.

190 Chapter 9 – Backups

Use the console’s help command to see a complete list of the commands it supports.

Adding media to pools

Before you can run backup jobs, you need to label some tapes and assign them to
media pools defined in the director configuration file. Use the console’s label com-
mand to do this.

* label
Automatically selected Storage: SureStore
Enter new Volume name: 003061L1
Enter slot (0 for none): 14
Defined Pools:
 1: SSFullPool
 2: SSOneOffPool
...
Select the Pool (1-5): 1
Connecting to Storage daemon SureStore at bull.atrust.com:9103
...
Sending label command for Volume "003061L1" Slot 14 ...
...
3001 Mounted Volume: 003061L1
3001 Device /dev/nst0 is mounted with Volume "003061L1"

In this example, the tape in slot 14 of the automatic tape changer was named
003061L1 and was assigned to the SSFullPool pool. Use the list media command to
verify that the tape has been added to the correct pool and marked as appendable.

Running a manual backup

Use the console’s run command to perform a manual backup. No arguments are
needed; the console displays all the backup jobs defined in the director’s configura-
tion file. You can modify any option within the run command by following the con-
sole’s menu-driven prompts.

The following example shows a manual full backup of the server harp, using the
defaults specified in our configuration files.

$ sudo ./bconsole
...
Connecting to Director bull:9101
1000 OK: bull-dir Version: 1.34.6 (28 July 2004)
Enter a period to cancel a command.
* run
A job name must be specified.
The defined Job resources are:

1: harp
2: RestoreFiles

Select Job resource (1-2): 1
Run Backup job
JobName: harp
FileSet: harp

B
a

ck
u

p
s

9.8 Bacula 191

Level: Full
Client: harp
Storage: SureStore
Pool: SSFullPool
When: 2006-07-08 13:14:24
Priority: 10
OK to run? (yes/mod/no): yes
Run command submitted.

After the backup job has been successfully submitted to the director, you can track
its status with the console’s status command. You can also use the messages com-
mand to obtain blow-by-blow updates as they arrive. Depending on how you have
set up the system’s Message resources, a detailed summary report may also be sent
to the Bacula administrator. The output below was produced by the messages com-
mand after the backup job successfully completed. It includes a lot of useful sum-
mary information.

* messages
08-Jul-2006 14:21 bull-dir: Start Backup JobId 5216, Job=harp.2006-07-08_14.21.03
08-Jul-2006 14:23 bull-sd: 3301 Issuing autochanger "loaded drive 0" command.
08-Jul-2006 14:23 bull-sd: 3302 Autochanger "loaded drive 0", result is Slot 6.
08-Jul-2006 14:23 bull-sd: 3303 Issuing autochanger "unload slot 6, drive 0" command.
08-Jul-2006 14:24 bull-sd: 3304 Issuing autochanger "load slot 14, drive 0" command.
08-Jul-2006 14:25 bull-sd: 3305 Autochanger "load slot 14, drive 0", status is OK.
08-Jul-2006 14:25 bull-sd: Volume "003048L1" previously written, moving to end of data.
08-Jul-2006 14:25 bull-sd: Ready to append to end of Volume "003048L1" at file=7.
08-Jul-2006 14:54 bull-dir: Bacula 1.34.6 (28Jul04): 08-Jul-2006 14:54
JobId: 5216
Job: harp.2006-07-08_14.21.03
Backup Level: Full
Client: harp
FileSet: "harp" 2006-01-06 20:37:06
Start time: 08-Jul-2006 14:21
End time: 08-Jul-2006 14:54
FD Files Written: 176,451
SD Files Written: 176,451
FD Bytes Written: 12,968,821,897
SD Bytes Written: 12,993,427,904
Rate: 6379.2 KB/sSoftware Compression:None
Volume name(s): 003048L1
Volume Session Id: 263
Volume Session Time: 1149888981
Last Volume Bytes: 13,298,706,752
Non-fatal FD errors: 0
SD Errors: 0
FD termination status: OK
SD termination status: OK
Termination: Backup OK
08-Jul-2006 14:54 bull-dir: Begin pruning Jobs.
08-Jul-2006 14:54 bull-dir: No Jobs found to prune.
08-Jul-2006 14:54 bull-dir: Begin pruning Files.

192 Chapter 9 – Backups

08-Jul-2006 14:55 bull-dir: Pruned 2,206 Files from 48 Jobs for client harp from catalog.
08-Jul-2006 14:55 bull-dir: End auto prune.

Running a restore job

To restore files, start up the console and run the restore command. Like run, restore
is menu driven. It starts by helping you identify which jobs need to be read to restore
the target files. restore presents you with several methods of specifying the relevant
job IDs. Once you have selected a set of jobs, you can then select the files from those
jobs to restore.

* restore
To select the JobIds, you have the following choices:

1: List last 20 Jobs run
2: List Jobs where a given File is saved
3: Enter list of comma separated JobIds to select
4: Enter SQL list command
5: Select the most recent backup for a client
6: Select backup for a client before a specified time
7: Enter a list of files to restore
8: Enter a list of files to restore before a specified time
9: Cancel

Select item: (1-9):

The two most useful queries are probably “Select the most recent backup for a cli-
ent” (#5) and “List Jobs where a given File is saved” (#2). The latter option comes in
handy for those pesky users that can never seem to remember exactly where the file
they accidentally removed really lives. Another powerful command is option #4,
“Enter SQL list command,” which lets you enter any properly formatted SQL query.

Suppose that a user needs a copy of his pw_expire.pl script restored from around
April 2006; however, he’s not sure which machine he was using for development at
that time. In addition, he would like the files restored to the /tmp directory of the
original machine. A request like this would set many a system administrator to
grumbling around the water cooler, but for the Bacula administrator it’s a snap. (Un-
fortunately, Bacula’s format for search results is so wide that we had to shrink it
down to nearly invisible proportions below.)

* restore
To select the JobIds, you have the following choices:

1: List last 20 Jobs run
2: List Jobs where a given File is saved
3: Enter list of comma separated JobIds to select

...
9: Cancel

Select item: (1-9): 2
Enter Filename: pw_expire.pl
+-------+--------+-------------------------------+---------------------+---------+----------+----------------+
| JobId | Client | Name | StartTime | JobType | JobFiles | JobBytes |
+-------+--------+-------------------------------+---------------------+---------+----------+----------------+
4,667	harp	/home/seidel/pw_expire.pl	2006-05-09 23:55:21	B	176,072	12,664,064,296
5,220	bull	/home/seidel/bin/pw_expire.pl	2006-07-08 20:15:49	B	14	248,386
5,216	harp	/home/seidel/pw_expire.pl	2006-07-08 14:21:05	B	176,451	12,968,821,897
4,523	harp	/home/seidel/pw_expire.pl	2006-04-25 23:43:56	B	167,435	12,539,537,882
+-------+--------+-------------------------------+---------------------+---------+----------+----------------+

B
a

ck
u

p
s

9.8 Bacula 193

Bacula’s list of pw_expire.pl instances reveals that the April 2006 version lived on
the client harp and was backed up as part of job 4,523. Bacula then returns us to the
restore menu, where we can use option #3 (“Enter list of comma separated JobIds to
select”) to focus in on this specific job.

Select item: (1-9): 3
Enter JobId(s), comma separated, to restore: 4523
You have selected the following JobId: 4523
Building directory tree for JobId 4523 ...
1 Job inserted into the tree.
You are now entering file selection mode, where you add and
remove files to be restored. All files are initially added.9

Enter "done" to leave this mode.

cwd is: /
$ cd /home/seidel
cwd is: /home/seidel
$ dir
...
-rwxr-xr-x 1 seidel atrust 321 2005-10-27 11:25:24 /home/seidel/pw_expire.pl
$ mark pw_expire.pl
1 files marked.
$ done

Note that even though Bacula originally displayed the job ID with a comma (4,523),
we have to omit the comma when we reenter the ID; otherwise, Bacula interprets
4,523 as the two job IDs 4 and 523.

After Bacula loads the specified job, it starts up an interactive restore mode in which
you can browse to the file and use the mark command to select it. When you are
finished marking files, the done command exits interactive mode.

Bootstrap records written to /var/bacula/working/restore.bsr
The restore job will require the following Volumes:

 003048L1

1 file selected to be restored.

Defined Clients:
1: bull
2: harp

Select the Client (1-2): 2

Bacula then writes a bootstrap file that it will use to perform the restore, displays the
names of the tape volumes it requires, and prompts you to select a client to which it
should restore the files. In this example, we restored back to the original host harp.

9. Liar, liar, pants on fire. If you proceed to the restore phase without selecting any files, Bacula tells you
no files were selected.

194 Chapter 9 – Backups

Run Restore job
JobName: RestoreFiles
Bootstrap: /var/Bacula/working/restore.bsr
Where: /scratch02/restore/
Replace: always
FileSet: BullHomes
Client: harp
Storage: SureStore
When: 2006-07-08 16:45:20
Priority: 10
OK to run? (yes/mod/no): mod

For this particular job, we modify the default settings. Specifically, the correct file set
name is harp, which is the default file set configured in the director daemon config-
uration file. In addition, we change the location of this restore to /tmp in accordance
with the user’s request.

Select parameter to modify (1-11): 9
Please enter path prefix for restore (/ for none): /tmp
Run Restore job
JobName: RestoreFiles
Bootstrap: /var/Bacula/working/restore.bsr
Where: /tmp
Replace: never
FileSet: harp
Client: harp
Storage: SureStore
When: 2006-07-08 16:45:20
Priority: 10
OK to run? (yes/mod/no): yes
Run command submitted.
Restore command done.

After making the changes, we submit the job to the director, which executes it. We
then use the messages command to view the job’s logging output.

* messages
08-Jul-2006 17:06 bull-dir: Start Restore Job RestoreFiles.2006-07-08_17.06.02
08-Jul-2006 17:06 bull-sd: Ready to read from volume "003048L1" on device /dev/nst0.
08-Jul-2006 17:06 bull-sd: Forward spacing to file:block 11:0.
08-Jul-2006 17:08 bull-sd: End of Volume at file 11 on device /dev/nst0, Volume

"003048L1"
08-Jul-2006 17:08 bull-sd: End of all volumes.
08-Jul-2006 17:08 harp: -rwxr-xr-x 1 seidel atrust 321 2005-10-27 11:25:24

/tmp/home/seidel/pw_expire.pl
08-Jul-2006 17:08 bull-dir: Bacula 1.34.6 (28Jul04): 08-Jul-2006 17:08
JobId: 5217
Job: RestoreFiles.2006-07-08_17.06.02
Client: harp
Start time: 08-Jul-2006 17:06
End time: 08-Jul-2006 17:08

B
a

ck
u

p
s

9.8 Bacula 195

Files Expected: 1
Files Restored: 1
Bytes Restored: 321
Rate: 0.0 KB/s
FD Errors: 0
FD termination status: OK
SD termination status: OK
Termination: Restore OK

08-Jul-2006 17:08 bull-dir: Begin pruning Jobs.
08-Jul-2006 17:08 bull-dir: No Jobs found to prune.
08-Jul-2006 17:08 bull-dir: Begin pruning Files.
08-Jul-2006 17:08 bull-dir: No Files found to prune.
08-Jul-2006 17:08 bull-dir: End auto prune.

Monitoring and debugging Bacula configurations

You can use the console’s status command to query the various Bacula daemons for
information. The following example displays information about the director dae-
mon. The output includes information about upcoming jobs, currently running
jobs, and jobs that were terminated.

* status dir
bull-dir Version: 1.34.6 (28 July 2004) i686-redhat-linux-gnu redhat Enterprise release
Daemon started 09-Jun-06 15:36, 269 Jobs run since started.

Scheduled Jobs:
Level Type Scheduled Name Volume
===
Incremental Backup 08-Jul-06 20:10 harp 003005L1

Running Jobs:
JobId Level Name Status
===
5216 Full harp.2006-07-08_14.21.03 is running

Terminated Jobs:
JobId Level Files Bytes Status Finished Name
===
5205 Incr 204 898,066,578 OK 06-Jul-06 20:36 harp

Bacula jobs produce a job report that is routed according to the job’s Message re-
source in the director daemon’s configuration file. The report includes basic infor-
mation about the volumes used, the size and number of files backed up, and any
errors that may have occurred. The report usually gives you enough information to
troubleshoot any minor problems.

Two issues that seem to come up frequently are client file daemons that aren’t run-
ning and storage daemons that cannot find any appendable tape volumes. In the
example below, the director daemon reports that a backup job terminated with a
fatal error because it could not communicate with the file daemon on host harp.
This error can be seen repeatedly at the end of the summary report.

196 Chapter 9 – Backups

bull-dir: Start Backup JobId 5215, Job=harp.2006-07-08_13.19.49
bull-dir: harp.2006-07-08_13.19.49 Error: Bacula 1.34.6 (28Jul04): 08-Jul-2006 13:49

JobId: 5215
Job: harp.2006-07-08_13.19.49
Backup Level: Full
Client: harp
FileSet: "harp" 2006-01-06 20:37:06
Start time: 08-Jul-2006 13:19
End time: 08-Jul-2006 13:49
FD Files Written: 0
SD Files Written: 0
FD Bytes Written: 0
SD Bytes Written: 0
Rate: 0.0 KB/s
Software Compression: None
Volume name(s):
Volume Session Id: 262
Volume Session Time: 1149888981
Last Volume Bytes: 0
Non-fatal FD errors: 0
SD Errors: 0
FD termination status:
SD termination status: Waiting on FD
Termination: *** Backup Error ***

bull-dir: harp.2006-07-08_13.19.49 Warning: bnet.c:666 Could not connect to
File daemon on 192.168.7.2:9102. ERR=Connection refused Retrying ...

bull-dir: harp.2006-07-08_13.19.49 Fatal error: bnet.c:672 Unable to connect to
File daemon on 192.168.7.2:9102. ERR=Connection refused

The example below shows the storage daemon reporting that no tape volumes from
the appropriate pool are available to perform a requested backup. You can fix the
problem either by adding a new volume to the pool or by purging and recycling an
existing volume. There’s no need to restart the job; Bacula should continue to exe-
cute it unless you cancel it explicitly.

bull-sd: Job baikal.2006-07-04_20.10.06 waiting. Cannot find any appendable volumes.
Please use the "label" command to create a new Volume for:

Storage: SureStoreDevice
Media type: LTO1
Pool: SSFullPool

If you ever need to see more detailed information about what the daemons are do-
ing, you can have them send a slew of debugging information to the console by ap-
pending the option -dnnn to the startup command. For example,

$ sudo ./bacula start -d100

The nnn represents the debug level. Typical values range between 50 and 200. The
higher the number, the more information is displayed. You can also enable debug-
ging from within the console with the setdebug command.

B
a

ck
u

p
s

9.9 Commercial backup products 197

Alternatives to Bacula

Several other free or shareware backup tools are available for download. The follow-
ing packages are particularly noteworthy; all are still under active development.

• Amanda: a very popular and proven system that backs up UNIX and Linux
systems to a single tape drive. See www.amanda.org.

• Mondo Rescue: a utility that backs up Linux systems to CD-R, DVD-R,
tape, or hard disk. This tool is particularly useful for bare-metal recovery.
Read more at www.mondorescue.org.

• rsync: a free tool that is part of many default Linux installations. It can
synchronize files from one computer to another and can be run in con-
junction with SSH to transfer data securely over the Internet. See page 508
for some additional discussion of rsync.

• star: a faster implementation of tar; star is included with all our example
distributions.

9.9 COMMERCIAL BACKUP PRODUCTS

We would all like to think that Linux is the only OS in the world, but unfortunately,
that is not the case. When looking at commercial backup solutions, you should con-
sider whether they can handle any other operating systems that you are responsible
for backing up. Most contemporary products address cross-platform issues and let
you include UNIX, Windows, and Macintosh workstations in your Linux backup
scheme. You must also consider non-Linux storage arrays and file servers.

Users’ laptops and other machines that are not consistently connected to your net-
work should also be protected from failure. When looking at commercial products,
you may want to ask if each product is smart enough not to back up identical files
from every laptop. How many copies of command.com do you really need?

Since we find that Bacula works well for us, we don’t have much experience with
commercial products. We asked some of our big-bucks buddies at commercial sites
for quick impressions of the systems they use. Their comments are reproduced here.

ADSM/TSM

The ADSM product was developed by IBM and later purchased by Tivoli. It is mar-
keted today as the Tivoli Storage Manager (TSM), although the product is once
again owned by IBM. TSM is a data management tool that also handles backups.
More information can be found at www-306.ibm.com/software/tivoli.

Pros:

• Owned by IBM; it’s here to stay

• Attractive pricing and leasing options

• Very low failure rate

www.amanda.org
www.mondorescue.org
www-306.ibm.com/software/tivoli

198 Chapter 9 – Backups

• Uses disk cache; useful for backing up slow clients

• Deals with Windows clients

• Excellent documentation (priced separately)

Cons:

• Poorly designed GUI interface

• Every 2 files =1K in the database.

• The design is incremental forever

Veritas

Veritas merged with Symantec in 2005. They sell backup solutions for a variety of
systems. When you visit their web site (www.symantec.com), make sure you select
the product that’s appropriate for you.

Pros:

• Decent GUI interface

• Connects directly to Network Appliance filers

• Push install for Linux

• Can write tapes in GNU tar format

• Centralized database, but can support a distributed backup system

Cons:

• Some bugs

• Pricing is confusing and annoying

Other alternatives

W. Curtis Preston, author of the O’Reilly book UNIX Backup and Recovery, main-
tained a web page about backup-related topics (disk mirroring products, advanced
filesystem products, remote system backup products, off-site data-vaulting prod-
ucts, etc.) at www.backupcentral.com. It’s not clear whether any of this information
is still being updated, but the existing material is still quite useful.

9.10 RECOMMENDED READING

PRESTON, W. CURTIS. Backup & Recovery. Sebastopol, CA: O’Reilly Media, 2006.

9.11 EXERCISES

E9.1 Investigate the backup procedure used at your site. Which machine(s)
perform the backups? What type of storage devices are used? Where are
tapes stored? Suggest improvements to the current system.

E9.2 What steps are needed to restore files on a system that uses Bacula? How
do you find the right tape?

www.symantec.com
www.backupcentral.com

B
a

ck
u

p
s

9.11 Exercises 199

E9.3 Given the following output from df and /etc/dumpdates, identify the
steps needed to perform the three restores requested. Enumerate your
assumptions. Assume that the date of the restore request is January 18.

df output from the machine khaya.cs.colorado.edu:

/dev/hda8 256194 81103 161863 33% /
/dev/hda1 21929 4918 15879 24% /boot
/dev/hda6 3571696 24336 3365924 1% /local
/dev/hda10 131734 5797 119135 5% /tmp
/dev/hda5 1815580 1113348 610004 65% /usr
/dev/hda7 256194 17013 225953 7% /var

/etc/dumpdates from khaya.cs.colorado.edu:

/dev/hda8 2 Tue Jan 17 22:59:23 2006
/dev/hda6 3 Tue Jan 17 22:51:51 2006
/dev/hda7 3 Tue Jan 17 22:50:24 2006
/dev/hda5 9 Tue Jan 17 22:46:25 2006
/dev/hda5 1 Thu Jan 12 22:45:42 2006
/dev/hda7 0 Thu Jan 12 23:14:47 2006
/dev/hda6 1 Thu Jan 12 23:14:32 2006
/dev/hda8 1 Thu Jan 12 23:14:17 2006
/dev/hda6 0 Tue Jan 10 22:47:31 2006
/dev/hda1 1 Sun Jan 8 22:16:05 2006
/dev/hda7 1 Sat Jan 7 22:08:09 2006
/dev/hda1 4 Tue Jan 3 22:51:53 2006
/dev/hda7 2 Sat Dec 24 22:53:52 2005
/dev/hda5 0 Thu Nov 3 22:46:21 2005
/dev/hda1 0 Wed Sep 21 22:46:29 2005
/dev/hda8 0 Wed Aug 24 23:01:24 2005
/dev/hda1 3 Fri Jul 29 22:52:20 2005
/dev/hda6 2 Fri Jul 29 23:01:32 2005

a) “Please restore my entire home directory (/usr/home/clements)
from some time in the last few days. I seem to have lost the entire
code base for my senior project.”

b) “Umm, I accidentally did a sudo rm -rf /* on my machine khaya.
Could you please restore all the filesystems from the latest backups?”

c) “All my MP3 files that I have been collecting from BitTorrent over the
last month are gone. They were stored in /tmp/mp3/. Could you
please restore them for me?”

Exercises are continued on the next page.

200 Chapter 9 – Backups

E9.4 Design a backup plan for the following scenarios. Assume that each
computer has a 100GB disk and that users’ home directories are stored
locally. Choose a backup device that balances cost vs. support needs and
explain your reasoning. List any assumptions you make.

a) A research facility has 50 machines. Each machine holds a lot of im-
portant data that changes often.

b) A small software company has 10 machines. Source code is stored on
a central server that has 500GB of disk space. The source code
changes throughout the day. Individual users’ home directories do
not change very often. Cost is of little concern and security is of ut-
most importance.

c) A home network has two machines. Cost is the most important issue.

E9.5 Design a restore strategy for each of the three situations above.

E9.6 Outline the steps you would take to perform a secure rdump through a
secure SSH tunnel.

E9.7 Write Bacula configuration statements that implement the backup plans
you came up with for exercise 9.4.

201

S
ys

lo
g

 /
 L

o
g

 F
il

e
s

10 Syslog and Log Files

The system daemons, the kernel, and various utilities all emit data that is logged and
eventually ends up on your finite-sized disks. Most of that data has a limited useful
life and needs to be summarized, compressed, archived, and eventually thrown away.

10.1 LOGGING POLICIES

Logging policies vary from site to site. Common schemes include the following:

• Throw away all data immediately.

• Reset log files at periodic intervals.

• Rotate log files, keeping data for a fixed time.

• Compress and archive logs to tape or other permanent media.

The correct choice for your site depends on how much disk space you have and how
security conscious you are. Even sites with an abundance of disk space must deal
with the cancerous growth of log files.

Whatever scheme you select, you should automate the maintenance of log files with
cron. See Chapter 8, Periodic Processes, for more information about cron.

Throwing away log files

We do not recommend throwing away all logging information. Sites that are subject
to security problems routinely find that log files provide important evidence of break-
ins. Log files are also helpful for alerting you to hardware and software problems. In
general, given a comfortable amount of disk space, you should keep data for at least a

Syslog / Log Files

202 Chapter 10 – Syslog and Log Files

month. In the real world, it may take this long for you to realize that your site has been
compromised by a hacker and that you need to review the logs. If you need to go back
further into the past, you can recover older log files from your backup tapes.

Some administrators allow log files to grow to a size at which they become embar-
rassing, then restart them from zero. This plan is better than keeping no data at all,
but it does not guarantee that log entries will be retained for any particular length of
time. Average disk usage may also be higher than with other management schemes.

On rare occasions, a site may determine that certain log files are more likely to be
subpoenaed than to serve any beneficial purpose. A site in this situation may keep
several weeks of log data around, but it will probably ensure that the files are never
archived to permanent media. A case in point: Microsoft has been accused in more
than one recent lawsuit of unduly destructive management policies for log files and
email. The plaintiffs allege that Microsoft’s data retention policies constitute de-
struction of evidence, despite the fact that the deletions (or at least, the deletion pol-
icies) predate the particular legal actions. Unfortunately, it is too early to tell how the
courts will ultimately respond to these claims.1 In the United States, the Sarbanes-
Oxley Act has recently instituted new recordkeeping requirements; see page 956.

Rotating log files

It’s a common (but not universal) practice to store each week’s or month’s log infor-
mation in a separate file. The periodic files are kept for a specific period of time and
then deleted. We dedicate a disk partition (/var/log) on a central host to log files.

At the end of each rotation period, a script or utility program renames each file to
push older data toward the end of the chain. For example, if a log is called logfile,
the backup copies might be called logfile.1, logfile.2, and so on. If you rotate every
week and keep eight weeks’ worth of data, there will be a logfile.8 but no logfile.9.
Every week, the data in logfile.8 is lost as logfile.7 overwrites it.

You can use data compression to extend the retention time, at a slight cost in conve-
nience. You can run zgrep to search the compressed files without permanently un-
packing them.

Suppose a file needs weekly attention and you want to archive its contents for three
weeks (to keep the example short). The following script would implement an appro-
priate rotation policy:

#!/bin/sh
cd /var/log
mv logfile.2 logfile.3
mv logfile.1 logfile.2
mv logfile logfile.1
cat /dev/null > logfile
chmod 600 logfile

1. It’s worth noting that the deletion of relevant email or log files once a lawsuit appears imminent (or
worse yet, during the course of a lawsuit) is decidedly improper. Only an explicit, ongoing nonretention
policy has any prospect of legal protection.

S
ys

lo
g

 /
 L

o
g

 F
il

e
s

10.1 Logging policies 203

Ownership information is important for some log files. You may need to run your
rotation script from cron as the log files’ owner rather than as root, or you may need
to add a chown command to the sequence.

Most Linux distributions (including all our examples) supply a very nice log rota-
tion utility called logrotate, which we describe starting on page 208. It’s much easier
(and more reliable) than writing your own scripts and is worth seeking out and in-
stalling if your distribution doesn’t include it.

Some sites identify log files by date rather than by sequence number; for example,
logfile.tues or logfile.2005.04.01. This system is a little harder to implement, but it
can be worth the effort if you frequently refer to old log files. It’s much easier to set
up in Perl than in sh. One useful idiom that doesn’t require any programming is

mv logfile logfile.`date +%Y.%m.%d`

This scheme also has the advantage of making ls sort the log files chronologically.
(The -t option to ls makes it sort files chronologically by modification time in any
directory, but it’s nice if the files arrange themselves without being asked.)

Some daemons keep their log files open all the time. Because of the way the filesys-
tem works, the simple script shown above cannot be used with such daemons. In-
stead of new log data being added to the recreated logfile, log data will continue to
go to logfile.1; the active reference to the original file persists even after the file has
been renamed. To install a new log file, you must either signal the daemon or kill
and restart it. Each program behaves differently with respect to logging. Consult
the appropriate chapter in this book (or your manuals) to determine what proce-
dures are necessary in each case.

Here is a slightly more detailed example that uses both compression and signals:

#!/bin/sh
cd /var/log
mv logfile.2.gz logfile.3.gz
mv logfile.1.gz logfile.2.gz
mv logfile logfile.1
cat /dev/null > logfile
chmod 600 logfile
kill -signal pid
gzip logfile.1

signal represents the appropriate signal for the program writing the log file; pid is its
process ID. The signal can be hardcoded into the script, but you must determine the
PID of the daemon dynamically, either by reading a file that the daemon has left
around for you (e.g., /var/run/syslogd.pid, described below) or by using the killall
variant of kill, which can look up the PID in the process table for you.

For example, the command

killall -e -HUP syslogd

204 Chapter 10 – Syslog and Log Files

is equivalent to

kill -HUP `cat /var/run/syslogd.pid `

Archiving log files

See Chapter 9 for more
information about
backups.

Unless you explicitly wish to avoid leaving a paper trail, you should always include
log files in your regular backup sequence. Because they contain information that is
vital for investigating security incidents, log files should be backed up at the highest
frequency your dump schedule permits. Log files change frequently, so they can rep-
resent a significant portion of the system information that is stored on incremental
backups. Keep the interaction between your logging policy and your backup policy
in mind when designing both.

In addition to being stored as part of regular backups, logs can also be archived to a
separate tape series. Separate tapes are more cumbersome, but they impose less
documentation burden and won’t interfere with your ability to recycle dump tapes.
If you use separate tapes, we suggest that you use tar format and write a script to
automate your log file backup scheme.

10.2 LINUX LOG FILES

Traditional UNIX systems are often criticized for their inconsistent and even some-
what bizarre approach to logging. Fortunately, Linux systems are generally a bit more
sane, although each distribution has its own way of naming and dividing up the log
files. For the most part, Linux packages send their logging information to files in the
/var/log directory. On some distributions, a few logs are also stored in /var/adm.

The format of the
syslog.conf file is
described on
page 210.

Most programs these days actually send their log entries to a central clearing system
called syslog, which is described later in this chapter. The default syslog configura-
tion typically dumps most of these messages somewhere into /var/log. Check sys-
log’s configuration file, /etc/syslog.conf, to find out the specific locations.

Table 10.1 compiles information about some of the more common log files on our
example distributions. Specifically, it lists

• The log files to archive, summarize, or truncate

• The program that creates each

• An indication of how each filename is specified

• The frequency of cleanup that we consider reasonable

• The distributions (among our examples) that use the log file

• A description of the file’s contents

Filenames are relative to /var/log unless otherwise noted.

The character in the Where column tells how the log file is specified: S for programs
that use syslog, F for programs that use a configuration file, and H if the filename is
hardwired in code. The Freq column offers our suggested cleanup frequency. The
Distros column lists the distributions to which the entry applies.

S
ys

lo
g

 /
 L

o
g

 F
il

e
s

10.2 Linux log files 205

Log files are generally owned by root, although conventions for the ownership and
mode of log files vary slightly among distributions. In our opinion, logs at most sites
should be given mode 600 (read and write for the owner only) because their con-
tents are potentially useful to hackers. If your users are relatively sophisticated, they
can benefit from the ability to review the logs, and in this case it’s reasonable to relax
the permissions on a subset of the log files.

Another reasonable compromise is to set the group owner of log files to a group that
you create for this purpose and to make the files group-readable. You can add your
local sysadmins to this group, allowing them to review log files without having to

Table 10.1 Log files on parade

File Program W
h

e
re

a

Fr
e

q
a

D
is

tr
o

s
a

Contents

auth.log su, etc.b S M DU Authorizations
apache2/* httpd version 2 F D SDU Apache HTTP server logs (v2)
boot.log rc scripts F c M RF Output from system startup scripts
boot.msg kernel H – S Dump of kernel message buffer
cron cron S W RF cron executions and errors
cups/* CUPS C W all Printing-related messages (CUPS)
daemon.log various S W DU All daemon facility messages
debug various S D DU Debugging output
dmesg kernel H – RFDU Dump of kernel message buffer
dpkg.log dpkg F M DU Package management log
faillog login H W SDU Unsuccessful login attempts
httpd/logs/* httpd F D RF Apache HTTP server logs (in /etc)
kern.log kernel S W DU All kern facility messages
lastlog login H – all Last login time per user (binary)
mail* mail-related S W all All mail facility messages
messages various S W all Often the main system log file
rpmpkgs cron.daily/rpm H D RF List of installed RPM packages
samba/* smbd, etc. C W – Samba (Windows/CIFS file sharing)
secure sshd, sudo, etc. S M RF Private authorization messages
syslog various S W DU Often the main system log file
warn various S W S All warning/error level messages
wtmp login H M all Login records (binary)
Xorg.n.log Xorg F W RFS X Windows server errors
yum.log yum F M RF Package management log

a. Where: S = Syslog, H = Hardwired, F = Configuration file
Freq: D = Daily, W = Weekly, M = Monthly
Distros: R = Red Hat Enterprise Linux, F = Fedora, D = Debian, S = SUSE, U = Ubuntu

b. passwd, login, and shutdown also write to the authorization log. It’s in /var/adm on Red Hat and
Fedora systems.

c. Actually logs through syslog, but the facility and level are configured in /etc/initlog.conf.

206 Chapter 10 – Syslog and Log Files

use sudo. This setup is especially useful if your site has junior sysadmins who do not
have full sudo privileges.

At the very least, the secure, auth.log, and sudo.log files should be off-limits to
casual browsing. Never give write permission on any log file to anyone but the
owner.

It’s worth noting that many of the log files in Table 10.1 are maintained by syslog but
that the default syslog configuration varies widely among systems. With a more con-
sistent /etc/syslog.conf file, the log files would look more similar among Linux dis-
tributions.

Special log files

Most logs are text files to which lines are written as “interesting” events occur. A few
of the logs listed in Table 10.1 have a rather different context, however.

/var/log/wtmp contains a record of users’ logins and logouts as well as entries that
record when the system was rebooted or shut down. It’s a fairly generic log file in
that new entries are simply added to the end of the file. However, the wtmp file is
maintained in a binary format. Use the last command to decode the information.
Despite its unusual format, the wtmp file should be rotated or truncated like any
other log file because of its natural tendency to grow without limit.

See the footnote on
page 169 for more info
about sparse files.

/var/log/lastlog contains similar information to that in /var/log/wtmp, but it
records only the time of last login for each user. It is a sparse, binary file that’s in-
dexed by UID. It will stay smaller if your UIDs are assigned in some kind of nu-
meric sequence, although this is certainly nothing to lose sleep over in the real
world. lastlog doesn’t need to be rotated because its size stays constant unless new
users log in.

Kernel and boot-time logging

The kernel and the system startup scripts present some special challenges in the do-
main of logging. In the case of the kernel, the problem is to create a permanent record
of the boot process and the operation of the kernel without building in dependencies
on any particular filesystem or filesystem organization. In the case of the startup
scripts, the challenge is to capture a coherent narrative of the startup procedure with-
out permanently tying any of the system daemons to a startup log file, interfering
with any program’s own logging, or gooping up the startup scripts with double en-
tries or output redirections.

Kernel logging is dealt with by having the kernel store its log entries in an internal
buffer of limited size. The buffer is large enough to accommodate messages about all
the kernel’s boot-time activities. Once the system has come all the way up, a user pro-
cess accesses the kernel’s log buffer and makes a final disposition of its contents. Dis-
tributions typically do this by running the dmesg command and redirecting its out-
put to /var/log/dmesg (RHEL, Fedora, Debian, and Ubuntu) or /var/log/boot.msg
(SUSE). This is the best place to look for details about the most recent boot cycle.

S
ys

lo
g

 /
 L

o
g

 F
il

e
s

10.2 Linux log files 207

The kernel’s ongoing logging is handled by a daemon called klogd. The functions of
klogd are actually a superset of those of dmesg; in addition to dumping the kernel
log and exiting, it can also read messages out of the kernel buffer as they are gener-
ated and pass them along to a file or to syslog. In normal operation, klogd runs in
this latter mode. Syslog processes the messages according to the instructions for the
“kern” facility (they are typically sent to /var/log/messages).

Our example distributions’ startup scripts do not use dmesg’s -c flag when they make
their initial dump of log messages, so the kernel’s message buffer is read but not reset.
When klogd starts up, it finds the same set of messages seen by dmesg in the buffer
and submits them to syslog. For this reason, some entries appear in both the dmesg
or boot.msg file and in another, syslog managed file such as /var/log/messages.

Another issue in kernel logging is the appropriate management of the system con-
sole. As the system is booting, it’s important for all the output to come to the con-
sole. However, once the system is up and running, console messages may be more an
annoyance than a help, particularly if the console is used for logins.

Both dmesg and klogd let you set the kernel’s console logging level with a command-
line flag. For example:

$ sudo dmesg -n 2

Level 7 is the most verbose and includes debugging information. Level 1 includes
only panic messages (the lower-numbered levels are the most severe). All kernel
messages continue to go to the central buffer (and to syslog) regardless of whether
they are forwarded to the console.

The kernel provides some control files underneath the /proc/sys directory to allow
floods of repeated log messages to be choked off at the source. See the section Tun-
ing Linux kernel parameters starting on page 874 for more information about the
general mechanism through which kernel parameters are set. The specific control
files are /proc/sys/kernel/printk_ratelimit, which specifies the minimum number
of seconds that must elapse between kernel messages once the choke has been acti-
vated (default 5), and /proc/sys/kernel/printk_ratelimit_burst, which specifies
how many grouped messages to let through before activating the choke (default 10).
These parameters are advisory, so they do not absolutely guarantee that a heavy flow
of messages will be stanched.

Logging for the system startup scripts is unfortunately not as well managed as ker-
nel logging. Red Hat Enterprise Linux uses an initlog command to capture the out-
put of startup commands and submit it to syslog. Unfortunately, initlog must be
mentioned explicitly whenever a command is run, so the information comes at the
cost of some complexity. Messages eventually make their way to /var/log/boot.log.

Our other example systems make no coherent effort to capture a history of the startup
scripts’ output. Some information is logged by individual commands and daemons,
but much goes unrecorded.

208 Chapter 10 – Syslog and Log Files

Fedora formerly used the same initlog system as Red Hat, but the commands to
submit log entries have been commented out of the startup files. Fortunately, there’s
a central library of utility functions, /etc/init.d/functions, where you can uncom-
ment the initlog lines to reenable them.

10.3 LOGROTATE: MANAGE LOG FILES

Erik Troan’s excellent logrotate utility implements a variety of log management pol-
icies and is standard on all our example distributions.

A logrotate configuration file consists of a series of specifications for groups of log
files to be managed. Options that appear outside the context of a log file specifica-
tion (such as errors, rotate, and weekly in the following example) apply to all fol-
lowing specifications; they can be overridden within the specification for a particu-
lar log file and can also be respecified later in the file to modify the defaults.

Here’s a somewhat contrived example that handles several different log files:

Global options
errors errors@book.admin.com
rotate 5
weekly

Logfile rotation definitions and options
/var/log/messages {

postrotate
/bin/kill -HUP `cat /var/run/syslogd.pid`

endscript
}

/var/log/samba/*.log {
notifempty
copytruncate
sharedscripts
postrotate

/bin/kill -HUP `cat /var/lock/samba/*.pid`
endscript

}

This configuration rotates /var/log/messages every week. It keeps five versions of
the file and notifies syslogd each time the file is reset. The Samba log files (of which
there may be several) are also rotated weekly, but instead of being moved aside and
restarted, they are copied and then truncated. The Samba daemons are sent HUP
signals only after all log files have been rotated.

Table 10.2 lists the most useful logrotate.conf options.

logrotate is normally run out of cron once a day. Its standard configuration file is
/etc/logrotate.conf, but multiple configuration files (or directories containing con-
figuration files) can appear on logrotate’s command line. This feature is used to great
effect by our example distributions, which define the /etc/logrotate.d directory as a

S
ys

lo
g

 /
 L

o
g

 F
il

e
s

10.4 Syslog: the system event logger 209

standard place for logrotate config files. logrotate-aware software packages (of
which there are many) can drop in log management instructions as part of their in-
stallation procedure, greatly simplifying administration.

In addition to logrotate, Debian and Ubuntu provide a simpler program called
savelog that manages rotation for individual files. It’s more straightforward than
logrotate and doesn’t use (or need) a config file. Some packages prefer to use their
own savelog configurations rather than logrotate.

10.4 SYSLOG: THE SYSTEM EVENT LOGGER

Syslog, originally written by Eric Allman, is a comprehensive logging system. It has
two important functions: to liberate programmers from the tedious mechanics of
writing log files and to put administrators in control of logging. Before syslog, every
program was free to make up its own logging policy. System administrators had no
control over what information was kept or where it was stored.

Syslog is quite flexible. It allows messages to be sorted by their source and impor-
tance (“severity level”) and routed to a variety of destinations: log files, users’ termi-
nals, or even other machines. Syslog’s ability to centralize the logging for a network
is one of its most valuable features.

Alternatives to syslog

Although syslog has long been the reigning logging system for UNIX and Linux,
several alternatives have been developed in an attempt to address some of its short-
comings. One of these, syslog-ng (syslog, next generation), is now used on SUSE
systems by default. From a configuration standpoint it is quite different from the
standard syslog, and we will not describe it in detail in this book. It’s available from
www.balabit.com if you would like to try it on a non-SUSE system.

Table 10.2 logrotate options

Option Meaning

compress Compresses all noncurrent versions of the log file
daily, weekly, monthly Rotates log files on the specified schedule
delaycompress Compresses all versions but current and next-most-recent
endscript Marks the end of a prerotate or postrotate script
errors emailaddr Emails error notifications to the specified emailaddr
missingok Doesn’t complain if the log file does not exist
notifempty Doesn’t rotate the log file if it is empty
olddir dir Specifies that older versions of the log file be placed in dir
postrotate Introduces a script to be run after the log has been rotated
prerotate Introduces a script to be run before any changes are made
rotate n Includes n versions of the log in the rotation scheme
sharedscripts Runs scripts only once for the entire log group
size=logsize Rotates if log file size > logsize (e.g., 100K, 4M)

www.balabit.com

210 Chapter 10 – Syslog and Log Files

Syslog-ng adds additional configuration facilities, filtering based on message con-
tent, message integrity, and better support for firewall restrictions when messages
are forwarded over the network.

SDSC Secure Syslog (from the San Diego Supercomupting Center) is also known as
high-performance syslog. It provides a “forensically sound” auditing system by im-
plementing the specifications of RFC3195. It was designed with high-traffic sites in
mind and contains a number of performance optimizations. You can download the
source code from sourceforge.net/projects/sdscsyslog.

Syslog architecture

Syslog consists of three parts:

• syslogd, the logging daemon (along with its config file, /etc/syslog.conf)

• openlog et al., library routines that submit messages to syslogd
• logger, a user-level command that submits log entries from the shell

In the following discussion, we first cover the configuration of syslogd and then
briefly show how to use syslog from Perl scripts.

syslogd is started at boot time and runs continuously; it cannot be managed with
inetd. Programs that are syslog aware write log entries (by using the syslog library
routine) to the special file /dev/log, a UNIX domain socket. syslogd reads messages
from this file, consults its configuration file, and dispatches each message to the ap-
propriate destination.

A hangup signal (HUP, signal 1) causes syslogd to close its log files, reread its con-
figuration file, and start logging again. If you modify /etc/syslog.conf, you must
send a hangup signal to syslogd to make your changes take effect. A TERM signal
causes syslogd to exit.

syslogd writes its process ID to the file /var/run/syslogd.pid. This convention
makes it easy to send signals to syslogd from a script. For example, the following
command sends a hangup signal:

kill -HUP `/bin/cat /var/run/syslogd.pid`

Trying to compress or rotate a log file that syslogd has open for writing is not healthy
and has unpredictable results.The proper procedure is to move the old log aside,
recreate the log with the same ownerships and permissions, and then send a HUP
signal to syslogd. This procedure is easily implemented with logrotate; see page
208 for an example.

Configuring syslogd

The configuration file /etc/syslog.conf controls syslogd’s behavior. It is a text file
with a relatively simple format. Blank lines and lines with a pound sign (#) in col-
umn one are ignored. The basic format is:

selector <Tab> action

S
ys

lo
g

 /
 L

o
g

 F
il

e
s

10.4 Syslog: the system event logger 211

For example, the line

mail.info /var/log/maillog

would cause messages from the email system to be saved in the file /var/log/maillog.

Selectors identify the program (“facility”) that is sending a log message and the mes-
sage’s severity level with the syntax

facility.level

Both facility names and severity levels must be chosen from a short list of defined
values; programs can’t make up their own. Facilities are defined for the kernel, for
common groups of utilities, and for locally written programs. Everything else is clas-
sified under the generic facility “user.”

Selectors can contain the special keywords * and none, meaning all or nothing, re-
spectively. A selector can include multiple facilities separated by commas. Multiple
selectors can be combined with semicolons.

In general, selectors are ORed together: a message matching any selector will be sub-
ject to the line’s action. However, a selector with a level of none excludes the listed
facilities regardless of what other selectors on the same line may say.

Here are some examples of ways to format and combine selectors:

facility.level action
facility1,facility2.level action
facility1.level1;facility2.level2 action
*.level action
*.level;badfacility.none action

Table 10.3 (next page) lists the valid facility names. There are currently 21 facilities.

syslogd itself produces time stamp messages, which are logged if the “mark” facility
appears in syslog.conf to specify a destination for them. Time stamps can help you
figure out that your machine crashed between 3:00 and 3:20 a.m., not just “some-
time last night.” This information can be a big help when you are debugging prob-
lems that seem to occur regularly (e.g., the “mysterious crashes” that occur when
the housekeeping staff plug in their vacuum cleaners late at night, tripping the cir-
cuit breakers).

If your system is quite busy, other log messages often provide adequate time stamp
information. But in the wee hours of the morning, that is not always the case.

Table 10.4 (next page) lists syslog’s severity levels in order of descending importance.

The severity level of a message specifies its importance. The distinctions between
the various levels are sometimes fuzzy. There’s a clear difference between notice and
warning (and between warning and err), but the exact shade of meaning expressed
by alert as opposed to crit is a matter of conjecture. Table 10.7 on page 218 lists the
specific levels used by a variety of common software programs.

212 Chapter 10 – Syslog and Log Files

In the syslog.conf file, levels indicate the minimum importance that a message must
have in order to be logged. For example, a message from the mail system at level
warning would match the selector mail.warning as well as the selectors mail.info,
mail.notice, mail.debug, *.warning, *.notice, *.info, and *.debug. If syslog.conf
specifies that mail.info messages be logged to a file, then mail.warning messages
will go there also.

As a refinement of the basic syntax, the Linux version of syslog also allows the char-
acters = and ! to be prefixed to priority levels to indicate “this priority only” and
“except this priority and higher,” respectively. Table 10.5 shows some examples.

Table 10.3 Syslog facility names

Facility Programs that use it

* All facilities except “mark”
auth Security and authorization-related commands
authpriv Sensitive/private authorization messages a

cron The cron daemon
daemon System daemons
ftp The FTP daemon, ftpd

kern The kernel
local0-7 Eight flavors of local message
lpr The line printer spooling system
mail sendmail and other mail-related software
mark Time stamps generated at regular intervals
news The Usenet news system
syslog syslogd internal messages
user User processes (the default if not specified)
uucp Obsolete, ignore

a. In reality, all authorization-related messages are sensitive. Neither authpriv
messages nor auth messages should be world-readable.

Table 10.4 Syslog severity levels (descending severity)

Level Approximate meaning

emerg Panic situations
alert Urgent situations
crit Critical conditions
err Other error conditions
warning Warning messages
notice Things that might merit investigation
info Informational messages
debug For debugging only

S
ys

lo
g

 /
 L

o
g

 F
il

e
s

10.4 Syslog: the system event logger 213

The action field tells what to do with a message. The options are listed in Table 10.6.

If a filename (or fifoname) action is used, the name should be an absolute path. If
you specify a nonexistent filename, syslogd will create the file when a message is
first directed to it.2 You can preface a filename action with a dash to indicate that the
filesystem should not be synced after each log entry is written. syncing helps pre-
serve as much logging information as possible in the event of a crash, but for busy
log files it can be costly in terms of system performance.

If a hostname is used in lieu of an IP address, it must be resolvable through a transla-
tion mechanism such as DNS or NIS.

Although multiple facilities and levels are allowed in a selector, there is no provision
for multiple actions. To send a message to two places (such as to a local file and to a
central logging host), you must include in the configuration file two lines with the
same selectors.

Because syslog messages can be used to mount a denial of service attack, syslogd
will not accept log messages from other machines unless it is started with the -r flag.
By default, syslogd also refuses to act as a third-party message forwarder; messages
that arrive from one network host cannot be sent on to another. Use the -h flag to
override this behavior. (If you want these options turned on all the time, add the
flags in /etc/sysconfig/syslog for RHEL and Fedora, or in /etc/init.d/sysklogd for
Debian and Ubuntu.)

Table 10.5 Examples of Linux priority level qualifiers in syslog.conf

Selector Meaning

mail.info Mail-related messages of info priority and higher
mail.=info Only messages at info priority
mail.info;mail.!err Only priorities info, notice, and warning
mail.debug;mail.!=warning All priorities except warning

Table 10.6 Syslog actions

Action Meaning

filename Appends the message to a file on the local machine
@hostname Forwards the message to the syslogd on hostname
@ipaddress Forwards the message to the syslogd on host ipaddress
| fifoname Writes the message to the named pipe fifoname a

user1,user2,… Writes the message to users’ screens if they are logged in
* Writes the message to all users who are currently logged in

a. See info mkfifo for more information.

2. Note that this behavior is opposite to that of the original syslog implementation, which required log
files to be created in advance.

214 Chapter 10 – Syslog and Log Files

Designing a logging scheme for your site

At a small site it is adequate to configure logging so that important system errors
and warnings are kept in a file on each machine, much as was done before we had
syslog. The syslog.conf file can be customized for each host.

On a large network, central logging is essential. It keeps the flood of information
manageable and makes auditing data unavailable to a person who violates the secu-
rity of a machine on the network. Hackers often edit system logs to cover their
tracks; if log information is whisked away as soon as it is generated, it is much
harder to destroy. Your site-wide firewall should not allow external sites to submit
messages to your syslogd.

Be aware that anyone can call syslog and fake log entries from any daemon or utility.
Syslog also uses the UDP protocol, which is not guaranteed to be reliable; messages
can get lost.

See Chapter 17 for
more information
about distributing
files on a network.

Choose a stable machine as your logging server, preferably one that is well secured
and does not have many logins. Other machines can use a generic syslog configura-
tion file that is maintained in a central place. Thus, only two versions of syslog.conf
need be maintained. This approach allows logging to be complete but at the same
time is not a nightmare to administer.

For maximum security, the syslog server should be firewalled off from the rest of the
network, allowing connections only to the syslog port and only from hosts that are
allowed to log to it, and nothing else. Depending on the ambient level of paranoia,
SSH connections may be allowed from system administrators’ workstations to make
it easier for them to review the logs.

Some very large sites may want to add more levels to the logging hierarchy. Unfortu-
nately, syslog retains the name of the originating host for only one hop. If host “cli-
ent” sends some log entries to host “server,” which sends them on to host “master,”
master will see the data as coming from server, not from client.

Config file examples

Syslog configuration is one area in which Linux distributions vary widely. Since it’s
relatively easy to read a syslog.conf file, we will not review our example distribu-
tions’ config files in detail; they’re all pretty straightforward. Instead, we’ll look at
some common ways that you might want to set up logging if you choose to depart
from or expand on your system’s default.

Below are three sample syslog.conf files that correspond to a stand-alone machine
on a small network, a client machine on a larger network, and a central logging host
on the same large network. The central logging host is called “netloghost.”3

3. More accurately, it uses “netloghost” as one of its hostname aliases. This allows the identity of the log
host to be modified with little reconfiguration. An alias can be added in /etc/hosts or set up with a
CNAME record in DNS. See page 399 for more information about DNS CNAME records.

S
ys

lo
g

 /
 L

o
g

 F
il

e
s

10.4 Syslog: the system event logger 215

Stand-alone machine

A basic configuration for a stand-alone machine is shown below:

syslog.conf file for small network or stand-alone machines

emergencies: tell everyone who is logged on
*.emerg *
important messages
*.warning;daemon,auth.info;user.none /var/log/messages
printer errors
lpr.debug /var/log/lpd-errs

The first noncomment line writes emergency messages to the screens of all current
users. An example of emergency-level messages are those generated by shutdown
when the system is about to be turned off.

The second line writes important messages to /var/log/messages. The info level is
below warning, so the daemon,auth.info clause includes additional logging from
passwd, su, and daemon programs. The third line writes printer error messages to
/var/log/lpd-errs.

Network client

A network client typically forwards serious messages to a central logging machine:

syslog.conf file for nonmaster machines

Emergencies: tell everyone who is logged on
*.emerg;user.none *

Forward important messages to the central logger
*.warning;lpr,local1.none @netloghost
daemon,auth.info @netloghost

Send some local stuff to the central logger too
local2.info;local7.debug @netloghost

Keep printer errors local
lpr.debug /var/log/lpd-errs

sudo logs to local2 - keep a copy here too
local2.info /var/log/sudo.log

Keep kernel messages local
kern.info /var/log/kern.log

This configuration does not keep much log information locally. It’s worth mention-
ing that if netloghost is down or unreachable, log messages will be irretrievably lost.
You may want to keep local duplicates of important messages to guard against this
possibility.

At a site with lots of local software installed, lots of messages can be logged inappro-
priately to facility user, level emerg. In this example, user/emerg has been specifically
excluded with the user.none clause in the first line.

216 Chapter 10 – Syslog and Log Files

See page 48 for
more information
about sudo.

The second and third lines forward all important messages to the central logging
host; messages from the printing system and the campus-wide card access system
(local1) are explicitly excluded. The fourth line forwards a subset of local logging
information to netloghost as well. The last three entries keep local copies of printer
errors, sudo messages, and kernel messages.

Central logging host

This example is for netloghost, the central, secure logging host for a moderate-sized
network of about 7,000 hosts.

syslog.conf file for master logging host

Emergencies to the console and log file, with timing marks
*.emerg /dev/console
*.err;kern,mark.debug;auth.notice /dev/console
*.err;kern,mark.debug;user.none /var/log/console.log
auth.notice /var/log/console.log

Send non-emergency messages to the usual log files
*.err;user.none;kern.debug /var/log/messages
daemon,auth.notice;mail.crit /var/log/messages
lpr.debug /var/log/lpd-errs
mail.debug /var/log/mail.log

Local authorization stuff like sudo and npasswd
local2.debug /var/log/sudo.log
local2.alert /var/log/sudo-errs.log
auth.info /var/log/auth.log

Other local stuff

local4.notice /var/log/da.log
local7.debug /var/log/tcp.log

User stuff (the default if no facility is specified)
user.info /var/log/user.log

Messages arriving from local programs and syslogds on the network are written to
log files. In some cases, the output from each facility is put into its own file.

The central logging host generates the time stamp for each message as it writes the
message out. The time stamps do not reflect the time on the originating host. If you
have machines in several time zones or your system clocks are not synchronized, the
time stamps can be somewhat misleading.

Sample syslog output

Below is a snippet from one of the log files on the master syslog host at the University
of Colorado’s computer science department.

Dec 18 15:12:42 av18.cs.colorado.edu sbatchd[495]: sbatchd/main: ls_info()
failed: LIM is down; try later; trying …

S
ys

lo
g

 /
 L

o
g

 F
il

e
s

10.4 Syslog: the system event logger 217

Dec 18 15:14:28 proxy-1.cs.colorado.edu pop-proxy[27283]: Connection from
128.138.198.84

Dec 18 15:14:30 mroe.cs.colorado.edu pingem[271]: maltese-
office.cs.colorado.edu has not answered 42 times

Dec 18 15:15:05 schwarz.cs.colorado.edu vmunix: Multiple softerrors: Seen 100
Corrected Softerrors from SIMM J0201

Dec 18 15:15:16 coyote.cs.colorado.edu PAM_unix[17405]: (sshd) session closed
for user trent

Dec 18 15:15:48 proxy-1.cs.colorado.edu pop-proxy[27285]: Connection from
12.2.209.183

Dec 18 15:15:50 av18.cs.colorado.edu last message repeated 100 times

This example contains entries from several different hosts (av18, proxy-1, schwarz,
mroe, and coyote) and from several programs: sbatchd, pop-proxy, pingem, and
the Pluggable Authentication Modules library.

Note the last line of the excerpt, which complains of a message being repeated 100
times. To help keep the logs shorter, syslog generally attempts to coalesce duplicate
messages and replace them with this type of summary. However, the machine from
which this example was drawn accepts log entries from many other hosts, so this
particular message is a bit misleading, It actually refers to the previous log entry from
av18, not the entry immediately preceding it in the composite log.

It’s a good idea to peruse your log files regularly. Determine what is normal so that
when an anomaly occurs, you can recognize it. Better yet, set up a log postprocessor
such as swatch to trap these cases automatically; see Condensing log files to useful
information on page 220.

Software that uses syslog

Table 10.7 on the next page lists some of the programs that use syslog, the facilities
and levels they log to, and a brief description of each program.

With all this information, it should be perfectly clear which messages to keep and
which to discard, right? Well, maybe not. In practice, you just have to learn what the
useful logging levels are for your system. It’s best to start with an excessive amount
of logging and gradually winnow out the cases that you don’t want. Stop winnowing
when you feel comfortable with the average data rate.

Debugging syslog

The logger command is useful for submitting log entries from shell scripts. You can
also use it to test changes in syslogd’s configuration file. For example, if you have
just added the line

local5.warning /tmp/evi.log

and want to verify that it is working, run

$ logger -p local5.warning "test message"

218 Chapter 10 – Syslog and Log Files

A line containing “test message” should be written to /tmp/evi.log. If this doesn’t
happen, perhaps you forgot to send syslogd a hangup signal.

Be careful about logging to the console device, /dev/console, or to any pseudo-ter-
minal or port that supports flow control. If someone has typed <Control-S> on the
console, output to it will stop. Each call to syslog will block, and your system will
slow to a crawl. A good way to check for this degenerate condition is to send a syslog
message to the console with logger. If logger hangs, you need to find the offending
port, type a <Control-Q>, and rethink your logging strategy.

Another drawback to logging on the console is that the flood of messages sparked by
a major problem can make the console unusable at precisely the moment that it is
most needed. On certain types of frame buffers with unoptimized console drivers,
the flood of messages can actually make the whole system unusable.

Depending on how your console is set up and managed (e.g., through a console
server), console logging may also have some security implications.

Using syslog from programs

The library routines openlog, syslog, and closelog allow programs to use the syslog
system. Versions of these library routines are available for C, Perl, Python, and PHP;
we describe only the Perl interface here.

Table 10.7 Software that uses syslog

Program Facility Levels Description

cron cron, daemon info Task-scheduling daemon
cups lpr info–err Common UNIX Printing System
ftpd ftp debug–crit FTP daemon (wu-ftpd)
inetd daemon warning, err Internet super-daemon (Debian)
imapd mail info–alert IMAP mail server
login authpriv info–err Login programs
lpd lpr info–err BSD printing system
named daemon info–err Name server (DNS)
ntpd daemon, user info–crit Network time daemon
passwd auth notice,warning Password-setting program
popper local0 debug, notice POP3 mail server
sendmail mail debug-alert Mail transport system
ssh auth info Secure shell (remote logins)
su auth notice, crit Switches UIDs
sudo local2 notice, alert Limited su program
syslogd syslog, mark info-err Internal errors, time stamps
tcpd local7 debug-err TCP wrapper for inetd

vmlinuz kern all The kernel
xinetd configurable info (default) Variant of inetd (Red Hat, SUSE)

S
ys

lo
g

 /
 L

o
g

 F
il

e
s

10.4 Syslog: the system event logger 219

To import the definitions of the library routines, include the line

use Sys::Syslog;

at the beginning of your Perl script.

The openlog routine initializes logging, using the specified facility name:

openlog(ident, logopt, facility);

Messages are logged with the options specified by logopt and begin with the identifi-
cation string ident. If openlog is not used, ident defaults to the current username,
logopt to an empty string, and facility to “user.” The logopt string should contain a
comma-separated list of options drawn from Table 10.8.

For example, a reasonable invocation of openlog might be

openlog("adminscript", "pid,cons", "local4");

The syslog routine sends a message to syslogd, which logs it at the specified priority:

syslog(priority, message, …);

The date, time, hostname, and ident string from the openlog call are prepended to
the message in the log file. message may be followed by various other parameters to
form a printf-style output specification that can include text and the contents of
other variables; for example,

syslog("info", "Delivery to '%s' failed after %d attempts.", $user, $nAttempts);

The special symbol %m expands to an error message derived from the current value
of errno (the most recent error code).

A priority string of the form “level | facility” sets both the severity level and the facil-
ity name. If you did not call openlog and specify an ident string, the syslog routine
also checks to see if your message has the form of a standard error message such as

adminscript: User "nobody" not found in /etc/passwd file.

If it does, the part before the colon is secretly adopted as your ident string. These
helpful (but undocumented) features make it unnecessary to call openlog at all;
however, it is still a good idea. It’s better to specify the facility name in one place (the
openlog call) than to repeat it throughout your code.

Table 10.8 Logging options for the openlog routine

Option Meaning

pid Include the current process’s PID in each log message.
ndelay Connect to syslogd immediately (don’t wait until a message is submitted).
cons Send messages to the system console if syslogd is unreachable.
nowait Do not wait(3) for child processes forked to write console messages.

220 Chapter 10 – Syslog and Log Files

The closelog routine closes the logging channel:

closelog();

You must call this routine if you want to reopen the logging channel with different
options. It’s good form to call closelog when your program exits, but doing so is not
strictly necessary.

Here’s a complete example:

use Sys::Syslog;

openlog("adminscript", "cons,pid", "user");
syslog("warning","Those whom the gods would destroy, they first teach Basic.");
closelog();

This scriptlet produces the following log entry (191 is admincript’s PID):

Dec 28 22:56:24 moet.colorado.edu adminscript[191]: Those whom the gods
would destroy, they first teach Basic.

10.5 CONDENSING LOG FILES TO USEFUL INFORMATION

Syslog is great for sorting and routing log messages, but when all is said and done, its
end product is still a bunch of log files. While they may contain all kinds of useful
information, those files aren’t going to come and find you when something goes
wrong. Another layer of software is needed to analyze the logs and make sure that
important messages don’t get lost amid the chatter.

A variety of free tools are available to fill this niche, and most of them are pretty
similar: they scan recent log entries, match them against a database of regular ex-
pressions, and process the important messages in some attention-getting way. Some
tools mail you a report; others can be configured to make noise, print log entries in
different colors, or page you. Tools differ primarily in their degree of flexibility and
in the size of their off-the-shelf database of patterns.

Two of the more commonly used log postprocessors are Todd Atkins’ swatch and
Craig Rowland’s logcheck. Both are available from sourceforge.net (logcheck
comes with the sentrytools package: sourceforge.net/projects/sentrytools).

swatch is a Perl script that gets its marching orders from a configuration file. The
configuration syntax is fairly flexible, and it also provides access to the full pattern-
matching mojo of Perl. While swatch can process an entire file in a single bound, it’s
primarily intended to be left running so that it can review new messages as they ar-
rive, a la tail -f. A disadvantage of swatch is that you must build your own configu-
ration pretty much from scratch; it doesn’t know about specific systems and the ac-
tual log messages they might generate.

logcheck is a more basic script written in sh. The distribution also includes a C
program that logcheck uses to help it record its place within a log file. logcheck
knows how far it has read in a log file, so there is perhaps less chance of a message

S
ys

lo
g

 /
 L

o
g

 F
il

e
s

10.5 Condensing log files to useful information 221

slipping by at startup or shutdown time. In addition, logcheck can run at intervals
from cron rather than running continuously.

logcheck comes with sample databases for several different versions of UNIX and
Linux. Even if you don’t want to use the actual script, it’s worth looking over the
patterns to see if there are any you might want to steal for your own use.

Both of these tools have the disadvantage of working on only a single log file at a time.
If your syslog configuration sorts messages into many different files, you might want
to duplicate some of the messages into a central file that is frequently truncated, then
use that summary file to feed a postprocessing script. That’s easier than setting up a
complicated network of scripts to handle multiple files.

Another tool worth mentioning is Kirk Bauer’s logwatch. It’s more a log summarizer
than an ongoing monitoring and alerting tool, but it has the advantages of being rela-
tively simple, being installed by default on Fedora and Red Hat, and being available
as both an RPM package and an APT package.

A different type of log management tool is SEC, the Simple Event Correlator. It’s a
Perl script that reads lines from files, named pipes, or standard input and converts
them into various classes of “input events” by matching them to regular expressions.
Configuration rules then specify how input events should be transmogrified into
output events such as the execution of a particular script or the emission of a mes-
sage to a specified pipe or file.

The SEC distribution is available from kodu.neti.ee/~risto/sec and contains an exten-
sive man page with examples. Additional examples are available at the web site. SEC
isn’t as “off the shelf ” as the other tools listed above, but it is a good base on which to
build a custom log analysis tool.

No matter what system you use to scan log files, there are a couple of things you
should be sure to look for and immediately bring to the attention of an administrator:

• Most security-related messages should receive a prompt review. It’s often
helpful to monitor failed login, su, and sudo attempts in order to catch
potential break-ins before they happen. If someone has just forgotten his
password (as is usually the case), a prompt and proactive offer of help will
make a good impression and cement your reputation for clairvoyance.

• Messages about disks that have filled up should be flagged and acted on
immediately. Full disks often bring useful work to a standstill.

• Messages that are repeated many times deserve attention, if only in the
name of hygiene.

222 Chapter 10 – Syslog and Log Files

10.6 EXERCISES

E10.1 What are the main reasons for keeping old log files?

E10.2 What is the difference between lastlog and wtmp? What is a reasonable
rotation policy for each?

E10.3 Dissect and understand the following syslog.conf line:

*.notice;kern.debug;lpr.info;mail.crit;news.err /var/log/messages

Does it seem sensible?

E10.4 Look through your log files for entries from named, the DNS name
server. Are any machines trying to update your domain files dynami-
cally? Are they succeeding? (May require root access.)

E10.5 Where would you find the boot log for your machine? What are the is-
sues that affect logging at boot time? How does klogd solve these issues?

E10.6 Investigate the logging policy in use at your site, including the log file
rotation policy. How much disk space is dedicated to logging? How long
are log files kept? Can you foresee circumstances in which your site’s
policy would not be adequate? What solution would you recommend?
(Requires root access.)

E10.7 Some log messages are extremely important and should be reviewed by
an administrator immediately. What system could you set up to make
sure that this happens as quickly as possible?

E10.8 Write a program or script that submits messages to syslog with facility
“user.” (May require root access.)

223

S
o

ft
w

a
re

 M
a

n
a

g
e

m
e

n
t

11 Software and Configuration
Management

Although Linux distributions are rapidly becoming more feature complete and user
friendly, software configuration management is still a major element of the adminis-
trative landscape. In addition to performing off-the-shelf installations, you must
implement any customizations that are appropriate for your site. Administrators
must typically perform all the following tasks:

• Automating mass installations of the operating system

• Customizing systems for the local environment

• Keeping systems patched and up to date

• Managing add-on software packages

The process of configuring an off-the-shelf distribution or software package to con-
form to your needs (and to your local conventions for security, file placement, and
network topology) is often referred to as “localization.” This chapter explores some
techniques and applications that help reduce the pain of software installation and
make these tasks scale gracefully.

11.1 BASIC LINUX INSTALLATION

Current Linux distributions all provide straightforward procedures for basic instal-
lation. You boot a CD-ROM or floppy disk, answer a few questions, and tell the in-
staller which software packages to copy onto your hard drive. Most distributions
also have good installation guides.

Software Management

224 Chapter 11 – Software and Configuration Management

Enterprise versions of Red Hat include a printed installation manual. These can also
be found on-line (with other Red Hat manuals) at www.redhat.com/docs/manuals.

Fedora has its own documentation project, but because the current releases of Fe-
dora remain tightly coupled to Red Hat Enterprise Linux, Fedora volunteers do not
seem to have been willing to spend time duplicating the content of existing Enter-
prise documentation. The Red Hat manuals are usually a good place to start when
looking for answers to Fedora questions.

The boxed SUSE Linux Enterprise set also includes installation manuals. These doc-
uments are available on-line from

www.novell.com/documentation/suse.html

Analogous documentation for openSUSE can be found here:

www.opensuse.org/Documentation

You can find the Debian installation manual here:

www.debian.org/releases/stable/installmanual

Ubuntu nicely summarizes the installation options in wiki form here:

https://wiki.ubuntu.com/Installation

If you have to install the operating system on more than one computer, you will
quickly reach the limits of interactive installation. To begin with, it is not very repro-
ducible. (Can you repeatably select a consistent set of software packages from the
hundreds offered to you at installation time?) You can minimize pilot errors with a
localization checklist, but even this measure will not prevent all potential variations.
Interactive installation also consumes time and effort.

The installers for our example distributions are all scriptable, so another option is to
create a floppy or CD-ROM that contains the configuration you want. This solution
solves the reproducibility problem, but it still doesn’t scale very well. If you are in-
stalling hundreds of machines, building and deploying hundreds of configuration
disks is the height of tedium.

It’s also possible to perform automatic installation over a network, and this is usually
the most convenient option for sites with hundreds or thousands of systems to up-
grade. All of our example distributions can be installed this way, but the off-the-
shelf systems do require some configuration before the process runs smoothly.

Also, several open source development projects are striving to produce third-party
network installers; for example, SystemImager. These systems are discussed in more
detail later in this chapter.

Netbooting PCs

Netbooting allows you to boot a computer completely over the net, instead of from a
hard disk, floppy disk, or CD-ROM. It’s convenient for software installation because

www.redhat.com/docs/manuals
www.novell.com/documentation/suse.html
www.opensuse.org/Documentation
www.debian.org/releases/stable/installmanual
https://wiki.ubuntu.com/Installation

S
o

ft
w

a
re

 M
a

n
a

g
e

m
e

n
t

11.1 Basic Linux installation 225

it means that you can sit at your desk and netboot a machine somewhere else with-
out having to walk to the machine and insert a physical piece of boot media.

Manufacturers of dedicated UNIX boxes have long supported netbooting, but only
recently has this feature become standard on PCs. After years of hacks involving
custom-made boot PROMs (see etherboot.sourceforge.net), Intel has done us all a
favor by establishing the PXE (Pre-boot eXecution Environment) standard. Al-
though PXE isn’t perfect, an ugly standard is better than none. (Well, usually.)

PXE acts like a miniature OS sitting in a ROM on your network card. It exposes its
network capabilities through a standardized API for the system BIOS to use. This
cooperation makes it possible for a single boot loader to netboot Linux on any PXE-
enabled PC without the need to supply special drivers for each network card.

See page 311 for
more information
about DHCP.

The external (network) portion of the PXE protocol is straightforward and is similar
to the netboot procedures used on other architectures. A host broadcasts a DHCP
“discover” request with the PXE option set, and a DHCP server or proxy responds
with a DHCP packet that includes PXE options (the name of a boot server and boot
file). The client downloads its boot file by using TFTP (or, optionally, multicast
TFTP) and then executes it.

Although the PXE spec is not totally backward compatible with generic DHCP, in
practice all modern DHCP servers can provide PXE boot service.

The degree of PXE support built into installers varies among distributions. This is
an area of active development, though, and functional PXE-based systems are be-
coming increasingly common.

Documents that describe PXE are available from a variety of sources. A good place
to start is the Remote Boot HOWTO available from www.tdlp.org.

Setting up PXE for Linux

Several PXE-based netboot systems exist, but the one that works best at this time is
H. Peter Anvin’s PXELINUX, which is part of his SYSLINUX suite of boot loaders for
every occasion. Check it out at syslinux.zytor.com.

PXELINUX provides a boot file that you install in your server’s tftpboot directory
and that is downloaded to the booting PC when PXE goes into action. The PC then
executes the boot file and downloads its configuration from the server; the configu-
ration specifies which kernel to use. This chain of events can occur without inter-
vention, or you can create a custom boot menu if you choose.

PXELINUX uses the PXE API for its downloads and is therefore hardware indepen-
dent all the way through the boot process. It is not limited to booting Linux—it can
also boot other OSes and can even boot floppy images if you use the MEMDISK
kernel, which is also part of the SYSLINUX package.

On the server side, make sure you are using the ISC (Internet Systems Consortium)
DHCP server. If you’re using a different server, you may have to either configure

www.tdlp.org

226 Chapter 11 – Software and Configuration Management

additional DHCP options or else use numerical representations in the server’s con-
figuration file.

Chapter 14 of the Red Hat Enterprise Linux 3 System Administration Guide is all
about PXE and netbooting. Find it at www.redhat.com/docs/manuals.

RHEL’s free cousin Fedora lets you access the graphical netboot configuration sys-
tem by running the command system-config-netboot.

SUSE doesn’t ship with any PXE packages, but you can borrow the ones from Red
Hat. YaST can easily be made to work with PXE, although this configuration isn’t
officially supported.

The Debian installer can be netbooted without problems; just pick up the netboot
kernel image from www.debian.org/devel/debian-installer. There is even a Wiki
page that points to the available resources:

wiki.debian.net/index.cgi?DebianInstallerNetbootPXE

As of this writing, the formal Ubuntu installation guide for the 6.06 release has not
been finalized. In the meantime, you can find a draft at doc.ubuntu.com. For a quick
summary of options, see the Installation/Netboot and Installation/LocalNet topics
available through the main installation wiki page:

https://wiki.ubuntu.com/Installation/Netboot

Netbooting non-PCs

PXE is an Intel product and is limited to IA-32 and IA-64 hardware. Other architec-
tures have their own methods of booting over the net, which are almost always more
elegant than PXE. An interesting twist to the netboot story is that now that Linux
has spread beyond the Intel architecture, many of these “dedicated” UNIX systems
now have the option of netbooting Linux instead of their native operating systems.

Discussion of the many differences among architectures is really beyond the scope
of this book, but a variety of resources on the web can help.

SPARC machines and most PowerPC boxes use Open Firmware, which is easy to net-
boot (type boot net). The UltraLinux FAQ (www.ultralinux.org) includes a useful
guide to netbooting Linux on SPARC processors. Alpha boxes generally use the SRM
console software to boot. The SRM HOWTO describes the use of this feature to start
Linux. For Macs, RS/6000s, and other PowerPC-based machines, the netboot proce-
dure is specific to both your hardware and the boot loader you are using, so check
your boot loader’s docs. AMD64 machines use PXE like their x86 PC siblings.

Kickstart: the automated installer for Enterprise Linux and Fedora

Kickstart is Red Hat’s tool for performing automated installations. It is really just a
scripting interface to the standard Red Hat installer, Anaconda, and it is dependent
on both the base distribution and RPM packages. Unlike SystemImager and other

www.redhat.com/docs/manuals
www.debian.org/devel/debian-installer
www.ultralinux.org
https://wiki.ubuntu.com/Installation/Netboot

S
o

ft
w

a
re

 M
a

n
a

g
e

m
e

n
t

11.1 Basic Linux installation 227

raw image copiers, Kickstart is flexible and quite smart about autodetecting the sys-
tem’s hardware.

See page 232 for
more information
about packages.

If your environment requires lots of localization, you can include a postinstall script
that conforms the system to your local standards. Although this does work, we’ve
found that the postinstall scripts tend to become large and unmaintainable over
time. Another option is to create an RPM package that contains your local customi-
zations. We recommend this route; it makes versioning easy, facilitates later up-
grades, and gives you dependency support and all the other goodies that come with
a packaging system.

Setting up a Kickstart configuration file

Kickstart’s behavior is controlled by a single configuration file, generally called
ks.cfg. The format of this file is straightforward. If you’re visually inclined, Red Hat
includes a handy GUI tool called redhat-config-kickstart in Enterprise Linux and
system-config-kickstart in Fedora that lets you point and click your way to ks.cfg
nirvana.1

The ks.cfg file is also quite easy to generate programmatically. For example, suppose
that you wanted to install a different set of packages on servers and clients and that
you also have two offices that require slightly different customizations. You could
write a small Perl script that used a master set of parameters to generate a config file
for the servers and clients in each office. Changing the complement of packages
would become just a matter of changing this one Perl script rather than changing
every config file. There may even be some cases in which you need to generate an
individualized config file for each host. In this situation, you would certainly want the
files to be automatically generated.

A nice manual for Kickstart (including a list of all the available options) can be found
in Section II of The Red Hat Enterprise Linux System Administration Guide. It’s avail-
able from www.redhat.com/docs/manuals.

One word of warning regarding the Kickstart config file: if you make an error, the
diagnostics consist of an unintelligible Python traceback that may or may not con-
tain a hidden message pointing you toward the mistake. One of the main advantages
of using redhat-config-kickstart or system-config-kickstart to generate the con-
fig file is that it guarantees the resulting file to be at least syntactically valid.

A Kickstart config file consists of three ordered parts. The first part is the command
section, which specifies options such as the language, keyboard, and time zone. This
section also specifies the source of the distribution with the url option (in the fol-
lowing example, it’s a host called installserver).

1. Note that Fedora has renamed all the redhat-config-* tools to system-config-*. The name change is
part of the effort to distance Fedora from the Red Hat brand name and does not (yet) reflect underly-
ing technical differences.

www.redhat.com/docs/manuals

228 Chapter 11 – Software and Configuration Management

Here’s an example of a complete command section:

text
lang en_US # lang is used during the installation...
langsupport en_US # ...and langsupport at run time.
keyboard us # Use an American keyboard.
timezone --utc America/EST # --utc means hardware clock is on UTC (GMT)
mouse
rootpw whatever
reboot # Reboot after installation. Always a good idea.
bootloader --location=mbr # Install default boot loader in the MBR.
install # Install a new system instead of upgrading.
url --url http://installserver/redhat
clearpart --all --initlabel # Clear all existing partitions
part / --fstype ext3 --size 4096
part swap --size 1024
part /var --fstype ext3 -size 1 --grow
network --bootproto dhcp
auth --useshadow --enablemd5
firewall --disabled
xconfig --defaultdesktop=GNOME --startxonboot --resolution 1280x1024 --depth 24

Kickstart uses graphical mode by default, which defeats the goal of unattended in-
stallation. The text keyword at the top of the example fixes this.

The rootpw option sets the new machine’s root password. The default is to specify
the password in cleartext, which presents something of a security problem. You can
use the --iscrypted flag to specify an already encrypted password; however, MD5
passwords are not supported.

The clearpart and part directives specify a list of disk partitions with sizes. You can
use the --grow option to designate one of the partitions to expand to fill any remain-
ing space on the disk. This feature makes it easy to accommodate systems that have
different sizes of hard disk.

The second section is a list of packages to install, beginning with a %packages di-
rective. The list can contain individual packages, collections such as @ GNOME, or
the notation @ Everything to include the whole shebang. When selecting individual
packages, specify only the package name, not the version or the .rpm extension.
Here’s an example:

%packages
@ Networked Workstation
@ X Window System
@ GNOME
mylocalpackage

In the third section of the Kickstart configuration file, you can specify arbitrary shell
commands for Kickstart to execute. There are two possible sets of commands: one
introduced with %pre that runs before installation, and one introduced with %post
that runs afterward. Both sections have some restrictions on the ability of the system

S
o

ft
w

a
re

 M
a

n
a

g
e

m
e

n
t

11.1 Basic Linux installation 229

to resolve hostnames, so it’s safest to use IP addresses if you want to access the net-
work. In addition, the postinstall commands are run in a chrooted environment, so
they cannot access the installation media.

Building a Kickstart server

Kickstart expects its installation files to be laid out as they are on the distribution
CD, with packages stored in a directory called RedHat/RPMS or Fedora/RPMS on
the server. You can easily add your own packages to this directory. There are, how-
ever, a couple of issues to be aware of.

First, if you tell Kickstart to install all packages (with an @ Everything in the pack-
ages section of your ks.cfg), it installs the add-on packages in alphabetical order
after the base packages have been laid down. If your package depends on other pack-
ages that are not in the base set, you may want to call your package something like
zzmypackage.rpm to make sure that it gets installed last.

If you don’t want to install all packages, either list your supplemental packages indi-
vidually in the %packages section of the ks.cfg file or add your packages to one or
more of the collection lists. Collection lists are specified by entries such as @ GNOME
and stand for a predefined set of packages whose members are enumerated in the
file RedHat/base/comps or Fedora/base/comps on the server. Unfortunately, the
comps file format is not well documented. The collections are the lines that begin
with 0 or 1; the number specifies whether the collection is selected by default. In
general, it’s not a good idea to tamper with the standard collections. We suggest that
you leave them as Red Hat defined them and explicitly name all your supplemental
packages in the ks.cfg file.

Pointing Kickstart at your config file

Once you’ve created a config file, you have a couple of ways to get Kickstart to use it.
The officially sanctioned method is to boot with a floppy or CD-ROM and ask for a
Kickstart installation by specifying linux ks at the initial boot: prompt. If you don’t
specify additional arguments, the system determines its network address by using
DHCP. It then obtains the DHCP boot server and boot file options, attempts to mount
the boot server with NFS, and uses the value of the boot file option as its Kickstart
configuration file. If no boot file has been specified, the system looks for a file called
/kickstart/hostipaddress-kickstart.

Alternatively, Kickstart can be told to get its configuration file in some other way by
providing a path as an argument to the ks option. There are several possibilities. The
instruction

boot: linux ks=http:server:/path

tells Kickstart to use HTTP to download the file instead of NFS. Using ks=floppy
tells Kickstart to look for ks.cfg on the local floppy drive.

To eliminate the use of boot media entirely, you’ll need to graduate to PXE. See page
224 for more information about that.

230 Chapter 11 – Software and Configuration Management

AutoYaST: SUSE’s automated installation tool

YaST2 is SUSE’s all-in-one installation and configuration tool. It comes with a nice
GUI and is fun to use when installing a single system. Older SUSE releases allowed
automation based on regular YaST, but the results were not to everyone’s liking. SUSE
8 introduced a tool called AutoYaST that automates SUSE installations. It is the most
powerful automated installation software of all the distributions described in this
book. You can download detailed documentation from www.suse.com/~ug.

SUSE splits the autoinstallation process into three phases: preparation, installation,
and configuration. Initial preparation is performed with the AutoYaST module:

$ /sbin/yast2 autoyast

This module helps you define the details of your desired setup. The result of running
it is an XML control file that tells the installer how to configure a SUSE system; the
structure of the file is described in the on-line documentation mentioned above.

A couple of shortcuts can speed the configuration process. The AutoYaST module
can read in Red Hat Kickstart configuration files to help you upgrade from “legacy”
systems. If you want to duplicate the configuration of the machine you are currently
working on, an option automates this as well.

To perform an actual installation, you need three network services:

• A DHCP server on the same subnet as the machine you want to set up

• A SUSE install server or package repository

• A server that provides the configuration information for the installation

The last of these servers can supply the configuration files through your choice of
HTTP, NFS, or TFTP.

In the most basic setup, you produce a control file for each machine you want to
install. AutoYaST uses the IP address of the client to determine which control file to
use. This approach is not all that efficient if you have to install a series of slightly
different machines.

You can create more complex setups by using a rules system. Based on system prop-
erties such as disk size, host ID, or PCMCIA availability, different control files are
matched to the target system. The contents of all selected control files are merged,
with the last control file overriding earlier ones in the case of conflicts. (A control
file does not have to specify all aspects of a system’s configuration, so this merging
does make sense.)

Control files can also define “classes” of machines based on hostnames or IP address
ranges, and each class may have yet another subsidiary control file associated with
it. Machines can belong to zero, one, or multiple classes, and their configurations
will incorporate the contents of all the appropriate class control files.

Thanks to its ability to integrate the contents of multiple control files, the AutoYaST
structure allows complex setups to be defined with minimal redundancy. The XML

www.suse.com/~ug

S
o

ft
w

a
re

 M
a

n
a

g
e

m
e

n
t

11.1 Basic Linux installation 231

control files are somewhat cumbersome for humans to read, but the files are simple
to process and edit with any of the commonly available XML processing tools.

The Debian and Ubuntu installer

The Debian installer (named, appropriately enough, debian-installer) was com-
pletely redone for the “sarge” release. It is now quite a fun tool to work with. It is
used by Ubuntu as well, although Ubuntu (wisely, we think) preserves all the seem-
ingly Debian-specific command names.

The new system has a modular design and is written in a combination of C and
shell scripts. It can run off two floppies on machines with as little as 32MB of mem-
ory, and it can pull all the files required for installation directly off the net, including
the list of files that it needs.

All the interactive parts of the Debian installer use the cdebconf utility for deciding
which questions to ask and what default answers to use. By providing cdebconf with
a database of preformulated answers, you can fully automate the installer. You can
either generate the database by hand (it’s just a text file), or you can perform an inter-
active installation on an example system and then dump out your cdebconf answers
with the following commands:

debconf-get-selections --installer > config.cfg
debconf-get-selections >> config.cfg

Make the config file available on the net and then pass it into the kernel at installa-
tion time with the following kernel argument:

preseed/url=http://host/path/to/preseed

If you want to deploy Debian automatically, take a look at the cdebootstrap pack-
age as well. It is based on the same code as the Debian installer and allows you to
create an installation image in a subdirectory of the local disk, pulling the required
packages directly from a Debian repository. This facility can be very handy for use
in automated setup scripts of your own devising.

In earlier Debian releases, the installer was the source of numerous complaints. Of
necessity, many system administrators implemented their own installation and con-
figuration systems, a variety of which have been catalogued here:

www.linuxmafia.com/faq/Debian/installers.html

Another alternative to the standard Debian tools is a package called FAI (for Fully
Automatic Installation). The home site is www.informatik.uni-koeln.de/fai.

These alternative systems are needed less than in the past, but they are still worth
reviewing if you decide to part ways with the standard installer.

Although it is a distribution outside the Red Hat lineage, Ubuntu has grafted compat-
ibility with Kickstart control files onto its own underlying installer. It also includes
the system-config-kickstart tool for creating these files. The Kickstart functionality

www.linuxmafia.com/faq/Debian/installers.html
www.informatik.uni-koeln.de/fai

232 Chapter 11 – Software and Configuration Management

in Ubuntu is not yet 100% solid, but it appears complete enough to use. Kickstart
compatibility is not yet shared with Debian.

Installing from a master system

If you’re forced to part ways from your distribution’s standard installer, consider
whether your site’s hardware is uniform enough to allow you to simply duplicate the
distribution from one machine to another. Duplication may be faster than tradi-
tional installation, and its guarantee of uniformity is slightly stronger.

You may find the following back-of-the envelope recipe helpful:

• Install and configure the master system, using either the distribution’s
normal installation process or a script such as Debian’s debootstrap.

• Boot the machine onto which you want to duplicate the distribution, using
either a bootable CD-ROM such as Knoppix2 or a PXE-based method.

• Partition the disk by using cfdisk interactively or sfdisk from a script.

• Create filesystems, initialize swap space, and mount everything under /mnt.

• Duplicate the master installation to the newly partitioned disk by using
ssh and rsync (see page 508). Make sure you exclude the /tmp, /proc, and
/sys directories.

• Edit any files that require customization (e.g., /etc/modules or
/etc/fstab), or better yet, automate this process.

• Make the new machine bootable by installing GRUB or LILO in the disk’s
master boot record. See page 26 for more information.

11.2 DISKLESS CLIENTS

In the 1980s, when hard disks were expensive, many sites deployed workstations
that had no local hard disk. Instead, these computers, known as “diskless clients,”
mounted their filesystems from a network server. Today, disks are cheap, and almost
nobody uses diskless clients anymore. The whole idea seems quaint, like nine-track
tape or dot-matrix printers.

But wait! Diskless operation is still quite possible, and it’s actually a reasonable op-
tion to consider for certain types of installations. Here are some of its advantages:

• In a diskless setup, all relevant data is kept on the server. Diskless clients
never go off-line in the sense that their configuration information becomes
inaccessible, so administrative procedures don’t need to take account of
inoperative machines as a potential special case.

2. Knoppix is a version of Debian that runs directly from a bootable CD/DVD-ROM; no hard disk instal-
lation is necessary. It’s ideal for use during installation or rescue or when handling security incidents.
See www.knoppix.org. Many other distributions (e.g., Ubuntu) are starting to become runnable from a
live CD as well.

www.knoppix.org

S
o

ft
w

a
re

 M
a

n
a

g
e

m
e

n
t

11.2 Diskless clients 233

• The amount of truly local configuration information is kept to a mini-
mum. Almost no administrative operation requires you to be physically
present in front of a client machine.

• New clients can be set up on the server before they are running or even
physically present. Clients behave much more like logical entities than
physical entities.

• Major changes to a client’s configuration can be executed in the time needed
to reboot. An updated root tree can sit alongside the active one, waiting for
the right moment to be activated. You can provide faster, more reliable ser-
vice while using simpler software and update distribution concepts.

• For many applications, the expensive and complex RAID array you can
afford to put on your server may be faster than cheap local disks, even after
network latency is taken into account. The network server is also likely to
be more reliable. Disks do fail, but a redundant server setup can protect an
entire network of diskless clients.

• No rule mandates that diskless clients can’t actually have disks. If you pre-
fer, you can use local disks for swap space or cache. In the modern era, the
point is not that the clients do not have physical disks; it is that they do not
use these disks to store anything that requires administrative attention.

• Many applications are CPU-bound and have no particular dependency on
disk speed. Others that are potentially heavy disk users can be converted to
CPU-bound operation with the addition of memory. Web servers, data-
base servers, and servers for network protocols all potentially fall into this
category.

In a diskless environment, clients typically have small root filesystems dedicated to
their exclusive use. Clients can share a common, read-only /usr directory because
this directory contains no machine-specific information and is never written to in
regular operation.

Red Hat Enterprise Linux is the only Linux distribution with a standardized system
for setting up diskless clients out of the box. But even without elaborate vendor sup-
port, setting up is not rocket science and is not hard to do on your own. Many sys-
tems have a mechanism for netbooting X Windows terminals; you can use that as a
starting point to netboot workstations.

If your distribution does not include instructions for setting up diskless clients, start
by copying a freshly installed machine’s root filesystem to your server as a basis for
cloning new machines. Figure out how to boot your systems over the network with
an NFS root directory. Share the read-only parts of a machine’s filesystem tree (e.g.,
/usr) among all clients.

234 Chapter 11 – Software and Configuration Management

When cloning a client root, you may have to customize the following:

• Mount table

• Hardware device support (if your network is not homogeneous)

• Network configuration (possibly)

• Startup scripts (possibly)

Commodity hardware is often shipped with cheap IDE disks. Use these for local
swap space and scratch partitions.

See page 815 for more
information about
RAM disks.

Today’s inexpensive RAM is a great boon for diskless nodes. Consider using a RAM-
based filesystem as a backing store for the /tmp and /dev directories (or as a cache
of frequently used files that you preload at boot time).3 Keeping the /dev tree in
RAM can boost performance considerably because programs that love to roam the
/dev tree are not punished by NFS latency.

11.3 PACKAGE MANAGEMENT

Linux distributions all use some form of packaging system to facilitate the job of
configuration management. Packages have traditionally been used to distribute soft-
ware, but they can be used to wrap configuration files and administrative data as
well. They have several advantages over the traditional unstructured .tar.gz archives.
Perhaps most importantly, they try to make the installation process as atomic as pos-
sible. If an error occurs, the package can be backed out or reapplied.

UNIX vendors often have special procedures for distributing patches to their cus-
tomers, but Linux distributors take advantage of their standard package manage-
ment facilities. To issue a patch, the distributor simply releases an updated package.
When installed by customers, the new version replaces the old.

Package installers are typically aware of configuration files and will not normally
overwrite local customizations performed by a system administrator. They will ei-
ther back up the existing config files that they change or provide example config files
under a different name (e.g., pkg.conf.rpmnew). If you find that a newly installed
package breaks something on your system, you can, at least in theory, back it out to
restore your system to its original state. Of course theory != practice, so don’t try
this out on a production system without testing it first.

Packaging systems define a dependency model that allows package maintainers to
ensure that all the libraries and support infrastructure on which their applications
depend are properly installed. Packages can also run scripts at various points during
the installation, so they can do much more than just disgorge new files. (This feature
probably accounts for much of the observed failure of packages to restore the system
to its original state after uninstallation.)

Packages are also a nice way to distribute your own localizations. You can easily cre-
ate a package that, when installed, reads localization information about a machine

3. But note that /dev may already live in a kernel-based filesystem.

S
o

ft
w

a
re

 M
a

n
a

g
e

m
e

n
t

11.3 Package management 235

(or gets it from central database) and uses that information to set up local configu-
ration files. You can also bundle up your local applications as packages, complete
with dependencies, or make packages for third-party applications that aren’t nor-
mally distributed in package format. You can versionize your packages and use the
dependency mechanism to upgrade machines automatically when a new version of
your localization package is installed.

You can also use the dependency mechanism to create groups of packages. For ex-
ample, it’s possible to create a package that installs nothing of its own but depends
on many other patches. Installing the package with dependencies turned on results
in all the patches being installed in a single step.

Available package management systems

Two package formats are in common use. Red Hat, Fedora, SUSE, and several other
distributions use RPM, the Red Hat Package Manager. Debian and Ubuntu use a
separate .deb format. The two formats are functionally similar.

It’s easy to convert between the two package formats with a tool such as alien from
kitenet.net/programs/alien. alien knows nothing about the software inside a pack-
age, so if the contents are not already compatible with your distribution, alien will
not help. In general, it’s best to stick with the native package mechanism used by
your distribution.

Both the RPM and .deb packaging systems now function as dual-layer soup-to-nuts
configuration management tools. At the lowest level are the tools that install, unin-
stall, and query packages: rpm for RPM and dpkg for .deb.

On top of these commands are systems that know how to find packages on the Inter-
net, analyze interpackage dependencies, and upgrade all the packages on a system.
The main contenders at this level are yum, which works with the RPM system, the
Red Hat Network, which is specific to Red Hat Linux and uses RPM, and Debian’s
Advanced Package Tool (APT), which originated in the .deb universe but now works
equally well with both .deb and RPM packages.

On the next couple of pages, we review the low-level commands rpm and dpkg. In
the section High-level package management systems starting on page 237, we discuss
the comprehensive update systems (e.g., APT and yum) that elaborate on these low-
level facilities.

rpm: manage RPM packages

The rpm command installs, verifies, and queries the status of packages. It formerly
built them as well, but this function has now been broken out into the rpmbuild
command. However, rpm options still have complex interactions and can be used
together only in certain combinations. It’s most useful to think of rpm as if it were
several different commands that happen to share the same name.

The mode you tell rpm to enter (such as --install or --query) specifies which of
rpm’s multiple personalities you are hoping to access. rpm --help lists all the options

236 Chapter 11 – Software and Configuration Management

broken down by mode, but it’s worth your time to read the man page in some detail
if you will frequently be dealing with RPM packages.

The bread-and-butter options are --install, --upgrade, --erase, and --query. The
query option is a bit tricky in that it serves only to enable other options; you must
supply an additional command-line flag to pose a specific question. For example,
the command rpm --query --all lists the packages installed on the system.

Let’s look at an example. Suppose you need to install a new version of OpenSSH be-
cause a security fix was recently published. Once you’ve downloaded the package to
your local computer, run rpm --upgrade to replace the older version with the newer:

rpm --upgrade openssh-2.9p2-12.i386.rpm
error: failed dependencies:
openssh = 2.9p2-7 is needed by openssh-askpass-2.9p2-7
openssh = 2.9p2-7 is needed by openssh-askpass-gnome-2.9p2-7
openssh = 2.9p2-7 is needed by openssh-clients-2.9p2-7
openssh = 2.9p2-7 is needed by openssh-server-2.9p2-7

D’oh! Perhaps it’s not so simple after all. Here we see that the currently installed
version of OpenSSH, 2.9p2-7, is required by a number of other packages. rpm won’t
let us upgrade OpenSSH because the change might affect the operation of these other
packages. This type of conflict happens all the time, and it’s a major motivation for
the development of systems like APT and yum. In real life we wouldn’t attempt to
untangle the dependencies by hand, but let’s continue with rpm alone for the pur-
pose of this example.

We could force the upgrade with the --force option, but that’s usually a bad idea. This
isn’t Windows; the dependency information is there to save you time and trouble,
not just to get in your way. There’s nothing like a broken SSH on a remote system to
ruin a sysadmin’s morning.

Instead, we’ll grab updated versions of the dependent packages as well. If we were
smart, we could have determined that other packages depended on OpenSSH before
we even attempted the upgrade:

rpm --query --whatrequires openssh
openssh-askpass-2.9p2-7
openssh-askpass-gnome-2.9p2-7
openssh-clients-2.9p2-7
openssh-server-2.9p2-7

Suppose that we’ve obtained updated copies of all the packages. We could install them
one at a time, but rpm is smart enough to handle them all at once. If you list multi-
ple RPMs on the command line, rpm sorts them by dependency before installation.

rpm --upgrade openssh-*
Cool! Looks like it succeeded, and sure enough:

rpm --query openssh
openssh-2.9p2-12

S
o

ft
w

a
re

 M
a

n
a

g
e

m
e

n
t

11.4 High-level package management systems 237

Note that rpm understands which package we are talking about even though we
didn’t specify the package’s full name or version.

dpkg: manage Debian-style packages

Just as RPM packages have the all-in-one rpm command, Debian packages have the
dpkg command. Useful options include --install, --remove, and -l to list the pack-
ages that have been installed on the system. Note that dpkg --install of a package
that’s already on the system removes the previous version before installing.

Suppose that the Debian security team recently released a fix to nvi to patch a poten-
tial security problem. After grabbing the patch, we run dpkg to install it. As you can
see, it’s much chattier than rpm and tells us exactly what it’s doing:

dpkg --install ./nvi_1.79-16a.1_i386.deb
(Reading database ... 24368 files and directories currently installed.)
Preparing to replace nvi 1.79-14 (using ./nvi_1.79-16a.1_i386.deb) ...
Unpacking replacement nvi ...
Setting up nvi (1.79-16a.1) ...
Checking available versions of ex, updating links in /etc/alternatives ...
(You may modify the symlinks there yourself if desired - see 'man ln'.)
Leaving ex (/usr/bin/ex) pointing to /usr/bin/nex.
Leaving ex.1.gz (/usr/share/man/man1/ex.1.gz) pointing to

/usr/share/man/man1/nex.1.gz.
...

We can now use dpkg -l to verify that the installation worked. The -l flag accepts an
optional search pattern, so we can just search for nvi:

$ dpkg -l nvi
Desired=Unknown/Install/Remove/Purge
| Status=Not/Installed/Config-files/Unpacked/Failed-config/Half-installed
| / Err?=(none)/Hold/Reinst-required/X=both-problems (Status,Err: uppercase=bad)
| | / Name Version Description
+++-===========-==============-================================
i i nvi 1.79-16a.1 4.4BSD re-implementation of vi.

Our installation seems to have gone smoothly.

11.4 HIGH-LEVEL PACKAGE MANAGEMENT SYSTEMS

Meta-package-management systems such as APT, yum, and the Red Hat Network
share several goals:

• To simplify the locating and downloading of packages

• To automate the process of updating or upgrading systems

• To facilitate the management of interpackage dependencies

Clearly, there is more to these systems than just client-side commands. They all re-
quire that distribution maintainers organize their offerings in an agreed-on way so
that the software can be accessed and reasoned about by clients.

238 Chapter 11 – Software and Configuration Management

Since no single supplier can encompass the entire “world of Linux software,” the
systems all allow for the existence of multiple software repositories. Repositories can
be local to your network, so these systems make a dandy foundation for creating
your own internal distribution system.

The Red Hat Network is closely tied to Red Hat Enterprise Linux. It’s a commercial
service that costs money and offers more in terms of attractive GUIs and automation
ability than do APT and yum. Unfortunately, it’s something of a mysterious black
box underneath the covers. The client side can reference yum and APT repositories,
and this ability has allowed distributions such as CentOS to adapt the client GUI for
nonproprietary use.

APT is better documented than the Red Hat Network, is significantly more portable,
and is free. It’s also more flexible in terms of what you can do with it. APT originated
in the world of Debian and dpkg, but it has been extended to encompass RPMs, and
versions that work with all of our example distributions are available. It’s the closest
thing we have at this point to a universal standard for software distribution.

yum is an RPM-specific analog of APT. It’s the default package manager for Fedora,
although it runs on any RPM-based system, provided that you can point it toward
appropriately formatted repositories.

In head-to-head bakeoffs, yum has generally been preferred to the RPM version of
APT, but it’s not clear that there is a solid technical reason for this. yum has deeper
roots in the RPM world, which gives it a presumptive lead. APT-RPM’s future was
clouded in early 2005 when the original developer, Gustavo Niemeyer, abandoned it
to work on a more comprehensive system (the Smart Package Manager at labix.org;
not yet mainstream but widely anticipated to be the next big thing). APT-RPM de-
velopment was eventually resumed by Panu Matilainen, and the project is currently
under active development once again.

We like APT and consider it a solid choice if you want to set up your own automated
package distribution network, regardless of the distributions currently in use at
your site. See the section Setting up an internal APT server on page 244 for more
information.

SUSE is something of a lame duck in the package management domain. It uses RPM
packages, but previous releases supported only SUSE’s own YaST Online Update tool
for performing system updates. In a blaze of promiscuity, SUSE has recently added
some degree of support for yum, APT-RPM, and Novell’s own ZENworks Linux
Management agent, with ZENworks being the primary update manager. (See rug
for a command-line interface.)

ZENworks is part of a larger product line that embodies Novell’s grab for dominance
in the cross-platform configuration management space. Is it the best option for you?
Well, maybe, if you’re a Novell shop and are interested in paid support. Sites that
want to keep their package management free and relatively apolitical might investi-
gate the Smart Package Manager mentioned above.

S
o

ft
w

a
re

 M
a

n
a

g
e

m
e

n
t

11.4 High-level package management systems 239

Package repositories

Linux distributors maintain software repositories that work hand-in-hand with
their chosen package management systems. The default configuration for the pack-
age management system usually points to one or more well-known web or FTP serv-
ers that are under the distributor’s control.

However, it isn’t immediately obvious what such repositories should contain. Should
they include only the sets of packages blessed as formal, major releases? Formal re-
leases plus current security updates? Up-to-date versions of all the packages that
existed in the formal releases? Useful third-party software not officially supported
by the distributor? Source code? Binaries for multiple hardware architectures? When
you run apt-get upgrade or yum upgrade to bring the system up to date, what
exactly should that mean?

In general, package management systems must answer all these questions and must
make it easy for sites to select the specific cross-sections they want to define as their
“software world.” The following concepts help structure this process:

• A “release” is a self-consistent snapshot of the package universe. Before the
Internet era, named OS releases were more or less immutable and were
associated with one specific point in time; security patches were made
available separately. These days, a release is a more nebulous concept.
Releases evolve over time as packages are updated. Some releases, such as
Red Hat Enterprise Linux, are specifically designed to evolve slowly; by
default, only security updates are incorporated. Other releases, such as
beta versions, change frequently and dramatically. But in all cases, the
release is the baseline, the target, the “thing I want to update my system to
look like.”

• A “component” is a subset of the software within a release. Distributions
partition themselves differently, but one common distinction is that
between core software blessed by the distributor and extra software made
available by the broader community. Another distinction that’s common
in the Linux world is the one between the free, open source portions of a
release and the parts that are tainted by some kind of restrictive licensing
agreement.

Of particular note from an administrative standpoint are minimally active
components that include only security fixes. Some releases allow you to
combine a security component with an immutable baseline component to
create a relatively stable version of the distribution.

• An “architecture” represents a specific class of hardware. The expectation
is that machines within an architecture class will be similar enough that
they can all run the same binaries. Architectures are specific instances of
releases, for example, “Fedora Core 5 for the i386 architecture.” Since com-
ponents are subdivisions of releases, there’s a corresponding architecture-
specific instance for each of them as well.

240 Chapter 11 – Software and Configuration Management

• Individual packages are the elements that make up components, and
therefore, indirectly, releases. Packages are usually architecture-specific
and are versioned independently of the main release and of other pack-
ages. The correspondence between packages and releases is implicit in the
way the network repository is set up.

The existence of components that aren’t maintained by the distributor (e.g., Debian’s
“contrib” or Fedora’s “extras”) raises the question of how these components relate to
the core OS release. Can they really be said to be “a component” of the specific re-
lease, or are they some other kind of animal entirely? From a package management
perspective, the answer is clear: extras are a true component. They are associated
with a specific release, and they evolve in tandem with it. The separation of control
is interesting from an administrative standpoint, but it doesn’t affect the package
distribution systems.

RHN: the Red Hat Network

With Red Hat having departed from the consumer Linux business, the Red Hat Net-
work has become the system management platform for Red Hat Enterprise Linux.
You purchase the right to access Red Hat Network by subscribing. At its simplest,
you can use the Red Hat Network as a glorified web portal and mailing list. Used in
this way, the Red Hat Network is not much different from the patch notification
mailing lists that have been run by various UNIX vendors for years. But more fea-
tures are available if you’re willing to pay for them. See rhn.redhat.com for current
rates and info.

The Red Hat Network provides a pretty GUI interface for downloading new pack-
ages and furnishes a command-line alternative. It even lets you download and in-
stall new packages without human intervention. Once you register, your machines
get all the patches and bug fixes that they need without you ever having to leave your
Quake session. The downside of automatic registration is that Red Hat decides what
updates you need. You might consider how much you really trust Red Hat (and the
software maintainers whose products they package) not to screw things up. Given
some of the interesting choices Red Hat has made in the past when it comes to little
things like which compiler to ship, some folks might remain skeptical.

A reasonable compromise might be to sign up one machine in your organization for
automatic updates. You can take snapshots from that machine at periodic intervals
to test as possible candidates for internal releases. Be sure that you review the terms
of the Red Hat license agreement (available from www.redhat.com/licenses) before
embarking on this path, however. You might be surprised to learn that Red Hat
claims a proprietary interest in the open-source software distributed through the
Red Hat Network, not to mention that you have agreed to allow Red Hat to audit
your systems at will.

www.redhat.com/licenses

S
o

ft
w

a
re

 M
a

n
a

g
e

m
e

n
t

11.4 High-level package management systems 241

APT: the Advanced Package Tool

APT is one of the most mature package management systems. It’s possible to up-
grade an entire system full of software with a single apt-get command or even (as
with the Red Hat Network) to have your boxes continuously keep themselves up to
date without human intervention.

Because it originated in the Debian universe, the original APT supported only .deb
packages. However, APT was later ported to the RPM package mechanism. This ver-
sion, known as APT-RPM, is available from apt-rpm.org. The yum system, described
starting on page 246, offers similar RPM-based functionality and is directly sup-
ported by the Fedora releases. When choosing between yum and APT-RPM, the
heterogeneity of your site and your distributions’ built-in preferences are more im-
portant than technical distinctions between the systems. Go with what’s well sup-
ported and easy.

The first rule of using apt-get on Debian systems (and indeed all management of
Debian packages) is to ignore the existence of dselect, which acts as a front end for
the Debian package system. It’s not a bad idea, but the user interface is poor. The
Debian documentation will try to steer you toward dselect, but stay strong.

If you are using apt-get to manage a stock Debian or Ubuntu installation from a
standard mirror, the easiest way to see the available packages is to visit the master
list at packages.debian.org or packages.ubuntu.com. Both distributions include a
nice search interface. If you set up your own apt-get server (see page 244), then of
course you will know what packages you have made available and you can list them
in whatever way you want.

Distributions commonly include dummy packages that exist only to claim other
packages as prerequisites. apt-get downloads and upgrades prerequisite packages as
needed, so the dummy packages make it easy to install or upgrade several packages
as a block. For example, installing the gnome-desktop-environment package ob-
tains and installs all the packages necessary to run the GNOME user interface.

Once you have set up your sources.list file and know the name of a package that you
want, the only remaining task is to run apt-get update to refresh apt-get’s cache of
package information. After that, just run apt-get install package-name to install the
package. The same command updates a package that has already been installed.

Suppose we want to install a new version of the sudo package that fixes a security
bug. First, it’s always wise to do an apt-get update:

$ sudo apt-get update
Get:1 http://http.us.debian.org stable/main Packages [824kB]
Get:2 http://non-us.debian.org stable/non-US/main Release [102B]
...

242 Chapter 11 – Software and Configuration Management

Now we can actually fetch the package. Note that we are using sudo as we fetch the
new sudo package—apt-get can even upgrade packages that are in use!

$ sudo apt-get install sudo
Reading Package Lists... Done
Building Dependency Tree... Done
1 packages upgraded, 0 newly installed, 0 to remove and 191 not upgraded.
Need to get 0B/122kB of archives. After unpacking 131kB will be used.
(Reading database ... 24359 files and directories currently installed.)
Preparing to replace sudo 1.6.1-1 (using .../sudo_1.6.2p2-2_i386.deb) ...
Unpacking replacement sudo ...
Setting up sudo (1.6.2p2-2) ...
Installing new version of config file /etc/pam.d/sudo ...

Configuring apt-get

Configuring apt-get is straightforward; pretty much everything you need to know
can be found in the APT HOWTO:

www.debian.org/doc/manuals/apt-howto

The most important apt-get configuration file is /etc/apt/sources.list, which tells
apt-get where to get its packages. Each line specifies the following:

• A type of package, currently deb or deb-src for Debian-style packages or
rpm or rpm-src for RPMs

• A URL that points to a file, CD-ROM, HTTP server, or FTP server from
which to fetch packages

• A “distribution” (really, a release name) that lets you deliver multiple ver-
sions of packages. Distributors use this for major releases, but you can use
it however you want for internal distribution systems.

• A potential list of components (categories of packages within a release)

Unless you want to set up your own APT repository or cache, the default configura-
tion generally works fine. If you have a reasonable network connection, you should
comment out the lines for your distribution’s CD-ROMs. If you want to download
source code, uncomment the lines that specify deb-src or rpm-src.

As long as you’re editing the file, you should change the identity of the mirror to one
that is close to you; a full list of mirrors for Debian can be found here:

www.debian.org/misc/README.mirrors

Ubuntu maintains a similar list at wiki.ubuntu.com/Archive.

To make things even easier, a Debian tool called netselect-apt automatically gener-
ates a sources.list file for you; it selects the closest mirror it can find based on ping
time. netselect-apt is part of the netselect package, which is available from your
nearest mirror. (Off the shelf, netselect-apt is somewhat tied to the Debian mirror
system, but most packages work fine with Ubuntu as well.)

www.debian.org/doc/manuals/apt-howto
www.debian.org/misc/README.mirrors

S
o

ft
w

a
re

 M
a

n
a

g
e

m
e

n
t

11.4 High-level package management systems 243

Make sure that security.debian.org or security.ubuntu.com is listed as a source so
that you have access to the latest security patches.

An example /etc/apt/sources.list file

The following example uses http.us.debian.org for the stable archive but also adds
non-us.debian.org as a source for non-US packages (this was formerly important for
cryptographic packages, but it is less so now). We’ve added security.debian.org, the
source of all security patches, and our local APT server, local-debian-server. Finally,
we’ve turned on downloading of source code.

General format: type uri distribution [components]
deb http://ftp.us.debian.org/debian stable main contrib non-free
deb http://non-us.debian.org/debian-non-US stable/non-US main contrib non-free
deb http://security.debian.org stable/updates main contrib non-free
deb http://local-debian-server/mypackages/ ./
deb-src http://http.us.debian.org/debian stable main contrib non-free
deb-src http://non-us.debian.org/debian-non-US stable/non-US main contrib non-free
deb-src http://security.debian.org stable/updates main contrib non-free

The distribution and components fields help apt-get navigate the fileystem hierarchy
of the Debian repository, which has a standardized layout. The root distribution can
be stable for the most recent mainstream distribution, unstable (or testing) for the
current work-in-progress distribution, or the name of a specific release such as etch.
The available components are typically main, contrib, and non-free.

This example uses the stable repositories, which do not change as frequently as other
sources. All the latest packages are included in Debian’s bleeding-edge unstable dis-
tribution. “Unstable” does not (necessarily) mean that the packages themselves are
unstable, but rather that the composition of the entire distribution is volatile.
Weekly updates of more than 100MB are typical.

Lines in the sources.list file are consulted in order, so you can theoretically put the
unstable and testing lines at the end of the file to give stable versions precedence.
The problem with this approach is that because of APT’s dependency tracking, one
unstable package can drag in updated, unstable versions of all the packages it de-
pends on. These packages in turn may pull in unstable versions of all their buddies,
and so on. One bad apple spoils the whole barrel; don’t play with unstable packages
on your production systems.

If you must incorporate a package from the unstable world into your production
environment, the right way to do it is to use a “backport” that has been recompiled
on the stable release to get along with its stable libraries. To find these backports and
other delicacies, check out the APT search engine hosted at www.apt-get.org. Many
of the backported packages (as opposed to just pointers) can be found at Norbert
Tretkowski’s site www.backports.org. The backports in this repository are of excel-
lent quality and have minimal external dependencies.

www.apt-get.org
www.backports.org

244 Chapter 11 – Software and Configuration Management

Using proxies to make apt-get scale

If you plan to use apt-get on a large number of machines, you will probably want to
cache packages locally—downloading a copy of each package for every machine is
not a sensible use of external bandwidth. You may also need to direct your apt-get
through a proxy if your firewall requires this.

apt-get uses vanilla HTTP and FTP protocols, so you can use any existing web proxy
that you might happen to have installed. apt-get honors the http_proxy environ-
ment variable, but you can also set an explicit proxy with a line in /etc/apt/apt.conf:

Acquire::http::Proxy “http://proxyserver:8080/

An alternative to a generic web proxy is a small application called apt-proxy. De-
spite the name, it is not a true proxy but rather an app that builds a cache of pack-
ages by rsyncing them from the real APT server. apt-proxy is available from

sourceforge.net/projects/apt-proxy

Setting up an internal APT server

Instead of using a proxy, you can also set up your own autonomous APT server and
point your internal clients at it. This model lets you tweak the packages you offer to
your clients, push out upgrades easily (just install new versions on the server), dis-
tribute your own applications as packages, and most importantly, provide your own
versions of distributions.

Set page 724 for hints
on setting up the
Apache web server.

Because apt-get uses standard protocols (HTTP or FTP) to download its packages,
setting up an APT server is simply a matter of establishing a web or FTP server that
provides appropriate content.4 Given the wide availability of HTTP-related servers
and tools, HTTP is probably the most straightforward choice for use with APT.

The packages on the server can all be in one directory, or they can be arranged in a
hierarchy as on the Debian and Ubuntu mirrors.

In addition to providing the package files, you must generate two summary files:
Packages.gz and Contents.gz. Packages.gz must be a gzipped list of the packages
on the server and their dependencies. apt-get update uses this list to determine the
available complement of packages. Contents.gz maps raw files to the packages that
contain them; it is not actually used by apt-get itself. The apt-ftparchive command,
which is included in the apt-utils package, automatically generates both of these
summary files for you.

Once you have created the summary files, the rest is easy. A line such as

deb http://local-server/mypackages/ ./

in the /etc/apt/sources.list files of client machines connects apt-get to your local
server. Run apt-get update on each client, then use apt-get normally.

4. There are other options as well. For example, you can set up an NFS server containing the update files
or burn a DVD that you walk around to each system.

S
o

ft
w

a
re

 M
a

n
a

g
e

m
e

n
t

11.4 High-level package management systems 245

To distribute source code as well as binary packages, just put the source packages
on the server. Unlike RPM, which has an SRPM equivalent for source packages, De-
bian distributes the source packages in three parts: the vanilla .tar.gz file, an optional
.diff.gz file (used by packagers to show the changes they have made relative to the
original code base), and a .dsc file that describes the package. The source code
equivalent of Packages.gz is Sources.gz; it is also generated by apt-ftparchive.

The example sources.list line above does not specify a distribution parameter. If you
like, you can use distribution names as a form of internal versioning. Just place each
set of packages you want to define as a “release” in its own subdirectory and change
the ./ in the sources.list file to the release name or number.

It’s often useful to create generically named distributions such as “test” and “produc-
tion” that are analogous to Debian’s own “stable” and “testing” releases. Use sym-
bolic links on the server to point these names at specific releases. You can later rede-
fine the contents of the releases just by changing the targets of the links. For example,
once you’re confident that a test release is ready for deployment, you can point the
production link at the same directory. Clients synchronizing themselves to the pro-
duction release then automatically pick up the changes.

Automating apt-get

You can run apt-get on a regular schedule from cron. Even if you don’t install pack-
ages automatically, you may want to run apt-get update regularly to keep your pack-
age summaries up to date.

apt-get dist-upgrade downloads and installs new versions of any packages that are
currently installed on the local machine. dist-upgrade is similar to upgrade but
has slightly more intelligent dependency handling. dist-upgrade may want to delete
some packages that it views as irreconcilably incompatible with the upgraded sys-
tem, so be prepared for potential surprises.

If you really want to play with fire, have machines perform the upgrade in an unat-
tended fashion by using the -yes option. It answers any confirmation questions that
apt-get might ask with an enthusiastic “Yes!”

It’s probably not a good idea to perform automated upgrades directly from a distri-
bution’s mirror. However, in concert with your own APT servers, packages, and re-
lease control system, this is a perfect way to keep clients in sync. A quickie shell
script like the following keeps a box up to date with its APT server:

#!/bin/sh
apt-get update
apt-get -yes dist-upgrade

Call this script from a cron job if you want to run it nightly. You can also refer to it
from a system startup script to make the machine update at boot time. See Chapter 8,
Periodic Processes, for more information about cron; see Chapter 2, Booting and
Shutting Down, for more information about startup scripts.

246 Chapter 11 – Software and Configuration Management

If you run updates out of cron on many machines, it’s a good idea to use time ran-
domization to make sure that everyone doesn’t try to update at once. The short Perl
script on page 511 can help with this task.

If you don’t quite trust your source of packages, consider automatically downloading
all changed packages without installing them. Use apt-get’s --download-only op-
tion to request this behavior, then review the packages by hand and install the ones
you want to update. Downloaded packages are put in /var/cache/apt, and over time
this directory can grow to be quite large. Clean out the unused files from this direc-
tory with apt-get autoclean.

If you use a formally designated stable Debian distribution, we can recommend au-
tomatic updates without much reservation. Changes in the stable distribution are
generally limited to security updates, and integration is well tested. The only poten-
tial problem is that you may not want to upgrade automatically when a new major
release occurs. To avoid this problem, specify an explicit distribution name rather
than the keyword stable in sources.list.

yum: release management for RPM

yum, the Yellowdog Updater, Modified, is a metapackage manager based on RPM.5

It may be a bit unfair to call yum an apt-get clone, but it’s thematically and imple-
mentationally similar, although cleaner and slower in practice. yum is the official
package management system for Fedora and comes preinstalled on many other dis-
tributions. If necessary, you can obtain the latest version from linux.duke.edu/yum.

As with apt-get, a server-side command (yum-arch) compiles a database of header
information from a large set of packages (often an entire release). The header data-
base is then shared along with the packages through HTTP or FTP. Clients use the
yum command to fetch and install packages; yum figures out dependency con-
straints and does whatever additional work is needed to complete the installation of
the requested packages. If a requested package depends on other packages, yum
downloads and installs those packages as well.

The similarities between apt-get and yum extend to the command-line options they
understand. For example, yum install foo downloads and installs the most recent
version of the foo package (and its dependencies, if necessary). There is at least one
treacherous difference, though: apt-get update refreshes apt-get’s package informa-
tion cache, but yum update updates every package on the system (it’s analogous to
apt-get upgrade). To add to the confusion, there is also yum upgrade, which is the
same as yum update but with obsolescence processing enabled.

yum does not match on partial package names unless you include shell globbing
characters (such as * and ?) to explicitly request this behavior. For example, yum
update 'perl*' refreshes all packages whose name starts with “perl”. Remember to
quote the globbing characters so the shell doesn’t interfere with them.

5. Not to be confused with Yum Fish Bait with Live Prey Technology (LPT), yum3x.com.

S
o

ft
w

a
re

 M
a

n
a

g
e

m
e

n
t

11.5 Revision control 247

Unlike apt-get, yum defaults to validating its package information cache against the
contents of the network repository every time you run it. Use the -C option to pre-
vent the validation and yum makecache to update the local cache (it takes awhile to
run). Unfortunately, -C doesn’t do much to improve yum’s sluggish performance.

yum’s configuration file is /etc/yum.conf. It includes general options and pointers
to package repositories. Multiple repositories can be active at once, and each reposi-
tory can be associated with multiple URLs.

Fedora includes yum-format metadata in its standard distribution trees, so Fedora
users can just point their yum.conf files at the closest mirror and update at will.
RHEL does not follow suit in this regard, probably to encourage sales of subscrip-
tions to the Red Hat Network.

11.5 REVISION CONTROL

Mistakes are a fact of life. Therefore, it’s important to keep track of the changes you
make so that when these changes cause problems, you can easily revert to a known-
good configuration. Defining formal internal releases makes rollbacks easy, but it’s a
heavyweight solution that only works well at a coarse level of granularity. What if
you just need to tweak one or two files?

In this section we discuss some common ways of managing changes at the level of
individual files. These methods are complementary to the larger issues of internal
release control and to each other—choose an assortment of tools that matches your
local needs and the complexity of your site.

Backup file creation

Making backup copies of files you modify is a time-honored administrative tradi-
tion and one that can be adhered to by localization scripts as well as by individual
administrators. Backup files let you revert configurations to an earlier state, but per-
haps more importantly, they also allow you to diff the current and previous versions
of a file to figure out what changes have been made.

You can best create backup files by moving (with mv) the original file aside to a new
name such as filename.old or filename.bak and then copying it back to its original
name. Use the -p option to cp to preserve the file’s attribute settings. Once you up-
date the active version of the file, its modification time reflects the most recent
change, while the modification time of the backup file reflects the time of the previ-
ous modification. (If you just cp’ed, both files would have similar modtimes.) Mov-
ing the original file aside also handles the case in which an active process has an
open reference to the file: changes that you make to the now-active copy are not seen
until the file is closed and reopened.

Systems that are regularly backed up to tape can still benefit from the use of manu-
ally created backup files. Recovery from a backup file is faster and easier than recov-
ery from a tape, and manual backups preserve an additional layer of history.

248 Chapter 11 – Software and Configuration Management

Formal revision control systems

Backup files are very useful, but they tend to be most practical at small sites. At the
next level of complexity and robustness are formal revision control systems, which
are software packages that track, archive, and provide access to multiple revisions of
files. These packages originated in the world of software development, but they are
quite useful for system administrators, too.

Revision control systems address several problems. First, they provide an organized
way to trace the history of modifications to a file so that changes can be understood
in context and so that earlier versions can be recovered. Second, they extend the con-
cept of versioning beyond the level of individual files. Related groups of files can be
versioned together in a manner that takes account of their interdependencies. Fi-
nally, revision control systems coordinate the activities of multiple editors so that
race conditions cannot cause anyone’s changes to be permanently lost6 and so that
incompatible changes from multiple editors do not become active simultaneously.

The simplest revision control system in common use is RCS, the appropriately
named Revision Control System. It has been around for decades and comes prein-
stalled on many systems.

Another option is an open source system called CVS (Concurrent Versions System)
which adds some functionality on top of RCS. It supports a distributed model (for
use with a remote server) and better multideveloper support. A number of sites have
been using CVS for sysadmin tasks; the client/server capability in particular can be
quite useful. Unfortunately, CVS has some conceptual deficiencies that make it a
mixed blessing.

A more recent (but still time-tested) entry into the open source arena is Subversion,
a system that provides all the advantages of CVS but that seems to have much more
sensible default behavior. Its main drawback for system administration is that the
project model is rather directory-centric. However, it’s still a very nice system and a
reasonable choice for administrative use.

The last few years have witnessed a boom in open-source version control systems,
and the available choices have expanded by almost an order of magnitude. Major
contenders among the newer systems include Monotone, Darcs, Arch, and Bazaar-
NG. These are all interesting systems, but they appear to share a bias toward decen-
tralized work: multiple forks, multiple repositories, lots of parallel development. In
our opinion, the traditional “central repository” model is more appropriate for ver-
sion control in the context of system administration.

Several commercial revision control systems are also available. You may already
have access to one them if you work in a development shop and might be tempted to
adapt it for administrative data. Tread carefully, though; our experience has been
that these commercial systems are usually overkill for sysadmin use.

6. For example, suppose that sysadmins Alice and Bob both edit the same file and that each makes some
changes. Alice saves first. When Bob saves his copy of the file, it overwrites Alice’s version. If Alice has
quit from the editor, her changes are completely gone and unrecoverable.

S
o

ft
w

a
re

 M
a

n
a

g
e

m
e

n
t

11.5 Revision control 249

If you are starting from scratch, we’d recommend beginning with RCS to get a feel
for revision control in general. If you want to create a centralized repository for sys-
tem administration information, then Subversion is your ticket.

RCS: the Revision Control System

RCS is one of the oldest UNIX applications around. It’s actually a fairly simple sys-
tem. It operates at the level of individual files and stores each file’s revision history
in a separate shadow file. The shadow file’s name is the same as the original, but
with the characters ,v appended to it. For example, if you placed /etc/syslog.conf
under RCS control, RCS would keep its revisions in /etc/syslog.conf,v.

To reduce clutter, RCS looks for a directory called RCS in the same directory as the
original file. If it exists, RCS sequesters the ,v file there instead of leaving it in plain
view. Directory listings become much cleaner this way because many files can share
an RCS directory. This is a terrific feature and one that we recommend highly.

The basic model used by RCS is that you “check out” files before modifying them.
You then “check in” your changes to commit them. Accordingly, the only RCS com-
mands you really need to know are co to check out files, ci to check them in, and rcs,
which performs sundry housekeeping chores. If you use the emacs editor, you can
avoid the command-line tools entirely because RCS support is built in.

To initiate RCS tracking of a file, you first check it in:

ci -u syslog.conf
RCS/syslog.conf,v <-- syslog.conf
enter description, terminated with single '.' or end of file:
NOTE: This is NOT the log message!
>> This is the syslog configuration file.

The -u flag makes ci immediately check out the syslog.conf file in an unlocked
(uneditable) state. If you were to omit this flag, ci would check in the file and delete
the original copy, which is probably not what you want.

Every time you want to change an RCS-controlled file, you must check it out and
lock it with co -l:

co -l syslog.conf
RCS/syslog.conf,v --> syslog.conf revision 1.2 (locked)
done

This operation tells RCS that you are about to modify the file. RCS will not let any-
one else check out the file until you have checked it back in.

RCS removes write permission on unlocked files as a reminder not to edit them until
you have checked them out properly. A common error is to load a file into your editor,
make changes, and not realize that you needed to check the file out until your editor
refuses to save the changes. To fix, just pause the editor or bring up another shell
window, run the appropriate co -l, and then retry the save operation. You could just
chmod the file to be writable, but that would subvert and confuse RCS.

250 Chapter 11 – Software and Configuration Management

In theory, an RCS lock prevents two different people from modifying a file at the
same time. In practice, you have to be root to modify system files, so anyone with
sudo privileges can modify a file once it has been checked out as root. However, if a
second administrator attempts another co -l, RCS will notice that a writable version
already exists and print a warning. Sysadmins should get in the habit of always try-
ing to check out the RCS-controlled files that they want to modify. The fact that a file
is already writable means “Stop! Someone else already has this file checked out.”

You may occasionally find that someone else has changed a file and left it locked—
or even worse, overridden RCS and changed the file without locking it. You can re-
view the changes made by the perpetrator with rcsdiff, which is an RCS-aware ver-
sion of diff. For example:

rcsdiff syslog.conf
===
RCS file: RCS/syslog.conf,v
retrieving revision 1.3
diff -r1.3 syslog.conf 4c4
< define(LOGHOST,moonbase)

> define(LOGHOST,spacelounge)

As a last resort, you can break the lock with the command rcs -u filename. This com-
mand prompts you to enter an explanation of your actions and sends mail to the user
who had previously locked the file (usually root, unfortunately).

Once you are happy with your changes to a checked-out file, check it back in with ci
-u. You will be asked to provide a comment that describes what you just did. Don’t
skip this step, but don’t write a novel either. In a couple of years’ time when you are
trying to figure out why you made a particular change, useful comments can save
your life.

ci -u syslog.conf
RCS/syslog.conf,v <-- syslog.conf
new revision: 1.3; previous revision: 1.2
enter log message, terminated with single '.' or end of file:
>> Started logging debug messages to track down SSH problem
>> .
done

You can inspect a file’s revision history with the rlog command:

rlog syslog.conf
RCS file: RCS/syslog.conf,v
Working file: syslog.conf
head: 1.3
branch:
locks: strict
access list:
symbolic names:
keyword substitution: kv

S
o

ft
w

a
re

 M
a

n
a

g
e

m
e

n
t

11.5 Revision control 251

total revisions: 3; selected revisions: 3
description:

revision 1.3
date: 2002/01/10 00:44:58; author: adam; state: Exp; lines: +1 -0
Started logging debug messages to track down problem

revision 1.2
date: 2000/07/19 08:23:10; author: evi; state: Exp; lines: +2 -0
Changed log destination to new logmaster

revision 1.1
date: 1998/03/14 11:13:00; author: matthew; state: Exp;
Initial revision
===

If you want to see what the file looked like before you changed to the new logmaster,
you could check out revision 1.2 of the file with co’s -r option:

co -r1.2 syslog.conf
RCS/syslog.conf,v --> syslog.conf
revision 1.2
done

This command replaces the current syslog.conf file with the older version, so make
sure you do a regular co when you are finished, or you (and syslogd) may become
very confused. Another option would be co -r1.2 -p syslog.conf, which sends the
contents of the requested version to standard output; unfortunately, there’s no way
to check out the file under a different filename. Never check out locked copies of
older revisions (with co -l), since this operation creates branches in the version tree.
Version branches are occasionally useful for source code but are almost never used
for sysadmin work; to make your life simpler, just ignore all the RCS documentation
that deals with them.

More information about RCS can be found at

www.cs.purdue.edu/homes/trinkle/RCS/

CVS: the Concurrent Versions System

RCS has some significant weaknesses. You have to be careful not to tread on your
colleagues’ feet when editing files. You have to adhere to a fairly specific set of proce-
dures. You cannot safely modify several files at once without exposing the system to
your unfinished modifications. These shortcomings (and others) motivated the de-
sign of the next-generation Concurrent Versions System, which is currently the most
widely used revision control system on UNIX and Linux systems.

One of the main ideas behind CVS is that project files (and their historical versions)
are all stored in a central location. As in RCS, you check out copies of files to work on
them and then check the files back in when you’re done. The nice thing about CVS is

www.cs.purdue.edu/homes/trinkle/RCS/

252 Chapter 11 – Software and Configuration Management

that it does not have the concept of “locked” and “unlocked” checkouts; several peo-
ple can check out and modify the same files at the same time (hence “concurrent”).

Since CVS does not prevent multiple people from modifying a file, it must provide a
way for their changes to be integrated when the files are checked back in. This merg-
ing normally occurs automatically, but it works only for text files and only if the vari-
ous changes are compatible. If not, CVS relies on the person running the checkin to
resolve conflicts manually. In the case of incompatible changes to a text file, CVS
inserts helpful comments that show where the conflict occurred.

So much for the theory. It sounds cool, and indeed it is—even the merging works
well. But CVS still has some problems:

• It does not support “atomic commits.” If two people both try to check in a
big modification that affects multiple files, the two versions may both end
up being halfway accepted, with each operator assigned a random selec-
tion of conflicts to resolve. Not pretty.

• To rename a file, you must copy it under the new name and delete the orig-
inal file, thereby losing track of all the file’s past history. Similarly, it is not
possible to rename directories except by copying them and removing the
original versions.

• File attributes are not under revision control. They remain fixed at what-
ever settings a file had when it was first checked in.

Nevertheless, CVS is used by many open source software projects. Not so much be-
cause it is boundlessly wonderful, but more because of a former lack of viable alter-
natives. This situation has changed, though, as many groups have been working on
CVS replacements. Today the choices are numerous, and holy wars are likely to be
fought over the issue of which revision control system should succeed CVS. Shlomi
Fish’s Better SCM Initiative web site (better-scm.berlios.de) introduces most of the
candidates and presents a systematic comparison (albeit an undated one) of their
features.

Following is a quick rundown of the most important CVS commands from a user’s
point of view. The first step in modifying a project is to log in to the server and check
out the module you want to work on. Here we work on a module called sort.

$ cvs -d :pserver:username@servername:/path/to/repository login
CVS password: <password>
$ cvs -d :pserver:username@servername:/path/to/repository co sort

Here, pserver is the access method used to contact the repository, which in this case
is a dedicated CVS password server. The login operation verifies the password with
the server and makes a copy of it for use in later transactions. The co operation is
directly analogous to that of RCS.

You can now enter your local copy of the sort directory and edit files. When you’re
ready to check files back in to the CVS repository, you need not use the -d switch,

S
o

ft
w

a
re

 M
a

n
a

g
e

m
e

n
t

11.5 Revision control 253

because CVS has made a copy of all the necessary location information in the
sort/CVS subdirectory.

$ cd sort
$ vi foo.c
$ cvs commit foo.c -m “Added more efficient sort routine”

If you have been working on your copy of the module for a while and want to refresh
your local copies of files that other people have modified (and checked in) since
your checkout, you can use the cvs update command. The -d option means to in-
clude all subdirectories, and -P asks CVS to remove any empty directories:

$ cvs update -dP

Keep in mind that although you are not checking your files in to the central reposi-
tory, this is a kind of integration. There’s always the possibility that other users’
changes will conflict with yours. CVS will let you know if there are conflicts you need
to address.

Subversion: CVS done right

Although CVS is currently the predominant revision control system, we suggest that
administrators graduating from RCS leapfrog directly to Subversion. This package
was written by Karl Fogel and Jim Blandy, who started Cyclic Software in 1995 to sell
support contracts for CVS. In 2000, they were contracted by CollabNet to write an
open source replacement for CVS. Subversion is the result; after a long pregnancy,
version 1.0 was released in February, 2004.

Subversion has all the “missing” features mentioned above (and then some), but
doesn’t sacrifice clarity and usability. As in CVS, a centralized repository stores all
version-controlled files. Subversion can handle binary files and is faster than CVS.

By default, the Subversion server is a module in the Apache 2.x web server. Great for
distributed software development, but maybe not so good for administrative uses.
Fortunately, the Subversion folks provide a second type of server in the form of a
daemon called svnserve. You can run svnserve from your home directory while
experimenting with Subversion, but in production use it should have its own user
account and be run from inetd.

The initial release of Subversion used the Berkeley DB database as the backing store
for its repository, but Subversion 1.1 adds support for an alternative system known
as FSFS. Both stores have advantages and disadvantages. One of the main distinc-
tions is that Berkeley DB relies on memory-mapped I/O semantics and is therefore
NFS-phobic.7 Subversion repositories that use Berkeley DB must be local to the ma-
chine on which the subversion server runs. FSFS repositories do not have this limi-
tation. See subversion.tigris.org for more pros and cons.

7. See www.sleepycat.com for more information about this issue.

www.sleepycat.com

254 Chapter 11 – Software and Configuration Management

Setting up the repository is easy. For example, the following steps create a new Sub-
version repository called admin:

cd /home/svn
mkdir repositories
cd repositories
svnadmin create admin
chmod 700 admin

If you want to use the FSFS format for your repository instead of the default Berkeley
DB, add a --fs-type=fsfs option to the svnadmin create command. Choose wisely,
Luke; the repository format is difficult to change after the fact.

If you peek inside the admin directory, you will find a well-organized repository
structure, including a README file. The configuration file svnserve.conf can be
found in the conf subdirectory. This file tells the server daemon how to provide ac-
cess to the new repository. Here’s an example configuration appropriate for adminis-
trative files:

[general]
anon-access = none
auth-access = write
password-db = passwd
realm = The Sysadmin Repository

Because one of Subversion’s design goals was to facilitate collaboration among peo-
ple at different sites, it has an access control model that is separate from that of the
operating system. The file passwd (in the same directory) contains a list of users
and their plaintext (!) passwords. The plaintext bit is not nice, but the saving grace is
that the passwords are never transmitted over the network. They are also never
typed from memory by users, so you may as well assign passwords that are long
enough and random enough to be secure. For example:

[users]
tobi = lkadslfkjasdljkhe8938uhau7623rhkdfndf
evi = 09uqalkhlkasdgfprghkjhsdfjj83yyouhfuhe
fritz = kd939hjahkjaj3hkuyasdfaadfk3ijdkjhf

Naturally, permissions on the passwd file should be set restrictively.

All that remains is to start the server on the new repository:

svnserve --daemon --root /home/svn/repositories

As an unprivileged user, you can now check out the admin archive from anywhere
on the network:

$ svn checkout --username tobi svn://server.atrust.com/admin checkout

Authentication realm: <svn://server.atrust.com:3690> The Sysadmin Repository
Password for 'tobi': <password>

S
o

ft
w

a
re

 M
a

n
a

g
e

m
e

n
t

11.6 Localization and configuration 255

When you enter the password for the first time, Subversion squirrels away a copy in
a .subversion directory that it creates in your home. To add or move files within
your local copy of the project, use the svn command:

$ cd checkout
$ vi foo.c
$ svn add foo.c

Once you are done, commit your changes to the repository:

$ svn commit -m “Initial checkin; added foo.c”

It is not necessary to list the changed files you want to commit, although you can do
so if you wish; svn will figure it out on its own. If you omit the -m option, svn starts
an editor for you so that you can edit the commit message.

To get the latest updates from the repository, run svn update within the project. As
in CVS, Subversion performs a merge operation on any files that have been modified
in both your local copy of the project and the master repository. Files with unresolv-
able conflicts are marked as “conflicted,” and Subversion does not allow you to check
them in until you have fixed the problems and told Subversion that the conflicts have
been resolved:

$ svn resolved foo.c

If you want to know who has changed what lines with a file, you can ask Subversion
to dish out the blame:

$ svn blame bar.c

This command prints an annotated version of the file that shows when and by whom
each line was last modified. (Those of a more forgiving or optimistic nature can use
the synonym svn praise.) It’s also easy to get diffs relative to a particular date or
version. For example, if you want to know what has changed in foo.c since June 2,
2006, the following command will tell you:

$ svn diff -r "{2006-06-02}" foo.c

You can download the latest version of Subversion from subversion.tigris.org. The
standard documentation is the book Version Control with Subversion, published by
O’Reilly. The full text is available on-line at svnbook.red-bean.com.

Subversion also has an outstanding Windows GUI; see tortoisesvn.tigris.org. We
used it to manage the source files for this book.

11.6 LOCALIZATION AND CONFIGURATION

Adapting computers to your local environment is one of the prime battlegrounds of
system administration: tell the system about all the printers available on the net-
work, start the special licensing daemon, add the cron job that cleans the /scratch
directory once a week, integrate support for that special scanner they use over in the

256 Chapter 11 – Software and Configuration Management

graphics department, and on and on. Taking care of these issues in a structured and
reproducible way is a central goal of architectural thinking.

Keep the following points in mind:

• Users do not have root privileges. Any need for root privileges in the
course of normal operations is suspicious and probably indicates that
something is fishy with your local configuration.

• Users do not wreck the system intentionally. Design internal security so
that it guards against unintentional errors and the widespread dissemina-
tion of administrative privileges.

• Users that misbehave in minor ways should be interviewed before being
chastised. Users frequently respond to inefficient administrative proce-
dures by attempting to subvert them, so it’s wise to consider the possibility
that noncompliance is an indication of architectural problems.

• Be customer-centered. Talk to users and ask them which tasks they find
difficult. Find ways to make these tasks simpler.

• Your personal preferences are yours. Let your users have their own. Offer
choices wherever possible.

• When your administrative decisions affect users’ experience of the system,
be aware of the reasons for your decisions. Let your reasons be known.

• Keep your local documentation up to date and easily accessible. See page
930 for more information on this topic.

Organizing your localization

If your site has a thousand computers and each computer has its own configuration,
you will spend a major portion of your working time figuring out why one box has a
particular problem and another doesn’t. Clearly, the solution is to make every com-
puter the same, right? But real-world constraints and the varying needs of your us-
ers typically make this impossible.

There’s a big difference in administrability between multiple configurations and
countless configurations. The trick is to split your setup into manageable bits. You
will find that some parts of the localization apply to all managed hosts, others apply
to only a few, and still others are specific to individual boxes.

In addition to performing installations from scratch, you will also need to continually
roll out updates. Keep in mind that individual hosts have different needs for currency,
stability, and uptime.

A prudent system administrator should never roll out new software releases en
masse. Instead, rollouts should be staged according to a gradual plan that accom-
modates other groups’ needs and allows time for the discovery of problems while

S
o

ft
w

a
re

 M
a

n
a

g
e

m
e

n
t

11.6 Localization and configuration 257

their potential to cause damage is still limited. Never update critical servers until
you have some confidence in the changes you are contemplating.8

However you design your localization system, make sure that all original data is kept
in a revision control system. This precaution allows you to keep track of which
changes have been thoroughly tested and are ready for deployment. In addition, it
lets you identify the originator of any problematic changes. The more people in-
volved in the process, the more important this last consideration becomes.

It is advantageous to separate the base OS release from the localization release. De-
pending on the stability needs of your environment, you may use minor local re-
leases only for bug fixing. However, we have found that adding new features in small
doses yields a smoother operation than queuing up changes into “horse pill” re-
leases that risk a major disruption of service.

It’s often a good idea to specify a maximum number of “releases” you are willing to
have in play at any given time. Some administrators believe that there is no reason to
fix software that isn’t broken. They point out that upgrading systems for gratuitous
reasons costs time and money and that “cutting edge” all too often means “bleeding
edge.” Those who put these principles into practice must be willing to collect an
extensive catalog of active releases.

By contrast, the “lean and mean” crowd point to the inherent complexity of releases
and the difficulty of comprehending (let alone managing) a random collection of
releases dating years into the past. Their trump cards are security patches, which
must typically be applied universally and on a tight schedule. Patching outdated ver-
sions of the operating system is often infeasible, so administrators are faced with the
choice of skipping updates on some computers or crash-upgrading these machines
to a newer internal release. Not good.

Neither of these perspectives is provably correct, but we tend to side with those who
favor a limited number of releases. Better to perform your upgrades on your own
schedule rather than one dictated by an external emergency.

Testing

It’s important to test changes before unleashing them on the world. At a minimum,
this means that you need to test your own local configuration changes. However, you
should really test the software that your distributor releases as well. A major UNIX
vendor once released a patch that, when applied a certain way, performed an rm -rf /.
Imagine installing this patch throughout your organization without testing it first.

Testing is an especially pertinent issue if you use a service such as apt-get or the Red
Hat Network that offers an automatic patching capability. Mission-critical systems
should never be directly connected to a vendor-sponsored update service. Identify a
sacrificial machine to be connected to the service, and roll out the changes from this

8. Security patches are a possible exception to this rule. It’s important to plug security holes as soon as
they are found. On the other hand, security patches do sometimes introduce bugs.

258 Chapter 11 – Software and Configuration Management

box to other machines at your site only after appropriate testing. Disable updates
during your testing phase; otherwise, while you test, changes may occur upstream
and sneak their way prematurely onto your production systems.

See page 934 for more
information about
trouble tracking.

If you foresee the occurrence of any user-visible problems or changes in association
with a planned update, notify users well in advance and give them a chance to com-
municate with you if they have concerns regarding your intended changes or timing.
Make sure that users have an easy way to report bugs.

If your organization is geographically distributed, make sure that other offices help
with testing. International participation is particularly valuable in multilingual envi-
ronments. If no one in the U.S. office speaks Japanese, for example, you had better get
the Tokyo office to test anything that might affect kanji support. A surprising num-
ber of system parameters vary with location. Does the U.S. office test changes to the
printing infrastructure with A4 paper, or will the non-U.S. offices be in for a surprise?

Local compilation

In the old days of UNIX, when there were many different architectures, programs
were generally distributed in the form of source archives, usually .tar.Z files that you
would uncompress and then compile. Once the program was built, you would then
install the software in a location such as /usr/local. Today, the use of package man-
agement systems means that fewer programs need to be installed this way. It also
means that administrators make fewer decisions since packages specify where their
contents are installed.

Even with easy package management, some people still prefer to compile their own
software.9 Running your own build gives you more control over the software’s com-
piled-in options. It also lets you be more paranoid because you can inspect the source
code you are compiling. Some people seem to think that this once-over is important,
but unless you’ve got the time and skill to inspect every line of a 20,000-line software
package, we suspect that the added security value is minimal.

Since not every piece of software in the world has been packaged for every Linux
distribution, it’s likely that you will run across at least a few programs that you need
to install yourself, especially if your computers are not 32-bit Intel systems. What’s
more, if yours is a development site, you will have to consider where to put your site’s
own locally developed software.

Historically, the most common location for local software has been /usr/local, and
this convention is still widely followed today. The UNIX/Linux Filesystem Hierarchy
Standard (FHS) specifies that /usr/local be present and empty after the initial OS
installation, and many packages expect to install themselves there.

A depressingly large number of other packages (particularly commercial applica-
tions) expect to be installed in /usr, which is generally a bad idea outside the context

9. Hard-core compile-it-yourselfers should check out the Gentoo Linux distribution, which is designed to
be recompiled from scratch on the destination system.

S
o

ft
w

a
re

 M
a

n
a

g
e

m
e

n
t

11.6 Localization and configuration 259

of a package management system.10 Our experience has been that although many
applications try to be installed in /usr, they generally work without problems when
installed somewhere else. In the rare case of a misbehaving package, you can often
patch things up by adding symbolic links to /usr that point to an installation direc-
tory somewhere else. Another possible solution is to check whether the misbehaving
application might refer to an environment variable to find its installation directory;
such a feature is usually documented, but not always.

Although /usr/local is traditional, many sites find it to be an unmanageable dump-
ing ground. The traditional way it’s laid out (basically the same as /usr, with binaries
in /usr/local/bin, man pages in /usr/local/man, and so on) creates a raft of prob-
lems in some environments: it’s hard to have multiple versions of the same software
installed, the directories can be large, it’s a pain to manage multiple architectures, etc.

Distributing localizations

Your site’s localization system must handle both initial installation and incremental
updates. The updates can be especially tricky. Efficiency can be a major concern
since you probably do not want to repeat the entire localization dance to update the
permissions of a single file. Even though the process is automated, the rebuild-from-
scratch model makes updates an expensive and time-consuming process.

A simple and scalable way to organize localizations is to maintain files in a tree
structure that mimics the (skeletonized) filesystem of a production machine. A ded-
icated installation script can copy the tree to the destination machine and perform
any additional editing that is required.

This type of setup has several advantages. You can maintain as many localization
trees as are necessary to implement your local administrative scheme. Some of the
trees will be alternatives, with each machine getting only one of the available choices.
Other trees will be overlays that can be copied on top of the trees that came before
them. Localization trees can overwrite files if necessary, or they can be completely
disjoint. Each tree that is potentially installed independently should be represented
by a separate revision control project.

The overlay-tree approach allows flexibility in implementation. If you use a packag-
ing system to distribute your local customizations, the overlays can simply be rolled
up into independent packages. The appropriate customization scripts can be in-
cluded in the package and set to run as part of the installation process.

Another good implementation idea is to use rsync to bring destination machines
into compliance with their overlay trees. rsync copies only files that are out of date,
so it can be very efficient for distributing incremental changes. This behavior is hard
to simulate with a packaging system alone. Refer to page 508 for more information
about rsync.

10. The point of keeping random software out of /usr and other system directories is to segregate local
customizations from system software. Under package management, the packages themselves provide
an audit trail, so it is more reasonable for packages to modify system directories.

260 Chapter 11 – Software and Configuration Management

Resolving scheduling issues

Some sites update all their systems on a regular schedule. This plan is potentially
intrusive, but it has the advantage of defining an upper bound on the out-of-date-
ness of client systems. Other sites update their systems at boot time. This is a rela-
tively safe option, but it can mean that a long time passes between updates. Some
sites with technically sophisticated users allow the users themselves to choose when
to update their machines. This is a cooperative and friendly plan, but it tends to re-
quire one of the other schemes as an adjunct because some users will never update.

Updates can be pushed out from the update server (usually by way of cron), or they
can be pulled in by individual clients. A pull system gives clients better control over
their own update schedules. For example, an organization with world-wide opera-
tions may find it easier to implement nightly updates with a pull system; a midnight
upgrade in the United States is a middle-of-the-workday upgrade in Asia.

Depending on how many machines you manage and how large a geographical area
they span, you might set up either a single distribution server or a hierarchy of serv-
ers. For example, you could have one master server that distributes to a slave in each
building, and that slave could in turn distribute directly to clients. For geographi-
cally dispersed sites, this arrangement can drastically reduce your consumption of
WAN bandwidth.

11.7 CONFIGURATION MANAGEMENT TOOLS

Localization systems tend to be homegrown. Part of the reason for this is that all
sites are different and every site has its own bizarre quirks. However, NIH (“not in-
vented here”) syndrome is also a significant contributor. Perhaps the lack of a domi-
nant open source tool for performing configuration management has conditioned
us to think of this problem as lying outside the domain of standardized tools.

Nevertheless, the tools exist and are worth your review, if only to give yourself some
clarity about why you choose not to make use of them. The following sections out-
line the more popular systems in rough order of popularity and similarity.

cfengine: computer immune system

One of the best-known localization tools is Mark Burgess’ cfengine. It was envi-
sioned as a sort of “computer immune system” that bases its operation on a model of
how the system should be configured. When it detects a discrepancy between the
model and the reality, cfengine takes the appropriate steps to bring the system into
compliance. Because of this underlying model, cfengine is really useful for ongoing
configuration maintenance.

cfengine can make backup copies of the files it modifies and can keep a detailed log
of its changes. It can also be run in a no-action mode in which it describes the
changes it would make without actually implementing them.

S
o

ft
w

a
re

 M
a

n
a

g
e

m
e

n
t

11.7 Configuration management tools 261

You use cfengine’s own special language to describe how you want your computers
to be configured. You can specify rules such as, “The file xyz must exist in /etc, have
permissions 644, and belong to root.” You can also write rules regarding the content
of individual files. For example, you can specify that /etc/hosts must contain the line
“router 192.168.0.1”. cfengine then adds this line if it is missing.

cfengine’s configuration language lets you turn on individual rules depending on
factors such as the hostname, the OS, or the subnet. This feature makes it easy to
write a single configuration file that covers the needs of all the machines in your
administrative domain.

The following is a simple example from the UNIX world. It makes sure that /bin is a
symlink to /usr/bin on Suns, does some additional link checking on legacy OSF
boxes, and removes everything from /var/scratch that is older than seven days:

control:
actionsequence = (links tidy)
links:
sun4::
/bin -> /usr/bin
other links
osf::
some osf specific links
tidy:
/var/scratch pattern=* age=7 recurse=inf

See the cfengine home page at www.iu.hio.no/cfengine for more information.

LCFG: a large-scale configuration system

LCFG was originally developed by Paul Anderson at Edinburgh University in 1993.
In its latest incarnation it is known as LCFG(ng) and has gained a number of users
outside the university. LCFG is primarily geared toward managing large Red Hat
installations, but ports to Mac OS X and Solaris are underway. The LCFG web site is
www.lcfg.org.

Like cfengine, LCFG defines a specialized configuration language. The configura-
tions of all managed machines are stored on a central server in a set of master con-
figuration files. From these, LCFG generates customized XML files that describe the
configuration of each managed host. A daemon on the central server monitors the
master configuration files for changes and regenerates the XML files as required.

The XML files are published on an internal web server from which clients can then
pull their own configurations. The clients use a variety of component scripts to con-
figure themselves according to the XML blueprints.

The Arusha Project (ARK)

The Arusha Project was founded by Will Parain of Glasgow University. The motiva-
tion behind Arusha is the insight that most sysadmins do essentially the same
things, but not quite. Or as Will puts it, “I want my service to be the same as theirs,

www.iu.hio.no/cfengine
www.lcfg.org

262 Chapter 11 – Software and Configuration Management

but with these slight differences...” The Arusha Project web site at ark.sf.net goes
into more detail regarding the philosophical underpinnings of the system.

The Arusha Project is based on an object-oriented language called ARK. It is ex-
pressed in XML and allows the administrator to define objects such as hosts, licenses,
web sites, mailing lists, etc. You can describe the dependencies among these objects
with ARK and can supply methods and data that clarify their interrelationships. As
in object-oriented software development, it is possible to reuse and subclass objects,
overriding only the parts that must be changed to make them work in your local
environment.

Template Tree 2: cfengine helper

Template Tree 2 was created at the Swiss Federal Institute of Technology by Tobias
Oetiker. It is a component-based system driven by a central configuration. It reduces
complexity by taking a two-level approach to defining a site’s configuration and can
deal with the relocated root directories of diskless machines.

On the lower level, the system consists of a number of “feature packs.” A feature
pack is a collection of files accompanied by a META file that describes how these
files must be installed on the target system. A feature can be anything from a net-
work configuration to the latest version of OpenSSH. Features can expose config-
urable parameters that can be set in the master configuration file.

The upper level of configuration is a master site configuration file in which you pull
the features together and associate them to machines or groups of machines. At this
level, you must specify values for the unbound configuration parameters exposed by
each feature. For example, one of the parameters for a mail server feature might be
the name of the mail domain.

Template Tree 2 combines the information from the master configuration file and
the individual features’ META files to generate a cfengine configuration file for the
whole site. Because each feature must contain documentation about its purpose and
usage, Template Tree 2 can also generate composite documentation.

DMTF/CIM: the Common Information Model

The Distributed Management Task Force (DMTF), a coalition of “more than 3,000
active participants,” has been working since 1992 to develop its Common Informa-
tion Model (CIM) in an attempt to create standards for an object-oriented, cross-
platform management system.

In DMTF’s own words, CIM is “a management schema...provided to establish a
common conceptual framework at the level of a fundamental topology both with
respect to classification and association, and with respect to the basic set of classes
intended to establish a common framework for a description of the managed envi-
ronment.” Or whatever.

All major vendors from Microsoft to Sun are members of the DMTF. Unfortunately,
the standards they have produced demonstrate an impressive mastery of the arts of

S
o

ft
w

a
re

 M
a

n
a

g
e

m
e

n
t

11.8 Sharing software over NFS 263

obfuscation and buzzword husbandry. The companies involved seem eager to dem-
onstrate their willingness to standardize no matter what. The standards center on
XML and object orientation. However, we have yet to see a sensible product built on
top of them.

Because the standardization effort is being pushed primarily by our old closed-
source vendor friends, the results are about what one might expect. Sun, for exam-
ple, shipped a system for managing diskless clients based on these technologies with
Solaris 8. A closer look revealed a Java-based server that was triggered by a Java-
based client to spit out a shell script which then did the actual work. When problems
occurred, the handbook instructed users to review the log file, which was a binary
structure accessible only through a Java-based log viewer application.

If there is an upside to this quagmire, it is that the DMTF efforts at least require ven-
dors to provide programatically accessible configuration interfaces to their systems
based on an open standard. For UNIX and Linux environments this is nothing new,
but the DMTF is not a UNIX creature. It includes Cisco, Microsoft, Symantec, and
many other companies with little history of providing sensible ways of scripting their
systems. Giving these products a configuration API is a good thing, even if the im-
plementations are still lacking.

11.8 SHARING SOFTWARE OVER NFS

Where should extra software actually be installed: on individual clients or on a cen-
tral file server from which it can be shared over NFS? The standard Linux answer is
“on the clients,” but the NFS solution makes updates quicker (it’s faster and more
reliable to update ten NFS servers than 1,000 clients) and saves disk space on clients
(not that this matters much in the world of 400GB disks).

The question really boils down to manageability versus reliability. Network filesys-
tem-based access is centralized and easier to manage from day to day, and it makes
bug fixes and new packages instantaneously available on all clients. However, run-
ning over the network may be a bit slower than accessing a local disk. In addition, the
network server model adds dependencies on the network and the file server, not only
because it adds potential points of failure but also because it requires that clients and
servers agree on such things as the shared libraries that will be available and the ver-
sion of those libraries that will be installed. The bottom line is that NFS software
libraries are an advanced administrative technique and should only be attempted in
environments that allow for a high degree of central coordination.

If you work in an environment with efficient networks and can afford a fast RAID
array for the central server, you may find that the network server actually performs
faster than a local IDE disk. Whether for better or worse, the performance impact is
likely to be small; performance considerations should not dominate this particular
architectural decision.

264 Chapter 11 – Software and Configuration Management

In general, networks of heterogeneous systems derive the most benefit from shared
software repositories. If your site has standardized on one operating system and that
operating system provides reasonable package management facilities, you’re likely
to be better off sticking with the native system.

Package namespaces

Traditional UNIX sprays the contents of new packages across multiple directories.
Libraries go to /usr/lib, binaries to /usr/bin, documentation to /usr/share/docs,
and so on. Linux inherits more or less the same system, although the Filesystem
Hierarchy Standard helps to make the locations somewhat more predictable. (See
www.pathname.com/fhs for more information about the FHS.)

The advantage of this convention is that files show up in well-known places—as long
your PATH environment variable to points to /usr/bin and the other standard bi-
nary directories, for example, newly installed programs will be readily available.

The downsides are that the origins of files must be explicitly tracked (by means of
package management systems) and that the scattered files are difficult to share on a
network. Fortunately, sysadmins willing to put in some extra work have a reasonable
way out of this dilemma: package namespaces.

The gist of the scheme is to install every package into its own separate root direc-
tory. For example, you might install gimp into /tools/graphics/gimp, with the bi-
nary being located at /tools/graphics/gimp/bin/gimp. You can then recreate an ag-
gregate binary directory for your collection of tools by placing symbolic links into a
directory such as /tools/bin:

/tools/bin/gimp -> /tools/graphics/gimp/bin/gimp

Users could then add the directory /tools/bin to their PATH variables to be assured
of picking up all the shared tools.

There are various options for structuring the /tools directory. A hierarchical ap-
proach (e.g., /tools/graphics, /tools/editors, etc.) facilitates browsing and speeds
performance. You may want to include the software version, hardware architecture,
operating system, or responsible person’s initials in your naming conventions to al-
low the same collection of tools to be served to many types of clients. For example,
Solaris users might include /tools/sun4/bin in their PATHs, and Fedora users in-
clude /tools/fedora/bin.

When you install a new version of a major tool, it’s a good idea to keep older versions
around indefinitely, particularly when users may have significant time and effort
invested in projects that use the tool. Ideally, new versions of tools would be back-
ward compatible with old data files and software, but in practice, disasters are com-
mon. It’s fine to require users to go through some configuration trouble to access an
older version of a package; it’s not fine to just break their existing work and make
them deal with the consequences.

www.pathname.com/fhs

S
o

ft
w

a
re

 M
a

n
a

g
e

m
e

n
t

11.8 Sharing software over NFS 265

Dependency management

Some packages depend on libraries or on other software packages. When you install
software locally through a package-management system, you get lots of help with
resolving these issues. However, when you build your own site-wide network soft-
ware repository, you must address these issues explicitly.

If you manage libraries in the same way you manage applications, you can compile
your tools to use libraries from within the shared /tools directory. This convention
lets you can keep multiple versions of a library active simultaneously. Because de-
pendent applications are linked against specific versions of the library, the setup re-
mains stable even when new versions of the library are released. The downside is
that this type of setup can be quite complicated to use and maintain over time.

Resist the temptation to link against a global /tools/lib directory that contains ge-
nerically named links to common libraries. If you change the links, you may run
into unexpected and difficult-to-diagnose problems. Shared library systems are de-
signed to address some of the potential headbutts, but it makes sense to play it safe
in a complicated setup.

The exact steps needed to make the linker use a specific version of a shared library
vary from system to system. Under Linux, you can set the LD_LIBRARY_PATH en-
vironment variable or use the linker’s -R option.

Wrapper scripts

Unfortunately, library-level compatibility is only half the story. The fact that tools
invoke one another directly raises another opportunity for conflict. For example,
suppose the utility named foo makes frequent use of the utility named bar. If you
update the default version of bar, you may find that foo suddenly stops working. In
this case, you can conclude that foo depended on some behavior of bar that is no
longer supported (or at least is no longer the default).

If your software repository supports multiple versions (e.g., /tools/util/bar-1.0 and
/tools/util/bar-2.0), you can fix this problem by moving the original version of foo
to foo.real and replacing it with a little wrapper script:

#!/bin/sh
make sure the program finds any files co-packaged with it
first even if it does not use an explicit path.
PATH=/tools/util/bar-1.0/bin:$PATH
export PATH
exec /tools/util/foo-1.0/bin/foo.real "$@"

Now foo will be launched with a customized PATH environment variable, and it will
call the old version of bar in preference to the new one.

Wrappers are a powerful tool that can address not only package dependencies but
also issues such as security, architecture- or OS-dependence, and usage tracking.
Some sites wrap all shared binaries.

266 Chapter 11 – Software and Configuration Management

Implementation tools

The maintenance of shared software repositories is a common problem in system
administration, and admins have developed various software solutions to help facil-
itate the process. As with localization, homegrown solutions have tended to pre-
dominate, but as always, it’s worth checking out the available systems to see if any of
them meet your needs.

For some of the classics, google for CMU Depot, CERN ASIS, or CITES Encap. Some
of these projects are still alive and kicking, while others have been abandoned under
pressure from Windows boxes and the ubiquitous availability of RPM-packaged up-
dates. There are also several relatively new projects:

• GNU Stow (www.gnu.org/software/stow) maintains links from a central
binary directory to the real binaries sitting in package-specific directories.

• Swpkg by Chrisophe Kalt (web.taranis.org/swpkg) is a collection of tools
that address most of the steps in the construction of a shared software
repository.

• Peter Kristensen’s Pack Management Project (pack.sunsite.dk) started out
with the bold ambition to provide not only a system for installing software
but also the prepackaged software itself (with a focus on Solaris). The pre-
packaging part has since been abandoned, but work continues on the soft-
ware tools.

• The SEPP system, created at the Swiss Federal Institute of Technology
(www.sepp.ee.ethz.ch), implements most of the ideas discussed above.

11.9 RECOMMENDED SOFTWARE

Some tools are so important that we consider them mandatory for all machines.
Other packages that we like may be necessary or useful only on selected machines.
However, the price of disk space these days almost makes it easier to install every-
thing everywhere and maintain the consistency of the local software tree. Table 11.1
shows our list of must-haves.

Table 11.2 shows our picks of nice-but-not-essential programs; we’ve divided the
table into a sysadmin section and a general user section.

All the programs listed in Tables 11.1 and 11.2 are free. Most of them are available on
the web (try freshmeat.net), but a few are still distributed only through FTP. If they
are not included in your distribution, use a search engine to locate them or see if a
pointer is given elsewhere in this book (check the index to see if a command is dis-
cussed elsewhere).

www.gnu.org/software/stow
www.sepp.ee.ethz.ch

S
o

ft
w

a
re

 M
a

n
a

g
e

m
e

n
t

11.9 Recommended software 267

Table 11.1 Essential software packages

Package Description and comments

ssh/scp Secure shell – uses cryptography, doesn’t reveal passwords
sudo su replacement – adds control and logging
sendmail or postfix Choice of mail transport programs
traceroute Network route tracing– needed to debug network problems
tcpdump or Wireshark Choice of network sniffers – used to analyze network traffic
gzip GNU data compressor – needed to unpack downloads
mozilla or firefox Choice of web browsers – gotta have it
RCS/CVS/Subversion Revision control systems – useful for both sysadmins and users
Perl Scripting language – general-purpose problem solving

Table 11.2 Useful software packages

Package Description and comments

To
ol

s
fo

r a
dm

in
is

tr
at

or
s

gcc C/C++ compiler – a high-quality compiler from GNU
BIND Name service tools – get current version (for security reasons)a

npasswd passwd replacement – forces users to choose good passwords
xntpd Time daemon – keeps machines’ clocks correct and synced
Samba Windows SMB – shares files/printers with Windows systems
Apache Web server
Squid Web proxy and caching software
imapd/procmail Mail tools – for accessing and filtering email

mrtg, RRDtool Monitoring tools – for network traffic and other data

To
ol

s
fo

r u
se

rs

Acrobat Reader PDF file display, a nice (free) tool from Adobeb

gimp Bitmap image editor
xfig Simple X Windows drawing program
GnuPG Signs, verifies, and encrypts messages
nvi/vim vi-like text editors – recommended for sysadmins
emacs Text editor/operating system – good for power users
pico, nedit Text editors – very nice choice for beginners
enscript, mpage Printing utilities – pretty-printer and N-up formatter
pine Mail reader appropriate for beginners
thunderbird Mail reader for those who prefer a GUI
mh/exmh Mail reader for processing lots of mail (not well maintained)
glimpse Indexing tool – indexes your files and performs fast searches
gs, gv, ghostview Tools for previewing and printing PostScript documents

a. The BIND package includes dig, host, and nslookup.
b. The free package Evince is a reasonable replacement for Acrobat Reader under GNOME.

268 Chapter 11 – Software and Configuration Management

11.10 RECOMMENDED READING

INTEL CORPORATION AND SYSTEMSOFT. Preboot Execution Environment (PXE) Speci-
fication, Version 2.1. 1999. www.pix.net/software/pxeboot/archive/pxespec.pdf

MINTHA, JIM, AND PIETER KRUL. UltraLinux FAQ. www.ultralinux.org/faq.html

PXELinux Questions. syslinux.zytor.com/pxe.php

RODIN, JOSIP. Debian New Maintainers’ Guide. www.debian.org/doc/maint-guide
This document contains good information about .deb packages.

SILVA, GUSTAVO NORONHA. APT HOWTO. www.debian.org/doc/manuals/apt-howto

HOHNDEL, DIRK, AND FABIAN HERSCHEL. Automated Installation of Linux Systems Us-
ing YaST. www.usenix.org/events/lisa99/full_papers/hohndel/hohndel_html

STÜCKELBERG, MARC VUILLEUMIER, AND DAVID CLERC. Linux Remote-Boot mini-
HOWTO: Configuring Remote-Boot Workstations with Linux, DOS, Windows 95/98
and Windows NT. 1999. tldp.org/HOWTO/Remote-Boot.html

The Red Hat Enterprise Linux System Administration Guide. www.redhat.com/docs

WACHSMANN, ALF. How to Install Red Hat Linux via PXE and Kickstart.
www.stanford.edu/~alfw/PXE-Kickstart/PXE-Kickstart.html

BURGESS, MARK. Cfengine: A Site Configuration Engine. USENIX Computing Sys-
tems, Vol 8, No 3. 1995. www.cfengine.org

OETIKER, TOBIAS. SEPP: Software Installation and Sharing System. Boston: LISA
1998. people.ee.ethz.ch/oetiker/sepp

11.11 EXERCISES

E11.1 Outline the differences between Kickstart and AutoYaST. When would
you look for an alternative to the distribution-specific installers?

E11.2 Install a copy of Subversion from subversion.tigris.org. Set up svnserve
and create a repository. How can you make the repository usable from
anywhere on the local network but still maintain reasonable security?

E11.3 Review the way that local software is organized at your site. Will the sys-
tem scale? Is it easy to use? Discuss.

E11.4 Figure out the steps needed to create an RPM package. Use this proce-
dure to package a software product of your choice.

E11.5 Repeat the previous exercise, but create a Debian-format .deb package.

E11.6 Set up the network installer of your choice and install a new machine by
using your server. Outline all the steps needed to perform this task.
What were some of the stumbling blocks? What are some of the scalabil-
ity issues you discovered with the installer that you chose?

www.pix.net/software/pxeboot/archive/pxespec.pdf
www.ultralinux.org/faq.html
www.debian.org/doc/maint-guide
www.debian.org/doc/manuals/apt-howto
www.usenix.org/events/lisa99/full_papers/hohndel/hohndel_html
www.redhat.com/docs
www.stanford.edu/~alfw/PXE-Kickstart/PXE-Kickstart.html
www.cfengine.org

SECTION TWO

NETWORKING

This page intentionally left blank

271

T
C

P
/I

P

12 TCP/IP Networking

It would be hard to overstate the importance of networks to modern computing,
although that doesn’t seem to stop people from trying. At many sites, web and email
access are now the main activities for which computers are used. As of early 2006,
the Internet is estimated to have more than a billion users, a 55% increase over
2001’s estimate. Maintenance of local networks, Internet connections, web sites, and
network-related software is a bread-and-butter part of most sysadmins’ jobs.

TCP/IP is the networking protocol suite most commonly used with Linux/UNIX,
Mac OS, Windows, and most other operating systems. It is also the native language
of the Internet. TCP stands for Transmission Control Protocol and IP stands for In-
ternet Protocol.

Devices that speak the TCP/IP protocol can exchange data (“interoperate”) despite
their many differences. IP, the suite’s underlying delivery protocol, is the workhorse
of the Internet. TCP and UDP (the User Datagram Protocol) are transport protocols
built on top of IP to deliver packets to specific applications.

TCP is a connection-oriented protocol that facilitates a conversation between two
programs. It works a lot like a phone call: the words you speak are delivered to the
person you called, and vice versa. The connection persists even when neither party
is speaking. TCP provides reliable delivery, flow control, and congestion control.

UDP is a packet-oriented service. It’s analogous to sending a letter through the post
office. It is a connectionless protocol, does not have any form of congestion control,
and does not guarantee that packets will be delivered in the same order in which
they were sent (or even that they will be delivered at all).

TCP/IP

272 Chapter 12 – TCP/IP Networking

TCP is a polite protocol that forces competing users to share bandwidth and gener-
ally behave in ways that are good for the productivity of the overall network. UDP,
on the other hand, blasts packets out as fast as it can.

As the Internet becomes more popular and more crowded, we need the traffic to be
mostly TCP to avoid congestion and effectively share the available bandwidth. To-
day, TCP accounts for the vast majority of Internet traffic, with UDP and ICMP
checking in at a distant second and third, respectively. UDP applications such as
games, music, voice, and video are making their presence felt but are overwhelmed
by the web and by programs such as BitTorrent that are popular bandwidth hogs but
use TCP instead of UDP for transport.

This chapter introduces the TCP/IP protocols in the political and technical context
of the Internet. Unfortunately, even basic networking is too big a topic to be covered
in a single chapter. Other network-related chapters in this book include Chapter 13,
Routing, Chapter 19, Network Management and Debugging, Chapter 15, DNS: The
Domain Name System, and Chapter 20, Security.

The next few sections include background material on the protocols and politics of
the Internet and are quite opinionated and fluffy. Skip ahead to page 282 to go di-
rectly to the gory details of IP, or to page 307 to jump to distribution-specific config-
uration information.

12.1 TCP/IP AND THE INTERNET

TCP/IP and the Internet share a history that goes back several decades. The techni-
cal success of the Internet is due largely to the elegant and flexible design of TCP/IP
and to the fact that TCP/IP is an open and nonproprietary protocol suite. In turn, the
leverage provided by the Internet has helped TCP/IP prevail over several competing
protocol suites that were favored at one time or another for political or commercial
reasons.

A brief history lesson

Contrary to popular belief, the Internet is not a Microsoft product that debuted in
1995, nor is it the creation of a former U.S. vice president. The progenitor of the
modern Internet was a network called ARPANET that was established in 1969 by
DARPA (Defense Advanced Research Project Agency), the R&D arm of the U.S. De-
partment of Defense. The ARPANET eventually became the NSFNET backbone,
which connected supercomputer sites and regional networks.

By the end of the 1980s, the network was no longer a research project and it was time
for the National Science Foundation to extract itself from the networking business.
We transitioned to the commercial Internet over a period of several years; the NSF-
NET was turned off in April of 1994. Today’s backbone Internet is a collection of pri-
vate networks owned by Internet service providers (ISPs) that interconnect at many
so-called peering points.

T
C

P
/I

P

12.1 TCP/IP and the Internet 273

In the mid-1980s, the Internet essentially consisted of the original ARPANET sites
and a handful of universities with Digital Equipment Corporation’s VAX computers
running Berkeley UNIX on 10 Mb/s Ethernets connected by 56 Kb/s leased digital
telephone lines. Every September, when students went back to school, the Internet
would suffer what became known as congestion collapse. Van Jacobson, then a re-
searcher in the Network Research Group at Lawrence Berkeley Labs, would look at
the protocols’ behavior under load and fix them. The algorithms we now know as slow
start, congestion avoidance, fast retransmit, and fast recovery arose from this context.

Moore’s law (the rule of thumb that hardware speeds double every 18 months) and
market pressure have greatly accelerated the development of the Internet. Since the
late 1980s when the current TCP algorithms were stabilized, the speed of network
interfaces has increased by a factor of 1,000 (from 6% efficiency on early 10 Mb/s
Ethernets to near 100% efficiency on 10 gigabit Ethernets), the speed of leased cir-
cuits by a factor of 12,000, and the total number of hosts by a factor of 80,000.

Anyone who has designed a software system and has seen it rendered obsolete by
the next generation of hardware or the next release of an operating system knows
how amazing it is that our Internet is still alive and kicking, running basically the
same TCP/IP protocol suite that was designed 30 years ago for a very different In-
ternet. Our hats are off to Bob Kahn, Vint Cerf, Jon Postel, Van Jacobson, and all the
other people who made it happen.

How the Internet is managed today

The development of the Internet has always been a cooperative and open effort. Now
that it is a driving force in the world economy, several sectors worry that the Internet
seems to be in the hands of a bunch of computer geeks, with perhaps a little direc-
tion from the U.S. government. Like it or not, Internet governance is coming.

Several organizations are involved:

• ICANN, the Internet Corporation for Assigned Names and Numbers:
if anyone can be said to be in charge of the Internet, this group is it.
(www.icann.org)

• ISOC, the Internet Society: ISOC is a membership organization that repre-
sents Internet users. (www.isoc.org)

• IETF, the Internet Engineering Task Force: this group oversees the develop-
ment and standardization of the technical aspects of the Internet. It is an
open forum in which anyone can participate. (www.ietf.org)

Of these groups, ICANN has the toughest job: establishing itself as the authority in
charge of the Internet, undoing the mistakes of the past, and foreseeing the future.

In addition to these organizations, an international group of academic researchers,
government entities, and industry leaders has formed a networking consortium
called Internet2. These organizations have banded together to contribute ideas and
develop technologies that are critical to forward progress of the Internet. Contrary

www.icann.org
www.isoc.org
www.ietf.org

274 Chapter 12 – TCP/IP Networking

to regular media reports, Internet2 is not a distinct network from the Internet. Al-
though it uses a private network backbone called Abilene for networking research, it
will not replace the Internet as we know it today. Learn more about Internet2 at
www.internet2.edu.

Network standards and documentation

The technical activities of the Internet community are summarized in documents
known as RFCs; an RFC is a Request for Comments. Protocol standards, proposed
changes, and informational bulletins all usually end up as RFCs. RFCs start their
lives as Internet Drafts, and after lots of email wrangling and IETF meetings they
either die or are promoted to the RFC series. Anyone who has comments on a draft
or proposed RFC is encouraged to reply. In addition to standardizing the Internet
protocols, the RFC mechanism sometimes just documents or explains aspects of ex-
isting practice.

RFCs are numbered sequentially; currently, there are about 4,000. RFCs also have
descriptive titles (e.g., Algorithms for Synchronizing Network Clocks), but to forestall
ambiguity they are usually cited by number. Once distributed, the contents of an RFC
are never changed. Updates are distributed as new RFCs with their own reference
numbers. By convention, updated RFCs contain all the material that remains rele-
vant, so the new RFCs completely replace the old ones, at least in theory.

The process by which RFCs are published is itself documented in the RFC titled In-
ternet Official Protocol Standards. This RFC also includes pointers to the most cur-
rent RFCs for various protocol standards. Since the information changes frequently,
this RFC is reissued every 100 RFCs. The Internet standards process itself is detailed
in RFC2026. Another useful meta-RFC is RFC2555, 30 Years of RFCs, which describes
some of the cultural and technical context behind the RFC system.

Don’t be scared away by the wealth of technical detail found in RFCs. Most contain
introductions, summaries, and rationales that are useful for system administrators.
Some are specifically written as overviews or general introductions. RFCs may not be
the gentlest way to learn about a topic, but they are authoritative, concise, and free.

Not all RFCs are dry and full of boring technical details. Some of our favorites on the
lighter side (often written on April 1st) are RFCs 1118, 1149, 1925, 2324, and 2795:

• RFC1118 – The Hitchhiker’s Guide to the Internet
• RFC1149 – A Standard for the Transmission of IP Datagrams on Avian Carriers1

• RFC1925 – The Twelve Networking Truths
• RFC2324 – Hyper Text Coffee Pot Control Protocol (HTCPCP/1.0)
• RFC2795 – The Infinite Monkey Protocol Suite (IMPS)

1. A group of Linux enthusiasts from BLUG, the Bergen (Norway) Linux User Group, actually imple-
mented the Carrier Pigeon Internet Protocol (CPIP) as specified in RFC1149. For details, see the web
site www.blug.linux.no/rfc1149!

www.internet2.edu
www.blug.linux.no/rfc1149!

T
C

P
/I

P

12.2 Networking road map 275

They are a good read and give a bit of insight into the people who are designing and
building our Internet.

In addition to being assigned its own serial number, an RFC can also be assigned an
FYI (For Your Information) number, a BCP (Best Current Practice) number, or a STD
(Standard) number. FYIs, STDs, and BCPs are subseries of the RFCs that include doc-
uments of special interest or importance.

FYIs are introductory or informational documents intended for a broad audience.
They are usually an excellent place to start research on an unfamiliar topic. STDs
document Internet protocols that have completed the IETF’s review and testing pro-
cess and have been formally adopted as standards. BCPs document recommended
procedures for Internet sites; they consist of administrative suggestions and for sys-
tem administrators are often the most valuable of the RFC subseries.

RFCs, FYIs, STDs, and BCPs are numbered sequentially within their own series, so a
document can bear several different identifying numbers. For example, RFC1635,
How to Use Anonymous FTP, is also known as FYI0024.

RFCs are available from numerous sources. There’s a list of actively maintained RFC
mirrors at www.rfc-editor.org, which is dispatch central for RFC-related matters.

12.2 NETWORKING ROAD MAP

Now that we’ve provided a bit of context, let’s take a look at the TCP/IP protocols
themselves. TCP/IP is a “protocol suite,” a set of network protocols designed to
work smoothly together. It includes several components, each defined by a stan-
dards-track RFC or series of RFCs:

• IP, the Internet Protocol, which routes data packets from one machine to
another (RFC791)

• ICMP, the Internet Control Message Protocol, which provides several
kinds of low-level support for IP, including error messages, routing assis-
tance, and debugging help (RFC792)

• ARP, the Address Resolution Protocol, which translates IP addresses to
hardware addresses (RFC823)2

• UDP, the User Datagram Protocol, and TCP, the Transmission Control
Protocol, which deliver data to specific applications on the destination
machine. UDP provides unverified, “best effort” transport for individual
messages, whereas TCP guarantees a reliable, full duplex, flow-controlled,
error-corrected conversation between processes on two hosts. (RFCs 768
and 793)

2. This is actually a little white lie. ARP is not really part of TCP/IP and can be used with other protocol
suites. However, it’s an integral part of the way TCP/IP works on most LAN media.

www.rfc-editor.org

276 Chapter 12 – TCP/IP Networking

TCP/IP is designed around the layering scheme shown in Table 12.1.

After TCP/IP had been implemented and deployed, the International Organization
for Standardization came up with its own seven-layer protocol suite called OSI. It was
a consummate design-by-committee white elephant, and it never really caught on be-
cause of its complexity and inefficiency. Some think a financial layer and a political
layer should have been added to the original seven OSI layers.3

Exhibit A shows how the various components and clients of TCP/IP fit into its gen-
eral architecture and layering scheme.

Exhibit A One big happy TCP/IP family

12.3 PACKETS AND ENCAPSULATION

UNIX Linux can support a variety of physical networks, including Ethernet, FDDI,
token ring, ATM (Asynchronous Transfer Mode), wireless Ethernet, and serial-line-
based systems. Hardware is managed within the link layer of the TCP/IP architec-
ture, and higher-level protocols do not know or care about the specific hardware
being used.

Table 12.1 TCP/IP network model

Layer Function

Application layer End-user application programs
Transport layer Delivery of data to applicationsa

Network layer Basic communication, addressing, and routing
Link layer Network hardware and device drivers
Physical layer The cable or physical medium itself

a. Optionally addressing reliability and flow control issues

3. In fact, a T-shirt showing this extended nine-layer model is available from the Internet Systems Con-
sortium web site, www.isc.org.

APPLICATION

TRANSPORT

NETWORK

LINK

PHYSICAL

LAYER

LAYER

LAYER

LAYER

LAYER

IP ICMP

ARP, Device drivers

Copper, optical fiber, radio waves

UDPTCP

DNS, Half-Life 2 tracerouteSSH, FTP, HTTParp

www.isc.org

T
C

P
/I

P

12.3 Packets and encapsulation 277

Data travels on a network in the form of packets, bursts of data with a maximum
length imposed by the link layer. Each packet consists of a header and a payload. The
header tells where the packet came from and where it’s going. It can also include
checksums, protocol-specific information, or other handling instructions. The pay-
load is the data to be transferred.

The name of the primitive data unit depends on the layer of the protocol. At the link
layer it is called a frame, at the IP layer a packet, and at the TCP layer a segment. Here,
we use “packet” as a generic term that encompasses all these cases.

As a packet travels down the protocol stack (from TCP or UDP transport to IP to
Ethernet to the physical wire) in preparation for being sent, each protocol adds its
own header information. Each protocol’s finished packet becomes the payload part
of the packet generated by the next protocol. This nesting is known as encapsula-
tion. On the receiving machine, the encapsulation is reversed as the packet travels
back up the protocol stack.

For example, a UDP packet being transmitted over Ethernet contains three different
wrappers or envelopes. On the Ethernet wire, it is “framed” with a simple header
that lists the source and next-hop destination hardware addresses, the length of the
frame, and the frame’s checksum (CRC). The Ethernet frame’s payload is an IP
packet, the IP packet’s payload is a UDP packet, and the UDP packet’s payload is the
actual data being transmitted. Exhibit B shows the components of such a frame.

Exhibit B A typical network packet

We use the term “byte” to refer to an 8-bit data unit. In days of yore, “byte” was a
more general term, so you will often see the term “octet” used in RFCs instead.

The link layer

In this section, we cover several topics that bridge the gap between the lowest layers
of the networking software and the network hardware itself.

Ethernet framing standards

One of the main chores of the link layer is to add headers to packets and to put sepa-
rators between them. The headers contain the packets’ link-layer addressing infor-
mation and checksums, and the separators ensure that receivers can tell where one

Ethernet frame (146 bytes)

Ethernet
header

IP
header

UDP
header

Application data

14 bytes 20 bytes 8 bytes

Ethernet
CRC

4 bytes100 bytes

IP packet (128 bytes)

UDP packet (108 bytes)

278 Chapter 12 – TCP/IP Networking

packet stops and the next one begins. The process of adding these extra bits is known
generically as framing.

Today, a single standard for 10 Mb/s Ethernet framing is in common use: DIX Ether-
net II.4 Historically, another standard known as IEEE 802.2 LLC/SNAP was com-
monplace for Novell-based networks. Some administrators may find remnants of
this flavor of framing on their network.

The framing that a machine uses is determined both by its interface card and by the
interface card’s driver. On PCs running Windows you can choose which style of fram-
ing you want, but on Linux you usually cannot. Both types of framing interoperate
just fine from Linux’s perspective. On the other hand, Windows machines that use
different framing on the same network cannot talk to each other. As a sysadmin, you
usually don’t need to worry about framing mismatches unless you are performing
low-level debugging of a mixed network.

Ethernet cabling and signalling standards

The cabling options for the various Ethernet speeds (10 Mb/s, 100 Mb/s, 1 Gb/s, and
now 10 Gb/s) are usually specified as part of the IEEE’s standardization efforts. Of-
ten, a single type of cable with short distance limits will be approved as a new tech-
nology emerges. Cheaper media types and more generous limits will be added later.

Refer to Chapter 14, Network Hardware, for more information about the various
Ethernet standards. Another useful reference to the ins and outs of Ethernet is the
web site www.ethermanage.com/ethernet/, which is maintained by Charles Spurgeon.

Wireless networking

The IEEE 802.11 standard attempts to define framing and signalling standards for
wireless links. Unfortunately, it was originally rather vague and included several pa-
rameters and options that were not fully specified. One interoperability issue you
may need to pay attention to is that of “translation” vs. “encapsulation.”

Translation converts a packet from one format to another; encapsulation wraps the
packet with the desired format. Windows systems tend to default to encapsulation,
and Linux systems to translation; the wireless base stations must be explicitly con-
figured. If you are deploying a wireless network, you must make sure that your base
stations and the workstations they talk to are all operating in the same mode.

Maximum transfer unit

The size of packets on a network may be limited both by hardware specifications
and by protocol conventions. For example, the payload of a standard Ethernet frame
can be no longer than 1,500 bytes. The size limit is associated with the link-layer

4. The link layer is actually divided into two parts: MAC, the Media Access Control sublayer, and LLC, the
Link Layer Control sublayer. The MAC layer deals with the media and transmits packets onto the wire.
The LLC layer handles the framing.

www.ethermanage.com/ethernet/

T
C

P
/I

P

12.3 Packets and encapsulation 279

protocol and is called the maximum transfer unit or MTU. Table 12.2 shows typical
values for the MTU.

In the TCP/IP suite, the IP layer splits packets to conform to the MTU of a particular
network link. If a packet is routed through several networks, one of the intermediate
networks may have a smaller MTU than the network of origin. In this case, the
router that forwards the packet onto the small-MTU network further subdivides the
packet in a process called fragmentation. Fragmentation is an unwelcome chore for
a busy router.

The TCP protocol can determine the smallest MTU along the path to the destination
and use that size from the outset. UDP is not so nice and is happy to shunt extra
work to the IP layer. In IPv6, a new protocol winding its way through the standards
process, intermediate routers can no longer perform fragmentation; MTU discovery
is required.

Fragmentation problems can be insidious. Although path MTU discovery should
automatically resolve MTU conflicts, an administrator must occasionally intervene.
If you are using a tunneled architecture for a virtual private network, for example,
you should look at the size of the packets that are traversing the tunnel. They are
often 1,500 bytes to start with, but once the tunneling header is added, they become
1,540 bytes or so and must be fragmented. Setting the MTU of the link to a smaller
value averts fragmentation and increases the overall performance of the tunneled
network. Consult the ifconfig man page to see how to set an interface’s MTU.

Packet addressing

Like letters or email messages, network packets must be properly addressed in order
to reach their destinations. Several addressing schemes are used in combination:

• MAC (medium access control) addresses for hardware

• IP addresses for software

• Hostnames for people

Table 12.2 MTUs for various types of network link layer

Network type Maximum transfer unit

Ethernet 1,500 bytes (1,492 with 802.2 framing)
FDDI 4,470 bytes (4,352 for IP/FDDI)
Token ring Configurable a

PPP modem link Configurable, often 512 or 576 bytes
PC stacks Configurable, usually defaults to 512
Point-to-point WAN links (T1, T3) Configurable, often 1,500 or 4,500 bytes

a. Common values are 552; 1,064; 2,088; 4,508; and 8,232. Sometimes 1,500 to match Ethernet.

280 Chapter 12 – TCP/IP Networking

A host’s network interface usually has a link-layer MAC address that distinguishes it
from other machines on the physical network, an IP address that identifies it on the
global Internet, and a hostname that’s used by humans.

The lowest level of addressing is dictated by network hardware. For example, Ether-
net devices are assigned a unique 6-byte hardware address at the time of manufac-
ture.5 Token ring interfaces have a similar address that is also 6 bytes long. Some
point-to-point networks (such as PPP, described on page 320) need no hardware ad-
dresses at all; the identity of the destination is specified as the link is established.

A 6-byte Ethernet address is divided into two parts: the first three bytes identify the
manufacturer of the hardware, and the last three bytes are a unique serial number
that the manufacturer assigns. Sysadmins can often identify at least the brand of ma-
chine that is trashing the network by looking up the 3-byte identifier in a table of
vendor IDs. A current vendor table is available from

www.iana.org/assignments/ethernet-numbers

This information used to be published regularly in the RFC series, but it is no longer
distributed that way. RFC1700 (1994) was the last Assigned Numbers RFC. The offi-
cial repository of all the Internet’s magic numbers is www.iana.org/numbers.htm.

Ethernet hardware addresses should be permanently assigned and immutable; un-
fortunately, some network interface cards let you specify the hardware address. Wire-
less cards are especially bad in this respect. Don’t assign values in the multicast ad-
dress range (odd second digit) or use other special values.

Linux lets you change the hardware address of the Ethernet interface, but please don’t
do that; it can break firewalls and some DHCP implementations. However, this fea-
ture can be handy if you have to replace a broken machine or network card and for
some reason must use the old MAC address (e.g., all your switches filter it or your
DHCP server hands out addresses based on MAC addresses).

At the next level up from the hardware, Internet addressing (more commonly known
as IP addressing) is used. Typically, one6 4-byte IP address is assigned to each net-
work interface. IP addresses are globally unique7 and hardware independent. We
ramble on for pages about IP addresses in the next section.

5. Unique at least in theory. At one time, 3Com duplicated Ethernet numbers among cards with different
types of network connector; they assumed that customers would order only a single type. This short-
cut raised havoc at sites that were transitioning between media and even caused problems on 3Com’s
own internal network. MAC address conflicts are deadly on the same network but OK on networks that
are separated by a router.

6. Network interfaces can actually have more than one IP address associated with them, but this is a spe-
cialized configuration that’s used in only a few specific circumstances. See Virtual interfaces on page
727 for more information.

7. This is a small lie that’s true in most situations. See the discussion of NAT starting on page 289 for the
skinny on nonunique IP addresses.

www.iana.org/assignments/ethernet-numbers
www.iana.org/numbers.htm

T
C

P
/I

P

12.3 Packets and encapsulation 281

See page 296 for
more information
about ARP.

The mapping between IP addresses and hardware addresses is implemented at the
link layer of the TCP/IP model. On networks that support broadcasting (i.e., net-
works that allow packets to be addressed to “all hosts on this physical network”), the
ARP protocol allows mappings to be discovered automatically, without assistance
from a system administrator.

Since IP addresses are long, seemingly random numbers, they are hard for people to
remember. Linux systems allow one or more hostnames to be associated with an IP
address so that users can type yahoo.com instead of 216.115.108.245. This mapping
can be set up in several ways, ranging from a static file (/etc/hosts) to the NIS data-
base system to DNS, the world-wide Domain Name System. Keep in mind that host-
names are really just a convenient shorthand for IP addresses.

Ports

IP addresses identify machines, or more precisely, network interfaces on a machine.
They are not specific enough to address particular processes or services. TCP and
UDP extend IP addresses with a concept known as a “port.” A port is 16-bit number
that supplements an IP address to specify a particular communication channel. Stan-
dard services such as email, FTP, and the web all associate themselves with “well
known” ports defined in /etc/services. To help prevent impersonation of these ser-
vices, Linux systems restrict server programs from binding to port numbers under
1,024 unless they are run as root. (But anyone can communicate with a server run-
ning on a low port number; the restriction applies only to taking control of the port.)

Address types

Both the IP layer and the link layer define several different types of addresses:

• Unicast – addresses that refer to a single host (network interface, really)

• Multicast – addresses that identify a group of hosts

• Broadcast – addresses that include all hosts on the local network

Multicast addressing facilitates applications such as video conferencing in which the
same set of packets must be sent to all participants. The Internet Group Management
Protocol (IGMP) constructs and manages sets of hosts that are treated as one multi-
cast destination. Multicast IP addresses begin with a byte in the range 224 to 239.

Broadcast addresses reach all hosts on the local network by using a special wild card
form of address in which the binary representation of the host part (defined next) is
all 1s.

Multicast is virtually unused on today’s Internet, but several active research projects
are underway. See Internet2.org for more information.

282 Chapter 12 – TCP/IP Networking

12.4 IP ADDRESSES: THE GORY DETAILS

An IP or Internet address is four bytes long and is divided into a network portion
and a host portion. The network portion identifies a logical network to which the
address refers, and the host portion identifies a machine on that network.

By convention, IP addresses are written as decimal numbers, one for each byte, sep-
arated by periods. For example, the IP address for our machine “boulder” is written
as 128.138.240.1. The leftmost byte is the most significant and is always part of the
network portion.

When 127 is the first byte of an address, it denotes the “loopback network,” a ficti-
tious network that has no real hardware interface and only one host. The loopback
address 127.0.0.1 always refers to the current host. Its symbolic name is “localhost”.

An interface’s IP address and other parameters are set with the ifconfig command.
Jump ahead to page 299 for a detailed description of ifconfig.

IP address classes

Historically, IP addresses were grouped into “classes,” depending on the first bits of
the leftmost byte. The class determined which bytes of the address were in the net-
work portion and which were in the host portion. Today, routing systems use an ex-
plicit mask to specify the network portion and can draw the line between any two
bits, not just on byte boundaries. However, the traditional classes are still used as
defaults when no explicit division is specified.

Classes A, B, and C denote regular IP addresses. Classes D and E are used for multi-
casting and research addresses. Table 12.3 describes the characteristics of each class.
The network portion of an address is denoted by N, and the host portion by H.

Subnetting and netmasks

It is rare for a single physical network to have more than a hundred computers at-
tached to it. Therefore, class A and class B addresses (which allow for 16,777,214 and
65,534 hosts per network, respectively) are really quite silly and wasteful. For exam-
ple, the 126 class A networks use up half the available address space.

Table 12.3 Historical Internet address classes

Class 1st bytea Format Comments

A 1-126 N.H.H.H Very early networks, or reserved for DoD
B 128-191 N.N.H.H Large sites, usually subnetted, were hard to get
C 192-223 N.N.N.H Easy to get, often obtained in sets
D 224-239 – Multicast addresses, not permanently assigned
E 240-255 – Experimental addresses

a. The value 0 is special and is not used as the first byte of regular IP addresses. 127 is reserved for
the loopback address.

T
C

P
/I

P

12.4 IP addresses: the gory details 283

Sites that have these addresses use a refinement of the addressing scheme called sub-
netting, in which part of the host portion of an address is “borrowed” to extend the
network portion. For example, the four bytes of a class B address would normally be
interpreted as N.N.H.H. If subnetting is used to assign the third byte to the network
number rather than the host number, the address would be interpreted as N.N.N.H.
This use of subnetting turns a single class B network address into 256 distinct class-
C-like networks, each capable of supporting 254 hosts.

See page 299 for
more information
about ifconfig.

This reassignment is effected by use of the ifconfig command to associate an explicit
“subnet mask” with a network interface. Each bit of the netmask that corresponds
to the network portion of an IP address is set to 1, and host bits are set to 0. For
example, the netmask for the N.N.N.H configuration would be 255.255.255.0 in dec-
imal or 0xFFFFFF00 in hex. ifconfig normally uses the inherent class of an address to
figure out which bits are in the network part. When you set an explicit mask, you
simply override this behavior.

The division between network portion and host portion need not fall on a byte
boundary. However, the network bits must be contiguous and must appear at the
high order end of the address.8

Netmasks that do not end at a byte boundary can be annoying to decode and are
often written as /XX, where XX is the number of bits in the network portion of the
address. This is sometimes called CIDR (Classless Inter-Domain Routing) notation.
For example, the network address 128.138.243.0/26 refers to the first of four networks
whose first bytes are 128.138.243. The other three networks have 64, 128, and 192 as
their fourth bytes. The netmask associated with these networks is 255.255.255.192
or 0xFFFFFFC0; in binary, it’s 26 ones followed by 6 zeros. Exhibit C shows the rela-
tionships among these numbers in a bit more detail.

Exhibit C Subnet mask base conversion

A /26 network has 6 bits left (32 – 26 = 6) to number hosts. 26 is 64, so the network
has 64 potential host addresses. However, it can only accommodate 62 actual hosts
because the all-0 and all-1 host addresses are reserved (they are the network and
broadcast addresses, respectively).

8. Configurations such as N.N.H.N were once allowed but were uncommon; they are no longer permitted.

IP address

Decimal netmask

Hex netmask

Binary netmask

128 138 243 0

255

f f

1111 1111

255

f f

1111 1111

255

f f

1111 1111

192

c 0

1100 0000

. . .

.

.

.

.

.

.

.

.

.

284 Chapter 12 – TCP/IP Networking

It’s confusing to do all this bit twiddling in your head, but some tricks can make it
simpler. The number of hosts per network and the value of the last byte in the net-
mask always add up to 256:

last netmask byte = 256 – net size

For example, 256 – 64 = 192, which is the final byte of the netmask in the preceding
example. Another arithmetic fact is that the last byte of an actual network address
(as opposed to a netmask) must be evenly divisible by the number of hosts per net-
work. We see this fact in action in the current example, where the last bytes are 0, 64,
128, and 192—all evenly divisible by 64.

In our example, the extra two bits of network address obtained by subnetting can
take on the values 00, 01, 10, and 11. The 128.138.243.0/24 network has thus been
divided into four /26 networks.

• 128.138.243.0/26 (0 in decimal is 00000000 in binary)

• 128.138.243.64/26 (64 in decimal is 01000000 in binary)

• 128.138.243.128/26 (128 in decimal is 10000000 in binary)

• 128.138.243.192/26 (192 in decimal is 11000000 in binary)

The boldfaced bits of the last byte of each address are the bits that belong to the
network portion of that byte.

Given an IP address (say, 128.138.243.100), we cannot tell without the associated net-
mask what the network address and broadcast address will be. Table 12.4 shows the
possibilities for /16 (the default for a class B address), /24 (a sensible value), and /26
(a realistic value if address space is tight).

A handy online script called IP Calculator by Krischan Jodies (available at
www.jodies.de/ipcalc) helps with binary/hex/mask arithmetic. ipcalc displays ev-
erything you might need to know about a network address and its netmask, broad-
cast address, hosts, etc. A tarball is available in addition to the online version; De-
bian and Ubuntu include the command-line ipcalc version by default.

Here’s some sample IP Calculator output, munged a bit to help with formatting:

Address: 24.8.175.69 00011000.00001000.10101111 .01000101
Netmask: 255.255.255.0 = 24 11111111.11111111.11111111 .00000000
Wildcard: 0.0.0.255 00000000.00000000.00000000 .11111111

Table 12.4 Example IP address decodings

IP address Netmask Network Broadcast

128.138.243.100/16 255.255.0.0 128.138.0.0 128.138.255.255
128.138.243.100/24 255.255.255.0 128.138.243.0 128.138.243.255
128.138.243.100/26 255.255.255.192 128.138.243.64 128.138.243.127

www.jodies.de/ipcalc

T
C

P
/I

P

12.4 IP addresses: the gory details 285

=>
Network: 24.8.175.0/24 00011000.00001000.10101111 .00000000 (Class A)
Broadcast: 24.8.175.255 00011000.00001000.10101111 .11111111
HostMin: 24.8.175.1 00011000.00001000.10101111 .00000001
HostMax: 24.8.175.254 00011000.00001000.10101111 .11111110

The output provides both easy-to-understand versions of the addresses and “cut
and paste” versions. Cool.

Red Hat includes a program, also called ipcalc, that is pretty lame and for most cal-
culations assumes that IP addresses are in class A, B, or C.

The original RFC on IP subnetting (RFC950) did not permit the use of the first or
last subnets (all 0s and all 1s). In our example with the /26 networks, this rule would
eliminate half the subnets: the 0 subnet and the 192 subnet. Everyone ignored the
RFC except Novell and Cisco. (In early versions of Cisco’s IOS operating system, you
had to explicitly enable subnet 0 with the ip subnet zero command. On versions 12.0
and later, subnet 0 is available by default.)

The RFC is wrong, although its intentions were fine. Subnet 0 was disallowed because
the thinking was that confusion might arise if a subnet address was indistinguish-
able from an unsubnetted network address. The fear proved groundless, however,
and all-0/all-1 subnets are in common use today. It is the host portion that should
not be all 0s or all 1s.

The network address and broadcast address steal two hosts from each network, so it
would seem that the smallest meaningful network would have four possible hosts:
two real hosts—usually at either end of a point-to-point link—and the network and
broadcast addresses. To have four values for hosts requires two bits in the host por-
tion, so such a network would be a /30 network with netmask 255.255.255.252 or
0xFFFFFFFC. However, a /31 network is treated as a special case (see RFC3021) and
has no network or broadcast address; both of its two addresses are used for hosts,
and its netmask is 255.255.255.254.

Although the hosts on a network may agree that they are using subnetted addresses,
the rest of the world doesn’t know about this and continues to treat addresses accord-
ing to their implicit class.9 Rather than advertising every subnet to the outside world,
in our 128.138.243.100 example you would need to advertise only a single class B
network. Once a packet arrived within the subnetted area, its destination address
would be reinterpreted with local netmasks, the real target network “discovered,”
and the packet routed to its exact destination.

The IP address crisis

The Internet community realized in about 1992 that the original address allocation
scheme raised three fundamental problems.

9. Another lie in the name of a simple, as yet incomplete description; see the discussion of Classless Inter-
Domain Routing (CIDR) on page 287 for the real scoop.

286 Chapter 12 – TCP/IP Networking

• First, we were going to run out of class B addresses—the most desirable
ones for moderately large organizations—by mid-1995.

• Second, the routing tables of Internet backbone sites were growing so large
that they would not fit in the memory of available routers.

• Finally, IP addresses were being allocated on a first-come, first-served
basis with no locality of reference; that is, numerically adjacent addresses
could be within the same organization or on different continents. Imagine
the confusion that would result if postal codes were assigned in this hap-
hazard fashion.

To solve the problem, two solutions were advanced in tandem: one for the immedi-
ate future and one for the long term.

The short-term solution, Classless Inter-Domain Routing (CIDR), is a different way
of managing the existing 4-byte address space, namely, CIDR uses the available ad-
dresses more efficiently and simplifies routing tables by accounting for numerical
adjacencies. We discuss CIDR in more detail in the next section.

The long-term solution, IPv6, is a revision of the IP protocol. IPv6 expands the ad-
dress space to 16 bytes and incorporates several other lessons learned from the use
of IP over the last 25 years. It removes several features of IP that experience has
shown to be of little value, making the protocol potentially faster and easier to im-
plement. IPv6 also integrates security and authentication into the basic protocol
and eliminates fragmentation at intermediate routers.

IPv6 is still in the early stages of deployment, but CIDR has been fully operational for
years. CIDR is supported and used by the Internet backbone and by the major man-
ufacturers of routing equipment. Network Address Translation (NAT), a scheme for
reusing IP addresses that’s covered on page 289, also played a large role in reducing
the demand for IP addresses.

The complexity of IPv6, the efficiency of CIDR and NAT, and the inertia of an Inter-
net that already works pretty well all combine to suggest that it may be some time
before we move to IPv6. Although many applications and operating systems already
feature native support for IPv6, cost alone is prohibitive in the minds of many folks
in the United States. Nevertheless, extensive efforts on the part of distributors and
volunteer developers have ensured that when the network switches to IPv6, Linux
will be ready.

The IPv4 address shortage is felt more acutely in the international theater, and so
IPv6 has received a warmer welcome there. In the United States, it may take a killer
application to boost IPv6 over the hill, for example, a new generation of cell phones
that map an IPv6 address to a telephone number. (Voice-over-IP systems would also
benefit from a closer correspondence between phone numbers and IPv6 addresses.)

Some additional details on IPv6 addressing are given on page 291.

T
C

P
/I

P

12.4 IP addresses: the gory details 287

CIDR: Classless Inter-Domain Routing

CIDR, defined in RFC1519 (September 1993), eliminates the class system that for-
merly determined the network portion of an IP address. Like subnetting, of which it
is a direct extension, it relies on an explicit netmask to define the boundary between
the network and host parts of an address. But unlike subnetting, it allows, for pur-
poses of routing, the network portion to be made smaller than would be implied by
an address’s implicit class. Using a shorter netmask has the effect of aggregating sev-
eral networks. Hence, CIDR is sometimes referred to as supernetting.

With CIDR, several class C networks can be allocated to a site such that the Internet
need not have separate routing table entries for each one. The site could also be
allocated a subspace of a class A or B address. For example, suppose a site has been
given a block of eight class C addresses numbered 192.144.0.0 through 192.144.7.0
(in CIDR notation, 192.144.0.0/21). Internally, the site could use them as

• 1 network of length /21, 2,046 hosts,10 netmask 255.255.248.0

• 8 networks of length /24, 254 hosts each, netmask 255.255.255.0

• 16 networks of length /25, 126 hosts each, netmask 255.255.255.128

• 32 networks of length /26, 62 hosts each, netmask 255.255.255.192

and so on. It’s also possible to mix and match regions of different subnet lengths, as
long as all the pieces fit together without overlaps. This is called variable length sub-
netting. For example, an ISP with the 192.144.0.0/21 allocation could define some
/30 networks for PPP dial-up customers, some /24s for large customers, and some
/27s for smaller folks.

When you mix and match like this, all the hosts on a particular network must be
configured with the same netmask. You cannot tell one host on the network that it is
a /24 and another host on that same network that it is a /25.

The beauty and value of CIDR is that from the perspective of the Internet, it’s not
necessary to have 256, 128, or even 32 routing table entries for these addresses. They
all refer to the same organization, and all the packets are to go to the same place. A
single routing entry for the address 192.144.0.0/21 suffices. In addition, CIDR makes
it easy to allocate portions of class A and B addresses and thus increases the number
of available addresses manyfold.

With the advent of CIDR, system administrators have gotten good at binary and hex
arithmetic or have discovered that the Linux utility bc can do math in any base, using
the ibase and obase directives.11 You can use Table 12.5 (next page) as a cheat sheet.

When CIDR was introduced in 1993, the backbone tables contained approximately
20,000 routes. The slow but steady growth of the Internet since the dot com implo-
sion has increased the size of the routing table to around 250,000 in 2006.12

10. The original Ethernet on RG-11 coaxial cable allowed at most 1,024 hosts on a single network; with
today’s switches, it’s possible (but not very sensible) to build really huge networks.

11. But be careful not to back yourself into a corner… This puzzle is left as an exercise for the reader.

12. See bgp.potaroo.net for current information about the BGP routing table.

288 Chapter 12 – TCP/IP Networking

An unaggregated region of the address space, called the 192 swamp (and smaller
swamps in the 199 and 205 ranges), consists of early class C addresses whose owners
cannot aggregate them and do not want to turn them in and then have to renumber.
The United States is particularly bad in this regard. Europe and Asia, which started a
bit later, learned from our mistakes and did a much better job of allocating addresses.
Sites with an unaggregated 192 network should return it to the American Registry
for Internet Numbers (ARIN) and get a new block from their ISP. Unfortunately, the
cost of renumbering (in IPv4 space at least) precludes most sites from doing this.

Although CIDR was only intended as an interim solution, it has proved to be strong
enough to handle the Internet’s growth problems for the foreseeable future. In fact,
the combination of CIDR and NAT has worked so well that it is unclear if we really
need a new IP protocol. An enormous amount of engineering work has gone into the
IPv6 specification and the production implementations of IPv6. It would be a shame
to waste this work, but wholesale deployment of IPv6 will probably require a new
must-have application written only for IPv6, a yuppie toy that uses IPv6 addressing,
or a decision by Microsoft to obsolete IPv4.

Address allocation

In the early days of the Internet, individual sites applied to the Internet Network In-
formation Center (InterNIC) for address space. ARIN and LACNIC have now re-
placed the InterNIC in the Americas. Only ISPs who allocate significant amounts of
address space per year are eligible to apply to ARIN for IP address space. All other
sites must apply to their ISP.

Table 12.5 Network configurations for various lengths of netmask

Lengtha Host bits Hosts/netb Decimal netmask Hex netmask

/20 12 4094 255.255.240.0 0xFFFFF000
/21 11 2046 255.255.248.0 0xFFFFF800
/22 10 1022 255.255.252.0 0xFFFFFC00
/23 9 510 255.255.254.0 0xFFFFFE00
/24 8 254 255.255.255.0 0xFFFFFF00
/25 7 126 255.255.255.128 0xFFFFFF80
/26 6 62 255.255.255.192 0xFFFFFFC0
/27 5 30 255.255.255.224 0xFFFFFFE0
/28 4 14 255.255.255.240 0xFFFFFFF0
/29 3 6 255.255.255.248 0xFFFFFFF8
/30 2 2 255.255.255.252 0xFFFFFFFC

a. The network length + the number of host bits is always 32 since we are dividing up the
fixed-size “pie” of a 32-bit IP address.

b. Mathy folks will notice that the number of hosts per net is 2^#hostbits – 2; the –2
reflects the fact that the all-0 and all-1 host addresses are special.

T
C

P
/I

P

12.4 IP addresses: the gory details 289

Only network numbers are formally assigned; sites must define their own host num-
bers to form complete IP addresses. You can subdivide the address space given to
you into subnets however you like.

Administratively, ICANN (the Internet Corporation for Assigned Names and Num-
bers) has delegated blocks of addresses to five regional Internet registries, and
these regional authorities are responsible for doling out subblocks to ISPs within
their regions (see Table 12.6). These ISPs in turn divide up their blocks and hand out
pieces to individual clients. Only large ISPs should ever have to deal directly with
one of the ICANN-sponsored address registries.

The delegation from ICANN to regional registries and then to national or regional
ISPs has allowed for further aggregation in the backbone routing tables. ISP custom-
ers who have been allocated address space within the ISP’s block do not need indi-
vidual routing entries on the backbone. A single entry for the aggregated block that
points to the ISP suffices.

Originally, address space was not very fairly allocated. The U.S. government reserved
about half the address space for itself and gave relatively small blocks to Europe and
Asia. But Europe and Asia managed their address space much more wisely than we
did in the United States. The address space map at

www.caida.org/analysis/learn/ipv4space

illustrates this fact quite effectively. It shows the IP address space as a whole, the por-
tions that have been allocated, the portions that are routed (and therefore reachable),
and the addresses for which traffic has been observed at a couple of major exchange
points in the U.S.

Private addresses and NAT

Another temporary solution to address space depletion is the use of private IP ad-
dress spaces, described in RFC1918 (February 1996). In the CIDR era, sites normally
obtain their IP addresses from their Internet service provider. If a site wants to change
ISPs, it may be held for ransom by the cost of renumbering its networks. The ISP
gave it the address space as long as it was a customer. If the site now wants to choose
a different ISP, it has to convince the old ISP to let it have the addresses and also
convince the new ISP to make the routing work correctly to the new location with

Table 12.6 Regional Internet Registries

Name Web address Region covered

ARIN www.arin.net North America, part of the Caribbean
APNIC www.apnic.net Asia/Pacific region
AfriNIC www.afrinic.net Africa
LACNIC www.lacnic.net Central and South America, part of the Caribbean
RIPE www.ripe.net Europe and surrounding areas

www.caida.org/analysis/learn/ipv4space
www.arin.net
www.apnic.net
www.afrinic.net
www.lacnic.net
www.ripe.net

290 Chapter 12 – TCP/IP Networking

the old addresses. Typically, ISPs don’t want to bother with these issues and will re-
quire customers to renumber.

One alternative to using ISP-assigned addresses is to use private addresses that are
never shown to your ISP. RFC1918 sets aside 1 class A network, 16 class B networks,
and 256 class C networks that will never be globally allocated and can be used inter-
nally by any site. The catch is that packets bearing those addresses must never be
allowed to sneak out onto the Internet. You should filter them at your border router
just to make sure. If some packets slip by, you should track down the misconfigura-
tions that allowed them to escape.

Table 12.7 shows the network numbers reserved for private addressing. (The “CIDR
range” column shows the range for each class in the more compact CIDR notation; it
does not add additional information.)

Sites can choose from this set the size of network that best fits their organization.

To allow hosts that use these private addresses to talk to the Internet, the site’s bor-
der router runs a system called NAT (Network Address Translation). NAT intercepts
packets addressed with these internal-only addresses and rewrites their source ad-
dresses, using a real external IP address and perhaps a different source port number.
It also maintains a table of the mappings it has made between internal and external
address/source-port pairs so that the translation can be performed in reverse when
answering packets arrive from the Internet.

NAT’s use of port number mapping allows several conversations to be multiplexed
onto the same IP address so that a single external address can be shared by many
internal hosts. In some cases, a site can get by with only one “real” IP address.

A site that uses NAT must still request address space from its ISP, but most of the
addresses thus obtained are used for NAT mappings and are not assigned to individ-
ual hosts. If the site later wants to choose another ISP, only the border router and its
NAT configuration need to change, not the configurations of the individual hosts.

NAT is widely used in the consumer sector as well as in corporations. It is also pos-
sible to have a Linux box perform the NAT function, although many sites prefer to
delegate that task to their routers or network connection devices. See the vendor-
specific sections later in this chapter for details. For some reason, the Linux world
used to call NAT “IP masquerading.” However, after the introduction of the 2.4 ker-
nel, the Linux folks began to call it NAT as well.

Table 12.7 IP addresses reserved for private use

IP class From To CIDR range

Class A 10.0.0.0 10.255.255.255 10.0.0.0/8
Class B 172.16.0.0 172.31.255.255 172.16.0.0/12
Class C 192.168.0.0 192.168.255.255 192.168.0.0/16

T
C

P
/I

P

12.4 IP addresses: the gory details 291

An incorrect NAT configuration can let private-address-space packets escape onto
the Internet. The packets will get to their destinations, but answering packets won’t
be able to get back. CAIDA,13 an organization that measures everything in sight about
the backbone networks, finds that 0.1% to 0.2% of the packets on the backbone have
either private addresses or bad checksums. This sounds like a tiny percentage, and it
is, but it represents about 20,000 packets every 10 minutes on a busy circuit at MAE-
West (one of the major public exchanges at which different ISPs exchange traffic).
See www.caida.org for other interesting statistics and network measurement tools.

One disadvantage of NAT (or perhaps an advantage) is that an arbitrary host on the
Internet cannot connect directly to your site’s internal machines. Some implemen-
tations (e.g., Linux and Cisco PIX) let you configure “tunnels” that support direct
connections for particular hosts.

Another problem is that some applications embed IP addresses in the data portion
of packets; these applications are foiled or confused by NAT. Examples include some
routing protocols, streaming programs such as RealVideo and SHOUTcast, some
FTP commands such as PORT and PASV, ICQ instant messaging, and many games.
NAT sometimes breaks VPNs (virtual private networks), too.

Large corporations that use NAT and RFC1918 addresses must institute some form
of central coordination so that all hosts, independently of their department or admin-
istrative group, have unique IP addresses. The situation can become complicated
when one company that uses RFC1918 address space acquires or merges with an-
other company that’s doing the same thing. Parts of the combined organization must
often renumber.

NAT hides interior structure. This secrecy feels like a security win, but the security
folks say NAT doesn’t really help for security and certainly does not replace the need
for a firewall. NAT also foils attempts to measure the size or topology of the Internet.

At least one tool has been developed in an attempt to identify NAT-using hosts. The
utility’s algorithm correlates well-known operating system TTL values with the ex-
pected TTL values on the network. When they don’t match, the source IP address is
identified as a NAT device. The idea is effective in theory but expensive and ungainly
to implement in reality. Learn more about the method at www.sflow.org/detectNAT.

IPv6 addressing

An IPv6 address is 128 bits long. These long addresses were originally intended to
solve the problem of IP address exhaustion. Now that they’re here, however, they are
being exploited to help with issues of routing, mobility, and locality of reference.

IP addresses have never been geographically clustered in the way that phone num-
bers or zip codes are. Now, with the proposed segmentation of the IPv6 address space,
they will at least cluster to ISPs. The boundary between the network portion and the

13. CAIDA, pronounced “kay duh,” is the Cooperative Association for Internet Data Analysis at the San
Diego Supercomputer Center on the UCSD campus (www.caida.org).

www.caida.org
www.sflow.org/detectNAT
www.caida.org

292 Chapter 12 – TCP/IP Networking

host portion of an IPv6 address is fixed at /64; the boundary between public topol-
ogy and a site’s local topology is fixed at /48. Table 12.8 shows the various parts of an
IPv6 address.

Of these pieces, only the SLA ID and the INTERFACE ID belong to the host and its
site. The other parts are provided by the upstream ISP. The SLA specifies a local sub-
net. The 64-bit interface ID identifies the host network interface. It typically contains
the 48-bit MAC address with the hex digits 0xFFFE in the middle. A special bit in the
MAC address (bit 6 of the first byte, numbering bits from the left, starting at 0) called
the universal/local bit must be complemented (see RFC2373). This scheme allows
hosts to be automatically numbered, which is a nice feature for the sysadmin since
only the subnet needs to be managed.

In IPv6, the MAC address is seen at the IP layer, a situation with both good and bad
implications. The brand and model of interface card are encoded in the first half of
the MAC address, so hackers with code for a particular architecture will be helped
along. The visibility of this information has also worried some privacy advocates.
The IPv6 folks have responded by pointing out that sites are not actually required to
use MAC addresses; they’re free to use whatever they want for the host address. A
scheme to include a random token in the local part of the address has also been pro-
posed. Too many bits to play with!

On the other hand, assigning IPv6 addresses should be easier than assigning IPv4
addresses since you only need to keep track of the subnet address. The hosts can
configure themselves—or at least, that’s the theory.

The format prefix identifies the type of IPv6 address: unicast, multicast, or anycast.
Unicast addresses set FP to 001 (binary). The TLA and NLA IDs identify your top-
level IP backbone carrier and the local ISPs up the chain to your backbone provider.

Table 12.8 The parts of an IPv6 address

Bits Acronym Translation

1-3 FP Format prefix; the type of address, e.g., unicast
4-16 TLA ID Top-level aggregation ID, like backbone ISP
17-24 RES Reserved for future use
25-48 NLA ID Next-level aggregation ID, e.g., regional ISPs and site ID
49-64 SLA ID Site-level aggregation ID, like local subnet
65-128 INTERFACE ID Interface identifier (MAC address plus padding)

Address type

ISP prefix Subnet

3 bits

45 bits 16 bits

Host identifier

64 bits

Complete IPv6 address (128 bits)

T
C

P
/I

P

12.5 Routing 293

These days, most vendors are IPv6 ready. Almost all distributions come with native
IPv6 support, and network hardware has had IPv6 support for nearly a decade.

ARIN generally allocates IPv6 space only to large ISPs or to local Internet registries
that plan to dole out large chunks of address space in the near future. These organi-
zations can then allocate subspaces to their downstream customers. The fee struc-
ture is a minimum charge of $1,250/year and a maximum of $36,000/year. ARIN has
extended a fee waiver to members in good standing.

Here are some useful sources of IPv6 information:

• www.ipv6tf.net – An IPv6 information portal

• www.ipv6.org – FAQs and technical information

• www.ipv6forum.com – marketing folks and IPv6 propaganda

One major advantage of IPv6 is that it was designed to solve the renumbering issue.
In the IPv4 world, ISPs allocate address space to customers, but the addresses are not
portable; when customers leave an ISP, they must return their addresses and renum-
ber with addresses from their new ISP. With IPv6, the new ISP gives you an address
prefix that you simply prepend to the local parts of your addresses, probably at your
border router. This scheme is similar to that of NAT for IPv4 addressing, but without
any of NAT’s little problems.

Various schemes have been proposed to ease the transition from IPv4 to IPv6, in-
cluding the use of NAT to hide IPv6 addresses while packets are tunneled across the
existing IPv4 infrastructure.

12.5 ROUTING

Routing is the process of directing a packet through the maze of networks that stand
between its source and its destination. In the TCP/IP system, it is similar to asking
for directions in an unfamiliar country. The first person you talk to might point you
toward the right city. Once you were a bit closer to your destination, the next person
might be able to tell you how to get to the right street. Eventually, you get close
enough that someone can identify the building you’re looking for.

TCP/IP routing information takes the form of rules (“routes”) such as, “To reach
network A, send packets through machine C.” There can also be a default route that
tells what to do with packets bound for a network to which there is no explicit route.

Routing information is stored in a table in the kernel. Each table entry has several
parameters, including a netmask for each listed network (once optional but now re-
quired if the default netmask is not correct). To route a packet to a particular address,
the kernel picks the most specific of the matching routes (that is, the one with the
longest netmask). If the kernel finds no relevant route and no default route, then it
returns a “network unreachable” ICMP error to the sender.

www.ipv6tf.net
www.ipv6.org
www.ipv6forum.com

294 Chapter 12 – TCP/IP Networking

The word “routing” is commonly used to mean two distinct things:

• Looking up a network address in the routing table to forward a packet
toward its destination

• Building the routing table in the first place

In this section we examine the forwarding function and look at how routes can be
manually added to or deleted from the routing table. We defer the more complicated
topic of routing protocols that build and maintain the routing table until Chapter 13.

Routing tables

You can examine a machine’s routing table with netstat -r. Use netstat -rn to avoid
DNS lookups and to present all the information numerically. We discuss netstat in
more detail starting on page 649, but here is a short example to give you a better idea
of what routes look like. This host has two network interfaces: 132.236.227.93 (eth0)
on the 132.236.227.0/24 net and 132.236.212.1 (eth1) on the 132.236.212.0/26 net.

$ netstat -rn
Kernel IP routing table
Destination Genmask Gateway Fl MSS Iface
132.236.227.0 255.255.255.0 132.236.227.93 U 1500 eth0
default 0.0.0.0 132.236.227.1 UG 1500 eth0
132.236.212.0 255.255.255.192 132.236.212.1 U 1500 eth1
132.236.220.64 255.255.255.192 132.236.212.6 UG 1500 eth1
127.0.0.1 255.255.255.255 127.0.0.1 U 3584 lo

The destination field is usually a network address; the gateway must be a host ad-
dress. For example, the fourth route says that to reach the network 132.236.220.64/26,
packets must be sent to the gateway 132.236.212.6 through interface eth1. The second
entry is a default route; packets not explicitly addressed to any of the three networks
listed (or to the machine itself) are sent to the default gateway host, 132.236.227.1.
Hosts can route packets only to gateway machines that are directly attached to their
same network.

See page 303 for more
information about the
route command.

Routing tables can be configured statically, dynamically, or with a combination of the
two approaches. A static route is one that you enter explicitly with the route com-
mand. Static routes should stay in the routing table as long as the system is up; they
are often set up at boot time from one of the system startup scripts. For example, the
Linux commands

route add -net 132.236.220.64 netmask 255.255.255.192 gw 132.236.212.6 eth1
route add default gw 132.236.227.1 eth0

add the fourth and second routes displayed by netstat -rn above. (The first and
third routes in that display were added by ifconfig when the eth0 and eth1 interfaces
were configured.)

The final route is also added at boot time. It configures a pseudo-device called the
loopback interface. The loopback prevents packets sent from the host to itself from

T
C

P
/I

P

12.5 Routing 295

going out on the network; instead, they are transferred directly from the network
output queue to the network input queue inside the kernel.

In a stable local network, static routing is an efficient solution. It is easy to manage
and reliable. However, it requires that the system administrator know the topology
of the network accurately at boot time and that the topology not change often.

Most machines on a local area network have only one way to get out to the rest of the
network, so the routing problem is easy. A default route added at boot time suffices to
point toward the way out. Hosts that use DHCP (see page 311) to get their IP ad-
dresses can also obtain a default route with DHCP.

For more complicated network topologies, dynamic routing is required. Dynamic
routing is typically performed by a daemon process that maintains and modifies the
routing table. Routing daemons on different hosts communicate to discover the to-
pology of the network and to figure out how to reach distant destinations. Several
routing daemons are available.

ICMP redirects

Although IP generally does not concern itself with the management of routing infor-
mation, it does define a small damage control feature called an ICMP redirect. When
a router forwards a packet to a machine on the same network from which the packet
was originally received, something is clearly wrong. Since the sender, the router, and
the next-hop router are all on the same network, the packet could have been for-
warded in one hop rather than two. The router can conclude that the sender’s rout-
ing tables are inaccurate or incomplete.

In this situation, the router can notify the sender of its problem by sending an ICMP
redirect packet. In effect, a redirect says, “You should not be sending packets for host
xxx to me; you should send them to host yyy instead.” The ICMP protocol allows
redirects to be sent for both individual host addresses and entire networks. How-
ever, many implementations generate only host redirects; network redirects are
pretty much useless these days because they only apply to class A, B, or C networks.

Upon receiving a redirect, a naive sender updates its routing table so that future
packets bound for that destination will take the more direct path. In the early days of
multicasting, a few systems generated ICMP routing redirects in response to multi-
cast packets. Modern systems do not have this problem.

The standard ICMP scenario contains no authentication step. Your router receives a
redirect that claims to be from another, well-respected router and directs you to send
traffic elsewhere. Should you listen? Paying attention to redirects actually creates
something of a security problem. Redirects are generally ignored by Linux (for se-
curity reasons) and by Cisco routers (because they are routers). It’s not a good idea
to let untrusted hosts modify your routing tables.

Under Linux, the variable accept_redirects in the /proc hierarchy controls the ac-
ceptance of ICMP redirects. See page 314 for instructions on examining and reset-
ting this variable.

296 Chapter 12 – TCP/IP Networking

12.6 ARP: THE ADDRESS RESOLUTION PROTOCOL

Even though IP packets are usually thought of in terms of IP addresses, hardware
addresses must be used to actually transport data across a network’s link layer.14 ARP,
the Address Resolution Protocol, discovers the hardware address associated with a
particular IP address. It can be used on any kind of network that supports broadcast-
ing but is most commonly described in terms of Ethernet.

If host A wants to send a packet to host B on the same Ethernet, it uses ARP to dis-
cover B’s hardware address. If B is not on the same network as A, host A uses the
routing system to determine the next-hop router along the route to B and then uses
ARP to find that router’s hardware address. Since ARP uses broadcast packets, which
cannot cross networks,15 it can only be used to find the hardware addresses of ma-
chines directly connected to the sending host’s local network.

Every machine maintains a table in memory called the ARP cache, which contains
the results of recent ARP queries. Under normal circumstances, many of the ad-
dresses a host needs are discovered soon after booting, so ARP does not account for
a lot of network traffic.

ARP functions by broadcasting16 a packet of the form, “Does anyone know the hard-
ware address for 128.138.116.4?” The machine being searched for recognizes its own
IP address and sends back a reply, “Yes, that’s the IP address assigned to one of my
network interfaces, and the corresponding Ethernet address is 8:0:20:0:fb:6a.”

The original query includes the IP and Ethernet addresses of the requestor so that the
machine being sought can reply without issuing an ARP query of its own. Thus, the
two machines learn each other’s ARP mappings with only one exchange of packets.
Other machines that overhear the requestor’s initial broadcast can record its address
mapping, too. This passive inspection of ARP traffic is sometimes called snooping.

The arp command examines and manipulates the kernel’s ARP cache, adds or de-
letes entries, and flushes or shows the table. The command arp -a displays the con-
tents of the ARP cache. For example:

redhat$ /sbin/arp -a
sprint-gw (192.168.1.254) at 00:02:4B:5B:26:45 [ether] on eth0
inura-local.toadranch.com (192.168.1.101) at 00:04:76:37:AE:7E [ether] on eth0

The arp command is generally useful only for debugging and for situations that in-
volve special hardware. Some devices are not smart enough to speak ARP (for exam-
ple, network-attached printers or special-purpose graphics displays). To support such
devices, you might need to configure another machine as a proxy ARP server for your

14. Except on point-to-point links, on which the identity of the destination is sometimes implicit.
15. Routers can often be configured to flood broadcast packets to other networks; don’t do this.
16. ARP uses the underlying link layer’s broadcasting conventions, not IP broadcasting.

T
C

P
/I

P

12.7 Addition of a machine to a network 297

crippled hardware. That’s normally done with the arp command as well (using the -s
flag). For example:

/sbin/arp -s printer.toadranch.com 00:50:04:ce:ef:38

Linux kernels 2.4 and later do not support proxy ARP service for a whole subnet but
automatically act as a proxy ARP server when a route exists and the interface is con-
figured to forward packets.

If two hosts on a network are using the same IP address, one has the right ARP table
entry and one is wrong. You can use the arp command to track down the offending
machine.

Sometimes, hardware addresses need to be translated into IP addresses. A lot of
handicapped hardware (e.g., diskless workstations, network computers, printers)
needs to perform this translation at boot time. Instead of having an IP address
hardwired into a configuration file, a machine can query a central server to dis-
cover its own address.

This ends our coverage of networking background material. In the sections that fol-
low, we address the issues involved in configuring Linux machines for a local network
and the Internet.

12.7 ADDITION OF A MACHINE TO A NETWORK

Only a few steps are involved in adding a new machine to an existing local area net-
work, but some vendors hide the files you must modify and generally make the chore
difficult. Others provide a setup script that prompts for the networking parameters
that are needed, which is fine until you need to undo something or move a machine.
Before bringing up a new machine on a network that is connected to the Internet,
you should secure it (Chapter 20, Security) so that you are not inadvertently inviting
hackers onto your local network.

The basic steps to add a new machine to a local network are as follows:

• Assign a unique IP address and hostname.

• Set up the new host to configure its network interfaces at boot time.

• Set up a default route and perhaps fancier routing.

• Point to a DNS name server, to allow access to the rest of the Internet.

Of course, you could add a debugging step to this sequence as well. After any change
that might affect booting, you should always reboot to verify that the machine comes
up correctly. Six months later when the power has failed and the machine refuses to
boot, it’s hard to remember what change you made that might have caused the prob-
lem. (Refer also to Chapter 19, Network Management and Debugging.)

If your network uses DHCP, the Dynamic Host Configuration Protocol, the DHCP
server will do these chores for you. Refer to the DHCP section starting on page 311
for general information about DHCP and the specifics of configuring our example
distributions to use DHCP at boot time.

298 Chapter 12 – TCP/IP Networking

We first cover the general outline of these steps, then return to the details for each
distribution in a series of vendor-specific sections. The commands involve the Linux
kernel’s networking stack and are the same across different distributions. However,
each distribution has established its own configuration files for automating network
configuration at boot time, as summarized in Table 12.9.

The process of designing and installing a physical network is touched on in Chapter
14, Network Hardware. If you are dealing with an existing network and have a general
idea of how it is set up, it may not be necessary for you to read too much more about
the physical aspects of networking unless you plan to extend the existing network.

We describe the process of network configuration in terms of Ethernet; other tech-
nologies are essentially similar.

Hostname and IP address assignment

See Chapter 15 for
more information
about DNS.

Administrators have various theories about how the mapping from hostnames to IP
addresses is best maintained at a local site: through the hosts file, NIS, the DNS sys-
tem, or perhaps some combination of those sources. If you have multiple systems,
you must also have a sensible plan for how they are to work together. The conflicting
values are scalability and maintainability versus a system that is flexible enough to
allow machines to boot when not all services are available (and flexible enough to
handle the heterogeneity of your site).

Another longer-term issue that may be relevant is that of renumbering. If your site
changes ISPs, you may have to return your old IP addresses and renumber with ad-
dresses assigned by the new ISP. That process becomes quite daunting if you must
visit each host on the network to reconfigure it. To expedite such renumbering, use
hostnames in configuration files and make the hostname-to-IP-address translation
only in the DNS database files. On the other hand, using IP addresses in configura-
tion files reduces dependencies during bootup, when not all services are available.
Damned if you do, damned if you don’t.

The /etc/hosts file is the oldest and simplest way to map names to IP addresses.
Each line starts with an IP address and continues with the various symbolic names
by which that address is known.

Table 12.9 Network configuration files

System File What’s set there

Red Hat,
Fedora

/etc/sysconfig/network
network-scripts/ifcfg-ifname

Hostname, default route
IP address, netmask, broadcast address

SUSE
/etc/rc.config
/etc/route.conf

Hostname, IP address, netmask, and more
Default route

Debian,
Ubuntu

/etc/hostname
/etc/network/interfaces

Hostname
IP address, netmask, default route

T
C

P
/I

P

12.7 Addition of a machine to a network 299

Here is a typical /etc/hosts file for the host lollipop:

127.0.0.1 localhost
192.108.21.48 lollipop.xor.com lollipop loghost
192.108.21.254 chimchim-gw.xor.com chimchim-gw
192.108.21.1 ns.xor.com ns
192.225.33.5 licenses.xor.com license-server

A minimalist version would contain only the first two lines. localhost is commonly
the first entry in the /etc/hosts file.

Because /etc/hosts contains only local mappings, most modern systems use it only
for mappings that are needed at boot time. DNS is then consulted to find mappings
for the rest of the local network and the rest of the world. You can also use /etc/hosts
to specify mappings that you do not want the rest of the world to know about and
therefore do not publish in DNS.

/etc/hosts was once important during the boot process because DNS was not yet
available and hostnames were sometimes used in config files instead of IP addresses.
Modern Linux distributions don’t really need the /etc/hosts file, but it should prob-
ably contain at least the mappings for the host itself and the loopback address. Map-
pings for the default gateway machine and a name server might also be helpful. Many
sites put all their really important hosts, servers, and gateways in the /etc/hosts file.
Others put only the host itself and the loopback interface; still others add in all local
hosts and their off-site backup name servers.

Our example Linux systems install a mishmash of /etc/hosts files. Debian’s and
Ubuntu’s contain localhost on 127.0.0.1, the system’s hostname on 127.0.1.1, and
some IPv6 information. Red Hat’s and Fedora’s define localhost and the machine
itself. SUSE’s contains localhost and IPv6 addresses for localhost and a few special
IPv6 names.

The hostname command assigns a hostname to a machine. hostname is typically
run at boot time from one of the startup scripts, which obtains the name to be as-
signed from a configuration file. Of course, each vendor names that configuration
file differently. See the vendor-specific sections beginning on page 307 for informa-
tion about your specific distribution. Most systems today assign a fully qualified
name (that is, a name that includes both the hostname and the DNS domain name,
such as anchor.cs.colorado.edu).

See page 520 for
more information
about LDAP.

At a small site, you can easily dole out hostnames and IP addresses by hand. But when
many networks and many different administrative groups are involved, it helps to
have some central coordination to ensure uniqueness. For dynamically assigned net-
working parameters, DHCP takes care of the uniqueness issues. Some sites now use
LDAP databases to manage their hostnames and IP addresses assignments.

ifconfig: configure network interfaces

ifconfig enables or disables a network interface, sets its IP address and subnet mask,
and sets various other options and parameters. It is usually run at boot time (with

300 Chapter 12 – TCP/IP Networking

command-line parameters taken from config files), but it can also make changes on
the fly. Be careful if you are making ifconfig changes and are logged in remotely;
many a sysadmin has been locked out this way and had to drive in to fix things.

An ifconfig command most commonly has the form

ifconfig interface address options …

for example:

ifconfig eth0 192.168.1.13 netmask 255.255.255.0 up

interface identifies the hardware interface to which the command applies. On UNIX
systems this is usually a two- or three-character device name (derived from the chip-
set used on the interface card) followed by a number, but for Linux it is almost always
something like eth0.17 The hardware’s true identity and the mapping to an appropri-
ate device driver are stored in the /etc/modprobe.conf file on an alias line. The
loopback interface is called lo.

ifconfig interface displays the current settings for interface without changing them.
Many systems understand -a to mean “all interfaces,” and ifconfig -a can therefore
be used to find out what interfaces are present on the system. If your system does not
understand ifconfig -a, try netstat -i to find the interface names.

The address parameter specifies the interface’s IP address. Many versions of ifconfig
also accept a hostname for the address parameter. We prefer to use the actual IP
address; if ifconfig is given a hostname (or the output of the hostname command),
the potential for boot-time problems is increased. If there’s a problem resolving the
hostname, the machine won’t boot or it will boot into a state in which it cannot be
accessed from the network, requiring you to physically go to the machine to debug
the problem. DNS queries that cannot complete take a long while to time out, mak-
ing it seem that the machine is hung. On the other hand, if you ever have to renum-
ber your network, finding all those hidden hardwired IP addresses in configuration
files can be a nightmare.

The keyword up turns the interface on; down turns it off. When an ifconfig com-
mand assigns an IP address to an interface, as in the example above, the up parame-
ter is implicit and does not need to be mentioned by name.

ifconfig understands many other options. We cover only the most common ones; as
always, consult your man pages for the final word on your particular system. ifconfig
options all have symbolic names. Some options require an argument, which should
be placed immediately after the option name.

The netmask option sets the subnet mask for the interface and is required if the net-
work is not subnetted according to its address class (A, B, or C). The mask can be

17. You can assign more than one IP address to an interface by making use of the concept of “virtual network
interfaces” or “IP aliases.” Administrators often do this to allow one machine to host several web sites.
On Linux systems, the virtual interfaces are named eth0:0, eth0:1, and so on. You don’t need to declare
the interfaces ahead of time, just ifconfig them to set them up. See page 727 for more information.

T
C

P
/I

P

12.7 Addition of a machine to a network 301

specified in dotted decimal notation or as a 4-byte hexadecimal number beginning
with 0x. In either case, bits set to 1 are part of the network number, and bits set to 0
are part of the host number.

The broadcast option specifies the IP broadcast address for the interface, expressed
in either hex or dotted quad notation. The correct broadcast address is one in which
the host part is set to all 1s, and most systems default to this value; they use the net-
mask and IP address to calculate the broadcast address.

On Linux, you can set the broadcast address to any IP address that’s valid for the
network to which the host is attached. Some sites have chosen weird values for the
broadcast address in the hope of avoiding certain types of denial of service attacks
that are based on broadcast pings. We dislike this approach for several reasons.

First, it requires you to reset the broadcast address on every host on the local net-
work, a chore that can be time-consuming on a large net. Second, it requires you to
be absolutely sure that you reconfigure every host; otherwise, broadcast storms, in
which packets travel from machine to machine until their TTLs expire, can erupt.

Broadcast storms occur because the same link-layer broadcast address must be used
to transport packets no matter what the IP broadcast address has been set to. For
example, suppose that machine X thinks the broadcast address is A1 and machine
Y thinks it is A2. If X sends a packet to address A1, Y will receive the packet (be-
cause the link-layer destination address is the broadcast address), will see that the
packet is not for itself and also not for the broadcast address (because Y thinks the
broadcast address is A2), and will then forward18 the packet back to the net. If two
machines are in Y’s state, the packet circulates until its TTL expires. Broadcast
storms can erode your bandwidth, especially on a large switched net.

A better way to avoid problems with broadcast pings is to prevent your border rout-
ers from forwarding them and to tell individual hosts not to respond to them. See
page 316 for instructions on how to implement these constraints.

In the ifconfig example at the beginning of this section, the broadcast address is
192.168.1.255 because the network is a /24, as specified by the netmask value of
255.255.255.0.

Executing ifconfig shows the following output:

redhat$ /sbin/ifconfig eth0
eth0 Link encap:Ethernet HWaddr 00:02:B3:19:C8:86

inet addr:192.168.1.13 Bcast:192.168.1.255 Mask:255.255.255.0
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:206983 errors:0 dropped:0 overruns:0 frame:0
TX packets:218292 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:100
Interrupt:7 Base address:0xef00

18. Machine Y must be configured with ip_forwarding turned on for this to happen.

302 Chapter 12 – TCP/IP Networking

The lack of collisions on the Ethernet interface in this example may indicate a very
lightly loaded network or, more likely, a switched network. On a shared network
(built with hubs instead of switches), you should check this number to ensure that it
is below about 5% of the output packets. Lots of collisions indicate a loaded network
that needs to be watched and possibly split into multiple subnets or migrated to a
switched infrastructure.

Let’s look at some complete examples.

ifconfig lo 127.0.0.1 up

This command configures the loopback interface, which doesn’t usually require any
options to be set. You should never need to change your system’s default configura-
tion for this interface. The implied netmask of 255.0.0.0 is correct and does not need
to be manually overridden.

ifconfig eth0 128.138.243.151 netmask 255.255.255.192
broadcast 128.138.243.191 up

This is a typical example for an Ethernet interface. The IP and broadcast addresses
are set to 128.138.243.151 and 128.138.243.191, respectively. The network is class B
(you can tell from the first byte of the address), but it has been subnetted by an addi-
tional 10 bits into a /26 network. The 192 in the netmask is 11000000 in binary and so
adds 2 extra bits to the 24 contained in the three 255 octets. The 191 in the broadcast
address is 10111111 in binary, which sets all 6 host bits to 1s and indicates that this
interface is part of the 3rd network (first two bits 10) in the group of 4 carved out of
the 4th octet. (This is the kind of situation in which an IP calculator comes in handy!)

Now that you know how to configure a network interface by hand, you need to figure
out how the parameters to ifconfig are set when the machine boots, and you need to
make sure that the new values are entered correctly. You normally do this by editing
one or more configuration files; see the vendor-specific sections starting on page 307
for more information.

mii-tool: configure autonegotiation and other media-specific options

Occasionally, network hardware has configurable options that are specific to its me-
dia type. One extremely common example of this is modern-day Ethernet, wherein
an interface card may support 10, 100, or even 1000 Mb/s in both half duplex and
full duplex modes. Most equipment defaults to autonegotiation mode, in which both
the card and its upstream connection (usually a switch port) try to guess what the
other wants to use.

Historically, autonegotiation has worked about as well as a blindfolded cowpoke try-
ing to rope a calf. More recently, vendor network devices play better together, but
autonegotiation is still a common source of failure. High packet loss rates (especially
for large packets) are a common artifact of failed autonegotiation.

The best way to avoid this pitfall is to lock the interface speed and duplex both on
servers and on the switch ports to which they are connected. Autonegotiation is use-
ful for ports in public areas where roving laptops may stop for a visit, but it serves no

T
C

P
/I

P

12.7 Addition of a machine to a network 303

useful purpose for statically attached hosts. If you’re having problems with mysteri-
ous packet loss, turn off autonegotiation everywhere as your first course of action.

Under Linux, the mii-tool command queries and sets media-specific parameters
such as link speed and duplex. You can query the status of an interface with the -v
flag. For example, this eth0 interface has autonegotiation enabled:

$ mii-tool -v eth0
eth0: negotiated 100baseTx-FD flow-control, link ok
 product info: vendor 00:10:5a, model 0 rev 0
 basic mode: autonegotiation enabled
 basic status: autonegotiation complete, link ok
 capabilities: 100baseTx-FD 100baseTx-HD 10baseT-FD 10baseT-HD
 advertising: 100baseTx-FD 100baseTx-HD 10baseT-FD 10baseT-HD flow-control
 link partner: 100baseTx-FD 100baseTx-HD 10baseT-FD 10baseT-HD flow-control

To lock this interface to 100 Mb/s full duplex, use the command

mii-tool -force=100BaseTx-FD eth0

Add this command to a system startup script to make it permanent. Afterward, the
status query returns

$ mii-tool -v eth0
eth0: 100 Mbit, full duplex, link ok
 product info: vendor 00:10:5a, model 0 rev 0
 basic mode: 100 Mbit, full duplex
 basic status: link ok
 capabilities: 100baseTx-FD 100baseTx-HD 10baseT-FD 10baseT-HD
 advertising: 100baseTx-FD 100baseTx-HD 10baseT-FD 10baseT-HD flow-control

route: configure static routes

The route command defines static routes, explicit routing table entries that never
change (you hope), even if you run a routing daemon. When you add a new ma-
chine to a local area network, you usually need to specify only a default route; see the
next section for details.

This book’s discussion of routing is split between this section and Chapter 13, Rout-
ing. Although most of the basic information about routing and the route command
is here, you might find it helpful to read the first few sections of Chapter 13 if you
need more information.

Routing is performed at the IP layer. When a packet bound for some other host ar-
rives, the packet’s destination IP address is compared with the routes in the kernel’s
routing table. If the address matches or partially matches a route in the table, the
packet is forwarded to the “next-hop gateway” IP address associated with that route.

There are two special cases. First, a packet may be destined for some host on a di-
rectly connected network. In this case, the “next-hop gateway” address in the routing
table is one of the local host’s own interfaces, and the packet is sent directly to its

304 Chapter 12 – TCP/IP Networking

destination. This type of route is added to the routing table for you by the ifconfig
command when you configure an interface.

Second, it may be that no route matches the destination address. In this case, the
default route is invoked if one exists. Otherwise, an ICMP “network unreachable” or
“host unreachable” message is returned to the sender. Many local area networks
have only one way out, and their default route points to it. On the Internet backbone,
the routers do not have default routes—the buck stops there. If they do not have a
routing entry for a destination, that destination cannot be reached.

Each route command adds or removes one route. The format is

route [op] [type] destination gw gateway [metric] [dev interface]

The op argument should be add to add a route, del to remove one, and omitted to
display the routing tables. destination can be a host address (type -host), a network
address (type -net), or the keyword default. If destination is a network address, you
should also specify a netmask.

The gateway is the machine to which packets should be forwarded. It must be on a
directly connected network; forwarding can only be performed one hop at a time.
Linux lets you specify an interface instead of (or along with) the gateway. The dev
keyword in the interface specification is optional and can be omitted.

metric is the number of forwardings (the hop count) required to reach the destina-
tion. Linux does not require or use the hop count, but if you set it, Linux keeps the
value in the routing tables so that routing protocols can use it.

The optional type argument supports host routes, which apply to a complete IP ad-
dress (a specific host) rather than to a network address. The values -net and -host
are accepted for the type parameter. If a type isn’t specified, route checks the host
part of the destination address to see if it’s zero. If the host part is 0 or the address is a
network defined in the /etc/networks file, then the route is assumed to be a normal
network route.19

Since route cannot magically know which network numbers have been subnetted,
you must frequently use the type field to install certain routes. For example, the ad-
dress 128.138.243.0 refers to a subnetted class B network at our site, but to route it
looks like a class B address of 128.138 with a host part of 243.0; you must specify the
-net option to deconfuse route. In general, it’s good hygiene to provide an explicit
type for all routes that involve subnets.

route del destination removes a specific entry from the routing table. Other UNIX
systems have an option to route, usually -f or -flush, that completely flushes the
routing tables and starts over. Linux does not support this option, so you might be

19. /etc/networks can map names to network numbers, much like the /etc/hosts file maps hostnames to
complete IP addresses. Many commands that expect a network number can accept a network name if it
is listed in the /etc/networks file (or in DNS).

T
C

P
/I

P

12.7 Addition of a machine to a network 305

faced with many route dels to clean out a large routing table—be sure you are logged
in locally or you may end up half done and disconnected!

To inspect existing routes, use the command netstat -nr or netstat -r if you want to
see names instead of numbers. Numbers are often better if you are debugging, since
the name lookup may be the thing that is broken.

redhat$ netstat -nr
Kernel IP routing table
Destination Gateway Genmask Flags MSS Window irtt Iface
192.168.1.0 0.0.0.0 255.255.255.0 U 0 0 0 eth0
127.0.0.0 0.0.0.0 255.0.0.0 U 0 0 0 lo
0.0.0.0 192.168.1.254 0.0.0.0 UG 0 0 0 eth0

redhat$ netstat -r
Kernel IP routing table
Destination Gateway Genmask Flags MSS Window irtt Iface
192.168.1.0 * 255.255.255.0 U 0 0 0 eth0
127.0.0.0 * 255.0.0.0 U 0 0 0 lo
default sprint-gw 0.0.0.0 UG 0 0 0 eth0

The Genmask is the netmask associated with the destination. The Flags specify the
status of the route, how it was learned, and other parameters. Finally, the Iface is the
interface through which packets using that route are sent. These examples are from a
Red Hat system, but SUSE and Debian are identical except that Debian doesn’t show
the loopback route by default.

Default routes

A default route causes all packets whose destination network is not found in the ker-
nel’s routing table to be sent to the indicated gateway. To set a default route, simply
add the following line to your startup files:

route add default gw gateway-IP-address

Rather than hardcoding an explicit IP address into the startup files, most vendors
have their systems get the gateway IP address from a configuration file. The way that
local routing information is integrated into the startup sequence is unfortunately
different for each of our Linux systems (hurry LSB, fix this not-invented-here syn-
drome!). Table 12.10 summarizes the necessary incantations.

Table 12.10 How to set the default route

System File to change Variable to change

Red Hat,
Fedora

/etc/sysconfig/network GATEWAY

SUSE /etc/route.conf add line: default IP-addr mask interface

Debian,
Ubuntu

/etc/network/interfaces gateway

306 Chapter 12 – TCP/IP Networking

DNS configuration

To configure a machine as a DNS client, you need to edit only one or two files: all
systems require /etc/resolv.conf to be modified, and some require you to modify a
“service switch” file as well.

The /etc/resolv.conf file lists the DNS domains that should be searched to resolve
names that are incomplete (that is, not fully qualified, such as anchor instead of an-
chor.cs.colorado.edu) and the IP addresses of the name servers to contact for name
lookups. A sample is shown here; for more details, see page 418.

search cs.colorado.edu colorado.edu
nameserver 128.138.242.1
nameserver 128.138.243.151
nameserver 192.108.21.1

/etc/resolv.conf should list the “closest” stable name server first because the server
in the first position will be contacted first. You can have up to three nameserver en-
tries. If possible, you should always have more than one. The timeout period for a
DNS query to a particular name server seems quite long, so if the first name server
does not respond, your users will notice.

You will sometimes see a domain line instead of a search line. Such a line indicates
either an ancient resolv.conf file that has not been updated to use the search direc-
tive or an ancient resolver that doesn’t understand search. domain defines only the
current domain, whereas search accepts up to six different domains to query. Thus,
search is preferred.

See Chapter 17 for
more information
about NIS.

Also, some ancient systems do not use DNS by default, even if a properly configured
resolv.conf file exists. These systems have a “service switch” file that determines
which mechanisms will be used to resolve hostname-to-IP-address mappings. Prior-
itization of information sources is covered in more detail starting on page 515, but
we mention the topic here as well, since it sometimes foils your attempts to configure
a legacy machine.

The service switch file lets you specify the order in which DNS, NIS, and /etc/hosts
should be consulted. In most cases, you can also rule out certain sources of data en-
tirely. Your choice of order impacts the machine’s ability to boot and the way in
which booting interacts with the contents of the /etc/hosts file.

If DNS is chosen as the first data source to consult, you may need to have a name
server on the local network and have its hostname and IP address in the hosts file in
order for everything to work at boot time.

Table 12.11 lists the location of the relevant config files and the default configuration
for host lookups on each of our example systems.

T
C

P
/I

P

12.8 Distribution-specific network configuration 307

The Linux networking stack

See page 727 for more
information about vir-
tual interfaces.

The networking stack in Linux kernels 2.2 and above supports virtual network in-
terfaces and selective acknowledgements (or SACKs, as they are called). Kernels 2.4
and up implement explicit congestion notification (ECN).

ECN marks TCP packets to inform the remote peer of congestion problems instead
of letting dropped packets serve as the only indication that something has gone
wrong. ECN was originally specified in RFC2481 (January 1999) and is now a pro-
posed standard documented in RFC3168. RFC2884 (July 2000) included an evalua-
tion of ECN’s performance. It found that ECN benefited a variety of network trans-
actions.

Linux is always one of the first networking stacks to include new features. The Linux
folks are sometimes so quick that the rest of the networking infrastructure cannot
interoperate. For example, the Linux ECN feature (which is on by default) collided
with incorrect default settings on an older Cisco firewall product, causing all pack-
ets with the ECN bit set to be dropped. Oops.

Linux developers love to tinker, and they often implement features and algorithms
that aren’t yet accepted standards. One example is the Linux 2.6.13 addition of plug-
gable congestion control algorithms. The several options include variations for lossy
networks, high-speed WANs with lots of packet loss, satellite links, and more. The
standard TCP “reno” mechanism (slow start, congestion avoidance, fast retransmit,
and fast recovery) is still used by default, but a variant may be more appropriate for
your environment.

12.8 DISTRIBUTION-SPECIFIC NETWORK CONFIGURATION

Chapter 2 describes the details of our example systems’ booting procedures. In the
next few sections, we simply summarize the chores that are related to configuring a
network. Our example systems automatically configure the loopback interface; you
should never need to modify that part of the configuration. Beyond that, each sys-
tem is a bit different.

Table 12.11 Service switch files by system

System Switch file Default for hostname lookups

Ubuntu /etc/nsswitch.conf
/etc/host.conf

files dns mdnsa

hosts, bind

Others
/etc/nsswitch.conf
/etc/host.conf

files dns
hosts, bind

a. mdns = multicast DNS, a somewhat uncommon protocol that allows DNS-like name res-
olution on a small network with no local DNS server.

308 Chapter 12 – TCP/IP Networking

Four files are common to each of our example systems: /etc/hosts, /etc/resolv.conf,
/etc/nsswitch.conf, and /etc/host.conf. These were covered in the generic network
configuration sections above and, except for resolv.conf and possibly hosts, usually
do not need to be modified when you add a machine to the network.

After any change to a file that controls network configuration at boot time, you may
need to either reboot or bring the network interface down and then up again for your
change to take effect. On all of our example distributions you can use the ifup and
ifdown commands.

Network configuration for Red Hat and Fedora

Table 12.12 shows the Red Hat and Fedora network configuration files.

You set the machine’s hostname in /etc/sysconfig/network, which also contains
lines that specify the machine’s DNS domain and default gateway. For example, here
is a network file for a host with a single Ethernet interface:

NETWORKING=yes
HOSTNAME=redhat.toadranch.com
DOMAINNAME=toadranch.com ### optional
GATEWAY=192.168.1.254

Interface-specific data is stored in /etc/sysconfig/network-scripts/ifcfg-ifname,
where ifname is the name of the network interface. These configuration files let you
set the IP address, netmask, network, and broadcast address for each interface. They
also include a line that specifies whether the interface should be configured “up” at
boot time.

Typically, files for an Ethernet interface (eth0) and for the loopback interface (lo) are
present. For example,

DEVICE=eth0
IPADDR=192.168.1.13
NETMASK=255.255.255.0
NETWORK=192.168.1.0
BROADCAST=192.168.1.255
ONBOOT=yes

Table 12.12 Red Hat and Fedora network configuration files

File in /etc/sysconfig What’s set there

network Hostname, default route
static-routes Static routes
network-scripts/ifcfg-ifname Per-interface parameters: IP address, netmask, etc.

T
C

P
/I

P

12.8 Distribution-specific network configuration 309

and

DEVICE=lo
IPADDR=127.0.0.1
NETMASK=255.0.0.0
NETWORK=127.0.0.0
BROADCAST=127.255.255.255
ONBOOT=yes
NAME=loopback

are the ifcfg-eth0 and ifcfg-lo files for the machine redhat.toadranch.com described
in the network file earlier in this section.

A couple of handy scripts facilitate interface management. ifup and ifdown accept
the name of a network interface as an argument and bring the specified interface up
or down. After changing network information in any of the /etc/sysconfig directo-
ries, be sure to run ifdown ifname followed by ifup ifname. Better yet, reboot the
system to be sure your changes don’t cause some kind of subtle problem. There are
no man pages for ifup and ifdown, but they are shell scripts (kept in /sbin), so you
can take a look and see what they do in detail.

If you need to manage all the interfaces at once, run the /etc/rc.d/init.d/network
script, which accepts the arguments start, stop, restart, and status. This script is
invoked at boot time with the start argument.

The startup scripts can also configure static routes. Any routes added to the file
/etc/sysconfig/static-routes are entered into the routing table at boot time. The en-
tries specify arguments to route add, although in mixed-up order (the interface is
first instead of last):

eth0 net 130.225.204.48 netmask 255.255.255.248 gw 130.225.204.49
eth1 net 192.38.8.0 netmask 255.255.255.224 gw 192.38.8.129

The interface is specified first, followed by arguments to route: the route type (net
or host), the target network, the netmask associated with that network, and finally,
the next-hop gateway. The keyword gw is required. Current Linux kernels do not
use the metric parameter to route but allow it to be entered and maintained in the
routing table for routing daemons to use. The static-routes example above would
produce the following route commands:

route add -net 130.225.204.48 netmask 255.255.255.248 gw 130.225.204.49 eth0
route add -net 192.38.8.0 netmask 255.255.255.224 gw 192.38.8.129 eth1

Network configuration for SUSE

Table 12.13 on the next page shows the network configuration files used by SUSE.

SUSE has a unique network configuration scheme. With the exceptions of DNS pa-
rameters and the system hostname, SUSE sets most networking configuration op-
tions in ifcfg-interface files in the /etc/sysconfig/network directory. One file should
be present for each interface on the system.

310 Chapter 12 – TCP/IP Networking

For a real network interface (that is, not the loopback), the filename has the ex-
tended form ifcfg-interface-id-MAC, where MAC is the hardware address of the net-
work interface. (ifcfg-eth-id-00:0c:29:d4:ea:26 is an example.)

In addition to specifying the IP address, gateway, and broadcast information for an
interface, the ifcfg-* files can tune many other network dials; the ifcfg.template file
is a well-commented rundown of the possible parameters.

SUSE’s YaST tool includes a mother-in-law-ready interface for configuring the net-
work. It works well, and we recommend it for managing the ifcfg-* files whenever
possible. If you must configure the network manually, here’s a simple template with
our comments:

BOOTPROTO='static' # Static is implied but it doesn't hurt to be verbose.
IPADDR='192.168.1.4/24' # The /24 defines the NETWORK and NETMASK vars
NAME='AMD PCnet - Fast 79C971' # Used to start and stop the interface.
STARTMODE='auto' # Start automatically at boot
USERCONTROL='no' # Disable control through kinternet/cinternet GUI

Global static routing information for a SUSE system (including the default route) is
stored in the routes file. Each line in this file is like a route command with the com-
mand name omitted: destination, gateway, netmask, interface, and optional extra pa-
rameters to be stored in the routing table for use by routing daemons. For the host
configured above, which has only a default route, the routes file contains the line

default 192.168.1.1 - -

Routes unique to specific interfaces are kept in ifroute-interface files, where the no-
menclature of the interface component is the same as for the ifcfg-* files. The con-
tents have the same format as the routes file.

Network configuration for Debian and Ubuntu

As shown in Table 12.14, Debian and Ubuntu configure the network mostly in
/etc/hostname and /etc/network/interfaces, with a bit of help from the file
/etc/network/options.

The hostname is set in /etc/hostname. The name in this file should be fully quali-
fied; its value is used in a variety of contexts, some of which require that. However,
the standard Debian installation leaves a short name there.

Table 12.13 SUSE network configuration files in /etc/sysconfig/network

File What’s set there

ifcfg-interface Hostname, IP address, netmask, and more
ifroute-interface Interface-specific route definitions
routes Default route and static routes for all interfaces
config Lots of less commonly used network variables

T
C

P
/I

P

12.9 DHCP: the Dynamic Host Configuration Protocol 311

The IP address, netmask, and default gateway are set in /etc/network/interfaces. A
line starting with the iface keyword introduces each interface. The iface line can be
followed by indented lines that specify additional parameters. For example:

iface lo inet loopback
iface eth0 inet static

address 192.168.1.102
netmask 255.255.255.0
gateway 192.168.1.254

The ifup and ifdown commands read this file and bring the interfaces up or down
by calling lower-level commands (such as ifconfig) with the appropriate parame-
ters. The inet keyword in the iface line is the address family; this is always inet. The
keyword static is called a “method” and specifies that the IP address and netmask
for eth0 are directly assigned. The address and netmask lines are required for static
configurations; earlier versions of the Linux kernel also required the network address
to be specified, but now the kernel is smarter and can figure out the network address
from the IP address and netmask. The gateway line specifies the address of the de-
fault network gateway and is used to install a default route.

The options file lets you set networking variables at boot time. By default, Debian
turns IP forwarding off, spoof protection on, and syn cookies off.

12.9 DHCP: THE DYNAMIC HOST CONFIGURATION PROTOCOL

DHCP is defined in
RFCs 2131 and 2132.

Linux hosts have historically required manual configuration to be added to a net-
work. When you plug a Mac or PC into a network, it just works. Why can’t Linux do
that? The Dynamic Host Configuration Protocol (DHCP) brings this reasonable ex-
pectation several steps closer to reality.

The protocol enables a DHCP client to “lease” a variety of network and administrative
parameters from a central server that is authorized to distribute them. The leasing
paradigm is particularly convenient for PCs that are turned off when not in use and
for ISPs that have intermittent dial-up customers.

Leasable parameters include

• IP addresses and netmasks

• Gateways (default routes)

• DNS name servers

• Syslog hosts

Table 12.14 Debian and Ubuntu network configuration files

File What’s set there

/etc/hostname Hostname
/etc/network/interfaces IP address, netmask, default route
/etc/network/options Low-level network options (IP forwarding, etc.)

312 Chapter 12 – TCP/IP Networking

• WINS servers, X font servers, proxy servers, NTP servers

• TFTP servers (for loading a boot image)

and dozens more (see RFC2132). Real-world use of the more exotic parameters is
rare, however. In many cases, a DHCP server supplies only basic networking param-
eters such as IP addresses, netmasks, default gateways, and name servers.

Clients must report back to the DHCP server periodically to renew their leases. If a
lease is not renewed, it eventually expires. The DHCP server is then free to assign the
address (or whatever was being leased) to a different client. The lease period is con-
figurable, but it’s usually quite long (hours or days).

DHCP can save a formerly hapless sysadmin a lot of time and suffering. Once the
server is up and running, clients can use it to automatically obtain their network
configuration at boot time. No fuss, no mess.

DHCP software

Linux distributions historically shipped a variety of different DHCP servers and cli-
ents. These days, they have all more or less standardized on the reference implemen-
tation from the Internet Systems Consortium, ISC. The ISC server also speaks the
BOOTP protocol, which is similar in concept to DHCP, but older and less sophisti-
cated. The DHCP client software is installed by default on all modern distributions,
but you must sometimes install additional packages to get the ISC server and relay
agent up and running.

DHCP clients initiate conversations with the DHCP server by using the generic all-1s
broadcast address—the clients don’t yet know their subnet masks and therefore
cannot use the subnet broadcast address.

ISC’s DHCP server speaks the DNS dynamic update protocol. Not only does the
server give your host its IP address and other networking parameters but it also up-
dates the DNS database with the correct hostname-to-IP-address mapping. See
page 448 for more information about dynamic DNS updates.

In the next few sections, we briefly discuss the DHCP protocol, explain how to set up
the ISC server that implements it, and then discuss some client configuration issues.

How DHCP works

DHCP is a backward-compatible extension of BOOTP, a protocol that was originally
devised to enable diskless UNIX workstations to boot. BOOTP supplies clients with
their IP address, netmask, default gateway, and TFTP booting information. DHCP
generalizes the parameters that can be supplied and adds the “lease” concept.

A DHCP client begins its interaction with a DHCP server by broadcasting a “Help!
Who am I?” message. If a DHCP server is present on the local network, it negotiates
with the client to lease it an IP address and provides other networking parameters
(netmask, name server information and default gateway). If there is no DHCP server

T
C

P
/I

P

12.9 DHCP: the Dynamic Host Configuration Protocol 313

on the local net, servers on different subnets can also receive the initial broadcast
message from a proxy called a “relay agent.”

When the client’s lease time is half over, it will renew the lease. The server is obliged
to keep track of the addresses it has handed out, and this information must persist
across reboots. Clients are supposed to keep their lease state across reboots too, al-
though many do not. The goal is to maximize stability in network configuration.

Incidentally, DHCP is normally not used to configure dial-up PPP interfaces. PPP’s
own PPPCP (PPP Control Protocol) typically fills that role.

ISC’s DHCP server

To configure the DHCP server, dhcpd, edit the sample dhcpd.conf file from the
server directory and install it in /etc/dhcpd.conf.20 You must also create an empty
lease database file called /var/db/dhcp.leases; use the touch command. Make sure
that dhcpd can write to this file. To set up the dhcpd.conf file, you need the follow-
ing information:

• The subnets for which dhcpd should manage IP addresses, and the ranges
of addresses to dole out

• The initial and maximum lease durations, in seconds

• Configurations for BOOTP clients if you have any (they have static IP
addresses and must have their MAC-level hardware address listed as well)

• Any other options the server should pass to DHCP clients: netmask,
default route, DNS domain, name servers, etc.

The dhcpd man page reviews the configuration process. The dhcpd.conf man page
covers the exact syntax of the config file. Both are located in the distribution’s server
subdirectory. Some distributions include a sample dhcpd.conf file in the /etc direc-
tory; change it to match your local site’s network configuration.

dhcpd should be started automatically at boot time. You may find it helpful to make
the startup of the daemon conditional on the existence of /etc/dhcpd.conf.

Here’s a sample dhcpd.conf file from a Linux box with two interfaces: one internal
and one that connects to the Internet. This machine performs NAT translation for
the internal network and leases out a range of 10 IP addresses on this network as well.
The dhcpd.conf file contains a dummy entry for the external interface (required)
and a host entry for one particular machine that needs a fixed address.

dhcpd.conf
#
global options
option domain-name "synack.net";
option domain-name-servers gw.synack.net;

20. Be careful: the dhcpd.conf file format is a bit fragile. Leave out a semicolon, and you’ll receive an
obscure, unhelpful error message.

314 Chapter 12 – TCP/IP Networking

option subnet-mask 255.255.255.0;
default-lease-time 600;
max-lease-time 7200;

subnet 192.168.1.0 netmask 255.255.255.0 {
range 192.168.1.51 192.168.1.60;
option broadcast-address 192.168.1.255;
option routers gw.synack.net;

}

subnet 209.180.251.0 netmask 255.255.255.0 {
}

host gandalf {
hardware ethernet 08:00:07:12:34:56;
fixed-address gandalf.synack.net;

}

See Chapter 15 for
more information
about DNS.

Addresses assigned by DHCP might potentially be in conflict with the contents of
the DNS database. Sites often assign a generic name to each dynamically leased ad-
dress (e.g., dhcp1.synack.net) and allow the names of individual machines to “float”
with their IP addresses. If you are running a recent version of BIND that supports
dynamic updates, you can also configure dhcpd to update the DNS database as it
hands out addresses. The dynamic update solution is more complicated, but it has
the advantage of preserving each machine’s hostname.

dhcpd records each lease transaction in the file dhcp.leases. It also periodically
backs up this file by renaming it to dhcpd.leases~ and recreating the dhcp.leases
file from its in-memory database. If dhcpd were to crash during this operation, you
might end up with only a dhcp.leases~ file. In that case, dhcpd will refuse to start
and you will have to rename the file before restarting it. Do not just create an empty
dhcp.leases file, or chaos will ensue as clients end up with duplicate addresses.

The DHCP client does not really require configuration. It stores status files for each
connection in the directory /var/lib/dhcp or /var/lib/dhclient. The files are named
after the interfaces they describe. For example, dhclient-eth0.leases would contain
all the networking parameters that dhclient had set for the eth0 interface.

12.10 DYNAMIC RECONFIGURATION AND TUNING

Linux has its own special way of tuning kernel and networking parameters. Instead
of supplying a regular configuration file that is read to determine appropriate val-
ues, Linux puts a representation of each variable that can be tuned into the /proc
virtual filesystem. The networking variables are in /proc/sys/net/ipv4:

$ cd /proc/sys/net/ipv4; ls -F
conf/ ip_local_port_range tcp_mem
icmp_echo_ignore_all ip_nonlocal_bind tcp_moderate_rcvbuf
icmp_echo_ignore_broadcasts ip_no_pmtu_disc tcp_no_metrics_save
icmp_errors_use_inbound_ifaddr neigh/ tcp_orphan_retries
icmp_ignore_bogus_error_responsesroute/ tcp_reordering

T
C

P
/I

P

12.10 Dynamic reconfiguration and tuning 315

icmp_ratelimit tcp_abc tcp_retrans_collapse
icmp_ratemask tcp_abort_on_overflow tcp_retries1
igmp_max_memberships tcp_adv_win_scale tcp_retries2
igmp_max_msf tcp_app_win tcp_rfc1337
inet_peer_gc_maxtime tcp_congestion_control tcp_rmem
inet_peer_gc_mintime tcp_dma_copybreak tcp_sack
inet_peer_maxttl tcp_dsack tcp_stdurg
inet_peer_minttl tcp_ecn tcp_synack_retries
inet_peer_threshold tcp_fack tcp_syncookies
ip_autoconfig tcp_fin_timeout tcp_syn_retries
ip_default_ttl tcp_frto tcp_timestamps
ip_dynaddr tcp_keepalive_intvl tcp_tso_win_divisor
ip_forward tcp_keepalive_probes tcp_tw_recycle
ipfrag_high_thresh tcp_keepalive_time tcp_tw_reuse
ipfrag_low_thresh tcp_low_latency tcp_window_scaling
ipfrag_max_dist tcp_max_orphans tcp_wmem
ipfrag_secret_interval tcp_max_syn_backlog
ipfrag_time tcp_max_tw_buckets

Many of the variables with rate and max in their names are used to thwart denial of
service attacks. The conf subdirectory contains variables that are set per interface.
It contains subdirectories all and default and a subdirectory for each interface (in-
cluding the loopback). Each subdirectory contains the same set of files.

$ cd conf/default; ls -F
accept_redirects bootp_relay log_martiansrp_filter
accept_source_route disable_policy mc_forwardingsecure_redirects
arp_announce disable_xfrm medium_idsend_redirects
arp_filter force_igmp_version promote_secondariesshared_media
arp_ignore forwarding proxy_arptag

If you change something in the all subdirectory, your change applies to all interfaces.
If you change the same variable in, say, the eth0 subdirectory, only that interface is
affected. The defaults subdirectory contains the default values as shipped.

The neigh directory contains a subdirectory for each interface. The files in each
subdirectory control ARP table management and IPv6 neighbor discovery for that
interface. Here is the list of variables; the ones starting with gc (for garbage collec-
tion) determine how ARP table entries are timed out and discarded.

$ cd neigh/default; ls -F
anycast_delay gc_interval locktimeretrans_time_ms
app_solicit gc_stale_time mcast_solicitucast_solicit
base_reachable_time gc_thresh1 proxy_delayunres_qlen
base_reachable_time_ms gc_thresh2 proxy_qlen
delay_first_probe_time gc_thresh3 retrans_time

To see the value of a variable, use cat; to set it, use echo redirected to the proper
filename. For example, the command

$ cat icmp_echo_ignore_broadcasts
0

316 Chapter 12 – TCP/IP Networking

shows that this variable’s value is 0, meaning that broadcast pings are not ignored.
To set it to 1 (and avoid falling prey to smurf-type denial of service attacks), run

$ sudo sh -c "echo 1 > icmp_echo_ignore_broadcasts"21

from the /proc/sys/net directory. You are typically logged in over the same network
you are tweaking as you adjust these variables, so be careful! You can mess things up
badly enough to require a reboot from the console to recover, which might be incon-
venient if the system happens to be in Point Barrow, Alaska, and it’s January. Test-
tune these variables on your desktop system before you even think of attacking a pro-
duction machine.

To change any of these parameters permanently (or more accurately, to reset them
every time the system boots), add the appropriate variables to /etc/sysctl.conf,
which is read by the sysctl command at boot time. The format of the sysctl.conf file
is variable=value rather than echo value > variable as you would run from the shell
to change the variable by hand. Variable names are pathnames relative to /proc/sys;
you can also use dots instead of slashes if you prefer. For example, either of the lines

net.ipv4.ip_forward=0
net/ipv4/ip_forward=0

in the /etc/sysctl.conf file would cause IP forwarding to be turned off (for this host).

The document /usr/src/linux/Documentation/proc.txt, written by the SUSE
folks, is a nice primer on kernel tuning with /proc.22 It tells you what the variables
really mean and sometimes provides suggested values. The proc.txt file is a bit out
of date—the Linux coders seem to write faster than the documenters.

12.11 SECURITY ISSUES

We address the topic of security in a chapter of its own (Chapter 20), but several secu-
rity issues relevant to IP networking merit discussion here. In this section, we briefly
look at a few networking features that have acquired a reputation for causing security
problems, and we recommend ways to minimize their impact. The details of our ex-
ample Linux systems’ default behavior on these issues (and appropriate methods for
changing them) are covered later in this section.

IP forwarding

A Linux box that has IP forwarding enabled can act as a router. Unless your system
has multiple network interfaces and is actually supposed to function as a router, it’s
advisable to turn this feature off. Hosts that forward packets can sometimes be co-
erced into compromising security by making external packets appear to have come

21. If you try this command in the form sudo echo 1 > icmp_echo_ignore_broadcasts, you just generate
a “permission denied” message—your shell attempts to open the output file before it runs sudo. You
want the sudo to apply to both the echo command and the redirection. Ergo, you must create a root
subshell in which to execute the entire command.

22. To have a copy of proc.txt available, you must install the kernel source code.

T
C

P
/I

P

12.11 Security issues 317

from inside your network. This subterfuge can help naughty packets evade network
scanners and packet filters.

ICMP redirects

ICMP redirects can be used maliciously to reroute traffic and mess with your routing
tables. Most operating systems listen to them and follow their instructions by default.
It would be bad if all your traffic were rerouted to a competitor’s network for a few
hours, especially while backups were running! We recommend that you configure
your routers (and hosts acting as routers) to ignore and perhaps log ICMP redirects.

Source routing

IP’s source routing mechanism lets you specify an explicit series of gateways for a
packet to transit on the way to its destination. Source routing bypasses the next-hop
routing algorithm that’s normally run at each gateway to determine how a packet
should be forwarded.

Source routing was part of the original IP specification; it was intended primarily to
facilitate testing. It can create security problems because packets are often filtered
according to their origin. If someone can cleverly route a packet to make it appear to
have originated within your network instead of the Internet, it might slip through
your firewall. We recommend that you neither accept nor forward source-routed
packets.

Broadcast pings and other forms of directed broadcast

Ping packets addressed to a network’s broadcast address (instead of to a particular
host address) are typically delivered to every host on the network. Such packets have
been used in denial of service attacks; for example, the so-called smurf attacks. Most
hosts have a way to disable broadcast pings—that is, the host can be configured not
to respond to or forward broadcast pings. Your Internet router can also filter out
broadcast pings before they reach your internal network. It’s a good idea to use both
host and firewall-level security measures if you can.

Broadcast pings are a form of “directed broadcast” in that they are packets sent to
the broadcast address of a distant network. The default handling of such packets has
been gradually changing. For example, versions of Cisco’s IOS up through 11.x for-
warded directed broadcast packets by default, but IOS releases since 12.0 do not. It is
usually possible to convince your TCP/IP stack to ignore broadcast packets that come
from afar, but since this behavior must be set on each interface, this can be a non-
trivial task at a large site.

IP spoofing

The source address on an IP packet is normally filled in by the kernel’s TCP/IP im-
plementation and is the IP address of the host from which the packet was sent. How-
ever, if the software creating the packet uses a raw socket, it can fill in any source
address it likes. This is called IP spoofing and is usually associated with some kind

318 Chapter 12 – TCP/IP Networking

of malicious network behavior. The machine identified by the spoofed source IP ad-
dress (if it is a real address) is often the victim in the scheme. Error and return pack-
ets can disrupt or flood the victim’s network connections.

You should deny IP spoofing at your border router by blocking outgoing packets
whose source address is not within your address space. This precaution is especially
important if your site is a university where students like to experiment and often feel
vindictive toward “jerks” on their favorite chat channels.

At the same time, if you are using private address space internally, you can filter to
catch any internal addresses escaping to the Internet. Such packets can never be an-
swered (owing to the lack of a backbone route) and usually indicate that your site
has an internal configuration error.

With Linux-based firewalls, described in the next section, you can implement such
filtering per host. However, most sites prefer to implement this type of filtering at
their border routers rather than at each host. This is the approach we recommend as
well. We describe host-based firewalls only for completeness and for use in special
situations.

You must also protect against a hacker forging the source address on external pack-
ets to fool your firewall into thinking that they originated on your internal network.
The kernel parameter rp_filter (settable in the /proc/sys/net/ipv4/conf/ifname di-
rectory) can help you detect such packets; the rp stands for reverse path. If you set
this variable to 1, the kernel discards packets that arrive on an interface that is differ-
ent from the one on which they would leave if the source address were the destina-
tion. This behavior is turned on by default.

If your site has multiple connections to the Internet, it may be perfectly reasonable
for inbound and outbound routes to be different. In this situation, set rp_filter to 0
to make your routing protocol work properly. If your site has only one way out to the
Internet, then setting rp_filter to 1 is usually safe and appropriate.

Host-based firewalls

Linux includes packet filtering (aka “firewall”) software. Although we describe this
software later in this chapter (page 319) and also in the Security chapter (page 701),
we don’t really recommend using a workstation as a firewall. The security of Linux
(especially as shipped by our friendly vendors) is weak, and security on Windows is
even worse. We suggest that you buy a dedicated hardware solution to use as a fire-
wall. Even a sophisticated software solution like Check Point’s FireWall-1 product
(which runs on a Solaris host) is not as good as a piece of dedicated hardware such as
Cisco’s PIX box—and it’s almost the same price!

A more thorough discussion of firewall-related issues begins on page 701.

Virtual private networks

Many organizations that have offices in several parts of the world would like to have
all those locations connected to one big private network. Unfortunately, the cost of

T
C

P
/I

P

12.12 Linux NAT 319

leasing a transoceanic or even a transcontinental data line can be prohibitive. Such
organizations can actually use the Internet as if it were a private data line by establish-
ing a series of secure, encrypted “tunnels” among their various locations. A “private”
network that includes such tunnels is known as a virtual private network or VPN.

See page 709 for
more information
about IPsec.

Some VPNs use the IPsec protocol, which was standardized by the IETF in 1998.
Others use proprietary solutions that don’t usually interoperate with each other. If
you need VPN functionality, we suggest that you look at products like Cisco’s 3660
router or the Watchguard Firebox, both of which can do tunneling and encryption.
The Watchguard device uses PPP to a serial port for management. A sysadmin can
dial into the box to configure it or to access the VPN for testing.

For a low-budget VPN solution, see the example on page 328 that uses PPP over an
ssh connection to implement a virtual private network.

Security-related kernel variables

Table 12.15 shows Linux’s default behavior with regard to various touchy network
issues. For a brief description of the implications of these behaviors, see page 316.
We recommend that you change the values of these variables so that you do not an-
swer broadcast pings, do not listen to routing redirects, and do not accept source-
routed packets.

12.12 LINUX NAT

Linux traditionally implements only a limited form of Network Address Translation
(NAT) that is more properly called Port Address Translation, or PAT. Instead of using
a range of IP addresses as a true NAT implementation would, PAT multiplexes all con-
nections onto a single address. To add to the confusion, many Linux documents re-
fer to the feature as neither NAT nor PAT but as “IP masquerading.” The details and
differences aren’t of much practical importance, so we refer to the Linux implementa-
tion as NAT for the sake of consistency.

iptables implements not only NAT but also packet filtering. In earlier versions of
Linux this was a bit of a mess, but iptables makes a much cleaner separation between
the NAT and filtering features.

Table 12.15 Default security-related network behaviors in Linux

Feature Host Gateway Control file (in /proc/sys/net)

IP forwarding off on ipv4/ip_forward for the whole system
ipv4/conf/interface /forwarding per interfacea

ICMP redirects obeys ignores ipv4/conf/interface /accept_redirects

Source routing ignores obeys ipv4/conf/interface /accept_source_route

Broadcast ping answers answers ipv4/icmp_echo_ignore_broadcasts

a. The interface can be either a specific interface name or all.

320 Chapter 12 – TCP/IP Networking

Packet filtering features are covered in more detail in the Security chapter starting
on page 701. If you use NAT to let local hosts access the Internet, you must use a full
complement of firewall filters when running NAT. The fact that NAT “isn’t really IP
routing” doesn’t make a Linux NAT gateway any more secure than a Linux router.
For brevity, we describe only the actual NAT configuration here; however, this is
only a small part of a full configuration.

To make NAT work, you must enable IP forwarding in the kernel by setting the
/proc/sys/net/ipv4/ip_forward kernel variable to 1. Additionally, you must insert
the appropriate kernel modules:

$ sudo /sbin/modprobe iptable_nat
$ sudo /sbin/modprobe ip_conntrack
$ sudo /sbin/modprobe ip_conntrack_ftp

The iptables command to route packets using NAT is of the form

$ sudo iptables -t nat -A POSTROUTING -o eth1 -j SNAT --to 63.173.189.1

In this example, eth0 is the interface connected to the Internet, and its IP address is
the one that appears as the argument to --to. The eth1 interface is the one connected
to the internal network.

To Internet hosts, it appears that all packets from hosts on the internal network have
eth0’s IP address. The host performing NAT receives incoming packets, looks up
their true destinations, rewrites them with the appropriate internal network IP ad-
dress, and sends them on their merry way.

12.13 PPP: THE POINT-TO-POINT PROTOCOL

PPP, the Point-to-Point Protocol, has the distinction of being used on both the slow-
est and fastest Internet links. In its synchronous form, it is the encapsulation proto-
col used on high-speed circuits that have fat routers at either end. In its asynchro-
nous form, it is a serial line encapsulation protocol that specifies how IP packets must
be encoded for transmission on a slow (and often unreliable) serial line. Serial lines
simply transmit streams of bits and have no concept of the beginning or end of a
packet. The PPP device driver takes care of encoding and decoding packets on the
serial line; it adds a link-level header and markers that separate packets.

PPP is sometimes used with the newer home technologies such as DSL and cable
modems, but this fact is usually hidden from you as an administrator. Encapsulation
is typically performed by the interface device, and the traffic is bridged to Ethernet.
You just see an Ethernet connection.

Designed by committee, PPP is the “everything and the kitchen sink” encapsulation
protocol. It was inspired by the SLIP (Serial Line IP) and CSLIP (Compressed SLIP)
protocols designed by Rick Adams and Van Jacobson, respectively. PPP differs from
these systems in that it allows the transmission of multiple protocols over a single
link. It is specified in RFC1331.

T
C

P
/I

P

12.13 PPP: the Point-to-Point Protocol 321

Addressing PPP performance issues

PPP provides all the functionality of Ethernet, but at much slower speeds. Normal
office LANs operate at 100 Mb/s or 1 Gb/s—that’s 100,000–1,000,000 Kb/s. A dial-
up connection operates at about 28–56 Kb/s. To put these numbers in perspective, it
takes about 5 minutes to transfer a one-megabyte file across a dial-up PPP line. The
speed is OK for email or web browsing with images turned off, but glitzy web sites
will drive you crazy. To improve interactive performance, you can set the MTU of
the point-to-point link quite low. It usually defaults to 512 bytes; try 128 if you are
doing a lot of interactive work. If you are using PPP over Ethernet, use tcpdump to
see the sizes of the packets going over the network and set the MTU accordingly.
Ethernet’s MTU is 1500, but the PPP encapsulation makes slightly smaller values
more efficient. For example, pppoe suggests 1412 bytes for hosts behind the PPP
connection and 1492 on the PPP link. You certainly don’t want each packet to be
fragmented because you’ve set your default MTU too big.

See Chapter 16 for
more information
about NFS.

Running NFS over a PPP link can be painfully slow. You should consider it only if you
can run NFS over TCP instead of UDP.

The X Window System protocol uses TCP, so it’s possible to run X applications over
a PPP link. Programs like xterm work fine, but avoid applications that use fancy
fonts or bitmapped graphics.

Connecting to a network with PPP

To connect a host to a network with PPP, you must satisfy three prerequisites:

• Your host’s kernel must be able to send IP packets across a serial line as
specified by the PPP protocol standard.

• You must have a user-level program that allows you to establish and main-
tain PPP connections.

• A host on the other end of the serial line must understand the protocol you
are using.

Making your host speak PPP

See page 299 for
more information
about ifconfig.

For a PPP connection to be established, the host must be capable of sending and
receiving PPP packets. On Linux systems, PPP is a loadable kernel module that
places network packets in the serial device output queue, and vice versa. This mod-
ule usually pretends to be just another network interface, so it can be manipulated
with standard configuration tools such as ifconfig.

Controlling PPP links

The exact sequence of events involved in establishing a PPP connection depends on
your OS and on the type of server you are dialing in to. Connections can be initiated
either manually or dynamically.

322 Chapter 12 – TCP/IP Networking

To establish a PPP connection manually, you run a command that dials a modem,
logs in to a remote host, and starts the remote PPP protocol engine. If this procedure
succeeds, the serial port is then configured as a network interface. This option nor-
mally leaves the link up for a long time, which makes it best suited for a phone line
dedicated to IP connectivity.

In a dynamic configuration, a daemon watches your serial “network” interfaces to
see when traffic has been queued for them. When someone tries to send a packet,
the daemon automatically dials a modem to establish the connection, transmits the
packet, and if the line goes back to being idle, disconnects the line after a reasonable
amount of time. Dynamic dial-up is often used if a phone line carries both voice and
data traffic or if the connection involves long distance or connect-time charges.

Software to implement both of these connection schemes is included with most ver-
sions of PPP.

Assigning an address

See page 298 for more
information about
assigning IP addresses.

Just as you must assign an IP address to a new host on your Ethernet, you need to
assign an IP address to each PPP interface. There are a number of ways to assign
addresses to these links (including assigning no addresses at all). We discuss only
the simplest method here.

Think of a PPP link as a network of its own. That is, a network of exactly two hosts,
often called a “point to point” network. You need to assign a network number to the
link just as you would assign a network number to a new Ethernet segment, using
whatever rules are in effect at your site. You can pick any two host addresses on that
network and assign one to each end of the link. Follow other local customs, such as
subnetting standards, as well. Each host then becomes a “gateway” to the point-to-
point network as far as the rest of the world is concerned. (In the real world, you
usually do not control both ends of the link; your ISP gives you the IP address you
must use at your end.)

DHCP can also assign the IP address at the end of a PPP link. Some ISPs offer home
service that uses DHCP and business service that is more expensive but includes a set
of static addresses.

Routing

See Chapter 13 for
more information
about routing.

Since PPP requires the remote server to act as an IP router, you need to be as con-
cerned with IP routing as you would be for a “real” gateway, such as a machine that
connects two Ethernets. The purpose of routing is to direct packets through gate-
ways so that they can reach their ultimate destinations. Routing can be configured in
several different ways.

A run-of-the-mill PPP client host should have a default route that forwards packets
to the PPP server. Likewise, the server needs to be known to the other hosts on its
network as the gateway to the leaf machine.

Most PPP packages handle these routing chores automatically.

T
C

P
/I

P

12.13 PPP: the Point-to-Point Protocol 323

Ensuring security

See Chapter 20 for
more information
about security.

Security issues arise whenever you add a host to a network. Since a host connected
via PPP is a bona fide member of the network, you need to treat it as such: verify that
the system has no accounts without passwords or with insecure passwords, that all
appropriate vendor security fixes have been installed, and so on. See the Security is-
sues section on page 316 for some specifics on network security. PPP on Linux sup-
ports two authentication protocols: PAP, the Password Authentication Protocol, and
CHAP, the Challenge Handshake Authentication Protocol.

Using chat scripts

The Linux serial line PPP implementation uses a “chat script” to talk to the modem
and also to log in to the remote machine and start up a PPP server. A chat script
consists of a sequence of strings to send and strings to expect in return, with a limited
form of conditional statement that can express concepts such as “expect the string
‘Login’, but if you don’t get it, send a carriage return and wait for it again.”

The idea of a chat script originated with the UUCP store-and-forward system of days
gone by. In the 1980s, machines would call each other up in the middle of the night,
log in through chat scripts, and exchange files. Despite popular demand, UUCP is not
quite completely dead yet: the user uucp is the group owner of serial device files on
SUSE, and you must be a member of the uucp group to use a dial-out modem for PPP.

Most PPP implementations come with sample chat scripts that you can adapt to your
own environment. You need to edit the scripts to set parameters such as the tele-
phone number to call and the command to run after a successful login. Most chat
scripts contain a cleartext password; set the permissions accordingly.

Configuring Linux PPP

Modems (along with printers) have always been a thorn in the side of system admin-
strators. And it’s no wonder, when the software to configure a PPP connection over a
random modem has over 125 possible options—far too many to weigh and config-
ure carefully.

All our distributions except Debian include Paul Mackerras’s PPP package in the
default installation. It uses a daemon called pppd and keeps most of its configura-
tion files in /etc/ppp. Run the command pppd --version to see what version of the
PPP package has been installed on your particular distribution. Use apt-get install
ppp to install this package on Debian.

Our reference systems include a version of PPP from Roaring Penguin Software
that’s designed for use over Ethernet (for example, on a DSL connection to a local
ISP). The reference systems also include PPP support for ISDN connections. The
configuration files for these additional media are co-located with those for PPP over
serial links in the directory /etc/ppp. Filenames are usually similar but with the ad-
dition of oe for “over Ethernet” or i for ISDN. Table 12.16 on the next page shows the
locations of the relevant commands and config files.

324 Chapter 12 – TCP/IP Networking

See page 853 for more
information about the
names of serial ports.

In our configuration file examples, /dev/modem is our name for the serial port that
has a modem attached to it. Some distributions actually have a /dev/modem file
that is a link to one of the system’s serial ports (usually /dev/ttyS0 or /dev/ttyS1),
but this practice is now deprecated. Substitute the device file appropriate for your
situation.

In addition to PPP software, each distribution includes the wvdial program to actu-
ally dial the telephone and establish a connection.

We talked above about the modem ports and dialer software; now we talk about how
to set up pppd to use them. Global options are set in the file /etc/ppp/options, and
options for particular connections can be stored in the directories /etc/ppp/peers
and /etc/chatscripts (on Debian and Ubuntu). Red Hat, Fedora, and SUSE tend to
put chat scripts in the /etc/ppp directory with names like chat.remotehost. Alterna-
tively, on Red Hat, the file /etc/sysconfig/network-scripts/ifcfg-ttyname can in-
clude connection-specific options for a particular PPP interface.

Table 12.16 PPP-related commands and config files by system

System Commands or config files Description

All /usr/sbin/pppd
/usr/sbin/chat
/usr/sbin/pppstats
/usr/sbin/pppdump
/etc/ppp/options

PPP daemon program
Talks to modem
Shows statistics of PPP link
Makes PPP packets readable ASCII
Config file for pppd

Debian,
Ubuntu

/usr/bin/pon
/usr/bin/poff
/usr/bin/plog
/usr/sbin/pppconfig
/etc/ppp/peers/provider
/etc/chatscripts/provider

Starts up a PPP connection
Shuts down a PPP connection
Shows the tail end of ppp.log
Configures pppd
Options for pon to contact your ISP
Chat script for pon to talk to the ISP

Red Hat (DSL) /usr/sbin/pppoe
/usr/sbin/pppoe-server
/usr/sbin/pppoe-sniff
/usr/sbin/adsl-connect
/usr/sbin/adsl-setup
/usr/sbin/adsl-start
/usr/sbin/adsl-stop
/usr/sbin/adsl-status
/etc/ppp/pppoe.conf
/etc/ppp/pppoe-server-options

PPP-over-Ethernet client
PPP-over-Ethernet server
Sniffer that debugs provider’s quirks
Script that manages link
Script that configures pppoe
Script that brings up pppoe link
Script that shuts down pppoe link
Shows the status of pppoe link
Config file used by adsl-*
File for extra options to server

SUSE (DSL) /usr/sbin/pppoed
/etc/pppoed.conf

PPP over Ethernet client
Config file for pppoed

All (ISDN) /usr/sbin/ipppd
/usr/sbin/ipppstats
/etc/ppp/ioptions

PPP over ISDN daemon
Shows ISDP PPP statistics
Options to ipppd

T
C

P
/I

P

12.13 PPP: the Point-to-Point Protocol 325

By default, pppd consults the options file first, then the user’s personal ~/.ppprc
startup file, then the connection-specific options.ttyname file (if one exists), and fi-
nally, its command-line arguments.

A handy trick suggested by Jonathan Corbet, a Linux old-timer, is to define more
than one PPP interface: one for home, one for hotels while traveling, etc. This setup
can make it easier to switch contexts.

wvdial is smarter than chat and has sensible default behavior if parameters are left
unspecified. wvdial gets its configuration information from /etc/wvdial.conf: mo-
dem details, login name, password, telephone number, etc. You can provide informa-
tion for multiple destinations in the single configuration file. Use the wvdialconf
program to figure out your modem’s characteristics and create an initial wvdial.conf
file for it.

The configuration files below are drawn from several different PPP setups. The first
file, /etc/ppp/options, sets global options for pppd. The active options for each dis-
tribution as shipped are shown below:

Red Hat and Fedora /etc/ppp/options:

lock

SUSE /etc/ppp/options:

noipdefault
noauth
crtscts
lock
modem
asyncmap 0
nodetach
lcp-echo-interval 30
lcp-echo-failure 4
lcp-max-configure 60
lcp-restart 2
idle 600
noipx
file /etc/ppp/filters

Debian and Ubuntu /etc/ppp/options:

asyncmap 0
auth
crtscts
lock
hide-password
modem
proxyarp
lcp-echo-interval 30
lcp-echo-failure 4
noipx

326 Chapter 12 – TCP/IP Networking

We like to use the following options file:

Global PPP options
lock # Always lock the device you're using
asyncmap 0x00000000 # By default, don't escape anything
crtscts # Use hardware flow control
defaultroute # Add default route thru the ppp interface
mru 552 # MRU/MTU 512 (data) + 40 (header)
mtu 552

The following /etc/sysconfig/network-scripts/ifcgf-ppp0 file comes from a Red
Hat system. This skeletal file was constructed by the linuxconf utility.

PERSIST=yes
DEFROUTE=yes
ONBOOT=no
INITSTRING=ATZ
MODEMPORT=/dev/modem
LINESPEED=115200
ESCAPECHARS=no
DEFABORT=yes
HARDFLOWCTL=yes
DEVICE=ppp0
PPPOPTIONS=
DEBUG=yes
PAPNAME=remote
REMIP=
IPADDR=
BOOTPROTO=none
MTU=
MRU=
DISCONNECTTIMEOUT=
RETRYTIMEOUT=
USERCTL=no

Here is a sample chat script (chat-ppp0) that corresponds to the ifcfg-ppp0 file
above (with all of its terse and slightly bizarre syntax):

'ABORT' 'BUSY'
'ABORT' 'ERROR'
'ABORT' 'NO CARRIER'
'ABORT' 'NO DIALTONE'
'ABORT' 'Invalid Login'
'ABORT' 'Login incorrect'
' ' 'ATZ'
'OK' 'ATDT phone-number'
'CONNECT' ' '
'TIMEOUT' '120'
'ogin:' 'account'
'ord:' 'password'
'TIMEOUT' '5'
'~--' ' '

T
C

P
/I

P

12.13 PPP: the Point-to-Point Protocol 327

Several lines in this chat script contain a null parameter indicated by a pair of single
quotes, which look similar to double quotes in this font.

You can usually adapt an existing chat script to your environment without worrying
too much about exactly how it works. Here, the first few lines set up some general
conditions on which the script should abort. The next lines initialize the modem and
dial the phone, and the remaining lines wait for a connection and enter the appro-
priate username and password.

The timeout in the chat script sometimes needs to be adjusted to deal with compli-
cated dialing situations such as those in hotels or businesses with local telephone
switches, or to deal with the voice mail signal that some phone companies use before
they give you a real dial tone. On most modems, a comma in the phone number indi-
cates a pause in dialing. You may need several commas if you have to dial a particu-
lar digit and then wait for a second dial tone before continuing.

PPP logins at our site are just usernames with a P in front of them. This convention
makes it easy to remember to whom a particular PPP machine belongs.

The association between ifcfg-ppp0 and chat.ppp0 is made by the ifup command,
which runs automatically during startup since the ifcfg file exists. You can also call
pppd explicitly with a connection-specific options file as an argument, provided
that file contains a connect line that lists the corresponding chat filename.

Our next dial-up example is from a Debian system. It uses the peers directory, puts
its chat script in the /etc/chatscripts directory, and uses the PAP authentication
mechanism instead of storing the password in the chat script. First, the options for
this connection, /etc/ppp/peers/my-isp:

/dev/modem ### fill in the serial port of your modem
debug
crtscts
name username ### username at my-isp
remotename my-isp
noauth
noipdefault
defaultroute
connect '/usr/sbin/chat -v -f /etc/chatscripts/my-isp'

/etc/chatscripts/my-isp contains the following entries:

'ABORT' 'BUSY'
'ABORT' 'ERROR'
'ABORT' 'NO CARRIER'
'ABORT' 'NO DIALTONE'
' ' 'ATZ'
'OK' 'ATDT phonenumber'
'CONNECT' ' '
'TIMEOUT' 15
'~--' ' '

328 Chapter 12 – TCP/IP Networking

The authentication file used to connect to the ISP, /etc/ppp/pap-secrets, needs to
contain the line:

login-name my-isp password

where my-isp is the value of the remotename variable in the options above. To
bring up the connection in this scenario, use the command pppd call my-isp.

Here is an example that uses PPP over existing generic Internet connectivity but
teams up with ssh to create a secure connection through a virtual private network
(VPN). We show both the server and client configurations.

The server’s /etc/ppp/options file:

noauth
logfile pppd.log
passive
silent
nodetach

Each connection also has an /etc/ppp/options.ttyname file that contains the IP ad-
dress assignments for the connection:

local-IPaddress:remote-IPaddress

The PPP user’s shell is set to /usr/sbin/pppd on the server so that the server daemon
is started automatically. All the authentication keys have to be set up in advance with
ssh-agent so that no password is requested. On the client side, the configuration is
done in the /etc/ppp/peers directory with a file named for the server—let’s call the
configuration “my-work”. The client’s /etc/ppp/peers/my-work file would contain

noauth
debug
logfile pppd.log
passive
silent
pty "ssh -t user@remotehost"

To log in to work from home on a secure PPP connection, the user would just type
pppd call my-work.

Finally, we include an example that uses the wvdial command and its easy configu-
ration to avoid all the chat script magic that seems to be necessary:

/etc/wvdial.conf:

[Dialer Defaults]
Phone = phonenumber
Username = login-name
Password = password
Modem = /dev/ttyS1

[Dialer creditcard]
Phone = long-distance-access-code,,,phone-number,,cc-number

T
C

P
/I

P

12.13 PPP: the Point-to-Point Protocol 329

If wvdial is invoked with no arguments, it uses the dialer defaults section of the
/etc/wvdial.conf file or your ~/.wvdialrc to make the call and start up PPP. If called
with a parameter (e.g., wvdial creditcard) it uses the appropriate section of the con-
fig file to override any parameters specified in the defaults section.

To take a PPP connection down, you’re better off using ifdown than just killing the
pppd daemon. If you kill pppd directly, Linux will notice and restart it on you.

$ sudo ifdown ppp0

If your machine is portable and sometimes uses Ethernet instead of PPP, there may
be a default route through the Ethernet interface before pppd starts up. Unfortu-
nately, pppd is too polite to rip out that route and install its own, which is the behav-
ior you’d actually want. To fix the problem, simply run ifdown on the appropriate
interface to remove the route.

Here’s what the PPP interface configuration and routing table look like after the PPP
connection has been brought up:

$ ifconfig ppp0
ppp0 Link encap:Point-to-Point Protocol

inet addr:10.0.0.56 P-t-P:10.0.0.55 Mask:255.255.255.255
UP POINTOPOINT RUNNING NOARP MULTICAST MTU:1500 Metric:1
RX packets:125 errors:0 dropped:0 overruns:0 frame:0
TX packets:214 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:3
RX bytes:11446 (11.1 Kb) TX bytes:105586 (103.1 Kb)

$ netstat -nr
Kernel IP routing table
Destination Gateway Genmask Flags MSS Window irtt Iface
10.0.0.55 0.0.0.0 255.255.255.255 UH 40 0 0 ppp0
0.0.0.0 10.0.0.55 0.0.0.0 UG 40 0 0 ppp0

You can obtain statistics about the PPP connection and the packets it has transferred
with the pppstats command:

$ pppstats
IN PACK VJCOMP VJUNC VJERR | OUT PACK VJCOMP VJUNC NON-VJ

11862 133 8 96 0 | 110446 226 27 89 110

The VJCOMP column counts packets that use Van Jacobson’s TCP header compres-
sion, and the VJUNC column counts those that don’t. See RFC1144 for details.

Debugging a PPP connection can be a real pain because so many players are involved.
pppd submits log entries to the daemon facility through syslog on Red Hat and De-
bian systems and to facility local2 on SUSE. You can increase the logging level by
using the debug flag on pppd’s command line or by requesting more logging in the
options file. pppd also provides detailed exit codes on failure, so if you try to run
pppd and it balks, run echo $status (before you do anything else) to recover the exit
code and then look up this value in the pppd man page.

330 Chapter 12 – TCP/IP Networking

SUSE tends to include sample configuration files for each subsystem; the files are
mostly comments that explain the format and the meaning of available options. The
files in SUSE’s /etc/ppp directory are no exception; they are well documented and
contain sensible suggested values for many parameters.

Debian also has well-documented sample configuration files for PPP. It has a subdi-
rectory, /etc/chatscripts, devoted to chat scripts. To bring up an interface with PPP,
you can include it in the /etc/network/interfaces file with the ppp method and the
provider option to tie the name of your provider (in our case, my-isp) to a filename
in the /etc/peers directory (/etc/peers/my-isp). For example:

iface eth0 inet ppp
provider my-isp

In this case, the Debian-specific commands pon and poff manage the connection.

12.14 LINUX NETWORKING QUIRKS

Unlike most kernels, Linux pays attention to the type-of-service (TOS) bits in IP
packets and gives faster service to packets that are labeled as being interactive (low
latency). Cool! Unfortunately, brain damage on the part of Microsoft necessitates that
you turn off this perfectly reasonable behavior.

All packets originating on older Windows systems are labeled as being interactive,
no matter what their purpose. UNIX systems, on the other hand, usually do not
mark any packets as being interactive. If your Linux gateway serves a mixed network
of UNIX and Windows systems, the Windows packets will consistently get preferen-
tial treatment. If you work in an environment with some older technologies, the per-
formance hit for UNIX can be quite noticeable.

You can turn off TOS-based packet sorting when you compile the Linux kernel. Just
say no to the option “IP: use TOS value as routing key.”

When IP masquerading (NAT) is enabled, it tells the kernel to reassemble packet
fragments into a complete packet before forwarding them, even if the kernel must
immediately refragment the packet to send it on its way. This reassembly can cost
quite a few CPU cycles, but CPUs are fast enough now that it shouldn’t really be an
issue on modern machines.

Linux lets you change the MAC-level addresses of certain types of network interfaces:

redhat$ ifconfig eth1
eth1 Link encap:Ethernet HWaddr 00:02:B3:19:C8:87

BROADCAST MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:100
Interrupt:7 Base address:0xee80

redhat$ sudo ifconfig eth1 hw ether 00:02:B3:19:C8:21

T
C

P
/I

P

12.15 Recommended reading 331

redhat$ ifconfig eth1
eth1 Link encap:Ethernet HWaddr 00:02:B3:19:C8:21

BROADCAST MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:100
Interrupt:7 Base address:0xee80

This is a dangerous feature that tends to break things. It can be handy, but it use it
only as a last resort.

12.15 RECOMMENDED READING

STEVENS, W. RICHARD. TCP/IP Illustrated, Volume One: The Protocols. Reading, MA:
Addison-Wesley, 1994.

WRIGHT, GARY R., AND W. RICHARD STEVENS. TCP/IP Illustrated, Volume Two: The
Implementation. Reading, MA: Addison-Wesley, 1995.

These two books are an excellent and thorough guide to the TCP/IP protocol stack.
A bit dated, but still solid.

STEVENS, W. RICHARD. UNIX Network Programming. Upper Saddle River, NJ: Pren-
tice Hall, 1990.

STEVENS, W. RICHARD, BILL FENNER, AND ANDREW M. RUDOFF. UNIX Network Pro-
gramming, Volume 1, The Sockets Networking API (3rd Edition). Upper Saddle River,
NJ: Prentice Hall PTR, 2003.

STEVENS, W. RICHARD. UNIX Network Programming, Volume 2: Interprocess Commu-
nications (2nd Edition). Upper Saddle River, NJ: Prentice Hall PTR, 1999.

These books are the student’s bibles in networking classes that involve programming.
If you need only the Berkeley sockets interface, the original edition is a fine reference.
If you need the STREAMS interface too, then the third edition, which includes IPv6,
is a good bet. All three are clearly written in typical Rich Stevens style.

TANENBAUM, ANDREW. Computer Networks (4th Edition). Upper Saddle River, NJ:
Prentice Hall PTR, 2003.

This was the first networking text, and it is still a classic. It contains a thorough de-
scription of all the nitty-gritty details going on at the physical and link layers of the
protocol stack. The latest edition includes coverage on wireless networks, gigabit
Ethernet, peer-to-peer networks, voice over IP, and more.

SALUS, PETER H. Casting the Net, From ARPANET to INTERNET and Beyond. Read-
ing, MA: Addison-Wesley Professional, 1995.

This is a lovely history of the ARPANET as it grew into the Internet, written by a
historian who has been hanging out with UNIX people long enough to sound like one
of them!

332 Chapter 12 – TCP/IP Networking

COMER, DOUGLAS. Internetworking with TCP/IP Volume 1: Principles, Protocols, and
Architectures (5th Edition). Upper Saddle River, NJ: Pearson Prentice Hall, 2006.

Doug Comer’s Internetworking with TCP/IP series was for a long time the standard
reference for the TCP/IP protocols. The books are designed as undergraduate text-
books and are a good introductory source of background material.

HEDRICK, CHARLES. “Introduction to the Internet Protocols.” Rutgers University,
1987.

This document is a gentle introduction to TCP/IP. It does not seem to have a perma-
nent home, but it is widely distributed on the web; search for it.

HUNT, CRAIG. TCP/IP Network Administration (3rd Edition). Sebastopol, CA:
O’Reilly Media, 2002.

Like other books in the nutshell series, this book is directed at administrators of
UNIX systems. Half the book is about TCP/IP, and the rest deals with higher-level
UNIX facilities such as email and remote login.

An excellent collection of documents about the history of the Internet and its vari-
ous technologies can be found at www.isoc.org/internet/history.

12.16 EXERCISES

E12.1 How could listening to (i.e., obeying) ICMP redirects allow an unautho-
rized user to compromise the network?

E12.2 What is the MTU of a network link? What happens if the MTU for a
given link is set too high? Too low?

E12.3 Explain the concept of subnetting and explain why it is useful. What are
netmasks? How do netmasks relate to the split between the network and
host sections of an IP address?

E12.4 The network 134.122.0.0/16 has been subdivided into /19 networks.

a) How many /19 networks are there? List them. What is their netmask?
b) How many hosts could there be on each network?
c) Determine which network the IP address 134.122.67.124 belongs to.
d) What is the broadcast address for each network?

www.isoc.org/internet/history

T
C

P
/I

P

12.16 Exercises 333

E12.5 Host 128.138.2.4 on network 128.138.2.0/24 wants to send a packet to
host 128.138.129.12 on network 128.138.129.0/24. Assume the following:

• Host 128.138.2.4 has a default route through 128.138.2.1.
• Host 128.138.2.4 has just booted and has not sent or received any packets.
• All other machines on the network have been running for a long time.
• Router 128.138.2.1 has a direct link to 128.138.129.1, the gateway for

the 128.138.129.0/24 subnet.

a) List all the steps that are needed to send the packet. Show the source
and destination Ethernet and IP addresses of all packets transmitted.

b) If the network were 128.138.0.0/16, would your answer change? How
or why not?

c) If the 128.138.2.0 network were a /26 network instead of a /24, would
your answer change? How or why not?

E12.6 After installing a new Linux system, how would you address the security
issues mentioned in this chapter? Check to see if any of the security
problems have been dealt with on the Linux systems in your lab. (May
require root access.)

E12.7 What steps are needed to add a new machine to the network in your lab
environment? In answering, use parameters appropriate for your net-
work and local situation. Assume that the new machine already runs
Linux.

E12.8 Show the configuration file needed to set up a DHCP server that assigns
addresses in the range 128.138.192.[1-55]. Use a lease time of two hours
and make sure that the host with Ethernet address 00:10:5A:C7:4B:89
always receives IP address 128.138.192.55.

334

13 Routing

Keeping track of where network traffic should flow next is no easy task. Chapter 12
briefly introduced IP packet forwarding. In this chapter, we examine the forwarding
process in more detail and investigate several network protocols that allow routers
to automatically discover efficient routes. Routing protocols not only lessen the day-
to-day administrative burden of maintaining routing information, but they also al-
low network traffic to be redirected quickly if a router or network should fail.

It’s important to distinguish between the process of actually forwarding IP packets
and the management of the routing table that drives this process, both of which are
commonly called “routing.” Packet forwarding is simple, whereas route computation
is tricky; consequently, the second meaning is used more often in practice. This chap-
ter describes only unicast routing; multicast routing involves an array of very differ-
ent problems and is beyond the scope of this book.

For the vast majority of cases, the information covered in Chapter 12, TCP/IP Net-
working, is all that you need to know about routing. If the appropriate network in-
frastructure is already in place, you can set up a single static route (as described in
the Routing section starting on page 293) and voilà, you have enough information to
reach just about anywhere on the Internet. If you must survive within a complex
network topology or if you are using a Linux system for part of the network infra-
structure, then this chapter’s information about dynamic routing protocols and
tools can come in handy.

Conventional wisdom says that IP routing is exceptionally difficult, understood only
by a few long-haired hippies living in the steam tunnels under the Lawrence Berkeley

Routing

R
o

u
ti

n
g

13.1 Packet forwarding: a closer look 335

Laboratories campus in California. In reality, this is not the case, as long as you un-
derstand the basic premise that IP routing is “next hop” routing. At any given point,
you only need to determine the next host or router in a packet’s journey to its final
destination. This is a different approach from that of many legacy protocols that
determine the exact path a packet will travel before it leaves its originating host, a
scheme known as source routing.1

13.1 PACKET FORWARDING: A CLOSER LOOK

Before we jump into the management of routing tables, let’s take a more detailed look
at how the tables are used. Consider the network shown in Exhibit A.

Exhibit A Example network

Router R1 connects the two networks, and router R2 connects one of the nets to the
outside world. (For now, we assume that R1 and R2 are Linux computers rather
than dedicated routers.) Let’s look at some routing tables and some specific packet
forwarding scenarios. First, host A’s routing table:

A$ netstat -rn
Kernel IP routing table
Destination Gateway Genmask Flags MSS Window irtt Iface
199.165.145.0 0.0.0.0 255.255.255.0 U 0 0 0 eth0
127.0.0.0 0.0.0.0 255.0.0.0 U 0 0 0 lo
0.0.0.0 199.165.145.24 0.0.0.0 UG 0 0 0 eth0

See page 299 for
more information
about ifconfig.

Host A has the simplest routing configuration of the four machines. The first two
routes describe the machine’s own network interfaces in standard routing terms.
These entries exist so that forwarding to directly connected networks need not be
handled as a special case. eth0 is host A’s Ethernet interface, and lo is the loopback
interface, a virtual network interface emulated in software. Entries such as these are
normally added automatically by ifconfig when a network interface is configured.

1. IP packets can also be source-routed, but this is almost never done. The feature is not widely supported
because of security considerations.

199.165.145
network

199.165.146
network145.17

145.24 146.1
146.4

146.3

host
A

host
Brouter

R1

router
R2 216.12.111.80

to the Internet

336 Chapter 13 – Routing

The default route on host A forwards all packets not addressed to the loopback ad-
dress or to the 199.165.145 network to the router R1, whose address on this network
is 199.165.145.24. The G flag indicates that this route goes to a gateway, not to one of
A’s local interfaces. Gateways must be only one hop away.

See page 279 for
more information
about addressing.

Suppose a process on A sends a packet to B, whose address is 199.165.146.4. The IP
implementation looks for a route to the target network, 199.165.146, but none of the
routes match. The default route is invoked and the packet is forwarded to R1. Exhibit
B shows the packet that actually goes out on the Ethernet (the addresses in the Ether-
net header are the MAC addresses of A’s and R1’s interfaces on the 145 net).

Exhibit B Ethernet packet

The Ethernet destination hardware address is that of router R1, but the IP packet
hidden within the Ethernet frame does not mention R1 at all. When R1 inspects the
packet it has received, it will see from the IP destination address that it is not the
ultimate destination of the packet. It then uses its own routing table to forward the
packet to host B without rewriting the IP header so that it still shows the packet
coming from A.

Here’s the routing table for host R1:

R1$ netstat -rn
Kernel IP routing table
Destination Gateway Genmask Flags MSS Window irtt Iface
127.0.0.0 0.0.0.0 255.0.0.0 U 0 0 0 lo
199.165.145.0 0.0.0.0 255.255.255.0 U 0 0 0 eth0
199.165.146.0 0.0.0.0 255.255.255.0 U 0 0 0 eth1
0.0.0.0 199.165.146.3 0.0.0.0 UG 0 0 0 eth1

This table is similar to that of host A, except that it shows two physical network inter-
faces. The default route in this case points to R2, since that’s the gateway through
which the Internet can be reached. Packets bound for either of the 199.165 networks
can be delivered directly.

ETHERNET FRAME

Ethernet
header

IP header UDP header and data

IP PACKET

UDP PACKET

From:
To:

Type:

199.165.145.17
199.165.146.4
UDP

From:
To:

Type:

A
R1
IP

R
o

u
ti

n
g

13.2 Routing daemons and routing protocols 337

Like host A, host B has only one real network interface. However, B needs an addi-
tional route to function correctly because it has direct connections to two different
routers. Traffic for the 199.165.145 net must travel through R1, while other traffic
should go out to the Internet through R2.

B$ netstat -rn
Kernel IP routing table
Destination Gateway Genmask Flags MSS Window irtt Iface
127.0.0.0 0.0.0.0 255.0.0.0 U 0 0 0 lo
199.165.145.0 199.165.146.1 255.255.255.0 U 0 0 0 eth0
199.165.146.0 0.0.0.0 255.255.255.0 U 0 0 0 eth0
0.0.0.0 199.165.146.3 0.0.0.0 UG 0 0 0 eth0

See page 295 for
an explanation of
ICMP redirects.

You can configure host B with initial knowledge of only one gateway, thus relying
on the help of ICMP redirects to eliminate extra hops. For example, here is one pos-
sible initial configuration for host B:

B$ netstat -rn
Kernel IP routing table
Destination Gateway Genmask Flags MSS Window irtt Iface
127.0.0.0 0.0.0.0 255.0.0.0 U 0 0 0 lo
199.165.146.0 0.0.0.0 255.255.255.0 U 0 0 0 eth0
0.0.0.0 199.165.146.3 0.0.0.0 UG 0 0 0 eth0

If B then sends a packet to host A (199.165.145.17), no route matches and the packet
is forwarded to R2 for delivery. R2 (which, being a router, presumably has complete
information about the network) sends the packet on to R1. Since R1 and B are on the
same network, R2 also sends an ICMP redirect notice to B, and B enters a host route
for A into its routing table:

199.165.145.17 199.165.146.1 255.255.255.255 UGHD 0 0 0 eth0

This route sends all future traffic for A directly through R1. However, it does not
affect routing for other hosts on A’s network, all of which have to be routed by sepa-
rate redirects from R2.

Some sites have chosen ICMP redirects as their primary routing “protocol,” thinking
that this approach is dynamic. Unfortunately, once the kernel learns a route from a
redirect, either the route must be manually deleted or the machine must be rebooted
if that information changes. Because of this problem and several other disadvan-
tages of redirects (increased network load, increased load on R2, routing table clut-
ter, dependence on extra servers), we don’t recommend the use of redirects for con-
figurations such as this. In a properly configured network, redirects should never
appear in the routing table.

13.2 ROUTING DAEMONS AND ROUTING PROTOCOLS

In simple networks such as the one shown in Exhibit A, it is perfectly reasonable to
configure routing by hand. At some point, however, networks become too compli-
cated to be managed this way (possibly because of their growth rate). Instead of

338 Chapter 13 – Routing

having to explicitly tell every computer on every network how to reach every other
computer and network, it would be nice if the computers could just put their heads
together and figure it all out. This is the job of routing protocols and the daemons
that implement them.

Routing protocols have a major advantage over static routing systems in that they
can react and adapt to changing network conditions. If a link goes down, the routing
daemons can quickly discover and propagate alternative routes to the networks
that link served, if any such routes exist.

Routing daemons collect information from three sources: configuration files, the ex-
isting routing tables, and routing daemons on other systems. This information is
merged to compute an optimal set of routes, and the new routes are then fed back
into the system routing table (and possibly fed to other systems through a routing
protocol). Because network conditions change over time, routing daemons must pe-
riodically check in with one another for reassurance that their routing information is
still current.

The exact way that routes are computed depends on the routing protocol. Two types
of protocols are in common use: distance-vector protocols and link-state protocols.

Distance-vector protocols

Distance-vector (aka “gossipy”) protocols are based on the general idea, “If router X
is five hops away from network Y, and I’m adjacent to router X, then I must be six
hops away from network Y.” You announce how far you think you are from the net-
works you know about. If your neighbors don’t know of a better way to get to each
network, they mark you as being the best gateway. If they already know a shorter
route, they ignore your advertisement.2 Over time, everyone’s routing tables are sup-
posed to converge to a steady state.

This is really a very elegant idea. If it worked as advertised, routing would be rela-
tively simple. Unfortunately, this type of algorithm does not deal well with changes
in topology. In some cases, infinite loops (e.g., router X receives information from
router Y and sends it on to router Z, which sends it back to router Y) can prevent
routes from converging at all. Real-world distance-vector protocols must avoid such
problems by introducing complex heuristics or by enforcing arbitrary restrictions
such as the RIP (Routing Information Protocol) notion that any network more than
15 hops away is unreachable.

Even in nonpathological cases, it can take many update cycles for all routers to reach
a steady state. Therefore, to guarantee that routing will not jam for an extended pe-
riod, the cycle time must be made short, and for this reason distance-vector proto-
cols as a class tend to be talkative. For example, RIP requires that routers broadcast

2. Actually, it is not quite this simple, since there are provisions for handling changes in topology that
may lengthen existing routes. Some DV protocols such as EIGRP maintain information about multiple
possible routes so that they always have a fallback plan. The exact details are not important.

R
o

u
ti

n
g

13.2 Routing daemons and routing protocols 339

all their routing information every 30 seconds. IGRP and EIGRP send updates ev-
ery 90 seconds.

On the other hand, BGP, the Border Gateway Protocol, transmits the entire table once
and then transmits changes as they occur. This optimization substantially reduces
the potential for “chatty” (and mostly unnecessary) traffic.

Table 13.1 lists the distance-vector protocols that are in common use today.

Link-state protocols

Link-state protocols distribute information in a relatively unprocessed form. The re-
cords traded among routers are of the form “Router X is adjacent to router Y, and the
link is up.” A complete set of such records forms a connectivity map of the network
from which each router can compute its own routing table. The primary advantage
that link-state protocols offer over distance-vector protocols is the ability to quickly
converge on an operational routing solution after a catastrophe occurs. The tradeoff
is that maintaining a complete “map” of the network at each node requires memory
and CPU power that would not be needed by a distance-vector routing system.

Because the communications among routers in a link-state protocol are not part of
the actual route-computation algorithm, they can be implemented in such a way that
transmission loops do not occur. Updates to the topology database propagate across
the network efficiently, at a lower cost in network bandwidth and CPU time.

Link-state protocols tend to be more complicated than distance-vector protocols,
but this complexity can be explained in part by the fact that link-state protocols
make it easier to implement advanced features such as type-of-service routing and
multiple routes to the same destination. Neither of these features is supported on
stock Linux systems; you must use dedicated routers to benefit from them.

The common link-state protocols are shown in Table 13.2.

Table 13.1 Common distance-vector routing protocols

Proto Long name Application

RIP Routing Information Protocol Internal LANs
IGRP Interior Gateway Routing Protocol (depre-

cated)
Small WANs

EIGRP Enhanced Interior Gateway Routing Protocol WANs, corporate LANs
BGP Border Gateway Protocol Internet backbone routing

Table 13.2 Common link-state routing protocols

Proto Long name Application

OSPF Open Shortest Path First Internal LANs, small WANs
IS-IS Intermediate System to Intermediate System Lab experiments, insane asylums

340 Chapter 13 – Routing

Cost metrics

For a routing protocol to determine which path to a network is shortest, it has to
define what is meant by “shortest”.3 Is it the path involving the fewest number of
hops? The path with the lowest latency? The largest minimal intermediate band-
width? The lowest financial cost?

For routing, the quality of a link is represented by a number called the cost metric. A
path cost is the sum of the costs of each link in the path. In the simplest systems,
every link has a cost of 1, leading to hop counts as a path metric. But any of the con-
siderations mentioned above can be converted to a numeric cost metric.

Networking mavens have labored long and hard to make the definition of cost met-
rics flexible, and some modern protocols even allow different metrics to be used for
different kinds of network traffic. Nevertheless, in 99% of cases, all this hard work
can be safely ignored. The default metrics for most systems work just fine.

You may encounter situations in which the actual shortest path to a destination may
not be a good default route for political reasons. To handle these cases, you can arti-
ficially boost the cost of the critical links to make them seem less appealing. Leave the
rest of the routing configuration alone.

Interior and exterior protocols

An “autonomous system” is a group of networks under the administrative and polit-
ical control of a single entity. The definition is vague; real-world autonomous systems
can be as large as a worldwide corporate network or as small as a building or a single
academic department. It all depends on how you want to manage routing. The gen-
eral tendency is to make autonomous systems as large as possible. This convention
simplifies administration and makes routing as efficient as possible.

Routing within an autonomous system is somewhat different from routing between
autonomous systems. Protocols for routing among ASes (“exterior” protocols) must
often handle routes for many networks, and they must deal gracefully with the fact
that neighboring routers are under other people’s control. Exterior protocols do not
reveal the topology inside an autonomous system, so in a sense they can be thought
of as a second level of routing hierarchy that deals with collections of nets rather than
individual hosts or cables.

In practice, small- and medium-sized sites rarely need to run an exterior protocol
unless they are connected to more than one ISP. With multiple ISPs, the easy division
of networks into local and Internet domains collapses, and routers must decide
which route to the Internet is best for any particular address. (However, that is not to
say that every router must know this information. Most hosts can stay stupid and
route their default packets through an internal gateway that is better informed.)

While exterior protocols are not so different from their interior counterparts, this
chapter concentrates on the interior protocols and the daemons that support them.

3. Fortunately, it does not have to define what the meaning of “is” is.

R
o

u
ti

n
g

13.3 Protocols on parade 341

If your site must use an external protocol as well, see the recommended reading list
on page 348 for some suggested references.

13.3 PROTOCOLS ON PARADE

Several interior routing protocols are in common use. In this section, we introduce
the major players and summarize their main advantages and weaknesses.

RIP: Routing Information Protocol

RIP, defined in RFC1058, is an old Xerox protocol that has been adapted for IP net-
works. It is the protocol used by routed. RIP is a simple distance-vector protocol that
uses hop counts as a cost metric. Because RIP was designed in an era when a single
computer cost hundreds of thousands of dollars and networks were relatively small,
RIP considers any host fifteen or more hops away to be unreachable. Therefore, large
local networks that have more than fifteen routers along any single path cannot use
the RIP protocol.

Although RIP is a resource hog because of its overuse of broadcasting, it does a good
job when a network is changing often or when the topology of remote networks is
not known. However, it can be slow to stabilize after a link goes down.

Many sites use routed in its -q (“quiet”) mode, in which it manages the routing table
and listens for routing updates on the network but does not broadcast any informa-
tion of its own. At these sites, the actual route computations are usually performed
with a more efficient protocol such as OSPF (see next section). The computed routes
are converted to RIP updates for consumption by nonrouter machines. routed is
lightweight (in -q mode) and universally supported, so most machines can enjoy the
benefits of dynamic routing without any special configuration.

RIP is widely implemented on non-Linux platforms. A variety of common devices
from printers to SNMP-manageable network components can listen to RIP adver-
tisements to learn about possible gateways. In addition, routed is available for all
versions of UNIX and Linux, so RIP is a de facto lowest common denominator rout-
ing protocol. Often, RIP is used for LAN routing, and a more featureful protocol is
used for wide-area connectivity.

RIP-2: Routing Information Protocol, version 2

See page 287 for infor-
mation about classless
addressing, aka CIDR.

RIP-2 is a mild revision of RIP that adds support for a few features that were missing
from the original protocol. The most important change is that RIP-2 distributes net-
masks along with next-hop addresses, so its support for subnetted networks and
CIDR is better than RIP’s. A vague gesture towards increasing the security of RIP
was also included, but the definition of a specific authentication system has been left
for future development.

RIP-2 provides several features that seem targeted for this multiprotocol environ-
ment. “Next hop” updates allow broadcasters to advertise routes for which they are

342 Chapter 13 – Routing

not the actual gateway, and “route tags” allow externally discovered routes to be
propagated through RIP.

RIP-2 can be run in a compatibility mode that preserves most of the new features of
RIP-2 without entirely abandoning vanilla RIP receivers. In most respects, RIP-2 is
identical to RIP and should be preferred over RIP if it is supported by the systems
you are using. However, Linux distributions generally don’t support it out of the box.

OSPF: Open Shortest Path First

OSPF is defined in RFC2328. It’s a link-state protocol. “Shortest path first” refers to
the mathematical algorithm used to calculate routes; “open” is used in the sense of
“nonproprietary.”

OSPF was the first link-state routing protocol to be broadly used, and it is still the
most popular. Its widespread adoption was spurred in large part by its support in
gated, a popular multiprotocol routing daemon of which we have more to say later.
Unfortunately, the protocol itself is complex and hence only worthwhile at sites of
significant size (where routing protocol behavior really makes a difference).

The OSPF protocol specification does not mandate any particular cost metric. Cisco’s
implementation uses hop counts by default and can also be configured to use net-
work bandwidth as a cost metric.

OSPF is an industrial-strength protocol that works well for large, complicated topol-
ogies. It offers several advantages over RIP, including the ability to manage several
paths to a single destination and the ability to partition the network into sections
(“areas”) that share only high-level routing information.

IGRP and EIGRP: Interior Gateway Routing Protocol

IGRP and its souped-up successor EIGRP are proprietary routing protocols that run
only on Cisco routers. IGRP was created to address some of the shortcomings of RIP
before robust standards like OSPF existed. It has now been deprecated in favor of
EIGRP, although it is still in use at many sites. EIGRP is configured similarly to IGRP,
though it is actually quite different in its underlying protocol design. IGRP handles
only route announcements that respect traditional IP address class boundaries,
whereas EIGRP understands arbitrary CIDR netmasks.

Both IGRP and EIGRP are distance-vector protocols, but they are designed to avoid
the looping and convergence problems found in other DV systems. EIGRP in partic-
ular is widely regarded as the paragon of distance-vector routing. For most purposes,
EIGRP and OSPF are equally functional.

In our opinion, it is best to stick with an established, nonproprietary, and multiply
implemented routing protocol such as OSPF. More people are using and working on
OSPF than EIGRP, and several implementations are available.

R
o

u
ti

n
g

13.4 routed: RIP yourself a new hole 343

IS-IS: the ISO “standard”

IS-IS, the Intra-domain Intermediate System to Intermediate System Routeing Pro-
tocol, is the International Organization for Standardization’s answer to OSPF. It was
originally designed to manage “routeing” for the OSI network protocols and was later
extended to handle IP routing.

Both IS-IS and OSPF were developed in the early 90s when ISO protocols were polit-
ically in vogue. Early attention from the IETF helped to lend IS-IS a veneer of legiti-
macy for IP, but it seems to be falling farther and farther behind OSPF in popularity.
Today, IS-IS use is extremely rare outside of vendor certification test environments.
The protocol itself is mired with lots of ISO baggage and generally should be avoided.

MOSPF, DVMRP, and PIM: multicast routing protocols

MOSPF (Multicast OSPF), DVMRP (Distance Vector Multicast Routing Protocol),
and PIM (Protocol Independent Multicast) are protocols that support IP multicast-
ing, a technology that is not yet widely deployed. You can find pointers to more in-
formation about these protocols at www.mbone.com.

Router Discovery Protocol

Router Discovery Protocol uses ICMP messages sent to the IP multicast address
224.0.0.1 to announce and learn about other routers on a network. Unfortunately,
not all routers currently make these announcements, and not all hosts listen to them.
The hope is that someday this protocol will become more popular.

13.4 ROUTED: RIP YOURSELF A NEW HOLE

You may not be rich. You may not be good looking. But you’ll always have routed.
routed was for a long time the standard UNIX routing daemon, and it’s still supplied
with most versions of UNIX, and Linux.

Linux’s stock routed speaks only RIP. If you plan to use RIP-2, the Nexus Routing
Daemon available from sourceforge.net/projects/nx-routed is an easy-to-configure
choice. RIP-2 is essential only if you have subnets with masks not on a byte boundary.

routed can be run in server mode (-s) or in quiet mode (-q). Both modes listen for
broadcasts, but only servers distribute their own information. Generally, only ma-
chines with multiple interfaces should be servers. If neither -s nor -q is specified,
routed runs in quiet mode on hosts with one interface and in server mode on hosts
with more that one interface.

See page 303 for
more about route.

routed adds its discovered routes to the kernel’s routing table. Routes must be re-
heard at least every four minutes or they will be removed. However, routed knows
which routes it has added and does not remove static routes that were installed with
the route command.

routed -t can be used to debug routing. This option makes routed run in the fore-
ground and print out all packets it sends or receives.

www.mbone.com

344 Chapter 13 – Routing

routed normally discovers routing information dynamically and does not require
configuration. However, if your site contains gateways to the Internet or to other
autonomous systems, you may have to take some additional steps to make these
links work with routed.

If you have only a single outbound gateway, you can advertise it as a global default
route by running its routed with the -g flag. This is analogous to setting the default
route on a single machine, except that it is propagated throughout your network.

routed also supports a configuration file, /etc/gateways, which was designed to pro-
vide static information about gateways to “preload” into the routed routing table.

13.5 GATED: GONE TO THE DARK SIDE

gated was a fantastic and at one time freely available routing framework by which
many different routing protocols could be used simultaneously. With gated, you
could precisely control advertised routes, broadcast addresses, trust policies, and
metrics. gated shared routes among several protocols, allowing routing gateways to
be constructed between areas that had standardized on different routing systems.
gated also had one of the nicest administrative interfaces and configuration file de-
signs of any Linux administrative software.

gated started out as freely distributable software, but in 1992 it was privatized and
turned over to the Merit GateD Consortium. Commercial versions of gated were
available only to Consortium members. The Consortium was eventually disbanded,
and the rights to gated were acquired by NextHop, an embedded network software
developer. This transfer effectively ended gated’s life in the open source world, leav-
ing a trail of bitter stories behind.

A promising new project, XORP (the eXtensible Open Router Platform), has sprung
up to help fill the void created when gated was sucked under. Although XORP is just
now in beta test, it’s being readied for production use and we’re hoping that it will
grow to fill gated’s former niche. Check out the latest progress at www.xorp.org.

In the meantime, sites needing multiprotocol routing can consider using GNU Ze-
bra (www.zebra.org), a nuts-and-bolts routing package that runs on most Linux
platforms. Unfortunately, it lacks most of the features, creature comforts, and de-
tailed documentation required to manage dynamic routing in a production envi-
ronment. This may be one case in which buying a dedicated router (such as those
made by Juniper or Cisco) is the best use of your resources.

13.6 ROUTING STRATEGY SELECTION CRITERIA

Routing for a network can be managed at essentially four levels of complexity:

• No routing

• Static routes only

• Mostly static routes, but clients listen for RIP updates

• Dynamic routing everywhere

www.xorp.org
www.zebra.org

R
o

u
ti

n
g

13.6 Routing strategy selection criteria 345

The topology of the overall network has a dramatic effect on each individual seg-
ment’s routing requirements. Different nets may need very different levels of routing
support. The following rules of thumb can help you choose a strategy:

• A stand-alone network requires no routing.

• If a network has only one way out, clients (nongateway machines) on that
network should have a static default route to the lone gateway. No other
configuration is necessary, except on the gateway itself.

• A gateway with a small number of networks on one side and a gateway to
“the world” on the other side can have explicit static routes pointing to the
former and a default route to the latter. However, dynamic routing is advis-
able if both sides have more than one routing choice.

• If you use RIP and are concerned about the network and system load this
entails, avoid using routed in active mode—it broadcasts everything it
knows (correct or not) at short intervals. To have clients listen passively
for routing updates without sending out their own information, use
routed -q.

• Many people will tell you that RIP is a horrible, terrible protocol and that
routed is the spawn of Satan. It isn’t necessarily so. If it works for you and
you are happy with the performance, go ahead and use it. You get no points
for spending time on an overengineered routing strategy.

• routed listens to everyone and believes everything it hears. Even if your
site uses RIP, you might want to manage the exchange of routing data with
a dedicated router (such as a Cisco) and run routed only on client hosts.

• Use dynamic routing at points where networks cross political or adminis-
trative boundaries.

• On dynamically routed networks that contain loops or redundant paths,
use OSPF if possible.

• Routers connected to the Internet through multiple upstream providers
must use BGP. However, most routers connected to the Internet have only
one upstream path and can therefore use a simple static default route.

A good routing strategy for a medium-sized site with a relatively stable local struc-
ture and a connection to someone else’s net is to use a combination of static and
dynamic routing. Machines within the local structure that do not have a gateway to
external networks can use static routing, forwarding all unknown packets to a default
machine that understands the outside world and does dynamic routing.

A network that is too complicated to be managed with this scheme should rely on
dynamic routing. Default static routes can still be used on leaf networks, but ma-
chines on networks with more than one router should run routed in passive mode.

346 Chapter 13 – Routing

13.7 CISCO ROUTERS

Routers made by Cisco Systems, Inc., are the de facto standard for Internet routing
today. Having captured over 70% of the router market, Cisco’s products are well
known, and staff that know how to operate them are relatively easy to find. Before
Cisco, UNIX boxes with multiple network interfaces were often used as routers. To-
day, dedicated routers are the favored gear to put in datacom closets and above ceil-
ing tiles where network cables come together. They’re cheaper, faster, and more se-
cure than their UNIX or Linux counterparts.

Most of Cisco’s router products run an operating system called Cisco IOS, which is
proprietary and unrelated to Linux. Its command set is rather large; the full docu-
mentation set fills up about 4.5 feet of shelf space. We could never fully cover Cisco
IOS here, but knowing a few basics can get you a long way.

IOS defines two levels of access (user and privileged), both of which are password
protected. By default, you can simply telnet to a Cisco router to enter user mode.4

You are prompted for the user-level access password:

$ telnet acme-gw.acme.com
Connected to acme-gw.acme.com.
Escape character is '^]'.

User Access Verification
Password:

Upon entering the correct password, you receive a prompt from Cisco’s EXEC com-
mand interpreter.

acme-gw.acme.com>

At this prompt, you can enter commands such as show interfaces to see the router’s
network interfaces or show ? to get help about the other things you can see.

To enter privileged mode, type enable and enter the privileged password when it is
requested. Once you have reached the privileged level, your prompt ends in a #:

acme-gw.acme.com#

BE CAREFUL—you can do anything from this prompt, including erasing the router’s
configuration information and its operating system. When in doubt, consult Cisco’s
manuals or one of the comprehensive books published by Cisco Press.

You can type show running to see the current running configuration of the router
and show config to see the current nonvolatile configuration. Most of the time, these
are the same.

4. A variety of access methods can be configured. If your site already uses Cisco routers, contact your net-
work administrator to find out which methods have been enabled.

R
o

u
ti

n
g

13.7 Cisco routers 347

Here’s a typical configuration:

acme-gw.acme.com# show running
Current configuration:
version 12.1
hostname acme-gw
enable secret xxxxxxxx
ip subnet-zero

interface Ethernet0
description Acme internal network
ip address 192.108.21.254 255.255.255.0
no ip directed-broadcast
interface Ethernet1
description Acme backbone network
ip address 192.225.33.254 255.255.255.0
no ip directed-broadcast

ip classless
line con 0
transport input none

line aux 0
transport input telnet
line vty 0 4
password xxxxxxxx
login

end

The router configuration can be modified in a variety of ways. Cisco offers graphical
tools that run under some versions of UNIX/Linux and Windows. Real network ad-
ministrators never use these; the command prompt is always the “sure bet.” It is also
possible to tftp a config file to or from a router so that you can edit it with your
favorite editor.5

To modify the configuration from the command prompt, type config term:

acme-gw.acme.com# config term
Enter configuration commands, one per line. End with CNTL/Z.
acme-gw(config)#

You can then type new configuration commands exactly as you want them to appear
in the show running output. For example, if we wanted to change the IP address of
the Ethernet0 interface in the example above, we could enter

interface Ethernet0
ip address 192.225.40.253 255.255.255.0

5. Hot tip: Microsoft Word isn’t the best choice for this application.

348 Chapter 13 – Routing

When you’ve finished entering configuration commands, press <Control-Z> to re-
turn to the regular command prompt. If you’re happy with the new configuration,
enter write mem to save the configuration to nonvolatile memory.

Here are some tips for a successful Cisco router experience:

• Name the router with the hostname command. This precaution helps pre-
vent accidents caused by configuration changes to the wrong router. The
hostname always appears in the command prompt.

• Always keep a backup router configuration on hand. You can write a short
expect script that tftps the running configuration over to a Linux box every
night for safekeeping.

• Control access to the router command line by putting access lists on the
router’s VTYs (VTYs are like PTYs on a Linux box). This precaution pre-
vents unwanted parties from trying to break into your router.6

• Control the traffic flowing among your networks (and possibly to the out-
side world) with access lists on each interface. See Packet-filtering firewalls
on page 701 for more information about how to set up access lists.

• Keep routers physically secure. It’s easy to reset the privileged password if
you have physical access to a Cisco box.

13.8 RECOMMENDED READING

PERLMAN, RADIA. Interconnections: Bridges, Routers, Switches, and Internetworking
Protocols (2nd Edition). Reading, MA: Addison-Wesley, 2000.

This is the definitive work in this topic area. If you buy just one book about network-
ing fundamentals, this should be it. Also, don’t ever pass up a chance to hang out with
Radia—she’s a lot of fun and holds a shocking amount of knowledge in her brain.

HUITEMA, CHRISTIAN. Routing in the Internet (2nd Edition). Upper Saddle River, NJ:
Prentice Hall PTR, 2000.

This book is a clear and well-written introduction to routing from the ground up. It
covers most of the protocols in common use and also some advanced topics such as
multicasting.

MOY, JOHN T. OSPF: Anatomy of an Internet Routing Protocol. Reading, MA: Addi-
son-Wesley, 1998.

A thorough exposition of OSPF by the author of the OSPF protocol standard.

STEWART, JOHN W. BGP4 Inter-domain Routing in the Internet. Reading, MA: Addi-
son-Wesley, 1999.

There are many routing-related RFCs. The main ones are shown in Table 13.3.

6. Modern versions of IOS support the SSH protocol. You should use that instead of the standard TELNET
interface if it’s available in your environment.

R
o

u
ti

n
g

13.9 Exercises 349

13.9 EXERCISES

E13.1 Investigate the Linux route command and write a short description of
what it does. Using route, how would you:

a) Add a default route to 128.138.129.1 using interface eth1?

b) Delete a route to 128.138.129.1?

c) Determine whether a route was added by a program such as routed
or an ICMP redirect? (Note that this method works with the output
of netstat -rn as well.)

E13.2 Compare static and dynamic routing, listing several advantages and dis-
advantages of each. Describe situations in which each would be appro-
priate and explain why.

E13.3 Consider the following netstat -rn output. Describe the routes and fig-
ure out the network setup. Which network, 10.0.0.0 or 10.1.1.0, is closer
to the Internet? Which process added each route?

Destination Gateway Genmask Flags MSS Window irtt Iface
10.0.0.0 0.0.0.0 255.255.255.0 U 40 0 0 eth1
10.1.1.0 0.0.0.0 255.255.255.0 U 40 0 0 eth0
0.0.0.0 10.0.0.1 0.0.0.0 UG 40 0 0 eth1

E13.4 Figure out the routing scheme that is used at your site. What protocols
are in use? Which machines directly connect to the Internet? You can
use tcpdump to look for routing update packets on the local network
and traceroute to explore beyond the local net. (Requires root access.)

E13.5 If you were a medium-sized ISP that provided dial-in accounts and vir-
tual hosting, what sort of routing setup up would you use? Make sure that
you consider not only the gateway router(s) between the Internet back-
bone and your own network but also any interior routers that may be in
use. Draw a network diagram that outlines your routing architecture.

Table 13.3 Routing-related RFCs

RFC Title Authors

2328 OSPF Version 2 John T. Moy
1058 Routing Information Protocol C. Hedrick
2453 RIP Version 2 Gary Scott Malkin
1256 ICMP Router Discovery Messages Stephen E. Deering
1142 OSI IS-IS Intra-domain Routing Protocol David R. Oran
1075 Distance Vector Multicast Routing Protocol D. Waitzman et al.
4632 CIDR: an Address Assignment and Aggregation Strategy Vince Fuller et al.
4271 A Border Gateway Protocol 4 (BGP-4) Yakov Rekhter et al.

350

14 Network Hardware

Whether it’s video images from around the globe or the sound of your son’s voice
from down the hall, just about everything in the world we live in is handled in digital
form. Moving data quickly from one place to another is on everyone’s mind. Behind
all this craziness is fancy network hardware and—you guessed it—a whole bunch of
stuff that originated in the deep, dark caves of UNIX. If there’s one area in which
UNIX technology has touched human lives, it’s the practical realization of large-scale
packetized data transport.

Keeping up with all these fast-moving bits is a challenge. Of course the speed and
reliability of your network has a direct effect on your organization’s productivity, but
today networking is so pervasive that the state of the network can affect our ability
to perform many basic human interactions, such as placing a telephone call. A poorly
designed network is a personal and professional embarrassment that can have cata-
strophic social effects. It can also be very expensive to fix.

At least four major factors contribute to a successful installation:

• Development of a reasonable network design

• Selection of high-quality hardware

• Proper installation and documentation

• Competent ongoing operations and maintenance

The first sections of this chapter discuss the media that are commonly used for local
area and wide area networking, including Ethernet, ATM, frame relay, wireless, and
DSL. We then cover design issues you are likely to face on any network, whether new
or old.

Net Hardware

N
e

t
H

a
rd

w
a

re

14.2 Ethernet: the common LAN 351

14.1 LAN, WAN, OR MAN?

We’re lucky, in a sense, that TCP/IP can easily be transported over a variety of me-
dia. In reality, however, the network hardware market is split into a variety of con-
fusing classifications.

Networks that exist within a building or group of buildings are generally referred to
as Local Area Networks or LANs. High-speed, low-cost connections prevail. Wide
Area Networks—WANs—are networks in which the endpoints are geographically
dispersed, perhaps separated by thousands of kilometers. In these networks, high
speed usually comes at high cost, but there are virtually no bounds to the sites you
can include on the network (Brugge, Belgium to Sitka, Alaska!). MAN is a telecom
marketing term for Metropolitan Area Network, meaning a high-speed, moderate-
cost access medium used within a city or cluster of cities. In this chapter, we explore
some of the technologies used to implement these beasts.

14.2 ETHERNET: THE COMMON LAN

Having captured over 90% of the world-wide LAN market, Ethernet can be found just
about everywhere in its many forms. It started as Bob Metcalfe’s Ph.D. thesis at MIT.
Bob graduated and went to Xerox PARC; together with DEC and Intel, Xerox eventu-
ally developed Ethernet into a product. It was one of the first instances in which com-
peting computer companies joined forces on a technical project.1

Ethernet was originally specified at 3 Mb/s (megabits per second), but it moved to
10 Mb/s almost immediately. In 1994, Ethernet caught attention as it was standard-
ized at 100 Mb/s. Just after turning 19 years old in 1998, it was ready to fight a new
war at 1 Gb/s. Now an adult in its late 20s, Ethernet is available over fiber at 10 Gb/s,
having eclipsed all of its rivals. A 10 Gb/s standard for copper wire (802.3an) was
approved by the IEEE in July 2006. Table 14.1 on the next page highlights the evolu-
tion of the various Ethernet standards.2

How Ethernet works

Ethernet can be described as a polite dinner party at which guests (computers) don’t
interrupt each other but rather wait for a lull in the conversation (no traffic on the
network cable) before speaking. If two guests start to talk at once (a collision) they
both stop, excuse themselves, wait a bit, and then one of them starts talking again.

The technical term for this scheme is CSMA/CD:

• Carrier Sense: you can tell whether anyone is talking.

• Multiple Access: everyone can talk.

• Collision Detection: you know when you interrupt someone else.

1. Bob Metcalfe also articulated “Metcalfe’s Law,” which states that the value of the network expands
exponentially as the number of users increases.

2. We have omitted a few goofy Ethernet standards that have not proved popular, such as 100BaseT4 and
100BaseVG-AnyLAN.

352 Chapter 14 – Network Hardware

The actual delay upon collision detection is somewhat random. This convention
avoids the scenario in which two hosts simultaneously transmit to the network, de-
tect the collision, wait the same amount of time, and then start transmitting again,
thus flooding the network with collisions. This was not always true!

Ethernet topology

The Ethernet topology is a branching bus with no loops; there is only one way for a
packet to travel between any two hosts on the same network. Three types of packets
can be exchanged on a segment: unicast, multicast, and broadcast. Unicast packets
are addressed to only one host. Multicast packets are addressed to a group of hosts.
Broadcast packets are delivered to all hosts on a segment.

A “broadcast domain” is the set of hosts that receive packets destined for the hard-
ware broadcast address, and there is exactly one broadcast domain for each logical
Ethernet segment. Under the early Ethernet standards and media (such as 10Base5),

Table 14.1 The evolution of Ethernet

Year Speed Common name IEEE# Dist Media a

1973 3 Mb/s Xerox Ethernet – ? Coax
1976 10 Mb/s Ethernet 1 – 500m RG-11 coax
1982 10 Mb/s DIX Ethernet (Ethernet II) – 500m RG-11 coax
1985 10 Mb/s 10Base5 (“Thicknet”) 802.3 500m RG-11 coax
1985 10 Mb/s 10Base2 (“Thinnet”) 802.3 180m RG-58 coax
1989 10 Mb/s 10BaseT 802.3 100m Category 3 UTP copper
1993 10 Mb/s 10BaseF 802.3 2km

25km
MM fiber
SM fiber

1994 100 Mb/s 100BaseTX (“100 meg”) 802.3u 100m Category 5 UTP copper
1994 100 Mb/s 100BaseFX 802.3u 2km

20km
MM fiber
SM fiber

1998 1 Gb/s 1000BaseSX 802.3z 260m
550m

62.5-μm MM fiber
50-μm MM fiber

1998 1 Gb/s 1000BaseLX 802.3z 440m
550m
3km

62.5-μm MM fiber
50-μm MM fiber
SM fiber

1998 1 Gb/s 1000BaseCX 802.3z 25m Twinax
1999 1 Gb/s 1000BaseT (“Gigabit”) 802.3ab 100m Cat 5E and 6 UTP copper
2002 10 Gb/s 10GBase-SR

10GBase-LR
802.3ae 300m

10km
MM fiber
SM fiber

2006 10 Gb/s 10GBase-T 802.3an 100m Category 7 UTP copper
2006 b 100 Gb/s TBD TBD TBD Fiber
2008 b 1 Tb/s TBD TBD TBD CWDM fiber
2010 b 10 Tb/s TBD TBD TBD DWDM fiber

a. MM = Multimode, SM = Single-mode, UTP = Unshielded twisted pair,
CWDM = Coarse wavelength division multiplexing, DWDM = Dense wavelength division multiplexing

b. Industry projection

N
e

t
H

a
rd

w
a

re

14.2 Ethernet: the common LAN 353

physical segments and logical segments were exactly the same since all the packets
traveled on one big cable with host interfaces strapped onto the side of it.3

Exhibit A A polite Ethernet dinner party

With the advent of switches, today’s logical segments usually consist of many (possi-
bly dozens or hundreds) physical segments (or, in some cases, wireless segments) to
which only two devices are connected: the switch port and the host. The switches are
responsible for escorting multicast and unicast packets to the physical (or wireless)
segments on which the intended recipients reside; broadcast traffic is forwarded to
all ports in a logical segment.

A single logical segment may consist of physical (or wireless) segments operating at
different speeds (10 Mb/s, 100 Mb/s, 1 Gb/s, or 10 Gb/s); hence, switches must have
buffering and timing capabilities to eliminate potential conflicts.

Unshielded twisted pair

Unshielded twisted pair (UTP) is the preferred cable medium for Ethernet. It is based
on a star topology and has several advantages over other media:

• It uses inexpensive, readily available copper wire. (Sometimes, existing
phone wiring can be used.)

• UTP wire is much easier to install and debug than coax or fiber. Custom
lengths are easily made.

• UTP uses RJ-45 connectors, which are cheap, reliable, and easy to install.

• The link to each machine is independent (and private!), so a cabling prob-
lem on one link is unlikely to affect other hosts on the network.

3. No kidding! Attaching a new computer involved boring a hole into the outer sheath of the cable with a
special drill to reach the center conductor. A “vampire tap” that bit into the outer conductor was then
clamped on with screws.

354 Chapter 14 – Network Hardware

The general “shape” of a UTP network is illustrated in Exhibit B.

Exhibit B A UTP installation

UTP wire suitable for use in modern LANs is commonly broken down into eight clas-
sifications. The performance rating system was first introduced by Anixter, a large
cable supplier. These standards were formalized by the Telecommunications Indus-
try Association (TIA) and are known today as Category 1 through Category 7, with
a special Category 5E in the middle.

The International Organization for Standardization (ISO) has also jumped into the
exciting and highly profitable world of cable classification and promotes standards
that are exactly or approximately equivalent to the higher-numbered TIA categories.
For example, TIA Category 5 cable is equivalent to ISO Class D cable. For the geeks
in the audience, Table 14.2 illustrates the major differences among the various mod-
ern-day classifications. This is good information to memorize so you can impress
your friends at parties.

PUNISHER 2000

C:>C:>

PUNISHER 2000

C:>

UTP switch

Workstation Workstation

link to backbone

Ethernet printer

Power

Table 14.2 UTP cable characteristics

Parameter a Category 5
Class Db Category 5E

Category 6
Class E

Category 7
Class F

Frequency range 100 MHz 100 MHz 250 MHz 600 MHz
Attenuation 24 dB 24 dB 21.7 dB 20.8 dB
NEXT 27.1 dB 30.1 dB 39.9 dB 62.1 dB
ACR 3.1 dB 6.1 dB 18.2 dB 41.3 dB
ELFEXT 17 dB 17.4 dB 23.2 dB ? c

Return loss 8 dB 10 dB 12 dB 14.1 dB
Propagation delay 548 ns 548 ns 548 ns 504 ns

a. NEXT = Near-end crosstalk, ACR = Attenuation-to-crosstalk ratio, ELFEXT = Equal level far-end xtalk
b. Includes additional TIA and ISO requirements TSB95 and FDAM 2, respectively
c. Currently unspecified pending further study.

N
e

t
H

a
rd

w
a

re

14.2 Ethernet: the common LAN 355

In practice, Category 1 and Category 2 cables are suitable only for voice applications
(if that). Category 3 cable is as low as you can go for a LAN; it is the standard for 10
Mb/s 10BaseT. Category 4 cable is something of a orphan, not exactly suited for any
particular application. It is occasionally used for 16 Mb/s UTP token ring or for fancy
10BaseT installations. Category 5 cable can support 100 Mb/s and is the most com-
mon standard currently in use for data cabling. Category 5E and Category 6 cabling
support 1 Gb/s. Category 7 is intended for 10 Gb/s use once the 10 Gb/s Ethernet-
over-copper standard is ready.

See page 366 for
more information
about wiring.

10BaseT connections require two pairs of Category 3 wire, and each link is limited to
a length of 100 meters; 100BaseTX has the same length limitation but requires two
pairs of Category 5 wire. Both PVC-coated and Teflon-coated wire are available. Your
choice of jacketing should be based on the environment in which the cable will be
installed. Enclosed areas that feed into the building’s ventilation system (“return air
plenums”) typically require Teflon.4 PVC is less expensive and easier to work with.

RJ-45 connectors wired with pins 1, 2, 3, and 6 are used to make the connections.
Although only two pairs of wire are needed for a working 10 Mb/s or 100 Mb/s con-
nection, we recommend that when installing a new network, you use four-pair Cate-
gory 5E wire and connect all eight pins of the RJ-45 jack.

See page 844 for more
information about the
RS-232 standard.

For terminating the four-pair UTP cable at patch panels and RJ-45 wall jacks, we sug-
gest that you use the TIA/EIA-568A RJ-45 wiring standard. This standard, which is
compatible with other uses of RJ-45 (e.g., RS-232), is a convenient way to keep the
wiring at both ends of the connection consistent, regardless of whether you can eas-
ily access the cable pairs themselves. The 568A standard is detailed in Table 14.3.

Existing building wiring may or may not be suitable for network use, depending on
how and when it was installed. Many old buildings were retrofitted with new cable in
the 1950s and 1960s. Unfortunately, this cable usually won’t support even 10 Mb/s.

Connecting and expanding Ethernets

Ethernets can be logically connected at several points in the seven-layer ISO network
model. At layer 1, the physical layer, you can use either hardware connectors or re-
peaters (commonly called hubs in modern times). They transfer the signal directly,
much like two tin cans connected by string.

4. Check with your fire marshall or local fire department to determine the requirements in your area.

Table 14.3 TIA/EIA-568A standard for wiring four-pair UTP to an RJ-45 jack

Pair Colors Wired to Pair Colors Wired to

1 White/Blue Pins 5/4 3 White/Green Pins 1/2
2 White/Orange Pins 3/6 4 White/Brown Pins 7/8

356 Chapter 14 – Network Hardware

At layer 2, the data link layer, switches are used. Switches transfer frames in accor-
dance with the hardware source and destination addresses, much like delivering a
message in a bottle by reading only the label on the outside of the bottle.

At layer 3, the network layer, routers are used. Routers transfer messages to the next
hop according to the location of the final recipient, rather like looking at the message
in a bottle to see who it’s really addressed to.

Hubs

Hubs (which are also referred to as concentrators) are active devices that connect
physical segments in UTP Ethernet networks. They require external power. Acting
as a repeater, a hub retimes and reconstitutes Ethernet frames but does not interpret
them; it has no idea where packets are going or what protocol they are using.

The two farthest points on the network must never be more than four hubs apart.
Ethernet versions 1 and 2 specified at most two hubs in series per network. The IEEE
802.3 standard extended the limit to four for 10 Mb/s Ethernets. 100 Mb/s Ethernets
allow two repeaters, 1000BaseT Ethernets allow only one, and 10 Gb/s networks do
not allow them at all. Exhibit C shows both a legal and an illegal configuration for a
10 Mb/s network.

Exhibit C Count the hubs

Hubs occasionally require attention from a system administrator, so they should not
be kept in obscure or hard-to-reach locations. Power cycling usually allows them to
recover from a wedged state.

Switches

Switches connect Ethernets at the data link layer (layer 2) of the ISO model. Their
purpose is to join two physical networks in a way that makes them seem like one big
physical network. Switches are the industry standard for connecting Ethernet de-
vices today.

Just fine You must be punished

= Hub

= Host A

= Host B

H

A

B

H

H H

BH

A

H

H H

H

B

H

A

N
e

t
H

a
rd

w
a

re

14.2 Ethernet: the common LAN 357

Switches receive, regenerate, and retransmit packets in hardware.5 Most switches use
a dynamic learning algorithm. They notice which source addresses come from one
port and which from another. They forward packets between ports only when nec-
essary. At first all packets are forwarded, but in a few seconds the switch has learned
the locations of most hosts and can be more selective.

Since not all packets are forwarded between networks, each segment of cable is less
saturated with traffic than it would be if all machines were on the same cable. Given
that most communication tends to be localized, the increase in apparent bandwidth
can be dramatic. And since the logical model of the network is not affected by the
presence of a switch, few administrative consequences result from installing one.

Switches can sometimes become confused if your network contains loops. The con-
fusion arises because packets from a single host appear to be on two (or more) ports
of the switch. A single Ethernet cannot have loops, but as you connect several Ether-
nets with routers and switches, the topology can include multiple paths to a host.
Some switches can handle this situation by holding alternative routes in reserve in
case the primary route goes down. They perform a pruning operation on the net-
work they see until the remaining sections present only one path to each node on the
network. Some switches can also handle duplicate links between the same two net-
works and route traffic in a round robin fashion.

Switches keep getting smarter as more functionality is built into their firmware.
Some can be used to monitor security on the network. They record any foreign Ether-
net addresses they see, thereby detecting and reporting newly connected machines.
Since they operate at the Ethernet layer, switches are protocol independent and can
handle any mix of high-level packet types (for example, IP, AppleTalk, or NetBEUI).

Switches must scan every packet to determine if it should be forwarded. Their per-
formance is usually measured by both the packet scanning rate and the packet for-
warding rate. Many vendors do not mention packet sizes in the performance figures
they quote; therefore, actual performance may be less than advertised.

Although Ethernet switching hardware is getting faster all the time, it is still not a
reasonable technology for connecting more than a hundred hosts in a single logical
segment. Problems such as “broadcast storms” often plague large switched networks
since broadcast traffic must be forwarded to all ports in a switched segment. To solve
this problem, use a router to isolate broadcast traffic between switched segments,
thereby creating more than one logical Ethernet.

Large sites can benefit from switches that can partition their ports (through soft-
ware configuration) into subgroups called Virtual Local Area Networks or VLANs.
A VLAN is a group of ports that belong to the same logical segment, as if the ports
were connected to their own dedicated switch. Such partitioning increases the ability

5. Because packets are regenerated and retimed, fully switched networks do not suffer from the “repeater
count” limitations shown in Exhibit C.

358 Chapter 14 – Network Hardware

of the switch to isolate traffic, and that capability has beneficial effects on both se-
curity and performance.

Traffic between VLANs is handled by a router, or in some cases, by a routing module
or routing software layer within the switch. An extension of this system known as
“VLAN trunking” (such as is specified by the IEEE 802.1Q protocol) allows physi-
cally separate switches to service ports on the same logical VLAN.

Choosing a switch can be difficult. The switch market is a highly competitive seg-
ment of the computer industry, and it’s plagued with marketing claims that aren’t
even partially true. When selecting a switch vendor, you should rely on independent
evaluations (“bakeoffs” such as those that appear in magazine comparisons) rather
than any data supplied by vendors themselves. In recent years, it has been common
for one vendor to have the “best” product for a few months, but then completely
destroy its performance or reliability when trying to make improvements, thus ele-
vating another manufacturer to the top of the heap.

In all cases, make sure that the backplane speed of the switch is adequate—that’s
the number that really counts at the end of a very long day. A well-designed switch
should have a backplane speed that exceeds the sum of the speeds of all its ports.

Routers

Routers are dedicated computers-in-a-box that contain two or more network inter-
faces; they direct traffic at layer 3 of the ISO protocol stack (the network layer). They
shuttle packets to their final destinations in accordance with the information in the
TCP/IP protocol headers. In addition to simply moving the packets from one place to
another, routers can also perform other functions such as packet filtering (for secu-
rity), prioritization (for quality of service), and big-picture network topology discov-
ery. See all the gory details of how routing really works in Chapter 13.

Hardware interfaces of many different types (e.g., SONET, Ethernet, and ATM) can
be found on a single router. On the software side, some routers can also handle non-
IP traffic such as IPX or AppleTalk. In these configurations, the router and its inter-
faces must be configured for each protocol you want it to handle. These days, it’s
generally a good idea to migrate away from these legacy protocols and just support
TCP/IP really well instead.

Routers take one of two forms: fixed configuration and modular. Fixed configuration
routers have specific network interfaces permanently installed at the factory. They
are usually suitable for small, specialized applications. For example, a router with a
T1 interface and an Ethernet interface might be a good choice to connect a small
company to the Internet.

Modular routers have a slot or bus architecture to which interfaces can be added by
the end user. Although this approach is usually more expensive, it ensures greater
flexibility down the road.

N
e

t
H

a
rd

w
a

re

14.3 Wireless: nomad’s LAN 359

Depending on your reliability needs and expected traffic load, a dedicated router may
or may not be cheaper than a Linux system configured to act as a router. However,
the dedicated router usually results in superior performance and reliability. This is
one area of network design in which it’s usually advisable to spend the extra money
up front to avoid headaches later.

14.3 WIRELESS: NOMAD’S LAN

Wireless networking is a hot growth area, and production-grade products are avail-
able at affordable prices. Given the recent advances in wired network technology, the
speeds of wireless networks (usually ranging from 2 Mb/s to 54 Mb/s) may seem a
bit inadequate for corporate use. In fact, these speeds are perfectly fine for many
purposes. An 11 Mb/s wireless network in a home or small business environment
can be a system administrator’s dream. At 54 Mb/s, wireless can be acceptable in a
corporate environment. In addition, wireless access for trade shows, coffee shops,
marinas, airports, and other public places can really turn an out-of-touch day into a
hyperconnected day for many people.

The most promising wireless standards today are the IEEE 802.11g and 802.11a spec-
ifications. 802.11g operates in the 2.4 GHz frequency band and provides LAN-like
access at up to 54 Mb/s. Operating range varies from 100 meters to 40 kilometers,
depending on equipment and terrain. 802.11a provides up to 54 Mb/s of bandwidth
as well, but uses the 5.4 GHz frequency band. Some current equipment can aggre-
gate two channels to provide 108 Mb/s of bandwidth. The up-and-coming 802.11n
standard is expected to provide more than 200 Mb/s of bandwidth in late 2006.

Although both 802.11g and 802.11a are advertised to operate at 54 Mb/s, their in-
tents and realized bandwidths can be quite different. 802.11g is primarily aimed at
the consumer marketplace. It is typically less expensive than 802.11a and provides
three nonoverlapping data channels versus 802.11a’s twelve. Channels are much like
the lanes on a highway: the more channels available, the greater the number of cli-
ents that can realize their full bandwidth potential.

For small sites, either standard is probably acceptable. Larger sites or campus-wide
deployments may want to consider 802.11a because of its greater amount of spec-
trum. In reality, most current wireless radios can be used with either type of network.

Today, 802.11b (11 Mb/s), 802.11g, and 802.11a networks are all quite common-
place. The cards are inexpensive and available for (or built into) most laptop and
desktop PCs. As with wired Ethernet, the most common architecture for an 802.11
network uses a hub (called an “access point” in wireless parlance) as the connection
point for multiple clients. Access points can be connected to traditional wired net-
works or wirelessly connected to other access points, a configuration known as a
“wireless mesh”.

You can configure a Linux box to act as an 802.11a/b/g access point if you have the
right hardware and driver. We are aware of at least one chipset that supports this

360 Chapter 14 – Network Hardware

configuration, the Intersil Prism II. An excellent standalone 802.11b/g wireless base
station for the home or small office is Apple’s AirPort Express, a wall-wart-like prod-
uct that is inexpensive (around $150) and highly functional.6 Buy one today!

Literally dozens of vendors are hawking wireless access points. You can buy them at
Home Depot and even at the grocery store. Predictably, the adage that “you get what
you pay for” applies. El cheapo access points (those in the $50 range) are likely to
perform poorly when handling large file transfers or more than one active client.

Debugging a wireless network is something of a black art. You must consider a wide
range of variables when dealing with problems. If you are deploying a wireless net-
work at an enterprise scale, you’ll probably need to invest in a wireless network
analyzer. We highly recommend the analysis products made by AirMagnet.

Wireless security

The security of wireless networks has traditionally been very poor. Wired Equiva-
lent Privacy (WEP) is a protocol used in conjunction with 802.11b networks to en-
able 40-bit, 104-bit, or 128-bit encryption for packets traveling over the airwaves.
Unfortunately, this standard contains a fatal design flaw that renders it little more
than a speed bump for snoopers. Someone sitting outside your building or house
can access your network directly and undetectably.

More recently, the Wi-Fi Protected Access (WPA) security standards have engen-
dered new confidence in wireless security. Today, WPA should be used instead of
WEP in all new installations.Without WPA, wireless networks—both with and
without WEP—should be considered completely insecure.

802.11i, aka WPA2, is a more recent alternative to WPA. It adds more authentication
mechanisms for enterprise wireless networks.

Wireless switches

In much the same way that Ethernet hubs grew up to become Ethernet switches,
wireless products are undergoing a gradual makeover for use in large enterprises. A
number of vendors (such as Airespace) are now producing “wireless switches” that
work in conjunction with a fleet of access points deployed throughout a campus. The
theory is that hordes of inexpensive access points can be deployed and then centrally
managed by an “intelligent” switch. The switch maintains the WAPs’ configuration
information and smoothly supports authentication and roaming.

If you need to provide ubiquitous wireless service throughout a medium-to-large-
sized organization, it’s definitely worth the time to evaluate this category of prod-
ucts. Not only do they decrease management time but most also include a means to
monitor and manage the quality of service delivered to users.

6. In fact, it will also connect to your stereo to play music wirelessly from your PC or laptop.

N
e

t
H

a
rd

w
a

re

14.4 FDDI: the disappointing, expensive, and outdated LAN 361

One particularly neat trick is to deploy an 802.11a/b/g network throughout your fa-
cility and use it to support hand-held VoIP phones for staff. It’s like a cellular net-
work for free!

14.4 FDDI: THE DISAPPOINTING, EXPENSIVE, AND OUTDATED LAN

At 10 Mb/s, the Ethernet of the 1980s didn’t offer enough bandwidth for some net-
working needs, such as connecting workgroups through a corporate (or campus)
backbone. In an effort to offer higher-bandwidth options, the ANSI X3T9.5 commit-
tee produced the Fiber Distributed Data Interface (FDDI) standard as an alternative
to Ethernet.7 Designed and marketed as a 100 Mb/s token ring, FDDI once looked
like it would be the easy solution to many organizations’ bandwidth needs.

Unfortunately, FDDI has been a disappointment in absolutely every way, and at this
time shouldn’t be considered for any production use. We include information about
FDDI here for historical perspective only (and in case you happen to find it still in
use in some dark corner of your network).

See page 278 for
more about MTUs.

For good performance, FDDI needs a much higher MTU than the default, which is
tuned for Ethernet. An MTU value of 4,352 (set with ifconfig) is about right.

The FDDI standard specifies a 100 Mb/s token-passing, dual-ring, all-singing, all-
dancing LAN using a fiber optic transmission medium, as shown in Exhibit D. The
dual-ring architecture includes a primary ring that’s used for data transmission and
a secondary ring that’s used as a backup in the event the ring is cut (either physically
or electronically).

Exhibit D FDDI dual token ring

Hosts can be connected either to both rings (they are then referred to as class A or
“dual attached” hosts) or to just the primary ring (class B or “single attached” hosts).
Most commonly, backbone routers and concentrators are dual attached, and work-
stations are single attached, usually through a “concentrator,” a sort of fiber hub.

7. FDDI has also been accepted as an ISO standard.

Normal operation

B

A

D

C

B

A

D

C

Host C is down Gas leak

C
A

B

D

362 Chapter 14 – Network Hardware

One advantage of token ring systems is that access to the network is controlled by a
deterministic protocol. There are no collisions, so the performance of the network
does not degrade under high load, as it can with Ethernet. Many token ring systems
can operate at 90% to 95% of their rated capacity when serving multiple clients.

For physical media, the FDDI standard suggests two types of fiber: single-mode and
multimode. “Modes” are essentially bundles of light rays that enter the fiber at a par-
ticular angle. Single-mode fiber allows exactly one frequency of light to travel its path
and thus requires a laser as an emitting source.8 Multimode fiber allows for multiple
paths and is usually driven by less expensive and less dangerous LEDs. Single-mode
fiber can be used over much longer distances than multimode. In practice, 62.5 μm
multimode fiber is most commonly used for FDDI.

Several fiber connector standards are used with FDDI, and they vary from vendor to
vendor. Regardless of what connectors you use, keep in mind that a clean fiber con-
nection is essential for reliable operation. Although self-service fiber termination
kits are available, we suggest that whenever possible you have a professional wiring
firm install the ends on fiber segments.

14.5 ATM: THE PROMISED (BUT SORELY DEFEATED) LAN

ATM stands for Asynchronous Transfer Mode, but some folks insist on Another
Technical Mistake. One datacomm industry spokesman describes it as “an attempt
by the phone company to turn your networking problem into something they know
how to tariff.”

ATM is technically “special” because it promotes the philosophy that small, fixed-
size packets (called “cells”) are the most efficient way to implement gigabit networks.
ATM also promises capabilities that haven’t traditionally been promised by other me-
dia, including bandwidth reservation and quality-of-service guarantees.

On top of ATM’s 53-byte cells, five ATM Adaptation Layers (AALs) are described for
cell transport. The purpose of each adaptation layer is summarized in Table 14.4.

8. Most (but not all) lasers used in fiber optic networking are Class 1 devices, which can mean either “safe
to shine in your eyes” or “not safe to shine in your eyes, but the device has been designed to prevent
exposure during normal use.” Unfortunately, “normal use” probably doesn’t include messing around
with severed cables, so there is really no guarantee of safety. Don’t shine the laser in your eye, even if all
the cool kids seem to be doing it.

Table 14.4 ATM adaptation layers

AAL Application

1 Constant bit-rate applications, like voice (requires bounded delay)
2 Variable bit-rate applications requiring bounded delay
3 Connection-oriented data applications
4 Connectionless data applications
5 General data transport (especially IP traffic, replaces 3 and 4)

N
e

t
H

a
rd

w
a

re

14.6 Frame relay: the sacrificial WAN 363

It is unclear how AAL 2 would ever be used in real life. Currently, there is no defined
standard for it. AALs 3 and 4 turned out to be very similar and were combined. A
group of vendors that had to implement ATM were unhappy with AALs 3 and 4 be-
cause of their high overhead. They developed their own solution, the Simple and Effi-
cient Adaptation Layer (SEAL), which soon became AAL 5.

ATM was widely marketed in the 1990s as an all-in-one switched network medium
that could be used for LAN, WAN, and MAN needs. Today, ATM is mostly dead,
preserved only in WAN environments in which large telco corporations are still try-
ing to leverage their misguided investments in ATM hardware.

ATM switch vendors continue to aggressively market their products, and it is possi-
ble to order an ATM circuit in many locales. However, it is probably a good idea to
consider technologies other than ATM for new network deployments.

14.6 FRAME RELAY: THE SACRIFICIAL WAN

Frame relay is a WAN technology that offers packet-switched data service, usually for
a reasonable cost. Although the claim is not 100% accurate, frame relay is often said
to be remarketed X.25, a scary packet-switched technology from the mid-1970s. For-
tunately, it’s in such widespread use that the equipment, software, and staff that sup-
port it have evolved to be robust and to perform well.

Traditionally, users who wished to connect to remote sites would purchase a dedi-
cated circuit from the phone company, such as a 56 Kb/s DDS line or a T1 line. These
are point-to-point data circuits that are connected 24 hours a day. Unfortunately, this
type of connection is often expensive since it requires that the phone company ded-
icate equipment and bandwidth to the link.

In contrast, frame relay is an “economy of scale” approach. The phone company cre-
ates a network (often referred to as a “cloud”9) that connects its central offices. Users
submit data in small packets for remote sites. The phone company switches the
packets through the appropriate central offices, ultimately delivering them to their
destinations. In this model, you and the phone company are gambling that at any
given second, the total amount of traffic won’t exceed the bandwidth of the network
(a condition known euphemistically as “being oversubscribed”).

A router encapsulates IP traffic over frame relay connections. Packets are switched
over invisible “permanent virtual circuits” (PVCs), which allow your packets to travel
only to the sites you’ve paid for them to reach. These PVCs afford some degree of
privacy protection from the other sites connected to the frame relay network.

The biggest advantage of frame relay is that it is usually inexpensive. But in the world
of “you get what you pay for,” you may find that frame relay’s performance is some-
times poor. Frame relay connections have some packet switching overhead, and link
speed may degrade during periods of heavy use.

9. An all-too-appropriate name—it’s never quite clear what the weather forecast will be in a frame relay
network. Storm? Rain? Sleet? Hail?

364 Chapter 14 – Network Hardware

14.7 ISDN: THE INDIGENOUS WAN

Integrated Services Digital Network (ISDN) is a phone company offering that takes
many forms. In its most common and usable form, called Basic Rate Interface (BRI)
ISDN, it is essentially an all-digital phone line that provides two dial-up 64 Kb/s “B”
channels and a single 16 Kb/s signaling “D” channel. Each B channel can be used for
either voice or data (a voice line can be carried on a single 64 Kb/s channel).

ISDN offers a relatively high-speed digital line at a reasonable cost ($30–$150 per
month, depending on where you live). Devices called terminal adaptors convert the
phone line into a more familiar interface such as RS-232. They are used (and priced)
much like modems. Most adaptors can aggregate the two B channels, yielding a
128 Kb/s data channel.

ISDN can be used in place of normal dial-up networking and also as a wide-area
technology that uses a router or bridge to connect remote sites across the line.

Although many U.S. phone companies have installed switches that are compatible
with ISDN, they still haven’t figured out how to market or support them.10 Only in a
few areas can you just call up the phone company and order an ISDN line. Some tips:
make sure you deal with the branch of the phone company that handles business
services, since that is how ISDN is usually classified. In many regions, you will have
to argue your way past several waves of drones before you reach someone who has
heard of ISDN before, even if the service really is available.

14.8 DSL AND CABLE MODEMS: THE PEOPLE’S WAN

It’s easy to move large amounts of data among businesses and other large data facil-
ities. Carrier-provided technologies such as T1, T3, SONET, ATM, and frame relay
provide relatively simple conduits for moving bits from place to place. However,
these technologies are not realistic options for connecting individual houses and
home offices. They cost too much, and the infrastructure they require is not uni-
versally available.

Digital Subscriber Line (DSL) uses ordinary copper telephone wire to transmit data
at speeds of up to 7 Mb/s (although typical DSL connections yield between 256 Kb/s
and 3 Mb/s). Since most homes already have existing telephone wiring, DSL is a
viable way to complete the “last mile” of connectivity from the telephone company
to the home. DSL connections are usually terminated in a box that acts as a TCP/IP
router and connects to other devices within the home over an Ethernet. DSL is typi-
cally both cheaper and faster than ISDN, so it is now the preferred technology for
home users.

Unlike regular POTS (Plain Old Telephone Service) and ISDN connections, which
require you to “dial up” an endpoint, most DSL implementations supply a dedicated

10. Hence the interpretation: It Still Does Nothing.

N
e

t
H

a
rd

w
a

re

14.9 Where is the network going? 365

service that is always connected. This feature makes DSL even more attractive be-
cause there is no setup or connection delay when a user wants to transfer data.

DSL comes in several forms, and as a result it’s often referred to as xDSL, with the x
representing a specific subtechnology such as A for asymmetric, S for symmetric, H
for high speed, RA for rate adaptive, and I for DSL-over-ISDN (useful for locations
too far from the central office to support faster forms of DSL). The exact technology
variants and data transfer speeds available in your area depend on the central office
equipment that your telephone company or carrier has chosen to deploy.

The race for “last mile” connectivity to hundreds of millions of homes is a hot one.
It’s also highly politicized, well capitalized, and overpublicized. The DSL approach
leverages the copper infrastructure that is common among the Incumbent Local Ex-
change Carriers (ILECs), who favored higher profit margins over investments in in-
frastructure as the networking revolution of the 1980s and 90s passed them by.

Cable television companies, which already have fiber infrastructure in most neigh-
borhoods, are promoting their own “last mile” solutions, which yield similar (though
asymmetric) high-bandwidth connections to the home. The cable modem industry
has recently become enlightened about data standards and is currently promoting
the Data Over Cable Service Interface Specification (DOCSIS) standard. This stan-
dard defines the technical specs for both the cable modems and the equipment used
at the cable company, and it allows various brands of equipment to interoperate.

All in all, the fight between cable modem and DSL technologies largely boils down
to “my marketing budget is bigger than yours.” DSL has something of an inherent
advantage in that, in most cases, each connection is private to the particular cus-
tomer; cable modems in a neighborhood share bandwidth and can sometimes
eavesdrop on each other’s traffic.

14.9 WHERE IS THE NETWORK GOING?

When you look closely at the technologies described above, you’ll see one thing in
common: the simple, inexpensive ones are succeeding, whereas the complex and ex-
pensive ones are dying quickly. Where does this put us down the road?

Ethernet has pummeled its rivals because it is incredibly inexpensive. It’s so simple
to implement that today you can even buy microwave ovens with Ethernet interfaces.
Ethernet has scaled well: in many organizations, 10 Mb/s Ethernet infrastructure
from the early 1980s is still in production use, connected into 100 Mb/s and 1 Gb/s
segments. 10 Gb/s Ethernet over fiber is already available and we’ll soon see it in
widespread use on copper cables. We expect to see this trend continue, with faster
and faster switching hardware to connect it all.

On the “connectivity to the home” front, DSL offers new life to the tired old Ma Bell
copper plant. The proliferation of cable modems has brought high-speed access (and
real security problems) within reach of millions of homes.

366 Chapter 14 – Network Hardware

What’s great about all of these new developments is that regardless of the medium or
its speed, TCP/IP is compatible with it.

14.10 NETWORK TESTING AND DEBUGGING

One major advantage of the large-scale migration to Ethernet (and other UTP-based
technologies) is the ease of network debugging. Since these networks can be analyzed
link by link, hardware problems can often be isolated in seconds rather than days.

The key to debugging a network is to break it down into its component parts and test
each piece until you’ve isolated the offending device or cable. The “idiot lights” on
switches and hubs (such as “link status” and “packet traffic”) often hold immediate
clues to the source of the problem. Top-notch documentation of your wiring
scheme is essential for making these indicator lights work in your favor.

As with most tasks, having the right tools for the job is a big part of being able to get
the job done right and without delay. The market offers two major types of network
debugging tools (although they are quickly growing together).

The first is the hand-held cable analyzer. This device can measure the electrical char-
acteristics of a given cable, including its length (with a groovy technology called
“time domain reflectrometry”). Usually, these analyzers can also point out simple
faults such as a broken or miswired cable. Our favorite product for LAN cable analy-
sis is the Fluke LanMeter. It’s an all-in-one analyzer that can even perform IP pings
across the network. High-end versions have their own web server that can show you
historical statistics. For WAN (telco) circuits, the T-BERD line analyzer is the cat’s
meow. The T-BERD and its high-end LAN-testing companion, the FIREBERD se-
ries, are made by Acterna (www.acterna.com).

The second type of debugging tool is the network sniffer. This device disassembles
network packets to look for protocol errors, misconfigurations, and general snafus.
Commercial sniffers are available, but we find that the freely available program Wire-
shark (www.wireshark.org) running on a fat laptop is usually the best option.11

14.11 BUILDING WIRING

Whether you’re running gigabit Ethernet or just serial cables, we recommend that
you use the highest possible quality of wire. It will increase the chances that you can
still use the same wire ten years down the road. It’s cheapest to wire an entire build-
ing at once rather than to wire it one connection at a time.

UTP cabling options

Category 5E wire typically offers the best price vs. performance tradeoff in today’s
market. Its normal format is four pairs per sheath, which is just right for a variety of
data connections from RS-232 to gigabit Ethernet.

11. Like so many popular programs, Wireshark is often the subject of attack by hackers. Make sure you
stay up to date with the current version.

www.acterna.com
www.wireshark.org

N
e

t
H

a
rd

w
a

re

14.11 Building wiring 367

Category 5E specifications require that the twist be maintained to within half an inch
of the connection to the punchdown block. This implies that any wire with more than
four pairs per sheath will have to be taped or secured to maintain the twist, since it
feeds more than one connection.

You must use Category 5E termination parts in addition to Category 5E wire. We’ve
had the best luck using parts manufactured by Siemon.

Connections to offices

One connection per office is clearly not enough. But should you use two or four? We
recommend four, for several reasons:

• They can be used for serial connections (modem, printer, etc.).

• They can be used with voice telephones.

• They can be used to accommodate visitors or demo machines.

• The cost of the materials is typically only 5%–10% of the total cost.

• Your best guess doubled is often a good estimate.

• It’s much cheaper to do it once rather than adding wires later.

• When ports run low, people add 10 Mb/s hubs purchased from the nearest
office supply store, then complain to the help desk about connection speed.

If you’re in the process of wiring your entire building, you might consider installing
a few outlets in the hallways, conference rooms, lunch rooms, bathrooms, and of
course, ceilings for wireless access points. Don’t forget to keep security in mind,
however, and place publicly accessible ports on a “guest” VLAN that doesn’t have
access to your internal network resources.

Wiring standards

Modern buildings often require a large and complex wiring infrastructure to support
all the various activities that take place inside. Walking into the average telecommu-
nications closet is usually a shocking experience for the weak of stomach, as identi-
cally colored, unlabeled wires often cover the walls.

In an effort to increase traceability and standardize building wiring, the Telecom-
munications Industry Association released the TIA/EIA-606 Administration Stan-
dard for the telecommunication infrastructure of commercial buildings in February,
1993. EIA-606 specifies requirements and guidelines for the identification and doc-
umentation of telecommunications infrastructure.

Items covered by EIA-606 include

• Termination hardware

• Cables

• Cable pathways

• Equipment spaces

• Infrastructure color coding

• Symbols for standard components

368 Chapter 14 – Network Hardware

In particular, it specifies standard colors to be used for wiring. The occult details are
revealed in Table 14.5.

Pantone now sells software to map between the Pantone systems for ink-on-paper,
textile dyes, and colored plastic. Hey, you could color-coordinate the wiring, the uni-
forms of the installers, and the wiring documentation! On second thought…

14.12 NETWORK DESIGN ISSUES

This section addresses the logical and physical design of the network. It’s targeted at
medium-sized installations. The ideas presented here will scale up to a few hundred
hosts but are overkill for three machines and inadequate for thousands. We also
assume that you have an adequate budget and are starting from scratch, which is
probably only partially true.

Most of network design consists of the specification of

• The types of media that will be used

• The topology and routing of cables

• The use of switches and routers

Another key issue in network design is congestion control. For example, file sharing
protocols such as NFS and CIFS tax the network quite heavily, and so file serving on
a backbone cable is undesirable.

The issues presented in the following sections are typical of those that must be con-
sidered in any network design.

Network architecture vs. building architecture

The network architecture is usually more flexible than the building architecture, but
the two must coexist. If you are lucky enough to be able to specify the network before

Table 14.5 EIA-606 color chart

Termination type Color Codea Comments

Demarcation point Orange 150C Central office terminations
Network connections Green 353C Also used for aux circuit terminations
Common equipmentb Purple 264C Major switching/data eqpt. terminations
First-level backbone White – Cable terminations
Second-level backbone Gray 422C Cable terminations
Station Blue 291C Horizontal cable terminations
Interbuilding backbone Brown 465C Campus cable terminations
Miscellaneous Yellow 101C Maintenance, alarms, etc.
Key telephone systems Red 184C –

a. According to the Pantone Matching System®

b. PBXes, hosts, LANs, muxes, etc.

N
e

t
H

a
rd

w
a

re

14.12 Network design issues 369

the building is constructed, be lavish. For most of us, both the building and a facili-
ties management department already exist and are somewhat rigid.

In existing buildings, the network must use the building architecture, not fight it.
Modern buildings often contain utility raceways for data and telephone cables in ad-
dition to high-voltage electrical wiring and water or gas pipes. They often use drop
ceilings, a boon to network installers. Many campuses and organizations have under-
ground utility tunnels that facilitate network installation.

The integrity of fire walls12 must be maintained; if you route a cable through a fire
wall, the hole must be snug and filled in with a noncombustible substance. Respect
return air plenums in your choice of cable. If you are caught violating fire codes, you
may be fined and will be required to fix the problems you have created, even if that
means tearing down the entire network and rebuilding it correctly.

Your network’s logical design must fit into the physical constraints of the buildings it
serves. As you specify the network, keep in mind that it is easy to draw a logically
good solution and then find that it is physically difficult or impossible to implement.

Existing networks

Computer networks are the focus of this discussion, but many organizations already
have CATV networks and telephone networks capable of transmitting data. Often,
these include fiber links. If your organization is ready to install a new telephone sys-
tem, buy lots of extra fiber and have it installed at the same time.

We had that opportunity several years ago and asked the contractors if they would
string some fiber for us. They said, “Sure, no charge” and were a bit miffed when we
showed up with a truckload of fiber for them to install.

Expansion

It is very difficult to predict needs ten years into the future, especially in the com-
puter and networking fields. It is important, therefore, to design the network with
expansion and increased bandwidth in mind. As cable is being installed, especially
in out-of-the-way, hard-to-reach places, pull three to four times the number of pairs
you actually need. Remember: the majority of installation cost is labor, not materials.

Even if you have no plans to use fiber, it’s wise to install some when wiring your
building, especially if it is hard to install cables later. Run both multimode and sin-
gle-mode fiber; the kind you need in the future is always the kind you didn’t install.

Congestion

A network is like a chain: it is only as good as its weakest or slowest link. The per-
formance of Ethernet, like that of many other network architectures, degrades non-
linearly as the network gets loaded.

12. This type of fire wall is a concrete, brick, or flame-retardant wall that prevents flames from spreading
and burning down a building. While much different from a network security firewall, it’s probably just
as important.

370 Chapter 14 – Network Hardware

Overtaxed switches, mismatched interfaces, and low-speed links can all lead to con-
gestion. It is helpful to isolate local traffic by creating subnets and by using intercon-
nection devices such as routers. Subnets can also be used to cordon off machines
that are used for experimentation. It’s difficult to run an experiment that involves
several machines if there is no easy way to isolate those machines both physically
and logically from the rest of the network.

Maintenance and documentation

We have found that the maintainability of a network correlates highly with the qual-
ity of its documentation. Accurate, complete, up-to-date documentation is absolutely
indispensable.

Cables should be labeled at all termination points and also every few feet so that they
can easily be identified when discovered in a ceiling or wall.13 It’s a good idea to post
copies of local cable maps inside communications closets so that the maps can be
updated on the spot when changes are made. Once every few weeks, someone should
copy down the changes for entry into an wiring database.

Joints between major population centers in the form of switches or routers can fa-
cilitate debugging by allowing parts of the network to be isolated and debugged sepa-
rately. It’s also helpful to put joints between political and administrative domains.

14.13 MANAGEMENT ISSUES

If the network is to work correctly, some things need to be centralized, some distrib-
uted, and some local. Reasonable ground rules and “good citizen” guidelines need
to be formulated and agreed on.

A typical environment includes

• A backbone network among buildings

• Departmental subnets connected to the backbone

• Group subnets within a department

• Connections to the outside world (e.g., Internet or field offices)

Several facets of network design and implementation must have site-wide control,
responsibility, maintenance, and financing. Networks with charge-back algorithms
for each connection grow in very bizarre but predictable ways as departments try to
minimize their own local costs. Prime targets for central control are

• The network design, including the use of subnets, routers, switches, etc.

• The backbone network itself, including the connections to it

• Host IP addresses, hostnames, and subdomain names

• Protocols, mostly to ensure that they interoperate

• Routing policy to the Internet

13. Some cable manufacturers will prelabel spools of cable every few feet for you.

N
e

t
H

a
rd

w
a

re

14.14 Recommended vendors 371

Domain names, IP addresses, and network names are in some sense already con-
trolled centrally by authorities such as ARIN and ICANN. However, your site’s use of
these items must be coordinated locally as well.

A central authority has an overall view of the network: its design, capacity, and ex-
pected growth. It can afford to own monitoring equipment (and the staff to run it)
and to keep the backbone network healthy. It can insist on correct network design,
even when that means telling a department to buy a router and build a subnet to
connect to the campus backbone network. Such a decision might be necessary so
that a new connection does not adversely impact the existing network.

If a network serves many types of machines, operating systems, and protocols, it is
almost essential to have a very smart router (e.g., Cisco) as a gateway between nets.

14.14 RECOMMENDED VENDORS

In the past 15+ years of installing networks around the world, we’ve gotten burned
more than a few times by products that didn’t quite meet specs or were misrepre-
sented, overpriced, or otherwise failed to meet expectations. Below is a list of ven-
dors in the United States that we still trust, recommend, and use ourselves today.

Cables and connectors

AMP (now part of Tyco) Black Box Corporation
(800) 522-6752 (724) 746-5500
www.amp.com www.blackbox.com

Anixter Newark Electronics
(800) 264-9837 (800) 463-9275
www.anixter.com www.newark.com

Belden Cable Siemon
(800) 235-3361 (860) 945-4395
(765) 983-5200 www.siemon.com
www.belden.com

Test equipment

Fluke Acterna
(800) 443-5853 (866) 228-3762
www.fluke.com www.acterna.com

Siemon
(860) 945-4395
www.siemon.com

www.amp.com
www.blackbox.com
www.anixter.com
www.newark.com
www.siemon.com
www.belden.com
www.fluke.com
www.acterna.com
www.siemon.com

372 Chapter 14 – Network Hardware

Routers/switches

Cisco Systems
(415) 326-1941
www.cisco.com

14.15 RECOMMENDED READING

BARNETT, DAVID, DAVID GROTH, AND JIM MCBEE. Cabling: The Complete Guide to
Network Wiring (3rd Edition). San Francisco: Sybex, 2004.

SEIFERT, RICH. Gigabit Ethernet: Technology and Applications for High Speed LANs.
Reading, MA: Addison-Wesley, 1998.

ANSI/TIA/EIA-568-A, Commercial Building Telecommunications Cabling Standard,
and ANSI/TIA/EIA-606, Administration Standard for the Telecommunications Infra-
structure of Commercial Buildings, are the telecommunication industry’s standards
for building wiring. Unfortunately, they are not free. See www.tiaonline.org.

SPURGEON, CHARLES. “Guide to Ethernet.” www.ethermanage.com/ethernet

14.16 EXERCISES

E14.1 Today, most office buildings house computer networks and are wired
with UTP Ethernet. Some combination of hubs and switches is needed
to support these networks. In many cases, the two types of equipment
are interchangeable. List the advantages and disadvantages of each.

E14.2 Draw a simple, imaginary network diagram that connects a machine in
your computer lab to Amazon.com. Include LAN, MAN, and WAN
components. Show what technology is used for each component. Show
some hubs, switches, and routers.

E14.3 Research WPA’s Temporal Key Integrity Protocol. Detail what advantages
this has over WEP, and what types of attacks it prevents.

E14.4 TTCP is a tool that measures TCP and UDP performance (look for it at
www.rpmfind.net). Install TTCP on two networked machines and mea-
sure the performance of the link between them. What happens to the
bandwidth if you adjust buffer sizes up or down? How do your observed
numbers compare with the theoretical capacity of the physical medium?

www.cisco.com
www.tiaonline.org
www.ethermanage.com/ethernet
www.rpmfind.net

373

D
N

S15 DNS: The Domain Name System

Zillions of hosts are connected to the Internet. How do we keep track of them all when
they belong to so many different countries, networks, and administrative groups?
Two key pieces of infrastructure hold everything together: the Domain Name System
(DNS), which keeps track of who the hosts are, and the Internet routing system,
which keeps track of how they are connected.

This chapter (mini-book, some would say) is about DNS. Although DNS has come
to serve several different purposes, its primary job is to map between hostnames
and IP addresses. Users and user-level programs like to refer to machines by name,
but low-level network software understands only numbers. DNS provides the glue
that keeps everyone happy. It has also come to play an important role in the routing
of email, web server access, and many other services.

DNS is a distributed database. “Distributed” means that my site stores the data about
my computers, your site stores the data about your computers, and somehow, our
sites automatically cooperate and share data when one site needs to look up some of
the other’s data.

Our DNS coverage can be divided into three major sections:

• The DNS system in general: its history, data, and protocols

• BIND, a specific implementation of the DNS system

• The operation and maintenance of BIND servers, including related topics
such as security

DNS

374 Chapter 15 – DNS: The Domain Name System

If you need to set up or maintain your site’s DNS servers and already have a general
idea how DNS works, feel free skip ahead.

Before we start in on the general background of DNS, let’s first take a brief detour to
address everyone’s most frequently asked question: how do I add a new machine to a
network that’s already using BIND? What follows is a cookbook-style recipe that does
not define or explain any terminology and that probably does not fit exactly with
your local sysadmin policies and procedures. Use with caution.

15.1 DNS FOR THE IMPATIENT: ADDING A NEW MACHINE

If your network is set up to use the Dynamic Host Configuration Protocol (DHCP)
you may not need to perform any manual configuration for DNS. When a new com-
puter is connected, the DHCP server informs it of the DNS servers it should use for
queries. Hostname-to-IP-address mappings for use by the outside world were most
likely set up when the DHCP server was configured and are automatically entered
through DNS’s dynamic update facility.

For networks that do not use DHCP, the following recipe shows how to update the
DNS configuration by copying and modifying the records for a similar computer.

Step 1: Choose a hostname and IP address for the new machine in conjunction with
local sysadmins or your upstream ISP.

Step 2: Identify a similar machine on the same subnet. You’ll use that machine’s
records as a model for the new ones. In this example, we’ll use a machine called
templatehost.my.domain as the model.

Step 3: Log in to the master name server machine.

Step 4: Look through the name server configuration file, usually /etc/named.conf:

• Within the options statement, find the directory line that tells where zone
data files are kept at your site (see page 424). The zone files contain the
actual host and IP address data.

• From the zone statements, find the filenames for the forward zone file and
reverse zone file appropriate for your new IP address (page 432).

• Verify from the zone statements that this server is in fact the master server
for the domain. The forward zone statement should look like this:

zone "my.domain" {
type master;

...

Step 5: Go to the zone file directory and edit the forward zone file. Find the records
for the template host you identified earlier. They’ll look something like this:

templatehost IN A 128.138.243.100
IN MX 10 mail-hub
IN MX 20 templatehost

D
N

S

15.2 The history of DNS 375

Your version might not include the MX lines, which are used for mail routing.

Step 6: Duplicate those records and change them appropriately for your new host.
The zone file might be sorted by hostname; follow the existing convention. Be sure
to also change the serial number in the SOA record at the beginning of the file (it’s
the first of the five numbers in the SOA record). The serial number should only in-
crease; add 1 if your site uses an arbitrary serial number, or set the field to the cur-
rent date if your site uses that convention.

Step 7: Edit the reverse zone file,1 duplicate the record for the template host, and
update it. It should look something like this:

100 IN PTR templatehost.my.domain.

Note that there is a trailing dot after the hostname; don’t omit it. You must also up-
date the serial number in the SOA record of the reverse zone file.

If your reverse zone file shows more than just the last byte of each host’s IP address,
you must enter the bytes in reverse order. For example, the record

100.243 IN PTR templatehost.my.domain.

corresponds to the IP address 128.138.243.100 (here, the reverse zone is relative to
138.128.in-addr.arpa rather than 243.138.128.in-addr.arpa).

Step 8: While still logged in to the master name server machine, run rndc reload, or
if it’s a busy server, just reload the domains (or views) that you changed:

rndc reload forward-zone-name
rndc reload reverse-zone-name

Step 9: Check the configuration with dig; see page 473. You can also try to ping or
traceroute to your new host’s name, even if the new host has not yet been set up. A
“host unknown” message means you goofed; “host not responding” means that ev-
erything is probably OK.

The most common errors are

• Forgetting to update the serial number and reload the name server, and

• Forgetting to add a dot at the end of the hostname in the PTR reverse entry.

15.2 THE HISTORY OF DNS

DNS was formally specified by Paul Mockapetris in RFCs 882 and 883 (1983) and
updated in RFCs 1034 and 1035 (1987). It contained two key concepts: hierarchical
hostnames and distributed responsibility.

1. The reverse zone might be maintained elsewhere (e.g., at your ISP’s site). If so, the reverse entry will
have to be entered there.

376 Chapter 15 – DNS: The Domain Name System

BIND implementations

The original UNIX implementation was done by four graduate students at Berkeley
(Douglas Terry, Mark Painter, David Riggle, and Songnian Zhou) in 1984. It was then
added to the Berkeley UNIX distribution by Kevin Dunlap in the mid-1980s and
became known as BIND, the Berkeley Internet Name Domain system. Paul Vixie
and ISC, the Internet Systems Consortium (www.isc.org, known as the Internet
Software Consortium before 2004) currently maintain BIND. It is an open source
project. In 2000 and 2001, ISC developed a totally new version of BIND—BIND 9—
with funding from several vendors, government agencies, and other organizations.

ISC also provides various types of support for these products, including help with
configuration, classes on BIND and DNS, and even custom programming. These
services are a boon for sites that must have a support contract before they can use
open source software. Several companies use service contracts as a way to contrib-
ute to the ISC—they buy expensive contracts but never call for help.

Thanks to a port by Nortel, BIND is available for Windows as well as UNIX/Linux.
Since the DNS protocol is standardized, UNIX and non-UNIX DNS implementa-
tions can all interoperate and share data. Many sites run UNIX servers to provide
DNS service to their Windows desktops; this combination works well.

RFCs 1034 and 1035 are still considered the baseline specification for DNS, but more
than 40 other RFCs have superseded and elaborated on various aspects of the proto-
col and data records over the last decade (see the list at the end of this chapter).
Currently, no single standard or RFC brings all the pieces together in one place. His-
torically, DNS has more or less been defined as “what BIND implements,” although
this is becoming less accurate as other DNS servers emerge.

Other implementations of DNS

In the beginning, BIND was the only DNS implementation in widespread use. Today
there are several, both open source and commercial. Many do not implement all the
specifications defined by the many DNS RFCs that are winding their way through
the standardization process. Table 15.1 lists the more popular DNS implementations
and shows where to go for more information.

Table 15.1 Some popular implementations of DNS

Name Author Source Comments

BIND ISC isc.org Authoritative or caching
NSD NLnet Labs www.nlnetlabs.nl Authoritative only
PowerDNS PowerDNS BV www.powerdns.com Authoritative only
djbdns a Dan Bernstein tinydns.org Violates some RFCs
Microsoft DNS Microsoft microsoft.com Guilty of a myriad of sins
ANS, CNS Nominum www.nominum.com Authoritative or caching

a. Also known as tinydns, which is the server component of the djbdns package

www.isc.org
www.nlnetlabs.nl
www.powerdns.com
www.nominum.com

D
N

S

15.3 Who needs DNS? 377

ISC’s ongoing domain survey keeps track of the various DNS implementations and
the number of name servers using each. To see the current population demograph-
ics, go to www.isc.org, click ISC Internet Domain Survey, click Latest Survey Results,
and finally click Domain Server Software Distribution. DNS appliances such as In-
foblox (www.infoblox.com) are used by some large sites but do not yet show up in
the survey’s fingerprinting.

In this book we discuss only BIND, which is considered the reference implementa-
tion of DNS. It is by far the most widely used implementation and is an appropriate
choice for most sites. BIND tracks all the standards and proposed standards of the
IETF, often implementing features before their specifications are complete. This is
good because some standards-track features turn out to be flawed—their inclusion
in BIND allows problems to be recognized and fixed before being written into “law.”

NSD, the name server daemon, was developed in 2003 by NLnet Labs in Amsterdam.
It provides a fast, secure, authoritative name server appropriate for use by root and
top-level domain servers. (An authoritative server is appropriate for providing the
answers to queries about hosts in your domain, but it cannot answer users’ queries
about other domains.)

PowerDNS is an open source authoritative name server that provides a uniquely
flexible back-end system. The DNS data can come from files or from a long list of
other sources: MySQL, Oracle (8i and 9i), IBM’s DB2, PostgreSQL, Microsoft’s SQL
Server, LDAP, ODBC, XDB, or even a UNIX pipe.

djbdns is an alternative name server package that consists of an authoritative server
called tinydns and a caching server called dnscache. It claims to be secure and very
fast, although some of the measurement data we are aware of is inconclusive. Its
main drawback is that it violates the DNS standards frequently and intentionally,
making interoperation with other DNS servers difficult.

Microsoft provides a DNS server for Windows, but the Microsoft implementation
has its own special quirks and differences. It interoperates with BIND but also tends
to clutter the net with unnecessary and malformed packets.

Nominum, the contractor that wrote the initial version of BIND 9 for ISC, sells its
own name servers and network management tools. The Nominum servers are blind-
ingly fast and include most of the currently proposed standards.

15.3 WHO NEEDS DNS?

DNS defines

• A hierarchical namespace for hosts and IP addresses

• A distributed database of hostname and address information

• A “resolver” to query this database

• Improved routing for email

• A mechanism for finding services on a network

• A protocol for exchanging naming information

www.isc.org
www.infoblox.com

378 Chapter 15 – DNS: The Domain Name System

To be full citizens of the Internet, sites need DNS. Maintaining a local /etc/hosts file
with mappings for every host you might ever want to contact is not possible.

Each site maintains one or more pieces of the distributed database that makes up the
world-wide DNS system. Your piece of the database consists of text files that contain
records for each of your hosts. Each record is a single line consisting of a name (usu-
ally a hostname), a record type, and some data values. The name field can be omit-
ted if its value is the same as that of the previous line.

For example, the lines

bark IN A 206.168.198.209
IN MX 10 mailserver.atrust.com.

in the “forward” file, and

209 IN PTR bark.atrust.com.

in the “reverse” file associate “bark.atrust.com” with the IP address 206.168.198.209
and reroute email addressed to this machine to the host mailserver.atrust.com.

DNS is a client/server system. Servers (“name servers”) load the data from your DNS
files into memory and use it to answer queries both from internal clients and from
clients and other servers out on the Internet. All of your hosts should be DNS clients,
but relatively few need to be DNS servers.

If your organization is small (a few hosts on a single network), you can run a server
on one host or ask your ISP to supply DNS service on your behalf. A medium-sized
site with several subnets should run multiple DNS servers to reduce query latency
and improve reliability. A very large site can divide its DNS domain into subdomains
and run several servers for each subdomain.

15.4 THE DNS NAMESPACE

The DNS namespace is organized into what mathematicians call a tree; each domain
name corresponds to a node in the tree. One branch of the DNS naming tree maps
hostnames to IP addresses, and a second branch maps IP addresses back to host-
names. The former branch is called the “forward mapping,” and the BIND data files
associated with it are called “forward zone files.” The address-to-hostname branch
is the “reverse mapping,” and its data files are called “reverse zone files.” Sadly, many
sites do not maintain their reverse mappings.

Each domain represents a distinct chunk of the namespace and is loosely managed
by a single administrative entity. The root of the tree is called “.” or dot, and beneath
it are the top-level (or root-level) domains.

For historical reasons, two types of top-level domain names are in current use. In the
United States, top-level domains originally described organizational and political
structure and were given three-letter names such as com and edu. Some of these do-
mains (primarily com, org, and net) are used outside the United States as well; they
are called the generic top-level domains or gTLDs for short.

D
N

S

15.4 The DNS namespace 379

The top-level domains were relatively fixed in the past, but ICANN approved seven
new ones in late 2000: biz, info, name, pro, museum, aero, and coop.2 More recently,
“jobs” was added to the gTLD list. These domains are now operational and available
for use. The biz, info, and name domains are called “unsponsored” gTLDs and are
open to anyone; museum, aero, jobs, pro, and coop are “sponsored” TLDs that are
limited to specific types of registrants.

Table 15.2 lists the most important gTLDs along with their original purposes. When
good names in the com domain became scarce, the registries began to offer names
in org and net without regard to those domains’ original restrictions. The domains
in the left column of Table 15.2 are the originals, dating from about 1988; the right
column includes the new domains added since 2001.

For most domains outside the United States, two-letter ISO country codes are used.
These domains are known as ccTLDs, or “country code top-level domains.” Both the
geographical and the organizational TLDs coexist within the same global
namespace. Table 15.3 shows some common country codes.

Some countries outside the United States build an organizational hierarchy with sec-
ond-level domains. Naming conventions vary. For example, an academic institution
might be in edu in the United States and in ac.jp in Japan.

2. ICANN is the Internet Corporation for Assigned Names and Numbers. See page 273 for more informa-
tion about ICANN.

Table 15.2 Generic top-level domains

Domain What it’s for Domain What it’s for

com Commercial companies aero Air transport industry
edu U.S. educational institutions biz Businesses
gov U.S. Government agencies coop Cooperatives
mil U.S. military agencies info Unrestricted use
net Network providers jobs Human resources folks
org Nonprofit organizations museum Museums
int International organizations name Individuals

arpa Anchor for IP address tree pro Accountants, lawyers, etc.

Table 15.3 Common country codes

Code Country Code Country Code Country

au Australia fi Finland hk Hong Kong
ca Canada fr France ch Switzerland
br Brazil jp Japan mx Mexico
de Germany se Sweden hu Hungary

380 Chapter 15 – DNS: The Domain Name System

The top-level domain “us” is also sometimes used in the United States, primarily
with locality domains; for example, bvsd.k12.co.us, the Boulder Valley School Dis-
trict in Colorado. The “us” domain is never combined with an organizational do-
main—there is no “edu.us” (yet). The advantage of “us” domain names is that they
are inexpensive to register; see www.nic.us for more details. The restrictions on sec-
ond-level domains beneath “us” (which were formerly limited to U.S. states) have
been relaxed, and domain names like evi-nemeth.us are possible.

Domain mercenaries have in some cases bought an entire country’s namespace. For
example, the domain for Moldovia, “md”, is now being marketed to doctors and res-
idents of the state of Maryland (MD) in the United States. Another example is Tuvalu,
for which the country code is “tv”. The first such sale was Tonga (“to”), the most
active is currently Niue (“nu”), and perhaps the most attractive is “tm” from Turk-
menistan. These deals have sometimes been fair to the country with the desirable
two-letter code and sometimes not.

Domain squatting is also widely practiced: folks register names they think will be
requested in the future and then resell them to the businesses whose names they
have snitched. Years ago, domain names for all the Colorado ski areas were regis-
tered to the same individual, who made quite a bit of money reselling them to indi-
vidual ski areas as they became web-aware.

The going rate for a good name in the com domain is between several thousand and
a few million dollars. We were offered $50,000 for the name admin.com, which we
obtained years ago when sysadmin.com had already been taken by /Sys/Admin mag-
azine. The highest price so far (or at least, the highest on public record) was the $7.5
million paid for business.com during the heyday of the tech stock boom. $20,000 to
$100,000 is a more common range these days, but multimillion dollar sales are still
occurring, an example being the July 2004 sale of CreditCards.com for $2.75 million.

Internet entrepreneur Dan Parisi was expected to receive several million dollars for
former porn site whitehouse.com, which was placed on the block in early 2004. A
series of different businesses have used the name since then, but the exact terms and
financial details were never made public.

Currently, valid domain names consist only of letters, numbers, and dashes. Each
component of a name can be no longer than 63 characters, and names must be
shorter than 256 characters overall. Internationalization of the DNS system and sup-
port for non-ASCII character sets will eventually change all the naming rules, but
for now names from other character sets are mapped back to ASCII; see page 388.

Domain names are case insensitive. “Colorado” is the same as “colorado”, which is
the same as “COLORADO” as far as DNS is concerned. Current DNS implementa-
tions must ignore case when making comparisons but propagate case when it is sup-
plied. In the past it was common to use capital letters for top-level domains and an

www.nic.us

D
N

S

15.4 The DNS namespace 381

initial capital for second-level domains. These days, fingers are weary from typing
and all-lowercase is the norm.3

An Internet host’s fully qualified name is formed by appending its domain name to
its hostname. For example, boulder.colorado.edu is the fully qualified name for the
host boulder at the University of Colorado. Other sites can use the hostname boul-
der without colliding, because the fully qualified names will be different.

Within the DNS system, fully qualified names are terminated by a dot; for example,
“boulder.colorado.edu.”. The lack of a final dot may indicate a relative address. De-
pending on the context in which a relative address is used, additional components
might be added. The final dot convention is generally hidden from everyday users of
DNS. In fact, some systems (such as mail) will break if you supply the dot yourself.

It’s common for a host to have more than one name. The host boulder.colorado.edu
could also be known as www.colorado.edu or ftp.colorado.edu if we wanted to make
its name reflect the services it provides. In fact, it’s a good practice to make service
hostnames such as www be “mobile,” so that you can move servers from one ma-
chine to another without changing any machine’s primary name. You can assign ex-
tra names by using the CNAME construct; see page 399.

When we were issued the name colorado.edu, we were guaranteed that colorado was
unique within the edu domain. We have further divided that domain into subdo-
mains along department lines. For example, the host anchor in the computer science
department is called anchor.cs.colorado.edu on the Internet.

The creation of each new subdomain must be coordinated with the administrators
of the domain above to guarantee uniqueness. Entries in the configuration files for
the parent domain delegate authority for the namespace to the subdomain.

Masters of their domains

Management of the top-level domains com, org, net, and edu was formerly coordi-
nated by Network Solutions, Inc., under contract with the National Science Founda-
tion. This monopoly situation has now changed, and other organizations are allowed
to register domain names in those gTLDs. Other top-level domains, such as those for
individual countries, are maintained by regional organizations.

There have been various proposals to allow private companies to operate their own
top-level domains, and it is likely that additional top-level domains will be available
in the near future. Consult www.icann.org for up-to-date information.

Most ISPs offer fee-based domain name registration services. They deal with the
top-level domain authority on your behalf and configure their DNS servers to han-
dle name lookups within your domain. The disadvantage of relying on an ISP’s serv-
ers is that you lose direct control over the administration of your domain.

3. BIND preserves case, but some implementations (e.g., Microsoft’s and djbdns) change case according to
their own preference. So much for tight standards.

www.colorado.edu
www.icann.org

382 Chapter 15 – DNS: The Domain Name System

See page 287 for
more information
about CIDR.

To manage your own DNS services, you must still coordinate with your ISP. Most
ISPs supply reverse DNS mappings for IP addresses within their CIDR blocks. If you
take over DNS management of your addresses, make sure that your ISP disables its
service for those addresses and delegates that responsibility to you.

A domain’s forward and reverse mappings should be managed in the same place
whenever possible. Some ISPs are happy to let you manage the forward files but are
reluctant to relinquish control of the reverse mappings. Such split management can
lead to synchronization problems. See page 400 for an elegant (?) hack that makes
delegation work even for tiny pieces of address space.

DNS domains should (must, in fact; see RFC1219) be served by at least two servers.
One common arrangement is for a site to operate its own master server and to let the
ISP’s servers act as slaves. Once the system has been configured, the ISP’s servers
automatically download host data from the master server. Changes made to the DNS
configuration are reflected on the slave servers without any explicit work on the part
of either site’s administrator.

Don’t put all of your DNS servers on the same network. When DNS stops working,
the network effectively stops for your users. Spread your DNS servers around so that
you don’t end up with a fragile system with a single point of failure. DNS is quite
robust if configured carefully.

Selecting a domain name

Our advice used to be that names should be short and easy to type and that they
should identify the organization that used them. These days, the reality is that all the
good, short names have been taken, at least in the com domain. It’s tempting to
blame this state of affairs on squatters, but in fact most of the good names are in
actual use. In 2004, over 60% of the registered names were in use; historically, less
than half of registered names were actually used.

Domain bloat

DNS was designed to map an organization’s domain name to a name server for that
organization. In that mode it needs to scale to the number of organizations in the
world. Now that the Internet has become a conduit of mass culture, however, do-
main names are being applied to every product, movie, sporting event, English noun,
etc. Domain names such as twinkies.com are not (directly) related to the company
that makes the product; they’re simply being used as advertisements. It’s not clear
that DNS can continue to scale in this way. The real problem here is that the DNS
naming tree is a more efficient data structure when it has some hierarchy and is not
totally flat. With each organization naming hundreds or thousands of products at
the top level of the tree, hierarchy is doomed.

What we really need is a directory service that maps brand and marketing names to
organizations, leaving DNS free to deal with IP addresses. Another possible solution
is to enforce hierarchy in the system; for example, twinkies.hostess-foods.com. But
this will never happen—we’ve already gone too far down the marketing path.

D
N

S

15.5 How DNS works 383

Sony does things the right way from DNS’s perspective—all of its products are sub-
domains of sony.com. It might take an extra click or two to find the products you
want, but DNS appreciates the hierarchy.

Registering a second-level domain name

To obtain a second-level domain name, you must apply to a registrar for the appro-
priate top-level domain. ICANN accredits various agencies to be part of its shared
registry project for registering names in the gTLDs. As of this writing, you have
something like 500 choices of registrar. Check www.icann.org for the definitive list.

To register for a ccTLD name in Europe, contact the Council of European National
Top-level Domain Registries at www.centr.org to identify your local registry and ap-
ply for a domain name. For the Asia-Pacific region, the appropriate body is the
Asia-Pacific Network Information Center, www.apnic.net.

To complete the domain registration forms, you must identify a technical contact
person, an administrative contact person, and at least two hosts that will be servers
for your domain.

Creating your own subdomains

The procedure for creating a subdomain is similar to that for creating a second-level
domain, except that the central authority is now local (or more accurately, within
your own organization). Specifically, the steps are as follows.

• Choose a name that is unique in the local context.

• Identify two or more hosts to be servers for your new domain.

• Coordinate with the administrator of the parent domain.

Parent domains should check to be sure that a child domain’s name servers are up
and running before performing the delegation. If the servers are not working, a “lame
delegation” results, and you might receive nasty email asking you to clean up your
DNS act. Page 475 covers lame delegations in more detail.

15.5 HOW DNS WORKS

Each host that uses DNS is either a client of the system or simultaneously a client and
a server. If you do not plan to run any DNS servers, it’s not essential that you read the
next few sections (skip ahead to Resolver configuration on page 418), although they
will help you develop a more solid understanding of the architecture of DNS.

Delegation

All name servers read the identities of the root servers from a local config file. The
root servers in turn know about com, net, fi, de, and other top-level domains. Far-
ther down the chain, edu knows about colorado.edu, com knows about admin.com,
and so on. Each zone can delegate authority for its subdomains to other servers.

www.icann.org
www.centr.org
www.apnic.net

384 Chapter 15 – DNS: The Domain Name System

Let’s inspect a real example. Suppose we want to look up the address for the machine
vangogh.cs.berkeley.edu from the machine lair.cs.colorado.edu. The host lair asks its
local name server, ns.cs.colorado.edu, to figure out the answer. Exhibit A illustrates
the subsequent events.

Exhibit A DNS query process for vangogh.cs.berkeley.edu

The numbers on the arrows between servers show the order of events, and a letter
indicates the type of transaction (query, referral, or answer). We assume that none
of the required information was cached before the query, except for the names and
IP addresses of the servers of the root domain.

The local name server doesn’t know the address; furthermore, it doesn’t know any-
thing about cs.berkeley.edu or berkeley.edu or even edu. It does know some servers
for the root domain, however, and since it is a recursive server, it queries a root server
about vangogh.cs.berkeley.edu and receives a referral to the servers for edu.

The local name server then sends its query to an edu server (asking, as always, about
vangogh.cs.berkeley.edu) and gets back a referral to the servers for berkeley.edu. It
then repeats the query in the berkeley.edu domain. If the Berkeley server doesn’t
have the answer cached, it returns a referral to cs.berkeley.edu. The cs.berkeley.edu
server is authoritative for the requested information and returns vangogh’s address.

When the dust settles, ns.cs.colorado.edu has cached vangogh’s address. It has also
cached data on the servers for edu, berkeley.edu, and cs.berkeley.edu.

Caching and efficiency

Caching increases the efficiency of lookups: a cached answer is almost free and is
usually correct because hostname-to-address mappings typically change infre-
quently. An answer is saved for a period of time called the “time to live” (TTL), which
is specified by the owner of the data record in question. Most queries are for local
hosts and can be resolved quickly. Users also inadvertently help with efficiency be-
cause they repeat many queries; after the first instance of a query, the rest are “free.”

Recursive Non-recursive

1-Q

10-A

4-Q

5-R

2-Q

3-R

6-Q

7-R

9-A 8-Q

ns.cs.colorado.edulair edu

root (“.”)

cs.berkeley.edu

berkeley.edu
= Query

= Answer

= Referral

Q

A

R

START

D
N

S

15.5 How DNS works 385

For a long time, caching was only applied to positive answers. If a host’s name or
address could not be found, that fact was not saved. A scheme for negative DNS
caching was described in RFC1034, but it was incomplete and was not widely imple-
mented. A better scheme was outlined in RFC2308 in 1998. This scheme was imple-
mented in BIND 8.2 as an optional feature and is now mandatory in BIND 9.

One measurement at the RIPE root server in Europe showed that 60% of DNS que-
ries were for nonexistent data (many queries were for 127.in-addr.arpa or for Mi-
crosoft services as hostnames). Caching this information farther down the DNS
tree should dramatically reduce the load on the root servers.

Negative caching saves answers of the following types:

• No host or domain matches the name queried.

• The type of data requested does not exist for this host.

• The server to ask is not responding.

• The server is unreachable because of network problems.

The first two types of negative data are cached for 10 minutes by default. You can
increase this duration to three hours with a parameter in the SOA record discussed
on page 392 and to one week with a BIND option.

Most implementations do not perform the last two types of negative caching. How-
ever, BIND does penalize unresponsive servers and will not query them as long as
other choices are available. If all of a zone’s servers fail to respond, BIND does not
cache that fact.

Nonauthoritative answers may be cached; authoritative negative answers must be
cached. BIND follows these guidelines from the RFCs, but Windows machines seem
to implement the TTLs selectively, at least for negative caching. They use the correct
default value (the minimum from the SOA record) the first time a query returns
NXDOMAIN (no such domain), then reset the TTL to 15 minutes and let it time out
normally from there.

A name server often receives multiple DNS records in response to a query. For ex-
ample, a query for the name servers of the root domain would receive a response
that listed all 13 root servers. Which one should your server query?

When the BIND name server must choose among several remote servers, all of which
are authoritative for a domain, it first determines the network round trip time (RTT)
to each server. It then sorts the servers into “buckets” according to their RTTs and
selects a server from the fastest bucket. Servers within a bucket are treated as equals
and are used in a round robin fashion.

You can achieve a primitive but effective form of load balancing by assigning a single
hostname to several IP addresses (which in reality are different machines):

www IN A 192.168.0.1
IN A 192.168.0.2
IN A 192.168.0.3

386 Chapter 15 – DNS: The Domain Name System

Busy web servers such as Yahoo! or Google are not really a single machine; they’re
just a single name in the DNS.4 A name server that has multiple records for the same
name and record type returns all of them to the client, but in round robin order. For
example, round robin order for the A records above would be 1, 2, 3 for the first
query; 2, 3, 1 for the next; 3, 1, 2 for the third, and so on.

The extended DNS protocol

The original DNS protocol definition dates from the late 1980s and uses both UDP
and TCP on port 53. UDP is typically used for queries and responses, and TCP for
zone transfers between master servers and slave servers. Unfortunately, the maxi-
mum packet size that’s guaranteed to work in all UDP implementations is 512 bytes,
which is much too small for some of the new DNS features (e.g., DNSSEC) that must
include digital signatures in each packet.

The 512-byte constraint also affects the number and names of the root servers. So
that all root server data will fit in a 512-byte UDP packet, the number of root servers
is limited to 13, and each server is named with a single letter of the alphabet.

Many resolvers issue a UDP query first; then, if they receive a truncated response,
they reissue the query over TCP. This procedure gets around the 512-byte limit, but
it is inefficient. You might think that DNS should just bail on UDP and use TCP all
the time, but TCP connections are much more expensive. A UDP name server ex-
change can be as short as two packets: one query and one response. A TCP exchange
involves at least seven packets: a three-way handshake to initiate the conversation, a
query, a response, and a final handshake to close the connection.

15.6 WHAT’S NEW IN DNS

The latest developments on the DNS front fall in the political domain rather than the
technical domain. VeriSign, the registry company that used to have a monopoly on
registering domain names and that is currently responsible for the com and net
zones, added a wild card address record to those zones. This caused every user who
mistyped a domain name to be directed to a site maintained by one of VeriSign’s
advertisers. The service was known as Site Finder.

The Internet community screamed about the unfairness of it all, so ISC added a
delegation-only option to BIND that recognized these wild card results and re-
turned a more accurate “no such domain” response instead of the addresses blessed
by VeriSign. This correction was fine for most top-level domains, but not all, so an
exceptions clause was later added to provide finer control. We cover these new BIND
options on page 429. After about a month of complaints, VeriSign removed the wild
card record and turned off the service. After the lawyers sort things out, they will
probably turn it back on again. The IETF may eventually tighten the specifications
to allow no wild card records at all.

4. Last time we checked, Google was more than 400,000 Linux machines (they won’t tell, but we googled
for an estimate), and Yahoo! consisted of more than 100,000 FreeBSD machines.

D
N

S

15.6 What’s new in DNS 387

Several significant technical changes have been made to DNS over the last few years.
In particular, the DNS-related standards for IPv6 and DNS security have been radi-
cally altered by the IETF, rendering the coverage of these topics in earlier editions of
this book totally wrong. Table 15.4 lists the major changes and provides a road map
to the pages where they are covered in more detail.

Some of these new features are enormous projects that the IETF has not yet finished
standardizing. The working groups that are writing the standards have good writers
but lack vigilant code warriors; some of the more recent specifications may be diffi-
cult or even impossible to implement. The current release of BIND (9.4) includes
most of the new features.

IPv6 is described
in more detail in
Chapter 12.

Two massive new features, IPv6 support and DNSSEC, warrant a bit of commentary.
IPv6 increases the length of IP addresses from 32 bits to 128 bits. If ever fully imple-
mented, it will have an enormous impact on the Internet. BIND 9 supports the pieces
of IPv6 that have been standardized so far, but it appears unlikely that IPv6 will be
widely deployed during the lifetime of this book. Therefore, our coverage of BIND 9’s
IPv6 support is brief. There’s enough in this chapter to give you the general flavor, but
not enough to let you migrate your site to IPv6 and configure DNS for it.

The DNSSEC standard adds authentication data to the DNS database and its servers.
It uses public key cryptography to verify the source and integrity of DNS data and
uses DNS to distribute keys as well as host data.

Simpler authentication mechanisms have also been introduced, such as support for
authentication through the use of a “shared secret.” However, the shared secret must
be distributed to each pair of servers that wants to perform mutual authentication.

Table 15.4 Recent developments in DNS and BIND

Page RFCs Description

388 3492 Internationalized domain names via Punycode
389 2671 EDNS0, protocol changes and extensions
394 1996 Asynchronous notification of zone changes
400 2317 Classless in-addr delegation (the CNAME hack)
402 2782, 3958 SRV records for the location of services
404 – AAAA records for IPv6 addresses (A6 is obsolete)
405 2672–3 DNAME records abandoned
405 – ip6.arpa for reverse IPv6 mappings; ip6.int abandoned
– 3596, 3646 IPv6 support
447 1995 Incremental zone transfers
448 2136 Dynamic update (for sites that use DHCP)
453 2845, 2930, 3645 TSIG/TKEY transaction signatures and key exchange
456 3225-6, 4033-5 DNSSEC, authentication, and security for zone data a

a. Totally redone in 2004

388 Chapter 15 – DNS: The Domain Name System

Although that’s fine for a local site with a handful of servers, it doesn’t scale to the
level of the Internet. BIND 9 implements both the DNSSEC public key system and the
TSIG (transaction signatures) shared-secret system.

BIND releases starting with 9.3 have included the new specifications for DNSSEC.
However, as people started to experiment with signed zones a couple of years ago,
they realized that the original DNSSEC system was impractical. Under the original
system, a parent zone signed the key of a child zone, and copies of the signed key
were kept in both zones. If the child wanted to change its key, it had to negotiate with
the parent and request that its new key be signed. Fine. However, if the parent wanted
to change its key, it had to update all the child keys stored both within its own zone
and in all its child zones. This operation proved to be unmanageable for large zones
such as com because some child zones would invariably be unreachable during an
update. Their keys would go out of sync and leave DNS unable to verify signatures.

The current solution is to have each child’s signed key live only in the child zone, but
to introduce a new resource record in the parent: DS, the delegation signer. We cover
DNSSEC in detail beginning on page 456.

The introduction of internationalized domain names, which allow the use of non-
English characters, is proceeding by way of a hack that maps Unicode characters
back to ASCII. A system called Punycode performs the mapping uniquely and re-
versibly by using an algorithm known as Bootstring; see RFC3492 for details. As of
2005, registrars have begun publishing the Punycode names and most browsers have
implemented some form of the system. Unfortunately, a few Punycode-related
spoofing and security issues have also manifested themselves. In addition, interna-
tionalized domain names effectively reduce the maximum length (both per-compo-
nent and total) allowed for DNS names.

The current internationalization scheme has skirted a key issue, antialiasing, be-
cause it is very difficult to address. Antialiasing involves resolving inconsistencies in
the mapping between Asian language characters and the Punycode-encoded Uni-
code that represents them in the DNS. If a character can mean one of 3 or 4 or 10
different things in Unicode, then language experts must agree on translation stan-
dards, and characters displayed on a computer screen must be designed to differen-
tiate among the various meanings.

Each of these three big issues (IPv6, DNSSEC, and internationalization) significantly
increases the size of DNS data records, thereby making it more likely that DNS will
bump into limits on UDP packet sizes.

In the mid-1990s, the DNS protocol was amended to include incremental zone trans-
fers (like a diff between old and new zone files, inspired by Larry Wall’s patch pro-
gram), asynchronous notifications (to tell slaves when the master’s data files have
been updated), and dynamic updates (for DHCP hosts). These changes added fea-
tures but did not really address the fundamental transport problem.

D
N

S

15.7 The DNS database 389

In the late 1990s, EDNS0 (Extended DNS, version 0) addressed some of the short-
comings of the DNS protocol in today’s Internet. It lets speakers advertise their reas-
sembly buffer size, supported options, and protocol versions spoken. If the receiving
name server responds with an error message, the sender drops back to the original
DNS protocol. BIND 9 implements EDNS0 in both the server and the resolver.

15.7 THE DNS DATABASE

A domain’s DNS database is a set of text files maintained by the system administra-
tor on the domain’s master name server. These text files are often called zone files.
They contain two types of entries: parser commands (things like $ORIGIN and
$TTL) and “resource records,” or RRs as they are sometimes called. Only the re-
source records are really part of the database; the parser commands just provide
some shorthand ways to enter records.

We start this section by describing the DNS resource records, which are defined in
RFCs 1035, 1183, 1876, 2230, 2782, 2930, 3596, and 3658. We defer discussion of the
parser commands until page 405.

Resource records

Each zone of the DNS hierarchy has a set of resource records associated with it. The
basic format of a resource record is

[name] [ttl] [class] type data

Fields are separated by whitespace (tabs or spaces) and can contain the special char-
acters shown in Table 15.5.

The name field identifies the entity (usually a host or domain) that the record de-
scribes. If several consecutive records refer to the same entity, the name can be omit-
ted after the first record as long as the subsequent records begin with whitespace. If
it is present, the name field must begin in column one.

A name can be either relative or absolute. Absolute names end with a dot and are
complete. Internally, the software deals only with absolute names; it appends the cur-
rent domain and a dot to any name that does not already end in a dot. This feature
allows names to be shorter, but it also invites mistakes.

Table 15.5 Special characters used in RRs

Character Meaning

; Introduces a comment
@ The current zone name
() Allows data to span lines
* Wild carda (name field only)

a. See page 399 for some cautionary statements.

390 Chapter 15 – DNS: The Domain Name System

For example, in the cs.colorado.edu domain, the name “anchor” would be interpreted
as “anchor.cs.colorado.edu.”. If the name were entered as “anchor.cs.colorado.edu”,
the lack of a final dot would still imply a relative name, and the default domain would
be appended, resulting in the name “anchor.cs.colorado.edu.cs.colorado.edu.”. This
is a very common mistake.

The ttl (time to live) field specifies the length of time, in seconds, that the data item
can be cached and still be considered valid. It is often omitted, except in the root
server hints file. It defaults to the value set by the $TTL directive at the top of the
data file for the zone. In BIND 9, the $TTL directive is required. If there is no $TTL
directive in BIND 8, the ttl defaults to a per-zone value set in the zone’s SOA record.

See Chapter 17 for
more information
about NIS.

Increasing the value of the ttl parameter to about a week substantially reduces net-
work traffic and DNS load. However, once records have been cached outside your
local network, you cannot force them to be discarded. If you plan a massive renum-
bering, set the $TTL value low (e.g., an hour) so that stale records that have been
cached elsewhere on the Internet expire quickly.

Some sites set the TTL on the records for Internet-facing servers to a low value so
that if a server experiences problems (network failure, hardware failure, denial of
service attack, etc.), the administrators can respond by changing the server’s name-
to-IP-address mapping. Because the original TTLs were low, the new values will
propagate quickly. For example, the name google.com has a five-minute TTL, but
Google’s name servers have a TTL of four days (345,600 seconds):

google.com. 300 IN A 216.239.37.99
google.com. 345600 IN NS ns1.google.com.
ns1.google.com. 345600 IN A 216.239.32.10

We used the dig command (dig @ns1.google.com google.com) to recover this
data; the output is truncated here.

BIND 9 enforces a concept known as TTL harmonization, which forces all records
in an RRset (that is, all records of the same type that pertain to a single node) to
have the same TTL. The value that’s actually used is that of the first resource record
for the node/type pair.

The class specifies the network type. Three values are recognized:

• IN for the Internet

• HS for Hesiod

• CH for ChaosNet

The default value for the class is IN. It is often specified explicitly in zone data files
even though it is the default. Hesiod, developed at MIT, is a database service built on
top of BIND. ChaosNet is an obsolete network protocol formerly used by Symbolics
Lisp machines.

Today, only two pieces of identification data are normally tucked away in the Chaos-
Net class: the version number of the name server software and the name of the host

D
N

S

15.7 The DNS database 391

on which the server is running. These data nuggets can be extracted with dig as
shown on page 410. Administrators use the name server version number to identify
servers in need of upgrades, and they use the host identification to debug name serv-
ers that are replicated through the use of anycast routing. Making this information
available through the CH class was originally a feature (some might say “hack”) of
the BIND implementations, but it is now being standardized by the IETF as part of
DNS proper.5

Many different types of DNS records are defined, but fewer than 10 are in common
use; IPv6 adds a few more. We divide the resource records into four groups:

• Zone records – identify domains and their name servers

• Basic records – map names to addresses and route mail

• Security records – add authentication and signatures to zone files

• Optional records – provide extra information about hosts or domains

The contents of the data field depend on the record type. Table 15.6 lists the com-
mon record types.

Some record types are obsolete, experimental, or not widely used. See the BIND
documentation for a complete list. Most records are maintained by hand (by editing
text files), but the security resource records require cryptographic processing and so

5. Unfortunately, there is some dispute about the name under which this data should be filed. Should it be
version.bind, hostname.bind, id-server, or…

Table 15.6 DNS record types

Type Name Function

Zo
ne SOA Start Of Authority Defines a DNS zone

NS Name Server Identifies zone servers, delegates subdomains

Ba
si

c

A IPv4 Address Name-to-address translation
AAAAa IPv6 Address Name-to-IPv6-address translation
PTR Pointer Address-to-name translation
MX Mail Exchanger Controls email routing

Se
cu

rit
y DS Delegation Signer Hash of signed child zone’s key-signing key

DNSKEY Public Key Public key for a DNS name
NSEC Next Secure Used with DNSSEC for negative answers
RRSIG Signature Signed, authenticated resource record set

O
pt

io
na

l CNAME Canonical Name Nicknames or aliases for a host
LOC Location Geographic location and extent
SRV Services Gives locations of well-known services
TXT Text Comments or untyped information

a. The AAAA and A6 IPv6 address records have been sparring partners in the IETF for the past few years.
AAAA eventually won and went from obsolete to standard. A6 is now labeled experimental.

392 Chapter 15 – DNS: The Domain Name System

must be managed with software tools. These records are described in the DNSSEC
section beginning on page 456.

The order of resource records is almost arbitrary. The SOA record for a zone formerly
had to be first, but that requirement has now been relaxed. The SOA is typically
followed by the NS records. The records for each host are usually kept together. It’s
common practice to sort by the name field, although some sites sort by IP address
so that it’s easier to identify unused addresses.

As we describe each type of resource record in detail in the next sections, we will
inspect some sample records from cs.colorado.edu’s data files. The default domain
in this context is “cs.colorado.edu.”, so a host specified as “anchor” really means
“anchor.cs.colorado.edu.”.

The SOA record

An SOA record marks the beginning of a zone, a group of resource records located at
the same place within the DNS namespace. This node of the DNS tree is also called a
delegation point or zone cut. As we discuss in greater detail on page 396, the data for
a DNS domain usually includes at least two zones: one for translating hostnames to
IP addresses, and others that map in the reverse direction. The DNS tree has a for-
ward branch organized by name and a reverse branch organized by IP address.

Each zone has exactly one SOA record. The SOA record includes the name of the
zone, a technical contact, and various timeout values. An example:

; Start of authority record for cs.colorado.edu

@ IN SOA ns.cs.colorado.edu. hostmaster.cs.colorado.edu. (
2004111300 ; Serial number
7200 ; Refresh (2 hours)
1800 ; Retry (30 minutes)
604800 ; Expire (1 week)
7200) ; Minimum (2 hours)

Here, the name field contains the symbol @, which is shorthand for the name of the
current zone. In this example, “cs.colorado.edu.” could have been used instead. The
value of @ is the domain name specified in the zone statement in the name server
configuration file; it can be changed from within the zone file with the $ORIGIN
parser directive (see page 405).

This example has no ttl field. The class is IN for Internet, the type is SOA, and the
remaining items form the data field.

“ns.cs.colorado.edu.” is the zone’s master name server.

“hostmaster.cs.colorado.edu.” is the email address of the technical contact in the
format “user.host.” rather than the standard user@host. Just replace that first dot with
an @ and remove the final dot if you need to send mail to a domain’s administrator.
Sites often use an alias such as admin or hostmaster in place of an actual login name.
The sysadmin responsible for hostmaster duties may change, and it’s easier to change

D
N

S

15.7 The DNS database 393

one entry in the aliases file (see page 544) than to change all your zone files when
you need to update the contact person.

The parentheses continue the SOA record over several lines. Their placement is not
arbitrary in BIND 4 or 8—we tried to shorten the first line by splitting it before the
contact address, but then BIND failed to recognize the SOA record. In some imple-
mentations, parentheses are only recognized in SOA and TXT records. BIND 9 has a
better parser and parentheses can be used anywhere.

The first numeric parameter is the serial number of the zone’s configuration data.
The serial number is used by slave servers to determine when to get fresh data. It can
be any 32-bit integer and should be incremented every time the data file for the zone
is changed. Many sites encode the file’s modification date in the serial number. For
example, 2004111300 is the first change to the zone on November 13, 2004.

Serial numbers need not be continuous, but they must increase monotonically. If by
accident you set a really large value on the master server and that value is transferred
to the slaves, then correcting the serial number on the master will not work. The
slaves request new data only if the master’s serial number is larger than theirs.

There are three ways to fix this problem; only the first two work in BIND 9.

• One way to fix the problem is to exploit the properties of the sequence
space in which the serial numbers live. This procedure involves adding a
large value (231) to the bloated serial number, letting all the slave servers
transfer the data, and then setting the serial number to just what you want.
This weird arithmetic, with explicit examples, is covered in detail in the
O’Reilly DNS book; RFC1982 describes the sequence space.

• A sneaky but more tedious way to fix the problem is to change the serial
number on the master, kill the slave servers, remove the slaves’ backup
data files so they are forced to reload from the master, and restart the
slaves. It does not work to just remove the files and reload; you must kill
and restart the slave servers.

• BIND 4.9 and BIND 8 include a hack that lets you set the serial number to
zero for one refresh interval and then restart the numbering. The zero
always causes a reload, so don’t forget to set it to a real value after each of
the slaves has reloaded the zone with serial number 0.

It is a common mistake to change the data files but forget to update the serial num-
ber. Your name server will punish you by failing to propagate your changes to the
slave servers.

The next four entries in the SOA record are timeout values, in seconds, that control
how long data can be cached at various points throughout the world-wide DNS data-
base. Times can also be expressed in units of minutes, hours, days, or weeks by addi-
tion of a suffix of m, h, d, or w, respectively. For example, 1h30m means 1 hour and
30 minutes. Timeout values represent a tradeoff between efficiency (it’s cheaper to

394 Chapter 15 – DNS: The Domain Name System

use an old value than to fetch a new one) and accuracy (new values should be more
accurate).

Here’s another copy of that same example SOA record, just so you don’t have to keep
turning back to the previous page:

; Start of authority record for cs.colorado.edu

@ IN SOA ns.cs.colorado.edu. hostmaster.cs.colorado.edu. (
2004111300 ; Serial number
7200 ; Refresh (2 hours)
1800 ; Retry (30 minutes)
604800 ; Expire (1 week)
7200) ; Minimum (2 hours)

The first timeout is the refresh timeout, which specifies how often slave servers
should check with the master to see if the serial number of the zone’s configuration
has changed. Whenever the zone changes, slaves must update their copy of the zone’s
data. The slave compares the serial numbers; if the master’s serial number is larger,
the slave requests a zone transfer to update the data. Common values for the refresh
timeout range from one to six hours (3,600 to 21,600 seconds).

Instead of just waiting passively for slave servers to time out, BIND servers now no-
tify their slaves every time a zone changes, unless the notify parameter is specifically
turned off in the configuration file. Slaves that understand the notification immedi-
ately refresh themselves. It’s possible for an update notification to be lost due to net-
work congestion, so the refresh timeout should always be set to a reasonable value.

If a slave server tries to check the master’s serial number but the master does not
respond, the slave tries again after the retry timeout period has elapsed. Our experi-
ence suggests that 20–60 minutes (1,200–3,600 seconds) is a good value.

If a master server is down for a long time, slaves will try to refresh their data many
times but always fail. Each slave should eventually decide that the master is never
coming back and that its data is surely out of date. The expire parameter determines
how long the slaves will continue to serve the domain’s data authoritatively in the
absence of a master. The system should be able to survive if the master server is down
for a few days, so this parameter should have a longish value. We recommend a week
to a month.

The minimum parameter in the SOA record sets the time to live for negative answers
that are cached.6 The default for positive answers (i.e., actual records) is specified at
the top of the zone file with the $TTL directive. Experience suggests values of several
hours to a few days for $TTL and a couple of hours to a day for the minimum. The
$TTL value must be larger than or equal to the minimum.

The $TTL, expire, and minimum parameters eventually force everyone that uses
DNS to discard old data values. The initial design of DNS relied on the fact that host

6. Prior to BIND 8.2, the minimum parameter set the default time to live for resource records. It was
included with each record and used to expire the cached records on nonauthoritative servers.

D
N

S

15.7 The DNS database 395

data was relatively stable and did not change often. However, DHCP and mobile hosts
have changed the rules. BIND is desperately trying to cope by providing the dynamic
update and incremental zone transfer mechanisms described starting on page 447.
For more information about TTLs and a concept called TTL harmonization, see
page 390.

NS records

NS (name server) records identify the servers that are authoritative for a zone (that
is, all the master and slave servers) and delegate subdomains to other organizations.
NS records usually follow the SOA record.

The format is

zone [ttl] IN NS hostname

For example:

cs.colorado.edu. IN NS ns.cs.colorado.edu.
cs.colorado.edu. IN NS anchor.cs.colorado.edu.
cs.colorado.edu. IN NS ns.cs.utah.edu.

Since the zone name is the same as the name field of the SOA record that precedes
these NS records, it can be left blank. Thus, the lines

IN NS ns.cs.colorado.edu.
IN NS anchor.cs.colorado.edu.
IN NS ns.cs.utah.edu.

immediately following the SOA record for cs.colorado.edu are equivalent.

To be visible to the outside world, an authoritative server of cs.colorado.edu should
be listed both in the zone file for cs.colorado.edu and in the file for the parent zone,
colorado.edu. Caching-only servers cannot be authoritative; do not list them. No pa-
rameter in the NS records specifies whether a server is a master or a slave. That infor-
mation is specified in the name server configuration file.

BIND uses a zone’s NS records to identify slave servers when it wants to send out
notifications of changes to the zone. Those same NS records inside the parent zone
(colorado.edu) define the cs subdomain and delegate authority for it to the appropri-
ate name servers. If the list of name servers in the parent zone is not kept up to date
with those in the zone itself, any new servers that are added become “stealth servers”
and are not used to answer queries from the outside world. This configuration oc-
curs sometimes through design and sometimes through forgetfulness. It is not seri-
ously wrong as long as the parent has at least one valid NS record for the child zone.

See page 407 for
more information
about delegation.

A quick look at our own delegations revealed a major server for colorado.edu that the
edu domain knew nothing about. Do as we say and not as we do: check your delega-
tions with dig to be sure they specify an appropriate set of servers (see page 473).

396 Chapter 15 – DNS: The Domain Name System

A records

A (address) records are the heart of the DNS database. They provide the mapping
from hostnames to IP addresses that was formerly specified in the /etc/hosts file. A
host usually has one A record for each of its network interfaces. The format is

hostname [ttl] IN A ipaddr

For example:

anchor IN A 128.138.243.100

A machine with multiple network interfaces can use a single hostname associated
with all interfaces or can have separate hostnames for each interface.

PTR records

PTR (pointer) records perform the reverse mapping from IP addresses to hostnames.
As with A records, a host must have one PTR record for each network interface. Be-
fore we describe PTR records, however, we need to digress and talk about a special
top-level domain called in-addr.arpa.

Fully qualified hostnames can be viewed as a notation in which the “most significant
part” is on the right. For example, in the name anchor.cs.colorado.edu, anchor is in
cs, cs is in colorado, and colorado is in edu. IP addresses, on the other hand, have the
“most significant part” on the left. In the address 128.138.243.100, host 100 is on sub-
net 243, which is part of network 128.138.

The in-addr.arpa domain was created to allow one set of software modules and one
naming tree to map from IP addresses to hostnames as well as from hostnames to IP
addresses. Domains under in-addr.arpa are named like IP addresses with their bytes
reversed. For example, the zone for our 243 subnet is 243.138.128.in-addr.arpa.

The general format of a PTR record is

addr [ttl] IN PTR hostname

For example, the PTR record in the 243.138.128.in-addr.arpa zone that corresponds
to anchor’s A record above is

100 IN PTR anchor.cs.colorado.edu.

The name 100 does not end in a dot and therefore is relative. But relative to what? Not
“cs.colorado.edu.”. For this sample record to be accurate, the default domain has to
be “243.138.128.in-addr.arpa.”.

You can set the domain by putting the PTR records for each subnet in their own file,
as in this example. The default domain associated with the file is set in the name
server configuration file. Another way to do reverse mappings is to include records
such as

100.243 IN PTR anchor.cs.colorado.edu.

D
N

S

15.7 The DNS database 397

with a default domain of 138.128.in-addr.arpa. Some sites put all reverse records in
the same file and use $ORIGIN directives to specify the subnet. Note that the host-
name anchor.cs.colorado.edu must end with a dot to prevent 138.128.in-addr.arpa
from being appended to its name.

Since cs.colorado.edu and 243.138.128.in-addr.arpa are different regions of the DNS
namespace, they constitute two separate zones. Each zone must have its own SOA
record and resource records. In addition to defining an in-addr.arpa zone for each
real network, you should also define one that takes care of the loopback network,
127.0.0.0.

This all works fine if the subnets are on byte boundaries. But how do you handle the
reverse mappings for a subnet such as 128.138.243.0/26? An elegant hack defined in
RFC2317 exploits CNAME resource records to accomplish this feat; see page 400.

The reverse mappings provided by PTR records are used by any program that au-
thenticates inbound network traffic. For example, sshd may allow remote logins
without a password if the machine of origin is listed, by name, in a user’s ~/.shosts
file. When the destination host receives a connection request, it knows the source
machine only by IP address. It uses DNS to convert the IP address to a hostname,
which is then compared to the appropriate file. netstat, tcpd, sendmail, sshd, X
Windows, and ftpd all do reverse mappings to get hostnames from IP addresses.

It is important that A records match their corresponding PTR records. Mismatched
and missing PTR records cause authentication failures that can slow your system to
a crawl. This problem is annoying in itself; it can also facilitate denial of service at-
tacks against any application that requires the reverse mapping to match the A record.

MX records

The mail system uses mail exchanger records to route mail more efficiently. An MX
record preempts the destination of a message, in most cases directing it to a mail hub
at the recipient’s site rather than to the recipient’s own workstation.

The format of an MX record is

name [ttl] IN MX preference host …

Two examples are shown below, one for a host that receives its own mail unless it is
down, and one for a host that can’t receive mail at all:

piper IN MX 10 piper
IN MX 20 mailhub
IN MX 50 boulder.colorado.edu.

xterm1 IN MX 10 mailhub
IN MX 20 anchor
IN MX 50 boulder.colorado.edu.

Hosts with low preference values are tried first: 0 is the most desirable, and 65,535 is
as bad as it gets. In this example, mail addressed to bob@xterm1 would be sent to
mailhub if it were accessible, to anchor as a second choice, and if both mailhub and

398 Chapter 15 – DNS: The Domain Name System

anchor were down, to boulder. Note that boulder’s name must be fully qualified since
it is not a member of the default zone (here, “cs.colorado.edu.”).

The list of preferences and hosts can all be on the same line, but separate lines are
easier to read. Leave numeric “space” between preference values so you don’t have to
renumber if you need to squeeze in a new destination.

MX records are useful in many situations:

• When you have a central mail hub

• When the destination host is down

• When the destination host isn’t directly reachable from the Internet

• When the destination host doesn’t speak SMTP

• When the local sysadmin knows where mail should be sent better than
your correspondents do

In the first of these situations, mail is routed to the mail hub, the machine where most
users read mail. In the second case, mail is routed to a nearby host and forwarded
when the destination comes back up.

Hosts that are not directly accessible from the (public) Internet can still have MX
records. Such MX-only hosts might be machines behind a firewall, domain names
hosted by an ISP or hosting service, or machines that are not turned on all the time.
sendmail can’t connect to the destination host, but it can get the mail closer by con-
necting to one of the destination’s MX hosts.

The final and most important reason to use MX records is that the local sysadmins
probably know the mail architecture much better than your correspondents. They
need to have the final say on how your site channels its mail stream.

Every host that the outside world knows about should have MX records. For minor
hosts, one or two alternates are enough. A major host should have several records.
For example, the following set of records might be appropriate for a site at which
each host sends and receives its own mail:

• One for the host itself, as first choice

• A departmental mail hub as second choice

• A central mail hub for the domain or parent domain as a backup

The domain itself should have an MX record to a mail hub machine so that mail to
user@domain will work. Of course, this configuration does require that user names
be unique across all machines in the domain. For example, to be able to send mail to
evi@cs.colorado.edu, we need a machine called cs, MX records in cs.colorado.edu,
or perhaps both.

cs IN MX 10 mailhub.cs.colorado.edu.
IN MX 20 anchor.cs.colorado.edu.
IN MX 50 boulder.colorado.edu.

D
N

S

15.7 The DNS database 399

A machine that accepts mail for another host must list that other host in its sendmail
configuration files; see page 574 for a discussion of sendmail’s use_cw_file feature
and the file local-host-names.

Wild card MX records are also sometimes seen in the DNS database:

* IN MX 10 mailhub.cs.colorado.edu.

At first glance, this record seems like it would save lots of typing and add a default
MX record for all hosts. But wild card records don’t quite work as you might expect.
They match anything in the name field of a resource record that is not already listed
as an explicit name in another resource record.

Thus, you cannot use a star to set a default value for all your hosts. But perversely, you
can use it to set a default value for names that are not your hosts. This setup causes
lots of mail to be sent to your hub only to be rejected because the hostname match-
ing the star really does not belong to your domain. Ergo, avoid wild card MX records.

CNAME records

CNAME records assign additional names to a host. These nicknames are commonly
used either to associate a function with a host or to shorten a long hostname. The
real name is sometimes called the canonical name (hence, “CNAME”).

Some examples:

ftp IN CNAME anchor
kb IN CNAME kibblesnbits

The format of a CNAME record is

nickname [ttl] IN CNAME hostname

When the DNS software encounters a CNAME record, it stops its query for the nick-
name and switches to the real name. If a host has a CNAME record, other records (A,
MX, NS, etc.) for that host must refer to its real name, not its nickname.7 For example,
the following lines are OK:

colo-gw IN A 128.138.243.25
moogie IN CNAME colo-gw
www IN CNAME moogie

However, assigning an address or mail priority (with an A or MX record) to either
www or moogie in this example would be wrong.

CNAME records can nest eight deep in BIND. That is, a CNAME record can point to
another CNAME, and that CNAME can point to a third CNAME, and so on, up to
seven times; the eighth target must be the real hostname with an A record.

Usually you can avoid CNAMEs altogether by just using A records for the host’s real
name and its nicknames.

7. This rule for CNAMEs was explicitly relaxed for DNSSEC, which adds digital signatures to each DNS
resource record set. The RRSIG record for the CNAME refers to the nickname.

400 Chapter 15 – DNS: The Domain Name System

The CNAME hack

See page 287 for
more information
about CIDR.

CNAMEs are also used to torture the existing semantics of DNS into supporting re-
verse zones for networks that are not subnetted on a byte boundary. Before CIDR
addressing was commonplace, most subnet assignments were on byte boundaries or
within the same organization, and the reverse delegations were easy to manage. For
example, if the class B network 128.138 was subnetted into a set of class C-like net-
works, each subnet would make a tidy package for the in-addr.arpa domain. The re-
verse zone for the 243 subnet would be 243.138.128.in-addr.arpa.

But what happens if the 243 subnet is further divided into, say, four pieces as a /26
network? If all four pieces are assigned to the same organization, there is actually no
problem. The four subnets can still share a single file that contains all their PTR
records. However, if the 243 subnet is assigned to an ISP that wants to delegate each
/26 network to a different customer, a more complicated solution is necessary. The
ISP must either maintain the reverse records on behalf of each client, or it must find a
way to take the third octet of the IP address (243 in this case) and divide it into four
different pieces that can be delegated independently.

When an administrative boundary falls in the middle of a byte, you have to be sneaky.
You must also work closely with the domain above or below you. The trick is this: for
each possible host address in the natural in-addr.arpa zone, add a CNAME that de-
flects the lookup to a zone controlled by the owner of the appropriate subnet. This
scheme makes for messy zone files on the parent, but it does let you delegate author-
ity to the actual users of each subnet.

Here is the scheme in gory detail. The parent organization (in our case, the ISP) cre-
ates CNAME records for each possible IP address with an extra fake component (dot-
separated chunk) that represents the subnet. For example, in the /26 scenario just
described, the first quarter of the addresses would have a “0-63” component, the sec-
ond quarter would have a “64-127” component, and so on. Here’s what it looks like:

$ORIGIN 243.138.128.in-addr.arpa.
1 IN CNAME 1.0-63
2 IN CNAME 2.0-63
…
63 IN CNAME 63.0-63
64 IN CNAME 64.64-127
65 IN CNAME 65.64-127
…

To delegate the 0-63 piece of the reverse zone to the customer that has been assigned
that subnet, we’d add the following NS records:

0-63 IN NS ns1.customer1.com.
0-63 IN NS ns2.customer1.com.
…

customer1.com’s site would have a zone file that contained the reverse mappings for
the 0-63.243.138.128.in-addr.arpa zone.

D
N

S

15.7 The DNS database 401

For example,

1 IN PTR host1.customer1.com.
2 IN PTR host2.customer1.com.
…

By adding this extra component, we create a new “cut” at which to perform delega-
tion. When someone looks up the reverse mapping for 128.138.243.1, for example,
the CNAME record at 1.243.138.128.in-addr.arpa refocuses the search to the name
1.0-63.243.138.128.in-addr.arpa, and that name is controlled by the customer.

The customer’s files are clean; it’s only the ISP that must deal with an inelegant con-
figuration mess. But things can get even more complicated. Customer1 could itself
be an ISP that wants to further subdivide its addresses. But that’s OK: BIND supports
CNAME chains up to 8 links long, and since a byte has only eight bits, we can never
run out. CNAME chains are discouraged but not forbidden in the RFCs; they do slow
down name resolution since each link in a CNAME chain causes the link to be fol-
lowed and a new query for the target to be initiated.

Early in the life of the CNAME hack, the $GENERATE command (see page 405) was
added to BIND’s repertoire to facilitate the creation of resource records in the parent
zone. For example, the following lines produce the records for the first subnet:

$ORIGIN 243.138.128.in-addr.arpa.
$GENERATE 0-63 $ CNAME $.0-63
0-63 NS ns1.customer1.com.
0-63 NS ns2.customer1.com.

The $ in the $GENERATE command iterates from 0 to 63 and creates 64 different
CNAME records. The other three /26 networks would be handled similarly.

LOC records

LOC records are
defined in RFC1819.

An LOC record describes the geographic location and, optionally, the physical size
(diameter) of a DNS object. LOC records currently have no effect on the technical
operation of the Internet, and no standard software looks for them. However, a num-
ber of interesting potential uses for the information have been suggested, including
route tracing and optimization, automated mapping, and network research.

The format is

name [ttl] IN LOC lat lon [alt [size [hp [vp]]]]

The latitude and longitude are given as space-separated degrees, minutes, and sec-
onds followed by N, S, E, or W. Seconds can be omitted; if they are, minutes can also
be omitted.

The other fields are all specified in centimeters (no suffix) or meters (m). alt is the
object’s altitude, size is the diameter of the object’s bounding sphere, hp is the hori-
zontal precision of the measurement, and vp is the vertical precision. The default
size is one meter, and the default horizontal and vertical precisions are 10 meters
and 10 kilometers, respectively.

402 Chapter 15 – DNS: The Domain Name System

Here is an example for caida.org in San Diego, California:

caida.org. IN LOC 32 53 01 N 117 14 25 W 107m 30m 18m 15m

Many of the graphical visualization tools written by CAIDA (the Cooperative Asso-
ciation for Internet Data Analysis) require latitude and longitude data, and sites are
encouraged to include it in their DNS. However, if you are paranoid and run a high-
visibility server or ISP, you may not want the general public to know the exact loca-
tion of your machines. In such situations, we recommend that you use inexact values
with a large horizontal precision parameter. Imprecise LOC records are still of value
to the network research folks but offer some anonymity.

SRV records

An SRV record specifies the location of services within a domain. For example, the
SRV record allows you to query a remote domain directly and ask for the name of its
FTP server. Until now, you mostly had to guess. To contact the FTP server for a re-
mote domain, you had to hope that the remote sysadmins had followed the current
custom and added a CNAME for “ftp” to their server’s DNS records.

SRV records make more sense than CNAMEs for this application and are certainly a
better way for sysadmins to move services around and control their use. However,
SRV records must be explicitly sought and parsed by clients, so it will be a while be-
fore their effects are really felt. They are used extensively by Windows.

SRV records resemble generalized MX records with fields that let the local DNS ad-
ministrator steer and load-balance connections from the outside world. The format is

service.proto.name [ttl] IN SRV pri wt port target

where service is a service defined in the IANA assigned numbers database (see
www.iana.org/numbers.htm), proto is either tcp or udp, name is the domain to
which the SRV record refers, pri is an MX-style priority, wt is a weight used for load
balancing among several servers, port is the port on which the service runs, and
target is the hostname of the server that provides this service. The A record of the
target is usually returned automatically with the answer to a SRV query. A value of 0
for the wt parameter means that no special load balancing should be done. A value of
“.” for the target means that the service is not run at this site.

Here is an example snitched from RFCs 2052 and 2782 (in which SRV is defined)
and adapted for the cs.colorado.edu domain:

_ftp._tcp SRV 0 0 21 ftp-server.cs.colorado.edu.

; don't allow finger anymore (target = .)
_finger._tcp SRV 0 0 79 .

; 1/4 of the connections to old box, 3/4 to the new one
_ssh._tcp SRV 0 1 22 old-slow-box.cs.colorado.edu.

SRV 0 3 22 new-fast-box.cs.colorado.edu.

; main server on port 80, backup on new box, port 8000

www.iana.org/numbers.htm

D
N

S

15.7 The DNS database 403

_http._tcp SRV 0 0 80 www-server.cs.colorado.edu.
SRV 10 0 8000 new-fast-box.cs.colorado.edu.

; so both http://www.cs.colo… and http://cs.colo… work
_http._tcp.www SRV 0 0 80 www-server.cs.colorado.edu.

SRV 10 0 8000 new-fast-box.cs.colorado.edu.

; block all other services (target = .)
*._tcp SRV 0 0 0 .
*._udp SRV 0 0 0 .

This example illustrates the use of both the weight parameter (for SSH) and the pri-
ority parameter (HTTP). Both SSH servers will be used, with the work being split
between them. The backup HTTP server will only be used when the principal server
is unavailable. The finger service is not included, nor are other services that are not
explicitly mentioned. The fact that the finger daemon does not appear in DNS does
not mean that it is not running, just that you can’t locate the server through DNS.

WKS (well-known services) was an earlier service-related DNS record that did not
catch on. Instead of pointing you to the host that provided a particular service for a
domain, it listed the services provided by a particular host. WKS seems sort of use-
less and was also deemed a security risk. It was not widely adopted.

TXT records

A TXT record adds arbitrary text to a host’s DNS records. For example, we have a
TXT record that identifies our site:

IN TXT "University of CO, Boulder Campus, CS Dept"

This record directly follows the SOA and NS records for the “cs.colorado.edu.” zone
and so inherits the name field from them.

The format of a TXT record is

name [ttl] IN TXT info …

All info items must be quoted. You can use a single quoted string or multiple strings
that are individually quoted. Be sure the quotes are balanced—missing quotes wreak
havoc with your DNS data because all the records between the missing quote and the
next occurrence of a quote mysteriously disappear.

Many administrators use TXT records to publish the names of machines at their
sites from which legitimate email originates. Other sites can use these so-called SPF
(Sender Policy Framework) records to help identify and eliminate spam. The SPF
information lives inside the info part of the TXT records; there is no separate DNS
record type for SPF.

Here are a couple of examples:

sendmail.com. IN TXT "v=spf1 ip4:209.246.26.40 ip4:63.211.143.38 ip4:
209.246.26.36 ip4:209.246.26.12 ip4:209.246.26.18 ip4:209.246.26.10 ~all"

example.com. IN TXT "v=spf1 MX PTR -all"

404 Chapter 15 – DNS: The Domain Name System

In the first line, the domain sendmail.com is listing the IP addresses of its mail serv-
ers. If mail claims to have originated from sendmail.com but is not being sent from a
machine whose IP address is included in the SPF record list, then the mail is forged
and should be dropped. The second line requires that the machine sending the email
have a matching MX and PTR record in the DNS in order to be validated.

The clause v=spf1 refers to the version of the SPF protocol; only version 1 is currently
defined or implemented. Several mail transport agents (including sendmail, Post-
fix, and exim) support SPF processing. There are many other bells and whistles that
can be invoked through SPF records; see page 599 for a more complete discussion.

TXT records have no intrinsic order. If you use several of them to add a paragraph of
information to your DNS, they may all be scrambled by the time named and UDP
are done with them.

IPv6 resource records

See Chapter 12 for a
more detailed discus-
sion of IPv6.

IPv6 is a new version of the IP protocol. It has spent over 10 years in the specification
process and still isn’t done.8 IPv6 was originally motivated by a perceived need for
more IP network addresses. However, the stopgap solutions to this problem—CIDR,
NAT, and stricter control of addresses—have been so successful that a mass migra-
tion to IPv6 has turned out to be not as essential as originally envisioned. The adop-
tion of IPv6 is now being driven by Asia, where IPv4 addresses are spread more
thinly. The next generation of cell phones, which may have IP addresses, might also
help tip the scales in favor of IPv6.

Earlier proposals for IPv6 support in DNS went to great lengths to support shared
ownership of IPv6 addresses with the A6 and DNAME resource records. Although
these record types made address renumbering easier, they were so complicated that
the IETF has now backed off from its original plan in favor of the much simpler
AAAA records for forward mapping and the ip6.arpa domain for reverse mappings.
We no longer describe A6 records, bitstrings, or DNAME records in this book. If you
are curious, you can refer to previous editions or to the RFCs for details on how they
were intended to work.

IPv6 forward records

The format of an AAAA record is

hostname [ttl] IN AAAA ipaddr

For example:

anchor IN AAAA 3ffe:8050:201:9:a00:20ff:fe81:2b32

Each colon-separated chunk is 4 hex digits, with leading zeros usually omitted. Two
adjacent colons stand for “enough zeros to fill out the 128 bits for a complete IPv6
address.” An address can contain at most one such double colon.

8. Tony Li, an active member of the IETF community, once described IPv6 as “too little, too soon.”

D
N

S

15.7 The DNS database 405

IPv6 reverse records

See page 396 for a
discussion of the IPv4
version of PTR records.

In IPv4, reverse mappings live in the in-addr.arpa domain and forward mappings live
in the other branches of the domain tree (under com or edu, for example). In IPv6,
the reverse mapping information corresponding to an AAAA address record is a
PTR record in the ip6.arpa9 top-level domain.

The “nibble” format reverses an AAAA address record by expanding each colon-
separated address chunk to the full 4 hex digits and then reversing the order of those
digits and tacking on ip6.arpa at the end. For example, the PTR record that corre-
sponds to our sample AAAA record for anchor would be

2.3.b.2.1.8.e.f.f.f.0.2.0.0.a.0.9.0.0.0.1.0.2.0.0.5.0.8.e.f.f.3.ip6.arpa PTR anchor.cs.colorado.edu.

It certainly doesn’t look friendly for a sysadmin to have to type or debug or even
read. Of course, in your actual DNS zone files, the $ORIGIN statement would hide
some of the complexity.

IPv6 is still young, at least from the deployment point of view. The registries are
starting to assign addresses, and the process will become smoother with experience.
Some of the root name servers recently (2004) started advertising IPv6 addresses.
Questions remain about default behavior. For example, if a name has an IPv4 ad-
dress but no IPv6 address and is queried for an AAAA record, should it say “no such
record” or should it return the IPv4 A record?

Security-related records

The DNSSEC-related resource records (DNSKEY, DS, RRSIG, and NSEC) comprise a
major topic of their own. We discuss these records in the section on DNS security
that begins on page 451. These records are fundamentally different from most in that
they are typically generated with software tools rather than being typed in by hand.

Commands in zone files

Now that we have looked at all the basic resource records, let’s look at the commands
that can be embedded in a zone file. These commands are really just parser directives
that help make zone files more readable and easier to maintain. The commands ei-
ther influence the way that the parser interprets subsequent records or they expand
into multiple DNS records themselves. Once a zone file has been read in and inter-
preted, none of these commands remain a part of the zone’s data (at least, not in their
original forms).

There are four commands:

$ORIGIN domain-name
$INCLUDE filename [origin]
$TTL default-ttl
$GENERATE lots-of-args

9. The IPv6 reverse branch of the naming tree was originally called ip6.int.

406 Chapter 15 – DNS: The Domain Name System

Commands must start in the first column and occur on a line by themselves. The
$ORIGIN and $TTL commands are specified in the RFCs and should be understood
by all name servers; $INCLUDE and $GENERATE were originally BIND specific but
have been picked up by some of the other DNS implementations.

As the name server reads a zone file, it adds the default domain (or “origin”) to any
names that are not already fully qualified. The origin is initially set to the domain
name specified in the corresponding zone statement in the name server configura-
tion file. However, you can set the origin by hand within a zone file by using the
$ORIGIN directive.

The use of relative names where fully qualified names are expected saves lots of typ-
ing and makes zone files much easier to read. For example, the reverse records for a
subnetted class B site might all be in one zone file, with $ORIGIN statements setting
the context for each subnet. A statement such as

$ORIGIN 243.138.128.in-addr.arpa

could precede the records for the 243 subnet.

Many sites use the $INCLUDE directive in their zone database files to separate over-
head records from data records, to separate logical pieces of a zone file, or to keep
cryptographic keys in a file with restricted permissions. The syntax of the $INCLUDE
directive is

$INCLUDE filename [origin]

The specified file is read into the database at the point of the $INCLUDE directive; if
an origin is specified, an $ORIGIN directive precedes the contents of the file being
read. If filename is not an absolute path, it is interpreted relative to the home direc-
tory of the running name server.

The $TTL directive sets a default value for the time-to-live field of the records that
follow it. It should precede the SOA record for the zone. The default units for the
$TTL value are seconds, but you can also qualify numbers with h for hours, m for
minutes, d for days, or w for weeks. For example, the lines

$TTL 86400
$TTL 24h
$TTL 1d

all set the $TTL to one day.

$GENERATE, a relatively new construct, provides a simple way to generate a series
of similar records. It serves mostly to help with generating RFC2317-style classless
in-addr.arpa mappings (the CNAME hack for reverse zone files) for cases in which
the boundaries of administrative authority do not match the boundaries of bytes in
an IP address.

The format of the $GENERATE directive is

$GENERATE start-stop/[step] lhs type rhs [comment]

D
N

S

15.7 The DNS database 407

and the generated lines are of the form

lhs type rhs

The start and stop fields specify the range of values for a single numeric iterator. One
line is generated for each value in the interval. The iterator value is incorporated into
lhs (left-hand side) and rhs (right-hand side) with the $ character. If you also specify
a step, the iteration is by step-size increments. type is the record type. BIND 9 sup-
ports $GENERATE for the record types CNAME, PTR, NS, DNAME, A, and AAAA.
See page 401 for an example.

Glue records: links between zones

Each zone stands alone with its own set of data files, name servers, and clients. But
zones need to be connected to form a coherent hierarchy: cs.colorado.edu is a part
of colorado.edu, and we need some kind of DNS linkage between them.

Since DNS referrals occur only from parent domains to child domains, it is not nec-
essary for a name server to know anything about the domains (or more accurately,
zones) above it in the DNS hierarchy. However, the servers of a parent domain must
know the IP addresses of the name servers for all of its subdomains. In fact, only the
name servers known to the parent zone can be returned as referrals in response to
external queries.

In DNS terms, the parent zone needs to contain the NS records for each delegated
zone. Since NS records are written in terms of hostnames rather than IP addresses,
the parent server must also have a way to resolve the hostnames, either by making a
normal DNS query (if this does not create a dependency loop) or by having copies of
the appropriate A records.

There are two ways in which you can meet this requirement: by including the neces-
sary records directly or by using stub zones.

With the first method, you simply include the necessary NS and A records in the
parent zone. For example, the colorado.edu zone file could contain these records:

; subdomain information

cs IN NS ns.cs.colorado.edu.
IN NS piper.cs.colorado.edu.
IN NS ns.atrust.com.

ee IN NS ns.ee.colorado.edu.
IN NS ns.cs.colorado.edu.

; glue records

ns.cs IN A 128.138.243.151
piper.cs IN A 128.138.204.4
ns.ee IN A 128.138.200.1

The “foreign” A records are called glue records because they don’t really belong in
this zone. They’re only reproduced here to connect the new domain to the naming

408 Chapter 15 – DNS: The Domain Name System

tree. Missing or incorrect glue records leave part of your namespace inaccessible, and
users trying to reach it get “host unknown” errors.

It is a common error to include glue records for hostnames that don’t need them. For
example, ns.atrust.com in the example above can be resolved with a normal DNS
query. An A record would initially just be unnecessary, but it could later become
downright misleading if ns.atrust.com’s address were to change. The rule of thumb
is to include A records only for hosts that are within the current domain or any of its
subdomains. Current versions of BIND ignore unnecessary glue records and log
their presence as an error.

The scheme just described is the standard way of connecting zones, but it requires
the child to keep in touch with the parent and tell the parent about any changes or
additions to its name server fleet. Since parent and child zones are often run by dif-
ferent sites, updates are often a tedious manual task that requires coordination across
administrative boundaries. A corollary is that in the real world, this type of configu-
ration is often out of date.

The second way to maintain links is to use stub zones. A stub zone is essentially the
same thing as a slave zone, but it includes only the zone’s NS records. Automatically
updating the stub zone eliminates the need for communication between parent and
child. An important caveat is that stub zones must be configured identically on both
the master and slave servers of the parent zone. It might just be easiest to keep in
touch manually with your parent domain and to verify its configuration at least a
couple of times a year (especially if it is local).

You can use the dig command to see which of your servers your parent domain is
currently advertising. First run

$ dig parent-domain ns

to determine the name servers for your parent domain. Pick one and run

$ dig @name-server.parent-domain child-domain ns

to see your list of public name servers. Here is an actual example with some of dig’s
wordiness deleted:

$ dig colorado.edu ns
;; ...
;; ANSWER SECTION:
colorado.edu. 5h9m22s IN NS ns1.westnet.net.
colorado.edu. 5h9m22s IN NS boulder.colorado.edu.
colorado.edu. 5h9m22s IN NS cujo.colorado.edu.

$ dig @boulder.colorado.edu cs.colorado.edu ns
;;; ANSWER SECTION:
cs.colorado.edu. 6H IN NS cs.colorado.edu.
cs.colorado.edu. 6H IN NS huizil.cs.colorado.edu.
cs.colorado.edu. 6H IN NS anyns.pch.net.
cs.colorado.edu. 6H IN NS pacifier.com.

D
N

S

15.8 The BIND software 409

Only four servers for the cs.colorado.edu domain are visible from the outside world.
A dig from within the department yields a different list:

;; ANSWER SECTION:
cs.colorado.edu. 2H IN NS cs.colorado.edu.
cs.colorado.edu. 2H IN NS moet.cs.colorado.edu.
cs.colorado.edu. 2H IN NS piper.cs.colorado.edu.
cs.colorado.edu. 2H IN NS anchor.cs.colorado.edu.
cs.colorado.edu. 2H IN NS vulture.cs.colorado.edu.

Note that the TTL values vary (2 hours vs. 6 hours) depending on whether a query
comes from inside or outside the department. That’s because BIND’s view statement
has been used to define internal and external views of the data; see page 438. (Both
values are on the short side; a few days to a week would be a better choice.)

One situation in which stub zones are very useful is when your internal network uses
RFC1918 private IP address space and you need to keep the RFC1918 delegations in
sync. The example from isc.org starting on page 444 uses stub zones extensively.

A couple of stub zone subtleties (stubtleties?) are worth mentioning:

• Stub zones are not authoritative copies of the zone’s data, and stub servers
should not be listed among the zone’s NS records.

• Since stub servers are not listed in NS records, they are not notified auto-
matically when the zone’s data changes. Stub servers simply wait for the
zone to be updated at the end of the refresh interval specified in the zone’s
SOA record. If this interval is long, it can potentially result in transitory
lame delegations (see page 475).

• Theoretically, it’s of no use for a name server to have copies of a zone’s NS
records if it cannot also obtain the matching A records. However, the name
server can bootstrap itself by using the master’s IP address from its config-
uration file (the masters clause of the zone statement, see page 434).

• Why limit yourself to NS records? Why not just be a secondary server for
the subdomains? This works, too. However, if every server of the parent
domain is also a server of a child domain, then no referrals will ever be
made to downstream servers. The parent domain’s servers will be provid-
ing all the DNS service for the subdomain. Perhaps this is what you want,
and perhaps not.

We have now covered most of the background information that applies to the Domain
Name System generally and to its database. In the next section, we continue our cov-
erage of DNS with configuration details specific to the BIND implementation.

15.8 THE BIND SOFTWARE

BIND, the Berkeley Internet Name Domain system, is an open source software pack-
age from ISC, the Internet Systems Consortium, which implements the DNS proto-
col for Linux, UNIX, Mac OS, and Windows systems.

410 Chapter 15 – DNS: The Domain Name System

Versions of BIND

There have been three main flavors of BIND: BIND 4, BIND 8, and BIND 9. BIND 4
has been around since the late 1980s (roughly corresponding to the release of RFCs
1034 and 1035). BIND 8 was released in 1997, and BIND 9 in mid-2000. There is no
BIND 5, 6, or 7; BIND 8 was such a significant update that the authors felt it merited
a version number twice as big as the old one.10 Well, not really… BIND 8 was released
with 4.4BSD (the Berkeley Software Distribution of UNIX), for which all version
numbers were raised to 8. sendmail also skipped a few numbers and went to version
8 at the same time.

BIND 8 incorporated numerous technical advances that improved efficiency, robust-
ness, and security. BIND 9 raises the ante even further with multiprocessor support,
thread-safe operation, real security (public key cryptography), IPv6 support, incre-
mental zone transfers, and a host of other features. A new data structure (at least,
new to BIND), the red-black tree, stores zone data in memory. BIND 9 is a complete
redesign and reimplementation. It isolates the OS-specific parts of the code, making
it easier to port BIND to non-UNIX systems. The internals of BIND 9 are significantly
different, but its configuration procedure remains the same. We cover only BIND 9 in
this book.

Finding out what version you have

It often doesn’t seem to occur to vendors to document which version of an external
software package they have included with their systems, so you might have to do
some sleuthing to find out exactly what software you are dealing with. In the case of
BIND, you can sometimes determine the version number with a sneaky query from
dig, a command that comes with BIND. The command

$ dig @server version.bind txt chaos

returns the version number unless someone has decided to withhold that informa-
tion by changing it in BIND’s configuration file. For example, the command works
on isc.org:

$ dig @ns-ext.isc.org version.bind txt chaos
version.bind. 0S CHAOS TXT "9.4.0a0"

But it doesn’t work on cs.colorado.edu:

$ dig @mroe.cs.colorado.edu version.bind txt chaos
version.bind. 0S CHAOS TXT "wouldn't you like to know…"

Some sites configure BIND to conceal its version number on the theory that this pro-
vides some degree of “security through obscurity.” We don’t really endorse this prac-
tice, but it might help fend off some of the script kiddies. See page 424 for a more
detailed discussion of this topic.

10. Who says marketing and engineering can’t get along?

D
N

S

15.8 The BIND software 411

The output from this query includes “0S”. The 0 is the digit zero and represents the
TTL. The S stands for seconds, but that is the default for TTLs and is not usually
printed. Perhaps we should report this as a bug—at first glance it looks like OS for
operating system.

The IETF is busy standardizing the data in this odd CHAOS-class zone and general-
izing it so that other implementations can use this convention, too. Many already do
so and let the variable name remain version.bind; others are offended that the name
includes “bind.” Since the IETF is still arguing about what the variable names should
be, ISC has implemented all the candidates in their current release. For example, you
can also query the CHAOS class for hostname.bind or the more generic id.server.

See Chapter 10 for
more information
about syslog.

You can also usually tell what BIND version you have by inspecting the log files in
/var/log. The BIND server daemon, named, logs its version number to syslog (facil-
ity “daemon”) as it starts up. grep for lines like this:

Feb 23 00:25:13 senna named[433]: starting BIND 9.4.0a0 -c
/var/named/named.ns-ext.conf

If named is installed but your system does not normally start it at boot time, just run
named -v and it will output its version number and exit.

Table 15.7 shows the versions of BIND that are included with our example distribu-
tions. On Debian and Ubuntu, you have your choice of a bind package that installs
BIND 8 and a bind9 package that installs BIND 9. Versions earlier than 9.3.1 or 8.4.6
have known security problems; forget BIND 4. Using the current releases is the safest.

Most Linux distributors back-port security fixes to older releases.

Components of BIND

The BIND system has three components:

• A name server daemon called named that answers queries

• Library routines that resolve host queries by contacting the servers of the
DNS distributed database

• Command-line interfaces to DNS: nslookup, dig, and host

Table 15.7 Versions of BIND on our example systems

System OS vers BIND vers

ISC – 9.4.0b
RHEL 4.3 9.2.4 via rpm
Fedora FC5 9.3.2
SUSE 10.2 9.3.2
Debian 3.2b 8.4.6 or 9.2.4
Ubuntu 6.06 8.4.6 or 9.3.2

412 Chapter 15 – DNS: The Domain Name System

In DNS parlance, a daemon like named (or the machine on which it runs) is called a
“name server,” and the client code that contacts it is called a “resolver.” We briefly
discuss the function of each component below but postpone the actual configura-
tion of BIND until page 420.

named: the BIND name server

named answers queries about hostnames and IP addresses. If named doesn’t know
the answer to a query, it asks other servers and caches their responses. named also
performs “zone transfers” to copy data among the servers of a domain. (Recall that a
“zone” is essentially a domain minus its subdomains. Name servers deal with zones,
but “domain” is often used where “zone” is really meant.)

Name servers can operate in several different modes. The distinctions among them
fall along several axes, so the final categorization is often not very tidy. To make
things even more confusing, a single server can play different roles with respect to
different zones. Table 15.8 lists some of the adjectives used to describe name servers.
Indented entries are loosely classified under their unindented headings.

These categorizations are based on a name server’s source of data (authoritative,
caching, master, slave), on the type of data saved (stub), on the query path (for-
warder), on the completeness of answers handed out (recursive, nonrecursive), and
finally, on the visibility of the server (distribution). The next few sections provide
some additional details on the most important of these distinctions; the others are
described elsewhere in this chapter.

Authoritative and caching-only servers

Master, slave, and caching-only servers are distinguished by two characteristics:
where the data comes from and whether the server is authoritative for the domain.

Table 15.8 A name server taxonomy

Type of server Description

authoritative An official representative of a zone
master The primary server for a zone; gets data from a disk file
slave Copies its data from the master (also called a secondary server)
stub Similar to a slave, but copies only name server data (not host data)
distribution A server that’s visiblea only inside a domain; (aka “stealth server”)

nonauthoritativeb Answers a query from cache; doesn’t know if the data is still valid
caching Caches data from previous queries; usually has no local zones
forwarder Performs queries on behalf of many clients; builds a large cache

recursive Queries on your behalf until it returns either an answer or an error
nonrecursive Refers you to another server if it can’t answer a query

a. A distribution server can be visible to anyone who knows its IP address.
b. Strictly speaking, “nonauthoritative” is an attribute of a DNS query response, not a server.

D
N

S

15.8 The BIND software 413

Each zone has one master name server. The master server keeps the official copy of
the zone’s data on disk. The system administrator changes the zone’s data by editing
the master server’s data files.

See page 447 for
more information
about zone transfers.

A slave server gets its data from the master server through a “zone transfer” opera-
tion. A zone can have several slave name servers and must have at least one. A stub
server is a special kind of slave that loads only the NS (name server) records from
the master. See page 434 for an explanation of why you might want this behavior. It’s
fine for the same machine to be both a master server for your zones and a slave server
for other zones. Such cooperation usually makes for good DNS neighbors.

A caching-only name server loads the addresses of the servers for the root domain
from a startup file and accumulates the rest of its data by caching answers to the que-
ries it resolves. A caching-only name server has no data of its own and is not author-
itative for any zone, except perhaps the localhost zone.

An authoritative answer from a name server is “guaranteed” to be accurate; a non-
authoritative answer might be out of date. However, a very high percentage of non-
authoritative answers are perfectly correct. Master and slave servers are authoritative
for their own zones, but not for information they have cached about other domains.
Truth be told, even authoritative answers can be inaccurate if a sysadmin changes the
master server’s data but forgets to propagate the changes (e.g., doesn’t change the
data’s serial number).

A zone’s master server should be located on a machine that is stable, does not have
many users, is relatively secure, and is on an uninterruptible power supply. There
should be at least two slaves, one of which is off-site. On-site slaves should live on
different networks and different power circuits. When name service stops, all normal
network access stops, too.

Although they are not authoritative, caching-only servers can reduce the latency seen
by your users and the amount of DNS traffic on your internal networks. Consider
putting a caching-only server on each subnet. At most sites, desktop machines typi-
cally go through a caching server to resolve queries about hosts on the Internet.

In BIND 4 and BIND 8, it wasn’t a good idea to use a single name server as your
authoritative server for your own zones and as a caching server for your users. Each
named ran with a single in-memory database, and cross-contamination could oc-
cur if memory was tight and cached data mixed with authoritative data. BIND 9 has
eliminated this problem, so mix away. However, security and general DNS hygiene
still argue for separating the functions of serving your authoritative data to the
world from serving the world’s data to your users.

Recursive and nonrecursive servers

Name servers are either recursive or nonrecursive. If a nonrecursive server has the
answer to a query cached from a previous transaction or is authoritative for the do-
main to which the query pertains, it provides an appropriate response. Otherwise,
instead of returning a real answer, it returns a referral to the authoritative servers of

414 Chapter 15 – DNS: The Domain Name System

another domain that are more likely to know the answer. A client of a nonrecursive
server must be prepared to accept and act on referrals.

Although nonrecursive servers may seem lazy, they usually have good reason not to
take on extra work. Root servers and top-level domain servers are all nonrecursive,
but at over 10,000 queries per second we can excuse them for cutting corners.

A recursive server returns only real answers and error messages. It follows referrals
itself, relieving clients of this responsibility. In other respects, the basic procedure
for resolving a query is essentially the same. For security reasons, an organization’s
externally accessible name servers should always be nonrecursive.

Resolver libraries do not understand referrals; any local name server that clients
point to must be recursive.

One side effect of having a name server follow referrals is that its cache acquires in-
formation about intermediate domains. On a local network, this caching is often the
behavior you want since it allows subsequent lookups from any host on the network
to benefit from the name server’s previous work. On the other hand, the server for a
high-level domain such as com or edu should not save up information requested by
a host several domains below it.

Early versions of BIND required source code changes and recompilation to modify a
server’s recursiveness. This option then moved to a command-line flag (-r), and it is
now a parameter in the configuration file. A server can even be configured to be re-
cursive for its own clients and nonrecursive for outsiders.

Name servers generate referrals hierarchically. For example, if a server can’t supply an
address for the host lair.cs.colorado.edu, it refers to the servers for cs.colorado.edu,
colorado.edu, edu, or the root domain. A referral must include addresses for the serv-
ers of the referred-to domain, so the choice is not arbitrary; the server must refer to
a domain for which it already knows the servers.

The longest known domain is generally returned. If the address of lair was not known
but the name servers for cs.colorado.edu were known, then those servers’ address
would be returned. If cs.colorado.edu was unknown but colorado.edu was known,
then the addresses of name servers for colorado.edu would be returned, and so on.

Name servers preload their caches from a “hints” file that lists the servers for the root
domain. Some referral can always be made, even if it’s just “Go ask a root server.”

The resolver library

Clients look up hostname mappings by calling the gethostbyname family of library
routines. The original implementation of gethostbyname looked up names in the
/etc/hosts file. For host mappings to be provided by DNS, these routines must use
the resolver library, which knows how to locate and communicate with name servers.
The resolver is usually integrated into the standard libraries against which applica-
tions are compiled.

D
N

S

15.9 Designing your DNS environment 415

Most systems’ implementations of gethostbyname can draw upon information
from several different sources: flat files (such as /etc/hosts), DNS, and perhaps a
local administrative database system such as NIS. A switch file allows for detailed
administrative control over which sources are searched and in what order. See page
479 or Prioritizing sources of administrative information on page 523 for specifics.
The distribution-specific sections of our DNS coverage present bite-sized treat-
ments of this topic as it pertains to host lookups; they start on page 478.

Applications that use the network are typically linked with a stub resolver library
that sends DNS queries to a local caching name server. IPv6 support makes things
more complicated, but BIND 9 provides a “lightweight resolver library” and resolver
daemon, lwresd, for sites that do not need to speak IPv6. The term lightweight may
sound like an oxymoron in the context of DNS, but in this instance, it refers to the
protocol used between the resolver library and the resolver daemon. If the lwres
statement is included in named’s configuration file, the name server itself also acts
as a lightweight resolver. The resolver daemon currently does not use the name ser-
vice switch file mentioned above: it looks only to DNS for name resolution.

Shell interfaces to DNS

The BIND software distribution includes the dig, host, and nslookup commands,
which provide command-line interfaces for executing DNS queries. They are useful
as debugging aids and as tools for extracting information from DNS. Although the
commands are similar in function, they are somewhat different in design. See page
473 for more information.

15.9 DESIGNING YOUR DNS ENVIRONMENT

Many factors affect the design of a robust and efficient DNS system for your particu-
lar environment: the size of your organization, whether you use RFC1918 private IP
addresses on your local network, whether you use DHCP, whether you use Mi-
crosoft’s active directory, whether your internal network is routed or switched, and
where your firewall is in relation to your DNS servers, to name a few. You may find it
helpful to split the problem into three parts:

• Managing the namespace hierarchy: subdomains, multiple levels, etc.,

• Serving the authoritative data about your site to the outside world, and

• Providing name lookups for your users.

Namespace management

If your site is small and independent, the use of subdomains is neither necessary nor
desirable unless your management requires them for some nontechnical reason. On
the other hand, in a medium-sized organization with several independent sysadmin
groups, subdomains can reduce the need for site-wide coordination. (Subdomains
divided along geographic or departmental lines are most common.) A large organi-
zation has little hope of enforcing unique names throughout its site and therefore
needs subdomains, perhaps at multiple levels.

416 Chapter 15 – DNS: The Domain Name System

The creation of subdomains requires communication and cooperation between the
sysadmins responsible for the parent domain and those responsible for the subdo-
main. At the time the subdomain is delegated and set up, be sure to make a note of
who to contact if you want to add, change, or delete servers. Make sure your firewall
does not block access to the subdomain’s servers if you want the subdomain to be
accessible from outside your organization.

If you use subdomains to manage your namespace, run the doc (domain obscenity
control) tool from cron once a week to be sure that your delegations stay synchro-
nized and that you don’t inadvertently create lame delegations. The DNS tools sec-
tion (page 466) describes doc and several other tools that help keep DNS healthy.

Authoritative servers

The DNS specifications require at least two authoritative servers for each domain.
Master and slave servers are authoritative; caching and stub servers are not. Ideally,
a site has multiple authoritative servers, each on a separate network and power cir-
cuit. Many sites maintain an authoritative server off-site, often hosted by their ISP. If
your ISP does not offer this service, you can purchase it from a DNS service provider
or trade with a local firm (ideally, not a competitor) or university.

A few years ago, Microsoft got caught violating the rule of separate networks. They
had all three of their authoritative servers on the same subnet, and when the router
that connected that subnet to the Internet failed, the servers became unreachable.
Two hours later, as cached records expired, microsoft.com and all their other do-
mains dropped off the Internet. The number of queries for Microsoft-related names
at the root servers increased to 25% of the total load (10,000 queries/second), up
from its typical value of 0.000001%. Problems persisted for a couple of days. When
the dust settled, Microsoft had fixed the router and outsourced their DNS service!

Authoritative servers keep their data synchronized by using zone transfers. Use
TSIG keys to authenticate and control the zone transfers from your master server to
your slave servers. See page 453 for TSIG configuration information.

You may want the query responses provided by your authoritative servers to depend
to some extent on who is asking. A query from outside your network might receive
one answer, while the same query originating inside your organization would re-
ceive a different (more complete) answer. This configuration is called “split DNS”
and is implemented at the zone level, not the server level.

Each version of the zone is called a “view,” after the view statement with which it is
configured in the BIND configuration file. External folks see one view of the data,
and internal folks see another. This feature is commonly used to conceal the exist-
ence of internal machines from prying eyes and to ensure that machines using
RFC1918 private IP addresses do not leak them onto the Internet. Views are tricky
to debug, but BIND’s extensive logging capabilities, together with clever use of the
dig command, can help; see page 466 for some hints.

D
N

S

15.9 Designing your DNS environment 417

Caching servers

Recursive caching servers answer local users’ queries about sites on the Internet.
Each computer at your site should have ready access to a local caching server, prefer-
ably one that is on the same subnet.

Organizations of a certain size should consider using a hierarchy in which one or
more machines are designated as “forwarders” through which the local subnets’
caching servers pass their queries. The forwarders thereby develop a cache that is
common to multiple subnets.

Depending on the size of your site, forwarders can be independent or arranged in a
hierarchy. For example, subnet servers might forward to a departmental server that
in turn forwards to a site-wide gateway. The site-wide forwarder caches all names
requested by users throughout the site. This configuration minimizes the external
bandwidth used for name service and allows all local machines to share one large
cache. Forwarders are covered in the configuration section starting on page 427.

If a caching server dies, the network essentially stops working for all the users that
were clients of that server. (And your phone starts ringing.) Start your caching name
servers with a script that restarts them after a few seconds if they die. Here is an
example of a keep-running script from a machine that runs two separate instances
of named. The script takes a single argument to identify the log file and name server
configuration file to use:

#!/bin/sh

PATH=/usr/local/sbin:/usr/sbin:/sbin:$PATH
export PATH

trap " " 1
while :; do

named -f -c /var/named/named.$1.conf >> /var/log/named.$1 2>&1 < /dev/null
logger "named ($1) restart"
sleep 15

done
exit

The script waits 15 seconds (an arbitrary value) before restarting named and runs
the logger command to submit a syslog entry whenever it has to restart the server.

Security

DNS security is covered in a whole section of its own, starting on page 451. We won’t
duplicate that discussion here except to remind you that if you use a firewall, be sure
that your DNS system does not emit queries to which your firewall blocks the an-
swers. This means essentially that your DNS administrators should have ongoing
communication with your security and network administrators. By default, DNS
uses UDP with random unprivileged source ports (>1023) for queries; the answers
are UDP packets addressed to those same ports.

418 Chapter 15 – DNS: The Domain Name System

Summing up

Exhibit B illustrates the design recommended in the previous paragraphs. It shows a
two-level forwarding hierarchy, which is overkill for small sites. Adjust the balance
between servers that handle outgoing queries and servers that handle incoming que-
ries so that neither group is too loaded

Also note the use of the off-site slave server, which is highly recommended. Compa-
nies with multiple offices can designate one location as the master; this location be-
comes “off site” relative to the rest of the company.

Exhibit B DNS server architecture

A taxonomy of DNS/BIND chores

See Chapter 17 for
more information
about distributing
files on a network.

Table 15.9 summarizes what must be done, for whom, and how often when you use
BIND and DNS. An entry in the “How often” column that includes the word “distrib-
ute” means that you do it once per subnet or architecture and then copy the result to
the appropriate hosts with a tool such as rdist or rsync. Alternate rows are shaded to
improve readability.

15.10 BIND CLIENT ISSUES

Since each host on the network must be a BIND client, we begin our detailed discus-
sion with client-side chores.

Resolver configuration

Each Linux host on the network has a file called /etc/resolv.conf that lists the DNS
servers the host should query. If your host gets its IP address and network parameters
from a DHCP server, the /etc/resolv.conf file should be set up for you automatically.
Otherwise, you must edit the file by hand. The format is

search domainname …
nameserver ipaddr

Queries from inside Queries from outside

inside your site

the outside world

client
client

client client
client

client

client
client

big forwarder

caching cachingcaching caching

forwarderforwarder

Queries Answers

master

slave

slave

slave

slaveQuery

Query

Answer

Answer

D
N

S

15.10 BIND client issues 419

Up to three name servers can be listed. Here’s a complete example:

search cs.colorado.edu colorado.edu ee.colorado.edu
nameserver 128.138.243.151 ; ns
nameserver 128.138.204.4 ; piper
nameserver 128.138.240.1 ; anchor

Comments were never defined for the resolv.conf file. They are somewhat supported
in that anything that is not recognized is ignored. It’s safe to put comments at the end
of nameserver lines because the parser just looks for an IP address and ignores the
rest of the line. Because the search line can contain multiple arguments, comments
there could cause problems.

The search line lists the domains to query if a hostname is not fully qualified. If a
user issues the command ssh foo, for example, the resolver completes the name with
the first domain in the search list (in the resolv.conf above, cs.colorado.edu) and
looks for foo.cs.colorado.edu. If no such name can be found, the resolver also tries
foo.colorado.edu and foo.ee.colorado.edu. The number of domains that can be spec-
ified in a search directive is resolver-specific; most allow between six and eight.

The servers listed in resolv.conf must be recursive since the resolver does not un-
derstand referrals. The servers in nameserver lines are contacted in order; as long
as the first one continues to answer queries, the others are ignored. If a problem
occurs, the query times out and the next name server is tried. Each server is tried in
turn, up to four times. The timeout interval increases with every failure.

Most resolvers allow a maximum of three name servers to be listed. If more are pro-
vided, they are silently ignored. If a host is itself a name server, it should be listed first
in its own resolv.conf file. If no name servers are listed, localhost is assumed.

Table 15.9 BIND installation and maintenance chores

Chore For How often

Obtain domain name Site Once
Choose name servers Site Once or more
Obtain BIND distribution Site Once, but keep current
Configure resolver Client Once and distribute
Configure efficient resolver Client Each subnet and distribute
Configure services switch Client Each architecture and distribute
Start named at boot time Server Each name server
Set up named config file Server Each type of server
Configure hints file Server Oncea and distribute to servers
Configure zone files Master Once
Update zone files Master As needed
Review log files Log host At least weekly
Educate users All hosts Continuously and repeatedly

a. But must be redone if the root servers change.

420 Chapter 15 – DNS: The Domain Name System

Earlier versions of BIND used the domain directive in resolv.conf instead of the
search directive. It specified a single domain to add to names that were not fully
qualified. We recommend replacing domain directives with search directives. The
directives are mutually exclusive, so only one should be present. If you have an older
resolver and include both directives in the resolv.conf file, the last one listed is used.

Resolver testing

Most Linux distributions will attempt to look up hostnames in DNS by default as
long as there is a nameserver line in /etc/resolv.conf. The ordering of various
sources of hostname information, including DNS, is set in the /etc/nsswitch.conf
file; see page 479.

After configuring /etc/resolv.conf (and assuming that your local network connec-
tion is up and running), you should be able to refer to other machines by name
rather than by IP address. If you try to reach another local machine and the com-
mand just hangs, try referring to the machine by its IP address. If that works, then
your DNS configuration is the problem. Verify that the name server IP addresses in
/etc/resolv.conf are correct and that the servers you point to allow queries from your
network (see page 428). dig from a working machine can answer these questions.

Impact on the rest of the system

The change from static host tables to DNS creates some potential dependencies in
booting and configuration that you need to protect against.

As a host boots, references to hostnames in the startup files might be unresolvable if
they are encountered before the network is up. The commands in the startup files will
unsuccessfully try to contact DNS. Thanks to the resolver’s robustness, they will try
multiple times on multiple servers, increasing their timeout period with each at-
tempt. A couple of minutes later, the command needing the hostname will finally fail.

To fix the problem, use only literal IP addresses in the early stages of the boot process.
Or, since Linux systems support the simultaneous use of both DNS and /etc/hosts
by way of the switch file, you can install a hosts file that contains the server addresses
needed at boot time. Be sure the hosts file is checked before DNS so that you don’t
have to wait for DNS to time out.

15.11 BIND SERVER CONFIGURATION

In this section, we assume that your political chores have been completed. That is,
we assume that you have a domain name (possibly a subdomain), have coordinated
with the DNS administrator of the parent domain, and have been delegated your ad-
dress space in the in-addr.arpa reverse tree. You have chosen your master name
server and a couple of secondaries, and you have installed BIND.

D
N

S

15.11 BIND server configuration 421

Hardware requirements

BIND is a memory hog. Its database is kept in memory, so as the cache grows, so does
the named process. Some of the new features of BIND 9 are also CPU intensive, most
notably DNSSEC. To help reduce this burden, BIND 9 is multithreaded and can make
full use of multiprocessor systems. BIND 9 also contains configuration options that
control named’s use of resources.

The best way to determine if a name server machine has enough memory is to run it
for a while and watch the size of the named process. It takes a week or two to con-
verge on a stable size at which old cache records are expiring at about the same rate
that new ones are being inserted. Once stable, the system should not be swapping,
and its paging rates should be reasonable.

If your name server runs on a dedicated machine, a good rule of thumb is for the
machine to have double the amount of memory consumed by named after it has
been running for a week. The top and vmstat commands show memory usage; see
Analyzing memory usage on page 811 for more details.

Configuration files

The complete configuration for named consists of the config file, the root name
server hints file, and, for master servers, the zone data files that contain address
mappings for each host. named’s config file has its own format; all the other files are
collections of individual DNS data records that are formatted according to the DNS
specification. We discuss the config file in the next two sections. The format of DNS
data records is described beginning on page 389.

named’s configuration file, named.conf, specifies the roles (master, slave, stub or
caching-only) of this host and the manner in which it should obtain its copy of the
data for each zone it serves. It’s also the place where options are specified—both
global options related to the overall operation of named and server- or zone-specific
options that apply to only a portion of the DNS traffic.

The config file consists of a series of statements, each terminated by a semicolon.
Tokens are separated by whitespace, which can include newlines. Curly braces are
sometimes used for grouping, but only in specific contexts. The format is quite frag-
ile, and a missing semicolon can wreak havoc.

Fortunately, BIND 9 includes a couple of handy tools to check the syntax of the con-
fig file (named-checkconf) and the zone data files (named-checkzone). They look
for both errors and omissions. For example, named-checkzone will tell you if you’ve
forgotten to include a $TTL directive. Unfortunately, it doesn’t catch everything. For
example, missing glue records (see page 407) are not reported and cause heavy loads
on the root and gTLD servers.

422 Chapter 15 – DNS: The Domain Name System

Comments can appear anywhere that whitespace is appropriate. C, C++, and shell-
style comments are all understood:

/* This is a comment and can span lines. */
// Everything to the end of the line is a comment.
Everything to the end of the line is a comment.

Each statement begins with a keyword that identifies the type of statement. There
can be more than one instance of each type of statement, except for options and
logging. Statements and parts of statements can also be left out, invoking default be-
havior for the missing items. Table 15.10 lists the available statements; the Page col-
umn points to our discussion of each statement in the upcoming sections. Alternate
rows have been shaded to improve readability.

Before describing these statements and the way they are used to configure named,
we need to describe a data structure that is used in many of the statements: the ad-
dress match list. An address match list is a generalization of an IP address that can
include the following items:

• An IP address, either v4 or v6 (e.g., 199.165.145.4)

• An IP network specified with a CIDR11 netmask (e.g., 199.165/16)

• The name of a previously defined access control list (see page 429)

• The name of a cryptographic authentication key

• The ! character to negate things

Address match lists are used as parameters to many statements and options. Some
examples:

{ ! 1.2.3.13; 1.2.3/24; };
{ 128.138/16; 198.11.16/24; 204.228.69/24; 127.0.0.1; };

Table 15.10 Statements used in named.conf

Statement Page Function

include 423 Interpolates a file (e.g., trusted keys readable only by named)
options 423 Sets global name server configuration options and defaults
acl 429 Defines access control lists
key 430 Defines authentication information
trusted-keys 430 Uses preconfigured keys
server 431 Specifies per-server options
masters 432 Defines a list of masters for inclusion in stub and slave zones
logging 432 Specifies logging categories and their destinations
zone 432 Defines a zone of resource records
controls 436 Defines channels used to control the name server with rndc

view 438 Defines a view of the zone data
lwres – Specifies that the name server should be a resolver too

11. CIDR netmasks are described starting on page 287.

D
N

S

15.11 BIND server configuration 423

The first of these lists excludes the host 1.2.3.13 but includes the rest of the 1.2.3/24
network; the second defines the networks assigned to the University of Colorado. The
braces and final semicolon are not really part of the address match lists but are in-
cluded for illustration; they would be part of the enclosing statements of which the
address match lists are a part.

When an IP address or network is compared to a match list, the list is searched in
order until a match is found. This “first match” algorithm makes the ordering of en-
tries important. For example, the first address match list above would not have the
desired effect if the two entries were reversed, because 1.2.3.13 would succeed in
matching 1.2.3/24 and the negated entry would never be encountered.

Now, on to the statements! Some are short and sweet; others almost warrant a chap-
ter unto themselves.

The include statement

To break up or better organize a large configuration, you can put different portions of
the configuration in separate files. Subsidiary files are brought into named.conf with
an include statement:

include "path";

If the path is relative, then it is interpreted relative to the directory specified in the
directory option. A common use of the include statement is to bring in crypto-
graphic keys that should not be world-readable. Rather than closing read access to
the whole named.conf file, some sites keep keys in files with restricted permissions
that only named can read. Those files are then included into named.conf.

The options statement

The options statement specifies global options, some of which may later be overrid-
den for particular zones or servers. The general format is

options {
option;
option;
…

};

If no options statement is present in named.conf, default values are used.

BIND 8 had about 50 options, and BIND 9 has over 100. For a complete list, refer to
the BIND documentation12 or to O’Reilly’s DNS and BIND by Paul Albitz and Cricket
Liu (the fourth edition covers both BIND 8 and 9). We have biased our coverage of
these options and discuss only the ones whose use we recommend. (We also asked
the BIND developers for their suggestions on which options to cover and took their
advice.) The default values are listed in square brackets beside each option. For most
sites the defaults are just fine. The options are listed in no particular order.

12. The file doc/misc/options in the distribution contains the syntax for the configuration language and
includes all the options.

424 Chapter 15 – DNS: The Domain Name System

directory "path"; [directory where the server was started]

The directory statement causes named to cd to the specified directory. Wherever
relative pathnames appear in named’s configuration files, they are interpreted rela-
tive to this directory. The path should be an absolute path. Any output files (debug-
ging, statistics, etc.) are also written in this directory.

We recommend putting all BIND-related configuration files (other than named.conf
and resolv.conf) in a subdirectory beneath /var (or wherever you keep your config-
uration files for other programs). We use /var/named.

version "string"; [real version number of the server]
hostname "string"; [real hostname of the server]
server-id "string"; [none]

The version string identifies the version of the name server software running on the
server; the hostname string identifies the server itself, as does the server ID string.
These options let you lie about the true values. Each puts data into CHAOS-class
TXT records where curious onlookers will search for them.

There are two schools of thought on the issue of hiding the version number of the
name server software. Some sites believe that their servers will be more vulnerable
to attack if hackers can tell what version they are running. Others think that hiding
the version information is counterproductive because hackers will try their luck
anyway and most newly discovered bugs are present in all versions of the software.

We recommend that you not reset the version string. It is very handy to be able to
query your name servers and find out what version they are running (e.g., if you
want to know whether your vendor is shipping a current release, or if you need to
verify that you have in fact upgraded all your servers to the latest revision).

The hostname and server ID parameters are recent additions motivated by the use
of anycast routing to duplicate instances of the root and gTLD servers. For example,
there are 20 instances of f.root-servers.net spread around the world, and as a user or
sysadmin trying to debug things, you have no idea which of those 20 servers an-
swered (or failed to answer) your query. Querying for hostname.bind in the CHAOS
class would tell you which instance of the F root server was answering (as long as the
routing had not changed in the meantime). “Server-id” is a politically correct name
for hostname.bind, since not all name servers run BIND.

notify yes | no; [yes]
also-notify servers_ipaddrs; [empty]

If notify is set to yes and this named is the master server for one or more zones,
named automatically notifies those zones’ slave servers whenever the correspond-
ing zone database changes. The slave servers can then rendezvous with the master to
update their copies of the zone data. You can use the notify option as both a global
option and as a zone-specific option. It makes the zone files converge much more
quickly after you make changes.

D
N

S

15.11 BIND server configuration 425

See page 434 for
more information
about stub zones.

named normally figures out which machines are slave servers of a zone by looking at
that zone’s NS records. If also-notify is specified, a set of additional servers that are
not advertised with NS records can also be notified. This tweak is sometimes neces-
sary when your site has internal servers. Don’t also-notify stub servers; they are only
interested in the zone’s NS records and can wait for the regular update cycle. The
target of an also-notify must be a list of IP addresses. The localhost reverse zone is a
good place to turn notification off.

recursion yes | no; [yes]
allow-recursion { address_match_list }; [all hosts]

The recursion option specifies whether named queries other name servers on be-
half of clients, as described on page 413. It’s fairly unusual to configure a name server
with recursion off. However, you might want to allow recursion for your own clients
but not for outside queries.

Recursion can be controlled at a finer granularity with the allow-recursion option
and an address list that includes the hosts and networks on whose behalf you are
willing to perform recursive queries.

transfer-format one-answer | many-answers; [many-answers]

This option affects the way in which DNS data records are replicated from master
servers to their slaves. The actual transmission of data records used to take place one
record at a time, which is a recipe for sloth and inefficiency. An option to combine
many records into one packet (many-answers) was added in BIND 8.1; it is the
default in BIND 9. If you have a mixed environment, you can specify a transfer for-
mat in individual server statements to override the global option. Your mix of serv-
ers will dictate whether you choose many-answers globally and override it for spe-
cific servers, or vice versa.

transfers-in number; [10]
transfers-out number; [10 (V9 only)]
transfers-per-ns number; [2]
transfer-source IP-address; [system dependent]

A large site—one that serves a very large zone (such as com, which currently is over
two gigabytes) or one that serves thousands of zones—may need to tune some of
these zone transfer options.

The transfers-in and transfers-out options limit the number of inbound or out-
bound zone transfers that can happen concurrently.13 The transfers-per-ns option
sets the maximum number of inbound zone transfers that can be running concur-
rently from the same remote server. Large sites may need to increase transfers-in or
transfers-out; be careful that you don’t run out of file descriptors for the named
process. You should increase transfers-per-ns only if all remote master servers are
willing to handle more than two simultaneous zone transfers. Changing it per server

13. The BIND code enforces a hard-wired limit of 20 for the transfers-in parameter.

426 Chapter 15 – DNS: The Domain Name System

with the transfers clause of the server statement is a better way to fine-tune the
convergence of slave zones.

The transfer-source option lets you specify the IP address of the interface you want
to use for incoming transfers. It must match the address specified in the master’s
allow-transfer statement.

As with any parameter that you change drastically, you should watch things carefully
after changing one of these throttle values to be sure the machine is not thrashing.
The log files are your friends.

files number; [unlimited]
datasize number; [OS default value, system dependent]

The files option sets the maximum number of files the server is allowed to have open
concurrently. The default value is as close as possible to the number of open files
the kernel can support. (To change the number of open files that the kernel can
support, set the value of /proc/sys/fs/file-max. See page 874.)

The datasize option sets the maximum amount of data memory the server is al-
lowed to use. The units are bytes, but named understands G for gigabytes, M for
megabytes, etc. This option should not be used to try to control the cache size; it’s a
hard limit, and depending on where it is encountered in the code, may cause the
name server to crash or hang. It is usually used to increase the operating system’s
default max-memory-per-process limit. To control the size of the cache, use the
max-cache-size and recursive-clients options instead.

max-cache-size number; [unlimited]
recursive-clients number; [1000]

The max-cache-size option limits the amount of memory that the server may use
for caching answers to queries. If the cache grows too large, records will be removed
from the cache before their TTL expires to ensure that cache memory usage remains
within the stated limit.

The recursive-clients option limits the number of simultaneous recursive queries
that the server will process. Each recursive query consumes a chunk of memory in
the server; servers that have limited memory may need to set this limit lower than
the default value.

query-source address ip_addr port ip_port; [random]
listen-on port ip_port address_match_list; [53 any]

The query-source option specifies the interface and port that named uses to query
other name servers. The listen-on option specifies the network interfaces and ports
on which named listens for queries. The values of these options default to the stan-
dard named behavior: listening on port 53 on all interfaces and using a random,
high-numbered UDP port and any interface for queries.

If your site has a firewall, you may want to use the query-source option to give ex-
ternal DNS queries a specific, recognizable profile. Some sites set named to use port

D
N

S

15.11 BIND server configuration 427

53 as the source port (as well as the listened-to port) so that the firewall can recog-
nize outbound DNS traffic as being trustworthy packets from one of your name
servers. However, this convention makes it hard for a packet filter to distinguish be-
tween inbound and outbound DNS traffic. You can use another port instead of 53 as
long as the firewall knows which ports are which.

Don’t set the source port to zero—that’s an illegal port and named will log the query
as an error and not answer it. One large ISP has a sysadmin who likes port 0 and has
rendered many of their name servers ineffective through his use of the query-
source clause. It’s curious that their customers don’t notice and complain.

avoid-v4-udp-ports { port_list }; [empty]
avoid-v6-udp-ports { port_list }; [empty]

If you don’t use the query-source option, BIND 9 typically uses any outgoing inter-
face and assigns the source port for a query randomly from the unprivileged port
range (>1023). This is a problem if your site’s firewall blocks certain ports in this
range. For example, some firewalls incorrectly consider port 1024 to be part of the
privileged port range or correctly block port 2049 (SunRPC) from the outside world.
When your name server sends a query and uses one of the blocked ports as its source,
the firewall blocks the answer, and the name server eventually gives up waiting and
sends out the query again. Not fatal, but annoying to the user caught in the crossfire.

To avoid this problem, use the avoid-v4-udp-ports option to make BIND stay away
from the blocked ports. Any high-numbered UDP ports blocked by your firewall
should be included in the list.14 If you update your firewall in response to some
threatened attack, be sure to update the port list here, too.

forwarders { in_addr; in_addr; … }; [empty list]
forward only | first; [first]

Instead of having every name server perform its own external queries, you can des-
ignate one or more servers as forwarders. A run-of-the-mill server can look in its
cache and the records for which it is authoritative; if it doesn’t find the answer it’s
looking for, it can then send the query on to a forwarder host. That way, the forward-
ers build up caches that benefit the entire site. The designation is implicit—there is
nothing in the configuration file of the forwarder to say “Hey, you’re a forwarder.”

The forwarders option lists the IP addresses of the servers you want to use as for-
warders. They are queried in turn. The use of a forwarder circumvents the normal
DNS procedure of starting at a root server and following the chain of referrals. Be
careful not to create forwarding loops.

A forward only server caches values and queries forwarders, but it never queries
anyone else. If the forwarders do not respond, queries will fail. A forward first server
prefers to deal with forwarders but will query directly if need be.

14. Some firewalls are stateful and may be smart enough to recognize the DNS answer as being paired with
the corresponding query of a second ago. Such firewalls don’t need help from this option.

428 Chapter 15 – DNS: The Domain Name System

Since the forwarders option has no default value, forwarding does not occur unless
it has been specifically configured. You can turn on forwarding either globally or
within individual zone statements.

allow-query { address_match_list }; [all hosts]
allow-transfer { address_match_list }; [all hosts]
blackhole { address_match_list }; [empty]

These options specify which hosts (or networks) can query your name server and
request block transfers of your zone data. The blackhole address list identifies serv-
ers that you never want to talk to; named will not accept queries from these servers
and will not ask them for answers.

sortlist { address_match_list }; [should die, don’t use]

We mention the sortlist option only to warn you away from it. Its original purpose
was to assist primitive resolvers that don’t sort record sets properly. It lets you spec-
ify the order in which multiple answers are returned and works against current
BINDs’ internal smarts.

Other BIND options that meddle with the order of things are the rrset-order state-
ment, which specifies whether to return multiple answers in cyclic (round robin),
fixed, or random order, and the topology statement, which tries to second-guess
BIND’s system for selecting remote servers to query. In most cases there is no need
to use these statements either.

lame-ttl number; [600 (10 minutes)]
max-ncache-ttl number; [10800 (3 hours)]
max-cache-ttl number; [604800 (1 week)]

The TTL options set limits on the time-to-live values that control the caching of
positive, negative, and no-response query results. All incoming resource records ar-
rive with their own TTLs, but these options let the local server set its own limits in
an effort to reduce the memory consumed by cached data. The max- options cap
the TTL values and will never increase them. The DNS specifications require that
the TTL for negative answers (“no such domain,” for example) be smaller than the
TTL for real data.

lame-ttl specifies the number of seconds to cache a lame server indication. The
maximum value is 1800 seconds or 30 minutes. Most lame servers (see page 475)
stay lame indefinitely because their owners don’t know they are not in sync with
their parent zone. Setting this parameter to the maximum value should be fine.
max-ncache-ttl sets the TTL limit for negative caching. It defaults to three hours
and has a maximum value of one week. max-cache-ttl sets the maximum TTL for a
positive answer to a query.

enable-dnssec yes | no; [no]

This option configures support for DNSSEC. The current default is no, but hopefully
in a year or two it can be toggled to yes.

D
N

S

15.11 BIND server configuration 429

edns-udp-size number; [4096]

The ancient default size for UDP packets is 512 bytes; all machines on the Internet are
required to be able to reassemble a fragmented UDP packet of 512 bytes or less. Al-
though this limit made sense in the 1980s, it no longer does. The limit now seriously
affects programs such as name servers that use UDP for queries and responses.

BIND 9 sets the default UDP packet size to 4096 bytes (the maximum allowed) to
accommodate new features such as DNSSEC, IPv6, and internationalized domain
names. However, some (broken) firewalls will not allow UDP packets larger than 512
bytes; if you are behind one, you will need this option as a work-around until you fix
your firewall. Legal values range from 512 to 4096 bytes.

ixfr-from-differences yes | no; [no]

Incremental zone transfers (IXFRs) were previously supported only for zones that
used dynamic updates (which are described starting on page 448). With this option,
zones that are maintained by hand (i.e., with a text editor) can now take advantage of
incremental zone transfers as well. IXFRs save network bandwidth at the expense of
a bit of CPU and memory to sort the zone records and to calculate and apply the
diffs. This option uses the same robust journaling employed by dynamic updates.

root-delegation-only exclude { namelist };[empty]
zone "name" { type delegation-only; };

See page 386 for more
background regarding
Site Finder.

VeriSign’s Site Finder tool attempts to reroute everyone’s typos to their own servers
by using a wild card DNS record. Attempts are being made to address this form of
hijacking through political means, but in the meantime BIND 9 has implemented a
delegation-only zone type, a delegation-only zone option, and the global option
root-delegation-only as stopgap measures. These options restrict root and TLD
servers to providing delegation information (name server records and name servers’
addresses) and forbids them to supply host data. With them enabled, your local
caching servers will return “no such domain” as the answer to mistyped queries.

The exclude clause was added because not all TLDs are delegation-only zones. For
example, museum, us, and de are not, but com, net, and org should be. The follow-
ing excerpt from the cs.colorado.edu domain’s zone files illustrates the use of this
new zone type to neutralize Site Finder.

// to deal with VeriSign Site Finder crap
zone "com" { type delegation-only; };
zone "net" { type delegation-only; };

The acl statement

An access control list is just an address match list with a name:

acl acl_name {
address_match_list

};

You can use an access control list anywhere that an address match list is called for.

430 Chapter 15 – DNS: The Domain Name System

An acl must be a top-level statement in named.conf, so don’t try sneaking it in amid
your other option declarations. named.conf is read in a single pass, so access control
lists must be defined before they are used. Four lists are predefined:

• any – all hosts

• localnets – all hosts on the local network

• localhost – the machine itself

• none – nothing

The localnets list includes all of the networks to which the host is directly attached.
In other words, it’s a list of the machine’s network addresses modulo their netmasks.

The key statement

The key statement defines a named encryption key to be used for authentication
with a particular server. Background information about BIND’s support for crypto-
graphic authentication is given in the Security issues section starting on page 451.
Here, we touch briefly on the mechanics of the process.

To build a key record, you specify both the cryptographic algorithm that you want to
use and a “shared secret” (i.e., password) represented as a base-64-encoded string:

key key-id {
algorithm string;
secret string;

};

As with access control lists, the key-id must be defined with a key statement before it
is used. To associate the key with a particular server, just include key-id in the keys
clause of that server’s server statement. The key is used both to verify requests from
that server and to sign the responses to those requests.

The trusted-keys statement

The trusted-keys statement for DNSSEC security is specified in RFC2535. Each en-
try is a 5-tuple that identifies the domain name, flags, protocol, algorithm, and key
that are needed to verify data in that domain. The format is:

trusted-keys {
domain flags protocol algorithm key;
domain flags protocol algorithm key;
…

}

Each line represents the trusted key for a particular domain. The flags, protocol, and
algorithm are nonnegative integers. The key is a base-64-encoded string.

The trusted-keys construct is intended to be used when a zone is signed but its par-
ent zone is not, so you cannot be sure that the public key for the zone that you get
from DNS is really kosher. Entering a trusted key with a trusted-keys statement (us-
ing out-of-band methods) ensures that you really have the appropriate key for the
domain in question.

D
N

S

15.11 BIND server configuration 431

DNSSEC is covered in more detail starting on page 456.

The server statement

named can potentially talk to many servers, not all of which are running the latest
version of BIND, and not all of which are even nominally sane. The server statement
tells named about the characteristics of its remote peers.

server ip_addr {
bogus yes | no; [no]
provide-ixfr yes | no; [yes]
request-ixfr yes | no; [yes]
edns yes | no; [yes]
transfers number; [2]
transfer-format one-answer | many-answers; [many-answers]
keys { key-id; key-id; … };
transfer-source ip-address [port]
transfer-source-v6 ipv6-address [port]

};

You can use a server statement to override the values of server-related configuration
options. Just list the ones for which you want nondefault behavior.

If you mark a server as being bogus, named won’t send any queries its way. This
directive should be reserved for servers that really are bogus. bogus differs from the
global option blackhole in that it suppresses only outbound queries. By contrast,
the blackhole option completely eliminates all forms of communication with the
listed servers.

A BIND 9 name server acting as master for a zone will perform incremental zone
transfers if provide-ixfr is set to yes. Likewise, a server acting as a slave will request
incremental zone transfers from the master if request-ixfr is set to yes.

The edns clause determines whether the local server will try to use the extended
DNS protocol when contacting the remote server. Many of the newer features in
BIND (IPv6 and DNSSEC, for example) generate packets bigger than 512 bytes and
therefore require the use of the EDNS protocol to negotiate a larger UDP packet size.

Slave servers stay synchronized with their master server by receiving a zone transfer
when data has changed (see page 447 for more information about zone transfers).
The transfers clause limits the number of concurrent inbound zone transfers from
the remote server. It is a server-specific version of transfers-in, but because it applies
to only one server, it acts like a per-server override of the transfers-per-ns option.
The name is different to preserve compatibility with BIND 8.

The transfer-format clauses are the server-specific forms of the options discussed
on page 425. Use transfer-format if you talk to both BIND 8/9 and BIND 4 servers,
or if you have old Microsoft name servers on your network. Windows NT cannot
handle anything but the one-answer format; Windows 2000 and later are OK with
either format, though early versions cannot cope with DNS messages larger than 16K.

432 Chapter 15 – DNS: The Domain Name System

The keys clause identifies a key ID that has been previously defined in a key state-
ment for use with TSIG transaction signatures (see page 453). Any requests sent to
the remote server are signed with this key. Requests originating at the remote server
are not required to be signed, but if they are, the signature will be verified.

The transfer-source clauses give the IPv4 or IPv6 address of the interface (and op-
tionally, the port) that should be used as a source address (port) for zone transfer
requests. This clause is only needed when the system has multiple interfaces and the
remote server has specified a specific IP address in its allow-transfer clause.

The masters statement

How can there be
more than one master?
See page 434.

The masters statement lets you name a set of one or more master servers by speci-
fying their IP addresses and cryptographic keys. You can then use this name in the
masters clause of zone statements instead of repeating the IP addresses and keys.

The masters facility can be helpful when multiple slave or stub zones get their data
from the same remote servers. If the addresses or cryptographic keys of the remote
servers change, you can update the masters statement that introduces them rather
than changing many different zone statements.

The syntax is

masters name { ip_addr [port ip_port] [key key] ; ... } ;

The logging statement

named is the current holder of the “most configurable logging system on Earth”
award. Syslog put the prioritization of log messages into the programmer’s hands and
the disposition of those messages into the sysadmin’s hands. But for a given priority,
the sysadmin had no way to say, “I care about this message but not about that mes-
sage.” BIND 8 added categories that classify log messages by type, and channels that
broaden the choices for the disposition of messages. Categories are determined by
the programmer, and channels by the sysadmin.

Since the issue of logging is somewhat tangential (especially given the amount of ex-
planation required), we discuss it in the debugging section beginning on page 466.

The zone statement

zone statements are the heart of the named.conf file. They tell named about the
zones for which it is authoritative and set the options that are appropriate for man-
aging each zone. A zone statement is also used to preload the root server hints—the
names and addresses of the root servers, which bootstrap the DNS lookup process.

The exact format of a zone statement varies, depending on the role that named is to
play with respect to that zone. To be specific, the possible zone types are master,
slave, hint, forward, stub, and delegation-only. We describe the delegation-only
type on page 429. The others are described in the following brief sections.

D
N

S

15.11 BIND server configuration 433

Many of the global options covered earlier can become part of a zone statement
and override the previously defined values. We have not repeated those options
here, except to mention certain ones that are frequently used.

Configuring the master server for a zone

Here’s the format you need for a zone of which this named is the master server:

zone "domain_name" {
type master;
file "path";

};

The domain_name in a zone specification must always appear in double quotes.

The zone’s data is kept on disk in a human-readable (and human-editable) file. Since
there is no default for the filename, you must provide a file statement when declar-
ing a master zone. A zone file is just a collection of DNS resource records in the
format described starting on page 389.

Other server-specific attributes are also frequently specified within the zone state-
ment. For example:

allow-query { address_match_list }; [any]
allow-transfer { address_match_list }; [any]
allow-update { address_match_list }; [none]
zone-statistics yes | no [no]

The access control options are not required, but it’s a good idea to use them. If dy-
namic updates are used for this zone, the allow-update clause must be present with
an address match list that limits the hosts from which updates can occur. Dynamic
updates apply only to master zones; the allow-update clause cannot be used for a
slave zone. Be sure that this clause includes just your local DHCP servers and not the
whole Internet.15

The zone-statistics option makes named keep track of query/response statistics
such as the number and percentage of responses that were referrals, that demanded
recursion, or that resulted in errors. See the examples on page 473.

With all these zone-specific options (and about 30 more we have not covered), the
configuration is starting to sound complicated. However, a master zone declaration
consisting of nothing but a pathname to the zone file is perfectly reasonable. In BIND
4, that’s all you could specify. Here is an example, which we have modified slightly,
from the BIND documentation:

zone "example.com" {
type master;
file "forward/example.com";
allow-query { any; };
allow-transfer { my-slaves; };

}

15. You also need ingress filtering at your firewall; see page 701. Better yet, use TSIG for authentication.

434 Chapter 15 – DNS: The Domain Name System

Here, my-slaves would be an access control list you had previously defined.

Configuring a slave server for a zone

The zone statement for a slave is similar to that of a master:

zone "domain_name" {
type slave | stub;
file "path";
masters { ip_addr [port ip_port] [key keyname]; … }; [no default]
allow-query { address_match_list }; [any]
allow-transfer { address_match_list }; [any]

};

Slave servers normally maintain a complete copy of their zone’s database. However,
if the type is set to stub instead of slave, only NS (name server) records are trans-
ferred. Stub zones allow the nameds for the parent zone to automatically discover
which machines provide DNS service for their delegated child zones, just in case the
administrator of the child zone is not conscientious about informing the parent of
changes. The parent needs this information in order to make appropriate referrals
or recursive queries.

The file statement specifies a local file in which the replicated database can be stored.
Each time the server fetches a new copy of the zone, it saves the data in this file. If the
server crashes and reboots, the file can then be reloaded from the local disk without
being transferred across the network.

You shouldn’t edit this cache file, since it’s maintained by named. However, it can be
interesting to look at if you suspect you have made an error in the master server’s data
file. The slave’s disk file shows you how named has interpreted the original zone data;
relative names and origin directives have all been expanded. If you see a name in the
data file that looks like one of these

128.138.243.151.cs.colorado.edu.
anchor.cs.colorado.edu.cs.colorado.edu.

you can be pretty sure that you forgot a trailing dot somewhere.

The masters clause lists the IP addresses of one or more machines from which the
zone database can be obtained. It can also contain the name of a masters list defined
with a previous masters statement.

We have said that only one machine can be the master for a zone, so why is it possi-
ble to list more than one address? Two reasons. First, the master machine might have
more than one network interface and therefore more than one IP address. It’s possi-
ble for one interface to become unreachable (because of network or routing prob-
lems) while others are still accessible. Therefore, it’s a good practice to list all of the
master server’s topologically distinct addresses.

Second, named really doesn’t care where the zone data comes from. It can pull the
database just as easily from a slave server as from the master. You could use this

D
N

S

15.11 BIND server configuration 435

feature to allow a well-connected slave server to serve as a sort of backup master,
since the IP addresses will be tried in order until a working server is found. In the-
ory, you can also set up a hierarchy of servers, with one master serving several sec-
ond-level servers, which in turn serve many third-level servers.

Setting up the root server hints

Another form of zone statement points named toward a file from which it can pre-
load its cache with the names and addresses of the root name servers:

zone "." {
type hint;
file "path";

};

The “hints” are a set of DNS records that list servers for the root domain. They’re
needed to give named a place to start searching for information about other sites’
domains. Without them, named would only know about the domains it serves and
their subdomains.

When named starts, it reloads the hints from one of the root servers. Ergo, you’ll be
fine as long as your hints file contains at least one valid, reachable root server.

BIND 9 has root server hints compiled into its code, so no configuration of the root
zone is really needed. If you provide a hints file, however, BIND 9 will use it. We
recommend that you do supply explicit hints; politics have entered the DNS arena,
making root name servers and their IP addresses more volatile.

The hints file is often called root.cache. It contains the response you would get if
you queried a root server for the name server records in the root domain. In fact,
you can generate the hints file in exactly this way by running dig:

$ dig @f.root-servers.net . ns > root.cache

Mind the dot. If f.root-servers.net is not responding, you can run the query without
specifying a particular server:

$ dig . ns > root.cache

The output will be similar; however, you will be obtaining the list of root servers from
the cache of a local name server, not from an authoritative source. That should be just
fine—even if you have not rebooted or restarted your name server for a year or two,
it has been refreshing its root server records periodically as their TTLs expire.

Here’s what the cache file looks like (abridged from dig @f.root-servers.net . ns):

; <<>> DiG 9.3.0rc1 <<>> @f.root-servers.net . ns
;; global options: printcmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 28797
;; flags: qr aa rd; QUERY: 1, ANSWER: 13, AUTHORITY: 0, ADDITIONAL: 13

436 Chapter 15 – DNS: The Domain Name System

;; QUESTION SECTION:
;. IN NS

;; ANSWER SECTION:
. 518400 IN NS I.ROOT-SERVERS.NET.
. 518400 IN NS J.ROOT-SERVERS.NET.
. 518400 IN NS K.ROOT-SERVERS.NET.
. 518400 IN NS L.ROOT-SERVERS.NET.
…
;; ADDITIONAL SECTION:
I.ROOT-SERVERS.NET. 3600000 IN A 192.36.148.17
J.ROOT-SERVERS.NET. 3600000 IN A 192.58.128.30
K.ROOT-SERVERS.NET. 3600000 IN A 193.0.14.129
L.ROOT-SERVERS.NET. 3600000 IN A 198.32.64.12
…
;; Query time: 3 msec
;; SERVER: 192.5.5.241#53(f.root-servers.net)
;; WHEN: Wed Jul 7 13:54:26 2004
;; MSG SIZE rcvd: 436

Note the dots that begin the first set of records; they are not fly specks but rather they
define the domain (the root) to which the NS records apply.

Setting up a forwarding zone

A zone of type forward overrides named’s global forwarding settings (described on
page 427) for a particular domain:

zone "domain_name" {
type forward;
forward only | first;
forwarders { ip_addr; ip_addr; … };

};

You might use a forward zone if your organization had a strategic working relation-
ship with some other group or company and you wanted to funnel traffic directly to
that company’s name servers, bypassing the standard query path.

The controls statement

The controls statement specifies how rndc controls a running named process. rndc
can start and stop named, dump its state, put it in debug mode, etc. rndc is a net-
work program, and with improper configuration it might let anyone on the Internet
mess around with your name server. The syntax is

controls {
inet ip_addr port ip-port allow { address_match_list } keys { key_list };

}

The port that rndc uses to talk to named defaults to port 953 if it is not specified
with the port clause.

D
N

S

15.11 BIND server configuration 437

Allowing your name server to be controlled remotely is both handy and dangerous.
Strong authentication through a key entry in the allow clause is required; keys in
the address match list are ignored and must be explicitly stated in the keys clause of
the controls statement.

In BIND 9, you can use the rndc-confgen command to generate an authentication
key for use between rndc and named. There are essentially two ways to set this up:
you can have both named and rndc consult the same configuration file to learn the
key (/etc/rndc.key), or you can include the key in both the rndc and named config-
uration files (/etc/rndc.conf for rndc and /etc/named.conf for named). The latter
option is more complicated, but it’s necessary when named and rndc will be run-
ning on different computers.

When no controls statement is present, BIND 9 defaults to the loopback address for
the address match list and looks for the key in /etc/rndc.key. Because strong au-
thentication is mandatory in BIND 9, you cannot use the rndc command to control
named if there is no key. This may seem a bit draconian, but consider: even if rndc
worked only from (127.0.0.1) and this address was blocked from the outside world
at your firewall, you would still be trusting all local users to not mess with your name
server. Any user could telnet to the control port and type “stop”—quite an effective
denial of service attack.

Here is an example of the output (to standard out) from rndc-confgen when a 256-
bit key is requested. We chose 256 because it fits on the page. You would normally
choose a longer key and redirect the output to /etc/rndc.conf. The comments at the
bottom of the output show the lines that need to be added to named.conf to make
named and rndc play together.

$./rndc-confgen -b 256
Start of rndc.conf
key "rndc-key" {

algorithm hmac-md5;
secret "orZuz5amkUnEp52zlHxD6cd5hACldOGsG/elP/dv2IY=";

};

options {
default-key "rndc-key";
default-server 127.0.0.1;
default-port 953;

};
End of rndc.conf

Use with the following in named.conf, adjusting the allow list as needed:
key "rndc-key" {
algorithm hmac-md5;
secret "orZuz5amkUnEp52zlHxD6cd5hACldOGsG/elP/dv2IY=";
};
#

438 Chapter 15 – DNS: The Domain Name System

controls {
inet 127.0.0.1 port 953
allow { 127.0.0.1; } keys { "rndc-key"; };
};
End of named.conf

“Automatic” mode, used to generate a shared configuration file, is simpler. Run as
root, rndc-confgen -a -b 256 produces the file /etc/rndc.key, which contains

key "rndc-key" {
algorithm hmac-md5;
secret "laGbZj2Cobyc0m/jFVNCu8OJzsLKNH+CCb2JCWY6yJw=";

};

The file has mode 600 and should be owned by the named user or root. It can then
be incorporated into the named.conf file with the include statement.

Split DNS and the view statement

Many sites want the internal view of their network to be different from the view seen
from the Internet. For example, you might reveal all of a zone’s hosts to internal users
but restrict the external view to a few well-known servers. Or, you might expose the
same set of hosts in both views but supply additional (or different) records to inter-
nal users. For example, the MX records for mail routing might point to a single mail
hub machine from outside the domain but point to individual workstations from the
perspective of internal users.

See page 289 for more
information about pri-
vate address spaces.

A split DNS configuration is especially useful for sites that use RFC1918 private IP
addresses on their internal networks. For example, a query for the hostname associ-
ated with IP address 10.0.0.1 can never be answered by the global DNS system, but it
is meaningful within the context of the local network. Of the queries arriving at the
root name servers, 4%-5% are either from an IP address in one of the private address
ranges or about one of these addresses. Neither can be answered; both are the result
of misconfiguration, either of BIND’s split DNS or Microsoft’s “domains.”

The view statement packages up an access list that controls which clients see which
view, some options that apply to all the zones in the view, and finally, the zones
themselves. The syntax is

view view-name {
match-clients { address_match_list } ;
view_option; …
zone_statement; …

} ;

The match-clients clause controls who can see the view. Views are processed in or-
der, so put the most restrictive views first. Zones in different views can have the same
names, but take their data from different files. Views are an all-or-nothing proposi-
tion; if you use them, all zone statements in your named.conf file must appear in the
context of a view.

D
N

S

15.12 BIND configuration examples 439

Here is an example from the BIND 9 documentation. The two views define the same
zone, but with different data

view "internal" {
match-clients { our_nets; }; // only internal networks
recursion yes; // internal clients only
zone "example.com" { // complete view of zone

type master;
file "example-internal.db";

};
};

view "external" {
match-clients { any; }; // allow all queries
recursion no; // but no recursion
zone "example.com" { // only "public" hosts

type master;
file "example-external.db";

}
};

If the order of the views were reversed, no one would ever see the internal view. Inter-
nal hosts would match the any value in the match-clients clause of the external view
before they reached the internal view.

Our second DNS configuration example starting on page 441 provides some addi-
tional examples of views.

15.12 BIND CONFIGURATION EXAMPLES

Now that we have explored the wonders of named.conf, let’s look at some complete
examples. In the following sections, we discuss several sample configurations:

• The localhost zone

• A small security company that uses split DNS

• The experts: isc.org, the Internet Systems Consortium

The localhost zone

The address 127.0.0.1 refers to a host itself and should be mapped to the name “local-
host.”.16 Some sites map the address to “localhost.localdomain.” and some do both.
The corresponding IPv6 address is ::1.

If you forget to configure the localhost zone, your site may end up querying the root
servers for localhost information. The root servers receive so many of these queries
that the operators are considering adding a generic mapping between localhost and
127.0.0.1 at the root level. In measurements at the root server named F in San Fran-
cisco in March, 2004, localhost was the third most popular domain queried, just
behind arpa and com. That’s a lot of useless queries for a busy name server.

16. Actually, the whole class A network 127/8 refers to localhost but most folks just use 127.0.0.1.

440 Chapter 15 – DNS: The Domain Name System

The forward mapping for the name localhost.localdomain can be defined in the for-
ward zone file for the domain or in its own file. Each server, even a caching server, is
usually the master for its own reverse localhost domain.

Here are the lines in named.conf that configure localhost:

zone "localhost" {// localhost forward zone
type master;
file "for/localhost";
allow-update { none; };

};

zone "0.0.127.in-addr.arpa" {// localhost reverse zone
type master;
file "rev/127.0.0";
allow-update { none; };

};

The corresponding forward zone file, for/localhost, contains

$TTL 30d
; localhost.
@ IN SOA localhost. postmaster.localhost. (

1998050801 ;serial
3600 ;refresh
1800 ;retry
604800 ;expiration
3600) ;minimum

NS localhost.
A 127.0.0.1

and the reverse file, rev/127.0.0:

$TTL 30d
; 0.0.127.in-addr.arpa
@ IN SOA localhost. postmaster.localhost. (

1998050801 ;serial
3600 ;refresh
1800 ;retry
604800 ;expiration
3600) ;minimum

NS localhost.
1 PTR localhost.

The mapping for the localhost address (127.0.0.1) never changes, so the timeouts
can be large. Note the serial number, which encodes the date; the file was last
changed in 1998. Also note that only the master name server is listed for the local-
host domain. The meaning of @ here is “0.0.127.in-addr.arpa.”.

D
N

S

15.12 BIND configuration examples 441

A small security company

Our first real example is for a small company that specializes in security consulting.
They run BIND 9 on a recent version of Red Hat Enterprise Linux and use views to
implement a split DNS system in which internal and external users see different host
data. They also use private address space internally; queries about those addresses
should never escape to the Internet to clutter up the global DNS system. Here is their
named.conf file, reformatted and commented a bit:

options {
directory "/var/domain";
version "root@atrust.com";
allow-transfer {82.165.230.84; 71.33.249.193; 127.0.0.1; };
listen-on { 192.168.2.10; 192.168.2.1; 127.0.0.1; 192.168.2.12; };

};

include "atrust.key"; // defn of atkey in mode 600 file

controls {
inet 127.0.0.1 allow { 127.0.0.1; } keys { atkey; };

};

view "internal" { // internal view

match-clients { 192.168.0.0/16; 206.168.198.192/28; 172.29.0.0/24; };
recursion yes;

zone "." IN { // root hints zone
type hint;
file "named.cache";

};
zone "localhost" IN { // localhost forward zone

type master;
file "localhost.forw";
allow-update { none; };

};
zone "0.0.127.in-addr.arpa" IN { // localhost reverse zone

type master;
file "localhost.rev";
allow-update { none; };

};
zone "atrust.com" IN { // internal forward zone

type master;
file "internal/atrust.com";

};
zone "1.168.192.in-addr.arpa" IN { // internal reverse zone

type master;
file "internal/192.168.1.rev";
allow-update { none; };

}; // lots more reverse zones omitted

442 Chapter 15 – DNS: The Domain Name System

zone "atrust.us" { // slave in internal view
type slave;
file "internal-slave/atrust.us";
masters { 127.0.0.1; };

};
zone "atrust.org" {

type slave;
file "internal-slave/atrust.org";
masters { 127.0.0.1; };

}; // lots more zones omitted
}; // end of internal view

view "world" { // external view

match-clients { any; };
recursion no;

// zone statements for dot and localhost as above, omitted for brevity

zone "atrust.com" { // external forward zone
type master;
file "world/atrust.com";
allow-update { none; };

};
zone "189.173.63.in-addr.arpa" { // external reverse zone

type master;
file "world/63.173.189.rev";
allow-update { none; };

};
zone "atrust.us" { // master in world view

type master;
file "world/appliedtrust.com-aggregate";
allow-update { none; };

};
zone "atrust.org" { // note that the file is the same

type master;
file "world/appliedtrust.com-aggregate";
allow-update { none; };

}; // lots more atrusty zones omitted
zone "admin.com" { // master zones only in world view

type master;
file "world/admin.com";
allow-update { none; };

}; // lots more master zones omitted
zone "eldoraskipatrol.org" { // slave zones only in world view

type slave;
file "world-slave/eldoraskipatrol.org";
masters { 192.231.139.1; };

}; // lots more slave zones omitted
}; // end of external view

The file atrust.key contains the definition of the key named “atkey”.

D
N

S

15.12 BIND configuration examples 443

key "atkey" {
algorithm hmac-md5;
secret "shared secret key goes here";

};

The zones are organized by their view and type (master/slave), and the naming con-
vention for zone data files reflects this same scheme. This server is recursive for the
internal view, which includes all the local hosts, including many that use private ad-
dressing. The server is not recursive for the external view, which contains only se-
lected hosts at atrust.com and the external zones for which they provide either mas-
ter or slave DNS service.

Snippets of the files internal/atrust.com and world/atrust.com are shown below.
First, the internal file:

; atrust.com - internal file
$TTL 86400
$ORIGIN com.
atrust 3600 SOA ns1.atrust.com. trent.atrust.com. (
 2004012900 10800 1200 3600000 3600)

3600 NS NS1.atrust.com.
3600 NS NS2.atrust.com.
3600 MX 10 mailserver.atrust.com.
3600 A 66.77.122.161

$ORIGIN atrust.com.
ns1 A 192.168.2.11
ns2 A 66.77.122.161
www A 66.77.122.161
mailserver A 192.168.2.11
exchange A 192.168.2.100
secure A 66.77.122.161
bark A 192.168.2.10
superg A 192.168.1.249
at-dmz-gw A 192.168.1.254
at-external-gw A 192.168.2.254
at-external-outside-gw A 206.168.198.220
indras-gw A 206.168.198.222
; dhcp host range
dhcp-0-hardwire IN A 192.168.1.64
dhcp-1-hardwire IN A 192.168.1.65
; ...

; booklab "subdomain", note that this is a subdomain but not a subzone

redhat.booklab IN A 192.168.10.1
redhat-ent.booklab IN A 192.168.10.2
debian.booklab IN A 192.168.10.3
fedora.booklab IN A 192.168.10.4
freebsd.booklab IN A 192.168.10.5
suse.booklab IN A 192.168.10.6
macos.booklab IN A 192.168.10.7
solaris.booklab IN A 192.168.10.8

444 Chapter 15 – DNS: The Domain Name System

Here is the external view of that same domain from world/atrust.com:

; atrust.com - external file
$TTL 57600
$ORIGIN .
atrust.com SOA ns1.atrust.com. trent.atrust.com. (

2004020400 10800 1200 3600000 3600)
NS NS1.atrust.com.
NS NS2.atrust.com.
MX 10 mailserver.atrust.com.
A 66.77.122.161

ns1.atrust.com. A 206.168.198.209
ns2.atrust.com. A 66.77.122.161

$ORIGIN atrust.com.
www A 66.77.122.161
mailserver A 206.168.198.209
bark A 206.168.198.209
secure A 66.77.122.161

; reverse maps
exterior1 A 206.168.198.209
209.198.168.206 PTR exterior1.atrust.com.
exterior2 A 206.168.198.213
213.198.168.206 PTR exterior2.atrust.com.
exterior3 A 206.168.198.220
220.198.168.206 PTR exterior3.atrust.com.
exterior4 A 206.168.198.210
210.198.168.206 PTR exterior4.atrust.com.

Notice that when multiple names for the same machine are needed, they are pre-
sented as additional A records rather than as CNAME records. Very few hosts are
actually visible in the external world view.

The TTL in these zone files is set to 16 hours (57,600 seconds). For internal zones,
the TTL is a day (86,400 seconds). Most individual records in zone files are not as-
signed an explicit TTL value. The TTL is optional; it can be added to any individual
line in the zone file just before the record type.

The bizarre PTR records at the end of the external file allow atrust.com’s ISP to dele-
gate the reverse mapping of a very small piece of address space. CNAME records at
the ISP’s site make this variation of the CNAME hack work; see page 400 for more
information.

The Internet Systems Consortium, isc.org

ISC are the author and maintainer of BIND as well as operator of the F root name
server. They are also a TLD server that serves about 60 top-level domains. That’s
why we call them the experts!

Below are snippets from their configuration files. Notice that they are using both
IPv4 and IPv6. They also use TSIG encryption to authenticate between master and

D
N

S

15.12 BIND configuration examples 445

slave servers for zone transfers. The transfer-source options ensure that the source
IP addresses for outgoing zone transfer requests conform to the allow-transfers
statements on the master servers.

The named.conf file:

// isc.org TLD name server

options {
directory "/var/named";
datasize 1000M;
listen-on { 204.152.184.64; };
listen-on-v6 { 2001:4f8:0:2::13; };
recursion no;
transfer-source 204.152.184.64;
transfer-source-v6 2001:4f8:0:2::13;

};

// rndc key
key rndc_key {

algorithm hmac-md5;
secret "<secret>";

};

// TSIG key for name server ns-ext
key ns-ext {

algorithm hmac-md5;
secret "<secret>";

};

server 204.152.188.234 { keys { ns-ext; }; };

controls {
inet 204.152.184.64 allow { any; } keys { rndc_key; };

};

include "inf/named.zones"; // root, localhost, 127.0.0.1, ::1
include "master.zones"; // zones we master
include "slave.zones"; // lots of slaves

These include statements keep the named.conf file short and tidy. If you serve lots
of zones, consider breaking up your configuration into bite-sized pieces like this.
More importantly, set up your filesystem hierarchy so that you don’t have a directory
with a thousand zone files in it. Modern Linux filesystems handle large directories
efficiently, but they can be a management hassle.

Here’s more from the file master.zones:

zone "isc.org" { // ISC
type master;
file "master/isc.org";
allow-update { none; };
allow-transfer { none; };

};

446 Chapter 15 – DNS: The Domain Name System

zone "sfo2.isc.org" { // ISC
type master;
file "master/sfo2.isc.org";
allow-update { none; };
allow-transfer { none; };

};

// lots of zones truncated

And from slaves.zones:

zone "vix.com" {
type slave;
file "secondary/vix.com";
masters { 204.152.188.234; };

};

zone "cix.net" {
type slave;
file "secondary/cix.net";
masters { 204.152.188.234; };

};

With DNS background and BIND configuration out of the way, we now turn to the
more operational issues of running a name service at your site, including the mainte-
nance of zone files, security issues, testing, and debugging.

15.13 STARTING NAMED

The existence of BIND on Linux distributions depends both on the distribution and
on the options selected when the distribution was installed. If BIND does not seem
to be installed, you will have to obtain and install the BIND package. The package
also installs a startup script for named that’s run through init: /etc/init.d/named
for RHEL, Fedora, and SUSE, and /etc/init.d/bind9 for Debian and Ubuntu.

named is started at boot time and runs continuously. To control a running copy of
named, you use the command-line interface rndc, which is described in more de-
tail starting on page 471.

Sometimes the init scripts that start named provide extra entry points (e.g., reload)
that are intended for use by system administrators. However, the implementation on
some distributions is questionable, and it’s easier to use rndc anyway. We suggest
that you leave the startup scripts to your operating system and init and use rndc for
control after named has been started.

See page 887 for
more information
about inetd.

named uses syslog, and therefore syslogd should be started before named. Do not
use inetd or xinetd to manage named; it will restart named every time it’s needed,
thereby slowing response times and preventing any useful cache from being devel-
oped. Some sites use a keep-running script that puts the named startup command
in an infinite loop to protect against named’s death; see page 417 for an example.
The BIND distribution includes a script called nanny that serves a similar purpose.

D
N

S

15.14 Updating zone files 447

15.14 UPDATING ZONE FILES

When you make a change to a domain (such as adding or deleting a host), the data
files on the master server must be updated. You must also increment the serial num-
ber in the SOA record for the zone and then run rndc reload to signal named to pick
up the changes. You can also kill and restart named, but this operation causes cached
data from other domains to be discarded.

Earlier versions of BIND used signals and the kill command to control named, but
just as the developers started running out of signal numbers, rndc came along and
fixed it all. The historical signal stuff has been removed from BIND 9 (except for the
HUP signal to reread the configuration file, reload zones, and restart named, and
the TERM and INT signals to kill named), so we recommend sticking with rndc.

Updated zone data is propagated to slave servers right away because the notify op-
tion is on by default. If you have inadvertently turned this option off, your slave
servers will not pick up the changes until after refresh seconds, as set in the zone’s
SOA record (typically one to six hours later). If you want a more timely update when
the notify option is turned off, rndc reload on a slave causes it to check with the
master, see that the data has changed, and request a zone transfer.

Don’t forget to modify both the forward and reverse zones when you change a host-
name or IP address. Forgetting the reverse files leaves sneaky errors: some commands
work and some won’t.

Changing the data files but forgetting to change the serial number makes the changes
take effect on the master server (after a reload) but not on the slaves.

It is improper to edit data files belonging to slave servers. These files are maintained
by named; sysadmins should not meddle with them. It’s fine to look at the data files
as long as you don’t make changes.

BIND allows zone changes to be made through a programmatic API, as specified in
RFC2136. This feature, called dynamic updates, is necessary to support autoconfig-
uration protocols such as DHCP. The dynamic update mechanism is described on
page 448.

Zone transfers

DNS servers are synchronized through a mechanism called a zone transfer. The orig-
inal DNS specification (and BIND 4) required all zone data to be transferred at once.
Incremental updates were eventually defined in RFC1995 and implemented in BIND
8.2. Original and incremental-style zone transfers are sometimes referred to as AXFR
and IXFR, respectively. Once configured, they’re supposed to be equivalent.

A slave that wants to refresh its data requests a zone transfer from the master server
and makes a backup copy of the zone data on disk. If the data on the master has not
changed, as determined by a comparison of the serial numbers (not the actual data),
no update occurs and the backup files are just touched (that is, their modification
time is set to the current time).

448 Chapter 15 – DNS: The Domain Name System

Zone transfers use the TCP protocol on port 53 and log information with category
“transfer-*”. IXFR as specified by the IETF can use either TCP or UDP, but BIND
has only implemented it over TCP.

Both the sending and receiving servers remain available to answer queries during a
zone transfer. Only after the transfer is complete does the slave begin to use the new
data. BIND 8 actually calls a separate named-xfer program to perform the transfer,
but BIND 9’s named handles the transfers directly.

When zones are huge (like com) or dynamically updated (see the next section),
changes are typically small relative to the size of the entire zone. With IXFR, only the
changes are sent (unless they are larger than the complete zone, in which case a reg-
ular AXFR transfer is done). The IXFR mechanism is like the patch program in that
it applies differences to an old database to synchronize it with a new database.

In BIND 9, IXFR is the default for any zones configured for dynamic update, and
named always maintains a transaction log called zonename.jnl. You can set the op-
tions provide-ixfr and request-ixfr in the server statements for individual peers.
provide-ixfr enables or disables IXFR service for zones for which this server is the
master. request-ixfr requests IXFRs for zones for which this server is a slave.

provide-ixfr yes ; # in BIND 9 server statement
request-ixfr yes ; # in BIND 9 server statement

Starting with BIND 9.3, named can now provide IXFRs to slave servers to transfer
edits that are made by hand. Use the zone option ixfr-from-differences to enable
this behavior; see page 429.

IXFR requires the zone file to be sorted in a canonical order. named takes care of
this chore for you, but the requirement makes IXFRs a tradeoff. More memory and
CPU are used on the servers in exchange for reduced network traffic.

Much effort has been expended to ensure that a server crash during an IXFR does
not leave zones with trashed data. An IXFR request to a server that does not support
it automatically falls back to the standard AXFR zone transfer.

Dynamic updates

The DNS system is built on the premise that name-to-address mappings are relatively
stable and do not change frequently. However, a site that uses DHCP to dynamically
assign IP addresses as machines boot and join the network breaks this rule con-
stantly. There are two classical solutions: add generic entries to the DNS database or
continually edit the DNS files. For many sites, neither solution is satisfactory.

The first solution should be familiar to anyone who has used a dial-up ISP. The DNS
configuration looks something like this:

dhcp-host1.domain. IN A 192.168.0.1
dhcp-host2.domain. IN A 192.168.0.2
...

D
N

S

15.14 Updating zone files 449

Although this is a simple solution, it means that hostnames are permanently associ-
ated with particular IP addresses and that computers therefore change hostnames
whenever they receive a new IP address. Hostname-based logging or security mea-
sures become very difficult in this environment.

The dynamic update feature in recent versions of BIND provides an alternative solu-
tion. It allows the DHCP daemon to notify BIND of the address assignments it makes,
thus updating the contents of the DNS database on the fly. Dynamic updates can add,
delete, or modify resource records. While dynamic updates are occurring, a journal
file (zonename.jnl) is kept to protect against the occurrence of a server crash.

You cannot hand-edit a dynamically updated zone without first stopping the dy-
namic update stream. rndc freeze zone or rndc freeze zone class view will do the
trick. These commands sync the journal file to the master zone file on disk and then
delete the journal file. You can then edit the zone file by hand. Of course, the original
formatting of the zone file will have been destroyed by named’s monkeying—the
file will look like those maintained by named for slave servers.

Dynamic update attempts will be refused while the zone is frozen; use rndc thaw
with the same arguments you froze with to reload the zone file from disk and reen-
able dynamic updates.

The nsupdate program supplied with BIND 9 provides a command-line interface
for making dynamic updates. It runs in batch mode, taking commands from the key-
board or a file. A blank line or send signals the end of an update and sends the changes
to the server. Two blank lines signify the end of input. The command language in-
cludes a primitive if statement to express constructs such as “if this hostname does
not exist in DNS, add it.” As predicates for an nsupdate action, you can require a
name to exist or not exist, or require a resource record set to exist or not exist.

For example, here is a simple nsupdate script that adds a new host and also adds a
nickname for an existing host if the nickname is not already in use. The angle
bracket prompt is produced by nsupdate and is not part of the command script.

$ nsupdate
> update add newhost.cs.colorado.edu 86400 A 128.138.243.16
>
> prereq nxdomain gypsy.cs.colorado.edu
> update add gypsy.cs.colorado.edu CNAME evi-laptop.cs.colorado.edu

Dynamic updates to DNS are scary. They can potentially provide uncontrolled write
access to your important system data. Don’t try to use IP addresses for access con-
trol—they are too easily forged. TSIG authentication with a shared-secret key is bet-
ter; it’s available and is easy to configure. BIND 9 supports both:

$ nsupdate -k keydir:keyfile

or

$ nsupdate -y keyname:secretkey

450 Chapter 15 – DNS: The Domain Name System

Since the password goes on the command line, anyone running w or ps at the right
moment can see it. For this reason, the -k form is preferred. For more details on
TSIG, see the section starting on page 453.

Dynamic updates to a zone are enabled in named.conf with an allow-update or
update-policy clause. allow-update grants permission to update any records in ac-
cordance with IP- or key-based authentication. update-policy is a BIND 9 exten-
sion that allows fine-grained control for updates according to the hostname or
record type. It requires key-based authentication. Both are zone options.

Use update-policy to allow clients to update their A or PTR records but not to
change the SOA record, NS records, or KEY records. You can also use update-policy
to allow a host to update only its own records. The parameters let you express names
explicitly, as a subdomain, as a wild card, or as the keyword self, which sets a gen-
eral policy for machines’ access to their own records. Resource records are identified
by class and type. The syntax of an update-policy rule is

update-policy (grant | deny) identity nametype name [types] ;

identity is the name of the cryptographic key needed up authorize the update. name-
type has one of four values: name, subdomain, wildcard, or self. name is the zone
to be updated, and the types are the resource record types that can be updated. If no
types are specified, all types except SOA, NS, RRSIG, and NSEC can be updated.
Here’s an example:

update-policy { grant dhcp-key subdomain dhcp.cs.colorado.edu A } ;

This configuration allows anyone who knows the key dhcp-key to update address
records in the dhcp.cs.colorado.edu subdomain. This statement would appear in the
master server’s named.conf file under the zone statement for dhcp.cs.colorado.edu.
There would have to be a key statement to define dhcp-key as well.

The snippet below from the named.conf file at the Computer Science Department
at the University of Colorado uses the update-policy statement to allow students in
a system administration class to update their own subdomains but not to mess with
the rest of the DNS environment.

// saclass.net
zone "saclass.net" in {

type master;
file "saclass/saclass.net";
update-policy {

grant feanor_mroe. subdomain saclass.net.;
grant mojo_mroe. subdomain saclass.net.;
grant dawdle_mroe. subdomain saclass.net.;
grant pirate_mroe. subdomain saclass.net.;
// and lots more

};
...

D
N

S

15.15 Security issues 451

15.15 SECURITY ISSUES

In the good old days, the Internet was small, friendly, and useful mostly to geeks.
Now it is a hostile environment as well as a crucial piece of infrastructure. In this
section, we cover several security-related topics in a manner that may appear to be
somewhat paranoid. Unfortunately, these topics and precautions are sadly neces-
sary on today’s Internet.

DNS started out as an inherently open system, but it has steadily grown more and
more secure—or at least, securable. By default, anyone on the Internet can investi-
gate your domain with individual queries from tools such as dig, host, or nslookup.
In some cases, they can dump your entire DNS database.

To address such vulnerabilities, BIND now supports various types of access control
based on host and network addresses or on cryptographic authentication. Table 15.11
summarizes the security features that are configured in named.conf. The Page col-
umn shows where in this book to look for more information.

named can run in a chrooted environment under an unprivileged UID to minimize
security risks. It can use transaction signatures to control dynamic updates or zone
transfers, and of course, it also supports the whole DNSSEC hairball. These topics
are taken up in the next few sections.

Access control lists revisited

ACLs are named address match lists that can appear as arguments to statements such
as allow-query, allow-transfer, and blackhole. Their basic syntax was described
on page 429. ACLs can help beef up DNS security in a variety of ways.

Every site should at least have one ACL for bogus addresses and one ACL for local
addresses.

Table 15.11 Security features in named.conf

Feature Statements Page What it specifies

acl various 429 Access control lists
allow-query options, zone 428 Who can query a zone or server
allow-recursion options 425 Who can make recursive queries
allow-transfer options, zone 428 Who can request zone transfers
allow-update zone 433 Who can make dynamic updates
blackhole options 428 Which servers to completely ignore
bogus server 431 Which servers should never be queried
update-policy zone 449 What updates are allowed

452 Chapter 15 – DNS: The Domain Name System

For example:

acl bogusnets { // ACL for bogus networks
 0.0.0.0/8 ; // default, wild card addresses
 1.0.0.0/8 ; // reserved addresses
 2.0.0.0/8 ; // reserved addresses
 169.254.0.0/16 ; // link-local delegated addresses
 192.0.2.0/24 ; // sample addresses, like example.com
 224.0.0.0/3 ; // multicast address space
 10.0.0.0/8 ; // private address space (RFC1918)17

 172.16.0.0/12 ; // private address space (RFC1918)
 192.168.0.0/16 ; // private address space (RFC1918)
} ;

acl cunets { // ACL for University of Colorado networks
128.138.0.0/16 ; // main campus network
198.11.16/24 ;
204.228.69/24 ;

};

In the global options section of your config file, you could then include

allow-recursion { cunets; } ;
blackhole { bogusnets; } ;

It’s also a good idea to restrict zone transfers to legitimate slave servers. An ACL
makes things nice and tidy.

acl ourslaves {
128.138.242.1 ; // anchor
…

} ;
acl measurements {

198.32.4.0/24 ; // bill manning's measurements, v4 address
2001:478:6:0::/48 ; // bill manning's measurements, v6 address

} ;

The actual restriction is implemented with a line such as

allow-transfer { ourslaves; measurements; } ;

Here, transfers are limited to our own slave servers and to the machines of an Inter-
net measurement project that walks the reverse DNS tree to determine the size of
the Internet and the percentage of misconfigured servers. Limiting transfers in this
way makes it impossible for other sites to dump your entire database with a tool such
as dig (see page 473).

For example, caida.org uses an ACL to limit transfers to just their secondary servers;
using dig @server domain axfr succeeds from the machine jungle.caida.org but fails
from gypsy.cs.colorado.edu:

jungle$ dig @rommie.caida.org caida.org axfr

17. Don’t make private addresses bogus if you use them and are configuring your internal DNS servers!

D
N

S

15.15 Security issues 453

; <<>> DiG 8.3 <<>> @rommie.caida.org caida.org axfr
; (1 server found)
$ORIGIN caida.org.
@ 4H IN SOA @ postmaster (

200406300 ; serial
1H ; refresh
30M ; retry
1W ; expiry
)

...

gypsy$ dig @rommie.caida.org caida.org axfr

; <<>> DiG 9.2.4 <<>> @rommie.caida.org caida.org axfr
;; global options: printcmd
; Transfer failed.

Of course, you should still protect your network at a lower level through router ac-
cess control lists and standard security hygiene on each host. If those measures are
not possible, you can refuse DNS packets except to a gateway machine that you
monitor closely.

Confining named

To confine the damage that someone could do if they compromised your server, you
can run named in a chrooted environment, run it as an unprivileged user, or both.
The -t flag specifies the directory to chroot to, and the -u flag specifies the UID un-
der which named should run. For example, the command

named -u 53 -t /var/named

starts named with UID 53 and a root directory of /var/named.

If hackers compromise your named, they can potentially gain access to the system
under the guise of the user as whom named runs. If this user is root and you do not
use a chrooted environment, such a breach can be quite destructive. Many sites
don’t bother to use the -u and -t flags, but when a new vulnerability is announced,
they must be faster to upgrade than the hackers are to attack.

The chroot directory cannot be an empty directory since it must contain all the files
named normally needs in order to run: /dev/null, the zone files, named.conf, sys-
log target files and the syslog UNIX domain socket, /var, etc. BIND 9’s named per-
forms the chroot system call after all libraries have been loaded, so it is no longer
necessary to copy shared libraries into the chroot directory.

Fedora installs a chrooted named by default.

Secure server-to-server communication with TSIG and TKEY

While DNSSEC (covered in the next section) was being developed, the IETF devel-
oped a simpler mechanism, called TSIG (RFC2845), to allow secure communication
among servers through the use of “transaction signatures.” Access control based on

454 Chapter 15 – DNS: The Domain Name System

transaction signatures is more secure than access control based on IP source ad-
dresses alone. TSIG can secure zone transfers between a master server and its slaves
and can implement secure dynamic updates.

TSIG signatures sign messages and responses between servers, not between servers
and resolvers. The transaction signature authenticates the peer and verifies that the
data has not been tampered with. The signatures are checked at the time a packet is
received and are then discarded; they are not cached and do not become part of the
DNS data.

TSIG uses a symmetric encryption scheme. That is, the encryption key is the same
as the decryption key. This single key is called a shared-secret key. Although the
TSIG specification allows multiple encryption methods, BIND implements only one,
the HMAC-MD5 algorithm.

You should use a different key for each pair of servers that want to communicate
securely. TSIG is much less expensive computationally than public key cryptogra-
phy, but it is only appropriate for a local network on which the number of pairs of
communicating servers is small. It does not scale to the global Internet.

BIND’s dnssec-keygen18 utility generates a key for a pair of servers. For example, to
generate a shared-secret host key for two servers, master and slave1, use

dnssec-keygen -a HMAC-MD5 -b 128 -n HOST master-slave1

The -b 128 flag tells dnssec-keygen to create a 128-bit key. Two files are produced:
Kmaster-slave1.+157+09068.private and Kmaster-slave1.+157+09068.key. The
157 stands for the HMAC-MD5 algorithm, and the 09068 is a random19 number used
as a key identifier in case you have multiple keys for the same pair of servers. The
.private file looks like this:

Private-key-format: v1.2
Algorithm: 157 (HMAC_MD5)
Key: jxopbeb+aPc71Mm2vc9R9g==

and the .key file like this:

master-slave1. IN KEY 512 3 157 jxopbeb+aPc71Mm2vc9R9g==

Both of these files should have mode 600 and should be owned by the named user.

Note the dot that has been added after the master-slave1 argument string in both the
filenames and the contents of the .key file. The motivation for this convention is that
in other contexts, key names must be fully qualified domain names and must there-
fore end in a dot.

You don’t actually need the .key file at all—it’s produced because the dnssec-keygen
program also generates public key pairs in which the public key (.key file) is inserted

18. This command was called dnskeygen in BIND 8.
19. It’s not actually random, or even pseudo-random; it’s a hash of the DNSKEY resource record.

D
N

S

15.15 Security issues 455

into the DNS zone file as a KEY resource record. The 512 in the KEY record is not the
key length, but rather a flag bit that specifies that the record is a DNS key record.

After all this complication, you may be disappointed to learn that the generated key
is really just a long random number. You could generate the key manually by writing
down an ASCII string of the right length (divisible by 4) and pretending that it’s a
base-64 encoding of something or by using mmencode to encode a random string.
The way you create the key is not important; it just has to exist on both machines.

scp is part of the SSH
suite. See page 697 for
details.

Copy the key to both master and slave1 with scp, or cut and paste it. Do not use
telnet or ftp to copy the key; even internal networks may not be secure. The key
must be included in both machines’ named.conf files. Since named.conf is usually
world-readable and keys should not be, put the key in a separate file that is included
into named.conf. For example, you could put the snippet

key master-slave1. {
algorithm hmac-md5 ;
secret "shared-key-you-generated" ;

} ;

in the file master-slave1.tsig. The file should have mode 600, and its owner should
be named’s UID. In the named.conf file, add the line

include "master-slave1.tsig" ;

near the top.

This part of the configuration simply defines the keys. For them to actually be used to
sign and verify updates, the master needs to require the key for transfers and the
slave needs to identify the master with a server statement and keys clause. For ex-
ample, you might add the line

allow-transfer { key master-slave1. ;} ;

to the zone statement on the master server, and the line

server master’s-IP-address { keys { master-slave1. ; } ; } ;

to the slave’s named.conf file. If the master server allows dynamic updates, it can
also use the key in its allow-update clause in the zone statement.

We have used the generic names master and slave1 to identify the servers and key. If
you use TSIG keys for many zones, you should include the zone in your naming
scheme as well, to help you keep everything straight.

To test your TSIG configuration, run named-checkconf to verify that you have the
syntax right. Then use dig to attempt a zone transfer (dig @master axfr) from both
slave1 and from some other machine. The first should succeed and the second should
fail with the diagnostic “Transfer failed.” To be totally sure everything is right, re-
move the allow-transfer clause and try the dig commands again. This time, both
should succeed. (Don’t forget to put the allow-transfer back in!) As a final test,

456 Chapter 15 – DNS: The Domain Name System

increase the serial number for the zone on the master server and watch the log file
on the slave to see if it picks up the change and transfers the zone.

When you first start using transaction signatures, run named at debug level 1 (see
page 466 for information about debug mode) for a while to see any error messages
that are generated. Older versions of BIND do not understand signed messages and
complain about them, sometimes to the point of refusing to load the zone.

TKEY is a BIND 9 mechanism that allows two hosts to generate a shared-secret key
automatically without phone calls or secure copies to distribute the key. It uses an
algorithm called the Diffie-Hellman key exchange in which each side makes up a ran-
dom number, does some math on it, and sends the result to the other side. Each side
then mathematically combines its own number with the transmission it received to
arrive at the same key. An eavesdropper might overhear the transmission but will be
unable to reverse the math.20 Unfortunately, the code to make TKEY really useful
and avoid storing the TSIG key in the configuration file has never been imple-
mented; hopefully, it’s on the to-do list.

See page 902 for
more information
about NTP.

When using TSIG keys and transaction signatures between master and slave servers,
you should keep the clocks of the servers synchronized with NTP. If the clocks are
too far apart (more than 5 minutes in BIND 9), signature verification will not work.
This problem can be very hard to debug.

It is currently not possible to use TSIG keys to secure communications between
BIND and Microsoft servers. Microsoft uses TSIG in a nonstandard way (GSS-TSIG)
and won’t share the details of its scheme outside the context of a nondisclosure
agreement. Negotiations are under way to resolve this conflict.

SIG(0) is another mechanism for signing transactions between servers or between
dynamic updaters and the master server. It uses public key cryptography; see RFCs
2535 and 2931 for details.

DNSSEC

DNSSEC is a set of DNS extensions that authenticate the origin of zone data and ver-
ify its integrity by using public key cryptography. That is, the extensions permit DNS
clients to ask the questions “Did this DNS data really come from the zone’s owner?”
and “Is this really the data sent by that owner?”

DNSSEC relies on a cascading chain of trust: the root servers provide validation in-
formation for the top-level domains, the top-level domains provide validation infor-
mation for the second-level domains, and so on. BIND’s trusted-keys configuration
option lets us bootstrap the process and secure parts of the DNS tree before the root
and top-level domains are secured.

Public key cryptosystems use two keys: one to encrypt (sign) and a different one to
decrypt (verify). Publishers sign their data with a secret “private” key. Anyone can

20. The math involved is called the discrete log problem and relies on the fact that for modular arithmetic,
taking powers is easy but taking logs to undo the powers is close to impossible.

D
N

S

15.15 Security issues 457

verify the validity of a signature with a matching “public” key that is widely distrib-
uted. If a public key correctly decrypts a zone file, then the zone must have been en-
crypted with the corresponding private key. The trick is to make sure that the public
keys you use for verification are authentic. Public key systems allow one entity to
sign the public key of another, thus vouching for the legitimacy of the key; hence the
term “chain of trust.”

The data in a DNS zone is too voluminous to be encrypted with public key cryptog-
raphy—the encryption would be too slow. Instead, since the data is not secret, a se-
cure hash (e.g., an MD5 checksum) is run on the data and the results of the hash are
signed (encrypted) by the zone’s private key. The results of the hash are like a finger-
print of the data and are called a digital signature. The signatures are appended to
the data they authenticate as RRSIG records in the signed zone file.

To verify the signature, you decrypt it with the public key of the signer, run the data
through the same secure hash algorithm, and compare the computed hash value
with the decrypted hash value. If they match, you have authenticated the signer and
verified the integrity of the data.

In the DNSSEC system, each zone has its own public and private keys. The private key
signs each RRset (that is, each set of records of the same type for the same host). The
public key verifies the signatures and is included in the zone’s data in the form of a
DNSKEY resource record.

Parent zones sign their child zones’ public keys. named verifies the authenticity of a
child zone’s DNSKEY record by checking it against the parent zone’s signature. To
verify the authenticity of the parent zone’s key, named can check the parent’s parent,
and so on back to the root. The public key for the root zone would be included in the
root hints file.

Before we jump into the mechanics of generating keys and signing zones, we need to
be honest about the current status of DNSSEC and its impact on sysadmins. Sysad-
mins may need to deal with DNSSEC in a year or two, but it is certainly not on the
must-do-this-week list. Many applications are crying for a public key infrastructure
(“PKI”), and DNS is a prime candidate for supplying it. However, we have a bit of a
chicken and egg problem. We need to be sure that DNS is secure before we can trust
it with our keys for other Internet transactions. But we need a public key infrastruc-
ture in order to secure DNS.

Recent changes to the DNSSEC specifications have made it much closer to being
deployable than it was in the past. The original DNSSEC spec kept copies of the
signed keys for child zones in both the parent and the child domains, so continual
communication was required if either the child or the parent wanted to change its
key. Since there were multiple copies of each key, it was not clear which copy you
should believe when the two were out of sync.

458 Chapter 15 – DNS: The Domain Name System

RFC4034 has introduced a new resource record type (DS, the delegation signer), has
separated keys into key-signing keys and zone-signing keys, and has changed the
names of some resource records:

• KEY became DNSKEY, for cryptographic keys

• SIG became RRSIG, the signature for a resource record set

• NXT became NSEC, to identify the next secure entry in the delegation

KEY and SIG records are still used with SIG(0) and TSIG security. DNSKEY, RRSIG,
and NSEC are used with DNSSEC, and NXT is obsolete. The changes from SIG to
RRSIG and from NXT to NSEC are minor; the names have changed so as not to
confuse old software with the new scheme.

Keys included in a DNSKEY resource record can be either key-signing keys (KSKs)
or zone-signing keys (ZSKs). A new flag, called SEP for “secure entry point,” distin-
guishes between them. Bit 15 of the flags field is set to 1 for KSKs and to 0 for ZSKs.
This convention makes KSKs odd and ZSKs even when treated as decimal numbers.

The DS record appears only in the parent zone and indicates that a subzone is secure
(signed). It also identifies the key used by the child to self-sign its own key RRset.
The DS record includes a key identifier (a 5-digit number), cryptographic algorithm,
digest type, and a digest of the public key record allowed (or used) to sign the child’s
key resource record.

The question of how to change existing keys in the parent and child zones has been a
thorny one that seemed destined to require cooperation and communication between
parent and child. The creation of the DS record, the use of separate key-signing and
zone-signing keys, and the use of multiple key pairs have helped address the problem.

Multiple keys can be generated and signed so that a smooth transition from one key
to the next is possible. The child may change its zone-signing keys without notifying
the parent; it need only coordinate with the parent if it changes its key-signing key.
As keys roll over, there is a period during which both the old key and the new key are
valid; once cached values on the Internet have expired, the old key can be retired.

Current BIND releases have removed OpenSSL from the distribution, so if you want
to use DNSSEC, you will have to get a package that includes DNSSEC support or ob-
tain the SSL libraries from www.openssl.org and then recompile BIND with crypto-
graphic support turned on (use the --with-openssl option to ./configure). If you
don’t do this, dnssec-keygen will complain. However, it will still work for generat-
ing TSIG keys, since these don’t require OpenSSL.

You perform several steps to create and use signed zones. First, you generate one or
more key pairs for the zone. For example,

dnssec-keygen -a DSA -b 768 -n ZONE mydomain.com

generates a 768-bit key pair using the DSA algorithm to be used for signing a zone
called mydomain.com. Several encryption algorithms are available with a range of
key lengths: RSAMD5 (512–4096), RSASHA1 (512–4096), DH (128–4096), and DSA

www.openssl.org

D
N

S

15.15 Security issues 459

(512–1024 and divisible by 64). You can include the -f KSK flag (not used here) to
identify the generated key as a key-signing key by setting its SEP bit.

dnssec-keygen prints the following to standard out:

Kmydomain.com.+003+50302

where Kmydomain.com is the name of the key, 003 is the DSA algorithm’s identifier,
and 50302 is the key identifier. dnssec-keygen creates files containing the public
and private keys:

Kmydomain.com.+003+50302.key # Public key
Kmydomain.com.+003+50302.private # Private key

The private key is used to sign a zone’s data records, and the public key is used to
verify signatures. The public key is typically inserted in the zone file right after the
SOA record.

Ideally, the private key portion of any key pair would be kept off-line, or at least on a
machine that is not on the Internet. This precaution is impossible for dynamically
updated zones and impractical for zone-signing keys, but it is perfectly reasonable
for key-signing keys, which are presumably quite long-lived.

It’s hard to get a sense of these files generated by dnssec-keygen without inspecting
their contents, so let’s take a quick peek:

Kmydomain.com.+003+50302.key

mydomain.com. IN DNSKEY 256 3 3
BMORyx8sRz6EJ6ETfRj0Ph4uraB1tLZTYI1WU6D7O7/GiBXwxAsvpgH6
sNXE3uwZVaQFxvDHfa6amy3JSSilcRNfiiOs3LfoyZzUWOceVo6zRBoO
3GTYpZ6efrFUackXKr9WsadC+4W+2fGx4yL8N6B32akBTiIMLp01FOJe
xqLe6QrJVE21eXzRqC58TC25R6TPMoOH6cuue5w8eNphcsOsGRfOf4hy
lOwkb6T7etH//EQgfkLWqcwolVF9hjzskX64e0QeeENXRV8sFvTMVzTk
qA4KJsBCclVzrDSLAsLZtYH4g6VvrMZHuQ5C/ArCIsdn0RO0mpH6ZUIl
WaSIE1pAxaZ7ynD4hT1RB5br2KiyGTr27dHi7QS4vOW7oDDPI9+lwAcK
g2A3LHpmg1S59utmpxJa

Kmydomain.com.+003+50302.private

Private-key-format: v1.2
Algorithm: 3 (DSA)
Prime(p): tLZTYI1WU6D7O7/GiBXwxAsvpgH6sNXE3uwZVaQFxvDHfa6amy3JSSilc

RNfiiOs3LfoyZzUWOceVo6zRBoO3GTYpZ6efrFUackXKr9WsadC+4W+2fGx4y
L8N6B32akB

Subprime(q): w5HLHyxHPoQnoRN9GPQ+Hi6toHU=
Base(g): TiIMLp01FOJexqLe6QrJVE21eXzRqC58TC25R6TPMoOH6cuue5w8eNphcs

OsGRfOf4hylOwkb6T7etH//EQgfkLWqcwolVF9hjzskX64e0QeeENXRV8sFvTM
VzTkqA4K

Private_value(x): GqcQz8K56CmUxgo6ERuyEWMLVME=
Public_value(y): JsBCclVzrDSLAsLZtYH4g6VvrMZHuQ5C/ArCIsdn0RO0mpH6ZUIl

WaSIE1pAxaZ7ynD4hT1RB5br2KiyGTr27dHi7QS4vOW7oDDPI9+lwAcKg2A3L
Hpmg1S59utmpxJa

460 Chapter 15 – DNS: The Domain Name System

To facilitate key rollover, you should make several KSK key pairs and get them all
signed by your parent zone. Once you and your parent zone have an established
trust relationship (a KSK signed by the parent and included in the DS record dele-
gating your secure zone), you can use that relationship to bootstrap the key rollover
process. Just send the parent that key to establish who you are along with additional
KSKs that you would like signed and pointed to by DS records. After the new keys
are signed, you can retire the original one.

Once the parent has signed your KSK and inserted it in your DS record, you are
ready to sign your zone’s actual data. The signing operation takes a normal zone
data file as input and adds RRSIG and NSEC records immediately after every set of
resource records. The RRSIG records are the actual signatures, and the NSEC
records support signing of negative answers.

To sign a zone, use the dnssec-signzone command. For example, the command

dnssec-signzone -o mydomain.com db.mydomain
Kmydomain.com+003+50302

reads the zone file db.mydomain and produces a signed version of that zone file
called db.mydomain.signed. It also creates two keyset files:

keyset-mydomain.com. # Keyset
dsset-mydomain.com. # Secure delegation keyset

These keyset files are used for signing zones and keys, respectively. They contain:

keyset-mydomain.com.

$ORIGIN .
mydomain.com 172800 IN DNSKEY 256 3 3 (

BMORyx8sRz6EJ6ETfRj0Ph4uraB1tLZTYI1W
U6D7O7/GiBXwxAsvpgH6sNXE3uwZVaQFxvDH
fa6amy3JSSilcRNfiiOs3LfoyZzUWOceVo6z
RBoO3GTYpZ6efrFUackXKr9WsadC+4W+2fGx
4yL8N6B32akBTiIMLp01FOJexqLe6QrJVE21
eXzRqC58TC25R6TPMoOH6cuue5w8eNphcsOs
GRfOf4hylOwkb6T7etH//EQgfkLWqcwolVF9
hjzskX64e0QeeENXRV8sFvTMVzTkqA4KJsBC
clVzrDSLAsLZtYH4g6VvrMZHuQ5C/ArCIsdn
0RO0mpH6ZUIlWaSIE1pAxaZ7ynD4hT1RB5br
2KiyGTr27dHi7QS4vOW7oDDPI9+lwAcKg2A3
LHpmg1S59utmpxJa
) ; key id = 50302

dsset-mydomain.com.

mydomain.com. IN DS 50302 3 1 1B44471AFD5B4F4463BB3A0D7B66B6ABC018DA96

Any keyset files for child zones in the current directory are also signed and incorpo-
rated into DS records, which delegate the secure subzones to the children’s servers
and authenticate them with the signed keys. It can take a long time to sign a zone.

D
N

S

15.15 Security issues 461

If a signed zone is passed as the argument to dnssec-signzone, the signatures of any
records that are close to expiring are renewed. “Close to expiring” is defined as being
three-quarters of the way through the validity period. By default, signatures are
valid for 30 days, but a different period can be specified on the dnssec-signzone
command line. Re-signing typically results in changes but does not automatically
change the serial number (yet), so sysadmins will need to update the serial number
by hand. Slave servers of the zone will have to perform a zone transfer operation to
resynchronize themselves.

The following example shows zone data before and after signing.21 Here’s the before:

$TTL 172800 ; 2 days
@ IN SOA ns.mydomain.com. hostmaster.mydomain.com. (

2006081200 ; serial
7200 ; refresh (2 hours)
3600 ; retry (1 hour)
1728000 ; expire (2 weeks 6 days)
172800 ; minimum (2 days)
)

IN NS ns.cs.colorado.edu.

mydomain.com. IN DNSKEY 256 3 3
BMORyx8sRz6EJ6ETfRj0Ph4uraB1tLZTYI1WU6D7O7/GiBXwxAsvpgH6
sNXE3uwZVaQFxvDHfa6amy3JSSilcRNfiiOs3LfoyZzUWOceVo6zRBoO
3GTYpZ6efrFUackXKr9WsadC+4W+2fGx4yL8N6B32akBTiIMLp01FOJe
lOwkb6T7etH//EQgfkLWqcwolVF9hjzskX64e0QeeENXRV8sFvTMVzTk
qA4KJsBCclVzrDSLAsLZtYH4g6VvrMZHuQ5C/ArCIsdn0RO0mpH6ZUIl
WaSIE1pAxaZ7ynD4hT1RB5br2KiyGTr27dHi7QS4vOW7oDDPI9+lwAcK
g2A3LHpmg1S59utmpxJa

anchor IN A 128.138.242.1
IN A 128.138.243.140
IN MX 10 anchor
IN MX 99 @

awesome IN A 128.138.236.20
...

And the after:

; File written on Thu Nov 11 17:41:25 2006
; dnssec_signzone version 9.3.0
mydomain.com. 172800 IN SOA ns.mydomain.com. hostmaster.mydomain.com. (

2006081200 ; serial
7200 ; refresh (2 hours)
3600 ; retry (1 hour)
1728000 ; expire (2 weeks 6 days)
172800 ; minimum (2 days)
)

21. We tried to simplify the example by just using two hosts and their A and MX records, but dnssec-sign-
zone requires a “real” zone and so the SOA, NS, and DNSKEY records had to be added for a minimal
example. Sorry for the clutter.

462 Chapter 15 – DNS: The Domain Name System

172800 RRSIG SOA 3 2 172800 20061211164125 (
20061111164125 50302 mydomain.com.
BElneYxZ3g9JnKbXdnmPhKVWfd13JTU8ajOO
5dQta2WeBAatNuWt8dQ=)

172800 NS ns.cs.colorado.edu.
172800 RRSIG NS 3 2 172800 20061211164125 (

20061111164125 50302 mydomain.com.
BLG6LRrXtRHRdRFtTOmlQsadOIefqHAq5Rid
PHZ74vOl/UkEW6wY6VA=)

172800 NSEC anchor.mydomain.com. NS SOA RRSIG NSEC DNSKEY
172800 RRSIG NSEC 3 2 172800 20061211164125 (

20061111164125 50302 mydomain.com.
BCz31GPChdQrmNrZypv4xxmXDCThZ0IlkEGL
TSkf7Q+TmCDmAADxmBE=)

172800 DNSKEY 256 3 3 (
BMORyx8sRz6EJ6ETfRj0Ph4uraB1tLZTYI1W
U6D7O7/GiBXwxAsvpgH6sNXE3uwZVaQFxvDH
fa6amy3JSSilcRNfiiOs3LfoyZzUWOceVo6z
RBoO3GTYpZ6efrFUackXKr9WsadC+4W+2fGx
4yL8N6B32akBTiIMLp01FOJexqLe6QrJVE21
eXzRqC58TC25R6TPMoOH6cuue5w8eNphcsOs
GRfOf4hylOwkb6T7etH//EQgfkLWqcwolVF9
hjzskX64e0QeeENXRV8sFvTMVzTkqA4KJsBC
clVzrDSLAsLZtYH4g6VvrMZHuQ5C/ArCIsdn
0RO0mpH6ZUIlWaSIE1pAxaZ7ynD4hT1RB5br
2KiyGTr27dHi7QS4vOW7oDDPI9+lwAcKg2A3
LHpmg1S59utmpxJa
) ; key id = 50302

172800 RRSIG DNSKEY 3 2 172800 20061211164125 (
20061111164125 50302 mydomain.com.
BAgZDfk/YCOhVfuoyG5pgfyFCmsGqg4W7uuM
Rm5eNP9Bn0EbBnuT6X0=)

anchor.mydomain.com. 172800 IN A 128.138.242.1
172800 IN A 128.138.243.140
172800 RRSIG A 3 3 172800 20061211164125 (

20061111164125 50302 mydomain.com.
BIRtKW0Um7ItfbPqRew+jKo152WJh+4nHkmK
1ePNxjsQWcgaKm5jiMU=)

172800 MX 10 anchor.mydomain.com.
172800 MX 99 mydomain.com.
172800 RRSIG MX 3 3 172800 20061211164125 (

20061111164125 50302 mydomain.com.
BGtmN2u30y1pMDzstWGgWZfXB3lDlmy5W6DP
t/8D31QpyYNBjJPb8J4=)

172800 NSEC awesome.mydomain.com. A MX RRSIG NSEC
172800 RRSIG NSEC 3 3 172800 20061211164125 (

20061111164125 50302 mydomain.com.
BArN6oES72gzFgQmBHL3NzlquMbDbLfpvj7J
3CSb/c8U/bciWGXsV3Q=)

D
N

S

15.15 Security issues 463

awesome.mydomain.com. 172800 IN A 128.138.236.20
172800 RRSIG A 3 3 172800 20061211164125 (

20061111164125 50302 mydomain.com.
BJ/qWBgLgS/2N5CoXGnI4vs91SsyIBKKfoq9
R+VsMpRmnVrSi1DU1n8=)

172800 NSEC mydomain.com. A RRSIG NSEC
172800 RRSIG NSEC 3 3 172800 20061211164125 (

20061111164125 50302 mydomain.com.
BKoByqF5wUceb2vc8H2uealgKrejH4VZ0S5m
Q4KukWCUo2IAFX+msQ4=)

As you can see, signed zones are ugly. They are typically four to ten times larger than
the original zone, and your nice logical ordering is lost. For all practical purposes, a
signed zone file is no longer human-readable, and it cannot be edited by hand be-
cause of the RRSIG and NSEC records. No user-serviceable parts inside!

An RRSIG record contains a wealth of information:

• The type of record set being signed

• The signature algorithm used (in our case, it’s 3, the DSA algorithm)

• The TTL of the record set that was signed

• The time the signature expires (as yyyymmddhhssss)

• The time the record set was signed (also yyyymmddhhssss)

• The key identifier (in our case, 50302)

• The signer’s name (mydomain.com.)

• And finally, the digital signature itself

To use the signed zone, change the file parameter in the named.conf zone statement
for mydomain.com to point at db.mydomain.signed instead of db.mydomain.
Whew! That’s it.

Negative answers

Digital signatures are fine for positive answers such as “Here is the IP address for the
host anchor.cs.colorado.edu, along with a signature to prove that it really came from
cs.colorado.edu and that the data is valid.” But what about negative answers like “No
such host?” Such responses typically do not return any signable records.

In DNSSEC, this problem is handled by NSEC records that list the next secure record
in the zone in a canonical sorted order.22 If the next record after anchor in cs.colo-
rado.edu were awesome.cs.colorado.edu and a query for anthill.cs.colorado.edu ar-
rived, the response would be a signed NSEC record such as

anchor.cs.colorado.edu. IN NSEC awesome.cs.colorado.edu A MX NSEC

This record says that the name immediately after anchor in the cs.colorado.edu zone
is awesome.cs.colorado.edu and that anchor has at least one A record, MX record,

22. The ordering is sort of alphabetical, but with names higher up the DNS tree coming first. For example,
in the cs.colorado.edu zone, cs.colorado.edu comes before any host.cs.colorado.edu. Within a level of
the hierarchy, the ordering is alphabetical.

464 Chapter 15 – DNS: The Domain Name System

and NSEC record. NSEC records are also returned if the host exists but the record
type queried for does not exist. For example, if the query was for an LOC record for
anchor, anchor’s same NSEC record would be returned and would show only A, MX,
and NSEC records.

The last NSEC record in a zone wraps around to the first name in the zone. For
example, the NSEC record for zamboni.cs.colorado.edu would point back to the first
record, that for cs.colorado.edu itself:

zamboni.cs.colorado.edu. IN NSEC cs.colorado.edu A MX NSEC

NSEC records provide a way for a persistent querier to enumerate the contents of a
zone one record at a time. Not good for security or privacy.

Microsoft and DNS

Windows uses SRV resource records to discover pretty much everything: name
servers, printers, filesystems, and so forth. Microsoft has followed the IETF specifi-
cations in their implementation of SRV records, but the manner in which the
records are inserted into DNS by means of a secure dynamic update is nonstandard.
Microsoft uses a variation of transaction signatures called GSS-TSIG that uses a
shared secret obtained from the Kerberos KDC (Key Distribution Center). At the
moment, Microsoft’s implementation uses the vendor extensions field and therefore
is not compatible with the open source version of Kerberos 5.

If you want to run Windows and use SRV records, you’ll have to eliminate your
existing Kerberos realm and run a Windows Kerberos server on your networks. For
some sites with a rich Kerberos infrastructure, this problem is a showstopper. Mi-
crosoft seems to be using open protocols just enough to sneak past companies’ pur-
chasing checklists, but not enough to allow anyone else to interoperate and sell into
their market. Let’s hope that Microsoft will document their extensions without the
currently required nondisclosure agreement so that ISC can make its TSIG and Mi-
crosoft’s GSS-TSIG interoperate.

About a week after Windows 2000 was released, the query load on the DNS root serv-
ers increased significantly. A bit of digging revealed that Windows 2000 machines
were trying to dynamically update the root or top-level zones. The number of UDP
queries to the A root server more than doubled as a result. To make matters worse,
when their update requests were refused, the Win2K machines asked for a KEY
record to try an authenticated update. This also failed, so they tried one final time
by opening a TCP connection to attempt an authenticated dynamic update. A root
server does not have time for the zillions of TCP connection requests that resulted.

Bugs that affect the Internet infrastructure are both serious and potentially embar-
rassing, so we assumed that Microsoft would have fixed this problem by now. We
were looking forward to converting this section to a historical footnote, but just to
be thorough, we reviewed the network traffic of a newly installed Windows XP sys-
tem running Service Pack 2. Surprisingly, we found it to be as intransigent as ever.

D
N

S

15.15 Security issues 465

The problem appears most commonly (but not exclusively) in the reverse zones for
the private IP address spaces defined in RFC1918. Information about these addresses
should never escape the local environment, but Windows machines try to update
their enclosing domain, and if that fails, they continue up the DNS naming tree until
they finally reach the root servers.

For example, if assigned the address 192.168.1.10 by a DHCP server, a Windows ma-
chine will try to dynamically update the domain 1.168.192.in-addr.arpa. If that fails,
it will try to update 168.192.in-addr.arpa, then 192.in-addr.arpa, then in-addr.arpa,
and finally arpa.

Windows systems that have not reset their DNS defaults are part of a continuous,
massive, slow, unintentional, distributed denial of service attack on the root name
servers. To stop Windows 2000 or XP systems from attempting to update the root
zones and make them play more nicely with your UNIX or Linux name servers, try
the following procedure.

• Right-click on My Network Places and select Properties, which displays a
window labeled Network Connections.

• Right-click on each connection in turn and select Properties.

• Click on Internet Protocol (TCP/IP), then click the Properties button.

• Click the Advanced... button at the bottom of the properties page.

• Click the DNS tab at the top.

• Toward the bottom of the page remove the check from the “Register this
connection’s address in DNS” line.

• Click OK all the way out.

To buy time, the operators of the root zones have delegated the reverse zones for
RFC1918 address space to the servers called prisoner.iana.org, blackhole1.iana.org,
and blackhole2.iana.org. These servers are authoritative (prisoner the master, black-
holes the slaves) for these zones and intercept the dynamic updates generated by
Windows systems that want to tell the world that the name “mypc” should be associ-
ated with the address 10.0.0.1. These iana.org servers are anycast and have an in-
stance at most large ISPs, so the bogus DNS update messages that escape the local
site do not have to clutter the Internet all the way to the root servers.

But wait, that is not the end of Microsoft’s DNS misbehavior. If their preferred DNS
servers don’t respond to a query within one second, Windows systems rapidly esca-
late to issuing multiple simultaneous queries to every DNS server they know about.23

In other words, at the first sign of server overload or network congestion, Windows
tries to generate as much network and server traffic as possible. You can turn off this

23. This behavior is apparently intentional. See the Microsoft DNS white paper referred to in Microsoft’s
knowledge base article 286834 (support.microsoft.com) for more information.

466 Chapter 15 – DNS: The Domain Name System

behavior by disabling the DNS Client service, but be warned that doing so disables
each machine’s local DNS cache as well. Here’s how to disable the DNS Client service:

• Select Settings->Control Panel from the Start menu.

• In the control panel, double-click Administrative Tools.

• On the Administrative Tools page, double-click Computer Management.

• On the left side, click the “+” next to Services and Applications to expand it.

• Select Services on the left side and double-click DNS Client on the right.

• Click the pull-down menu beside “Startup type” and select Manual.

• Click the Stop button to halt the already running copy of the service.

• Click OK all the way out.

If you are not using Microsoft’s Active Directory service, you are probably best off
using UNIX/Linux servers for DNS and avoiding the Microsoft implementation. Un-
fortunately, Active Directory complicates things, but you can support Active Direc-
tory with BIND.

A final point: Microsoft servers raise a ruckus when they query a zone whose servers
are all lame. If your site delegates to servers that appear to be lame, it’s good practice
to at least install an empty zone file that substitutes for the missing servers. This
measure will prevent Microsoft servers that query for the lame name from becom-
ing confused and pummeling the root and gTLD servers.

15.16 TESTING AND DEBUGGING

named provides several built-in debugging aids, foremost among which is its volup-
tuously configurable logging. You can specify debug levels on the command line or
set them with rndc. You can also instruct named to dump its operating statistics to
a file. You can verify name lookups with external tools such as dig.

Logging

See Chapter 10 for
more information
about syslog.

named’s logging facilities are flexible enough to make your hair stand on end. BIND
originally just used syslog to report error messages and anomalies. Recent versions
generalize the syslog concepts by adding another layer of indirection and support for
logging directly to files. Before we dive in, let’s take a look at the mini-glossary of
BIND logging terms shown in Table 15.12.

You configure BIND logging with a logging statement in named.conf. You first de-
fine channels, the possible destinations for messages. You then tell various catego-
ries of message to go to particular channels.

When a message is generated, it is assigned a category, a module, and a severity at its
point of origin. It is then distributed to all the channels associated with its category
and module. Each channel has a severity filter that tells what severity level a mes-
sage must have in order to get through. Channels that lead to syslog are also filtered
according to the rules in /etc/syslog.conf.

D
N

S

15.16 Testing and debugging 467

Here’s the outline of a logging statement:

logging {
channel_def;
channel_def;
…
category category_name {

channel_name;
channel_name;
…

};
};

Channels

A channel_def looks slightly different depending on whether the channel is a file
channel or a syslog channel. You must choose file or syslog for each channel; a chan-
nel can’t be both at the same time.

channel channel_name {

file path [versions numvers | unlimited] [size sizespec];
syslog facility;
severity severity;

print-category yes | no;
print-severity yes | no;
print-time yes | no;

};

For a file channel, numvers tells how many backup versions of a file to keep, and
sizespec specifies how large the file should be allowed to grow (examples: 2048, 100k,
20m, 15g, unlimited, default) before it is automatically rotated. If you name a file
channel mylog, then the rotated versions will be mylog.0, mylog.1, and so on.

See page 212 for a list
of syslog facility names.

In the syslog case, facility specifies what syslog facility name is used to log the mes-
sage. It can be any standard facility. In practice, only daemon and local0 through
local7 are reasonable choices.

Table 15.12 A BIND logging lexicon

Term What it means

channel A place where messages can go: syslog, a file, or /dev/null a

category A class of messages that named can generate; for example, messages
about dynamic updates or messages about answering queries

module The name of the source module that generates a message
facility A syslog facility name. DNS does not have its own specific facility, but

you have your pick of all the standard ones.
severity The “badness” of an error message; what syslog refers to as a priority

a. /dev/null is a pseudo-device that throws all input away.

468 Chapter 15 – DNS: The Domain Name System

The rest of the statements in a channel_def are optional. severity can have the values
(in descending order) critical, error, warning, notice, info, or debug (with an op-
tional numeric level, e.g., severity debug 3). The value dynamic is also recognized
and matches the server’s current debug level.

The various print options add or suppress message prefixes. Syslog prepends the
time and reporting host to each message logged, but not the severity or the category.
The source filename (module) that generated the message is also available as a print
option. It makes sense to enable print-time only for file channels; no need to dupli-
cate syslog’s time stamps.

The four channels listed in Table 15.13 are predefined by default. These defaults
should be fine for most installations.

Categories

Categories are determined by the programmer at the time the code is written; they
organize log messages by topic or functionality instead of just by severity. Table
15.14 shows the current list of message categories.

Log Messages

The default logging configuration is:

logging {
category default { default_syslog; default_debug; };

};

You should watch the log files when you make major changes to BIND and perhaps
increase the logging level. Later, reconfigure to preserve only serious messages once
you have verified that named is stable

Query logging can be quite educational. You can verify that your allow clauses are
working, see who is querying you, identify broken clients, etc. It’s a good check to
perform after major reconfigurations, especially if you have a good sense of what
your query load looked like before the changes.

To start query logging, just direct the queries category to a channel. Writing to sys-
log is less efficient than writing directly to a file, so use a file channel on a local disk
when you are logging every query. Have lots of disk space and be ready to turn query
logging off once you obtain enough data. (rndc querylog toggles query logging on
and off dynamically.)

Table 15.13 Predefined logging channels in BIND

Channel name What it does

default_syslog Sends to syslog, facility daemon, severity info
default_debug Logs to the file named.run, severity set to dynamic
default_stderr Sends to standard error of the named process, severity info
null Discards all messages

D
N

S

15.16 Testing and debugging 469

Views can be pesky to debug, but fortunately, the view that matched a particular
query is logged as well as the query.

Some common log messages are listed below:

• Lame server. If you get this message about one of your own zones, you have
configured something incorrectly. The message is relatively harmless if
it’s about some zone out on the Internet; it’s someone else’s problem. A
good one to throw away by directing it to the null channel.

• Bad referral. This message indicates a miscommunication among a zone’s
name servers.

• Not authoritative for. A slave server is unable to get authoritative data for a
zone. Perhaps it’s pointing to the wrong master, or perhaps the master had
trouble loading the zone in question.

• Rejected zone. named rejected a zone file because it contained errors.

• No NS RRs found. A zone file did not include NS records after the SOA
record. It could be that the records are missing, or it could be that they don’t
start with a tab or other whitespace. In the latter case, the records are not
attached to the zone of the SOA record and are therefore misinterpreted.

Table 15.14 BIND logging categories

Category What it includes

client Client requests
config Configuration file parsing and processing
database Messages about database operations
default Default for categories without specific logging options
delegation-only Queries forced to NXDOMAIN by delegation-only zones
dispatch Dispatching of incoming packets to server modules
dnssec DNSSEC messages
general Catchall for unclassified messages
lame-servers Servers that are supposed to be serving a zone, but aren’t a

network Network operations
notify Messages about the “zone changed” notification protocol
queries A short log message for every query the server receives (!)
resolver DNS resolution, e.g., recursive lookups for clients
security Approved/unapproved requests
unmatched Queries named cannot classify (bad class, no view)
update Messages about dynamic updates
xfer-in Zone transfers that the server is receiving
xfer-out Zone transfers that the server is sending

a. Either the parent zone or the child zone could be at fault; impossible to tell without investigating.

470 Chapter 15 – DNS: The Domain Name System

• No default TTL set. The preferred way to set the default TTL for resource
records is with a $TTL directive at the top of the zone file. This error mes-
sage indicates that the $TTL is missing; it is required in BIND 9.

• No root name server for class. Your server is having trouble finding the root
name servers. Check your hints file and the server’s Internet connectivity.

• Address already in use. The port on which named wants to run is already
being used by another process, probably another copy of named. If you
don’t see another named around, it might have crashed and left an rndc
control socket open that you’ll have to track down and remove.24 A good
way to fix it is to stop and restart the named process, for example:

 # /etc/init.d/named stop (or /sbin/service named stop in Red Hat)
 # /etc/init.d/named start (or /sbin/service named start in Red Hat)

• Dropping source port zero packet from … Recent versions of BIND let you
set the query source port number, and sysadmins use this feature to add
rules to their firewalls that can recognize their DNS packets by source port.
However, 0 is an illegal value for a TCP/UDP port number. If the error
message relates to one of your hosts, you should change the query-source
directive in that host’s named.conf file to fix this error.

• Denied update from […] for … A dynamic update for a zone was
attempted and denied because of the allow-update or update-policy
clause in named.conf for this zone.

Sample logging configuration

The following snippet from the ISC named.conf file for a busy TLD name server
illustrates a comprehensive logging regimen.

logging {

channel default_log {
file "log/named.log" versions 3 size 10m;
print-time yes;
print-category yes;
print-severity yes;
severity info;

};

category default { default_log; default_debug; };

channel xfer-log {
file "log/xfer.log" versions 3 size 10m;
print-category yes;
print-severity yes;
print-time yes;
severity info;

};

24. On a gTLD server, this message probably means that com is still loading. :-)

D
N

S

15.16 Testing and debugging 471

channel db-log {
file "log/db.log" versions 3 size 1M;
severity debug 1;
print-severity yes;
print-time yes;

};

category database { db-log; };
category dnssec { xfer-log; };
category xfer-in { xfer-log; };
category xfer-out { xfer-log; };
category notify { xfer-log; };

};

Debug levels

named debug levels are indicated by integers from 0 to 100. The higher the number,
the more verbose the output. Level 0 turns debugging off. Levels 1 and 2 are fine for
debugging your configuration and database. Levels beyond about 4 are appropriate
for the maintainers of the code.

You invoke debugging on the named command line with the -d flag. For example,

named -d2

would start named at debug level 2. By default, debugging information is written to
the file named.run in the current working directory from which named is started.
The named.run file grows very fast, so don’t go out for a beer while debugging or
you will have bigger problems when you return.

You can also turn on debugging while named is running with rndc trace, which
increments the debug level by 1, or with rndc trace level, which sets the debug level
to the value specified. rndc notrace turns debugging off completely. You can also
enable debugging by defining a logging channel that includes a severity specifica-
tion such as

severity debug 3;

which sends all debugging messages up to level 3 to that particular channel. Other
lines in the channel definition specify the destination of those debugging messages.
The higher the severity level, the more information is logged.

Watching the logs or the debugging output illustrates how often DNS data is miscon-
figured in the real world. That pesky little dot at the end of names (or rather, the lack
thereof) accounts for an alarming amount of DNS traffic. Theoretically, the dot is
required at the end of each fully qualified domain name.

Debugging with rndc

Table 15.15 on the next page shows some of the options accepted by rndc. Typing
rndc with no arguments gives a list of available commands. Commands that pro-
duce files put them in the directory specified as named’s home in named.conf.

472 Chapter 15 – DNS: The Domain Name System

rndc reload makes named reread its configuration file and reload zone files. The
reload zone command is handy when only one zone has changed and you don’t
want to reload all the zones, especially on a busy server. You can also specify a class
and view to reload only the selected view of the zone’s data. rndc reconfig makes it
easy to add new zones without doing a full reload; it rereads the configuration file
and loads any new zones without disturbing existing zones.

rndc freeze zone stops dynamic updates and reconciles the journal file of pending
updates to the data files. After freezing the zone, you can edit the zone data by hand.
As long as the zone is frozen, dynamic updates will be refused. Once you’ve finished
editing, use rndc thaw zone to start accepting dynamic updates again.

rndc dumpdb makes named dump its database to named_dump.db. The dump
file is big and includes not only local data but also any cached data the name server
has accumulated. A recent dump of the database cache on our primary name server
was over 16MB, but the zone data loaded was less than 200K. Lots of caching there.

If you are running named in a chrooted environment, you will have to give rndc the
path to the rndc socket because it will not be in /var/run where rndc expects it.

Table 15.15 rndc commandsa

Command Function

dumpdb Dumps the DNS database to named_dump.db

flush [view] Flushes all caches or those for a specified view
flushname name [view] Flushes the specified name from the server’s cache
freeze zone [class [view]] Suspends updates to a dynamic zone
thaw zone [class [view]] Resumes updates to a dynamic zone
halt Halts named without writing pending updates
querylog Toggles tracing of incoming queries
notrace Turns off debugging
reconfig Reloads the config file and loads any new zones
refresh zone [class [view]] Schedules maintenance for a zone
reload Reloads named.conf and zone files
reload zone [class [view]] Reloads only the specified zone or view
restart b Restarts the server
retransfer zone [class [view]] Recopies the data for zone from the master server
stats Dumps statistics to named.stats

status Displays the current status of the running named

stop Saves pending updates and then stops named

trace Increments the debug level by 1
trace level Changes the debugging level

a. The class argument here is the same as for resource records, typically IN for Internet.
b. Not yet implemented in BIND 9 (9.3.0), but promised

D
N

S

15.16 Testing and debugging 473

Use something like:

$ sudo rndc -l /var/named/var/run/rndc

In BIND 9, it’s important to make sure that the version of named and the version of
rndc match lest you get an error message about a protocol version mismatch. Just
install both when you upgrade.

BIND statistics

named maintains some summary information that can be dumped to the file
named.stats in its working directory on receipt of a nudge from rndc:

$ sudo rndc stats

Here’s an example of the output from a busy server at isc.org:

+++ Statistics Dump +++ (1088897026)
success 19917007
referral 981446459
nxrrset 9958824
nxdomain 199644113
recursion 0
failure 322556
--- Statistics Dump --- (1088897026)

The statistics show the success vs. failure of lookups and categorize the various kinds
of errors. This server answered 19.9 million queries successfully, gave out 980 million
referrals, answered “no such domain” (nxdomain) about 200 million times, an-
swered “no such resource record set” (nxrrset) about 10 million times, and could
not answer 320 thousand times.

The 200 million nxdomain errors (almost 20% of the total 1 billion queries) would
be way too many if their primary source were user typos and spelling errors. In this
case, most of the errors come from Windows misconfigurations and a bug in Mi-
crosoft’s resolver25 that sends out many queries for address records with the data
field set to an IP address rather than a hostname as required by the DNS specifica-
tion. These bizarre queries have an apparent top-level domain of something like 56
(or whatever the last byte of the IP address string was), so they send the local DNS
server scurrying off to nag the root servers about this nonexistent domain, ultimately
yielding an nxdomain error.

The failure entry counts the failures that are neither nxdomain nor nxrrset.

Debugging with dig

Three tools can be used from the shell to query the DNS database: nslookup, dig,
and host. All are distributed with BIND. nslookup is the oldest of these tools and
has always been part of the BIND distribution. dig, the domain information groper,
was originally written by Steve Hotz; it has been rewritten for BIND 9 by Michael

25. Fixed in Windows 2000 Service Pack 2 and later versions of Windows

474 Chapter 15 – DNS: The Domain Name System

Sawyer and is now shipped with BIND 9 as well. host, by Eric Wassenaar, is another
open source tool; it features user-friendly output and functions that check the syntax
of your zone files.

We recommend dig over nslookup; host is OK too.We discuss only dig in detail
here. You might sometimes get different results from these tools because of the dif-
ferent resolver libraries they use: dig and host use BIND’s resolver, and nslookup
has its own.

By default, dig uses the local name server and returns address information. The
@nameserver argument makes it query a specific name server.26 The ability to query
a particular server lets you check to be sure any changes you make to a zone are
propagated to secondary servers and to the outside world. This feature is especially
useful if you use views and need to verify that they are configured correctly.

If you specify a record type, dig will query for that type only. The pseudo-type ANY
returns all data associated with the specified name. Another useful flag is -x, which
reverses the bytes of an IP address for you and does a reverse query. The +trace flag
shows the iterative steps in the resolution process from the roots down.

Here’s what dig’s output looks like:

$ dig yahoo.com

; <<>> DiG 9.3.0rc2 <<>> yahoo.com
;; global options: printcmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 16507
;; flags: qr rd ra; QUERY: 1, ANSWER: 3, AUTHORITY: 5, ADDITIONAL: 5

;; QUESTION SECTION:
;yahoo.com. IN A

;; ANSWER SECTION:
yahoo.com. 300 IN A 66.94.234.13
yahoo.com. 300 IN A 216.109.127.28
yahoo.com. 300 IN A 216.109.127.29

;; AUTHORITY SECTION:
yahoo.com. 74804 IN NS ns3.yahoo.com.
yahoo.com. 74804 IN NS ns4.yahoo.com.
yahoo.com. 74804 IN NS ns1.yahoo.com.
yahoo.com. 74804 IN NS ns2.yahoo.com.

;; ADDITIONAL SECTION:
ns1.yahoo.com. 72593 IN A 66.218.71.63
ns2.yahoo.com. 72596 IN A 66.163.169.170
ns3.yahoo.com. 72594 IN A 217.12.4.104
ns4.yahoo.com. 72594 IN A 63.250.206.138

26. If the server does not exist, older versions of dig will silently fall back to the local server, so read your out-
put carefully to verify the source. Since BIND 9.2, dig returns an error and no answer in this situation.

D
N

S

15.16 Testing and debugging 475

;; Query time: 6 msec
;; SERVER: 204.152.184.109#53(204.152.184.109)
;; WHEN: Sun Jul 9 16:03:43 2006
;; MSG SIZE rcvd: 245

dig includes the notation aa in its list of flags if the answer is authoritative. Here we
are asking the local name server about yahoo.com, so the answer is not authoritative.

dig’s output includes not only the domain information but also the number of que-
ries sent and the answers’ round trip time. The output is formatted correctly to be
used in a zone file, which is particularly handy when you are querying for the root
servers for your hints file. The semicolon is the comment character in a zone file and
is used by dig to embed comments into its output.

When testing a new configuration, be sure that you look up data for both local and
remote hosts. If you can access a host by IP address but not by name, DNS is proba-
bly the culprit.

Lame delegations

When you apply for a domain name, you are asking for a part of the DNS naming tree
to be delegated to your primary name server and your DNS administrator. If you
never use the domain or you change the name servers without updating the parent
domain’s glue records, a “lame delegation” results.

The effects of a lame delegation can be very bad. If a user tries to contact a host in
your lame domain, your name server will refuse the query. DNS will retry the query
several hundred times, pummeling both your master server and the root servers.
BIND uses a lame server “penalty box” to help with the load created by lameness,
but Microsoft servers do not implement it.

There are two ways to find lame delegations: by reviewing the log files or by using a
tool called doc, short for “domain obscenity control.” We look at some doc examples
in the next section, but let’s first review some log entries.

Many sites point the lame-servers logging channel to /dev/null and don’t bother
fretting about the lame delegations of other people. That’s fine as long as your own
domain is squeaky clean and is not itself a source or victim of lame delegations.

In one log file that was 3.5MB after about a week (at level “info”), over one-third of
the log entries were for lame delegations. Of those, 16% involved queries to the root
servers, presumably for nonexistent domains. One persistent user queried the root
servers for tokyotopless.net hundreds of times. Sigh. Here is an example of a lame
delegation log message:

Jan 29 05:34:52 ipn.caida.org named[223]: Lame server on 'www.games.net' (in
'GAMES.net'?): [207.82.198.150].53 'NS2.EXODUS.net'

476 Chapter 15 – DNS: The Domain Name System

Here’s how we’d track down the problem with dig (we truncated some of dig’s ver-
bose output):

$ dig www.games.net.
;; …
;; QUESTIONS:
;; www.games.net, type = A, class = IN
;; ANSWERS:
www.games.net. 3600 A 209.1.23.92
;; AUTHORITY RECORDS:
games.net. 3600 NS ns.exodus.net.
games.net. 3600 NS ns2.exodus.net.
games.net. 3600 NS ns.pcworld.com.
;; ADDITIONAL RECORDS: …

The first query at the local server returns the address record for www.games.net and
a list of authoritative servers. The server at ns.exodus.net worked fine when we que-
ried it (not shown), but ns2.exodus.net is another story:

$ dig @ns2.exodus.net www.games.net.
;; QUESTIONS:
;; www.games.net, type = A, class = IN
;; AUTHORITY RECORDS:
net. 244362 NS F.GTLD-SERVERS.net.
net. 244362 NS J.GTLD-SERVERS.net.
net. 244362 NS K.GTLD-SERVERS.net.
net. 244362 NS A.GTLD-SERVERS.net.
;; …

ns2 is listed as being an authoritative server for www.games.net, but it returns no
records and refers us to the servers for the net top-level domain. Therefore, we can
conclude that ns2.exodus.net is configured incorrectly.

Sometimes when you dig at an authoritative server in an attempt to find lameness,
dig returns no information. Try the query again with the +norecurse flag so you
can see exactly what the server in question knows.

doc: domain obscenity control

doc is not a part of BIND. It’s currently maintained by Brad Knowles, from whose
web site it can be downloaded:

www.shub-internet.org/brad/dns/ (Note: “shub”, not “shrub”)

doc is C shell script. If you plan to put it in your path or run it from cron, you must
edit the script and set the auxd variable to point to the installation directory.

doc checks delegations by making repeated calls to dig. It reports on inconsisten-
cies, errors, and other problems related to a particular domain name. Its screen out-
put summarizes the issues that it finds; it also produces a verbose log file in the
current directory with details.

www.games.net
www.games.net
www.shub-internet.org/brad/dns/

D
N

S

15.16 Testing and debugging 477

Let’s look at some examples. First, atrust.com, where everything seems to be OK:

$ doc atrust.com
Doc-2.2.3: doc atrust.com
Doc-2.2.3: Starting test of atrust.com. parent is com.
Doc-2.2.3: Test date - Thu Jul 6 08:54:38 MDT 2006
Summary:
 No errors or warnings issued for atrust.com.
Done testing atrust.com. Thu Jul 6 08:54:46 MDT 2006

The log file (log.atrust.com.) mentions that both com and atrust.com agree on the
identities of the name servers for atrust.com and that those two servers have the
same serial number in their SOA records. doc also checks the PTR records for each
of the name servers. The actual dig queries that were performed by doc are listed at
the end of the log file, along with the responses they provoked.

Our next example is for the domain cs.colorado.edu:

$ doc cs.colorado.edu
Doc-2.2.3: doc cs.colorado.edu
Doc-2.2.3: Starting test of cs.colorado.edu. parent is colorado.edu.
Doc-2.2.3: Test date - Thu Jul 6 08:55:15 MDT 2006
dig: Couldn't find server 'rs0.netsol.com.': No address associated with hostname
DIGERR (NOT_ZONE): dig @rs0.netsol.com. for SOA of parent (colorado.edu.) failed
DIGERR (NOT_AUTHORIZED): dig @pacifier.com. for SOA of cs.colorado.edu. failed
dig: Couldn't find server 'xor.com.': No address associated with hostname
DIGERR (FORMAT_ERROR): dig @xor.com. for SOA of cs.colorado.edu. failed
Summary:
 ERRORS found for cs.colorado.edu. (count: 2)
 Incomplete test for cs.colorado.edu. (2)
Done testing cs.colorado.edu. Thu Jul 6 08:55:26 MDT 2006

Here we can see several problems in the parent domain, colorado.edu. The parent’s
zone data incorrectly lists rs0.netsol.com as a server for colorado.edu, and xor.com
and pacifier.com as servers for cs.colorado.edu. To see the whole story, we would
have to run doc against the parent domain, colorado.edu, and review the detailed
log file.

Finally, let’s take a look at nsa.cctldmd.net:

$ doc nsa.cctldmd.net
Doc-2.2.3: doc nsa.cctldmd.net
Doc-2.2.3: Starting test of nsa.cctldmd.net. parent is cctldmd.net.
Doc-2.2.3: Test date - Thu Jul 6 08:56:20 MDT 2006
SYSerr: No servers for nsa.cctldmd.net. returned SOAs ...
Summary:
 YIKES: doc aborted while testing nsa.cctldmd.net. parent cctldmd.net.
 WARNINGS issued for nsa.cctldmd.net. (count: 2)
 Incomplete test for nsa.cctldmd.net. (1)
Done testing nsa.cctldmd.net. Thu Jul 6 08:56:22 MDT 2006

478 Chapter 15 – DNS: The Domain Name System

The cctldmd.net domain has a lame delegation to nsa.cctldmd.net. The entry below
from the log.nsa.cctldmd.net. file clarifies the problem:

WARNING: register.dns.md. claims to be authoritative for nsa.cctldmd.net.
 == but no NS record at parent zone

If you manage a domain that includes subdomains (or don’t trust the managers of
your parent domain), consider running doc from cron once a week to verify that all
delegations relating to your domain are correct.

Other DNS sanity checking tools

There are several other tools that check various aspects of your DNS environment.
named-checkconf and named-checkzone are shipped with BIND 9; they check the
basic syntax (not semantics) of the named.conf file and your zone files. The origi-
nal DNS checking tool is nslint, written by Craig Leres when he was at Lawrence
Berkeley Labs. The tool lamers (from the same web site as doc) riffles through log
files and sends email to the DNS administrators of offending sites telling them that
they have a lame delegation and describing how to fix the problem. DDT by Jorge
Frazao and Artur Romao debugs cached data.

dnswalk traverses your delegation tree and identifies inconsistencies between par-
ent and child or between forward and reverse records. It also finds missing dots,
unnecessary glue records, etc. It is a general DNS hygiene nag. dnswalk needs to be
able to do zone transfers in order to work its magic.

Performance issues

BIND 9 currently has a few performance issues that are being addressed by ISC. Its
performance is approaching that of BIND 8, but its efficiency on multiprocessor ar-
chitectures has been disappointing so far. The f.root-servers.net machines use BIND
9 and happily handle about 5,000 queries/second; the performance is probably fine
for most sites.

We’ve said it multiple times already, but it bears repeating: set your TTLs to reason-
able values (weeks or days, not hours or minutes). The use of short TTLs punishes
both you (because you must constantly re-serve the same records) and your web
clients (because they must constantly fetch them).

Paging degrades server performance nonlinearly, so don’t be stingy with memory
on servers that run named. You’ll need to wait about a week for named’s memory
footprint to stabilize; see page 421.

Use forwarders. See page 427 for a discussion of forwarding architecture.

15.17 DISTRIBUTION SPECIFICS

This section describes the details of each distribution’s named software and its de-
fault configuration. Linux distributions are pretty good about updating when new
versions of the BIND software are released by ISC.

D
N

S

15.17 Distribution specifics 479

Each of our reference distributions uses BIND as its default name server, but only a
subset of distributions include it in the default installation. The other distributions
include the BIND utilities (dig, nslookup, host, etc.) but not the name server soft-
ware itself. You either have to specify that you want BIND installed when you build
the machine or install the BIND package separately.

A Linux BIND client specifies its default domain, the other domains to search when
names are not fully qualified, and the IP addresses of its local name servers in the
file /etc/resolv.conf. A Linux host that acts as a BIND server also uses the named
files listed in Table 15.16.

Linux uses a switch file, /etc/nsswitch.conf, to specify how hostname-to-IP ad-
dress mappings should be performed and whether DNS should be tried first, last,
or not at all. If no switch file is present, the default behavior is

hosts: dns [!UNAVAIL=return] files

The !UNAVAIL clause means that if DNS is available but a name is not found there,
the lookup attempt should fail rather than continuing to the next entry (in this case,
the /etc/hosts file). If no name server were running (as might be the case during the
boot process), the lookup process would consult the hosts file.

Our example distributions all provide the following default nsswitch.conf file:

hosts: files dns

There is really no “best” way to configure the lookups—it depends on how your site
is managed. In general, we prefer to keep as much host information as possible in
DNS rather than in NIS or flat files, but we also try to preserve the ability to fall back
to the static hosts file during the boot process if necessary.

Table 15.16 BIND files in Linux

File Directory a Description

resolv.conf /etc Resolver library configuration file
named, lwres /usr/sbin Name server daemon
named.conf /etc

/etc/bind
named config file (RHEL, Fedora, and SUSE)
named config file (Debian, Ubuntu)

named.pid /var/run/named
/var/run/bind/run
home/var/run/named

PID of the running named (RHEL/Fedora)
PID of the running named (Debian, Ubuntu)
PID of the running named (SUSE)

named.run home Output from debug mode
named.stats home

home/var/log
Statistics output
Statistics output (SUSE)

named_dump.db home
home/var/log

Dump of the entire database
Dump of the entire database (SUSE)

a. By home, we mean the directory specified in named.conf as the home for BIND files.

480 Chapter 15 – DNS: The Domain Name System

Installing the RHEL or Fedora BIND package (currently bind-9.2.3-13.i386.rpm)
puts the binaries in /usr/sbin, puts the man pages in /usr/share/man, adds a user
and group called “named,” and creates directories for zone files. The “named” user
has access to the data files through the group permissions.

Unless you change this in /etc/sysconfig/named, the configuration file named.conf
goes in /etc (as Paul Vixie and God intended) and the zone files go in /var/named.
No sample files are provided, but the bindconf package should have them.

Debian and Ubuntu give you a choice of BIND 8 or BIND 9 depending on which
package you install (bind vs. bind9). The following details assume BIND 9.

Programs and files have owner root and group owner “bind” with permissions set to
allow access if named is invoked as user “bind” instead of root.

Some useful sample files are stashed in /etc/bind. Included are a named.conf file
and zone files for root hints, localhost, the broadcast addresses, and private address
space. The supplied named.conf includes the files named.conf.options and
named.conf.local. It sets BIND’s default directory to /var/cache/bind; as shipped,
the directory exists but is empty.

The logic behind the configuration info being in /etc and the zone info in /var is that
if you are a secondary server for other sites, you do not control the size of the zone
files that named will write and so you will probably want to keep the files on /var.
Zones for which you are the primary server can live with the config files and use
absolute paths in the named.conf file, or they can live in /var/cache/bind too.

Debian’s sample named.conf file does not need to be modified if you want to run a
caching-only server. You must add any zones for which you are authoritative, prefera-
bly to the supplied named.conf.local file.

The sample files provided by Debian make use of some new BIND features to help
your servers be good DNS citizens on the network. For example, they configure the
com and net zones as delegation-only zones to keep your users’ typos from generat-
ing advertising revenue for VeriSign through its Site Finder tool. If you don’t use pri-
vate address space (RFC1918) internally, then the empty RFC1918 zone files prevent
those addresses from escaping the local network. Go, Debian!

The directory /usr/share/doc/bind9 contains several useful references. Check out
the README.Debian file (even on Ubuntu) to understand Debian’s strategy for
configuring BIND.

Installing BIND from an rpm package on SUSE was frustrating because of missing
dependencies, but once these were resolved the installation went fine. The installa-
tion says what it is doing and produces a reasonable, well-documented name server
installation. A SUSE wizard later suggested using YaST instead of rpm as the true
SUSE way to install things, and that’s probably the right answer.

D
N

S

15.18 Recommended reading 481

By default, named runs in a chrooted environment beneath /var/lib/named as user
and group “named.” The installer creates the chroot jail directory and populates it
with all the files needed to run named, even niceties such as the UNIX domain
socket for syslog. Extra configuration files (not named.conf) and zone files live in
/etc/named.d and are copied to the jail when named is started. If you do not want
to run named chrooted, modify the line that says

NAMED_RUN_CHROOTED="yes"

in /etc/sysconfig/named. That’s all you have to change; the startup scripts in
/etc/init.d refer to this information and are able to start named in either fashion.

SUSE provides a sample /etc/named.conf file with helpful comments that explain
many of the options. SUSE’s /etc/named.conf file is not world-readable as is typical.
The default file imports a file called named.conf.include, which then imports the
rndc-access.conf file from /etc/named.d, both of which are readable to the world.
It’s not entirely clear what SUSE has in mind here concerning security. rndc is pre-
configured to accept control commands from the localhost address only.

SUSE’s named.conf file can be used as-is to run a caching-only server. If you want to
serve your own zones, put the zone files in the /etc/named.d directory and list the
zones’ names in the /etc/named.conf.include file.

The ISC BIND documentation lives in /usr/share/doc/packages/bind9.

15.18 RECOMMENDED READING

DNS and BIND are described by a variety of sources, including the documentation
that comes with the distribution, chapters in several books on Internet topics, sev-
eral books in the O’Reilly Nutshell series, and various on-line resources.

Mailing lists and newsgroups

The following mailing lists are associated with BIND:

• bind-announce – mail bind-announce-request@isc.org to join

• namedroppers – mail namedroppers-request@internic.net to join

• bind-users – mail bind-users-request@isc.org to join

• bind9-workers – mail bind9-workers-request@isc.org (for code warriors)

Send bug reports to bind9-bugs@isc.org.

Books and other documentation

THE NOMINUM AND ISC BIND DEVELOPMENT TEAMS. BINDv9 Administrator Refer-
ence Manual. Available in the BIND distribution (doc/arm) from www.isc.org.

This document outlines the administration and management of BIND 9. A new ver-
sion of the BIND documentation, the BIND Reference Manual (probably doc/brm),
is currently being developed by ISC but is not yet available for review. An earlier doc-
ument, the Bind Operations Guide (or BOG, as it was called), described the operation

www.isc.org

482 Chapter 15 – DNS: The Domain Name System

and configuration of BIND 4. The BOG is included in BIND distributions up through
version 8.

ALBITZ, PAUL, AND CRICKET LIU. DNS and BIND (5th Edition). Sebastopol, CA:
O’Reilly Media, 2006.

This popular and well-respected book about BIND includes coverage of both BIND
8 and BIND 9. It is very complete.

On-line resources

The DNS Resources Directory, www.dns.net/dnsrd, is a useful collection of re-
sources and pointers to resources maintained by András Salamon.

Google has indexed DNS resources at

directory.google.com/Top/Computers/Internet/Protocols/DNS

The comp.protocols.dns.bind newsgroup also contains good information.

The RFCs

The RFCs that define the DNS system are available from www.rfc-editor.org. Early
and evolving ideas appear first in the Internet-Drafts series and later move into the
RFC series. We used to list a page or so of the most important DNS-related RFCs,
but there are now so many (more than 100, with another 50 Internet drafts) that you
are better off searching the rfc-editor.org web page to access the entire archive. Refer
to the doc/rfc and doc/draft directories of the current BIND distribution to see the
whole fleet.

The original, definitive standards for DNS, vintage 1987, are

• 1034 – Domain Names: Concepts and Facilities

• 1035 – Domain Names: Implementation and Specification

15.19 EXERCISES

E15.1 Explain the function of each of the following DNS records: SOA, PTR, A,
MX, and CNAME.

E15.2 What are glue records and why are they needed? Use dig to find the glue
records that connect your local zone to its parent.

E15.3 What are the implications of negative caching? Why is it important?

E15.4 Create SPF pseudo-records for your site to help control spam.

E15.5 What steps are needed to set up a new second-level domain? Include
both technical and procedural factors.

www.dns.net/dnsrd
www.rfc-editor.org

D
N

S

15.19 Exercises 483

E15.6 What is the difference between an authoritative and a nonauthoritative
answer to a DNS query? How could you ensure that an answer was au-
thoritative?

E15.7 What machine is your local name server? What steps must it take to re-
solve the name www.admin.com, assuming that no information about
this domain is cached anywhere in DNS?

E15.8 Explain the significance for DNS of the 512-byte limit on UDP packets.
What workarounds address potential problems?

www.admin.com

484

16 The Network File System

The Network File System, commonly known as NFS, enables sharing of filesystems
among computers. NFS is almost transparent to users and is “stateless,” meaning that
no information is lost when an NFS server crashes. Clients can simply wait until the
server returns and then continue as if nothing had happened.

NFS was introduced by Sun Microsystems in 1985. It was originally implemented as
a surrogate filesystem for diskless clients, but the protocol proved to be well designed
and very useful as a general file-sharing solution. In fact, it’s difficult to remember
what life was like before NFS. All full-featured Linux distributions support NFS.

16.1 GENERAL INFORMATION ABOUT NFS

Today, NFS is used only to share files among Linux and UNIX boxes. Windows cli-
ents should use CIFS/Samba for file service. See page 828 for more information
about Samba and CIFS.

NFS consists of several components, including a mounting protocol and mount
server, daemons that coordinate basic file service, and several diagnostic utilities. A
portion of both the server-side and client-side software resides in the kernel. How-
ever, these parts of NFS need no configuration and are largely transparent from an
administrator’s point of view.

NFS protocol versions

The NFS protocol has been remarkably stable over time. The original public release
of NFS was version 2. In the early 1990s, a collection of changes was integrated into

NFS

N
FS

16.1 General information about NFS 485

the protocol to produce version 3, which increased performance and improved sup-
port for large files. Early implementations of version 4 are now available. Version 4
includes many new enhancements, which we describe below.

Since NFS version 2 clients cannot assume that a write operation is complete until
they receive an acknowledgment from the server, version 2 servers must commit
each modified block to disk before replying, to avoid discrepancies in the event of a
crash. This constraint introduces a significant delay in NFS writes since modified
blocks would normally be written only to the in-memory buffer cache.

NFS version 3 eliminates this bottleneck with a coherency scheme that permits
asynchronous writes. It also updates several other aspects of the protocol that were
found to have caused performance problems. The net result is that NFS version 3 is
quite a bit faster than version 2. Version 3 software is always capable of interoperat-
ing with version 2, although it simply falls back to using the earlier protocol.

NFS version 4 is becoming more stable and is shipping with some versions of Linux.
It requires a 2.6.1 kernel or greater and needs to be manually turned on in the ker-
nel. Featured enhancements include

• Compatibility and cooperation with firewalls and NAT devices

• Integration of the lock and mount protocols into the core NFS protocol

• Stateful operation

• Strong, integrated security

• Support for replication and migration

• Support for both UNIX and Windows clients

• Access control lists (ACLs)

• Support for Unicode filenames

• Good performance even on low-bandwidth connections

See nfs.sourceforge.net for current information about the state of NFSv4 on Linux
and pointers to the latest software releases.

Because NFSv4 is still in development, we don’t discuss it in detail in this chapter.
But keep your eye on it; many of the planned features address longstanding short-
comings of NFS. We hope that version 4 lives up to its very promising specifications.

Choice of transport

NFS runs on top of Sun’s RPC (Remote Procedure Call) protocol, which defines a
system-independent way for processes to communicate over a network. One advan-
tageous side effect of this architecture is that it allows the use of either UDP or TCP
as the underlying transport protocol.

NFS originally used UDP because that was what performed best on the LANs and
computers of the 1980s. Although NFS does its own packet sequence reassembly and
error checking, UDP and NFS both lack the congestion control algorithms that are
essential for good performance on a large IP network.

486 Chapter 16 – The Network File System

To remedy these potential problems, all modern systems now let you use TCP in-
stead of UDP as the transport for NFS. This option was first explored as a way to
help NFS work through routers and over the Internet. However, the current consen-
sus seems to be that TCP is usually the best option for local NFS traffic as well. Over
time, most of the original reasons for preferring UDP over TCP have evaporated in
the warm light of fast CPUs, cheap memory, and smarter network controllers. Linux
has supported NFS service over TCP since the 2.4 kernel.

Most servers that support TCP generally accept connections on either transport, so
the choice between TCP and UDP is made by the client. The client specifies its pref-
erence as an option to the mount command (for manual mounts) or in a config file
such as /etc/fstab.

File locking

File locking (as implemented by the flock, lockf and/or fcntl systems calls) has
been a sore point on UNIX systems for a long time. On local filesystems, it has been
known to work less than perfectly. In the context of NFS, the ground is shakier still.
By design, NFS servers are stateless: they have no idea which machines are using any
given file. However, this information is needed to implement locking. What to do?

The traditional answer has been to implement file locking separately from NFS. Most
systems provide two daemons, lockd and statd, that try to make a go of it. Unfortu-
nately, the task is difficult for a variety of subtle reasons, and NFS file locking has
generally tended to be flaky.

Disk quotas

Access to remote disk quota information can be provided by an out-of-band server,
rquotad. NFS servers enforce disk quotas if they are enabled on the underlying file-
system, but users cannot view their quota information unless rquotad is running on
the remote server.

We consider disk quotas to be largely obsolete; however, some organizations still de-
pend on them to keep users from hogging all available disk space. If you’re support-
ing one of these organizations, you can consult the quota documentation for the ap-
propriate Linux distributions. We don’t discuss rquotad further.

Cookies and stateless mounting

A client must explicitly mount an NFS filesystem before using it, just as a client must
mount a filesystem stored on a local disk. However, because NFS is stateless, the
server does not keep track of which clients have mounted each filesystem. Instead,
the server simply discloses a secret “cookie” at the conclusion of a successful mount
negotiation. The cookie identifies the mounted directory to the NFS server and so
provides a way for the client to access its contents.

Unmounting and remounting a filesystem on the server normally changes its cookie.
As a special case, cookies persist across a reboot so that a server that crashes can

N
FS

16.1 General information about NFS 487

return to its previous state. But don’t try to boot single-user, play with filesystems,
then boot again; this procedure revokes cookies and makes clients unable to access
the filesystems they have mounted until they either reboot or remount.

Once a client has a magic cookie, it uses the RPC protocol to request filesystem op-
erations such as creating a file or reading a data block. Because NFS is a stateless
protocol, the client is responsible for ensuring that the server acknowledges write
requests before it deletes its own copy of the data to be written.

Naming conventions for shared filesystems

It is easier to manage NFS if your naming scheme for mounts includes the name of
each remote server (e.g., /anchor/tools for a filesystem that lives on anchor). Such
names are useful because they let users translate announcements such as “anchor
will be down on Saturday for an upgrade” into useful information such as “I won’t
be able to use /anchor/tools/TeX on Saturday to finish my thesis, so I should go
skiing instead.”

Unfortunately, this scheme requires the directory /anchor to exist in the root direc-
tory of all client machines. If a client gets filesystems from several other hosts, the
root can get cluttered. Consider providing a deeper hierarchy (e.g., /home/anchor,
/home/rastadon, etc.). We recommend implementing such a scheme with an auto-
mounter daemon as described starting on page 497.

Security and NFS

NFS provides a convenient way to access files on a network, and thus it has great
potential to cause security problems. In many ways, NFS version 3 is a poster child
for everything that is or ever has been wrong with UNIX and Linux security. The
protocol was originally designed with essentially no concern for security, and con-
venience has its price. Fortunately, Linux supports a number of features that reduce
and isolate the security problems from which NFS has traditionally suffered.

See page 490 for more
information about the
exports file.

Access to NFS volumes is granted by a file called /etc/exports that enumerates the
hostnames (or IP addresses) of systems that should have access to a server’s filesys-
tems. Unfortunately, this is a weak form of security because the server trusts the cli-
ents to tell it who they are. It’s easy to make clients lie about their identities, so this
mechanism cannot be fully trusted. Nevertheless, you should export filesystems only
to clients that you trust, and you should always check that you have not accidentally
exported filesystems to the whole world.

Access to NFS ports should always be tightly restricted. Fortunately, all versions of
Linux include a firewall that can handle this task.

As on local filesystems, file-level access control on NFS filesystems is managed ac-
cording to UID, GID, and file permissions. But once again, the NFS server trusts the
client to tell it who is accessing files. If mary and bob share the same UID on two
separate clients, they will have access to each other’s NFS files. In addition, users that
have root access on a system can change to whatever UID they want; the server will

488 Chapter 16 – The Network File System

happily give them access to the corresponding files. For these reasons, we strongly
recommend the use of globally unique UIDs and the root_squash option described
in the next section.

A rather large educational institution that we know made the mistake of not using
root_squash. As a result, 5 large servers and 60 desktops were compromised. It took
a long holiday weekend to contain the incident and rebuild the machines.

See page 701 for more
information about net-
work firewalls.

If your site has installed a network firewall, it’s a good idea to block access to TCP
and UDP ports 2049, which are used by NFS. You should also block access to the
portmap daemon, which normally listens on TCP and UDP ports 111. It’s implicit
in these precautions but perhaps worth saying explicitly that NFS filesystems should
not be exported to nonlocal machines or exported across the open Internet.

Root access and the nobody account

Although users should generally be given identical privileges wherever they go, it’s
traditional to prevent root from running rampant on NFS-mounted filesystems. By
default, the Linux NFS server intercepts incoming requests made on behalf of UID 0
and changes them to look as if they came from some other user. This modification is
called “squashing root.” The root account is not entirely shut out, but it is limited to
the abilities of a normal user.

A placeholder account named “nobody” is defined specifically to be the pseudo-user
as whom a remote root masquerades on an NFS server. The traditional UID for no-
body is 65534 (the twos-complement equivalent of UID -2).1 You can change the de-
fault UID and GID mappings for root with the anonuid and anongid export options.
You can use the all_squash option to map all client UIDs to the same UID on the
server. This configuration eliminates all distinctions among users and creates a sort
of public-access filesystem.

At the other end of the spectrum, the no_root_squash option turns off UID map-
ping for root. This option is sometimes needed to support diskless clients or software
that requires root access to the filesystem. It’s generally a bad idea to turn this feature
on because it allows users with root privileges on a client to modify files that are
normally protected. Nonetheless, the option is available.

The intent behind these precautions is good, but their ultimate value is not as great as
it might seem. Remember that root on an NFS client can su to whatever UID it wants,
so user files are never really protected. System logins such as “bin” and “sys” aren’t
UID-mapped, so any files they own, such as the occasional system binary or third-
party application, may be vulnerable to attack. The only real effect of UID mapping
is to prevent access to files that are owned by root and not readable or writable by
the world.

1. Although the Red Hat NFS server defaults to UID -2, the nobody account in the passwd file uses UID 99.
You can leave things as they are, add a passwd entry for UID -2, or change anonuid and anongid to 99 if
you wish. The other distributions use UID -2 for the nobody and nogroup accounts in the passwd file,
as expected.

N
FS

16.2 Server-side NFS 489

16.2 SERVER-SIDE NFS

A server is said to “export” a directory when it makes the directory available for use
by other machines.

In NFS version 3, the process used by clients to mount a filesystem (that is, to learn
its secret cookie) is completely separate from the process used to access files. The
operations use separate protocols, and the requests are served by different daemons:
mountd for mount requests and nfsd for actual file service. These daemons are ac-
tually called rpc.nfsd and rpc.mountd as a reminder that they rely on RPC as an
underlying protocol (and hence require portmap to be running; see page 893). We
omit the rpc prefix for readability.

On an NFS server, both mountd and nfsd should start when the system boots, and
both should remain running as long as the system is up. The system startup scripts
typically run the daemons automatically if you have any exports configured. The
names of the NFS server startup scripts for each distribution are shown in Table 16.1.

mountd and nfsd share a single access control database that tells which filesystems
should be exported and which clients may mount them. The operative copy of this
database is usually kept in a file called /usr/lib/nfs/xtab in addition to tables inter-
nal to the kernel. Since xtab isn’t meant to be human readable, you use a helper com-
mand—exportfs—to add and modify entries. To remove entries from the exports
table, use exportfs -u.

On most systems, /etc/exports is the canonical human readable list of exported
directories. By default, all filesystems in /etc/exports are exported at boot time. You
can manually export all the filesystems listed in /etc/exports by using exportfs -a,
which should be run after you make changes to the exports file. You can also export
filesystems once by specifying the client, path, and options directly on the exportfs
command line.

NFS deals with the logical layer of the filesystem. Any directory can be exported; it
doesn’t have to be a mount point or the root of a physical filesystem. However, for

Table 16.1 NFS server startup scripts

Distribution Paths to startup scripts

Red Hat Enterprise /etc/rc.d/init.d/nfs

Fedora /etc/rc.d/init.d/nfs

SUSE /etc/init.d/nfsboota

Debian /etc/init.d/nfs-kernel-server
/etc/init.d/nfs-common

Ubuntu /etc/init.d/nfs-kernel-server
/etc/init.d/nfs-common

a. /etc/init.d/nfs mounts the NFS client filesystems on SUSE.

490 Chapter 16 – The Network File System

security, NFS does pay attention to the boundaries between filesystems and does
require each device to be exported separately. For example, on a machine that has a
/users partition, you could export the root directory without exporting /users.

Clients are usually allowed to mount subdirectories of an exported directory if they
wish, although the protocol does not require this feature. For example, if a server
exports /chimchim/users, a client could mount only /chimchim/users/joe and ig-
nore the rest of the users directory. Most versions of UNIX don’t let you export sub-
directories of an exported directory with different options, but Linux does.

The exports file

The /etc/exports file enumerates the filesystems exported through NFS and the cli-
ents that may access each of them. Whitespace separates the filesystem from the list
of clients, and each client is followed immediately by a parenthesized list of comma-
separated options. Lines can be continued with a backslash.

Here’s what the format looks like:

/home/boggs inura(rw,no_root_squash) lappie(rw)
/usr/share/man *.toadranch.com(ro)

There is no way to list multiple clients for a single set of options, although some client
specifications actually refer to multiple hosts. Table 16.2 lists the four types of client
specifications that can appear in the exports file.

Table 16.3 shows the most commonly used export options.

Linux’s NFS server has the unusual feature of allowing subdirectories of exported
directories to be exported with different options. Use the noaccess option to “unex-
port” subdirectories that you would rather not share.

For example, the configuration

/home *.toadranch.com(rw)
/home/boggs (noaccess)

allows hosts in the toadranch.com domain to access all the contents of /home
through mounting except for /home/boggs. The absence of a client name on the

Table 16.2 Client specifications in the /etc/exports file

Type Syntax Meaning

Hostname hostname Individual hosts
Netgroup @groupname NIS netgroups; see page 517 for details
Wild cards * and ? FQDNs a with wild cards. “*” will not match a dot.
IP networks ipaddr/mask CIDR-style specifications (e.g., 128.138.92.128/25)

a. Fully qualified domain names

N
FS

16.2 Server-side NFS 491

second line means that the option applies to all hosts; it’s perhaps somewhat more
secure this way.

The subtree_check option (the default) verifies that every file accessed by the client
lies within an exported subdirectory. If you turn off this option, only the fact that the
file is within an exported filesystem is verified. Subtree checking can occasionally
cause problems when a requested file is renamed while the client has the file open. If
you anticipate many such situations, consider setting no_subtree_check.

The secure_locks option requires authorization and authentication in order for
files to be locked. Some NFS clients don’t send credentials with lock requests and do
not work with secure_locks. In this case, you would only be able to lock world-
readable files. Replacing these clients with ones that support credentials correctly is
the best solution. However, you can specify the insecure_locks option as a stopgap.

Don’t forget to run exportfs -a after updating the exports file to effect your changes.

Table 16.3 Common export options

Option Description

ro Exports read-only
rw Exports for reading and writing (the default).
rw=list Exports read-mostly. list enumerates the hosts allowed to mount

for writing; all others must mount read-only.
root_squash Maps (“squashes”) UID 0 and GID 0 to the values specified by

anonuid and anongid. This is the default.
no_root_squash Allows normal access by root. Dangerous.
all_squash Maps all UIDs and GIDs to their anonymous versions. Useful for

supporting PCs and untrusted single-user hosts.
anonuid=xxx Specifies the UID to which remote roots should be squashed
anongid=xxx Specifies the GID to which remote roots should be squashed
secure Requires remote access to originate at a privileged port
insecure Allows remote access from any port
noaccess Prevents access to this dir and subdirs (used with nested exports)
wdelay Delays writes in hopes of coalescing multiple updates
no_wdelay Writes data to disk as soon as possible
async Makes server reply to write requests before actual disk write
nohide Reveals filesystems mounted within exported file trees
hide Opposite of nohide
subtree_check Verifies that each requested file is within an exported subtree
no_subtree_check Verifies only that file requests refer to an exported filesystem
secure_locks Requires authorization for all lock requests
insecure_locks Specifies less stringent locking criteria (supports older clients)
auth_nlm Synonym for secure_locks
no_auth_nlm Synonym for insecure_locks

492 Chapter 16 – The Network File System

nfsd: serve files

Once a client’s mount request has been validated by mountd, the client can request
various filesystem operations. These requests are handled on the server side by nfsd,
the NFS operations daemon.2 nfsd need not be run on an NFS client machine unless
the client exports filesystems of its own.

nfsd takes a numeric argument that specifies how many server threads to fork. Se-
lecting the appropriate number of nfsds is important and is unfortunately something
of a black art. If the number is too low or too high, NFS performance can suffer.

Generally, 8 nfsd threads are adequate for a server that is used infrequently and are
few enough that performance problems don’t really arise. On a production server,
somewhere between 12 and 20 is a good number. If you notice that ps shows the
nfsds in state D most of the time and some idle CPU is available, consider increasing
the number of threads. If you find the load average (as reported by uptime) rising as
you add nfsds, you’ve gone too far; back off a bit from that threshold. You should also
run nfsstat regularly to check for performance problems that might be associated
with the number of nfsd threads. See page 495 for more information about nfsstat.

On a loaded NFS server with a lot of UDP clients, UDP sockets can overflow if re-
quests arrive while all nfsd threads are already in use. You can monitor the number
of overflows with netstat -s. Add more nfsds until UDP socket overflows drop to
zero. Overflows indicate a severe undersupply of server daemons, so you should
probably add a few more than this metric would indicate.

You can change the number of nfsd processes by editing the appropriate startup
script in /etc/init.d or by specifying the number on the command line when manu-
ally starting nfsd. See Table 16.1 on page 489 for the name of the script to edit.

16.3 CLIENT-SIDE NFS

NFS filesystems are mounted in much the same way as local disk filesystems. The
mount command understands the notation hostname:directory to mean the path
directory on the host hostname. As with local filesystems, mount maps the remote
directory on the remote host into a directory within the local file tree. After mount-
ing, an NFS-mounted filesystem is accessed in the same way as a local filesystem.
The mount command and its associated NFS extensions represent the most signifi-
cant concerns to a system administrator of an NFS client.

Before an NFS file system can be mounted, it must be properly exported (see Server-
side NFS on page 489). To verify that a server has properly exported its filesystems
from the client’s perspective, you can use the client’s showmount command:

$ showmount -e coyote
Export list for coyote:
/home/boggs inura.toadranch.com

2. In reality, nfsd simply makes a nonreturning system call to NFS server code embedded in the kernel.

N
FS

16.3 Client-side NFS 493

This example reports that the directory /home/boggs on the server coyote has been
exported to the client system inura.toadranch.com. showmount output should be
the first thing you check if an NFS mount is not working and you have already veri-
fied that the filesystems have been properly exported on the server with exportfs.
(You might have just forgotten to run exportfs -a after updating the exports file.)

If the directory is properly exported on the server but showmount returns an error
or an empty list, you might double-check that all the necessary processes are run-
ning on the server (portmap, mountd, nfsd, statd, and lockd), that the hosts.allow
and hosts.deny files allow access to those daemons, and that you are on the right
client system.

To actually mount the filesystem, you would use a command such as this:

mount -o rw,hard,intr,bg coyote:/home/boggs /coyote/home/boggs

The options after -o specify that the filesystem should be mounted read-write, that
operations should be interruptible, and that retries should be done in the back-
ground. These flags are pretty standard; other common flags are listed in Table 16.4.

Filesystems mounted hard (the default) cause processes to hang when their servers
go down. This behavior is particularly bothersome when the processes in question
are standard daemons, so we do not recommend serving critical system binaries
over NFS. In general, the use of the soft and intr options reduces the number of

Table 16.4 NFS mount flags/options

Flag Description

rw Mounts the filesystem read-write (must be exported that way)
ro Mounts the filesystem read-only
bg If the mount fails (server doesn’t respond), keeps trying it in the

background and continues with other mount requests
hard If a server goes down, causes operations that try to access it to

block until the server comes back up
soft If a server goes down, causes operations that try to access it to fail

and return an error. This feature is useful to avoid processes
“hanging” on inessential mounts.

intr Allows users to interrupt blocked operations (and return an error)
nointr Does not allow user interrupts
retrans=n Specifies the number of times to repeat a request before returning

an error on a soft-mounted filesystem
timeo=n Sets the timeout period (in tenths of a second) for requests
rsize=n Sets the read buffer size to n bytes
wsize=n Sets the write buffer size to n bytes
nfsvers=n Selects NFS protocol version 2 or 3 (normally automatic)
tcp Selects transport via TCP. UDP is the default.
async Makes server reply to write requests before actual disk write

494 Chapter 16 – The Network File System

NFS-related headaches. However, these options can have their own undesirable side
effects, such as aborting a 20-hour simulation after it has run for 18 hours just be-
cause of a transient network glitch.3 Automount solutions such as autofs, discussed
later in this chapter, also provide some remedies for mounting ailments.

The read and write buffer sizes apply to both UDP and TCP mounts, but the optimal
values differ. Because you can trust TCP to transfer data efficiently, the values should
be higher; 32K is a good value. For UDP, good values when server and client are on
the same network is 8K.4 The default is 1K, though even the man page recommends
increasing it to 8K for better performance.

In the legacy kernels Linux 2.2 and 2.4, the default input queue size is 64K. With eight
nfsd threads running on the NFS server, only one request can be outstanding on each
instance of nfsd before requests begin to be dropped. Therefore, you might consider
increasing the receive queue size for nfsd only, returning it to the default value after
running nfsd so that other processes are not negatively affected by the change. You
can change the input queue size in your system startup scripts by using procfs.

This example sets the queue size to 256K, which is a reasonable default:

rmem_default='cat /proc/sys/net/core/rmem_default'
rmem_max='cat /proc/sys/net/core/rmem_max'
echo 262144 > /proc/sys/net/core/rmem_default
echo 262144 > /proc/sys/net/core/rmem_max

Run or restart rpc.nfsd, then return the settings to their original values:

echo $rmem_default > /proc/sys/net/core/rmem_default
echo $rmem_max > /proc/sys/net/core/rmem_max

You can test the mount with df just as you would test a local filesystem:

$ df /coyote/home/boggs
Filesystem 1k-blocks Used Available Use% Mounted on
coyote:/home/boggs 17212156 1694128 14643692 11% /coyote/home/boggs

You unmount NFS partitions with the umount command. If the NFS filesystem is in
use when you try to unmount it, you will get an error such as

umount: /coyote/home/boggs: device is busy

Like any other filesystem, an NFS filesystem cannot be unmounted while it is in use.
Use lsof to find processes with open files on the filesystem; kill them or, in the case
of shells, change directories. If all else fails or your server is down, try umount -f to
force the filesystem to be unmounted.

3. Jeff Forys, one of our technical reviewers, remarked, “Most mounts should use hard, intr, and bg,
because these options best preserve NFS’s original design goals (reliability and statelessness). soft is an
abomination, an ugly Satanic hack! If the user wants to interrupt, cool. Otherwise, wait for the server
and all will eventually be well again with no data lost.”

4. If you use iptables, you might have to add a rule to accept fragments because 8K is above the MTU for
Ethernet. Accepting fragments may make you more vulnerable to a denial of service attack.

N
FS

16.4 nfsstat: dump NFS statistics 495

Mounting remote filesystems at boot time

See page 497 for
more information
about autofs.

You can use the mount command to establish temporary network mounts, but you
should list mounts that are part of a system’s permanent configuration in /etc/fstab
so that they are mounted automatically at boot time. Alternatively, mounts can be
handled by an automatic mounting service such as autofs.

The following fstab entries mount the filesystems /home and /usr/local from the
hosts coyote and inura:

filesystem mountpoint fstype flags dump fsck
coyote:/home /coyote/home nfs rw,bg,intr,hard,nodev,nosuid 0 0
inura:/usr/local /usr/local nfs ro,bg,intr,soft,nodev,nosuid 0 0

See page 127 for more
information about the
fstab file.

When you add entries to fstab, be sure to create the appropriate mount point direc-
tories with mkdir. You can make your changes take effect immediately (without re-
booting) by running mount -a -t nfs to mount all file systems of type nfs in fstab.

The flags field of /etc/fstab specifies options for NFS mounts; these options are the
same ones you would specify on the mount command line.

Restricting exports to insecure ports

NFS clients are free to use any TCP or UDP source port they like when connecting to
an NFS server. However, Linux servers may insist that requests come from a privi-
leged port (a port numbered lower than 1024) if the filesystem is exported with the
secure export option, which is on by default. In the world of PCs and desktop Linux
boxes, the use of privileged ports provides little actual security.

Linux NFS clients adopt the traditional (and still recommended) approach of default-
ing to a privileged port, to avert the potential for conflict. To accept mounts from
unprivileged source ports, export the filesystem with the insecure export option.

16.4 NFSSTAT: DUMP NFS STATISTICS

The nfsstat command displays various statistics kept by the NFS system. nfsstat -s
displays statistics for NFS server processes, and nfsstat -c shows information related
to client-side operations. For example:

$ nfsstat -s
Server rpc stats:
calls badcalls badauth badclnt xdrcall
24314112 311 9 302 0
Server nfs v2:
getattr null setattr root lookup readlink
8470054 34% 58 0% 55199 0% 0 0% 1182897 4% 917 0%
read wrcache link create remove rename
6602409 27% 0 0% 7452 0% 61544 0% 46712 0% 11537 0%
write symlink mkdir rmdir readdir fsstat
7785789 32% 744 0% 3446 0% 2539 0% 13614 0% 69201 0%

496 Chapter 16 – The Network File System

This example is from a relatively healthy NFS server. If more than 3% of calls are bad,
the problem is likely to lie with your NFS server or network. Check the output of
netstat -s for general network statistics. It may reveal problems with dropped pack-
ets, fragment reassembly, or network queue overruns that will affect your NFS per-
formance. See page 649 for more on debugging your network with netstat.

Running nfsstat and netstat occasionally and becoming familiar with their output
will help you discover NFS problems before your users do.

16.5 DEDICATED NFS FILE SERVERS

Fast, reliable file service is one of the most important elements of any production
computing environment. Although you can certainly roll your own file server from a
Linux workstation and a handful of off-the-shelf hard disks, doing so is often not the
best-performing or easiest-to-administer solution (though it is often the cheapest).

Dedicated NFS file servers have been around for more than a decade. They offer a
host of potential advantages over the homebrew approach:

• They are optimized for file service and typically afford the best possible
NFS performance.

• As storage requirements grow, they can scale smoothly to support tera-
bytes of storage and hundreds of users.

• They are more reliable than Linux boxes thanks to their simplified soft-
ware, redundant hardware, and use of disk mirroring.

• They usually provide file service for both Linux and Windows clients.
Some even contain integral web and FTP servers.

• They are often easier to administer than Linux file servers.

• They often include backup and checkpoint facilities that are superior to
those found on vanilla Linux systems.

Some of our favorite dedicated NFS servers are made by Network Appliance, Inc.
(www.netapp.com). Their products run the gamut from very small to very large,
and their pricing is OK. EMC is another player in the high-end server market. They
make good products, but be prepared for sticker shock and build up your tolerance
for marketing buzzwords.5

Storage area network (SAN) servers are also very popular now. They differ from
dedicated NFS file servers in that they have no understanding of filesystems; they
simply serve disk blocks. A SAN is therefore unencumbered by the overhead of an
operating system and provides very fast read/write access. That said, in the real
world we have found them to be not quite ready for production use. They can be

5. Speaking of buzzwords, one of the main ones you’ll hear in this context is “network attached storage,”
also known as NAS. It’s just a fancy way of saying “file service.”

www.netapp.com

N
FS

16.6 Automatic mounting 497

quite complex to integrate into an existing environment, and they seem to require a
significant amount of support time.

16.6 AUTOMATIC MOUNTING

Mounting filesystems one at a time by listing them in /etc/fstab introduces a num-
ber of problems in large networks.

First, maintaining /etc/fstab on a few hundred machines can be tedious. Each one
may be slightly different and thus require individual attention.

Second, if filesystems are mounted from many different hosts, chaos ensues when one
of those servers crashes. Every command that accesses the mount points will hang.

Third, when an important server crashes, it may cripple users by making important
partitions like /usr/share/man unavailable. In this situation, it’s best if a copy of the
partition can be mounted temporarily from a backup server.

An automount daemon mounts filesystems when they are referenced and unmounts
them when they are no longer needed. This procedure minimizes the number of ac-
tive mount points and is mostly transparent to users. Most automounters also work
with a list you supply of “replicated” (identical) filesystems so that the network can
continue to function when a primary server becomes unavailable.

To implement this behind-the-scenes mounting and unmounting, the automounter
mounts a virtual filesystem driver on the directories you’ve designated as locations
for automatic mounting to occur. In the past, the automounter did this by posing as
an NFS server, but this scheme suffers from several significant limitations and is
rarely found on contemporary systems. These days, a kernel-resident filesystem
driver called autofs is used.

Instead of mirroring an actual filesystem, an automounter “makes up” a filesystem
hierarchy according to the specifications you list in its configuration file. When a
user references a directory within the automounter’s virtual filesystem, the auto-
mounter intercepts the reference and mounts the actual filesystem the user is trying
to reach.

automount: mount filesystems on demand

The idea of an automounter originally comes from Sun. The Linux automounter,
called autofs, mimics Sun’s automounter, although it is an independent implementa-
tion of the concept and is different in a number of ways.

automount is a background process that configures a single mount point for autofs,
the kernel portion of the Linux automounter. The startup script /etc/init.d/autofs
parses a “master” file (usually /etc/auto.master) and runs automount for each of
the listed mount points. It’s typical to see a running instance of automount for each
automatic mount point that has been configured.

498 Chapter 16 – The Network File System

You rarely need to run the automount command directly, because almost all ad-
ministration of the automounter is performed through the /etc/init.d/autofs script
(or in the case of Red Hat and Fedora, /etc/rc.d/init.d/autofs).6 As with most star-
tup scripts, the autofs script accepts on the command line a single parameter that
can be start, stop, reload, restart, or status. Whenever changes are made to the
automounter configuration, you must run autofs reload to make the changes take
effect. autofs status gives you the status of existing automounts.

The auto.master file associates a mount point with a “map.” A map translates the
directory name accessed—known as the “key”—into a command line that mount
can use to perform the real mount. A map can be a text file, an executable program,
or an NIS or LDAP database.

When a user references a directory that has been mounted with the autofs kernel
filesystem module, the kernel module notifies the user-land automount process of
the access. The automount process figures out which filesystem to mount by con-
sulting the relevant map file or program. It then performs the mount before return-
ing control to the user who triggered the lookup.

You can see the autofs filesystems and the automount processes they are attached to
by running mount and ps:

$ mount
/dev/hda3 on / type ext2 (rw)
proc on /proc type proc (rw)
/dev/hda1 on /boot type ext2 (rw)
automount(pid8359) on /misc type autofs // automounter filesystem

(rw,fd=5,pgrp=8359,minproto=2,maxproto=4)
automount(pid8372) on /net type autofs // automounter filesystem

(rw,fd=5,pgrp=8372,minproto=2,maxproto=4)

$ ps auxw | grep automount
root 8359 0.0 1.0 1360 652 ? S Dec27 0:00

/usr/sbin/automount /misc file /etc/auto.misc
root 8372 0.0 1.0 1360 652 ? S Dec27 0:00

/usr/sbin/automount /net program /etc/auto.net

Here we can see two autofs filesystems mounted on /misc and /net. These virtual
filesystems are attached to the automount processes with PIDs 8359 and 8372, re-
spectively. The automount commands run by the /etc/init.d/autofs script can be
seen in the ps output. auto.misc is a regular map file, and auto.net is an executable
program. These maps are described in more detail below.

The master file

The /etc/auto.master file lists the directories that should have autofs filesystems
mounted on them and associates a map with each directory. In addition to specifying
the root directory for the map and the map name, you can also specify options in the

6. Don’t confuse the autofs script with the autofs filesystem. The relationship between them is that the
script tells the kernel how to configure the filesystem.

N
FS

16.6 Automatic mounting 499

“-o” format used by the mount command. These options apply to each entry in the
map. The Linux conventions vary from Sun’s conventions in that the master file’s
options unite with those of the map; both sets of options are handed to mount.

A simple master file that makes use of the map file shown in the next section would
look something like this:

Directory Map Options
/chimchim /etc/auto.chim -secure,hard,bg,intr

The master file can be replaced or augmented by a version shared through NIS. The
source of the system’s automount information is specified by the automount field in
/etc/nsswitch.conf. See Prioritizing sources of administrative information on page
515 for more information about the nsswitch.conf file.

Map files

Map files (known as “indirect maps” on other systems) automount several filesys-
tems underneath a common directory. The path of the directory is specified in the
master file, not in the map itself. For example, a map for filesystems mounted under
/chimchim (corresponding to the example above) might look like this:

users chimchim:/chimchim/users
devel -soft,nfsproto=3 chimchim:/chimchim/devel
info -ro chimchim:/chimchim/info

The first column names the subdirectory in which each automount should be in-
stalled, and subsequent items list the mount options and source path of the filesys-
tem. This example (stored in /etc/auto.chim) tells automount that it can mount the
directories /chimchim/users, /chimchim/devel, and /chimchim/info from the
host chimchim, with info being mounted read-only and devel being mounted soft
with NFS protocol version 3.

In this configuration the paths on chimchim and the local host are identical. How-
ever, this correspondence is not required.

Executable maps

If a map file is executable, it’s assumed to be a script or program that dynamically
generates automounting information. Instead of reading the map as a text file, the
automounter executes it with an argument (the key) that indicates which subdirec-
tory a user has attempted to access. The script is responsible for printing an appro-
priate map entry; if the specified key is not valid, the script can simply exit without
printing anything.

This powerful feature makes up for many of the deficiencies in automounter’s
rather strange configuration system. In effect, it allows you to easily define a site-
wide automount configuration file in a format of your own choice. You can write a
simple Perl script to decode the global configuration on each machine. Some sys-
tems are shipped with a handy /etc/auto.net executable map that takes a hostname
as a key and mounts all exported file systems on that host.

500 Chapter 16 – The Network File System

The automounter does have one confusing characteristic that deserves mention
here: when you list the contents of an automounted filesystem’s parent directory, the
directory appears empty no matter how many filesystems have been automounted
there. You cannot browse the automounts in a GUI filesystem browser. An example:

$ ls /portal
$ ls /portal/photos
art_class_2004 florissant_1003 rmnp03
blizzard2003 frozen_dead_guy_Oct2004 rmnp_030806
boston021130 greenville.021129 steamboat2002

The photos filesystem is alive and well and is automounted under /portal. It’s acces-
sible through its full pathname. However, a review of the /portal directory does not
reveal its existence. If you had mounted this filesystem through the /etc/fstab file or
a manual mount command, it would behave like any other directory and would be
visible as a member of the parent directory.

One way around the browsing problem is to create a shadow directory that contains
symbolic links to the automount points. For example, if /automounts/photos is a
symbolic link to /portal/photos, you can ls /automounts to discover that photos is
an automounted directory. References to /automounts/photos are still routed
through the automounter and work correctly. Unfortunately, these symbolic links
require maintenance and can go out of sync with the actual automounts unless they
are periodically reconstructed by a script.

16.7 RECOMMENDED READING

CALLAGHAN, BRENT. NFS Illustrated. Reading, MA: Addison-Wesley, 1999.

STERN, HAL, MIKE EISLER, AND RICARDO LABIAGA. Managing NFS and NIS (2nd Edi-
tion). Sebastopol, CA: O’Reilly Media, 2001.

Table 16.5 lists the various RFCs for the NFS protocol.

Table 16.5 NFS-related RFCs

RFC Title Author Date

1094 Network File System Protocol Specification Sun Microsystems Mar 1989
1813 NFS Version 3 Protocol Specification B. Callaghan et al. Jun 1995
2623 NFS Version 2 and Version 3 Security Issues M. Eisler Jun 1999
2624 NFS Version 4 Design Considerations S. Shepler Jun 1999
3530 NFS Version 4 Protocol S. Shepler et al. April 2003

N
FS

16.8 Exercises 501

16.8 EXERCISES

E16.1 Explore your local NFS setup. Is NFS used, or is a different solution in
place? Is automounting used? What tradeoffs have been made?

E16.2 What is the relationship between mountd, nfsd, and portmap? What
does NFS’s dependency on portmap mean in terms of security?

E16.3 What are some of the design ramifications of NFS being a stateless pro-
tocol? In particular, discuss any effects statelessness has on file locking,
access permissions, and security. How would a stateful network filesys-
tem differ from NFS?

E16.4 Your employer needs you to export /usr and /usr/local through NFS.
You have been given the following information and requests:

a) Because of office politics, you want only your department (local sub-
net 192.168.123.0/24) to be able to use these exported filesystems.
What lines must be added to what files to implement this configura-
tion? Pay attention to the proper export options.

b) List the steps needed to make mountd and nfsd recognize these new
shared filesystems. How could you verify that the directories were
being shared without mounting them?

c) Outline a strategy that would make all machines on your local subnet
automatically mount the exported directories on the mount points
/mnt/usr and /mnt/usr/local.

502

17 Sharing System Files

A properly functioning system depends on tens, perhaps hundreds, of configuration
files all containing the right pieces of information. When you multiply the number
of configuration files on a host by the number of hosts on a network, the result can
be thousands of files—too many to manage by hand.

In the real world, machines are often similar from an administrative point of view.
Instead of editing text files on each machine, you can, for efficiency, combine ma-
chines into groups that share configuration information. You can combine machines
in several different ways.

The simplest way is to keep a master copy of each configuration file in one place and
distribute it to members of the group whenever the file changes. This solution has the
advantages of being simple and working on every Linux (and UNIX) system.

Another approach is to eliminate text files altogether and have each machine obtain
its configuration information from a central server. This solution is more compli-
cated than file copying, but it solves some additional problems. For example, cli-
ents can’t miss updates, even if they are down when a change is made. It may also be
faster to obtain information from a server than from a file, depending on the speed of
the local disk and the amount of caching performed by the server. On the other hand,
the entire network can hang when the central server goes down.

To add to the challenge, most organizations today are faced with supporting a mix
of platforms—some UNIX, some Linux, and some Windows—and users are in-
creasingly annoyed when they have to deal with inconveniences such as having to
remember (and change) a different password on each platform. Synchronizing

Sharing System Files

S
h

a
ri

n
g

 S
ys

te
m

 F
il

e
s

17.1 What to share 503

configuration and user information across wildly different systems (such as Win-
dows and Linux) was once just a pipe dream. Today, it is commonplace.

The history of attempts to develop distributed administrative databases for large
networks stretches back several decades and has produced a number of interesting
systems. However, none of the systems currently in general use seem exactly right in
their approach. Some are simple but not secure and not scalable. Others are func-
tional but unwieldy. All the systems seem to have limitations that can prevent you
from setting up the network the way you want to, and none of them manage all the
information you may want to share across your machines.

In this chapter we first discuss some basic techniques for keeping files synchronized
on a network. We then describe NIS, a historically popular database system origi-
nally introduced for UNIX. Finally, we address LDAP, a more sophisticated, platform-
independent system that is becoming the de facto standard. Most sites today are
migrating toward LDAP, driven largely by Microsoft’s adoption of (most of) the
LDAP standard in their Active Directory product and the desire to better integrate
Linux and Windows environments.

17.1 WHAT TO SHARE

Of the many configuration files on a Linux system, only a subset can be usefully
shared among machines. The most commonly shared files are listed in Table 17.1.

Table 17.1 System files that are commonly shared

Filename Function

/etc/passwd User account information database
/etc/shadow a Holds shadow passwords
/etc/group Defines UNIX groups
/etc/hosts Maps between hostnames and IP addresses
/etc/networksb Associates text names with IP network numbers
/etc/services Lists port numbers for well-known network services
/etc/protocols Maps text names to protocol numbers
/etc/ethersb Maps between hostnames and Ethernet addresses
/etc/mail/aliases Holds electronic mail aliases
/etc/rpc Lists ID numbers for RPC services
/etc/netgroupb Defines collections of hosts, users, and networks
/etc/cups/printcap Printer information database
/etc/printcap.cups Printer information database (alternative path)
/etc/termcap Terminal type information database

a. Not necessarily sharable with other flavors of UNIX since the encryption can vary; see page 96.
b. Not used on all systems

504 Chapter 17 – Sharing System Files

Many other configuration files can potentially be shared among systems, depending
on how similar you want machines at your site to be. For the most part, these other
configuration files are associated with specific applications (e.g., /etc/sendmail.cf
for sendmail) and are not supported by administrative database systems such as NIS
and LDAP; you must share the files by copying them.

See page 681 for
more information
about PAM.

Historically, many of the files in Table 17.1 have been accessed through routines in
the standard C library. For example, the /etc/passwd file can be searched with the
getpwuid, getpwnam, and getpwent routines. These routines take care of opening,
reading, and parsing the passwd file so that user-level programs don’t have to do it
themselves. Modern Linux distributions also use pluggable authentication modules
(PAM), which afford a standard programming interface for performing security-re-
lated lookups. PAM allows systems such as Kerberos and LDAP to be easily inte-
grated into Linux.

Administrative database systems complicate matters by providing alternative sources
for much of this information. The traditional C library routines (getpwent, etc.) are
aware of the common database systems and can access them in addition to (or in-
stead of) the standard flat files. The exact complement of data sources that are con-
sulted is set by the system administrator; see Prioritizing sources of administrative
information on page 515 for details.

17.2 NSCD: CACHE THE RESULTS OF LOOKUPS

On some distributions, another finger in the system file pie belongs to nscd, the
somewhat misleadingly titled name service cache daemon. nscd works in conjunc-
tion with the C library to cache the results of library calls such as getpwent. nscd is
simply a wrapper for these library routines; it knows nothing about the actual data
sources being consulted. nscd should in theory improve the performance of look-
ups, but any improvement is largely unnoticeable from the user’s subjective view.

See Chapter 15 for
more information
about DNS.

We say that “name service cache daemon” is misleading because the term “name ser-
vice” usually refers to DNS, the distributed database system that maps between
hostnames and Internet addresses. nscd does in fact cache the results of DNS look-
ups (because it wraps gethostbyname, etc.), but it also wraps the library routines
that access information from the passwd and group files and their network data-
base equivalents. (For security, lookups to /etc/shadow are not cached.)

In concept, nscd should have no effect on the operation of the system other than to
speed up repeated lookups. In practice, it can cause unexpected behavior because it
maintains its own copy of the lookup results. Lookups are stored in the cache for a
fixed amount of time (set in nscd’s configuration file, /etc/nscd.conf), and there is
always the possibility that recent changes will not be reflected in nscd’s cache until
the previous data has timed out. nscd is smart enough to monitor local data sources
(such as /etc/passwd) for changes, so local updates should propagate within 15 sec-
onds. For remote entries, such as those retrieved through NIS, you may have to wait
for the full timeout period before changes take effect.

S
h

a
ri

n
g

 S
ys

te
m

 F
il

e
s

17.3 Copying files around 505

Among our example distributions, only SUSE runs nscd by default. Fedora and
RHEL install nscd but do not start it at boot time by default; to enable the use of
nscd, just run chkconfig nscd on. Debian and Ubuntu are nscd compatible but do
not include nscd in the default installation; run apt-get install nscd to download it.

nscd starts at boot time and runs continuously. The default /etc/nscd.conf specifies
a timeout of 10 minutes for passwd data and an hour for hosts and group, with a 20-
second negative timeout (the amount of time before an unsuccessful lookup is re-
tried). In practice, these values rarely need changing. If a change you recently made
doesn’t seem to show up, nscd is probably the reason.

17.3 COPYING FILES AROUND

Brute-force file copying is not an elegant solution, but it works on every kind of ma-
chine and is easy to set up and maintain. It’s also a reliable system because it mini-
mizes the interdependencies among machines (although it may also make it easier
for machines to fall out of sync). File copying also offers the most flexibility in terms
of what can be distributed and how. Indeed, it is also often used to keep applications
and data files up to date as well as system files.

Quite a few configuration files are not supported by any of the common database ser-
vices. Some examples are /etc/ntp.conf, which determines how hosts keep their
clocks synchronized, and /etc/sendmail.cf, which tells sendmail how to deliver
mail. To keep such files in sync (which is usually wise), you really have no choice but
to use some sort of file-copying system, even if you distribute other types of config-
uration information through NIS or LDAP.

File-copying systems can use either a “push” model or a “pull” model. With push,
the master server periodically distributes the freshest files to each client, whether
the client wants them or not. Files can be pushed explicitly whenever a change is
made, or they can simply be distributed on a regular schedule (perhaps with some
files being transferred more often than others).

The push model has the advantage of keeping the distribution system centralized on
one machine. Files, lists of clients, update scripts, and timetables are all stored in one
place, making the scheme easy to control. One disadvantage is that each client must
allow the master to modify its system files, thereby creating a security hazard.

In a pull system, each client is responsible for updating itself from the server. This is
a less centralized way of distributing files, but it is also more adaptable and more
secure. When data is shared across administrative boundaries, a pull system is espe-
cially attractive because the master and client machines need not be run by the same
administrative group or political faction.

rdist: push files

The rdist command is the easiest way to distribute files from a central server. It has
something of the flavor of make: you use a text editor to create a specification of the

506 Chapter 17 – Sharing System Files

files to be distributed, and then you use rdist to bring reality into line with your spec-
ification. rdist copies files only when they are out of date, so you can write your spec-
ification as if all files were to be copied and let rdist optimize out unnecessary work.

rdist preserves the owner, group, mode, and modification time of files. When rdist
updates an existing file, it first deletes the old version before installing the new. This
feature makes rdist suitable for transferring executables that might be in use during
the update.1

rdist historically ran on top of rsh and used rsh-style authentication to gain access
to remote systems. Unfortunately, this system is not secure and is disabled by default
on modern operating systems. Even though the rdist documentation continues to
talk about rsh, do not be fooled into thinking that rsh is a reasonable choice.

Current versions of rdist are better in that they allow any command that understands
the same syntax to be substituted for rsh. In practice, the substitute is ssh, which
uses cryptography to verify the identity of hosts and to prevent network eavesdrop-
pers from obtaining copies of your data. The downside is that you must run remote
ssh servers in a mode that does not require a password (but authenticates the client
with a cryptographic key pair). This is a less secure configuration than we would
normally recommend, but it is still a huge improvement over rsh. See page 697 for
more information about sshd and its authentication modes.

Now that we’ve belabored the perils of rdist, let’s look at how it actually works. Like
make, rdist looks for a control file (Distfile or distfile) in the current directory.
rdist -f distfile explicitly specifies the control file’s pathname. Within the Distfile,
tabs, spaces, and newlines are used interchangeably as separators. Comments are in-
troduced with a pound sign (#).

The meat of a Distfile consists of statements of the form

label: pathnames -> destinations commands

The label field associates a name with the statement. From the shell, you can run rdist
label to distribute only the files described in a particular statement.

The pathnames and destinations are lists of files to be copied and hosts to copy them
to, respectively. If a list contains more than one entry, the list must be surrounded
with parentheses and the elements separated with whitespace. The pathnames can
include shell-style globbing characters (e.g., /usr/man/man[123] or /usr/lib/*). The
notation ~user is also acceptable, but it is evaluated separately on the source and
destination machines.

By default, rdist copies the files and directories listed in pathnames to the equivalent
paths on each destination machine. You can modify this behavior by supplying a se-
quence of commands and terminating each with a semicolon.

1. Though the old version disappears from the filesystem namespace, it continues to exist until all refer-
ences have been released. You must also be aware of this effect when managing log files. See page 203
for more information.

S
h

a
ri

n
g

 S
ys

te
m

 F
il

e
s

17.3 Copying files around 507

The following commands are understood:

install options [destdir];
notify namelist;
except pathlist;
except_pat patternlist;
special [pathlist] string;
cmdspecial [pathlist] string;

The install command sets options that affect the way rdist copies files. Options typ-
ically control the treatment of symbolic links, the correctness of rdist’s difference-
checking algorithm, and the way that deletions are handled. The options, which
must be preceded by -o, consist of a comma-separated list of option names. For ex-
ample, the line

install -oremove,follow ;

makes rdist follow symbolic links (instead of just copying them as links) and re-
moves existing files on the destination machine that have no counterpart on the
source machine. See the rdist man page for a complete list of options. The defaults
are almost always what you want.

The name “install” is somewhat misleading, since files are copied whether or not an
install command is present. Options are specified as they would be on the rdist
command line, but when included in the Distfile, they apply only to the set of files
handled by that install command.

The optional destdir specifies an installation directory on the destination hosts. By
default, rdist uses the original pathnames.

The notify command takes a list of email addresses as its argument. rdist sends mail
to these addresses whenever a file is updated. Any addresses that do not contain an
at sign (@) are suffixed with the name of the destination host. For example, rdist
would expand “pete” to “pete@anchor” when reporting a list of files updated on
host anchor.

The except and except_pat commands remove pathnames from the list of files to
be copied. Arguments to except are matched literally, and those of except_pat are
interpreted as regular expressions. These exception commands are useful because
rdist, like make, allows macros to be defined at the beginning of its control file. You
might want to use a similar list of files for several statements, specifying only the
additions and deletions for each host.

The special command executes a shell command (the string argument, in quotation
marks) on each remote host. If a pathlist is present, rdist executes the command
once after copying each of the specified files. Without a pathlist, rdist executes the
command after every file. cmdspecial is similar, but it executes the shell command
once after copying is complete. (The contents of the pathlist are passed to the shell as
an environment variable.)

508 Chapter 17 – Sharing System Files

Here’s a simple example of a Distfile:

SYS_FILES = (/etc/passwd /etc/group /etc/mail/aliases)
GET_ALL = (chimchim lollipop barkadon)
GET_SOME = (whammo spiff)

all: ${SYS_FILES} -> ${GET_ALL}
 notify barb;
 special /etc/mail/aliases "/usr/bin/newaliases";

some: ${SYS_FILES} -> ${GET_SOME}
 except /etc/mail/aliases;
 notify eddie@spiff;

See page 551 for
more information
about newaliases.

This configuration replicates the three listed system files on chimchim, lollipop, and
barkadon and sends mail to barb@destination describing any updates or errors that
occur. After /etc/mail/aliases is copied, rdist runs newaliases on each destination.
Only two files are copied to whammo and spiff. newaliases is not run, and a report
is mailed to eddie@spiff.

To get rdist working among machines, you must also tell sshd on the recipient
hosts to trust the host from which you are distributing files. To do this, you generate
a plaintext key for the master host and store a copy of the public portion in the file
~root/.ssh/authorized_keys on each recipient. It’s probably also wise to restrict
what this key can do and where it can log in from. See the description of “method B”
on page 697 for more information.

rsync: transfer files more securely

rsync is available from
rsync.samba.org.

rsync, written by Andrew Tridgell and Paul Mackerras, is similar in spirit to rdist but
with a somewhat different focus. It does not use a file-copying control file in the man-
ner of rdist (although the server side does have a configuration file). rsync is a bit
like a souped-up version of scp that is scrupulous about preserving links, modifica-
tion times, and permissions. It is more network efficient than rdist because it looks
inside individual files and attempts to transmit only the differences between versions.
Most Linux distributions provide a prepackaged version of rsync, although it may
not be installed by default.

From our perspective, the main advantage of rsync is the fact that receiving ma-
chines can run the remote side as a server process out of xinetd or inetd. The server
(actually just a different mode of rsync, which must be installed on both the master
and the clients) is quite configurable: it can restrict remote access to a set of given
directories and can require the master to prove its identity with a password. Since no
ssh access is necessary, you can set up rsync to distribute system files without mak-
ing too many security compromises. (However, if you prefer to use ssh instead of an
inetd-based server process, rsync lets you do that too.) What’s more, rsync can also
run in pull mode (pulling files down from the rsync server rather than pushing them
to it), which is even more secure (see the section on pulling files, page 510).

S
h

a
ri

n
g

 S
ys

te
m

 F
il

e
s

17.3 Copying files around 509

Unfortunately, rsync isn’t nearly as flexible as rdist, and its configuration is less so-
phisticated than rdist’s distfile. You can’t execute arbitrary commands on the cli-
ents, and you can’t rsync to multiple hosts at once.

As an example, the command

rsync -gopt --password-file=/etc/rsync.pwd /etc/passwd lollipop::sysfiles

transfers the /etc/passwd file to the machine lollipop. The -gopt options preserve
the permissions, ownerships, and modification times of the file. The double colon in
lollipop::sysfiles makes rsync contact the remote rsync directly on port 873 instead
of using ssh. The password stored in /etc/rsync.pwd authenticates the connection.2

This example transfers only one file, but rsync is capable of handling multiple files
at once. In addition, the --include and --exclude flags let you specify a list of regular
expressions to match against filenames, so you can set up a fairly sophisticated set of
transfer criteria. If the command line gets too unwieldy, you can also read the pat-
terns from separate files with the --include-file and --exclude-file options.

Once the rsync package has been installed, Red Hat, Fedora, and SUSE all provide
xinetd configurations for rsync. However, you must edit /etc/xinetd.d/rsync and
change disable = yes to disable = no to actually enable the server.

The rsync package on Debian and Ubuntu requires an entry in /etc/inetd.conf to
enable the server functionality. Assuming that you use TCP wrappers, the entry
should look something like this:

rsync stream tcp nowait root /usr/sbin/tcpd /usr/bin/rsyncd --daemon

It’s a good idea to configure tcpd to block access from all hosts except the one that
will be distributing your system files. Host rejection can be specified in rsyncd.conf
as well, but it never hurts to erect multiple barriers.

Once you have enabled rsync, you need to set up a couple of config files to tell the
rsync server how to behave. The main file is /etc/rsyncd.conf, which contains both
global configurations parameters and a set of “modules,” each of which is a direc-
tory tree to export or import. A reasonable configuration for a module that you can
push to (i.e., that will accept incoming file transfers initiated by the connecting cli-
ent) looks something like this:

sysfiles is just an arbitrary title for the particular module.
[sysfiles]
This is the path you allow files to be pushed to. It could be just /.
path = /etc
This is the file specifying the user/password pair to authenticate the module
secrets file = /etc/rsyncd.secrets

2. Although the password is not sent in plaintext across the network, the transferred files are not
encrypted. If you use ssh as the transport (rsync -gopt -e ssh /etc/passwd /etc/shadow lollipop:/etc –
note the single colon), the connection will be encrypted, but sshd will have to be configured not to
require a password. Name your poison!

510 Chapter 17 – Sharing System Files

Can be read only if you are pulling files
read only = false
UID and GID under which the transfer will be done
uid = root
gid = root
List of hosts that are allowed to connect
hosts allow = distribution_master_hostname

Many other options can be set, but the defaults are reasonable. This configuration
limits operations to the /etc directory and allows access only by the listed host. From
the user’s or client’s point of view, you can rsync files to the server with the destina-
tion hostname::sysfiles, which maps to the module above. If you want to set up rsync
in pull mode (pulling files from a central rsync server), the configuration above will
still work, although you may want to tighten things up a bit, for example, by setting
the transfer mode to read-only.

The last thing you need to do is set up an rsyncd.secrets file. It’s generally kept in
/etc (although you can put it elsewhere) and contains the passwords that clients can
use to authenticate themselves. For example:

root:password

As a general rule, rsync passwords should be different from system passwords. Be-
cause the passwords are shown in plaintext, rsyncd.secrets must be readable only
by root.

Pulling files

You can implement a pulling system in several ways. The most straightforward way
is to make the files available on a central FTP or web server3 and to have the clients
automatically download them as needed. In historical times, administrators would
roll their own utilities to do this (often scripting ftp with a system such as expect),
but standard utilities can now do it for you.

One such utility that ships with most Linux distributions is the popular wget. It’s a
straightforward little program that fetches the contents of a URL (either FTP or
HTTP). For example, to FTP a file with wget, just run

wget ftp://user:password@hostname/path/to/file

The specified file is deposited in the current directory.

An alternative option for FTP only is ncftp, which also ships with most distribu-
tions. It’s really just an enhanced FTP client that allows for easy scripting.

Some sites distribute files by publishing them on a networked filesystem such as
NFS. This is perhaps the simplest technique from an automation point of view—all
you need is cp, at least in theory. In practice, you would probably want to be a little
more sophisticated and check for signs of security problems and corrupted content

3. Keep in mind that both HTTP and FTP transport data in plaintext. You may want to consider HTTPS
or SFTP, respectively, if security is a concern.

S
h

a
ri

n
g

 S
ys

te
m

 F
il

e
s

17.4 NIS: the Network Information Service 511

before blindly copying system files. Publishing sensitive system files over NFS has
many disadvantages from a security point of view, but it’s a simple and effective way
of moving the bits. You can always encrypt the data to reduce the chance of intercep-
tion by an intruder.

A final option is to use rsync as described in the previous section. If you run an
rsync server on your central distribution host, clients can simply rsync the files
down. Using this method is perhaps slightly more complex than using FTP, but you
then have access to all of rsync’s features.

Whatever system you use, be careful not to overload your data server. If a lot of ma-
chines on the network try to access your server simultaneously (e.g., if everyone
runs an update out of cron at the same time), you can cause an inadvertent denial of
service attack. Large sites should keep this problem in mind and allow for time
staggering or randomization. A simple way to do this is to wrap cron jobs in a Perl
script such as this:

#!/usr/bin/perl
sleep rand() * 600; # sleep between 0 and 600 seconds (i.e., 10 minutes)
system(copy_files_down);

17.4 NIS: THE NETWORK INFORMATION SERVICE

NIS, released by Sun in the 1980s, was the first “prime time” administrative database.
It was originally called the Sun Yellow Pages, but eventually had to be renamed for
legal reasons. NIS commands still begin with the letters yp, so it’s hard to forget the
original name. NIS was widely adopted among UNIX vendors and is supported by
every Linux distribution.

The unit of sharing in NIS is the record, not the file. A record usually corresponds to
one line in a config file. A master server maintains the authoritative copies of system
files, which are kept in their original locations and formats and are edited with a text
editor just as before. A server process makes the contents of the files available over
the network. A server and its clients constitute an NIS “domain.”4

Data files are preprocessed into database files by the Berkeley DB hashing library to
improve the efficiency of lookups. After editing files on the master server, you use
make to tell NIS to convert them to their hashed format.

Only one key can be associated with each entry, so a system file may have to be trans-
lated into several NIS “maps.” For example, the /etc/passwd file is translated into
two different maps called passwd.byname and passwd.byuid. One map is used to
look up entries by username and the other to look up entries by UID. Either map can
be used to enumerate the entries in the passwd file. However, because hashing li-
braries do not preserve the order of records, there is no way to reconstruct an exact
duplicate of the original file (unless it was sorted).

4. Do not confuse NIS domains with DNS domains. They are completely separate and have nothing to do
with each other.

512 Chapter 17 – Sharing System Files

NIS allows you to replicate the network maps on a set of slave servers. Providing more
than one server helps relieve the load on the master and helps keep clients working
even when some servers become unavailable. Whenever a file is changed on the mas-
ter server, the corresponding NIS map must be pushed out to the slaves so that all
servers provide the same data. Clients do not distinguish between the master server
and the slaves.

In the traditional NIS implementation, you must place at least one NIS server on ev-
ery physical network. Clients use IP broadcasting to locate servers, and broadcast
packets are not forwarded by routers and gateways. The ypset command can point a
client at a particular server; however, at the first hint of trouble, the client attempts
to locate a new server by broadcasting. Unless a server on the client’s network re-
sponds, this sequence of events can cause the client to hang.

This system causes a lot of problems, not least of which is that it is extremely inse-
cure. An intruder can set up a rogue NIS server that responds to broadcasts and ei-
ther provides bogus data or delivers a denial of service attack by allowing binding
and then blocking on actual requests. These days, the preferred management tech-
nique is to give each client an explicit list of its legitimate NIS servers. This system
also has the advantage that the servers need not be on the local subnet.

Under Linux, servers are listed in /etc/yp.conf. Here’s an example for the NIS do-
main atrustnis:

domain atrustnis server 10.2.2.3
domain atrustnis server 10.2.2.4

There is one line for each server; if one server goes down, NIS fails over to another.
Note that the servers are given in the form of IP addresses. yp.conf accepts host-
names, but these hostnames must then be resolvable at boot time (i.e., enumerated
in the /etc/hosts file or resolvable through DNS).

If you must use broadcast mode, the syntax is

domain atrustnis broadcast

Understanding how NIS works

NIS’s data files are stored in the directory /var/yp. Each NIS map is stored in a hashed
format in a subdirectory of the NIS directory named for the NIS domain. There is one
map (file) for each key by which a file can be searched. For example, in the domain
cssuns, the DB files for the /etc/passwd maps might be

/var/yp/cssuns/passwd.byname
/var/yp/cssuns/passwd.byuid

The passwd file is searchable by both name and UID, so two maps are derived from it.

The makedbm command generates NIS maps from flat files. However, you need
not invoke this command directly; a Makefile in /var/yp generates all the common
NIS maps. After you modify a system file, cd to /var/yp and run make. The make

S
h

a
ri

n
g

 S
ys

te
m

 F
il

e
s

17.4 NIS: the Network Information Service 513

command checks the modification time of each file against the modification times of
the maps derived from it and runs makedbm for each map that needs to be rebuilt.

Maps are copied from the master server to the slave servers by the ypxfr command.
ypxfr is a pull command; it must be run on each slave server to make that server
import the map. Slaves usually execute ypxfr every so often just to verify that they
have the most recent maps; you can use cron to control how often this is done.

The default implementation of map copying is somewhat inefficient. Linux fur-
nishes a daemon called rpc.ypxfrd that can be run on the master server to speed
responses to ypxfr requests. rpc.ypxfrd sidesteps the normal NIS protocol and
simply hands out copies of the map files.

yppush is a “push” command that’s used on the master server. It actually does not
transfer any data but rather instructs each slave to execute a ypxfr. The yppush com-
mand is used by the Makefile in the NIS directory to ensure that newly updated maps
are propagated to slaves.

The special map called ypservers does not correspond to any flat file. This map
contains a list of all the servers of the domain. It’s automatically constructed when
the domain is set up with ypinit (see Configuring NIS servers on page 518). Its con-
tents are examined when the master server needs to distribute maps to slaves.

After initial configuration, the only active components of the NIS system are the
ypserv and ypbind daemons. ypserv runs only on servers (both master and slave);
it accepts queries from clients and answers them by looking up information in the
hashed map files.

ypbind runs on every machine in the NIS domain, including servers. The C library
contacts the local ypbind daemon when it needs to answer an administrative query
(provided that /etc/nsswitch.conf says to do so). ypbind locates a ypserv in the
appropriate domain and returns its identity to the C library, which then contacts the
server directly. The query mechanism is illustrated in Exhibit A.

Exhibit A NIS query procedure

Application ypbind

ypserv

C library

C library

The
filesystem

getpwuid

gdbm

Client Side Server Side

514 Chapter 17 – Sharing System Files

Current Linux versions of ypbind periodically check to be sure they are dealing with
the most responsive server for an NIS domain. This is an improvement over the tra-
ditional implementation, which fixates on a particular server. Another feature unique
to Linux is that clients can bind to different NIS domains for different maps.

NIS includes a number of minor commands that examine maps, find out which ver-
sion of a map each server is using, and control the binding between clients and serv-
ers. A complete list of NIS commands and daemons is given in Table 17.2. (Rows are
shaded to improve readability.)

Weighing advantages and disadvantages of NIS

One nice feature of NIS is that it can be understood by mere mortals. NIS is analo-
gous to copying files around; in most cases, it’s unnecessary for administrators to be
aware of NIS’s internal data formats. Administration is done with the same old flat
files, and only one or two new procedures need to be learned.

Since NIS domains cannot be linked, NIS is not suitable for managing a large net-
work of machines unless a single configuration is to be applied to every machine.
You can divide a large network into several NIS domains, but each domain must be
administered separately. Even if a large network does use a single configuration, lim-
itations on the scaling of slave servers mean that in practice these sites usually come
up with some other mechanism to keep their NIS servers in sync. They often end up

Table 17.2 NIS commands and daemons

Program Description

ypserv Is the NIS server daemon, started at boot time
ypbind Is the NIS client daemon, started at boot time
domainname Sets the NIS domain a machine is in (run at boot time)
ypxfr Downloads current version of a map from master server
ypxfrd Serves requests from ypxfr (runs on master server)
yppush Makes slave servers update their versions of a map
makedbm Builds a hashed map from a flat file
ypmake Rebuilds hashed maps from flat files that have changed
ypinit Configures a host as a master or slave server
ypset Makes ypbind connect to a particular servera

ypwhich Finds out which server the current host is using
yppoll Finds out what version of a map a server is using
ypcat Prints the values contained in an NIS map
ypmatch Prints map entries for a specified key
yppasswd Changes a password on the NIS master server
ypchfn Changes GECOS information on the NIS master server
ypchsh Changes a login shell on NIS master server
yppasswdd Is the server for yppasswd, ypchsh, and ypchfn

a. Must be specifically enabled with ypbind -ypsetme or ypbind -ypset (dangerous)

S
h

a
ri

n
g

 S
ys

te
m

 F
il

e
s

17.4 NIS: the Network Information Service 515

rolling their own back-end databases and making their NIS servers fetch their data
from this central source.

See Chapter 8 for
more information
about cron.

If a slave server is down or inaccessible when a map is changed, the slave’s copy will
not be updated. Slaves must periodically poll the master to be sure that they have the
most recent version of every map. Although basic tools for polling are provided with
NIS, you must implement the polling scheme you want by using cron. Even so, two
different versions of a map could possibly be served simultaneously for a while, with
clients randomly seeing one or the other.

NIS is minimally secure. Broadcast mode is particularly bad; any host on a network
can claim to serve a particular domain and feed bogus administrative data to NIS
clients. You can avoid this problem by explicitly enumerating the permissible NIS
servers for each client.

You can restrict the hosts that are able to read a server’s maps by explicitly listing
them in /etc/ypserv.conf; however, this technique is not 100% secure. You can also
improve the security of your system by distributing your shadow password file with
some other technique (such as rdist or rsync); we don’t recommend using NIS to
serve shadow passwords.

Older versions of Linux NIS contain known security holes. If you are running an
older system, make sure you get the latest upgrades before starting NIS.

Prioritizing sources of administrative information

Configuration information can be distributed in several ways. Every system under-
stands flat files and knows how to use DNS to look up hostnames and Internet ad-
dresses. Most also understand NIS. Since a given piece of information could come
from several potential sources, Linux provides a way for you to specify the sources
that are to be checked and the order in which the checks are made.

In the original (pre-Linux) implementation of NIS, some configuration files (the
/etc/passwd and /etc/group files in particular) had to be configured to “invite in”
the contents of the corresponding NIS maps. The invitation was extended by inclu-
sion of special incantations in the files themselves. A lone “+” at the beginning of a
line would include the entire NIS map, “+@netgroup” would include only entries
relevant to a given netgroup, and “+name” would include a single entry.

This approach was never very well liked, and it has been superseded by a central con-
fig file, /etc/nsswitch.conf, that allows an explicit search path to be specified for each
type of administrative information. The original behavior can be emulated by use of
a compatibility mode, but it’s unlikely you would want to use this feature on a newly
configured network. (Unfortunately, emulation is most distributions’ default.)

A typical nsswitch.conf file looks something like this:

passwd: files nis
hosts: files dns
group: files
…

516 Chapter 17 – Sharing System Files

Each line configures one type of information (usually, one flat-file equivalent). The
common sources are nis, nisplus, files, dns, and compat; they refer to NIS, NIS+,5

vanilla flat files (ignoring tokens such as “+”), DNS, and NISified flat files (honoring
“+”), respectively. DNS is a valid data source only for host and network information.

Support for each source type comes from a shared library (/lib/libnss*), so distri-
butions vary slightly in the sources they support. Some distributions provide out-of-
the-box support for LDAP (see page 520) and/or Hesiod, a directory service based
on DNS. Another source commonly supported on Linux (and unfortunately not very
well documented) is db, which reads a hashed version of the map from /var/db (for
example, /var/db/passwd.db). If your flat files are large, the use of hashed versions
can substantially increase lookup speed.

Sources are tried from left to right until one of them produces an answer for the
query. In the example above, the gethostbyname routine would first check the
/etc/hosts file, and if the host was not listed there, would then check DNS. Queries
about UNIX groups, on the other hand, would check only the /etc/group file.

If necessary, you can define the “failure” of a source more specifically by putting
bracketed expressions after it. For example, the line

hosts: dns [NOTFOUND=return] nis

causes DNS to be used exclusively if it is available; a negative response from the name
server makes queries return immediately (with a failure code) without checking NIS.
However, NIS is used if no name server is available. The various types of failures are
shown in Table 17.3; each can be set to return or continue, signifying whether the
query should be aborted or forwarded to the next source.

By default, all Linux distributions ship with nsswitch.conf files that are reasonable
for a stand-alone machine without NIS. All entries go to the flat files, with the excep-
tion of host lookups, which first consult flat files and then DNS. Most distributions
default to compat mode for passwd and group, which is probably worth changing.
If you really use NIS, just explicitly put it in the nsswitch.conf file.

5. An ill-starred successor to the original NIS now discontinued by Sun but still supported by some sys-
tems for historical reasons.

Table 17.3 Failure modes recognized in /etc/nsswitch.conf

Condition Meaning

UNAVAIL The source doesn’t exist or is down.
NOTFOUND The source exists, but couldn’t answer the query.
TRYAGAIN The source exists but is busy.
SUCCESS The source was able to answer the query.

S
h

a
ri

n
g

 S
ys

te
m

 F
il

e
s

17.4 NIS: the Network Information Service 517

Debian and its kissing-cousin Ubuntu ship with protocols, services, ethers, and
rpc going to db and then files. This is slightly odd, since Debian and Ubuntu don’t,
in fact, include /var/db or any mechanism to maintain it. Presumably it would be
slightly more efficient to go directly to files; you can modify the settings to do that if
you want.

Using netgroups

NIS introduced a popular abstraction known as netgroups. Netgroups name sets of
users, machines, and nets for easy reference in other system files. They are defined
in /etc/netgroup and are also shared as an NIS map.

The format of a netgroup entry is

groupname list-of-members

Members are separated by whitespace. A member is either a netgroup name or a trip-
let of the form

(hostname, username, nisdomainname)

Any empty field in a triplet is a wild card; thus the entry (boulder,,) refers to all users
in all domains on the host boulder (or to the host boulder itself, depending on the
context in which the netgroup is used). A dash in a field indicates negation, so the
entry (boulder,-,) refers to the machine boulder and no users. Netgroup definitions
can nest.

Here’s a simple example of an /etc/netgroup file:

bobcats (snake,,) (headrest,,)
servers (anchor,,) (moet,,) (piper,,) (kirk,,)
anchorclients (xx,,) (watneys,,) (molson,,)
beers (anchor,,) (anchor-gateway,,) anchorclients
allhosts beers bobcats servers

These netgroups are all defined in terms of hosts; that’s typical for real-world use.

See Chapter 16 for
more information
about NFS.

Netgroups can be used in several system files that define permissions. The most com-
mon application these days is for configuring NFS exports. Netgroups can be men-
tioned in the /etc/exports file to specify groups of hosts that are allowed to mount
each filesystem. This feature is very handy when you are exporting to a lot of hosts,
particularly on systems that require fully qualified domain names and that limit lines
in the exports file to 1,024 characters.

Netgroups are a nice idea. They simplify system files, making them more under-
standable. They also add a layer of indirection that permits the status of a user or
machine to be changed in one file rather than fifteen.

Setting up an NIS domain

You must initialize NIS on the master server, on the slave servers, and on each client.
You do this in two steps. First, run ypinit on each server. Second, on every machine

518 Chapter 17 – Sharing System Files

in the domain, set the domain name from /etc/domainname or one of the system
startup files and configure /etc/nsswitch.conf to import NIS data.

Configuring NIS servers

The server side of NIS must usually be installed as a separate, optional package
called ypserv. Debian and Ubuntu do things a little differently; their nis package
includes both the client and server sides.

ypinit initializes both the master and slave servers for a domain. On the master, you
use the following commands:

cd /var/yp /* The NIS directory, wherever it is */
domainname foo /* Name the new domain. */
/usr/lib/yp/ypinit -m /* Initialize as master server. */
ypserv /* Start the NIS server. */

The -m flag tells ypinit that it’s configuring a master server; it prompts you to enter
a list of slave servers. Once the master is up and running, prime each slave server by
running ypinit with the -s (slave) flag:

cd /var/yp
/usr/lib/yp/ypinit -s master /* Argument is master's hostname. */
ypserv

ypinit -s makes a local copy of the master’s current data; the presence of the domain’s
data files is enough to let ypserv know that it should serve the domain.

See Chapter 8 for
more information
about cron.

On each slave, you should set up crontab entries to pull fresh copies of all maps from
the master. The command ypxfr map, where map is a name such as passwd.byuid,
transfers the specified map from the master server. You must run the command
once for each map. Maps tend to change at different rates, so you may want to trans-
fer some maps more often than others. In most circumstances, transferring all the
maps once or twice a day (perhaps late at night) is good enough. The following
script transfers every map:

#!/bin/sh
mydomain = `/bin/domainname`
cd /var/yp/$mydomain # the NIS directory
for map in `/bin/ls`; do
 /usr/lib/yp/ypxfr $map
done

Additionally, prefabricated scripts in /usr/lib/yp transfer NIS maps at various fre-
quencies (ypxfr_1perday, ypxfr_2perday, and ypxfr_1perhour).

If you want users to be able to change their passwords with yppasswd, you must run
the yppasswdd daemon on the master NIS server. The Linux version of this server
has been known to crash frequently, so be sure to verify that it is still running if the
yppasswd command doesn’t seem to be working.

S
h

a
ri

n
g

 S
ys

te
m

 F
il

e
s

17.4 NIS: the Network Information Service 519

Setting access control options in /etc/ypserv.conf

You can set options for the Linux version of the ypserv daemon in /etc/ypserv.conf;
however, only a few options are defined, and most sites will not need to change their
default values.

More importantly, ypserv looks to the ypserv.conf file for instructions about how
to control access to NIS data. Rather than simply blurting out the answer to every
incoming query as the traditional implementation does, the Linux ypserv checks
incoming requests against an access list. Each control line is of the form

host:nisdomain:map:security

host, nisdomain, and map identify a particular subset of requests, and the security
parameter tells how to handle it: deny to reject the request, port to allow the request
as long as it originates at a privileged network port (< 1024), and none to always
allow the request. Here is an example configuration:

128.138.24.0/255.255.252.0:atrustnis:*:none
::passwd.byuid:deny
::passwd.byname:deny
128.138.:atrustnis:*:port
::*:deny

You can use a star in the host, nisdomain, and map fields to match any value, but
partial matches are not allowed. (You can’t, for example, use passwd.* to match all
maps derived from the /etc/passwd file.) Control lines are checked in order until a
matching line is found. If no lines match, the default is to answer the request.

See page 287 for a
discussion of CIDR
netmasks.

The host parameter can include a netmask, as on the first line, but ypserv does not
understand the more common CIDR notation. As shown on the fourth line, you can
also omit trailing components of an IP address to make ypserv fill it in with zeros
and supply an analogous netmask.

The rules above allow access from any host on one of the 128.138.24/22 networks.
Hosts within 128.138 can access all maps in atrustnis except those derived from the
/etc/passwd file, as long as the request originates at a privileged port. All other ac-
cess is denied.

Never forget that this type of access control is a stopgap measure at best. It may
discourage casual browsing by people outside your organization, but it won’t pro-
vide a very effective deterrent to a determined attacker.

An older security mechanism, the /var/yp/securenets file, is also supported for his-
torical reasons. New configurations should use ypserv.conf.

Configuring NIS clients

After setting up servers, inform each client machine that it is a member of the new
domain. The servers of a domain are generally clients as well.

520 Chapter 17 – Sharing System Files

See Chapter 2 for more
information about the
system startup scripts.

The domainname command sets a machine’s NIS domain. It’s usually run at boot
time from one of the startup scripts. The exact contortions necessary to configure
this vary by distribution; details are given below.

Each client must have at least a minimal private version of the passwd, group, and
hosts files. passwd and group are needed to allow root to log in when no NIS server
is available. They should contain the standard system accounts and groups: root, bin,
daemon, etc. The hosts file (or DNS) must be present to answer boot-time queries
that occur before NIS is up and running.

NIS details by distribution

Under Fedora and RHEL, you set the NIS domain name in /etc/sysconfig/network
by setting the variable NISDOMAIN. The server side of NIS is installed as a separate
package called ypserv. The ypbind, ypserv, and yppasswdd daemons are enabled
and disabled with chkconfig; for example,

chkconfig ypbind on

SUSE sets the NIS domain name at boot time from the file /etc/domainname. The
server side of NIS is installed as a separate package called ypserv. Use chkconfig to
force the system to automatically start ypserv and/or ypbind at boot time. You can
set command-line options for ypbind in /etc/sysconfig/ypbind. You must either
set YPBIND_BROADCAST to yes in this file or install an /etc/yp.conf file; other-
wise, the startup scripts will refuse to start ypbind.

Debian and Ubuntu keep the name of the NIS domain in /etc/defaultdomain. The
startup scripts run ypbind automatically if this file is present. To run ypserv, edit
the file /etc/default/nis and set the value of NISSERVER to slave or master.

17.5 LDAP: THE LIGHTWEIGHT DIRECTORY ACCESS PROTOCOL

UNIX and Linux sites need a good way to distribute their administrative configura-
tion data; however, the problem is really more general than that. What about nonad-
ministrative data such as telephone and email directories? What about information
that you want to share with the outside world? What everyone really needs is a gen-
eralized directory service.

A directory service is just a database, but one that makes a few assumptions. Any
data set that has characteristics matching the assumptions is a candidate for inclu-
sion. The basic assumptions are as follows:

• Data objects are relatively small.

• The database will be widely replicated and cached.

• The information is attribute based.

• Data are read often but written infrequently.

• Searching is a common operation.

S
h

a
ri

n
g

 S
ys

te
m

 F
il

e
s

17.5 LDAP: the Lightweight Directory Access Protocol 521

The current IETF standards-track system designed to fill this role is the Lightweight
Directory Access Protocol (LDAP). The LDAP specifications don’t really speak to the
database itself, just the way that it’s accessed through a network. But because they
specify how the data is schematized and how searches are performed, they imply a
fairly specific data model as well.

LDAP was originally designed as a gateway protocol that would allow TCP/IP clients
to talk to an older directory service called X.500, which is now obsolete. Over time,
it became apparent both that X.500 was going to die out and that UNIX really needed
a standard directory of some sort. These factors have led to LDAP being developed
as a full-fledged directory system in its own right (and perhaps to its no longer being
quite so deserving of the L).6

At this point (in the year 2006), LDAP has become quite mainstream, spurred per-
haps in part by Microsoft’s adoption of LDAP as the basis for its Active Directory
service. On the UNIX and Linux side, the OpenLDAP package (www.openldap.org)
has become the standard implementation.

The structure of LDAP data

LDAP data takes the form of property lists, which are known in LDAP world as “en-
tries.” Each entry consists of a set of named attributes (such as “uid” or “description”)
along with those attributes’ values. Windows users might recognize this structure as
being similar to that of the Windows Registry. As in the Registry, an individual at-
tribute can have several values.

As an example, here’s a typical (but simplified) /etc/passwd line expressed as an
LDAP entry:

uid: ghopper
cn: Grace Hopper
userPassword: {crypt}1pZaGA2RL$MPDJoc0afuhHY6yk8HQFp0
loginShell: /bin/bash
uidNumber: 1202
gidNumber: 1202
homeDirectory: /home/ghopper

This notation is a simple example of LDIF, the LDAP Data Interchange Format,
which is used by most LDAP-related tools and server implementations. The fact that
LDAP data can be easily converted back and forth from plain text is part of the rea-
son for its success.

Entries are organized into a hierarchy through the use of “distinguished names” (at-
tribute name: dn) that form a sort of search path. For example, the dn for the user
above might be

dn: uid=ghopper,ou=People,dc=navy,dc=mil

6. Because of LDAP’s tortured history, many sources tend to go into great detail about LDAP’s X.500 and
OSI connections. However, this history is not relevant to contemporary use of LDAP. Ignore it.

www.openldap.org

522 Chapter 17 – Sharing System Files

As in DNS, the “most significant bit” goes on the right. Here, the DNS name
navy.mil has been used to structure the top levels of the LDAP hierarchy. It has been
broken down into two domain components (dc’s), “navy” and “mil,” but this is only
one of several common conventions.

Every entry has exactly one distinguished name. Therefore, the entry hierarchy
looks like a simple branching tree with no loops. There are, however, provisions for
symbolic links between entries and for referrals to other servers.

LDAP entries are typically schematized through the use of an objectClass attribute.
Object classes specify the attributes that an entry can contain, some of which may be
required for validity. The schema also assigns a data type to each attribute. Object
classes nest and combine in the traditional object-oriented fashion. The top level of
the object class tree is the class named “top”, which specifies merely that an entry
must have an objectClass attribute.

Table 17.4 shows some common LDAP attributes whose meaning might not be im-
mediately apparent.

The point of LDAP

Until you’ve had some experience with it, LDAP can be a slippery concept to grab
hold of. Unlike NIS, LDAP by itself doesn’t solve any specific administrative prob-
lem. There’s no “primary task” that LDAP is tailor-made to handle, and sites diverge
widely in their reasons for deploying LDAP servers. So before we move on to the
specifics of installing and configuring OpenLDAP, it’s probably worth reviewing
some reasons why you might want to investigate LDAP for use at your site. Here are
the big ones:

• You can use LDAP as a replacement for NIS. The advantages over NIS are
numerous, but the main ones are better security, better tool support, and
increased flexibility.

See page 555 for
more information
about using LDAP
with sendmail.

• In a similar vein, you can use LDAP to distribute configuration informa-
tion that lies outside the traditional domain of NIS. Most mail systems,
including sendmail and Postfix, can draw a large part of their routing
information from LDAP, and this is in fact one of LDAP’s most popular
applications. Tools as varied as the Apache web server and the autofs

Table 17.4 Some common attribute names found in LDAP hierarchies

Attribute Stands for What it is

o Organization Often identifies a site’s top-level entry
ou Organizational unit A logical subdivision, e.g., “marketing”
cn Common name The most natural name to represent the entry
dc Domain component Used at sites that model their LDAP hierarchy on DNS

objectClass Object class Schema to which this entry’s attributes conform

S
h

a
ri

n
g

 S
ys

te
m

 F
il

e
s

17.5 LDAP: the Lightweight Directory Access Protocol 523

automounter can be configured to pay attention to LDAP, too. It’s likely
that LDAP support will become more and more common over time.

• It’s easy to access LDAP data with command-line tools such as ldapsearch.
In addition, LDAP is well supported by common scripting languages such
as Perl and Python (through the use of libraries). Ergo, LDAP is a terrific
way to distribute configuration information for locally-written scripts and
administrative utilities.

• Excellent web-based tools are available for managing LDAP, for example,
phpLDAPadmin (phpldapadmin.sourceforge.net) and Directory Admin-
istrator (diradmin.open-it.org). These tools are so easy to use that you can
just rip the box open and start playing without reading the manual.

• LDAP is well supported as a public directory service. Most major email
clients, including those that run on PCs, support the use of LDAP to access
user directories. Simple LDAP searches are also supported by many web
browsers through the use of an LDAP URL type.

• Microsoft’s Active Directory is based on LDAP, and the current release of
Windows 2003 Server R2 includes extensions (originally called “Services
for UNIX,” now called “Windows Security and Directory Services for
UNIX”) that facilitate the mapping of Linux users and groups.

LDAP documentation and specifications

We are not aware of any really excellent source of introductory information on the
general architecture of LDAP. The onetime FAQ is no longer maintained. The
source that we recommended for LDAP version 2, Understanding LDAP by Johner
et al, has unfortunately not been updated for version 3, and the differences in the
protocol are significant enough that it’s probably worthwhile to look elsewhere.

The current best places to start are with the documentation for the OpenLDAP pack-
age and the Linux LDAP HOWTO. Citations for a couple of reasonable LDAP books
are also given at the end of this chapter.

The LDAP-related RFCs are numerous and varied. As a group, they tend to convey
an impression of great complexity, which is somewhat unrepresentative of average
use. Some of the high points are listed in Table 17.5 on the next page.

OpenLDAP: LDAP for Linux

OpenLDAP is an extension of work originally done at the University of Michigan
and now continued as an open source project. It’s shipped with most distributions,
though it is not necessarily included in the default installation. The documentation
is perhaps best described as “brisk.”

In the OpenLDAP distribution, slapd is the standard server daemon and slurpd
handles replication. A selection of command-line tools enable the querying and
modification of LDAP data.

524 Chapter 17 – Sharing System Files

Setup is straightforward. First, create an /etc/openldap/slapd.conf file by copying
the sample installed with the OpenLDAP server. These are the lines you need to pay
attention to:

database bdb
suffix "dc=mydomain, dc=com"
rootdn "cn=admin, dc=mydomain, dc=com"
rootpw {crypt}abJnggxhB/yWI
directory /var/lib/ldap

The database format defaults to Berkeley DB, which is fine for data that will live
within the OpenLDAP system. You can use a variety of other back ends, including ad
hoc methods such as scripts that create the data on the fly.

The suffix is your “LDAP basename.” It’s the root of your portion of the LDAP
namespace, similar in concept to your DNS domain name. This example illustrates a
common practice: using your DNS domain name as your LDAP basename.

The rootdn is your administrator’s name, and the rootpw is the administrator’s
UNIX-format (DES) password. Note that the domain components leading up to the
administrator’s name must also be specified. You can either copy and paste the
password from /etc/shadow (if you don’t use MD5 passwords) or generate it with a
simple Perl one-liner

perl -e "print crypt('password','salt');"

where password is the desired password and salt is an arbitrary two-character string.
Because of the presence of this password, make sure that the permissions on your
slapd.conf file are 600 and that the file is owned by root.

Table 17.5 Important LDAP-related RFCs

RFC Title

4519 LDAP: Schema for User Applications
4517 LDAP: Syntaxes and Matching Rules
4516 LDAP: Uniform Resource Locator
4515 LDAP: String Representation of Search Filters
4514 LDAP: String Representation of Distinguished Names
4513 LDAP: Authentication Methods and Security Mechanisms
4512 LDAP: Directory Information Models
4511 LDAP: The Protocol
3672 Subentries in the Lightweight Directory Access Protocol (LDAP)
3112 LDAP Authentication Password Schema
2849 LDAP Data Interchange Format (LDIF)—Technical Specification
2820 Access Control Requirements for LDAP
2307 An Approach for Using LDAP as a Network Information Service

S
h

a
ri

n
g

 S
ys

te
m

 F
il

e
s

17.5 LDAP: the Lightweight Directory Access Protocol 525

You should edit /etc/openldap/ldap.conf to set the default server and basename for
LDAP client requests. It’s pretty straightforward—just set the argument of the host
entry to your server and set the base to the same value as the suffix in slapd.conf.
(Make sure both lines are uncommented.)

At this point, you should be able to start up slapd by simply running it with no
arguments.

NIS replacement by LDAP

See page 681 for more
information about
pluggable authentica-
tion modules.

You needn’t actually use NIS to “migrate” to LDAP, but because NIS defines a stan-
dard set of shared system files, it serves as a useful reference point.

The files distributable through NIS are already “virtualized” through the name ser-
vice switch (the /etc/nsswitch.conf file), so client-side LDAP support is relatively
easy to add. Some distributions install the necessary nss_ldap package by default,
but if not, the package is usually provided as an option. This package includes a
PAM module that lets you use LDAP with pluggable authentication modules in addi-
tion to the name service switch.

Client-side LDAP defaults for this package are set in /etc/ldap.conf, which shares its
format with the /etc/openldap/ldap.conf file described in the previous section but
which includes additional options specific to the name service and PAM contexts.
You must also edit the /etc/nsswitch.conf file on each client to add ldap as a source
for each type of data you want to LDAPify. (The nsswitch.conf changes make the C
library pass requests to the libnss_ldap library, which then uses the /etc/ldap.conf
information to figure out how to perform the LDAP queries.)

RFC2307 defines the standard mapping from traditional UNIX data sets, such as the
passwd and group files, into the LDAP namespace. It’s a useful reference document
for sysadmins using LDAP as an NIS replacement, at least in theory. In practice, the
specifications are a lot easier for computers to read than for humans; you’re better
off looking at examples.

Padl Software offers a free set of Perl scripts that migrate existing flat files or NIS
maps to LDAP. It’s available from www.padl.com/tools.html, and the scripts are
straightforward to run. They can be used as filters to generate LDIF, or they can be
run against a live server to upload the data directly. For example, the migrate_group
script converts this line from /etc/group

csstaff:x:2033:evi,matthew,trent

to the following LDIF:

dn: cn=csstaff,ou=Group,dc=domainname,dc=com
cn: csstaff
objectClass: posixGroup
objectClass: top
userPassword: {crypt}x

www.padl.com/tools.html

526 Chapter 17 – Sharing System Files

gidNumber: 2033
memberuid: evi
memberuid: matthew
memberuid: trent

(Note the object class and distinguished name specifications, which were omitted
from the passwd example on page 521.)

Once a database has been imported, you can verify that the transfer worked cor-
rectly by running the slapcat utility, which displays the entire database.

LDAP and security

Traditionally, LDAP was used more in the manner of a phone directory than any-
thing else, and for that purpose, sending data without encrypting it was usually ac-
ceptable. As a result, the “standard” LDAP implementation grants unencrypted ac-
cess through TCP port 389. However, we strongly advise against the use of
unencrypted LDAP for the transmission of authentication information, even if
passwords are individually hashed or encrypted.

As an alternative, LDAP-over-SSL (known as LDAPS, usually running on TCP port
686) is available in most situations (including the Microsoft world) on both the cli-
ent and server. This access method is preferable because it protects the information
contained in both the query and the response. Use LDAPS when possible.

A system with the complexity and with as many moving parts as LDAP inevitably
has the potential to be misconfigured in a way that weakens security. Of course, it is
likely to contain some plain, old-fashioned security holes, too. Caveat administrator.

17.6 RECOMMENDED READING

MALÈRE, LUIZ ERNESTO PINHEIRO. LDAP Linux HOWTO.

www.tldp.org/HOWTO/LDAP-HOWTO/

VOGLMAIER, REINHARD. The ABCs of LDAP: How to Install, Run, and Administer
LDAP Services. Boca Raton, FL: Auerbach Publications, 2004.

CARTER, GERALD. LDAP System Administration. Sebastopol, CA: O’Reilly Media,
2003.

www.tldp.org/HOWTO/LDAP-HOWTO/

S
h

a
ri

n
g

 S
ys

te
m

 F
il

e
s

17.7 Exercises 527

17.7 EXERCISES

E17.1 Why is a pull method of updating a local machine’s files more secure
than a push method?

E17.2 Explain the following excerpt from an rdist distfile:

LINUX_PASSWD = (redhatbox debianbox susebox)

passwd:
(/etc/passwd) -> (${LINUX_PASSWD})
install /etc/passwd.rdist;
cmdspecial /etc/passwd.rdist "/usr/local/sbin/mkpasswd";

E17.3 Explain the differences between rdist and rsync. In what situations
would it be better to use one than the other?

E17.4 Compare NIS and LDAP. When would you use one and not the other?
Would you ever use both?

E17.5 What method does your site use to share system files? What security
issues are related to that method? Suggest an alternative way to share
system files at your site, and detail the concerns that it addresses. What,
if any, are the drawbacks?

E17.6 Design an LDAP schema that stores user information such as login,
password, shell, authorized machines, etc. Build a tool that enters new
users into the database interactively or from a file containing a list of us-
ers. Build a tool that generates the passwd, group, and shadow files
from the LDAP database for the machines in your lab. Allow users to
have different passwords on each machine if they want. (Not all users
are necessarily authorized to use each computer.) Your adduser system
should be able to print lists of existing user login names and to print
login/password pairs for new users.

528

18 Electronic Mail

It’s hard to remember what the world was like without electronic mail. Everyone
from school children to grandmas to the stodgiest of corporations now routinely
uses email to communicate with family, co-workers, partners, customers, and even
the government. It’s a mad, mad, mad email-enabled world.1

Email is popular because the public can easily understand the concept of sending a
message whose model closely parallels that of a traditional written letter. And email
“just works”; if you know someone’s email address, you type a message addressed to
them and press Send. Voilà! Seconds later, the message is delivered to their elec-
tronic mailbox, whether they’re next door or halfway around the world. From the
user’s perspective, nothing could be easier.

Unfortunately, it wasn’t always this easy, and even today, the underlying infrastruc-
ture that makes electronic mail possible on such a large scale is rather onerous.
There are several software packages you can run on your Linux system to transport
and manage electronic mail (three of which are discussed later in this chapter), but
they all require a certain degree of configuration and management. In addition, it’s
important that you understand the underlying concepts and protocols associated
with email so that you don’t spoil your users’ illusion that cross-platform interorga-
nizational email is a gift from the gods that magically works every time.

Today, there are alternatives to understanding and administering email infrastruc-
ture. A number of service providers now provide “managed” email service, where

1. Even as Evi is sailing in obscure, remote locations, she is almost always in email contact through her
BlackBerry thanks to the ubiquity of the GPRS network. It works in 113 countries but not Vermont!

Electronic Mail

E
le

ct
ro

n
ic

 M
a

il

 529

email is actually hosted on their servers in a data center far, far away, and you pay a
monthly or annual fee (possibly per user) for access. Likewise, a number of “free”
hosted services, such as Yahoo! Mail, MSN Hotmail, and Google’s Gmail have become
popular for individuals. If you’re an individual looking for a personal email account
or an account for a (very) small business, these may be viable options for you. These
services offload a number of burdens, including storage, server management, soft-
ware updates, configuration, spam filtering, and security vigilance, to name a few.
In return for their “free” service, perhaps you’ll see some advertising. It seems like a
good deal in many cases; if that option works for you, you at least get the benefit of
not needing to read the rest of this chapter.

However, hosted email isn’t the solution for everyone. Businesses and other large
organizations that depend on email service in order to operate often cannot take the
risk of hosting email off-site. Such organizations may have a variety of reasons to
host their own email systems, including security, performance, and availability. This
chapter is for those people.

The sheer bulk of this chapter—more than 100 pages—attests to the complexity of
email systems. The chapter contains both background information and details of
software configuration, in roughly that order.

We tried to divide this chapter into five smaller ones (on mail systems, sendmail
configuration, spam, Exim, and Postfix), but that left it confusing, full of chicken-
and-egg problems, and, we think, less useful. Instead, we offer the annotated table of
contents shown in Table 18.1.

Table 18.1 A road map for this chapter

Section Page Contents

Ba
ck

gr
ou

nd 1 530 Mail systems and their various pieces
2 534 Addressing, address syntax, mail headers
3 539 Philosophy, client/server design, mail homes
4 544 Aliases, mail routing, LDAP
5 551 Mailing list software,

se
n

d
m

a
il

 c
on

fig
ur

at
io

n

6 557 sendmail: installation, startup, the mail queue
7 565 Introduction to configuring sendmail, m4 macros
8 570 Basic sendmail configuration primitives
9 574 Fancier sendmail configuration primitives

10 588 Spam, sendmail access database
11 599 Configuration case study
12 603 Security
13 611 Performance
14 615 Collecting statistics, testing, and debugging

O
th

er

15 621 Exim, an alternative to sendmail

16 623 Postfix, another alternative to sendmail

17 639 Additional sources of information

530 Chapter 18 – Electronic Mail

This organization makes the flow a bit smoother when the chapter is read straight
through, but it sometimes separates the items relevant to a particular email-related
task. The postmaster for a medium-sized organization might need to read the entire
chapter, but a sysadmin setting up PC email support for a typical business client
surely does not.

Table 18.2 presents a navigation guide for several common sysadmin chores.

Most of this chapter deals with the configuration of sendmail, the standard program
that parses and routes electronic mail. sendmail was originally written by Eric All-
man at the University of California, Berkeley. There have been three major versions:
version 5, IDA, and version 8. A completely redesigned version, Sendmail X, has
recently been released in an early beta version but is not yet ready for production
use. (According to insiders, it may never replace version 8.) Version 5 and IDA are
no longer in common use; version 8 has replaced them. In this chapter we cover
version 8 (8.13, to be precise).

sendmail is being developed commercially by Sendmail, Inc., which also maintains a
free, open source version. The commercial versions feature a graphical configuration
tool and centralized monitoring and reporting, features that are especially useful at
high-volume mail sites.

18.1 MAIL SYSTEMS

In theory, a mail system consists of four distinct components:

• A “mail user agent” (MUA) that lets users read and compose mail

• A “mail transport agent” (MTA) that routes messages among machines

Table 18.2 Sections of this chapter relevant to various chores

Chore Sections

Upgrading sendmail 6, 7
Configuring sendmail for the first time 3, 6, 7, 8, 9, 10, 11, 12
Changing the config file 7
Designing a mail system for a site 3, 4, 5, 6, 7, 8, 9, 10, 11
Fighting spam 10
Auditing security 12
Setting up a PC to receive mail 1, 3
Setting up a mailing list 5
Performance tuning 3, 9, 13
Virtual hosting 9
Using Exim instead of sendmail 15
Using Postfix instead of sendmail 16

E
le

ct
ro

n
ic

 M
a

il

18.1 Mail systems 531

• A “delivery agent” that places messages in a local message store;2 it is
sometimes called a local delivery agent (LDA)

• An optional “access agent” (AA) that connects the user agent to the mes-
sage store (e.g., through the IMAP or POP protocol)

Some sites also use a mail submission agent that speaks SMTP (the mail transport
protocol) and does some of the work of the transport agent. Exhibit A shows the rela-
tionship of these components.

Exhibit A Mail system components

User agents

Email users employ a user agent to read and compose messages. Email messages
originally consisted only of text, but a standard known as Multipurpose Internet Mail
Extensions (MIME) is now used to encode text formats and attachments (including
many viruses) into email. It is supported by most user agents. Since it does not affect
the addressing or transport of mail, we do not discuss it further in this chapter.

One chore of user agents is to make sure that any text embedded in the contents of a
mail message that might be misunderstood by the mail system gets protected. An
example is the string “From ” that serves as a record separator between messages.

/bin/mail was the original user agent, and remains the “good ol’ standby” for read-
ing text email messages at a shell prompt. For better or worse, email on the Internet
has moved beyond the text era, so text-based user agents are no longer practical for
most users. Graphical user interfaces allow point-and-click access to messages and
deal appropriately with attachments such as images, Microsoft Word documents,
and spreadsheets.

One of the elegant features illustrated in Exhibit A is that a user agent doesn’t neces-
sarily need to be running on the same system, or even on the same platform, as the
rest of your mail system. Users might run one of the many user agents shipped with

2. The receiving users’ mailboxes or, sometimes, a database.

Host A – sender Host B – receiver

Eudora

UA

mail

UA

sendmail
(port 25)

MTA mail.local

DA

procmail

to
local
user

agents

DA

imapd

AA

sendmail

MTA

sendmail
(port 587)

MSA

pine

UA

= User agent
= Submission agent
= Transport agent
= Delivery agent
= Access agent

UA
MSA
MTA

DA
AA

Message
store

In
te

rn
e

t

532 Chapter 18 – Electronic Mail

Linux when logged into a Linux desktop, but they can also access their email
through access agent (AA) protocols such as IMAP or POP from their Windows
laptops. This is, by far, the most common configuration today. Who says Windows
and Linux can’t live happily together?

A sample of common user agents are listed below, along with their original sources.

• /bin/mail on Red Hat and Fedora is the BSD version of the original UNIX
mail command; on SUSE, Debian and Ubuntu, this user agent is found in
/usr/bin/mail.3 This user agent is text-only and requires a local mail store.

• Thunderbird from Mozilla for Linux, Windows, and Mac OS

• Evolution (aka Novell Evolution, formerly Ximian Evolution) for Linux,
Windows, and Mac OS

• pine from the University of Washington, www.washington.edu/pine

• Eudora from Qualcomm for Macs or PCs running Windows

• Outlook from Microsoft for Windows

Transport agents

A transport agent must accept mail from a user agent, understand the recipients’
addresses, and somehow get the mail to the correct hosts for delivery. Most trans-
port agents also act as message submission agents for the initial injection of new
messages into the mail system. Transport agents speak the Simple Mail Transport
Protocol (SMTP) defined in RFC2821 (originally defined in RFC821) or the Extended
SMTP protocol (ESMTP) defined in RFCs 1869, 1870, 1891, and 1985.

Several transport agents are available for UNIX and Linux systems (PMDF, Postfix,
smail, qmail, Exim, and zmailer, among others), but sendmail is the most compre-
hensive, most flexible, and most widely used. A 2001 survey4 of mail systems re-
ported that sendmail was used by 60% of the domains, Exim by 8%, Microsoft Ex-
change Server by 4%, and Postfix by 2%. Others (about 50 of them) were in the noise.

Red Hat, Fedora and SUSE ship with sendmail installed. Debian pretends to include
sendmail, but if you look closely you’ll find that sendmail is really a link to the Exim
mail transport agent. Exim has been carefully crafted to understand sendmail’s
command-line flags. User agents that call “sendmail” explicitly to submit email
should be none the wiser. Ubuntu ships Exim as the default.

Delivery agents

A delivery agent accepts mail from a transport agent and actually delivers it to the
appropriate local recipients. Mail can be delivered to a person, to a mailing list, to a
file, or even to a program.

Each type of recipient may require a different agent. /bin/mail is the delivery agent
for local users. /bin/sh is the original delivery agent for mail going to a program;

3. This user agent is sometimes called Mail or mailx on other systems. Accordingly, Red Hat provides a
link called Mail, and SUSE, Debian, and Ubuntu provide links called Mail and mailx.

4. Private study by Matrix.net for Sendmail, Inc.

www.washington.edu/pine

E
le

ct
ro

n
ic

 M
a

il

18.1 Mail systems 533

delivery to a file is handled internally. Recent versions of sendmail ship with safer
local delivery agents called mail.local and smrsh (pronounced “smursh”). procmail
from www.procmail.org can also be used as a local delivery agent; see page 585. Like-
wise, if you run Cyrus imapd as your AA, it includes its own local delivery agent.

Message stores

The message store is the spot on the local machine where email is stored. It used to
be the directory /var/spool/mail or /var/mail, with mail being stored in files named
after users’ login names. That’s still the most common message store, but ISPs with
thousands or millions of email clients are looking to other technologies for the mes-
sage store (databases, usually).

On systems that use the /var/spool/mail or /var/mail store, the mail directory is
created during the installation of the operating system. It should have permissions set
to mode 775, with group owner mail,5 unless you use mail.local as your local mailer,
in which case the mode can be 755. Our Linux platforms vary a bit:

Red Hat: drwxrwxr-x 2 root mail 1024 Dec 5 11:16 /var/spool/mail
Fedora: drwxrwxr-x 2 root mail 4096 Mar 17 08:42 /var/spool/mail
SUSE: drwxrwxrwt 2 root root 4096 Aug 2 23:25 /var/spool/mail
Debian: drwxrwsr-x 2 root mail 4096 Aug 3 16:17 /var/mail
Ubuntu: drwxrwsr-x 2 root mail 4096 Jan 8 03:22 /var/mail

See page 82 for
more information
about the sticky bit.

SUSE’s permissions are a bit generous, but files inside the mail spool directory are
mode 660 with group root. Directories with the sticky bit set (the t in the permis-
sions) do not allow users to delete one another’s files even though they have write
permission on the directory. However, a malicious user could fill the mail spool, use
it as a scratch partition, or create another user’s mailbox.

Access agents

Programs such as imapd and spop are access agents for PC, Mac, or Linux users
whose mail is delivered to a Linux server and then downloaded with the Internet
Message Access Protocol (IMAP) or the Post Office Protocol (POP), respectively.
IMAP and POP are covered starting on page 542.

Mail submission agents

Another newcomer to the mail arena that was necessitated by high-volume sites is
the mail submission agent. The transport agent at a busy mail hub spends lots of
time preprocessing mail messages: ensuring that all hostnames are fully qualified,
modifying headers inherited from lame mail user agents, logging errors, rewriting
headers, and so forth. RFC2476 introduced the idea of splitting the mail submission
agent (MSA) from the mail transport agent (MTA) to spread out the workload and
maximize performance.

5. Systems that deliver mail by giving away files with a nonroot chown need to have group write permis-
sion to the directory as well. In general, nonroot chown is a bad idea.

www.procmail.org

534 Chapter 18 – Electronic Mail

The idea is to use the MSA, which runs on a different port, as a sort of “receptionist”
for new messages injected into the mail system by local user agents. The MSA does all
the prep work and error checking that must be done before a message can be sent out
by the transport agent. It’s a bit like inserting a sanity checker between the MUA and
the MTA.

In particular, the MSA ensures that all hostnames are fully qualified; it verifies that
local hostnames are legitimate before adding the local domain portion. The MSA
also fixes message headers if they are missing or nonconformant. Often, the MSA
adds a From or Date header or adjusts the Message-Id header. One final chore that
an MSA can do is to rewrite the sender’s address from a login name to a preferred
external form such as First_Last.

For this scheme to work, user agents must be configured to connect to the MSA on
port 587 instead of to port 25, which is the traditional port for mail. If your user
agents cannot be taught to use port 587, you can still run an MSA on port 25, but on
a system other than the one that runs your MTA. You must also configure your
transport agent so that it doesn’t duplicate the work done by the MSA. Duplicate
processing won’t affect the correctness of mail handling, but it does represent use-
less extra work.

By default, sendmail acts as an MSA as well as an MTA. Starting with sendmail 8.10,
a single instance of the program listens on both port 25 and port 587. User agents
often call sendmail directly with flags that ask it to accept a mail message (-bs or
-bm) or with no flags at all, in which case sendmail’s behavior defaults to -bm. The
sendmail process keeps track of how it was called and becomes an MSA if called with
flags -bs or -bm or an MTA if called with -bd.

User agents that directly open an SMTP connection must be modified to use port 587
to take advantage of an MSA.

18.2 THE ANATOMY OF A MAIL MESSAGE

A mail message has three distinct parts that we must understand before we become
embroiled in sendmail configuration.

• The envelope

• The headers

• The body of the message

The envelope determines where the message will be delivered or, if the message can’t
be delivered, to whom it should be returned. The envelope addresses generally agree
with the From and To lines of the header for an individual recipient but do not agree
if the message is sent to a mailing list. The addresses are supplied separately to the
MSA. The envelope is invisible to users and is not part of the message itself; it’s used
internally by sendmail to figure out where to send the message.

E
le

ct
ro

n
ic

 M
a

il

18.2 The anatomy of a mail message 535

The headers are a collection of property/value pairs formatted according to RFC2822.
They record all kinds of information about the message, such as the date and time it
was sent and the transport agents through which it passed on its journey. The headers
are a bona fide part of the mail message, although user agents often hide some of the
less interesting ones when displaying messages for the user.

The body of the message is the actual content to be sent. It must consist of plain text,
although that text often represents a mail-safe encoding of various binary content.

As we get into the configuration section, we sometimes speak of the envelope sender
and recipients and sometimes speak of the header sender and recipients. We try to
specify which addresses we are referring to if it’s not clear from the context.

Mail addressing

Local addressing is simple because a user's login name is a unique identifier. An
Internet address is also simple: user@host.domain or user@domain. In the deep
dark past of email and the Internet, addresses such as those shown in Table 18.3
were common.

Much of the complexity of sendmail configuration stems from the early requirement
to handle such addresses. Each of these forms of addressing relies on relaying, and
thanks to spammers, sites are slowly turning relaying off. The percent hack (last line
in Table 18.3) is a favorite tool of spammers who are trying to hide their identity or
to relay mail through your machines. If you need to deal with any of these address
forms, see the sendmail documentation or the O’Reilly sendmail book for help.

Mail header interpretation

Every mail message starts with several lines called headers that contain information
about the message. Each header begins with a keyword such as To, From, or Subject,
followed by a colon and the contents of the header. The format of the standard head-
ers is defined in RFC2822; however, custom headers are allowed, too. Any header
beginning with “X-” is ignored by the mail system but propagated along with the
message. Ergo, you can add a header such as X-Joke-of-the-Day to your email mes-
sages without interfering with the mail system’s ability to route them.6

Table 18.3 Examples of obsolete address types

Address type Example address Modern form

UUCP mcvax!uunet!ucbvax!hao!boulder!lair!evi evi@lair
Route-based <@site1,@site2,…,@siteN:user@final-site> user@final.site
“Percent hack” user%host1%host2@host3 user@host1

6. Technically, you can add any header you like because mail routing uses only the envelope and ignores
the headers.

536 Chapter 18 – Electronic Mail

Some headers are added by the user agent and some by the transport agent. Several
headers trace the path of a message through the mail system. Many user agents hide
these “uninteresting” headers from you, but an option is usually available to make
the agent reveal them all. Reading headers is becoming an important skill as we are
bombarded with spam and must sometimes try to trace a message back to its source.
Here is the header block from a simple message:

From trent Fri, 30 Jun 2006 20:44:49 -0600
Received: from bull.atrust.com (bull.atrust.com [127.0.0.1]) by bull.atrust.com

(8.13.1/8.13.1) with ESMTP id k612inkG001576 for <ned@bull.atrust.com>;
Fri, 30 Jun 2006 20:44:49 -0600

Date: Fri, 30 Jun 2006 20:44:48 -0600
From: trent@atrust.com
Message-Id: <200607010244.k612im9h001575@bull.atrust.com>
To: ned@bull.atrust.com
Cc: steve@bull.atrust.com
Subject: Yonder Mountain

------ body of the message was here ---

This message stayed completely on the local machine; the sender was trent and the
recipient was ned. The first From line was added by mail.local, which was the local
delivery agent in this case. The Subject and Cc header lines were added by trent’s
mail user agent, which probably added the To, From, and Date headers as well.
sendmail, the mail transport agent, adds To, From, and Date headers if they are not
supplied by the MUA. Each machine (or more precisely, each MTA) that touches a
message adds a Received header.

The headers on a mail message tell a lot about where the message has been, how long
it stayed there, and when it was finally delivered to its destination. The following is a
more complete dissection of a mail message sent across the Internet. It is interspersed
with comments that describe the purpose of the various headers and identify the
programs that added them. The line numbers at the left are for reference in the fol-
lowing discussion and are not part of the message. Some lines have been folded to
allow the example to fit the page.

1: From eric@knecht.sendmail.org

Line 1 was added by /bin/mail or mail.local during final delivery to separate this
message from others in the recipient user’s mailbox. Some mail readers recognize
message boundaries by looking for a blank line followed by the characters “From ”;
note the trailing space. This line does not exist until the message is delivered, and it
is distinct from the “From:” header line. Many mail readers don’t display this line, so
you may not see it at all.

2: Return-Path: eric@knecht.Neophilic.COM

Line 2 specifies a return path, which may be a different address from that shown on
the From: line later in the mail header. Error messages should be sent to the address
in the Return-Path header line; it contains the envelope sender address.

E
le

ct
ro

n
ic

 M
a

il

18.2 The anatomy of a mail message 537

3: Delivery-Date: Mon, 06 Aug 2001 14:31:07 -0600

Line 3 shows the date that the mail was delivered to evi’s local mailbox. It includes
the offset from UTC for the local time zone (MDT, mountain daylight time).

4: Received: from anchor.cs.colorado.edu (root@anchor.cs.colorado.edu
[128.138.242.1]) by rupertsberg.cs.colorado.edu (8.10.1/8.10.1) with ESMTP
id f76KV7J25997 for <evi@rupertsberg.cs.colorado.edu>; Mon, 6 Aug 2001
14:31:07 -0600 (MDT)

5: Received: from mroe.cs.colorado.edu (IDENT:root@mroe.cs.colorado.edu
[128.138.243.151]) by anchor.cs.colorado.edu (8.10.1/8.10.1) with ESMTP id
f76KV6418006 for <evi@anchor.cs.colorado.edu>; Mon, 6 Aug 2001 14:31:06
-0600 (MDT)

6: Received: from knecht.Neophilic.COM (knecht.sendmail.org [209.31.233.176])
by mroe.cs.colorado.edu (8.10.1/8.10.1) with ESMTP id f76KV5Q17625 for
<evi@anchor.cs.colorado.edu>; Mon, 6 Aug 2001 14:31:05 -0600 (MDT)

7: Received: from knecht.Neophilic.COM (localhost.Neophilic.COM [127.0.0.1])
by knecht.Neophilic.COM (8.12.0.Beta16/8.12.0.Beta17) with ESMTP id
f76KUufp084340 for <evi@anchor.cs.colorado.edu>; Mon, 6 Aug 2001 13:30:
56 -0700 (PDT)

Lines 4–7 document the passage of the message through various systems en route to
the user’s mailbox. Each machine that handles a mail message adds a Received line
to the message’s header. New lines are added at the top, so in reading them you are
tracing the message from the recipient back to the sender. If the message you are
looking at is a piece of spam, the only Received line you can really believe is the one
generated by your local machine.

Each Received line includes the name of the sending machine, the name of the receiv-
ing machine, the version of sendmail (or whatever transport agent was used) on the
receiving machine, the message’s unique identifier while on the receiving machine,
the recipient (if there is only one), the date and time, and finally, the offset from Uni-
versal Coordinated Time (UTC, previously called GMT for Greenwich Mean Time)
for the local time zone. This data is collected from sendmail’s internal macro vari-
ables. In the next few paragraphs, we trace the message from the sender to the recip-
ient (backwards, from the point of view of header lines).

See page 397 for
more information
about MX records.

Line 7 shows that the message went from knecht’s localhost interface (which Eric’s
particular mail user agent chose for its initial connection) to knecht’s external inter-
face via the kernel loopback pseudo-device. Line 6 documents that knecht then sent
the message to mroe.cs.colorado.edu, even though the message was addressed to
evi@anchor.cs.colorado.edu (see header line 9). A quick check with dig or nslookup
shows that the host anchor has an MX record that points to mroe, causing the deliv-
ery to be diverted. The machine knecht was running sendmail version 8.12.0Beta16.

The machine mroe was running sendmail version 8.10.1, and it identified the mes-
sage with queue ID f76KV5Q17625 while it was there. mroe then forwarded the mes-
sage to anchor.cs.colorado.edu as addressed (line 5), which may seem strange given
that the original transmission from knecht was diverted from anchor to mroe because
of MX records. The reason for this apparent inconsistency is that the cs.colorado.edu

538 Chapter 18 – Electronic Mail

domain uses a “split DNS” configuration. The MX record for anchor that is visible to
the outside world points to the incoming master mail machine (mroe). However, a
different record is seen within the cs.colorado.edu domain itself. The internal version
of the record points first to anchor itself and then to mroe as a backup.

As soon as the mail arrived on anchor, it was immediately forwarded again, this time
to rupertsberg. The cause of this hop was aliasing, a mail handling feature that is
described in detail starting on page 544.

Aliases play an important role in the flow of mail. An alias maps a username to some-
thing else; for example, to the same user at a different machine, to a group of users,
or even to an alternative spelling of the user’s name. You cannot determine why the
message was diverted by examining only the example headers. As with MX records,
you must seek external sources of information.

Received lines 5 and 6 include the “for <evi@anchor.cs.colorado.edu>” phrase,
which identifies how the mail was addressed when it arrived at the local site. This
information helps when you are trying to unsubscribe from a mailing list that re-
quires you to either send the unsubscribe message from the same host from which
you subscribed (sometimes years earlier) or to know that address and use it as a
parameter in your unsubscribe message.

The final Received line (line 4) shows “for <evi@rupertsberg.cs.colorado.edu>”; the
value of sendmail’s destination address macro has been changed by the alias lookup
on the machine anchor. The local mail delivery agent on rupertsberg put the mail in
evi’s mailbox.

8: Message-Id: <200108062030.f76KUufp084340@knecht.Neophilic.COM>

Line 8 contains the message ID, which is different from a queue ID and is unique
within the world-wide mail system. It is added to the message when the message is
initially submitted to the mail system.

9: To: evi@anchor.cs.colorado.edu
10: From: Eric Allman <eric@Sendmail.ORG>
11: X-URL: http://WWW.Sendmail.ORG/~eric
12: Subject: example message for Evi
13: Date: Mon, 06 Aug 2001 13:30:56 -0700
14: Sender: eric@knecht.Neophilic.COM

Lines 9, 10, 12, 13, and 14 are standard. Although a Subject header is not required,
most user agents include it. The To line contains the address of the primary recipient
or recipients. The From line lists the sender as eric@sendmail.org; however, the Re-
ceived lines list the sending machine as being in the neophilic.com domain—Eric’s
machine knecht has several virtual domains tied to it in addition to sendmail.org.

The Date line shows the date and time the message was sent. In this case the send
time matches the dates in the Received lines pretty closely, even though each was
measured with a different clock.

E
le

ct
ro

n
ic

 M
a

il

18.3 Mail philosophy 539

Line 11 identifies the URL of Eric’s home page. Notice that it begins with an X, mak-
ing it an unofficial header. When mail was first specified, there was no such thing as
the web or URLs.

The Received lines are usually added by the transport agent (unless they are forged),
and the other headers are added by the user agent. Some user agents are lame and do
not add proper headers; in this case, sendmail steps in to add the missing headers.

The first Received line that is added (usually on the sending machine, when the mail
is transferred to the outgoing interface) sometimes includes an “ident” clause that
gives the sender’s login name. It should be the same as the name on the From line, but
it won’t be if the From line is forged. In our example, Eric’s machine knecht was not
running the daemon that implements this feature (identd), so there is no clause that
lists the sender’s login name.

Exhibit B illustrates this message’s journey through the mail system. It shows what
actions were taken, where they happened, and what programs performed them.

Exhibit B A message from Eric

As you can see, sendmail is the workhorse in this process. It handles the message
from the time it leaves exmh in Berkeley until it arrives on rupertsberg for delivery.

18.3 MAIL PHILOSOPHY

The mail philosophy we outline in this chapter is almost mandatory for keeping the
administration of medium and large sites manageable. However, it is also appropri-
ate for small sites. The main concepts that lead to easy administration are:

• Servers for incoming and outgoing mail; or for really large sites, a hierarchy

• A mail home for each user at a physical site

• IMAP or POP7 to integrate PCs, Macs, and remote clients

On rupertsbergOn anchorOn mroeOn knecht

exmh on
knecht

sendmail on
rupertsberg

sendmail on
anchor

sendmail on
mroesendmail on

knecht

mail.local on
rupertsberg

MX to mroe

DNS query for anchor

MX to anchor

DNS query for anchor

evi@anchor
aliased to
evi@rupertsberg

Evil Menace
Department of Satanism
University of Colorado
Boulder, CO 80302

Hunky Monkey
Beet red boogers
Hungary, Europe

Eric

7. IMAP is preferred over POP these days. If you support email access from outside your organization,
make sure you use the SSL-encrypted versions of these protocols (IMAPS and POPS, respectively). See
page 542 for more details.

540 Chapter 18 – Electronic Mail

See page 397 for
more information
about MX records.

We discuss each of these key issues below and then give a few examples. Other sub-
systems must cooperate with the design of your mail system as well: DNS MX records
must be set correctly, Internet firewalls must let mail in and out, the message store
machine(s) must be identified, and so on.

Mail servers have four functions:

• To accept outgoing mail from user agents and inject it into the mail system

• To receive incoming mail from the outside world

• To deliver mail to end-users’ mailboxes

• To allow users to access their mailboxes with IMAP or POP

At a small site, the servers that implement these functions might all be the same ma-
chine wearing different hats. At larger sites, they should be separate machines. It is
much easier to configure your network firewall rules if incoming mail arrives at only
one machine and outgoing mail appears to originate at only one machine.

Some sites use a proxy to receive mail from the outside world. The proxy doesn’t re-
ally process mail; it just accepts and spools it. A separate process then forwards the
spooled mail to sendmail for transport and processing. smtpd and smtpfwdd from
www.obtuse.com are examples of such proxies for sendmail; smtpd can also filter
incoming mail with access lists. Both are open source products. None of our Linux
distributions include them in the standard installation package.

Using mail servers

Pick stable, reliable machines to use as your mail servers. Here, we outline a mail
system design that seems to scale well and is relatively easy to manage and secure. It
centralizes the handling of both incoming and outgoing mail on servers dedicated to
those purposes. Exhibit C illustrates one form of this system.

Exhibit C Mail system architecture

Inbound mail Outbound mail

inside your site

the outside world

inside your site

– F I R E W A L L – F I R E W A L L – F I R E W A L L – F I R E W A L L – F I R E W A L L – F I R E W A L L – F I R E W A L L – F I R E W A L L –

–
F

IR
E

W
A

L
L

–
F

IR

NFSa or
local disk

IMAP or
POP

Secure
IMAP or

POP

SMTP SMTP

SMTPSMTP

Mail-in
server

Mail-out
server

MSA
server

Clients

Mobile
clients

Message
store

a. We don't recommend using NFS for the message store because of the potential for locking problems.

www.obtuse.com

E
le

ct
ro

n
ic

 M
a

il

18.3 Mail philosophy 541

The mail system depicted in Exhibit C has a single point of exposure to the outside
world: the mail server that receives messages from the Internet. The outgoing mail
server is also directly connected to the Internet, but it is less exposed because it ini-
tiates connections rather than accepting connections from external sites. The incom-
ing mail server should be carefully monitored, should be upgraded with security
patches, and should run the latest version of sendmail with spam filters for incom-
ing mail.

The server that handles outgoing mail must also be well maintained. It can include
spam filters of its own to verify that no local user is contributing to the spam prob-
lem. If your site has concerns about the leakage of proprietary information, estab-
lishing a single server through which all outgoing mail must pass makes it easier to
implement or enforce content policies. If your site manages large mailing lists, the
outgoing mail server can be configured to take advantage of some of sendmail’s per-
formance-oriented features; see page 611 for details.

Both the incoming and outgoing mail servers can be replicated if your mail load re-
quires it. For example, multiple inbound mail servers can hide behind a load balanc-
ing box or use DNS MX records to crudely balance the load. Different client machines
can route mail through different outbound servers. Don’t pass any mail directly be-
tween the incoming servers and the outgoing servers, however; they should be sepa-
rated from each other by an internal firewall.

At really large sites, incoming and outgoing mail servers would be replicated. An ad-
ditional routing layer could be added to look up users’ mailboxes (perhaps through
LDAP) and route the mail to the appropriate message store. The routing layer could
also do spam and virus filtering before delivering messages to users’ mailboxes.

ISPs who are designing a mail system for customers should add another server that
acts as the target of customers’ backup MX records and handles mailing lists. This
machine has to accept mail and relay it back out, but it must be heavily filtered to
make sure that it only relays the mail of actual customers. It, too, should be separated
from the incoming and outgoing mail servers by a firewall.

See page 505 for a
discussion of file
distribution issues.

Garden-variety Linux hosts can be given a minimal sendmail configuration that for-
wards outgoing mail to the server for processing. They do not need to accept mail
from the Internet. Some sites may want to relax this funneling model a bit and allow
arbitrary hosts to send mail directly to the Internet. In either case, nonserver ma-
chines can all share the same sendmail configuration. You might want to distribute
the configuration with a tool such as rdist or rsync.

Sites that use software such as Microsoft Exchange and Lotus Notes but are not com-
fortable directly exposing these applications to the Internet can use a design modeled
on that shown in Exhibit D on the next page.

Whatever design you choose, make sure that your sendmail configuration, your
DNS MX records, and your firewall rules are all implementing the same policy with
respect to mail.

542 Chapter 18 – Electronic Mail

Exhibit D Mail system architecture diagram #2

Using mail homes

It is convenient for users to receive and keep their mail on a single machine, even if
they want to access that mail from several different systems. You can implement mail
homes by using the aliases file or an LDAP database (see page 555). You can provide
remote access to each user’s mailbox with IMAP or POP.

The aliasing scheme we use lets the alias files be the same on all machines within an
administrative domain. This uniformity is a big win from the administrator’s point
of view. (We assume that login names and UIDs are unique across all machines, a
policy we recommend highly.)

Some sites centralize mail by exporting /var/spool/mail over NFS. Locking prob-
lems with NFS files can cause users to lose mail or to have their spool files garbled.
Finger-pointing among NFS, sendmail, and the delivery agents with regard to proper
locking does not help the poor user whose mailbox has been corrupted (however,
sendmail is always innocent since it never actually delivers mail).

Some NFS implementations (such as those on dedicated NFS file servers) include a
lock manager that works correctly. Most implementations either do not support lock-
ing or support it improperly. Some sites just ignore the locking problem and hope for
the best, and others require users to read mail on the file server.

Our advice is to not use an NFS-shared /var/spool/mail.

Using IMAP or POP

IMAP and POP are protocols that download email to a user’s desktop machine when
it joins the network. This is the ideal way to manage mail, especially for hosts that are
not always connected, either because they are turned off when not in use or because
they are at home and share the phone line with teenagers. A password is required; be
sure to use a version (IMAPS and POPS) that incorporates SSL encryption and
hence does not transmit the password in cleartext over the Internet.

Inbound mail Outbound mail

F I R E W A L L – F I R E W A L L – F I R E W A L L – F I R E W A L L – F I R E W A L L – F I R E W A L L – F I R E W A L L – F I R E

F
IR

E
W

A
L

L
–

F
IR

E
W

A
L

L

outside
outside

inside
inside

SMTPSMTP

SMTP
Mail-in server

(Linux)

MS Exchange
server

MTA-outMSA

Clients’ user agents

UA
UA

UA

E
le

ct
ro

n
ic

 M
a

il

18.3 Mail philosophy 543

We like IMAP, the Internet Message Access Protocol, better than POP. It delivers your
mail one message at a time rather than all at once, which is much kinder to the net-
work (especially on a slow link) and better for someone traveling from location to
location. It is especially nice for dealing with the giant attachments that some folks
like to send: you can browse the headers of your mail messages and not download
the attachments until you are ready to deal with them.

IMAP manages mail folders among multiple sites; for example, between your mail
server and your PC. Mail that stays on the Linux server can be part of the normal
backup schedule. www.imap.org contains lots of information about IMAP and a list
of available implementations.

POP, the Post Office Protocol, is similar but assumes a model in which all the mail is
downloaded from the server to the PC. It can be either deleted from the server (in
which case it might not be backed up) or saved on the server (in which case your mail
spool file grows larger and larger). The “whole mailbox at a time” paradigm is hard
on the network and less flexible for the user. It can be really slow on dial-up lines if
you are a pack rat and have a large mail spool file. Mail ends up getting scattered
around with POP.

Both of these protocols can become resource hogs if users never delete any messages.
In the case of IMAP, it takes forever to load the headers of all the mail messages; POP
transmits the whole mailbox. Make sure your users understand the value of deleting
messages or filing them in local folders.

A reasonable implementation of POP3, the current version of the protocol, is avail-
able from Qualcomm at www.eudora.com/products/unsupported/qpopper. The
qpopper server includes TLS/SSL authentication between the server and client and
encrypts messages.

You can find many other POP3 servers for Linux on the Internet; make sure you
choose one that is being actively maintained.

IMAP server software is available from www.washington.edu/imap. No configura-
tion is needed except to put the proper IMAP entries in the files /etc/services and
/etc/inetd.conf and to make sure that your firewall (if any) doesn’t prevent IMAP
from working. IMAP has been guilty of security problems in the past; see the CERT
advisories, and be sure to obtain the latest version of IMAP, especially if there are
security bulletins that postdate your Linux distribution.

Carnegie Mellon University has developed an IMAP server called Cyrus IMAP that
supports the POP protocol as well. We like it better than the UW IMAP implementa-
tion for its rich feature set and performance for high-end users.

Dovecot is a more recent package that implements both IMAP and POP service. It
was written according to strict and explicit coding guidelines that increase its secu-
rity, at least in theory. Dovecot also has some interesting features, such as the ability
to store email in a SQL database rather than in the filesystem. Dovecot doesn’t yet

www.imap.org
www.eudora.com/products/unsupported/qpopper
www.washington.edu/imap

544 Chapter 18 – Electronic Mail

have the track record or installed base of Cyrus, but it’s definitely a project to keep
an eye on and evaluate.

All our example Linux distributions include an IMAP server called imapd and a
client, fetchmail, that speaks both IMAP and POP. Red Hat’s imapd is the Cyrus
IMAP server from CMU; SUSE, Debian, and Ubuntu use the University of Washing-
ton version. Red Hat also includes pop3d, a POP server. Not to be outdone, SUSE
includes three: qpopper (which SUSE renames popper), pop2d, and pop3d. De-
bian has several tools for managing mailboxes with IMAP; man -k imap tells you
their names.

18.4 MAIL ALIASES

Aliases allow mail to be rerouted either by the system administrator or by individual
users.8 They can define mailing lists, forward mail among machines, or allow users
to be referred to by more than one name. Alias processing is recursive, so it’s legal
for an alias to point to other destinations that are themselves aliases.

sendmail supports several aliasing mechanisms:

• A variety of flat file maps that users and system administrators can easily
set up (such as /etc/aliases)

• Vendor-promoted legacy file distribution systems such as NIS and NIS+
from Sun9 and NetInfo from Apple

• Various mail routing databases

• LDAP (the Lightweight Directory Access Protocol)

See page 555 for
more information
about LDAP.

Flat files such as the /etc/aliases file (discussed later in this section) are by far the
most straightforward and easiest to set up for small- to mid-sized sites. If you want
to use the mail homes concept and you have a large, complex site, we recommend
that you implement mail homes by storing aliases in an LDAP server.

We cover LDAP in more detail in three places in this chapter, and we also mention it
in Chapter 17, Sharing System Files. We introduce and explain LDAP on page 555. We
then describe LDAP’s interaction with sendmail and with sendmail’s configuration
file on page 580. Before diving into LDAP, however, we first describe the traditional
flat file aliasing mechanisms.

Aliases can traditionally be defined in the following three places (unfortunately, with
three different syntaxes):

• In a user agent’s configuration file (by the sending user)

• In the system-wide /etc/mail/aliases file (by the sysadmin)

• In a user’s forwarding file, ~/.forward (by the receiving user)10

8. Technically, aliases are configured only by sysadmins. The user’s control of mail routing by use of a
.forward file is not really aliasing, but we have lumped them together here.

9. Support for NIS+ was officially discontinued by Sun in 2005. LDAP is the designated replacement.

10. ~/.forward is the default place that sendmail looks. However, you can override this path by setting
sendmail’s ForwardPath option.

E
le

ct
ro

n
ic

 M
a

il

18.4 Mail aliases 545

The user agent looks for aliases in the user’s config files and expands them before
injecting the message into the mail system. The transport agent, sendmail, looks for
aliases in the global aliases file and then in the recipients’ forwarding files. Aliasing
is applied only to messages that sendmail considers to be local.11

Here are some examples of aliases in the aliases file format:

nemeth: evi
evi: evi@mailhub
authors: evi,garth,trent

The first line says that mail sent to “nemeth” should be delivered to the user evi on
the local machine. The second line says that all mail to evi should be delivered on the
machine mailhub, and the third line says that mail addressed to “authors” should be
delivered to the users evi, garth, and trent. Recursion is supported, so mail sent to
nemeth actually ends up going to evi@mailhub.

See Chapter 17 for
more information
about NIS.

The path to the global aliases file is specified in sendmail’s configuration file. It’s
/etc/aliases on Red Hat, SUSE, and Ubuntu. /etc/mail/aliases is actually the “stan-
dard” location. Sites can have multiple aliases files, and they can also use alternative
ways of storing alias mappings such as NIS or database files.

The format of an entry in the aliases file is

local-name: recipient1,recipient2,…

where local-name is the original address to be matched against incoming messages
and the recipient list contains either recipient addresses or the names of other aliases.
Indented lines are considered continuations of the preceding lines.

From mail’s point of view, the aliases file supersedes /etc/passwd, so the entry

david: david@somewhere-else.edu

would prevent the local user david from ever getting any mail. Therefore, administra-
tors and adduser tools should check both the passwd file and the aliases file when
selecting new user names.

The /etc/mail/aliases file should always contain an alias named “postmaster” that
forwards mail to whoever maintains the mail system. Likewise, an alias for “abuse”
is appropriate in case someone outside your organization needs to contact you re-
garding spam or suspicious network behavior that originates at your site. An alias
for automatic messages from sendmail must also be present; it’s usually called
Mailer-Daemon and is often aliased to postmaster.

You should redirect root’s mail to your site administrators or to someone who logs
in every day. The bin, sys, daemon, nobody, and hostmaster accounts (and any
other pseudo-user accounts you set up) should also have aliases that forward mail to
a human. The file sendmail/aliases in the distribution is a good template for the

11. Actually, this statement is not completely true. If you add the F=A flag to the SMTP mailer, you can
implement aliasing for remote addresses as well.

546 Chapter 18 – Electronic Mail

system-wide aliases that should be included. It also includes security suggestions and
an example of how some common user requests are routed at Berkeley.

sendmail detects loops that would cause mail to be forwarded back and forth for-
ever by counting the number of Received lines in a message’s header and returning it
to the sender when the count reaches a preset limit (usually 25).12 Each visit to a new
machine is called a “hop” in sendmail jargon; returning a message to the sender is
known as “bouncing” it. The previous sentence, properly jargonized, would be, “Mail
bounces after 25 hops.”13

In addition to a list of users, aliases can refer to

• A file containing a list of addresses

• A file to which messages should be appended

• A command to which messages should be given as input

Since the sender of a message totally determines its content, these delivery targets
were often abused by hackers. sendmail has become very fussy about the ownership
and permissions on such files and commands. To override sendmail’s paranoia, you
must set one of the DontBlameSendmail options, so named to discourage you from
doing it. Unfortunately, the error messages that sendmail produces when it encoun-
ters unsafe permissions or ownerships are not always clear.

Getting mailing lists from files

The :include: directive is a great way to let users manage their own mailing lists. It
allows the members of an alias to be taken from an external file rather than listed
directly in the aliases file. The file can also be changed locally without intervention
by the system administrator who is responsible for the global aliases file.

When setting up the list, the sysadmin must enter the alias into the global aliases file,
create the included file, and chown the included file to the user maintaining the mail-
ing list. For example, the aliases file might contain

sabook: :include:/usr/local/mail/lah.readers

The file lah.readers should be on a local filesystem, not on an NFS-mounted filesys-
tem,14 and should be writable only by its owner. To be really complete, we should
also include aliases for the mailing list’s owner so that errors (bounces) are sent to
the owner of the list and not to the sender of a message addressed to the list:

owner-sabook: evi

12. The default hop limit is 25, but you can change it in the config file.

13. We have been inconsistent with terminology in this chapter, sometimes calling a returned message a
“bounce” and sometimes calling it an “error.” What we really mean is that a Delivery Status Notifica-
tion (DSN) has been generated. Such a notification usually means that a message was undeliverable
and is therefore being returned to the sender.

14. If the NFS filesystem is mounted “hard” and NFS fails, sendmail will block with several file handles
open and several waiting processes. You may eventually run out of process IDs or file handles and have
to reboot the machine to clear things.

E
le

ct
ro

n
ic

 M
a

il

18.4 Mail aliases 547

See page 551 for more about mailing lists and their interaction with the aliases file.

Mailing to files

If the target of an alias is an absolute pathname (double-quoted if it includes special
characters), messages are appended to the specified file. The file must already exist.
For example:

complaints: /dev/null

It’s useful to be able to send mail to files and programs, but this feature introduces
security concerns and is therefore restricted. This syntax is only valid in the aliases
file and in a user’s .forward file (or in a file that’s interpolated into one of these files
with :include:). A filename is not understood as a normal address, so mail addressed
to /etc/passwd@host.domain will bounce.

Some user agents let you save mail to a local file (such as an outbox folder). However,
that copy of the message is saved by the user agent and is never really processed by
the mail system.

If the destination file is referenced from the aliases file, it must be world-writable
(not advisable), setuid but not executable, or owned by sendmail’s default user. The
identity of the default user is set with the DefaultUser option. It is normally mail-
null, sendmail, daemon, or UID 1, GID 1.

If the file is referenced in a .forward file, it must be owned and writable by the orig-
inal message recipient, who must be a valid user with an entry in the /etc/passwd file
and a valid shell that’s listed in /etc/shells. For files owned by root, use mode 4644
or 4600, setuid but not executable.

Mailing to programs

An alias can also route mail to the standard input of a program. This behavior is
specified with a line such as

autoftp: "|/usr/local/bin/ftpserver"

It’s even easier to create security holes with this feature than with mailing to a file, so
once again it is only permitted in aliases, .forward, or :include: files, and the de-
fault configuration of sendmail now requires use of the restricted shell smrsh.15 In
the aliases file, the program runs as sendmail’s default user; otherwise, the program
runs as the owner of the .forward or :include: file. That user must be listed in the
/etc/passwd file with a valid shell (one that is listed in /etc/shells).

The program mailer changes its working directory to the user’s home directory (or, if
that directory is inaccessible, to the root directory) before running the command that
is to receive the mail. The default used to be sendmail’s queue directory, but some
csh-based shells objected.

15. Mailing to programs is a major potential security hole. See Security and sendmail on page 603 for more
information about smrsh.

548 Chapter 18 – Electronic Mail

Aliasing by example

Here are some typical aliases that a system administrator might use.

Required aliases16

postmaster: trouble, evi
postmistress: postmaster
MAILER-DAEMON: postmaster
hostmaster: trent
abuse: postmaster
webmaster: trouble, trent
root: trouble, trent

include for local trouble alias
trouble: :include:/usr/local/mail/trouble.alias
troubletrap: "/usr/local/mail/logs/troublemail"
tmr: troubletrap,:include:/usr/local/mail/tmr.alias

sysadmin conveniences
diary: "/usr/local/admin/diary"
info: "|/usr/local/bin/sendinfo"

class aliases that change every semester
sa-class: real-sa-class@nag
real-sa-class: :include:/usr/local/adm/sa-class.list

In this example, we would like users from all over campus to be able to send mail to
a single alias “trouble” whenever problems occur. Problem reports should always be
routed to an appropriate group of local system administrators. In particular, we’d
like to set up the mail aliases so that

• Trouble mail always goes to an appropriate group.

• A single version of the aliases file is used on all hosts.

• Individual admin groups control their own distribution lists.

• A copy of all trouble mail goes to a local log file for each group.

The configuration above satisfies these goals by taking the definition of the trouble
alias from a file on each machine. Mail sent to the addresses trouble@anchor and
trouble@boulder would end up in different places even though anchor and boulder
use the same /etc/mail/aliases file.

Trouble mail is usually handled on one particular machine in each locale. For exam-
ple, the trouble.alias file on a slave machine could contain the address

trouble@master

to make trouble mail go to the appropriate master machine.

When a trouble message is resolved, it is sent to the alias tmr, which stands for “trou-
ble mail readers.” The tmr alias archives the message to the troubletrap alias and also

16. A white lie. Only postmaster and MAILER-DAEMON are really required (by the RFCs), but it is con-
ventional to include hostmaster, abuse, and webmaster as well.

E
le

ct
ro

n
ic

 M
a

il

18.4 Mail aliases 549

sends it to a list of users taken from a file on the master machine. Adding novice
administrators to the tmr list is a great way to let them see the support questions
that arise, the administrators’ replies, and the proper sycophantic tone that should
be used with users (i.e., customers).

The sa-class alias has two levels so that the data file containing the list of students only
needs to be maintained on a single machine, nag. The sabook alias example on page
546 should really have this same type of indirection so that the include file does not
need to be replicated.

The diary alias is a nice convenience and works well as a documentation extraction
technique for squirrelly student sysadmins who bristle at documenting what they do.
Sysadmins can easily memorialize important events in the life of the machine (OS
upgrades, hardware changes, crashes, etc.) by sending mail to the diary file. Don’t put
the file on a filesystem that contains your log files; that would allow hackers to fill up
the filesystem and prevent syslog from writing log entries (thus covering their tracks).

Forwarding mail

The aliases file is a system-wide config file that should be maintained by an admin-
istrator. If users want to reroute their own mail (and your site doesn’t use POP or
IMAP to access mail), they can do so by creating .forward files in their home direc-
tories. sendmail always looks in a user’s home directory for a .forward file unless
the ForwardPath variable is set and overrides the default location. It’s convenient to
use a .forward file when a user wants to receive mail on a particular host or when
someone leaves your site and wants to have mail forwarded to a new location.

A .forward file consists of a list of comma-separated addresses on a single line or
several entries on separate lines. For example,

evi@ipn.caida.org
evi@atrust.com

or

\mcbryan, "/home/mcbryan/archive", mcbryan@f1supi1.gmd.de

In the first example, mail for evi is not delivered on the local machine, but is instead
forwarded to the machine ipn at CAIDA in San Diego and to atrust.com. The second
entry is from a user who does not trust mail systems and wants his mail replicated in
three places: the regular mail spool on the local machine, a permanent archive of all
incoming mail, and a temporary address in Germany where he is traveling at the mo-
ment. The backslash before his username says to deliver mail locally no matter what
the aliases or forward files might say.

For temporary changes in mail routing, use of a .forward file is preferable to use of
the global aliases file. The overhead (computer time and people time) required to
change the system-wide aliases is quite high.

550 Chapter 18 – Electronic Mail

A user’s .forward file must be owned by the user and must not be group- or world-
writable. If sendmail thinks the directory path to the .forward file is safe (i.e., the
permissions from the root all the way down are OK), it can be a link; otherwise, it
cannot be a link. sendmail ignores forwarding files on which the permissions look
suspicious; the permissions on the parent directory must also be safe (writable only
by the user who owns the files).

Naturally, sendmail must be able to access a user’s home directory on the machine
where mail is delivered to determine whether it contains a .forward file. Permanent
changes of address should be put in the /etc/mail/aliases file because a user’s home
directory and files will eventually be removed.

sendmail has a nifty feature, FEATURE(`redirect'), that helps with the management
of permanent email changes. If an alias points to user@newsite.REDIRECT, mail will
be returned to the sender with a notification of the new address. The message is not
forwarded to the new address, so the sender must update his address book and re-
send the message.

You can configure sendmail to support a central directory for .forward files, but
users do not expect this configuration. The location of .forward files is controlled by
the ForwardPath option, which usually points to that central directory and then to
the user’s home directory. The generic.m4 domain file illustrated on page 572 con-
tains an example of a central location for .forward files.

An entry in the global aliases file takes precedence over an entry in a .forward file.
Since these files are maintained by different people, users must be careful not to inad-
vertently create mail loops. If a user on a network has a mail home (and therefore an
entry in the global aliases file), that user cannot use a .forward file to reroute mail
to another machine that shares the same aliases. For example, at the University of
Colorado, where we use a site-wide aliases file, an entry such as

evi: evi@boulder

and a .forward file on the machine boulder containing

evi@anchor.cs

would create a loop. Mail addressed to evi would be forwarded to boulder, where the
.forward file would cause it to be sent to anchor in the cs subdomain. The aliases
file on anchor would cause it to be forwarded back to boulder, and so on. After 25
hops, the mail would be returned to the sender.

Notifying a user of a mail loop is challenging if your primary mode of communica-
tion is email. Mail to \user17 delivers the message on the local machine, regardless of
what the system-wide aliases file or the user’s .forward file might say. If the local
machine is where the user expects to read mail, fine; otherwise, send mail to the
postmaster to report the loop or pick up the phone!

17. You may have to use two or more backslashes to get one of them past the shell and into sendmail.

E
le

ct
ro

n
ic

 M
a

il

18.5 Mailing lists and list wrangling software 551

The hashed alias database

Since entries in the aliases file are in no particular order, it would be inefficient for
sendmail to search this file directly. Instead, a hashed version is constructed with
the Berkeley DB database system. This hashing significantly speeds alias lookups,
especially when the file gets big.

The file derived from /etc/mail/aliases is called aliases.db. Every time you change
the aliases file, you must rebuild the hashed database with the newaliases com-
mand. newaliases is really just sendmail in disguise with command-line flags (-bi)
that tell it to rebuild the database. Save the error output if you run newaliases auto-
matically—you might have introduced formatting errors.

18.5 MAILING LISTS AND LIST WRANGLING SOFTWARE

A mailing list is a giant alias that sends a copy of each message posted to it to each
person who has joined the list. It’s like a Usenet newsgroup from the days of yore that
is delivered by email. Some mailing lists have thousands of recipients.

Mailing lists are usually specified in the aliases file but maintained in an external file.
Some standard naming conventions are understood by sendmail and most mailing
list software. Experienced users have come to rely on them as well. Most common
are the “-request” suffix and the “owner-” prefix, which are used to reach the main-
tainers of the list. The conventions are illustrated by the following aliases:

mylist: :include:/etc/mail/include/mylist
owner-mylist: mylist-request
mylist-request: evi
owner-owner: postmaster

In this example, mylist is the name of the mailing list. The members are read from the
file /etc/mail/include/mylist. Bounces from mailing to the list are sent to its owner,
evi, as are requests to join the list. The indirection from “owner” to “request” to evi
is useful because the owner’s address (in this case, mylist-request) becomes the Re-
turn-Path address on each message sent to the list. mylist-request is a bit better than
the actual maintainer for this field. Errors in messages to the owner-mylist alias (evi,
really) would be sent to owner-owner.

The case in which a message is undeliverable is called a bounce. The case in which
the error message sent about the bounce cannot be delivered is a double bounce. So
in our example, double bounces are sent to owner-owner or postmaster.

If you use a site-wide aliases file, you need to add an extra level of indirection point-
ing mylist to myreallist@master so that the data file containing the list of members
only needs to exist in one place.

Software packages for maintaining mailing lists

Several software packages automate the maintenance of mailing lists. They typically
allow users to add and remove themselves from the list, obtain information about the

552 Chapter 18 – Electronic Mail

list, and obtain files through email. A few of the popular mailing list managers (and
their download sources) are

• Majordomo, from www.greatcircle.com (included with SUSE)

• Mailman, the GNU mailing list processor, from www.list.org

• ListProc, from www.cren.net

• SmartList, derived from procmail
• listmanager from www.listmanager.org

• LISTSERV Lite, from www.lsoft.com (free version of the commercial LISTSERV)

In general, SmartList is small and simple, ListProc is large and complex, and the oth-
ers are in between. They differ in their philosophies of list maintenance, with some
leaning toward sysadmins as administrators (ListProc) and others leaning toward us-
ers as maintainers (Majordomo, Mailman, SmartList, LISTSERV Lite). Majordomo,
Mailman, listmanager, and LISTSERV Lite support remote administration; the list
maintainer does not even need to have a login on the machine where the list is lo-
cated because all transactions take place through email. Most of the list packages al-
low information posted to the list to be assembled into digests, some automatically
(ListProc, Mailman, listmanager, and LISTSERV Lite) and some through manual
configuration (SmartList and Majordomo).

Mailman is our favorite list manager. It’s a joy to administer and lets list maintain-
ers tweak all the features of their own lists. ListProc and LISTSERV Lite are propri-
etary: the first expensive, the other binary-only and crippled. We have not tried
SmartList, but we like procmail, on which it depends.

We describe each of these packages briefly below. For more detail, see the docu-
mentation with each package or the O’Reilly book Managing Mailing Lists by Alan
Schwartz and Paula Ferguson.

Majordomo

Majordomo is a Perl/C package available from www.greatcircle.com. It was originally
written by Brent Chapman. Development of Majordomo has ceased; Majordomo 2 is
a total rewrite but seems to have fizzled in 2004, so we describe only the original
version, which is still in common use. Among our example distributions, only SUSE
ships Majordomo. Despite what the man page says (/usr/lib/mail/majordomo), it’s
hidden in the directory /usr/lib/majordomo.

See page 603 for
more information
about trusted users.

Majordomo runs as an unprivileged user, typically with username majordom or
mdom and default group daemon. Since Linux supports long user names (more than
8 characters), you can also use majordomo as the login name. The user must be one
that sendmail recognizes as “trusted” and so must be mentioned in your sendmail
configuration, usually in a confTRUSTED_USERS declaration.18

Majordomo is configured through the majordomo.cf file, which consists of valid
Perl commands that initialize variables, define the directories where things are (or

18. A “trusted” user is allowed to change the From header line of a message and to rebuild the aliases file.

www.greatcircle.com
www.list.org
www.cren.net
www.listmanager.org
www.lsoft.com
www.greatcircle.com

E
le

ct
ro

n
ic

 M
a

il

18.5 Mailing lists and list wrangling software 553

where they should be put), specify the lists to be supported, and configure the han-
dling of bounced mail. A helper program, config-test, tests your configuration file
for missing variables or bad syntax. SUSE puts the config file in /etc and leaves con-
fig-test with the Majordomo distribution in /usr/lib/majordomo.

Majordomo requires special aliases to be installed in sendmail’s aliases file. The
cleanest way to integrate these aliases is to create a separate alias file used just for
Majordomo (recent versions of sendmail support multiple alias files). The file con-
tains a set of aliases for Majordomo itself and a set for each mailing list that it man-
ages. The distribution contains a sample aliases file, majordomo.aliases.

The most common user question about mailing lists is “How do I unsubscribe?” For
lists managed by Majordomo, the answer for listname@host is to send mail to the
address majordomo@host with the words “unsubscribe listname” or “unsubscribe
listname email-address” in the body of the message (not on the subject line).

With the first form, you need to send the unsubscribe message from the same host
that you used when you subscribed to the list; in the second form, that host is part of
the email address. See page 535 for hints on how to glean this information from the
mail headers so that you can unsubscribe properly, even if you have forgotten which
machine you used when you joined the list. Some mailing lists also accept mail to
listname-request@host with just the word “unsubscribe” in the body.

Never, ever, send an unsubscribe message to the list itself. If you do, your message
announces to all the recipients of the list that you don’t know what you’re doing.

Mailman

Mailman, a fairly recent addition to the mailing list software fleet (version 2.1.8
released in April 2006), is available from www.list.org or the GNU archives. It was
originally written by John Viega and is currently being developed in collaboration
with Ken Manheimer, and Barry Warsaw. Like Majordomo, Mailman is primarily
written in a scripting language with C wrappers, but in this case the language is
Python (available from www.python.org).

Mailman was inspired by its authors’ use of Majordomo and their frustration with
bounce errors, tricky configuration of advanced features such as digests and moder-
ated lists, and performance difficulties with bulk mailings. A Mailman script imports
Majordomo lists. Mailman can also detect and control spam to some degree.

Mailman’s big claim to fame is its web interface, which makes it easy for the moder-
ator or postmaster to manage a list and also easy for users to subscribe, unsubscribe,
and configure their options.

ListProc

ListProc is an old-timer in mailing list management software. It was written in 1991
by Anastasios Kotsikonas and maintained until about 1994. It then lay idle for a few
years but was resurrected with a new beta release in 1998. It used to be available from
the computer science department at Boston University for free, but with somewhat

www.list.org
www.python.org

554 Chapter 18 – Electronic Mail

strange licensing rules. Now it is available from www.cren.net for a hefty licensing
fee ($2,000 per copy, even for universities). Forget ListProc and go with one of the
free, open source packages.

SmartList

SmartList was originally written by Stephen R. van den Berg, who is also the original
author of procmail. It’s available from www.procmail.org. SmartList uses procmail,
so you will need to download both procmail.tar.gz and SmartList.tar.gz. It’s prob-
ably easiest to just grab the Linux package appropriate to your system.

SmartList is small and simple. It’s a combination of C code, procmail rules, and shell
scripts. Bounces, the maintenance headache of mailing lists, are automatically dealt
with by the software. Users are automatically removed from a list after a certain num-
ber of bounces to their address. SmartList requires a login entry in the passwd file
(“smart” or perhaps “list”) that is a trusted user in sendmail’s configuration file.

The installation includes led, a lock wrapper for editing that tries to protect Smart-
List against being left with an incoherent, partially edited configuration file.

listmanager

listmanager by Murray Kucherawy is written in C and so is faster than the packages
built on top of a scripting language such as Perl or Python. listmanager also im-
proves speed by using the DB database package from sleepycat.com rather than flat
files and the filesystem. Its feature list is about a page long and includes a web inter-
face, digests, and several security enhancements.

listmanager really seems like a killer list manager—the only downside is that source
code is not yet being distributed. According to the www.listmanager.org web page,
the code is being withheld until the author finishes a cleanup pass to avoid possible
embarrassment. A Linux binary is available.

LISTSERV Lite

LISTSERV Lite by Eric Thomas is a crippled version of LISTSERV, the commercial
product from L-Soft International, Inc. Some of the features of the real version are
missing, and the software is limited to managing 10 mailing lists of up to 500 people.
LISTSERV Lite needs to run as the pseudo-user listserv, which must own its files. It
also likes to have a listserv group. LISTSERV Lite provides a web interface both for
subscribing to a list and for maintaining it.

The distribution is available from www.lsoft.com. Source code is not distributed, but
precompiled binaries and stubs for many versions of UNIX and Linux are provided.
If you already are familiar with LISTSERV and have lists that use it, you might be able
to justify running a binary-only, crippled list manager. If you’re starting from scratch,
choose one of the open source, unrestricted alternatives mentioned above.

www.cren.net
www.procmail.org
www.listmanager.org
www.lsoft.com

E
le

ct
ro

n
ic

 M
a

il

18.5 Mailing lists and list wrangling software 555

LDAP: the Lightweight Directory Access Protocol

LDAP is a protocol that provides access to a generic administrative directory service.
It has been around for a few years, but it has just recently started to become popular.

Administrators are discovering that LDAP is good for lots of things:

• sendmail configuration: aliases, virtual domains, mail homes, the access
database, and tables

• User management: login names, passwords, hosts (e.g., Stanford University)

• Administrative config files (e.g., SUSE)

• A replacement for NIS

• A calendar server

• Use with pluggable authentication modules (PAM)

It’s envisioned that LDAP will eventually become a global directory system used for
many different purposes. Unfortunately, tools for automating typical sysadmin tasks
with LDAP are still missing.

LDAP grew out of the ISO protocols and the X.500 directory service. That heritage
immediately suggests complex, bloated, verbose, bad, etc., but the L in LDAP is sup-
posed to take care of all that. Protocol versions 1 and 2 have been standardized. Ver-
sion 3 is close. Fortunately, all versions are backward compatible. Version 3 of the
LDAP protocol supports hierarchical servers; querying one server for a piece of data
can result in a referral to another server. Version 2 supported hierarchical data, but
hierarchical servers are only in version 3.

Mail aliases are a particularly good match for LDAP, especially now that sendmail
supports LDAP internally. sendmail can query the LDAP server for alias lookups
instead of doing them directly. LDAP can also manage mail routing and virtual do-
mains. LDAP support must be compiled into the sendmail binary.

If you are looking for an LDAP implementation, we recommend the server produced
by the OpenLDAP group at www.openldap.org. This group took over and enhanced
the code of an earlier server that was developed at the University of Michigan. For a
bit more information about LDAP-related software, see page 520.

LDAP database entries resemble a termcap entry with longer variable names. The
attributes (variable names) in the LDAP database are not yet fully standardized, and
this fact can result in incompatibilities among different implementations.

The attributes on the first line of a database entry are defined by the LDAP configu-
ration file. The examples in this section assume that the LDAP server daemon (slapd,
in the OpenLDAP case) was configured with a root distinguished name (rootdn) of:

 "cn=root, dc=synack, dc=net"

The dc attribute appears twice because the domain component values cannot con-
tain a dot; to express the domain synack.net, two entries are necessary. Further at-
tributes, or variable names, can be whatever you want. They are case insensitive.

www.openldap.org

556 Chapter 18 – Electronic Mail

sendmail (whose code looks for specific attribute names and assigns them predeter-
mined interpretations), the LDAP server, and the builder of the LDAP database must
all cooperate and use the same naming conventions.

Some possible attributes that can appear on the first line of a database entry (the da-
tabase keys) are dn for a domain name, dc for a domain component, o for an organi-
zation name, c for a country name, and uid for a unique ID (e.g., a login name).

sendmail uses an LDAP server much like it uses the DNS name server. It calls on the
DNS server to resolve names into IP addresses so that messages can be sent. It calls
on the LDAP server to look up aliases so that messages can be routed to the right
place. In both cases, the lookups have moved from flat files (hosts and aliases) to
databases, with servers managing the queries.

By default, sendmail recognizes the following LDAP data tags:

mailLocalAddress
mailRoutingAddress
mailHost

Version 8.12 expanded this default set extensively (see cf/sendmail.schema) and
also let you define your own schema to use any LDAP tags you like.

Here is an example of the OpenLDAP implementation’s slapd ldap.conf file

LDAP Defaults, ldap.conf file, should be world-readable.
#
BASE dc=synack, dc=net
HOST gw.synack.net
PORT 389

that supports database entries of the form

dn: uid=jon, dc=synack, dc=net
objectClass: inetLocalMailRecipient
mailLocalAddress: jon@synack.net
mailRoutingAddress: stabilej@cs.colorado.edu
uid:jon

When FEATURE(ldap_routing) has been specified in the sendmail configuration
file, the incoming recipient is matched against the mailLocalAddress field. If it
matches, the mail is redirected to the mailRoutingAddress. The objectClass line
must be present—it comes from the draft RFC that defines the interaction of LDAP
and mail systems.

On the host gw.synack.net, this database entry corresponds to the alias

jon: stabilej@cs.colorado.edu

A bit long-winded, isn’t it? These database entries could replace the typical entries in
the aliases file for defining a mail home for each user.

E
le

ct
ro

n
ic

 M
a

il

18.6 sendmail: ringmaster of the electronic mail circus 557

Some large organizations already store user provisioning information, such as each
user’s preferred mailbox, in another database. If that is the case at your site, you will
probably want to write some short scripts to extract that information and shove it
into LDAP. If yours is a small organization, you may want to stick with the traditional
/etc/mail/aliases file or write a script to generate the correct LDAP entries from the
command line.

The aliases file is also still the best way to define mailing lists (with the :include:
directive). Mailing list software typically pipes the message to a wrapper script and
resends it. An LDAP query can return aliases that point to :include: files or to pro-
grams such as majordomo, but it cannot directly call a program.

As of version 8.12, LDAP can also store the contents of some of sendmail’s other data
(for example, tables and classes). See page 580 for more information about configur-
ing sendmail to use LDAP.

18.6 SENDMAIL: RINGMASTER OF THE ELECTRONIC MAIL CIRCUS

All five of our Linux reference platforms ship a mail transport agent. Red Hat, Fe-
dora, and SUSE ship with sendmail; Debian and Ubuntu include Exim by default.
We describe Exim briefly starting on page 621. Many of the Exim constructs and
configuration knobs have analogs within the sendmail world. Since this chapter is
already far too long, we cover only sendmail in detail. We describe Exim in terms of
the equivalent sendmail facilities.

sendmail can adapt to the whims of standards-makers thanks in part to the flexibil-
ity of its configuration file, which allows sendmail to meet the needs of a diverse
community of users. The rest of this chapter is primarily devoted to the understand-
ing and construction of this configuration file, the infamous sendmail.cf.

sendmail is a transport agent, a program that interfaces between user agents and
delivery agents. It speaks the SMTP protocol and delivers messages to peers on re-
mote machines through the Internet. sendmail’s list of chores includes

• Controlling messages as they leave the user’s keyboard

• Understanding the recipients’ addresses

• Choosing an appropriate delivery or transport agent

• Rewriting addresses to a form understood by the delivery agent

• Reformatting headers as required

• Passing the transformed message to the delivery agent

sendmail also generates error messages and returns undeliverable messages to the
sender.

Versions of sendmail

As of this writing, our example distributions’ versions of sendmail derive from V8.
They are typically a release or two behind the master version from Sendmail, Inc.,

558 Chapter 18 – Electronic Mail

however. Vendors often customize a particular version of sendmail and are then re-
luctant to upgrade their base system to include current revisions.

We base our discussion of sendmail on V8.13 and totally ignore both V5 and IDA,
which are obsolete. V8 uses the m4 macro processor to allow easy configuration of
the standard cases. This “config lite” is all that most sites need.

Unfortunately, if your configuration has a problem, you may have to base your de-
bugging on an understanding of the raw config file, which we’ve heard described as
unapproachable, daunting, picky, cryptic, onerous, infamous, boring, sadistic, con-
fusing, tedious, ridiculous, obfuscated, and twisted. We talked quite a bit about the
raw config file in older versions of this book, but since its relevance to modern ad-
ministrators has waned, we now refer you to the O’Reilly sendmail book by Bryan
Costales and Eric Allman (titled sendmail) or the Sendmail Installation and Opera-
tions Guide that is included in the sendmail distribution.

New releases of sendmail are sometimes issued to address security problems; we
suggest that you check the release notes from www.sendmail.org and upgrade if you
have missed any security-related patches. You can usually get updated sendmail
packages directly from your Linux distributor, but make sure that the binary you
receive corresponds to the current sendmail version. If you need to compile and in-
stall the source distribution directly from www.sendmail.org, you’ll need a C com-
piler and the m4 macro preprocessor (both of which are usually included in Linux
distributions).

Sometimes it’s difficult to determine the actual sendmail base release, but if the ven-
dor hasn’t meddled too much, you can run

$ /usr/sbin/sendmail -d0.1 -bt < /dev/null

to make sendmail disclose its version, the options that were compiled into it, and
who it thinks it is after reading the config file. The -d flag sets a debug level (see page
616 for more info on debugging levels in sendmail), the -bt flag puts sendmail into
address test mode, and the redirect from /dev/null gives it no addresses to test. Here
is some sample output (slightly truncated) from a Red Hat system.

Version 8.11.6
 Compiled with: LDAPMAP MAP_REGEX LOG MATCHGECOS MIME7TO8

MIME8TO7 NAMED_BIND NETINET NETINET6 NETUNIX NEWDB NIS
QUEUE SASL SCANF SMTP TCPWRAPPERS USERDB

============ SYSTEM IDENTITY (after readcf) ============
(short domain name) $w = coyote

(canonical domain name) $j = coyote.toadranch.com
(subdomain name) $m = toadranch.com

(node name) $k = coyote.toadranch.com
==

sendmail should always use DNS MX (mail exchanger) records and does so if com-
piled with the NAMED_BIND option (as in the preceding example). The one-letter
variables such as $w are from the raw config file or determined at run time.

www.sendmail.org
www.sendmail.org

E
le

ct
ro

n
ic

 M
a

il

18.6 sendmail: ringmaster of the electronic mail circus 559

sendmail installation from sendmail.org

As of version 8.12, the installation environment for sendmail has changed a bit. It no
longer runs setuid to root but instead is setgid to the sendmail group, smmsp. Be-
fore installing sendmail, you must create both the user smmsp and the group smmsp
(the mysterious name stands for sendmail mail submission program). We use UID
and GID 25 to match the SMTP mail protocol’s well-known port number. The
smmsp user should have smmsp as its default login group, which is typically set in
the /etc/passwd file. The addition of a dedicated sendmail user and group lets
sendmail run with reduced privileges and enhances security.

The second major change from a sysadmin’s point of view is that sendmail now uses
two configuration files: submit.cf and sendmail.cf. The file submit.cf controls the
handling of mail that originates on the local machine (and is being initially submit-
ted to the mail system), and sendmail.cf controls incoming mail and mail queued
during the submission process. submit.cf is supplied with the distribution and is
the same for all sites; there’s usually no need to customize it.

This section briefly describes the installation process; refer to the installation notes
in the sendmail distribution for the gory details and for issues related to particular
architectures or operating systems. The next section describes sendmail installation
on a Debian system with apt-get. If you are replacing your system’s original version
of sendmail, some of the configuration chores (such as installing help files) may al-
ready have been done for you.

The players:

• The sendmail binary, usually installed in /usr/sbin.

-r-xr-sr-x root smmsp /usr/sbin/sendmail

• The configuration files /etc/mail/sendmail.cf and (in versions 8.12 and
later) /etc/mail/submit.cf, installed by the sysadmin:

-rw-r--r-- root bin /etc/mail/sendmail.cf
-rw-r--r-- root bin /etc/mail/submit.cf

• The mail queue directories, /var/spool/mqueue and (in versions 8.12 and
later) /var/spool/clientmqueue, created by the sysadmin or the installa-
tion process:

drwxrwx--- smmsp smmsp /var/spool/clientmqueue
drwx------ root wheel /var/spool/mqueue

• Various links to the sendmail binary (newaliases, mailq, hoststat, etc.)19

• sendmail’s safer local delivery agents, smrsh and mail.local (usually
installed in /usr/libexec)

19. Be careful here. Some vendors use hard links, with the result that when you upgrade, you might end up
with the version of sendmail not matching the version of newaliases, creating subtle and hard-to-find
support headaches.

560 Chapter 18 – Electronic Mail

You can download the latest version of sendmail from www.sendmail.org. To com-
pile and install the package, follow the directions in the top-level INSTALL file. Start
by adding the smmsp user and group; do not give this user a real shell. Here is a
typical /etc/passwd entry:

smmsp:x:25:25:Sendmail Mail Submission Prog:/nonexistent:/bin/false

And here is a typical /etc/group entry:

smmsp:*:25:smmsp

To compile the software, change to the distribution’s sendmail directory, run the
Build script and then run Build install. The file devtools/OS/Linux contains the
assumptions used to build sendmail on Linux systems. Linux distributions have not
standardized where things are, so devtools/OS/Linux contains best guesses and may
not be exactly right for your distribution.

Before you start compiling, however, you must decide on a database format and a
strategy for interfacing sendmail with administrative databases such as NIS. For on-
disk databases, we recommend the Berkeley DB package specified in the Makefile as
NEWDB (the default).

To customize the Makefile, don’t edit it; create your own site.config.m4 file and put
it in the directory devtools/Site to tweak it for your operating system and local envi-
ronment. For example, if you intend to use LDAP and the new mail filtering library
for spam, create in that directory a site.config.m4 file containing the lines

APPENDDEF(`confMAPDEF', `-DLDAPMAP')
APPENDDEF(`confLIBS', `-lldap -llber')
APPENDDEF(`conf_sendmail_ENVDEF', `-DMILTER')

A define replaces the current definition of an attribute; the APPENDDEF macro ap-
pends to the current definition.

Compiling sendmail with

$ sh ./Build

automatically includes the site-specific entries. To install sendmail in the proper
place, run

$ sudo sh ./Build install

sendmail should not normally be set up to be controlled by inetd/xinetd, so it must
be explicitly started in the rc files at boot time. A typical sequence is something like:

if [-f /usr/sbin/sendmail -a -f /etc/mail/sendmail.cf];
then

(cd /var/spool/clientmqueue; rm -f [tTx]f*)
(cd /var/spool/mqueue; rm -f [tTx]f*)
/usr/sbin/sendmail -bd -q30m ### queue runner for regular queue
/usr/sbin/sendmail -Ac -q30m & ### queue runner for client queue (8.12)
echo -n ' sendmail' > /dev/console

fi

www.sendmail.org

E
le

ct
ro

n
ic

 M
a

il

18.6 sendmail: ringmaster of the electronic mail circus 561

These lines check for the sendmail binary and its configuration file and then start
the program in daemon mode. The sendmail package for your Linux distribution
should provide a proper startup script that lives in /etc/init.d.

Several user agents explicitly run sendmail (sometimes with the -bm or -bs flags)
when they submit a user’s message to the mail system rather than directly speaking
the SMTP protocol. In this situation, sendmail uses the config file submit.cf and
puts messages in the /var/spool/clientqueue queue. Calling sendmail with the
-Am or -Ac flags forces messages to the mqueue or clientqueue, respectively.

Red Hat and Fedora have a sendmail startup script (/etc/init.d/sendmail) that
does not clean cruft out of the mqueue directories (as shown in the example
above). However, it does rebuild the database. With sendmail 8.12 and later, LDAP
can be used for the database maps, and rebuilding the maps after changes is not
necessary. Parameters defined in /etc/sysconfig/sendmail determine whether
sendmail should start in daemon mode and how often it should run the queue, so
that is where you should set the sendmail startup behavior for your site. Red Hat, as
shipped, starts sendmail in daemon mode and runs the queue every 30 minutes.

SUSE’s startup script (/etc/init.d/sendmail) just checks for the binary and config
file and then starts sendmail with the arguments defined in the SENDMAIL_ARGS
environment variable; these are set in the file /etc/rc.config.d/sendmail.rc.config.
SUSE also defaults to daemon mode and runs the queue every 30 minutes.

Add the sh fragment above (or one like it) to /etc/init.d/sendmail if your Linux
distribution does not include a sendmail startup script. A fancier script in the instal-
lation guide tries to clean up previously interrupted queue runs. Mix and match as
you like.

Historically, sendmail’s supporting files have wandered around the filesystem to
glamorous destinations such as /usr/lib, /etc, /usr/ucblib, and /usr/share. With the
8.10 release of sendmail, all files (except the queue directories) are expected to be
kept beneath the /etc/mail directory.20 Let’s hope that vendors take the hint and
leave them together in one consistent place.

sendmail installation on Debian and Ubuntu systems

You can use the apt-get program to install sendmail. The package installs sendmail
and m4 and also uninstalls Exim. After apt-get has downloaded and installed the
sendmail package, it offers to configure it. Saying yes invokes a script that asks
questions (20 or so) about the sendmail configuration you want. The defaults are
generally reasonable. The only question that you really have to answer differently is
“mail name”; the default answer is the unqualified hostname (e.g., lappie), but it
needs to be the fully qualified name (e.g., lappie.toadranch.com).

20. Well, it’s not quite totally true yet that all files are kept under /etc/mail. The sendmail.pid file and
sometimes the statistics file are still kept elsewhere.

562 Chapter 18 – Electronic Mail

Answering the questions posed by the script will make more sense if you are familiar
with sendmail’s various options and features, which are discussed in more detail
later in this chapter. The configuration script does not take into account the contents
of the generic domain file that it includes by default. As a result, you can decline a
feature but end up with it turned on anyway (for example, the redirect feature).

The switch file

The service switch is
covered in more detail
in Chapter 17.

Linux systems have a “service switch” configuration file, /etc/nsswitch.conf, that
enumerates the methods that can satisfy various standard queries such as user and
host lookups. If more than one resolution method is listed for a given type of query,
the service switch also determines the order in which methods are consulted.

The use of the service switch is normally transparent to software. However, sendmail
likes to exert fine-grained control over its lookups, so it currently ignores the system
switch file and uses its own internal one (/etc/mail/service.switch) instead.

Two fields in the switch file impact the mail system: aliases and hosts. The possible
values for the hosts service are dns, nis, nisplus, and files. For aliases, the possible
values are files, nis, nisplus, and ldap. Support for all the mechanisms you use (ex-
cept files) must be compiled into sendmail before the service can be used.

sendmail’s internal service switch contains

aliases files nisplus nis # if compiled with nis/nis+
hosts dns nisplus nis files

Modes of operation

You can run sendmail in several modes, selected with the -b flag. -b stands for “be”
or “become” and is always used with another flag that determines the role sendmail
will play. Table 18.4 lists the legal values.

Table 18.4 Command-line flags for sendmail’s major modes

Flag Meaning

-bd Run in daemon mode, listening for connections on port 25
-bD Run in daemon mode, but in the foreground rather than the backgrounda

-bh View recent connection info (same as hoststat)
-bH Purge disk copy of outdated connection info (same as purgestat)
-bi Initialize hashed aliases (same as newaliases)
-bm Run as a mailer, deliver mail in the usual way (default)
-bp Print mail queue (same as mailq)
-bP Print the number of entries in queues via shared memory (8.12 and later)
-bs Enter SMTP server mode (on standard input, not port 25)
-bt Enter address test mode
-bv Verify mail addresses only; don’t send mail

a. This mode is used for debugging so that you can see error and debugging messages.

E
le

ct
ro

n
ic

 M
a

il

18.6 sendmail: ringmaster of the electronic mail circus 563

If you expect incoming mail to arrive from the Internet, run sendmail in daemon
mode (-bd). In this mode, sendmail listens on network port 25 and waits for work.21

You will usually specify the -q flag, too—it sets the interval at which sendmail pro-
cesses the mail queue. For example, -q30m runs the queue every thirty minutes, and
-q1h runs it every hour.

sendmail normally tries to deliver messages immediately, saving them in the queue
only momentarily to guarantee reliability. But if your host is too busy or the destina-
tion machine is unreachable, sendmail queues the message and tries to send it again
later. sendmail used to fork a child process every time it processed the queue, but it
now supports persistent queue runners that are usually started at boot time. RFC1123
recommends at least 30 minutes between runs. sendmail does locking, so multiple,
simultaneous queue runs are safe.

sendmail 8.12 added a new feature to help with large mailing lists and queues: queue
groups with envelope splitting. It is covered in more detail starting on page 611.

sendmail reads its configuration file, sendmail.cf, only when it starts up. Therefore,
you must either kill and restart sendmail or send it a HUP signal when you change
the config file. sendmail creates a sendmail.pid file that contains its process ID and
the command that started it. You should start sendmail with an absolute path be-
cause it reexecs itself on receipt of the HUP signal. The sendmail.pid file allows the
process to be HUPed with:

kill -HUP `head -1 sendmail.pid`

The location of the PID file was formerly a compile-time parameter, but it can now
be set in the .mc config file with the confPID_FILE option.

define(confPID_FILE, `/var/run/sendmail.pid')

The default value is OS dependent but is usually either /var/run/sendmail.pid or
/etc/mail/sendmail.pid. The Red Hat, Fedora, Ubuntu, and Debian distributions
use /var/run/sendmail.pid, and SUSE keeps it in the directory /var/run/sendmail.

The mail queue

Mail messages are stored in the queue directory when the machine is too busy to de-
liver them immediately or when a destination machine is unavailable. sendmail
serves as a mail submission agent listening on port 587 as well as fulfilling its usual
role as a daemon listening on port 25 and using the queue /var/spool/mqueue. Some
user agents (/bin/mail for example) use port 587, the mail submission port, but oth-
ers (Eudora, Outlook, etc.) speak SMTP directly to the sendmail running on port
25. Beginning with version 8.12, mail submission programs inject new messages into
the mail system by using the queue directory /var/spool/clientmqueue and the
configuration file submit.cf. All messages go into the queue briefly as they arrive.

21. The ports that sendmail listens on are determined by DAEMON_OPTIONS; port 25 is the default.

564 Chapter 18 – Electronic Mail

sendmail permits more than one mail queue and lets you identify subsets of the
queues as belonging to a queue group. For example, if the mqueue directory con-
tained the subdirectories q1, q2, and q3 and you specified the queue directory as
/var/spool/mqueue/q*, then all three queues would be used. sendmail’s ability to
handle multiple queues increases performance under high load.22 If a site is running
a large mailing list, sendmail splits the envelope recipient list into several smaller
lists and assigns them to different queue groups. This trick can greatly enhance per-
formance because the smaller recipient lists can be processed in parallel.

Queue groups were new in version 8.12 and give fine-grained control over individ-
ual types of messages. Any of the parameters associated with queues can also be set
on a particular queue group, including execution priority (with the nice system call).
Mail is submitted to a queue group according to the address of the first recipient of
the message. The default queue group is called mqueue and is automatically de-
fined and available for use without further configuration. Queue groups are covered
in detail starting on page 611.

When a message is queued, it is saved in pieces in several different files. Each file-
name has a two-letter prefix that identifies the piece, followed by a random ID built
from sendmail’s process ID. This ID is not fixed, because sendmail is constantly
forking and each copy gets a new process ID. Table 18.5 shows the six possible pieces.

If subdirectories qf, df, or xf exist in a queue directory, then those pieces of the mes-
sage are put in the proper subdirectory. The qf file contains not only the message
header but also the envelope addresses, the date at which the message should be re-
turned as undeliverable, the message’s priority in the queue, and the reason the
message is in the queue. Each line begins with a single-letter code that identifies the
rest of the line.

Each message that is queued must have a qf and df file. All the other prefixes are used
by sendmail during attempted delivery. When a machine crashes and reboots, the
startup sequence for sendmail should delete the tf, xf, and Tf files from each queue

22. Directories are an efficient storage mechanism if they do not contain too many files. If you have a busy
mail server with lots of mailing lists that get out of date, the queue directory can easily get so large that
it cannot be dealt with efficiently.

Table 18.5 Prefixes for files in the mail queue

Prefix File contents

qf The header of the message and control file
df The body of the message
tf A temporary version of the qf file while the qf file is being updated
Tf Signifies that 32 or more failed locking attempts have occurred
Qf Signifies that the message bounced and could not be returned
xf Temporary transcript file of error messages from mailers

E
le

ct
ro

n
ic

 M
a

il

18.7 sendmail configuration 565

directory. The sysadmin responsible for mail should check occasionally for Qf files
in case local configuration is causing the bounces.

The mail queue opens up several opportunities for things to go wrong. For example,
the filesystem can fill up (avoid putting /var/spool/mqueue and /var/log on the
same partition), the queue can become clogged, and orphaned mail messages can
get stuck in the queue.

sendmail has a configuration option (confMIN_FREE_BLOCKS) to help manage
disk space. When the filesystem that contains the mail queue gets too full, mail is
rejected with a “try again later” error until more space has been made available. This
option leaves a bit of slop space so that mail starts being rejected before the filesys-
tem is totally full and everything wedges.

See page 397 for more
information about
DNS MX records.

If a major mail hub goes down, its MX backup sites can become overloaded with
thousands of messages. sendmail can fork too many copies of itself and thrash a
machine to death. Several options help with performance on very busy machines; we
have collected these in the performance section starting on page 611. To handle a
temporarily clogged queue before version 8.12, move the clog aside, continue pro-
cessing new mail as usual, and run a separate copy of sendmail on the clogged
queue after things quiet down. For example, the procedure for handling a single
queue directory would look like this:

kill `head -1 sendmail.pid`
mv mqueue cloggedqueue /* To another FS if necessary */
mkdir mqueue /* Set owner/perms, too */
chown root mqueue
chmod 700 mqueue
/usr/sbin/sendmail -bd -q1h &

When things settle down, run sendmail with the following flags:

/usr/sbin/sendmail -oQ/var/spool/cloggedqueue -q

These flags point sendmail at the clogged queue directory and specify that sendmail
should process it immediately. Repeat this command until the queue empties. Start-
ing with version 8.12, sendmail uses hard links in ways that will break if you move a
queue. A better way to deal with clogged queues is to use a fallback machine and MX
records; see the performance section for details.

The point at which the queue becomes clogged depends on the site and the hardware
on which sendmail is running. Your system and the mail hub for aol.com, which pro-
cesses millions of messages a day, have different definitions of a clogged queue. See
page 615 for information about measuring your traffic levels.

18.7 SENDMAIL CONFIGURATION

Before version 8.12, sendmail’s actions were controlled by a single configuration file,
/etc/mail/sendmail.cf (it was formerly found in /etc or /usr/lib). We call it the con-
fig file for short. Version 8.12 introduced a second instance of the configuration file

566 Chapter 18 – Electronic Mail

called submit.cf (also in the /etc/mail directory). The flags with which sendmail is
started determine which config file it uses: -bm, -bs, and -bt use submit.cf if it ex-
ists, and all other modes use sendmail.cf. Of course, some command-line flags and
config file options change the names of the configuration files, but it is best to leave
the names alone. The config file determines the following for sendmail:

• Choice of delivery agents

• Address rewriting rules

• Mail header formats

• Options

• Security precautions

• Spam resistance

The raw config file format was designed to be easy to parse. This focus has made it a
bit lacking in warm, user-friendly features. Maintenance of the config file is the most
significant administrative chore related to electronic mail and scares the pejeebers
out of even seasoned sysadmins.

Every version of sendmail uses a config file, but modern versions make the configu-
ration process easier through the use of m4 macros, which disguise much of the un-
derlying complexity. It might be said that the raw config file is at the level of assembly
language, whereas m4 configuration is more at the level of Perl.23

When the m4 macros were first introduced, the hope was that they would handle
80%–90% of cases. In fact, the coverage rate turned out to be much higher, probably
closer to 98%. In this book, we cover only the m4-based “config lite.” You need delve
into the low-level config file only if you are debugging a thorny problem, growing
your mail site in bizarre ways, or running a very high volume mail hub.

Three key pieces of documentation are the O’Reilly book sendmail by Bryan Costales
and Eric Allman, the paper Sendmail Installation and Operations Guide by Eric All-
man (included in the doc/op directory of the sendmail distribution), and the file
README (in the cf directory). We often refer to sendmail as a source for more
information and refer to it as “the sendmail book.” Likewise, we refer to the installa-
tion paper as “the installation guide” and the README file as cf/README.

Using the m4 preprocessor

We first describe a few m4 features, show how to build a configuration file from an
m4 master file, and finally describe some of the important prepackaged m4 macros
that come with the sendmail distribution.

m4 was originally intended as a front end for programming languages that would let
the user write more readable (or perhaps more cryptic) programs. m4 is powerful
enough to be useful in many input transformation situations, and it works nicely for
sendmail configuration files.

23. The sendmail config language is “Turing complete,” which means that it can be used to write any pos-
sible computer program. Readers who have experienced the raw config file will realize what a frighten-
ing concept this is …

E
le

ct
ro

n
ic

 M
a

il

18.7 sendmail configuration 567

m4 macros have the form

name(arg1, arg2, …, argn)

There should be no space between the name and the opening parenthesis. Left and
right single quotes designate strings as arguments. m4’s quote conventions are dif-
ferent from those of other languages you may have used, since the left and right
quotes are different characters.24 Quotes nest, too. With today’s compiler building
tools, one wonders how m4 survived with such a rigid and exotic syntax.

m4 has some built-in macros, and users can also define their own. Table 18.6 lists the
most common built-in macros used in sendmail configuration.

Some sites add a dnl macro to the end of every line to keep the translated .cf file tidy;
without dnl, m4 adds extra blank lines to the configuration file. These blank lines
don’t affect sendmail’s behavior, but they make the config file hard to read. We have
omitted the dnls from our examples. Other sites use dnl at the beginnings of lines
that are intended as comments.

m4 does not really honor comments in files. A comment such as:

And then define the …

would not do what you expect because define is an m4 keyword and would be ex-
panded. Instead, use the m4 dnl keyword (for “delete to newline”). For example,

dnl # And then define the …

would work. You must follow dnl with a space or punctuation mark for it to be rec-
ognized as an m4 command.

The sendmail configuration pieces

The sendmail distribution includes a cf subdirectory that contains all the pieces
necessary for m4 configuration: a README file and several subdirectories, listed in
Table 18.7 on the next page.

24. You could change the quote characters with the changequote macro, but doing so would totally break
the use of m4 in sendmail because various macros make assumptions about the quote characters.

Table 18.6 m4 macros commonly used with sendmail

Macro Function

define Defines a macro named arg1 with value arg2
undefine Discards a previous definition of macro named arg1
include Includes (interpolates) the file named arg1
dnl Discards characters up to and including the next newline
divert Manages output streams

568 Chapter 18 – Electronic Mail

The cf/cf directory contains examples of .mc files. In fact, it contains so many exam-
ples that yours will get lost in the clutter. We recommend that you keep your own
.mc files separate from the distributed cf directory. Either create a new directory
named for your site (cf/sitename) or move the cf directory aside to cf.examples and
create a new cf directory. If you do this, copy the Makefile and Build script over to
your new directory so the instructions in the README file still work. It’s best to also
copy all the configuration .mc files to a central location rather than leaving them
inside the sendmail distribution. The Build script uses relative pathnames that will
have to be changed if you try to build a .cf file from a .mc file and are not in the
sendmail distribution hierarchy.

Building a configuration file from a sample .mc file

Before we dive into pages and pages of details about the various configuration mac-
ros, features, and options, we put the cart before the horse and create a “no frills”
configuration to illustrate the process. Our example is for a leaf node, foo.com; the
master configuration file is called foo.mc.

We put foo.mc in our shiny new cf directory. The translated (by m4) configuration
file will be foo.cf in the same directory, and we ultimately install it as sendmail.cf in
/etc or /etc/mail. /etc/mail is the sendmail standard for the location of the config
file, but many distributions use /etc.

Some boilerplate should go in each new .mc file:

divert(-1)
basic .mc file for foo.com
divert(0)
VERSIONID(`Id')

If you want to put comments at the start of your file, use a divert statement on the
first line to make m4 discard the spurious material and obviate the need for dnl in
#-style comments. The comments come next, followed by another divert.

A VERSIONID line (here, in RCS format) completes the boilerplate. It is described in
detail in the next section.

Table 18.7 Configuration subdirectories

Directory Contents

cf Sample .mc (master configuration) files
domain Sample m4 files for various domains at Berkeley
feature Fragments that implement various features
hack Special features of dubious value or implementation
m4 The basic config file and other core files
ostype OS-dependent file locations and quirks
mailer m4 files that describe common mailers (delivery agents)
sh Shell scripts used by m4

E
le

ct
ro

n
ic

 M
a

il

18.7 sendmail configuration 569

In many cases, specifying an OSTYPE (see page 570) to bring in operating-system-
dependent paths or parameters and also a set of MAILERs (see page 573) completes
the configuration:

OSTYPE(`linux')
define(`confCOPY_ERRORS_TO', `postmaster')
MAILER(`local')
MAILER(`smtp')

Here, we also set an option (confCOPY_ERRORS_TO) that sends a copy of the head-
ers of any bounced mail to the local postmaster. This notification allows the post-
master to intervene when the problem is at the local site.

To build the real configuration file, just run the Build command you copied over to
the new cf directory:

./Build foo.cf

or

make foo.cf

Finally, install foo.cf in the right spot—normally /etc/mail/sendmail.cf, but both
Red Hat and SUSE stash it in /etc/sendmail.cf.

A larger site can create a separate m4 file to hold site-wide defaults in the cf/domain
directory; individual hosts can then include the contents of this file. Not every host
needs a separate config file, but each group of similar hosts (same architecture and
same role: server, client, etc.) will probably need its own configuration.

Changing the sendmail configuration

You will often find that your existing sendmail configuration is almost right, but
that you just want to try out a new feature, add a new spam rule, or make a simple
change. To do that:

• Edit the .mc file and enter your changes.

• Rebuild the config file with the Build script in the configuration directory.

• Install the resulting cf file as sendmail.cf in the right directory.

• Send sendmail a HUP signal to make it reread its config file.25

Even with sendmail’s easy new configuration system, you still have to make several
configuration decisions for your site. As you read about the features described be-
low, think about how they might fit into your site’s organization. A small site will
probably have only a hub node and leaf nodes and thus will need only two versions
of the config file. A larger site may need separate hubs for incoming and outgoing
mail and, perhaps, a separate POP/IMAP server.

25. Use the kill command to do this. The sendmail.pid file makes it easy to find sendmail’s process ID;
unfortunately, its location is not consistent among distributions (try /var/run/sendmail.pid). See page
563 for an example of how to use it.

570 Chapter 18 – Electronic Mail

Whatever the complexity of your site and whatever face it shows to the outside world
(exposed, behind a firewall, or on a virtual private network, for example), it’s likely
that the cf directory contains some appropriate ready-made configuration snippets
just waiting to be customized and put to work.

18.8 BASIC SENDMAIL CONFIGURATION PRIMITIVES

sendmail configuration commands are case sensitive. By convention, the names of
predefined macros are all caps (e.g., OSTYPE), m4 commands are all lower case (e.g.,
define), and configurable variable names start with a lowercase conf and end with
an all-caps variable name (e.g., confCOPY_ERRORS_TO). Macros usually refer to
an m4 file called ../macroname/arg1.m4. For example, the macro OSTYPE(`linux')
causes ../ostype/linux.m4 to be included.

In this section we cover the basic configuration commands and leave the fancier
features for later.

The VERSIONID macro

You should maintain your config files with CVS or RCS, not only so that you can back
out to an earlier config version if necessary but also so that you can identify the
versions of the m4 files that go into making up the config file. Use the VERSIONID
macro to automatically embed version information. The syntax is

VERSIONID(`Id')

The actual version information is filled in by RCS as you check in the file. It appears
in the final sendmail.cf file as a comment. This information can also be useful if you
forget where you put the sendmail distribution; often, the location of files is dic-
tated by available disk space and not by filesystem design logic.

The OSTYPE macro

Files in the ostype directory are named for the operating system whose default val-
ues they contain. An OSTYPE file packages up a variety of vendor-specific informa-
tion, such as the expected locations of mail-related files, paths to commands that
sendmail needs, flags to mailer programs, etc.

By convention, OS-specific information is interpolated into the config file with the
OSTYPE macro.26 Every config file must include an OSTYPE macro near the top, typ-
ically just after VERSIONID.

OSTYPE files do their work primarily by defining other m4 variables. For example,

define(`ALIAS_FILE', `/etc/aliases')

specifies the location of the system-wide aliases file. You can override the default
values for your OS later in the .mc file if you wish, but don’t change the distributed

26. So where is the OSTYPE macro itself defined? In a file in the cf/m4 directory, which is magically
prepended to your config file when you run the Build script.

E
le

ct
ro

n
ic

 M
a

il

18.8 Basic sendmail configuration primitives 571

OSTYPE file unless it’s actually wrong, in which case you should also submit a bug
report to sendmail-bugs@sendmail.org. Some sites want a consistent location for
the aliases file across platforms and so redefine its location in their DOMAIN file.

The README file in the cf directory lists all the variables that can be defined in an
OSTYPE file. Some of the important ones are shown in Table 18.8, along with several
that you may want to configure for spam abatement (but which are undefined by
default). The default values are what you get if your OSTYPE file doesn’t specify
something else.

If you install sendmail on a new OS release or architecture, be sure to create a corre-
sponding OSTYPE file and give it to sendmail.org so that it can be included in the
next release. Just model your new file after those already there and check it against
the table of defaults in the cf/README file. If the value of a variable on your new
system is the same as the default value, you don’t need to include an entry for it (but
it doesn’t hurt to protect yourself in case the default changes).

Table 18.9 shows the OSTYPE files for our reference platforms.

Table 18.8 Default values of some variables set in OSTYPE files

Variable Default value

ALIAS_FILE /etc/mail/aliases

HELP_FILE /etc/mail/helpfile

STATUS_FILE /etc/mail/statistics

QUEUE_DIR /var/spool/mqueue

MSP_QUEUE_DIR /var/spool/clientmqueue

LOCAL_MAILER_PATH /bin/mail

LOCAL_SHELL_PATH /bin/sh

LOCAL_MAILER_MAX undefined
LOCAL_MAILER_MAXMSGS undefined
SMTP_MAILER_MAX undefined
SMTP_MAILER_MAXMSGS undefined

Table 18.9 OSTYPE files for Linux systems

System File Directory Usage

Red Hat linux.m4 /usr/share/sendmail-cf OSTYPE(`linux')
Fedora linux.m4 /usr/share/sendmail-cf OSTYPE(`linux')
SUSE suse-linux.m4 /usr/share/sendmail OSTYPE(`suse-linux')
Debian debian.m4 /usr/share/sendmail/sendmail.cf OSTYPE(`debian')
Ubuntu linux.m4 /usr/share/sendmail OSTYPE(`linux')

572 Chapter 18 – Electronic Mail

SUSE puts the sendmail distribution in /usr/share/sendmail. The suse-linux.m4
OSTYPE file is in the ostype directory there and not part of the sendmail distribu-
tion from sendmail.org. That file is very long (over 80 lines) and contains numerous
FEATUREs and other macros that are usually found in a site’s master configuration
file (the .mc file) and not in the OSTYPE file. This hides the real configuration from
the sysadmin—a mixed blessing, perhaps, but not a practice we recommend.

Debian hides the config files beneath /usr/share/sendmail/sendmail.cf/. The direc-
tory sendmail.cf (confusing choice of names from the Debian folks) corresponds to
the cf directory in the sendmail distribution and contains all the config pieces you
need, including a Debian-specific OSTYPE file, ostype/debian.m4. The OSTYPE file
is 50 lines long and consists mostly of pathnames and comments, as it should. Many
are identical to the current defaults from sendmail.org and so don’t really need to be
explicitly restated. However, restating them protects Debian against changes in de-
faults that might otherwise introduce inconsistencies or errors. The only Debian sin
in the sendmail OSTYPE style department is the inclusion of the generic DOMAIN
file shipped with the sendmail distribution. A DOMAIN statement should appear
early in the actual .mc file rather than being hidden in the OSTYPE file.

The DOMAIN macro

The DOMAIN directive lets you specify site-wide generic information in one place
(cf/domain/filename.m4) and then refer to that place in each host’s config file with

DOMAIN(`filename')

Choose a filename that describes your site. For example, our file for the computer
science department is called cs.m4 and appears in our .mc files as:

DOMAIN(`cs')

Like OSTYPE, DOMAIN is really just a nice way of doing an include. But it makes the
structure of the config file clearer and provides a hook for future tweaks. It is most
useful when you centralize and build all your site’s .cf files from .mc files kept in a
single location.

Small sites do not usually need a domain file, but larger sites often use them for refer-
ences to relay machines, site-wide masquerading or privacy options, and references
to tables for mailers, virtual domains, and spam databases.

The generic DOMAIN file included with the distribution shows the types of entries
that are usually put in site-wide domain files. Its contents (with comments and dnls
removed) is shown below.

VERSIONID(`$Id: generic.m4,v 8.15 1999/04/04 00:51:09 ca Exp $')
define(`confFORWARD_PATH', `$z/.forward.$w+$h:$z/.forward+$h:

$z/.forward.$w:$z/.forward')
define(`confMAX_HEADERS_LENGTH', `32768')
FEATURE(`redirect')
FEATURE(`use_cw_file')
EXPOSED_USER(`root')

E
le

ct
ro

n
ic

 M
a

il

18.8 Basic sendmail configuration primitives 573

The file sets the path for the locations of users’ forward files, limits header lengths,27

includes the redirect feature for users who have left your organization, and turns on
the use_cw_file feature for the handling of equivalent machine names. If your .mc
file includes masquerading, the root user will not be masqueraded. Each of these
constructs is described in more detail later in the chapter.

The MAILER macro

You must include a MAILER macro for every delivery agent you want to enable. You’ll
find a complete list of supported mailers in the directory cf/mailers in the sendmail
distribution. Currently, the options are local, smtp, fax, usenet, procmail, qpage,
cyrus, pop, phquery, and uucp. Typically, you need at least

MAILER(`local')
MAILER(`smtp')

The first line includes the local and prog mailers. The second line includes smtp,
esmtp, dsmtp, smtp8, and relay. Support for user+details@site.domain email ad-
dresses was added to the local mailer starting with version 8.7.28 The user defines the
mailbox to which messages should be delivered, and the details add an extra param-
eter that a local mail program such as procmail can use to sort incoming mail.

If you plan to tune any mailer-related macros (such as USENET_MAILER_ARGS or
FAX_MAILER_PATH), be sure that the lines that set these parameters precede the line
that invokes the mailer itself; otherwise, the old values will be used. For this reason,
MAILER declarations usually come toward the bottom of the config file.

The pop mailer interfaces to the spop program that is part of the mh mail handler
package and implements the Post Office Protocol defined in RFC1460. It’s used by
PCs and Macs that need to access mail on a UNIX host. The cyrus mailer is for use
with CMU’s IMAP server and comes in two flavors: cyrus to deliver mail to users’
mailboxes and cyrusbb to deliver mail to a central bulletin board. The cyrus mailer
also understands the user+details syntax; its MAILER specification must come after
that of the local mailer.

HylaFAX is available
from www.hylafax.org.

The fax mailer integrates Sam Leffler’s HylaFAX package into the mail system. SUSE
includes it as /usr/bin/faxmail; Red Hat, Fedora, Debian, and Ubuntu do not include
HylaFAX by default. Mailing to user@destination.fax sends the body of the message
as a fax document. The destination is typically a phone number. To allow symbolic
names (rather than just phone numbers) as destinations, use a keyed database file.

ghostscript is available
from www.gnu.org.

You must glue HylaFAX and sendmail together by installing a script from the Hy-
laFAX distribution in /usr/local/bin. You also might need to change the value of the
macro FAX_MAILER_PATH. Human intervention is still needed to deliver incoming

27. Hackers have used very, very long headers as a way of causing a denial of service in older versions of
sendmail. This line is there in case you are still running any of these vulnerable versions (pre-8.9.3).

28. The user+details syntax originated at Carnegie Mellon University, where it is used with local tools for
routing and sorting mail.

www.hylafax.org
www.gnu.org

574 Chapter 18 – Electronic Mail

faxes from the spool area to a user’s mailbox. You can convert fax documents to Post-
Script (with HylaFAX) and view them with the GNU package ghostscript.

The qpage mailer interfaces to QuickPage software to deliver email to your pager.
See www.qpage.org for more information about QuickPage.

The macros VERSIONID, OSTYPE, and MAILER are all you need to build a basic
hostname.mc file.

18.9 FANCIER SENDMAIL CONFIGURATION PRIMITIVES

In the next sections, we describe a few more macros and some of the most common
FEATUREs that modify sendmail’s default behavior. We also discuss some policy is-
sues in the context of sendmail configuration: security, privacy, spam, and the
technique of hiding information by the use of masquerading and virtual domains.

The FEATURE macro

With the FEATURE macro you can enable several common options by including m4
files from the feature directory. In the discussion below, we intermix our presenta-
tion of FEATUREs and some of sendmail’s other macros since they are occasionally
intertwined. When m4 configuration was first added to sendmail, describing the
FEATURE macro became a big section of our mail chapter. Now, so many features
have been added that the FEATURE macro almost needs its own chapter.

The syntax is

FEATURE(keyword, arg, arg, …)

where keyword corresponds to a file keyword.m4 in the cf/feature directory and the
args are passed to it. See the directory itself or the cf/README file for a definitive
list of features. A few commonly used ones are described below.

The use_cw_file feature

The sendmail internal class w (hence the name cw) contains the names of all local
hosts for which this host accepts and delivers mail. A client machine might include
its hostname, its nicknames, and localhost in this class. If the host being configured
is your mail hub, then the w class should also include any local hosts and virtual
domains for which you accept email.

The use_cw_file feature defines class w from the file /etc/mail/local-host-names
(which used to be called sendmail.cw). The exact filename is configurable with the
confCW_FILE option, discussed later. Without this feature, sendmail delivers mail
locally only if it is addressed to the machine on which sendmail is running. An in-
coming mail server must list in the local-host-names file all the machines and do-
main names for which it will handle mail. If you change the file, you must send a
HUP signal to sendmail to make your changes take effect because sendmail reads
this file only when it starts.

www.qpage.org

E
le

ct
ro

n
ic

 M
a

il

18.9 Fancier sendmail configuration primitives 575

FEATURE(`use_cw_file')

invokes the feature and uses the local-host-names file as the data source; here is an
example local-host-names file:

local-host-names - include all aliases for your machine here.
toadranch.com
coyote.toadranch.com
big-tr.com
yoherb.com
herbmorreale.com
appliedtrust.com
applied-trust.com
atrust.com

In this example, the entries are all virtual domains that are hosted locally.

The redirect feature

When people leave your organization, you usually either forward their mail or let
mail to them bounce back to the sender with an error. The redirect feature provides
support for a more elegant way of bouncing mail. If Joe Smith has graduated from
oldsite.edu to newsite.com, then enabling redirect with

FEATURE(`redirect')

and adding the line

smithj: joe@newsite.com.REDIRECT

to the aliases file at oldsite.edu causes mail to smithj to be returned to the sender
with an error message suggesting that the sender try the address joe@newsite.com
instead. The message itself is not automatically forwarded.

The always_add_domain feature

This feature makes sendmail add the local hostname to local destination addresses
that are not fully qualified. For example, suppose lynda@cs.colorado.edu sends a
message to the local users barb and evi. Without always_add_domain, the mail
headers would show sender and recipient addresses as simple login names. With
always_add_domain turned on, all addresses would become fully qualified before
the message left lynda’s machine.

Use always_add_domain when you share spool directories among machines that
do not share an alias file or that do not have the same passwd file (incidentally, you
probably shouldn’t do such sharing). Mail to an alias or user that is not known every-
where would be fully qualified on the originating machine and therefore could be
replied to.

Another selling point for this feature is that unqualified names are often rejected as
spam. We recommend that you always use it. (Unless you are sending spam!)

576 Chapter 18 – Electronic Mail

If you are using MASQUERADE_AS (see page 581), always_add_domain adds the
name of the host you are masquerading as, not the local hostname. This convention
can cause problems if the aliases file or passwd file on the local host is not a subset
of the equivalent file on the MASQUERADE_AS host.

The nocanonify feature

sendmail typically verifies that the domain name portion of an address is fully qual-
ified and not a DNS CNAME. If this is not so, sendmail rewrites the address. This
process is called canonification and is usually done by a DNS lookup on the host-
name. The nocanonify feature says not to do this rewriting, and the DNS lookup that
is necessary to deliver a message is postponed. For example, at a site with a master
mail hub and client machines that forward all their mail through the master, the
clients might use

FEATURE(`nocanonify')

to avoid doing the DNS lookups locally. sendmail does not keep track of whether
DNS lookups have been done as a message moves from machine to machine within
a local site—it can’t. The nocanonify feature lets you control the timing of these
lookups. See our configuration case study (page 599) for an example.

nocanonify can also be used in an MSA/MTA scheme such as might be used at a
very large mail site. In this scenario, the MSA does all the DNS lookups and the mas-
ter machine running the MTA specifies nocanonify.

Sometimes you want to avoid DNS lookups that are potentially expensive but you
are willing to do the lookups for the local domain. You can exempt specific domains
from the nocanonify specification by including either the CANONIFY_DOMAIN or
CANONIFY_DOMAIN_FILE macros, which take a list of domains or a filename as
an argument, respectively. For example, the lines

FEATURE(`nocanonify')
CANONIFY_DOMAIN(`cs.colorado.edu cs')

would defer DNS lookups except for addresses of the form user@cs.colorado.edu or
user@cs. These exception macros were first introduced in version 8.12.

Tables and databases

sendmail has several FEATUREs that use a construct called a “table” to figure out
where mail should be routed. A table is usually a text file of routing, aliasing, policy,
or other information that is converted to a database format externally with the
makemap command and then used as an internal database for sendmail’s various
lookups. Although the data usually starts as a text file, that is not required; data for
sendmail tables can come from DNS, NIS, LDAP, or other sources. The use of a cen-
tralized IMAP or POP server relieves sendmail of the chore of chasing down users
and obsoletes some of the tables discussed below. Table 18.10 on page 584 includes a
summary of the available tables.

E
le

ct
ro

n
ic

 M
a

il

18.9 Fancier sendmail configuration primitives 577

Two database libraries are supported: the dbm/ndbm library that is standard with
most versions of Linux; and Berkeley DB, a more extensible library that supports
multiple storage schemes. Your choice of database libraries must be specified at com-
pile time. We recommend DB if you can install it; it’s faster than dbm and creates
smaller files. DB is available from sleepycat.com.

Three database map types are available:

• dbm – uses an extensible hashing algorithm (dbm/ndbm)

• hash – uses a standard hashing scheme (DB)

• btree – uses a B-tree data structure (DB)

For most table applications in sendmail, the hash database type—the default—is
the best. Use the makemap command to build the database file from a text file; you
specify the database type and the output file base name. The text version of the data-
base should appear on makemap’s standard input, for example:

makemap hash /etc/mail/access < /etc/mail/access

At first glance this command looks like a mistake that would cause the input file to
be overwritten by an empty output file. However, makemap tacks on an appropriate
suffix, so the actual output file is /etc/mail/access.db and in fact there is no conflict.
Each time the text file is changed, the database file must be rebuilt with makemap
(but sendmail need not be HUPed).

In most circumstances, the longest possible match is used for database keys. As with
any hashed data structure, the order of entries in the input text file is not significant.
FEATUREs that expect a database file as a parameter default to hash as the database
type and /etc/mail/tablename.db as the filename for the database. To override this
behavior, either specify the desired database type to both the makemap command
and the FEATURE or reset the default by defining a different value for the variable
DATABASE_MAP_TYPE. For example:

define(`DATABASE_MAP_TYPE', `dbm')

To use your new access.db database, you’d add the following line to your .mc file:

FEATURE(`access_db', `hash /etc/mail/access')

Since this line uses the default type and naming scheme, you could just write

FEATURE(`access_db')

You can specify the database filename either with or without the suffix (.db); with-
out is preferred.

Don’t forget to rebuild the database file with makemap every time you change the
text file; otherwise, your changes will not take effect.

We cover the mailertable, genericstable, and virtusertable FEATUREs in the next
few sections. access_db is covered later in the spam section. user_db is not covered
at all because it has been deprecated and will eventually be removed.

578 Chapter 18 – Electronic Mail

Starting with version 8.12, all maps and classes can specify LDAP as the source of
their data, so you can have sendmail contact the LDAP server to determine mail
routing and header rewriting. Just specify LDAP as the second parameter:

FEATURE(`access_db', `LDAP')

This line causes the access_db to use the default LDAP schema that is defined in the
file cf/sendmail.schema in the sendmail distribution. You can also define your
own database schema with additional arguments to the FEATURE directive; see the
cf/README file for details.

The mailertable feature

The mailertable feature redirects mail addressed to a particular host or domain to
an alternate destination through a particular mailer. It is applied as the mail goes out
from a site. The mailertable feature looks only at the host portion of the address, not
the user portion. The header address is not rewritten, so the mail continues to be
addressed to the same user but is sent to a different host through a different mailer.
mailertable was originally designed to deal with other mail systems such as UUCP,
DECnet, and BITNET, but today it is often used to redirect mail from a gateway
machine to an internal server or to a server at a remote site that does not have di-
rect Internet access.

To use a mailertable, include the following line in your .mc file.

FEATURE(`mailertable')

An entry in the mailertable has the form:

old_domain mailer:destination

A leading dot in front of the key on the left side is a wild card that means any host in
that domain. Only host and domain names are allowed as mailertable keys; user-
names are not allowed. The destination value on the right side can be a domain, a
user@domain clause, or even null, in which case the envelope is not changed. The
mailer value must be the name of a mailer defined in a MAILER clause; see page 573.

As an example, suppose you used MS Exchange as your main internal mail server but
were reluctant to have it facing the Internet. You could put a Linux box on the Inter-
net as your mail gateway and then forward all mail to the Exchange server after virus
scanning or whatever preprocessing you liked. Here is the mailertable entry that
would do it, assuming that the Exchange server had the internal IP address shown:

my-domain esmtp:[192.168.1.245]

However, this is a form of relaying, which, as we see on page 589, needs to be con-
trolled. To complete this example, you would need to put the line

To: my-domain RELAY

in your access database to allow relaying for all mail to any user at my-domain.

E
le

ct
ro

n
ic

 M
a

il

18.9 Fancier sendmail configuration primitives 579

The genericstable feature

The genericstable feature (“generics table,” not “generic stable”) is like aliasing for
outgoing mail. For example, it can map trent@atrust.com to trent.hein@atrust.com
on outbound mail. It is the headers that are rewritten, not the envelope. Mail deliv-
ery is not affected, only replies.

Several mechanisms can map hostnames, but genericstable is the only one that
includes both the username and the hostname as part of the mapping key. The
masquerade_envelope and allmasquerade features discussed later in this section
can also apply to addresses in the genericstable.

To use genericstable, make sure that your domain is in the generics class. To put a
domain in the generics class, you can either list it in the GENERICS_DOMAIN
macro or put it in the file specified by the GENERICS_DOMAIN_FILE macro.

For example, to use genericstable with the defaults for the database, add

GENERICS_DOMAIN_FILE(`/etc/mail/local-host-names')
FEATURE(`genericstable')

to your .mc configuration file. In this example, any host you accept mail for is in-
cluded. Enabling the genericstable feature slows down sendmail slightly because
every sender address must be looked up.

The virtusertable feature

The virtual user table supports domain aliasing for incoming mail. This feature al-
lows multiple virtual domains to be hosted on one machine and is common at web
hosting sites.

The key field of the table contains either an email address (user@host.domain) or a
domain specification (@domain). The value field is a local email address or an ex-
ternal email address. If the key is a domain, the value can either pass the user field
along as the variable %1 or route the mail to a different user. If the user specification
has the form user+details, then the variable %2 contains the details and variable %3
contains +details; use whichever form you want.

Let’s look at some examples (we added the comments):

info@foo.com foo-info # route to a local user
info@bar.com bar-info # another local user
joe@bar.com error:No such user # to return an error
@baz.org jane@elsewhere.com # all mail to jane
@zokni.org %1@elsewhere.com # to the same user, different domain

All the host keys on the left side of the data mappings must be listed in the cw file,
/etc/mail/local-host-names, (or the VirtHost class); otherwise, sendmail tries to
find the host on the Internet and to deliver the mail there. If DNS points sendmail
back to this server, you get a “local configuration error” message in bounces. Unfor-
tunately, sendmail cannot tell that the error message for this instance should really
be “virtusertable key not in cw file.”

580 Chapter 18 – Electronic Mail

Several pieces are actually involved here:

• DNS MX records must exist so that mail is routed to the right host in the
first place; then

• cw entries must be present or VIRTUSER_DOMAIN specified (or equiva-
lently, VIRTUSER_DOMAIN_FILE) to allow the local machine to accept
the mail; and finally

• the virtual user table must tell sendmail what to do with the mail.

The feature is invoked with

FEATURE(`virtusertable')

The examples starting on page 599 use virtusertable to implement virtual hosting.

The ldap_routing feature

As a final chunk floating in this cesspool of aliasing, rewriting, and falsification, we
have LDAP, the Lightweight Directory Access Protocol. LDAP (see page 555 for gen-
eral information) can substitute for virtusertable with respect to routing email
and accepting mail for virtual domains. It can also manage aliases, maps, and
classes. And as of version 8.12, it can do a decent job with mailing lists.

To use LDAP in this way, you must include several statements in your config file, and
you must have built sendmail to include LDAP support. In your .mc file you need
the lines

define(`confLDAP_DEFAULT_SPEC', `-h server -b searchbase')
FEATURE(`ldap_routing')
LDAPROUTE_DOMAIN(`my_domain')

to tell sendmail that you want to use an LDAP database for routing incoming mail
addressed to the specified domain. The LDAP_DEFAULT_SPEC option identifies the
LDAP server and database search base name.

In the following example, the search base is o=sendmail.com, c=US. If you run
LDAP on a custom port (not 389), add -p ldap_port# to the LDAP_DEFAULT_SPEC.

sendmail uses the values of two tags in the LDAP database:

• mailLocalAddress for the addressee on incoming mail

• mailRoutingAddress for the alias to send it to

sendmail also supports the tag mailHost, which if present routes mail to the MX
records for the specified host, with mailRoutingAddress as recipient.

For example, the LDAP entry (for a server configured with a root distinguished name
of cn=root, o=sendmail.com, c=US)

dn: uid=eric, o=sendmail.com, c=US
objectClass: inetLocalMailRecipient
mailLocalAddress: eric@sendmail.org
mailRoutingAddress: eric@eng.sendmail.com

E
le

ct
ro

n
ic

 M
a

il

18.9 Fancier sendmail configuration primitives 581

would cause mail addressed to eric@sendmail.org (which DNS MX records caused
to be delivered to sendmail.com) to be sent to eric@eng.sendmail.com. If the entry
also contained the line

mailHost: mailserver.sendmail.com

then mail to eric@sendmail.org would be addressed to eric@eng.sendmail.com and
sent to the host mailserver.sendmail.com after MX lookups.

LDAP database entries support a wild card entry, @domain, that reroutes mail ad-
dressed to anyone at the specified domain (as was done in the virtusertable).

In versions 8.12 and later, a bit more flexibility was added in the form of a configura-
tion primitive, LDAPROUTE_EQUIVALENT (or LDAPROUTE_EQUIVALENT_FILE),
with which you can define equivalent versions of the domain name you are rerouting
with LDAP. For example, mail coming to user@host1.mydomain would normally be
queried literally in the LDAP database and then queried as @host1.mydomain. In-
cluding the line

LDAPROUTE_EQUIVALENT(`host1.mydomain')

would also try the keys user@mydomain and @mydomain. This feature enables a
single database to route mail at a complex site.

Additional arguments to the ldap_routing feature now enable you to specify more
details about the LDAP schema to use and to specify the handling of user names that
have a +detail part. As of sendmail version 8.13, a new ldap_routing argument
(sendertoo) can reject SMTP mail from a sender that doesn’t exist in LDAP. As al-
ways, see the cf/README file for exact details.

Masquerading and the MASQUERADE_AS macro

With the MASQUERADE_AS macro, you can specify a single identity that other ma-
chines hide behind. All mail appears to emanate from the designated machine or do-
main. The sender’s address is rewritten to be user@masquerading-name instead of
user@original-host.domain. Of course, those masqueraded addresses must be valid
so that people can reply to the mail.

This configuration permits all users at a site to use a generic email address. For ex-
ample, if all hosts at atrust.com masquerade behind the domain atrust.com, then
mail from user@host.atrust.com is stamped as being from user@atrust.com, with no
mention of the actual hostname from which the user sent the mail. The machine
that represents atrust.com must know how to deliver all users’ mail, even mail for
users that do not have a login on the incoming mail server. Naturally, login names
must be unique across the whole domain.

Some users and addresses (such as root, postmaster, hostmaster, trouble, operations,
Mailer-Daemon, etc.) should be exempted from this behavior. They can be explicitly
excluded with the EXPOSED_USER macro.

582 Chapter 18 – Electronic Mail

For example, the sequence

MASQUERADE_AS(`atrust.com')
EXPOSED_USER(`root')
EXPOSED_USER(`Mailer-Daemon')

would stamp mail as coming from user@atrust.com unless it was sent by root or the
mail system; in these cases, the mail would carry the name of the originating host.

A feature introduced in 8.12 enables you to exempt mail for the local domain (or mail
to specific hosts listed as exceptions) from the masquerading. For example, this fea-
ture might be handy for a site that uses an unregistered private domain name locally
and wants masquerading only on messages bound for the Internet.

The syntax is

FEATURE(`local_no_masquerade')
MASQUERADE_EXCEPTION(`host.domain')
MASQUERADE_EXCEPTION_FILE(`filename')

The basic MASQUERADE_AS macro has several extensions, both through other
macros and through FEATUREs:

• The MASQUERADE_DOMAIN macro

• The MASQUERADE_DOMAIN_FILE macro

• The MASQUERADE_EXCEPTION macro

• The MASQUERADE_EXCEPTION_FILE macro

• The limited_masquerade FEATURE

• The allmasquerade FEATURE

• The masquerade_envelope FEATURE

• The masquerade_entire_domain FEATURE

We recommend using the MASQUERADE_AS macro described above along with the
allmasquerade and masquerade_envelope features. The limited_masquerade
feature modifies the behavior of MASQUERADE_DOMAIN and is useful for virtual
hosting environments. MASQUERADE_DOMAIN lets you list domains that you want
to masquerade; the list is preloaded from the w class that is typically defined with the
use_cw_file feature and lists the hosts in your domain. limited_masquerade does
not preinitialize the list with class w. All those domains are hidden by the domain you
are masquerading as.

The allmasquerade feature extends masquerading to the recipients of the message
(as opposed to just the sender), and the masquerade_envelope feature extends it
to the envelope as well as to the header addresses.29 With these two extensions, all

29. The header addresses are the To, From, Cc, and Bcc addresses that appear in the header of a message.
The envelope addresses are the addresses to which the mail is actually delivered. The envelope addresses
are originally built from the header addresses by the user agent, but they are processed separately by
sendmail. Many of sendmail’s masquerading and redirection features would be impossible to imple-
ment if the distinction between header and envelope addresses was not maintained.

E
le

ct
ro

n
ic

 M
a

il

18.9 Fancier sendmail configuration primitives 583

addresses are hidden in a consistent fashion. The masquerade_entire_domain fea-
ture extends masquerading to all hosts in a specified list of other domains.

If you want to use other masquerading techniques, you can read about their behav-
ior in the cf/README file or in the sendmail book. Read carefully; some of the mas-
querading primitives can hide too much.

The MAIL_HUB and SMART_HOST macros

Masquerading makes all mail appear to come from a single host or domain by rewrit-
ing the headers and, optionally, the envelope. Some sites may want all mail to really
come from (or go to) a single machine. You can achieve this configuration with the
macros MAIL_HUB for incoming mail and SMART_HOST for outgoing mail.

To route all incoming mail to a central server for delivery, set MAIL_HUB to the
value mailer:host, where mailer is the agent to use to reach the designated host. If you
don’t specify a delivery agent, then relay is used. For example:

define(`MAIL_HUB', `smtp:mailhub.cs.colorado.edu')

The SMART_HOST designation causes a host to deliver local mail but to punt exter-
nal mail to SMART_HOST. This feature is useful for machines that live behind a fire-
wall and so cannot use DNS directly. Its syntax parallels that of MAIL_HUB; the de-
fault delivery agent is again relay. For example:

define(`SMART_HOST', `smtp:mailhub.cs.colorado.edu')

In these examples, the same machine acts as the server for both incoming and out-
going mail. A larger site might split these into separate machines. The SMART_HOST
must allow relaying so that client machines can send mail through it. mailertable
entries override the SMART_HOST designation.

Masquerading and routing

With all these features and macros ready and waiting to massage your email ad-
dresses, we thought it might be nice to try to compare the various mechanisms in
terms of whether they change the headers, the envelope, or the delivery of a mes-
sage, whether they apply to incoming or outgoing messages, sender or recipient ad-
dresses, etc. If the page were double or triple width, we might have succeeded in
really illustrating the differences among the various constructs.

Instead, we give you just a hint in Table 18.10 (next page); you will have to look up the
details in the sendmail documentation to get the nuances of the different variations.

Entries in Table 18.10 that are all capital letters are m4 macros. Lowercase entries are
the names of features that are invoked with the FEATURE macro. Indented items de-
pend on the items above; for example, a feature that modifies the MASQUERADE_AS
behavior does nothing unless MASQUERADE_AS has been turned on. In the table,
the feature is indented to indicate this dependency. Masquerading affects the header
addresses on outgoing mail and whether a message can be replied to; routing affects
the actual delivery of the mail.

584 Chapter 18 – Electronic Mail

The nullclient feature

nullclient is used for a host that should never receive mail directly and that sends all
its mail to a central server. The .mc file for such a host has only two lines.

OSTYPE(`ostype')
FEATURE(`nullclient', `mail_server')

The nullclient feature overrides many other features. All mail, without exception,
is delivered to mail_server for processing.30 Note that the server must allow the client
to relay through it if users regularly originate mail on the client and don’t use a sepa-
rate server for outgoing mail. Recent versions of sendmail have relaying turned off
by default. See the spam section (page 588) for details on how to control relaying. A
nullclient configuration masquerades as mail_server, so you might want to include
an EXPOSED_USER clause for root.

The client that uses the nullclient feature must have an associated MX record that
points to the server. It must also be included in the server’s cw file, which is usually
/etc/mail/local-host-names. These settings let the server accept mail for the client.

A host with a nullclient configuration should not accept incoming mail. If it did, it
would just forward the mail to the server anyway. Starting sendmail without the -bd
flag so that it doesn’t listen for SMTP connections on port 25 is one way to avoid

Table 18.10 Comparison of masquerading and routing features

Construct Dir Affects a Which piece

M
as

qu
er

ad
in

g

MASQUERADE_AS out SH host.domain
allmasquerade out RH b host.domain
MASQUERADE_DOMAIN[_FILE] out SH host.domain

masquerade_entire_domain out SH host.sub.domain
limited_masquerade out SH host.domain

masquerade_envelope out SEc host.domain
genericstable out SH user@host.domain

Ro
ut

in
g

mailertable out MAD host.domain
virtusertable in RD user@host.domain
ldap in RD user@host.domain
mailhub in RD local mail
smarthost out RD remote mail

a. S = sender, R = recipient, D = delivery, H = header, E = envelope, M = mailer, A = address

b. Once recipient rewriting has been enabled with the allmasquerade feature, all other masquerading
constructs rewrite not only the sender but also the recipient.

c. Once envelope rewriting has been enabled with the masquerade_envelope feature, all other
masquerading constructs rewrite not only the header but the envelope as well.

30. If you configure a client this way and then test the configuration with sendmail -bt, the client appears
to locally deliver local mail. The reason is that the nullclient directive is processed later, in ruleset 5 of
the raw config file.

E
le

ct
ro

n
ic

 M
a

il

18.9 Fancier sendmail configuration primitives 585

receiving mail. However, some user agents (MUAs) attempt the initial submission of
a mail message through port 25 and so are foiled if your sendmail is not listening. A
better way to disallow incoming mail is to run sendmail with the -bd flag but to use
DAEMON_OPTIONS to listen only on the loopback interface. Either way, leave the
-q30m flag on the command line so that if mail_server goes down, the client can
queue outgoing mail and try to send it to mail_server later.

nullclient is appropriate for leaf nodes at sites that have a central mail machine. At
larger sites, consider the mail load on the hub machine. You may want to separate
the incoming and outgoing servers or to adopt a hierarchical approach.

SUSE ships with a sample nullclient mc file in /etc/mail/linux.nullclient.mc. Just
fill in the name of your mail_server, run m4 on it to build the sendmail.cf file, and
you are done.

The local_lmtp and smrsh features

By default, the local mailer uses /bin/mail as the local delivery agent for users and
files and /bin/sh as the delivery agent for programs. sendmail now provides better
alternatives, especially for delivery to programs. Both options are available through
the FEATURE macro.

If the local_lmtp feature is specified, then its argument is a local mailer capable of
speaking LMTP, the Local Mail Transport Protocol (see RFC2033). The default for
delivery to users is the mail.local program from the sendmail distribution. Like-
wise, the smrsh feature specifies the path to the program to use for mail delivery to
programs. See page 605 for a more detailed discussion of mail.local and smrsh.

The local_procmail feature

You can use Stephen van den Berg’s procmail as your local mailer by enabling the
local_procmail feature. It takes up to three arguments: the path to the procmail
binary, the argument vector to call it with, and flags for the mailer. The default val-
ues are OK, but the default path (/usr/local/bin/procmail) conflicts with most dis-
tributions’ usual procmail location (/usr/bin).

procmail can do fancier things for the user than plain /bin/mail or mail.local can.
In addition to delivering mail to users’ mailboxes, it can sort messages into folders,
save them in files, run programs, and filter spam. Use of the local_procmail feature
largely nullifies the security enhancements provided by smrsh (described on page
605). However, if you don’t need to restrict the programs your users run (that is, if
you trust all your users), procmail can be very handy. procmail is not distributed
with sendmail; get it from www.procmail.org if it is not installed by your vendor.

You can use other mail processing programs in conjunction with this feature just by
lying to sendmail and saying that you are just showing it the local copy of procmail:

FEATURE(`local_procmail', `/usr/local/bin/mymailer')

www.procmail.org

586 Chapter 18 – Electronic Mail

If you use procmail, check out /usr/bin/mailstat for some handy procmail statis-
tics (not to be confused with /usr/sbin/mailstats, which shows sendmail statis-
tics). It is installed on all of our example distributions and can be used to summarize
procmail log files.

The LOCAL_* macros

If you really need to get your hands dirty and write some exotic new rules to deal with
special local situations, you can use a set of macros prefaced by LOCAL_. The sec-
tion on spam, later in this chapter, has some examples of this low-level construct.

Configuration options

Config file options and macros (the O and D commands in the raw config language)
can be set with the define m4 command. A complete list of options accessible as m4
variables and their default values is given in the cf/README file. The default values
are OK for most sites.

Some examples:

define(`confTO_QUEUERETURN', `7d')
define(`confTO_QUEUEWARN', `4h')
define(`confPRIVACY_FLAGS', `noexpn')

The queue return option determines how long a message will remain in the mail
queue if it cannot be delivered. The queue warn option determines how long a mes-
sage will sit before the sender is notified that there might be delivery problems. The
first two lines set these to 7 days and 4 hours, respectively.

See page 606 for more
information about
privacy options.

The next line sets the privacy flags to disallow the SMTP EXPN (expand address)
command. The confPRIVACY_FLAGS option takes a comma-separated list of val-
ues. Some versions of m4 require two sets of quotes to protect the commas in a field
with multiple entries, but the GNU m4 shipped with Linux is smarter and doesn’t
require the extra quotes:

define(`confPRIVACY_FLAGS', ``noexpn, novrfy'')

The default values for most options are about right for a typical site that is not too
paranoid about security or not too concerned with performance. In particular, the
defaults try to protect you from spam by turning off relaying, requiring addresses to
be fully qualified, and requiring that addresses resolve to an IP address. If your mail
hub machine is very busy and services lots of mailing lists, you may need to tweak
some of the performance values.

Table 18.11 lists some options that you might need to adjust (about 15% of the almost
175 configuration options), along with their default values. To save space, the option
names are shown without their conf prefix; for example, the FALLBACK_MX op-
tion is really named confFALLBACK_MX. We divided the table into subsections that
identify the kind of issue the variable addresses: generic, resources, performance, se-
curity and spam abatement, and miscellaneous. Some options clearly fit in more than
one category, but we listed them only once.

E
le

ct
ro

n
ic

 M
a

il

18.9 Fancier sendmail configuration primitives 587

Table 18.11 Basic configuration options

Option name Description and (default value)

G
en

er
ic COPY_ERRORS_TO Addresses to Cc on error messages (none)

DOUBLE_BOUNCE_ADDRESS Catches a lot of spam; some sites use /dev/null,
but that can hide serious problems (postmaster)

Re
so

ur
ce

s

MIN_FREE_BLOCKS Min filesystem space to accept mail (100)
MAX_MESSAGE_SIZE Max size in bytes of a single message (infinite)
TO_lots_of_stuff Timeouts for all kinds of things (various)
TO_IDENT Timeout for ident queries to check sender’s iden-

tity; if 0, ident checks are not done (5s)
MAX_DAEMON_CHILDREN Max number of child processesa (no limit)

Pe
rf

or
m

an
ce

MCI_CACHE_SIZE # of open outgoing TCP connections cached (2)
MCI_CACHE_TIMEOUT Time to keep cached connections open (5m)
HOST_STATUS_DIRECTORY See page 614 for description (no default)
FALLBACK_MX See page 613 for description (no default)
FAST_SPLIT Suppresses MX lookups as recipients are sorted

and split across queues; see page 612 (1 = true)
QUEUE_LA Load average at which mail should be queued

instead of delivered immediately (8 * #CPUs)
REFUSE_LA Load avg. at which to refuse mail (12 * #CPUs)
DELAY_LA Load avg. to slow down deliveries (0 = no limit)
MIN_QUEUE_AGE Minimum time jobs must stay in queue; makes a

busy machine handle the queue better (0)

Se
cu

rit
y/

sp
am

TRUSTED_USERS For mailing list software owners; allows forging of
the From line and rebuilding of the aliases data-
base (root, daemon, uucp)

PRIVACY_FLAGS Limits info given out by SMTP (authwarnings)
INPUT_MAIL_FILTERS Lists filters for incoming mail (empty)
MAX_MIME_HEADER_LENGTH Sets max size of MIME headers (no limit)b

CONNECTION_RATE_THROTTLE Slows DOS attacks by limiting the rate at which
mail connections are accepted (no limit)

MAX_RCPTS_PER_MESSAGE Slows spam delivery; defers extra recipients and
sends a temporary error msg (infinite)

DONT_BLAME_SENDMAIL Overrides sendmail’s security and file checking;
don’t change casually! (safe)

AUTH_MECHANISMS SMTP auth mechanisms for Cyrus SASLc

M
is

c LDAP_DEFAULT_SPEC Map spec for LDAP database, including the host
and port the server is running on (undefined)

a. More specifically, the maximum number of child processes that can run at once. When the limit is reached,
sendmail refuses connections. This option can prevent (or create) denial of service (DOS) attacks.

b. This option can prevent user agent buffer overflows. “256/128” is a good value to use—it means 256
bytes per header and 128 bytes per parameter to that header.

c. The default value is EXTERNAL GSSAPI KERBEROS_V4 DIGEST-MD5 CRAM-MD5; don’t add PLAIN LOGIN
unless you want to reduce security.

588 Chapter 18 – Electronic Mail

18.10 SPAM-RELATED FEATURES IN SENDMAIL

Spam is the jargon word for junk mail, also known as unsolicited commercial email.
It has become a serious problem, primarily because the senders typically do not pay
by the byte but rather pay a flat rate for connectivity. Or if they do pay per byte, they
send a single message with many thousands of recipients and relay it through an-
other machine. The other machine pays the big per-byte cost and the spammer pays
for only one copy. In many countries, end users pay for bytes received and get pretty
angry at having to pay to receive spam.

From the marketing folks’ point of view, spam works well. Response rates are high,
costs are low, and delivery is instantaneous. A list of 30 million email addresses costs
about $40.

Many spammers try to appear innocent by suggesting that you answer their email
with a message that says “remove” if you want to be removed from their mailing list.
Although they may remove you, you have just verified for them that they have a valid,
current email address; this information can land you on other lists. Spammers also
like to mess with their mail headers in an attempt to disguise who the mail is from
and on which machine it originated.

Folks that sell email addresses to spammers have recently started to use a form of
dictionary attack to ferret out unknown addresses. Starting with a list of common
last names, the scanning software adds different first initials in hopes of hitting on a
valid email address. To check the addresses, the software connects to the mail serv-
ers at, say, 50 large ISPs and does a VRFY or RCPT on each of zillions of addresses.

This probing has a huge impact on your mail server and its ability to deliver legiti-
mate mail. sendmail can deal with this situation with the PrivacyOption goaway
which is covered starting on page 606. But the smarter spam programs are very
robust; if VRFY is blocked, they try EXPN, and if both are blocked they try RCPT.
They can try millions of addresses that way and never send a single message—they
sure keep your mail server busy, though.

sendmail has an option, BAD_RCPT_THROTTLE, to foil such behavior. If the num-
ber of rejected addresses in a message’s envelope exceeds the value of this option,
sendmail sleeps for one second after each rejected RCPT command.

sendmail has added some very nice features to help with spam control and also to
help with the occasional mail-borne computer virus. Unfortunately, most ISPs must
pass along all mail, so these features may be too draconian for customer policy (or
then again, maybe they aren’t). However, the features can be used to great effect at
the end user’s site.

Spam control features come in four flavors:

• Rules that control third-party or promiscuous relaying, which is the use of
your mail server by one off-site user to send mail to another off-site user.
Spammers often use relaying to mask the true source of their mail and

E
le

ct
ro

n
ic

 M
a

il

18.10 Spam-related features in sendmail 589

thereby avoid detection by their ISPs. It also lets them use your cycles and
save their own. That’s the killer.

• The access database, by which mail is filtered by address, rather like a fire-
wall for email.

• Blacklists containing open relays and known spam-friendly sites that
sendmail can check against.

• Header checking and input mail filtering by means of a generic mail filter-
ing interface called libmilter. It allows arbitrary scanning of message head-
ers and content and lets you reject messages that match a particular profile.

We describe these new features here and then look at a couple of pieces of spam we
received recently to see how we might have tuned our mail system to recognize and
reject them automatically.

Relaying

sendmail and other mail transport agents accept incoming mail, look at the enve-
lope addresses, decide where the mail should go, and then pass it along to an appro-
priate destination. That destination can be local or it can be another transport agent
farther along in the delivery chain. When an incoming message has no local recipi-
ents, the transport agent that handles it is said to be acting as a relay.

Before sendmail version 8.9, promiscuous relaying (also called open relaying) was
on by default. sendmail would accept any message presented to it on port 25 and try
its best to make the delivery. It was the neighborly Internet thing to do.

Unfortunately, spammers started to abuse relaying; they exploited it to disguise their
identities and, more importantly, to use your bandwidth and cycles instead of their
own. It is now considered very bad to configure your mail server as an open relay.
Nevertheless, many servers are still configured as open relays.

Only hosts that are tagged with RELAY in the access database (see page 591) or that
are listed in /etc/mail/relay-domains are allowed to submit mail for relaying. In the
next few years, the proportion of open relays should fall as a result of this change in
default behavior, increasing public awareness, and proactive screening based on
various black hole lists.

So, promiscuous relaying is bad. At the same time, some types of relaying are useful
and legitimate. How can you tell which messages to relay and which to reject? Relay-
ing is actually necessary in only two situations:

• When the transport agent acts as a gateway for hosts that are not reachable
any other way; for example, hosts that are not always turned on (dial-up
hosts, Windows PCs) and virtual hosts. In this situation, all the recipients
for which you want to relay lie within the same domain.

590 Chapter 18 – Electronic Mail

• When the transport agent is the outgoing mail server for other, not-so-smart
hosts. In this case, all the senders’ hostnames or IP address will be local (or
at least enumerable).

Any other situation that appears to require relaying is probably just an indication of
bad design (with the possible exception of support for mobile users). You can obviate
the first use of relaying (above) by designating a centralized server to receive mail
(with POP or IMAP used for client access). The second case should always be allowed,
but only for your own hosts. You can check IP addresses or hostnames; hostnames
are easier to fake, but sendmail verifies that they are not forgeries.

Although sendmail comes with relaying turned off by default, several features have
been added to turn it back on, either fully or in a limited and controlled way. These
features are listed below for completeness, but our recommendation is that you be
careful about opening things up too much. Most sites do not need any of the really
dangerous features in the second bulleted list below. The access_db feature, covered
in the next section, is the safest way to allow limited relaying.

• FEATURE(`relay_entire_domain') – allows relaying for just your domain

• RELAY_DOMAIN(`domain, …') – adds more domains to be relayed

• RELAY_DOMAIN_FILE(`filename') – same, but takes domain list from a file

• FEATURE(`relay_hosts_only') – affects RELAY_DOMAIN, accessdb

You will need to make an exception if you use the SMART_HOST or MAIL_HUB des-
ignations to route mail through a particular mail server machine. That server will
have to be set up to relay mail from local hosts. Configure it with

FEATURE(`relay_entire_domain')

Sites that do virtual hosting may also need RELAY_DOMAIN to allow relaying for
their virtual names, although

FEATURE(`use_cw_file')

effectively opens relays for those domains or hosts.

The few other possibilities are fraught with problems:

• FEATURE(`promiscuous_relay') – allows all relaying; don’t use

• FEATURE(`relay_based_on_MX') – relays for anyone that MXes to you

• FEATURE(`loose_relay_check') – allows “percent hack” addressing

• FEATURE(`relay_local_from') – bases relays on the From address

The promiscuous_relay feature relays from any site to any other site. Using it is a
one-way ticket to the black hole lists. Do not use this feature on a machine reachable
through the public Internet.

The relay_based_on_MX feature is bad because you do not control what sites are
allowed to point their MX records at you. Typically, the only hosts that have an MX
record pointing to your mail server are your own, but nothing prevents other sites

E
le

ct
ro

n
ic

 M
a

il

18.10 Spam-related features in sendmail 591

from changing their MX records to point to you. Spammers usually cannot change
MX records, but shady sites certainly could.

The loose_relay_check feature allows the “% hack” form of addressing (see page
535) that spammers love to use.

The relay_local_from feature trusts the sender address on the envelope of the mes-
sage and relays messages that appear to be from a local address. Of course, both the
envelope and the headers of mail messages are trivial to forge, and spammers are
forgery experts.

If you consider turning on relaying in some form, consult the sendmail documenta-
tion in cf/README to be sure you don’t inadvertently become a friend of spammers.
When you are done, have one of the relay checking sites verify that you did not inad-
vertently create an open relay—try spam.abuse.net.

There are mismatched configurations in which your host might be convinced to re-
lay weird addresses that misuse the UUCP addressing syntax. Just to be sure, if you
have no UUCP connectivity, you can use

FEATURE(`nouucp', `reject')

to forestall this possibility. Current sendmail does not default to supporting any of
the ancient networking technologies such as UUCP, BITNET, or DECnet.

Another common relay is the LUSER_RELAY for local users who do not exist. It is
defined by default as

define(`LUSER_RELAY', `error:No such user')

A site with sendmail misconfigured sometimes leaks unqualified local user names
to the Internet (usually on the Cc line). Someone who replies to the mail addresses
the response to an apparently local user who does not exist. This relay is often called
the “loser relay” and is directed to the error mailer.

You need not change this configuration unless you want to return a different mes-
sage or implement some kind of special treatment. Some sites redirect “loser” mail
to a person or program that does fuzzy matching in case the sender made a typo or
just has the login name slightly wrong.

The access database

sendmail includes support for an access database that you can use to build a mail-
specific firewall for your site. The access database checks mail coming in from the
outside world and rejects it if it comes from specific users or domains. You can also
use the access database to specify which domains a machine is willing to relay for.

The access database is enabled with the line

FEATURE(`access_db', `type filename')

592 Chapter 18 – Electronic Mail

If type and filename are not specified, the database defaults to type hash (if DB data-
bases are used—depends on the DATABASE_MAP_TYPE setting) built from the file
/etc/mail/access. DBM databases don’t use the type field. As always, create the data-
base with makemap:

makemap hash /etc/mail/access < /etc/mail/access

The key field of the access file can contain email addresses, user names, domain
names, or network numbers.

For example:

cyberspammer.com 550 Spam not accepted
okguy@cyberspammer.com OK
badguy@aol.com REJECT
sendmail.org RELAY
128.32 RELAY
170.201.180.16 REJECT
hotlivesex@ 550 Spam not accepted
friend@ 550 You are not my friend!

The value part must contain one of the items shown in Table 18.12. The value RELAY
is the most permissive; it simply accepts the message and forwards it to its final desti-
nation. OK accepts the message but will not allow relaying. REJECT will not accept
the message at all. SKIP allows you to make exceptions. For example, if you want to
relay mail for all hosts except two in a certain domain, you could list the two hosts
with the SKIP action and then list the domain with the RELAY action. The order does
not matter.

Table 18.12 Things that can appear in the value field of the access database

Value What it does

OK Accepts mail and delivers it normally
RELAY Accepts the mail as addressed and relays it to its destination;

enables per-host relaying
SKIP Allows for exceptions to more general rules
REJECT Rejects the mail with a generic error message
DISCARD Silently discards the message
FRIEND For spam, used by delay-checks feature; if matched, skips

other header checks
HATER For spam, used by delay-checks feature; if matched,

applies other header checks
xxx message Returns an error; xxx must be an RFC821 numeric codea

ERROR:xxx message Same as above, but clearly marked as an error message
ERROR:x.x.x message x.x.x must be an RFC1893-compliant delivery status notifica-

tion (a generalization of the 550 error code)

a. For example, 550 is the single-error code.

E
le

ct
ro

n
ic

 M
a

il

18.10 Spam-related features in sendmail 593

The database file above would allow messages from okguy@cyberspammer.com but
would reject all other mail from cyberspammer.com with the indicated error mes-
sage. Mail from either sendmail.org or 128.32.0.0/16 (UC Berkeley’s network) would
be relayed. Mail from badguy@aol.com and from hotlivesex or friend at any domain
would also be rejected.

IPv6 addresses in their colon-separated form can be used on the left hand side as well,
but they must be prefaced with “IPv6:”. The @ after the usernames hotlivesex and
friend is required; it differentiates usernames from domain names.

550 is an RFC821 error code. The RFC1893 error codes (or “delivery status notifica-
tion messages,” as they are called) are more extensive. First digit 4 signifies a tempo-
rary error; 5 means a permanent error. We’ve listed a few in Table 18.13.

For even finer control, the key field (left side) can contain the tags Connect, To,
From, and in 8.12 and later, Spam to control the way in which the filter is applied.
Connect refers to connection information such as client IP address or client host-
name. To and From refer to the envelope addresses, not the headers. The Spam tag
allows exceptions to global rules through the “spam friend” and “spam hater” tests.
It is enabled with the delay_checks feature:

FEATURE(`delay_checks', `friend')
FEATURE(`delay_checks', `hater')

The first feature skips other rulesets that might reject the message if there is a match-
ing entry in the access_db with FRIEND as the right hand side of the mapping. The
second applies the other rulesets if the access_db value is HATER. These four tags
give you finer control over relaying and rejection of mail; they override other re-
strictions as well. Individual users who complain about your site-wide spam policy
can be accommodated with the spam FRIEND or HATER tags.

If one of these tags is used, the lookup is tried first with the tag info and then without,
to maintain backward compatibility with older access databases.

Table 18.13 RFC1893 delivery status codes

Temporary Permanent Meaning

4.2.1 5.2.1 Mailbox is disabled
4.2.2 5.2.2 Mailbox is full
4.2.3 5.2.3 Message is too long
4.2.4 5.2.4 List expansion problem
4.3.1 5.3.1 Mail system is full
4.4.4 5.4.4 Unable to route
4.4.5 5.4.5 Mail congestion
4.7.* 5.7.* Site policy violation

594 Chapter 18 – Electronic Mail

Here are some examples:

From:spammer@some.domain REJECT
To:good.domain RELAY
Connect:good.domain OK
Spam:abuse@ FRIEND

Mail from spammer@some.domain would be blocked, but you could still send mail
to that address, even if it was blacklisted. Mail would be relayed to good.domain,
but not from it (assuming that relaying has been disabled elsewhere). Connections
from good.domain would be allowed even if the domain was in one of the DNS-based
rejection lists. Mail to abuse@localdomain would get through, even from spam-
mer@some.domain whose email would have been rejected by the first access data-
base line.

Many sites use an access database to control spam or policy. The incoming master
mail machine in the computer science department at the University of Colorado uses
the access_db feature to reject mail from over 500 known spammers identified by
addresses, domains, or IP networks.

User or site blacklisting

If you have local users or hosts to which you want to block mail, use

FEATURE(`blacklist_recipients')

which supports the following types of entries in your access file:

To:nobody@ 550 Mailbox disabled for this user
To:printer.mydomain.edu 550 This host does not accept mail
To:user@host.mydomain.edu 550 Mailbox disabled for this user

These lines block incoming mail to user nobody on any host, to host printer, and to a
particular user’s address on one machine. The use of the To: tag lets these users send
messages, just not receive them; some printers have that capability.

Unfortunately, it’s virtually impossible these days to manually maintain a blacklist
like this. Fortunately, several community-maintained black hole lists are accessible
through DNS, and some of these are provided at no charge.

To include a DNS-style black hole list, use the dnsbl feature:

FEATURE(`dnsbl', `sbl-xbl.spamhaus.org')

This feature makes sendmail reject mail from any site whose IP address is in the
Spamhaus Block List of known spammers maintained at sbl-xbl.spamhaus.org.
Other lists catalog sites that run open relays and known blocks of dial-up addresses
that are likely to be a haven for spammers.

These blacklists are distributed through a clever tweak of the DNS system; hence the
name dnsbl. For example, a special DNS resource record of the form

IP-address.sbl-xbl.spamhaus.org IN A 127.0.0.2

E
le

ct
ro

n
ic

 M
a

il

18.10 Spam-related features in sendmail 595

put into the DNS database of the sbl-xbl.spamhaus.org domain would block mail
from that host if the dnsbl feature was enabled (because sendmail would check ex-
plicitly to see if such a record existed). The IP-address in this example is a host ad-
dress in its dotted quad form with the order of the octets reversed.

You can include the dnsbl feature several times to check different lists of abusers:
just add a second argument to specify the blacklist name server and a third argument
with the error message that you would like returned. If the third argument is omitted,
a fixed error message from the DNS database containing the records is returned.

Header checking

Spammers often try to hide their identities. Since sendmail 8.9, if the envelope From
address is not of the form user@valid.domain, mail is rejected. You can waive this
behavior with the following features:

FEATURE(`accept_unresolvable_domains')
FEATURE(`accept_unqualified_senders')

With the first feature, sendmail accepts mail from domains that do not exist or do
not resolve in the DNS naming tree. With the second, sendmail accepts From ad-
dresses that contain only a user name with no host or domain portion. Don’t use
either of these features unless you are behind a firewall and have only local DNS data
available there. If you find yourself wanting to turn these features on, you should
probably think about redesigning your sendmail and DNS environments instead.
Requiring a valid envelope sender address reduces spam significantly.

Detailed header checking is a powerful spam-fighting mechanism that makes use of
the low-level sendmail configuration file syntax, which we do not cover here. By us-
ing header checking, sendmail can look for specified patterns in headers (e.g., “To:
friend@public.com”) and reject messages before they are delivered to your users’
mailboxes.

Header checking can also recognize viruses carried by email if they have a distinc-
tive header line. For example, the Melissa virus of 1999 contained the subject line
“Important Message From …”. Within hours of the Melissa virus being released and
recognized, sendmail.com posted a local ruleset to identify it and discard it.

When the fingerprint of a virus is distinctive and easy to express in sendmail rules,
sendmail.com will quickly post a fix for it at both sendmail.com and sendmail.org.

For a representative sample of filtering rules for spam and viruses, see the sendmail
configuration for Eric Allman’s home machine, knecht. This configuration is included
in the sendmail distribution as cf/cf/knecht.mc. Steal the spam-filtering rules and
add them to the end of your .mc file.

In looking at various examples, we have seen header checking rules for

• Mail addressed to any user in the domain public.com

• Mail addressed to “friend” or “you”

596 Chapter 18 – Electronic Mail

• Mail with the X-Spanska header, which indicates the Happy99 worm

• Mail with subject “Important Message From …” (the Melissa virus)

• Mail with subject “all.net and Fred Cohen …” (the Papa virus)

• Mail with subject “ILOVEYOU” (the iloveyou virus and variants)

• Zillions of marketing hype spam messages

• Mail with a broken Outlook Express header (the SirCam worm)

All the header checking rules go under LOCAL_CONFIG and LOCAL_RULESETS
statements at the end of the .mc configuration file. With the help of m4’s divert com-
mand, sendmail just knows where to put them in the raw config file.

To some degree, any spam abatement that you implement blocks some spammers but
raises the bar for the remaining ones. Use the error mailer with a “user unknown”
error message instead of the discard mailer, because many spammers clean up their
lists. Clean lists are more valuable, so you might get removed from some if you can
intercept the spam, filter it, and respond with an error message.

Rate and connection limits

sendmail 8.13 added a ratecontrol feature that sets per-host or per-net limits on
the rate at which incoming connections are accepted. This restriction can be partic-
ularly useful for slowing down spam from sources that can’t be completely blocked
without causing problems, such as large ISPs that have a high percentage of dial-up
users. To enable rate controls, put a line like this one in the .mc file:

FEATURE(`ratecontrol', `nodelay',`terminate')

In addition, you must also list the hosts or nets to be controlled and their restriction
thresholds in your /etc/mail/access file. For example, the lines

ClientRate:192.168.6.17 2
ClientRate:170.65.3.4 10

limit the hosts 192.168.6.17 and 170.65.3.4 to two new connections per minute and
ten new connections per minute, respectively.

The conncontrol feature places similar restrictions on the number of simultaneous
connections. You enable this feature in the .mc file with the following line:

FEATURE(`conncontrol', `no delay',`terminate')

As with ratecontrol, you specify which hosts and nets to limit in /etc/mail/access:

ClientConn:192.168.2.8 2
ClientConn:175.14.4.1 7
ClientConn: 10

This configuration results in limits of two simultaneous connections for 192.168.2.8,
seven simultaneous connections for 175.14.4.1, and ten simultaneous connections
for all other hosts.

E
le

ct
ro

n
ic

 M
a

il

18.10 Spam-related features in sendmail 597

Slamming

Another nifty feature introduced in 8.13 is greet_pause. When a remote MTA con-
nects to your sendmail server, the SMTP protocol mandates that it wait for your
server’s welcome greeting before speaking. However, it’s common for spam mailers
(and worms/viruses) to blurt out an EHLO/HELO command immediately. This be-
havior is partially explainable as poor implementation of the SMTP protocol in
spam-sending tools, but it may also be a feature that aims to save time on the spam-
mer’s behalf. Whatever the true cause, this behavior is suspicious and is known as
“slamming.”

The greet_pause feature makes sendmail wait for a specified period of time at the
beginning of the connection before greeting its newfound friend. If the remote MTA
does not wait to be properly greeted and proceeds with an EHLO or HELO com-
mand during the planned awkward moment, sendmail logs an error and refuses
subsequent commands from the remote MTA.

You can enable greet pause with this entry in the .mc file:

FEATURE(`greet_pause', `700')

This line causes a 700 millisecond delay at the beginning of every new connection. It
is possible to set per-host or per-net delays similar to conncontrol and ratecontrol,
but most sites use a blanket value for this feature.

Miltering: mail filtering

sendmail version 8.12 introduced a generalization of header filtering that could de-
velop into a most effective spam-fighting tool. It is a mail filtering API (application
programming interface) that folks can use to develop their own mail filtering pro-
grams. These filtering programs sit between sendmail and incoming messages and
can recognize the profile of a virus or spam message and discard or log it (or take
whatever other action you feel is appropriate). Both metadata and message content
can be targeted.

Miltering is potentially a powerful tool both for fighting spam and for violating us-
ers’ privacy. Managers who want to know exactly what information is leaving the
company by email may be early adopters. Miltering for outgoing mail is not avail-
able in 8.12, but it is on the to-do list.

The miltering library is called libmilter. sendmail invokes input filtering with the
INPUT_MAIL_FILTER or MAIL_FILTER configuration directives and controls the
miltering action with options named MILTER_MACROS_* that allow fine-grained
control over the filters applied at each stage of the SMTP conversation.

For example, the line

INPUT_MAIL_FILTER(`filtername', `S=mailer:/var/run/filtername.socket')

passes each incoming message to the /etc/mail/filtername program through the
socket specified in the second argument.

598 Chapter 18 – Electronic Mail

For more information, see libmilter/README or the HTML documentation in the
libmilter/docs directory of the sendmail distribution. The README file gives an
overview and simple example of a filter that logs messages to a file. The files in the
docs describe the library interface and tell how to use the various calls to build your
own mail filtering programs.

Spam handling

Fighting spam can be a difficult and frustrating job. Past a certain point, it’s also quite
futile. Don’t be seduced into chasing down individual spammers, even though lots
will get through your anti-spam shields. Time spent analyzing spam headers and fret-
ting about spammers is wasted time. Yes, it’s fighting the good fight, but time spent
on these issues will probably not reduce the amount of spam coming into your site.

You can nail stationary spammers pretty quickly by ratting them out to their ISP, but
hit-and-run spammers that use an ISP account once and then abandon it are hard to
hold accountable. If they advertise a web site, then the web site is responsible; if it’s a
telephone number or postal address, it’s harder to identify the perpetrator, but not
impossible. Mobile spammers seem to be essentially immune from punishment.

The various black hole lists have been somewhat effective at blocking spam and have
dramatically reduced the number of open relays. Being blacklisted can seriously im-
pact business, so some ISPs and companies are careful to police their users.

Our main recommendation regarding spam is that you use the preventive measures
and publicly maintained blacklists that are available. Another possibility is to redi-
rect your incoming email to an outsourced spam fighting company such as Postini
(www.postini.com). However, this option may entail some compromises in perfor-
mance, privacy, or reliability.

Advise your users to simply delete the spam they receive. Many spam messages con-
tain instructions on how recipients can be removed from the mailing list. If you fol-
low those instructions, the spammers may remove you from the current list, but they
immediately add you to several other lists with the annotation “reaches a real human
who reads the message.” Your email address is then worth even more.

If you’d like to take a seat on the spam-fighting bandwagon, some web sites can help.
One good site is www.abuse.net. Two others of note are spamcop.net and cauce.org.
SpamCop has tools that help parse mail headers and determine the real sender. The
cauce.org site has good information on spam laws. In the United States you may be
able to get the Federal Trade Commission to help. Visit them at www.ftc.gov/spam.

SpamAssassin

SpamAssassin is a filter (which can be invoked through a sendmail milter) that is
very effective at identifying spam. It uses a point system for evaluating a message’s
sins. It catches essentially all the real spam and rarely has false positives. If a mes-
sage accumulates too many points (configurable on both a site-wide and per-user
basis), SpamAssassin tags the message. You can then refile suspicious messages in a

www.postini.com
www.abuse.net
www.ftc.gov/spam

E
le

ct
ro

n
ic

 M
a

il

18.11 Configuration file case study 599

spam folder, either by running a server-side filter such as Cyrus’s sieve or by config-
uring your user agent. You can even teach SpamAssassin about good and bad mes-
sages. Be sure to scrutinize all the spam carefully as you are setting up SpamAssassin
and tuning its parameters. Check it out at spamassassin.apache.org.

SPF and Sender ID

The best way to fight spam is to stop it at its source. This sounds simple and easy, but
in reality it’s almost an impossible challenge. The structure of the Internet makes it
difficult to track the real source of a message and verify its authenticity. The commu-
nity needs a sure-fire way to verify that the entity sending an email is really who or
what it claims to be.

Many proposals have addressed this problem, but SPF and Sender ID have achieved
the most traction. SPF or Sender Policy Framework is now standardized by the IETF
(RFC4408). It defines a set of DNS TXT records (see page 403) by which an organi-
zation can identify its “official” outbound mail relays. MTAs can then refuse any
email from that organization’s domain if the email does not originate from these
official sources. Of course, this only works well if the majority of organizations pub-
lish SPF records. Several milters available for download implement this functional-
ity in sendmail.

Sender ID and SPF are virtually identical in form and function. However, key parts
of Sender ID are patented by Microsoft, and hence it has been the subject of much
controversy. As of this writing, Microsoft is still trying to strong-arm the industry
into adopting its proprietary standards.

18.11 CONFIGURATION FILE CASE STUDY

As a case study of how sendmail is configured in the real world, this section reviews
the config files for a small but sendmail-savvy company, Sendmail, Inc. Their mail
design includes a master mail hub machine for both incoming mail and outgoing
mail. All incoming mail is accepted and immediately routed to a set of internal
IMAP servers that check each message for viruses before delivering it to a user’s
mailbox. The mail hub machine also checks each outgoing message for viruses so
that Sendmail, Inc. is never responsible for spreading viruses by email. We look at
the clients’ configuration first, then inspect the more complicated master machines.

In the examples, we have modified the originals slightly, leaving out the copyright
notices, adding occasional comments, and removing the m4 dnl directive at the
ends of lines. If you use any of these examples as a model for your .mc file, be sure to
remove the comments from the ends of lines.

Client machines at sendmail.com

The smi-client.mc file for client machines is quite simple. It uses the master machine
smtp.sendmail.com, which is really just another name for foon.sendmail.com. Using

600 Chapter 18 – Electronic Mail

an MX record (or a CNAME31) to point to the mail server is a good idea; it’s easy to
change when you want to move your master mail machine.

Note that the date on this file is October 1998. sendmail has been upgraded many
times since then, but the configuration file did not need to change.

divert(-1)
This file contains definitions for a Sendmail,
Inc. client machine's .mc file.
divert(0)
VERSIONID(`@(#)smi-client.mc 1.0 (Sendmail) 10/14/98')
OSTYPE(`bsd4.4')
FEATURE(`nocanonify')
undefine(`ALIAS_FILE')
define(`MAIL_HUB', `smtp.sendmail.com')
define(`SMART_HOST', `smtp.sendmail.com')
define(`confFORWARD_PATH', `')
MAILER(`local')
MAILER(`smtp')

The MAIL_HUB and SMART_HOST lines direct incoming and outgoing mail to the
host smtp.sendmail.com. MX records in DNS should cooperate and list that host with
higher priority (lower number in MX record) than the individual client machines.
The path for .forward files is set to null, and the alias file is also set to null; all alias
expansion occurs on the master machine. The nocanonify feature is specified here
to save time, since DNS lookups are done on the master anyway.

Master machine at sendmail.com

The master machine at sendmail.com may be one of the most attacked sendmail
installations around. It must be secure from all the twisty mailer attacks that people
come up with and must protect the machines behind it. Here is its configuration file:

divert(-1)
Created with Sendmail Switch, sendmail.com's commercial product.
divert(0)
ifdef(`COMMERCIAL_CONFIG', `INPUT_MAIL_FILTER(`mime-filter', `S=local:

/var/run/mime-filter/mime-filter.sock')')
LDAPROUTE_DOMAIN(`sendmail.com sendmail.net sendmail.org')
MASQUERADE_AS(`sendmail.com')
MASQUERADE_DOMAIN(`sendmail.com')
RELAY_DOMAIN(`sendmail.com sendmail.net sendmail.org')
define(`MAIL_HUB', `internal-hub.sendmail.com')
define(`QUEUE_DIR', `/var/spool/mqueue/q*')
define(`SMART_HOST', `virus-scan.sendmail.com')
ifdef(`COMMERCIAL_CONFIG', `define(`confCACERT', `/local/certs/cacert.pem')')
ifdef(`COMMERCIAL_CONFIG', `define(`confCACERT_PATH', `/local/certs/trustedcerts')')
define(`confCHECK_ALIASES', `True')
ifdef(`COMMERCIAL_CONFIG', `define(`confCLIENT_CERT', `/local/certs/cert.pem')')

31. An MX record is actually more efficient than a CNAME; CNAMEs require a second lookup on the real
name to get the IP address.

E
le

ct
ro

n
ic

 M
a

il

18.11 Configuration file case study 601

ifdef(`COMMERCIAL_CONFIG', `define(`confCLIENT_KEY', `/local/certs/key.pem')')
define(`confEIGHT_BIT_HANDLING', `mimify')
define(`confLDAP_DEFAULT_SPEC', ` -h "ldap.sendmail.com ldap2.sendmail.com"

-b "dc=sendmail,dc=com" -p 1389')
define(`confREFUSE_LA', `99')
define(`confRUN_AS_USER', `mailnull')
ifdef(`COMMERCIAL_CONFIG', `define(`confSERVER_CERT', `/local/certs/cert.pem')')
ifdef(`COMMERCIAL_CONFIG', `define(`confSERVER_KEY', `/local/certs/key.pem')')
define(`confTO_IDENT', `0s')
define(`confTO_QUEUEWARN', `2d')
ifdef(`confPOP_TO', `', `define(`confPOP_TO', `900')')
FEATURE(`accept_unqualified_senders')
FEATURE(`accept_unresolvable_domains')
FEATURE(`allmasquerade')
FEATURE(`always_add_domain')
FEATURE(`domaintable')
FEATURE(`ldap_routing', `ldap -1 -v mailHost -k ldap -1 -v mailhost -k

(&(objectclass=mailRecipient)(|(mail=%0)(|(mailAlternateAddress=%0))))',
`ldap -1 -v mail -k
(&(objectclass=mailRecipient)(|(mailalternateaddress=%0)))', `passthru')

FEATURE(`mailertable')
FEATURE(`masquerade_entire_domain')
FEATURE(`masquerade_envelope')
FEATURE(`relay_entire_domain')
FEATURE(`use_cw_file')
MAILER(`local')
MAILER(`smtp')

LOCAL_RULESETS
SLocal_check_rcpt
R$* $: $&{verify}
ROK $# OK

The master machine routes incoming mail to the correct internal server and serves as
the smart relay host for outgoing mail. Because of the following two lines,

FEATURE(`accept_unqualified_senders')
FEATURE(`accept_unresolvable_domains')

all incoming mail is accepted, even mail from unqualified senders and unresolvable
domains. This way, potential customers who have sendmail or DNS misconfigured
can still get through. These rules undo the defaults that catch lots of spam with forged
headers. Ident is turned off (timeout set to 0) to speed up delivery of incoming mail.

This master mail machine first checks incoming messages for certain types of MIME
attachments that are frequently used by viruses (INPUT_MAIL_FILTER statement).
The mime-filter called there contains lines such as

:anniv.doc: error:Your email was not accepted by Sendmail, it appears to be
infected with the Melissa-X virus.

:.vbs: error:For security and virus protection reasons, Sendmail does
not accept messages with VBS files attached. Please retransmit your
message without the VBS file.

602 Chapter 18 – Electronic Mail

MIME attachments of type .vba, .dot, .exe, .com, .reg, and so on are rejected, but a
full virus scan is not done here because it would slow the processing of incoming
mail. The master uses LDAP (with a site-specific schema) to look up the recipient of
each message and route it to the correct internal IMAP/POP server. If the recipient is
not found in the LDAP database, the mail is sent to an internal master machine (the
MAIL_HUB statement) for further processing. Both the IMAP/POP servers and the
internal master machine do full virus scanning before delivering a message to a
user’s mailbox.

Outgoing mail is also routed through this master machine by SMART_HOST state-
ments on the client machines. To send a message through the sendmail.com mail
servers, hosts outside the sendmail.com domain must present a certificate signed by
the sendmail.com certificate authority. Employees visiting a customer site can relay
email to a third party through sendmail.com with this mechanism, but others can-
not. This convention authenticates each user and prevents forged email from tran-
siting sendmail.com.

After accepting email destined for the Internet, the master machine passes it to the
SMART_HOST for virus scanning. The master mail machine is not too busy to do
this virus scanning itself, but if the scanning were done there, users sending mail
would have to wait for the scanning to complete before their message was really sent.
Queueing it for the virus-scanning machine keeps the users happy—their messages
seem to zip off instantaneously.

The LOCAL_CONFIG rules at the end of the config file are where header checking for
various viruses and known spammers is usually put. Good examples can be found
in the knecht.mc example file in the sendmail distribution. We have included a
sample below.

See page 597 for more
details about libmilter.

During the summer of 2001, the destructive SirCam worm was circulating wildly. The
following fragment from the knecht.mc file in the sendmail distribution catches it.
SirCam is one of the first nastygrams to have random headers. The usual tools to
catch it would have failed, except that its authors made an error that differentiates a
SirCam message from a real Outlook Express message. The message’s content is quite
regular (it asks for your advice on the enclosed attachment) and would therefore be a
candidate for the new libmilter filtering abilities in version 8.12. Without product
liability guarantees in the software world, it seems the only solution to all these Mi-
crosoft viruses and worms is to dump Windows and install Linux everywhere!

LOCAL_RULESETS

KSirCamWormMarker regex -f -aSUSPECT multipart/mixed;boundary=----
.+_Outlook_Express_message_boundary

HContent-Type: $>CheckContentType

SCheckContentType
R$+ $: $(SirCamWormMarker $1 $)
RSUSPECT $#error $: "553 Possible virus, see http:

//www.symantec.com/avcenter/venc/data/w32.sircam.worm@mm.html"

E
le

ct
ro

n
ic

 M
a

il

18.12 Security and sendmail 603

HContent-Disposition:$>CheckContentDisposition

SCheckContentDisposition
R$- $@ OK
R$- ; $+ $@ OK
R$* $#error $: "553 Illegal Content-Disposition"

Clients at sendmail.com have no spam control in their config files. The reason is
that all mail coming into the site comes through the external mail hub and an inter-
nal hub and the spam is winnowed there. Some of the features and other constructs
in this example are not covered in our configuration section, but you can find docu-
mentation on them in the cf/README file.

18.12 SECURITY AND SENDMAIL

With the explosive growth of the Internet, programs such as sendmail that accept
arbitrary user-supplied input and deliver it to local users, files, or shells have fre-
quently provided an avenue of attack for hackers. sendmail, along with DNS and
even IP, is flirting with authentication and encryption as a built-in solution to some
of these fundamental security issues.

Recent softening of the export laws of the United States regarding encryption freed
sendmail to be shipped with built-in hooks for encryption. Versions 8.11 and later
support both SMTP authentication and encryption with TLS, Transport Layer Se-
curity (previously known as SSL, the Secure Socket Layer). sendmail uses the term
TLS in this context and has implemented it as an extension, STARTTLS, to the SMTP
protocol. TLS brought with it six new configuration options for certificate files and
key files. New actions for access database matches can require that authentication
must have succeeded.

In this section, we describe the evolution of sendmail’s permissions model, owner-
ships, and privacy protection. We then briefly discuss TLS and SASL (the Simple Au-
thentication and Security Layer) and their use with sendmail.

sendmail has gradually tightened up its security over time, and it is now very picky
about file permissions before it believes the contents of, say, a .forward or aliases
file. Although this tightening of security has generally been welcome, it’s sometimes
necessary to relax the tough new policies. To this end, sendmail introduced the
DontBlameSendmail option, so named in hopes that the name will suggest to
sysadmins that what they are doing is considered unsafe.

This option has many possible values—55 at last count. The default is safe. For a
complete list of values, see doc/op/op.ps in the sendmail distribution. The values
are not listed in the second edition of the O’Reilly sendmail book, but will surely be
in the third. Or just leave the option set to safe.

Ownerships

Three user accounts are important in the sendmail universe: the DefaultUser, the
TrustedUser, and the RunAsUser.

604 Chapter 18 – Electronic Mail

By default, all of sendmail’s mailers run as the DefaultUser unless the mailer’s flags
specify otherwise. If a user mailnull, sendmail, or daemon exists in the /etc/passwd
file, DefaultUser will be that. Otherwise, it defaults to UID 1 and GID 1. We recom-
mend the use of the mailnull account and a mailnull group. Add it to /etc/passwd
with a star as the password, no valid shell, no home directory, and a default group of
mailnull. You’ll have to add the mailnull entry to the /etc/group file too. The mail-
null account should not own any files. If sendmail is not running as root, the mail-
ers must be setuid.

If RunAsUser is set, sendmail ignores the value of DefaultUser and does every-
thing as RunAsUser. If you are running sendmail setgid (to smmsp), then the sub-
mission sendmail just passes messages to the real sendmail through SMTP. The real
sendmail does not have its setuid bit set, but it runs as root from the startup files.

sendmail’s TrustedUser can own maps and alias files. The TrustedUser is allowed
to start the daemon or rebuild the aliases file. This facility exists mostly to support
GUI interfaces to sendmail that need to provide limited administrative control to
certain users. If you set TrustedUser, be sure to guard the account that it points to,
because this account can easily be exploited to gain root access. The TrustedUser is
different from the TRUSTED_USERS class, which determines who can rewrite the
From line of messages.32

The RunAsUser is the UID that sendmail runs under after opening its socket con-
nection to port 25. Ports numbered less than 1,024 can be opened only by the supe-
ruser; therefore, sendmail must initially run as root. However, after performing this
operation, sendmail can switch to a different UID. Such a switch reduces the risk of
damage or access if sendmail is tricked into doing something bad. Don’t use the
RunAsUser feature on machines that support user accounts or other services; it is
meant for use on firewalls or bastion hosts only.

By default, sendmail does not switch identities and continues to run as root. If you
change the RunAsUser to something other than root, you must change several other
things as well. The RunAsUser must own the mail queue, be able to read all maps
and include files, be able to run programs, etc. Expect to spend a few hours finding
all the file and directory ownerships that must be changed.

Permissions

File and directory permissions are important to sendmail security. Use the settings
listed in Table 18.14 to be safe.

sendmail does not read files that have lax permissions (for example, files that are
group- or world-writable or that live in group- or world-writable directories). Some
of sendmail’s rigor with regard to ownerships and permissions was motivated by

32. The TRUSTED_USERS feature is typically used to support mailing list software. For example, if you use
Majordomo, you must add the “majordom” user to the TRUSTED_USERS class. The users root and
daemon are the default members of the class.

E
le

ct
ro

n
ic

 M
a

il

18.12 Security and sendmail 605

operating systems that let users give their files away with chown (those derived from
System V, mostly).

Linux systems by default have a sane version of chown and do not allow file give-
aways. However, an #ifdef in the code (CAP_CHOWN) can be set to give System V
semantics to chown. You would then have to rebuild the kernel. But this behavior is
evil; don’t coerce your sensible Linux chown to behave in the broken System V way.

In particular, sendmail is very picky about the complete path to any alias file or for-
ward file. This pickiness sometimes clashes with the way sites like to manage Major-
domo mailing list aliases. If the Majordomo list is in /usr/local, for example, the
entire path must be trusted; no component can have group write permission. This
constraint makes it more difficult for the list owner to manage the alias file. To see
where you stand with respect to sendmail’s ideas about permissions, run

sendmail -v -bi

The -bi flag initializes the alias database and warns you of inappropriate permissions.

sendmail no longer reads a .forward file that has a link count greater than 1 if the
directory path to it is unsafe (has lax permissions). This rule recently bit Evi when
her .forward file, which was typically a hard link to either .forward.to.boulder or
.forward.to.sandiego, silently failed to forward her mail from a small site at which
she did not receive much mail. It was months before she realized that “I never got
your mail” was her own fault and not a valid excuse.

You can turn off many of the restrictive file access policies mentioned above with the
DontBlameSendmail option. But don’t do that.

Safer mail to files and programs

We recommend that you use smrsh instead of /bin/sh as your program mailer and
that you use mail.local instead of /bin/mail as your local mailer. Both programs are
included in the sendmail distribution. To incorporate them into your configuration,
add the lines

FEATURE(`smrsh', `path-to-smrsh')
FEATURE(`local_lmtp', `path-to-mail.local')

Table 18.14 Owner and permissions for sendmail-related directories

Path Owner Mode What it contains

/var/spool/clientmqueue smmsp 770 Mail queue for initial submissionsa

/var/spool/mqueue RunAsUser 700 Mail queue directory
/, /var, /var/spool root 755 Path to mqueue

/etc/mail/* TrustedUser 644 Maps, the config file, aliases
/etc/mail TrustedUser 755 Parent directory for maps
/etc root 755 Path to mail directory

a. Version 8.12 and later

606 Chapter 18 – Electronic Mail

to your .mc file. If you omit the explicit paths, the commands are assumed to live in
/usr/libexec. You can use sendmail’s confEBINDIR option to change the default lo-
cation of the binaries to whatever you want. Red Hat’s default installation does not
include mail.local at all. SUSE puts it in /usr/lib/sendmail.d/bin, and Debian and
Ubuntu put it in /usr/lib/sm.bin.

smrsh is a restricted shell that executes only the programs contained in one direc-
tory (/usr/adm/sm.bin by default). Red Hat and Fedora install the smrsh binary in
/usr/sbin, SUSE puts it in /usr/lib/sendmail.d/bin, and Debian and Ubuntu put it
in /usr/lib/sm.bin. smrsh ignores user-specified paths and tries to find any re-
quested commands in its own known-safe directory. smrsh also blocks the use of
certain shell metacharacters such as “<”, the input redirection symbol. Symbolic
links are allowed in sm.bin, so you don’t need to make duplicate copies of the pro-
grams you allow.33

Here are some example shell commands and their possible smrsh interpretations:

vacation eric # executes /usr/adm/sm.bin/vacation eric
cat /etc/passwd # rejected, cat not in sm.bin
vacation eric < /etc/passwd # rejected, no < allowed

sendmail’s SafeFileEnvironment option controls where files can be written when
email is redirected to a file by an aliases or a .forward file. It causes sendmail to
execute a chroot system call, making the root of the filesystem no longer / but rather
/safe or whatever path you specified in the SafeFileEnvironment option. An alias
that directed mail into the /etc/passwd file, for example, would really be written to
/safe/etc/passwd.

The SafeFileEnvironment option also protects device files, directories, and other
special files by allowing writes only to regular files. Besides increasing security, this
option ameliorates the effects of user mistakes. Some sites set the option to /home
to allow access to home directories while keeping system files off-limits.

Mailers can also be run in a chrooted directory. This option must be specified in the
mailer definition at the moment, but it should soon be configurable with m4.

Privacy options

sendmail also has privacy options that control

• What external folks can determine about your site from SMTP

• What you require of the host on the other end of an SMTP connection

• Whether your users can see or run the mail queue

Table 18.15 lists the possible values for the privacy options as of this writing; see the
file doc/op/op.ps in the distribution for current information.

33. Don’t put programs such as procmail that can spawn a shell in sm.bin. And don’t use procmail as the
local mailer, because users can run any program they want from their ~/.procmailrc file. It’s not secure.

E
le

ct
ro

n
ic

 M
a

il

18.12 Security and sendmail 607

We recommend conservatism; use

define(`confPRIVACY_OPTIONS', ``goaway, authwarnings, restrictmailq,
restrictqrun'')

in your .mc file. sendmail’s default value for the privacy options is authwarnings;
the line above would reset that value. Notice the double sets of quotes; some versions
of m4 require them to protect the commas in the list of privacy option values. Red
Hat and Fedora default to authwarnings, and SUSE, Debian, and Ubuntu default to
authwarnings, needmailhelo, novrfy, noexpn, and noverb.

Running a chrooted sendmail (for the truly paranoid)

If you are worried about the access that sendmail has to your filesystem, you can
start it in a chrooted jail. Make a minimal filesystem in your jail, including things like
/dev/null, /etc essentials (passwd, group, resolv.conf, sendmail.cf, any map files,
mail/*), the shared libraries that sendmail needs, the sendmail binary, the mail
queue directory, and any log files. You will probably have to fiddle with the list to get
it just right. Use the chroot command to start a jailed sendmail. For example:

chroot /jail /usr/sbin/sendmail -bd -q30m

Table 18.15 Values of the PrivacyOption variable

Value Meaning

public Does no privacy/security checking
needmailhelo Requires SMTP HELO (identifies remote host)
noexpn Disallows the SMTP EXPN command
novrfy Disallows the SMTP VRFY command
needexpnhelo Does not expand addresses (EXPN) without a HELO
needvrfyhelo Does not verify addresses (VRFY) without a HELO
noverba Disallows verbose mode for EXPN
restrictmailq Allows only mqueue directory’s group to see the queue
restrictqrun Allows only mqueue directory’s owner to run the queue
restrictexpand Restricts info displayed by the -bv and -v flagsb

noetrnc Disallows asynchronous queue runs
authwarnings Adds Authentication-Warning header (this is the default)
noreceipts Turns off delivery status notification for success return receipts
nobodyreturn Does not return message body in a DSN
goaway Disables all SMTP status queries (EXPN, VRFY, etc.)

a. Verbose mode follows .forward files when an EXPN command is given and reports more informa-
tion on the whereabouts of a user’s mail. Use noverb or, better yet, noexpn on any machine
exposed to the outside world.

b. Unless executed by root or the TrustedUser.

c. ETRN is an ESMTP command for use by a dial-up host. It requests that the queue be run just for mes-
sages to that host.

608 Chapter 18 – Electronic Mail

Denial of service attacks

Denial of service attacks are difficult to prevent because there is no a priori way to
determine that a message is an attack rather than a valid piece of email. Attackers can
try various nasty things, including flooding the SMTP port with bogus connections,
filling disk partitions with giant messages, clogging outgoing connections, and mail
bombing. sendmail has some configuration parameters that can help slow down or
limit the impact of a denial of service attack, but these parameters can also interfere
with legitimate mail. The mail filtering library (milter) may help sysadmins thwart a
prolonged denial of service attack.

The MaxDaemonChildren option limits the number of sendmail processes. It pre-
vents the system from being overwhelmed with sendmail work, but it also allows an
attacker to easily shut down SMTP service. The MaxMessageSize option can help
prevent the mail queue directory from filling, but if you set it too low, legitimate mail
will bounce. (You might mention your limit to users so that they aren’t surprised
when their mail bounces. We recommend a fairly high limit anyway, since some legit-
imate mail is huge.) The ConnectionRateThrottle option, which limits the number
of permitted connections per second, can slow things down a bit. And finally, setting
MaxRcptsPerMessage, which controls the maximum number of recipients allowed
on a single message, might help.

sendmail has always been able to refuse connections (option REFUSE_LA) or queue
email (QUEUE_LA) according to the system load average. A variation, DELAY_LA,
introduced in 8.12 keeps the mail flowing, but at a reduced rate. See page 613 in the
performance section for details.

In spite of all these knobs to turn to protect your mail system, someone mail bomb-
ing you will still interfere with legitimate mail. Mail bombing can be quite nasty.

The University of Colorado gives each student (~25,000) an email account with pine
as the default mail reader. A few years ago, a student with a new job at a local com-
puter store was convinced to give his employer a copy of the password file. The com-
pany then sent an advertisement to everyone in the password file, in batches of
about 1,000 recipients at a time (which made for a very long To: line).

pine had been compiled with the default reply mode set to reply to all recipients as
well as the sender. Many students replied with questions such as, “Why did you send
me this junk?”, and of course it went to everyone else on the To: line. The result was
total denial of service on the server—for email or any other use. sendmail took over
all the CPU cycles, the mail queue was enormous, and all useful work ground to a
halt. The only solution seemed to be to take the machine off-line, go into the mail
queues and every user’s mailbox, and remove the offending messages. (A header
check on the Subject line could have been used as well.)

Forgeries

Forging email has in the past been trivial. In the old days, any user could forge mail
to appear as though it came from someone else’s domain. Starting with sendmail

E
le

ct
ro

n
ic

 M
a

il

18.12 Security and sendmail 609

8.10, SMTP authentication was instituted to verify the identity of the sending ma-
chine. Authentication checking must be turned on with the AuthMechanisms op-
tion. Unfortunately, sendmail authentication is not end-to-end but just between
adjacent servers. If a message is handled by several servers, the authentication helps
but cannot guarantee that the message was not forged.

Likewise, any user can be impersonated in mail messages. Be careful if mail mes-
sages are your organization’s authorization vehicle for things like keys, access cards,
and money. You should warn administrative users of this fact and suggest that if
they see suspicious mail that appears to come from a person in authority, they
should verify the validity of the message. This is doubly true if the message asks that
unreasonable privileges be given to an unusual person. Mail authorizing a grand
master key for an undergraduate student might be suspect!

The authwarnings privacy option flags local attempts at forgery by adding an Au-
thentication-Warning header to outgoing mail that appears to be forged. However,
many user agents hide this header by default.

If forged mail is coming from a machine that you control, you can actually do quite a
bit to thwart it. You can use the identd daemon to verify a sender’s real login name.
sendmail does a callback to the sending host to ask the identd running there for the
login name of the user sending the mail. If identd is not running on the remote host,
sendmail learns nothing. If the remote machine is a single-user workstation, its
owner could configure identd to return a bogus answer. But if the remote host is a
multiuser machine such as that found at many university computing centers, identd
returns the user’s real login name for sendmail to put in the message’s header.

Many sites do not run identd; it’s often blocked by firewalls. identd is only really
useful within a site, since machines you don’t control can lie. At a large site with
somewhat irresponsible users (e.g., a university), it’s great—but also a performance
hit for sendmail.

Several years ago, when we were first experimenting with identd, a student at our site
became frustrated with the members of his senior project team. He tried to send mail
to his teammates as his instructor, telling them he knew that they were not pulling
their weight and that they should work harder. Unfortunately, he made a syntax error
and the message bounced to the instructor. sendmail’s use of the IDENT protocol
told us who he was. sendmail included the following lines in the bounced message:

The original message was received at Wed, 9 Mar 1994 14:51 -0700 from
student@benji.Colorado.EDU [128.138.126.10]

But the headers of the message itself told a different story:

From: instructor@cs.Colorado.EDU

Moral: avoid syntax errors when sneaking around. Our policy on forging mail caused
the student’s login to be disabled for the rest of the semester, which actually accom-
plished exactly what the student wanted. He was unable to work on the project and
his partners had to pick up the slack.

610 Chapter 18 – Electronic Mail

Message privacy

See page 696 for
more information
about PGP.

Message privacy basically does not exist unless you use an external encryption pack-
age such as Pretty Good Privacy (PGP) or S/MIME. By default, all mail is sent unen-
crypted. End-to-end encryption requires support from mail user agents.

Both S/MIME and PGP are documented in the RFC series, with S/MIME being on
the standards track. However, we prefer PGP; it’s more widely available and was de-
signed by an excellent cryptographer, Phil Zimmermann, whom we trust. These
emerging standards offer a basis for email confidentiality, authentication, message
integrity assurance, and nonrepudiation of origin. Traffic analysis is still possible
since the headers and envelope are sent as plaintext.

Tell your users that they must do their own encryption if they want their mail to be
private.

SASL: the Simple Authentication and Security Layer

sendmail 8.10 and later support the SMTP authentication defined in RFC2554. It’s
based on SASL, the Simple Authentication and Security Layer (RFC2222). SASL is a
shared secret system that is typically host-to-host; you must make explicit arrange-
ments for each pair of servers that are to mutually authenticate.

SASL is a generic authentication mechanism that can be integrated into a variety of
protocols. So far, sendmail, Cyrus’s imapd, Outlook, Thunderbird, and some ver-
sions of Eudora use it. The SASL framework (it’s a library) has two fundamental
concepts: an authorization identifier and an authentication identifier. It can map
these to permissions on files, account passwords, Kerberos tickets, etc. SASL con-
tains both an authentication part and an encryption component.To use SASL with
sendmail, get Cyrus SASL from asg.web.cmu.edu/sasl.

TLS, another encryption/authentication system, is specified in RFC2487. It is imple-
mented in sendmail as an extension to SMTP called STARTTLS. You can even use
both SASL and TLS.

TLS is a bit harder to set up and requires a certificate authority. You can pay VeriSign
big bucks to issue you certificates (signed public keys identifying an entity) or set up
your own certificate authority. Strong authentication is used in place of a hostname
or IP address as the authorization token for relaying mail or for accepting a connec-
tion from a host in the first place. An entry such as

TLS_Srv:secure.example.com ENCR:112
TLS_Clt:laptop.example.com PERM+VERIFY:112

in the access_db indicates that STARTTLS is in use and that email to the domain
secure.example.com must be encrypted with at least 112-bit encryption keys. Email
from a host in the laptop.example.com domain should be accepted only if the client
has authenticated itself.

Gregory Shapiro, also of Sendmail, Inc., has created some nifty tutorials about secu-
rity and sendmail, available from www.sendmail.org/~gshapiro.

www.sendmail.org/~gshapiro

E
le

ct
ro

n
ic

 M
a

il

18.13 sendmail performance 611

18.13 SENDMAIL PERFORMANCE

sendmail has several configuration options that improve performance. Although
we have scattered them throughout the chapter, we try to expand on the most impor-
tant ones in this section. These are options and features you should consider if you
run a high-volume mail system (in either direction). Actually, if you really need to
send 1,000,000 mail messages an hour and you aren’t a spammer, your best bet
might be to use the commercial side of sendmail, Sendmail, Inc.

Delivery modes

sendmail has four basic delivery modes: background, interactive, queue, and defer.
Each represents a tradeoff between latency and throughput. Background mode de-
livers the mail immediately but requires sendmail to fork a new process to do it.
Interactive mode also delivers immediately, but delivery is done by the same pro-
cess and makes the remote side wait for the results. Queue mode queues incoming
mail for delivery by a queue runner at some later time. Defer mode is similar to
queue mode, but it also defers all map, DNS, alias, and forwarding lookups. Inter-
active mode is rarely used. Background mode favors lower latency, and defer or
queueing mode favors higher throughput. The delivery mode is set with the option
confDELIVERY_MODE and defaults to background.

Queue groups and envelope splitting

Queue groups are a new feature of sendmail 8.12; they enable you to create multiple
queues for outgoing mail and to control the attributes of each queue group individu-
ally. Queue groups can contain a single queue directory or several directories. For
example, if your Linux box is the mail hub for an ISP, you might define a queue group
for your dial-up users and then permit them to initiate a queue run (using the SMTP
command ETRN) when they connect to download their email. Queue groups are
used with an envelope-splitting feature with which an envelope with many recipi-
ents can be split across queue groups. This feature and the use of multiple queue
directories per queue group ameliorate performance problems caused by having too
many files in a single filesystem directory.34

When a message enters the mail system, it is assigned to one or more queue groups.
The queue group for each recipient is determined independently. Envelopes are re-
written to correspond to queue group assignments. If multiple queue directories are
used, messages are assigned randomly to the queues in the correct queue group.

If a queue group has a limit on the maximum number of recipients per envelope,
sendmail splits the envelope of the message into several smaller envelopes that fit
within the queue group’s parameters.

34. If you’re using an ext3 filesystem with a 2.6 or later kernel, directory indexes may also help reduce the
performance impact of large directories. You can modify an existing filesystem to use this feature with
the command tune2fs -O dir_index.

612 Chapter 18 – Electronic Mail

Queue groups are declared with directives in the .mc file but are really configured in
the raw config file language by LOCAL_RULESETS, which we don’t describe at all in
this book. The example below will get you started if you want to use queue groups to
improve performance or to give different quality of service to different destinations.

Table 18.16 lists the attributes that can be specified for a queue group. Only the first
letter of the attribute name need be specified when the queue group is defined.

Here is an example that has queue groups for local mail, for mail to aol.com, for mail
to other remote sites, and a default queue for all the rest of the mail. The following
lines go in the regular part of the .mc file:

dnl ##### -- queues
QUEUE_GROUP(`local', `P=/var/spool/mqueue/local')
QUEUE_GROUP(`aol', `P=/var/spool/mqueue/aol, F=f, r=100')
QUEUE_GROUP(`remote', `P=/var/spool/mqueue/remote, F=f')

And then at the end of the .mc file:

LOCAL_RULESETS
Squeuegroup
R<$+> $1
R$*@aol.com $# aol
R$*@mydomain.com $# local
R$*@$* $# remote
R$* $# mqueue

In this example, we specified a limit of 100 recipients per message when we defined
the AOL queue group. If an outgoing message had 10,000 recipients, of whom 1,234
were at AOL, envelope splitting would put 13 messages in the aol queue group, 12 of
100 recipients each and 1 with the remaining 34 recipients.

To speed things up even more, try fast splitting, which defers MX lookups during the
sorting process:

define(`confFAST_SPLIT', `1')

Table 18.16 Queue group attributes

Attribute Meaning

Flags Mostly for future knobs; must set f flag to have multiple queue runners
Nice Priority for this queue group; lowers priority a la the nice system call
Interval Time to wait between queue runs
Path Path to the queue directory associated with the queue group (required)
Runners Number of sendmail processes to run concurrently on the queue group
recipients Maximum number of recipients per envelope

E
le

ct
ro

n
ic

 M
a

il

18.13 sendmail performance 613

Queue runners

sendmail forks copies of itself to perform the actual transport of mail. You can con-
trol how many copies of sendmail are running at any given time and even how many
are attached to each queue group. By using this feature, you can balance the activi-
ties of sendmail and the operating system on your busy mail hub machines.

Three sendmail options control the number of queue runner daemons processing
each queue:

• The MAX_DAEMON_CHILDREN option specifies the total number of
copies of the sendmail daemon that are allowed to run at any one time,
including those running queues and those accepting incoming mail.

• The MAX_QUEUE_CHILDREN option sets the maximum number of
queue runners allowed at one time.

• The MAX_RUNNERS_PER_QUEUE option sets the default runner limit
per queue if no explicit value is set with the Runners= (or R=) parameter
in the queue group definition.

If you set values that can conflict (for example, a maximum of 50 queue runners total,
but 10 for the local queue, 30 for the mydomain queue, and 50 for the AOL queue),
sendmail batches the queues into workgroups and round robin between work-
groups. In this example, the local and mydomain queues would be one workgroup
and the AOL queue would be a second workgroup. If you choose limits that must
conflict (e.g., max= 50 but AOL= 100), sendmail uses MAX_QUEUE_CHILDREN as
its absolute limit on the number of queue runners.

Load average controls

sendmail has always been able to refuse connections or queue messages instead of
delivering them when the system load average goes too high. Unfortunately, the load
average has only a one-minute granularity, so it’s not a very finely honed tool for
smoothing out the resources consumed by sendmail. The new DELAY_LA primitive
lets you set a value of the load average at which sendmail should slow down; it will
sleep for one second between SMTP commands for current connections and before
accepting new connections. The default value is 0, which turns the mechanism off.

Undeliverable messages in the queue

Undeliverable messages in the mail queue can really kill performance on a busy mail
server. sendmail has several features that help with the issue of undeliverable mes-
sages. The most effective is the FALLBACK_MX option, which hands a message off to
another machine if it cannot be delivered on the first attempt. Your primary machine
then cranks out the messages to good addresses and shunts the problem children to
a secondary fallback machine. Another aid is the host status directory, which stores
the status of remote hosts across queue runs.

614 Chapter 18 – Electronic Mail

The FALLBACK_MX option is a big performance win for a site with large mailing lists
that invariably contain addresses that are temporarily or permanently undeliverable.
To use it you must specify host to handle the deferred mail. For example,

define(`confFALLBACK_MX', `mailbackup.atrust.com')

forwards all messages that fail on their first delivery attempt to the central server
mailbackup.atrust.com for further processing. As of 8.12, there can be multiple fall-
back machines if the designated hosts have multiple MX records in DNS.

On the fallback machines you can use the HOST_STATUS_DIRECTORY option to
help with multiple failures. This option directs sendmail to maintain a status file
for each host to which mail is sent and to use that status information to prioritize the
hosts each time the queue is run. This status information effectively implements neg-
ative caching and allows information to be shared across queue runs. It’s a perfor-
mance win on servers that handle mailing lists with a lot of bad addresses, but it can
be expensive in terms of file I/O.

Here is an example that uses the directory /var/spool/mqueue/.hoststat (create the
directory first):

define(`confHOST_STATUS_DIRECTORY', `/var/spool/mqueue/.hoststat')

If the .hoststat directory is specified with a relative path, it is stored beneath the
queue directory. sendmail creates its own internal hierarchy of subdirectories
based on the destination hostname.

For example, if mail to evi@anchor.cs.colorado.edu were to fail, status information
would go into the /var/spool/mqueue/.hoststat/edu./colorado./cs./ directory in a
file called anchor because the host anchor has an MX record with itself as highest
priority. If the DNS MX records had directed anchor’s email to host foo, then the
filename would have been foo, not anchor.

A third performance enhancement for busy machines involves setting a minimum
queue age so that any message that cannot be delivered on the initial try is queued
and stays in the queue for a minimum time between tries. This technique is usually
coupled with command-line flags that run the queue more often (e.g., -q5m). If a
queue runner hangs on a bad message, another one starts in 5 minutes, improving
performance for the messages that can be delivered. The entire queue is run in
batches determined by which messages have been there for the required minimum
time. Running sendmail with the flags -bd -q5m and including the option

define(`confMIN-QUEUE_AGE', `27m')

in the config file could result in a more responsive system.

Kernel tuning

If you plan to use a Linux box as a high-volume mail server, you should modify sev-
eral of the kernel’s networking configuration parameters and perhaps even build a
custom kernel (depending on your hardware configuration and expected load).

E
le

ct
ro

n
ic

 M
a

il

18.14 sendmail statistics, testing, and debugging 615

Remove any unnecessary drivers so you start with a streamlined kernel that is just
right for your hardware configuration.

The custom kernel should include support for multiple processors if the host ma-
chine has more than one processor (SMP). (We realize that for true Linux geeks, this
comment is analogous to a reminder not to forget to breathe. But since Linux users’
kernel-building skills vary, we have ignored reviewers’ comments and have retained
this reminder.)

To reset the parameters of the networking stack, use the shell’s echo command redi-
rected to the proper variable in the /proc filesystem. Chapter 12, TCP/IP Networking,
contains a general description of this procedure starting on page 314. Table 18.17
shows the parameters to change on a high-volume mail server along with their sug-
gested and default values. These changes should probably be put in a shell script that
runs at boot time and performs the corresponding echos.

For example, you could use the command

echo 30 > /proc/sys/net/ipv4/tcp_fin_timeout

to change TCP’s FIN timeout value.

18.14 SENDMAIL STATISTICS, TESTING, AND DEBUGGING

sendmail can collect statistics on the number and size of messages it has handled.
You display this data with the mailstats command, which organizes the data by
mailer. sendmail’s STATUS_FILE option (in the OSTYPE file) specifies the name of
the file in which statistics should be kept. The existence of the specified file turns on
the accounting function.

The default location for sendmail’s statistics file is /etc/mail/statistics, but some
vendors call the file sendmail.st and put it in /var/log. The totals shown by mail-
stats are cumulative since the creation of the statistics file. If you want periodic sta-
tistics, you can rotate and reinitialize the file from cron.

Table 18.17 Kernel parameters to change on high-volume mail servers

Variable (relative to /proc/sys) Default Suggested

net/ipv4/tcp_fin_timeout 180 30
net/ipv4/tcp_keepalive_time 7200 1800
net/core/netdev_max_backlog 300 1024
fs/file_max 4096 16384
fs/inode_max 16384 65536

616 Chapter 18 – Electronic Mail

Here is an example:

$ mailstats
Statistics from Tue Aug 1 02:13:30 2006
M msgsfr bytes_from msgsto bytes_to msgsrej msgsdis Mailer
4 12 25K 63 455K 0 0 esmtp
7 0 0K 18 25K 0 0 relay
8 54 472K 0 0K 0 0 local

===
T 66 497K 81 480K 0 0
C 66 81 0

If the mail statistics file is world-readable, you don’t need to be root to run mailstats.

Six values are shown: messages and kilobytes received (msgsfr, bytes_from), mes-
sages and kilobytes sent (msgsto, bytes_to), messages rejected (msgsrej), and mes-
sages discarded (msgsdis). The first column is a number identifying the mailer, and
the last column lists the name of the mailer. The T row is total messages and bytes,
and the C row is connections. These values include both local and relayed mail.

Testing and debugging

m4-based configurations are to some extent pretested. You probably won’t need to
do low-level debugging if you use them. One thing the debugging flags cannot test is
your design. While researching this chapter, we found errors in several of the config-
uration files and designs that we examined. The errors ranged from invoking a fea-
ture without the prerequisite macro (e.g., using masquerade_envelope without
having turned on masquerading with MASQUERADE_AS) to total conflict between
the design of the sendmail configuration and the firewall that controlled whether
and under what conditions mail was allowed in.

You cannot design a mail system in a vacuum. You must be synchronized with (or at
least not be in conflict with) your DNS MX records and your firewall policy.

sendmail provides one of the world’s richest sets of debugging aids, with debug flags
that are not simple Booleans or even integers but are two-dimensional quantities x.y,
where x chooses the topic and y chooses the amount of information to display. A
value of 0 gives no debugging, and 127 wastes many trees if you print the output.
Topics range from 0 to 99; currently, about 80 are defined.

The file sendmail/TRACEFLAGS in the distribution lists the values in use and the
files and functions in which they are used. All debugging support is at the level of
the raw config file. In many cases, it’s helpful to look at the sendmail source along
with the debug output.

If sendmail is invoked with a -dx.y flag, debugging output comes to the screen (stan-
dard error). Table 18.18 shows several important values of x and some suggested val-
ues for y. Be careful if you turn on debugging for a sendmail running as a daemon
(-bd) because the debug output may end up interjected into the SMTP dialogue and
cause odd failures when sendmail talks to remote hosts.

E
le

ct
ro

n
ic

 M
a

il

18.14 sendmail statistics, testing, and debugging 617

checksendmail is
available from
www.harker.com.

Gene Kim and Rob Kolstad have written a Perl script called checksendmail that in-
vokes sendmail in address test mode on a file of test addresses that you supply. It
compares the results to those expected. This script lets you test new versions of the
configuration file against a test suite of your site’s typical addresses to be sure you
haven’t inadvertently broken anything that used to work.

Verbose delivery

Many user agents that invoke sendmail on the command line accept a -v flag, which
is passed to sendmail and makes it display the steps taken to deliver the message.
The example below uses the mail command. The words in bold were typed as input
to the user agent, and the rest is sendmail’s verbose output.

$ mail -v trent@toadranch.com
Subject: just testing, please ignore
hi
.
Cc:
trent@toadranch.com... Connecting to coyote.toadranch.com. via esmtp...
220 coyote.toadranch.com ESMTP Sendmail 8.11.0/8.11.0; Tue, 7 Aug 2001 20:

08:51 -0600
>>> EHLO anchor.cs.colorado.edu
250-coyote.toadranch.com Hello anchor.cs.colorado.edu [128.138.242.1], pleased

to meet you
250-ENHANCEDSTATUSCODES
250-EXPN
250-VERB
250-8BITMIME
250-SIZE
250-DSN
250-ONEX
250-ETRN
250-XUSR
250-AUTH DIGEST-MD5 CRAM-MD5
250 HELP
>>> MAIL From:<evi@anchor.cs.colorado.edu> SIZE=65

Table 18.18 Debugging topics

Topic Meaning and suggestions

0 Shows compile flags and system identity (try y = 1 or 10)
8 Shows DNS name resolution (try y = 8)

11 Traces delivery (shows mailer invocations)
12 Shows local-to-remote name translation
17 Lists MX hosts
21 Traces rewriting rules (use y = 2 or y = 12 for more detail)
27 Shows aliasing and forwarding (try y = 4)
44 Shows file open attempts in case things are failing (y = 4)
60 Shows database map lookups

www.harker.com

618 Chapter 18 – Electronic Mail

250 2.1.0 <evi@anchor.cs.colorado.edu>... Sender ok
>>> RCPT To:<trent@toadranch.com>
250 2.1.5 <trent@toadranch.com>... Recipient ok
>>> DATA
354 Enter mail, end with "." on a line by itself
>>> .
250 2.0.0 f7828pi03229 Message accepted for delivery
trent@toadranch.com... Sent (f7828pi03229 Message accepted for delivery)
Closing connection to coyote.toadranch.com.
>>> QUIT
221 2.0.0 coyote.toadranch.com closing connection

The sendmail on anchor connected to the sendmail on toadranch.com. Each ma-
chine used the ESMTP protocol to negotiate the exchange of the message.

Talking in SMTP

You can make direct use of SMTP when debugging the mail system. To initiate an
SMTP session, use sendmail -bs or telnet to TCP port 25. By default, this is the port
on which sendmail listens when run in daemon (-bd) mode; sendmail uses port
587 when running as the mail submission agent. Table 18.19 shows the most impor-
tant SMTP commands.

The whole language has only 14 commands, so it is quite easy to learn and use. It is
not case sensitive. The specification for SMTP can be found in RFC2821.

Most transport agents, including sendmail, speak both SMTP and ESMTP; smap is
the lone exception these days. Unfortunately, many firewalls boxes that provide active
filtering do not speak ESMTP.

ESMTP speakers start conversations with the EHLO command instead of HELO. If the
process at the other end understands and responds with an OK, then the participants

Table 18.19 SMTP commands

Command Function

HELO hostname Identifies the connecting host if speaking SMTP
EHLO hostname Identifies the connecting host if speaking ESMTP
MAIL From: revpath Initiates a mail transaction (envelope sender)
RCPT To: fwdpath a Identifies envelope recipient(s)
VRFY address Verifies that address is valid (deliverable)
EXPN address Shows expansion of aliases and .forward mappings
DATA Begins the message bodyb

QUIT Ends the exchange and closes the connection
RSET Resets the state of the connection
HELP Prints a summary of SMTP commands

a. There can be multiple RCPT commands for a message.
b. You terminate the body by entering a dot on its own line.

E
le

ct
ro

n
ic

 M
a

il

18.14 sendmail statistics, testing, and debugging 619

negotiate supported extensions and arrive at a lowest common denominator for the
exchange. If an error is returned, then the ESMTP speaker falls back to SMTP.

Queue monitoring

You can use the mailq command (which is equivalent to sendmail -bp) to view the
status of queued messages. Messages are “queued” while they are being delivered or
when delivery has been attempted but has failed.

mailq prints a human-readable summary of the files in /var/spool/mqueue at any
given moment. The output is useful for determining why a message may have been
delayed. If it appears that a mail backlog is developing, you can monitor the status of
sendmail’s attempts to clear the jam.

Note that in sendmail version 8.12 and later, there are two default queues: one for
messages received on port 25 and another for messages received on port 587 (the
client submission queue). You can invoke mailq -Ac to see the client queue.

Here is some typical output from mailq. This case shows three messages that are
waiting to be delivered:

$ sudo mailq
/var/spool/mqueue (3 requests)
-----Q-ID----- --Size-- -----Q-Time----- ------------Sender/Recipient-----------
k623gYYk008732 23217 Sat Jul 1 21:42 MAILER-DAEMON
 8BITMIME (Deferred: Connection refused by agribusinessonline.com.)

<Nimtz@agribusinessonline.com>
k5ULkAHB032374 279 Fri Jun 30 15:46 <randy@atrust.com>
 (Deferred: Name server: k2wireless.com.: host name lookup fa)

<relder@k2wireless.com>
k5UJDm72023576 2485 Fri Jun 30 13:13 MAILER-DAEMON
 (reply: read error from mx4.level3.com.)

<lfinist@bbnplanet.com>

If you think you understand the situation better than sendmail or you just want
sendmail to try to redeliver the queued messages immediately, you can force a queue
run with sendmail -q. If you use sendmail -q -v, sendmail shows the play-by-play
results of each delivery attempt, which is often useful for debugging. Left to its own
devices, sendmail retries delivery every queue run interval (typically 30 minutes).

Logging

See Chapter 10 for
more information
about syslog.

sendmail uses syslog to log error and status messages with syslog facility “mail” and
levels “debug” through “crit”; messages are tagged with the string “sendmail.” You
can override the logging string “sendmail” with the -L command-line option, which
is handy if you are debugging one copy of sendmail while other copies are doing
regular email chores.

The confLOG_LEVEL option, specified on the command line or in the config file,
determines the severity level that sendmail uses as a threshold for logging. High
values of the log level imply low severity levels and cause more info to be logged.

620 Chapter 18 – Electronic Mail

Recall that a message logged to syslog at a particular level is reported to that level and
all those above it. The /etc/syslog.conf file determines the eventual destination of
each message.

On Red Hat and Fedora systems, the sendmail logs go to /var/log/maillog by de-
fault. For SUSE, it’s /var/log/mail; for Debian and Ubuntu, it’s /var/log/mail.log.
Wouldn’t it be nice if the standardization efforts could sort out some of these ran-
dom and apparently meaningless differences so our scripts could be more portable?

Table 18.20 gives an approximate mapping between sendmail log levels and syslog
severity levels.

A nice program called mreport by Jason Armstrong is available from

ftp://ftp.riverdrums.com/pub/mreport

It summarizes log files written by sendmail. It builds out of the box with just make
and then make install. Here is a sample of mreport’s output from a Red Hat system:

mreport -f -i /var/log/maillog -o mreport.out
[redhat.toadranch.com] [/var/log/maillog]

* [7] 592601 herb@yoherb.com trent@toadranch.com
* [8] 505797 SNYDERGA@simon.rochester.edu trent@toadranch.com

[1] 179386 steph@toadranch.com bennettr@ci.boulder.co.us
[1] 65086 herb@yoherb.com ned@xor.co
[7] 19029 evi@anchor.cs.colorado.edu trent@toadranch.com
[11] 17677 lunch-request@moose.org trent@toadranch.com
[2] 16178 trent@toadranch.com ned@camelspit.org
[3] 15229 reminders@yahoo-inc.com herb@toadranch.com
[2] 4653 trent@toadranch.com garth@cs.colorado.edu
[2] 1816 UNKNOWN trent@toadranch.com

. . . many lines deleted . . .

=====================
Total Bytes : 7876372
Number of Records : 192

User Unknown : 125

Host Name : redhat.toadranch.com

Table 18.20 sendmail log levels vs. syslog levels

L Levels L Levels

0 No logging 4 notice
1 alert or crit 5–11 info
2 crit 12 debug
3 err or warning

E
le

ct
ro

n
ic

 M
a

il

18.15 The Exim Mail System 621

Input File : maillog
Output File : mreport.out
First Record : Aug 5 04:47:31
Last Record : Aug 7 18:16:25

Time Taken : 24317 μs
=====================

You must use sudo or be root to run mreport if your mail log files are only readable
by root (as they should be). Flags and options are documented in the mreport man
page. The -f flag in this instance says to aggregate and sort by sender; an analogous -t
flag lets you sort by recipient. The -i argument is the input file, and -o the output file.

If you intend to run mreport regularly, you should inform your users. They might
feel it was an invasion of their privacy for sysadmins to be browsing the mail logs
with such a nice tool.

18.15 THE EXIM MAIL SYSTEM

The Debian and Ubuntu distributions ship with the Exim mail transport agent in-
stead of sendmail. It’s a simpler system with fewer bells and whistles, but it also
features easier configuration for sites that don’t bear a heavy mail load and don’t have
a bizarre mail system design. Exim’s functionality maps to the most commonly used
features of sendmail.

History

Exim was written in 1995 by Philip Hazel of the University of Cambridge and is dis-
tributed under the GNU General Public License. Exim version 4 (aka exim4) was re-
leased in 2002 and is currently the version distributed with Debian and Ubuntu.
Philip Hazel has also written a book called The Exim Smtp Mail Server: Official Guide
for Release 4 which was published in 2003. We defer to that book and to the Exim
documentation at www.exim.org for the details of Exim configuration and give only
a brief description here.

Exim on Linux

As in the sendmail suite, some separate commands in Exim perform specific mail
functions. These are implemented by a call to exim with certain command-line flags.
Table 18.21 shows the behaviors and their equivalent flags.

Table 18.21 Exim utilities (with equivalent flags)

Command Equiv Function

mailq exim -bp Shows the mail queue
rsmtp exim -bS Batched SMTP connection
rmail exim -i For compatibility with smail a

runq exim -q Runs the mail queue

a. Accepts a message terminated by a dot on a line by itself

www.exim.org

622 Chapter 18 – Electronic Mail

Exim configuration

Exim contains three logical pieces: directors, routers, and transports. Directors han-
dle local addresses—that is, addresses inside the home domain. Routers handle re-
mote addresses, and transports do the actual delivery.

Exim is configured much like smail3 or Postfix, with the configuration language
taking the form keyword = value. As of Exim 4, the system is configured through an
elaborate collection of config files that live in /etc/exim4/conf.d. After you add or
modify one of these files, you must run the update-exim4.conf script, which then
creates /var/lib/exim4/config.autogenerated. The config.autogenerated file is
used by Exim at run time.

Fortunately, the Exim configuration files are well documented, with comments pre-
ceding each variable to describe what the variable does, what the usual value is, and
what (bad) things might happen if you fail to define it. The default configuration
files have about 100 variables defined, but this is largely boilerplate that emulates
much of the sendmail behavior documented in previous sections.

On our testbed system we had to set just four variables to get basic email working.
Two of those variables related to privacy concerns and were not absolutely required.
Here are the four variables, with our comments on the side:

qualify_domain = domain-name ### by default set to unqualified hostname
local_domains = localhost:domain-name
smtp_verify = false ### default is on, off disables SMTP VRFY
modemask = 002 ### default 022 assumes a group for each user

In the next section, we describe a few of Exim’s features in sendmail terms so that
you can compare the two systems’ functionality and decide if you want to install the
real sendmail instead of Exim.

Exim/sendmail similarities

Some parts of Exim run setuid to root much like sendmail did before version 8.12.
Therefore, it’s particularly important to stay up to date on security patches. The Exim
concept of trusted users matches that of sendmail and primarily helps facilitate the
management of mailing lists, for which From lines are routinely rewritten. Exim also
lets you define administrative users who are allowed to initiate queue runs. The
SMTP verify command (VRFY) is allowed by default.

exim must be sent the SIGHUP signal with the kill command when its config file
changes. It stores its process ID in /var/spool/exim/exim-daemon.pid. It typically
logs to files in the /var/log/exim directory but can also use syslog. By default, exim
logs to its own files and ignores syslog, yet syslog.conf is configured with several
mail log files that are empty and are rotated and compressed every day. (Empty files
are larger after compression than before!)

Exim permits forwarding of outgoing mail to a smart host and filtering of inbound
mail at both the host and user levels. It supports virtual domains and has a retry

E
le

ct
ro

n
ic

 M
a

il

18.16 Postfix 623

database similar in functionality to sendmail’s host status directory for keeping
track of difficult deliveries. A system-wide (not per-user) filtering mechanism can
screen for Microsoft attachments, worms, or viruses.

Exim includes a nice feature that is not available in sendmail, namely, recognition of
alias and forwarding loops and sensible handling of them.

Finally, man -k exim yields several useful tools to help keep the mail system tidy.

18.16 POSTFIX

Postfix is yet another alternative to sendmail. The Postfix project started when
Wietse Venema spent a sabbatical year at IBM’s T. J. Watson Research Center. Post-
fix’s design goals included an open source distribution policy, speedy performance,
robustness, flexibility, and security. It is a direct competitor to qmail by Dan Bern-
stein. All major Linux distributions include Postfix, and since version 10.3, Mac OS
X has shipped it instead of sendmail as the default mail system.

The most important things about Postfix are, first, that it works almost out of the
box (the simplest config files are only one or two lines long), and second, that it
leverages regular expression maps to filter email effectively, especially in conjunction
with the PCRE (Perl Compatible Regular Expression) library. Postfix is compatible
with sendmail in the sense that Postfix’s aliases and .forward files have the same
format and semantics as those of sendmail.

Postfix speaks ESMTP. Virtual domains and spam filtering are both supported. Post-
fix does not use an address rewriting language as sendmail does; instead, it relies
on table lookups from flat files, Berkeley DB, dbm, LDAP, NIS, NetInfo, or data-
bases such as MySQL.

Postfix architecture

Postfix comprises several small, cooperating programs that send network messages,
receive messages, deliver email locally, etc. Communication among the programs is
performed through UNIX domain sockets or FIFOs. This architecture is quite differ-
ent from that of sendmail, wherein a single large program does most of the work.

The master program starts and monitors all Postfix processes. Its configuration file,
master.cf, lists the subsidiary programs along with information about how they
should be started. The default values set in that file are right for all but very slow or
very fast machines (or networks); in general, no tweaking is necessary. One common
change is to comment out a program, for example, smtpd, when a client should not
listen on the SMTP port.

The most important server programs involved in the delivery of email are shown in
Exhibit E on the next page.

624 Chapter 18 – Electronic Mail

Exhibit E Postfix server programs

Receiving mail

Mail is received on the SMTP port by smtpd, which also checks that the connecting
clients are authorized to send the mail they are trying to deliver. When email is sent
locally through the /usr/lib/sendmail compatibility program, a file is written to the
/var/spool/postfix/maildrop directory. That directory is periodically scanned by
the pickup program, which processes any new files it finds.

All incoming email passes through cleanup, which adds missing headers and re-
writes addresses according to the canonical and virtual maps. Before inserting it in
the incoming queue, cleanup gives the email to trivial-rewrite, which does minor
fixing of the addresses, such as appending a mail domain to addresses that are not
fully qualified.

The queue manager

Mail waiting to be delivered is controlled by qmgr, the queue manager of five queues:

• incoming – mail that is arriving

• active – mail that is being delivered

• deferred – mail for which delivery has failed in the past

• hold – mail blocked in the queue by the administrator

• corrupt – mail that can’t be read or parsed

The queue manager generally selects the next message to process with a simple FIFO
strategy, but it also supports a a complex preemption algorithm that prefers messages
with few recipients over bulk mail.

In order not to overwhelm a receiving host, especially after it has been down, Postfix
uses a slow start algorithm to control how fast it tries to deliver email. Deferred mes-
sages are given a try-again time stamp that exponentially backs off so as not to waste
resources on undeliverable messages. A status cache of unreachable destinations
avoids unnecessary delivery attempts.

smtp

lmtp

local

virtual

pipe

qmgr

bounce

trivial-rewrite

cleanup

smtpd

pickup

E
le

ct
ro

n
ic

 M
a

il

18.16 Postfix 625

Sending mail

qmgr decides with the help of trivial-rewrite where a message should be sent. The
routing decision made by trivial-rewrite can be overridden by the transport map.

Delivery to remote hosts through the SMTP protocol is performed by the smtp pro-
gram. lmtp delivers mail by using LMTP, the Local Mail Transfer Protocol defined in
RFC2033. LMTP is based on SMTP, but the protocol has been modified so that the
mail server is not required to manage a mail queue. This mailer is particularly useful
for delivering email to mailbox servers such as the Cyrus IMAP suite.

local’s job is to deliver email locally. It resolves addresses in the aliases table and
follows instructions found in recipients’ .forward files. Messages are either for-
warded to another address, passed to an external program for processing, or stored
in users’ mail folders.

The virtual program delivers email to “virtual mailboxes”; that is, mailboxes that
are not related to a local Linux account but that still represent valid email destina-
tions. Finally, pipe implements delivery through external programs.

Security

Postfix implements security at several levels. Most of the Postfix server programs can
run in a chrooted environment. They are separate programs with no parent/child
relationship. None of them are setuid. The mail drop directory is group-writable by
the postdrop group, to which the postdrop program is setgid.

Impressively, no exploits other than denial of service attacks have yet been identified
in any version of Postfix.

Postfix commands and documentation

Several command-line utilities permit user interaction with the mail system:

• sendmail, mailq, newaliases – are sendmail-compatible replacements

• postfix – starts and stops the mail system (must be run as root)

• postalias – builds, modifies, and queries alias tables

• postcat – prints the contents of queue files

• postconf – displays and edits the main configuration file, main.cf
• postmap – builds, modifies, or queries lookup tables

• postsuper – manages the mail queues

The Postfix distribution includes a set of man pages that describe all the programs
and their options. Additionally, on-line documents at www.postfix.org explain how
to configure and manage various aspects of Postfix. These same documents are in-
cluded in the Postfix distribution, so you should find them installed on your system,
usually in a directory called README_FILES.

www.postfix.org

626 Chapter 18 – Electronic Mail

Configuring Postfix

The main.cf file is Postfix’s principal configuration file. The master.cf file config-
ures the server programs. It also defines various lookup tables that are referenced
from main.cf and that provide different types of service mappings.

The postconf(5) man page describes every parameter that can be set in the main.cf
file. If you just type man postconf, you’ll get the man page for the postconf pro-
gram. Use man -s 5 postconf to get the version that describes main.cf options.

The Postfix configuration language looks a bit like a series of Bourne shell com-
ments and assignment statements. Variables can be referenced in the definition of
other variables by being prefixed with a $. Variable definitions are stored just as they
appear in the config file; they are not expanded until they are used, and any substi-
tutions occur at that time.

You can create new variables by assigning them values. Be careful to choose names
that do not conflict with existing configuration variables.

All Postfix configuration files, including the lookup tables, consider lines starting
with whitespace to be continuation lines. This convention results in very readable
configuration files, but you must start new lines in column one.

What to put in main.cf

More than 300 parameters can be specified in the main.cf file. However, just a few
of them need to be set at an average site, since the defaults are mostly good. The
author of Postfix strongly recommends that only parameters with nondefault values
be included in your configuration. That way, if the default value of a parameter
changes in the future, your configuration will automatically adopt the new value.

The sample main.cf file that comes with the distribution includes many com-
mented-out example parameters, along with some brief documentation. The origi-
nal version is best left alone as a reference. Start with an empty file for your own
configuration so that your settings are not lost in a sea of comments.

Basic settings

Let’s start with as simple a configuration as possible: an empty file. Surprisingly, this
is a perfectly reasonable Postfix configuration. It results in a mail server that delivers
email locally within the same domain as the local hostname and that sends any mes-
sages directed to nonlocal addresses directly to the appropriate remote servers.

Another simple configuration is a “null client”; that is, a system that doesn’t deliver
any email locally but rather forwards outbound mail to a designated central server
For this configuration, we define several parameters, starting with mydomain,
which defines the domain part of the hostname, and myorigin, which is the mail
domain appended to unqualified email addresses. If the mydomain and myorigin
parameters are the same, we can write something like this:

mydomain = cs.colorado.edu
myorigin = $mydomain

E
le

ct
ro

n
ic

 M
a

il

18.16 Postfix 627

Another parameter we should set is mydestination, which specifies the mail do-
mains that are local. (These are also known as the “canonical” domains.) If the re-
cipient address of a message has mydestination as its mail domain, the message is
delivered through the local program to the corresponding user (assuming that no
relevant alias or .forward file is found). If more than one mail domain is included in
mydestination, these domains are all considered aliases for the same domain.

We want no local delivery for our null client, so this parameter should be empty:

mydestination =

Finally, the relayhost parameter tells Postfix to send all nonlocal messages to a
specified host instead of sending them directly to their apparent destinations:

relayhost = [mail.cs.colorado.edu]

The square brackets tell Postfix to treat the specified string as a hostname (DNS A
record) instead of a mail domain name (DNS MX record).

Since null clients should not receive mail from other systems, the last thing to do in a
null client configuration is to comment out the smtpd line in the master.cf file. This
change prevents Postfix from running smtpd at all. With just these few lines, we’ve
defined a fully functional null client!

For a “real” mail server, you’ll need a few more configuration options as well as some
mapping tables. We cover these in the next few sections.

Using postconf

postconf is a handy tool that helps you configure Postfix. When run without argu-
ments, it prints all the parameters as they are currently configured. If you name a
specific parameter as argument, postconf prints the value of that parameter. The -d
option makes postconf print the defaults instead of the currently configured values.
For example:

$ postconf mydestination
mydestination =
$ postconf -d mydestination
mydestination = $myhostname, localhost.$mydomain, localhost

Another useful option is -n, which makes postconf print only the parameters that
differ from the default. If you ask for help on the Postfix mailing list, that’s the con-
figuration information you should put in your email.

Lookup tables

Many aspects of Postfix’s behavior are shaped through the use of lookup tables,
which can map keys to values or implement simple lists. For example, the default
setting for the alias_maps table is

alias_maps = dbm:/etc/mail/aliases, nis:mail.aliases

628 Chapter 18 – Electronic Mail

Data sources are specified with the notation type:path. Note that this particular table
actually uses two distinct sources of information simultaneously: a dbm database
and an NIS map. Multiple values can be separated by commas, spaces, or both. Table
18.22 lists the available data sources; postconf -m shows this information as well.

Use the dbm and sdbm types only for compatibility with the traditional sendmail
alias table. Berkeley DB (hash) is a more modern implementation; it’s safer and
faster. If compatibility is not a problem, use

alias_database = hash:/etc/mail/aliases
alias_maps = hash:/etc/mail/aliases

The alias_database specifies the table that is rebuilt by newaliases and should cor-
respond to the table that you specify in alias_maps. The reason for having two pa-
rameters is that alias_maps might include non-DB sources such as mysql or nis
that do not need to be rebuilt.

All DB-class tables (dbm, sdbm, hash, and btree) are based on a text file that is
compiled to an efficiently searchable binary format. The syntax for these text files is
similar to that of the configuration files with respect to comments and continuation
lines. Entries are specified as simple key/value pairs separated by whitespace, except
for alias tables, which must have a colon after the key to retain sendmail compatibil-
ity. For example, the following lines are appropriate for an alias table:

postmaster: david, tobias
webmaster: evi

As another example, here’s an access table for relaying mail from any client with a
hostname ending in cs.colorado.edu.

Table 18.22 Information sources usable as Postfix lookup tables

Type Description

dbm / sdbm Traditional dbm or gdbm database file
cidr Network addresses in CIDR form

hash / btree Berkeley DB hash table (replacement for dbm) or B-tree file
ldap LDAP directory service

mysql MySQL database
nis NIS directory service

pcre Perl-Compatible Regular Expressions
pgsql PostgreSQL database
proxy Access through proxymap, e.g., to escape a chroot

regexp POSIX regular expressions
static Returns the value specified as path regardless of the key
unix Linux /etc/passwd and /etc/group files; uses NIS syntax a

a. unix:passwd.byname is the passwd file, and unix:group.byname is the group file.

E
le

ct
ro

n
ic

 M
a

il

18.16 Postfix 629

.cs.colorado.edu OK

Text files are compiled to their binary formats with the postmap command for nor-
mal tables and the postalias command for alias tables. The table specification (in-
cluding the type) must be given as the first argument. For example:

$ postmap hash:/etc/postfix/access

postmap can also query values in a lookup table:

$ postmap -q blabla hash:/etc/postfix/access
$ postmap -q .cs.colorado.edu hash:/etc/postfix/access
OK

Local delivery

The local program is responsible for the delivery of mail to the canonical domain. It
also handles local aliasing. For example, if mydestination is set to cs.colorado.edu
and an email for evi@cs.colorado.edu arrives, local first performs a lookup on the
alias_maps tables and then substitutes any matching entries recursively.

If no aliases match, local looks for a .forward file in user evi’s home directory and
follows the instructions in the file if it exists. (The syntax is the same as the right side
of an alias map.) Finally, if no .forward is found, the email is delivered to evi’s local
mailbox.

By default, local writes to standard mbox-format files under /var/mail. You can
change that behavior with the parameters shown in Table 18.23.

The mail_spool_directory and home_mailbox options normally generate mbox-
format mailboxes, but they can also produce Maildir mailboxes in the style of qmail.
To request this behavior, add a slash to the end of the pathname.

If recipient_delimiter is set to +, mail addressed to evi+whatever@cs.colorado.edu
is accepted for delivery to the evi account. With this facility, users can create special-
purpose addresses and sort their mail by destination address. Postfix first attempts
lookups on the full address, and only if that fails does it strip the extended compo-
nents and fall back to the base address. Postfix also looks for a corresponding for-
warding file, .forward+whatever, for further aliasing.

Table 18.23 Parameters for local mailbox delivery (set in main.cf)

Parameter Description

mail_spool_directory Delivers mail to a central directory serving all users
home_mailbox Delivers mail to ~user under the specified relative path
mailbox_command Delivers mail with an external program, typically procmail

mailbox_transport Delivers mail through a service as defined in master.cfa

recipient_delimiter Allows extended usernames (see description below)

a. This option interfaces with mailbox servers such as the Cyrus imapd.

630 Chapter 18 – Electronic Mail

Virtual domains

If you want to host a mail domain on your Postfix mail server, you have three choices:

• List the domain in mydestination. Delivery is performed as described
above: aliases are expanded and mail delivered to the corresponding users.

• List the domain in the virtual_alias_domains parameter. This option
gives the domain its own addressing namespace that is independent of the
system’s user accounts. All addresses within the domain must be resolv-
able (through mapping) to real addresses outside of it.

• List the domain in the virtual_mailbox_domains parameter. As with the
virtual_alias_domains option, the domain has its own namespace. How-
ever, mail can be delivered to all mailboxes under a specified path, inde-
pendently of user accounts.

List the domain in only one of these three places. Choose carefully, because many
configuration elements depend on that choice. We have already reviewed the han-
dling of the mydestination method. The other options are discussed below.

Virtual alias domains

If a domain is listed as a value of the virtual_alias_domains parameter, mail to that
domain is accepted by Postfix and must be forwarded to an actual recipient either
on the local machine or elsewhere.

The forwarding for addresses in the virtual domain must be defined in a lookup
table included in the virtual_alias_maps parameter. Entries in the table have the
address in the virtual domain on the left side and the actual destination address on
the right.

An unqualified name on the right is interpreted as a username on the local machine.

Consider the following example from main.cf:

myorigin = cs.colorado.edu
mydestination = cs.colorado.edu
virtual_alias_domains = admin.com
virtual_alias_maps = hash:/etc/mail/admin.com/virtual

In /etc/mail/admin.com/virtual we could then have the lines:

postmaster@admin.com evi, david@admin.com
abuse@admin.com evi
david@admin.com david@schweikert.ch
evi@admin.com evi

Mail for evi@admin.com would be redirected to evi@cs.colorado.edu (myorigin is
appended) and would ultimately be delivered to the mailbox of user evi because
cs.colorado.edu is included in mydestination.

E
le

ct
ro

n
ic

 M
a

il

18.16 Postfix 631

Definitions can be recursive: the right hand side can contain addresses that are fur-
ther defined on the left hand side. Note that the right hand side can only be a list of
addresses. If you need to execute an external program or to use :include: files, then
redirect the email to an alias, which can then be expanded according to your needs.

To keep everything in one file, you can set virtual_alias_domains to the same
lookup table as virtual_alias_maps and put a special entry in the table to mark it as
a virtual alias domain. In main.cf:

virtual_alias_domains = $virtual_alias_maps
virtual_alias_maps = hash:/etc/mail/admin.com/virtual

In /etc/mail/admin.com/virtual:

admin.com notused
postmaster@admin.com evi, david@admin.com
...

The right hand side of the entry for the mail domain (admin.com) is never actually
used; admin.com’s existence in the table as an independent entry is enough to make
Postfix consider it a virtual alias domain.

Virtual mailbox domains

Domains listed under virtual_mailbox_domains are similar to local (canonical)
domains, but the list of users and their corresponding mailboxes must be managed
independently of the system’s user accounts.

The parameter virtual_mailbox_maps points to a table that lists all valid users in
the domain. The map format is

user@domain /path/to/mailbox

If the path ends with a slash, the mailboxes are stored in Maildir format. The value
of virtual_mailbox_base is always prefixed to the specified paths.

You may often want to alias some of the addresses in the virtual_mailbox_domain.
Use a virtual_alias_map to do this. Here is a complete example.

In main.cf:

virtual_mailbox_domains = admin.com
virtual_mailbox_base = /var/mail/virtual
virtual_mailbox_maps = hash:/etc/mail/admin.com/vmailboxes
virtual_alias_maps = hash:/etc/mail/admin.com/valiases

/etc/mail/admin.com/vmailboxes might contain entries like these:

evi@admin.com nemeth/evi/

/etc/mail/admin.com/valiases might contain:

postmaster@admin.com evi@admin.com

632 Chapter 18 – Electronic Mail

You can use virtual alias maps even on addresses that are not virtual alias domains.
Virtual alias maps let you redirect any address from any domain, independently of
the type of the domain (canonical, virtual alias, or virtual mailbox). Since mailbox
paths can only be put on the right hand side of the virtual mailbox map, use of this
mechanism is the only way to set up aliases in that domain.

Access control

Mail servers should relay mail for third parties only on behalf of trusted clients. If a
mail server forwards mail from unknown clients to other servers, it is a so-called
open relay, which is bad. See Relaying on page 589 for more details about this issue.

Fortunately, Postfix doesn’t act as an open relay by default. In fact, its defaults are
quite restrictive; you are more likely to need to liberalize the permissions than to
tighten them. Access control for SMTP transactions is configured in Postfix through
“access restriction lists.” The parameters shown in Table 18.24 control what should
be checked during the different phases of an SMTP session.

The most important parameter is smtpd_recipient_restrictions, since access con-
trol is most easily performed when the recipient address is known and can be iden-
tified as being local or not. All the other parameters in Table 18.24 are empty in the
default configuration. The default value is

smtpd_recipient_restrictions = permit_mynetworks, reject_unauth_destination

Each of the specified restrictions is tested in turn until a definitive decision about
what to do with the mail is reached. Table 18.25 shows the most common restrictions.

Table 18.24 Postfix parameters for SMTP access restriction

Parameter When applied

smtpd_client_restrictions On connection request
smtpd_helo_restrictions On HELO/EHLO command (start of the session)
smtpd_sender_restrictions On MAIL FROM command (sender specification)
smtpd_recipient_restrictions On RCPT TO command (recipient specification)
smtpd_data_restrictions On DATA command (mail body)
smtpd_etrn_restrictions On ETRN command a

a. This is a special command used for resending messages in the queue.

Table 18.25 Common Postfix access restrictions

Restriction Function

check_client_access Checks the client host address by using a lookup table
check_recipient_access Checks the recipient mail address by using a lookup table
permit_mynetworks Grants access to addresses listed in mynetworks
reject_unauth_destination Rejects mail for nonlocal recipients; no relaying

E
le

ct
ro

n
ic

 M
a

il

18.16 Postfix 633

Everything can be tested in these restrictions, not just specific information like the
sender address in the smtpd_sender_restrictions. Therefore, for simplicity, you
might want to put all the restrictions under a single parameter, which should be
smtpd_sender_restrictions since it is the only one that can test everything (except
the DATA part).

smtpd_recipient_restriction is where mail relaying is tested. You should keep the
reject_unauth_destination restriction, and carefully choose the “permit” restric-
tions before it.

Access tables

Each restriction returns one of the actions shown in Table 18.26. Access tables are
used in restrictions such as check_client_access and check_recipient_access to
select an action based on the client host address or recipient address, respectively.

As an example, suppose you wanted to allow relaying for all machines within the
cs.colorado.edu domain and that you wanted to allow only trusted clients to post to
the internal mailing list newsletter@cs.colorado.edu. You could implement these
policies with the following lines in main.cf:

smtpd_recipient_restrictions =
check_client_access hash:/etc/postfix/client_access
check_recipient_access hash:/etc/postfix/recipient_access
reject_unauth_destination

Note that commas are optional when the list of values for a parameter is specified.

Table 18.26 Actions for access tables

Action Meaning

4nn text Returns temporary error code 4nn and message text
5nn text Returns permanent error code 5nn and message text
DEFER_IF_PERMIT If restrictions result in PERMIT, changes it to a temp error
DEFER_IF_REJECT If restrictions result in REJECT, changes it to a temp error
DISCARD Accepts the message but silently discards it
DUNNO Pretends the key was not found; tests further restrictions
FILTER transport:dest Passes the mail through the filter transport:dest a

HOLD Blocks the mail in the queue
OK Accepts the mail
PREPEND header Adds a header to the message
REDIRECT addr Forwards this mail to a specified address
REJECT Rejects the mail
WARN message Enters the given warning message in the logs

a. See the section about spam and virus handling in Postfix starting on page 623.

634 Chapter 18 – Electronic Mail

In /etc/postfix/client_access:

.cs.colorado.edu OK

In /etc/postfix/recipient_access:

newsletter@cs.colorado.eduREJECT Internal list

The text after REJECT is an optional string that is sent to the client along with the
error code. It tells the sender why the mail was rejected.

Authentication of clients

For users sending mail from home, it is usually easiest to route outgoing mail
through the home ISP’s mail server, regardless of the sender address that appears on
that mail. Most ISPs trust their direct clients and allow relaying. If this configuration
isn’t possible or if you are using a system such as Sender ID or SPF, ensure that mobile
users outside your network can be authorized to submit messages to your smtpd.

One way to solve this problem is to piggyback on the authentication protocols used
by POP or IMAP. Users that need to send mail also need to read their mail, so a
single authentication step can serve to enable both processes.

The piggybacking system, called POP-before-SMTP or IMAP-before-SMTP, works
like this: as soon as a user has been authenticated by the POP or IMAP daemon, the
user’s IP address is explicitly whitelisted for SMTP for 30 minutes or so. The data-
base of whitelisted clients is maintained by a daemon dedicated to this task. The
configuration in Postfix looks like the following:

smtpd_recipient_restrictions = permit_mynetworks
check_client_access hash:/etc/postfix/pop-before-smtp
reject_unauth_destination

A nicer solution to this problem is to use the SMTP AUTH mechanism to authenti-
cate directly at the SMTP level. Postfix must be compiled with support for the SASL
library to make this work. You can then configure the feature like this:

smtpd_sasl_auth_enable = yes
smtpd_recipient_restrictions = reject_non_fqdn_recipient

permit_mynetworks
permit_sasl_authenticated

You also need to support encrypted connections to avoid sending passwords in clear
text. With Postfix versions before 2.2, patch the source with the Postfix/TLS patch.
Add lines like the following to main.cf:

smtpd_use_tls = yes
smtpd_tls_auth_only = yes
smtpd_tls_cert_file = /etc/certs/smtp.pem
smtpd_tls_key_file = $smtpd_tls_cert_file

Fighting spam and viruses

Postfix has many features that can help block suspicious email.

E
le

ct
ro

n
ic

 M
a

il

18.16 Postfix 635

One class of protection features calls for strict implementation of the SMTP proto-
col. Legitimate mail servers should respect the protocol, but spam and virus senders
often play fast and loose with it, thus giving themselves away. Unfortunately, broken
mailers handling legitimate mail are still out in the world, so this technique isn’t
quite foolproof. Choose restrictions carefully, and monitor the log files. Table 18.27
shows some of the features in this category.

To test a restriction before putting it in production (always a good idea), insert the
restriction warn_if_reject in front of it to convert the effect from outright rejection
to warning log messages.

Black hole lists

As with sendmail, you can instruct Postfix to check incoming email against a DNS-
based black hole list; see User or site blacklisting on page 594 for more details. To
enable this behavior, use the reject_rbl_client restriction followed by the address of
the DNS server to be consulted. A similar feature is reject_rhsbl_sender, which
checks the domain name of the sender’s address rather than the client’s hostname.

The following example represents a relatively complete spam-fighting configuration
from the main.cf file:

strict_rfc821_envelopes = yes
smtpd_helo_required = yes
smtpd_recipient_restrictions =reject_unknown_sender_domain

reject_non_fqdn_sender
reject_non_fqdn_recipient
permit_mynetworks

Table 18.27 Parameters and restrictions for strict SMTP protocol checking

Option Purpose

reject_non_fqdn_sender
reject_non_fqdn_recipient
reject_non_fqdn_hostname

Rejects messages without a fully qualified
sender domain, recipient domain or
HELO/EHLO hostname (restriction)

reject_unauth_pipelining Aborts the current session if the client
doesn’t wait to see the status of a command
before proceeding (restriction)

reject_unknown_sender_domain Rejects messages that have an unresolvable
sender domain (restriction)a

smtpd_helo_required Requires HELO/EHLO at the start of the con-
versation (parameter, either yes or no)

strict_rfc821_envelopes Requires correct syntax for email addresses in
the MAIL FROM and RCPT TO commands
(parameter, either yes or no)

a. Returns a temporary error message because the problem may result from a transient DNS glitch

636 Chapter 18 – Electronic Mail

check_client_access hash:/etc/postfix/client_access
reject_unauth_destination
reject_unauth_pipelining
reject_rbl_client relays.ordb.org
reject_rhsbl_sender dsn.rfc-ignorant.org

Note that we put some restrictions in front of permit_mynetworks. That tweak lets
us verify that our own clients are sending out correctly formatted mail. This is an
easy way to find out about configuration errors.

SpamAssassin and procmail

Postfix supports SpamAssassin and other filters of that ilk. See SpamAssassin on
page 598 and The local_procmail feature on page 585 for general information about
these tools.

procmail can be started from users’ .forward files, but that’s complicated and error
prone. A better solution is to put the following line in main.cf:

mailbox_command = /usr/bin/procmail -a "$EXTENSION"

Postfix then uses procmail to deliver mail instead of writing messages directly to
the mail spool. The arguments given to procmail pass the address extension (the
portion after the +); it can then be accessed in procmail as $1.

Policy daemons

Postfix version 2.1 introduced a mechanism for delegating access control to external
programs. These programs, called policy daemons, receive all the information that
Postfix has about an email message and must return one of the disposition actions
listed in Table 18.26 on page 633.

Perhaps the most interesting feature that can be implemented with such a policy
daemon is “greylisting.” Greylisting classifies each incoming message by the triplet
of client hostname, sender address, and recipient address. The first time a given
triplet is seen, Postfix returns a temporary error message to the sender. Legitimate
mail servers attempt redelivery after 10 minutes or so, at which time the message is
allowed in. Because the first redelivery attempt is usually made in a matter of min-
utes, mail is not unduly delayed.

Greylisting is similar in spirit to the Postfix features that require strict compliance
with the SMTP protocol. In the case of greylisting, the redelivery attempt itself con-
stitutes evidence of legitimate-mail-serverness. Greylisting has proved to be quite
effective at weeding out spam because many spam sources use unsophisticated soft-
ware that does not attempt redelivery.

Content filtering

Postfix can use regular expressions to check the headers and bodies of email mes-
sages for contraband. It can also pass messages to other programs such as dedicated
spam fighting tools or antivirus applications.

E
le

ct
ro

n
ic

 M
a

il

18.16 Postfix 637

Header and body checks are performed in real time as messages are accepted
through SMTP. Each regular expression that is checked invokes an action as speci-
fied in Table 18.26 on page 633 if the regex matches. For example, the line

header_checks = regexp:/etc/postfix/header_checks

in main.cf along with the following line in /etc/postfix/header_checks

/^Subject: reject-me/ REJECT You asked for it

would reject any message whose subject started with “reject-me”. Though regular
expression support is always nice, it provokes many caveats in the context of email
processing. In particular, this is not an effective method of spam or virus filtering.

Industrial-strength virus filtering is usually implemented through Amavis, a Perl
program that interfaces mail server software with one or more antivirus applica-
tions. Such filters are configured with Postfix’s content_filter parameter, which in-
structs Postfix to pass every incoming message once through the specified service.
In addition to setting the content_filter parameter, you must modify some existing
entries in the master.cf file and add some new ones. Amavis comes with detailed
instructions about how to do this. Many variants of Amavis are available: we recom-
mend amavisd-new by Mark Martinec.

Debugging

When you have a problem with Postfix, first check the log files. The answers to your
questions are most likely there; it’s just a question of finding them. Every Postfix
program normally issues a log entry for every message it processes. For example, the
trail of an outbound message might look like this:

Aug 18 22:41:33 nova postfix/pickup: 0E4A93688: uid=506
from=<dws@ee.ethz.ch>

Aug 18 22:41:33 nova postfix/cleanup: 0E4A93688: message-id=
<20040818204132.GA11444@ee.ethz.ch>

Aug 18 22:41:33 nova postfix/qmgr: 0E4A93688: from=<dws@ee.ethz.ch>,
size=577,nrcpt=1 (queue active)

Aug 18 22:41:33 nova postfix/smtp: 0E4A93688:
to=<evi@ee.ethz.ch>,relay=tardis.ee.ethz.ch[129.132.2.217],delay=0,
status=sent (250 Ok: queued as 154D4D930B)

Aug 18 22:41:33 nova postfix/qmgr: 0E4A93688: removed

As you can see, the interesting information is spread over many lines. Note that the
identifier 0E4A93688 is common to every line: Postfix assigns a queue ID as soon as
a message enters the mail system and never changes it. Therefore, when searching
the logs for the history of a message, first concentrate on determining the message’s
queue ID. Once you know that, it’s easy to grep the logs for all the relevant entries.

Postfix is good at logging helpful messages about problems that it notices. However,
it’s sometimes difficult to spot the important lines among the thousands of normal
status messages. This is a good place to consider using some of the tools discussed in
the section Condensing log files to useful information, which starts on page 220.

638 Chapter 18 – Electronic Mail

Looking at the queue

Another place to look for problems is the mail queue. As in the sendmail system, a
mailq command prints the contents of a queue. You can use it to see if and why a
message has become stuck.

Another helpful tool is the qshape script that’s shipped with recent Postfix versions.
It shows summary statistics about the contents of a queue. The output looks like this:

qshape deferred
T 5 10 20 40 80 160 320 640 1280 1280+

TOTAL 78 0 0 0 7 3 3 2 12 2 49
expn.com 34 0 0 0 0 0 0 0 9 0 25

chinabank.ph 5 0 0 0 1 1 1 2 0 0 0
prob-helper.biz 3 0 0 0 0 0 0 0 0 0 3

qshape summarizes the given queue (here, the deferred queue) sorted by recipient
domain. The columns report the number of minutes the relevant messages have been
in the queue. For example, you can see that 49 messages bound for expn.com have
been in the queue longer than 1280 minutes. All the destinations in this example are
suggestive of messages having been sent from vacation scripts in response to spam.

qshape can also summarize by sender domain with the -s flag.

Soft-bouncing

If soft_bounce is set to yes, Postfix sends temporary error messages whenever it
would normally send permanent error messages such as “user unknown” or “relay-
ing denied.” This is a great testing feature; it lets you monitor the disposition of mes-
sages after a configuration change without the risk of permanently losing legitimate
email. Anything you reject will eventually come back for another try. Don’t forget to
turn off this feature when you are done testing, however. Otherwise, you will have to
deal with every rejected message over and over again.

Testing access control

The easiest way to test access control restrictions is to try to send a message from an
outside host and see what happens. This is a good basic test, but it doesn’t cover
special conditions such as mail from a specific domain in which you have no login.

Postfix 2.1 introduced an extension to the SMTP protocol called XCLIENT that sim-
ulates submissions from another place. This feature is disabled by default, but with
the following configuration line in main.cf, you can enable it for connections origi-
nating from localhost :

smtpd_authorized_xclient_hosts = localhost

A testing session might look something like this:

$ telnet localhost 25
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.

E
le

ct
ro

n
ic

 M
a

il

18.17 Recommended reading 639

220 tardis.ee.ethz.ch ESMTP Postfix
XCLIENT NAME=mail.cs.colorado.edu ADDR=192.168.1.1
250 Ok
HELO mail.cs.colorado.edu
250 tardis.ee.ethz.ch
MAIL FROM: <evi@colorado.edu>
250 Ok
RCPT TO: <david@colorado.edu>
554 <david@colorado.edu>: Relay access denied

18.17 RECOMMENDED READING

COSTALES, BRYAN, and ERIC ALLMAN. sendmail (3rd Edition). Sebastopol, CA:
O’Reilly Media, 2002.

This book is the definitive tome—1,200 pages’ worth. It includes a tutorial as well as
a complete reference section. The book reads well in the open-to-a-random-page
mode, which we consider an important feature for a reference book. It has a good
index too.

CLAYTON, RICHARD. “Good Practice for Combating Unsolicited Bulk Email.”
RIPE/Demon Internet. 2000, www.ripe.net/ripe/docs/ripe-206.html

This document is aimed at ISPs. It has lots of policy information and some good
links to technical subjects.

SCHWARTZ, ALAN. SpamAssassin. Sebastopol, CA: O’Reilly Media, 2005.

SCHWARTZ, ALAN, AND PAULA FERGUSON. Managing Mailing Lists. Sebastopol, CA:
O’Reilly Media, 1998.

HAZEL, PHILIP. The Exim Smtp Mail Server: Official Guide for Release 4. Cambridge,
UK: User Interface Technologies, Ltd., 2003.

Exim documentation and information can also be found at www.exim.org.

The man page for sendmail describes its command-line arguments. See Sendmail:
An Internetwork Mail Router, by Eric Allman, for an overview.

Installation instructions and a good description of the configuration file are covered
in Sendmail Installation and Operation Guide, which can be found in the doc/op
subdirectory of the sendmail distribution. This document is quite complete, and in
conjunction with the README file in the cf directory, it gives a good nuts-and-bolts
view of the sendmail system.

www.sendmail.org, www.sendmail.org/~ca, and www.sendmail.org/~gshapiro all
contain sendmail-related documents, HOWTOs, and tutorials.

RFC2822, which supersedes RFC822, describes the syntax of messages and ad-
dresses in a networked mail system, and RFC1123 describes host requirements.
These are, in a sense, the functional specifications to which sendmail was built.

www.ripe.net/ripe/docs/ripe-206.html
www.exim.org
www.sendmail.org
www.sendmail.org/~ca
www.sendmail.org/~gshapiro

640 Chapter 18 – Electronic Mail

RFC2821, which supersedes RFC821, defines the Simple Mail Transport Protocol
(SMTP), and RFCs 1869, 1870, 1891, and 1985 extend it to ESMTP.

RFC974 describes MX records in the Domain Name System and their relationship to
mail routing. Other mail-related RFCs include:

• RFC1731 – IMAP4 Authentication Mechanisms

• RFC1733 – Distributed Electronic Mail Models in IMAP4

• RFC2033 – Local Mail Transfer Protocol

• RFC2076 – Common Internet Message Headers

• RFC2142 – Mailbox Names for Common Services, Roles and Functions

• RFC2505 – Anti-Spam Recommendations for SMTP MTAs

• RFC2635 – DON’T SPEW: Guidelines for Mass Unsolicited Mailings35

• RFC2821 – Simple Mail Transfer Protocol

• RFC2822 – Internet Message Format

• RFC4405 – SMTP Service Extension for Indicating Message Submitters35

• RFC4406 – Sender ID: Authenticating E-Mail

• RFC4408 – SPF for Authorizing Use of Domains in E-Mail, Version 1

• RFC4409 – Message Submission for Mail

RFCs 2821 (SMTP) and 2822 (Internet Message Format) tidy up some of the most
commonly referred-to email RFCs; they supersede RFCs 821, 822, 974, and 1869.
RFCs 2821 and 2822 were first published in April 2001 and are proposed standards.

18.18 EXERCISES

E18.1 [sendmail specific] Briefly list the differences and similarities between ge-
nericstable and virtusertable. In what situations would you use each?

E18.2 [sendmail specific] Compare the use of /etc/mail/aliases with the use
of an LDAP server to store mail aliases. What are the advantages and
disadvantages of each?

E18.3 Briefly explain the difference between a mail user agent (MUA), a delivery
agent (DA), and an access agent (AA). Then explain the difference between a
mail transport agent (MTA) and a mail submission agent (MSA).

E18.4 [sendmail specific] What is smrsh, and why should you use it instead
of /bin/sh? If smrsh is in use at your site, what programs are allowed to
run as the program mailer? Are any of them dangerously insecure?

E18.5 [sendmail specific] Write a small /etc/mail/aliases file that demon-
strates three different types of aliases. Talk briefly about what each line
does and why it could be useful.

35. Title paraphrased

E
le

ct
ro

n
ic

 M
a

il

18.18 Exercises 641

E18.6 Write a brief description of the following email header. What path did
the email take? To whom was it addressed, and to whom was it delivered?
How long did it take the email to go from the sender to the destination?

From clements@boulderlabs.com Fri Dec 28 17:06:57 2001
Return-Path: <clements@mail.boulderlabs.com>
Received: from boulder.Colorado.EDU (boulder.Colorado.EDU

[128.138.240.1]) by ucsub.colorado.edu (8.11.6/8.11.2/ITS-5.0/student)
with ESMTP idfBT06vF10618 for <hallcp@ucsub.Colorado.EDU>; Fri,
28 Dec 2001 17:06:57-0700 (MST)

Received: from mail.boulderlabs.com (mail.boulderlabs.com
[206.168.112.48]) by boulder.Colorado.EDU
(8.10.1/8.10.1/UnixOps+Hesiod (Boulder)) with ESMTP id
fBT06uL13184; Fri, 28 Dec 2001 17:06:56 -0700 (MST)

Received: from ath.boulderlabs.com (cpe-24-221-212-162.co.sprintbbd.net
[24.221.212.162]) by mail.boulderlabs.com (8.11.6/8.11.6) with ESMTP
id fBT06oQ29214 for <booklist@boulderlabs.com>; Fri, 28 Dec 2001
17:06:50 -0700 (MST) (envelope-from
clements@mail.boulderlabs.com)

From: David Clements <clements@boulderlabs.com>
Received: (from clements@localhost) by ath.boulderlabs.com

(8.11.6/8.11.4) id fBT06ma01470 for booklist@boulderlabs.com; Fri,
28 Dec 2001 17:06:48 -0700 (MST) (envelope-from clements)

Date: Fri, 28 Dec 2001 17:06:48 -0700 (MST)
Message-Id: <200112290006.fBT06ma01470@ath.boulderlabs.com>
To: boolist@boulderlabs.com
Subject: Book Questions

E18.7 [sendmail specific] List the prefixes for files in the mail queue directory
and explain what each one means. Why is it important to delete some
queue files but very wrong to delete others? How can some of the pre-
fixes be used to debug sendmail configuration mistakes?

E18.8 Look at the mailq on your campus mail server. Is there any cruft in the
directory? Are there any messages with no control files or control files
with no messages? What is the oldest message in the queue? (Requires
root access.)

E18.9 [sendmail specific] Explain the purpose of each of the following m4
macros. If the macro includes a file, provide a short description of what
the contents of the file should be.

a) VERSIONID
b) OSTYPE
c) DOMAIN
d) MAILER
e) FEATURE

Exercises are continued on the next page.

642 Chapter 18 – Electronic Mail

E18.10 Explain what an MX record is. Why are MX records important for mail
delivery? Give an example in which a misconfigured MX record might
make mail undeliverable.

E18.11 What are the implications of being blacklisted on sbl-xbl.spamhaus.org
or a similar spam black hole list? Outline some techniques used to stay
off such lists.

E18.12 If your site allows procmail and if you have permission from your local
sysadmin group, set up your personal procmail configuration file to il-
lustrate how procmail can compromise security.

E18.13 Explore the current MTA configuration at your site. What are some of
the special features of the MTA that are in use? Can you find any prob-
lems with the configuration? In what ways could the configuration be
made better?

E18.14 Find a piece of spam in your mailbox and inspect the headers. Report
any signs that the mail has been forged. Then run some of the tools
mentioned in this chapter, such as SpamCop or SpamAssassin, and re-
port their findings. How did you do at recognizing faked headers? Sub-
mit the spam and your conclusions about the sender, the validity of the
listed hosts, and anything else that looks out of place.

643

N
e

tw
o

rk
 M

a
n

a
g

e
m

e
n

t

19 Network Management and
Debugging

Because networks increase the number of interdependencies among machines, they
tend to magnify problems. As the saying goes, “Networking is when you can’t get any
work done because of the failure of a machine you have never even heard of.”

Network management is the art and science of keeping a network healthy. It gener-
ally includes the following tasks:

• Fault detection for networks, gateways, and critical servers

• Schemes for notifying an administrator of problems

• General monitoring, to balance load and plan expansion

• Documentation and visualization of the network

• Administration of network devices from a central site

On a single network segment, it is generally not worthwhile to establish formal pro-
cedures for network management. Just test the network thoroughly after installation,
and check it occasionally to be sure that its load is not excessive. When it breaks, fix it.

As your network grows, management procedures should become more automated.
On a network consisting of several different subnets joined with switches or routers,
you may want to start automating management tasks with shell scripts and simple
programs. If you have a WAN or a complex local network, consider installing a ded-
icated network management station.

In some cases, your organization’s reliability needs dictate the sophistication of your
network management system. A problem with the network can bring all work to a
standstill. If your site cannot tolerate downtime, it may well be worthwhile to ob-
tain and install a high-end enterprise network management system.

Network Management

644 Chapter 19 – Network Management and Debugging

Unfortunately, even the best network management system cannot prevent all failures.
It is critical to have a well-documented network and a high-quality staff available to
handle the inevitable collapses.

19.1 NETWORK TROUBLESHOOTING

Several good tools are available for debugging a network at the TCP/IP layer. Most
give low-level information, so you must understand the main ideas of TCP/IP and
routing in order to use the debugging tools.

On the other hand, network issues can also stem from problems with higher-level
protocols such as DNS, NFS, and HTTP. You might want to read through Chapter 12,
TCP/IP Networking, and Chapter 13, Routing, before tackling this chapter.

In this section, we start with some general troubleshooting strategy. We then cover
several essential tools, including ping, traceroute, netstat, tcpdump, and Wire-
shark. We don’t discuss the arp command in this chapter, though it, too, is a useful
debugging tool—see page 296 for more information.

Before you attack your network, consider these principles:

• Make one change at a time, and test each change to make sure that it had
the effect you intended. Back out any changes that have an undesired effect.

• Document the situation as it was before you got involved, and document
every change you make along the way.

• Start at one “end” of a system or network and work through the system’s
critical components until you reach the problem. For example, you might
start by looking at the network configuration on a client, work your way up
to the physical connections, investigate the network hardware, and finally,
check the server’s physical connections and software configuration.

• Communicate regularly. Most network problems involve or affect lots of
different people: users, ISPs, system administrators, telco engineers, net-
work administrators, etc. Clear, consistent communication prevents you
from hindering one another’s efforts to solve the problem.

• Work as a team. Years of experience show that people make fewer stupid
mistakes if they have a peer helping out.

• Use the layers of the network to negotiate the problem. Start at the “top” or
“bottom” and work your way through the protocol stack.

This last point deserves a bit more discussion. As described on page 275, the archi-
tecture of TCP/IP defines several layers of abstraction at which components of the
network can function. For example, HTTP depends on TCP, TCP depends on IP, IP
depends on the Ethernet protocol, and the Ethernet protocol depends on the integ-
rity of the network cable. You can dramatically reduce the amount of time spent de-
bugging a problem if you first figure out which layer is misbehaving.

N
e

tw
o

rk
 M

a
n

a
g

e
m

e
n

t

19.2 ping: check to see if a host is alive 645

Ask yourself questions like these as you work up (or down) the stack:

• Do you have physical connectivity and a link light?

• Is your interface configured properly?

• Do your ARP tables show other hosts?

• Can you ping the localhost address (127.0.0.1)?

• Can you ping other local hosts by IP address?

• Is DNS working properly?1

• Can you ping other local hosts by hostname?

• Can you ping hosts on another network?

• Do high-level services like web and SSH servers work?

Once you’ve identified where the problem lies, take a step back and consider the effect
your subsequent tests and prospective fixes will have on other services and hosts.

19.2 PING: CHECK TO SEE IF A HOST IS ALIVE

The ping command is embarrassingly simple, but in many situations it is all you
need. It sends an ICMP ECHO_REQUEST packet to a target host and waits to see if
the host answers back. Despite its simplicity, ping is one of the workhorses of net-
work debugging.

You can use ping to check the status of individual hosts and to test segments of the
network. Routing tables, physical networks, and gateways are all involved in process-
ing a ping, so the network must be more or less working for ping to succeed. If ping
doesn’t work, you can be pretty sure that nothing more sophisticated will work either.
However, this rule does not apply to networks that block ICMP echo requests with a
firewall. Make sure that a firewall isn’t interfering with your debugging before you
conclude that the target host is ignoring a ping. You might consider disabling a med-
dlesome firewall for a short period of time to facilitate debugging.

ping runs in an infinite loop unless you supply a packet count argument. Once
you’ve had your fill of pinging, type the interrupt character (usually <Control-C>)
to get out.

Here’s an example:

$ ping beast
PING beast (10.1.1.46): 56 bytes of data.
64 bytes from beast (10.1.1.46): icmp_seq=0 ttl=54 time=48.3ms
64 bytes from beast (10.1.1.46): icmp_seq=1 ttl=54 time=46.4ms
64 bytes from beast (10.1.1.46): icmp_seq=2 ttl=54 time=88.7ms
^C
--- beast ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2026ms
rtt min/avg/max/mdev = 46.490/61.202/88.731/19.481 ms

1. If your machine hangs at boot time, boots very slowly, or hangs on inbound SSH connections, DNS
should be your prime suspect.

646 Chapter 19 – Network Management and Debugging

The output for beast shows the host’s IP address, the ICMP sequence number of each
response packet, and the round trip travel time. The most obvious thing that the out-
put above tells you is that the server beast is alive and connected to the network.

On a healthy network, ping can allow you to determine if a host is down. Conversely,
when a remote host is known to be up and in good working order, ping can give you
useful information about the health of the network. Ping packets are routed by the
usual IP mechanisms, and a successful round trip means that all networks and gate-
ways lying between the source and destination are working correctly, at least to a first
approximation.

The ICMP sequence number is a particularly valuable piece of information. Discon-
tinuities in the sequence indicate dropped packets; they’re normally accompanied
by a message for each missing packet. Despite the fact that IP does not guarantee the
delivery of packets, a healthy network should drop very few of them. Lost-packet
problems are important to track down because they tend to be masked by higher-
level protocols. The network may appear to function correctly, but it will be slower
than it ought to be, not only because of the retransmitted packets but also because of
the protocol overhead needed to detect and manage them.

To track down the cause of disappearing packets, first run traceroute (see the next
section) to discover the route that packets are taking to the target host. Then ping the
intermediate gateways in sequence to discover which link is dropping packets. To pin
down the problem, you need to send a statistically significant number of packets. The
network fault generally lies on the link between the last gateway that you can ping
without significant loss of packets and the gateway beyond it.

The round trip time reported by ping gives you insight into the overall performance
of a path through a network. Moderate variations in round trip time do not usually
indicate problems. Packets may occasionally be delayed by tens or hundreds of mil-
liseconds for no apparent reason; that’s just the way IP works. You should expect to
see a fairly consistent round trip time for the majority of packets, with occasional
lapses. Many of today’s routers implement rate-limited or lower-priority responses
to ICMP packets, which means that a router may delay responding to your ping if it
is already dealing with a lot of other traffic.

The ping program can send echo request packets of any size, so by using a packet
larger than the MTU of the network (1,500 bytes for Ethernet), you can force frag-
mentation. This practice helps you identify media errors or other low-level issues
such as problems with a congested network or VPN. To specify the desired packet
size in bytes, use the -s flag.

$ ping -s 1500 cuinfo.cornell.edu

Use the ping command with the following caveats in mind.

First, it is hard to distinguish the failure of a network from the failure of a server
with only the ping command. In an environment where ping tests normally work, a

N
e

tw
o

rk
 M

a
n

a
g

e
m

e
n

t

19.3 traceroute: trace IP packets 647

failed ping just tells you that something is wrong. (Network firewalls sometimes in-
tentionally block ICMP packets.)

Second, a successful ping does not guarantee much about the target machine’s state.
Echo request packets are handled within the IP protocol stack and do not require a
server process to be running on the probed host. A response guarantees only that a
machine is powered on and has not experienced a kernel panic. You’ll need higher-
level methods to verify the availability of individual services such as HTTP and DNS.

19.3 TRACEROUTE: TRACE IP PACKETS

traceroute, originally written by Van Jacobson, uncovers the sequence of gateways
through which an IP packet travels to reach its destination. All modern operating
systems come with some version of traceroute. The syntax is simply

traceroute hostname

There are a variety of options, most of which are not important in daily use. As usual,
the hostname can be specified with either a DNS name or an IP address. The output
is simply a list of hosts, starting with the first gateway and ending at the destination.

For example, a traceroute from the host jaguar to the host nubark produces the
following output:

$ traceroute nubark
traceroute to nubark (192.168.2.10), 30 hops max, 38 byte packets
 1 lab-gw (172.16.8.254) 0.840 ms 0.693 ms 0.671 ms
 2 dmz-gw (192.168.1.254) 4.642 ms 4.582 ms 4.674 ms
 3 nubark (192.168.2.10) 7.959 ms 5.949 ms 5.908 ms

From this output we can tell that jaguar is exactly three hops away from nubark, and
we can see which gateways are involved in the connection. The round trip time for
each gateway is also shown—three samples for each hop are measured and displayed.
A typical traceroute between Internet hosts often includes more than 15 hops.

traceroute works by setting the time-to-live field (TTL, actually “hop count to live”)
of an outbound packet to an artificially low number. As packets arrive at a gateway,
their TTL is decreased. When a gateway decreases the TTL to 0, it discards the packet
and sends an ICMP “time exceeded” message back to the originating host.

See page 396 for more
information about
reverse DNS lookups.

The first three traceroute packets have their TTL set to 1. The first gateway to see
such a packet (lab-gw in this case) determines that the TTL has been exceeded and
notifies jaguar of the dropped packet by sending back an ICMP message. The sender’s
IP address in the header of the error packet identifies the gateway; traceroute looks
up this address in DNS to find the gateway’s hostname.

To identify the second-hop gateway, traceroute sends out a second round of packets
with TTL fields set to 2. The first gateway routes the packets and decreases their TTL
by 1. At the second gateway, the packets are then dropped and ICMP error messages

648 Chapter 19 – Network Management and Debugging

are generated as before. This process continues until the TTL is equal to the number
of hops to the destination host and the packets reach their destination successfully.

Most routers send their ICMP messages from the interface “closest” to your host. If
you run traceroute backwards from the destination host, you will probably see dif-
ferent IP addresses being used to identify the same set of routers. You might also see
completely different paths; this configuration is known as “asymmetric routing.”

Since traceroute sends three packets for each value of the TTL field, you may some-
times observe an interesting artifact. If an intervening gateway multiplexes traffic
across several routes, the packets might be returned by different hosts; in this case,
traceroute simply prints them all.

Let’s look at a more interesting example from a host at colorado.edu to xor.com:

rupertsberg$ traceroute xor.com
traceroute to xor.com (192.225.33.1), 30 hops max, 38 byte packets
 1 cs-gw3-faculty.cs.colorado.edu (128.138.236.3) 1.362 ms 2.144 ms 2.76 ms
 2 cs-gw-dmz.cs.colorado.edu (128.138.243.193) 2.720 ms 4.378 ms 5.052 ms
 3 engr-cs.Colorado.EDU (128.138.80.141) 5.587 ms 2.454 ms 2.773 ms
 4 hut-engr.Colorado.EDU (128.138.80.201) 2.743 ms 5.643 ms 2.772 ms
 5 cuatm-gw.Colorado.EDU (128.138.80.2) 5.587 ms 2.784 ms 2.777 ms
 6 204.131.62.6 (204.131.62.6) 5.585 ms 3.464 ms 2.761 ms
 7 border-from-BRAN.coop.net (199.45.134.81) 5.593 ms 6.433 ms 5.521 ms
 8 core-gw-eth-2-5.coop.net (199.45.137.14) 53.806 ms * 19.202 ms
 9 xor.com (192.225.33.1) 16.838 ms 15.972 ms 11.204 ms

This output shows that packets must traverse five internal gateways before leaving
the colorado.edu network (cs-gw3-faculty to cuatm-gw). The next-hop gateway on
the BRAN network (204.131.62.6) doesn’t have a name in DNS. After two hops in
coop.net, we arrive at xor.com.

At hop 8, we see a star in place of one of the round trip times. This notation means
that no response (error packet) was received in response to the probe. In this case,
the cause is probably congestion, but that is not the only possibility. traceroute re-
lies on low-priority ICMP packets, which many routers are smart enough to drop in
preference to “real” traffic. A few stars shouldn’t send you into a panic.

If you see stars in all the round trip time fields for a given gateway, no “time ex-
ceeded” messages are arriving from that machine. Perhaps the gateway is simply
down. Sometimes, a gateway or firewall is configured to silently discard packets
with expired TTLs. In this case, you can still see through the silent host to the gate-
ways beyond. Another possibility is that the gateway’s error packets are slow to re-
turn and that traceroute has stopped waiting for them by the time they arrive.

Some firewalls block ICMP “time exceeded” messages entirely. If one such firewall
lies along the path, you won’t get information about any of the gateways beyond it.
However, you can still determine the total number of hops to the destination be-
cause the probe packets eventually get all the way there. Also, some firewalls may

N
e

tw
o

rk
 M

a
n

a
g

e
m

e
n

t

19.4 netstat: get network statistics 649

block the outbound UDP datagrams that traceroute sends to trigger the ICMP re-
sponses. This problem causes traceroute to report no useful information at all.

A slow link does not necessarily indicate a malfunction. Some physical networks have
a naturally high latency; 802.11 wireless networks are a good example. Sluggishness
can also be a sign of congestion on the receiving network, especially if the network
uses a CSMA/CD technology that makes repeated attempts to transmit a packet
(Ethernet is one example). Inconsistent round trip times would support such a hy-
pothesis, since collisions increase the randomness of the network’s behavior.

Sometimes, you may see the notation !N instead of a star or round trip time. It indi-
cates that the current gateway sent back a “network unreachable” error, meaning that
it doesn’t know how to route your packet. Other possibilities include !H for “host
unreachable” and !P for “protocol unreachable.” A gateway that returns any of these
error messages is usually the last hop you can get to. That host usually has a routing
problem (possibly caused by a broken link): either its static routes are wrong or dy-
namic protocols have failed to propagate a usable route to the destination.

If traceroute doesn’t seem to be working for you (or is working noticeably slowly), it
may be timing out while trying to resolve the hostnames of gateways by using DNS.
If DNS is broken on the host you are tracing from, use traceroute -n to request nu-
meric output. This option prevents the use of DNS; it may be the only way to get
traceroute to function on a crippled network.

19.4 NETSTAT: GET NETWORK STATISTICS

netstat collects a wealth of information about the state of your computer’s network-
ing software, including interface statistics, routing information, and connection ta-
bles. There isn’t really a unifying theme to the different sets of output, except that
they all relate to the network. Think of netstat as the “kitchen sink” of network
tools—it exposes a variety of network information that doesn’t fit anywhere else.
Here, we discuss the five most common uses of netstat:

• Inspecting interface configuration information

• Monitoring the status of network connections

• Identifying listening network services

• Examining the routing table

• Viewing operational statistics for various network protocols

Inspecting interface configuration information

netstat -i displays information about the configuration and state of each of the host’s
network interfaces. You can run netstat -i as a good way to familiarize yourself with
a new machine’s network setup. Add the -e option for additional details.

650 Chapter 19 – Network Management and Debugging

For example:

$ netstat -i -e
Kernel Interface table
eth0 Link encap:Ethernet HWaddr 00:02:B3:19:C8:82

inet addr:192.168.2.1 Bcast:192.168.2.255 Mask:255.255.255.0
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:1121527 errors:0 dropped:0 overruns:0 frame:0
TX packets:1138477 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:100
Interrupt:7 Base address:0xef00

eth1 Link encap:Ethernet HWaddr 00:02:B3:19:C6:86
inet addr:192.168.1.13 Bcast:192.168.1.255 Mask:255.255.255.0
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:67543 errors:0 dropped:0 overruns:0 frame:0
TX packets:69652 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:100
Interrupt:5 Base address:0xed00

lo Link encap:Local Loopback
inet addr:127.0.0.1 Mask:255.0.0.0
UP LOOPBACK RUNNING MTU:3924 Metric:1
RX packets:310572 errors:0 dropped:0 overruns:0 frame:0
TX packets:310572 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:0

This host has two network interfaces: one for regular traffic plus a second connec-
tion for system management named eth1. RX packets and TX packets report the
number of packets that have been received and transmitted on each interface since
the machine was booted. Many different types of errors are counted in the error
buckets, and it is normal for a few to show up.

Errors should be less than 1% of the associated packets. If your error rate is high,
compare the rates of several neighboring machines. A large number of errors on a
single machine suggests a problem with that machine’s interface or connection. A
high error rate everywhere most likely indicates a media or network problem. One of
the most common causes of a high error rate is an Ethernet speed or duplex mis-
match caused by a failure of autosensing or autonegotiation.

Collisions suggest a loaded network; errors often indicate cabling problems. Al-
though a collision is a type of error, it is counted separately by netstat. The field
labeled Collisions reports the number of collisions that were experienced while
packets were being sent.2 Use this number to calculate the percentage of output pack-
ets (TX packets) that result in collisions. On a properly functioning network, colli-
sions should be less than 3% of output packets, and anything over 10% indicates
serious congestion problems. Collisions should never occur on a full-duplex link
that is operating properly.

2. This field has meaning only on CSMA/CD-based networks such as Ethernet.

N
e

tw
o

rk
 M

a
n

a
g

e
m

e
n

t

19.4 netstat: get network statistics 651

Monitoring the status of network connections

With no arguments, netstat displays the status of active TCP and UDP ports. Inac-
tive (“listening”) servers waiting for connections aren’t normally shown; they can be
seen with netstat -a.3 The output looks like this:

$ netstat -a
Active Internet connections (servers and established)
Proto Recv-Q Send-Q Local Address ForeignAddress State
tcp 0 0 *:ldap *:* LISTEN
tcp 0 0 *:mysql *:* LISTEN
tcp 0 0 *:imaps *:* LISTEN
tcp 0 0 bull:ssh dhcp-32hw:4208 ESTABLISHED
tcp 0 0 bull:imaps nubark:54195 ESTABLISHED
tcp 0 0 bull:http dhcp-30hw:2563 ESTABLISHED
tcp 0 0 bull:imaps dhcp-18hw:2851 ESTABLISHED
tcp 0 0 *:http *:* LISTEN
tcp 0 0 bull:37203 baikal:mysql ESTABLISHED
tcp 0 0 *:ssh *:* LISTEN…
...

This example is from the host otter, and it has been severely pruned; for example,
UDP and UNIX socket connections are not displayed. The output above shows an
inbound SSH connection, two inbound IMAPS connections, one inbound HTTP
connection, an outbound MySQL connection, and a bunch of ports listening for
other connections.

Addresses are shown as hostname.service, where the service is a port number. For
well-known services, netstat shows the port symbolically, using the mapping de-
fined in the /etc/services file. You can obtain numeric addresses and ports with the
-n option. As with most network debugging tools, if your DNS is broken, netstat is
painful to use without the -n flag.

Send-Q and Recv-Q show the sizes of the send and receive queues for the connec-
tion on the local host; the queue sizes on the other end of a TCP connection might be
different. They should tend toward 0 and at least not be consistently nonzero. Of
course, if you are running netstat over a network terminal, the send queue for your
connection may never be 0.

The connection state has meaning only for TCP; UDP is a connectionless protocol.
The most common states you’ll see are ESTABLISHED for currently active connec-
tions, LISTEN for servers waiting for connections (not normally shown without -a),
and TIME_WAIT for connections in the process of closing.

This display is primarily useful for debugging higher-level problems once you have
determined that basic networking facilities are working correctly. It lets you verify
that servers are set up correctly and facilitates the diagnosis of certain types of mis-
communication, particularly with TCP. For example, a connection that stays in state

3. Connections for “UNIX domain sockets” are also shown, but since they aren’t related to networking,
we do not discuss them here.

652 Chapter 19 – Network Management and Debugging

SYN_SENT identifies a process that is trying to contact a nonexistent or inaccessible
network server.

See Chapter 28 for
more information
about kernel tuning.

If netstat shows a lot of connections in the SYN_WAIT condition, your host proba-
bly cannot handle the number of connections being requested. This inadequacy
may be due to kernel tuning limitations or even to malicious flooding.

Identifying listening network services

One common question in this security-conscious era is “What processes on this ma-
chine are listening on the network for incoming connections?” netstat -a shows all
the ports that are actively listening (any TCP port in state LISTEN, and potentially
any UDP port), but on a busy machine those lines can get lost in the noise of estab-
lished TCP connections. Use netstat -l to see only the listening ports. The output
format is the same as for netstat -a.

You can add the -p flag to make netstat identify the specific process associated with
each listening port. The sample output below shows three common services (sshd,
sendmail, and named), followed by an unusual one:

$ netstat -lp
...
tcp 0 0 0.0.0.0:22 0.0.0.0:* LISTEN 23858/sshd
tcp 0 0 0.0.0.0:25 0.0.0.0:* LISTEN 10342/sendmail
udp 0 0 0.0.0.0:53 0.0.0.0:* 30016/named
udp 0 0 0.0.0.0:962 0.0.0.0:* 38221/mudd
...

Here, mudd with PID 38221 is listening on UDP port 962. Depending on your site’s
policy regarding user-installed software, you might want to follow up on this one.

Examining the routing table

netstat -r displays the kernel’s routing table. The following sample is from a Red Hat
machine with two network interfaces. (The output varies slightly among Linux dis-
tributions.)

$ netstat -rn
Kernel IP routing table
Destination Gateway Genmask Flags MSS Window irtt Iface
192.168.1.0 0.0.0.0 255.255.255.0 U 0 0 0 eth0
10.2.5.0 0.0.0.0 255.255.255.0 U 0 0 0 eth1
127.0.0.0 0.0.0.0 255.0.0.0 U 0 0 0 lo
0.0.0.0 192.168.1.254 0.0.0.0 UG 0 0 40 eth0
…

Destinations and gateways can be displayed either as hostnames or as IP addresses;
the -n flag requests numeric output.

See page 294 for more
information about the
routing table.

The Flags characterize the route: U means up (active), G is a gateway, and H is a host
route. U, G, and H together indicate a host route that passes through an intermediate
gateway. The D flag (not shown) indicates a route resulting from an ICMP redirect.

N
e

tw
o

rk
 M

a
n

a
g

e
m

e
n

t

19.4 netstat: get network statistics 653

The remaining fields give statistics on the route: the current number of TCP connec-
tions using the route, the number of packets sent, and the interface used.

Use this form of netstat to check the health of your system’s routing table. It’s partic-
ularly important to verify that the system has a default route and that this route is
correct. The default route is represented by an all-0 destination address (0.0.0.0). It
is possible not to have a default route entry, but such a configuration would be
highly atypical.

Viewing operational statistics for network protocols

netstat -s dumps the contents of counters that are scattered throughout the network
code. The output has separate sections for IP, ICMP, TCP, and UDP. Below are pieces
of netstat -s output from a typical server; they have been edited to show only the
tastiest pieces of information.

Ip:
671349985 total packets received
0 forwarded
345 incoming packets discarded
667912993 incoming packets delivered
589623972 requests sent out
60 dropped because of missing route
203 fragments dropped after timeout

Be sure to check that packets are not being dropped or discarded. It is acceptable for
a few incoming packets to be discarded, but a quick rise in this metric usually indi-
cates a memory shortage or some other resource problem.

Icmp:
242023 ICMP messages received
912 input ICMP message failed.
ICMP input histogram:

destination unreachable: 72120
timeout in transit: 573
echo requests: 17135
echo replies: 152195

66049 ICMP messages sent
0 ICMP messages failed
ICMP output histogram:

destination unreachable: 48914
echo replies: 17135

In this example, the number of echo requests in the input section matches the num-
ber of echo replies in the output section. Note that “destination unreachable” mes-
sages can still be generated even when all packets are apparently forwardable. Bad
packets eventually reach a gateway that rejects them, and error messages are then
sent back along the gateway chain.

654 Chapter 19 – Network Management and Debugging

Tcp:
4442780 active connections openings
1023086 passive connection openings
50399 failed connection attempts
0 connection resets received
44 connections established
666674854 segments received
585111784 segments send out
107368 segments retransmited
86 bad segments received.
3047240 resets sent

Udp:
4395827 packets received
31586 packets to unknown port received.
0 packet receive errors
4289260 packets sent

It’s a good idea to develop a feel for the normal ranges of these statistics so that you
can recognize pathological states.

19.5 SAR: INSPECT LIVE INTERFACE ACTIVITY

One good way to identify network problems is to look at what’s happening right
now. How many packets were sent in the last five minutes on a given interface? How
many bytes? Are collisions or other errors occurring? You can answer all these ques-
tions by watching live interface activity.

On traditional UNIX systems, netstat -i is the tool of choice for this role. Unfortu-
nately, netstat’s ability to report on live interface activity is broken under Linux. We
recommend a completely different tool: sar. (We discuss sar from the perspective of
general system monitoring on page 816.) Most distributions don’t install sar by de-
fault, but it’s always available as an optional package.

To make sar report on interface activity every two seconds for a period of one
minute (i.e., 30 reports), use the syntax sar -n DEV 2 30. The DEV argument is a
literal keyword, not a placeholder for a device or interface name.

The output includes instantaneous and average readings of network interface utili-
zation in terms of bytes and packets. The sample below is from a Red Hat machine
with two physical interfaces. The second physical interface (eth1) is clearly not in use.

17:50:43 IFACE rxpck/s txpck/s rxbyt/s txbyt/s rxcmp/s txcmp/s rxmcst/s
17:50:45 lo 3.61 3.61 263.40 263.40 0.00 0.00 0.00
17:50:45 eth0 18.56 11.86 1364.43 1494.33 0.00 0.00 0.52
17:50:45 eth1 0.00 0.00 0.00 0.00 0.00 0.00 0.00

The first two columns state the time at which the data was sampled and the names of
the network interfaces. The next two columns show the number of packets received
and transmitted, respectively. The rxbyt/s and txbyt/s columns are probably the
most useful since they show the actual bandwidth in use. The final three columns
give statistics on compressed (rxcmp/s, txcmp/s) and multicast (rxmcst/s) packets.

N
e

tw
o

rk
 M

a
n

a
g

e
m

e
n

t

19.6 Packet sniffers 655

sar -n DEV is especially useful for tracking down the source of errors. ifconfig can
alert you to the existence of problems, but it can’t tell you whether the errors came
from a continuous, low-level problem or from a brief but catastrophic event. Ob-
serve the network over time under a variety of load conditions to solidify your im-
pression of what’s going on. Try running ping with a large packet payload (size)
while you watch the output of sar -n DEV.

19.6 PACKET SNIFFERS

tcpdump and Wireshark belong to a class of tools known as packet sniffers. They
listen to the traffic on a network and record or print packets that meet certain crite-
ria specified by the user. For example, all packets sent to or from a particular host or
TCP packets related to one particular network connection could be inspected.

Packet sniffers are useful both for solving problems you know about and for discov-
ering entirely new problems. It’s a good idea to take an occasional sniff of your net-
work to make sure the traffic is in order.

Packet sniffers need to be able to intercept traffic that the local machine would not
normally receive (or at least, pay attention to), so the underlying network hardware
must allow access to every packet. Broadcast technologies such as Ethernet work fine,
as do most other modern local area networks.

See page 355 for more
information about net-
work switches.

Since packet sniffers need to see as much of the raw network traffic as possible, they
can be thwarted by network switches, which by design try to limit the propagation
of “unnecessary” packets. However, it can still be informative to try out a sniffer on
a switched network. You may discover problems related to broadcast or multicast
packets. Depending on your switch vendor, you may be surprised at how much traf-
fic you can see.

The interface hardware, in addition to having potential access to all network pack-
ets, must transport those packets up to the software layer. Packet addresses are nor-
mally checked in hardware, and only broadcast/multicast packets and those ad-
dressed to the local host are relayed to the kernel. In “promiscuous mode,” an
interface lets the kernel read all packets on the network, even the ones intended for
other hosts.

Packet sniffers understand many of the packet formats used by standard network
services, and they can often print these packets in a human-readable form. This ca-
pability makes it easier to track the flow of a conversation between two programs.
Some sniffers print the ASCII contents of a packet in addition to the packet header
and so are useful for investigating high-layer protocols. Since some of these proto-
cols send information (and even passwords) across the network as cleartext, you
must take care not to invade the privacy of your users.

Each of our example distributions comes with a packet sniffer. A sniffer must read
data from a raw network device, so it must run as root. Although the root limitation
serves to decrease the chance that normal users will listen in on your network traffic,

656 Chapter 19 – Network Management and Debugging

it is really not much of a barrier. Some sites choose to remove sniffer programs from
most hosts to reduce the chance of abuse. If nothing else, you should check your
systems’ interfaces to be sure they are not running in promiscuous mode without
your knowledge or consent. On Linux systems, an interface in promiscuous mode
shows the flag PROMISC in its ifconfig status output. You can also use tools such as
PromiScan (available from www.securityfriday.com) to check your network for in-
terfaces running in promiscuous mode.

tcpdump: king of sniffers

tcpdump, yet another amazing network tool by Van Jacobson, is included in most
Linux distributions. tcpdump has long been the industry-standard sniffer; most
other network analysis tools read and write trace files in “tcpdump format.”

By default, tcpdump tunes in on the first network interface it comes across. If it
chooses the wrong interface, you can force an interface with the -i flag. If DNS is
broken or you just don’t want tcpdump doing name lookups, use the -n option. This
option is important because slow DNS service can cause the filter to start dropping
packets before they can be dealt with by tcpdump. The -v flag increases the informa-
tion you see about packets, and -vv gives you even more data. Finally, tcpdump can
store packets to a file with the -w flag and can read them back in with the -r flag.

For example, the following truncated output comes from the machine named
nubark. The filter specification host bull limits the display of packets to those that
directly involve the machine bull, either as source or as destination.

sudo tcpdump host bull
12:35:23.519339 bull.41537 > nubark.domain: A? atrust.com. (28) (DF)
12:35:23.519961 nubark.domain > bull.41537: A 66.77.122.161 (112) (DF)

The first packet shows the host bull sending a DNS lookup request about atrust.com
to nubark. The response is the IP address of the machine associated with that name,
which is 66.77.122.161. Note the time stamp on the left and tcpdump’s understand-
ing of the application-layer protocol (in this case, DNS). The port number on bull is
arbitrary and is shown numerically (41537), but since the server port number (53)
is well known, tcpdump shows its symbolic name (“domain”) instead.

Packet sniffers can produce an overwhelming amount of information—overwhelm-
ing not only for you but also for the underlying operating system. To avoid this
problem on busy networks, tcpdump lets you specify fairly complex filters. For ex-
ample, the following filter collects only incoming web traffic from a specific subnet:

sudo tcpdump src net 192.168.1.0/24 and dst port 80

The tcpdump man page contains several good examples of advanced filtering along
with a complete listing of primitives.4

4. If your filtering needs exceed tcpdump’s capabilities, consider ngrep, which can filter packets accord-
ing to their contents.

www.securityfriday.com

N
e

tw
o

rk
 M

a
n

a
g

e
m

e
n

t

19.7 Network management protocols 657

Wireshark: visual sniffer

If you’re more inclined to use a point-and-click program for packet sniffing, then
Wireshark may be for you. Available under the GNU General Public License from
www.wireshark.org, Wireshark is a GTK+ (GIMP tool kit)-based GUI packet sniffer
that has more functionality than most commercial sniffing products. You can run
Wireshark on your Linux desktop, or if your laptop is still painfully suffering in the
dark ages of Windows, you can download binaries for that too.

In addition to sniffing packets, Wireshark has a couple of features that make it extra
handy. One nice feature is that Wireshark can read and write a large number of other
packet trace file formats, including (but not limited to):

• TCPDUMP

• NAI’s Sniffer

• Sniffer Pro

• NetXray

• Snoop

• Shomiti Surveyor

• Microsoft’s Network Monitor

• Novell’s LANalyzer

• Cisco Secure IDS iplog

The second extra-handy feature is that you can click on one packet in a TCP stream
and ask Wireshark to “reassemble” (splice together) the payload data of all the pack-
ets in the stream. This feature is useful if you want to quickly examine the data
transferred during a complete TCP conversation, such as a connection carrying an
email message across the network.5

Wireshark has capture filters, which function identically to tcpdump’s. Watch out,
though—one important gotcha with Wireshark is the added feature of “display fil-
ters,” which affect what you see rather than what’s actually captured by the sniffer.
Oddly, display filters use an entirely different syntax from capture filters.

Wireshark is an incredibly powerful analysis tool and is included in almost every
networking expert’s tool kit. Moreover, it’s also an invaluable learning aid for those
just beginning to explore packet networking. Wireshark’s help menu provides many
great examples to get you started. Don’t be afraid to experiment!

19.7 NETWORK MANAGEMENT PROTOCOLS

Networks have grown rapidly in size and value over the last decade, and along with
that growth has come the need for an efficient way to manage them. Commercial
vendors and standards organizations have approached this challenge in many differ-
ent ways. The most significant developments have been the introduction of several
standard device management protocols and a glut of high-level products that exploit
those protocols.

5. You can use the tcpflow utility to perform a similar feat on the command line from a tcpdump trace.

www.wireshark.org

658 Chapter 19 – Network Management and Debugging

Network management protocols standardize the method of probing a device to dis-
cover its configuration, health, and network connections. In addition, they allow
some of this information to be modified so that network management can be stan-
dardized across different kinds of machinery and performed from a central location.

The most common management protocol used with TCP/IP is the Simple Network
Management Protocol, SNMP. Despite its name, SNMP is actually quite complex. It
defines a hierarchical namespace of management data and a way to read and write
the data at each node. It also defines a way for managed servers and devices
(“agents”) to send event notification messages (“traps”) to management stations.

The SNMP protocol itself is simple; most of SNMP’s complexity lies above the proto-
col layer in the conventions for constructing the namespace and in the unnecessarily
baroque vocabulary that surrounds SNMP like a protective shell. As long as you
don’t think too hard about its internal mechanics, SNMP is easy to use.

Several other standards are floating around out there. Many of them originate from
the Distributed Management Task Force (DMTF), which is responsible for concepts
such as WBEM (Web-Based Enterprise Management), DMI (Desktop Management
Interface), and the CIM (Conceptual Interface Model). Some of these concepts, par-
ticularly DMI, have been embraced by several major vendors and may become a use-
ful complement to (or even a replacement for) SNMP. Many proprietary management
protocols are also afloat out there. For now, however, the vast majority of network
and Linux system management takes place over SNMP.

Since SNMP is only an abstract protocol, you need both a server program (“agent”)
and a client (“manager”) to make use of it. (Perhaps counterintuitively, the server
side of SNMP represents the thing being managed, and the client side is the man-
ager.) Clients range from simple command-line utilities to dedicated management
stations that graphically display networks and faults in eye-popping color.

Dedicated network management stations are the primary reason for the existence of
management protocols. Most products let you build a topographic model of the net-
work as well as a logical model; the two are presented together on-screen, along with
a continuous indication of the status of each component.

Just as a chart can reveal the hidden meaning in a page of numbers, a network man-
agement station can summarize the state of a large network in a way that’s easily ac-
cepted by a human brain. This kind of executive summary is almost impossible to
get any other way.

A major advantage of management-by-protocol is that it promotes all kinds of net-
work hardware onto a level playing field. Linux systems are all basically similar, but
routers, switches, and other low-level components are not. With SNMP, they all speak
a common language and can be probed, reset, and configured from a central loca-
tion. It’s nice to have one consistent interface to all the network’s hardware.

N
e

tw
o

rk
 M

a
n

a
g

e
m

e
n

t

19.8 SNMP: the Simple Network Management Protocol 659

19.8 SNMP: THE SIMPLE NETWORK MANAGEMENT PROTOCOL

When SNMP first became widely used in the early 1990s, it started a mini gold rush.
Hundreds of companies have come out with SNMP management packages. Also,
many hardware and software vendors ship an SNMP agent as part of their product.

Before we dive into the gritty details of SNMP, we should note that the terminology
associated with it is some of the most wretched technobabble to be found in the net-
working arena. The standard names for SNMP concepts and objects actively lead you
away from an understanding of what’s going on. The people responsible for this state
of affairs should have their keyboards smashed.

SNMP organization

SNMP data is arranged in a standardized hierarchy. This enforced organization al-
lows the data space to remain both universal and extensible, at least in theory. Large
portions are set aside for future expansion, and vendor-specific additions are local-
ized to prevent conflicts. The naming hierarchy is made up of “Management Infor-
mation Bases” (MIBs), structured text files that describe the data accessible through
SNMP. MIBs contain descriptions of specific data variables, which are referred to
with names known as object identifiers, or OIDs.

Translated into English, this means that SNMP defines a hierarchical namespace of
variables whose values are tied to “interesting” parameters of the system. An OID is
just a fancy way of naming a specific managed piece of information.

The SNMP hierarchy is very much like a filesystem. However, a dot is used as the
separator character, and each node is given a number rather than a name. By conven-
tion, nodes are also given text names for ease of reference, but this naming is really
just a high-level convenience and not a feature of the hierarchy (it is similar in prin-
ciple to the mapping of hostnames to IP addresses).

For example, the OID that refers to the uptime of the system is 1.3.6.1.2.1.1.3. This
OID is also known by the human readable name

iso.org.dod.internet.mgmt.mib-2.system.sysUpTime

The top levels of the SNMP hierarchy are political artifacts and generally do not con-
tain useful data. In fact, useful data can currently be found only beneath the OID
iso.org.dod.internet.mgmt (numerically, 1.3.6.1.2).

The basic SNMP MIB for TCP/IP (MIB-I) defines access to common management
data: information about the system, its interfaces, address translation, and protocol
operations (IP, ICMP, TCP, UDP, and others). A later and more complete reworking
of this MIB (called MIB-II) is defined in RFC1213. Most vendors that provide an
SNMP server support MIB-II. Table 19.1 on the next page presents a sampling of
nodes from the MIB-II namespace.

660 Chapter 19 – Network Management and Debugging

In addition to the basic MIB, there are MIBs for various kinds of hardware interfaces
and protocols, MIBs for individual vendors, and MIBs for particular hardware prod-
ucts. A MIB for you, a MIB for me, catch that MIB behind the tree.

A MIB is only a convention about the naming of management data. To be useful, a
MIB must be backed up with agent-side code that maps between the SNMP name-
space and the device’s actual state. Code for the basic MIB (now MIB-II) comes with
the standard Linux agent. Some agents are extensible to include supplemental MIBs,
and some are not.

SNMP protocol operations

There are only four basic SNMP operations: get, get-next, set, and trap.

Get and set are the basic operations for reading and writing data to a node identified
by a specific OID. Get-next steps through a MIB hierarchy and can read the contents
of tables as well.

A trap is an unsolicited, asynchronous notification from server (agent) to client
(manager) that reports the occurrence of an interesting event or condition. Several
standard traps are defined, including “I’ve just come up” notifications, reports of fail-
ure or recovery of a network link, and announcements of various routing and au-
thentication problems. Many other not-so-standard traps are in common use, in-
cluding some that simply watch the values of other SNMP variables and fire off a
message when a specified range is exceeded. The mechanism by which the destina-
tions of trap messages are specified depends on the implementation of the agent.

Since SNMP messages can potentially modify configuration information, some se-
curity mechanism is needed. The simplest version of SNMP security is based on the

Table 19.1 Selected OIDs from MIB-II

OIDa Type Contents

system.sysDescr string System info: vendor, model, OS type, etc.
system.sysLocation string Physical location of the machine
system.sysContact string Contact info for the machine’s owner
system.sysName string System name, usually the full DNS name
interfaces.ifNumber int Number of network interfaces present
interfaces.ifTable table Table of infobits about each interface
ip.ipForwarding int 1 if system is a gateway; otherwise,2
ip.ipAddrTable table Table of IP addressing data (masks, etc.)
ip.ipRouteTable table The system’s routing table
icmp.icmpInRedirects int Number of ICMP redirects received
icmp.icmpInEchos int Number of pings received
tcp.tcpConnTable table Table of current TCP connections
udp.udpTable table Table of UDP sockets with servers listening

a. Relative to iso.org.dod.internet.mgmt.mib-2.

N
e

tw
o

rk
 M

a
n

a
g

e
m

e
n

t

19.9 The NET-SMNP agent 661

concept of an SNMP “community string,” which is really just a horribly obfuscated
way of saying “password.” There’s usually one community name for read-only access
and another that allows writing.

Although many organizations still use the original community-string-based au-
thentication, version 3 of the SNMP standard introduced access control methods
with higher security. Although configuring this more advanced security requires a
little extra work, the risk reduction is well worth the effort. If for some reason you
can’t use version 3 SNMP security, at least be sure you’ve selected a hard-to-guess
community string.

RMON: remote monitoring MIB

The RMON MIB permits the collection of generic network performance data (that is,
data not tied to any one particular device). Network sniffers or “probes” can be de-
ployed around the network to gather information about utilization and performance.
Once a useful amount of data has been collected, statistics and interesting informa-
tion about the data can be shipped back to a central management station for analysis
and presentation. Many probes have a packet capture buffer and can provide a sort of
remote tcpdump facility.

RMON is defined in RFC1757, which became a draft standard in 1995. The MIB is
broken up into nine “RMON groups.” Each group contains a different set of network
statistics. If you have a large network with many WAN connections, consider buying
probes to reduce the SNMP traffic across your WAN links. Once you have access to
statistical summaries from the RMON probes, there’s usually no need to gather raw
data remotely. Many switches and routers support RMON and store at least some net-
work statistics.

19.9 THE NET-SMNP AGENT

When SNMP was first standardized, Carnegie Mellon University and MIT both pro-
duced implementations. CMU’s implementation was more complete and quickly be-
came the de facto standard. When active development at CMU died down, research-
ers at UC Davis took over the software. After stabilizing the code, they transferred
the ongoing maintenance to the SourceForge repository. The package is now known
as NET-SNMP.

The NET-SNMP distribution is now the authoritative free SNMP implementation
for Linux. In fact, many network device vendors have integrated NET-SNMP into
their products. NET-SNMP includes an SNMP agent, some command-line tools, a
server for receiving traps, and even a library for developing SNMP-aware applica-
tions. We discuss the agent in some detail here, and on page 663 we look at the com-
mand-line tools. The latest version is available from net-snmp.sourceforge.net.

As in other implementations, the agent collects information about the local host and
serves it to SNMP managers across the network. The default installation includes
MIBs for network interface, memory, disk, process, and CPU statistics. The agent is

662 Chapter 19 – Network Management and Debugging

easily extensible since it can execute an arbitrary Linux command and return the
command’s output as an SNMP response. You can use this feature to monitor almost
anything on your system with SNMP.

By default, the agent is installed as /usr/sbin/snmpd. It is usually started at boot
time and reads its configuration information from files in the /etc/snmp directory.
The most important of these files is snmpd.conf, which contains most of the config-
uration information and comes shipped with a bunch of sample data collection
methods enabled. Although the intention of the NET-SNMP authors seems to have
been for users to edit only the snmpd.local.conf file, you must edit snmpd.conf at
least once to disable any default data collection methods that you don’t plan to use.

The NET-SNMP configure script lets you specify a default log file and a couple of
other local settings. You can use snmpd -l to specify an alternative log file or -s to
direct log messages to syslog. Table 19.2 lists snmpd’s most important flags. We
recommend that you always use the -a flag. For debugging, you should use the -V,
-d, or -D flags, each of which gives progressively more information.

It’s worth mentioning that many useful SNMP-related Perl modules are available.
Look on CPAN6 for the latest information if you are interested in writing your own
network management scripts.

19.10 NETWORK MANAGEMENT APPLICATIONS

We begin this section by exploring the simplest SNMP management tools: the com-
mands provided with the NET-SNMP package. These commands can help you be-
come familiar with SNMP, and they’re also great for one-off checks of specific OIDs.
Next, we look at Cacti, a program that generates beautiful historical graphs of SNMP
values, and Nagios, an event-based monitoring system. We conclude with some rec-
ommendations of what to look for when purchasing a commercial system.

Table 19.2 Useful flags for NET-SNMP snmpd

Flag Function

-l logfile Logs information to logfile
-a Logs the addresses of all SNMP connections
-d Logs the contents of every SNMP packet
-V Enables verbose logging
-D Logs debugging information (lots of it)
-h Displays all arguments to snmpd

-H Displays all configuration file directives
-A Appends to the log file instead of overwriting it
-s Logs to syslog (uses the daemon facility)

6. CPAN, the Comprehensive Perl Archive Network, is an amazing collection of useful Perl modules.
Check it out at www.cpan.org.

www.cpan.org

N
e

tw
o

rk
 M

a
n

a
g

e
m

e
n

t

19.10 Network management applications 663

The NET-SNMP tools

Even if your system comes with its own SNMP server, you may still want to compile
and install the client-side tools from the NET-SNMP package. Table 19.3 lists the
most commonly used tools.

In addition to their value on the command line, these programs are tremendously
handy in simple scripts. It is often helpful to have snmpget save interesting data
values to a text file every few minutes. (Use cron to implement the scheduling; see
Chapter 8, Periodic Processes.)

snmpwalk is another useful tool. Starting at a specified OID (or at the beginning of
the MIB, by default), this command repeatedly makes “get next” calls to an agent.
This behavior results in a complete list of available OIDs and their associated values.
snmpwalk is particularly handy when you are trying to identify new OIDs to moni-
tor from your fancy enterprise management tool.

Here’s a truncated sample snmpwalk of the host tuva. The community string is
“secret813community”, and -v1 specifies simple authentication.

$ snmpwalk -c secret813community -v1 tuva
SNMPv2-MIB::sysDescr.0 = STRING: Linux tuva.atrust.com 2.6.9-11.ELsmp #1
SNMPv2-MIB::sysUpTime.0 = Timeticks: (1442) 0:00:14.42
SNMPv2-MIB::sysName.0 = STRING: tuva.atrust.com
IF-MIB::ifDescr.1 = STRING: lo
IF-MIB::ifDescr.2 = STRING: eth0
IF-MIB::ifDescr.3 = STRING: eth1
IF-MIB::ifType.1 = INTEGER: softwareLoopback(24)
IF-MIB::ifType.2 = INTEGER: ethernetCsmacd(6)
IF-MIB::ifType.3 = INTEGER: ethernetCsmacd(6)
IF-MIB::ifPhysAddress.1 = STRING:
IF-MIB::ifPhysAddress.2 = STRING: 0:11:43:d9:1e:f5
IF-MIB::ifPhysAddress.3 = STRING: 0:11:43:d9:1e:f6
IF-MIB::ifInOctets.1 = Counter32: 2605613514
IF-MIB::ifInOctets.2 = Counter32: 1543105654

Table 19.3 Command-line tools in the NET-SNMP package

Command Function

snmpdelta Monitors changes in SNMP variables over time
snmpdf Monitors disk space on a remote host via SNMP
snmpget Gets the value of an SNMP variable from an agent
snmpgetnext Gets the next variable in sequence
snmpset Sets an SNMP variable on an agent
snmptable Gets a table of SNMP variables
snmptranslate Searches for and describes OIDs in the MIB hierarchy
snmptrap Generates a trap alert
snmpwalk Traverses a MIB starting at a particular OID

664 Chapter 19 – Network Management and Debugging

IF-MIB::ifInOctets.3 = Counter32: 46312345
IF-MIB::ifInUcastPkts.1 = Counter32: 389536156
IF-MIB::ifInUcastPkts.2 = Counter32: 892959265
IF-MIB::ifInUcastPkts.3 = Counter32: 7712325
…

In this example, we see some general information about the system, followed by sta-
tistics about the host’s network interfaces, lo0, eth0, and eth1. Depending on the
MIBs supported by the agent you are managing, a complete dump can run to hun-
dreds of lines.

SNMP data collection and graphing

Network-related data is best appreciated in visual and historical context. It’s impor-
tant to have some way to track and graph performance metrics, but your exact
choice of software for doing this is not critical.

One of the most popular early SNMP polling and graphing packages was MRTG,
written by Tobi Oetiker at ETH in Zurich. MRTG is written mostly in Perl, runs reg-
ularly out of cron, and can collect data from any SNMP source. Each time the pro-
gram runs, new data is stored and new graph images are created.

Recently, Tobi has focused his energy on RRDTool, an application tool kit for storing
and graphing performance metrics. All the leading open source monitoring solu-
tions are based on RRDTool, including our favorite, Cacti.

Cacti, available from www.cacti.net, offers several attractive features. First, it imple-
ments a zero-maintenance, statically sized database; the software stores only
enough data to create the necessary graphs. For example, Cacti could store one sam-
ple every minute for a day, one sample every hour for a week, and one sample every
week for a year. This consolidation scheme lets you maintain important historical
information without having to store unimportant details or consume your time with
database administration.

Second, Cacti can record and graph any SNMP variable, as well as many other per-
formance metrics. You’re free to collect whatever data you want. When combined
with the NET-SNMP agent, Cacti generates a historical perspective on almost any
system or network resource.

Exhibit A shows some examples of the graphs created by Cacti. These graphs show
the load average on a server over a period of multiple weeks along with a day’s traffic
on a network interface.

Cacti sports easy web-based configuration as well as all the other built-in benefits of
RRDTool, such as low maintenance and beautiful graphing. See Tobi Oetiker’s RRD-
Tool home page at www.rrdtool.org for links to the current versions of RRDtool and
Cacti, as well as dozens of other monitoring tools.

www.cacti.net
www.rrdtool.org

N
e

tw
o

rk
 M

a
n

a
g

e
m

e
n

t

19.10 Network management applications 665

Exhibit A Examples of Cacti graphs

Nagios: event-based SNMP and service monitoring

Nagios specializes in real-time reporting of error conditions. It can poll any SNMP
metric (as well as hundreds of other network services) and alert you to defined
error conditions. Although Nagios does not help you determine how much your
bandwidth utilization has increased over the last month, it can page you when your
web server goes down.

The Nagios distribution includes plug-ins that supervise a variety of common
points of failure. You can whip up new monitors in Perl, or even in C if you are feel-
ing ambitious. For notification methods, the distribution can send email, generate
web reports, and use a dial-up modem to page you. As with the monitoring plug-ins,
it’s easy to roll your own.

In addition to sending real-time notifications of service outages, Nagios keeps a his-
torical archive of this data. It provides several powerful reporting interfaces that
track availability and performance trends. Many organizations use Nagios to mea-
sure compliance with service level agreements; Exhibit B on the next page shows the
availability of a DNS server.

666 Chapter 19 – Network Management and Debugging

Exhibit B Server availability as shown by Nagios

Nagios works very well for networks of fewer than a thousand hosts and devices. It is
easy to customize and extend, and it includes powerful features such as redundancy,
remote monitoring, and escalation of notifications. If you cannot afford a commer-
cial network management tool, you should strongly consider Nagios. You can read
more at www.nagios.org.

Commercial management platforms

Hundreds of companies sell network management software, and new competitors
enter the market every week. Instead of recommending the hottest products of the
moment (which may no longer exist by the time this book is printed), we identify
the features you should look for in a network management system.

Data-gathering flexibility: Management tools must be able to collect data from
sources other than SNMP. Many packages include ways to gather data from almost
any network service. For example, some packages can make SQL database queries,
check DNS records, and connect to web servers.

User interface quality: Expensive systems often offer a custom GUI or a web inter-
face. Most well-marketed packages today tout their ability to understand XML tem-
plates for data presentation. A UI is not just more marketing hype—you need an
interface that relays information clearly, simply, and comprehensibly.

Value: Some management packages come at a stiff price. HP’s OpenView is both one
of the most expensive and one of the most widely adopted network management
systems. Many corporations find definite value in being able to say that their site is
managed by a high-end commercial system. If that isn’t so important to your orga-
nization, you should look at the other end of the spectrum for free tools like Cacti
and Nagios.

www.nagios.org

N
e

tw
o

rk
 M

a
n

a
g

e
m

e
n

t

19.11 Recommended reading 667

Automated discovery: Many systems offer the ability to “discover” your network.
Through a combination of broadcast pings, SNMP requests, ARP table lookups, and
DNS queries, they identify all your local hosts and devices. All the discovery imple-
mentations we have seen work pretty well, but none are very accurate on a complex
(or heavily firewalled) network.

Reporting features: Many products can send alert email, activate pagers, and auto-
matically generate tickets for popular trouble-tracking systems. Make sure that the
platform you choose accommodates flexible reporting; who knows what electronic
devices you will be dealing with in a few years?

Configuration management: Some solutions step far beyond monitoring and
alerting. They enable you to manage actual host and device configurations. For ex-
ample, a CiscoWorks interface lets you change a router’s configuration in addition to
monitoring its state with SNMP. Because device configuration information deepens
the analysis of network problems, we predict that many packages will develop along
these lines in the future.

19.11 RECOMMENDED READING

CISCO ONLINE. SNMP Overview. 1996. www.cisco.com/warp/public/535/3.html

MAURO, DOUGLAS R. AND KEVIN J. SCHMIDT. Essential SNMP (2nd Edition). Sebasto-
pol, CA: O’Reilly Media, 2005.

SIMPLEWEB. SNMP and Internet Management Site. www.simpleweb.org.

STALLINGS, WILLIAM. Snmp, Snmpv2, Snmpv3, and Rmon 1 and 2 (3rd Edition).
Reading, MA: Addison-Wesley, 1999.

You may find the following RFCs to be useful as well. We replaced the actual titles of
the RFCs with a description of the RFC contents because some of the actual titles are
an unhelpful jumble of buzzwords and SNMP jargon.

• RFC1155 – Characteristics of the SNMP data space (data types, etc.)

• RFC1156 – MIB-I definitions (description of the actual OIDs)

• RFC1157 – Simple Network Management Protocol

• RFC1213 – MIB-II definitions (OIDs)

• RFC3414 – User-based Security Model for SNMPv3

• RFC3415 – View-based Access Control Model for SNMPv3

• RFC3512 – Configuring devices with SNMP (best general overview)

• RFC3584 – Practical coexistence between different SNMP versions

Exercises are presented on the next page.

www.cisco.com/warp/public/535/3.html
www.simpleweb.org

668 Chapter 19 – Network Management and Debugging

19.12 EXERCISES

E19.1 You are troubleshooting a network problem and netstat -rn gives you
the following output. What is the problem and what command would
you use to fix it?

Destination Gateway Genmask Flags MSS Window irtt Iface
128.138.202.0 0.0.0.0 255.255.255.0 U 40 0 0 eth0
127.0.0.0 0.0.0.0 255.0.0.0 U 40 0 0 lo

E19.2 Write a script that monitors a given set of machines and notifies an ad-
ministrator by email if a machine becomes unresponsive to pings for
some set amount of time. Don’t hard-code the list of machines, the noti-
fication email address, or the amount of time to determine unrespon-
sive behavior.

E19.3 Experiment with changing the netmask on a machine on your local net-
work. Does it still work? Can you reach everything at your site? Can
other machines reach you? Do broadcasts work (e.g., ARP requests or
DHCP discover packets)? Explain your findings. (Requires root access.)

E19.4 Use the traceroute command to discover routing paths on your network.

a) How many hops does it take to leave your facility?
b) Are there any routers between machines on which you have accounts?
c) Can you find any bottlenecks?
d) Is your site multihomed?

E19.5 Design a MIB that includes all the variables you as a Linux sysadmin
might want to query or set. Leave ways for the MIB to be extended to
include that important new sysadmin variable you forgot.

E19.6 Use the tcpdump command to capture traffic that illustrates the follow-
ing protocols. For TCP sessions, include and indicate the initial and fi-
nal packets. Submit clean, well-formatted tcpdump output. (Requires
root access.)

a) ARP
b) ICMP echo request and reply
c) SMTP
d) FTP and FTP-DATA
e) DNS (called domain)
f) NFS

E19.7 Set up Cacti graphs that show the packets transmitted to and from a
local router. This project requires an SNMP package to query the router,
and you must know the read-only community string for the router.

669

S
e

cu
ri

ty

20 Security

WarGames, a 1983 film starring Matthew Broderick, is a fascinating look at the early
computer cracking subculture. In the movie, David Lightman employs several well-
known attack techniques, including war dialing, social engineering, phone hacking
(aka “phreaking”), and password guessing to start and then stop a nuclear attack.
WarGames brought computer security into the limelight and, with it, the misnomer
“hacker” as a label for troublesome teenage whiz kids. This early film was only the
beginning of what has now become a global problem.

Five years later, the world of computer and network technology entered a new era
when the Robert Morris, Jr., “Internet Worm” was unleashed on mankind. Before
that event, the Internet lived in an age of innocence. Security was a topic that admin-
istrators thought about mostly in the “what if ” sense. A big security incident usually
consisted of something like a user gaining administrative access to read another
user’s mail, often just to prove that he could.

The Morris worm wasted thousands of administrator hours but greatly increased
security awareness on the Internet. Once again, we were painfully reminded that
good fences make good neighbors. A number of excellent tools for use by system
administrators (as well as a formal organization for handling incidents of this na-
ture) came into being as a result.

According to the 2006 CSI/FBI Computer Crime and Security Survey,1 the majority of
the organizations surveyed reported spending less than 5% of their IT budgets on

1. This survey is conducted yearly and can be found at www.gocsi.com.

Security

www.gocsi.com

670 Chapter 20 – Security

security. As a result, a staggering $54,494,290 ($174,103 per organization) was lost
to computer security breaches. These figures present a frightening picture of organi-
zational security awareness. Of course, dollars spent does not necessarily equate to
system security; a vigilant administrator can halt any attacker in his tracks.

In general, security is not something that you can buy in a box or as a service from
some third party. Commercial products and services can be part of a solution for
your site, but they are not a panacea.

Achieving an acceptable level of security requires an enormous amount of patience,
vigilance, knowledge, and persistence—not just from you and other administrators,
but from your entire user and management communities. As the system administra-
tor, you must personally ensure that your systems are secure and that you and your
users are properly educated. You should familiarize yourself with current security
technology, actively monitor security mailing lists, and hire professional security
experts to help with problems that exceed your knowledge.

20.1 IS LINUX SECURE?

No, Linux is not secure. Nor is any other operating system that communicates on a
network. If you must have absolute, total, unbreachable security, then you need a
measurable air gap2 between your computer and any other device. Some people ar-
gue that you also need to enclose your computer in a special room that blocks elec-
tromagnetic radiation. (Google for “Faraday cage.”) How fun is that?

You can work to make your system somewhat more resistant to attack. Even so, sev-
eral fundamental flaws in the Linux model ensure that you will never reach security
nirvana:

• Like UNIX, Linux is optimized for convenience and doesn’t make security
easy or natural. The Linux philosophy stresses easy manipulation of data in
a networked, multiuser environment.

• Unless carefully implemented, Linux security is effectively binary: you are
either a powerless user, or you’re root. Linux facilities such as setuid execu-
tion tend to confer total power all at once. Thanks to Security-Enhanced
Linux, a National Security Agency project, some progress has been made
toward the implementation of more granular access controls. But in most
cases, slight lapses in security can still compromise entire systems.

• Linux distributions are developed by a large community of programmers.
They range in experience level, attention to detail, and knowledge of the
Linux system and its interdependencies. As a result, even the most well-
intended new features can introduce large security holes.

2. Of course, wireless networking technology introduces a whole new set of problems. Air gap in this con-
text means “no networking whatsoever.”

S
e

cu
ri

ty

20.2 How security is compromised 671

On the other hand, since Linux source code is available to everyone, thousands of
people can (and do) scrutinize each line of code for possible security threats. This
arrangement is widely believed to result in better security than that of closed operat-
ing systems, in which a limited number of people have the opportunity to examine
the code for holes.

Many sites are a release or two behind, either because localization is too trouble-
some or because they do not subscribe to a distributor’s software maintenance ser-
vice. In any case, when security holes are patched, the window of opportunity for
hackers often does not disappear overnight.

It might seem that Linux security should gradually improve over time as security
problems are discovered and corrected, but unfortunately this does not seem to be
the case. System software is growing ever more complicated, hackers are becoming
better and better organized, and computers are connecting more and more inti-
mately on the Internet. Security is an ongoing battle that can never really be won. (Of
course, the Windows world is even worse…)

Remember, too, that

The more secure your system, the more constrained you and your users will be. Im-
plement the security measures suggested in this chapter only after carefully consid-
ering the implications for your users.

20.2 HOW SECURITY IS COMPROMISED

This chapter discusses some common Linux security problems and their standard
countermeasures. But before we leap into the details, we should take a more general
look at how real-world security problems tend to occur. Most security lapses fit into
the following taxonomy.

Social engineering

The human users (and administrators) of a computer system are often the weakest
links in the chain of security. Even in today’s world of heightened security aware-
ness, unsuspecting users with good intentions are easily convinced to give away
sensitive information.

This problem manifests itself in many forms. Attackers cold-call their victims and
pose as legitimately confused users in an attempt to get help with accessing the
system. Administrators unintentionally post sensitive information on public fo-
rums when troubleshooting problems. Physical compromises occur when seem-
ingly legitimate maintenance personnel rewire the phone switch closet.

The term “phishing” describes attempts to collect information from users through
deceptive email, instant messages, or even cell phone SMS messages. Phishing can

Security =
1

(1.072)(Convenience)

672 Chapter 20 – Security

be especially hard to defend against because the communications often include vic-
tim-specific information that lends them the appearance of authenticity.

Social engineering continues to be a powerful hacking technique and is one of the
most difficult threats to neutralize. Your site security policy should include training
for new employees. Regular organization-wide communications are an effective way
to provide information about telephone dos and don’ts, physical security, email ph-
ishing, and password selection.

To gauge your organization’s resistance to social engineering, you might find it in-
formative to attempt some social engineering attacks of your own. Be sure you have
explicit permission to do this from your own managers, however. Such exploits look
very suspicious if they are performed without a clear mandate. They’re also a form
of internal spying, so they have the potential to generate resentment if they’re not
handled in an aboveboard manner.

Software vulnerabilities

Over the years, countless security-sapping bugs have been discovered in computer
software (including software from third parties, both commercial and free). By ex-
ploiting subtle programming errors or context dependencies, hackers have been able
to manipulate Linux into doing whatever they want.

Buffer overflows are a common programming error and one with complex implica-
tions. Developers often allocate a predetermined amount of temporary memory
space, called a buffer, to store a particular piece of information. If the code isn’t care-
ful about checking the size of the data against the size of the container that’s sup-
posed to hold it, the memory adjacent to the allocated space is at risk of being over-
written. Crafty hackers can input carefully composed data that crashes the program
or, in the worst case, executes arbitrary code.

Fortunately, the sheer number of buffer overflow exploits in recent years has raised
the programming community’s consciousness about this issue. Although buffer
overflow problems are still occurring, they are often quickly discovered and cor-
rected, especially in open source applications. Newer programming systems such as
Java and .NET include mechanisms that automatically check data sizes and prevent
buffer overflows.

Buffer overflows are a subcategory of a larger class of software security bugs known
as input validation vulnerabilities. Nearly all programs accept some type of input
from users (e.g., command-line arguments or HTML forms). If the code processes
such data without rigorously checking it for appropriate format and content, bad
things can happen. Consider the following simple example:

#!/usr/bin/perl
Example user input validation error

open (HTMLFILE, "/var/www/html/$ARGV[0]") or die "trying\n";
while (<HTMLFILE>) { print; }
close HTMLFILE;

S
e

cu
ri

ty

20.3 Certifications and standards 673

The intent of this code is probably to print the contents of some HTML file under
/var/www/html, which is the default document root for Apache’s httpd server on
Red Hat servers. The code accepts a filename from the user and passes it as the argu-
ment to the open function. However, if a malicious user entered ../../../etc/shadow
as the argument, the contents of /etc/shadow would be echoed!

What can you as an administrator do to prevent this type of attack? Very little, at
least until a bug has been identified and addressed in a patch. Keeping up with
patches and security bulletins is an important part of most administrators’ jobs.
Most distributions included automated patching utilities, such as yum on Fedora
and apt-get on Debian and Ubuntu. Take advantage of these utilities to keep your
site safe from software vulnerabilities.

Configuration errors

Many pieces of software can be configured securely or not-so-securely. Unfortunately,
because software is developed for convenience, not-so-securely is often the default.
Hackers frequently gain access by exploiting software features that would be consid-
ered helpful and convenient in less treacherous circumstances: accounts without
passwords, disks shared with the world, and unprotected databases, to name a few.

A typical example of a host configuration vulnerability is the standard practice of
allowing Linux systems to boot without requiring a boot loader password. Both
LILO and GRUB can be configured at install time to require a password, but admin-
istrators almost always decline the option. This omission leaves the system open to
physical attack. However, it’s also a perfect example of the need to balance security
against usability. Requiring a password means that if the system were unintention-
ally rebooted (e.g., after a power outage), an administrator would have to be physi-
cally present to get the machine running again.

One of the most important steps in securing a system is simply making sure that you
haven’t inadvertently put out a welcome mat for hackers. Problems in this category
are the easiest to find and fix, although there are potentially a lot of them and it’s not
always obvious what to check for. The port and vulnerability scanning tools covered
later in this chapter can help a motivated administrator find and fix problems before
they’re exploited.

20.3 CERTIFICATIONS AND STANDARDS

If the subject matter of this chapter seems daunting to you, don’t fret. Computer
security is a complicated and vast topic, as countless books, web sites, and maga-
zines can attest. Fortunately, much has been done to help quantify and organize the
available information. Dozens of standards and certifications exist, and mindful
Linux administrators should consider their guidance.

One of the most basic philosophical principles in information security is informally
referred to as the “CIA triad.”

674 Chapter 20 – Security

The acronym stands for

• Confidentiality

• Integrity

• Availability

Data confidentiality concerns the privacy of data. In essence, access to information
should be limited to those who are authorized to have it. Authentication, access con-
trol, and encryption are a few of the subcomponents of confidentiality. If a hacker
breaks into a Linux system and steals a database containing customer contact infor-
mation, a compromise of confidentiality has occurred.

Integrity relates to the authenticity of information. Data integrity technology en-
sures that information is valid and has not been altered in any unauthorized way. It
also addresses the trustworthiness of information sources. When a secure web site
presents a signed SSL certificate, it is proving to the user not only that the informa-
tion it is sending is encrypted but also that a trusted certificate authority (such as
VeriSign or Equifax) has verified the identity of the source. Technologies such as
PGP and Kerberos also guarantee data integrity.

Information must be available to authorized users when they need it, or there is no
purpose in having it. Outages not caused by intruders, such as those caused by ad-
ministrative errors or power outages, also fall into the category of availability prob-
lems. Unfortunately, availability is often ignored until something goes wrong.

Consider the CIA principles whenever you design, implement, or maintain Linux
systems. As the old security adage goes, “security is a process.”

Certifications

This crash course in CIA is just a brief introduction to the larger information secu-
rity field. Large corporations often employ many full-time employees whose job is
guarding information. To gain credibility in the field and keep their knowledge cur-
rent, these professionals attend training courses and obtain certifications. Prepare
yourself for acronym-fu as we work through a few of the most popular certifications.

One of the most widely recognized security certifications is the CISSP, or Certified
Information Systems Security Professional. It is administered by (ISC)2, the Interna-
tional Information Systems Security Certification Consortium (say that ten times
fast!). One of the primary draws of the CISSP is (ISC)2’s notion of a “common body
of knowledge” (CBK), essentially an industry-wide best practices guide for informa-
tion security. The CBK covers law, cryptography, authentication, physical security,
and much more. It’s an incredible reference for security folks.

One criticism of the CISSP has been its concentration on breadth and consequent
lack of depth. So many topics in the CBK, and so little time! To address this, (ISC)2

has issued CISSP concentration programs that focus on architecture, engineering,
and management. These specialized certifications add depth to the more general
CISSP certification.

S
e

cu
ri

ty

20.3 Certifications and standards 675

The System Administration, Networking, and Security (SANS) Institute created the
Global Information Assurance Certification (GIAC) suite of certifications in 1999.
Three dozen separate exams cover the realm of information security with tests di-
vided into five categories. The certifications range in difficulty from the moderate
two-exam GISF to the 23-hour expert level GSE. The GSE has the notorious reputa-
tion of being one of the most difficult certifications in the industry. Many of the
exams focus on technical specifics and require quite a bit of experience.

Finally, the Certified Information Systems Auditor (CISA) credential is an audit and
process certification. It focuses on business continuity, procedures, monitoring, and
other management content. Some consider the CISA an intermediate certification
that is appropriate for an organization’s security officer role. One of its most attrac-
tive aspects is the fact that it involves only a single exam.

Although certifications are a personal endeavor, their application to business is un-
deniable. More and more companies now recognize certifications as the mark of an
expert. Many businesses offer higher pay and promotions to certified employees. If
you decide to pursue a certification, work closely with your organization to have it
help pay for the associated costs.

Standards

Because of the ever-increasing reliance on data systems, laws and regulations have
been created to govern the management of sensitive, business-critical information.
Major U.S. legislation projects such as HIPAA, FISMA, and the Sarbanes-Oxley Act
have all included sections on IT security. Although the requirements are sometimes
expensive to implement, they have helped give the appropriate level of focus to a
once-ignored aspect of technology.

Unfortunately, the regulations are filled with legalese and can be difficult to inter-
pret. Most do not contain specifics on how to achieve their requirements. As a result,
standards have been developed to help administrators reach the lofty legislative re-
quirements. These standards are not regulation specific, but following them usually
ensures compliance. It can be intimidating to confront the requirements of all the
various standards at once, but these plans are a useful guideline.

The ISO/IEC 17799 standard is probably the most widely accepted in the world. First
introduced in 1995 as a British standard, it is 34 pages long and is divided into 11
sections running the gamut from policy to physical security to access control. Objec-
tives within each section define specific requirements, and controls under each ob-
jective describe the suggested “best practice” solutions.

The requirements are nontechnical and can be fulfilled by any organization in a way
that best fits its needs. On the downside, the general wording of the standard leaves
the reader with a sense of broad flexibility. Critics complain that the lack of specifics
leaves organizations open to attack.

676 Chapter 20 – Security

Nonetheless, this standard is one of the most valuable documents available to the
information security industry. It bridges an often tangible gap between management
and engineering and helps focus both parties on minimizing organizational risk.

The Payment Card Industry Data Security Standard (PCI DSS) is a different beast
entirely. It arose out of the perceived need to improve security in the card processing
industry following a series of dramatic exposures. For example, in June 2005, Card-
Systems Services International revealed the “loss” of 40 million card numbers.

The U.S. Department of Homeland Security has estimated that $52.6 billion was lost
to identity theft in 2004 alone. Not all of this can be linked directly to credit card
exposure, of course, but increased vigilance by vendors would certainly have had a
positive impact. The FBI has even connected credit card fraud to terrorist funding.
Specific incidents include the bombings in Bali and the Madrid subway system.

The PCI DSS standard is the result of a joint effort between Visa and Mastercard,
though it is currently maintained by Visa. Unlike ISO 17799, it is freely available for
anyone to download. It focuses entirely on protecting cardholder data systems and
has 12 sections defining requirements for protection.

Because PCI DSS is focused on card processors, it is not appropriate for businesses
that don’t deal with credit card data. However, for those that do, strict compliance is
necessary to avoid hefty fines and possible criminal prosecution. You can find the
document at the merchant security section of Visa’s web site.

Many sites create custom software to fit a unique need, but haste often comes at the
cost of security. Susceptibility to buffer overflows, SQL injections, and cross-site
scripting attacks are a few examples of common flaws in homegrown software. For-
tunately, the U.S. government has released a procedural document to help validate
the security of such applications. The Department of Defense’s Application Security
Checklist is a thorough guide to testing an application for security weaknesses. The
current version is available for download from

iase.disa.mil/stigs/checklist

Unlike the other standards discussed in this section, the Application Security Check-
list delves deeply into technical specifics, at times touching on individual commands
that should be run to conduct a particular test. The standard is not as readable and
as formal as the other standards here, but it is immensely useful for sites that have
in-house development needs.

20.4 SECURITY TIPS AND PHILOSOPHY

This chapter discusses a wide variety of security concerns. Ideally, you should ad-
dress all of them within your environment. If you’re short on time or patience, how-
ever, here are the six all-around most important security issues to consider, plus
some bonus rules to live by. (Most administrators should really digest the contents
of this entire chapter, probably more than once.)

S
e

cu
ri

ty

20.4 Security tips and philosophy 677

Packet filtering

If you’re connecting a Linux system to a network with Internet access, you must have
a packet filtering router or firewall between the Linux system and the outside world.
As an alternative, you can configure packet filtering by using iptables on the Linux
system itself (discussed starting on page 704). Whatever the implementation, the
packet filter should pass only traffic for services that you specifically want to provide
or use from the Linux system.

Unnecessary services

Linux distributions differ widely regarding which network services are turned on as
part of the default installation. Most include several that aren’t needed. It’s up to you
to examine the services that are enabled on your system and to turn off any that
aren’t absolutely necessary. The netstat and fuser commands are a great way to get
started. To really understand what services an attacker can see, scan your systems
with a port scanner from a remote host. nmap, described starting on page 688, is a
security practitioner’s port-scanning dream come true.

Software patches

All major Linux distributors release a steady stream of security-related software
patches, usually several every month. You must vigilantly watch for security patches
relevant to your system software (and any software packages you’re running) and
install them immediately. Keep in mind that once a patch is available, the “bad guys”
may have known about the security hole for weeks.

Backups

Put down that RAID array and back away from the data center, cowboy. You must
perform regular backups of all your systems so that you can recover effectively from
a security incident if one should occur. No amount of mirroring, RAID, or “hot
standby” technology eliminates the need for backups. Information on performing
backups is provided in Chapter 9.

Passwords

We’re simple people with simple rules. Here’s one: every account must have a pass-
word, and it needs to be something that can’t easily be guessed. It’s never a good idea
to send plaintext reusable passwords across the Internet. If you allow remote logins
to your system, you must use SSH or some other secure remote access system (dis-
cussed starting on page 697).

Vigilance

To ensure the security of your system, you must monitor its health, network connec-
tions, process table, and overall status regularly (usually, daily). Perform regular
self-assessments using the power tools discussed later in this chapter. Security
problems tend to start small and grow quickly, so the earlier you identify an anom-
aly, the better off you’ll be.

678 Chapter 20 – Security

General philosophy

Effective system security has its roots in common sense. Some rules of thumb:

• Don’t put files on your system that are likely to be interesting to hackers or
to nosy employees. Trade secrets, personnel files, payroll data, election
results, etc., must be handled carefully if they’re on-line. Securing such
information cryptographically provides a far higher degree of security
than simply trying to prevent unauthorized users from accessing the files
that contain the juicy tidbits.

• Your site’s security policy should specify how sensitive information is han-
dled. See Chapter 30, Management, Policy, and Politics, and the security
standards section in this chapter (page 675) for some suggestions.

• Don’t provide places for hackers to build homes in your environment.
Hackers often break into one system and then use it as a base of operations
to get into others. Sometimes hackers may use your network to cover their
tracks while they attack their real target. Publicly exposed services with
vulnerabilities, world-writable anonymous FTP directories, shared
accounts, and neglected systems all encourage nesting activity.

• Set traps to help detect intrusions and attempted intrusions. Tools such as
samhain, xinetd, and John the Ripper (described starting on page 690)
will keep you abreast of potential problems.

• Religiously monitor the reports generated by these security tools. A minor
problem you ignore in one report may grow into a catastrophe by the time
the next report is sent.

• Teach yourself about system security. Traditional know-how, user educa-
tion, and common sense are the most important parts of a site security
plan. Bring in outside experts to help fill in gaps, but only under your close
supervision and approval.

• Prowl around looking for unusual activity. Investigate anything that seems
unusual, such as odd log messages or changes in the activity of an account
(more activity, activity at strange hours, or perhaps activity while the
owner is on vacation).

20.5 SECURITY PROBLEMS IN /ETC/PASSWD AND /ETC/SHADOW

See page 93 for more
information about the
passwd file.

Poor password management is a common security weakness. The contents of the
/etc/passwd and /etc/shadow files determines who can log in, so these files are the
system’s first line of defense against intruders. They must be scrupulously main-
tained and free of errors, security hazards, and historical baggage.

On legacy systems, the second field of /etc/passwd contained a string that repre-
sented the user’s encrypted password. Since /etc/passwd must be world-readable
for commands such as ls to work, the encrypted password string was available to all

S
e

cu
ri

ty

20.5 Security problems in /etc/passwd and /etc/shadow 679

users on the system. Evildoers could encrypt entire dictionaries and compare the
results with the strings in /etc/passwd. If the encrypted strings matched, a pass-
word had been found.

How much of a threat is this? In the 80s, there was at least one way to decrypt pass-
words posthaste,3 but run-of-the-mill hackers had to be content with using the crypt
library routine4 to encrypt dictionary words for comparison. A “fast” machine in the
80s could do a few hundred encryptions a second. By contrast, brute force contests
have now cracked 56-bit DES keys in under 24 hours. Thankfully, modern UNIX and
Linux systems do not use crypt and are considerably more secure.

These results are frightening, and they suggest that user access to encrypted pass-
word strings really ought to be restricted. The standard way to impose restrictions
is to put passwords in a separate file that is readable only by root, leaving the rest of
/etc/passwd intact. The file that contains the actual password information is then
called the shadow password file, /etc/shadow. All modern Linux distributions use
shadow passwords.

Password checking and selection

Linux allows users to choose their own passwords, and although this is a great con-
venience, it leads to many security problems. When you give users their logins, you
should also instruct them on how to choose a good password. Tell them not to use
their name or initials, the name of a child or spouse, or any word that can be found
in a dictionary. Passwords derived from personal data such as telephone numbers
or addresses are also easily broken.

Passwords should be at least eight characters long and should include numbers,
punctuation, and changes in case. Nonsense words, combinations of simple words,
or the first letters of words in a memorable phrase make the best passwords. Of
course, “memorable” is good but “traditional” is risky. Make up your own phrase.
The comments in the section Choosing a root password on page 47 are equally appli-
cable to user passwords.

It is important to continually verify (preferably daily) that every login has a pass-
word. Entries in the /etc/shadow file that describe pseudo-users such as “daemon”
who own files but never log in should have a star (*) or an exclamation point (!) in
their encrypted password field. These will not match any password and will thus pre-
vent use of the account.

The /etc/shadow file is largely maintenance free. However, the following Perl one-
liner checks for null passwords:

$ sudo perl -F: -ane 'print if not $F[1];' /etc/shadow

3. Evi Nemeth broke the Diffie-Hellman key exchange often used with DES in 1984, using a HEP super-
computer. Although DES is thought to be mathematically secure, the short key lengths in common use
offer relatively little security.

4. Don’t confuse the crypt library routine with the crypt command, which uses a different and less secure
encryption scheme.

680 Chapter 20 – Security

A script that performs this check and mails you the results can be run out of cron.
To help verify that any account modifications are legitimate, you can write a script
that diffs the passwd file against a version from the previous day and emails any
differences to you.

Password aging

The Linux shadow password system can force users to change their passwords peri-
odically through a facility known as password aging. This may seem like a good idea
at first glance, but it has several problems. Users often resent having to change their
passwords, and since they don’t want to forget the new password, they choose some-
thing simple that is easy to type and remember. Many users switch between two
passwords each time they are forced to change, defeating the purpose of password
aging. PAM modules can help enforce strong passwords to avoid this pitfall.

See page 48 for
more information
about sudo.

Nevertheless, passwords should be changed regularly, especially the root password.
A root password should roll easily off the fingers so that it can be typed quickly and
cannot be guessed by someone watching the movement of fingers on the keyboard.
At our site most people use sudo rather than the real root password, but we select
the root password carefully all the same.

The chage program controls password aging. Using chage, administrators can en-
force minimum and maximum times between password changes, password expira-
tion dates, the number of days to warn users before expiring their passwords, the
number of days of inactivity that are permissible before accounts are automatically
locked, and more. The following command sets the minimum number of days be-
tween password changes to 2, the maximum number to 90, the expiration date to
July 31, 2007, and warns the user for 14 days that the expiration date is approaching:

$ sudo chage -m 2 -M 90 -E 2007-07-31 -W 14 ben

Group logins and shared logins

Any login that is used by more than one person is bad news. Group logins (e.g.,
“guest” or “demo”) are sure terrain for hackers to homestead and are prohibited in
many contexts by federal regulations such as HIPAA. Don’t allow them at your site.

Likewise, don’t allow users to share logins with family or friends. If little Johnny
needs a login to work on his science project, give him one with that stated purpose.
It’s much easier to take away Johnny’s login when he abuses it than to get rid of Dad
and his account, especially at government sites.

At some sites, “root” is a group login. Dangerous! We recommend using the sudo
program to control access to rootly powers. See page 48.

User shells

Do not use a script as the shell for an unrestricted (passwordless) login. In fact, if
you find yourself needing a passwordless login, you should probably consider a
passphrase-less SSH keypair instead.

S
e

cu
ri

ty

20.5 Security problems in /etc/passwd and /etc/shadow 681

Rootly entries

The only distinguishing feature of the root login is its UID of zero. Since there can be
more than one entry in the /etc/passwd file that uses this UID, there can be more
than one way to log in as root.

A common way for hackers to install a back door once they have obtained a root
shell is to edit new root logins into /etc/passwd. Programs like who and w refer to
the name stored in /var/run/utmp rather than the UID that owns the login shell, so
they cannot expose hackers that appear to be innocent users but are really logged in
as UID 0.

The defense against this subterfuge is a mini-script similar to the one used for find-
ing logins without passwords:

$ perl -F: -ane 'print if not $F[2];' /etc/passwd

This script prints out any lines in the passwd file that have null or 0 UIDs. You could
easily adapt it to find entries with suspicious groups or UIDs that are the same as
those of key people within your organization.

You should also check for passwd entries that have no username or that have punc-
tuation as a username. These entries may seem nonsensical, but they often allow a
hacker to log in.

PAM: cooking spray or authentication wonder?

The Pluggable Authentication Module API (aka PAM) was originally invented by
Sun as a flexible way to authenticate users. For many years, authentication in the
UNIX environment was as simple as associating users with their entry in the
/etc/passwd file. The need for stronger security and support for a wider variety of
authentication mechanisms (such as smart cards) has created a need for a more flex-
ible approach. Certain PAM LDAP modules perform centralized authentication to
global authentication directories.

Linux-PAM is shipped with all sane Linux distributions and is unrelated to Sun’s
current implementation of the PAM standard. The concept is simple: programs that
require authentication only need to know that a module is available to perform the
authentication for them. PAM is set up so that modules can be added, deleted, and
reconfigured at any time— modules need not be linked in (or even exist) at the time
a utility is compiled. As a result of this architecture, PAM has become an incredibly
powerful tool for system administrators.

Dozens of PAM modules are available. You can download specialized modules and
their documentation from www.kernel.org/pub/linux/libs/pam.

PAM modules are configured through files in the /etc/pam.d directory. Per-service
files in this directory contain entries of the form

module-type control-flag module-path arguments

www.kernel.org/pub/linux/libs/pam

682 Chapter 20 – Security

The module-type field can have the values auth, account, session, or password. An
auth entry establishes who the user is and possibly grants group membership. The
account tag performs non-authentication-based decisions, such as access based on
time of day. Tasks that need to be performed before or after a user is given service
are implemented with the session tag. Finally, the password tag is used when au-
thentication information (such as a password) is requested from the user.

The control-flag field has four possible values: required, requisite, sufficient, and
optional. required and optional are most commonly used, signifying that a mod-
ule must succeed in order for execution to continue or that it doesn’t matter whether
the module succeeds, respectively.

The third and fourth fields are the pathname and the arguments for the dynamically
loadable module object. If the first character of the path is /, the path is assumed to
be an absolute path. Otherwise, the contents of the field are appended to the default
path, /lib/security.

See page 690 for more
information about
John the Ripper.

PAM is one solution to the password complexity difficulties described above. The
pam_cracklib module can force passwords to meet minimum requirements. Spe-
cifics vary widely, so use grep to find the proper configuration file. For example, to
ensure that users passwords cannot be determined by John the Ripper, the file
/etc/pam.d/system-auth on Fedora should contain

password required pam_cracklib.so retry=3 minlen=12 difok=4

With this line in place, PAM checks users’ proposed new passwords against a pass-
word cracking dictionary and ruleset. (This setup requires the presence of the sys-
tem library libcrack and also a system dictionary, /usr/lib/cracklib_dict.*) An er-
ror message such as “The password is too simple” is printed on the screen if a user’s
password does not adhere to the cracklib requirements.

The cracklib argument rules are complicated, but here’s the interpretation of the
specific configuration shown above:

• The retry=3 argument specifies that the user be given three tries at enter-
ing a strong password.

• minlen=12 specifies a minimum password length. Uppercase letters,
numbers, and punctuation get special treatment by the library and lower
the minimum. With minlen=12, the shortest password a user can have is
actually 8 characters, not 12, but the user must include all four available
character types to set an 8-character password.

• difok=4 specifies that at least four characters of the new password must
not be present in the old password.

Modern Linux distributions include and use the pam_cracklib module by default,
but the password complexity rules are usually not enabled.

S
e

cu
ri

ty

20.7 Setuid programs 683

20.6 POSIX CAPABILITIES

Linux systems subdivide the powers of the root account according to the POSIX no-
tion of “capabilities.” For example, one capability allows a process to perform privi-
leged operations on network sockets and network interfaces, while another allows a
process to set hardware-related options. Capabilities are inherited, masked, and be-
stowed in a systematic manner by which programs can perform privileged tasks
without accessing the full power of the root account. Because privileges can be doled
out more stringently than in traditional UNIX, the likelihood of a security compro-
mise leading to unrestricted root access is lower—at least in theory.

In practice, the capability system is of limited interest to system administrators.
Software that is capability aware requires no special administrative attention; it sim-
ply sets itself to operate in a more restricted mode. But most UNIX and Linux soft-
ware continues to assume the traditional all-powerful superuser model that really
can’t be disabled without significant trouble and sacrifice. Some of the accommoda-
tions the Linux kernel makes to maintain compatibility with traditional UNIX soft-
ware make the capability system more “leaky” than it really should be.5

The upshot is that POSIX capabilities make good cocktail conversation but have
limited real-world implications. For the most part they can be ignored, with one
notable exception: the kernel applies a “global capability bounding set” (accessed
and set through the file /proc/sys/kernel/cap-bound) every time a new program is
executed. If you want to disable one or more capabilities throughout the entire sys-
tem, you can add them to this global bounding set. See man capabilities for details.

20.7 SETUID PROGRAMS

Programs that run setuid, especially ones that run setuid to root, are prone to secu-
rity problems. The setuid commands distributed with Linux are theoretically secure;
however, security holes have been discovered in the past and will undoubtedly be
discovered in the future.

The surest way to minimize the number of setuid problems is to minimize the num-
ber of setuid programs. Think twice before installing a software package that needs
to run setuid, and avoid using the setuid facility in your own home-grown software.
An average Linux distribution contains about 35 setuid programs, though this var-
ies from distribution to distribution.

There’s no rule that says setuid programs must run as root. If all you need to do is
restrict access to a particular file or database, you can add to the passwd file a
pseudo-user whose only reason for existence is to own the restricted resources. Fol-
low the normal pseudo-user conventions: use a low UID, put a star in the password
field, and make the pseudo-user’s home directory be /dev/null.

5. One of our technical reviewers commented, “In fact, capability inheritance has never worked right in
Linux; it’s an ongoing embarrassment.”

684 Chapter 20 – Security

You can disable setuid and setgid execution on individual filesystems by specifying
the -o nosuid option to mount. It’s a good idea to use this option on filesystems that
contain users’ home directories or that are mounted from less trustworthy adminis-
trative domains.

It’s useful to scan your disks periodically to look for new setuid programs. A hacker
who has breached the security of your system sometimes creates a private setuid
shell or utility to facilitate repeat visits. Some of the tools discussed starting on page
688 locate such files, but you can do just as well with find. For example,

/usr/bin/find / -user root -perm -4000 -print |
/bin/mail -s "Setuid root files" netadmin

mails a list of all setuid root files to the “netadmin” user.

20.8 IMPORTANT FILE PERMISSIONS

Many files on a Linux system must have particular permissions if security problems
are to be avoided. Some distributors ship software with permissions set for their own
“friendly” development environment. These permissions may not be appropriate
for you.

/etc/passwd and /etc/group should not be world-writable. They should have owner
root and mode 644. /etc/shadow should have mode 600—no permissions for the
group or world:

-rw------- 1 root root 1835 May 8 08:07 /etc/shadow

The groups of all these files should be set to some system group, usually root. (The
passwd command runs setuid to root so that users can change their passwords with-
out having write permission on /etc/passwd or /etc/shadow.)

See page 734 for infor-
mation about setting
up an FTP server.

Historically, FTP programs have been riddled with security holes and insecure de-
fault configurations. FTP also transmits credentials in cleartext, an inherent prob-
lem in the protocol that makes it unacceptable on today’s Internet.

New technologies such as SFTP have replaced FTP, and there are very few cases in
which FTP should be allowed. In those rare cases, however, read the software docu-
mentation thoroughly to ensure proper configuration. If you must allow anonymous
FTP access, either disable world-writable directories or scan them regularly for ille-
gal or sensitive files.

Device files for hard disk partitions are another potential source of problems. Having
read or write permission on a disk device file is essentially the same as having read or
write permission on every file in the filesystem it represents. Only root should have
both read and write permission. The group owner is sometimes given read permis-
sion to facilitate backups, but there should be no permissions for the world.

S
e

cu
ri

ty

20.9 Miscellaneous security issues 685

20.9 MISCELLANEOUS SECURITY ISSUES

The following sections present some miscellaneous security-related topics. Most are
either features that are useful to you as an administrator or misfeatures that can pro-
vide nesting material for hackers if not kept in check.

Remote event logging

See Chapter 10 for
more information
about syslog.

The syslog facility allows log information for both the kernel and user processes to
be forwarded to a file, a list of users, or another host on your network. Consider set-
ting up a secure host that acts as a central logging machine, parses log files, and
emails events of interest. This precaution prevents hackers from covering their
tracks by rewriting or erasing log files.

Secure terminals

Linux can be configured to restrict root logins to specific “secure” terminals. It’s a
good idea to disable root logins on channels such as SSH, VPNs, or other remote
links. Often, network pseudo-terminals are also set to disallow root logins.

The secure channels are specified as a list of TTY devices in the configuration file
/etc/securetty. It’s also possible to restrict nonroot logins to particular locations
with entries in the file /etc/security/access.conf or to particular times with entries
in the file /etc/security/time.conf.

Administrators can still log in normally and use sudo to access superuser powers.

/etc/hosts.equiv and ~/.rhosts

The hosts.equiv and ~/.rhosts files define hosts as being administratively “equiva-
lent” to one another, allowing users to log in (with rlogin) and copy files (with rcp)
between machines without typing their passwords. Use of this facility was once com-
mon during the party days of UNIX, but everyone eventually woke up with a nasty
headache and realized that it wasn’t such a good idea.

Fortunately, the SSH protocol has virtually eliminated the use of insecure equiva-
lents such as telnet, rsh, and rlogin. Its use is covered later in the chapter.

Some of the replacements for rlogin (including SSH!) pay attention to .rhosts and
/etc/hosts.equiv if they are not configured properly. For added safety, you can cre-
ate the /etc/hosts.equiv file and a ~/.rhosts file for each user (including root) as an
unwritable, zero-length file. It’s easier to assess what the state of a file was at 3:00 a.m.
if it exists and is untouched than to assess the state of a nonexistent file. This distinc-
tion can be crucial when you are tracking intruders and their attempts to compro-
mise your system.

Security and NIS

See Chapter 17 for
more information
about NIS.

Other than in the title of this section, these words should never be used together.
The Network Information Service (NIS, formerly the Yellow Pages) is a Sun database
distribution tool that many sites use to maintain and distribute files such as

686 Chapter 20 – Security

/etc/group, /etc/passwd, and /etc/hosts. Unfortunately, its very nature of “easy in-
formation access” makes it tasty hacker bait.

A more secure way to distribute these files is to create a service login such as “ne-
tadmin” and to place the most recent copies of these files in ~netadmin. You can
then use cron to run a script on each client machine to scp, sanity check, and install
the files. See page 697 for more information about SSH, of which scp is a component.

Security and NFS

NFSv4 is an IETF extension to Sun’s earlier protocol that includes strong security
and a number of other benefits over earlier implementations. Though the protocol is
not yet complete, development is well underway, and NFSv4 is included in the Linux
2.6 kernel series.

Older versions of NFS use a weak security model. See page 487 for more information
about NFS security. You can use showmount -e to see which filesystems are being
exported and to whom. Every exported filesystem should have an access list, and all
hostnames should be fully qualified.

Security and sendmail

See Chapter 18 for
more information
about sendmail.

sendmail is a huge program that runs as root, at least initially. As a result, it has often
been subject to the attacks of hackers. Make sure that you’re running the most up-to-
date version of sendmail on all your systems. Since security problems are one of the
most likely issues to spark new software releases, it’s probable that all versions of
sendmail but the most current have vulnerabilities.

Specific details about sendmail security are covered in the electronic mail chapter
starting on page 603; www.sendmail.org has information about specific releases.

Security and backups

See Chapter 9 for more
information about
backups.

Regular system backups are an essential part of any site security plan. Make sure that
all partitions are regularly dumped to tape and that you store some backups off-site.
If a significant security incident occurs, you’ll have an uncontaminated checkpoint
from which to restore.

Backups can also be a security hazard. A stolen collection of tapes can circumvent
the rest of the system’s security. When storing tapes off-site, use a fireproof safe to
avoid theft. Consider the use of encryption. If you are considering the use of a con-
tract storage facility, ask for a physical tour.

Viruses and worms

Linux has been mostly immune from viruses. Only a handful exist (most of which
are academic in nature), and none have done the costly damage that has become
commonplace in the Windows world. Nonetheless, this hasn’t stopped certain anti-
virus vendors from predicting the demise of the Linux platform from malware—
unless you purchase their antivirus product at a special introductory price, of course.

www.sendmail.org

S
e

cu
ri

ty

20.9 Miscellaneous security issues 687

The exact reason for the lack of malicious software is unclear. Some claim that Linux
simply has less market share than its desktop competitors and is therefore not an
interesting target for virus authors. Others insist that Linux’s access controlled envi-
ronment limits widespread damage from a self-propagating worm or virus.

The latter argument has some validity. Because Linux restricts write access to sys-
tem executables at the filesystem level, unprivileged user accounts cannot infect the
rest of the environment. Unless the virus code is being run by root, the scope of
infection is significantly limited. The main moral, then, is not to use the root ac-
count for day-to-day activities.

Perhaps counterintuitively, one valid reason to run antivirus software on Linux
servers is to protect your site’s Windows systems from Windows-specific viruses. A
mail server can scan incoming email attachments for viruses, and a file server can
scan shared files for infection. However, this solution should supplement desktop
antivirus protection rather than replace it.

ClamAV by Tomasz Kojm is a popular, free antivirus product for Linux. This widely
used GPL tool is a complete antivirus toolkit with signatures for thousands of vi-
ruses. You can download the latest version from www.clamav.net.

Trojan horses

Trojan horses are programs that aren’t what they seem to be. An example of a Trojan
horse is a program called turkey that was distributed on Usenet a long time ago. The
program said it would draw a picture of a turkey on your terminal screen, but it
actually deleted files from your home directory.

A more controversial example of a Trojan horse was the copy protection software
included on many Sony audio CDs in 2004 and 2005. In a misguided attempt to foil
music sharers, Sony installed protection software on Windows systems without the
listener’s consent or knowledge. The software introduced vulnerabilities on the host
computer that could be exploited by worms and viruses.

Trojan fragments appear in major Linux software packages now and then. sendmail,
tcpdump, OpenSSH, and InterBase have all issued advisories regarding malicious
software in their products. These Trojans typically embed malicious code that al-
lows attackers to access the victim’s systems at will. Fortunately, most vendors fix the
software and issue an advisory in a week or two. Be sure to watch the security mail-
ing lists for any network software packages you run on your Linux hosts.

Even given the number of security-related escapades the Linux community has seen
over the last few years, it is remarkable how few Trojan horse incidents have occurred.
Credit for this state of affairs is due largely to the speed of Internet communication.
Obvious security problems tend to be discovered quickly and widely discussed. Mali-
cious packages don’t stay available for very long on well-known Internet servers.

You can be certain that any software that has been discovered to be malicious will
cause a big stink on the Internet. If you want to do a quick check before installing
something, type the name of the software package into your favorite search engine.

www.clamav.net

688 Chapter 20 – Security

Rootkits

The craftiest hackers try to cover their tracks and avoid detection. Often, they hope
to continue using your system to distribute software illegally, probe other networks,
or launch attacks against other systems. They often use “rootkits” to help them re-
main undetected. Sony’s Trojan horse employed rootkit-like capabilities to hide it-
self from the user.

Rootkits are programs and patches that hide important system information such as
process, disk, or network activity. They come in many flavors and vary in sophisti-
cation from simple application replacements (such as hacked versions of ls and ps)
to kernel modules that are nearly impossible to detect.

Host-based intrusion detection software such as samhain (described below) is an
effective way to monitor systems for the presence of rootkits. Although programs
are available to help administrators remove rootkits from a compromised system,
the time it takes to perform a thorough cleaning would be better spent saving data,
reformatting the disk, and starting from scratch. The most advanced rootkits are
aware of common removal programs and try to subvert them.

20.10 SECURITY POWER TOOLS

Some of the time-consuming chores mentioned in the previous sections can be au-
tomated with freely available tools. Here are a few of the tools you’ll want to look at.

Nmap: scan network ports

Nmap is a network port scanner. Its main function is to check a set of target hosts to
see which TCP and UDP ports have servers listening on them.6 Since most network
services are associated with “well known” port numbers, this information tells you
quite a lot about the software a machine is running.

Running Nmap is a great way to find out what a system looks like to someone who is
trying to break in. For example, here’s a report from a default installation of Red Hat
Enterprise Linux:

$ nmap -sT rhel.booklab.example.com

Starting Nmap 4.00 (http://www.insecure.org/nmap/) at 2006-05-15 23:48 EDT
Interesting ports on rhel.booklab.example.com (192.168.1.31):
(The 1668 ports scanned but not shown below are in state: closed)
PORT STATE SERVICE
22/tcp open ssh
25/tcp open smtp
111/tcp open rpcbind
631/tcp open ipp

Nmap run completed -- 1 IP address (1 host up) scanned in .158 second

6. As described in Chapter 12, a port is a numbered communication channel. An IP address identifies an
entire machine, and an IP address + port number identifies a specific server or network conversation
on that machine.

http://www.insecure.org/nmap/

S
e

cu
ri

ty

20.10 Security power tools 689

By default, nmap includes the -sT argument to try to connect to each TCP port on
the target host in the normal way.7 Once a connection has been established, nmap
immediately disconnects, which is impolite but not harmful to a properly written
network server.

From the example above, we can see that the host rhel is running several services
that are likely to be unused and that have historically been associated with security
problems: portmap (rpcbind), CUPS (ipp), and probably sendmail (smtp). Sev-
eral potential lines of attack are now apparent.

The STATE column in nmap’s output shows open for ports with servers, unfiltered
for ports in an unknown state, closed for ports with no server, and filtered for ports
that cannot be probed because of an intervening packet filter. Unfiltered ports are
the typical case and are normally not shown unless nmap is running an ACK scan.
For example, here’s a dump from a more secure server, secure.example.com:

$ nmap -sT secure.example.com

Starting Nmap 4.00 (http://www.insecure.org/nmap/) at 2006-05-15 23:55 EDT
Interesting ports on secure.example.com (192.168.1.33):
(The 1670 ports scanned but not shown below are in state: closed)
PORT STATE SERVICE
22/tcp open ssh
1241/tcp open nessus

Nmap finished: 1 IP address (1 host up) scanned in 0.143 seconds

In this case, it’s clear that the host is set up to allow SSH and the Nessus network
scanner. A firewall blocks access to other ports.

In addition to straightforward TCP and UDP probes, nmap also has a repertoire of
sneaky ways to probe ports without initiating an actual connection. In most cases,
nmap probes with packets that look like they come from the middle of a TCP con-
versation (rather than the beginning) and waits for diagnostic packets to be sent
back. These stealth probes may be effective at getting past a firewall or at avoiding
detection by a network security monitor on the lookout for port scanners. If your
site uses a firewall (see Firewalls on page 701), it’s a good idea to probe it with these
alternative scanning modes to see what they turn up.

nmap has the magical and useful ability to guess what operating system a remote
system is running by looking at the particulars of its implementation of TCP/IP. It
can sometimes even identify the software that’s running on an open port. The -O
and -sV options, respectively, turn on this behavior. For example:

$ nmap -O -sV secure.example.com

Starting Nmap 4.00 (http://www.insecure.org/nmap/) at 2006-05-16 00:01 EDT
Interesting ports on secure.example.com (192.168.1.33):
(The 1670 ports scanned but not shown below are in state: closed)

7. Actually, only the privileged ports (those with port numbers under 1,024) and the well-known ports
are checked by default. Use the -p option to explicitly specify the range of ports to scan.

http://www.insecure.org/nmap/
http://www.insecure.org/nmap/

690 Chapter 20 – Security

PORT STATE SERVICE VERSION
22/tcp open ssh OpenSSH 3.6.1p2 (protocol 2.0)
1241/tcp open ssl Nessus security scanner
Device type: general purpose
Running: Linux 2.4.X|2.5.X|2.6.X
OS details: Linux 2.4.0 - 2.5.20, Linux 2.5.25 - 2.6.8 or Gentoo 1.2 Linux 2.4.19

rc1-rc7, Linux 2.6.3 - 2.6.10
Nmap finished: 1 IP address (1 host up) scanned in 8.095 seconds

This feature can be very useful for taking an inventory of a local network. Unfortu-
nately, it is also very useful to hackers, who can base their attacks on known weak-
nesses of the target OS.

Keep in mind that most administrators don’t appreciate your efforts to scan their
network and point out its vulnerabilities, however well intended your motive. Do
not run nmap on someone else’s network without permission from one of that net-
work’s administrators.

Nessus: next generation network scanner

Nessus, originally released by Renaud Deraison in 1998, is a powerful and useful
software vulnerability scanner. At the time of this writing, it uses more than 10,000
plug-ins to check for both local and remote security flaws. Although it is now a
closed source, proprietary product, it is still freely available, and new plug-ins are
released regularly. It is the most widely accepted and complete vulnerability scan-
ner available.

Nessus prides itself on being the security scanner that takes nothing for granted.
Instead of assuming that all web servers run on port 80, for instance, it scans for web
servers running on any port and then checks them for vulnerabilities. Instead of
relying on the version numbers reported by the service it has connected to, Nessus
attempts to exploit known vulnerabilities to see if the service is susceptible.

Although a substantial amount of setup time is required to get Nessus running (it
requires several packages that aren’t installed on the typical default distribution), it’s
well worth the effort.

The Nessus system includes a client and a server. The server acts as a database and
the client handles the GUI presentation. You must run the server on a UNIX or
Linux system, but clients are available to control and display Nessus from a variety
of other platforms.

One of the great advantages of Nessus is its modular design, which makes it easy for
third parties to add new security checks. Thanks to an active user community (and
despite recent licensing changes), Nessus is likely to be a useful tool for years to come.

John the Ripper: find insecure passwords

One way to thwart poor password choices is to try to break the passwords yourself
and to force users to change passwords that you have broken. John the Ripper is a
sophisticated tool by Solar Designer that implements various password-cracking

S
e

cu
ri

ty

20.10 Security power tools 691

algorithms in a single tool. It replaces the tool crack, which was covered in previous
editions of this book.

Even though most systems use a shadow password file to hide encrypted passwords
from public view, it’s still wise to verify that your users’ passwords are crack resistant.
Knowledge of a user’s password can be useful because people tend to use the same
password over and over again. A single password might provide access to another
system, decrypt files stored in a user’s home directory, and allow access to financial
accounts on the web. (Needless to say, it’s not very security-smart to reuse a pass-
word this way. But nobody wants to remember ten passwords.)

Considering its internal complexity, John the Ripper is an extremely simple program
to use. Direct john to the file to be cracked, most often /etc/shadow, and watch the
magic happen:

$ sudo ./john /etc/shadow
Loaded 25 password hashes with 25 different salts (FreeBSD MD5 [32/32])
password (bad2)
badpass (bad1)

In this example, 25 unique passwords were read from the shadow file. As passwords
are cracked, John prints them to the screen and saves them to a file called john.pot.
The output contains the password in the left column with the login in parentheses in
the right column. To reprint passwords after john has completed, run the same com-
mand with the -show argument.

As of this writing, the most recent stable version of John the Ripper is 1.7.0.2. It’s
available from www.openwall.com/john. Since John the Ripper’s output contains the
passwords it has broken, you should carefully protect the output and delete it as
soon as you are done.

hosts_access: host access control

Network firewalls are a first line of defense against access by unauthorized hosts, but
they shouldn’t be the only barrier in place. Linux uses two files, /etc/hosts.allow
and /etc/hosts.deny, to restrict access to services according to the origin of network
requests. The hosts.allow file lists the hosts that are allowed to connect to a specific
service, and the hosts.deny file restricts access. However, these files control access
only for services that are hosts_access aware, such as those managed by xinetd,
sshd, and some configurations of sendmail.

In most cases it is wise to be restrictive and permit access only to essential services
from designated hosts. We suggest denying access by default in the hosts.deny file
with the single line

ALL:ALL

You can then permit access on a case-by-case basis in hosts.allow. The following
configuration allows access to SSH from hosts on the 192.168/16 networks and to
sendmail from anywhere.

www.openwall.com/john

692 Chapter 20 – Security

sshd: 192.168.0.0/255.255.0.0
sendmail: ALL

The format of an entry in either file is service: host or service: network. Failed con-
nection attempts are noted in syslog. Connections from hosts that are not permitted
to access to the service are immediately closed.

Most Linux distributions include hosts.allow and hosts.deny files by default, but
they’re usually empty.

Samhain: host-based intrusion detection

Samhain is a host intrusion detection system and file integrity monitor that is devel-
oped and maintained by Rainer Wichmann at Samhain Labs (la-samhna.de). Thanks
to its modular interface, it can monitor the integrity of files, check mounted filesys-
tems, search for rootkits, and more. For example, samhain makes it easy to deter-
mine that an intruder has replaced your copy of /bin/login with one that records
passwords in a clandestine file.

Samhain’s console-centric design keeps log data on a trusted host, which helps to
maintain the integrity of the auditing data. Host change reports can be reviewed
through a web interface or distributed via email. Samhain’s logs can be useful as a
forensic tool to help reconstruct the sequence of events in a security incident.

Samhain checks host characteristics against a database that contains file informa-
tion and checksums known to be sane at the time the database was created. The
general idea is to make a baseline database from a trusted state of the system and
then regularly check for differences against the historical database. Files that are
known to change under normal circumstances can be configured not to generate
warnings. When a system’s configuration changes or new software is installed, the
database should be rebuilt so that real problems do not disappear among a flood of
spurious warnings.

The full system includes three components. The samhain agent runs on clients and
reports data to the log server. The log server daemon, called yule, accepts connec-
tions from samhain clients and adds data to the configured logging facilities, usu-
ally syslog or a database. A web-based management console called Beltane manages
system baselines, edits configurations, and signs the configurations and baselines
with a digital signature.

The system’s component-based design offers several benefits over traditional file in-
tegrity scanners. The data that’s collected lives on a trusted host, so attackers have a
smaller chance of compromising the integrity of the database. Management is also
easier because information is collected in one central location.

You can configure samhain to be incredibly paranoid. Samhain can do sneaky things
like hide itself in the process list and append its database to a file that doesn’t break
with excess data such as a JPEG file, effectively hiding the database inside an image.

S
e

cu
ri

ty

20.10 Security power tools 693

Cryptographic signatures of configuration files and databases can be created with
the web interface to help detect any unauthorized changes to those files.

Here’s a simple example of a report from a samhain syslog entry:

CRIT : [2006-06-25T19:31:48-0600] msg=<POLICY [ReadOnly] --------T->,
path=</bin/login>, ctime_old=<[2006-06-26T01:24:34]>, ctime_new=<[2006-
06-26T01:31:47]>, mtime_old=<[2006-06-26T01:24:34]>, mtime_new=<[2006-
06-26T01:31:47]>,
48CA06CC50B857DE77C27956ADE7245B0DF63F6A8A42F5B7

It’s a little cryptic, but this entry explains that a log message of severity CRITICAL
occurred, and that the /bin/login program’s ctime and mtime attributes have
changed. Time to investigate.

Unfortunately, samhain requires a fair amount of maintenance overhead. Like any
system based on checks against a system baseline, it tends to generate a fair number
of false positive complaints caused by legitimate day-to-day activity. The samhain
configuration file helps weed out complaints about frequently changing files, but
administrators can’t predict everything. Keep in mind that a fair amount of hand-
holding will be required, especially on a large-scale installation.

Security-Enhanced Linux (SELinux)

As we have seen, the Linux security model has its faults. Discretionary access con-
trols (the concept of access to files being permitted at the discretion of an account
with appropriate permissions) is a convenient but insecure method of controlling
access to filesystem objects. It is inherently based on trust: trust that users with ac-
cess are not malicious, trust that administrators know the proper permissions for
every file in a software package, and trust that third-party software packages install
themselves with strong controls in place. But even if all of these things were true, a
software vulnerability could still leave the system unprotected.

SELinux addresses this problem by using mandatory access controls, aka MAC. Un-
der MAC, users do not have authoritative control over object access. Instead, an ad-
ministrator defines system-wide access policies. A well-implemented MAC policy
relies on the principle of least privilege (allowing access only when necessary), much
as a properly designed firewall allows only specifically recognized services and cli-
ents to pass. MAC can prevent software with code execution vulnerabilities (e.g.,
buffer overflows) from compromising the system by limiting the scope of the breach
to the few specific resources required by that software.

SELinux is an NSA project that has been freely available since late 2000. It has been
integrated into the 2.6 series of the Linux kernel. Adoption of SELinux by individual
distributions has been relatively weak, however, with the notable exceptions of Red
Hat Enterprise Linux and Fedora.

Policy development is a complicated topic. At least one company offers a 3-day class
on SELinux policy. To protect a new daemon, for example, a policy must carefully
enumerate all the files, directories, and other objects to which the process needs

694 Chapter 20 – Security

access. For complicated software like sendmail or the Apache httpd, this task can
be quite complex.

Fortunately, many general policies are available online. These can easily be installed
and configured for your particular environment. A full-blown policy editor that
aims to ease policy application can be found at seedit.sourceforge.net.

SELinux has been present in RHEL since version 4. Fedora incorporated the soft-
ware in Core 2 and included additional support in Core 3. A default installation of
Fedora or Red Hat Enterprise Linux actually includes some SELinux protections
right out of the box.

The file /etc/selinux/config controls the SELinux configuration. The interesting
lines are

SELINUX=enforcing
SELINUXTYPE=targeted

The first line has three possible values: enforcing, permissive, or disabled. The
enforcing setting ensures that the loaded policy is applied and prohibits violations.
permissive allows violations to occur but logs them through syslog. disabled turns
off SELinux entirely.

SELINUXTYPE refers to the type of policy to be applied. Red Hat and Fedora have
two policies: targeted, which defines additional security for daemons that Red Hat
has protected,8 and strict, which protects the entire system. Although the strict pol-
icy is available, it is not supported by Red Hat; the restrictions are so tight that the
system is difficult to use. The targeted policy offers protection for important net-
work daemons without affecting general system use, at least in theory. But even the
targeted policy isn’t perfect. If you’re having problems with newly installed soft-
ware, check /var/log/messages for SELinux errors.

SUSE uses its own implementation of MAC called AppArmor and does not include
SELinux.

SELinux packages are maintained for Debian and Ubuntu by Russel Coker, the Red
Hat bloke who generated the strict and targeted policies.

20.11 CRYPTOGRAPHIC SECURITY TOOLS

Many of the protocols in common use on Linux systems date from a time before the
wide deployment of the Internet and modern cryptography. Security was simply not
a factor in the design of many protocols; in others, security concerns were waved
away with the transmission of a plaintext password or with a vague check to see if
packets originated from a trusted host or port.

8. The protected daemons are httpd, dhcpd, mailman, named, portmap, nscd, ntpd, mysqld, postgres,
squid, winbindd, and ypbind.

S
e

cu
ri

ty

20.11 Cryptographic security tools 695

These protocols now find themselves operating in the shark-infested waters of large
corporate LANs and the Internet, where, it must be assumed, all traffic is open to
inspection. Not only that, but there is little to prevent anyone from actively interfer-
ing in network conversations. How can you be sure who you’re really talking to?

Cryptography solves many of these problems. It has been possible for a long time to
scramble messages so that an eavesdropper cannot decipher them, but this is just
the beginning of the wonders of cryptography. Developments such as public key
cryptography and secure hashing have promoted the design of cryptosystems that
meet almost any conceivable need.9

Unfortunately, these mathematical developments have largely failed to translate into
secure, usable software that is widely embraced and understood. The developers of
cryptographic software systems tend to be very interested in provable correctness
and absolute security and not so interested in whether a system makes practical
sense for the real world. Most current software tends to be rather overengineered,
and it’s perhaps not surprising that users run away screaming when given half a
chance. Today, the cryptography-using population consists largely of hobbyists in-
terested in cryptography, black-helicopter conspiracy theorists, and those who have
no choice because of administrative policy.

We may or may not see a saner approach to cryptography developing over the next
few years. In the meantime, some current offerings discussed in the following sec-
tions may help out.

Kerberos: a unified approach to network security

The Kerberos system, designed at MIT, attempts to address some of the issues of net-
work security in a consistent and extensible way. Kerberos is an authentication sys-
tem, a facility that “guarantees” that users and services are in fact who they claim to
be. It does not provide any additional security or encryption beyond that.

Kerberos uses DES to construct nested sets of credentials called “tickets.” Tickets are
passed around the network to certify your identity and to provide you with access to
network services. Each Kerberos site must maintain at least one physically secure
machine (called the authentication server) to run the Kerberos daemon. This dae-
mon issues tickets to users or services that present credentials, such as passwords,
when they request authentication.

In essence, Kerberos improves upon traditional Linux password security in only two
ways: it never transmits unencrypted passwords on the network, and it relieves users
from having to type passwords repeatedly, making password protection of network
services somewhat more palatable.

9. An excellent resource for those interested in cryptography is “RSA Labs’ Frequently Asked Questions
about Today’s Cryptography” at www.rsasecurity.com/rsalabs/faq. Additionally, Stephen Levy’s book
Crypto is a comprehensive guide to the history of cryptography.

www.rsasecurity.com/rsalabs/faq

696 Chapter 20 – Security

The Kerberos community boasts one of the most lucid and enjoyable documents ever
written about a cryptosystem, Bill Bryant’s “Designing an Authentication System: a
Dialogue in Four Scenes.” It’s required reading for anyone interested in cryptogra-
phy and is available at

web.mit.edu/kerberos/www/dialogue.html

There’s also a good FAQ:

www.nrl.navy.mil/CCS/people/kenh/kerberos-faq.html

Kerberos offers a better network security model than the “ignoring network security
entirely” model. However, it is neither perfectly secure nor painless to install and
run. It does not supersede any of the other security measures described in this chap-
ter. In our opinion, most sites are better off without it. Good system hygiene and a
focused cryptographic solution for remote logins such as SSH (see page 697) should
provide a more-than-adequate level of security for your users.

Unfortunately (and perhaps predictably), the Kerberos system distributed as part of
Windows uses proprietary, undocumented extensions to the protocols. As a result, it
does not interoperate well with distributions based on the MIT code.

PGP: Pretty Good Privacy

Philip Zimmermann’s PGP package provides a tool chest of bread-and-butter cryp-
tographic utilities focused primarily on email security. It can be used to encrypt data,
to generate signatures, and to verify the origin of files and messages.

Attempts to regulate or stop the distribution of PGP have given it a rather checkered
history. McAfee includes PGP in its E-Business server product, and the PGP corpo-
ration uses PGP for a variety of encryption products. The GNU project provides an
excellent, free, and widely used implementation known as GnuPG at www.gnupg.org.
A governmentally vetted version of PGP is available for use in the United States, and
an international version with somewhat stronger and more varied encryption is
available from www.pgpi.org. The international archive sites do not seem to screen
out U.S. addresses, so American users must be very careful not to accidentally go to
www.pgpi.org and download the full-featured version of PGP.

PGP is the most popular cryptographic software in common use. Unfortunately, the
UNIX/Linux version is nuts-and-bolts enough that you have to understand a fair
amount of cryptographic background in order to use it. Fortunately (?), PGP comes
with an 88-page treatise on cryptography that can set the stage. Although you may
find PGP useful in your own work, we don’t recommend that you support it for us-
ers, because it has been known to spark many puzzled questions. We have found the
Windows version of PGP to be considerably easier to use than the pgp command
with its 38 different operating modes.

Software packages on the Internet are often distributed with a PGP signature file
that purports to guarantee the origin and purity of the software. It is difficult for
people who are not die-hard PGP users to validate these signatures—not because

www.nrl.navy.mil/CCS/people/kenh/kerberos-faq.html
www.gnupg.org
www.pgpi.org
www.pgpi.org

S
e

cu
ri

ty

20.11 Cryptographic security tools 697

the validation process is complicated, but because true PGP security can only come
from having collected a personal library of public keys from people whose identities
you have directly verified. Downloading a single public key along with a signature
file and software distribution is approximately as secure as downloading the distri-
bution alone.

SSH: the secure shell

The SSH system, written by Tatu Ylönen, is a secure replacement for rlogin, rcp, and
telnet. It uses cryptographic authentication to confirm a user’s identity and encrypts
all communications between the two hosts. The protocol used by SSH is designed to
withstand a wide variety of potential attacks. The protocol is documented by RFCs
4250 through 4256 and is now a proposed standard to the IETF.

SSH has morphed from being a freely distributed open source project (SSH1) to
being a commercial product that uses a slightly different (and more secure) proto-
col, SSH2. Fortunately, the open source community has responded by releasing the
excellent OpenSSH package (maintained by OpenBSD), which now implements
both protocols.

The main components of SSH are a server daemon, sshd, and two user-level com-
mands: ssh for remote logins and scp for copying files. Other components are an
ssh-keygen command that generates public key pairs and a couple of utilities that
help to support secure X Windows.

sshd can authenticate user logins in several different ways. It’s up to you as the ad-
ministrator to decide which of these methods are acceptable:

• Method A: If the name of the remote host from which the user is logging
in is listed in ~/.rhosts, ~/.shosts, /etc/hosts.equiv, or /etc/shosts.equiv,
then the user is logged in automatically without a password check. This
scheme mirrors that of the old rlogin daemon and in our opinion is not
acceptable for normal use.

• Method B: As a refinement of method A, sshd can also use public key
cryptography to verify the identity of the remote host. For that to happen,
the remote host’s public key (generated at install time) must be listed in the
local host’s /etc/ssh_known_hosts file or the user’s ~/.ssh/known_hosts
file. If the remote host can prove that it knows the corresponding private
key (normally stored in /etc/ssh_host_key, a world-unreadable file), then
the user is logged in without being asked for a password. Method B is more
restrictive than method A, but we think it’s still not quite secure enough. If
the security of the originating host is compromised, the local site will be
compromised as well.

• Method C: sshd can use public key cryptography to establish the user’s
identity. At login time, the user must have access to a copy of his or her
private key file and must supply a password to decrypt it. This method is
the most secure, but it’s annoying to set up. It also means that users cannot

698 Chapter 20 – Security

log in when traveling unless they bring along a copy of their private key file
(perhaps on a USB key, hopefully encrypted). If you decide to use key
pairs, make extensive use of ssh -v during the troubleshooting process.

• Method D: Finally, sshd can simply allow the user to enter his or her nor-
mal login password. This makes ssh behave very much like telnet, except
that the password and session are both encrypted. The main drawbacks of
this method are that system login passwords can be relatively weak if you
have not beefed up their security, and that there are ready-made tools
(such as John the Ripper) designed to break them. However, this method is
probably the best choice for normal use.

Authentication policy is set in the /etc/sshd_config file. You will see at once that this
file has been filled up with configuration garbage for you, but you can safely ignore
most of it. The options relevant to authentication are shown in Table 20.1.

Our suggested configuration, which allows methods C and D but not methods A or
B, is as follows:

RhostsAuthentication no
RhostsRSAAuthentication no
RSAAuthentication yes
PasswordAuthentication yes

It is never wise to allow root to log in remotely. Superuser access should be achieved
through the use of sudo. To encourage this behavior, use the option

PermitRootLogin no

One-time passwords

Brute force tools such as John the Ripper call attention to the insecurity of static
passwords. Even when subjected to tools like PAM and password aging, users noto-
riously pick easy-to-remember but weak passwords, then write them down on
sticky notes and share them with coworkers. One-time passwords confront this

Table 20.1 Authentication-related options in /etc/sshd_config

Option Metha Dflt Meaning when turned on

RhostsAuthentication A no Allows login via ~/.shosts, /etc/shosts.equiv, etc.
RhostsRSAAuthentication B yes Allows ~/.shosts et al., but also requires host key
IgnoreRhosts A,B no Ignores the ~/.rhosts and hosts.equiv filesb

IgnoreRootRhosts A,B noc Prevents rhosts/shosts authentication for root
RSAAuthentication C yes Allows per-user public key crypto authentication
PasswordAuthentication D yes Allows use of normal login password

a. The authentication methods to which this variable is relevant
b. But continues to honor ~/.shosts and shosts.equiv
c. Defaults to the value of IgnoreRhosts

S
e

cu
ri

ty

20.11 Cryptographic security tools 699

problem by enforcing a unique password at each login. Because the password is con-
stantly changing, a brute force tool is worthless.

These days, the most common sightings of one-time passwords are in commercial
security products. A number of vendors offer one-time password systems based on
small “key chain”-sized (or credit card-sized) devices with LCD displays that gener-
ate passwords on the fly. At the very least, distributing and replacing the little hard-
ware devices will keep your administrative assistant busy for a few hours a week.

Stunnel

Stunnel, created by Michal Trojnara, is an open source package that encrypts arbi-
trary TCP connections. It uses SSL, the Secure Sockets Layer, to create end-to-end
“tunnels” through which it passes data to and from an unencrypted service. It is
known to work well with insecure services such as Telnet, IMAP, and POP.

A stunnel daemon runs on both the client and server systems. The local stunnel
usually accepts connections on the service’s traditional port (e.g., port 25 for SMTP)
and routes them through SSL to a stunnel on the remote host. The remote stunnel
accepts the connection, decrypts the incoming data, and routes it to the remote port
on which the server is listening. This system allows unencrypted services to take
advantage of the confidentiality and integrity offered by encryption without requir-
ing any software changes. Client software need only be configured to look for ser-
vices on the local system rather than on the server that will ultimately provide them.

Telnet makes a good example because it consists of a simple daemon listening on a
single port. To stunnelfy a Telnet link, the first step is to create an SSL certificate.
Stunnel is SSL library independent, so any standards-based implementation will do;
we like OpenSSL. To generate the certificate:

server# openssl req -new -x509 -days 365 -nodes -out stunnel.pem -keyout
stunnel.pem

Generating a 1024 bit RSA private key
.++++++
.................................++++++
writing new private key to 'stunnel.pem'

You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.
Country Name (2 letter code) [GB]:US
State or Province Name (full name) [Berkshire]:Colorado
Locality Name (eg, city) [Newbury]:Boulder
Organization Name (eg, company) [My Company Ltd]:Booklab, Inc.
Organizational Unit Name (eg, section) []:
Common Name (eg, your name or your server's hostname) []:

server.example.com
Email Address []:

700 Chapter 20 – Security

This command creates a self-signed, passphrase-less certificate. Although not using
a passphrase is a convenience (a real human doesn’t have to be present to type a
passphrase each time stunnel restarts), it also introduces a security risk. Be careful
to protect the certificate file with strong permissions.

Next, define the configuration for both the server and client stunnels. The standard
configuration file is /etc/stunnel/stunnel.conf, but you can create several configu-
rations if you want to run more than one tunnel.

cert = /etc/stunnel/stunnel.pem
chroot = /var/run/stunnel/
pid = /stunnel.pid
setuid = nobody
setgid = nobody
debug = 7
output = /var/log/stunnel.log
client = no

[telnets]
accept = 992
connect = 23

There are a couple of important points about the server configuration. First, note the
chroot statement, which confines the stunnel process to the /var/run/stunnel di-
rectory. Paths for accessory files may need to be expressed in either the regular sys-
tem namespace or the chrooted namespace, depending on the point at which they
are opened. Here, the stunnel.pid file is actually located in /var/run/stunnel.

The [telnetd] section has two statements: accept tells stunnel to accept connec-
tions on port 992, and connect passes those connections through to port 23, the
actual Telnet service.

The client configuration is very similar:

cert = /etc/stunnel/stunnel.pem
chroot = /var/run/stunnel/
pid = /stunnel.pid
setuid = nobody
setgid = nobody
debug = 7
output = /var/log/stunnel.log
client = yes

[telnets]
accept = 23
connect = server.example.com:992

A couple of directives are reversed relative to the server configuration. The client =
yes statement tells the program to initiate stunnel connections rather than accept
them. The local stunnel listens for connections on port 23 and connects to the
server on port 992. The hostname in the connect directive should match the entry
specified when the certificate was created.

S
e

cu
ri

ty

20.12 Firewalls 701

Both the client and the server stunnels can be started with no command-line argu-
ments. If you check with netstat -an, you should see the server stunnel waiting for
connections on port 992 while the client stunnel waits on port 23.

To access the tunnel, a user simply telnets to the local host:

client# telnet localhost 23
Trying 127.0.0.1...
Connected to localhost (127.0.0.1).
Escape character is '^]'.
Red Hat Enterprise Linux WS release 4 (Nahant Update 2)
Kernel 2.6.9-5.EL on an i686
login:

The user can now safely log in without fear of password thievery. A vigilant admin-
istrator would be careful to use TCP wrappers to restrict connections on the client
to only the local interface—the intent is not to allow the world to telnet securely to
the server! stunnel is one of several programs that have built-in wrapper support
and do not require the use of tcpd to restrict access. Surf to www.stunnel.org for
instructions.

20.12 FIREWALLS

In addition to protecting individual machines, you can also implement security pre-
cautions at the network level. The basic tool of network security is the “firewall.”
The three main categories of firewalls are packet-filtering, service proxy, and state-
ful inspection.

Packet-filtering firewalls

A packet-filtering firewall limits the types of traffic that can pass through your Inter-
net gateway (or through an internal gateway that separates domains within your or-
ganization) on the basis of information in the packet header. It’s much like driving
your car through a customs checkpoint at an international border crossing. You
specify which destination addresses, port numbers, and protocol types are accept-
able, and the gateway simply discards (and in some cases, logs) packets that don’t
meet the profile.

Packet filtering is supported by dedicated routers such as those made by Cisco. It may
also be available in software, depending on the machine you’re using as a gateway and
its configuration. In general, packet-filtering firewalls offer a significant increase in
security with little cost in performance or complexity.

Linux includes packet filtering software (see the details beginning on 704 for more
information). It’s also possible to buy commercial software to perform this function.
These packages all have entertainment value, and they can provide a reasonably se-
cure firewall for a home or small office. However, you should refer to the comments
at the beginning of this chapter before you consider a Linux system as a production

www.stunnel.org

702 Chapter 20 – Security

grade corporate firewall.10 This is one case in which you should really spend the
money for a dedicated network appliance, such as Cisco’s PIX firewall.

How services are filtered

Most well-known services are associated with a network port in the /etc/services
file or its vendor-specific equivalent. The daemons that provide these services bind
to the appropriate ports and wait for connections from remote sites.11 Most of the
well-known service ports are “privileged,” meaning that their port numbers are in
the range 1 to 1,023. These ports can only be used by a process running as root. Port
numbers 1,024 and higher are referred to as nonprivileged ports.

Service-specific filtering is based on the assumption that the client (the machine that
initiates a TCP or UDP conversation) uses a nonprivileged port to contact a privi-
leged port on the server. For example, if you wanted to allow only inbound SMTP
connections to a machine with the address 192.108.21.200, you would install a filter
that allowed TCP packets destined for that address at port 25 and that permitted
outbound TCP packets from that address to anywhere.12 The exact way in which
such a filter would be installed depends on the kind of router you are using.

See page 734 for more
information about set-
ting up an ftp server.

Some services, such as FTP, add a twist to the puzzle. The FTP protocol actually uses
two TCP connections when transferring a file: one for commands and the other for
data. The client initiates the command connection, and the server initiates the data
connection. Ergo, if you want to use FTP to retrieve files from the Internet, you must
permit inbound access to all nonprivileged TCP ports since you have no idea what
port might be used to form an incoming data connection.

This tweak largely defeats the purpose of packet filtering because some notoriously
insecure services (for example, X11 at port 6000) naturally bind to nonprivileged
ports. This configuration also creates an opportunity for curious users within your
organization to start their own services (such as a telnet server at a nonstandard
and nonprivileged port) that they or their friends can access from the Internet.

One common solution to the FTP problem is to use the SSH file transfer protocol.
The protocol is currently an Internet draft but is widely used and mature. It is com-
monly used as a subcomponent of SSH, which provides its authentication and en-
cryption. Unlike FTP, SFTP uses only a single port for both commands and data,
handily solving the packet-filtering paradox. A number of SFTP implementations ex-
ist. We’ve had great luck with the command-line SFTP client supplied by OpenSSH.

If you must use FTP, a reasonable approach is to allow FTP to the outside world only
from a single, isolated host. Users can log in to the FTP machine when they need to
perform network operations that are forbidden from the inner net. Since replicat-
ing all user accounts on the FTP “server” would defeat the goal of administrative

10. We assume you already know not to consider something like Windows as a firewall platform. Does the
name “Windows” evoke images of security? Silly rabbit, Windows is for desktops.

11. In many cases, xinetd does the actual waiting on their behalf. See page 887 for more information.

12. Port 25 is the SMTP port as defined in /etc/services.

S
e

cu
ri

ty

20.12 Firewalls 703

separation, you may want to create FTP accounts by request only. Naturally, the FTP
host should run a full complement of security-checking tools.

The most secure way to use a packet filter is to start with a configuration that allows
nothing but inbound SMTP or SSH. You can then liberalize the filter bit by bit as you
discover useful things that don’t work.

Some security-conscious sites use two-stage filtering. In this scheme, one filter is a
gateway to the Internet, and a second filter lies between the outer gateway and the
rest of the local network. The idea is to leave the outer gateway relatively open and to
make the inner gateway very conservative. If the machines in the middle are ad-
ministratively separate from the rest of the network, they can provide a variety of
services on the Internet with reduced risk. The partially secured network is usually
called the “demilitarized zone” or “DMZ.”

Service proxy firewalls

Service proxies intercept connections to and from the outside world and establish
new connections on the opposite side of the firewall, acting as a sort of shuttle or
chaperone between the two worlds. It’s much like driving to the border of your
country, walking across the border, and renting a sanitized, freshly washed car on
the other side of the border to continue your journey.

Because of their design, service proxy firewalls are much less flexible (and much
slower) than pure packet filters. Your proxy must have a module that decodes and
conveys each protocol you want to let through the firewall. In the early 1990s this
was relatively easy because only a few protocols were in common use. Today, Inter-
nauts might use several dozen protocols in an hour of web surfing. As a result, ser-
vice proxies are relatively unpopular in organizations that use the Internet as a pri-
mary medium of communication.

Stateful inspection firewalls

The theory behind stateful inspection firewalls is that if you could carefully listen to
and understand all the conversations (in all the languages) that were taking place in
a crowded airport, you could make sure that someone wasn’t planning to bomb a
plane later that day. Stateful inspection firewalls are designed to inspect the traffic
that flows through them and compare the actual network activity to what “should”
be happening. For example, if the packets exchanged in an FTP command sequence
name a port to be used later for a data connection, the firewall should expect a data
connection to occur only on that port. Attempts by the remote site to connect to
other ports are presumably bogus and should be dropped.

Unfortunately, reality usually kills the cat here. It’s no more realistic to keep track of
the “state” of the network connections of thousands of hosts using hundreds of pro-
tocols than it is to listen to every conversation in every language in a crowded airport.
Someday, as processor and memory capacity increase, it may eventually be feasible.

704 Chapter 20 – Security

So what are vendors really selling when they claim to provide stateful inspection?
Their products either monitor a very limited number of connections or protocols or
they search for a particular set of “bad” situations. Not that there’s anything wrong
with that; clearly, some benefit is derived from any technology that can detect traffic
anomalies. In this particular case, however, it’s important to remember that the
claims are mostly marketing hype.

Firewalls: how safe are they?

A firewall should not be your primary means of defense against intruders. It’s only
appropriate as a supplemental security measure. The use of firewalls often provides
a false sense of security. If it lulls you into relaxing other safeguards, it will have had
a negative effect on the security of your site.

Every host within your organization should be individually secured and regularly
monitored with tools such as xinetd, Nmap, Nessus, and samhain. Likewise, your
entire user community needs to be educated about basic security hygiene. Other-
wise, you are simply building a structure that has a hard crunchy outside and a soft
chewy center.

Ideally, local users should be able to connect to any Internet service they want, but
machines on the Internet should only be able to connect to a limited set of local ser-
vices. For example, you may want to allow FTP access to a local archive server and
allow SMTP (email) connections to your mail server.

For maximizing the value of your Internet connection, we recommend that you em-
phasize convenience and accessibility when deciding how to set up your network. At
the end of the day, it’s the system administrator’s vigilance that makes a network
secure, not a fancy piece of firewall hardware.

20.13 LINUX FIREWALL FEATURES: IP TABLES

We haven’t traditionally recommended the use of Linux (or UNIX, or Windows) sys-
tems as firewalls because of the insecurity of running a full-fledged, general-pur-
pose operating system. Embedded devices designed specifically for routing and
packet filtering (such as a Cisco PIX box) make the best firewalls,13 but a hardened
Linux system is a great substitute for organizations that don’t have the budget for a
high-dollar firewall appliance.

If you are set on using a Linux machine as a firewall, please at least make sure that it’s
up to date with respect to security configuration and patches. A firewall machine is
an excellent place to put into practice all of this chapter’s recommendations. (The
section that starts on page 701 discusses packet-filtering firewalls in general. If you
are not familiar with the basic concept of a firewall, it would probably be wise to read
that section before continuing.)

13. That said, many consumer-oriented networking devices, such as Linksys’s router products, use Linux
and iptables at their core.

S
e

cu
ri

ty

20.13 Linux firewall features: IP tables 705

Version 2.4 of the Linux kernel introduced an all-new packet handling engine called
Netfilter. The tool used to control Netfilter, iptables, is the big brother of the older
ipchains command used with Linux 2.2 kernels. iptables applies ordered “chains”
of rules to network packets. Sets of chains make up “tables” and are used for han-
dling specific kinds of traffic.

For example, the default iptables table is named “filter”. Chains of rules in this table
are used for packet-filtering network traffic. The filter table contains three default
chains. Each packet that is handled by the kernel is passed through exactly one of
these chains. Rules in the FORWARD chain are applied to all packets that arrive on
one network interface and need to be forwarded to another. Rules in the INPUT and
OUTPUT chains are applied to traffic addressed to or originating from the local host,
respectively. These three standard chains are usually all you need for firewalling be-
tween two network interfaces. If necessary, you can define a custom configuration to
support more complex accounting or routing scenarios.

In addition to the filter table, iptables includes the “nat” and “mangle” tables. The
nat table contains chains of rules that control Network Address Translation (here,
“nat” is the name of the iptables table and “NAT” is the name of the generic address
translation scheme). The section Private addresses and NAT on page 289 discusses
NAT, and an example of the nat table in action is shown on page 320. Later in this
section, we use the nat table’s PREROUTING chain for anti-spoofing packet filtering.

The mangle table contains chains that modify or alter the contents of network pack-
ets outside the context of NAT and packet filtering. Although the mangle table is
handy for special packet handling, such as resetting IP time-to-live values, it is not
typically used in most production environments. We discuss only the filter and nat
tables in this section, leaving the mangle table to the adventurous.

Each rule that makes up a chain has a “target” clause that determines what to do with
matching packets. When a packet matches a rule, its fate is in most cases sealed; no
additional rules will be checked. Although many targets are defined internally to
iptables, it is possible to specify another chain as a rule’s target.

The targets available to rules in the filter table are ACCEPT, DROP, REJECT, LOG,
MIRROR, QUEUE, REDIRECT, RETURN, and ULOG. When a rule results in an
ACCEPT, matching packets are allowed to proceed on their way. DROP and REJECT
both drop their packets. DROP is silent, and REJECT returns an ICMP error mes-
sage. LOG gives you a simple way to track packets as they match rules, and ULOG
provides extended logging.

REDIRECT shunts packets to a proxy instead of letting them go on their merry way.
You might use this feature to force all your site’s web traffic to go through a web cache
such as Squid. RETURN terminates user-defined chains and is analogous to the re-
turn statement in a subroutine call. The MIRROR target swaps the IP source and des-
tination address before sending the packet. Finally, QUEUE hands packets to local
user programs through a kernel module.

706 Chapter 20 – Security

A Linux firewall is usually implemented as a series of iptables commands contained
in an rc startup script. Individual iptables commands usually take one of the fol-
lowing forms:

iptables -F chain-name
iptables -P chain-name target
iptables -A chain-name -i interface -j target

The first form (-F) flushes all prior rules from the chain. The second form (-P) sets
a default policy (aka target) for the chain. We recommend that you use DROP for
the default chain target. The third instance (-A) appends the current specification to
the chain. Unless you specify a table with the -t argument, your commands apply to
chains in the filter table. The -i parameter applies the rule to the named interface,
and -j identifies the target. iptables accepts many other clauses, some of which are
shown in Table 20.2.

Below we break apart a complete example. We assume that the ppp0 interface goes
to the Internet and that the eth0 interface goes to an internal network. The ppp0 IP
address is 128.138.101.4, the eth0 IP address is 10.1.1.1, and both interfaces have a
netmask of 255.255.255.0. This example uses stateless packet filtering to protect the
web server with IP address 10.1.1.2, which is the standard method of protecting In-
ternet servers. Later in the example, we show how to use stateful filtering to protect
desktop users.

Before you can use iptables as a firewall, you must enable IP forwarding and make
sure that various iptables modules have been loaded into the kernel. For more infor-
mation on enabling IP forwarding, see Tuning Linux kernel parameters on page 874 or
Security-related kernel variables on page 319. Packages that install iptables generally
include startup scripts to achieve this enabling and loading.

Our first set of rules initializes the filter table. First, all chains in the table are flushed,
then the INPUT and FORWARD chains’ default target is set to DROP. As with any
other network firewall, the most secure strategy is to drop any packets that you have
not explicitly allowed.

Table 20.2 Command-line flags for iptables filters

Clause Meaning or possible values

-p proto Matches by protocol: tcp, udp, or icmp

-s source-ip Matches host or network source IP address (CIDR notation is OK)
-d dest-ip Matches host or network destination address
--sport port# Matches by source port (note the double dashes)
--dport port# Matches by destination port (note the double dashes)
--icmp-type type Matches by ICMP type code (note the double dashes)
! Negates a clause
-t table Specifies the table to which a command applies (default is filter)

S
e

cu
ri

ty

20.13 Linux firewall features: IP tables 707

iptables -F
iptables -P INPUT DROP
iptables -P FORWARD DROP

Since rules are evaluated in the order in which they sit in a chain, we put our busiest
rules at the front.14 The first three rules in the FORWARD chain allow connections
through the firewall to network services on 10.1.1.2. Specifically, we allow SSH (port
22), HTTP (port 80), and HTTPS (port 443) through to our web server. The first rule
allows all connections through the firewall that originate from within the trusted net.

iptables -A FORWARD -i eth0 -p ANY -j ACCEPT
iptables -A FORWARD -d 10.1.1.2 -p tcp --dport 22 -j ACCEPT
iptables -A FORWARD -d 10.1.1.2 -p tcp --dport 80 -j ACCEPT
iptables -A FORWARD -d 10.1.1.2 -p tcp --dport 443 -j ACCEPT

The only TCP traffic we allow to our firewall host (10.1.1.1) is SSH, which is useful
for managing the firewall. The second rule listed below allows loopback traffic,
which stays local to our firewall host. Our administrators get nervous when they
can’t ping their default route, so the third rule here allows ICMP ECHO_REQUEST
packets from internal IP addresses.

iptables -A INPUT -i eth0 -d 10.1.1.1 -p tcp --dport 22 -j ACCEPT
iptables -A INPUT -i lo -d 127.0.0.1 -p ANY -j ACCEPT
iptables -A INPUT -i eth0 -d 10.1.1.1 -p icmp --icmp-type 8 -j ACCEPT

For any TCP/IP host to work properly on the Internet, certain types of ICMP packets
must be allowed through the firewall. The following eight rules allow a minimal set
of ICMP packets to the firewall host, as well as to the network behind it.

iptables -A INPUT -p icmp --icmp-type 0 -j ACCEPT
iptables -A INPUT -p icmp --icmp-type 3 -j ACCEPT
iptables -A INPUT -p icmp --icmp-type 5 -j ACCEPT
iptables -A INPUT -p icmp --icmp-type 11 -j ACCEPT
iptables -A FORWARD -d 10.1.1.2 -p icmp --icmp-type 0 -j ACCEPT
iptables -A FORWARD -d 10.1.1.2 -p icmp --icmp-type 3 -j ACCEPT
iptables -A FORWARD -d 10.1.1.2 -p icmp --icmp-type 5 -j ACCEPT
iptables -A FORWARD -d 10.1.1.2 -p icmp --icmp-type 11 -j ACCEPT

We next add rules to the PREROUTING chain in the nat table. Although the nat table
is not intended for packet filtering, its PREROUTING chain is particularly useful for
anti-spoofing filtering. If we put DROP entries in the PREROUTING chain, they
need not be present in the INPUT and FORWARD chains, since the PREROUTING
chain is applied to all packets that enter the firewall host. It’s cleaner to put the en-
tries in a single place rather than duplicating them.

iptables -t nat -A PREROUTING -i ppp0 -s 10.0.0.0/8 -j DROP
iptables -t nat -A PREROUTING -i ppp0 -s 172.16.0.0/12 -j DROP
iptables -t nat -A PREROUTING -i ppp0 -s 192.168.0.0/16 -j DROP
iptables -t nat -A PREROUTING -i ppp0 -s 127.0.0.0/8 -j DROP
iptables -t nat -A PREROUTING -i ppp0 -s 224.0.0.0/4 -j DROP

14. However, you must be careful that reordering the rules for performance doesn’t modify functionality.

708 Chapter 20 – Security

Finally, we end both the INPUT and FORWARD chains with a rule that forbids all
packets not explicitly permitted. Although we already enforced this behavior with
the iptables -P commands, the LOG target lets us see who is knocking on our door
from the Internet.

iptables -A INPUT -i ppp0 -j LOG
iptables -A FORWARD -i ppp0 -j LOG

Optionally, we could set up IP NAT to disguise the private address space used on the
internal network. See Linux NAT on page 319 for more information about NAT.

One of the most powerful features that Netfilter brings to Linux firewalling is stateful
packet filtering. Instead of allowing specific incoming services, a firewall for clients
connecting to the Internet needs to allow incoming responses to the client’s requests.
The simple stateful FORWARD chain below allows all traffic to leave our network
but only allows incoming traffic that’s related to connections initiated by our hosts.

iptables -A FORWARD -i eth0 -p ANY -j ACCEPT
iptables -A FORWARD -m state --state ESTABLISHED,RELATED -j ACCEPT

Certain kernel modules must be loaded to enable iptables to track complex network
sessions such as those of FTP and IRC. If these modules are not loaded, iptables sim-
ply disallows those connections. Although stateful packet filters can increase the se-
curity of your site, they also add to the complexity of the network. Be sure you need
stateful functionality before implementing it in your firewall.

Perhaps the best way to debug your iptables rulesets is to use iptables -L -v. These
options tell you how many times each rule in your chains has matched a packet. We
often add temporary iptables rules with the LOG target when we want more infor-
mation about the packets that get matched. You can often solve trickier problems by
using a packet sniffer such as tcpdump.

20.14 VIRTUAL PRIVATE NETWORKS (VPNS)

One of the most interesting developments of the last few years has been the advent of
the virtual private network or VPN. This technology has been made possible mostly
by the increased processing power that is now available on a single chip (and on users’
workstations). In its simplest form, a VPN is a connection that makes a remote net-
work appear as if it is directly connected, even if it is physically thousands of miles
and many router hops away. For increased security, the connection is not only au-
thenticated in some way (usually with a “shared secret” such as a password), but the
end-to-end traffic is also encrypted. Such an arrangement is usually referred to as a
“secure tunnel.”

Here’s a good example of the kind of situation in which a VPN is handy: Suppose that
a company has offices in Chicago, Boulder, and Miami. If each office has a connec-
tion to a local Internet service provider, the company can use VPNs to transparently
(and, for the most part, securely) connect the offices across the untrusted Internet.

S
e

cu
ri

ty

20.14 Virtual private networks (VPNs) 709

The company could achieve a similar result by leasing dedicated lines to connect the
three offices, but that option would be considerably more expensive.

Another good example is a company whose employees telecommute from their
homes. VPNs would allow those users to reap the benefits of their high-speed and
inexpensive cable modem service while still making it appear that they are directly
connected to the corporate network.

Because of the convenience and popularity of this functionality, everyone and his
brother is offering some type of VPN solution. You can buy it from your router ven-
dor, as a plug-in for your operating system, or even as a dedicated VPN device for
your network. Depending on your budget and scalability needs, you may want to
consider one of the many commercial VPN solutions in the marketplace.

If you’re without a budget and looking for a quick fix, SSH will do secure tunneling
for you. SSH normally provides one-port-at-a-time connectivity, but it can also sup-
ply pseudo-VPN functionality as shown in the example on page 328, which runs
PPP through an SSH tunnel.

IPsec tunnels

If you’re a fan of IETF standards (or of saving money) and need a real VPN solution,
take a look at IPsec (Internet Protocol security). IPsec was originally developed for
IPv6, but it has also been widely implemented for IPv4. IPsec is an IETF-approved,
end-to-end authentication and encryption system. Almost all serious VPN vendors
ship a product that has at least an IPsec compatibility mode.

IPsec uses strong cryptography to provide both authentication and encryption ser-
vices. Authentication ensures that packets are from the right sender and have not
been altered in transit, and encryption prevents the unauthorized examination of
packet contents.

In its current form, IPsec encrypts the transport layer header, which includes the
source and destination port numbers. Unfortunately, this scheme conflicts directly
with the way that most firewalls work. A proposal to undo this feature is making its
way through the IETF.

Linux kernels 2.5.47 and newer include a native IPsec implementation that is en-
tirely different from the FreeS/WAN implementation commonly used with the 2.4
kernel series. Since IPsec is part of the kernel, it’s included with all our distributions.

Note that there’s a gotcha around IPsec tunnels and MTU size. It’s important to en-
sure that once a packet has been encrypted by IPsec, nothing fragments it along the
path the tunnel traverses. To achieve this feat, you may have to lower the MTU on the
devices in front of the tunnel (in the real world, 1,400 bytes usually works). See page
278 in the TCP chapter for more information about MTU size.

710 Chapter 20 – Security

All I need is a VPN, right?

Sadly, there’s a downside to VPNs. Although they do build a (mostly) secure tunnel
across the untrusted network between the two endpoints, they don’t usually address
the security of the endpoints themselves. For example, if you set up a VPN between
your corporate backbone and your CEO’s home, you may be inadvertently creating a
path for your CEO’s 15-year-old daughter to have direct access to everything on your
network. Hopefully, she only uses her newly acquired access to get a date with the
shipping clerk.

Bottom line: you need to treat connections from VPN tunnels as external connec-
tions and grant them additional privileges only as absolutely necessary and after
careful consideration. You may want to consider adding a special section to your site
security policy that covers what rules apply to VPN connections.

20.15 HARDENED LINUX DISTRIBUTIONS

See page 693 for
more information
about SELinux.

Fortunately (?), we’ve been blessed with a variety of initiatives to produce “hard-
ened” versions of Linux that offer a broader range of security features than are found
in the mainstream releases. The hardening usually takes the form of special access
controls and auditing capabilities. These features are probably particularly useful if
you’re planning to use Linux in some type of custom network appliance product.
However, it’s not clear that they afford substantial advantages to mainstream users.
They still require good hygiene, a good packet filter, and all the other things dis-
cussed in this chapter. Perhaps they’re good for added peace of mind.

Table 20.3 lists some of the better known hardening projects so that you can check
out what they have to offer.

20.16 WHAT TO DO WHEN YOUR SITE HAS BEEN ATTACKED

The key to handling an attack is simple: don’t panic. It’s very likely that by the time
you discover the intrusion, most of the damage has already been done. In fact, it has
probably been going on for weeks or months. The chance that you’ve discovered a
break-in that just happened an hour ago is slim to none.

In that light, the wise owl says to take a deep breath and begin developing a carefully
thought out strategy for dealing with the break-in. You need to avoid tipping off the
intruder by announcing the break-in or performing any other activity that would
seem abnormal to someone who may have been watching your site’s operations for

Table 20.3 Hardened Linux distributions

Project name Web site

Bastille Linux www.bastille-linux.org
Engarde Linux www.engardelinux.com
Openwall GNU/*/Linux www.openwall.com/Owl

www.bastille-linux.org
www.engardelinux.com
www.openwall.com/Owl

S
e

cu
ri

ty

20.16 What to do when your site has been attacked 711

many weeks. Hint: performing a system backup is usually a good idea at this point
and (hopefully!) will appear to be a normal activity to the intruder.15

This is also a good time to remind yourself that some studies have shown that 60%
of security incidents involve an insider. Be very careful who you discuss the incident
with until you’re sure you have all the facts.

Here’s a quick 9-step plan that may assist you in your time of crisis:

Step 1: Don’t panic. In many cases, a problem isn't noticed until hours or days after
it took place. Another few hours or days won't affect the outcome. The difference
between a panicky response and a rational response will. Many recovery situations
are exacerbated by the destruction of important log, state, and tracking information
during an initial panic.

Step 2: Decide on an appropriate level of response. No one benefits from an over-
hyped security incident. Proceed calmly. Identify the staff and resources that must
participate and leave others to assist with the post-mortem after it’s all over.

Step 3: Hoard all available tracking information. Check accounting files and logs.
Try to determine where the original breach occurred. Back up all your systems.
Make sure that you physically write-protect backup tapes if you put them in a drive
to read them.

Step 4: Assess your degree of exposure. Determine what crucial information (if
any) has “left” the company, and devise an appropriate mitigation strategy. Deter-
mine the level of future risk.

Step 5: Pull the plug. If necessary and appropriate, disconnect compromised ma-
chines from the network. Close known holes and stop the bleeding. CERT provides
steps on analyzing an intrusion. The document can be found at

www.cert.org/tech_tips/win-UNIX-system_compromise.html

Step 6: Devise a recovery plan. With a creative colleague, draw up a recovery plan
on nearby whiteboard. This procedure is most effective when performed away from
a keyboard. Focus on putting out the fire and minimizing the damage. Avoid assess-
ing blame or creating excitement. In your plan, don’t forget to address the psycho-
logical fallout your user community may experience. Users inherently trust others,
and blatant violations of trust makes many folks uneasy.

Step 7: Communicate the recovery plan. Educate users and management about the
effects of the break-in, the potential for future problems, and your preliminary recov-
ery strategy. Be open and honest. Security incidents are part of life in a modern net-
worked environment. They are not a reflection on your ability as a system adminis-
trator or on anything else worth being embarrassed about. Openly admitting that
you have a problem is 90% of the battle, as long as you can demonstrate that you have
a plan to remedy the situation.

15. If system backups are not a “normal” activity at your site, you have much bigger problems than the
security intrusion.

www.cert.org/tech_tips/win-UNIX-system_compromise.html

712 Chapter 20 – Security

Step 8: Implement the recovery plan. You know your systems and networks better
than anyone. Follow your plan and your instincts. Speak with a colleague at a similar
institution (preferably one who knows you well) to keep yourself on the right track.

Step 9: Report the incident to authorities. If the incident involved outside parties,
you should report the matter to CERT. They have a hotline at (412) 268-7090 and
can be reached by email at cert@cert.org. Provide as much information as you can.

A standard form is available from www.cert.org to help jog your memory. Here are
some of the more useful pieces of information you might provide:

• The names, hardware types, and OS versions of the compromised machines

• The list of patches that had been applied at the time of the incident

• A list of accounts that are known to have been compromised

• The names and IP addresses of any remote hosts that were involved

• Contact information (if you know it) for the administrators of remote sites

• Relevant log entries or audit information

If you believe that a previously undocumented software problem may have been in-
volved, you should report the incident to your Linux distributor as well.

20.17 SOURCES OF SECURITY INFORMATION

Half the battle of keeping your system secure consists of staying abreast of security-
related developments in the world at large. If your site is broken into, the break-in
probably won’t be through the use of a novel technique. More likely, the chink in
your armor is a known vulnerability that has been widely discussed in vendor
knowledge bases, on security-related newsgroups, and on mailing lists.

CERT: a registered service mark of Carnegie Mellon University

In response to the uproar over the 1988 Internet worm, the Defense Advanced Re-
search Projects Agency (DARPA) formed an organization called CERT, the Computer
Emergency Response Team, to act as a clearing house for computer security informa-
tion. CERT is still the best-known point of contact for security information, though
it seems to have grown rather sluggish and bureaucratic of late. CERT also now insists
that the name CERT does not stand for anything and is merely “a registered service
mark of Carnegie Mellon University.”

In mid-2003, CERT partnered with the Department of Homeland Security’s National
Cyber Security Division, NCSD. The merger has, for better or for worse, altered the
previous mailing list structure. The combined organization, known as US-CERT, of-
fers four announcement lists, the most useful of which is the “Technical Cyber Secu-
rity Alerts.” Subscribe to any of the four lists at forms.us-cert.gov/maillists.

www.cert.org

S
e

cu
ri

ty

20.17 Sources of security information 713

SecurityFocus.com and the BugTraq mailing list

SecurityFocus.com is a site that specializes in security-related news and information.
The news includes current articles on general issues and on specific problems; there’s
also an extensive technical library of useful papers, nicely sorted by topic.

SecurityFocus’s archive of security tools includes software for a variety of operating
systems, along with blurbs and user ratings. It is the most comprehensive and de-
tailed source of tools that we are aware of.

The BugTraq list is a moderated forum for the discussion of security vulnerabilities
and their fixes. To subscribe, visit www.securityfocus.com/archive. Traffic on this
list can be fairly heavy, however, and the signal-to-noise ratio is fairly poor. A data-
base of BugTraq vulnerability reports is also available from the web site.

Crypto-Gram newsletter

The monthly Crypto-Gram newsletter is a valuable and sometimes entertaining
source of information regarding computer security and cryptography. It’s produced
by Bruce Schneier, author of the well-respected books Applied Cryptography and Se-
crets and Lies. Find current and back issues at this site:

www.schneier.com/crypto-gram.html

You can also read Schneier’s security blog at

www.schneier.com/blog

SANS: the System Administration, Networking, and Security Institute

SANS is a professional organization that sponsors security-related conferences and
training programs, as well as publishing a variety of security information. Their web
site, www.sans.org, is a useful resource that occupies something of a middle ground
between SecurityFocus and CERT: neither as frenetic as the former nor as stodgy as
the latter.

SANS offers several weekly and monthly email bulletins that you can sign up for on
their web site. The weekly NewsBites are nourishing, but the monthly summaries
contain a lot of boilerplate. Neither is a great source of late-breaking security news.

Distribution-specific security resources

Because security problems have the potential to generate a lot of bad publicity, ven-
dors are often eager to help customers keep their systems secure. Most large vendors
have an official mailing list to which security-related bulletins are posted, and many
maintain a web site about security issues as well. It’s common for security-related
software patches to be distributed for free, even by vendors that normally charge for
software support.

www.securityfocus.com/archive
www.schneier.com/crypto-gram.html
www.schneier.com/blog
www.sans.org

714 Chapter 20 – Security

Security portals on the web, such as www.securityfocus.com, contain vendor-specific
information and links to the latest official vendor dogma.

A list of Red Hat security advisories can be found at www.redhat.com/security. As of
this writing, no official security mailing list is sponsored by Red Hat. However, there
are a variety of Linux security resources on the net; most of the information applies
directly to Red Hat.

You can find SUSE security advisories at

www.novell.com/linux/security/securitysupport.html

You can join the official SUSE security announcement mailing list by visiting

www.suse.com/en/private/support/online_help/mailinglists/index.html

Check out www.debian.org to view the latest in Debian security news, or join the
mailing list at

www.debian.org/MailingLists/subscribe#debian-security-announce

Ubuntu has a security mailing list at

https://lists.ubuntu.com/mailman/listinfo/ubuntu-security-announce

Security information about Cisco products is distributed in the form of field notices,
a list of which can be found at

www.cisco.com/public/support/tac/fn_index.html

along with a news aggregation feed. To subscribe to Cisco’s security mailing list, send
mail to majordomo@cisco.com with the line “subscribe cust-security-announce” in
the message body.

Other mailing lists and web sites

The contacts listed above are just a few of the many security resources available on
the net. Given the volume of info that’s now available and the rapidity with which
resources come and go, we thought it would be most helpful to point you toward
some meta-resources.

One good starting point is the X-Force web site (xforce.iss.net) at Internet Security
Systems, which maintains a variety of useful FAQs. One of these is a current list of
security-related mailing lists. The vendor and security patch FAQs contain useful
contact information for a variety of vendors.

www.yahoo.com has an extensive list of security links; look for the “Security and En-
cryption” section in the Yahoo! Directory. Another good source of links on the sub-
ject of network security can be found at www.wikipedia.org under the heading
“computer security”.

www.securityfocus.com
www.redhat.com/security
www.novell.com/linux/security/securitysupport.html
www.suse.com/en/private/support/online_help/mailinglists/index.html
www.debian.org
www.debian.org/MailingLists/subscribe#debian-security-announce
www.cisco.com/public/support/tac/fn_index.html
www.yahoo.com
www.wikipedia.org
https://lists.ubuntu.com/mailman/listinfo/ubuntu-security-announce

S
e

cu
ri

ty

20.18 Recommended reading 715

Linux Journal (www.linuxjournal.com) contains an excellent column called “Para-
noid Penguin” that covers all aspects of Linux security. The magazine also occasion-
ally includes various feature articles on security topics.

The Linux Weekly News is a tasty treat that includes regular updates on the kernel,
security, distributions, and other topics. LWN’s security section can be found at
lwn.net/security.

20.18 RECOMMENDED READING

BRYANT, WILLIAM. “Designing an Authentication System: a Dialogue in Four
Scenes.” 1988. web.mit.edu/kerberos/www/dialogue.html

CERT COORDINATION CENTER. “Intruder Detection Checklist.” 1999.
www.cert.org/tech_tips/intruder_detection_checklist.html

CERT COORDINATION CENTER. “UNIX Configuration Guidelines.” 1997.
www.cert.org/tech_tips/unix_configuration_guidelines.html

CHESWICK, WILLIAM R., STEVEN M. BELLOVIN, AND AVIEL D. RUBIN. Firewalls and
Internet Security: Repelling the Wily Hacker (2nd Edition). Reading, MA: Addison-
Wesley, 2000.

CURTIN, MATT, MARCUS RANUM, AND PAUL D. ROBINSON. “Internet Firewalls: Fre-
quently Asked Questions.” 2004. www.interhack.net/pubs/fwfaq

FARMER, DAN, AND WIETSE VENEMA. “Improving the Security of Your Site by Break-
ing Into it.” 1993. www.deter.com/unix/papers/improve_by_breakin.html

FARROW, RIK, AND RICHARD POWER. Network Defense article series. 1998-2004.
www.spirit.com/Network

FRASER, B., EDITOR. RFC2196: Site Security Handbook. 1997. www.rfc-editor.org.

BAUER, MICHAEL D. Linux Server Security (2nd Edition). Sebastopol, CA: O’Reilly
Media, 2005.

GARFINKEL, SIMSON, GENE SPAFFORD, AND ALAN SCHWARTZ. Practical UNIX and In-
ternet Security (3rd Edition). Sebastopol, CA: O’Reilly Media, 2003.

BARRETT, DANIEL J., RICHARD E. SILVERMAN, AND ROBERT G. BYRNES. Linux Security
Cookbook. Sebastopol, CA: O’Reilly Media, 2003.

KERBY, FRED, ET AL. “SANS Intrusion Detection and Response FAQ.” SANS. 2003.
www.sans.org/resources/idfaq/

MANN, SCOTT, AND ELLEN L. MITCHELL. Linux System Security: The Administrator’s
Guide to Open Source Security Tools (2nd Edition). Upper Saddle River, NJ: Prentice
Hall PTR, 2002.

MORRIS, ROBERT, AND KEN THOMPSON. “Password Security: A Case History.” Com-
munications of the ACM, 22 (11): 594-597, November 1979. Reprinted in UNIX Sys-

www.linuxjournal.com
www.cert.org/tech_tips/intruder_detection_checklist.html
www.cert.org/tech_tips/unix_configuration_guidelines.html
www.interhack.net/pubs/fwfaq
www.deter.com/unix/papers/improve_by_breakin.html
www.spirit.com/Network
www.rfc-editor.org
www.sans.org/resources/idfaq/

716 Chapter 20 – Security

tem Manager’s Manual, 4.3 Berkeley Software Distribution. University of California,
Berkeley, April 1986.

PICHNARCZYK, KARYN, STEVE WEEBER, AND RICHARD FEINGOLD. “UNIX Incident
Guide: How to Detect an Intrusion.” Computer Incident Advisory Capability, U.S.
Department of Energy, 1994. www.ciac.org/cgi-bin/index/documents

RITCHIE, DENNIS M. “On the Security of UNIX.” May 1975. Reprinted in UNIX Sys-
tem Manager’s Manual, 4.3 Berkeley Software Distribution. University of California,
Berkeley, April 1986.

SCHNEIER, BRUCE. Applied Cryptography: Protocols, Algorithms, and Source Code in
C. New York, NY: Wiley, 1995.

THOMPSON, KEN. “Reflections on Trusting Trust.” in ACM Turing Award Lectures:
The First Twenty Years 1966-1985. Reading, MA: ACM Press (Addison-Wesley), 1987.

SONNENREICH, WES, AND TOM YATES. Building Linux and OpenBSD Firewalls. New
York, NY: J.W. Wiley, 2000.

This is an awesome little book: it’s easy to read, has good examples, shows a good
sense of humor, and is just generally excellent. Our only gripe with this book is that
it argues against the use of sudo for root access, claiming that it’s too hard to use and
not worth the trouble. We strongly disagree.

20.19 EXERCISES

E20.1 Discuss the strength of SSH authentication with Linux passwords vs.
SSH authentication with a passphrase and key pair. If one is clearly
more secure than the other, should you automatically require the more
secure authentication method?

E20.2 Samhain identifies files that have changed.

a) What is required to set up and use samhain on your machine?

b) What recent Internet diseases would samhain be effective against?

c) What recent Internet diseases would samhain be helpless against?

d) Given physical access to a system, how could samhain be circumvented?

e) What can you conclude if samhain says that /bin/login has changed,
but it seems to have the same size and modification date as before?
What if the sum program gives the same values for the old and new
versions? How about md5sum?

www.ciac.org/cgi-bin/index/documents

S
e

cu
ri

ty

20.19 Exercises 717

E20.3 SSH tunneling is often the only way to tunnel traffic to a remote ma-
chine on which you don’t have administrator access. Read the ssh man
page and provide a command line that tunnels traffic from localhost
port 113 to mail.remotenetwork.org port 113. The forwarding point of
your tunnel should also be the host mail.remotenetwork.org.

E20.4 Pick a recent security incident and research it. Find the best sources of
information about the incident and find patches or workarounds that
are appropriate for the systems in your lab. List your sources and the
actions you propose for protecting your lab.

E20.5 With permission from your local sysadmin group, install John the Rip-
per, the program that searches for logins with weak passwords.

a) Modify the source code so that it outputs only the login names with
which weak passwords are associated, not the passwords themselves.

b) Run John the Ripper on your local lab’s password file (you need ac-
cess to /etc/shadow) and see how many breakable passwords you
can find.

c) Set your own password to a dictionary word and give john just your
own entry in /etc/shadow. How long does john take to find it?

d) Try other patterns (capital letter, number after dictionary word, sin-
gle-letter password, etc.) to see exactly how smart john is.

E20.6 In the computer lab, set up two machines: a target and a prober.

a) Install nmap and Nessus on the prober. Attack the target with these
tools. How could you detect the attack on the target?

b) Set up a firewall on the target using iptables to defend against the
probes. Can you detect the attack now? If so, how? If not, why not?

c) What other defenses can be set up against the attacks?

(Requires root access.)

E20.7 A security team recently found a large hole in many current and older
sendmail servers. Find a good source of information on the hole and
discuss the issues and the best way to address them.

E20.8 Setuid programs are sometimes a necessary evil. However, setuid shell
scripts should be avoided. Why?

E20.9 Use tcpdump to capture FTP traffic for both active and passive FTP ses-
sions. How does the need to support an anonymous FTP server affect
the site’s firewall policy? What would the firewall rules need to allow?
(Requires root access.)

Exercises are continued on the next page.

718 Chapter 20 – Security

E20.10 What do the rules in the following iptables output allow and disallow?
What would be some very easy additions that would enhance security
and privacy? (Hint: the OUTPUT and FORWARD chains could use some
more rules.)

Chain INPUT (policy ACCEPT)
target prot opt source destination
block all -- anywhere anywhere

Chain FORWARD (policy ACCEPT)
target prot opt source destination

all -- anywhere anywhere

Chain OUTPUT (policy ACCEPT)
target prot opt source destination

Chain block (1 references)
target prot opt source destination
ACCEPT all -- anywhere anywhere state RELATED,ESTABLISHED
ACCEPT tcp -- anywhere anywhere state NEW tcp dpt:www
ACCEPT tcp -- anywhere anywhere state NEW tcp dpt:ssh
ACCEPT tcp -- 128.138.0.0/16 anywhere state NEW tcp dpt:kerberos
ACCEPT icmp -- anywhere anywhere
DROP all -- anywhere anywhere

E20.11 Inspect a local firewall’s rulesets. Discuss what you find in terms of poli-
cies. Are there any glaring security holes? (This exercise is likely to re-
quire the cooperation of the administrators responsible for your local
site’s security.)

E20.12 Write a tool that determines whether any network interfaces at your site
are in promiscuous mode. Run it regularly on your networks to try to
quickly spot such an intrusion. How much load does the tool generate?
Do you have to run it on each machine, or can you run it from afar? Can
you design a sneaky packet that would tell you if an interface was in
promiscuous mode? (Requires root access.)

719

W
e

b
 H

o
st

in
g

21 Web Hosting and Internet
Servers

The complexity of web technology seems to be doubling every year. Fortunately,
the vast majority of this technology lies in the domain of the web designer and
programmer. Web hosting itself hasn’t changed much over the past decade.

The kinks have been worked out of web server software, and as a result these serv-
ers are now quite secure and reliable—at least if they’re configured correctly and
your site has no rogue web programmers. Even with the advent of “Web 2.0,” AJAX
(Asynchronous JavaScript And XML), and dynamic HTML, the core web server
software remains about the same.

These days we have a variety of web hosting platforms to choose from. Microsoft
Windows has been widely marketed as a web hosting platform. The industry press
has published countless articles that ask “Which web hosting platform is best?”, usu-
ally positioning Windows and Linux at opposite corners of the ring. Although some
of this brouhaha is akin to the “Less filling!” “Tastes great!” battle, Linux has be-
come the most popular hosting platform because of its low cost, speed, reliability,
and flexibility. The so-called LAMP platform (Linux, Apache, MySQL, and
PHP/Perl/Python) is the dominant paradigm for today’s web servers.

There are many different Internet-centric services that you might want to “host,” ei-
ther at your site or at one of the many co-location outsourcing providers. In this
chapter, we address the two most common services: the web and FTP.

Web Hosting

720 Chapter 21 – Web Hosting and Internet Servers

21.1 WEB HOSTING BASICS

Hosting a web site isn’t substantially different from providing any other network ser-
vice. The foundation of the World Wide Web is the Hyper-Text Transfer Protocol
(HTTP), a simple TCP-based protocol for transmitting documents that contain a
variety of media types, including text, pictures, sound, animation, and video. HTTP
behaves much like other client/server protocols used on the Internet, for example,
SMTP (for email) and FTP (for file transfer).

A web server is simply a system that’s configured to answer HTTP requests. To con-
vert your generic Linux system into a web hosting platform, you install a daemon
that listens for connections on TCP port 80 (the HTTP standard), accepts requests
for documents, and transmits them to the requesting user.

Web browsers such as Firefox, Opera, and Internet Explorer contact remote web
servers and make requests on behalf of users. The documents thus obtained can con-
tain hypertext pointers (links) to other documents, which may or may not live on the
server that the user originally contacted. Since the HTTP protocol standard is well
defined, clients running on any operating system or architecture can connect to any
HTTP server. This platform independence, along with HTTP’s ability to transparently
pass a user from one server to another, has helped spark its amazing success.

There is life beyond straight HTTP, however. Many enhanced protocols have been
defined for handling everything from encryption to streaming video. These addi-
tional services are often managed by separate daemons, even if they are provided by
the same physical server.

Uniform resource locators

A uniform resource locator (URL) is a pointer to an object or service on the Internet.
It describes how to access an object by means of five basic components:

• Protocol or application

• Hostname

• TCP/IP port (optional)

• Directory (optional)

• Filename (optional)

Table 21.1 shows some of the protocols that may be used in URLs.

How HTTP works

HTTP is the protocol that makes the World Wide Web really work, and to the amaze-
ment of many, it is an extremely basic, stateless, client/server protocol. In the HTTP
paradigm, the initiator of a connection is always the client (usually a browser). The
client asks the server for the “contents” of a specific URL. The server responds with
either a spurt of data or with some type of error message. The client can then go on
to request another object.

W
e

b
 H

o
st

in
g

21.1 Web hosting basics 721

Because HTTP is so simple, you can easily make yourself into a crude web browser
by using telnet. Since the standard port for HTTP service is port 80, just telnet di-
rectly to that port on your web server of choice. Once you’re connected, you can issue
HTTP commands. The most common command is GET, which requests the contents
of a document. Usually, GET / is what you want, since it requests the root document
(usually, the home page) of whatever server you’ve connected to. HTTP is case sen-
sitive, so make sure you type commands in capital letters.

$ telnet localhost 80
Trying 127.0.0.1…
Connected to localhost.atrust.com.
Escape character is '^]'.
GET /
<contents of your default file appear here>
Connection closed by foreign host.

A more “complete” HTTP request would include the HTTP protocol version, the host
that the request is for (required to retrieve a file from a name-based virtual host),
and other information. The response would then include informational headers as
well as response data. For example:

$ telnet localhost 80
Trying 127.0.0.1…
Connected to localhost.atrust.com.
Escape character is '^]'.
GET / HTTP/1.1
Host: www.atrust.com

HTTP/1.1 200 OK
Date: Sun, 06 Aug 2006 18:25:03 GMT
Server: Apache/1.3.33 (Unix) PHP/4.4.0
Last-Modified: Sun, 06 Aug 2006 18:24:49 GMT
Content-Length: 7044
Content-Type: text/html

<contents of your default file appear here>
Connection closed by foreign host.

Table 21.1 URL protocols

Proto What it does Example

file Accesses a local file file://etc/syslog.conf
ftp Accesses a remote file via FTP ftp://ftp.admin.com/adduser.tar.gz
http Accesses a remote file via HTTP http://admin.com/index.html
https Accesses a remote file via HTTP/SSL https://admin.com/order.shtml
ldap Accesses LDAP directory services ldap://ldap.bigfoot.com:389/cn=Herb
mailto Sends email to a designated address mailto:linux@book.admin.com

http://admin.com/index.html
https://admin.com/order.shtml

722 Chapter 21 – Web Hosting and Internet Servers

In this case, we told the server we were going to speak HTTP protocol version 1.1
and named the virtual host from which we were requesting information. The server
returned a status code (HTTP/1.1 200 OK), its idea of the current date and time, the
name and version of the server software it was running, the date that the requested
file was last modified, the length of the requested file, and the requested file’s content
type. The header information is separated from the content by a single blank line.

Content generation on the fly

In addition to serving up static documents, an HTTP server can provide the user
with content that has been created on the fly. For example, if you wanted to provide
the current time and temperature to users visiting your web site, you might have the
HTTP server execute a script to obtain this information. This amaze-the-natives
trick is often accomplished with the Common Gateway Interface, or CGI.

CGI is not a programming language, but rather a specification by which an HTTP
server exchanges information with other programs. CGI scripts are most often writ-
ten in Perl, Python, or PHP. But really, almost any programming language that can
perform real-time I/O is acceptable. Just think of all those out-of-work COBOL pro-
grammers that can apply their skills to the Internet!

In addition to supporting external CGI scripts, many web servers define a plug-in
architecture that allows script interpreters such as Perl and PHP to be embedded
within the web server itself. This bundling significantly increases performance, since
the web server no longer has to fork a separate process to deal with each script re-
quest. The architecture is largely invisible to script developers. Whenever the server
sees a file ending in a specified extension (such as .pl or .php), it sends the content of
the file to an embedded interpreter to be executed.

For the most part, CGI scripts and plug-ins are the concern of web developers and
programmers. Unfortunately, they collide with the job of the system administrator in
one important area: security. Because CGI scripts and plug-ins have access to files,
network connections, and other methods of moving data from one place to another,
their execution can potentially affect the security of the machine on which the HTTP
server is running. Ultimately, a CGI script or plug-in gives anyone in the world the
ability to run a program (the script) on your server. Therefore, CGI scripts and files
processed by plug-ins must be just as secure as any other network-accessible pro-
gram. A good source of information on the secure handling of CGI scripts is the
page www.w3.org/Security/Faq. Although this page hasn’t been updated in some
time, all its information is still relevant.

Load balancing

It’s difficult to predict how many hits (requests for objects, including images) or page
views (requests for HTML pages) a server can handle per unit of time. A server’s
capacity depends on the system’s hardware architecture (including subsystems), the
operating system it is running, the extent and emphasis of any system tuning that
has been performed, and perhaps most importantly, the construction of the sites

www.w3.org/Security/Faq

W
e

b
 H

o
st

in
g

21.1 Web hosting basics 723

being served. (Do they contain only static HTML pages, or must they make database
calls and numeric calculations?)

Only direct benchmarking and measurement of your actual site running on your
actual hardware can answer the “how many hits?” question. Sometimes, people who
have built similar sites on similar hardware can give you information that is useful
for planning. In no case should you believe the numbers quoted by system suppli-
ers. Also remember that your bandwidth is a key consideration. A single machine
serving static HTML files and images can easily serve enough data to saturate a T3
(45 Mb/s) link.

That said, instead of single-server hit counts, a better parameter to focus on is scal-
ability; a web server typically becomes CPU- or IO-bound before saturating its
Ethernet interface. Make sure that you and your web design team plan to spread the
load of a heavily trafficked site across multiple servers.

Load balancing adds both performance and redundancy. Several different load bal-
ancing approaches are available: round robin DNS, load balancing hardware, and
software-based load balancers.

See page 385 for more
information about
round robin DNS
configuration.

Round robin DNS is the simplest and most primitive form of load balancing. In this
system, multiple IP addresses are assigned to a single hostname. When a request for
the web site’s IP address arrives at the name server, the client receives one of the IP
addresses in response. Addresses are handed out one after another, in a repeating
“round robin” sequence.

The problem with round robin DNS is that if a server goes down, DNS data must be
updated to remove the server from the response cycle. Remote caching of DNS data
can make this operation tricky and unreliable. If you have a backup server available,
it is often easier to reassign the disabled server’s IP address to the backup server.

Load balancing hardware is a relatively easy alternative, but one that requires some
spare cash. Commercial third-party load balancing hardware includes the Big-IP
Controller from F5 Networks, Nortel’s web switching products, and Cisco’s Content
Services Switches. These products distribute incoming work according to a variety
of configurable parameters and can take the current response times of individual
servers into account.

Software-based load balancers don’t require specialized hardware; they can run on a
Linux server. Both open source and commercial solutions are available. The open
source category includes the Linux Virtual Server (www.linuxvirtualserver.org), Ul-
tra Monkey (www.ultramonkey.org), and the mod_backhand module for Apache
(www.backhand.org). An example of commercial offerings are those sold by Zeus,
www.zeus.com.

You may wonder how a large site such as Google handles load balancing. Their sys-
tem uses a combination of custom load-balancing DNS servers and load balancing
hardware. See the Wikipedia article for “Google platform” for more details.

www.linuxvirtualserver.org
www.ultramonkey.org
www.backhand.org
www.zeus.com

724 Chapter 21 – Web Hosting and Internet Servers

Keep in mind that most sites these days are dynamically generated. This architecture
puts a heavy load on database servers. If necessary, consult your database adminis-
trator to determine the best way to distribute load across multiple database servers.

21.2 HTTP SERVER INSTALLATION

Installing and maintaining a web server is easy. Web services rank far below email
and DNS in complexity and difficulty of administration.

Choosing a server

Several HTTP servers are available, but you’ll most likely want to start with the
Apache server, which is well known in the industry for its flexibility and perfor-
mance. As of September 2006, 63% of web servers on the Internet were running
Apache. Microsoft accounts for most of the remainder at 30% of servers. This mar-
ket share split between Apache and Microsoft has been relatively stable for the last
five years. More detailed market share statistics over time are available here:

news.netcraft.com/archives/web_server_survey.html

You can find a useful comparison of currently available HTTP servers at the site
www.serverwatch.com/stypes/index.php (select “Web Servers”). Here are some of
the factors you may want to consider in making your selection:

• Robustness

• Performance

• Timeliness of updates and bug fixes

• Availability of source code

• Level of commercial or community support

• Cost

• Access control and security

• Ability to act as a proxy

• Ability to handle encryption

The Apache HTTP server is “free to a good home,” and full source code is available
from the Apache Group site at www.apache.org. The less adventurous may want to
install the binary-only Apache package that comes as part of your Linux distribu-
tion. (But chances are that it’s already installed; try looking in /etc/apache2.)

Installing Apache

If you do decide to download the Apache source code and compile it yourself, start
by executing the configure script included with the distribution. This script auto-
matically detects the system type and sets up the appropriate makefiles. Use the
--prefix option to specify where in your directory tree the Apache server should live.
If you don’t specify a prefix, the server is installed in /usr/local/apache2 by default.
For example:

$./configure --prefix=/etc/httpd/

www.serverwatch.com/stypes/index.php
www.apache.org

W
e

b
 H

o
st

in
g

21.2 HTTP server installation 725

You can use configure --help to see the entire list of possible options, most of which
consist of --enable-module and --disable-module options that include or exclude
various functional components that live within the web server.

You can also compile modules into dynamically shared objects files by specifying
the option --enable-module=shared (or use --enabled-mods-shared=all to make
all modules shared). That way, you can decide later which modules to include or
exclude; only modules specified in your httpd configuration are loaded at run time.
This is actually the default configuration for the binary-only Apache package—all
the modules are compiled into shared objects and are dynamically loaded when
Apache starts. The only disadvantages to using shared libraries are a slightly longer
startup time and a very slight degradation in performance (typically less than 5%).
For most sites, the benefit of being able to add new modules on the fly and turn exist-
ing modules off without having to recompile outweighs the slight performance hit.

For a complete list of standard modules, see httpd.apache.org/docs-2.0/mod.

Although the default set of modules is reasonable, you may also want to enable the
modules shown in Table 21.2.

Likewise, you may want to disable the modules listed in Table 21.3. For security and
performance, it’s a good idea to disable modules that you know you will not be using.

When configure has finished executing, run make and then run make install to
actually compile and install the appropriate files.

Table 21.2 Useful Apache modules that are not enabled by default

Module Function

auth_dbm Uses a DBM database to manage user/group access (recommended if
you need per-user password-based access to areas of your web site)

rewrite Rewrites URLs with regular expressions
expires Lets you attach expiration dates to documents
proxy Uses Apache as a proxy server (more on this later)
ssl Enables support for the Secure Sockets Layer (SSL) (for HTTPS)

Table 21.3 Apache modules we suggest removing

Module Function

asis Allows designated file types to be sent without HTTP headers
autoindex Displays the contents of directories that don’t have a default HTML file
env Lets you set special environment variables for CGI scripts
include Allows server-side includes, an on-the-fly content generation scheme
userdir Allows users to have their own HTML directories

httpd.apache.org/docs-2.0/mod

726 Chapter 21 – Web Hosting and Internet Servers

Configuring Apache

Once you’ve installed the server, configure it for your environment. The config files
are kept in the conf subdirectory (e.g., /usr/local/apache2/conf). Examine and
customize the httpd.conf file, which is divided into three sections.

The first section deals with global settings such as the server pool, the TCP port on
which the HTTP server listens for queries (usually port 80, although you can choose
another—and yes, you can run multiple HTTP servers on different ports on a single
machine), and the settings for dynamic module loading.

The second section configures the “default” server, the server that handles any re-
quests that aren’t answered by VirtualHost definitions (see page 729). Configura-
tion parameters in this section include the user and group as whom the server will
run (something other than root!) and the all-important DocumentRoot statement,
which defines the root of the directory tree from which documents are served. This
section also addresses issues such as the handling of “special” URLs like those that
include the ~user syntax to access a user’s home directory.

You manage global security concerns in the second section of the configuration file
as well. Directives control access on a per-file basis (the <File> directive) or on a per-
directory basis (the <Directory> directive). These permission settings prevent ac-
cess to sensitive files through httpd. You should specify at least two access controls:
one that covers the entire filesystem and one that applies to the main document
folder. The defaults that come with Apache are sufficient, although we recommend
that you remove the AllowSymLinks option to prevent httpd from following sym-
bolic links in your document tree. (We wouldn’t want someone to accidentally cre-
ate a symbolic link to /etc, now would we?) For more Apache security tips, see

httpd.apache.org/docs-2.0/misc/security_tips.html

The third and final section of the config file sets up virtual hosts. We discuss this
topic in more detail on page 729.

Once you have made your configuration changes, check the syntax of the configura-
tion file by running httpd -t. If Apache reports “Syntax OK,” then you’re good to go.
If not, check the httpd.conf file for typos.

Running Apache

You can start httpd by hand or from your system’s startup scripts. The latter is pref-
erable, since this configuration ensures that the web server restarts whenever the
machine reboots. To start the server by hand, type something like

$ /usr/local/apache2/bin/apachectl start

See Chapter 2 for
more information
about rc scripts.

If you want to start httpd automatically at boot time, make a link in your rc directory
that points to the /etc/init.d/httpd file (which is installed as part of the httpd pack-
age). It’s best to start httpd late in the booting sequence, after daemons that manage
functions such as routing and time synchronization have started.

httpd.apache.org/docs-2.0/misc/security_tips.html

W
e

b
 H

o
st

in
g

21.3 Virtual interfaces 727

Analyzing log files

With your web site in production, you’re likely to want to gather statistics about the
use of the site, such as the number of requests per page, the average number of re-
quests per day, the percentage of failed requests, and the amount of data transferred.
Make sure that you’re using the “combined” log format (your CustomLog directives
have the word combined at the end instead of common). The combined log format
includes each request’s referrer (the page from which the URL was linked) and user
agent (the client’s browser and operating system).

Your access and error logs appear in Apache’s logs directory. The files are human
readable, but they contain so much information that you really need a separate anal-
ysis program to extract useful data from them. There are literally hundreds of differ-
ent log analyzers, both free and commercial.

Two free analyzers worth taking a look at are Analog (www.analog.cx) and AWStats
(awstats.sourceforge.net). These both provide fairly basic information. If you want
reports with a bit more pizazz, you may need a commercial package. A helpful list
can be found at www.practicalapplications.net/kb/loganalysis.html.

Optimizing for high-performance hosting of static content

The hosting community has learned over the last few years that one of the easiest
ways to create a high-performance hosting platform is to optimize some servers for
hosting static content. Linux offers unique functionality in this arena through the
TUX web server.

TUX is a kernel-based web server that runs in conjunction with a traditional web
server such as Apache. Whenever possible, TUX serves up static pages without ever
leaving kernel space, in much the same way that rpc.nfsd serves files. This architec-
ture eliminates the need to copy data between kernel and user space and minimizes
the number of context switches. TUX is not recommended for beginners, but it’s an
excellent choice for sites that must serve up static content with lightning speed.

Although TUX was developed by Red Hat (and is available from www.redhat.com),
it’s been released under the GPL and can be used with other Linux distributions.
However, configuring TUX can be somewhat of a challenge. For details, see

www.redhat.com/docs/manuals/tux

21.3 VIRTUAL INTERFACES

In the early days, a machine typically acted as the server for a single web site (e.g.,
www.acme.com). As the web’s popularity grew, everybody wanted to have a web site,
and overnight, thousands of companies became web hosting providers.

Providers quickly realized that they could achieve significant economies of scale if
they were able to host more than one site on a single server. This trick would allow
www.acme.com, www.ajax,com, www.toadranch.com, and many other sites to be

www.analog.cx
www.practicalapplications.net/kb/loganalysis.html
www.redhat.com
www.redhat.com/docs/manuals/tux
www.acme.com
www.acme.com
www.ajax.com
www.toadranch.com

728 Chapter 21 – Web Hosting and Internet Servers

transparently served by the same hardware. In response to this business need, vir-
tual interfaces were born.

Virtual interfaces allow a daemon to identify connections based not only on the des-
tination port number (e.g., port 80 for HTTP) but also on the connection’s destina-
tion IP address. Today, virtual interfaces are in widespread use and have proved to be
useful for applications other than web hosting.

The idea is simple: a single machine responds on the network to more IP addresses
than it has physical network interfaces. Each of the resulting “virtual” network in-
terfaces can be associated with a corresponding domain name that users on the In-
ternet might want to connect to. Thus, a single machine can serve literally hundreds
of web sites.

Using name-based virtual hosts

The HTTP 1.1 protocol also defines a form of virtual-interface-like functionality
(officially called “name-based virtual hosts”) that eliminates the need to assign
unique IP addresses to web servers or to configure a special interface at the OS level.
This approach conserves IP addresses and is useful for some sites, especially those at
which a single server is home to hundreds or thousands of home pages (such as
universities).

Unfortunately, the scheme isn’t very practical for commercial sites. It reduces scal-
ability (you must change the IP address of the site to move it to a different server)
and may also have a negative impact on security (if you filter access to a site at your
firewall according to IP addresses). Additionally, name-based virtual hosts cannot
use SSL. It appears that true virtual interfaces will be around for a while.

Configuring virtual interfaces

Setting up a virtual interface involves two steps. First, you must create the virtual
interface at the TCP/IP level. Second, you must tell the Apache server about the vir-
tual interfaces you have installed. We cover this second step starting on page 729.

Linux virtual interfaces are named with an interface:instance notation. For example,
if your Ethernet interface is eth0, then the virtual interfaces associated with it could
be eth0:0, eth0:1, and so on. All interfaces are configured with the ifconfig com-
mand. For example, the command

ifconfig eth0:0 128.138.243.150 netmask 255.255.255.192 up

configures the interface eth0:0 and assigns it an address on the 128.138.243.128/26
network.

To make virtual address assignments permanent on Red Hat and Fedora, you create
a separate file for each virtual interface in /etc/sysconfig/network-scripts. For ex-
ample, the file ifcfg-eth0:0 corresponding to the ifconfig command shown above
contains the following lines.

W
e

b
 H

o
st

in
g

21.3 Virtual interfaces 729

DEVICE=eth0:0
IPADDR=128.138.243.150
NETMASK=255.255.255.192
NETWORK=128.138.243.128
BROADCAST=128.138.243.191
ONBOOT=yes

Debian’s and Ubuntu’s approaches are similar to Red Hat’s, but the interface defini-
tions must appear in the file /etc/network/interfaces. The entries corresponding to
the eth0:0 interface in our example above are

iface eth0:0 inet static
address 128.138.243.150
netmask 255.255.255.192
broadcast 128.138.243.191

On SUSE systems you can either create virtual interfaces with YaST or you can create
interface files manually.

Under SUSE, an interface’s IP addresses are all configured within a single file. To
configure the files manually, look in the /etc/sysconfig/network directory for files
whose names start with ifcfg-ifname. The filenames for real interfaces include a
hairy-looking 6-byte MAC address; those are the ones you want.

For example, one of the config files might contain the following entries to define two
virtual interfaces:

IPADDR_0=128.138.243.149
NETMASK_0=255.255.255.192
LABEL_0=0
IPADDR_1=128.138.243.150
NETMASK_1=255.255.255.192
LABEL_1=1
STARTMODE="onboot"
NETWORK=128.138.243.128

The suffixes that follow IPADDR and NETMASK (here, _0 and _1) don’t have to be
numeric, but for consistency this is a reasonable convention.

Telling Apache about virtual interfaces

In addition to creating the virtual interfaces, you need to tell Apache what docu-
ments to serve when a client tries to connect to each interface (IP address). You do
this with a VirtualHost clause in the httpd.conf file. There is one VirtualHost
clause for each virtual interface that you’ve configured. Here’s an example:

<VirtualHost 128.138.243.150>
ServerName www.company.com
ServerAdmin webmaster@www.company.com
DocumentRoot /var/www/htdocs/company
ErrorLog logs/www.company.com-error_log
CustomLog logs/www.company.com-access_log combined
ScriptAlias /cgi-bin/ /var/www/cgi-bin/company

</VirtualHost>

730 Chapter 21 – Web Hosting and Internet Servers

In this example, any client that connects to the virtual host 128.138.243.150 is served
documents from the directory /var/www/htdocs/company. Nearly any Apache di-
rective can go into a VirtualHost clause to define settings specific to that virtual
host. Relative directory paths, including those for the DocumentRoot, ErrorLog,
and CustomLog directives, are interpreted in the context of the ServerRoot.

With name-based virtual hosts, multiple DNS names all point to the same IP ad-
dress. The Apache configuration is similar, but you specify the primary IP address
on which Apache should listen for incoming named virtual host requests and omit
the IP address in the VirtualHost clause:

NameVirtualHost 128.138.243.150

<VirtualHost *>
ServerName www.company.com
ServerAdmin webmaster@www.company.com
DocumentRoot /var/www/htdocs/company
ErrorLog logs/www.company.com-error_log
CustomLog logs/www.company.com-access_log combined
ScriptAlias /cgi-bin/ /var/www/cgi-bin/company

</VirtualHost>

In this configuration, Apache looks in the HTTP headers to determine the requested
site. The server listens for requests for www.company.com on its main IP address,
128.138.243.150.

21.4 THE SECURE SOCKETS LAYER (SSL)

The SSL1 protocol secures communications between a web site and a client browser.
URLs that start with https:// use this technology. SSL uses cryptography to prevent
eavesdropping, tampering, and message forgery.

The browser and server use a certificate-based authentication scheme to establish
communications, after which they switch to a faster cipher-based encryption
scheme to protect their actual conversation.

SSL runs as a separate layer underneath the HTTP application protocol. SSL simply
supplies the security for the connection and does not involve itself in the HTTP
transaction. Because of this hygienic architecture, SSL can secure not only HTTP
but also protocols such as SMTP, NNTP, and FTP. For more details, see the Wikipe-
dia entry for “Secure Sockets Layer.”

See page 949 for more
details on the legal
issues surrounding
cryptography.

In the “early days” of SSL use, most symmetric encryption keys were a relatively
weak 40 bits because of U.S. government restrictions on the export of cryptographic
technology. After years of controversy and lawsuits, the government relaxed some
aspects of the export restrictions, allowing SSL implementations to use 128-bit keys
for symmetric key ciphers.

1. Transport Layer Security (TLS) is the successor to SSL and is implemented in all modern browsers.
However, the web community still refers to the overall protocol/concept as SSL.

W
e

b
 H

o
st

in
g

21.4 The Secure Sockets Layer (SSL) 731

Generating a certificate signing request

The owner of a web site that is to use SSL must generate a Certificate Signing Re-
quest (CSR), a digital file that contains a public key and a company name. The “cer-
tificate” must then be “signed” by a trusted source known as a Certificate Authority
(CA). The signed certificate returned by the CA contains the site’s public key and
company name along with the CA’s endorsement.

Web browsers have built-in lists of CAs whose signed certificates they will accept. A
browser that knows of your site’s CA can verify the signature on your certificate and
obtain your public key, thus enabling it to send messages that only your site can
decrypt. Although you can actually sign your own certificate, a certificate that does
not come from a recognized CA prompts most browsers to notify the user that the
certificate is potentially suspect. In a commercial setting, such behavior is obviously
a problem. But if you want to set up your own certificate authority for internal use
and testing, see

httpd.apache.org/docs/2.0/ssl/ssl_faq.html#aboutcerts.

You can obtain a certificate signature from any one of a number of certificate au-
thorities. Enter “SSL certificate” into Google and take your pick. The only real differ-
ences among CAs are the amount of work they do to verify your identity, the war-
ranties they offer, and the number of browsers that support them out of the box
(most CAs are supported by the vast majority of browsers).

Creating a certificate to send to a CA is relatively straightforward. OpenSSL must be
installed, which it is by default on most distributions. Here is the procedure.

First, create a 1024-bit RSA private key for your Apache server:

$ openssl genrsa -des3 -out server.key 1024

You are prompted to enter and confirm a passphrase to encrypt the server key. Back
up the server.key file to a secure location (readable only by root), and be sure to
remember the passphrase you entered. The curious can view the numeric details of
the key with this command:

$ openssl rsa -noout -text -in server.key

Next, create a Certificate Signing Request (CSR) that incorporates the server key you
just generated:

$ openssl req -new -key server.key -out server.csr

Enter the fully qualified domain name of the server when you are prompted to enter
a “common name.” For example, if your site’s URL is https://www.company.com, en-
ter “www.company.com” as your common name. Note that you need a separate cer-
tificate for each hostname—even to the point that “company.com” is different from
“www.company.com.” Companies typically register only one common name; they
make sure any SSL-based links point to that hostname.

http://apache.org/docs/2.0/ssl/ssl_faq.html#aboutcerts

732 Chapter 21 – Web Hosting and Internet Servers

You can view the details of a generated CSR with the following command:

$ openssl req -noout -text -in server.csr

You can now send the server.csr file to the CA of your choice to be signed. It is not
necessary to preserve your local copy. The signed CSR returned by the CA should
have the extension .crt. Put the signed certificate in the same secure place as your
private key.

Configuring Apache to use SSL

HTTP requests come in on port 80, and HTTPS requests use port 443. Both HTTPS
and HTTP traffic can be served by the same Apache process. However, SSL does not
work with name-based virtual hosts; each virtual host must have a specific IP ad-
dress. (This limitation is a consequence of SSL’s design.)

To set up Apache for use with SSL, first make sure that the SSL module is enabled
within httpd.conf by locating or adding the line

LoadModule ssl_module libexec/mod_ssl.so

Then add a VirtualHost directive for the SSL port:

<VirtualHost 128.138.243.150:443>
ServerName www.company.com
ServerAdmin webmaster@www.company.com
DocumentRoot /var/www/htdocs/company
ErrorLog logs/www.company.com-ssl-error_log
CustomLog logs/www.company.com-ssl-access_log combined
ScriptAlias /cgi-bin/ /var/www/cgi-bin/company
SSLEngine on
SSLCertificateFile /usr/local/apache2/conf/ssl.crt/server.crt
SSLCertificateKeyFile /usr/local/apache2/conf/ssl.key/server.key

</VirtualHost>

Note the :443 after the IP address and the SSL directives that tell Apache where to
find your private key and signed certificate.

When you restart Apache, you will be asked to enter the passphrase for your
server.key file. Because of this interaction, httpd can no longer start up automati-
cally when the machine is booted. If you want, you can remove the encryption from
your private key to circumvent the need to enter a password:

$ cp server.key server.key.orig
$ openssl rsa -in server.key.orig -out server.key
$ chmod 400 server.key server.key.orig

Of course, anyone who obtains a copy of your unencrypted key can then imperson-
ate your site.

For more information about SSL, see the following resources:

httpd.apache.org/docs-2.0/ssl/ssl_faq.html
httpd.apache.org/docs/2.0/mod/mod_ssl.html

httpd://apache.org/docs-2.0/ssl/ssl_faq.html
httpd://apache.org/docs/2.0/mod/mod_ssl.html

W
e

b
 H

o
st

in
g

21.5 Caching and proxy servers 733

21.5 CACHING AND PROXY SERVERS

The Internet and the information on it are growing rapidly. Ergo, the bandwidth and
computing resources required to support it are growing rapidly as well. How can this
state of affairs continue?

The only way to deal with this growth is to use replication. Whether it’s on a national,
regional, or site level, Internet content needs to be more readily available from a
closer source as the Internet grows. It just doesn’t make sense to transmit the same
popular web page from Australia across a very expensive link to North America mil-
lions of times each day. There should be a way to store this information once it’s been
sent across the link once. Fortunately, there is.

The Squid cache and proxy server

One answer is the freely available Squid Internet Object Cache.2 This package is both
a caching and a proxy server that supports several protocols, including HTTP, FTP,
and SSL.

Here’s how it works. Client web browsers contact the Squid server to request an ob-
ject from the Internet. The Squid server then makes a request on the client’s behalf
(or provides the object from its cache, as discussed in the following paragraph) and
returns the result to the client. Proxy servers of this type are often used to enhance
security or to filter content.

In a proxy-based system, only one machine needs direct access to the Internet
through the organization’s firewall. At organizations such as K–12 schools, a proxy
server can also filter content so that inappropriate material doesn’t fall into the wrong
hands. Many commercial and freely available proxy servers (some based on Squid,
some not) are available today. Some of these systems are purely software-based
(like Squid), and others are embodied in a hardware appliance (e.g., BlueCoat; see
www.cacheflow.com). An extensive list of proxy server technologies can be found at

www.web-caching.com/proxy-caches.html

Proxy service is nice, but it’s the caching features of Squid that are really worth get-
ting excited about. Squid not only caches information from local user requests but
also allows construction of a hierarchy of Squid servers.3 Groups of Squid servers
use the Internet Cache Protocol (ICP) to communicate information about what’s in
their caches.

With this feature, administrators can build a system in which local users contact an
on-site caching server to obtain content from the Internet. If another user at that site
has already requested the same content, a copy can be returned at LAN speed (usu-
ally 100 Mb/s or greater). If the local Squid server doesn’t have the object, perhaps
the server contacts the regional caching server. As in the local case, if anyone in the

2. Why “Squid”? According to the FAQ, “all the good names were taken.”

3. Unfortunately, some sites mark all their pages as being uncacheable, which prevents Squid from work-
ing its magic. In a similar vein, Squid isn’t able to cache dynamically generated pages.

www.cacheflow.com
www.web-caching.com/proxy-caches.html

734 Chapter 21 – Web Hosting and Internet Servers

region has requested the object, it is served immediately. If not, perhaps the caching
server for the country or continent can be contacted, and so on. Users perceive a
performance improvement, so they are happy.

For many, Squid offers economic benefits. Because users tend to share web discover-
ies, significant duplication of external web requests can occur at a reasonably sized
site. One study has shown that running a caching server can reduce external band-
width requirements by up to 40%.

To make effective use of Squid, you’ll likely want to force your users to use the cache.
Either configure a default proxy through Active Directory (in a Windows-based en-
vironment) or configure your router to redirect all web-based traffic to the Squid
cache by using the Web Cache Communication Protocol, WCCP.

Setting up Squid

Squid is easy to install and configure. Since Squid needs space to store its cache, you
should run it on a dedicated machine that has a lot of free memory and disk space. A
configuration for a relatively large cache would be a machine with 2GB of RAM and
200GB of disk.

You can grab the Squid package in RPM or apt-get format from your distribution
vendor, or you can download a fresh copy of Squid from www.squid-cache.org. If
you choose the compile-your-own path, run the configure script at the top of the
source tree after you unpack the distribution. This script assumes that you want to
install the package in /usr/local/squid. If you prefer some other location, use the
--prefix=dir option to configure. After configure has completed, run make all
and then make install.

Once you’ve installed Squid, you must localize the squid.conf configuration file. See
the QUICKSTART file in the distribution directory for a list of the changes you need
to make to the sample squid.conf file.

You must also run squid -z by hand to build and zero out the directory structure in
which cached web pages will be stored. Finally, you can start the server by hand with
the RunCache script; you will eventually want to call this script from your system’s
rc files so that they start the Squid server when the machine boots.

To test Squid, configure your desktop web browser to use the Squid server as a proxy.
This option is usually found in browser’s preferences panel.

21.6 ANONYMOUS FTP SERVER SETUP

FTP is one of the oldest and most basic services on the Internet, yet it continues to
be used today. Although FTP has a variety of internal uses, the most common appli-
cation on the Internet continues to be “anonymous FTP,” by which users that do not
have accounts at your site can download files you have made available.

www.squid-cache.org

W
e

b
 H

o
st

in
g

21.6 Anonymous FTP server setup 735

FTP is useful for distributing bug fixes, software, document drafts, and the like, but
these days HTTP servers have all but replaced FTP servers. The arguments in favor
of FTP are relatively weak: FTP can be a bit more reliable, and users don’t need a web
browser to access an FTP site (although of course, they need an FTP client).

Use vanilla FTP only when anonymous access is required. For nonanonymous appli-
cations, use the secure variant SFTP. FTP transmits passwords in plaintext and has a
history of security incidents.

ftpd is managed by inetd and therefore has an entry in the /etc/inetd.conf and
/etc/services files. (If your distribution uses xinetd instead of inetd, a file should
exist in /etc/xinetd.d for ftpd instead.) When an FTP user logs in anonymously,
ftpd executes a chroot (short for “change root”) system call to make files outside the
~ftp directory invisible and inaccessible. Because of the public nature of anonymous
FTP, it is important that ftpd be configured correctly so that sensitive files are not
accidentally made available to the whole world.

To allow anonymous ftp to your site, take the following steps in the sequence listed:

• Add the user “ftp” to your regular password and shadow password files (the
ftp user should already exist on all distributions except for Debian). No
one needs to log in to the ftp account, so use an “x” as ftp’s password. It’s
also a good idea to specify /sbin/nologin or /bin/false as ftp’s login shell.

• Create ftp’s home directory if it doesn’t already exist.

• Create subdirectories bin, etc, lib, and pub beneath ~ftp. Since an anony-
mous ftp session runs chrooted to ~ftp, the subdirectories bin and etc
must provide a copy of all the commands and configuration information
needed by ftpd. After the chroot, ~ftp/bin and ~ftp/etc masquerade as
/bin and /etc.

• Copy the /bin/ls program to the ~ftp/bin directory. For added security,
make ~ftp/bin/ls execute-only by setting its mode to 111. This tweak pre-
vents clients from copying the binary and studying it for weaknesses.

• Copy or hard-link the shared libraries needed by ls to ~ftp/lib. Check the
documentation for your distribution to find out which files are necessary.
Note that hard linking works only if the files live in the same disk partition.

• Copy /etc/passwd and /etc/group to ~ftp/etc.

• Edit the passwd and group files. ftpd uses only the ls command and skel-
etal copies of /etc/passwd and /etc/group from ~ftp/etc. The passwd and
group files under ~ftp should contain only root, daemon, and ftp; and the
password fields should contain “x”.

736 Chapter 21 – Web Hosting and Internet Servers

• Set the proper permissions on files and directories under ~ftp. We recom-
mend that permissions be set as shown in Table 21.4.

• Edit /etc/ftpusers and remove the entries for “ftp” and “anonymous” to
enable anonymous users to log in.

• Put the files you want to make available in ~ftp/pub.

One of the biggest security risks of anonymous FTP results from allowing users to
deposit files in FTP directories. World-writable directories, no matter how obscure,
quickly become “nests” where hackers and kids looking to trade warez can store
files, sucking up all your bandwidth and putting you right in the middle of a chain of
activities that’s probably undesirable, if not downright illegal. Don’t be part of the
problem; never allow writable anonymous FTP directories on your system.

21.7 EXERCISES

E21.1 Configure a virtual interface on your workstation. Run ifconfig before
and after to see what changed. Can you ping the virtual interface from
another machine on the same subnet? From a different network? Why or
why not? (Requires root access.)

E21.2 With a packet sniffer (tcpdump), capture a two-way HTTP conversation
that uploads information (e.g., filling out a form or a search field). Anno-
tate the session to show how your browser conveyed information to the
web server. (Requires root access.)

E21.3 Use a packet sniffer to capture the traffic when you open a busy web page
such as the home page for amazon.com or cnn.com. How many separate
TCP connections are opened? Who initiates them? Could the system be
made more efficient? (Requires root access.)

E21.4 Locate log files from an Internet-accessible web server, perhaps the main
server for your site. Examine the log files. What can you say about the
access patterns over a period of a few hours? What errors showed up dur-
ing that period? What privacy concerns are illustrated by the contents of
the log files? (May require root access.)

Table 21.4 Recommended permissions under ~ftp

File/Dir Owner Mode File/Dir Owner Mode

~ftp root 555 ~ftp/etc/passwd root 444
~ftp/bin root 555 ~ftp/etc/group root 444
~ftp/bin/ls root 111 ~ftp/pub root 755
~ftp/etc root 555 ~ftp/lib root 555

W
e

b
 H

o
st

in
g

21.7 Exercises 737

E21.5 Install Apache on your system and create a couple of content pages. From
other machines, verify that your web server is operating. Find the Apache
log files that let you see what browsers are hitting your server. Configure
Apache to serve some of its content pages to the virtual interface created
in E21.1. (Requires root access.)

This page intentionally left blank

SECTION THREE

BUNCH O' STUFF

This page intentionally left blank

741

X
 W

in
d

o
w

s

22 The X Window System

The X Window System, also called X11 or simply X, is the foundation for most
graphical user environments for UNIX and Linux. X is the natural successor to a
window system called (believe it or not) W, which was developed as part of MIT’s
Project Athena in the early 1980s. Version 10 of the X Window System, released in
1985, was the first to achieve widespread deployment, and version 11 (X11) followed
shortly thereafter. Thanks to the system’s relatively liberal licensing terms, X spread
quickly to other platforms, and multiple implementations emerged.

In 1988, the MIT X Consortium was founded to set the overall direction for the X
protocol. Over the next decade, this group and its successors issued a steady stream
of protocol updates. X11R7.1 is today’s latest and greatest, with the trend apparently
heading toward adding new numbers to the version designation instead of incre-
menting the existing ones.

XFree86 became the de facto X server implementation for Linux (and many other
platforms) until a licensing change in 2004 motivated many distributions to switch
to a fork of XFree86 that was unencumbered by the new licensing clause. That fork is
maintained by the nonprofit X.Org Foundation and is the predominant Linux im-
plementation today. In addition, the X.Org server has been ported to Windows for
use in the Cygwin Linux compatibility environment. (Several commercial X servers
for Windows are also available; see page 823 for more information.)

This chapter describes the X.Org version of X, which is used by all our example dis-
tributions. The implementations of X.Org and XFree86 have diverged architectur-
ally, but most of the administrative details remain the same. It is often possible to

X Windows

742 Chapter 22 – The X Window System

substitute “xf86” for “xorg” in commands and filenames to guess at the appropriate
XFree86 version. XFree86 is becoming obsolete by the day and will not be discussed
further here.

The X Window System can be broken down into a few key components. First, it pro-
vides a display manager whose main job is to authenticate users, log them in, and
start up an initial environment from startup scripts. The display manager also starts
the X server, which defines an abstract interface to the system’s bitmapped displays
and input devices (e.g., keyboard and mouse). The startup scripts also run a window
manager, which allows the user to move, resize, minimize, and maximize windows,
as well as to manage separate virtual desktops. Finally, at the lowest level, applica-
tions are linked to a widget library that implements high-level user interface mecha-
nisms such as buttons and menus. Exhibit A illustrates the relationship between the
display manager, the X server, and client applications.

Exhibit A The X client/server model

The X server understands only a very basic set of drawing primitives over a network
API; it does not define a programming interface to high-level entities such as but-
tons, text boxes, menus, and sliders. This design achieves two important goals. First,
it allows the X server to run on a completely separate computer from the client appli-
cation. Second, it allows the server to support a variety of different window manag-
ers and widget sets.

Application developers have their choice of several common widget libraries and
user interface standards. Unfortunately, the choice often depends more on religious
affiliation than on any real design considerations. Although freedom of choice is
good, X’s user interface agnosticism has arguably resulted in many years of poor
user interfaces.

In this chapter, we explain how to run programs on a remote display and how to
enable authentication. We then discuss how to configure the X.Org server and how
to troubleshoot configuration errors. Finally, we touch briefly on some of the avail-
able window managers and desktop environments.

X client

X client

X server

• Manages display
• Manages input devices

Display manager

• Launches X server
• Requests login and password
• Runs startup scripts
• Handles XDM control protocol

X
ne

tw
or

k
pr

ot
oc

ol

Window manager

Display environment

= Widget library

X
 W

in
d

o
w

s

22.1 The X display manager 743

22.1 THE X DISPLAY MANAGER

The display manager is the first thing a user usually sees when sitting down at the
computer. It is not required; many users disable the display manager and start X
from the text console or from their .login script by running startx (which itself is a
wrapper for the xinit program, which starts the X server).

On the other hand, the display manager sports an attractive, user-friendly login
screen and adds some extra configurability. The display manager can allow remote
logins to other X servers through the XDMCP protocol. It can also handle display
authentication (see Client authentication on page 745). The original display man-
ager is called xdm (for X display manager), but modern replacements such as gdm
(the GNOME display manager) and kdm (the KDE display manager) deliver more
or less the same set of features and are much better looking.

In the typical scenario, the display manager launches the X server, authenticates the
user, logs the user into the system, and executes the user’s startup scripts. A set of
configuration files, most often located in the /etc/X11/xdm directory, specifies how
xdm will run. For example, you might want to edit the Xservers file to change the
display number used for this server if multiple servers will be running on other vir-
tual terminals. Or, you might alter the server layout with the -layout option if you
have defined layouts to suit multiple systems.

See page 681 for
more information
about PAM.

After launching the X server, xdm prompts for a username and password. The user’s
password is authenticated according to the PAM modules (Pluggable Authentication
Modules) specified in /etc/pam.d/xdm (or kdm/gdm if you are using the KDE or
GNOME display managers). The login screen can also present the option to log in to
several alternative desktop environments, including the important failsafe option
discussed below.

The display manager’s final duty is to execute the Xsession shell script, which sets
up the user’s desktop environment. The Xsession script, also most often found in
/etc/X11/xdm, is a system-wide startup script. It sets application defaults, installs
standard key bindings, and selects language settings. The Xsession script then exe-
cutes the user’s own personal startup script, usually called ~/.xsession, to start up
the window manager, task bar, helper applets, and possibly other programs. GNOME
and KDE have their own startup scripts that configure the user’s desktop in accor-
dance with GNOME’s and KDE’s configuration tools; this scheme is less error-prone
than users’ editing of their own startup scripts.

When the execution of ~/.xsession completes, the user is logged out of the system
and the display manager goes back to prompting for a username and password.
Therefore, ~/.xsession must start all programs in the background (by appending an
& to the end of each command) except for the last one, which is normally the window
manager. (If all commands in ~/.xsession are run in the background, the script ter-
minates right away and the user is logged out immediately after logging in.) With
the window manager as the final, foreground process, the user is logged out only
after the window manager exits.

744 Chapter 22 – The X Window System

The failsafe login option lets users log in to fix their broken startup scripts. This
option can usually be selected from the display manager’s login screen. It opens only
a simple terminal window; once the window closes, the system logs the user out.
Every system should allow the failsafe login option; it helps users fix their own
messes rather than having to page you in the middle of the night.

Forgetting to leave a process in the foreground is the most common startup problem,
but it’s hardly the only possibility. If the cause of problems is not obvious, you may
have to refer to the ~/.xsession-errors file, which contains the output of the com-
mands run from ~/.xsession. Look for errors or other unexpected behavior. In a
pinch, move the ~/.xsession script aside completely and make sure you can log in
without it. Then restore one or two lines at a time until you find the offending line.

22.2 RUNNING AN X APPLICATION

The process required to run an X application may at first seem overly complicated.
However, you will soon discover the flexibility provided by the client/server display
model. Because display updates are transmitted over the network, an application
(the client) can run on a completely separate computer from the one that displays its
graphical user interface (the server). An X server can have connections from many
different applications, all of which run on separate computers.

To make this model work, clients must be told what display to connect to and what
screen to inhabit on that display. Once connected, clients must authenticate them-
selves to the X server to ensure that the person sitting in front of the display has
authorized the connection.

See page 697 for
more information
about SSH.

Even with authentication, X’s intrinsic security is relatively weak. You can manage
connections more securely by routing them through SSH (see X connection forward-
ing with SSH on page 747). We strongly recommend the use of SSH for X connec-
tions over the Internet. It’s not unreasonable for local traffic, either.

The DISPLAY environment variable

X applications consult the DISPLAY environment variable to find out where to dis-
play themselves. The variable contains the hostname or IP address of the server, the
display number (identifying the particular instance of an X server to connect to),
and an optional screen number (for displays with multiple monitors). When appli-
cations run on the same computer that displays their interfaces, you can omit most
of these parameters for simplicity.

The following example shows both the format of the display information and the
bash syntax used to set the environment variable:

client$ DISPLAY=servername.domain.com:10.2; export DISPLAY

This setting points X applications at the machine servername.domain.com, display
10, screen 2. Applications establish a TCP connection to the server on port number

X
 W

in
d

o
w

s

22.2 Running an X application 745

6000 plus the display number (in this example, port 6010), where the X server han-
dling that display should be listening.

Keep in mind that every process has its own environment variables. When you set
the DISPLAY variable for a shell, its value is inherited only by programs that you run
from that shell. If you execute the commands above in one xterm and then try to
run your favorite X application from another, the application won’t have access to
your carefully constructed DISPLAY variable.

Another point worth mentioning is that although X applications send their graphi-
cal output to the designated X server, they still have local stdout and stderr channels.
Some error output may still come to the terminal window from which an X applica-
tion was run.

See page 418 for
more information
about DNS resolver
configuration.

If the client and server are both part of your local organization, you can usually omit
the server’s full domain name from the DISPLAY variable, depending on how your
name server’s resolver has been configured. Also, since most systems run only a sin-
gle X server, the display is usually 0. The screen number can be omitted, in which
case screen 0 is assumed. Ergo, most of the time it’s fine to set the value of DISPLAY
to servername:0.

If the client application happens to be running on the same machine as the X server,
you can simplify the DISPLAY variable even further by omitting the hostname. This
feature is more than just cosmetic: with a null hostname, the client libraries use a
UNIX domain socket instead of a network socket to contact the X server. In addition
to being faster and more efficient, this connection method bypasses any firewall re-
strictions on the local system that are trying to keep out external X connections. The
simplest possible value for the DISPLAY environment variable, then, is simply “:0”.

The same client libraries that read the DISPLAY environment variable usually accept
this information in the form of a command-line argument as well. For example, the
command

client$ xprogram -display servername:0

is equivalent to running the program with DISPLAY set to “servername:0”. The
command-line options override the environment variable settings. This feature is
especially handy if you are running on the same machine several programs that are
handled by different displays.

Client authentication

Although the X environment is generally thought to be relatively insecure, every
precaution helps prevent unauthorized access. In the days before security was such a
pressing concern, it was common for X servers to welcome connections from any
client running on a host that had been marked as safe with the xhost command. But
since any user on that host could then connect to your display and wreak havoc
(either intentionally or out of confusion), the xhost method of granting access to
clients was eventually deprecated. We do not discuss it further.

746 Chapter 22 – The X Window System

The most prevalent alternative to host-based security is called magic cookie authen-
tication. While the thought of magic cookies might induce flashbacks in some of our
readers, in this context they are used to authenticate X connections. The basic idea is
that the X display manager generates a large random number, called a cookie, early
in the login procedure. The cookie for the server is written to the ~/.Xauthority file
in the user’s home directory. Any clients that know the cookie are allowed to con-
nect. Users can run the xauth command to view existing cookies and add new ones
to this file.

The simplest way to show how this works is with an example. Suppose you have set
your DISPLAY variable on the client system to display X applications on the ma-
chine at which you are sitting. However, when you run a program, you get an error
that looks something like this:

client$ xprogram -display server:0
Xlib: connection to "server:0.0" refused by server
xprogram: unable to open display 'server:0'

This message tells you that the client does not have the right cookie, so the remote
server refused the connection. To get the right cookie, log in to the server (which
you have probably already done if you are trying to display on it) and list the server’s
cookies by running xauth list:

server$ xauth list
server:0 MIT-MAGIC-COOKIE-1 f9d888df6077819ef4d788fab778dc9f
server/unix:0 MIT-MAGIC-COOKIE-1 f9d888df6077819ef4d788fab778dc9f
localhost:0 MIT-MAGIC-COOKIE-1 cb6cbf9e5c24128749feddd47f0e0779

Each network interface on the server has an entry. In this example we have a cookie
for the Ethernet, a cookie for the UNIX domain socket used for local connections,
and a cookie for the localhost loopback network interface.

The easiest way to get the cookie onto the client (when not using SSH, which negoti-
ates the cookie for you) is with good old cut-and-paste. Most terminal emulators
(e.g., xterm) let you select text with the mouse and paste it into another window,
usually by pressing the middle mouse button. Conveniently, the xauth add com-
mand accepts as input the same format that xauth list displays. You can add the
cookie to the client like this:

client$ xauth add server:0 MIT-MAGIC-COOKIE-1
9d888df6077819ef4d788fab778dc9f

You should verify that the cookie was added properly by running xauth list on the
client. With the DISPLAY environment variable set and the correct magic cookie
added to the client, applications should now display correctly on the server.

If you are having trouble getting cookies to work, you can drop back temporarily to
xhost authentication just to verify that there are no other problems (for example,
firewalls or local network restrictions that are preventing the client from accessing
the server). Always run xhost - (that is, xhost with a dash as its only argument) to
disable xhost authentication once your test is complete.

X
 W

in
d

o
w

s

22.2 Running an X application 747

X connection forwarding with SSH

Magic cookies increase security, but they’re hardly foolproof. Any user who can ob-
tain your display’s cookie can connect to the display and run programs that monitor
your activities. Even without your cookie, the X protocol transfers data over the net-
work without encryption, allowing it to be sniffed by virtually anyone.

See page 697 for
more information
about SSH.

You can boost security with SSH, the secure shell protocol. SSH provides an authen-
ticated and encrypted terminal service. However, SSH can also forward arbitrary
network data, including X protocol data, over a secure channel. X forwarding is sim-
ilar to generic SSH port forwarding, but because SSH is X-aware, you gain some
additional features, including a pseudo-display on the remote machine and the ne-
gotiated transfer of magic cookies.

You typically ssh from the machine running the X server to the machine on which
you want to run X programs. This arrangement can be confusing to read about be-
cause the SSH client is run on the same machine as the X server, and it connects to an
SSH server that is the same machine as the X client applications. To make it worse,
the virtual display that SSH creates for your X server is local to the remote system.
Exhibit B shows how X traffic flows through the SSH connection.

Exhibit B Using SSH with X

Your DISPLAY variable and authentication information are set up automatically by
ssh. The display number starts at :10.0 and increments for each SSH connection that
is forwarding X traffic.

An example might help show the sequence

x-server$ ssh -v -X x-client.mydomain.com
OpenSSH_3.9p1, OpenSSL 0.9.7a Feb 19 2003
debug1: Reading configuration data /home/boggs/.ssh/config
debug1: Reading configuration data /etc/ssh/ssh_config
debug1: Applying options for *
debug1: Connecting to x-client.mydomain.com [192.168.15.9] port 22.
debug1: Connection established.
Enter passphrase for key '/home/boggs/.ssh/id_rsa':
debug1: read PEM private key done: type RSA

SSH server

X client virtual
DISPLAY= :12.0

X client machine

Secure SSH connection
SSH client

X server
DISPLAY=:0.0

X server machine

748 Chapter 22 – The X Window System

debug1: Authentication succeeded (publickey).
debug1: Entering interactive session.
debug1: Requesting X11 forwarding with authentication spoofing.
debug1: Requesting authentication agent forwarding.
x-client$

You can see from the last two lines that the client is requesting forwarding for X11
applications. X forwarding must be enabled on both the SSH server and the SSH cli-
ent, and the client must still have the correct cookie for the server. If things do not
seem to be working right, try the -X and -v flags as shown above (for OpenSSH) to
explicitly enable X forwarding and to request verbose output. Also check the global
SSH configuration files in /etc/ssh to make sure that X11 forwarding has not been
administratively disabled. Once logged in, you can check your display and magic
cookies:

x-client$ echo $DISPLAY
localhost:12.0
x-client$ xauth list
x-client/unix:12 MIT-MAGIC-COOKIE-1 a54b67121eb94c8a807f3ab0a67a51f2

Notice that the DISPLAY points to a virtual display on the SSH server. Other SSH
connections (both from you and from other users) are assigned different virtual dis-
play numbers. With the DISPLAY and cookie properly set, we can now run the client
application.

x-client$ xeyes
debug1: client_input_channel_open: ctype x11 rchan 4 win 65536 max 16384
debug1: client_request_x11: request from 127.0.0.1 35411
debug1: channel 1: new [x11]
debug1: confirm x11
debug1: channel 1: FORCE input drain

With the debugging information enabled with ssh -v, you can see that ssh has re-
ceived the X connection request and dutifully forwarded it to the X server. The for-
warding can be a little slow on a distant link, but the application should eventually
appear on your screen.

22.3 X SERVER CONFIGURATION

The X.Org server, Xorg, has a reputation for being notoriously difficult to configure
for a given hardware environment. It is not undeserved. In part, the complexity of
Xorg’s configuration is explained by the wide array of graphics hardware, input de-
vices, video modes, resolutions, and color depths that it supports. In the early days
of XFree86, a new user was often overwhelmed by a cryptic configuration file con-
taining what appeared to be random numbers derived from obscure information in
the back of the monitor’s nonexistent manual. Xorg’s configuration file affords sig-
nificantly more structure for some of these seemingly random numbers.

X
 W

in
d

o
w

s

22.3 X server configuration 749

The Xorg configuration file is normally found in /etc/X11/xorg.conf, but the X
server will search a whole slew of directories looking for it. The man page presents a
complete list, but one point to note is that some of the paths Xorg searches contain
the hostname and a global variable, making it easy for you to store configuration
files for multiple systems in a central location.

Several programs can help you configure X (e.g., xorgconfig), but it’s a good idea to
understand how the configuration file is structured in case you need to view or edit
the configuration directly. You can gather some useful starting information directly
from the X server by running Xorg -probeonly and looking through the output for
video chipset and other probed values. You can run Xorg -configure to have the X
server create an initial configuration file that is based on the probed values. It’s a
good place to start if you have nothing else.

The xorg.conf file is organized into several sections, each starting with the Section
keyword and ending with EndSection. The most common section types are listed in
Table 22.1.

It is often simplest to build a configuration file from the bottom up by first defining
sections for the input and output devices and then combining them into various
layouts. With this hierarchical approach, a single configuration file can be used for
many X servers, each with different hardware. It’s also a reasonable approach for a
single system that has multiple video cards and monitors.

Exhibit C on the next page shows how some of these sections fit together into the
X.Org configuration hierarchy. A physical display Monitor plus a video card Device
form a Screen. A set of Screens plus InputDevices form a ServerLayout. Multiple
server layouts can be defined in a configuration file, though only one is active for a
given instance of the Xorg process.

Table 22.1 Sections of the xorg.conf file

Section Description

ServerFlags Lists general X server configuration parameters
Module Specifies dynamically loadable extensions for accelerated

graphics, font renderers, and the like
Device Configures the video card, driver, and hardware information
Monitor Describes physical monitor parameters including timing and

display resolutions
Screen Associates a monitor with a video card (Device) and defines the

resolutions and color depths available in that configuration
InputDevice Specifies input devices such as keyboards and mice
ServerLayout Bundles input devices with a set of screens and positions the

screens relative to each other

750 Chapter 22 – The X Window System

Exhibit C Relationship of xorg.conf configuration sections

Some of the sections that make up the xorg.conf file are relatively fixed. The defaults
can often be used straight from an existing or example configuration file. Others,
such as the Device, Monitor, Screen, InputDevice, and ServerLayout sections, de-
pend on the host’s hardware setup. We discuss the most interesting of these sections
in more detail in the following subsections.

Device sections

A Device section describes a particular video card. You must provide a string to
identify the card and a driver appropriate for the device. The driver is loaded only if
the device is referenced by a corresponding Screen section. A typical device section
might look like this:

Section “Device“
Identifier "STBVirge3D"
Driver "s3virge"
option value
...

EndSection

The manual page for the driver, in this example s3virge, describes the hardware
that’s driven as well as the options the driver supports. If you are experiencing
strange video artifacts, you might try setting options to turn off hardware accelera-
tion (if supported), slowing down video memory access, or modifying PCI parame-
ters. It is generally a good idea to check the web for others who might have experi-
enced similar problems before you start randomly changing values.

Monitor sections

The Monitor section describes the displays attached to your computer. It can specify
detailed timing values. The timing information is necessary for older hardware, but
most modern monitors can be probed for it. Display specifications can usually be
obtained from the manufacturer’s web site, but nothing beats having the original
manual that came with the monitor. Either way, you will want to know at least the
horizontal sync and vertical refresh frequencies for your model.

Monitor Device

DISPLAY = :0.0

Mouse

Screen

Monitor Device

DISPLAY = :0.1

Screen InputDevice

Keyboard

InputDevice

ServerLayout

Graphics tablet

InputDevice

X
 W

in
d

o
w

s

22.3 X server configuration 751

A typical Monitor section looks like this:

Section "Monitor"
Identifier "ViewSonic"
Option "DPMS"
HorizSync 30-65
VertRefresh 50-120

EndSection

As with all of the sections, the Identifier line assigns a name by which you later refer
to this monitor. Here we have turned on DPMS (Display Power Management Signal-
ing) so that the X server powers down the monitor when we sneak away for a donut
and some coffee.

The HorizSync and VertRefresh lines should be filled in with values appropriate for
your monitor. They may be specified as a frequency range (as above) or as discrete
values separated by commas. The driver can theoretically probe for supported
modes, but specifying the parameters keeps the driver from attempting to use un-
supported frequencies.

Horror stories abound of early CRTs being damaged by signals running at improper
frequencies, but these days CRTs seem to be a bit more resilient. At worst, they are
likely to emit a high-pitched squeal that is sure to get the dog’s attention. Modern
LCD monitors are even more tolerant of signal variations, but it is probably still wise
to exercise caution when experimenting with monitor frequencies. Be prepared to
turn off the monitor if it does not like the signal it is receiving.

Screen sections

A Screen section ties a device (video card) to a monitor at a specific color depth and
set of display resolutions. Here’s an example that uses the video card and monitor
specified above.

Section "Screen"
Identifier "Screen 2"
Device "STBVirge3D"
Monitor "ViewSonic"
DefaultDepth 24
Subsection "Display"

Depth 8
Modes "640x400"

EndSubsection
Subsection "Display"

Depth 16
Modes "640x400" "640x480" "800x600" "1024x768"

EndSubsection
Subsection "Display"

Depth 24
Modes "1280x1024" "1024x768" "800x600" "640x400" "640x480"

EndSubsection
EndSection

752 Chapter 22 – The X Window System

As you might expect, the screen is named with an Identifier, and the identifiers for
the previously defined video device and monitor are mentioned. This is the first sec-
tion we have introduced that has subsections. One subsection is defined for each
color depth, with the default being specified by the DefaultDepth field.

A given instance of the X server can run at only one color depth. At startup, the server
determines what resolutions are supported for that color depth. The possible resolu-
tions generally depend on the amount of memory on the video card. On older cards
with less memory, it’s common for resolution to be limited at high color depths.
Special keyboard combinations for X on page 754 describes how to cycle through the
resolutions that are defined here.

Any decent modern video card should be able to drive your monitor at its full reso-
lution in 24-bit or 32-bit color. If you want to run old programs that require a server
running in 8-bit color, run a second X server on a separate virtual console. Use the
-depth 8 flag on the Xorg command line to override the DefaultDepth option.

InputDevice sections

An InputDevice section describes a source of input events such as a keyboard or
mouse. Each device gets its own InputDevice section, and as with other sections,
each is named with an Identifier field. If you are sharing a single configuration file
among machines with different hardware, you can define all the input devices; only
those referenced in the ServerLayout section are used. Here is a typical keyboard
definition:

Section "InputDevice"
Identifier "Generic Keyboard"
Driver "Keyboard"
Option "AutoRepeat" "500 30"
Option "XkbModel" "pc104"
Option "XkbLayout" "us"

EndSection

You can set options in the keyboard definition to express your particular religion’s
stance on the proper position of the Control and Caps Lock keys, among other
things. In this example, the AutoRepeat option specifies how long a key needs to be
held down before it starts repeating and how fast it repeats.

The mouse is configured in a separate InputDevice section:

Section "InputDevice"
Identifier "Generic Mouse"
Driver "mouse"
Option "CorePointer"
Option "Device" "/dev/input/mice"
Option "Protocol" "IMPS/2"
Option "Emulate3Buttons" "off"
Option "ZAxisMapping" "4 5"

EndSection

X
 W

in
d

o
w

s

22.3 X server configuration 753

The CorePointer option designates this mouse as the system’s primary pointing de-
vice. The device file associated with the mouse is specified as an Option; it is typi-
cally set to /dev/input/mice, which is the mouse device multiplexer. The protocol
depends on the particular brand of mouse that is used; you can set it to auto so that
the server tries to figure it out for you. If your mouse wheel doesn’t work, try setting
the protocol to IMPS/2. If you have more than a few buttons, you might need to use
the ExplorerPS/2 protocol.

If /dev/input/mice does not work for your mouse, then the configuration is slightly
more complex. The gpm program implements X-like, mouse-controlled cut-and-
paste facilities in text-mode virtual terminals. However, only one program can open
a traditional mouse device at a time. To solve this problem, gpm replicates the mouse
data to a FIFO file so that applications such as the X server can see it too (by using
the FIFO as the mouse device).1 This arrangement adds gpm functionality to the
system while keeping it relatively transparent.

For example, the following command makes gpm get its input from /dev/mouse
with the IMPS/2 protocol and forward it to the FIFO /dev/gpmdata (the name is not
configurable) with no protocol translation.

$ gpm -m /dev/mouse -t imps2 -Rraw

You would then change the mouse device to /dev/gpmdata in the xorg.conf file.
Since gpm must be run before the X server is started, this command must go in a
system startup script such as /etc/init.d/gpm. See page 32 for more information
about startup scripts.

The Emulate3Buttons option lets a two-button mouse emulate a three-button
mouse by defining a click on both buttons to stand in for a middle button click. The
ZAxisMapping option is sometimes needed to support a scroll wheel or joystick
device by mapping the buttons appropriately. Most mice these days have at least three
buttons, a scroll wheel, a built-in MP3 player, a foot massager, and a beer chiller.2

ServerLayout sections

The ServerLayout section is the top-level node of the configuration hierarchy. Each
hardware configuration that the server will be run on should have its own instance
of the ServerLayout section. The layout used by a particular X server is usually
specified on the server’s command line.

Here is an example of a complete ServerLayout section:

Section "ServerLayout"
Identifier "Simple Layout"
Screen "Screen 1" LeftOf "Screen 2"
Screen "Screen 2" RightOf "Screen 1"
InputDevice "Generic Mouse" "CorePointer"
InputDevice "Generic Keyboard" "CoreKeyboard"

1. FIFO files are created with the mknod command. For example, mknod p /dev/gpmdata.
2. Not all options are supported by Xorg. Some options sold separately.

754 Chapter 22 – The X Window System

Option "BlankTime" "10" # Blank the screen in 10 minutes
Option "StandbyTime" "20" # Turn off screen in 20 minutes (DPMS)
Option "SuspendTime" "60" # Full hibernation in 60 minutes (DPMS)
Option "OffTime" "120"# Turn off DPMS monitor in 2 hours

EndSection

This section ties together all the other sections to represent an X display. It starts
with the requisite Identifier, which names this particular layout. It then associates a
set of screens with the layout.3 If multiple monitors are attached to separate video
cards, each screen is specified along with optional directions to indicate how they
are physically arranged. In this example, screen one is on the left and screen two is
on the right.

Some video cards can drive multiple monitors at once. In this case, only a single
Screen is specified in the ServerLayout section. For NVIDIA cards, currently the
most common for this application under Linux, you set an option in the Driver sec-
tion to signify support for TwinView. The details of this configuration are outside
the scope of this book but can easily be found on various web forums.

Following the screen list is the set of input devices to associate with this layout. The
CorePointer and CoreKeyboard options are passed to the InputDevice section to
indicate that the devices are to be active for the configuration. Those options can
also be set directly in the corresponding InputDevice sections, but it’s cleaner to set
them in the ServerLayout section.

The last few lines configure several layout-specific options. In the example above,
these all relate to DPMS, which is the interface that tells Energy Star-compliant mon-
itors when to power themselves down. The monitors must also have their DPMS op-
tions enabled in the corresponding Monitor sections.

22.4 TROUBLESHOOTING AND DEBUGGING

X server configuration has come a long way over the last decade, but it can still be
difficult to get things working just the way you would like. You may need to experi-
ment with monitor frequencies, driver options, proprietary drivers, or extensions
for 3D rendering. Ironically, it is the times when the display is not working correctly
that you are most interested in seeing the debugging output on your screen. Fortu-
nately, the X.Org server gives you all the information you need (and a lot that you
don’t) to track down the problem.

Special keyboard combinations for X

Because the X server takes over your keyboard, display, mouse, and social life, you
can imagine that it might leave you with little recourse but to power the system down
if things are not working. However, there are a few things to try before it comes to
that. If you hold down the Control and Alt keys and press a function key (F1-F6), the
X server takes you to one of the text-based virtual terminals. From there you can log

3. Recall that screens identify a monitor/video card combination at a particular color depth.

X
 W

in
d

o
w

s

22.4 Troubleshooting and debugging 755

in and debug the problem. To get back to the X server running on virtual terminal 7,
press <Alt-F7>.4 If you are on a network, you can also try logging in from another
computer to kill the X server before resorting to the reset button.

If the monitor is not in sync with the card’s video signal, try changing the screen
resolution. The available resolutions are specified on a Modes line from the Screen
section of the configuration file. The exact Modes line that is active depends on the
color depth; see Screen sections on page 751 for details. The X server defaults to the
first resolution shown on the active Modes line, but you can cycle through the dif-
ferent resolutions by holding down Control and Alt and pressing the plus (+) or
minus (-) key on the numeric keypad.

Pressing <Control-Alt-Backspace> kills the X server immediately. If you ran the
server from a console, you will find yourself back there when the server exits. If a
display manager started the server, it usually respawns a new server and prompts
again for a login and password. You have to kill the display manager (xdm, gdm,
etc.) from a text console to stop it from respawning new X servers.

When good X servers go bad

Once you have regained control of the machine, you can begin to track down the
problem. The simplest place to start is the output of the X server. This output is
occasionally visible on virtual terminal one (<Control-Alt-F1>), which is where all
the startup program output goes. Most often, the X server output goes to a log file
such as /var/log/Xorg.0.log.

As seen below, each line is preceded by a symbol that categorizes it. You can use these
symbols to spot errors (EE) and warnings (WW), as well as to determine how the
server found out each piece of information: through default settings (==), in a config
file (**), detected automatically (--), or specified on the X server command line (++).

Let’s examine the following snippet:

X Window System Version 6.8.2
Release Date: 9 February 2005
X Protocol Version 11, Revision 0, Release 6.8.2
Build Operating System: Linux 2.4.21-23.ELsmp i686 [ELF]
Current Operating System: Linux chinook 2.6.12-1.1372_FC3 #1 Fri Jul 15 00:59:

10 EDT 2005 i686
Markers: (--) probed, (**) from config file, (==) default setting,
 (++) from command line, (!!) notice, (II) informational,
 (WW) warning, (EE) error, (NI) not implemented, (??) unknown.
(==) Log file: "/var/log/Xorg.0.log", Time: Mon May 1 08:41:02 2006
(==) Using config file: "/etc/X11/xorg.conf"
(==) ServerLayout "Default Layout"
(**) |-->Screen "Screen0" (0)
(**) | |-->Monitor "Monitor0"
(**) | |-->Device "Videocard1"

4. The X server requires the <Control> key to be held down along with the <Alt-Fn> key combination to
switch virtual terminals, but the text console does not.

756 Chapter 22 – The X Window System

(**) |-->Input Device "Mouse0"
(**) |-->Input Device "Keyboard0"

The first lines tell you the version number of the X server and the X11 protocol ver-
sion that it implements. Subsequent lines tell you that the server is using default val-
ues for the log file location, the configuration file location, and the active server lay-
out. The display and input devices from the config file are echoed in schematic form.

One common problem that shows up in the logs is difficulty with certain screen
resolutions, usually evidenced by those resolutions not working or the X server bail-
ing out with an error such as “Unable to validate any modes; falling back to the de-
fault mode.” If you have not specified a list of frequencies for your monitor, the X
server probes for them using Extended Display Identification Data (EDID). If your
monitor does not support EDID or if your monitor is turned off when X is started,
you need to put the frequency ranges for X to use in the Monitor section of the
configuration file.

Rounding error in the results obtained from an EDID probe can cause some resolu-
tions to be unavailable even though they should be supported by both your video
card and monitor. Log entries such as “No valid modes for 1280x1024; removing”
are evidence of this. The solution is to tell the X server to ignore EDID information
and use the frequencies you specify with the following lines to the Device section:

Option "IgnoreEDID" "true"
Option "UseEdidFreqs" "false"

As another example, suppose you forgot to define the mouse section properly. The
error would show up like this in the output:

(==) Using config file: "/etc/X11/xorg.conf"
Data incomplete in file /etc/X11/xorg.conf
 Undefined InputDevice "Mouse0" referenced by ServerLayout "Default

Layout".
(EE) Problem parsing the config file
(EE) Error parsing the config file
Fatal server error:
no screens found

Once X is up and running and you have logged in, you can run the xdpyinfo com-
mand to get more information about the X server’s configuration.5 xdpyinfo’s out-
put again tells you the name of the display and the X server version information. It
also tells you the color depths that are available, the extensions that have been loaded,
and the screens that have been defined, along with their dimensions and color con-
figurations.

xdpyinfo’s output can be parsed by a script (such as your ~/.xsession file) to deter-
mine the size of the active screen and to set up the desktop parameters appropriately.

5. We don’t recommend logging into X as root because this operation may create a bunch of default star-
tup files in root’s home directory, which is usually /. It’s also notably insecure. Instead, log in as a regu-
lar user and use sudo. Debian and Ubuntu enforce this discipline by default.

X
 W

in
d

o
w

s

22.5 A brief note on desktop environments 757

For debugging, xdpyinfo is most useful for determining that the X server is up and
listening to network queries, that it has configured the correct screen and resolution,
and that it is operating at the desired color bit depth. If this step works, you are ready
to start running X applications.

22.5 A BRIEF NOTE ON DESKTOP ENVIRONMENTS

The flexibility and simplicity of the X client/server model has, over the years, led to
an explosion of widget sets, window managers, file browsers, tool bar utilities, and
utility programs. Out of Project Athena at MIT, where X has its roots, came the Ath-
ena widgets and twm (Tom’s Window Manager, named for its creator Tom LaStrange;
it’s also called the Tab Window Manager). These rudimentary tools formed the de
facto standard for early X applications.

OpenLook, developed by Sun Microsystems and AT&T, was an alternative tool kit
that introduced oval buttons and pushpins to keep menus and dialog boxes visible.
Around the same time, the Open Software Foundation introduced the competing
Motif platform (later called CDE, or Common Desktop Environment), which was
eventually adopted by Sun as well. These tool kits’ three-dimensional chiseled look
was elegant for the time, and the prevalence of advanced UI elements such as sliders
and menus made them a reasonable choice for new software. However, both tool kits
were highly proprietary, and licensing fees for the development libraries and win-
dow manager made them inaccessible to the general public.

Along with open source operating systems such as Linux came open source desktop
environments. FVWM (the “F” Virtual Window Manager) was popular for Linux
because of its high degree of configurability and support for “virtual desktops” that
expanded the user’s effective working area beyond the confines of the low-resolution
displays available on most PCs at the time.6 There was no associated widget set,
however, so users were still faced with a multitude of programs, each with a rather
different look and feel.

As applications became more advanced and required progressively more advanced
user interface functionality, it became clear that a broader approach must be taken
to unify the user experience and provide better support to application developers.
From this need were born the two big players in modern Linux desktop environ-
ments: GNOME and KDE. Although some users have strong feelings regarding
which is the One True Way, both are relatively complete desktop managers. In fact,
just because you are running in one realm does not mean you cannot use applica-
tions from the other; just expect a different look and feel and a brief sense of discon-
tinuity in the universe.

The freedesktop.org project is dedicated to creating an environment that will allow
applications to be compatible with any desktop environment.

6. In fact, FVWM was so flexible that it could be configured to look like either twm or mwm (the Motif
Window Manager).

758 Chapter 22 – The X Window System

KDE

KDE, which stands for the K Desktop Environment, is written in C++ and built on
the Qt tool kit library. It is often preferred by users who enjoy eye candy, such as
transparent windows, shadows, and animated cursors. It looks nice, but it can be
slow on anything but a high-end PC. For users who spend a lot of time clicking
around in the desktop rather than running applications, the tradeoff between look
and feel may ultimately decide whether KDE is the appropriate choice.

KDE is often preferred by people transitioning from a Windows or Mac environ-
ment because of its pretty graphics. It’s also a favorite of technophiles who love to be
able to fully customize their environment. For others, KDE is simply too much to
deal with and GNOME is the simpler choice.

Applications written for KDE almost always contain a K somewhere in the name,
such as Konqueror (the web/file browser), Konsole (the terminal emulator), or
KWord (a word processor). The default window manager, KWin, supports the
freedesktop.org Window Manager Specification standard, configurable skins for
changing the overall look and feel, and many other features. The KOffice application
suite contains word processing, spreadsheet, and presentation utilities. KDE sports a
comprehensive set of development tools, including an integrated development envi-
ronment (IDE). With these foundations, KDE provides a powerful and consistent
user interface experience.

GNOME

GNOME is another desktop environment written in C and based on the GTK+ wid-
get set. Its underlying object communication model uses CORBA, the Common Ob-
ject Request Broker Architecture. The name GNOME was originally an acronym for
GNU Network Object Model Environment, but that derivation no longer really ap-
plies; these days, GNOME is just a name.

GNOME is less glitzy than KDE, is not as configurable, and is slightly less consistent
overall. However, it is noticeably cleaner, faster, and simpler. Most Linux distribu-
tions use GNOME as the default desktop environment.

Like KDE, GNOME has a rich application set. GNOME applications are usually iden-
tifiable by the presence of a G in their names. One exception is the standard GNOME
window manager, called Metacity (pronounced like “opacity”), which provides ba-
sic windowing functions and skins for a configurable look and feel. Following the
GNOME model, Metacity is designed to be lean and mean. If you want some of the
extra features you may be used to, like a virtual desktop or smart window placement,
you need the support of external applications such as brightside or devilspie. (This
is one area in which KDE has a leg up.)

Office applications include AbiWord for word processing, Gnumeric as a spread-
sheet, and one of the more impressive projects to come out of GNOME, The GIMP
for image processing. A file manager called Nautilus is also included, along with
Epiphany for web browsing. Like KDE, GNOME provides an extensive infrastructure

X
 W

in
d

o
w

s

22.7 Exercises 759

for application developers. Altogether, GNOME offers a powerful architecture for
application development in an easy-to-use desktop environment.

Which is better, GNOME or KDE?

Ask this question on any public forum and you will see the definition of “flame war.”
Because of the tendency for people to turn desktop preference into a personal cru-
sade, the following paragraphs may be some of the least opinionated in this book.

The best answer is to try both desktops and decide for yourself which best meets
your needs. Keep in mind that your friends, your users, and your manager may all
have different preferences for a desktop environment, and that is OK.

Now that freedesktop.org is creating standards to unify the desktop, the animosity
that has developed between the KDE and GNOME camps is progressing into a
healthy competition to create great software. Remember that your choice of desktop
environment does not dictate which applications you can run. No matter which
desktop you choose, you can select applications from the full complement of excel-
lent software made available by both of these (and other) open source projects.

22.6 RECOMMENDED READING

The X.Org home page, x.org, includes information on upcoming releases as well as
links to the X.Org wiki, mailing lists, and downloads.

The man pages for Xserver and Xorg cover generic X server options and Xorg-
specific command-line options. They also include a general overview of X server
operation. The xorg.conf man page covers the config file and describes its various
sections in detail. This man page also lists video card drivers in its REFERENCES
section. Look up your video card here to learn the name of the driver, then read the
driver’s own man page to learn about driver-specific options.

22.7 EXERCISES

E22.1 Use SSH to run an X program over the network. Use ssh -v to verify that
X forwarding is set up correctly. What is the DISPLAY variable set to
after you log in? List the cookies by running xauth and verify that magic
cookie authentication is active for that display.

E22.2 Write a shell command line or script to parse the output of xdpyinfo
and print the current screen resolution in the format XxY, e.g.,
1024 768.

Exercises are continued on the next page.

760 Chapter 22 – The X Window System

E22.3 Examine the Xorg log file (/var/log/Xorg.0.log) and determine as
many of the following items as possible:

a) What type of video card is present and which driver does it use?
b) How much video memory does the card have?
c) Was EDID used to probe monitor settings? How do you know?
d) What modes (resolutions) are supported?
e) Is DPMS enabled?
f) What does the server think the physical screen dimensions are?
g) What device file is used for the mouse?

E22.4 What flag disables nonlocal TCP connections to the server? Explain why
this option is useful.

761

P
ri

n
ti

n
g

23 Printing

Printer configuration is annoying and difficult. Users take printing for granted, but
the administrative contortions required for deliver of perfectly rendered pages to a
printer a foot away from the user can be challenging.

Two decades ago, the most common printers were ASCII line printers. Laser printers
were expensive and rare. High-resolution output devices required custom driver
software and formatting programs.

Today, instead of connecting to a single computer through a serial or parallel port,
laser printers often connect to a TCP/IP network over an Ethernet or wireless link.
Laser printers have largely lost the low-end market to inkjet printers. Color printers
used to be a luxury, but like color photography and color monitors, they have be-
come common. Finding a black-and-white printer will soon be as hard as finding
black-and-white film.

On the desktop and in the small office market, special-purpose printers, scanners,
copiers, and fax machines are being pushed aside by multifunction devices that do
all these jobs. Sometimes, these devices can even read files from your digital cam-
era’s memory card.

With so many changes in technology, you’d expect the Linux printing system to be
flexible, and indeed it is. However, this flexibility is a relatively recent achievement.
Until a few years ago, most Linux printing systems were based on software developed
for the line printers of yore. These systems, hacked and overloaded in an attempt to
keep up with evolving technologies, were never really up to the job of supporting
modern printers on modern networks. Fortunately, CUPS, the Common UNIX

Printing

762 Chapter 23 – Printing

Printing System, has arrived on the scene to address many of the older systems’
weaknesses.

You can find CUPS on most modern UNIX and Linux systems, including Mac OS X.
A few older printing systems remain in use (such as PDQ, pdq.sourceforge.net, and
LPRng, www.lprng.com), but early printing systems such as System V’s printing sys-
tem, Palladium, rlpr, PLP, GNUlpr, and PPR are all pretty much dead.

In this chapter, we focus on CUPS as the current de facto standard. We start with a
general discussion of printers and printing terminology. We then describe Linux
printing systems in general and outline the architecture of CUPS. We move on to the
specifics of printer configuration and administration, then conclude with a brief
guide to print-system debugging, a tour of optional printing-related software, and
some general administration hints.

23.1 PRINTERS ARE COMPLICATED

Users lump printers in with other peripherals such as monitors and speakers, but
that viewpoint doesn’t give printers credit for their complexity. Once upon a time,
the most powerful computer Apple made was the Apple LaserWriter. Today, your
desktop machine is probably more powerful than your printer, but the printer is still
a computer. It has a CPU, memory, an operating system, and perhaps even a disk. If
it’s a network printer, it has its own IP address and TCP/IP implementation.

If you have a modern network printer around, enter its network address into your
web browser (e.g., 192.168.0.9). Chances are that the printer will return some web
pages that let you administer the printer hardware; the printer is running its own
web server.

Since system administrators are security minded, you may already be thinking,
“Does that mean a printer could be compromised or hit by a denial of service at-
tack?” You bet. See the section on security that starts on page 787.

What operating system is your printer running? What? You don’t know? Not surpris-
ing. You probably can’t find out, either, without some digging—and perhaps not
even then. The operating system varies from vendor to vendor and sometimes even
from model to model. Mid-range and higher-end printers may even run some de-
rivative of UNIX or Linux.1

The OS confusion is just the beginning. Printers also handle a variety of network
protocols and accept jobs in several different printer-specific page-description and
document-description languages.

If you’re administering a larger facility, you may need to support several models of
printers from several different manufacturers. The printing software on your com-
puters must be prepared to communicate with varied (and sometimes unknown)
hardware and to use an array of protocols.

1. Hackers have ported Linux to iPods and Xboxes; we’re waiting to see who’s first to port it to an HP LaserJet.

www.lprng.com

P
ri

n
ti

n
g

23.2 Printer languages 763

23.2 PRINTER LANGUAGES

A print job is really a computer program written in a specialized programming lan-
guage. These programming languages are known collectively as page description
languages, or PDLs.

Pages encoded in a PDL can be much smaller and faster to transmit than the equiv-
alent raw images. PDL descriptions can also be device- and resolution-independent.

The best-known PDLs today are PostScript, PCL5, PCL6 (also called PCL/XL or
“pxl”), and PDF. Many printers can accept input in more than one language. We
discuss each of these languages briefly in the sections below.

Printers have to interpret jobs in these languages and transform them into some
form of bitmap representation that makes sense to the actual imaging hardware.
Therefore, printers contain language interpreters. Just as with C or Java, these lan-
guages exist in multiple versions, and the versions make a difference. Most PostScript
printers understand PostScript Level 3, but if you send a Level 3 program to a printer
that only understands Level 2, the printer is likely to be confused. Would you try to
compile a FORTRAN 90 program with a FORTRAN 77 compiler? Certainly not.

Rasterizing the PDL description (or anything else, such as image files) into bitmap
page images is called “raster image processing,” and a program that rasterizes is
called a RIP. “To rip” is sometimes used informally as a verb.

It’s possible to rip print jobs in your computer and view the images on your display.
We discuss host-based interpreters that do this, such as Ghostscript, on page 785.
You could in theory use your computer to rip jobs for printing and ship the com-
pleted (and much larger) bitmaps off to be printed by a not-very-smart print device.
In fact, this is the way that many GDI (Windows) printers work, and it’s somewhat
supported under Linux as well.

PostScript

PostScript is the most common PDL found on Linux systems. It was originally de-
veloped by Adobe Systems, and many PostScript printers still use an interpreter li-
censed from Adobe. Almost all page layout programs can generate PostScript, and
some work with PostScript exclusively.

PostScript is a full-fledged programming language. You can read most PostScript
programs with a text editor or with less. The programs contain a multitude of pa-
rentheses, curly braces, and slashes and often start with the characters %!PS. Al-
though these starting characters are not required by the language itself, PostScript
interpreters and other printing software often look for them when trying to recog-
nize and classify print jobs.

PCL

One alternative to PostScript is Hewlett-Packard’s Printer Control Language. It’s
understood by HP printers as well as many others; some printers speak only PCL.

764 Chapter 23 – Printing

Unlike PostScript, which is a Turing-complete, generalized programming language,
PCL just tells printers how to print pages. PCL jobs are binary, not human readable,
and usually are much shorter than the equivalent PostScript. Linux applications sel-
dom generate PCL directly, but filters can convert PostScript to PCL.

Unlike PostScript, every version of PCL is a little different. The differences are minor
but significant enough to be annoying. Jobs that print correctly on a LaserJet 5si can
print slightly wrong on a LaserJet 5500, and vice versa. It’s not just this pair of mod-
els, either; every PCL printer has a PCL dialect with custom commands that take
advantage of that printer’s features.

For example, if you tell your computer you have a LaserJet 4500 when you actually
have a LaserJet 4550, it may generate some PCL commands that the 4550 ignores or
misinterprets. Also, if you have a stored PCL print job—say, a blank purchase re-
quest form—and you replace the printer for which it was generated with something
newer, you may have to regenerate the job.

Worse still, HP has defined two almost completely unrelated language families
called PCL: PCL5 (5C means color and 5E means black and white) and PCL6 (also
called PCL/XL). Nowadays, it’s normal for new HP printers to have language inter-
preters for both.

PCL4 is an archaic flavor of PCL5. Treat a PCL4 (or earlier) printer as you would a
Perl 4 interpreter: replace it with something newer.

PDF

Adobe’s Portable Document Format is produced by Adobe Acrobat and many other
desktop publishing tools. OpenOffice, for example, can export documents as PDF.

PDF documents are platform independent, and PDF is routinely used to exchange
documents electronically for both on-line and off-line (printed) use. The final text
of this book was delivered to the book printer as a PDF file.

PDF is a document description language, not just a page description language. It
describes not only individual pages, but also the overall structure of a document:
which pages belong to which chapters, which text columns flow to other text col-
umns, etc. It also accommodates a variety of multimedia features for on-screen use.

Some printers interpret PDF directly. If yours doesn’t, a host of PDF viewers and
translators (including Ghostview, xpdf, kpdf, Evince, and Acrobat Reader) can con-
vert documents into something else (such as PostScript) that is more widely under-
stood. Your print system may even hide the conversion requirement from you and
automatically convert PDF documents before sending them to the printer.

XHTML

On the opposite end of the spectrum, looming just over the horizon, is XHTML-
Print. A printer that receives an XHTML-Print data stream (describing, for example,
a web page) produces a good-faith representation of the job, but different printers

P
ri

n
ti

n
g

23.2 Printer languages 765

may produce different representations, just as different browsers may represent the
same web page in different ways.

Why would users want that? Imagine that you’re a VP of Marketing browsing the
web on your cell phone and that you see a web page relevant to a presentation you’re
about to give. You walk over to a nearby Bluetooth-enabled printer and send it the
URL from your phone. The printer does the rest: it downloads the page from the
web, renders it, and prints copies. You take the copies from the output tray and head
to your presentation.

PJL

PJL, Hewlett-Packard’s Printer Job Language, is not really a PDL. It’s a metalanguage
that describes printer jobs. We describe it here because you’ll see it mentioned in
printer descriptions.

PJL is a job control language that specifies things such as a job’s PDL, whether the
job is duplex or simplex, what size paper to use, and so on. The PJL commands come
at the start of the job, and the PJL statements all start with @PJL:

@PJL SET COPIES=3
@PJL COMMENT FOO BAR MUMBLE
@PJL SET DUPLEX=ON
@PJL SET PAGEPROTECT=OFF
@PJL ENTER LANGUAGE=PCL

PJL is widely understood (or deliberately ignored) by non-HP printers, but if you’re
having trouble printing something that contains PJL on a non-HP printer, try re-
moving the PJL with a text editor and resubmitting the job.

Printer drivers and their handling of PDLs

The software that converts a file into something a particular printer understands is
the “printer driver.” To print PCL5 on a LaserJet 5500, you need a LaserJet 5500
PCL5 driver.

What if a printer supports only a subset of the languages you need to process? If you
download a PostScript file from the web and your printer only understands PCL5E,
what do you do? If your printer doesn’t interpret PDF directly, how do you print a
PDF file?

One option is to convert the file by hand. Linux boxes come with plenty of conver-
sion utilities; there’s almost always some way to turn what you have into something
your printers can print. Browsers can transform HTML (or XHTML) pages into
PostScript. OpenOffice can turn MS Word files into PDF. Ghostscript can turn PDF
into PostScript and PostScript into almost anything, including PCL.

An easier approach is to let your printing system do the work for you. Many systems
have some built-in knowledge about which conversions need to be done and can set
up the conversions for you automatically.

766 Chapter 23 – Printing

If you need to determine what PDL a file uses and you can’t tell from the filename
(e.g., foo.pdf), the file command can tell you (unless the file starts with a chunk of
PJL instructions, in which case file just says “HP Printer Job Language data”).

Save a few print jobs to files instead of shipping them to a printer, and you can see
what a program in one of these languages looks like. A minute or two perusing files
of each of these types in your text editor will give you a good feel for how different
they are. Don’t cat them directly to your screen, since only PostScript is ASCII.

PostScript:

%!PS-Adobe-3.0
%%BoundingBox: 0 0 612 792
%%Pages: 1
% ...
% Draw a line around the polygons...
pop pop pop dup 0 setgray 0 0 moveto dup 0 lineto 0.707106781 mul dup

lineto closepath stroke

PDF:

%PDF-1.3
%Ã¢Ã£ÃÃ“
 81 0 obj
<<
/Linearized 1
/O 83
/H [915 494]
/T 125075
>>
endobj
 xref
81 24
0000000016 00000 n
 Ãˆ<8f>
^P^@Ã¤Ã‘<9e>
endstream
endobj

PCL5:

^[E^[&l1o0o1t0l6D^[&l1X^[*r0F^[*v0n1O^[*p4300X^[%1BDT~,1TR0TD1SP1FT10,50
CF3,1LB.~;^[%1A^[*c100G^[*v2T^[&a0P^[*p0X^[*p0Y^[(10U^[(s1p12vsb4148T^[&l0
E^[*p0Y^[*ct7920Y^[(10U^[(s1p12vsb4101T^[&a0P^[&l0o66f0E^[9^[&a0P^[*p0X^[*
p0Y^[*p474Y^[*p141X^[(10U^[(10U^[(s1p12vsb4101T^[*p402Y^[*p186X^[*v0O^[*c9
00a4b100g2P^[*v1O^[*p250Y^[*v0O^[*c900a4b100g2P^[*v1O^[*v0O^[*c4a156b100g2
P^[*v1O^[*p251Y^[*p187X^[*v0O^[*c899a154b10g2P^[*v1O^[*p346Y^[*p256X

PCL/XL:

Ã‘X^BX^BÃ¸<89>Ã^@Ã¸<86>Ã^CÃ¸<8f>AÃ^@Ã¸<88>Ã^AÃ¸<82>HÃ^@Ã¸(Ã^@Ã¸%Ã
Ã¸cÃˆÃ^P^@TimesNewRmnBdÃ¸Â¨Ã…UUÃ©BÃ¸Â¦Ãu^BÃ¸Âªo<85>Ã“Ã›^CA^BÃ¸Lk
Ãƒ^@^@Ã¸Â¡dÃˆÃ:^@

P
ri

n
ti

n
g

23.3 CUPS architecture 767

23.3 CUPS ARCHITECTURE

CUPS has a client/server architecture. A CUPS server is a spooler that maintains
print queues for clients.

CUPS clients can be applications with command line interfaces such as lpr and lpq,
or they can have graphical user interfaces such as kprinter. Other CUPS servers can
also act as clients from the perspective of a given server.

Consider the simplest possible configuration: a CUPS server on a single machine,
connected to a single printer, with a single print queue. The next few sections briefly
survey the commands and processes involved in a few common printing tasks.

Document printing

Here’s how you might print the files foo.pdf and /tmp/testprint.pdf:

$ lpr foo.pdf /tmp/testprint.ps

The client transmits copies of the files to the CUPS server, which stores them in the
print queue. CUPS processes each file in turn as the printer becomes ready.

CUPS examines both the document and the printer’s PostScript Printer Description
(PPD) file to see what needs to be done to get the document to print properly. (As we
explain later, PPDs are used even for non-PostScript printers.)

To prepare a job for printing on a specific printer, CUPS passes it through a pipeline
of filters. These filters can perform a variety of functions. For example, a filter could
reformat the job so that two reduced-size page images print on each physical page
(“2-up”) or transform the job from one PDL to another. A filter can also perform
printer-specific processing such as printer initialization. A filter can even perform
rasterization on behalf of printers that do not include their own RIPs.

The final stage of the print pipeline is a back end that sends the job from the host to
the printer through an appropriate protocol such as USB. The back end also com-
municates status information back to the CUPS server. To see the available back
ends, try the command

$ locate backend | grep -i cups

After transmitting the print job, the CUPS daemon goes back to processing its
queues and handling requests from clients. The printer goes to work trying to print
the job it was shipped.

Print queue viewing and manipulation

The lpq command requests job status information from the CUPS server and for-
mats it for display.

lpstat -t reports a good summary of the print server’s overall status.

768 Chapter 23 – Printing

CUPS clients can ask the server to suspend, cancel, or reprioritize jobs. They can
also move jobs from one queue to another. Most changes require jobs to be identi-
fied by their job number, which is reported by lpq.

For example, to remove a print job, just run lprm jobid.

Multiple printers

If more than one printer is connected to a machine, CUPS maintains a separate
queue for each printer.

Command-line clients accept an option (typically -P printer or -p printer) to specify
the printer queue. You can also set a default printer for yourself by setting the
PRINTER environment variable

$ export PRINTER=printer_name

or by telling CUPS to use a particular default for your account.

$ lpoptions -dprinter_name

lpoptions normally sets your personal defaults, which are stored in ~/.lpoptions.
When run as root, it sets system-wide defaults in /etc/cups/lpoptions. lpoptions -l
lists the current options.

Printer instances

If you have only one printer but want to use it in several ways—say, both for quick
drafts and for final production work—CUPS lets you set up different “printer in-
stances” for these different uses.

For example, if you already have a printer named Phaser_6120, the command

$ lpoptions -p Phaser_6120/2up -o number-up=2 -o job-sheets=standard

creates an instance named Phaser_6120/2up that performs 2-up printing and adds
banner pages. The command

$ lpr -P Phaser_6120/2up biglisting.ps

then prints the PostScript file biglisting.ps as a 2-up job with banners.

Network printing

From the CUPS perspective, a network of many machines isn’t very different from
an isolated machine. Every computer runs a CUPS daemon (cupsd), and all the
CUPS daemons communicate with one another.

You configure a CUPS daemon to accept print jobs from remote systems by editing
the /etc/cups/cupsd.conf file (see Network print server setup on page 773). CUPS
servers that are set up this way broadcast information about the printers they serve
every 30 seconds by default. As a result, computers on the local network automati-
cally learn about the printers available to them.

P
ri

n
ti

n
g

23.3 CUPS architecture 769

Making printers available to multiple networks or subnets is a little trickier since
broadcast packets do not cross subnet boundaries. The usual solution is to designate
a slave server on each subnet that polls the other subnets’ servers for information
and then relays that information to machines on its local subnet.

For example, suppose the print servers allie (192.168.1.5) and jj (192.168.2.14) live
on different subnets and that we want both of them to be accessible to users on a
third subnet, 192.168.3. To make this work, we simply designate a slave server (say,
copeland, 192.168.3.10) and add these lines to its cupsd.conf file:

BrowsePoll allie
BrowsePoll jj
BrowseRelay 127.0.0.1 192.168.3.255

The first two lines tell the slave’s cupsd to poll the cupsds on allie and jj for informa-
tion about the printers they serve. The third line tells copeland to relay all the infor-
mation it learns to its own subnet.

Need a more sophisticated setup? Multiple queues for one printer, each with differ-
ent defaults? A single server performing load balancing by parceling out jobs to sev-
eral printers? Multiple servers each handling interchangeable instances of the same
kind of printer? LPD or Windows clients? There’s too much variation to go through
here, but CUPS handles all of these situations, and the CUPS documentation walks
you through the details.

The CUPS underlying protocol: HTTP

HTTP is the underlying protocol for all interactions among CUPS servers and their
clients. CUPS servers listen for connections on port 631. Clients submit jobs with
the HTTP POST operation. Status requests are implemented through HTTP GET.
The CUPS configuration files also look remarkably like Apache configuration files.

Some history may help you understand how this came about.

The earliest commercial UNIX application was document production. Key software
included text editors, markup languages (nroff/troff), and printing software.

Printers were primitive, and so were the spoolers. This was true for non-UNIX sys-
tems, too, though the non-UNIX systems were proprietary: IBM systems knew how
to drive IBM printers, Apple computers knew how to drive Apple printers, and so
on. The computer you were working on was often assumed (correctly) to be con-
nected directly to the printer. Printer configuration consisted of answering ques-
tions such as “Serial or parallel?”

When network printers became available, problems multiplied. Early network
printing systems were idiosyncratic and used an assortment of protocols for printer-
to-spooler communication, client-to-spooler communication, and network traffic
negotiation.

770 Chapter 23 – Printing

As the complexity of the world increased, several attempts were made to create uni-
fied standards, but none achieved universal acceptance. The protocols in use got
older and creakier. New printer features such as duplexing also spurred a lot of spe-
cial-case hacking.

Gritting its teeth, the IETF’s Printer Working Group created the Internet Printing
Protocol (IPP), which is built on top of HTTP. Not only did this choice structure
interactions in terms of simple GET and POST requests, but it also allowed printing
to take advantage of standard, widely used technologies for authentication, access
control, and encryption.

Michael Sweet and Andrew Senft of Easy Software Products (ESP) brought IPP to
UNIX in the form of the CUPS implementation. Today, CUPS is the most complete
implementation of IPP on the planet.

Although ESP has its own market niche and products, CUPS is an open source
project and is freely redistributable. Most Linux and UNIX systems today use CUPS
as their default printing system.

A CUPS server is a web server, albeit one that communicates on port 631 instead of
port 80. You can verify this by contacting your local CUPS server through a web
browser (localhost:631). You’ll see that the CUPS server serves up a GUI interface to
its full functionality. (You can also use SSL on port 433 for secure communication
with printers.) CUPS speaks IPP to web browsers, printers, GUI and CLI tools, and
other CUPS servers.

PPD files

When you invoke kprinter to print book.ps on the color printer Pollux, kprinter
may come back and ask you what size paper you want to print on. But wait—how
does CUPS know to tell its client, kprinter, that Pollux can print on A4 paper? How
does CUPS know Pollux can handle PostScript, and what should CUPS do if it can’t?
Where does CUPS find the information that Pollux is a color printer?

All this information is kept in a PostScript Printer Description (PPD) file that de-
scribes the attributes and capabilities of a PostScript printer. The CUPS daemon
reads the PPDs for its printers and passes information about them to clients and
filters as needed.

PPDs were first developed for the Mac world, but they were quickly adopted by Win-
dows software. Each new printer comes with a PPD from the vendor. Mac and Win-
dows printer drivers use the PPD file to figure out how to send PostScript jobs to the
printer. For example, it makes no sense to ask a single-sided black-and-white printer
sold in America to print a duplex, color document on European B4-sized paper.

Older UNIX and Linux printing systems made no use of PPDs. Users either learned
how to massage their PostScript, or they lived with what they got as default output.
By contrast, CUPS was built from the ground up to take advantage of this rich source
of information. In fact, CUPS depends on PPDs.

P
ri

n
ti

n
g

23.3 CUPS architecture 771

Finding PPD files can take a bit of sleuthing. If a PPD is on your machine, it’s proba-
bly in /etc/cups/ppd or /usr/share/cups/model. The command locate .ppd helps
track them down. For network printers, the PPDs are probably stored remotely;
CUPS clients get the PPD information from the relevant CUPS server.

PPD files are just text files. It’s informative to take a look at one and see the type of
information that it contains.

PostScript printers all have vendor-supplied PPDs, which you can get from the in-
stallation disk or the vendor’s web site. PPDs from the library distributed with CUPS
are kept in /usr/share/cups/model; CUPS copies PPDs that are currently in use into
/etc/cups/ppd.

CUPS also uses PPDs to describe printers that lack a PostScript interpreter. An extra
field does the trick. Look:

$ grep cupsFilter /usr/share/cups/model/pxlmono.ppd
*cupsFilter: "application/vnd.cups-postscript 0 pstopxl"

You can diff a couple of closely related PPDs (try pxlmono.ppd and pxlcolor.ppd)
to see exactly how two printer types differ.

If your printer vendor doesn’t supply a PPD file—probably because the printer
doesn’t have a PostScript interpreter and the vendor doesn’t care about anything but
Windows—go to linuxprinting.org and hunt through the Foomatic database for
more information. Your printer may also be supported by the Gutenprint project
(gutenprint.sourceforge.net, formerly known as Gimp-Print). If you have a choice of
PPDs from these sources and your users want every last drop of quality, try each
option and see which output looks best.

If a PPD file is nowhere to be found, then

• You should have consulted linuxprinting.org before you got the printer.

• There may well be a generic PPD file that will let you print something, even
if it doesn’t take advantage of all your printer’s features.

• If you enhance a generic PPD file to make it work better with your printer,
you should contribute your new PPD to the Foomatic database.

Filters

Rather than using a specialized printing tool for every printer, CUPS uses a chain of
filters to convert a file you print into something your printer understands.

The CUPS filter scheme is elegant. When you give CUPS a file to print, it figures out
the file’s MIME type, the MIME types understood by your printer, and the filters it
needs to convert the former to one of the latter.

CUPS uses rules in /etc/cups/mime.types to suss out the incoming data type. For
example, the rule

application/pdf pdf string (0,%PDF)

772 Chapter 23 – Printing

means “If the file has a .pdf extension or starts with the string %PDF, then its MIME
type is application/pdf.”

CUPS figures out how to convert one data type to another by looking up rules in the
file /etc/cups/mime.convs. For example,

application/pdf application/postscript 33 pdftops

means “To convert an application/pdf file to an application/postscript file, run the
filter pdftops.” The number 33 is the cost of the conversion.

If you need to write your own filters (improbable), do not modify the distributed
files. Create an additional set of files with its own basename and put it into /etc/cups
where CUPS can find the files. CUPS reads all files with the suffixes .types and
.convs, not just mime.types and mime.convs.

The last components in the CUPS pipeline are the filters that talk directly to the
printer. In the PPD of a non-PostScript printer you may see lines such as

*cupsFilter: "application/vnd.cups-postscript 0 foomatic-rip"

or even

*cupsFilter: "application/vnd.cups-postscript foomatic-rip"

The quoted string has the same format as a line in mime.convs, but there’s only one
MIME type instead of two. This line advertises that the foomatic-rip filter converts
data of type application/vnd.cups-postscript to the printer’s native data format. The
cost is zero (or omitted) because there’s only one way to do this step, so why pretend
there’s a cost? (Gutenprint PPDs for non-PostScript printers are slightly different.)

Given a document and a target printer, CUPS uses the types files to figure out the
document type. It then consults the PPD to figure out what data type the printer
requires. It then uses the .convs files to deduce all the filter chains that could convert
one to the other, and what each chain would cost. Finally, it picks the lowest-cost
chain and passes the document through those filters.

The final filter in the chain passes the printable format to a back end, which commu-
nicates this data to the printer by using whatever protocol the printer understands.

To find the filters available on your system, try locate pstops. (pstops is a popular
filter that massages PostScript jobs in various ways, such as adding PostScript com-
mands to set the number of copies. The other filters won’t be far away.)

You can ask CUPS for a list of the available back ends by running lpinfo -v. If your
system lacks a back end for the network protocol you need, it may be available from
the web or from the vendor.

23.4 CUPS SERVER ADMINISTRATION

cupsd starts at boot time and runs continuously. All our example Linux distribu-
tions are set up this way by default.

P
ri

n
ti

n
g

23.4 CUPS server administration 773

The CUPS configuration file is called cupsd.conf; it’s usually found in /etc/cups.
The file format is similar to that of the Apache configuration file. If you’re comfort-
able with one of these files, you’ll be comfortable with the other.

After you make changes to the config file, run /etc/init.d/cups restart to restart the
daemon and make your changes take effect. (Debian and Ubuntu distributions use
/etc/init.d/cupsys restart instead.)

The default config file is well commented. The comments and the cupsd.conf man
page are good enough that we won’t belabor the same information here.

You can edit the CUPS configuration file by hand, or if you have the KDE desktop
environment installed, you configure the system through the KDE Print Manager,
which is accessible through the KDE control center. The KDEPrint Handbook docu-
ments the process in detail (see the Print Server Configuration chapter) and is a good
reference for CUPS variables, their meanings, and their default values.

You can directly run the CUPS-specific portion of the KDE print manager with the
cupsdconf command. This command is included in most systems’ kdelibs pack-
ages; it is not necessary to install all of KDE to use it.

We don’t have production experience with the KDE GUI, but in our testing it com-
plained about not understanding certain options found in the default cupsd.conf
files on all of our reference systems. On SUSE it refused to run at all, apparently
because the line

AuthType BasicDigest

in cupsd.conf caused it to look for the nonexistent file /etc/passwd.md5. (Other
systems use AuthType Basic as a default.) Your mileage may vary.

Network print server setup

To make CUPS accept print jobs from the network, make two modifications to the
cupsd.conf file. First, change

<Location />
Order Deny,Allow
Deny From All
Allow From 127.0.0.1
</Location>

to

<Location />
Order Deny,Allow
Deny From All
Allow From 127.0.0.1
Allow From netaddress
</Location>

774 Chapter 23 – Printing

Replace netaddress with the IP address of the network from which to accept print
jobs (e.g., 192.168.0.0). Then look for the BrowseAddress keyword and set it to the
broadcast address on that network plus the CUPS port:

BrowseAddress 192.168.0.255:631

These two steps tell the server to accept requests from any machine on the network
and to broadcast what it knows about the printers it’s serving to every CUPS dae-
mon on the network.

That’s it! Once you restart the CUPS daemon, it comes back as a server.

Printer autoconfiguration

You can actually use CUPS without a printer (for example, to convert files to PDF or
fax format), but its typical role is to manage real printers. In this section we review
the ways in which you can deal with the printers themselves.

In some cases, adding a printer is trivial. CUPS tries to autodetect USB printers
when they’re plugged in and to figure out what to do with them.

Printer manufacturers typically supply installation software that does most of the
setup work for you on Windows and even Mac OS X (which also uses CUPS). How-
ever, you can’t assume that vendors will handle installation for you on Linux.

Even if you have to do the work yourself, adding a printer often consists of nothing
more than plugging in the hardware, connecting to the CUPS web interface at

localhost:631/admin

and answering a few questions. KDE and GNOME come with their own printer con-
figuration widgets, which you may prefer to the CUPS interface.

If someone else adds a printer and one or more CUPS servers running on the net-
work know about it, your CUPS server will be notified of its existence. You don’t
need to explicitly add the printer to the local inventory or copy PPDs to your ma-
chine. It’s all done with mirrors.

Network printer configuration

Network printers need some configuration of their own just to be citizens of the
TCP/IP network. In particular, they need to know their IP address and netmask.
That information is usually conveyed to them in one of two ways.

Most modern printers can get this information across the network from a BOOTP or
DHCP server. This method works well in environments that have many homoge-
neous printers. See page 311 for more information about DHCP.

Alternatively, you can set a static IP address from the printer’s console, which usu-
ally consists of a set of buttons on the printer’s front panel and a one-line display.
Fumble around with the menus until you discover where to set the IP address. (If
there is a menu option to print the menus, use it and save the printed version.)

P
ri

n
ti

n
g

23.4 CUPS server administration 775

A few printers give you access to a virtual console through a serial port. It’s a nice
idea, but the total amount of work is probably similar to using the front-panel but-
tons. The principles are the same.

If all else fails, many printers come with manuals.

Once configured, network printers usually have a “web console” accessible from a
browser. However, printers need to have an IP address before you can get to them
this way, so there’s a bootstrapping issue.

After your printer is on the network and you can ping it, make sure to secure it as
described in the section Secure your printers on page 787.

Printer configuration examples

As examples, let’s add the parallel printer groucho and the network printer fezmo
from the command line.

lpadmin -p groucho -E -v parallel:/dev/lp0 -m pxlcolor.ppd
lpadmin -p fezmo -E -v socket://192.168.0.12 -m laserjet.ppd

As you can see, groucho is attached to port /dev/lp0, and fezmo is at IP address
192.168.0.12. We specify each device in the form of a universal resource indicator
(URI), and choose a PPD from the ones in /usr/share/cups/model.

As long as the local cupsd has been configured as a network server, it immediately
makes the new printers available to other clients on the network.

Instead of using the command-line interface, you can use the web-based configura-
tion tools presented by the CUPS server if you prefer. That’s true of all the adminis-
trative tasks in this section.

CUPS accepts a wide variety of URIs for printers. Here are a few more examples:

ipp://zoe.canary.com/ipp
lpd://riley.canary.com/ps
serial://dev/ttyS0?baud=9600+parity=even+bits=7
socket://gillian.canary.com:9100
usb://XEROX/Phaser%206120?serial=YGG210547

Some URIs take options (e.g., serial) and others don’t. lpinfo -v lists the devices
your system can see and the types of URIs that CUPS understands.

Printer class setup

A “class” is a set of printers that share a queue. Jobs in the queue can print on which-
ever printer becomes available first. The command below creates the class haemer
and includes three printers in it: riley, gilly, and zoe.

lpadmin -p riley -c haemer
lpadmin -p gilly -c haemer
lpadmin -p zoe -c haemer

776 Chapter 23 – Printing

Note that there is no explicit step to create the class; the class exists as long as print-
ers are assigned to it. In fact, CUPS is even smarter than that: if multiple printers on
a network are all given the same name, CUPS treats them as an implicit class and
load-shares jobs among them automatically.

Service shutoff

If you want to remove a printer or class, that’s easily done with lpadmin -x.

lpadmin -x fezmo
lpadmin -x haemer

But what if that you just want to disable a printer temporarily for service instead of
removing it? You can block the print queue at either end. If you disable the tail (the
exit or printer side) of the queue, users can still submit jobs, but the jobs will never
print. If you disable the head (entrance) of the queue, jobs that are already in the
queue will print, but the queue will reject attempts to submit additional jobs.

The disable and enable commands control the exit side of the queue, and the reject
and accept commands control the submission side. For example:

disable groucho
reject corbet

Which to use? It’s a bad idea to accept print jobs that have no hope of being printed
in the foreseeable future, so use reject for extended downtime. For brief interrup-
tions that should be invisible to users (e.g., clearing a paper jam), use disable.

Administrators occasionally ask for a mnemonic to help them remember which
commands control which end of the queue. Consider: if CUPS “rejects” a job, that
means you can’t “inject” it. Another way to keep the commands straight is to re-
member that accepting and rejecting are things you can do to print jobs, whereas
disabling and enabling are things you can do to printers. It doesn’t make any sense
to “accept” a printer or a print queue.

A word of warning: in addition to being a CUPS command, enable is also a bash
built-in command. bash assumes you mean its own enable unless you specify the
full pathname of the command, /usr/bin/enable. As it happens, bash’s version of
enable enables and disables bash built-ins, so you can use it to disable itself: 2

$ enable -n enable

CUPS itself sometimes temporarily disables a printer that it’s having trouble with
(e.g., if someone has dislodged a cable). Once you fix the problem, remember to
reenable the queue. If you forget, lpstat will tell you. (For a more complete discus-
sion of this issue and an alternative approach, see www.linuxprinting.org/beh.html).

2. For bonus points, figure out how to reenable bash’s built-in enable command now that you have
blocked access to it. enable enable won’t work!

www.linuxprinting.org/beh.html

P
ri

n
ti

n
g

23.4 CUPS server administration 777

Other configuration tasks

Today’s printers are heavily configurable, and CUPS lets you tweak a wide variety of
features through its web interface and through the lpadmin and lpoptions com-
mands. As a rule of thumb, lpadmin is for system-wide tasks and lpoptions is for
per-user tasks.

lpadmin lets you restrict access in more fine-grained ways than disable and reject
do. For example, you can set up printing quotas and specify which users can print to
which printers.

Paper sizes

In the United States and Canada, the most common paper size is called letter and is
8.5 11 inches. Some Linux distributions (e.g., Knoppix and SUSE) are produced in
Europe, where they don’t even know what inches are, or in England, where they do
know but don’t use them to measure paper. In these places, and in Japan, the com-
mon paper type is called A4, and printers all come with A4 trays. Ergo, some distri-
butions’ printing utilities produce A4 page images by default.

A4 paper makes sense because it’s irrational—mathematically, that is. The ratio of
length to width of A4 paper is . If you slice a piece of A4 paper in half horizontally,
you get two half-size pieces of paper that have the same length-to-width ratio. This
paper size is called A5. Cut A5 in half and you get two sheets of A6. In the other
direction, A3 is twice the area of A4, but the same shape, and so on.

In other words, you can manufacture A0 paper, which has an area of 1 square meter,
and use a paper cutter to create the other sizes you need. The only common U.S.
paper size you can play this kind of game with is ledger (11 17 inches, also known
as tabloid), which you can slice in half to get two sheets of letter.

There are also an ISO B series and C series that preserve the 1: aspect ratio but
have different base areas. B0 is 1 m in height and C0 paper has an area of 2¼ m2.
Engineers will see immediately that the sides of Bn paper are the geometric means of
An-1 and An sides, while Cn paper sides are the geometric means of An and Bn.

What does all this mean? Bn has the same look as An but is bigger, and Cn is inter-
mediate between the two. A report on A4 paper fits beautifully in a C4 manila folder.
Folding an A4 letter down the middle to make it A5 lets it slide into a C5 envelope.
Fold it again and it slides just as nicely into a C6 envelope.

To confuse things slightly, Japan has its own B series that’s slightly different. Al-
though it has the same aspect ratio as the ISO papers, Japanese B4 paper size is the
arithmetic mean of A3 and A4, which makes it slightly larger than ISO B4 paper.
There is no Japanese C series.

Just as the ISO system makes it easy to copy two pages of a B5 textbook onto a single
B4 handout, it makes all types of n-up printing (printing several reduced-sized page
images on the same page) trivial. European copiers often have buttons that reduce
or expand by a factor of .

2

2

2

778 Chapter 23 – Printing

If your system has the paperconf command installed, you can use the command to
print the dimensions of various named papers in inches, centimeters, or printer’s
points (72nds of an inch). For the Americans, Table 23.1 lists some typical uses for
common sizes to give a sense of their scale.

Unfortunately, A4 paper is slightly thinner and longer (8.3 x 11.7 inches) than
American letter paper. Printing an A4 document on letter paper typically cuts off
vital slivers such as headers, footers, and page numbers. Conversely, if you’re in Eu-
rope or Japan and try to print American pages on A4 paper, you may have the sides
of your documents chopped off (though the problem is less severe).

Individual software packages may have their own defaults regarding paper size. For
example, GNU enscript is maintained in Finland by Markku Rossi and defaults to
A4 paper. If you’re American and your distribution hasn’t compiled enscript with a
different default, one option is to grab the source code and reconfigure it. Typically,
however, it’s easier to set the paper type on the command line or in a GUI configura-
tion file. If your documents come out with the ends or sides cut off, paper size con-
flicts are a likely explanation.

You may also be able to adjust the default paper size for many printing tasks with the
paperconfig command, the PAPERSIZE environment variable, or the contents of
the /etc/papersize file. (Note: paperconfig != paperconf)

Compatibility commands

In the old days, there were two competing printing systems: one found on BSD
UNIX systems, the other found on System V UNIX systems. The two systems each
maintained relatively simple print queues and provided commands to create, delete,
start, stop, and pause the queues and to queue or dequeue individual jobs.

You may ask, why were there two systems and was there any significant difference
between them? Stand up in the middle of a Linux users group meeting and yell
“Anyone who uses vi is an idiot!”—then come ask us again.

Table 23.1 Common uses for ISO paper sizes

Sizes Common uses

A0, A1 Posters
A3, B4 Newspapers

A4 Generic “pieces of paper”
A5 Note pads (roughly 5 8 inches)

B5, B6 Books, postcards, German toilet paper
A7 “3 5” index cards
B7 Passports (even U.S. passports are B7)
A8 Business cards
B8 Playing cards

P
ri

n
ti

n
g

23.4 CUPS server administration 779

Wisely, CUPS provides compatibility commands that replace both systems. Part of
the motivation is to grease the path for old-timers who are used to previous systems,
but compatibility with existing software is also an important goal.

To be sure, these commands don’t always do everything the originals did, and some
less-used and vendor-specific commands aren’t yet implemented. Still, many scripts
that use these commands work just fine with CUPS. Think of what’s missing as an
opportunity: if you want to contribute to world peace and Pareto optimality, there’s
still code left for you to write.

Table 23.2 lists the CLI commands that come with CUPS and classifies them accord-
ing to their origin.

Common printing software

There’s more to printing than just spooling and printing jobs. Even on a stock
Ubuntu system, the command

$ man -k . | egrep -i 'ghostscript|cups|print(er|ing| *(job|queue|filter))'

lists more than 88 printing-related man pages—and that’s just a quick and dirty
search. (Speaking of printing-related commands, ponder the fact that the print
command has nothing to do with printing.) Several of these commands and tools
are worth knowing about.

Table 23.2 CUPS command-line utilities and their origins

Command Function

CU
PS

lpinfo Shows available devices or drivers
lpoptions Displays or sets printer options and defaults
lppasswd Adds, changes, or deletes digest passwords
cupsdconf a Is a CUPS configuration tool
cups-configa Prints cups API, compiler, directory, and link information

Sy
st

em
 V

lp Prints files
cancel Cancels jobs
accept, reject Accepts or rejects queue submissions
disable, enable Stops or starts printers and classes
lpstat Prints CUPS status information
lpadmin Configures CUPS printers and classes
lpmove Moves a job to a new destination

BS
D

lpr Prints files
lprm Cancels print jobs
lpq Displays printer queue status
lpc Is a general printer control program

a. Don’t confuse these similar names. cupsdconf is a GUI tool in KDEPrint, and cups-config is a CLI
tool included with CUPS.

780 Chapter 23 – Printing

pr is one of the oldest printing tools. It reformats text files for the printed page. It
breaks its input into pagefuls of 66 lines, adds headers and footers, and can double-
space text. It’s perfect for minor massaging of text files on their way to the printer.

Adobe’s enscript command performs similar conversions with quite a few more bells
and whistles; it’s output is also PostScript. GNU enscript is an open source version
of this command that is backward compatible with Adobe’s; however, GNU enscript
offers a wealth of new features, including language-sensitive highlighting, support
for various paper sizes, font downloading, and user-defined headers.

One of enscript’s main claims to fame was its implementation of 2-up printing. If
you’re still using enscript because of this feature, try CUPS’s -o number-up=2 op-
tion to lpr.

At the high end of the complexity spectrum is Ghostscript, originally written by L.
Peter Deutsch so he could print PostScript documents on inexpensive PCL printers.
Today, Ghostscript interprets both PostScript and PDF. CUPS uses it as a filter, but
Ghostscript can also create page images for the screen, either on its own or with help
from front ends such as gv, GNOME Ghostview (ggv), or KDE’s KGhostView.

Linux distributions all come with a free version of Ghostscript; for more informa-
tion, see www.ghostscript.com. A commercial version of Ghostscript with support is
available from Artifex Software.

CUPS documentation

There’s no shortage of CUPS documentation, but sometimes you have to hunt for it.
Man pages, such as those for lpr, can be sketchy. If you don’t find something in a
man page, don’t assume you can’t do it; google it.

The CUPS installation comes with many manuals in PDF and HTML format. One
place to see these is to connect to a CUPS server and click the link for on-line help.
Unfortunately, this isn’t any help if your problem is connecting to the CUPS server.

The same documentation can be found at www.cups.org. It should also be located
under /usr/share/doc/cups. If your distribution doesn’t have it installed there, try

$ locate doc | grep cups

Another option is to ask your distribution’s package manager.

23.5 TROUBLESHOOTING TIPS

Always remember to restart cupsd after changing its configuration file. Your best
bet for restarting is to run /etc/init.d/cups restart (/etc/init.d/cupsys restart on
Debian and Ubuntu). You can also restart the daemon through the KDE Print Man-
ager application. In theory you can also send cupsd a HUP signal, but this seems to
just kill the daemon on SUSE systems.

www.ghostscript.com
www.cups.org

P
ri

n
ti

n
g

23.5 Troubleshooting tips 781

CUPS logging

CUPS maintains three logs: a page log, an access log, and an error log. The page log
is a list of pages printed. The other two are just like the access log and error log for
Apache. Not surprising, since the CUPS server is a web server.

The cupsd.conf file specifies the logging level and the locations of the log files.
They’re all typically kept underneath /var/log.

Here’s an excerpt from a log file that corresponds to a single print job:

I [26/Jul/2006:18:59:08 -0600] Adding start banner page "none" to job 24.
I [26/Jul/2006:18:59:08 -0600] Adding end banner page "none" to job 24.
I [26/Jul/2006:18:59:08 -0600] Job 24 queued on 'Phaser_6120' by 'jsh'.
I [26/Jul/2006:18:59:08 -0600] Started filter /usr/libexec/cups/filter/pstops (PID

19985) for job 24.
I [26/Jul/2006:18:59:08 -0600] Started backend /usr/libexec/cups/backend/usb

(PID 19986) for job 24.

Problems with direct printing

To verify the physical connection to a local printer, you can directly run the printer’s
back end. For example, here’s what we get when we execute the back end for a USB-
connected printer:

$ /usr/lib/cups/backend/usb
direct usb "Unknown" "USB Printer (usb)"
direct usb://XEROX/Phaser%206120?serial=YGG210547 "XEROX Phaser 6120"

"Phaser 6120"

When the USB cable accidentally pulls out (or breaks), the line for that printer drops
out of the back end’s output:

$ /usr/lib/cups/backend/usb
direct usb "Unknown" "USB Printer (usb)"

Network printing problems

Before you start tracking down a network printing problem, make sure you can
print from the machine that actually hosts the printer. Your “network printing prob-
lem” may just be a “printing problem.” Also make sure that the network is up.

Next, try connecting to the hosting cupsd with a web browser (hostname:631) or the
telnet command (telnet hostname 631).

If you have problems debugging a network printer connection, keep in mind that
there must be a queue for the job on some machine, a way to decide where to send
the job, and a method of sending the job to the machine that hosts the print queue.
On the print server, there must be a place to queue the job, sufficient permissions to
allow the job to be printed, and a way to output to the device.

782 Chapter 23 – Printing

To track down these problems, you may have to look in several places:

• System log files on the sending machine, for name resolution and permis-
sion problems

• System log files on the print server, for permission problems

• CUPS log files on the sending machine, for missing filters, unknown print-
ers, missing directories, etc.

• CUPS log files on the print server machine, for messages about bad device
names, incorrect formats, etc.

The system log files’ locations are specified in /etc/syslog.conf. The locations of
CUPS log files are specified in /etc/cups/cupsd.conf.

Distribution-specific problems

CUPS is still evolving and bug fixes are released frequently. Some problems are
worse than others, and some have security implications. On some older versions of
Red Hat, CUPS is badly broken. The right solution for those systems is an OS up-
grade. But if you can’t install a newer release of Red Hat or Fedora, try getting the
current release for CUPS.

Easy Software Products sells a commercial version of CUPS called ESP PrintPro that
supports a much wider range of printers than the free version. If you have to support
an unusual printer and you can’t find the necessary drivers on the web, ESP may
already have it running. They also sell support. Check them out at www.easysw.com.

23.6 PRINTER PRACTICALITIES

Dealing with printers can bring troubles and frustrations. Here are some general
guidelines to help limit those. When all else fails, just be glad you’re not still using a
dot-matrix printer connected via an RS-232 serial port. Unless, of course, you are.

Printer selection

Before you buy a printer or accept a “free” printer that someone else is throwing
away, go to the Foomatic database at linuxprinting.org and check to see how well the
printer is supported under Linux. The database classifies printers into four catego-
ries ranging from Paperweight to Perfectly; you want Perfectly.

CUPS likes PostScript printers. Configuration of these printers is typically easy.

Non-PostScript printers are also supported, but not as well. To print to these, you
need software that converts print jobs into the printer’s preferred PDL or data for-
mat. Chances are, this software is available either from the CUPS distribution or
from one of the other locations mentioned in this chapter.

www.easysw.com

P
ri

n
ti

n
g

23.6 Printer practicalities 783

GDI printers

Windows still holds an advantage in a couple of areas, one of which is its support for
very low-end printers. The el cheapo printers used on Windows systems are known
collectively as GDI printers or WinPrinters. These printers have very little built-in
intelligence and lack interpreters for any real PDL. They expect rasterization to be
performed by the host computer.

Some of the information needed to communicate with GDI printers is hidden in
proprietary, Windows-specific code. Such secrecy hinders efforts to develop Linux
support for these devices, but the open-source community has demonstrated a re-
markable aptitude for reverse engineering. CUPS supports many WinPrinters.

A second area of strength for Windows is its support for brand-new printers. Just as
with new video and audio cards, new printers are first released with Windows driv-
ers, which fully support all the model’s documented and undocumented features.
Linux support generally lags. If you buy a fancy, just-released printer because you
need its advanced features, you may have to resign yourself to driving it from Win-
dows for a while.

Double-sided printing

A duplexer is a hardware component that lets a printer print on both sides of the
page. Some printers include them by default, and others support them as an op-
tional add-on.

If you don’t have access to (or can’t afford) a printer that duplexes, you can run paper
through the printer once to print the odd pages, then flip the paper over and run it a
second time for the even pages. Experiment with a two-page document to find out
which way to flip the paper, then tape instructions to the printer.

A variety of printing software can help with this; for example, Ghostview (gv) has
icons to let you mark either set and an option to print only marked pages. The
CUPS versions of lp and lpr handle this task with the options -o page-set=odd and
-o page-set=even. You can enshrine these options in a “printer instance” if you use
them frequently; see page 768.

Some printers, particularly inexpensive laser printers, are not designed with double-
sided printing in mind. Their manufacturers often warn of the irreparable damage
that is sure to attend printing on both sides of the page. We have never actually seen
a case of such damage, but surely the printer manufacturers wouldn’t steer you
wrong. Would they?

Other printer accessories

In addition to duplexers, many printers let you add memory, extra paper trays, hard
disks, and other accessories. These upgrades can permit jobs to print that would be
otherwise indigestible, or they can let jobs print more efficiently. If you have prob-
lems getting jobs to print, review the error logs to see if more printer memory might
help resolve the problem. See CUPS logging on page 781.

784 Chapter 23 – Printing

Serial and parallel printers

If your printer is directly attached to your computer with a cable, it’s using some
form of serial or parallel connection.

Although the parallel standard has not aged gracefully, it does provide us with ports
that require relatively little tinkering. If you have a parallel printer, it will probably
be easy to set up—as long as your computer has a parallel port, too.

A serial connection on Mac hardware could be FireWire, but serial connections in
the Linux world typically use USB. Check the database of supported USB devices at
www.qbik.ch/usb/devices or www.linux-usb.org to see the status of your hardware.

You almost certainly do not have an old-fashioned RS-232 serial printer. If you do, it
can require a mess of extra configuration. The spooler software has to know the
appropriate values for the baud rate and other serial options so that it can communi-
cate properly with the printer. You specify all these options in the URI for the device.
See the on-line CUPS Software Administrators Manual for details. It may be faster to
buy a different kind of printer than to figure out the exact combination of serial
magic needed to get things working.

Network printers

Many printers contain full-fledged network interfaces that allow them to sit directly
on a network and accept jobs through one or more network or printing protocols.
Data can be sent to network-attached printers much faster than to printers con-
nected to serial or parallel ports.

23.7 OTHER PRINTER ADVICE

Some administrative issues related to printing transcend the details of Linux and
CUPS. For the most part, these issues arise because printers are temperamental me-
chanical devices that cost money every time they are used.

Use banner pages only if you have to

CUPS can print header and trailer pages for each job that show the title of the job
and the user who submitted it. These banner pages are sometimes useful for sepa-
rating jobs on printers used by many different people, but in most cases they’re a
waste of time, toner, and paper.

We suggest that you turn off banner pages globally in the CUPS GUI (or by running
lpadmin), then turn them on for any individual jobs that might benefit from them:

$ lpr -o job-sheets=confidential gilly.ps

You can also turn on banners for individual users by using lpoptions. Another alter-
native to consider is a printer instance that adds banner pages to jobs (see Printer
instances on page 768).

www.qbik.ch/usb/devices
www.linux-usb.org

P
ri

n
ti

n
g

23.7 Other printer advice 785

If needed, you can create custom banner pages by copying one of the existing ones
from /usr/share/cups/banners and modifying it. Put the new page in with the oth-
ers under a new name.

Provide recycling bins

All kinds of computer paper are recyclable. You can use the boxes that paper comes
in as recycling bins; the paper fits in them perfectly. Post a sign asking that no for-
eign material (such as staples, paper clips, or newspaper) be discarded there.

Use previewers

Users often print a document, find a small error in the formatting, fix it, and then
reprint the job. This waste of paper and time can easily be avoided with software that
lets users see, on-screen, what the printed output will look like.

Having previewers isn’t enough; your users have to know how to use them. They’re
usually happy to learn. One use of accounting records is to check for cases in which
the same document has been printed repeatedly. That’s sometimes a pointer to a
user who doesn’t know about previewers.

Previewing is built into many modern WYSIWYG editors, browsers, and print-job
aggregators. For other types of documents, your options vary. Tools such as Ghost-
view (gv) preview random PostScript and PDF documents. For roff, pipe the output
of groff into Ghostview; for TeX output, try xdvi, kdvi, or Evince.

Buy cheap printers

Printer hardware technology is mature. You don’t need to spend a lot of money for
good output and reliable mechanics.

Don’t splurge on an expensive “workgroup” printer unless you need it. If you’re only
printing text, an inexpensive “personal” printer can produce good-quality output,
be nearly as fast and reliable, and weigh tens of pounds less. A 10-page-a-minute
printer can serve about five full-time writers. You may be better off buying five $250
printers for a group of 25 writers than one $1,250 printer.

In general, don’t buy a printer (or a hard disk, or memory) from a computer manu-
facturer. Their printers are usually just rebranded commodity printers at twice the
price. PostScript printers manufactured for the PC and Macintosh markets and sold
independently are usually better deals. (Some companies, like HP, manufacture both
computers and printers. They’re fine.)

Even if you stick to mainstream brands, no individual manufacturer is a universally
safe bet. We have had excellent experiences with HP laser printers. They are solid
products, and HP has been very aggressive in supporting both Linux and CUPS.
Even so, some of HP’s printers have been complete disasters. Look for reviews on the
Internet before buying.

Here, too, cheap is an advantage: a $250 mistake is easier to recover from than a
$1,250 mistake.

786 Chapter 23 – Printing

Keep extra toner cartridges on hand

Laser printers occasionally need their toner cartridges replaced. Faded or blank ar-
eas on the page are hints that the printer is running out of toner. Buy replacement
cartridges before you need them. In a pinch, remove the cartridge from the printer
and gently rock it to redistribute the remaining toner particles. You can often get
another hundred pages out of a cartridge this way.

Streaks and spots probably mean you should clean your printer. Look on the printer
to see if there is a “clean” cycle. If not or if the cleaning cycle doesn’t help, read the
manufacturer’s cleaning instructions carefully, or pay to have the printer serviced.

Printer manufacturers hate the use of recycled and aftermarket cartridges, and they
go to great lengths to try to prevent it. Many devices use “keyed” consumables whose
identities are detected—electronically or physically—by the printer. Even if two
printers look identical (such as the Xerox Phaser 6120 and the Konica-Minolta Mag-
icolor 2450), it doesn’t necessarily mean you can use the same cartridges in both.

Sometimes you can do surgery to convert one vendor’s cartridges for another’s
printer, but it helps to know what you’re doing. Usually, you just make a mess. If you
spill toner, vacuum up as much of the material as possible and wipe up the remain-
der with cold water. Contrary to common belief, laser printer toner is not a health or
environmental hazard, although as with all fine powders, it’s best to avoid breathing
the toner dust.

When you replace a cartridge, save the box and baggie the new cartridge came in to
use when recycling the spent one. Then look at the phone book or the web to find a
company to take the old cartridge off your hands.

Keyed consumables have spurred the growth of companies (“punch and pours”)
that refill old cartridges for a fraction of the new-cartridge price. Cartridge recyclers
are usually also punch-and-pours, so you can recycle your old cartridges and get
replacements at the same time.

Opinions on the quality and lifespan of recycled cartridges vary. One punch-and-
pour we know won’t refill color toner cartridges or sell remanufactured ones be-
cause they believe the savings are less than the increased maintenance costs for the
printers that use them.

Pay attention to the cost per page

Printer manufacturers use what MBAs call “metering” to make the total cost of the
product scale as linearly as possible with the amount of use the customer gets out of
it. That’s why toner and ink are extortionately expensive and fancy printer hardware
is sometimes sold below its manufacturing cost.

As of this writing, one manufacturer is selling a color laser printer for $299. A full set
of replacement cartridges for it costs $278. You can buy an inkjet printer for less
than $50 at Wal-Mart, but it won’t be long before you need to buy a set of replace-
ment ink cartridges that cost more than the printer.

P
ri

n
ti

n
g

23.7 Other printer advice 787

You can feign outrage over this, but printer companies have to make their money on
something. Cheaper cartridges would just mean pricier printers. A good rule of
thumb is that inkjet printers are cheap as long as you don’t print with them; laser
printers have a higher initial cost, but the consumables are cheaper and last longer.

A full-color page from an inkjet printer can cost 20–50 times as much as an analo-
gous print from a laser printer. It also requires special paper and prints more slowly.
Inkjet cartridges empty quickly and frequently plug up or go bad. The ink runs when
wet—don’t use an inkjet to print out a recipe book for use in the kitchen. On the
other hand, you can now get photo prints from an inkjet that look just as good as
prints from a photo lab. Color laser photos? Not so nice.

All printers have failure-prone mechanical parts. Cheap printers break faster.

In other words, it’s all tradeoffs. For low-volume, personal use—printing a web page
or two a day or printing a couple of rolls of film a month—a low-cost, general-pur-
pose inkjet is an excellent choice.

Next time you go printer shopping, estimate how long you want to keep your printer,
how much printing you do, and what kind of printing you need before you buy. As-
sess quantitatively the long-term cost per page for each candidate printer. And ask
your local punch-and-pour whether they remanufacture cartridges for the printer,
and at what price.

Consider printer accounting

At medium-to-large installations, consider using printer accounting even if you
don’t plan to charge for printer use. The per-job overhead is unimportant, and you
get to see who is using the printer. Demographic information about the sources of
print jobs is valuable when you are planning deployment of new printers.

Several printer accounting packages (such as accsnmp and PyKota) have been de-
veloped for CUPS. ESP provides a central, searchable list of links to these and other
CUPS-related products at www.easysw.com/~mike/cups/links.php

Secure your printers

Network printers typically support remote management. You can configure and
monitor them over the net through IPP or SNMP, or from a web browser using
HTTP. Through the remote interface, you can set parameters such as the printer’s IP
address, default gateway, syslog server, SNMP community name, protocol options,
and administrative password.

By default, most remotely administrable printers are unprotected and must have a
password (or perhaps an SNMP “community name”) assigned as part of the instal-
lation process. The installation manuals from your printer manufacturer should ex-
plain how to do this on any particular printer, but GUI administration tools in CUPS
and KDE Print Manager are increasingly able to hide vendor variations from you.
Expect this trend to continue.

www.easysw.com/~mike/cups/links.php

788 Chapter 23 – Printing

23.8 PRINTING UNDER KDE

We’ve mentioned KDE in passing several times in this chapter.3 The KDE printing
facilities are really pretty nice, however, and they deserve a bit more exposition.
KDE has put a lot of effort into making its printing tools and interfaces independent
of the underlying printing system. It was built after CUPS became popular, so it can
handle all of CUPS’s features. It works, however, with everything from LPRng to a
generic external program.

GNOME’s printing facilities have lagged KDE’s, but the GNOME developers want
users to have a good printing experience, too. Development is proceeding rapidly;
by the time you read this, GNOME’s printing features may rival KDE’s. One reader of
an early draft of this chapter noted the irony that CUPS replaced “warring print stan-
dards that had no reason to live but refused to die,” only to pave the way for compe-
tition between suites of desktop printing utilities.

KDEPrint is the overarching framework for printing under KDE. KDEPrint provides
tools for adding printers, administering print jobs, restarting print servers, and so
on. Yes, CUPS lets you do all this too; the KDEPrint tools are there for two reasons.

First, they have a KDE look and feel, which offers consistency for KDE users. For
example, the kghostview tool wraps Ghostview in a more KDE-appropriate skin.
(You’ve probably noticed that even KDE utility names have a distinctive look and
feel. Someone recently asked us if ksh was a KDE application.)

Second, KDEPrint is spooler-independent. If for some reason you don’t run CUPS
(or worse, you have to switch back and forth between print systems), you can still use
KDEPrint to manage your printing. Be forewarned that CUPS is more capable than
other printing systems, so if you have to downshift to an alternative printing system,
some of KDEPrint’s functionality may disappear.

Why should you worry about all these GUI interfaces if you do your printing work in
the shell? Well, your users probably won’t be using the shell interface, so you may
end up having to know something about the KDE interface just to support them.

Here are the major components of KDEPrint that you should know about:

• kprinter, a GUI tool that submits print jobs

• The Add Printer wizard, which autodetects network printers (JetDirect,
IPP, and SMB) and some locally connected printers. The Add Printer wiz-
ard also lets you add and configure printers that it doesn’t autodetect.

• The Print Job Viewer, which moves and cancels print jobs and shows print
job status information

3. KDE is a set of libraries and user interface standards for graphical interfaces running under the X Win-
dow System, the technology on which all Linux GUIs are based. It’s an alternative to the GNOME sys-
tem, which is most distributions’ default. Despite appearances, it is not really necessary to choose
between KDE and GNOME. For a more general description of GNOME and KDE, see page 757.

P
ri

n
ti

n
g

23.8 Printing under KDE 789

• The KDEPrint Handbook, which documents the system. It’s available
through the KDE Help Center but can be annoyingly hard to find. An eas-
ier route is to invoke something like kprinter and click on Help. Another
alternative is to run konqueror help:/kdeprint. Another source of KDE-
Print documentation is printing.kde.org.

• The Print Manager, which is the main GUI management tool for the print-
ing system. It, too, can be a bit hard to find. You can poke around in your
main desktop menu, although the location in the menu tree varies from
distribution to distribution. Another option is to run kcmshell printmgr
or konqueror print:/manager.

The Add Printer wizard and the Print Job Manager are accessible through either
kprinter or the KDE Print Manager. (Not to mention the URLs print:/manager and
print:/printers in Konqueror.)

Per-user information for KDEPrint is stored under ~/.kde. The files are human-
readable but designed to be changed through the Print Manager. Tinker with them
at your peril.

kprinter: printing documents

kprinter is a GUI replacement for lpr. It can be used from the command line in
similar ways. You can even suppress the GUI;

$ kprinter --nodialog -5 -P lj4600 riley.ps gillian.pdf zoe.prn

is equivalent to

$ lpr -5 -P lj4600 riley.ps gillian.pdf zoe.prn

Your users probably want a GUI. Show them how to drag files from a file manager or
desktop into the kprinter dialog, then print the entire batch. Replace lpr with
kprinter in their browser’s print dialog, and they’ll have a GUI print dialog. Teach
them to click on their “Keep this dialog open after printing” check box, and they
won’t even have the delay of restarting the program every time they want to print.

Note the “Print system currently in use” menu, evidence of KDEPrint’s system neu-
trality. Note also that kprinter offers print-to-PDF and print-to-fax functions even
without an actual printer. The advanced options are also worth a look; you can queue
your resume for printing and specify that it be printed after your boss goes home.

Konqueror and printing

Many web browsers recognize a set of special-purpose URIs that act as gateways to
idiosyncratic functionality. You’ve probably at least tried about:config and about:
mozilla in Firefox. Similarly, the print: family of URIs is Konqueror’s gateway to
KDEPrint.

The print:/ URL shows you all the possibilities. print:/jobs monitors print jobs, and
print:/manager starts the Print Manager inside of Konqueror.

790 Chapter 23 – Printing

Note that you’re not dealing with CUPS here, at least not directly. This is all part of
the KDEPrint layer.

23.9 RECOMMENDED READING

Sweet, Michael. CUPS: Common UNIX Printing System. Indianapolis, Indiana: Sams
Publishing, 2001. This is the CUPS bible, right from the horse’s mouth.

We’ve mentioned linuxprinting.org several times in this chapter. It’s a vast collection
of Linux printing resources and a good place to start when answering questions.
This site also has a nice CUPS tutorial that includes a troubleshooting section.

Wikipedia and SUSE both supply good CUPS overviews:

en.opensuse.org/SDB:CUPS_in_a_Nutshell
en.wikipedia.org/wiki/Common_Unix_Printing_System

You can find a collection of CUPS-related newsgroups at cups.org/newsgroups.php.
This is a good place to ask questions, but do your homework first and ask politely.

KDE includes man pages for the KDEPrint commands and the KDEPrint Handbook.
You can find additional information at printing.kde.org. All of these sources contain
useful references to other documentation. (Even if you don’t have KDE, the KDE
documentation contains good, general information about CUPS.)

23.10 EXERCISES

E23.1 Using a web browser, visit a CUPS server on your network. What pre-
vents you from making administrative changes to that server’s printers?

E23.2 Find someone who isn’t computer literate (an art student, your mother,
or perhaps a Microsoft Certified Professional) and teach that person
how to print a PDF document on a Linux system. Did your subject find
any of the steps confusing? How could you make the process easier for
other users?

E23.3 Visit a real or virtual big-box store such as Sam’s Club or Amazon.com
and list the printers you can buy for under $200. If you had to purchase
one of these printers for your organization tomorrow, which one would
it be and why? Justify your analysis with data from the linuxprinting.org
database.

E23.4 You have been asked to design the system software for a Linux-based
laser printer aimed at the corporate workgroup market. What Linux dis-
tribution will you start with? What additional software will you include,
and what software will you have to write? How will you accommodate
Windows and Mac OS clients? (Hint: check out Linux distributions de-
signed for “embedded systems.”)

791

M
a

in
te

n
a

n
ce

24 Maintenance and Environment

With the influx of desktop workstations and the move away from big-iron comput-
ing, it once appeared that the days of the central machine room (aka “data center”)
might be numbered. Never fear! Over the last decade, those desktop systems have
become increasingly dependent on a nucleus of central servers running operating
systems such as Linux. As a result, herds of servers can now be found roaming those
once-abandoned machine rooms.

It’s as important as ever to ensure a healthy, well-maintained environment for these
servers. In fact, the power and air conditioning requirements of a rack of the latest
1U servers1 often meet or exceed the demands of the mainframes they replace.

This chapter offers some hints on handling and maintaining hardware, as well as on
giving it a good home.

24.1 HARDWARE MAINTENANCE BASICS

Hardware maintenance was traditionally covered by an expensive annual mainte-
nance contract. Although such contracts are still readily available, today it is more
common and cost effective to use the “fly by the seat of your pants” approach.

See page 926 for more
information about
retiring hardware.

If you keep a log book, a quick glance at the records for the last six to twelve months
will give you an idea of your failure rates. It’s a good idea to keep a careful record of
failures and replacements so that you can accurately evaluate the different mainte-
nance options available to you. Some parts fail more often than anticipated by the

1. One “U” is 1.75 vertical inches and is the standard unit of measurement for rack space.

Maintenance

792 Chapter 24 – Maintenance and Environment

manufacturer, so contracts are sometimes not only convenient but also financially
advantageous. But remember, there comes a time when all hardware should be re-
placed, not maintained. Know your hardware and let it go gracefully when its time
has finally come. You might even consider donating outdated equipment to your lo-
cal university or school. For them, equipment is rarely too old to be useful.

When planning your maintenance strategy, consider which components are most
likely to suffer from premature aging. Devices that include moving parts tend to be
far less reliable than solid-state devices such as CPUs and memory. Here are some
common candidates for the old folks farm:

• Tape drives

• Tape autoloaders and changers

• Hard disk drives

• Fans

• Keyboards

• Mice

• CRT monitors

24.2 MAINTENANCE CONTRACTS

Several major companies offer hardware maintenance on computer equipment that
they do not sell. These vendors are often anxious to displace the original manufac-
turer and get their foot in the door, so to speak. You can sometimes negotiate attrac-
tive maintenance contracts by playing a manufacturer against a third-party provider.
If possible, get references on all potential maintenance vendors, preferably from
people you know and trust.

On-site maintenance

If you have an on-site maintenance contract, a service technician will bring spare
parts directly to your machine. Guaranteed response time varies between 4 and 24
hours; it’s usually spelled out in the contract. Response times during business hours
may be shorter than at other times of the week.

If you are considering a quick-response maintenance contract, it’s usually worth cal-
culating the cost of keeping a couple of complete backup systems around that you can
swap in to replace malfunctioning computers. A whole-system swap usually achieves
faster repair than even the most deluxe maintenance contract can, and with today’s
low hardware prices, the investment is often minimal.

Board swap maintenance

A board swap program requires you and your staff to diagnose problems, perhaps
with the help of hotline personnel at the manufacturer’s site. After diagnosis, you
call a maintenance number, describe the problem, and order the necessary replace-
ment board. It is usually shipped immediately and arrives the next day. You then

M
a

in
te

n
a

n
ce

24.3 Electronics-handling lore 793

install the board, get the hardware back up and happy, and return the old board in
the same box in which the new board arrived.

The manufacturer will usually want to assign a “return merchandise authorization”
(RMA) number to the transaction. Be sure to write that number on the shipping doc-
uments when you return the bad board.

Warranties

The length of the manufacturer’s warranty should play a significant role in your
computation of a machine’s lifetime cost of ownership. In most cases, the best main-
tenance scheme is probably the “selective warranty” strategy. Disk drive manufac-
turers offer warranties up to five years long, and some memory modules even come
with a lifetime guarantee. A year’s warranty is standard for computers, but warran-
ties of several years or more are not uncommon. When purchasing new equipment,
shop around for the best warranty—it will save you money in the long run.

In a many organizations, it seems to be easier to get funding for capital equipment
than for support personnel or maintenance. We have occasionally paid for an “ex-
tended warranty” option on new hardware (which could also be described as pre-
paid maintenance) to convert equipment dollars to maintenance dollars.

With many pieces of hardware, the biggest maintenance and reliability problems oc-
cur soon after installation. Hardware failures that occur within a day or two of de-
ployment are referred to as “infant mortality.”

24.3 ELECTRONICS-HANDLING LORE

Circuit boards and other electronic devices should be handled gently, not dropped,
not have coffee spilled on them, not have books piled on them, etc. Most customer
engineers (those friendly repair people that come with your maintenance contract)
are ten times rougher on equipment than seems reasonable.

Static electricity

Electronic parts are sensitive to static electricity. To handle components safely, you
must ground yourself before and during installation. A ground strap worn on the
wrist and attached to “earth ground” (usually available as the third prong of your
power outlet) protects you appropriately.

Remember that you need to worry about static when you first open the package con-
taining an electronic component and any time the component is handled—not just
when you finally install it. Be especially careful if the office where you receive your
mail (and where you might be tempted to open your packages) is carpeted; carpet
generates more static electricity than does a hard floor.

One way to reduce static on carpeted floors is to purchase a spray bottle at your local
Wal-Mart and fill it with one part Downy fabric softener to 30 parts water. Spray this
on the carpet (but not on computing equipment) once every month to keep static

794 Chapter 24 – Maintenance and Environment

levels low. This procedure also leaves your office area with that all-important April-
fresh scent.

Reseating boards

You can occasionally fix a hardware problem by simply powering down the equip-
ment, cleaning the contacts on the edge connectors of the interface cards (SCSI,
Ethernet, etc.), reseating the cards, and powering the system back up. If this works
temporarily but the same problem comes back a week or a month later, the electrical
contact between the card and the motherboard is probably poor.

You can clean contacts with a special cleaning solution and cleaning kit or with an
ordinary pencil eraser. Don’t use an eraser that is old and hard. If your eraser doesn’t
work well erasing pencil marks from paper, it won’t work well on electrical contacts
either. Try to keep your fingers off the contacts. Just “erase” them with the pencil
eraser (a mild abrasive), brush off the eraser droppings, and reinstall the card.

24.4 MONITORS

Over the last few years, we’ve been fortunate to see the prices of LCD monitors de-
cline to a level at which they can be widely deployed. Although the initial cost of LCDs
is slightly higher than that of CRTs, these devices require less power, less mainte-
nance, and typically cause less eye strain than their CRT-based predecessors. If you
still have CRT monitors in your organization, a good maintenance plan is to simply
replace them with LCD monitors.

If you are still forced to maintain CRT monitors, be aware that many of them have
brightness and convergence adjustments that are accessible only from the circuit
board. Unfortunately, CRT monitors often use internal charges of tens of thousands
of volts that can persist long after the power has been disconnected. Because of the
risk of electric shock, we recommend that you always have your monitors adjusted
by a qualified technician. Do not attempt the job yourself.

24.5 MEMORY MODULES

Today’s hardware accepts memory in the form of SIMMs (Single Inline Memory
Modules), DIMMs (Dual Inline Memory Modules), or RIMMs (Rambus Inline Mem-
ory Modules) rather than individual chips. These modules range in size from 32MB
to 4GB, all on one little stick.

If you need to add memory to a workstation or server, you can usually order it from a
third-party vendor and install it yourself. Be cautious of buying memory from com-
puter vendors; their prices are often quite imaginative.2 When adding memory, think
big. The price of memory is continually decreasing, but so is the standard allotment
of expansion slots on a typical motherboard.

2. It’s a different story if the memory is part of a package deal; some of these deals are pretty good.

M
a

in
te

n
a

n
ce

24.6 Preventive maintenance 795

It’s worth double-checking your system documentation before ordering memory to
make sure you have a clear idea of the types of memory modules that your systems
will accept. You can often increase performance by installing memory that supports
a higher bus rate or special features such as DDR (Double Data Rate). Make sure that
you know how many memory slots each system has available and whether there are
any restrictions on the addition of new modules. Some systems require modules to
be added in pairs; others do not strictly require this but can yield higher performance
when modules are paired.

Make sure that you understand how old and new memory modules will interact with
each other. In most cases, only the features or speeds common to all modules can
actually be used. It may sometimes be worthwhile to remove a system’s original mem-
ory when upgrading.

If you install your own memory, keep in mind that memory is more sensitive than
anything else to static electricity. Make sure you’re well grounded before opening a
baggie full of memory.

Memory modules are frequently a candidate for the pencil eraser cleaning technol-
ogy described earlier in this chapter.

24.6 PREVENTIVE MAINTENANCE

It may sound primitive (and some of us thought we’d outgrow this affliction), but
many pieces of hardware have air filters that must be regularly cleaned or changed.
Clogged filters impede the flow of air and may result in overheating, a major cause
of equipment failure. It’s important to keep the air vents on all equipment open and
unobstructed, but pay special attention to those servers that have been densely
packed into small 1U or 2U enclosures. These systems depend on their ventilation
to cool themselves. Without it, a core meltdown is assured.

Anything with moving parts may need regular lubrication, cleaning, and belt main-
tenance. Listen for squeaks from your older equipment and pamper it accordingly.

On server systems, the part that most frequently fails is the fan and power supply
module—especially on PCs, where it is often a single field-replaceable unit (FRU).
Periodically check your servers to make sure their main fans are spinning fast and
strong. If not, you must usually replace the entire power supply assembly. Other-
wise, you run the risk of overheating your equipment. Do not try to lubricate the fan
itself; this procedure might postpone the inevitable breakdown, but it could also ac-
celerate the problem or cause damage to other components.

Many PC cases provide a convenient mounting location for a second fan (and elec-
trical connections to power it). If noise is not a consideration, it’s always advisable to
install the second fan.3 In addition to lowering the operating temperature of the
components, the extra fan acts as a backup if the primary fan fails. Extra fans are
cheap; keep a couple around as spares.

3. Or learn about the latest in superquiet fans at www.silentpcreview.com.

www.silentpcreview.com

796 Chapter 24 – Maintenance and Environment

A computer in a dusty environment will burn out components much more frequently
than one whose environment is relatively clean. Dust clogs filters, dries out lubrica-
tion, jams moving parts (fans), and coats components with a layer of dusty “insula-
tion” that reduces their ability to dissipate heat. All of these effects tend to increase
operating temperatures. You may need to give your systems’ innards an occasional
housecleaning in bad environments. (Any environment that features carpeting is
likely to be bad.)

Vacuuming is the best way to remove dust, but be sure to keep the motor at least five
feet from system components and disks to minimize magnetic field interference.
Your machine room should be vacuumed regularly, but make sure this task is per-
formed by people who have been trained to respect proper distances and not harm
equipment (office janitorial staff are usually not acceptable candidates for this task).

Tape drives usually require regular cleaning as well. You clean most drives by insert-
ing a special cleaning cassette.

24.7 ENVIRONMENT

Just like humans, computers work better and longer if they’re happy in their environ-
ment. Although they don’t care much about having a window with a view, they do
want you to pay attention to other aspects of their home.

Temperature

The ideal operating temperature for computer equipment is 64° to 68°F (17° to 20°C),
with about 45% humidity. Unfortunately, this temperature does not coincide with
the ideal operating temperature of a computer user. Ambient temperatures above
80°F (27°C) in the computer room imply about 120°F (49°C) inside machines. Com-
mercial-grade chips have an operational range up to about 120°F, at which point they
stop working; beyond about 160°F (71°C), they break. Inlet temperatures are critical;
one machine’s hot exhaust should never flow toward another machine’s air intake.

Humidity

The ideal humidity for most computer hardware is in the range of 40% to 55%. If the
humidity is too low, static electricity becomes a problem. If it is too high, condensa-
tion can form on the boards, causing shorting and oxidation.

Office cooling

These days, many computers live in people’s offices and must survive on building air
conditioning (often turned off at night and on weekends) and must overcome a
healthy dose of papers and books resting on cooling vents. When you put a com-
puter in an office, keep in mind that it will steal air conditioning that is intended for
humans. If you are in a role in which you can influence cooling capacity, a good rule
of thumb is that each human in the room produces 300 BTUH worth of heat, whereas
your average office PC produces about 1,100 BTUH. Don’t let the engineers forget to
add in solar load for any windows that receive direct sunlight.

M
a

in
te

n
a

n
ce

24.7 Environment 797

Machine room cooling

If you are “lucky” enough to be moving your servers into one of those fancy raised-
floor machine rooms built in the 1980s that has enough capacity to cool all of your
equipment and the state of Oklahoma, your biggest concern will likely be to find
some remedial education in primitive cooling system maintenance. For the rest of
us, correctly sizing the cooling system is what makes the difference in the long term.
A well-cooled machine room is a happy machine room.

We have found that it’s a good idea to double-check the cooling load estimated by
the HVAC folks, especially when you’re installing a system for a machine room.
You’ll definitely need an HVAC engineer to help you with calculations for the cooling
load that your roof, walls, and windows (don’t forget solar load) contribute to your
environment. HVAC engineers usually have a lot of experience with those compo-
nents and should be able to give you an accurate estimate. The part you need to check
up on is the internal heat load for your machine room.

You will need to determine the heat load contributed by the following components:

• Roof, walls, and windows (see your HVAC engineer for this estimate)

• Electronic gear

• Light fixtures

• Operators (people)

Electronic gear

You can estimate the heat load produced by your servers (and other electronic gear)
by determining their power consumption. Direct measurement of power consump-
tion is by far the best method to obtain this information. Your friendly neighbor-
hood electrician can often help, or you can purchase an inexpensive meter to do it
yourself.4 Most equipment is labeled with its maximum power consumption in watts,
but typical consumption tends to be significantly less than the maximum. You can
convert power consumption to the standard heat unit, BTUH, by multiplying by
3.413 BTUH/watt. For example, if you wanted to build a machine room that would
house 25 servers rated at 450 watts each, the calculation would be

Light fixtures

As with electronic gear, you can estimate light fixture heat load based on power con-
sumption. Typical office light fixtures contain four 40-watt fluorescent tubes. If your
new machine room had six of these fixtures, the calculation would be

4. The KILL A WATT meter made by P3 is a popular choice at around $30.

= 38,385 BTUH25 servers 450 watts
server

3.412 BTUH
watt

= 3,276 BTUH6 fixtures 160 watts
fixture

3.412 BTUH
watt

798 Chapter 24 – Maintenance and Environment

Operators

At one time or another, humans will need to enter the machine room to service
something. Allow 300 BTUH for each occupant. To allow for four humans in the
machine room at the same time:

Total heat load

Once you have calculated the heat load for each component, add them up to deter-
mine your total heat load. For our example, we assume that our HVAC engineer esti-
mated the load from the roof, walls, and windows to be 20,000 BTUH.

Cooling system capacity is typically expressed in tons. You can convert BTUH to tons
by dividing by 12,000 BTUH/ton. You should also allow at least a 50% slop factor to
account for errors and future growth.

See how your estimate matches up with the one from your HVAC folks.

Temperature monitoring

If you are supporting a mission-critical computing environment, it’s a good idea to
monitor the temperature (and other environmental factors, such as noise and power)
in the machine room even when you are not there. It can be very disappointing to
arrive on Monday morning and find a pool of melted plastic on your machine room
floor. Fortunately, automated machine room monitors can watch the goods while
you are away. We use and recommend the Phonetics Sensaphone product family.
These inexpensive boxes monitor environmental variables such as temperature,
noise, and power, and they telephone you (or your pager) when a problem is de-
tected. You can reach Phonetics in Aston, PA at (610) 558-2700 or visit them on the
web at www.sensaphone.com.

24.8 POWER

Computer hardware would like to see nice, stable, clean power. In a machine room,
this means a power conditioner, an expensive box that filters out spikes and can be
adjusted to produce the correct voltage levels and phases. In offices, surge protectors
placed between machines and the wall help insulate hardware from power spikes.

= 1,200 BTUH4 humans 300 BTUH
human

20,000 BTUH for roof, walls, and windows
 38,385 BTUH for servers and other electronic gear
 3,276 BTUH for light fixtures
 1,200 BTUH for operators

 62,861 BTUH total

= 7.86 tons of cooling required62,681 BTUH
1 ton

1.512,000 BTUH

www.sensaphone.com

M
a

in
te

n
a

n
ce

24.9 Racks 799

Servers and network infrastructure equipment should be placed on an Uninterrupt-
ible Power Supply (UPS). Good UPSes have an RS-232, Ethernet, or USB interface
that can be attached to the machine to which they supply power. This connection
enables the UPS to warn the computer that the power has failed and that it should
shut itself down cleanly before the batteries run out.

See page 40 for more
information about
shutdown procedures.

One study has estimated that 13% of the electrical power consumed in the United
States is used to run computers. Traditionally, UNIX boxes were based on hardware
and software that expected the power to be on 24 hours a day. These days, only serv-
ers and network devices really need to be up all the time. Desktop machines can be
powered down at night if there is an easy way for users to turn them off (and if you
trust your users to do it correctly).

You may occasionally find yourself in a situation in which you have to regularly
power-cycle a server because of a kernel or hardware glitch. Or, perhaps you have
non-Linux servers in your machine room that are more prone to this type of prob-
lem. In either case, you may want to consider installing a system that will allow you
to power-cycle problem servers by remote control.

A reasonable solution is manufactured by American Power Conversion (APC).
Their MasterSwitch product is similar to a power strip, except that it can be con-
trolled by a web browser through its built-in Ethernet port. You can reach APC at
(401) 789-0204 or on the web at www.apcc.com.

24.9 RACKS

The days of the raised-floor machine room—in which power, cooling, network con-
nections, and phone lines are all hidden underneath the floor—are over. Have you
ever tried to trace a cable that runs under the floor of one of these labyrinths? Our
experience is that while it looks nice through glass, a “classic” raised-floor room is a
hidden rat’s nest. Today, you should use a raised floor to hide electrical power feeds,
distribute cooled air, and nothing else.

If your goal is to operate your computing equipment in a professional manner, a
dedicated machine room for server-class machines is essential. A server room not
only provides a cozy, temperature-controlled environment for your machines but
also addresses their physical security needs.

In a dedicated machine room, storing equipment in racks (as opposed to, say, set-
ting it on tables or on the floor) is the only maintainable, professional choice. The
best storage schemes use racks that are interconnected with an overhead track sys-
tem for routing cables. This approach confers that irresistible high-tech feel without
sacrificing organization or maintainability.

The best overhead track system is manufactured by Chatsworth Products (Chat-
sworth, CA, (818) 882-8595). Using standard 19" single-rail telco racks, you can
construct homes for both shelf-mounted and rack-mounted servers. Two back-to-
back 19" telco racks make a high-tech-looking “traditional” rack (for cases in which

www.apcc.com

800 Chapter 24 – Maintenance and Environment

you need to attach rack hardware both in front of and in back of equipment). Chat-
sworth provides the racks, cable races, and cable management doodads, as well as
all the hardware necessary to mount them in your building. Since the cables lie in
visible tracks, they are easy to trace, and you will naturally be motivated to keep
them tidy.

24.10 DATA CENTER STANDARDS

Server rooms have become so pervasive that a number of groups have produced
standards for setting them up. These standards typically specify attributes such as
the diversity of external network connectivity, the available cooling and power
(along with backup plans for these resources), and the annual facility maintenance
downtime. The Uptime Institute publishes one set of these standards; their catego-
ries are summarized in Table 24.1.

In addition to providing an in-depth description of each of these tiers and describ-
ing how to achieve them, the Uptime Institute provides statistical and best-practice
information on a variety of topics relevant to the infrastructure of fault-tolerant data
centers. You can visit them on the web at www.upsite.com.

24.11 TOOLS

A well-outfitted system administrator is an effective system administrator. Having a
dedicated tool box is an important key to minimizing downtime in an emergency.
Table 24.2 lists some items to keep in your tool box, or at least within easy reach.

24.12 RECOMMENDED READING

The following sources present additional information about data center standards.

Telecommunications Infrastructure Standard for Data Centers. ANSI/TIA/EIA 942.

ASHRAE INC. ASHRAE Thermal Guidelines for Data Processing Environments. At-
lanta, GA: ASHRAE, Inc., 2004.

EUBANK, HUSTON, JOEL SWISHER, CAMERON BURNS, JEN SEAL, AND BEN EMERSON. De-
sign Recommendations for High Performance Data Centers. Snowmass, CO: Rocky
Mountain Institute, 2003.

Table 24.1 Uptime Institute server standards

Tier Uptime Power/cooling Redundancy

I 99.671% Single path No redundant components
II 99.741% Single path Some component redundancy
III 99.982% Multipath, 1 active Redundant components, concurrent maintenance
IV 99.995% Multipath, >1 active Redundant components, fully fault tolerant

www.upsite.com

M
a

in
te

n
a

n
ce

24.12 Recommended reading 801

Exercises are presented on the next page.

Table 24.2 A system administrator’s tool box

General tools

Phillips-head screwdrivers: #0, #1, and #2 Tweezers
Slot-head screwdrivers: 1/8", 3/16", and 5/16" Scissors
Electrician’s knife or Swiss army knife Socket wrench kit
Pliers, both flat-needlenose and regular Small LED flashlight
Teensy tiny jeweler’s screwdrivers Hex wrench kit
Ball-peen hammer, 4oz. Torx wrench kit

Computer-related specialty items

Wire stripper (with an integrated wire cutter) Portable network analyzer
Cable ties (and their Velcro cousins) Spare power cord
Spare Category 5 RJ-45 crossover cables RJ-45 end crimper
Spare RJ-45 connectors (solid core and stranded) SCSI terminators
Digital multimeter (DMM)
Static grounding strap

Miscellaneous

List of emergency maintenance contactsa Q-Tips
Home phone and pager #s of on-call support staff Electrical tape
First-aid kit Dentist’s mirror
Six-pack of good microbrew beerb Cellular telephone

a. And maintenance contract numbers if applicable
b. Recommended minimum

802 Chapter 24 – Maintenance and Environment

24.13 EXERCISES

E24.1 Why would you want to mount your computers in a rack?

E24.2 Environmental factors affect both people and machines. Augment the
factors listed in this book with some of your own (e.g., dust, noise, light,
clutter, etc). Pick four factors and evaluate the suitability of your lab for
man and machine.

E24.3 A workstation draws 0.8 A, and its monitor draws 0.7 A @ 120V.

a) How much power does this system consume in watts? (Hint: P = EI)

b) With electricity going for about $0.10/kWh, what does it cost to leave
this system on year-round?

c) How much money can you save annually by turning off the monitor
for an average of 16 hours a day (either manually or by using Energy
Star features such as Display Power Management Signaling)?

d) What is the annual cost of cooling this system? (State your assump-
tions regarding cooling costs and show your calculations.)

E24.4 Design a new computing lab for your site. State your assumptions re-
garding space, numbers of machines, and type and power load of each
machine. Then compute the power and cooling requirements for the
lab. Include both servers and client workstations. Include the layout of
the room, the lighting, and the expected human load as well.

803

P
e

rf
o

rm
a

n
ce

 A
n

a
ly

si
s

25 Performance Analysis

This chapter focuses on the performance of systems that are used as servers. Desk-
top systems typically do not experience the same types of performance issues that
servers do, and the answer to the question of how to improve performance on a desk-
top machine is almost always “Upgrade the hardware.” Users like this answer be-
cause it means they get fancy new systems on their desks more often.

One of the ways in which Linux differs from other mainstream operating systems is
in the amount of data that it makes available about its own inner workings. Detailed
information is available for every level of the system, and administrators control a
variety of tunable parameters. If you still have trouble identifying the cause of a per-
formance problem, the source code is always available for review. For these reasons,
Linux is often the operating system of choice for performance-conscious consumers.

Unfortunately, Linux performance tuning isn’t always easy. Users and administra-
tors alike often think that if they only knew the right “magic,” their systems would be
twice as fast. One common fantasy involves tweaking the kernel variables that con-
trol the paging system and the buffer pools. These days, major distributions’ ker-
nels are pretuned to achieve reasonable (though admittedly, not optimal) perfor-
mance under a variety of load conditions. If you try to optimize the system on the
basis of one particular measure of performance (e.g., buffer utilization), the chances
are high that you will distort the system’s behavior relative to other performance
metrics and load conditions.

The most serious performance issues often lie within applications and have little to
do with the underlying operating system. Unless you’ve developed said applications

Performance Analysis

804 Chapter 25 – Performance Analysis

in-house, you may be either out of luck or destined to spend a lot of time on the
phone with the application vendor’s support team. This chapter discusses system-
level performance tuning and leaves application-level tuning to others.

In all cases, take everything you read on the web with a tablespoon of salt. In the
area of system performance, you will see superficially convincing arguments on all
sorts of topics. However, most of the proponents of these theories do not have the
knowledge, discipline, and time required to design valid experiments. Popular sup-
port means very little; for every hare-brained proposal, you can expect to see a Greek
chorus of “I increased the size of my buffer cache by a factor of ten just like Joe said,
and my system feels MUCH, MUCH faster!!!” Right.

Performance tuning is hard work and requires patience, a methodical approach,
and careful analysis. Here are some rules that you should keep in mind:

• Collect and review historical information about your system. If the system
was performing fine a week ago, an examination of the aspects of the sys-
tem that have changed is likely to lead you to a smoking gun. Keep regular
baselines and trends in your hip pocket to pull out in an emergency.
Review log files first to determine if a hardware problem has developed.

Chapter 19, Network Management and Debugging, discusses some trend
analysis tools that are also applicable to performance monitoring. The sar
utility discussed on page 816 can also be used as a poor man’s trend analy-
sis tool.

• Always tune your system in a way that lets you compare the results to the
system’s previous baseline.

• Always make sure you have a rollback plan in case your magic fix actually
makes things worse.

• Don’t intentionally overload your systems or your network. Linux gives
each process an illusion of infinite resources. But once 100% of the system’s
resources are in use, Linux has to work hard to maintain that illusion,
delaying processes and often consuming a sizable fraction of the resources
itself.

25.1 WHAT YOU CAN DO TO IMPROVE PERFORMANCE

Here are some specific things you can do to improve performance:

• Ensure that the system has enough memory. As we see in the next section,
memory size has a major influence on performance. Memory is so inex-
pensive these days that you can usually afford to load every performance-
sensitive machine to the gills.

• Double-check the configuration of the system and of individual applica-
tions. Many applications can be tuned in ways that yield tremendous

P
e

rf
o

rm
a

n
ce

 A
n

a
ly

si
s

25.1 What you can do to improve performance 805

performance improvements (e.g., by spreading data across disks, by not
performing DNS lookups on the fly, or by running more instances of a
popular server).

• Correct problems of usage, both those caused by users (too many jobs run
at once, inefficient programming practices, jobs run at excessive priority,
and large jobs run at inappropriate times of day) and those caused by the
system (quotas, CPU accounting, unwanted daemons).

• If you are using Linux as a web server or as some other type of network
application server, you may want to spread traffic among several systems
with a commercial load balancing appliance such as Cisco’s Content Ser-
vices Switch (www.cisco.com), Foundry’s ServerIron (www.foundry.com),
or Nortel’s Alteon Application Switch (www.nortel.com).1 These boxes
make several physical servers appear to be one logical server to the outside
world. They balance the load according to one of several user-selectable
algorithms such as “most responsive server” or “round robin.”

• These load balancers also provide useful redundancy should a server go
down. They’re really quite necessary if your site must handle unexpected
traffic spikes.

• Organize hard disks and filesystems so that load is evenly balanced, maxi-
mizing I/O throughput. Ensure that you’ve selected the appropriate Linux
I/O scheduler for your disk (see page 815 for details). For specific applica-
tions such as databases, you can use a fancy multidisk technology such as
striped RAID to optimize data transfers. Consult your database vendor for
recommendations.

• It’s important to note that different types of applications and databases
respond differently to being spread across multiple disks. RAID comes in
many forms; take time to determine which form (if any) is appropriate for
your particular application.

• Monitor your network to be sure that it is not saturated with traffic and
that the error rate is low. A wealth of network information is available from
the netstat command, described on page 649. See also Chapter 19, Net-
work Management and Debugging.

• Identify situations in which the system is fundamentally inadequate to sat-
isfy the demands being made of it.

These steps are listed in rough order of effectiveness. Adding memory and balancing
traffic across multiple servers can often make a huge difference in performance. The
effectiveness of the other measures ranges from noticeable to none.

1. A free (though somewhat less stable) alternative is the Linux Virtual Server software available from
linuxvirtualserver.org.

www.cisco.com
www.foundry.com
www.nortel.com

806 Chapter 25 – Performance Analysis

Analysis and optimization of software data structures and algorithms almost always
lead to significant performance gains. But unless you have a substantial base of local
software, this level of design is usually out of your control.

25.2 FACTORS THAT AFFECT PERFORMANCE

Perceived performance is determined by the efficiency with which the system’s re-
sources are allocated and shared. The exact definition of a “resource” is rather vague.
It can include such items as cached contexts on the CPU chip and entries in the ad-
dress table of the memory controller. However, to a first approximation, only the
following four resources have much effect on performance:

• CPU time

• Memory

• Hard disk I/O

• Network I/O

All processes consume a portion of the system’s resources. If resources are still left
after active processes have taken what they want, the system’s performance is about
as good as it can be.

If there are not enough resources to go around, processes must take turns. A process
that does not have immediate access to the resources it needs must wait around do-
ing nothing. The amount of time spent waiting is one of the basic measures of perfor-
mance degradation.

CPU time is one of the easiest resources to measure. A constant amount of process-
ing power is always available. In theory, that amount is 100% of the CPU cycles, but
overhead and various inefficiencies make the real-life number more like 95%. A pro-
cess that’s using more than 90% of the CPU is entirely CPU-bound and is consuming
most of the system’s available computing power.

Many people assume that the speed of the CPU is the most important factor affecting
a system’s overall performance. Given infinite amounts of all other resources or cer-
tain types of applications (e.g., numerical simulations), a faster CPU does make a dra-
matic difference. But in the everyday world, CPU speed is relatively unimportant.

A common performance bottleneck on Linux systems is disk bandwidth. Because
hard disks are mechanical systems, it takes many milliseconds to locate a disk block,
fetch its contents, and wake up the process that’s waiting for it. Delays of this magni-
tude overshadow every other source of performance degradation. Each disk access
causes a stall worth hundreds of millions of CPU instructions.

Because Linux provides virtual memory, disk bandwidth and memory are directly
related. On a loaded system with a limited amount of RAM, you often have to write a
page to disk to obtain a fresh page of virtual memory. Unfortunately, this means that
using memory is often just as expensive as using the disk. Paging caused by bloated
software is performance enemy #1 on most workstations.

P
e

rf
o

rm
a

n
ce

 A
n

a
ly

si
s

25.3 System performance checkup 807

Network bandwidth resembles disk bandwidth in many ways because of the laten-
cies involved. However, networks are atypical in that they involve entire communi-
ties rather than individual computers. They are also susceptible to hardware prob-
lems and overloaded servers.

25.3 SYSTEM PERFORMANCE CHECKUP

Most performance analysis tools tell you what’s going on at a particular point in time.
However, the number and character of loads probably changes throughout the day.
Be sure to gather a cross-section of data before taking action. The best information
on system performance often becomes clear only after a long period (a month or
more) of data collection. It is particularly important to collect data during periods of
peak use. Resource limitations and system misconfigurations are often only visible
when the machine is under heavy load.

Analyzing CPU usage

You will probably want to gather three kinds of CPU data: overall utilization, load
averages, and per-process CPU consumption. Overall utilization can help identify
systems on which the CPU’s speed itself is the bottleneck. Load averages give you an
impression of overall system performance. Per-process CPU consumption data can
identify specific processes that are hogging resources.

You can obtain summary information with the vmstat command. vmstat takes two
arguments: the number of seconds to monitor the system for each line of output and
the number of reports to provide. If you don’t specify the number of reports, vmstat
runs until you press <Control-C>. The first line of data returned by vmstat reports
averages since the system was booted. The subsequent lines are averages within the
previous sample period, which defaults to five seconds. For example:

$ vmstat 5 5
procs -----------memory---------- ---swap-------io---- --system-- ----cpu----
r b swpd free buff cache si so bi bo in cs us sy id wa
1 0 820 2606356 428776 487092 0 0 4741 65 1063 4857 25 1 73 0
1 0 820 2570324 428812 510196 0 0 4613 11 1054 4732 25 1 74 0
1 0 820 2539028 428852 535636 0 0 5099 13 1057 5219 90 1 9 0
1 0 820 2472340 428920 581588 0 0 4536 10 1056 4686 87 3 10 0
3 0 820 2440276 428960 605728 0 0 4818 21 1060 4943 20 3 77 0

User time, system (kernel) time, idle time, and time waiting for I/O are shown in the
us, sy, id, and wa columns on the far right. CPU numbers that are heavy on user
time generally indicate computation, and high system numbers indicate that pro-
cesses are making a lot of system calls or performing I/O.

A rule of thumb for general purpose compute servers that has served us well over
the years is that the system should spend approximately 50% of its nonidle time in
user space and 50% in system space; the overall idle percentage should be nonzero.
If you are dedicating a server to a single CPU-intensive application, the majority of
time should be spent in user space.

808 Chapter 25 – Performance Analysis

The cs column shows context switches per interval, the number of times that the
kernel changed which process was running. The number of interrupts per interval
(usually generated by hardware devices or components of the kernel) is shown in the
in column. Extremely high cs or in values typically indicate a misbehaving or mis-
configured hardware device. The other columns are useful for memory and disk anal-
ysis, which we discuss later in this chapter.

Long-term averages of the CPU statistics allow you to determine whether there is
fundamentally enough CPU power to go around. If the CPU usually spends part of
its time in the idle state, there are cycles to spare. Upgrading to a faster CPU won’t do
much to improve the overall throughput of the system, though it may speed up indi-
vidual operations.

As you can see from this example, the CPU generally flip-flops back and forth be-
tween heavy use and complete idleness. Therefore, it’s important to observe these
numbers as an average over time. The smaller the monitoring interval, the less con-
sistent the results.

On multiprocessor machines, most Linux tools present an average of processor sta-
tistics across all processors. The mpstat command gives vmstat-like output for each
individual processor. The -P flag lets you specify a specific processor to report on.
mpstat is useful for debugging software that supports symmetric multiprocessing
(SMP)—it’s also enlightening to see how (in)efficiently your system uses multiple
processors.

On a workstation with only one user, the CPU generally spends 99% of its time idle.
Then, when you go to scroll one of the windows on your bitmap display, the CPU is
floored for a short period. In this situation, information about long-term average
CPU usage is not meaningful.

The second CPU statistic that’s useful for characterizing the burden on your system
is the “load average,” which represents the average number of runnable processes. It
gives you a good idea of how many pieces the CPU pie is being divided into. The
load average is obtained with the uptime command:

$ uptime
11:10am up 34 days, 18:42, 5 users, load average: 0.95, 0.38, 0.31

Three values are given, corresponding to the 5, 10, and 15-minute averages. In gen-
eral, the higher the load average, the more important the system’s aggregate perfor-
mance becomes. If there is only one runnable process, that process is usually bound
by a single resource (commonly disk bandwidth or CPU). The peak demand for that
one resource becomes the determining factor in performance.

When more processes share the system, loads may or may not be more evenly distrib-
uted. If the processes on the system all consume a mixture of CPU, disk, and mem-
ory, the performance of the system is less likely to be dominated by constraints on a
single resource. In this situation, it becomes most important to look at average mea-
sures of consumption, such as total CPU utilization.

P
e

rf
o

rm
a

n
ce

 A
n

a
ly

si
s

25.3 System performance checkup 809

See page 55 for
more information
about priorities.

Typically, Linux systems are busy with a load average of 3 and do not deal well with
load averages over about 8. A load average of this magnitude is a hint that you
should start to look for ways to artificially spread the load, such as using nice to set
process priorities.

The system load average is an excellent metric to track as part of a system baseline. If
you know your system’s load average on a normal day and it is in that same range on
a bad day, this is a hint that you should look elsewhere (such as the network) for
performance problems. A load average above the expected norm suggests that you
should look at the processes running on the Linux system itself.

Another way to view CPU usage is to run the ps command with the aux arguments,
which show you how much of the CPU each process is using. On a busy system, at
least 70% of the CPU is often consumed by just one or two processes. (Remember
that ps consumes some CPU itself.) Deferring the execution of the CPU hogs or re-
ducing their priority makes the CPU more available to other processes.

See page 65 for
more information
about top.

An excellent alternative to ps is a program called top. top presents about the same
information as ps, but in a “live” format that lets you watch the status of the system
change over time.2

How Linux manages memory

Before we jump into the specifics of Linux’s memory management, it’s worth men-
tioning once again that the Linux kernel evolves more rapidly than almost any other
operating system. The Linux memory management system has been in a period of
especially rapid flux, even by Linux standards, for many years.

The 2.6 kernel includes a vastly improved VM system.3 However, at the level of our
discussion in this chapter, the exact kernel version does not really matter. These
concepts apply regardless of the exact kernel version you are using.

Like UNIX, Linux manages memory in units called pages. The size of a memory
page is currently 4KB4 on PC hardware. The kernel allocates virtual pages to pro-
cesses as they request memory. Each virtual page is mapped to real storage, either
RAM or “backing store” on disk. (Backing store is usually space in the swap area,
but for pages that contain executable program text, the backing store is the original
executable file.) Linux uses a “page table” to keep track of the mapping between
these made-up virtual pages and real pages of memory.

Linux can effectively allocate as much memory as processes ask for by augmenting
real RAM with swap space. Since processes expect their virtual pages to map to real

2. Refreshing top’s output too rapidly can itself be quite a CPU hog, so be judicious in your use of top.

3. The 2.6 kernel includes the option to run the system without virtual memory—an option that is partic-
ularly useful for embedded systems. If you choose to run without virtual memory, you must ensure
that enough physical memory is available to satisfy all possible demands.

4. You can also use 4MB pages by setting HPAGE_SIZE in the 2.6 kernel.

810 Chapter 25 – Performance Analysis

memory, Linux is constantly busy shuffling pages between RAM and swap. This ac-
tivity is known as paging.5

Linux tries to manage the system’s memory so that pages that have been recently ac-
cessed are kept in memory and less active pages are paged out to disk. This scheme
is known as an LRU system since the least recently used pages are the ones that get
bumped. It would be very inefficient for the kernel to actually keep track of all mem-
ory references, so Linux uses a page cache to decide which pages to move out. This
system is much cheaper than a true LRU system but produces similar results.

Linux keeps track of an “age” for each page of virtual memory. Every time Linux
examines a page and finds it to have been recently referenced, it increments the
page’s age. (The term “age” is somewhat misleading because the value really indi-
cates frequency and recency of access. The higher the age, the fresher the page.)
Meanwhile, Linux runs the kswapd process, which regularly decreases the ages of
unreferenced pages.

The kernel maintains several lists of memory pages. Pages with an age greater than
zero are marked as “active” and are contained in the page cache “active list.” If a
page’s age reaches zero, kswapd swaps the page to the “inactive list.” kswapd re-
moves inactive pages from the page table and considers them eligible to be paged to
disk. Although inactive pages are no longer immediately accessible through the page
table, the kernel recovers them from memory or disk and sticks them back into the
page table on demand.

When memory is low, the kernel tries to guess which pages on the inactive list were
least recently used. If those pages have been modified by a process, Linux considers
them “dirty” and must page them out to disk before the memory can be reused. Pages
that have been laundered in this fashion or that were never dirty to begin with are
“clean” and can be recycled by Linux for use elsewhere.

When a page on the inactive list is referenced by a process, the kernel returns its
memory mapping to the page table, resets the page’s age, and transfers it from the
inactive list to the active list. Pages that have been written to disk must be paged in
before they can be reactivated. A “soft fault” occurs when a process references an in-
memory inactive page, and a “hard fault” results from a reference to a nonresident
(paged-out) page. In other words, a hard fault requires a page to be read from disk
and a soft fault does not.

Demand for memory varies, so the kernel can run kswapd’s page aging algorithm at
different speeds. When the demand for memory is extreme, the algorithm is run
more often and hence pages must be referenced more often to avoid being paged
out because their age decreases to zero.

To sort active pages from inactive pages, the virtual memory (VM) system depends
on the lag between the time a page is placed on the inactive list and the time it’s actu-

5. Note that “paging” and “swapping” are implemented the same way and use the same “swap” area for stor-
ing pages when the pages are not in RAM.

P
e

rf
o

rm
a

n
ce

 A
n

a
ly

si
s

25.3 System performance checkup 811

ally paged out. Therefore, the VM system has to predict future paging activity to de-
cide how often to run kswapd’s algorithm. If kswapd’s algorithm doesn’t run often
enough, there might not be enough clean inactive pages to satisfy demand. If it runs
too often, the kernel spends excessive time processing soft page faults.

Since the paging algorithm is predictive, there is not necessarily a one-to-one corre-
spondence between page-out events and page allocations by running processes. The
goal of the system is to keep enough free memory handy that processes don’t have to
actually wait for a page-out each time they make a new allocation. If paging increases
dramatically when your system is busy, you will probably benefit from more RAM.

You can tune the kernel’s “swappiness” parameter (/proc/sys/vm/swappiness) to
give the kernel a hint about how quickly it should make physical pages eligible to be
reclaimed from a process in the event of a memory shortage. By default, this param-
eter has a value of 60. If you set it to 0, the kernel resorts to reclaiming pages that have
been assigned to a process only when it has exhausted all other possibilities. If it is set
higher than 60 (the maximum value is 100), the kernel is more likely to reclaim pages
from a process when starved for memory. In all cases, if you find yourself tempted to
modify this parameter, it’s probably time to buy more RAM for the system.

If the kernel fills up both RAM and swap, all VM has been exhausted. Linux uses an
“out of memory killer” to handle this condition. This function selects and kills a pro-
cess to free up memory. Although the kernel attempts to kill off the least important
process on your system, running out of memory is always something to avoid. In
this situation, it’s likely that a substantial portion of the system’s resources are being
devoted to memory housekeeping rather than to useful work.

Even processes running at a low CPU priority can be sneaky page thieves. For exam-
ple, suppose you’re running a SETI6 client at very low priority (high nice value) on
your workstation while at the same time reading mail. As you pause to read a mes-
sage, your CPU use falls to zero and the simulation is allowed to run. It brings in all
of its pages, forcing out your shell, your window server, your mail reader, and your
terminal emulator. When you go on to the next message, there is a delay as a large
chunk of the system’s memory is turned over. In real life, a high nice value is no
guarantee that a process won’t cause performance problems.

Analyzing memory usage

Three numbers quantify memory activity: the total amount of active virtual mem-
ory, and the swapping and paging rates. The first number tells you the total demand
for memory, and the next two suggest the proportion of that memory that is actively
used. The goal is to reduce activity or increase memory until paging remains at an
acceptable level. Occasional paging is inevitable; don’t try to eliminate it completely.

You can use the free command to determine the amount of memory and swap space
that are currently in use. Use it with the -t flag to automatically calculate the total
amount of virtual memory.

6. The Search for Extraterrestrial Intelligence; see www.seti.org/science/setiathome.html.

www.seti.org/science/setiathome.html

812 Chapter 25 – Performance Analysis

$ free -t
total used free shared buffers cached

Mem: 127884 96888 30996 46840 57860 10352
-/+ buffers/cache: 28676 99208
Swap: 265032 3576 261456
Total: 392916 100464 292452

The free column indicates the number of kilobytes on the system’s free list; values
lower than 3% of the system’s total memory generally indicate problems. Use the
swapon command to determine exactly what files and partitions are being used for
swap space:

$ swapon -s
Filename Type Size Used Priority
/dev/sdb7 partition 265032 3576 -1

This system uses one disk partition, sdb7, for swap. Since paging activity can be a
significant drain on disk bandwidth, it is almost always better to spread your swap
space across multiple physical disks if possible. The use of multiple swap disks low-
ers the amount of time that any one disk has to spend dealing with swapped data
and increases swap storage bandwidth.

On traditional UNIX systems, the vmstat command reveals information about pag-
ing and swapping. However, the procinfo command shipped with most Linux dis-
tributions is a better source of information. Although procinfo comes with all our
example systems, it isn’t necessarily included in the default installation, so you may
need to add the procinfo package by hand.

See page 874 for more
information about the
/proc filesystem.

procinfo doesn’t have a special way of getting information about your system; it
simply formats the data from the files in your /proc filesystem. Without it, interpret-
ing the /proc files can present a considerable challenge. For continuous updates ev-
ery five seconds, run procinfo -n5.

$ procinfo
Linux 2.6.9-34.EL (root@bull) (gcc 3.4.3 20050227) #1 1CPU [main]

Memory: Total Used Free Shared Buffers
Mem: 463728 371512 92216 0 144042
Swap: 1866470 218 1626252

Bootup: Sat Jul 29 08:47:20 2006 Load average: 0.08 0.06 0.00

user : 1:20:32.12 1.3% page in : 0
nice : 0:02:36.30 0.0% page out : 0
system: 3:06:46.90 0.8% swap in : 0
idle : 1d 7:23:49.50 97.9% swap out : 0
steal : 0:00:00.00 0.0%
uptime: 4d 1:51:43.64 context : 55465717

irq 0: 5748875398 timer irq 8: 3 rtc
irq 1: 3 irq 11: 75300822 eth0
irq 2: 0 cascade [4] irq 12: 3
irq 4: 4 irq 14: 7529735 ide0

P
e

rf
o

rm
a

n
ce

 A
n

a
ly

si
s

25.3 System performance checkup 813

Some of the information in procinfo’s output overlaps that of free, uptime, and
vmstat. In addition, procinfo reports information about your kernel distribution,
memory paging, disk access, and IRQ assignments. You can use procinfo -a to see
even more information from your /proc filesystem, including kernel boot options,
kernel loadable modules, character devices, and filesystems.

Any apparent inconsistencies among the memory-related columns are for the most
part illusory. Some columns count pages and others count kilobytes. All values are
rounded averages. Furthermore, some are averages of scalar quantities and others
are average deltas. For example, you can’t compute the next value of Free from the
current Free and paging information, because the paging events that determine the
next average value of Free have not yet occurred.

Use the page in/out and the swap in/out fields to evaluate the system’s paging and
swapping behavior. A page-in does not necessarily represent a page being recovered
from the swap area. It could be executable code being paged in from a filesystem or
a copy-on-write page being duplicated, both of which are normal occurrences that
do not necessarily indicate a shortage of memory. On the other hand, page-outs al-
ways represent data written to disk after being forcibly ejected by the kernel.

If your system has a constant stream of page-outs, it’s likely that you would benefit
from more memory. But if paging happens only occasionally and does not produce
annoying hiccups or user complaints, you can ignore it. If your system falls some-
where in the middle, further analysis should depend on whether you are trying to
optimize for interactive performance (e.g., a workstation) or to configure a machine
with many simultaneous users (e.g., a compute server).

If half the operations are page-outs, you can figure that every 100 page-outs cause
about one second of latency. If 150 page-outs must occur to let you scroll a window,
you will wait for about 1.5 seconds. A rule of thumb used by interface researchers is
that an average user perceives the system to be “slow” when response times are longer
than seven-tenths of a second.

It’s also worth pointing out that procinfo provides some CPU information that is
not visible with vmstat or uptime. In addition to reporting the load average over
5-, 10-, and 15-minute periods, procinfo lists the instantaneous number of running
processes, the total number of processes, and the process ID of the last process that
ran. For example, here’s an excerpt from procinfo’s output on a busy server:

Load average: 2.37 0.71 0.29 3/67 26941

This server has 67 total processes, of which 3 were runnable. The last process to run
had PID 26941 (in this case, it was the shell process from which procinfo was run).

Analyzing disk I/O

You can monitor disk performance with the iostat command. Like vmstat, it ac-
cepts optional arguments to specify an interval in seconds and a repetition count,
and its first line of output is a summary since boot. Like vmstat, it also tells you how

814 Chapter 25 – Performance Analysis

the CPU’s time is being spent. Here is a quick example that omits some output not
specific to disks:

$ iostat
...
Device: tps Blk_read/s Blk_wrtn/s Blk_read Blk_wrtn
hdisk0 0.54 0.59 2.39 304483 1228123
hdisk1 0.34 0.27 0.42 140912 216218
hdisk2 0.01 0.02 0.05 5794 15320
hdisk3 0.00 0.00 0.00 0 0

iostat gathers information from the /proc filesystem to produce a row of output for
each physical disk in your system. Unfortunately, Linux keeps only minimal disk
statistics, and even the information that is kept is of limited use. Each hard disk has
the columns tps, Blk_read/s, Blk_wrtn/s, Blk_read, and Blk_wrtn, indicating I/O
transfers per second, blocks read per second, blocks written per second, total blocks
read, and total blocks written. Rows of zeros are reported if the system has fewer
than four disks.

Disk blocks are typically 1K in size, so you can readily determine the actual disk
throughput in kilobytes. Transfers, on the other hand, are fairly nebulously defined.
One transfer request can include several logical I/O requests over several sectors, so
this data is also mostly useful for identifying trends or irregular behavior.

The cost of seeking is the most important factor affecting disk drive performance. To
a first approximation, the rotational speed of the disk and the speed of the bus it’s
connected to have relatively little impact. Modern disks can transfer dozens of mega-
bytes of data per second if they are read from contiguous sectors, but they can only
perform about 100 to 300 seeks per second. If you transfer one sector per seek, you
can easily realize less than 5% of the drive’s peak throughput.

Seeks are more expensive when they make the heads travel a long distance. If you
have a disk with several filesystem partitions and files are read from each partition
in a random order, the heads must travel back and forth a long way to switch be-
tween partitions. On the other hand, files within a partition are relatively local to
one another. When partitioning a new disk, you may want to consider the perfor-
mance implications and put files that are accessed together in the same filesystem.

To really achieve maximum disk performance, you should put filesystems that are
used together on different disks. Although the bus architecture and device drivers
influence efficiency, most computers can manage multiple disks independently,
thereby dramatically increasing throughput. For example, it is often worthwhile to
split frequently accessed web server data and logs among multiple disks.

It’s especially important to split the swap area among several disks if possible, since
paging tends to slow down the entire system. This configuration is supported by the
swapon command. The Linux kernel can use both dedicated swap partitions and
swap files on a formatted filesystem.

P
e

rf
o

rm
a

n
ce

 A
n

a
ly

si
s

25.3 System performance checkup 815

Linux systems also allow you to set up multiple “memory-based filesystems,” which
are essentially the same thing as PC RAM disks. A special driver poses as a disk but
actually stores data in high-speed memory. Many sites use a RAM disk for their
/tmp filesystem or for other busy files such as web server logs or email spools. Using
a RAM disk may reduce the memory available for general use, but it makes the read-
ing and writing of temporary files blindingly fast. It’s generally a good deal.

Most Linux kernels have been compiled with RAM disk support. On systems that
support RAM disks, the /dev directory contains multiple RAM disk device files such
as /dev/ram0 and /dev/ram1. The number of devices may vary, but there are usu-
ally at least five.

To use a RAM disk, first format the filesystem on an unused RAM disk device, then
mount it on an existing directory:

mke2fs /dev/ram12
mount /dev/ram12 /tmp/fastdisk

The default RAM disk size is only 4MB, which really isn’t large enough for /tmp. Un-
fortunately, the procedure for changing the size is a bit painful because it is set as a
kernel variable. You can either add a line such as ramdisk_size=100000 to your boot
loader configuration to pass in the new value at boot time (the size is given in 1K
blocks) or set up the RAM disk driver as a dynamically loadable module. In the latter
case, you would add the necessary argument to the /etc/modprobe.conf file or pass
it in as an argument to insmod.

Some packages degrade the system’s performance by delaying basic operations. Two
examples are disk quotas and CPU accounting. Quotas require a disk usage sum-
mary to be updated as files are written and deleted. CPU accounting writes a data
record to an accounting file whenever a process completes. Disk caching helps to
soften the impact of these features, but they may still have a slight effect on perfor-
mance and should not be enabled unless you really use them.

Choosing an I/O scheduler

An I/O scheduling algorithm acts as a referee between processes competing for disk
I/O. It optimizes the order and timing of requests to provide the best possible overall
I/O performance.

Four different scheduling algorithms are built into the 2.6 kernel. You can take your
pick. Unfortunately, the scheduling algorithm is set by the elevator=algorithm kernel
argument and so can only be set at boot time. If is usually set in the grub.conf file.

The available algorithms are:

• Completely Fair Queuing (elevator=cfq): This is the default algorithm
and is usually the best choice for general-purpose servers. It tries to evenly
distribute access to I/O bandwidth.

816 Chapter 25 – Performance Analysis

• Deadline (elevator=deadline): This algorithm tries to minimize latency
for each request. The algorithm reorders requests to increase performance.

• NOOP (elevator=noop): This algorithm implements a simple FIFO
queue. It assumes that I/O requests are optimized or reordered by the
driver or device (such as might be done by an intelligent controller). This
option may be the best choice in some SAN environments.

• Anticipatory (elevator=as): This algorithm delays I/O requests in the
hope of ordering them for maximum efficiency. This might be a good
choice for a desktop workstation, but it is rarely optimal for a server.

By determining which scheduling algorithm is most appropriate for your environ-
ment—and you may need to try all four—you may be able to directly affect disk I/O
performance.

sar: Collect and report statistics over time

One performance monitoring tool that has become common on Linux systems is
sar. This command has its roots in early AT&T UNIX, but it has been completely
reincarnated for use under Linux.

At first glance sar seems to display much the same information as procinfo, vmstat,
and iostat. However, there’s one important difference: sar can report on historical as
well as current data.

Without options, the sar command reports CPU utilization at 10-minute intervals
for the day since midnight, as shown below. This historic data collection is made
possible by the sal script, which is part of the sar (sometimes called sysstat) pack-
age and must be set up to run from cron at periodic intervals. sar stores the data it
collects in /var/log/sa in a binary format.

$ sar
Linux 2.6.9-11.ELsmp (bull.atrust.com) 08/04/2006

12:00:01 AM CPU %user %nice %system %iowait %idle
12:10:01 AM all 0.10 0.00 0.04 0.06 99.81
12:20:01 AM all 0.04 0.00 0.03 0.05 99.88
12:30:01 AM all 0.04 0.00 0.03 0.04 99.89
12:40:01 AM all 0.09 0.00 0.03 0.05 99.83
12:50:01 AM all 0.04 0.00 0.03 0.04 99.88
01:00:01 AM all 0.05 0.00 0.03 0.04 99.88

In addition to CPU information, sar can also report on metrics such as disk and
network activity. Use sar -d for a summary of today’s disk activity or sar -n DEV for
network interface statistics. sar -A reports all available information.

See page 665 for a
sample Cacti graph.

sar has some limitations, but it’s a good bet for quick-and-dirty historical informa-
tion. If you’re serious about making a long-term commitment to performance mon-
itoring, we suggest that you set up a data collection and graphing platform such as

P
e

rf
o

rm
a

n
ce

 A
n

a
ly

si
s

25.4 Help! My system just got really slow! 817

Cacti. Cacti comes to us from the network management world, but it can actually
graph arbitrary system metrics such as CPU and memory information.

oprofile: Comprehensive profiler

oprofile is an incredibly powerful integrated system profiler for Linux systems run-
ning the 2.6 kernel or later. All components of a Linux system can be profiled: hard-
ware and software interrupt handlers, kernel modules, the kernel itself, shared li-
braries, and applications.

If you have a lot of extra time on your hands and want to know exactly how your
system resources are being used (down to the smallest level of detail), consider run-
ning oprofile. This tool is particularly useful if you are developing your own in-
house applications or kernel code.

Both a kernel module and a set of user-level tools are included in the oprofile distri-
bution, which is available for download at oprofile.sourceforge.net.

On Red Hat, you also need to install the kernel-debuginfo package to get the files
you need to run oprofile.

25.4 HELP! MY SYSTEM JUST GOT REALLY SLOW!

In previous sections, we’ve talked mostly about issues that relate to the average per-
formance of a system. Solutions to these long-term concerns generally take the form
of configuration adjustments or upgrades.

However, you will find that even properly configured systems are sometimes more
sluggish than usual. Luckily, transient problems are often easy to diagnose. Ninety
percent of the time, they are caused by a greedy process that is simply consuming so
much CPU power, disk, or network bandwidth that other processes have been stalled.
On occasion, malicious processes hog available resources to intentionally slow a sys-
tem or network, a scheme known as a “denial of service” or DOS attack.

You can often tell which resource is being hogged without even running a diagnostic
command. If the system feels “sticky” or you hear the disk going crazy, the problem
is most likely a disk bandwidth or memory shortfall.7 If the system feels “sluggish”
(everything takes a long time, and applications can’t be “warmed up”), the problem
may lie with the CPU load.

The first step in diagnosis is to run ps auxww or top to look for obvious runaway
processes. Any process that’s using more than 50% of the CPU is likely to be at fault.
If no single process is getting an inordinate share of the CPU, check to see how many
processes are getting at least 10%. If you snag more than two or three (don’t count ps
itself), the load average is likely to be quite high. This is, in itself, a cause of poor

7. That is, it takes a long time to switch between applications, but performance is acceptable when an
application is repeating a simple task.

818 Chapter 25 – Performance Analysis

performance. Check the load average with uptime, and use vmstat or top to check
whether the CPU is ever idle.

If no CPU contention is evident, run vmstat or procinfo to see how much paging is
going on. All disk activity is interesting: a lot of page-outs may indicate contention
for memory, and disk traffic in the absence of paging may mean that a process is
monopolizing the disk by constantly reading or writing files.

There’s no direct way to tie disk operations to processes, but ps can narrow down
the possible suspects for you. Any process that is generating disk traffic must be
using some amount of CPU time. You can usually make an educated guess about
which of the active processes is the true culprit.8 Use kill -STOP to suspend the pro-
cess and test your theory.

Suppose you do find that a particular process is at fault—what should you do? Usu-
ally, nothing. Some operations just require a lot of resources and are bound to slow
down the system. It doesn’t necessarily mean that they’re illegitimate. It is usually
acceptable to renice an obtrusive process that is CPU-bound. But be sure to ask the
owner to use the nice command in the future. Sometimes, application tuning can
dramatically reduce a program’s demand for CPU resources; this effect is especially
visible with custom network server software such as web applications.

Processes that are disk or memory hogs can’t be dealt with so easily. renice generally
does not help. You do have the option of killing or stopping the process, but we rec-
ommend against this if the situation does not constitute an emergency. As with CPU
pigs, you can use the low-tech solution of asking the owner to run the process later.

The kernel allows a process to restrict its own use of physical memory by calling the
setrlimit system call. This facility is also available in the C shell through the built-in
limit command. For example, the command

% limit memoryuse 32m

causes all subsequent commands that the user runs to have their use of physical
memory limited to 32MB. This feature is roughly equivalent to renice for memory-
bound processes. You might tactfully suggest that repeat offenders put such a line
in their .cshrc files.

If a runaway process doesn’t seem to be the source of poor performance, investigate
two other possible causes. The first is an overloaded network. Many programs are so
intimately bound up with the network that it’s hard to tell where system performance
ends and network performance begins. See Chapter 19 for more information about
the tools used to monitor networks.

8. A large virtual address space or resident set used to be a suspicious sign, but shared libraries have
made these numbers less useful. ps is not very smart about separating system-wide shared library
overhead from the address spaces of individual processes. Many processes wrongly appear to have tens
of megabytes of active memory.

P
e

rf
o

rm
a

n
ce

 A
n

a
ly

si
s

25.6 Exercises 819

Some network overloading problems are hard to diagnose because they come and
go very quickly. For example, if every machine on the network runs a network-related
program out of cron at a particular time each day, there will often be a brief but
dramatic glitch. Every machine on the net will hang for five seconds, and then the
problem will disappear as quickly as it came.

Server-related delays are another possible cause of performance crises. Linux sys-
tems are constantly consulting remote servers for NFS, NIS, DNS, and any of a dozen
other facilities. If a server is dead or some other problem makes the server expensive
to communicate with, the effects can ripple back through client systems.

For example, on a busy system, some process may use the gethostent library routine
every few seconds or so. If a DNS glitch makes this routine take two seconds to com-
plete, you will likely perceive a difference in overall performance. DNS forward and
reverse lookup configuration problems are responsible for a surprising number of
server performance issues.

25.5 RECOMMENDED READING

EZOLT, PHILLIP G. Optimizing Linux Performance. Upper Saddle River, NJ: Prentice
Hall PTR, 2005.

JOHNSON, S., ET AL. Performance Tuning for Linux Servers. Indianapolis, IN: IBM
Press, 2005.

LOUKIDES, MIKE, AND GIAN-PAOLO D. MUSUMECI. System Performance Tuning (2nd
Edition). Sebastopol: O’Reilly & Associates, 2002.

25.6 EXERCISES

E25.1 Make an educated guess as to the problem in each of the following cases:

a) When switching between applications, the disk thrashes and there is
a noticeable lag.

b) A numerical simulation program takes more time than normal, but
system memory is mostly free.

c) Users on a very busy LAN complain of slow NFS access, but the load
average on the server is very low.

d) Running a command (any command) often says “out of memory”.

E25.2 Run procinfo on an available Linux machine and discuss the results.
What, if any, resources appear to be in heavy use? What resources ap-
pear to be unused? Include the IRQ listing in your analysis.

Exercises are continued on the next page.

820 Chapter 25 – Performance Analysis

E25.3 Load balancing can have a dramatic impact on server performance as
seen from the outside world. Discuss several mechanisms that could be
used to perform load balancing.

E25.4 List the four main resources that can affect performance. For each re-
source, give an example of an application that could easily lead to the
exhaustion of that resource. Discuss ways to alleviate some of the stress
associated with each scenario.

E25.5 Using the web and man pages, look into the command hdparm. What
options does it provide to test disk access speeds? How can hdparm im-
prove disk access speeds in some cases?

E25.6 Choose two programs that use a noticeable amount of system resources.
Use vmstat and the other tools mentioned in the chapter to profile both
applications. Make a claim as to what each program does that makes it a
resource hog. Back up your claims with data.

821

C
o

o
p

e
ra

ti
n

g
 w

it
h

 W
in

d
o

w
s

26 Cooperating with Windows

Chances are high that your environment includes both Microsoft Windows and Linux
systems. If so, there are many ways in which these operating systems can assist each
other. Among other feats, Windows applications can run from a Linux desktop or
access a Linux server’s printers and files. Linux applications can display their user
interfaces on a Windows desktop.

Both platforms have their strengths, and they can be made to work together. Win-
dows is a popular and featureful desktop platform, capable of bridging the gap be-
tween the user and the network cable coming out of the wall. Linux, on the other
hand, is a reliable and scalable infrastructure platform. So let’s not fight, OK?

26.1 LOGGING IN TO A LINUX SYSTEM FROM WINDOWS

See page 697 for
more information
about SSH.

Users may often find themselves wanting to head for the snow-covered slopes of a
good C shell or bash session without abandoning the Windows box on their desk.
From the client’s perspective, the easiest way to accomplish this is to use the telnet
program that Microsoft ships with Windows. These days, though, most Linux sys-
tems have (wisely) disabled their telnet servers for security reasons. People who
want to log in need a terminal emulator that understands SSH.

There are several SSH implementations for Windows. Our current favorite, the open
source PuTTY, is simple and effective. It supports many of the features you have come
to expect from a native terminal application such as xterm. The only complaint we
have heard regarding PuTTY is that it does not handle multibyte characters correctly;
Asian language users may be better off combining Tera Term Pro with the TTSSH

Cooperating with Windows

822 Chapter 26 – Cooperating with Windows

plug-in, although this setup supports only version 1 of the SSH protocol. You can find
PuTTY here:

www.chiark.greenend.org.uk/~sgtatham/putty

and Tera Term Pro here:

hp.vector.co.jp/authors/VA002416/teraterm.html

SSH also supports file transfer, and PuTTY includes two command-line clients for
this purpose: psftp and pscp. Hard-core “never touch a command line” Windows
users may prefer the graphical WinSCP client from winscp.sf.net.

Another plausible option is to install the more general UNIX-on-Windows Cygwin
package and to run its SSH utilities from rxvt. There’s more information about Cyg-
win starting on page 827.

A nifty zero-footprint Java implementation of SSH called MindTerm is available
from AppGate (www.appgate.com). It’s free for personal use. It runs on any system
that supports Java and can be configured in a variety of ways.

An interesting feature of SSH is its ability to forward TCP ports back and forth be-
tween client and server. For example, this feature allows you to set up on the client a
local port that forwards incoming connection to a different port on a machine that is
only reachable from the server. Although this feature opens up a world of new possi-
bilities, it is also potentially dangerous and is something you must be aware of when
granting SSH access to your server. Fortunately, the port-forwarding feature can be
disabled on the server side to limit SSH to terminal access and file transfer.

26.2 ACCESSING REMOTE DESKTOPS

Graphical desktops on Linux are tied to the free X Window System, which is in no
way related to Microsoft Windows. X Windows was developed at MIT in the mid-
1980s and has been adopted as a standard by all UNIX workstation manufacturers
and Linux distributions. It has been through several major updates, but a stable
base was finally reached with version 11, first published in the early 1990s. The
version number of the protocol was appended to X to form X11, the name by which
it is most commonly known. (The name “Windows” by itself always refers to Mi-
crosoft Windows, both in this chapter and in the real world.)

X11 is a client/server system. The X server is responsible for displaying data on the
user’s screen and for acquiring input from the user’s mouse and keyboard. It com-
municates with client applications over the network. The server and clients need not
be running on the same machine.

A more detailed discussion of the X Windows architecture can be found in Chapter
Chapter 22, The X Window System, which starts on page 741.

www.chiark.greenend.org.uk/~sgtatham/putty
www.appgate.com

C
o

o
p

e
ra

ti
n

g
 w

it
h

 W
in

d
o

w
s

26.2 Accessing remote desktops 823

Running an X server on a Windows computer

X11 is a rich protocol that has incorporated many extensions over the years. The
implementation of an X server is, therefore, rather complex. Nevertheless, X server
implementations now exist for almost every operating system. X Windows itself is
OS-agnostic, so X11 clients running on a Linux box can display on an X server run-
ning under Microsoft Windows and allow a user to control them just as if that user
were sitting at the system console.

Unfortunately, the original designers of the X protocols did not devote much
thought to security. Every program that connects to your X server can read every-
thing you type on the keyboard and see everything displayed on your screen. To
make matters worse, remote programs do not even have to display a window when
accessing your X server; they can simply lurk silently in the background.

Several methods of securing X11 have been proposed over time, but they have all
tended to be somewhat complex. The bottom line is that you are best off preventing
all remote connections to your X server unless you are absolutely sure what you are
doing. Most X servers are configured to refuse remote connections by default, so
you should be safe as long as you do not run the xhosts program (or its equivalent)
to grant remote access.

See page 697 for
more information
about SSH.

Unfortunately, granting remote access is exactly what you need to do when you seek
to run programs on Linux and display their interfaces on Windows. So, how to run a
remote application without granting remote access to the X server? The most com-
mon method is to use a feature of the SSH protocol that is specifically designed to
support X11. This scheme creates a secure tunnel between X clients running on the
remote host and the local X server. Programs started on the remote host will display
automatically on the local machine, but through the magic of SSH, the local X server
will perceive them as having originated locally.

Note that X forwarding will only work if the X forwarding features have been en-
abled on both the SSH server and the SSH client. If you use the PuTTY SSH client on
windows, simply activate the X11 forwarding feature in its setup screen. On the SSH
server side (that is, the X11 client side; the Linux machine), make sure that the
/etc/ssh/sshd_config file contains the line

X11Forwarding yes

If you modify the SSH server configuration, make sure you restart the sshd process
to activate the new configuration.

Although Apple provides a free X server for Mac OS X, there is unfortunately no
such offering from Microsoft. There is, however, a free X server available from the
Cygwin project (cygwin.com) that works very well once it has been configured. Un-
fortunately, configuration may prove rather challenging for people who do not know
how to configure an X server on Linux. Commercial X servers for windows include
eXeed and X-Win32. These offer much simpler configuration at a rather steep price.

824 Chapter 26 – Cooperating with Windows

VNC: Virtual Network Computing

In the late 1990s, a few people at AT&T Labs in Cambridge, UK, developed a system
for remote desktop access called VNC. Their idea was to marry the simplicity of a
“dumb” terminal with the modern world of window systems. In contrast to X11, the
VNC protocol does not deal with individual applications. Instead, it creates a com-
plete virtual desktop (or provides remote access to an existing desktop) as a unit.
Under VNC, a special X11 server runs on the central machine, and a viewer applica-
tion is used to access that server.

AT&T published the VNC software under a liberal open source license. This allowed
other folks to hop on the bandwagon and create additional server and viewer imple-
mentations, as well as protocol improvements for reduced bandwidth. Today, VNC
viewers are available for most devices that provide some means for graphical dis-
play. VNC servers for UNIX/Linux and Windows are widely available.

The Linux VNC server implementation is essentially a graphics adaptor emulator
that plugs into the X.Org X Windows server. Running a vncserver from your Linux
account creates a new virtual desktop that runs in the self-contained world of the
Linux machine. You can then use a VNC viewer to access that desktop remotely.

The VNC protocol is stateless and bitmap based. Therefore, viewers can freely con-
nect and disconnect. It is even possible to have several viewers access the same VNC
server at the same time. This last feature is especially useful for remote support and
for training setups. It also facilitates shared console access for system administration.

VNC servers in the Windows world do not normally create an extra desktop; they
simply export the standard Windows desktop as it is displayed on screen. The main
application for this technology is remote support.

These days, the original authors of VNC are running their own company, RealVNC
(realvnc.com). The Ultr@VNC project (ultravnc.sf.net) is concentrating on the Win-
dows domain with a very fast and feature-rich Windows-based VNC server imple-
mentation, and TightVNC (tightvnc.com) is working on improved compression ra-
tios. These groups do talk with each other, so features tend to cross-pollinate among
the various implementations.

The VNC protocol has been designed with extensibility in mind. All combinations
of viewers and servers can work together; they pick the best protocol variant that
both sides understand. Implementation-specific features (such as file transfer) can
usually only be accessed by running a server and client from the same project.

Windows RDP: Remote Desktop Protocol

Ever since Windows 2000 Server, every Windows box has the technical ability to
provide graphical remote access to several users at the same time. The remote access
component is called Remote Desktop, and it uses a protocol called the Remote Desk-
top Protocol (RDP) to communicate between client and server.

C
o

o
p

e
ra

ti
n

g
 w

it
h

 W
in

d
o

w
s

26.3 Running Windows and Windows-like applications 825

With decent PC hardware, you can easily run 50 concurrent Microsoft Office ses-
sions on one Windows 2003 server. Due to licensing restrictions, this wonderful
ability is only usable for a single session on Windows XP. If you log in from a remote
machine, you will be logged out locally.

If you do have a Windows Server installation, you can enable the Terminal Server
service and use the open source rdesktop program (www.rdesktop.org) to access a
Windows desktop right from your Linux workstation. (Clients for Windows, Mac
OS, and Windows CE are also available directly from Microsoft.) Like VNC, the RDP
protocol is stateless. It is therefore possible to reconnect to a disconnected session or
to perform remote support.

RDP even allows local printer and disk resources to be forwarded to the remote
Windows session. Test the setup and have fun—just don’t deploy it before you have
the licensing sorted out. The Terminal Server will issue a 30-day test license to who-
ever connects to it, but after 30 days it will not allow any more connections from that
client unless you have purchased a proper Terminal Server Client Access License.

The whole concept of remotely accessing a Windows box seems to confuse the li-
censing departments of both Microsoft and most other Windows software vendors.
The license conditions keep changing as they try to nail down their approaches, so
make sure you get the official word on current pricing before you whet your users’
appetites. The one licensing scheme we would all love to see (license by number of
concurrent users) does not seem to be on anybody’s agenda. Currently, the choice is
between buying licenses for every computer or for every individual user who is ever
going to access the server.

26.3 RUNNING WINDOWS AND WINDOWS-LIKE APPLICATIONS

The commercial product VMware (vmware.com) lets you run multiple operating
systems simultaneously on PC hardware. VMware emulates entire virtual “guest
machines” on top of a host operating system, which must be either Linux or Win-
dows. Regardless of the host operating system, you can install most Intel-compatible
operating systems into one of VMware’s virtual machines.

VMware is an ideal tool for development or testing environments. It even comes
with a feature that networks your virtual operating systems so that they can commu-
nicate with one another and share the system’s physical Ethernet connection.

A different approach is taken by the Wine system from winehq.org. Wine imple-
ments the Windows programming API in the Linux environment, allowing you to
run Windows applications directly on top of Linux and X. This free software trans-
lates native Windows API calls to their Linux counterparts and can do so without
using any Microsoft code. Wine provides support for TCP/IP networking, serial de-
vices, and sound output.

The Wine project was started in 1993 by Bob Amstadt. Wine has come a very long
way since then. A large number of Windows applications run without problems, and

www.rdesktop.org

826 Chapter 26 – Cooperating with Windows

others can be made to work with a few tricks; see the web site for details. Unfortu-
nately, getting an application to run under Wine is often not so simple. The talented
folks at codeweavers.com have written a commercial installer system that is able to
make some of the balkier Windows apps work with correctly.

If your tool of choice is supported by CodeWeavers, great. But even if it is not, give
the application a try—you might be pleasantly surprised. But if the application does
not work on its own and you cannot find any prewritten hints, be prepared to spend
some serious spare time whipping it into shape if you are determined to do it on your
own. If you have the budget, you can consider contracting CodeWeavers to help you.

Win4Lin is a commercial alternative to Wine from NeTraverse. Win4Lin claims to be
more stable than Wine and to support a few more Microsoft applications. However,
it requires kernel modifications, which Wine does not. Win4Lin is available from
netraverse.com.

Dual booting, or why you shouldn’t

If you’ve ever installed Linux on a computer that had a former life as a Windows
machine, you have doubtless been offered the option to set up a dual boot configu-
ration. These days such configurations function pretty much as promised. It is even
possible to mount Windows partitions under Linux and to access Linux filesystem
under Windows. Read all about setting up a dual boot configuration on page 30.

But wait! If you are doing real work and need access to both Windows and Linux, be
very skeptical of dual booting as a possible solution. Dual boot setups represent
Murphy’s Law at its worst: they always seem to be booted into the wrong OS, and the
slightest chore usually requires multiple reboots. Computers are so cheap and re-
mote access so easy that there’s usually no reason to put yourself through this end-
less torture.

The OpenOffice.org alternative

A few years ago, Sun released an open source version of StarOffice, its Microsoft-
Office-like application suite, under the name OpenOffice.org. OpenOffice.org in-
cludes a spreadsheet, a word processor, a presentation package, and a drawing appli-
cation. These tools can read and write files generated by their Microsoft analogs.
You can download the suite from openoffice.org.

OpenOffice.org is available on all major platforms, including Windows, Linux, So-
laris, and most other versions of UNIX. There is also a version for Mac OS X. If you
are looking for a package with a commercial support contract, you can also buy
StarOffice from Sun, which is essentially OpenOffice.org in a box with better spell-
checking and a database.

26.4 USING COMMAND-LINE TOOLS WITH WINDOWS

What many Linux people miss most when working on Windows systems is their
beloved xterm. Not just any old terminal application or the abomination known as

C
o

o
p

e
ra

ti
n

g
 w

it
h

 W
in

d
o

w
s

26.5 Windows compliance with email and web standards 827

the DOS box, but a proper xterm with support for resizing, colors, mouse control,
and all the fancy xterm escape sequences.

Although there is no stand-alone (i.e., without X) native port of xterm for Windows,
a neat little program called rxvt comes awfully close. It is part of the Cygwin system,
downloadable from cygwin.com. If you install Cygwin’s X server, you can use the
real xterm.

This system, which is distributed under the GNU General Public License, contains
an extensive complement of common UNIX commands as well as a porting library
that implements the POSIX APIs under Windows. Cygwin’s way of reconciling the
UNIX and Windows command-line and filesystem conventions is well thought out
and manages to bring many of the creature comforts of a UNIX shell to native Win-
dows commands. In addition to making UNIX users feel at home, Cygwin makes it
easy to get UNIX software running under Windows. See cygwin.com for details.

The MKS Toolkit is a commercial alternative to Cygwin. See MKS’s web site at
mkssoftware.com for more information.

A growing list of UNIX software now also runs natively on Windows, including
Apache, Perl, BIND, PHP, MySQL, Vim, Emacs, Gimp, Wireshark, and Python.

26.5 WINDOWS COMPLIANCE WITH EMAIL AND WEB STANDARDS

In an ideal world, everybody would use open standards to communicate, and happi-
ness would abound. But this is not an ideal world, and many have accused Windows
of being a mess of proprietary protocols and broken implementations of Internet
standards. Partially true, perhaps, yet there are many areas in which Windows can
play along nicely in the standards world. Two of these areas are email and web service.

In the wild history of the web, a number of corporations have tried to embrace and
extend the web in ways that would allow them to lock out competition and give their
own business a mighty boost. Microsoft is still engaged in this battle at the browser
level with its numerous extensions peculiar to Internet Explorer. At the underlying
level of the HTTP protocol, however, Windows and Windows browsers are relatively
platform-agnostic.

Microsoft provides its own web server, IIS, but its performance has historically
lagged that of Apache running on Linux by a significant margin. Unless you are
locked into a server-side technology such as ASP, there’s no compelling reason to use
Windows machines as web servers. As web clients, however, they will happily lap up
all the web content your UNIX and Linux servers can dish out.

For email, Microsoft touts its Exchange Server product as the preferred server-side
technology. Truth be told, Exchange Server’s capabilities do outshine those of Inter-
net-standard mail systems, particularly when the mail clients consist of Windows
boxes running Microsoft Outlook. But fear not: Exchange Server can also speak
SMTP for inbound and outbound mail, and it can serve up mail to Linux clients,

828 Chapter 26 – Cooperating with Windows

using the standard IMAP and POP protocols. On the client side, both Outlook and
its free younger sibling, Outlook Express, can connect to IMAP and POP servers.
Mix and match in any combination you like. More information about POP and
IMAP can be found starting on page 542.

26.6 SHARING FILES WITH SAMBA AND CIFS

In the early 1980s, IBM designed an API that allowed computers on the same net-
work subnet to talk to one another by using names instead of cryptic numbers. The
result was called the Network Basic/Input Output System, or NetBIOS. The combi-
nation of NetBIOS and its original underlying network transport protocol was called
the NetBIOS Extended User Interface, or NetBEUI. The NetBIOS API became quite
popular, and it was adapted for use on top of a variety of different network protocols
such as IPX, DECNet, and TCP/IP.

Microsoft and Intel developed a file sharing protocol on top of NetBIOS and called it
“the core protocol”. Later, it was renamed the Server Message Block protocol or SMB
for short. A later evolution of the SMB protocol known as the Common Internet File
System (CIFS) is essentially a version of SMB that has been cleaned up and tuned for
operation over wide area networks. CIFS is the current lingua franca of Windows file
sharing.

In the Windows world, a filesystem or directory made available over the network is
known as a “share.” It sounds a bit strange to UNIX ears, but we follow this conven-
tion when referring to CIFS filesystems.

Samba: CIFS server for UNIX

Samba is an enormously popular software package, available under the GNU public
license, that implements the server side of CIFS on Linux hosts. It was originally
created by Andrew Tridgell, an Australian, who reverse-engineered the SMB proto-
col and published the resulting code in 1992.

Today, Samba is well supported and under active development to expand its function-
ality. It provides a stable, industrial-strength mechanism for integrating Windows
machines into a Linux network. The real beauty of Samba is that you only need to
install one package on the server; no special software is needed on the Windows side.1

CIFS provides five basic services:

• File sharing

• Network printing

• Authentication and authorization

• Name resolution

• Service announcement (file server and printer “browsing”)

1. The Windows machine must have already been configured for “Microsoft networking.”

C
o

o
p

e
ra

ti
n

g
 w

it
h

 W
in

d
o

w
s

26.6 Sharing files with Samba and CIFS 829

Samba not only serves files through CIFS, but it can also perform the basic functions
of a Windows primary domain controller.2 Samba supports some advanced fea-
tures, including Windows domain logins, roaming Windows user profiles, and
CIFS print spooling.

Most of Samba’s functionality is implemented by two daemons: smbd and nmbd.
smbd implements file and print services, as well as authentication and authoriza-
tion. nmbd provides the other major CIFS components: name resolution and ser-
vice announcement.

Unlike NFS, which requires kernel-level support, Samba requires no driver and runs
entirely as a user process. It binds to the sockets used for CIFS requests and waits for
a client to request access to a resource. Once a request has been authenticated, smbd
forks an instance of itself that runs as the user who is making the requests. As a
result, all normal file access permissions (including group permissions) are obeyed.
The only special functionality that smbd adds on top of this is a file locking service
that provides client PCs with the locking semantics to which they are accustomed.

Samba installation

Samba is shipped with all the Linux distributions covered in this book. Patches, doc-
umentation, and other goodies are available from samba.org. Make sure you are using
the most current Samba packages available for your system, since bugs might poten-
tially cause data loss or security problems.

On all systems, you’ll need to edit the smb.conf file (which is to be found in either
/etc/samba/smb.conf or /etc/smb.conf) to tell Samba how it should behave. In this
file, you specify the directories and printers that should be shared, their access rights,
and Samba’s general operational parameters. The Samba package comes with a
well-commented sample smb.conf file that is a good starting place for new configu-
rations. Note that once Samba is running, it checks its configuration file every few
seconds and loads any changes you make.

It’s important to be aware of the security implications of sharing files and other re-
sources over a network. For a typical site, you need to do two things to ensure a basic
level of security:

• Explicitly specify which clients can access the resources shared by Samba.
This part of the configuration is controlled by the hosts allow clause in
the smb.conf file. Make sure that it contains only the IP addresses (or
address ranges) that it should.

• Block access to the server from outside your organization. Samba uses
encryption only for password authentication. It does not use encryption
for its data transport. Depending on the nature of the data stored on your

2. In combination with LDAP, Samba can also serve as a backup domain controller. See John H. Terpstra’s
Samba-3 by Example (citation on page 841) for an excellent discussion. Refer to Chapter 17 for more
information about LDAP.

830 Chapter 26 – Cooperating with Windows

Samba server, you might want to block access to the server from outside
your organization in order to prevent people from accidentally download-
ing files in the clear. This is typically done at the network firewall level;
Samba uses UDP ports 137 through 139 and TCP ports 137, 139, and 445.

Since the release of Samba version 3, excellent documentation has been available
online from samba.org.

Samba comes with sensible defaults for most of its configuration options, and most
sites will need only a small configuration file. Use the command testparm -v to get a
listing of all the Samba configuration options and the values to which they are cur-
rently set. This listing will include your settings from the smb.conf file as well as the
default values.

Avoid setting options in the smb.conf file unless they are different from the default
values and you are sure why you want to lock them down. The advantage of this
approach is that your configuration will automatically adapt to the settings recom-
mended by the Samba authors when you upgrade to a newer version of Samba.

That having been said, do make sure that password encryption is turned on:

encrypt passwords = true

This option encrypts the password exchange between Windows clients and the
Samba server. It’s currently the default, but there’s no conceivable situation in which
you would want to turn it off.

The encryption feature requires the Samba server to store a special Windows pass-
word hash for every user. Windows passwords work in a fundamentally different
way from UNIX passwords, and therefore it is not possible to use the passwords
from /etc/shadow.

Samba provides a special tool for setting up these passwords, smbpasswd. For ex-
ample, let’s add the user tobi and set a password for him:

$ sudo smbpasswd -a tobi
New SMB password: <password>
Retype new SMB password: <password>

Users can change their own Samba passwords with smbpasswd as well:

$ smbpasswd -r smbserver -U tobi
New SMB password: <password>
Retype new SMB password: <password>

This example changes the Samba password of user tobi on the server smbserver.

Filename encoding

Starting with version 3.0, Samba encodes all filenames in UTF-8. If your server runs
with a UTF-8 locale, this a great match.3 If you are in Europe and you are still using

3. Type echo $LANG to see if your system is running in UTF-8 mode.

C
o

o
p

e
ra

ti
n

g
 w

it
h

 W
in

d
o

w
s

26.6 Sharing files with Samba and CIFS 831

one of the ISO 8859 locales on the server, you will find that filenames with special
characters such as ä, ö, ü, é, or è will look rather odd when you type ls in a directory
where such files have been created with Samba using UTF-8. The solution is to tell
Samba to use the same character encoding as your server:

unix charset = ISO8859-15
display charset = ISO8859-15

It is important to make sure that the filename encoding is correct right from the
start. Otherwise, files with oddly encoded filenames will accumulate, and fixing
them can be quite a complex task later on.

Network Neighborhood browsing

Early Windows networking was very simple. One just plugged all the Windows
boxes into an Ethernet segment, and the systems started seeing each other by name
and were able to share resources. This feat was accomplished through a self-organiz-
ing system based on broadcasts and elections; one Windows box was selected to
become the master, and this master then maintained a list of the available resources.

When Windows started to speak TCP/IP, this system was ported to use UDP broad-
casts. The effect was much the same, but with the IP subnet being the operative unit
rather than the Ethernet. The discovered hosts show up in the Windows desktop
under Network Neighborhood or My Network Places, depending on the specific ver-
sion of Windows. To structure the visibility a bit, every Windows box can also be
assigned to a workgroup.

Samba participates in this system through the nmdb daemon. nmbd can even be-
come the designated browse master and take on the role of organizing all the Win-
dows systems on the local subnet. Unfortunately, as soon as the network starts to
become more complex, with several subnets and servers, broadcasts will not be suf-
ficient to allow the Windows boxes to see each other.

To fix this problem, set up one Samba server per subnet as a WINS (Windows Inter-
net Naming Service) server by setting

wins support = yes

in smb.conf and then linking these servers with wins server options.

Our experience with Microsoft’s browsing system has been mixed, even on pure
Windows networks. We’ve often run into odd situations in which a host will not
respond to its own name, or in which a nearby computer could not be found even
though we were sure it was up and running. Problems are even more frequent on
large networks with multiple subnets.

If you are serving modern Windows clients (Windows 2000 and up), have DNS en-
tries for all your hosts, and do not require Network Neighborhood browsing, then
you can drop NetBIOS support from your Samba server if you wish. It will be one
less thing to worry about.

832 Chapter 26 – Cooperating with Windows

[global]
disable netbios = yes
name resolve order = host

Without NetBIOS, Windows will have to use DNS to figure out the IP address of a
Samba server, just as with any other resource on the net. If you run Samba without
NetBIOS support, there is no need to start nmbd. Remove it from the Samba startup
script in /etc/init.d.

To connect a client to a Samba server that has disabled NetBIOS support, it is best to
type the full DNS name of the server when connecting a share. For example:

\\server.example.com.\myshare

Note the dot at the end of the server name. It tells Windows not to bother trying to
find the requested machine via NetBIOS, but rather to go directly to DNS.

User authentication

In the Windows authentication systems, the client does not trust the server; the
user’s password never travels across the net as plaintext. Instead, Windows uses a
challenge/response method for authentication.

If you provide a username and password when logging in to a Windows system,
Windows will try to use this information to authenticate whenever it is presented
with an authentication request. Because of the challenge/response method, there is
no danger in this behavior apart from the fact that the plaintext password is stored
somewhere in RAM. The cool thing is that if a user has the same username and
password combination on your Windows box as on your Samba server, Samba will
grant seemingly passwordless access to the appropriate Samba shares. All the au-
thentication happens transparently in the background.

The downside of the challenge/response approach is that the server has to store
plaintext-equivalent passwords. In actual fact, the server’s copies of the passwords
are locally encrypted, but this is primarily a precaution against casual browsing. An
intruder who gains access to the encrypted passwords can use them to access the
associated accounts without the need for any further password cracking. Samba
passwords must be protected even more vigorously than the /etc/shadow file.

In complex environments with multiple Samba servers, it makes sense to operate a
centralized directory service that makes sure the same password is active on all
servers. Samba supports NIS,4 LDAP, and Windows as authentication services. NIS
and LDAP are discussed in Chapter 17, Sharing System Files.

To merge the authentication systems of Windows and Linux, you have two basic op-
tions. First, you can configure a Samba server to act as a Windows NT4 Primary Do-
main Controller (not an Active Directory server, yet). Alternatively, you can install
pGina (pgina.xpasystems.com) on your Windows clients. This clever application

4. Even though it is still listed in some of the documentation, there is no NIS+ support in Samba version 3. It
seems that nobody was willing to maintain the code, so this feature was removed (at least for now).

C
o

o
p

e
ra

ti
n

g
 w

it
h

 W
in

d
o

w
s

26.6 Sharing files with Samba and CIFS 833

replaces the standard Windows login system with a framework that supports all
sorts of standard authentication services, including LDAP and NIS.

Basic file sharing

If each user has a home directory, the homes can be “bulk shared”:

[homes]
comment = Home Directories
browseable = no
valid users = %S
writeable = yes
guest ok = no

This configuration will, for example, allow the user oetiker to access his home direc-
tory through the path \\sambaserver\oetiker from any Windows system.

At some sites, the default permissions on Linux home directories allow people to
browse one another’s files. Because Samba relies on UNIX file permissions to imple-
ment access restrictions, Windows users coming in through CIFS will be able to read
one another’s home directories as well. However, experience shows that this behav-
ior tends to confuse Windows users and make them feel exposed. The valid users
line in the configuration fragment above tells Samba to prevent connections to other
people’s home directories. Leave it out if this is not what you want.

Samba uses its magic [homes] section as a last resort. If there is an explicitly defined
share in the configuration for a particular user’s home directory, the parameters set
there override the values set through [homes].

Group shares

Samba can map Windows access control lists (ACLs) to either file permissions or
ACLs (if the underlying filesystem supports them). In practice, we find that the con-
cept of ACLs tends to be too complex for most users. Therefore, we normally just set
up a special share for each group of users that requires one and configure Samba to
take care of setting the appropriate permissions. Whenever a user tries to mount this
share, Samba checks to make sure the applicant is in the appropriate Linux group
and then switches its effective UID to the designated owner of the group share (a
pseudo-user created for this purpose). For example:

[eng]
comment = Group Share for engineering
; Everybody who is in the eng group may access this share.
; People will have to log in using their Samba account.
valid users = @eng
; We have created a special user account called "eng". All files
; written in this directory will belong to this account as
; well as to the eng group.
force user = eng
force group = eng
path = /home/eng

834 Chapter 26 – Cooperating with Windows

; Disable NT Acls as we do not use them here.
nt acl support = no

; Make sure that all files have sensible permissions.
create mask = 0660
force create mask = 0660
security mask = 0000
directory mask = 2770
force directory mask = 2770
directory security mask = 0000

; Normal share parameters
browseable = no
writeable = yes
guest ok = no

A similar effect can be achieved through Samba’s inherit permissions option. If
that option is enabled on a share, all new files and directories inherit their settings
from their parent directory:

[eng]
comment = Group Share for engineering
path = /home/eng
nt acl support = no
browseable = no
writeable = yes
inherit permissions = yes

Because Samba will now propagate settings from the parent directory, it’s important
to set the permissions on the root of the share appropriately:

$ sudo chmod u=rw,g=rws,o= /home/eng
$ sudo chgrp eng /home/eng
$ sudo chown eng /home/eng

Note that this configuration still requires you to create an eng pseudo-user to act as
the owner of the shared directory.

Transparent redirection with MS DFS

Microsoft’s Distributed File System (MS DFS) allows directories within a share to
trigger clients to transparently automount other shares as soon as they are accessed.
For habitués of UNIX and Linux this does not sound like a big deal, but for Windows
the whole concept is quite revolutionary and unexpected. That may be part of the
reason why it is not widely used, even though DFS has been supported by every
version of Windows since Windows 98.

Here is an example:

[global]
; Enable MS DFS support for this Samba server.
host msdfs = yes
...

C
o

o
p

e
ra

ti
n

g
 w

it
h

 W
in

d
o

w
s

26.6 Sharing files with Samba and CIFS 835

[mydfs]
; This line tells Samba that it has to look out for
; DFS symlinks in the directory of this share.
msdfs root = yes
path = /home/dfs/mydfs

You create symbolic links in /home/dfs/mydfs to set up the actual automounts. For
example, the following command makes the jump “directory” a link to one of two
directories on other servers. (Note the single quotes. They are required to protect
the backslashes.)

$ sudo ln -s 'msdfs:serverX\shareX,serverY\shareY' jump

If more than one source is provided (as here), Windows will fail over between them.
Users who access \\server\mydfs\jump will now actually be reading files from
shareX on serverX or shareY on serverY, depending on availability. If the filesystems
are exported read/write, you must make sure you have some mechanism in place to
synchronize the files. rsync can be helpful for this.

With Samba, it is also possible to redirect all clients that access a particular share to
a different server. This is something a Windows server cannot do.

[myredirect]
msdfs root = yes
msdfs proxy = \\serverZ\shareZ

Note that DFS will only work for users who have the same username and password
on all the servers involved.

smbclient: a simple CIFS client

In addition to its many server-side features, the Samba package includes a simple
command-line file transfer program called smbclient. You can use this program to
directly access any Windows or Samba server. For example:

$ smbclient //redmond/joes -U joe
Password: <password>
Doman=[REDMOND] OS=[Windows 5.0] Server=[Windows 2000 LAN Manager]
smb: \>

Once you have successfully logged in to the file server, you use standard ftp-style
commands (such as get, put, cd, lcd, and dir) to navigate and transfer files.

The smbfs filesystem

Linux includes direct client-side support for the SMB/CIFS filesystem. You can
mount a CIFS share into your filesystem tree much as you can with any other filesys-
tem that is directly understood by the kernel. For example:

mount -t smbfs -o username=joe //redmond/joes /home/joe/mnt

Although this feature is useful, keep in mind that Windows conceptualizes network
mounts as being established by a particular user (hence the username=joe option

836 Chapter 26 – Cooperating with Windows

above), whereas Linux regards them as more typically belonging to the system as a
whole. Windows servers generally cannot deal with the concept that several differ-
ent people might be accessing a mounted Windows share.

From the perspective of the Linux client, all files in the mounted directory appear to
belong to the user who mounted it. If you mount the share as root, then all files
belong to root, and garden-variety users may not be able to write files on the Win-
dows server.

The mount options uid, gid, fmask, and dmask let you tweak these settings so that
ownership and permission bits are more in tune with the intended access policy for
that share. Check the mount.smbfs manual page for more information about this
behavior.

To allow users to mount a Windows share on their own, you can add a line in the
following format to your /etc/fstab file:

//redmond/joes /home/joe/mnt smbfs
username=joe,fmask=600,dmask=700,user,noauto 0 0

Because of the user option specified here, users can now mount the filesystem just
by running the command

$ mount /home/joe/mnt

mount will prompt the user to supply a password before mounting the share.

See Chapter 16 for
more information
about NFS.

Although NFS is the UNIX standard for network file service, in some situations it
may make more sense to use Samba and CIFS to share files among UNIX and Linux
computers. For example, it is dangerous to allow users to perform NFS mounts of
corporate filesystems from their personal laptops.5 However, you can safely use CIFS
to give these laptops access to their owner’s home directories.

IBM has been investing resources in making CIFS access from Linux as seamless as
possible, with the goal of establishing Samba as a robust alternative to NFS. An early
result of this effort is that Samba 3.x can be configured to provide “UNIX exten-
sions.” With this feature turned on, you can see all UNIX file attributes, ownerships,
and file types even when mounting a share by way of Samba.

Along with the server-side modifications, there is also a new client-side filesystem
module being developed, called cifs. Current development is focused on the cifs
module, which already has better debugging and configuration support than the
traditional smbfs.

26.7 SHARING PRINTERS WITH SAMBA

The simple approach to printer sharing is to add a [printers] section to the smb.conf
file; this makes Samba share all local printers. Samba uses the system printing com-

5. NFS security is based on the idea that the user has no root access on the client and that there are match-
ing UIDs on the client and server. This is not normally the case for self-managed machines.

C
o

o
p

e
ra

ti
n

g
 w

it
h

 W
in

d
o

w
s

26.7 Sharing printers with Samba 837

mands to do its work, but since Linux printing is not very standardized, you may
have to tell Samba which particular printing system is in use on your server by set-
ting the printing option to an appropriate value. Check the smb.conf man page for
the list of printing systems that are currently supported.

[printers]
; Where to store print files before passing them to the printing system?
path = /var/tmp
; Everybody can use the printers.
guest ok = yes
; Let Samba know this share is a printer.
printable = yes
; Show the printers to everyone looking.
browseable = yes
; Tell samba what flavor of printing system the system is using.
printing = LPRNG

See Chapter 23 for
more information
about printing.

Windows clients can now use these printers as network printers, just as if they were
hosted by a Windows server. There is one small problem, though. The Windows cli-
ent will want know what kind of printer it is using, and it will ask the user to select
an appropriate printer driver. This leads to quite a lot of support requests from users
who do not know how to proceed in this situation. If the particular printer in ques-
tion requires a driver that is not included with Windows, the situation will be even
more support-intensive.

Fortunately, Samba can be configured to provide the necessary Windows printer
drivers to the Windows clients. But to make this work, you must do some prepara-
tion. First, make sure that Samba behaves like a print server by adding appropriate
entries to the [global] section of the smb.conf file:

[global]
; Who is our printer admin
printer admin = printadm
; The following have the right value by default.
disable spoolss = no
; Don't bother showing it; you cannot add printers anyway
show add printer wizard = no
; Assuming you want everybody to be able to print
guest ok = yes
browseable = no

Now Samba knows that it is a print server, and it will accept the user printadm as its
printer administrator.

If you are going to provide printer drivers for your Windows clients, there has to be a
place to store the drivers. This is done through a special share called [print$].

[print$]
comment = Printer Driver Area
; Place to store the printer drivers
path = /var/lib/samba/printers

838 Chapter 26 – Cooperating with Windows

browseable = yes
guest ok = yes
read only = yes
; Who can administer the printer driver repository
write list = printadm

Before you can start to upload printer drivers to the new print server, you must take
care of a few more details at the system level. Make sure the printadm account exists
and has permission to access Samba.

$ sudo useradd printadm
$ sudo smbpasswd -a printadm

Samba can only store printer drivers if the appropriate directory structure exists and
is owned by printadm (as defined in the write list option):

$ sudo mkdir -p /var/lib/samba/printers
$ sudo cd /var/lib/samba/printers
$ sudo mkdir W32X86 WIN40
$ sudo chown -R printadm .

At this point there are two options: you can either walk to a Windows box and up-
load the printer drivers from there, or you can use Samba tools to do it all from the
command line. Unfortunately, there is no simple way of knowing what exactly has to
be installed for a particular driver, so we recommend the first approach in most
circumstances. Only if you are faced with repeatedly installing a driver on multiple
servers is it worthwhile to examine the installation and learn to replicate it with
command-line tools.

Installing a printer driver from Windows

To install drivers from a Windows client, open a connection to the Samba server by
typing \\samba-server.example.com in the Start -> Run dialog box. Windows will
ask you to log on to the Samba server. Log in as the user printadm. If all goes well, a
window pops up with a list of shares provided by the server.

Within the Printers subfolder you should see all the printers you have shared from
your server. Right-click in the blank space around the printer icons to activate the
Server Properties dialog, then add your favorite printer drivers via the Drivers tab.

The uploaded drivers end up in the directory specified for the [print$] share. At this
point, you might want to take a quick peek at the properties of the driver you just
uploaded. This list of files is what you will have to provide to the Samba command-
line tool if you ever want to automate the uploading of the driver.

Once the proper drivers have been uploaded, you can now associate them with spe-
cific printers. Bring up the Properties panel of each printer in turn (by right-clicking
and selecting Properties) and select the appropriate drivers in the Advanced tab.
Then open the Printing Defaults dialog and modify the settings. Even if you are
happy with the default settings, make at least one small change to force Windows to
store the configuration data structures on the Samba server. Samba will then provide

C
o

o
p

e
ra

ti
n

g
 w

it
h

 W
in

d
o

w
s

26.7 Sharing printers with Samba 839

that data to clients that access the printer. If you miss this last step, you may end up
with clients crashing because no valid default configuration can be found when they
try to use the printer.

Installing a printer driver from the command line

As you may have guessed already, some of these steps are hard to replicate without
using Windows, especially the setting of printer defaults. But if you want to set up
hundreds of printers on a Samba server, you may want to try to do it from the com-
mand line all the same. Command-line configuration works particularly well for
PostScript printers because the Windows PostScript printer driver works correctly
without default configuration information.

If you have made a note of the files required by a particular driver, you can install the
driver from the command line. First, copy the required files to the [print$] share:

$ cd ~/mydriver
$ smbclient -U printadm '//samba-server/print$' -c 'mput *.*'

Next, assign the driver to a particular printer. Let’s assume you have a simple Post-
Script printer with a custom PPD file:

$ rpcclient -U printadm -c "\
adddriver \"Windows NT x86\" \"Our Custom PS:\
PSCRIPT5.DLL:CUSTOM.PPD:PS5UI.DLL:PSCIPT.HLP:NULL:NULL:PSCRIPT.NTF\"" \
samba-server

The backslashes at the ends of lines allow the command to be split onto multiple
lines for clarity; you can omit these and enter the command on one line if you prefer.
The backslashes before double quotes distinguish the nested sets of quotes.

The long string in the example above contains the information listed in the property
dialog of the printer driver that is seen when the printer driver is being installed
from Windows:

• Long printer name

• Driver file name

• Data file name

• Configuration file name

• Help file name

• Language monitor name (set this to NULL if you have none)

• Default data type (set this to NULL if there is none)

• Comma-separated list of additional files

To configure a printer to use one of the uploaded drivers, run

$ rpcclient -U printadm -c "\
set driver \"myprinter\" \"Our Custom PS\"" samba-server

840 Chapter 26 – Cooperating with Windows

26.8 DEBUGGING SAMBA

Samba usually runs without requiring much attention. However, if you do have a
problem, you can consult two primary sources of debugging information: the per-
client log files and the smbstatus command. Make sure you have appropriate log file
settings in your configuration file:

[global]
; The %m causes a separate file to be written for each client.
log file = /var/log/samba.log.%m
max log size = 1000
; How much info to log. You can also specify log levels for components
; of the system (here, 3 generally, but level 10 for authentication).
log level = 3 auth:10

Higher log levels produce more information. Logging takes time, so don’t ask for too
much detail unless you are debugging. Operation can be slowed considerably.

The following example shows the log entries generated by an unsuccessful connect
attempt followed by a successful one.

[2004/09/05 16:29:45, 2] auth/auth.c:check_ntlm_password(312)
 check_ntlm_password: Authentication for user [oetiker] -> [oetiker] FAILED

with error NT_STATUS_WRONG_PASSWORD
[2004/09/05 16:29:45, 2] smbd/server.c:exit_server(571)
 Closing connections
[2004/09/05 16:29:57, 2] auth/auth.c:check_ntlm_password(305)
 check_ntlm_password: authentication for user [oetiker] -> [oetiker] ->

[oetiker] succeeded
[2004/09/05 16:29:57, 1] smbd/service.c:make_connection_snum(648)
 etsuko (127.0.0.1) connect to service oetiker initially as user oetiker

(uid=1000, gid=1000) (pid 20492)
[2004/09/05 16:29:58, 1] smbd/service.c:close_cnum(837)
 etsuko (127.0.0.1) closed connection to service oetiker
[2004/09/05 16:29:58, 2] smbd/server.c:exit_server(571)
 Closing connections

The smbcontrol command is handy for altering the debug level on a running
Samba server without altering the smb.conf file. For example,

$ sudo smbcontrol smbd debug "4 auth:10"

The example above would set the global debug level to 4 and set the debug level for
authentication-related matters to 10. The smbd argument specifies that all smbd
daemons on the system will have their debug levels set. To debug a specific estab-
lished connection, you can use the smbstatus command to figure out which smbd
daemon handles the connection and then pass its PID to smbcontrol to debug just
this one connection. With log levels over 100 you will start seeing (encrypted) pass-
words in the logs.

smbstatus shows currently active connections and locked files. This information
can be especially useful when you are tracking down locking problems (e.g., “Which

C
o

o
p

e
ra

ti
n

g
 w

it
h

 W
in

d
o

w
s

26.9 Recommended reading 841

user has file xyz open read/write exclusive?”). The first section of output lists the
resources that a user has connected to. The second part lists any active file locks.6

Samba version 3.0.5

PID Username Group Machine

12636 zauck ee zhaka (192.168.1.228)
29857 milas guests beshil (192.168.1.123)

Service pid machine Connected at

milasa 29857 beshil Fri Sep 3 17:07:39 2004
zaucker 12636 zhaka Thu Sep 2 12:35:53 2004

Locked files:

Pid DenyMode Access R/W Oplock Name

29857 DENY_NONE 0x3 RDWR NONE /home/milasa/hello.dba
12636 DENY_NONE 0x2019f RDWR NONE /home/zaucker/aufbest.doc

If you kill the smbd associated with a certain user, all its locks will disappear. Some
applications handle this gracefully and will just reacquire a lock if they need it. Oth-
ers (such as MS Access) will freeze and die a horrible death with much clicking re-
quired on the Windows side just to be able to close the unhappy application. As
dramatic as this may sound, we have yet to see any file corruption resulting from
such a procedure. In any event, be careful when Windows claims that files have been
locked by some other application. Often Windows is right and you should fix the
problem on the client side by closing the application instead of brute-forcing it from
the server.

26.9 RECOMMENDED READING

TERPSTRA, JOHN H. Samba-3 by Example: Practical Exercises to Successful Deploy-
ment (2nd Edition). Upper Saddle River, NJ: Prentice Hall PTR, 2006. (An online
version of this book is available at samba.org.)

TERPSTRA, JOHN H., JELMER R. VERNOOIJ. The Official Samba-3 HOWTO and Refer-
ence Guide (2nd Edition). Upper Saddle River, NJ: Prentice Hall PTR, 2006. (An on-
line version of this book is available at samba.org.)

Exercises are presented on the next page.

6. smbstatus output contains some very long lines; we have condensed it here for clarity.

842 Chapter 26 – Cooperating with Windows

26.10 EXERCISES

E26.1 Why would you want to block Internet access to ports 137–139 and 445
on a Samba server?

E26.2 Install the Cygwin software on a Windows machine and use ssh in rxvt
to connect to a Linux machine. What differences to PuTTY do you find?

E26.3 In the lab, compare the performance of a client that accesses files
through Samba with one that accesses files from a native CIFS server
(i.e., a Windows machine). If your two test servers have different hard-
ware, devise a way to adjust for the hardware variation so that the com-
parison is more indicative of the performance of the server software.
(May require root access.)

E26.4 In the lab, using a packet sniffer such as tcpdump or Wireshark, moni-
tor a telnet session between Windows and a Linux server. Obtain and
install the PuTTY software and repeat the monitoring. In each case,
what can you see with the packet sniffer? (Requires root access.)

E26.5 Set up a Samba print server that provides Windows printer drivers for
all the printers it shares. Make sure the printers come with a sensible
default configuration.

843

S
e

ri
a

l D
e

vi
ce

s

Serial Devices

27 Serial Devices

Since 1969, the RS-232C serial interface standard has provided a way for devices of
many types and from many manufacturers to communicate. It is the one computer
interface standard that has remained virtually untouched across its almost 40-year
history, and it is still in use today.

Serial ports are used with a variety of devices, including printers, terminals, and
other computers. They’re also found on a lot of custom-made, hobbyist, and low-
volume equipment (media changers, temperature sensors, GPS receivers, even sew-
ing machines). A serial device can be attached to the system either directly (with a
cable) or through a telephone line with modems at each end.

This chapter describes how to attach serial devices to your system and explains how
to configure your software to take advantage of them. We use modems and printers
as specific examples, but other devices are essentially similar.

The first few sections address serial hardware and cabling considerations. Then,
starting on page 855, we talk about the software infrastructure that has historically
been used to support hardware terminals. Terminals are rarely used anymore, but
their ghosts live on in Linux’s handling of pseudo-terminals and window systems.
The rest of the chapter (starting on page 862) provides some general background on
modems, serial debugging, and USB (the Universal Serial Bus).

844 Chapter 27 – Serial Devices

27.1 THE RS-232C STANDARD

Most serial ports conform to some variant of the RS-232C standard. This standard
specifies the electrical characteristics and meaning of each signal wire, as well as pin
assignments on the traditional 25-pin (DB-25) serial connector shown in Exhibit A.

Exhibit A A male DB-25 connector

Full RS-232C1 is overkill for all real-world situations since it defines numerous sig-
nals that are unnecessary for basic communication. DB-25 connectors are also in-
conveniently large. As a result, a number of alternative connectors have come into
widespread use. These are described in the section titled Alternative connectors start-
ing on page 847.

Traditional RS-232 used shielded twisted-pair cable (STP), usually stranded 22-
gauge wire. In modern times, the same unshielded twisted pair (UTP) cable that is
standard for Ethernet connections is used for serial cabling. This cable does not
technically adhere to the RS-232 specification, but in practice it usually works OK.

The original RS-232 signal voltages were ±12 volts DC, but ±5 volts is more com-
mon these days. Sometimes, ±3 volts is used. Higher voltages are less susceptible to
interference. All of these voltages comply with the RS-232 specification, so it’s per-
fectly OK to connect devices that use different voltage standards.

RS-232 is not an electrically “balanced” system; it uses a single conductor for the data
traveling in each direction. Ergo, the special electrical properties of twisted-pair ca-
bling may be less significant for serial communication than they are for, say, Ether-
net. In fact, twisted-pair cable can actually reduce the reliability and range of a serial
connection if the two data lines (TD and RD) are placed together on a single pair. So
don’t do that.

There is no commonly agreed-on standard for which RS-232 signals should be run
together on a twisted-pair cable. Some sources recommend pairing signal grounds
with both TD and RD, but this pairing costs an extra conductor and provides multiple

1 13

14 25

Connector Pin numbers

1. To be technically correct, this standard should now be referred to as EIA-232-E. However, no one will
have the slightest idea what you are talking about.

S
e

ri
a

l D
e

vi
ce

s

27.1 The RS-232C standard 845

paths for the signal ground. As far as we know, there is no compelling reason to use
this convention.

DB-25 connectors are either male (with pins sticking out, called DB25P) or female
(with matching holes, DB25S). Tiny invisible numbers near the pins or holes label
them from 1 to 25. You can see the numbers best by holding the connector up to the
light and viewing it at an angle. Sometimes only pins 1, 13, 14, and 25 are numbered.

Exhibit A shows a male DB-25. As with all serial connectors, the pin numbers on a
female connector are a mirror image of those on a male connector, so that like-num-
bered pins mate. The diagram is drawn from the orientation shown (as if you were
facing the end of the cable, about to plug the connector into your forehead).

Note that in Exhibit A, only seven pins are actually installed. This is typical for the
real world. The RS-232 signals and their pin assignments on a DB-25 connector are
shown in Table 27.1. Only the shaded signals are ever used in practice (at least on
generic computer systems); all others can be ignored.

The two interface configurations for serial equipment are DTE (Data Terminal
Equipment) and DCE (Data Communications Equipment). DTE and DCE share the
same pinouts, but they specify different interpretations of the RS-232 signals.

Every device is configured as either DTE or DCE; a few devices support both, but
not simultaneously. Computers, terminals, and printers are generally DTE, and
most modems are DCE. DTE and DCE serial ports can communicate with each
other in any combination, but different combinations require different cabling.

There is no sensible reason for both DTE and DCE to exist; all equipment could use
the same wiring scheme. The existence of two conventions is merely one of the many
pointless historical legacies of RS-232.

Table 27.1 RS-232 signals and pin assignments on a DB-25

Pin Name Function Pin Name Function

1 FG Frame ground 14 STD Secondary TD
2 TD Transmitted data 15 TC Transmit clock
3 RD Received data 16 SRD Secondary RD
4 RTS Request to send 17 RC Receive clock
5 CTS Clear to send 18 – Not assigned
6 DSR Data set ready 19 SRTS Secondary RTS
7 SG Signal ground 20 DTR Data terminal ready
8 DCD Data carrier detect 21 SQ Signal quality detector
9 – Positive voltage 22 RI Ring indicator
10 – Negative voltage 23 DRS Data rate selector
11 – Not assigned 24 SCTE Clock transmit external
12 SDCD Secondary DCD 25 BUSY Busy
13 SCTS Secondary CTS

846 Chapter 27 – Serial Devices

DTE and DCE can be quite confusing if you let yourself think about the implications
too much. When that happens, just take a deep breath and reread these points:

• The RS-232 pinout for a given connector type is always the same, regard-
less of whether the connector is male or female (matching pin numbers
always mate) and regardless of whether the connector is on a cable, a DTE
device, or a DCE device.

• All RS-232 terminology is based on the model of a straight-through con-
nection from a DTE device to a DCE device. (By “straight through,” we
mean that TD on the DTE end is connected to TD on the DCE end, and so
on. Each pin connects to the same-numbered pin on the other end.)

• Signals are named relative to the perspective of the DTE device. For exam-
ple, the name TD (transmitted data) really means “data transmitted from
DTE to DCE.” Despite the name, the TD pin is an input on a DCE device.
Similarly, RD is an input for DTE and an output for DCE.

• When you wire DTE equipment to DTE equipment (computer-to-terminal
or computer-to-computer), you must trick each device into thinking that
the other is DCE. For example, both DTE devices will expect to transmit
on TD and receive on RD; you must cross-connect the wires so that one
device’s transmit pin goes to the other’s receive pin, and vice versa.

• Three sets of signals must be crossed in this fashion for DTE-to-DTE com-
munication (if you choose to connect them at all). TD and RD must be
crossed. RTS and CTS must be crossed. And each side’s DTR pin must be
connected to both the DCD and DSR pins of the peer.

• To add to the confusion, a cable crossed for DTE-to-DTE communication
is often called a “null modem” cable. You might be tempted to use a null
modem cable to hook up a modem, but since modems are DCE, that won’t
work! A cable for a modem is called a “modem cable” or a “straight cable.”

Because the issue of DTE vs. DCE is so confusing, you may occasionally see well-
intentioned but ill-advised attempts to bring some sanity to the nomenclature by
defining DTE and DCE as if they had separate pinouts (e.g., renaming DCE’s TD pin
to be RD, and vice versa). In this alternate universe, pinouts vary but cable connec-
tions (by signal name) do not. We suggest that you ignore any material that talks
about a “DTE pinout” or a “DCE pinout”; it is unlikely to be a reliable source of
information.

Originally, DTE devices were supposed to have male connectors and DCE devices
were supposed to have female ones. Eventually, hardware designers realized that male
connectors are more fragile. Expensive computing hardware now usually has female
connectors, and most cables are male on both ends.2

2. At Qwest, the terms “male” and “female” are considered inappropriate. Employees are encouraged to
use the words “plug” and “receptacle.” The standard connector names DB25P and DB25S actually
derive from yet a third convention: “pin” and “socket.”

S
e

ri
a

l D
e

vi
ce

s

27.2 Alternative connectors 847

Exhibit B shows pin assignments and connections for both null-modem and
straight-through cables. Only signals used in the real world are shown.

Exhibit B Pin assignments and connections for DB-25 cables

27.2 ALTERNATIVE CONNECTORS

The following sections describe the most common alternative connector systems:
mini DIN-8, DB-9, and RJ-45. Despite their physical differences, these connectors
all provide access to the same electrical signals as a DB-25. Devices that use different
connectors are always compatible if the right kind of converter cable is used.

The mini DIN-8 variant

Mini DIN-8s are found on many laptops and workstations. This almost circular and
extremely compact connector provides connections for seven signals. It is illus-
trated in Exhibit C.

Exhibit C A male mini DIN-8 connector

Neighborhood computer dealers usually carry injection-molded DB-25 to mini
DIN-8 converter cables. Don’t try to make them yourself because a mini DIN-8 is so
tiny that it defies attempts to secure connections with human fingers. Pin assign-
ments are shown in Table 27.2 on the next page.

StraightLegend

1

2

3

4

5

6

7

8

20

1

2

3

4

5

6

7

8

20

1

2

3

4

5

6

7

8

20

1

2

3

4

5

6

7

8

20

Null modem

Frame ground
Transmitted data

Received data
Request to send

Clear to send
Data set ready
Signal ground

Data carrier detect
Data terminal ready

FG
TD
RD
RTS
CTS
DSR
SG
DCD
DTR

7

4

2

8

5

6

3

1

Connector Pin numbers

848 Chapter 27 – Serial Devices

The DB-9 variant

Commonly found on PCs, this nine-pin connector (which looks like a DB-25 “jun-
ior”) provides the eight most commonly used signals.

Exhibit D A male DB-9 connector

PC dealers in your area should carry prefab DB-9 to DB-25 converter cables. Table
27.3 shows the pin assignments.

Table 27.2 Pins for a mini DIN-8 to DB-25 straight cable

DIN-8 DB-25 Signal Function

3 2 TD Transmitted data
5 3 RD Received data
6 4 RTS Request to send
2 5 CTS Clear to send

4,8 7 SG Signal ground
7 8 DCD Data carrier detect
1 20 DTR Data terminal ready

1 2 3 4 5

9876

Connector Pin numbers

Table 27.3 Pins for a DB-9 to DB-25 straight cable

DB-9 DB-25 Signal Function

3 2 TD Transmitted data
2 3 RD Received data
7 4 RTS Request to send
8 5 CTS Clear to send
6 6 DSR Data set ready
5 7 SG Signal ground
1 8 DCD Data carrier detect
4 20 DTR Data terminal ready

S
e

ri
a

l D
e

vi
ce

s

27.2 Alternative connectors 849

The RJ-45 variant

An RJ-45 is an 8-wire modular telephone connector. It’s similar to the standard RJ-
11 connector used for telephone wiring in the United States, but an RJ-45 has eight
pins (an RJ-11 has only four).3 In many situations, using RJ-45s makes it easier for
you to run serial communications through your building’s existing cable plant
(which was probably installed with twisted-pair Ethernet in mind).

Exhibit E A male RJ-45 connector

RJ-45 jacks for serial connections are usually not found on computers or garden-
variety serial equipment, but they are often used as intermediate connectors for
routing serial lines through patch panels. RJ-45s are sometimes used with flat tele-
phone cable rather than twisted-pair. Either form of cable is acceptable for serial
connections, although twisted pair cable generally yields better signal quality at a
distance. Flat telephone cable is never acceptable for Ethernet connections, so many
sites standardize on twisted pair cable to reduce the risk that a clueless user will
accidentally grab the wrong type of cable.

RJ-45s are compact, self-securing, and cheap. They are crimped onto the cable with
a special tool. It takes less than a minute to attach one. If you are designing a large
cabling system from scratch, RJ-45s are a good choice for intermediate connectors.

Several systems map the pins on an RJ-45 connector to a DB-25. Table 27.4 on the
next page shows the official RS-232D standard, which is used only haphazardly.

One alternative way of using RJ-45s is with Dave Yost’s system, which adds an RJ-45
socket to every device and uses only a single type of RJ-45 connector cable regard-
less of whether the devices are DTE or DCE. Dave’s system is more than just a pi-
nout; it’s a complete cabling system that addresses several different issues. With his
kind permission, Dave’s description of his standard is reproduced in the next section.

3. Careful inspection will reveal that an RJ-11 plug actually has six slots where pins might go but that only
four conductors are installed. A true four-conductor telephone connector is an RJ-10. An RJ-11 with all
six pins installed is known as an RJ-12.

8 1

Top
View

Connector Pin numbers

850 Chapter 27 – Serial Devices

The Yost standard for RJ-45 wiring

This specification was
written by Dave Yost
(Dave@Yost.com).

Here is a scheme that offers solutions to several RS-232 hassles:

• All cable connectors are of the same sex and type (male RJ-45).

• There is no distinction between DTE and DCE.

• You need only one kind of connector cable.

• You can mass-produce cables quickly, using only a crimping tool.

Each serial port on every piece of equipment gets its own appropriately wired DB-25
or DB-9 to RJ-45 adaptor. This adaptor is permanently screwed onto the port. The
port now presents the same connector interface, female RJ-45, regardless of whether
its underlying connector is DB-25 or DB-9, DTE or DCE, male or female. Further-
more, every serial port now transmits and receives data on the same pins.

Once you have put these adaptors on your RS-232 ports, you can connect anything
to anything without using null-modems or null-terminals, changing pins on cable
connectors, or building special cables. You can connect modem to computer, modem
to terminal, terminal to computer, terminal to terminal, computer to computer, etc.,
all with one kind of cable.

In Yost’s original vision, the cables are jacketed, 8-wire ribbon cable. The connec-
tors on each end are squeezed onto the cable with a crimping tool, so there is no
soldering or messing with pins. Because of aversion to this type of cable, some orga-
nizations use the Yost standard with UTP cabling.

There are three signal wires (one data and two control) going in each direction, plus
a pair of signal grounds. The cables are not wired normally (i.e., with each connector
pin connected to the corresponding pin at the other end of the cable). They are wired
“with a twist,” or “mirror image,” or “side-to-side reversed,” or whatever you want to
call it. That is, pin 1 at one end of the cable goes to pin 8 on the other end, etc. (This
meaning of “twist” is distinct from its use in the term “twisted pair.”) This scheme
works because the layout of the signals on the ribbon cable is symmetrical. That is,

Table 27.4 Pins for an RJ-45 to DB-25 straight cable

RJ-45 DB-25 Signal Function

1 6 DSR Data set ready
2 8 DCD Data carrier detect
3 20 DTR Data terminal ready
4 7 SG Signal ground
5 3 RD Received data
6 2 TD Transmitted data
7 5 CTS Clear to send
8 4 RTS Request to send

S
e

ri
a

l D
e

vi
ce

s

27.2 Alternative connectors 851

each transmit pin has its corresponding receive pin at the mirror-image wire posi-
tion across the flat cable.4

Ready-made RJ-45 cables are usually wired straight through. To use them with this
system, you have to remove the connector from one end and crimp on a new one
with the wires reversed. Female-to-female RJ-45 connectors (“butt blocks”) are
available for extending cable lengths, but remember: two twisted cables joined with
such a coupler make a straight-through cable.

Many vendors make DB-25 to RJ-45 adaptors. Their internal color coding does not
match the cable colors. The adaptors, wire connectors, and wire have become avail-
able at electronics stores, sadly without any help for using them for RS-232.

See page 353 for more
information about Cat-
egory 5 cable.

The Yost scheme was intended for use with jacketed ribbon cable, in which all the
wires are side by side. Twisted-pair cable, by contrast, has four pairs of wire, each
pair twisted against itself along the cable’s length. If you use twisted-pair cable (such
as Category 5 cable), you should not wire your cables as you normally would for
RJ-45 (e.g., for 10BaseT, telephone, etc.). Rather, you should wire them so that wires
3:4 and wires 5:6 make pairs. Other pairings are susceptible to data signal crosstalk.
The pairing of the remaining wires is not important, but 1:2 and 7:8 will be about as
good as any.

Inside an adaptor is an RJ-45 socket with eight wires coming out of it. These wires
have RS-232 pins (or pin sockets, as appropriate) crimped onto them. You simply
push these pins into the proper holes in the RS-232 connector and then snap the
adaptor housing on. Use the pinouts shown in Table 27.5.

There is one problem, however: both ground pins have to go into the same DB-25 or
DB-9 hole (pin 7 or 5, respectively). So that these wires come out to one pin, you can

4. Dave doesn’t say this explicitly, but if you are using flat ribbon cable, you must in fact wire the cable
without a physical twist to achieve the “with a twist” effect. Because the connectors at the ends of a
cable point away from each other, their pin numbering is automatically reversed.

Table 27.5 Wiring for a Yost RJ-45 to DB-25 or DB-9 adaptor

Connect to DCE pins Connect to DTE pins

RJ-45 Cable Adaptor DB-25 DB-9 Signal DB-25 DB-9 Signal

1 Brown (to Gray) Blue 4 7 RTS 5 8 CTS
2 Blue (to Orange) Orange 20 4 DTR 8 1 DCD
3 Yellow (to Black) Black 2 3 TD 3 2 RD
4 Green (to Red) Red 7 5 GND 7 5 GND
5 Red (to Green) Green 7 5 GND 7 5 GND
6 Black (to Yellow) Yellow 3 2 RD 2 3 TD
7 Orange (to Blue) Brown 8 1 DCD 20 4 DTR
8 Gray (to Brown) White 5 8 CTS 4 7 RTS

852 Chapter 27 – Serial Devices

crimp them with a tiny plastic thingy made by AMP and called a “Tel-splice connec-
tor ½ tap dry,” part number 553017-4. So far, this part seems to be available only in
quantity 1,000 for $80 or so. Believe me [Dave Yost], you want them if you’re going to
wire more than a few adaptors.

Some DTE devices require the DSR signal to be active before they will send data. This
signal is usually provided by the DCE device, but you can fake it by wiring together
pins 20 and 6 (4 and 6 on a DB-9 connector). This way, the DTE device receives the
DSR signal from itself whenever it asserts DTR.

On some DCE printers, pin 7 of the RJ-45 adaptor (the brown wire) should be con-
nected to the DSR line (pin 6 on both DB-25 and DB-9). Read your printer documen-
tation to find out if your printer provides useful handshaking signals on DSR instead
of DCD.

Dave Yost
Los Altos, CA
July 1999

Don’t use either of these DSR hacks as a matter of course; add them only to specific
devices that seem to need them (or that don’t seem to work with the standard setup).
Some “vanilla” devices tolerate the extra connections, but others become confused.

27.3 HARD AND SOFT CARRIER

Linux expects to see the DCD signal, carrier detect, go high (positive voltage) when
a device is attached and turned on. This signal is carried on pin 8 of the standard
DB-25 connector. If your serial cable has a DCD line and your computer really pays
attention to it, you are using what is known as hard carrier. Most systems also allow
soft carrier, that is, the computer pretends that DCD is always asserted.

For certain devices (particularly terminals), soft carrier is a great blessing. You can
get away with using only three lines for each serial connection: transmit, receive,
and signal ground. However, modem connections really need the DCD signal. If a
terminal is connected through a modem and the carrier signal is lost, the modem
should hang up (especially on a long distance call!).

You normally specify soft carrier for a serial port in the configuration file for what-
ever client software you are using in conjunction with the port (e.g., /etc/gettydefs
or /etc/inittab for a login terminal or /etc/cups/printcap for a printer). You can
also use stty -clocal to enable soft carrier on the fly. For example,

stty -clocal < /dev/ttyS1

enables soft carrier for the port ttyS1.

27.4 HARDWARE FLOW CONTROL

The CTS and RTS signals make sure that a device does not send data faster than the
receiver can process it. For example, if a modem is in danger of running out of buffer
space (perhaps because the connection to the remote site is slower than the serial

S
e

ri
a

l D
e

vi
ce

s

27.6 Serial device files 853

link between the local machine and the modem), it can tell the computer to shut up
until more room becomes available in the buffer.

Flow control is essential for high-speed modems and is also very useful for printers.
On systems that do not support hardware flow control (either because the serial ports
do not understand it or because the serial cable leaves CTS and RTS disconnected),
flow control can sometimes be simulated in software with the ASCII characters XON
and XOFF. However, software flow control must be explicitly supported by high-level
software, and even then it does not work very well.

XON and XOFF are <Control-Q> and <Control-S>, respectively. This is a problem
for emacs users because <Control-S> is the default key binding for the emacs search
command. To fix the problem, bind the search command to some other key or use
stty start and stty stop to change the terminal driver’s idea of XON and XOFF.

Most terminals ignore the CTS and RTS signals. By jumpering pins 4 and 5 together
at the terminal end of the cable, you can fool the few terminals that require a hand-
shake across these pins before they will communicate. When the terminal sends out
a signal on pin 4 saying “I’m ready,” it gets the same signal back on pin 5 saying “Go
ahead.” You can also jumper the DTR/DSR/DCD handshake in this way.

As with soft carrier, hardware flow control can be manipulated through configura-
tion files or set with stty.

27.5 CABLE LENGTH

The RS-232 standard specifies a maximum cable length of 75 feet at 9,600 bps. Stan-
dards are usually conservative, and RS-232 is no exception. We have routinely run
RS-232 cables much greater distances, up to about 1,000 feet. We have hit the limit
somewhere between 800 and 1,000 feet but have found that the particular brand of
devices on each end makes quite a difference.

Line drivers or repeaters are sometimes used with RS-232 to extend the maximum
length of a connection. Unfortunately, these devices often boost only the RD and TD
pins, so other signals may need to be jumpered.

27.6 SERIAL DEVICE FILES

Serial ports are represented by device files in or under /dev. Most computers have two
serial ports built in: /dev/ttyS0 and /dev/ttyS1. Linux distributions usually prein-
stall a full complement of device files (64 or more) for additional serial ports, but
until you add more hardware to the system, the extra files are superfluous and
should be ignored.

As always, the names of the device files do not really matter. Device mapping is de-
termined by the major and minor device numbers, and the names of device files are
merely a convenience for human users.

854 Chapter 27 – Serial Devices

27.7 SETSERIAL: SET SERIAL PORT PARAMETERS

The serial ports on a PC can be set to use several different I/O port addresses and
interrupt levels (IRQs). These settings are normally accessed through the system’s
BIOS at power-on time. The most common reason to change them is to accommo-
date some cranky piece of hardware that is finicky about its own settings and only
works correctly when it has co-opted the settings normally used by a serial port.
Unfortunately, the serial driver may not be able to detect such configuration changes
without your help.

The traditional UNIX response to such diversity is to allow the serial port parame-
ters to be specified when the kernel is compiled. Fortunately, Linux lets you skip this
tedious step and change the parameters on the fly with the setserial command.

setserial -g shows the current settings:

setserial -g /dev/ttyS0
/dev/ttyS0, UART: 16550A, Port: 0x03f8, IRQ: 4

To set the parameters, you specify the device file and then a series of parameters and
values. For example, the command

setserial /dev/ttyS1 port 0x02f8 irq 3

sets the I/O port address and IRQ for ttyS1. It’s important to keep in mind that this
command does not change the hardware configuration in any way; it simply informs
the Linux serial driver of the configuration. To change the actual settings of the hard-
ware, consult your system’s BIOS.

setserial changes only the current configuration, and the settings do not persist
across reboots. Unfortunately, there isn’t a standard way to make the changes perma-
nent; each of our example distributions does it differently.

Red Hat and Fedora’s /etc/rc.d/rc.sysinit script checks for the existence of
/etc/rc.serial and executes it at startup time if it exists. No example file is provided,
so you must create the file yourself if you want to make use of this feature. Just list the
setserial commands you want to run, one per line. For completeness, it’s probably a
good idea to make the file executable and to put #!/bin/sh on the first line; however,
these touches d'élégance aren’t strictly required.

SUSE’s /etc/init.d/serial script handles serial port initialization. Unfortunately, this
script has no configuration file; you must edit it directly to reflect the commands you
want to run. Bad SUSE! The script uses its own little metalanguage to construct the
setserial command lines, but fortunately there are plenty of commented-out exam-
ple lines to choose from.

Debian has a nicely commented configuration file, /etc/serial.conf, that is read by
/etc/init.d/setserial. This file is also available for Ubuntu in the setserial package,
but it is not installed by default. Its advanced features (such as persistent autoconfig-
uration) are probably only useful for the designers of the distribution. For simple

S
e

ri
a

l D
e

vi
ce

s

27.9 Configuration of hardwired terminals 855

cases, just uncomment the lines you want or add your own in setserial format (omit
the command name).

27.8 SOFTWARE CONFIGURATION FOR SERIAL DEVICES

Once a device has been connected with the proper cable, software on the host ma-
chine must be configured to take advantage of it. The configuration chores for a new
device depend on the type of device and the uses to which it will be put:

• For a hardwired terminal, you must tell the system to listen for logins on
the terminal’s port. You specify the speed and parameters of the serial con-
nection. Configuration for terminals is described in the next section.

• Dial-in modems are configured similarly to hardwired terminals. How-
ever, the exact procedure may be slightly different on some systems.

• To see how to use a modem to connect to a remote network using PPP,
refer to page 320.

• See Chapter 23, Printing, for information about how to set up a serial
printer. Some printers only receive data; others are bidirectional and can
return status information to the host computer.

• A custom serial device that you use only from your own software needs no
special configuration. You can simply open the device file to access the
device. Refer to the termios man page to learn how to set the speed, flag
bits, and buffering mode of the serial port.

27.9 CONFIGURATION OF HARDWIRED TERMINALS

Over the last two decades, cheap computers have almost entirely replaced ASCII ter-
minals. However, even the “terminal” windows on a graphical display use the same
drivers and configuration files as real terminals, so system administrators still need
to understand how this archaic technology works.

Terminal configuration involves two main tasks: making sure that a process is at-
tached to a terminal to accept logins and making sure that information about the
terminal is available once a user has logged in. Before we dive into the details of these
tasks, however, let’s take a look at the entire login process.

The login process

See page 33 for more
information about the
init daemon.

The login process involves several different programs, the most important of which
is the init daemon. One of init’s jobs is to spawn a process, known generically as a
getty, on each terminal port that is turned on in the /etc/inittab file. The getty sets
the port’s initial characteristics (such as speed and parity) and prints a login prompt.

The actual name of the getty program varies among Linux distributions, and some
distributions include multiple implementations. Red Hat, Fedora, and SUSE use a
simplified version called mingetty to handle logins on virtual consoles. To manage

856 Chapter 27 – Serial Devices

terminals and dial-in modems, they provide Gert Doering’s mgetty implementation.
Debian and Ubuntu use a single getty written by Wietse Venema et al.; this version
is also available on SUSE systems under the name agetty. An older implementation
called uugetty has largely been superseded by mgetty.

To distinguish among this plenitude of gettys, think of them in order of complexity.
mingetty is the simplest and is essentially just a placeholder for a getty. It can only
handle logins on Linux virtual consoles. agetty is a bit more well-rounded and han-
dles both serial ports and modems. mgetty is the current king of the hill. It handles
incoming faxes as well as logins and does proper locking and coordination so that
the same modem can be used as both a dial-in and a dial-out line.

The sequence of events in a complete login is as follows:

• getty prints the contents of the /etc/issue file, along with a login prompt.

• A user enters a login name at getty’s prompt.

• getty executes the login program with the specified name as an argument.

• login requests a password and validates it against /etc/shadow.5

• login prints the message of the day from /etc/motd and runs a shell.

• The shell executes the appropriate startup files.6

• The shell prints a prompt and waits for input.

When the user logs out, control returns to init, which wakes up and spawns a new
getty on the terminal port.

Most of the configurability in this chain of events is concentrated in /etc/inittab,
where the system’s normal complement of gettys is defined, and in /etc/gettydefs,
where some versions of getty look for additional configuration information.

The /etc/inittab file

init supports various “run levels” that determine which system resources are en-
abled. There are seven run levels, numbered 0 to 6, with “s” recognized as a syn-
onym for level 1 (single-user operation). When you leave single-user mode, init
prompts you to enter a run level unless an initdefault field exists in /etc/inittab as
described below. init then scans the inittab file for all lines that match the specified
run level.

Run levels are usually set up so that you have one level in which only the console is
enabled and another level that enables all gettys. You can define the run levels in
whatever way is appropriate for your system; however, we recommend that you not
stray too far from the defaults.

Entries in inittab are of the form

id:run-levels:action:process

5. If shadow passwords are not in use, the password may come directly from /etc/passwd. In addition,
/etc/passwd may be superseded or complemented by an administrative database system such as NIS.
See Chapter 17 for more information.

6. .profile for sh and ksh; .bash_profile and .bashrc for bash; .cshrc and .login for csh/tcsh.

S
e

ri
a

l D
e

vi
ce

s

27.9 Configuration of hardwired terminals 857

Here are some simple examples of inittab entries.

Trap CTRL-ALT-DELETE
ca::ctrlaltdel:/sbin/shutdown -t3 -r now

Run gettys in standard runlevels
1:2345:respawn:/sbin/mingetty tty1
2:2345:respawn:/sbin/mingetty tty2

In this format, id is a one- or two-character string that identifies the entry; it can be
null. For terminal entries, it is customary to use the terminal number as the id.

run-levels enumerates the run levels to which the entry pertains. If no levels are spec-
ified (as in the first line), then the entry is valid for all run levels. The action tells how
to handle the process field; Table 27.6 lists some of the more commonly used values.

If one of the run-levels matches the current run level and the action field indicates
that the entry is relevant, init uses sh to execute (or terminate) the command speci-
fied in the process field. The Wait? column in Table 27.6 tells whether init waits for
the command to complete before continuing.

In the example inittab lines above, the last two lines spawn mingetty processes on
the first two virtual consoles (accessed with <Alt-F1> and <Alt-F2>). If you add
hardwired terminals or dial-in modems, the appropriate inittab lines will look sim-
ilar to these. However, you must use mgetty or getty (agetty on SUSE) with such
devices because mingetty is not sophisticated enough to handle them correctly. In
general, respawn is the correct action and 2345 is an appropriate set of levels.

The command telinit -q makes init reread the inittab file.

Different gettys require different configuration procedures. The getty/agetty ver-
sion found on SUSE, Debian and Ubuntu is generally a bit cleaner than the mgetty
version because it accepts all of its configuration information on the command line
(in /etc/inittab).

Table 27.6 Common values for the /etc/inittab action field

Value Wait? Meaning

initdefault – Sets the initial run level
boot No Runs when inittab is read for the first time
bootwait Yes Runs when inittab is read for the first time
ctrlaltdel No Runs in response to a keyboard <Control-Alt-Delete>
once No Starts the process once
wait Yes Starts the process once
respawn No Always keeps the process running
powerfail No Runs when init receives a power-fail signal
powerwait Yes Runs when init receives a power-fail signal
sysinit Yes Runs before accessing the console

858 Chapter 27 – Serial Devices

The general model is

/sbin/getty port speed termtype

See page 858 for more
information about the
terminfo database.

where port is the device file of the serial port relative to /dev, speed is the baud rate
(e.g., 38400), and termtype identifies the default terminal type for the port. The term-
type refers to an entry in the terminfo database. Most emulators simulate a DEC
VT100, denoted vt100. Most of the many other minor options relate to the handling
of dial-in modems.

mgetty, provided by Red Hat, Fedora, and SUSE, is a bit more sophisticated than
agetty in its handling of modems and integrates both incoming and outgoing fax
capability. Unfortunately, its configuration is a bit more diffuse. In addition to other
command-line flags, mgetty can accept an optional reference to an entry in
/etc/gettydefs that specifies configuration details for the serial driver. Unless you’re
setting up a sophisticated modem configuration, you can usually get away without a
gettydefs entry.

On Red Hat systems, use man mgettydefs to find the man page for the gettydefs
file. It’s named this way to avoid conflict with an older gettydefs man page that no
longer exists on any Linux system.

A simple mgetty command line for a hardwired terminal looks something like this:

/sbin/mgetty -rs speed device

The speed is the baud rate (e.g., 38400), and the device is the device file for the serial
port (use the full pathname).

If you want to specify a default terminal type for a port when using mgetty, you
must do so in a separate file, /etc/ttytype, and not on the mgetty command line.
The format of an entry in ttytype is

termtype device

device is the short name of the device file representing the port, and termtype is the
name of the appropriate terminfo entry (see the next section). For example:

linux tty1
linux tty2
vt100 ttyS0
vt100 ttyS1

Terminal support: the termcap and terminfo databases

Linux supports many different terminal types aided by a database of terminal capa-
bilities that specifies the features and programming quirks of each brand of termi-
nal. There have historically been two competing database formats: termcap and
terminfo. For maximum compatibility, Linux distributions generally provide both.
The termcap database is contained in the file /etc/termcap, and the terminfo data-
base is stored in /usr/share/terminfo. The two databases are similar and use the
same name for each terminal type, so the distinction between them is unimportant.

S
e

ri
a

l D
e

vi
ce

s

27.10 Special characters and the terminal driver 859

As shipped, both databases contain entries for hundreds of different terminals. In
this terminal-less era, most are completely irrelevant. A good rule of thumb is that
everything emulates a DEC VT100 until proven otherwise. Many emulators also sup-
port “ansi”; “linux” and “xterm” are useful for Linux consoles and xterm (X Win-
dows terminal) windows, respectively.

See page 861 for more
information about con-
figuring terminals at
login time.

Linux programs look at the TERM environment variable to determine what kind of
terminal you are using. The terminal can then be looked up in termcap or terminfo.
The system normally sets the TERM variable for you at login time, in accordance with
the command-line arguments to getty/agetty or the contents of /etc/ttytype.

27.10 SPECIAL CHARACTERS AND THE TERMINAL DRIVER

The terminal driver supports several special functions that you access by typing par-
ticular keys (usually control keys) on the keyboard. The exact binding of functions
to keys can be set with the tset and stty commands. Table 27.7 lists some of these
functions, along with their default key bindings.

By default, PC versions of the Linux kernel generate a delete character (<Control-?>)
when the backspace key is pressed. (This key may be labeled “backspace” or “delete,”
or it may show only a backarrow graphic. It depends on the keyboard.) In the past,
many UNIX systems used the backspace character (<Control-H>) for this role. Un-
fortunately, the existence of two different standards for this function creates a multi-
tude of problems.

You can use stty erase (see the next section) to tell the terminal driver which key
code your setup is actually generating. However, some programs (such as text edi-
tors and shells with command-editing features) have their own idea of what the back-
space character should be, and they don’t always pay attention to the terminal driver’s
setting. In a helpful but confusing twist, some programs obey both the backspace

Table 27.7 Special characters for the terminal driver

Name Default Function

erase <Control-?> Erases one character of input
werase <Control-W> Erases one word of input
kill <Control-U> Erases the entire line of input
eof <Control-D> Sends an “end of file” indication
intr <Control-C> Interrupts the currently running process
quit <Control-\> Kills the current process with a core dump
stop <Control-S> Stops output to the screen
start <Control-Q> Restarts output to the screen
susp <Control-Z> Suspends the current process
lnext <Control-V> Interprets the next character literally

860 Chapter 27 – Serial Devices

and delete characters. You may also find that remote systems you log in to through
the network make very different assumptions from those of your local system.

Solving these annoying little conflicts can be a Sunday project in itself. In general,
there is no simple, universal solution. Each piece of software must be individually
beaten into submission. Two useful resources to help with this task are the Linux
Backspace/Delete mini-HOWTO from www.tldp.org and a nifty article by Anne Ba-
retta at www.ibb.net/~anne/keyboard.html.

27.11 STTY: SET TERMINAL OPTIONS

stty lets you directly change and query the various settings of the terminal driver.
There are about a zillion options, but most can be safely ignored. stty generally uses
the same names for driver options as the termios man page does, but occasional
discrepancies pop up.

stty’s command-line options can appear in any order and in any combination. A dash
before an option negates it. For example, to configure a terminal for 9,600 bps oper-
ation with even parity and without hardware tabs, use the command

$ stty 9600 even -tabs

A good combination of options to use for a plain-vanilla terminal is

$ stty intr ^C kill ^U erase ^? -tabs

Here, -tabs prevents the terminal driver from taking advantage of the terminal’s
built-in tabulation mechanism, a useful practice because many emulators are not
very smart about tabs. The other options set the interrupt, kill, and erase characters
to <Control-C>, <Control-U>, and <Control-?> (delete), respectively.

You can use stty to examine the current modes of the terminal driver as well as to set
them. stty with no arguments produces output like this:

$ stty
speed 38400 baud; line = 0;
-brkint -imaxbel

For a more verbose status report, use the -a option:

$ stty -a
speed 38400 baud; rows 50; columns 80; line = 0;
intr = ^C; quit = ^\; erase = ^?; kill = ^U; eof = ^D; eol = <undef>;
eol2 = <undef>; start = ^Q; stop = ^S; susp = ^Z; rprnt = ^R; werase = ^W;
lnext = ^V; flush = ^O; min = 1; time = 0;
-parenb -parodd cs8 -hupcl -cstopb cread -clocal -crtscts
-ignbrk -brkint -ignpar -parmrk -inpck -istrip -inlcr -igncr icrnl ixon -ixoff
-iuclc -ixany -imaxbel
opost -olcuc -ocrnl onlcr -onocr -onlret -ofill -ofdel nl0 cr0 tab0 bs0 vt0 ff0
isig icanon iexten echo echoe echok -echonl -noflsh -xcase -tostop -echoprt
echoctl echoke

www.tldp.org
www.ibb.net/~anne/keyboard.html

S
e

ri
a

l D
e

vi
ce

s

27.12 tset: set options automatically 861

The format of the output is similar but lists more information. The meaning of the
output should be intuitively obvious (if you’ve written a terminal driver recently).

stty operates on the file descriptor of its standard input, so you can set and query
the modes of a terminal other than the current one by using the shell’s input redirec-
tion character (<). You must be the superuser to change the modes on someone
else’s terminal.

27.12 TSET: SET OPTIONS AUTOMATICALLY

tset initializes the terminal driver to a mode appropriate for a given terminal type.
The type can be specified on the command line; if the type is omitted, tset uses the
value of the TERM environment variable.

tset supports a syntax for mapping certain values of the TERM environment variable
into other values. This feature is useful if you often log in through a modem or data
switch and would like to have the terminal driver configured correctly for the termi-
nal you are really using on the other end of the connection rather than something
generic and unhelpful such as “dialup.”

For example, suppose that you use xterm at home and that the system you are dial-
ing into is configured to think that the terminal type of a modem is “dialup.” Putting
the command

tset -m dialup:xterm

in your .login or .profile file sets the terminal driver appropriately for xterm when-
ever you dial in.

Unfortunately, the tset command is not really as simple as it pretends to be. To have
tset adjust your environment variables in addition to setting your terminal modes,
you need lines something like this:

set noglob
eval `tset -s -Q -m dialup:xterm`
unset noglob

This incantation suppresses the messages that tset normally prints (the -Q flag), and
asks that shell commands to set the environment be output instead (the -s flag). The
shell commands printed by tset are captured by the backquotes and fed to the shell
as input with the built-in command eval, causing the commands to have the same
effect as if they had been typed by the user.

set noglob prevents the shell from expanding any metacharacters such as “*” and “?”
that are included in tset’s output. This command is not needed by sh/ksh users (nor
is the unset noglob to undo it), since these shells do not normally expand special
characters within backquotes. The tset command itself is the same no matter what
shell you use; tset looks at the environment variable SHELL to determine what fla-
vor of commands to print out.

862 Chapter 27 – Serial Devices

27.13 TERMINAL UNWEDGING

Some programs (such as vi) make drastic changes to the state of the terminal driver
while they are running. This meddling is normally invisible to the user, since the
terminal state is carefully restored whenever the program exits or is suspended. How-
ever, a program could crash or be killed without performing this housekeeping step.
When this happens, the terminal may behave very strangely: it might fail to handle
newlines correctly, to echo typed characters, or to execute commands properly.

Another common way to confuse a terminal is to accidentally run cat or more on a
binary file. Most binaries contain a delicious mix of special characters that is guaran-
teed to send some of the less-robust emulators into outer space.

To fix this situation, use reset or stty sane. reset is actually just a link to tset, and it
can accept most of tset’s arguments. However, it is usually run without arguments.
Both reset and stty sane restore the correctitude of the terminal driver and send out
an appropriate reset code from termcap/terminfo if one is available.

In many cases for which a reset is appropriate, the terminal has been left in a mode
in which no processing is done on the characters you type. Most terminals generate
carriage returns rather than newlines when the Return or Enter key is pressed; with-
out input processing, this key generates <Control-M> characters instead of sending
off the current command to be executed. To enter newlines directly, use <Control-J>
or the line feed key (if there is one) instead of the Return key.

27.14 MODEMS

A modem converts the digital serial signal produced by a computer into an analog
signal suitable for transmission on a standard phone line. Fortunately, the advent of
broadband Internet access has turned these once-essential devices into museum
candidates at many locations.

External modems have an RJ-11 jack on the analog side and an RS-232 interface of
some type on the digital side—usually a female DB-25. On the front they usually
have a series of lights that display the modem’s current state and level of activity.
These lights are incredibly useful for debugging, so modems should generally be
located somewhere in plain sight.

Internal modems are usually seen only on PCs. They plug into an ISA, PCI, or PCM-
CIA slot and have an RJ-11 jack that sticks out the back of the computer’s case once
the modem has been installed. They are cheaper than external modems but more
troublesome to configure, and they generally lack indicator lights.

If you are considering an internal modem, check to be sure it’s supported by Linux.
Fast CPUs have made it possible to simplify modem hardware by performing some
signal processing tasks on the host processor. Unfortunately, modems that work
this way (known generically as Winmodems) require sophisticated drivers and are
not universally supported under Linux. See Sean Walbran and Marvin Stodolsky’s

S
e

ri
a

l D
e

vi
ce

s

27.14 Modems 863

Linmodem HOWTO (available from www.tldp.org) for an overview of Winmodem
support under Linux. (The Modem HOWTO is also very helpful for a broader per-
spective on the management of modems.)

Internal modems are usually made to appear as though they were connected through
a phantom serial port from the perspective of user-level software. This convention
helps insulate the logical function of the modem from its hardware implementation.
Standard software packages can drive the modem without having to know anything
about its peculiarities.

Modems vary somewhat in general robustness, but this characteristic is hard to judge
without direct experience. In the past, we have found some modems to be signifi-
cantly more tolerant of line noise than others. These days, most designs use a stan-
dard chipset from one of several large manufacturers, so it’s likely that the variations
among modems are not as great as they once were.

High-speed modems require complex firmware, and this firmware is occasionally
buggy. Manufacturers share firmware among models when possible, so good or bad
firmware tends to run in product lines. For this reason, we still recommend sticking
with well-known brands.

Modulation, error correction, and data compression protocols

Long ago, it was important to check the exact protocols supported by a modem be-
cause standards were continually changing and modem manufacturers did not al-
ways implement a complete suite of protocols. These days, modems all support pretty
much the same standards. The only real difference between them is the quality of the
firmware, electronics, and support.

A protocol’s baud rate is the rate at which the carrier signal is modulated. If there are
more than two signal levels, then more than one bit of information can be sent per
transition and the speed in bits per second will be higher than the baud rate. Histor-
ically, the data speed and signaling speed of modems were the same, leading to a ca-
sual confusion of the terms “baud” and “bps” (bits per second).

Most modems today use the “56K” V.90 standard, which doesn’t actually provide 56
Kb/s of throughput. At best, it allows 33.6 Kb/s from computer to ISP and 53 Kb/s in
the other direction. A recent update to the V.90 standard, V.92, sends 48 Kb/s rather
than 33.6 Kb/s toward the ISP. V.90 and V.92 achieve speeds that are close to the
theoretical and legal limits of signalling over ordinary voice telephone lines, and
they’re not expected to be superseded any time soon.

Line noise can introduce a significant number of errors into a modem connection.
Various error correction protocols have been developed to packetize the transmitted
data and provide checksum-based correction for errors, insulating the user or appli-
cation from line faults. You once had to know something about this to configure
your modem correctly, but these days it usually just works.

www.tldp.org

864 Chapter 27 – Serial Devices

Data compression algorithms can be used to shrink the number of bits that must be
transmitted between analog endpoints. The amount of compression varies from
worse than none (when transmitting data that has already been compressed) to at
most about 4:1. A more typical value is 1.5:1. In general, the average configuration
does better with one of these compression algorithms turned on.

minicom: dial out

The traditional UNIX dial-out programs tip and cu are relatively unpopular on
Linux systems, although both have been ported (cu is usually packaged with UUCP,
an obsolete telephone communication system). More common under Linux are all-
in-one packages such as kermit and minicom that provide terminal emulation and
support for data transfer protocols. For debugging and occasional use, we recom-
mend minicom, mostly because it’s the most likely to be preinstalled. Debian does
not install it by default; run apt-get install minicom if it seems to be missing.

For better or for worse, minicom is a bit more PC-like than most Linux software. If
your memories of 1986 include logging in at 1200 baud through an MS-DOS terminal
emulator, minicom will make you feel right at home. To configure the software, run
minicom -s as root and enter the “serial port setup” menu. Set the device file for the
modem, turn on hardware flow control, set the coding to 8N1 (8 data bits, no parity,
and 1 stop bit), and make sure the speed looks OK. Return to the main menu and
choose “save settings as dfl” to write out your changes.

If you are familiar with the Hayes command language used by most modems, you can
simply enter the commands directly (e.g., “ATDT5551212” to dial 555-1212). To have
minicom do it for you, type <Control-A> and D to enter the dialing menu.

Bidirectional modems

It is often handy to use a single modem for both dial-in and dial-out services, partic-
ularly if you want to use fax support. This configuration requires getty to handle the
serial port in an especially solicitous manner, since it can’t just grab hold of the port
and lock out all other processes. Port sharing is achieved through options to the
open system call and involves features of both the serial driver and the kernel. All
programs that share the port must obey the proper protocol.

In the past, configuring a modem for bidirectional use was a big huge deal that re-
quired many system-specific tweaks and often did not work very well. Fortunately,
the major Linux software packages play pretty well with each other right out of the
box as long as you use mgetty or its predecessor, uugetty. In general, mgetty is
preferred; its default behavior is to share, so just plug and go.

27.15 DEBUGGING A SERIAL LINE

Debugging serial lines is not difficult. Some typical errors are

• Forgetting to tell init to reread its configuration files

• Forgetting to set soft carrier when using three-wire cables

S
e

ri
a

l D
e

vi
ce

s

27.16 Other common I/O ports 865

• Using a cable with the wrong nullness

• Soldering or crimping DB-25 connectors upside down

• Connecting a device to the wrong wire because of bad or nonexistent wire maps

• Setting the terminal options incorrectly

A breakout box is an indispensable tool for debugging cabling problems. It is patched
into the serial line and shows the signals on each pin as they pass through the cable.
The better breakout boxes have both male and female connectors on each side and
so are totally flexible and bisexual in their positioning. LEDs associated with each
“interesting” pin (pins 2, 3, 4, 5, 6, 8, and 20) show when the pin is active.

Some breakout boxes are read-only and just let you monitor the signals; others let
you rewire the connection and assert a voltage on a particular pin. For example, if
you suspected that a cable needed to be nulled (crossed), you could use the breakout
box to override the actual cable wiring and swap pins 2 and 3 and also pins 6 and 20.

See page 371 for
more information
about Black Box.

A bad breakout box can be worse than no breakout box at all. Our favorite imple-
mentation is the BOB-CAT-B made by Black Box. It is an easy-to-use box that costs
around $250. You can reach Black Box at (724) 746-5500 or www.blackbox.com.

27.16 OTHER COMMON I/O PORTS

Serial ports were once the unchallenged standard for attaching low-speed peripher-
als to UNIX systems, but today most PC hardware ships with USB (Universal Serial
Bus) ports that serve this function.

USB puts traditional serial (and parallel) ports to shame. It’s fast (up to 480 Mb/s)
and architecturally elegant, and it uses standardized cables that are both simple and
cheap. USB has quickly become the standard for most external devices.

As an added twist, you can purchase adapters that have a USB port on one side and
an RS-232C serial port on the other. These adapters allow newer PCs that don’t have
built-in serial ports to communicate with legacy serial devices. We’ve had good luck
with the USB-to-RS-232C adapters sold by www.keyspan.com. Drivers for the Key-
span adapters are included in Linux kernel versions 2.4.22 and later.

Parallel ports were popular in the 1980s and are similar in concept to serial ports,
but they transfer eight bits of data at once rather than just one bit. Parallel interfaces
are traditionally found on printers, but in the Windows world they’ve also been his-
torically used to connect Zip and tape drives. These bizarre uses have long been
replaced by USB, and Linux support for parallel devices other than printers is scant.

USB: the Universal Serial Bus

For more information
about USB, see the site
www.usb.org.

USB is a generic peripheral interconnect system designed by Compaq, DEC, IBM,
Intel, Microsoft, NEC, and Northern Telecom. The first USB standard was published
in 1996. Acceptance of USB in the Windows world has snowballed rapidly over the
last decade. All new PCs have USB ports, and most computer peripherals are avail-
able in USB versions.

www.blackbox.com
www.keyspan.com
www.usb.org

866 Chapter 27 – Serial Devices

USB is a great system, and we think it’s likely to stay in use for many years to come. It
has almost all of the properties and features one could wish for in a utility communi-
cations bus.

• It’s extremely cheap.

• Up to 127 devices can be connected.

• Cables have only four wires: power, ground, and two signal wires.

• Connectors and connector genders are standardized.

• The connectors are small, and the cables are thin and flexible.

• Devices can be connected and disconnected without power-down.

• Signalling speeds up to 480 Mb/s are possible (USB 2.0).

• Legacy serial and parallel devices can be connected with adaptors.

USB can even be used as a LAN technology, although it’s really not designed for that.

Linux already has solid, broad support for USB devices. The USB standard defines
standard interfaces for several classes of common equipment (such as mice, mo-
dems, and mass storage devices), so the use of these devices is often relatively
straightforward. Devices such as cameras and scanners, on the other hand, can oc-
casionally require chipset-specific drivers.

Information about available USB devices can be found in /proc/bus/usb. Numbered
files (such as 001, which represents the host’s own USB controller) correspond to
individual USB devices. The /proc/bus/usb/devices file provides detailed informa-
tion about the current device census, and the /proc/bus/usb/drivers file contains
the names of the currently registered USB drivers (whether or not they are being
used). Both of these files can be inspected with less or your favorite text editor.

Although the /proc/bus/usb filesystem supports autoconfiguration and helps with
debugging, it’s generally not used directly by kernel-level drivers. Most USB devices
are accessed through traditional UNIX-style device files under /dev.

USB is most commonly used with data storage devices such as flash memory drives.
See page 147 for more specifics about how to mount USB drives. For up-to-date in-
formation about other types of devices, see the device list at www.linux-usb.org.

27.17 EXERCISES

E27.1 What is a null modem cable? How is it used to connect DCE and DTE
serial devices?

E27.2 Can you use a 3-wire serial cable for a serial modem connection? For a
serial printer? Why or why not?

E27.3 How does traditional serial hardware flow control work? What can be
done if a system does not understand hardware flow control?

E27.4 What is a pseudo-terminal? What programs use pseudo-terminals?

www.linux-usb.org

S
e

ri
a

l D
e

vi
ce

s

27.17 Exercises 867

E27.5 Devise inittab entries that

a) Run a program called server-fallback, wait for it to finish, and then
immediately halt the system if the power fails.

b) Respawn a server called unstable-srv if it crashes.

c) Run a script called clean-temp that removes all temporary files each
time the system is rebooted.

E27.6 You’ve plugged a new USB device into your computer. How can you check
to see that it’s been recognized and is now accessible?

E27.7 Compare the RS-232 and USB serial standards.

E27.8 A friend of yours carelessly left himself logged in overnight in the Linux
lab and is now experiencing strange problems when he runs shell applica-
tions. Programs quit or suspend, and previous input disappears, when
certain commands and input are given; however, some things seem to
work normally. What could an unfriendly user have done to cause such
behavior? Explain how you could test your answer. How could the prob-
lem be fixed? Who would do such a mean thing?

868

28 Drivers and the Kernel

The kernel is responsible for hiding the system’s hardware underneath an abstract,
high-level programming interface. It provides many of the facilities that users and
user-level programs take for granted. For example, the kernel creates all the follow-
ing concepts from lower-level hardware features:

• Processes (time sharing, protected address spaces)

• Signals and semaphores

• Virtual memory (swapping, paging, mapping)

• The filesystem (files, directories, namespace)

• General input/output (specialty hardware, keyboard, mouse)

• Interprocess communication (pipes and network connections)

The kernel contains device drivers that manage its interaction with specific pieces of
hardware; the rest of the kernel is, to a large degree, device independent. The rela-
tionship between the kernel and its device drivers is similar to the relationship be-
tween user-level processes and the kernel. When a process asks the kernel to “Read
the first 64 bytes of /etc/passwd,” the kernel might translate this request into a de-
vice driver instruction such as “Fetch block 3,348 from device 3.” The driver would
further break this command down into sequences of bit patterns to be presented to
the device’s control registers.

The kernel is written mostly in C, with a sprinkling of assembly language to help it
interface with hardware- or chip-specific functions that are not accessible through
normal compiler directives.

Drivers / Kernel

D
ri

ve
rs

 /
 K

e
rn

e
l

28.1 Kernel adaptation 869

One of the advantages of the Linux environment is that the availability of source code
makes it relatively easy to roll your own device drivers and kernel modules from
scratch. In the early days of Linux, having skills in this area was a necessity because
it was difficult to effectively administer Linux systems without being able to “mold”
the system to a specific environment.

Today, sysadmins can be perfectly effective without ever soiling their hands with
gooey kernel code. In fact, one might argue that such activities are better left to pro-
grammers and that administrators should focus more on the overall needs of the
user community. System administrators can tune the kernel or add preexisting mod-
ules as described in this chapter, but they don’t need to take a crash course in C or
assembly language programming to survive.

The bottom line is that you shouldn’t confuse the administration of modern Linux
environments with the frontier husbandry of just a few years back.

28.1 KERNEL ADAPTATION

Linux systems live in a world that could potentially include any of tens of thousands
of different pieces of computer hardware. The kernel must adapt to whatever hard-
ware is present in the machine on which it’s running.

A kernel can learn about the system’s hardware in a variety of ways. The most basic
is for you to explicitly inform the kernel about the hardware it should expect to find
(or pretend not to find, as the case may be). In addition, the kernel prospects for
some devices on its own, either at boot time or dynamically (once the system is run-
ning). The latter method is the most common for modern-day devices such as those
that reside on the Universal Serial Bus (USB), including memory sticks, modems,
digital cameras, and printers. Fortunately, Linux has reasonable support for a wide
array of these devices.

On the PC platform, where Linux is popular, the challenge of creating an accurate
inventory of the system’s hardware is particularly difficult (and sometimes impossi-
ble). PC hardware has followed an evolutionary path not unlike our own, in which
early protozoa have now given rise to everything from dingos to killer bees. This di-
versity is compounded by the fact that PC manufacturers usually don’t give you much
technical information about the systems they sell, so you must often take your sys-
tem apart and visually inspect the pieces to answer questions such as “What Ether-
net chipset is on the motherboard?”

Modern Linux systems survive on a hybrid diet of static and dynamic kernel com-
ponents, with the mix between the two being dictated primarily by the limitations of
PC hardware. It’s likely that at some point during your sysadmin career you’ll need
to lend a helping hand in the form of building a new kernel configuration.

870 Chapter 28 – Drivers and the Kernel

28.2 DRIVERS AND DEVICE FILES

A device driver is a program that manages the system’s interaction with a piece of
hardware. The driver translates between the hardware commands understood by
the device and the stylized programming interface used by the kernel. The driver
layer helps keep Linux reasonably device independent.

Device drivers are part of the kernel; they are not user processes. However, a driver
can be accessed both from within the kernel and from user space. User-level access to
devices is usually through special device files that live in the /dev directory. The ker-
nel transforms operations on these files into calls to the code of the driver.

The PC platform is a source of chaos in the system administrator’s world. A dizzying
array of hardware and “standards” with varying levels of operating system support
are available. Behold:

• More than 30 different SCSI chipsets are currently available, and each is
packaged and sold by at least twice that many vendors.

• Over 200 different network interfaces are out there, each being marketed
by several different vendors under different names.

• Newer, better, and less expensive types of hardware are being developed all
the time. Each requires a driver in order to work with your Linux of choice.

With the remarkable pace at which new hardware is being developed, it is practically
impossible to keep mainline OS distributions up to date with the latest hardware.
Occasionally, you will need to add a device driver to your kernel to support a new
piece of hardware.1

Only device drivers designed for use with Linux (and usually, a specific version of
the Linux kernel) can be successfully installed on a Linux system. Drivers for other
operating systems (e.g., Windows) will not work, so when you purchase new hard-
ware, keep this in mind. In addition, devices vary in their degree of compatibility
and functionality when used with Linux, so it’s wise to pay some attention to the
results other sites have obtained with any hardware you are considering.

Vendors are becoming more aware of the UNIX and Linux markets, and they often
provide Linux drivers with their products. In the optimal case, your vendor fur-
nishes you with both drivers and installation instructions. Occasionally, you will
only find the driver you need on some uncommented web page. In either case, this
section shows you what is really going on when you add a device driver.

Device files and device numbers

Many devices have a corresponding file in /dev; notable exceptions on modern oper-
ating systems are network devices. Complex servers may support hundreds of de-
vices.

1. On PC hardware, you can use the lspci command to view the devices that are currently attached to the
PCI bus and recognized by the kernel.

D
ri

ve
rs

 /
 K

e
rn

e
l

28.2 Drivers and device files 871

By virtue of being device files, the files in /dev each have a major and minor device
number associated with them. The kernel uses these numbers to map device-file ref-
erences to the corresponding driver.

The major device number identifies the driver with which the file is associated (in
other words, the type of device). The minor device number usually identifies which
particular instance of a given device type is to be addressed. The minor device num-
ber is sometimes called the unit number.

You can see the major and minor number of a device file with ls -l:

$ ls -l /dev/sda
brw-rw---- 1 root disk 8, 0 Jan 5 2005 /dev/sda

This example shows the first SCSI disk on a Linux system. It has a major number of 8
and a minor number of 0.

The minor device number is sometimes used by the driver to select the particular
characteristic of a device. For example, a single tape drive can have several files in
/dev representing it in various configurations of recording density and rewind char-
acteristics. The driver is free to interpret the minor device number in whatever way
it wants. Look up the man page for the driver to determine what convention it’s using.

There are actually two types of device files: block device files and character device
files. A block device is read or written one block (a group of bytes, usually a multiple
of 512) at a time; a character device can be read or written one byte at a time.

It is sometimes convenient to implement an abstraction as a device driver even when
it controls no actual device. Such phantom devices are known as pseudo-devices. For
example, a user who logs in over the network is assigned a PTY (pseudo-TTY) that
looks, feels, and smells like a serial port from the perspective of high-level software.
This trick allows programs written in the days when everyone used a TTY to con-
tinue to function in the world of windows and networks.

When a program performs an operation on a device file, the kernel automatically
catches the reference, looks up the appropriate function name in a table, and trans-
fers control to it. To perform an unusual operation that doesn’t have a direct analog
in the filesystem model (for example, ejecting a floppy disk), a program can use the
ioctl system call to pass a message directly from user space into the driver.

Creating device files

Device files can be created manually with the mknod command, with the syntax

mknod filename type major minor

where filename is the device file to be created, type is c for a character device or b for
a block device, and major and minor are the major and minor device numbers. If you
are manually creating a device file that refers to a driver that’s already present in
your kernel, check the man page for the driver to find the appropriate major and
minor device numbers.

872 Chapter 28 – Drivers and the Kernel

Historically, device files in /dev were created manually by the system administrator.
Most systems provided a script, called MAKEDEV, in the /dev directory to help
with this task. MAKEDEV sometimes, but not always, knew how to create the cor-
rect device files for a particular component. It was a tedious process at best.

As of Linux kernel version 2.6,2 the udev system dynamically manages the creation
and removal of device files according to the actual presence (or absence) of devices.
The udevd daemon listens for messages from the kernel regarding device status
changes. Based on configuration information in /etc/udev/udev.conf and subdirec-
tories, udevd can take a variety of actions when a device is discovered or discon-
nected. By default, udevd creates device files in /dev. It also attempts to run network
configuration scripts when new network interfaces are detected.

sysfs: a window into the souls of devices

Another feature introduced in version 2.6 of the kernel is sysfs. This is a virtual
filesystem that provides well-organized and very detailed information about avail-
able devices, their configurations, and their state. The information is accessible both
from within the kernel and from user space.

You can explore the /sys directory, where sysfs is typically mounted, to find out
everything from what IRQ a device is using to how many blocks have been queued
for writing on a disk controller. One of the guiding principles of sysfs is that each
file in /sys should represent only one attribute of the underlying device. This conven-
tion imposes a certain amount of structure on an otherwise chaotic data set.

Originally, information about device configuration was found in the /proc filesys-
tem (procfs, discussed later in this chapter) if it was available at all. Although /proc
will continue to hold run-time information about processes and the kernel, it is an-
ticipated that device-specific information will be moved to /sys over time.

Because sysfs is relatively new, much of its potential is currently untapped. It may
eventually be possible to configure devices in real time through sysfs. In the long
term, it may even replace all or part of /dev. Only time will tell.

Naming conventions for devices

Naming conventions for devices are somewhat random. They are often holdovers
from the way things were done under UNIX on a DEC PDP-11, as archaic as that may
sound in this day and age.

See Chapter 27 for
more information
about serial ports.

Serial device files are named ttyS followed by a number that identifies the specific
interface to which the port is attached. TTYs are sometimes represented by more
than one device file; the extra files usually afford access to alternative flow control
methods or locking protocols.

2. udev is a complete replacement for devfs, another recent attempt at similar functionality. udev does
not implement all the features of devfs, but it’s believed to be more architecturally pure. Didn’t you
know that all those extra, convenient features of devfs were just self-indulgent vices?

D
ri

ve
rs

 /
 K

e
rn

e
l

28.3 Why and how to configure the kernel 873

The names of tape devices often include not only a reference to the drive itself but
also an indication of whether the device rewinds after the tape device is closed.

IDE hard disk devices are named /dev/hdLP, where L is a letter that identifies the
unit (with a being the master on the first IDE interface, b being the slave on that
interface, c being the master on the second IDE interface, etc.) and P is the partition
number (starting with 1). For example, the first partition on the first IDE disk is typ-
ically /dev/hda1. SCSI disks are named similarly, but with the prefix /dev/sd instead
of /dev/hd. You can drop the partition number on both types of devices to access
the entire disk (e.g., /dev/hda).

SCSI CD-ROM drives are referred to by the files /dev/scdN, where N is a number
that distinguishes multiple CD-ROM drives. Modern IDE (ATAPI) CD-ROM drives
are referred to just like IDE hard disks (e.g., /dev/hdc).

28.3 WHY AND HOW TO CONFIGURE THE KERNEL

When the system is installed, it comes with a generic configuration that’s designed to
run almost any application on almost any hardware. The generic configuration in-
cludes many different device drivers and option packages, and it has tunable pa-
rameter values chosen for “general purpose” use. By carefully examining this con-
figuration and adjusting it to your exact needs, you may be able to enhance your
system’s performance, security, or even reliability.

Modern Linux kernels are better than their ancestors at flushing unwanted drivers
from memory, but compiled-in options will always be turned on. Although recon-
figuring the kernel for efficiency is less important than it used to be, a good case can
still be made for reconfiguration.

Instructions for
adding a new driver
start on page 878.

Another reason to reconfigure the kernel is to add support for new types of devices
(i.e., to add new device drivers). The driver code can’t just be mooshed onto the ker-
nel like a gob of Play-Doh; it has to be integrated into the kernel’s data structures and
tables. On some systems, this procedure may require that you go back to the config-
uration files for the kernel and add in the new device, rebuilding the kernel from
scratch. On other systems, you may only need to run a program designed to make
these configuration changes for you.

The kernel is not difficult to configure; it’s just difficult to fix once you break it.

You can use any one of four basic methods to configure a Linux kernel. Chances are
you’ll have the opportunity to try all of them eventually. The methods are

• Modifying tunable (dynamic) kernel configuration parameters

• Building a kernel from scratch (really, this means compiling it from the
source code, possibly with modifications and additions)

• Loading new drivers and modules into an existing kernel on the fly

• Providing operational directives at boot time through the kernel loader,
LILO, or GRUB. See page 26 for more information about these systems.

874 Chapter 28 – Drivers and the Kernel

These methods are each applicable in slightly different situations. Modifying tunable
parameters is the easiest and most common, whereas building a kernel from source
files is the hardest and least often required. Fortunately, all these approaches be-
come second nature with a little practice.

28.4 TUNING LINUX KERNEL PARAMETERS

Many modules and drivers in the kernel were designed with the knowledge that one
size doesn’t fit all. To increase flexibility, special hooks allow parameters such as an
internal table’s size or the kernel’s behavior in a particular circumstance to be ad-
justed on the fly by the system administrator. These hooks are accessible through an
extensive kernel-to-userland interface represented by files in the /proc filesystem
(aka procfs). In many cases, a large user-level application (especially an “infrastruc-
ture” application such as a database) requires you to adjust parameters to accommo-
date its needs.

Special files in /proc/sys let you view and set kernel options at run time. These files
mimic standard Linux files, but they are really back doors into the kernel. If one of
these files has a value you would like to change, you can try writing to it. Unfortu-
nately, not all files can be written to (regardless of their apparent permissions), and
not much documentation is available. If you have the kernel source tree available,
you may be able to read about some of the values and their meanings in the subdi-
rectory Documentation/syscnt.

For example, to change the maximum number of files the system can have open at
once, try something like

echo 32768 > /proc/sys/fs/file-max

Once you get used to this unorthodox interface, you’ll find it quite useful, especially
for changing configuration options. A word of caution, however: changes are not re-
membered across reboots. Table 28.1 lists some commonly tuned parameters.

A more permanent way to modify these same parameters can be found on most sys-
tems in the form of the sysctl command. sysctl can set individual variables either
from the command line or by reading a list of variable=value pairs from a file. By
default, the file /etc/sysctl.conf is read at boot time and its contents are used to set
initial (custom) parameter values.

For example, the command

sysctl net.ipv4.ip_forward=0

turns off IP forwarding. Note that you form the variable names used by sysctl by
replacing the slashes in the /proc/sys directory structure with dots.

D
ri

ve
rs

 /
 K

e
rn

e
l

28.4 Tuning Linux kernel parameters 875

Table 28.1 Files in /proc/sys for some tunable kernel parameters

Dira File Default Function and commentary

C autoeject 0 Autoeject CD-ROM on dismount? Good for
scaring machine room operators at 3:00 a.m.

F file-max 4096 Sets the maximum number of open files. On
a system that handles a large number of files,
try increasing this to 16384.

F inode-max 16384 Sets the maximum number of open inodes
per process. This might be useful to tinker
with if you’re writing an app that opens tens
of thousands of file handles.

K ctrl-alt-del 0 Reboot on Ctrl-Alt-Delete sequence? This
may be a matter of personal preference, or it
may increase security on server consoles
that aren’t physically secured.

K printk_ratelimit 5 Minimum seconds between kernel messages

K printk_ratelimit_burst 10 Number of messages in succession before
the printk rate limit is actually enforced.

K shmmax 32M Sets the maximum amount of shared mem-
ory. Tune if you have applications that
require significant shared memory.

N conf/default/rp_filter 0 Enables source route verification. This anti-
spoofing mechanism makes the kernel drop
packets received from “impossible” paths.

N icmp_echo_ignore_all 0 Ignores ICMP pings when set to 1. Good if
you want the system to be unpingable.

N icmp_echo_ignore_broadcasts 0 Ignores broadcast pings when set to 1.
Almost always a good idea to set this to 1.

N icmp_ignore_bogus_error_responses 0 Ignores incorrectly formatted ICMP errors.
Almost always a good idea to set this to 1.

N ip_forward 0 Allows IP forwarding when set to 1.
Improves security when set to 0; set it to 1 if
you’re using your Linux box as a router.

N ip_local_port_range 32768
61000

Specifies local port range allocated during
connection setup. For servers that initiate
many outbound connections, enlarge this to
1024–65000 for improved performance.

N tcp_fin_timeout 60 Specifies seconds to wait for a final FIN packet.
Set to a lower value (~20) on high-traffic
servers to increase peformance.

N tcp_syncookies 0 Protects against SYN flood attacks. Turn on if
you suspect denial of service (DOS) attacks.

a. F = /proc/sys/fs, N = /proc/sys/net/ipv4, K = /proc/sys/kernel, C = /proc/sys/dev/cdrom

876 Chapter 28 – Drivers and the Kernel

28.5 BUILDING A LINUX KERNEL

Because Linux is evolving so rapidly, it is likely that you’ll eventually be faced with
the need to build a Linux kernel. Kernel patches, device drivers, and new functional-
ity continually arrive on the scene. This is really something of a mixed blessing. On
one hand, it’s convenient to always support the “latest and greatest,” but on the other
hand it can become quite time consuming to keep up with the constant flow of new
material. But after you successfully build a kernel once, you’ll feel empowered and
eager to do it again.

It’s less likely that you’ll need to build a kernel on your own if you’re running a “sta-
ble” version. Originally, Linux adopted a versioning scheme in which the second
part of the version number indicated whether the kernel is stable (even numbers) or
in development (odd numbers). For example, kernel version 2.6.6 would be a “sta-
ble” kernel, whereas 2.7.4 would be a “development” kernel. Today, this scheme isn’t
religiously followed, so you’d best check the home page at kernel.org for the official
word on this issue. The kernel.org site is also the best source for Linux kernel source
code if you aren’t relying on a particular distribution (or vendor) to provide you
with a kernel.

If it ain’t broke, don’t fix it

With new Linux kernel versions arriving on the scene every few months and new
drivers and patches being released every day, it’s easy to become addicted to patch-
ing and upgrades. After all, what’s more exciting than telling your user community
that you just found a new kernel patch and that you’ll be taking the mail server down
for the afternoon to install it? Some administrators justify their existence this way;
everybody likes to be the hero.

A good system administrator carefully weighs needs and risks when planning kernel
upgrades and patches. Sure, the new release may be the latest and greatest, but is it
as stable as the current version? Could the upgrade or patch be delayed and installed
with another group of patches at the end of the month? It’s important to resist the
temptation to let “keeping up with the joneses” (in this case, the kernel hacking com-
munity) dominate the best interests of your user community.

A good rule of thumb is to upgrade or apply patches only when the productivity gains
you expect to obtain (usually measured in terms of reliability and performance) will
exceed the effort and lost time required to perform the installation. If you’re having
trouble quantifying the specific gain, that’s a good sign that the patch can wait for
another day.

Configuring kernel options

Linux kernel configuration has come a long way, but it still feels primitive compared
to the procedures used on some other systems. Historically, Linux kernel source was
stored in /usr/src/linux and root privileges were required to build a kernel. Kernel
versions 2.4, 2.6, and later can be built as an unprivileged user, and hence it’s now

D
ri

ve
rs

 /
 K

e
rn

e
l

28.5 Building a Linux kernel 877

more politically correct to store the kernel source in a site-specific directory such as
/usr/local/src/kernel or ~username/kernel.

In this chapter we use path_to_kernel_src as a placeholder for whichever directory
you choose for kernel source code. In all cases, you need to install the kernel source
package before you can build a kernel on your system; see page 232 for tips on pack-
age installation.

The kernel configuration process revolves around the .config file at the root of the
kernel source directory. All the kernel configuration information is specified in this
file, but its format is somewhat cryptic. Use the decoding guide in

path_to_kernel_src/Documentation/Configure.help

to find out what the various options mean.

To save folks from having to edit the .config file directly, Linux has several make
targets that let you configure the kernel with different interfaces. If you are running
KDE, the prettiest configuration interface is provided by make xconfig. Likewise, if
you’re running GNOME, make gconfig is probably the best option. These com-
mands bring up a graphical configuration screen on which you can pick the devices
to add to your kernel (or compile as loadable modules).

If you are not running KDE or GNOME, you can use a curses-based3 alternative in-
voked with make menuconfig. Finally, the older-style make config prompts you to
respond to every single configuration option available without letting you later go
back and change your mind. We recommend make xconfig or make gconfig if your
environment supports them; otherwise, use make menuconfig. Avoid make config.

If you’re migrating an existing kernel configuration to a new kernel version (or tree),
you can use the make oldconfig command to read in the previous config file and to
ask only the questions that are new.

These tools are straightforward as far as the options you can turn on, but unfortu-
nately they are painful to use if you want to maintain several versions of the kernel
for multiple architectures or hardware configurations.

The various configuration interfaces described above all generate a .config file that
looks something like this:

Automatically generated make config: don't edit
Code maturity level options

CONFIG_EXPERIMENTAL=y
#
Processor type and features
#
CONFIG_M386 is not set
CONFIG_M486 is not set
CONFIG_M586 is not set

3. curses is a library from the days of yore used to create text-based GUIs that run in a terminal window.

878 Chapter 28 – Drivers and the Kernel

CONFIG_M586TSC is not set
CONFIG_M686=y
CONFIG_X86_WP_WORKS_OK=y
CONFIG_X86_INVLPG=y
CONFIG_X86_BSWAP=y
CONFIG_X86_POPAD_OK=y
CONFIG_X86_TSC=y
CONFIG_X86_GOOD_APIC=y
…

As you can see, the contents are rather cryptic and do not describe what the CONFIG
tags mean. Sometimes you can figure out the meaning. Basically, each CONFIG line
refers to a specific kernel configuration option. The value y compiles the option into
the kernel; m enables it, but as a loadable module.

Some things can be configured as modules and some can’t. You just have to know
which is which; it’s not clear from the .config file. Nor are the CONFIG tags easily
mapped to meaningful information.

Building the kernel binary

Setting up an appropriate .config file is the most important part of the Linux kernel
configuration process, but you must jump through several more hoops to turn that
file into a finished kernel.

Here’s an outline of the entire process:

• cd to the top level of the kernel source directory.

• Run make xconfig, make gconfig, or make menuconfig.

• Run make dep (not required for kernels 2.6.x and later).

• Run make clean.

• Run make.

• Run make modules_install.
• Copy arch/i386/boot/bzImage to /boot/vmlinuz.

• Copy arch/i386/boot/System.map to /boot/System.map.

• Edit /etc/lilo.conf (LILO) or /boot/grub/grub.conf (GRUB) to add a con-
figuration line for the new kernel.

• If you’re using LILO, run /sbin/lilo to install the reconfigured boot loader.

The make clean step is not always strictly necessary, but it is generally a good idea
to start with a clean build environment. In practice, many problems can be traced
back to this step having been skipped.

28.6 ADDING A LINUX DEVICE DRIVER

On Linux systems, device drivers are typically distributed in one of three forms:

• A patch against a specific kernel version

• A loadable module

• An installation script or package that installs appropriate patches

D
ri

ve
rs

 /
 K

e
rn

e
l

28.6 Adding a Linux device driver 879

The most common form is the installation script or package. If you’re lucky enough
to have one of these for your new device, you should be able to follow the instruc-
tions to execute the script or install the package and your new device will be recog-
nized by the kernel.

In situations in which you have a patch against a specific kernel version you can in
most cases install the patch with the following procedure:4

cd path_to_kernel_src ; patch -p1 < patch_file

Diffs made against a different minor version of the kernel may fail, but the driver
should still work.

If not, you are likely in a situation where you must manually integrate the new device
driver into the kernel source tree. With luck, this is because you are writing your own
device driver, rather than because you have fallen victim to a commercial device ven-
dor that has failed to provide appropriate installation scripts. In the following pages,
we demonstrate how to manually add a hypothetical network “snarf ” driver to the
kernel. Linux actually makes this a rather tedious process, especially when com-
pared to some other versions of UNIX.

Within the drivers subdirectory of the kernel source tree, you can find the subdi-
rectory that corresponds to the type of device you have. A directory listing of drivers
looks like this:

$ ls -F path_to_kernel_src/drivers
acorn/ char/ i2c/ Makefile net/ s390/ telephony/
acpi/ dio/ ide/ md/ nubus/ sbus/ usb/
atm/ fc4/ ieee1394/ media/ parport/ scsi/ video/
block/ gsc/ input/ message/ pci/ sgi/ zorro/
bluetooth/ hil/ isdn/ misc/ pcmcia/ sound/
cdrom/ hotplug/ macintosh/ mtd/ pnp/ tc/

The most common directories to which drivers are added are block, char, net, scsi,
sound, and usb. These directories contain drivers for block devices (such as IDE disk
drives), character devices (such as serial ports), network devices, SCSI cards, sound
cards, and USB devices, respectively. Some of the other directories contain drivers
for the buses themselves (e.g., pci, nubus, and zorro); it’s unlikely that you will need
to add drivers to these directories. Some directories contain platform-specific driv-
ers, such as macintosh, s390, and acorn. Some directories contain specialty de-
vices such as atm, isdn, and telephony.

Since our example device is a network-related device, we add the driver to the di-
rectory drivers/net. We modify the following files:

• drivers/net/Makefile so that our driver will be compiled

• drivers/net/Kconfig so that our device will appear in the config options

4. Of course, the kernel source package must be installed before you can modify the kernel tree.

880 Chapter 28 – Drivers and the Kernel

After putting the .c and .h files for the driver in drivers/net/snarf, we add the
driver to drivers/net/Makefile. The line we add (near the end of the file) is

obj-$(CONFIG_SNARF_DEV) += snarf/

This configuration adds the snarf driver (stored in the snarf/ directory) to the build
process.

After adding the device to the Makefile, we have to make sure we can configure the
device when we configure the kernel. All network devices must be listed in the file
drivers/net/Kconfig. To add the device so that it can be built either as a module or
as part of the kernel (consistent with what we claimed in the Makefile), we add the
following line:

config SNARF_DEV
tristate 'Snarf device support'

The first token after config is the configuration macro, which must match the token
following CONFIG_ in the Makefile. The tristate keyword means that we can build
the device as a module. If the device cannot be built as a module, we would use the
keyword bool instead of tristate. The next token is the string to display on the con-
figuration screen. It can be any arbitrary text, but it should identify the device that is
being configured.

Device awareness

Having managed to link a new device driver into the kernel, how do you tell the ker-
nel it needs to use the new driver? In kernel versions before 2.6, this was a tedious
task that required programming knowledge. As part of the recent architectural
changes made to the device driver model, there is now a standard way for drivers to
associate themselves with the kernel.

It’s beyond the scope of this chapter to explain how that happens in detail, but the
result is that device drivers written for version 2.6 (and later) register themselves
with the macro MODULE_DEVICE_TABLE. This macro makes the appropriate be-
hind-the-scenes connections so that other utilities such as modprobe (discussed
below) can enable new devices in the kernel.

28.7 LOADABLE KERNEL MODULES

Loadable kernel module (LKM) support allows a device driver—or any other kernel
service—to be linked into and removed from the kernel while it is running. This fa-
cility makes the installation of drivers much easier since the kernel binary does not
need to be changed. It also allows the kernel to be smaller because drivers are not
loaded unless they are needed.

Loadable modules are implemented by means of one or more documented “hooks”
into the kernel that additional device drivers can grab onto. The user-level com-
mand insmod communicates with the kernel and tells it to load new modules into
memory. The rmmod command unloads drivers.

D
ri

ve
rs

 /
 K

e
rn

e
l

28.7 Loadable kernel modules 881

Although loadable drivers are convenient, they are not 100% safe. Any time you load
or unload a module, you risk causing a kernel panic.5 We don’t recommend loading
or unloading an untested module when you are not willing to crash the machine.

Under Linux, almost anything can be built as a loadable kernel module. The excep-
tions are the root filesystem type, the device on which the root filesystem resides, and
the PS/2 mouse driver.

Loadable kernel modules are conventionally stored under /lib/modules/version,
where version is the version of your Linux kernel as returned by uname -r. You can
inspect the currently loaded modules with the lsmod command:

lsmod
Module Size Used by
ppp 21452 0
slhc 4236 0 [ppp]
ds 6344 1
i82365 26648 1
pcmcia_core 37024 0 [ds i82365]

Loaded on this machine are the PCMCIA controller modules, the PPP driver, and
the PPP header compression modules.

As an example of manually loading a kernel module, here’s how we would insert the
snarf module that we set up in the previous section:

insmod /path/to/snarf.ko

We can also pass parameters to loadable kernel modules; for example,

insmod /path/to/snarf.ko io=0xXXX irq=X

Once a loadable kernel module has been manually inserted into the kernel, it can
only be removed if you explicitly request its removal or if the system is rebooted. We
could use rmmod snarf to remove our snarf module.

You can use rmmod at any time, but it works only if the number of current refer-
ences to the module (listed in the Used by column of lsmod’s output) is 0.

You can also load Linux LKMs semiautomatically with modprobe, a wrapper for
insmod that understands dependencies, options, and installation and removal pro-
cedures. modprobe uses the /etc/modprobe.conf file to figure out how to handle
each individual module.

You can dynamically generate an /etc/modprobe.conf file that corresponds to all
your currently installed modules by running modprobe -c. This command gener-
ates a long file that looks like this:

#This file was generated by: modprobe -c
path[pcmcia]=/lib/modules/preferred
path[pcmcia]=/lib/modules/default

5. This risk is very small. It may be so small as to be considered insignificant in your environment.

882 Chapter 28 – Drivers and the Kernel

path[pcmcia]=/lib/modules/2.6.6
path[misc]=/lib/modules/2.6.6
…
Aliases
alias block-major-1 rd
alias block-major-2 floppy
…
alias char-major-4 serial
alias char-major-5 serial
alias char-major-6 lp
…
alias dos msdos
alias plip0 plip
alias ppp0 ppp
options ne io=x0340 irq=9

The path statements tell where a particular module can be found. You can modify or
add entries of this type if you want to keep your modules in a nonstandard location.

The alias statement maps between block major device numbers, character major de-
vice numbers, filesystems, network devices, and network protocols and their corre-
sponding module names.

The options lines are not dynamically generated. They specify options that should
be passed to a module when it is loaded. For example, we could use the following
line to tell the snarf module its proper I/O address and interrupt vector:6

options snarf io=0xXXX irq=X

modprobe also understands the statements install and remove. These statements
allow commands to be executed when a specific module is inserted into or removed
from the running kernel.

28.8 HOT-PLUGGING

Whereas loadable kernel modules address the need for the kernel to add and remove
device drivers dynamically, the Linux hot-plugging features export information
about device availability into user space. This facility lets user processes respond to
events such as the connection of a USB-enabled digital camera or PDA. For example,
you might want to automatically copy images to a local drive or hot-sync your PDA’s
calendar. The philosophy of the hot-plugging project is that no additional user input
should be required beyond the plugging in of the device.

Beginning with kernel version 2.6, hot-plugging is available on buses and drivers
that have been designed to use sysfs. Hot-plugging, sysfs, and the registration of
device drivers discussed earlier are closely linked.

6. If you’re using really oddball PC hardware, it can be a challenge to create a configuration in which
device interrupt request vectors (IRQs) and I/O ports do not overlap. You can view the current assign-
ments on your system by examining the contents of /proc/interrupts and /proc/ioports, respectively.
The overlap isn’t typically an issue with current mainstream PC hardware.

D
ri

ve
rs

 /
 K

e
rn

e
l

28.9 Setting bootstrap options 883

In the current implementation of hot-plugging, the kernel executes the user process
specified by the parameter /proc/sys/kernel/hotplug (usually /sbin/hotplug)
whenever it detects that a device has been added or removed. /sbin/hotplug is a
shell script that calls a device-type-specific agent from the /etc/hotplug/ directory
to act on the event. For example, if the event was the addition of a network interface,
the /etc/hotplug/net.agent script would be executed to bring the interface on-line.
You can add or edit scripts in the /etc/hotplug directory to customize your system’s
hot-plugging behavior.

For security and other reasons, you may not want the hot-plugging system to act
upon an event. In these instances, you can add devices to the /etc/hotplug/blacklist
file to prevent their events from triggering actions.

Conversely, you can force hot-plug actions by creating “handmap” files, such as
/etc/hotplug/type.handmap. (Make sure that type doesn’t conflict with an existing
name if you’re creating something new.)

28.9 SETTING BOOTSTRAP OPTIONS

Once you have a working, running kernel, you may need to pass special configura-
tion options to it at boot time, such as the root device it should use or an instruction
to probe for multiple Ethernet cards. The boot loader (LILO or GRUB) is responsible
for transferring these options to the kernel.

To specify options that should be used every time the system boots, you can add
static configurations to /etc/lilo.conf or /boot/grub/grub.conf, depending on
which boot loader you use. See page 26 for more information.

If it’s not possible to edit the boot loader configuration file (perhaps you broke some-
thing and the machine can’t boot), you can pass the options in by hand. For exam-
ple, at a LILO boot prompt you could type

LILO: linux root=/dev/hda1 ether=0,0,eth0 ether=0,0,eth1

to tell LILO to load the kernel specified by the “linux” tag, to use the root device
/dev/hda1, and to probe for two Ethernet cards.

A similar example using GRUB would look like this:

grub> kernel /vmlinuz root=/dev/hda1 ether=0,0,eth0 ether=0,0,eth1
grub> boot

Another common situation in which it’s helpful to use boot-time options is when
probing logical unit numbers (LUNs) on a storage area network (SAN). By default,
the Linux kernel probes for LUN 0 only, which may not be adequate if your environ-
ment presents logical storage areas as different LUNs. (Contact your SAN adminis-
trator or vendor to determine if this is the case.) In this situation, you need to tell the
kernel how many LUNs to probe since the probing occurs during bootstrapping.

884 Chapter 28 – Drivers and the Kernel

For example, if you wanted a 2.4.x kernel to probe the first 8 LUNs, you might use a
boot line like this:

grub> kernel /vmlinuz root=/dev/hda1 max_scsi_luns=8
grub> boot

In kernels 2.6.x and later, the parameter name has changed:

grub> kernel /vmlinuz root=/dev/hda1 max_luns=8
grub> boot

28.10 RECOMMENDED READING

BOVET, DANIEL P., AND MARCO CESATI. Understanding the Linux Kernel (3rd Edi-
tion). Sebastopol, CA: O’Reilly Media, 2006.

CORBET, JONATHAN, ET AL. Linux Device Drivers (3rd Edition). Sebastopol, CA:
O’Reilly Media, 2005. This book is also available online at lwn.net/Kernel/LDD3.

LOVE, ROBERT. Linux Kernel Development (2nd Edition). Indianapolis, IN: Novell
Press, 2005.

28.11 EXERCISES

E28.1 Describe what the kernel does. Explain the difference between loading a
driver as a module and linking it statically into the kernel.

E28.2 Examine the values of several parameters from Table 28.1 on page 875,
using both the /proc method and the sysctl method. Change two of the
values with one method and then read them back with the other method.
Verify that the system’s behavior has actually changed in response to your
tuning. Turn in a typescript of your experiment. (Requires root access.)

E28.3 At a local flea market, you get a great deal on a laptop card that gives you
Ethernet connectivity through the parallel port. What steps would you
need to perform to make Linux recognize this new card? Should you
compile support directly into the kernel or add it as a module? Why?
(Bonus question: if your hourly consulting fee is $80, estimate the value
of the labor needed to get this cheapie Ethernet interface working.)

E28.4 A new release of the Linux kernel just came out, and you want to up-
grade all the machines in the local lab (about 50 machines, not all iden-
tical). What issues should you consider? What procedure should you fol-
low? What problems might occur, and how would you deal with them?

E28.5 In the lab, configure a kernel with xconfig or menuconfig and build a
kernel binary. Install and run the new system. Turn in dmesg output
from the old and new kernels and highlight the differences. (Requires
root access.)

885

D
a

e
m

o
n

s29 Daemons

A daemon is a background process that performs a specific function or system task.
In keeping with the UNIX and Linux philosophy of modularity, daemons are pro-
grams rather than parts of the kernel. Many daemons start at boot time and continue
to run as long as the system is up. Other daemons are started when needed and run
only as long as they are useful.

“Daemon” was first used as a computer term by Mick Bailey, a British gentleman who
was working on the CTSS programming staff at MIT during the early 1960s.1 Mick
quoted the Oxford English Dictionary in support of both the meaning and the spell-
ing of the word. The words “daemon” and “demon” both come from the same root,
but “daemon” is an older form and its meaning is somewhat different. A daemon is
an attendant spirit that influences one’s character or personality. Daemons are not
minions of evil or good; they’re creatures of independent thought and will. Daemons
made their way from CTSS to Multics to UNIX to Linux, where they are so popular
that they need a superdaemon (xinetd or inetd) to manage them.

This chapter presents a brief overview of the most common Linux daemons. Not all
the daemons listed here are supplied with all Linux distributions, and not every dae-
mon supplied with some Linux distribution is listed here. Besides making you
more aware of how Linux works, a knowledge of what all the various daemons do
will make you look really smart when one of your users asks, “What does klogd do?”

Before inetd was written, all daemons started at boot time and ran continuously (or
more accurately, they blocked waiting for work to do). Over time, more and more

1. This bit of history comes from Jerry Saltzer at MIT, via Dennis Ritchie.

Daemons

886 Chapter 29 – Daemons

daemons were added to the system. The daemon population became so large that it
began to cause performance problems. In response, the Berkeley gurus developed
inetd, a daemon that starts other daemons as they are needed. inetd successfully
popularized this superdaemon model, which remains a common way to minimize
the number of processes running on a server. Most versions of UNIX and Linux now
use a combination of inetd and always-running daemons.

There are many daemons that system administrators should be intimately familiar
with, either because they require a lot of administration or because they play a large
role in the day-to-day operation of the system. Some daemons that are described here
in one or two lines have an entire chapter devoted to them elsewhere in this book. We
provide cross-references where appropriate.

We start this chapter by introducing a couple of very important system daemons (init
and cron) and then move on to a discussion of xinetd and inetd. Finally, we briefly
describe most of the daemons a system administrator is likely to wrestle with on our
four example distributions.

29.1 INIT: THE PRIMORDIAL PROCESS

init is the first process to run after the system boots, and in many ways it is the most
important daemon. It always has a PID of 1 and is an ancestor of all user processes
and all but a few system processes.

At startup, init either places the system in single-user mode or begins to execute the
scripts needed to bring the system to multiuser mode. When you boot the system
into single-user mode, init runs the startup scripts after you terminate the single-
user shell by typing exit or <Control-D>.

In multiuser mode, init is responsible for making sure that processes are available to
handle logins on every login-enabled device. Logins on serial ports are generally
handled by some variant of getty (e.g., agetty, mgetty, or mingetty; see page 857
for details). init also supervises a graphical login procedure that allows users to log
directly in to X Windows.

In addition to its login management duties, init also has the responsibility to exor-
cise undead zombie processes that would otherwise accumulate on the system. init’s
role in this process is described on page 56.

See page 856 for more
information about the
inittab file.

init defines several “run levels” that determine what set of system resources should
be enabled. There are seven levels, numbered 0 to 6. The name “s” is recognized as
a synonym for level 1 (single-user mode). The characteristics of each run level are
defined in the /etc/inittab file.

init usually reads its initial run level from the /etc/inittab file, but the run level can
also be passed in as an argument from the boot loader. If “s” is specified, init enters
single-user mode. Otherwise, it scans /etc/inittab for entries that apply to the re-
quested run level and executes their corresponding commands.

D
a

e
m

o
n

s

29.3 xinetd and inetd: manage daemons 887

The telinit command changes init’s run level once the system is up. For example,
telinit 4 forces init to go to run level 4 (which is unused on our example systems).
telinit’s most useful argument is q, which causes init to reread the /etc/inittab file.

Linux distributions generally implement an additional layer of abstraction on top of
the basic run-level mechanism provided by init. The extra layer allows individual
software packages to install their own startup scripts without modifying the system’s
generic inittab file. Bringing init to a new run level causes the appropriate scripts to
be executed with the arguments start or stop.

A more complete discussion of init and startup scripts begins on page 33.

29.2 CRON AND ATD: SCHEDULE COMMANDS

The cron daemon (known as crond on Red Hat) is responsible for running com-
mands at preset times. It accepts schedule files (“crontabs”) from both users and
administrators.

cron is frequently employed for administrative purposes, including management of
log files and daily cleanup of the filesystem. In fact, cron is so important to system
administrators that we have devoted an entire chapter to it. That chapter, Periodic
Processes, begins on page 150.

The atd daemon runs commands scheduled with the at command. Most versions of
Linux also include the anacron scheduler, which executes jobs at time intervals
rather than at specific times. anacron is particularly useful on systems that are not
always turned on, such as laptops.

29.3 XINETD AND INETD: MANAGE DAEMONS

xinetd and inetd are daemons that manage other daemons. They start up their cli-
ent daemons when there is work for them to do and allow the clients to die grace-
fully once their tasks have been completed.

The traditional version of inetd comes to us from the UNIX world, but most Linux
distributions have migrated to Panos Tsirigotis’s xinetd, a souped-up alternative
that incorporates security features similar to those formerly achieved through the
use of tcpd, the “TCP wrappers” package. xinetd also provides better protection
against denial of service attacks, better log management features, and a more flexi-
ble configuration language.

Unfortunately, inetd’s configuration file is not forward-compatible with that of
xinetd. We first discuss the more common xinetd and then take a look at inetd in a
separate section.

Among our example distributions, only Debian and Ubuntu use the standard inetd;
RHEL, Fedora, and SUSE all default to xinetd. You can convert any system to use the
nondefault daemon manager, but there’s no compelling reason to do so.

888 Chapter 29 – Daemons

xinetd and inetd only work with daemons that provide services over the network.
To find out when someone is trying to access one of their clients, xinetd and inetd
attach themselves to the network ports that would normally be managed by the qui-
escent daemons. When a connection occurs, xinetd/inetd starts up the appropriate
daemon and connects its standard I/O channels to the network port. Daemons must
be written with this convention in mind if they are to be compatible.

Some daemons (such as those associated with NIS and NFS) rely on a further layer
of indirection known as the Remote Procedure Call (RPC) system. RPC was origi-
nally designed and implemented by Sun as a way of promoting the sharing of infor-
mation in a heterogeneous networked environment. Port assignments for daemons
that use RPC are managed by the portmap daemon, which is discussed later in this
chapter.

Some daemons can be run in either the traditional fashion (in which they are started
once and continue to run until the system shuts down) or through xinetd/inetd.
Daemons discussed in this chapter are marked with an if they are xinetd/inetd-
compatible.

Because xinetd/inetd is responsible for managing many common network-based
services, it plays an important role in securing your system. It’s important to verify
that only services you need and trust have been enabled. On a new system, you will
almost certainly need to modify your default configuration to disable services that
are unnecessary or undesirable in your environment.

Configuring xinetd

xinetd’s main configuration file is traditionally /etc/xinetd.conf, although distribu-
tions commonly supply an /etc/xinetd.d configuration directory as well. Individual
packages can drop their config files into this directory without worrying about over-
riding the configurations of other packages.

The example below shows the setting of default parameters and the configuration of
an FTP service on a Red Hat Enterprise system.

defaults
{

instances = 60
log_type = SYSLOG authpriv
log_on_success = HOST PID
log_on_failure = HOST
cps = 25 30

}

service ftp
{

Unlimited instances because wu.ftpd does its own load management
socket_type = stream
protocol = tcp
wait = no

D
a

e
m

o
n

s

29.3 xinetd and inetd: manage daemons 889

user = root
server = /usr/sbin/wu.ftpd
server_args = -a
instances = UNLIMITED
only_from = 128.138.0.0/16
log_on_success += DURATION

}

includedir /etc/xinetd.d
...

Table 29.1 provides a mini-glossary of parameters.

Some xinetd parameters can accept assignments of the form += or -= (as seen in the
log_on_success value for the FTP server) to modify the default values rather than
replacing them outright. Only a few parameters are really required for each service.

Table 29.1 xinetd configuration parameters (not an exhaustive list)

Parameter Value Meaning

bind ipaddr/host Interface on which to make this service available
cps num waittime Limits overall connections per second
disable yes/no Disables service; easier than commenting it out
include path Reads listed path as a supplemental config file
includedir path Reads all files in the specified directory
instances num or

UNLIMITED
Maximum number of simultaneous instances
of a given service

log_on_failure special a Information to log for failures or access denials b

log_on_success special a Information to log for successful connections b

log_type special a Configures log file or syslog parameters
max_load num Disables service if load average > threshold
nice num Nice value of spawned server processes
no_access matchlist Denies service to specified IP addresses
only_from matchlist Accepts requests only from specified addresses
per_source num Limits number of instances per remote peer
protocol tcp/udp Service protocol
server path Path to server binary
server_args string Command-line arguments for server c

socket_type stream/dgram Uses stream for TCP services, dgram for UDP
user username User (UID) as whom the service should run
wait yes/no Should xinetd butt out until the daemon quits?

a. One or more values from a defined list too long to be worth reproducing in this table.

b. Note that the USERID directive used with these parameters causes xinetd to perform IDENT queries on
connections, often resulting in significant delays.

c. Unlike inetd, xinetd does not require the server command to be the first argument.

890 Chapter 29 – Daemons

Address match lists for the only_from and no_access parameters can be specified
in several formats. Most useful are CIDR-format IP addresses with an explicit mask
(as shown in the example) and host or domain names such as boulder.colorado.edu
and .colorado.edu—note the preceding dot. Multiple specifications can be separated
with a space (as in all xinetd lists).

xinetd can either log directly to a file or submit log entries to syslog. Since the vol-
ume of log information can potentially be quite high on a busy server, it may make
sense to use direct-to-file logging for performance reasons. Keep in mind that log-
ging to a file is less secure than logging to a remote server through syslog because a
hacker that gains access to the local system can doctor the log files.

xinetd can provide some interesting services such as forwarding of requests to an
internal host that is not visible to the outside world. It’s worth reviewing xinetd’s
man page to get an idea of its capabilities.

Configuring inetd

Debian and Ubuntu are the only major Linux distributions that still use the tradi-
tional inetd. This version of inetd consults /etc/inetd.conf to determine on which
network ports it should listen. The config file includes much the same information
as xinetd.conf, but it uses a tabular (rather than attribute/value list) format. Here’s a
(pared-down) example from a Debian system:

Example /etc/inetd.conf - from a Debian system

#:INTERNAL: Internal services
#echo stream tcp nowait root internal
#echo dgram udp wait root internal
...
#time stream tcp nowait root internal
#time dgram udp wait root internal

#:STANDARD: These are standard services.
#:BSD: Shell, login, exec and talk are BSD protocols.

#:MAIL: Mail, news and uucp services.
imap2 stream tcp nowait root /usr/sbin/tcpd /usr/sbin/imapd
imaps stream tcp nowait root /usr/sbin/tcpd /usr/sbin/imapd

#:INFO: Info services
ident stream tcp wait identd /usr/sbin/identd identd
...
#:OTHER: Other services
swat stream tcp nowait.400 root /usr/sbin/swat swat
finger stream tcp nowait nobody /usr/sbin/tcpd in.fingerd -w
391002/1-2 stream rpc/tcp wait root /usr/sbin/famd fam
...

The first column contains the service name. inetd maps service names to port num-
bers by consulting either the /etc/services file (for TCP and UDP services) or the
/etc/rpc file and portmap daemon (for RPC services). RPC services are identified

D
a

e
m

o
n

s

29.3 xinetd and inetd: manage daemons 891

by names of the form name/num and the designation rpc in column three. In the
example above, the last line is an RPC service.

The only other RPC service that is commonly managed by inetd is mountd, the
NFS mount daemon. Linux distributions seem to run this daemon the old-fash-
ioned way (by starting it at boot time), so you may have no RPC services at all in
your inetd.conf file.

On a host with more than one network interface, you can preface the service name
with a list of comma-separated IP addresses or symbolic hostnames to specify the
interfaces on which inetd should listen for service requests. For example, the line

inura:time stream tcp nowait root internal

provides the time service only on the interface associated with the name inura in
DNS, NIS, or the /etc/hosts file.

The second column determines the type of socket that the service will use and is
invariably stream or dgram. stream is used with TCP (connection-oriented) ser-
vices, and dgram is used with UDP; however, some services use both, e.g., bind.

The third column identifies the communication protocol used by the service. The
allowable types are listed in the protocols file (usually in /etc). The protocol is al-
most always tcp or udp. RPC services prepend rpc/ to the protocol type, as with
rpc/tcp in the preceding example.

If the service being described can process multiple requests at one time (rather than
processing one request and exiting), column four should be set to wait. This option
allows the spawned daemon to take over management of the port as long as it is run-
ning; inetd waits for the daemon to exit before resuming its monitoring of the port.
The opposite of wait is nowait; it makes inetd monitor continuously and fork a new
copy of the daemon each time it receives a request. The selection of wait or nowait
must correspond to the daemon’s actual behavior and should not be set arbitrarily.
When configuring a new daemon, check the inetd.conf file for an example configu-
ration line or consult the man page for the daemon in question.

The form nowait.400, used in the configuration line for swat, indicates that inetd
should spawn at most 400 instances of the server daemon per minute. The default is
more conservative, 40 instances per minute. Given the nature of this service (a web
administration tool for Samba), it’s not clear why the throttle threshold was raised.

The fifth column gives the username under which the daemon should run. It’s always
more secure to run a daemon as a user other than root if that is possible. In the
example above, in.fingerd would run as the user nobody (if the line were not com-
mented out).

The remaining fields give the fully qualified pathname of the daemon and its com-
mand-line arguments. The keyword internal indicates services whose implementa-
tions are provided by inetd itself.

892 Chapter 29 – Daemons

Many of the service entries in this example run their daemons by way of tcpd rather
than executing them directly. tcpd logs connection attempts and implements access
control according to the source of the connection attempt. In general, all services
should be protected with tcpd. This example configuration presents a potential se-
curity problem because swat, a file sharing configuration utility, is not protected.2

In the default inetd.conf shipped with Debian, the servers for rlogin, telnet, finger,
and rexec are no longer even listed. See the section Miscellaneous security issues on
page 685 for more security-related information.

See Chapter 10 for
more information
about syslog.

After you edit /etc/inetd.conf, send inetd a HUP signal to tell it to reread its config-
uration file and implement any changes you made. After signalling, wait a moment
and then check the log files for error messages related to your changes (inetd logs
errors to syslog under the “daemon” facility). Test any new services you have added
to be sure they work correctly.

The services file

After adding a new service to inetd.conf or xinetd.conf, you may also need to make
an entry for it in the /etc/services file. This file is used by several standard library
routines that map between service names and port numbers. xinetd actually allows
you to specify the port number directly, but it’s always a good idea to maintain a mas-
ter list of ports in the services file.

For example, when you type the command

$ telnet anchor smtp

telnet looks up the port number for the smtp service in the services file. Most sys-
tems ship with all the common services already configured; you need only edit the
services file if you add something new.

The services file is used only for bona fide TCP/IP services; similar information for
RPC services is stored in /etc/rpc.

Here are some selected lines from a services file (the original is ~570 lines long):

tcpmux 1/tcp # TCP port multiplexer
echo 7/tcp
echo 7/udp
…
ssh 22/tcp #SSH Remote Login Protocol
ssh 22/udp #SSH Remote Login Protocol
smtp 25/tcp mail
rlp 39/udp resource # resource location
name 42/tcp # IEN 116
domain 53/tcp # name-domain server
domain 53/udp
…

2. If you are not using tcpd to protect a service, the daemon’s first command-line argument should always
be the short name of the daemon itself. This requirement is not a peculiarity of inetd but a traditional
UNIX convention that is normally hidden by the shell.

D
a

e
m

o
n

s

29.4 Kernel daemons 893

The format of a line is

name port/proto aliases # comment

Services are generally listed in numerical order, although this order is not required.
name is the symbolic name of the service (the name you use in the inetd.conf or
xinetd.conf file). The port is the port number at which the service normally listens;
if the service is managed by inetd, it is the port that inetd will listen on.3

The proto stipulates the protocol used by the service; in practice, it is always tcp or
udp. If a service can use either UDP or TCP, a line for each must be included (as with
the ssh service above). The alias field contains additional names for the service (e.g.,
whois can also be looked up as nicname).

portmap: map RPC services to TCP and UDP ports

portmap maps RPC service numbers to the TCP/IP ports on which their servers are
listening. When an RPC server starts up, it registers itself with portmap, listing the
services it supports and the port at which it can be contacted. Clients query portmap
to find out how to get in touch with an appropriate server.

This system allows a port to be mapped to a symbolic service name. It’s basically
another level of abstraction above the services file, albeit one that introduces addi-
tional complexity (and security issues) without solving any real-world problems.

If the portmap daemon dies, all the services that rely on it (including inetd and
NFS) must be restarted. In practical terms, this means that it’s time to reboot the
system. portmap must be started before inetd for inetd to handle RPC services
correctly.

29.4 KERNEL DAEMONS

For architectural reasons, a few parts of the Linux kernel are managed as if they were
user processes. On older kernels, these processes could be identified by their low PIDs
and names that start with k, such as kupdate, kswapd, keventd, and kapm. The
naming is less consistent under the 2.6 kernels, but ps always shows the names of
kernel threads in square brackets.

For the most part, these processes deal with various aspects of I/O, memory man-
agement, and synchronization of the disk cache. They cannot be manipulated by
the system administrator and should be left alone.4

Table 29.2 on the next page briefly summarizes the functions of the major daemons
in the current complement. Daemons that include an N parameter in their names

3. Port numbers are not arbitrary. All machines must agree about which services go with which ports;
otherwise, requests will constantly be directed to the wrong port. If you are creating a site-specific ser-
vice, pick a high port number (greater than 1023) that is not already listed in the services file.

4. If you are familiar with the implementation of the kernel, it is occasionally useful to change these pro-
cesses’ execution priorities. However, this is not a standard administrative task.

894 Chapter 29 – Daemons

(as shown by ps) run separately on each CPU of a multi-CPU system; the N tells you
which copy goes with which CPU.

Another system daemon in this category, albeit one with a nonstandard name, is
mdrecoveryd. It’s part of the “multiple devices,” implementation, more commonly
known as RAID.

klogd: read kernel messages

klogd is responsible for reading log entries from the kernel’s message buffer and
forwarding them to syslog so that they can be routed to their final destination. It can
also process messages itself if configured to do so. See Kernel and boot-time logging
on page 206 for more information.

29.5 PRINTING DAEMONS

Several printing systems are in common use, and each has its own family of com-
mands and daemons that provide printing-related services. In some cases the fami-
lies have been hybridized; in others cases, multiple variants run on a single system.

cupsd: scheduler for the Common UNIX Printing System

See Chapter 23 for
more information
about CUPS.

CUPS provides a portable printing facility by implementing version 1.1 of the Inter-
net Printing Protocol. It allows remote users to print to their offices (or vice versa)
by using a web interface. CUPS has become quite popular and is most systems’ de-
fault printing manager. It is flexible enough to allow for remote authentication.

lpd: manage printing

lpd is responsible for the old-style BSD print spooling system. It accepts jobs from
users and forks processes that perform the actual printing. lpd is also responsible
for transferring print jobs to and from remote systems. lpd can sometimes hang and
then must be manually restarted.

Table 29.2 Major kernel daemons (2.6 kernels)

Daemon Function

ksoftirqd/N Handles software interrupts when the load is high
kacpid Deals with the ACPI subsystem
kblockd/N Blocks subsystem work
aio/N Retries asynchronous I/Os
kswapdN Moves pages to swap
ata/N Does processing for serial ATA support
scsi_eh_N Performs SCSI error handling
kjournald Supports journaling filesystems
events/N Does generic work queue processing

D
a

e
m

o
n

s

29.6 File service daemons 895

Your system might have either the original flavor of lpd or the extra-crispy version
that’s part of the LPRng package. See Chapter 23, Printing, for more information
about these alternatives.

29.6 FILE SERVICE DAEMONS

The following daemons are part of the NFS or Samba file sharing systems. We give
only a brief description of their functions here. NFS is described in detail in Chapter
16, and Samba is covered starting on page 828.

rpc.nfsd: serve files

rpc.nfsd runs on file servers and handles requests from NFS clients. In most NFS
implementations, nfsd is really just a part of the kernel that has been dressed up as a
process for scheduling reasons. Linux actually sports two different implementations,
one of which follows this convention and one of which runs in user space. The ker-
nel implementation is more popular and is most distributions’ default.

rpc.nfsd accepts a single argument that specifies how many copies of itself to fork.
Some voodoo is involved in picking the correct number of copies; see page 492.

rpc.mountd: respond to mount requests

rpc.mountd accepts filesystem mount requests from potential NFS clients. It veri-
fies that each client has permission to mount the requested directories. rpc.mountd
consults the /var/state/nfs/xtab file to determine which applicants are legitimate.

amd and automount: mount filesystems on demand

amd and automount are NFS automounters, daemons that wait until a process at-
tempts to use a filesystem before they actually mount it. The automounters later un-
mount the filesystems if they have not been accessed in a specified period of time.

The use of automounters is very helpful in large environments where dozens or hun-
dreds of filesystems are shared on the network. Automounters increase the stability
of the network and reduce configuration complexity since all systems on the network
can share the same amd or automountd configuration. We cover the use of the
standard Linux automounter in detail starting on page 497.

rpc.lockd and rpc.statd: manage NFS locks

Although rpc.lockd and rpc.statd are distinct daemons, they always run as a team.
rpc.lockd maintains advisory locks (a la flock and lockf) on NFS files. rpc.statd
allows processes to monitor the status of other machines that are running NFS.
rpc.lockd uses rpc.statd to decide when to attempt to communicate with a remote
machine.

896 Chapter 29 – Daemons

rpciod: cache NFS blocks

rpciod caches read and write requests on NFS clients. It performs both read-ahead
and write-behind buffering and greatly improves the performance of NFS. This dae-
mon is analogous to the biod and nfsiod daemons found on other systems, although
it is structurally somewhat different.

rpc.rquotad: serve remote quotas

rpc.rquotad lets remote users check their quotas on filesystems they have mounted
with NFS. The actual implementation of quota restrictions is still performed on the
server; rpc.rquotad just makes the quota command work correctly.

smbd: provide file and printing service to Windows clients

smbd is the file and printer server in the Samba suite. It provides file and printer
sharing service through the Windows protocol known variously as SMB or CIFS.
See page 828 for more details.

nmbd: NetBIOS name server

nmbd is another component of Samba. It replies to NetBIOS name service requests
generated by Windows machines. It also implements the browsing protocol that Win-
dows machines use to populate the My Network Places folder and makes disks
shared from the local host visible there. nmbd can also be used as a WINS server.

29.7 ADMINISTRATIVE DATABASE DAEMONS

Several daemons are associated with Sun’s NIS administrative database system,
which is described in Chapter 17, Sharing System Files. Although NIS originated at
Sun, it is now used on many other vendors’ systems as well, including Linux.

ypbind: locate NIS servers

The ypbind daemon runs on all NIS clients and servers. It locates an NIS server to
which queries can be directed. ypbind does not actually process requests itself; it
just tells client programs which server to use.

ypserv: NIS server

ypserv runs on all NIS servers. ypserv accepts queries from clients and responds
with the requested information. See page 517 for information on how to configure
the machines that run ypserv.

rpc.ypxfrd: transfer NIS databases

rpc.ypxfrd efficiently transfers NIS databases to slave servers. A slave initiates a
transfer with the ypxfr command. Whenever a database is changed on the master, it
should immediately be pushed out to all the slaves so that the NIS servers remain
consistent with one another.

D
a

e
m

o
n

s

29.8 Electronic mail daemons 897

lwresd: lightweight resolver library server

lwresd provides a quick method of caching address-to-hostname and hostname-to-
address lookups. It’s contacted by a stub resolver that is part of the system’s standard
libraries and is called directly by many programs. The library and daemon commu-
nicate through a simple UDP protocol.

nscd: name service cache daemon

nscd caches the results of calls to the standard C library routines in the getpw*,
getgr*, and gethost* families, which look up data that was traditionally stored in the
passwd, group, and hosts files. These days, the range of potential sources is larger
and includes options such as NIS and DNS. nscd does not actually know where the
data comes from; it simply caches results and uses them to short-circuit subsequent
library calls. Caching policy is set in the /etc/nscd.conf file.

29.8 ELECTRONIC MAIL DAEMONS

In addition to the core sendmail and Postfix mail delivery systems, which are both
in widespread use, several daemons facilitate remote access to mailboxes.

sendmail: transport electronic mail

sendmail’s tasks include accepting messages from users and remote sites, rewriting
addresses, expanding aliases, and transferring mail across the Internet. sendmail is
an important and very complex daemon. Refer to Chapter 18, Electronic Mail, for
the complete scoop.

smtpd: Simple Mail Transport Protocol daemon

smtpd listens on port 25 for incoming email messages and forwards them to your
back-end transport system for further processing. See pages 540 and 624 for more
information about the use of smtpd in the sendmail and Postfix systems.

popd: basic mailbox server

The popd daemon implements the Post Office Protocol (POP). This protocol is
commonly used by non-Linux systems to receive electronic mail.

imapd: deluxe mailbox server

The imapd daemon implements the Internet Message Access Protocol, IMAP, which
is a more festive and featureful alternative to POP. It allows PC-based users (or Linux
users with IMAP-enabled mail readers) to access their email from a variety of loca-
tions, with mail folders being stored on the Linux server. Check out www.imap.org
for more information about IMAP.

www.imap.org

898 Chapter 29 – Daemons

29.9 REMOTE LOGIN AND COMMAND EXECUTION DAEMONS

The ability to log in and execute commands over the net was one of the earliest mo-
tivations for the development of UNIX networking, and this facility is still a bread-
and-butter component of system administration today. Unfortunately, it took the
UNIX community several decades to achieve a mature appreciation of the security
implications of this technology. Modern production systems should be using SSH
(sshd) and virtually nothing else.

sshd: secure remote login server

sshd provides services that are similar to in.rlogind, but its sessions are transported
(and authenticated) across an encrypted pipeline. A variety of encryption algorithms
are available. Because of the harsh environment of the Internet today, you must allow
shell access from the Internet only through a daemon such as this—not in.rlogind
or in.telnetd. You can find more information about sshd starting on page 697.

in.rlogind: obsolete remote login server

in.rlogind was the long-ago standard for handling remote logins. When invoked by
inetd, it tries to automatically authenticate the remote user by examining the local
user’s ~/.rhosts file and the system-wide /etc/hosts.equiv. If automatic authentica-
tion is successful, the user is logged in directly. Otherwise, in.rlogind executes the
login program to prompt the user for a password. Because of its cheap ‘n’ easy au-
thentication, in.rlogind is a major security hazard. See page 685 for more comments
on this subject.

in.telnetd: yet another remote login server

in.telnetd is similar to in.rlogind, except that it uses the TELNET protocol. This
protocol allows the two sides (client and server) to negotiate flow control and duplex
settings, making it a better choice than in.rlogind for links that are slow or unreli-
able. Like rlogin, telnet transmits plaintext passwords across the network. Its use is
therefore discouraged in modern networks. However, many non-Linux systems sup-
port telnet.

in.rshd: remote command execution server

in.rshd handles remote command execution requests from rsh and rcmd. The au-
thentication process enforced by in.rshd is similar to that of in.rlogind, except that
if automatic authentication does not work, in.rshd denies the request without al-
lowing the user to supply a password. in.rshd is also the server for rcp (remote
copy). Like in.rlogind, in.rshd has become something of a security albatross and is
invariably disabled. See page 685 for more information.

29.10 BOOTING AND CONFIGURATION DAEMONS

In the 1980s, the UNIX world was swept by a wave of diskless workstation mania.
These machines booted entirely over the network and performed all their disk I/O

D
a

e
m

o
n

s

29.10 Booting and configuration daemons 899

through a remote filesystem technology such as NFS. As disk prices dropped and
speeds increased, interest in diskless workstations quickly faded. They could come
back into fashion at any moment, however, like the platform shoes of the 1970s. The
two main remnants of the diskless era are a plethora of daemons designed to sup-
port diskless systems and the bizarre organization of most vendors’ filesystems.

For the curious, we discuss diskless systems themselves in some additional detail
starting on page 232.

Although diskless workstations are not common anymore, their booting protocols
have been usurped by other devices. Most manageable network hubs and network
printers boot by using some combination of the services listed in this section.

dhcpd: dynamic address assignment

The Dynamic Host Configuration Protocol (DHCP) provides PCs, laptops, and other
“mobile” platforms with information about their IP addresses, default gateways, and
name servers at boot time. dhcpd is the daemon that implements this service under
Linux. You can find more information about DHCP on page 311. A fancier elabora-
tion of DHCP called PXE (Pre-boot eXecution Environment) helps compatible ma-
chines boot from the network without the need for a local boot device; see page 224
for more details.

in.tftpd: trivial file transfer server

in.tftpd implements a file transfer protocol similar to that of ftpd, but much, much
simpler. Many diskless systems use TFTP to download their kernels from a server.
in.tftpd does not perform authentication, but it is normally restricted to serving the
files in a single directory (usually /tftpboot). Since anything placed in the TFTP
directory is accessible to the entire network, the directory should contain only boot
files and should not be publicly writable.

rpc.bootparamd: advanced diskless life support

rpc.bootparamd uses the /etc/bootparams file to tell diskless clients where to find
their filesystems. rpc.bootparamd service is often used by machines that get their
IP addresses by using RARP and that use NFS to mount their filesystems.

hald: hardware abstraction layer (HAL) daemon

hald collects information about the system’s hardware from several sources. It pro-
vides a live device list through D-BUS.

udevd: serialize device connection notices

udevd is a minor part of the udev dynamic device-naming system. It allows for the
proper serialization of hot-plug events, which the kernel can sometimes communi-
cate out of order to user space.

900 Chapter 29 – Daemons

29.11 OTHER NETWORK DAEMONS

The following daemons all use Internet protocols to handle requests. However,
many of these “Internet” daemons actually spend the majority of their time servic-
ing local requests.

talkd: network chat service

Connection requests from the talk program are handled by talkd. When it receives
a request, talkd negotiates with the other machine to set up a network connection
between the two users who have executed talk.

snmpd: provide remote network management service

snmpd responds to requests that use the Simple Network Management Protocol
(SNMP) protocol. SNMP standardizes some common network management opera-
tions. See page 659 for more information about SNMP.

ftpd: file transfer server

See page 734 for
more information
about ftpd.

ftpd is the daemon that handles requests from ftp, the Internet file transfer pro-
gram. Many sites disable it, usually because they are worried about security. ftpd
can be set up to allow anyone to transfer files to and from your machine.

A variety of ftpd implementations are available for Linux systems. If you plan to run
a high-traffic server or need advanced features such as load management, it might
be wise to investigate the alternatives to your distribution’s default ftpd.

WU-FTPD, developed at Washington University, is one of the most popular alterna-
tives to the standard ftpd. See www.wu-ftpd.org for more information.

rsyncd: synchronize files among multiple hosts

rsyncd is really just a link to the rsync command; the --daemon option turns it into
a server process. rsyncd facilitates the synchronization of files among hosts. It’s
essentially an efficient and security-aware version of rcp. rsync is a real treasure
trove for system administrators, and in this book we’ve described its use in a couple
of different contexts. See page 508 for general information and some tips on using
rsync to share system files. rsync is also a large part of many sites’ internal installa-
tion processes.

routed: maintain routing tables

routed maintains the routing information used by TCP/IP to send and forward pack-
ets on a network. routed deals only with dynamic routing; routes that are statically
defined (that is, wired into the system’s routing table with the route command) are
never modified by routed. routed is relatively stupid and inefficient, and we recom-
mend its use in only a few specific situations. See page 343 for a more detailed dis-
cussion of routed.

www.wu-ftpd.org

D
a

e
m

o
n

s

29.11 Other network daemons 901

gated: maintain complicated routing tables

gated understands several routing protocols, including RIP, the protocol used by
routed. gated translates routing information among various protocols and is very
configurable. It can also be much kinder to your network than routed. See page 344
for more information about gated.

named: DNS server

named is the most popular server for the Domain Name System. It maps hostnames
into network addresses and performs many other feats and tricks, all using a distrib-
uted database maintained by nameds everywhere. Chapter 15, DNS: The Domain
Name System, describes the care and feeding of named.

syslogd: process log messages

See page 209 for
more information
about syslog.

syslogd acts as a clearing house for status information and error messages produced
by system software and daemons. Before syslogd was written, daemons either wrote
their error messages directly to the system console or maintained their own private
log files. Now they use the syslog library routine to transfer the messages to syslogd,
which sorts them according to rules established by the system administrator.

in.fingerd: look up users

in.fingerd provides information about the users that are logged in to the system. If
asked, it can also provide a bit more detail about individual users. in.fingerd does
not really do much work itself: it simply accepts lines of input and passes them to the
local finger program.

finger can return quite a bit of information about a user, including the user’s login
status, the contents of the user’s GECOS field in /etc/passwd, and the contents of the
user’s ~/.plan and ~/.project files.

If you are connected to the Internet and are running in.fingerd, anyone in the world
can obtain this information. in.fingerd has enabled some really neat services (such
as the Internet white pages), but it has also enabled people to run a variety of scams,
such as finding people to cold-call and prospecting for spammable addresses. Some
sites have responded to this invasion by turning off in.fingerd, while others just re-
strict the amount of information it returns. Don’t assume that because in.fingerd is
simple, it is necessarily secure—a buffer overflow attack against this daemon was
exploited by the original Internet worm of 1988.

httpd: World Wide Web server

httpd lets your site become a web server. httpd can send text, pictures, and sound to
its clients. See Chapter 21, Web Hosting and Internet Servers, for more information
about serving up web pages.

902 Chapter 29 – Daemons

29.12 NTPD: TIME SYNCHRONIZATION DAEMON

As computers have grown increasingly interdependent, it has become more and more
important for them to share a consistent idea of time. Synchronized clocks are essen-
tial for correlating log file entries in the event of a security breach, and they’re also
important for a variety of end-user applications, from joint development of software
projects to the processing of financial transactions.

ntpd5 implements the Network Time Protocol, which allows computers to synchro-
nize their clocks to within milliseconds of each other. The first NTP implementation
started around 1980 with an accuracy of only several hundred milliseconds. Today, a
new kernel clock model can keep time with a precision of up to one nanosecond.
The latest version of the protocol (version 4, documented in RFC2783) maintains
compatibility with the previous versions and adds easy configuration and some se-
curity features.

NTP servers are arranged in a hierarchy, each level of which is called a “stratum.”
The time on stratum 1 servers is typically slaved to an external reference clock such
as a radio receiver or atomic clock. Stratum 2 servers set their clocks from Stratum 1
servers and act as time distribution centers. Up to 16 strata are provided for. To de-
termine its own stratum, a time server simply adds 1 to the stratum of the highest-
numbered server to which it synchronizes. A 1999 survey of the NTP network by
Nelson Minar indicated that there were (at that time) 300 servers in stratum 1;
20,000 servers in stratum 2; and more than 80,000 servers in stratum 3.6

Today, NTP clients can access a number of reference time standards, such as those
provided by WWV and GPS. A list of authoritative U.S. Internet time servers main-
tained by the National Institute of Standards and Technology can be found at

www.boulder.nist.gov/timefreq/service/time-servers.html

Most ISPs maintain their own set of time servers, which should be closer in network
terms for their downstream clients (and if NTP works correctly, just as accurate).

ntpd implements both the client and server sides of the NTP protocol. It reads
/etc/ntp.conf at startup. In the config file you can specify access, client networks,
time servers, multicast clients, general configuration, and authentication; but don’t
be scared off—it’s all pretty self-explanatory.

Debian and Ubuntu don’t seem to include ntpd by default, but it’s readily available
through apt-get. You can also obtain the current software from ntp.isc.org.

You can also use the quick and dirty ntpdate utility to set the system’s clock from an
NTP server. This is a less desirable solution than ntpd because it can make the flow
of time appear discontinuous. It is especially harmful to set the clock back suddenly,
since programs sometimes assume that time is a monotonically increasing function.

5. This daemon was also known as xntpd in earlier incarnations.
6. See www.media.mit.edu/~nelson/research/ntp-survey99

www.boulder.nist.gov/timefreq/service/time-servers.html
www.media.mit.edu/~nelson/research/ntp-survey99

D
a

e
m

o
n

s

29.13 Exercises 903

ntpd uses the gentler adjtimex system call to smooth the adjustment of the system’s
clock and prevent large jumps backward or forward. adjtimex biases the speed of
the system’s clock so that it gradually falls into correct alignment. When the system
time matches the current objective time, the bias is cancelled and the clock runs
normally.

29.13 EXERCISES

E29.1 Using ps, determine which daemons are running on your system. Also
determine which daemons are available to run through inetd.conf or
xinetd.conf. Combine the lists and describe what each daemon does,
where it is started, whether multiple copies can (or do) run at the same
time, and any other attributes you can glean.

E29.2 In the lab, install and set up the network time daemon, ntpd.

a) How do you tell if your system has the correct time?

b) Using the date command, manually set your system time to be 15
seconds slow. How long does it (or will it) take for the time become
correct?

c) Manually set your system time a month ahead. How does ntpd re-
spond to this situation?

(Requires root access.)

E29.3 In the lab, use a tool such as netstat to determine what ports are in a
“listening” state on your machine.

a) How can you reconcile the netstat information with what is found in
inetd.conf or xinetd.conf? If there is a discrepancy, what is going on?

b) Install the nmap tool on a different machine. Run a port scan target-
ing your system to verify what you learned in part a. What (if any)
additional information did you learn from nmap that wasn’t obvious
from netstat? (See page 688 for more information about nmap.)

904

30 Management, Policy,
and Politics

You may run the smartest team of administrators ever, but if your technical manage-
ment is inadequate, you will hate life and so will your users. In this chapter we discuss
the nontechnical aspects of running a successful information technology (IT) support
organization, along with a few technical tidbits (infrastructure design, trouble tick-
eting systems, etc.) that help shore up the managerial end of system administration.

Most of the topics and ideas presented in this chapter are not specific to a particular
environment. They apply equally to a part-time system administrator and to a large
group of full-time professionals in charge of a major IT installation. Like green veg-
etables, they’re good for you no matter what sized meal you’re preparing. (For really
huge sites with hundreds of IT employees, we also briefly describe the Information
Technology Interface Library, a process-focused IT management architecture that’s
appropriate mostly for large sites. See page 960.)

In addition to management hints, we also include sections on documentation (page
930), trouble ticket systems (page 934), disaster recovery (page 938), policy develop-
ment (page 943), legal issues (page 949), software patents (page 957), standardiza-
tion efforts (page 958), Linux culture (page 961), and Linux-related professional or-
ganizations, conferences, and training opportunities for sysadmins (page 964).

30.1 MAKE EVERYONE HAPPY

System administration is a service industry, and both people and computers are the
recipients of that service. Some more technically focused administrators seem to be
under the impression that the users of their systems are little more than nuisances

Management

M
a

n
a

g
e

m
e

n
t

30.1 Make everyone happy 905

who get in the way of real work. That’s an unhelpful and inaccurate viewpoint; our
job is to provide users with the IT infrastructure they need to do their work effi-
ciently and reliably.

We’ve all been on the other side of the help desk at some point in our career. So put
yourself in your customers’ shoes: what was the experience like, and what would you
have changed?

Users are happy when

• Their computers are up and running and they can log in.

• Their data files stay as they left them.

• Their application software is installed and works as it’s supposed to.

• Friendly, knowledgeable help is available when needed.

Users want these things 24 hours a day, 7 days a week. Preferably for free. Users hate

• Downtime, whether scheduled or unscheduled

• Upgrades that introduce sudden, incompatible changes

• Incomprehensible messages from the system or from administrators

• Long explanations of why things aren’t working

When something is broken, users want to know when it’s going to be fixed. That’s it.
They don’t really care which hard disk or generator broke, or why; leave that infor-
mation for your managerial reports.

From a user’s perspective, no news is good news. The system either works or it
doesn’t, and if the latter, it doesn’t matter why. Our customers are happiest when
they don’t even notice that we exist! Sad, but true.

Users are our primary customers, but it’s equally important to keep your staff happy.
Good administrators are hard to find, and their needs must be considered when
your site’s administrative systems are designed.

System administrators and other technical staff are happy when

• Their computers and support systems are up and running.

• They have the resources necessary to do their jobs.

• They have the latest and greatest software and hardware tools.

• They can work without being constantly interrupted.

• They can be creative without the boss meddling and micromanaging.

• Their work hours and stress level are within reason.

Technical people need more than just a paycheck at the end of the month to keep
them going. They need to feel that they have a degree of creative control over their
work and that they are appreciated by their peers, their boss, and their users.

The requirements for happy customers and happy IT staff have some factors in com-
mon. However, a few things seem to be orthogonal or even in direct conflict. The
boss must make sure that all these differing expectations can be made compatible
and attainable.

906 Chapter 30 – Management, Policy, and Politics

In some organizations, the boss interfaces with customers to protect the technical
staff from front-line interruptions and free them to do their “real” work. Our experi-
ence is that this arrangement is usually a bad idea. It isolates the technical staff from
direct exposure to customers’ needs and often results in the boss making promises
that the staff cannot fulfill.

30.2 COMPONENTS OF A FUNCTIONAL IT ORGANIZATION

As a sysadmin support organization starts to grow, it becomes obvious that not ev-
erybody in the group can or should know everything about the entire infrastruc-
ture. It’s also impractical (impossible, really) for one person to make all the daily
decisions. With growth, the following organizational subdivisions tend to evolve:

• Management: defines the overall strategy and leads the organization

• Administration: talks to customers about their needs, negotiates contracts,
sends invoices, places purchase orders, pays vendors, deals with the
administrative processes involved in hiring and firing staff

• Development: designs, implements, and tests new products and services
before they are deployed to customers

• Production: provides direct services to customers, both system manage-
ment and end-user support and training. We subdivide this area into oper-
ations (dealing with machines) and support (dealing with people).

These functional divisions don’t necessarily have to map to individual people. Even
at a small operation with a single system administrator, the four task areas are just
different hats that the sysadmin must wear.

The relative size of each division reflects the type of organization that the adminis-
trative group serves. A research university has a different mix from a software devel-
opment company or a manufacturing firm. Our experience at a research university
suggests that management is about 5% of the work, administration is about 10%,
development is 10%-20%, and production accounts for the remainder (65%-75%).

We suggest that in small- to medium-sized organizations, all employees work at least
part time in the support division. This convention gives technical personnel first-
hand exposure to the problems, frustrations, and desires of customers. Customer
feedback can then be used to improve the current environment or to design future
systems and services. As a side effect, it also makes some of the more knowledgeable
employees accessible to customers. (Ever been stuck in tier-one technical support?)

Twenty percent may sound high for development, but without it your solutions will
not scale as the number and complexity of supported systems increases. Your original
management concepts will stagnate and eventually become outdated beyond hope
of repair.

M
a

n
a

g
e

m
e

n
t

30.3 The role of management 907

The ideal number of people for one person to directly manage seems to be between
5 and 10. Beyond that, consider adding more hierarchy.

We discuss all five task divisions in the following sections.

30.3 THE ROLE OF MANAGEMENT

The manager’s overall goal is to facilitate the work of the technical staff, who are the
experts regarding the organization’s “real” work. Several tasks and responsibilities
fall on the manager’s shoulders:

• Leading the group, bringing vision, and providing necessary resources

• Hiring, firing, staff assessment, and skill development

• Assigning tasks to the staff and tracking progress

• Managing management

• Handling problems: staff conflicts, rogue users, ancient hardware, etc.

• Acting as a “higher authority” to whom users can escalate problems

• Overseeing the development of a scalable infrastructure

• Planning for disasters and emergencies

• Extracting documentation from squirrely sysadmin’s heads

It might seem that the task of interfacing with customers is missing from this list.
However, we believe that this role is actually best filled by members of the technical
staff. Managers do not usually have the technical background to evaluate the diffi-
culty and feasibility of customers’ requirements. There are likely to be fewer sur-
prises on both sides of the table when those doing the actual work have input into
the deliverables and schedules that are promised to customers.

Below, we discuss some of these managerial functions in more detail. A few of them
span the boundaries of multiple functional areas and are included elsewhere. For
example, the development of scalable infrastructure is a joint project of the manage-
ment and development functions; see page 919 for our comments. Similarly, disaster
recovery is both a managerial and an operational issue; we discuss it starting on
page 938. Documentation is so important and so thorny that it has a section of its
own beginning on page 930.

Leadership

Leadership is hard to describe. But when lacking or poorly executed, its absence is
all too readily apparent. In a way, leadership is the “system administration” of orga-
nizations; it sets the direction, makes sure the components work together, and keeps
the whole system running with as few error messages as possible.

Unfortunately, the technical chops that make someone a great computer system ad-
ministrator don’t necessarily translate to the leadership role, which requires a more
people-centered skill set. People are a lot harder to master than Perl.

908 Chapter 30 – Management, Policy, and Politics

For new managers with strong technical backgrounds, it can be particularly hard to
focus on the job of management and avoid the temptation to do engineering work.
It’s more comfortable and more fun to dive into solving a technical problem than to
have a long-overdue conversation with a “difficult” staff member. But which is more
valuable for the organization?

A simple (and perhaps eye-opening) check on your level of leadership is the follow-
ing. Make a list of the tasks your organization is working on. Use one color to mark
the areas in which you are steering the boat, and a different color to mark the areas
in which you are rowing or pulling the boat. Which color dominates the picture?

Hiring, firing, and personnel management

Personnel management can be particularly challenging. As part of your oversight
function, you deal both with your employees’ technical and personal sides. True to
the stereotype, technically brilliant sysadmins are often poor communicators, and
they sometimes tend to get along better with machines than with people. As their
manager, you need to keep them on the growth curve in both dimensions.

Technical growth is relatively easy to promote and quantify, but personal growth is
just as important. Below are some important questions to ask when assessing an
employee’s user interface:

• Is this person’s behavior suitable for our work environment?

• How does this person interact with authorities, customers, and suppliers?

• Does this person get along with other members of the team?

• Does this person have leadership skills that should be developed?

• How does this person respond to criticism and technical disputes?

• Does this person actively work to address gaps in his or her knowledge?

• How are this person’s communication skills?

• Can this person plan, implement, and demonstrate a customer’s project?

Hiring

It’s important to make these assessments for potential new hires as well as for exist-
ing employees. The personal qualities of job applicants are often overlooked or un-
derweighted. Don’t take shortcuts in this area—you’ll surely regret it later!

A personal interview might answer some of these questions. A telephone conversa-
tion with references usually tells you more. Listen very carefully; many people do
not like to say anything bad about a former employee or co-worker, so they find
clever ways to tell you (if you are listening carefully) that a potential employee has
problems. Be very suspicious if the applicant does not include recent employers as
references.

There are two approaches to building a staff of system administrators:

• Hire experienced people.

• Grow your own.

M
a

n
a

g
e

m
e

n
t

30.3 The role of management 909

Experienced people usually come up to speed faster, but you always want them to
unlearn certain things. To do their job, they need root access. But you do not know
them and may not be willing to put your company’s data in their hands immediately.
Breaking them in may require a bit of espionage and auditing as you expand your
trust in them.

It takes quite a bit of time and effort to train a sysadmin, and production networks
are not an ideal training ground. But given the right person (smart, interested, curi-
ous, careful, etc.), the end result is often better.

Some of the qualities of a good system administrator are contradictory. A sysadmin
must be brash enough to try innovative solutions when stuck on a problem but must
also be careful enough not to try anything truly destructive. Interpersonal skills and
problem-solving skills are both important, yet they seem to lie on orthogonal axes
among many of the sysadmins we have known. One of our reviewers suggested that
a “personable sysadmin” was an oxymoron.

We have developed two evaluation tools for experienced applicants. We used to call
them “tests,” but we found that some institutions (like state universities in the United
States) are not allowed to test applicants. We no longer test; we evaluate and assess.

The first written evaluation asks applicants to rate their experience and knowledge
of various system and networking tasks. The scale of familiarity is 0 to 4:

• Never heard of it (0)

• Heard of it, never did it (1)

• Have done it, could do it with supervision (2)

• Could do it without supervision (3)

• Know it well, could teach someone else to do it (4)

Embedded among the questions are several ringers. For example, in the hardware
section right after a question about RJ-45 connectors is one about “MX connectors”
(MX refers to a mail exchanger record in DNS, not to a network or serial connector).
These bogus questions let you measure the BS factor in an applicant’s answers. A 3
on the MX connectors would be suspect. In the interview after the written evalua-
tion, you might ask innocently, “So, what do you use MX connectors for?”

The second evaluation is designed for use during a telephone interview. Questions
are set up to elicit quick answers from applicants who know their stuff. We score +1
for a right answer, 0 for an “I don’t know,” and -1 for obvious BS or typing man xxx
in the background. You could also score +1 for a reasonable answer of the form “I
don’t know, but here’s how I would find out.” Often, knowing where to look some-
thing up is just as good as knowing the details by heart.

These two schemes have been quite good metrics for us. The percentage of bogus
questions we use is determined by our HR folks; one or two questions aren’t enough
to disqualify someone.

910 Chapter 30 – Management, Policy, and Politics

Firing

If you make a hiring mistake, fire early. You may miss a few late bloomers, but keep-
ing people who are not pulling their own weight will alienate your other staff mem-
bers as they take up the slack and clean up after the losers. Your customers will also
realize that so-and-so doesn’t get things done and start demanding a particular
sysadmin for their jobs. You don’t want your customers interfering with manage-
ment decisions in your daily business.

In many organizations it is very hard to fire someone, especially after the initial
evaluation period is over. Make sure that initial evaluations are taken seriously.
Later, you may have to collect data showing incompetence, give formal warnings, set
performance goals, and so on. In extreme cases, the only way to fire an incompetent
but savvy employee may be to eliminate his job.

Testing thoroughly and ensuring quality control

The manager sets the tone for what a completed task means. An inexperienced
sysadmin will often think that a problem has been fixed, only to receive several more
trouble reports as the task slowly gets done completely and correctly. This scenario
can occur because the user who first reported the problem did not describe it clearly,
or perhaps because the user suggested an inadequate (or incorrect) solution that the
sysadmin accepted without bothering to make an independent diagnosis. Equally
often, it can happen because the sysadmin did not test the solution carefully.

Some common mistakes include

• Man pages and documentation not installed for new software

• Software not installed everywhere

• Software that turns out to be owned by the sysadmin or installed with per-
missions that are wrong

Testing is boring, but a busy sysadmin can cut productivity in half by skipping it.
Every trouble report costs time and effort, both for users and for the sysadmin.1 The
job is not done until all operational glitches have surfaced and been taken care of
and the customer is satisfied.

Often a user reports that “X doesn’t work on machine Y” and the sysadmin goes to
machine Y and tries command X and it works fine. The trouble report answer comes
back “works for me” with a bit of attitude attached.

If the sysadmin actually tried the command as the user who submitted the report
(e.g., by executing sudo su - username in front of the command), the problem
might have been nailed on the first try. The “-” argument to su causes the resulting
shell to use the environment of the user being su’d to. Ergo, you can really reproduce
the environment that was reported not to be working.

1. Sometimes there is a hard dollar cost associated with a trouble ticket or call to the help desk. For exam-
ple, outsourced support currently seems to run about $75 for each call or new ticket.

M
a

n
a

g
e

m
e

n
t

30.3 The role of management 911

Sometimes it’s useful to schematize your testing. For example, if you suspect that
problem P is caused by agent X, remove agent X and check to see that problem P
goes away. Then reintroduce X and make sure that P comes back. Finally, remove X
and verify that P resolves. This sequence gives you two chances to notice if P and X
are in fact not related.

Users can become upset when a problem is not completely solved on the first at-
tempt. Try to set their expectations appropriately. It is often useful to persuade the
user who reported a problem to work with you in solving it, especially if the problem
relates to an unfamiliar software package. You will obtain additional information,
and the user will be less likely to think of your relationship as adversarial.

Managing, not meddling

As a technically competent manager, you will be constantly tempted to advise em-
ployees how to do their jobs. But if you do so, you may be denying them the chance
to grow and to become fully become responsible for their work. It’s even worse if you
not only advise but also decide how chores should be done. Such micromanagement
leads to frustrated staff who are not able to use their own expertise and creativity.

If you really know everything better than your staff, there is either something wrong
with your organization (you are in charge of too narrow a field), or you have the
wrong job or the wrong staff. Or you might just be a control freak.

Awarding time off for good behavior

University faculty enjoy leaves known as sabbaticals—a year or six months during
which they have no teaching duties and can go to another university to conduct re-
search or work on new projects of personal interest. The idea is that to do their best
teaching and research, faculty need exposure to other people and institutions.

System administrators need sabbaticals too, but they are often thought of as being
so indispensable that they cannot be spared for so long a time. That is, until they
burn out and ultimately leave. Trading sysadmins with another organization for a
summer (or even longer) can help reward valuable employees and release some of
the pressure of uninterrupted front-line service. Loaner sysadmins may take a bit of
time to come up to speed in your local infrastructure, but they bring with them
ideas and procedures from their home environments that can improve your local
sysadmin practices.

If an exchange crosses international borders, creative financing may be necessary to
get around the red tape needed for official work visas. We have done a few swaps in
which the exchange sysadmins were paid by their home institutions. In one case,
they traded apartments, cars, pets, plants, etc.—everything but girlfriends!

Assigning and tracking tasks

One of the most critical aspects of project oversight is to ensure that every task has a
clearly defined owner.

912 Chapter 30 – Management, Policy, and Politics

The twin perils to avoid are

• Tasks falling through the cracks because everyone thinks they are being
taken care of by somebody else

• Resources wasted through duplication of effort when multiple people or
groups work on the same problem without coordination

Work can be shared, but in our experience, responsibility is less amenable to diffu-
sion; every task should have a single, clearly defined go-to person. That person need
not be a supervisor or manager—just someone willing to act as a coordinator or
project manager.

An important side effect of this approach is that it is implicitly clear who imple-
mented what or who made which changes. This transparency becomes important if
you want to figure out why something was done in a certain way or why something is
suddenly working differently or not working anymore.

To be “responsible” for a task does not necessarily mean “to be a scapegoat” if prob-
lems arise. If your organization defines it that way, you may find that the number of
available project owners quickly dwindles. The goal is simply to remove ambiguity
about who should be addressing any given problem or issue.

From a customer’s point of view, a good assignment system is one that routes prob-
lems to a person who is knowledgeable and can solve the problems quickly and
completely. But from a managerial perspective, assignments need to occasionally be
challenging and over the head of the assignee, so that the staff continue to grow and
learn in the course of their jobs. Your job is to balance the need to play to employees’
strengths with the need to keep employees challenged, all while keeping both cus-
tomers and employees happy.

For day-to-day administrative tasks, the key to task assignments is a trouble ticket-
ing system. Such systems ensure that trouble reports don’t go unanswered and that
they are efficiently routed to the person who can best address them. Trouble ticket-
ing systems are a topic unto themselves; see page 934 for a more detailed discussion.

Larger tasks can be anything up to and including full-blown software engineering
projects. These tasks may require the use of formal project management tools and
industrial-strength software engineering principles. We don’t describe these tools
here; nevertheless, they’re important and should not be overlooked.

Sometimes sysadmins know that a particular task needs to be done, but they don’t
do it because the task is unpleasant. An employee who points out a neglected, unas-
signed, or unpopular task is likely to receive that task as an assignment. This situa-
tion creates a conflict of interest because it motivates employees to remain quiet
about such situations. Don’t let that happen at your site.

M
a

n
a

g
e

m
e

n
t

30.3 The role of management 913

Managing upper management

To effectively discharge your management duties (particularly those in the “leader-
ship” arena), you need the respect and support of your own management. You need
the ability to define your group’s structure and staffing, including decision authority
over hiring and firing. You need control over task assignments, including the au-
thority to decide when goals have been achieved and staff can be reassigned. Finally,
you need to be responsible for representing your group both within your larger or-
ganization and to the world at large.

Upper management often has no idea what system administrators do. Use your
trouble ticketing system to provide this information; it can help when your boss
campaigns for additional staff or equipment.

It may be wise to keep good records even in the absence of a particular goal. Manag-
ers, especially nontechnical managers, are often way off in their estimates of the dif-
ficulty of a task or the amount of time it will take to complete. This inaccuracy is
especially noticeable for troubleshooting tasks.

Try to set expectations realistically. If you don’t have much experience in planning
your work, double or triple your time estimates for large or crucial tasks. If an up-
grade is done in two days instead of three, most users will thank you instead of curs-
ing you as they might have if your estimate had been one day.

Software licensing terms often do not quite match a company’s actual use of the li-
censed software; upper management tends to turn a blind eye. See page 955 for sug-
gestions on handling such discrepancies between policy and practice.

Management support for tough security policies is always hard to get. Tightening
security invariably means inconveniencing users, and the users usually outweigh
you both in number and in whining ability. Increased security may reduce users’
productivity; before implementing a proposed security change, do a risk analysis to
be sure management and users understand why you are suggesting it.

Make sure that any security change that impacts users (e.g., converting from pass-
words to RSA/DSA keys for remote logins) is announced well in advance, is well
documented, and is well supported at changeover time. Documentation should be
easy to understand and should provide cookbook-type recipes for dealing with the
new system. Allow for extra staffing hours when you first cut over to the new system
so that you can deal with the panicked users who didn’t read their email.

Conflict resolution

Several chores that fall on the manager’s plate have the general flavor of getting
along with people (usually customers or staff) in sticky situations. We first look at
the general approach and then talk about the special case of dealing with “rogue”
customers, sometimes known as cowboys.

914 Chapter 30 – Management, Policy, and Politics

Conflicts in the system administration world often occur between system adminis-
trators and their customers, colleagues, or suppliers. For example, a customer is not
happy with the services rendered to them, a vendor didn’t deliver promised materi-
als on time, a colleague didn’t do what you expected, or an engineering department
insists that it needs control over the OS configurations installed on its desktops.

Mediation

Most people don’t like to talk about conflicts or even admit that they exist. When
emotions flare, it’s generally because conflict is addressed much too late, after an
unsatisfactory situation has been endured for an extended period of time. During
this buildup phase, the parties have the opportunity to develop a healthy burden of
resentment and to ruminate on each other’s villainous motives.

A face-to-face meeting with a neutral mediator in attendance can sometimes defuse
the situation. Try to constrain the session to a single topic and limit the time allo-
cated to half an hour. These measures lower the chance of the meeting degenerating
into an endless gripe session.

Once the problem has been defined and each party’s wishes have been stated, try to
reach an agreement on ways to prevent a recurrence of the problem. After the solu-
tion has been implemented, review the situation to make sure that the solution is
effective and practical for the long run.

Rogue users and departments

The process of introducing tightly managed systems often causes conflict. Techni-
cally inclined users (and sometimes entire departments) may feel that centralized
system administration cannot adequately accommodate their configuration needs
or their need for autonomous control over the computers they use.

Your first impulse may be to try and strong-arm such rogue users into accepting
standard configurations in order to minimize the cost and time required to support
them. However, such an iron-fist approach usually ends up creating both unhappy
users and unhappy sysadmins. Keep in mind that rogue users’ desires are often per-
fectly legitimate and that it is the sysadmins’ job to support them or, at least, to re-
frain from making their lives more difficult.

The most desirable solution to this problem is to identify the underlying reasons for
the rogues’ reluctance to accept managed systems. In many cases, you can address
their needs and bring the rogues back into the fold.

An alternative to the integration strategy is to trade support for autonomy. Allow
rogue users or groups to do whatever they want, with the explicit understanding that
they must also take on responsibility for keeping the customized systems running.
Install a firewall to protect the systems you control from any break-ins or viruses
that might originate on the rogues’ network. And don’t clean up the rogues’ messes.

Be sure to have all residents of the rogues’ network sign a written policy document
that sets some security guidelines. For example, if their systems interfere with the

M
a

n
a

g
e

m
e

n
t

30.4 The role of administration 915

rest of the organization, their network connection can be turned off until they are
patched and no longer impacting the production network.

Creative system administration is needed to deal with the increasing number of lap-
tops being brought to work. You must find ways of providing service for these (non-
trustable) devices without endangering the integrity of your systems. A separate
network might be a good idea.

All sites have their “bleeding edgers,” users who are hooked on getting the latest stuff
immediately. Such users are prepared to live with the inconvenience of beta versions
and unstable prereleases as long as their software is up to date. Find ways to deal
with these people as useful resources rather than thorns in your side. They are ideal
candidates for testing new software and are often willing to feed bug reports back to
you so that problems can be fixed.

30.4 THE ROLE OF ADMINISTRATION

In this context, “administration” includes all the tasks that don’t contribute directly
to the organization’s output, such as accounting, human resources, secretarial work,
sales, purchasing, and other logistical processes. It’s also quite separate from the
“administration” in “system administration.”

Depending on your organization, administrative tasks may be totally your responsi-
bility, totally performed by your parent organization, or somewhere in between. But
they must all be done somehow.

In small, autonomous groups, these tasks tend to be distributed among the various
staff members. However, this is probably not an efficient use of your highly skilled
and hard-to-find IT experts. In addition, many people hate administrative work. Le-
gal and organizational requirements impose strict rules that don’t always sit well
with creative professionals. An important chore for the boss is to make sure that
administrative chores are kicked upstairs, performed by dedicated personnel, out-
sourced, or at least equitably distributed among the sysadmin staff.

We touch on only a few common administrative chores here because most are dic-
tated by the parent organization and are not negotiable.

Sales

If you contemplate taking on a project for a new or an existing customer, you need
the equivalent of a technical sales staff that understands the needs of potential cus-
tomers, knows what services and products your group can provide, and is aware of
the group’s capacity (busyness). Nothing is worse than making promises that cannot
be fulfilled. If the boss participates in the negotiations, the boss should be properly
briefed by the technical staff. Even better, let the technical staff do the negotiating
while the boss observes.

916 Chapter 30 – Management, Policy, and Politics

Purchasing

At many sites, the system administration team and the purchasing team are totally
separate. This is bad if the purchasing team makes decisions without consulting the
sysadmins. It is even worse if purchasing decisions are made by upper management
on the golf course or in vendor-supplied box seats at the opening game of their fa-
vorite football team.

A typical tale: The VP of IT at a tape storage company thought he knew what disk
storage hardware was needed for a big server project. On the golf course one Sunday,
he signed a contract with IBM without consulting his system administration staff.
The IBM disk arrays were to be connected to a Sun server, and the IBM sales guy
swore it would just work. It turned out that the device drivers consisted of barely
functional, alpha-quality code. The company’s mission-critical server was down
more than it was up for the next three months while IBM worked on the drivers.
Critical project deadlines were missed, and the IT department looked like idiots to
the rest of the company. The storage debacle impacted the company’s bottom line,
too—they moved from being one of the largest in their market sector to one of the
smallest because they were late to market with critical products.

Sysadmins can provide good information about compatibility in the local environ-
ment, the competence of vendors (especially third-party resellers), and the reliabil-
ity of certain types of equipment. Reliability information is especially critical in the
PC world, where pricing is so competitive that quality is often totally ignored.

Sysadmins need to know about any new hardware that’s being ordered so that they
can determine how to integrate it into the current infrastructure and predict what
projects and resources are needed to support it.

Note that it is not the job of system administrators to decide whether a system can be
supported. You can make recommendations to your customers, but if they need a
particular piece of equipment to get their job done, it’s your job to make it work. You
might have to hire additional staff or neglect other systems. Give your boss the
choices and let the folks upstairs decide what compromises they prefer.

A system administrator’s participation in the specification of systems being pur-
chased is especially valuable in organizations that by default must buy from the low-
est bidder (e.g., government institutions and state universities). Most purchasing
systems allow you to specify evaluation criteria. Be sure to include escape clauses
such as “must be compatible with existing environment” or “must be able to run
XYZ software package well.”

The incremental impact and cost of an additional piece of hardware (or software,
sometimes) is not constant. Is it the 60th of that architecture or the first? Does it have
enough local disk space for the system files? Does it have enough memory to run
today’s bloated applications? Is there a spare network port to plug it into? Is it a com-
pletely new OS?

M
a

n
a

g
e

m
e

n
t

30.4 The role of administration 917

Questions like these tend to emphasize a more fundamental question: Do you stay
stagnant and buy equipment from your current vendor, or do you try the latest
whizzy toy from a startup that might shake the world or might be out of business in a
year? The nature of your organization may answer this one. It’s not a simple yes or no;
you must often make a complex tradeoff between the latest and greatest equipment
and the machines that you are comfortable with and understand. These are business
decisions, and they should be addressed in a structured and impartial manner.

If you are allowed to negotiate with vendors (officially or otherwise), you can often
do much better than your purchasing department. Don’t be shy about quoting prices
from other vendors for comparable equipment, and be optimistic about the size of
expected purchases for the coming year. After all, the sales people have been opti-
mistic about the value of their product.

Buying at the end of a quarter or just before or after a vendor’s product line change
can net you some good discounts. Sellers often need to improve the quarter’s sales
numbers or reduce their inventory of about-to-be-old models.

In our experience, it is difficult to find vendors with technically qualified personnel
that are available to you for support and consultation. If you find one, make sure you
keep each other happy.

Once items have been purchased, the person who specified the original order should
review the final order, the packing list, and perhaps even the invoice submitted by
the supplier to confirm that the right equipment was delivered and billed for. At most
organizations, the items must also be entered into a local inventory control system
in accordance with the organization’s policy.

Accounting

Keeping your finances in order is another important administrative chore. However,
this task is so site-specific that we cannot cover it in detail. It is imperative that you
know what your legal and organizational requirements are and that you keep your
records up to date. Audits are painful.

Personnel

We have already covered issues of hiring and firing (see page 908), but there is more
to integrating a new employee into your infrastructure than just writing an offer
letter. You must know about and honor your organization’s rules regarding advertis-
ing for positions, trial periods, reviews, etc. Another set of chores comprises the me-
chanics of getting a new person settled with a desk, computer, keys, accounts, sudo
access, and so on.

Perhaps more importantly, when an employee gives notice of intent to leave, you
must undo all these processes. In the United States, it’s common to give two weeks’
notice before quitting. Some sites (e.g., security companies) forego the two-week
period and walk the employee to the door, immediately revoking all physical and net-
work access. This might be a good time for a quick internal check to verify that the

918 Chapter 30 – Management, Policy, and Politics

quitting employee has not left any back doors into your servers. Some commercial
software packages (e.g., Novell’s directory product) tout their ability to delete
former employees in a flash.

The system administration staff is not usually consulted when a company is plan-
ning massive layoffs, but they should be. Layoff day arrives, and management
screams to get the former employees’ machines backed up, their access revoked, etc.
Hardware disappears because of disgruntled employees and bad planning.

Marketing

System administration is a funny business. If you do your job well, users take your
seamless computing environment for granted and nobody notices what you do. But
in today’s world of viruses, spam, bloated applications, and total dependence on the
Internet, the IT staff is an indispensable part of the organization.

Your satisfied customers are your best marketing device. However, there are other
ways to gain visibility within your organization and within the broader community.
Based on our experience with tooting our own horn, we suggest the following meth-
ods as being particularly effective.

• Hold town hall meetings where users can express their concerns and ask
questions about the computing infrastructure. You might prepare for such
a meeting by analyzing users’ support requests and open the meeting with
a short presentation on the most troublesome topics you’ve identified. Pro-
vide refreshments to ensure a good turnout.

• Leave plenty of time for questions and make sure you have knowledgeable
staff available to answer them. Don’t try to bluff your way out of unex-
pected questions, though. If you don’t know the answer off-hand, it’s best
to admit this and follow up later.

• Design a seminar series directed at either your peers in the system admin-
istration community or the end users within your organization. Schedule
meetings at two- or three-month intervals and publish the topics to be pre-
sented well in advance.2

• Attend conferences on system administration and give talks or write
papers about the tools you develop. Such presentations not only give you
feedback from your peers, but they also show your customers (and your
boss) that you do your job well.

Although we have listed these marketing techniques in the administration section,
clearly the whole team must be involved in the marketing effort.

System administration is ultimately about dealing with people and their needs. Per-
sonal relationships are just as important as they are in any business. Talk to your
customers and colleagues, and make time for personal discussions and exchanges.

2. You can invite colleagues in the sysadmin community to give guest presentations at your seminar
series. Make sure their presentations demonstrate the same high quality as your internal speakers.

M
a

n
a

g
e

m
e

n
t

30.5 The role of development 919

If you support multiple customers, consider assigning a specific person to each cus-
tomer to act as an account manager. This liaison should take on responsibility for
the general happiness of the customer and should speak regularly with the cus-
tomer’s end users. Channel news and information about changes in the computing
environment through the liaison to create additional opportunities for contact.

Miscellaneous administrative chores

The administration group gets stuck with lots of little logistic items:

• Keeping inventory

• Acquiring furniture and other office equipment

• Maintaining the coffee machine and organizing the supply of coffee, sugar,
and milk. Coffee supplies should be paid for out of the group’s budget to
ensure that every employee performs at their caffeine-fueled best. Some
companies also stock snacks and drinks.

• Watering plants and flowers

• Interfacing with the building maintenance department (or outside con-
tractors) to arrange cleaning, HVAC maintenance, etc.

• Organizing keys or other means of access control

30.5 THE ROLE OF DEVELOPMENT

Large sites need a robust, scalable computing infrastructure so that sysadmins do
not spend all their time fighting an inflexible, poorly designed, labor-intensive sys-
tem. In practical terms, this means that you need custom software, architectural
structure, and staff who are formally charged with designing and maintaining them.

As your site grows and accumulates computers, you will either become increasingly
frantic or you will start to devise ways to optimize and systematize the administra-
tion process. The most common (and most powerful) optimization tool is automa-
tion. It reduces manual labor and ensures that tasks are performed consistently.

Unfortunately, such automation often occurs in an unstructured fashion, with the
sorry consequence that the site slowly accumulates a large and random assemblage
of quick fixes and script fragments. This body of software eventually becomes an
undocumented maintenance nightmare in its own right.

Controversy persists regarding the number of machines a site must have before it
makes sense to start thinking in terms of a global game plan. Our sense is that it is
not really a matter of head count so much as a question of professionalism and job
satisfaction. A life of constant fire fighting and drama is no fun, and it invariably
correlates with poor quality of service. Requirements also vary widely; what’s appro-
priate for an installation that supports financial traders is unsuitable for a student

920 Chapter 30 – Management, Policy, and Politics

lab at a university, and vice versa. Your solutions must be appropriate for the needs
of your users.

The awkward term “infrastructure architecture” is sometimes used to describe the
high-level conceptual work of system administration, as opposed to the day-to-day
chores. The “infrastructure” part is a reference to IT’s having become a commodity
or utility. Like the phone system or the water faucets, it’s supposed to just work.
When the infrastructure breaks, it should be easy to locate and replace the failing
component. The “architecture” part means that an infrastructure is designed for a
specific purpose and is tailored to fit the needs of its customers.

In this section we outline some of the features of a functional infrastructure archi-
tecture. For deeper coverage of this topic, check out the references at the end of the
chapter. Helpful pointers on implementation can be found in Chapter 11, Software
and Configuration Management.

Architectural principles

The following sections present a selection of architectural “best practices” to con-
sider when planning your site’s IT design. These principles are particularly impor-
tant when the configuration you will be supporting is new or unusual, since these
situations can be difficult to benchmark against real-world peers. Well-designed
processes incorporate or foster adherence to these principles.

Make processes reproducible

System administration is not one of the performing arts. Whatever is done should
be done consistently and repeatably. Usually, this means that the lowest level of
changes should be made by scripts or configuration programs rather than by system
administrators. Variations in configuration should be captured in config files for
your administrative software.

For example, a script that sets up a new machine should not be asking questions
about IP numbers and packages to install. Instead, it should check a system configu-
ration directory to determine what to do. It can present this information for confir-
mation, but the choices should be preordained. The less user interaction, the smaller
the chance for human error.

But let us be clear: we are not describing a site at which high-level administrative
priests make policy decisions to be carried out by mindless drones. Reproducibility
is just as relevant if you are the only administrator at your site. It’s generally not a
good idea to make off-the-cuff configuration decisions that leave no audit trail. If
something needs to be changed, change the central configuration information and
propagate outward from there.

Leave a trail of bread crumbs

Who did what, and for what purpose? If there are problems with your system, fixing
is much quicker when you can go back to the last working state, or at least figure out

M
a

n
a

g
e

m
e

n
t

30.5 The role of development 921

what has changed since then. Apart from the “what,” it is also important to know the
“who” and “why.” Speaking with the person who implemented a troublesome change
often leads to important insight. You may be able to quickly undo the change, but
sometimes the change was made for a good reason and undoing it will only make
things worse.

Revision control systems provide one useful way to keep track of changes; they are
discussed in detail starting on page 247. They provide both a historical record of the
actual data over time and information about which sysadmin performed the change.
If used correctly, each modification is accompanied by a comment that explains the
reasoning behind it. Automated tools can check in the config files they modify and
identify themselves in the comment. That way, it’s easy to identify a malfunctioning
script and back out the changes it made.

Another useful facility is some form of email diary. This can be either a permanent
record of messages sent to an actual administrative mailing list at your site or a mail
drop that exists only to record diary updates. The diary provides a well-known place
for information about configuration changes to be recorded, and the fact that it is
implemented through email means that updates are not burdensome to system ad-
ministrators. The drawback of an email diary is that the information has no struc-
ture other than chronology.

Recognize the criticality of documentation

In fact, documentation is so important to a scalable infrastructure that we made it a
major section of its own, starting on page 930.

Customize and write code

Using existing tools is a virtue, and you should use them whenever possible. But no
site in the world is exactly like yours, and your organization is certain to have some
unique requirements. An IT infrastructure that precisely fills the organization’s
needs provides a competitive edge and increases everyone’s productivity.

With its excellent scriptability and cornucopia of open source tools, Linux is the
ideal basis for a well-tuned infrastructure. In our view, a system administration
group without a software development function is hobbled.

Keep the system clean

System management is not only about installing and adding and configuring; it’s
also about knowing what to keep, what to throw out, and what to refurbish. We call
this concept “sustainable management”. It’s wonderful to be able to add a new com-
puter to your environment in 5 minutes, and it is great to be able to create a new user
account in 10 seconds. But if you look ahead, it is equally important to be able to
find and remove old accounts and computers in an organized way. Sustainability in
system management means that you have the tools and concepts needed to run your
operation over the long haul in an organized fashion.

922 Chapter 30 – Management, Policy, and Politics

Anatomy of a management system

Your management system should contain the following major elements:

• Automated setup of new machines. This is not just OS installation; it also
includes the additional software and local configuration necessary to allow
a machine to enter production use. It’s inevitable that your site will need to
support more than one type of configuration, so you should include multi-
ple machine types in your plans from the beginning. Basic Linux installa-
tion, starting on page 223, discusses several systems that help with setup.

• Systematic patching and updating of existing machines. When you
identify a problem with your setup, you need a standardized and easy way
to deploy updates to all affected machines. Note that because computers
are not turned on all the time (even if they are supposed to be), your
update scheme must correctly handle machines that are not on-line when
the update is initiated. You can check for updates at boot time or update on
a regular schedule; see page 260 for more information.

• A monitoring system. Your users should not have to call you to tell you
that the server is down. Not only is it unprofessional, but you have no idea
how long the system has been down. The first person to call you is proba-
bly not the first person to have experienced problems. You need some kind
of monitoring system that raises an alarm as soon as problems are evident.
But alarms are tricky. If there are too many, sysadmins start to ignore
them; if too few, important problems go unnoticed.

• A communication system. Don’t forget to keep in touch with the needs of
your users; supporting them is the ultimate goal of everything you do as a
system administrator. A request-tracking system is a necessity (see page
934). A central location where users can find system status and contact
information (typically on the web) is also helpful.

The system administrator’s tool box

Good sysadmins are lazy (smart) and usually try to automate their work. A success-
ful sysadmin shop writes scripts to fill the gaps between the tools inherited from
vendors and the tools downloaded from the net, then makes sure these scripts are
available wherever they are needed.

Most places have their own adduser script and probably an rmuser script as well. If
you are a lone sysadmin, you probably save these little gems in your own ~/bin di-
rectory and live happily ever after. If you are part of a team of two or more people,
life becomes more complex. Stopgap measures such as copying tools from one an-
other or modifying search paths to point to other people’s ~/bin directories will
help for a little while. However, you will eventually need to find some kind of sus-
tainable solution.

M
a

n
a

g
e

m
e

n
t

30.5 The role of development 923

Our solution to this problem is the “sysadmin tool box.” The tool box contains all the
locally developed system administration software and lives in its own special direc-
tory tree (e.g., /usr/satools). Most importantly, we have a policy document that de-
scribes how to write tools for the tool box. One of the sysadmins “owns” the tool box
and makes any policy decisions that are not covered by the policy document.

When creating a policy like this, it’s important to make sure that each element of the
policy has a clear reason for being there. Only if people understand the motivation
for the rules are they able follow the spirit of the policy and not just its literal rules.

Some sample policy entries are listed below.

• Published tools are available under /usr/satools/bin. Configuration infor-
mation is stored in /usr/satools/etc. Log files and any other data files that
the tools create while running go into /usr/satools/var. Static data files are
in /usr/satools/share. Reason: standardization.

• Tools should be written in Perl or Python. Reason: standardization; facili-
tates handoffs and code reuse among administrators.

• Each tool must have its own man page. Reason: if a tool has no documen-
tation, only its author knows how it works.

• When developing a tool, write the documentation first and have the tool-
master review it before coding. Reason: catches redundancy and policy
conformance issues before any work is done.

• Every tool must accept a --no-action option that makes it show what it
would do without actually doing anything. If such an option cannot be
implemented, the tool must at least fail with an appropriate message. Rea-
son: helps prevent catastrophes, especially with more drastic tools such as
rmuser or mvhomedir.

• All tools must be under revision control in svn://server/satools (a Subver-
sion repository; see page 253). Reason: several people can work on the
tools, and clear revision control simplifies source management and bug
handling.

A real-world policy document might be a few pages long.

You may want to write a little tool box management tool that installs new tools from
the Subversion repository into your /usr/satools tree. For quality control, the man-
agement tool can attempt to do some policy compliance testing as well. For example,
it can verify that every tool installs documentation.

Software engineering principles

Because administrative scripts don’t always seem like “real” software, you might be
tempted to think that they don’t need the degree of forethought and formalism that
are found in typical software engineering projects. That may or may not be true. At

924 Chapter 30 – Management, Policy, and Politics

some level of complexity and mission criticality, you need to really start treating
these projects like the beasts that they are.

Frederick P. Brooks, Jr.’s classic book on software engineering, The Mythical Man-
Month: Essays on Software Engineering, is an easy read and a good reference. It’s
interesting to see that the problems of software engineering that he discusses from
the 1960s and 70s are still with us today. Here is a checklist of software project prin-
ciples and pitfalls (in no particular order):

• Projects should have a clearly defined scope and a well-defined time frame
for completion.

• Responsibilities should be clearly defined. The administrator working on
the project, the sysadmin manager, and the ultimate customer must all
agree on goals, scope, and potential risks.

• Preliminary documentation should be written before coding begins.

• Interfaces between various components of the software should be well
defined and documented in advance.

• Critical pieces of code should be prototyped and tested first. It’s important
to get feedback from the people who will use the software at the earliest
possible stage of development.

• Status information should be communicated honestly. No one likes sur-
prises, and bad news always comes out in the end.

• Incorporate a postmortem analysis into every project. Learn from mis-
takes and successes.

The optimal management of software projects has always been hotly debated. Over
the last decade, “agile” methods that stress rapid prototyping, early deployment, in-
cremental addition of functionality, and the elimination of overhead work have re-
ceived significant attention from developers. Their value is still far from universally
agreed on, but many of the ideas seem like common sense, and the lightweight ap-
proach is well suited to the smaller projects found in the domain of system adminis-
tration. Read more at en.wikipedia.org/wiki/Agile_methods.

30.6 THE ROLE OF OPERATIONS

The operations division is responsible for the installation and maintenance of the IT
infrastructure. Along with the support division, it’s a component of the “produc-
tion” function described on page 906. As a rule of thumb, operations deals with
computers and wires, and support deals with people.

Operations includes only existing services; all “new things” should be designed, im-
plemented, and tested by the development division before they are placed into a pro-
duction environment.

M
a

n
a

g
e

m
e

n
t

30.6 The role of operations 925

Operations focuses on creating a stable and dependable environment for customers.
Availability and reliability are its key concerns. Operations staff should not perform
experiments or make quick fixes or improvements on a Friday afternoon. The chance
of failure (and of nobody but customers noticing the problems over the weekend) is
just too high.

Aim for minimal downtime

Many people depend on the computing infrastructure we provide. A university de-
partment can probably live for a while without its web site, but an Internet mail
order company such as Amazon.com cannot. Some folks won’t notice if your print
server is down, but a student or a professor with a hard deadline for submitting a
research paper or proposal will be very unhappy indeed. Even in a university envi-
ronment, losing access to email usually makes everybody crabby. Central file servers
are another potential source of disaster.3

At some sites you will need to provide emergency service. In a commercial environ-
ment, this might mean 24/7 on-site coverage by experienced sysadmin staff. But
even in a noncommercial environment such as a university department, it looks bad
to have a major system failure over a long weekend.

Even if you don’t have the budget to explicitly provide 24/7 coverage, you should be
prepared to take advantage of any administrators that happen to be around late at
night or on weekends. A rotating pager or other notification system can often afford
“good enough” emergency coverage. Make sure that users can access this coverage
in some easy and well-known way; for example, an email alias called support-pager
that relays to the floating pager.

Document dependencies

To make accurate claims regarding availability or uptime, you must not only know
your own strengths and weaknesses (including the reliability of the hardware you
deploy) but also the dependencies of the IT systems on other hardware, software,
and personnel. For example:

• Power: independent power sources and circuits, surge and short protec-
tion, backup power systems such as generators and UPSes, building power
wiring, maps of power supplied to specific pieces of equipment

• Network: building wiring, backup lines, customer service for ISPs, net-
work topology, contact information for other groups within the organiza-
tion with their own network management function

• Hardware: high-availability systems and procedures for using them,
hot/cold standbys, spare parts, hardware maintenance contracts

3. If a file server fails for an extended period of time, disgruntled users may insist on using their own per-
sonal hard disks instead of the file server for storage (at least until they get burned by the failure of the
local disk, with no backup).

926 Chapter 30 – Management, Policy, and Politics

Repurpose or eliminate older hardware

To maintain your infrastructure, you must buy new machines, repurpose older ones,
and throw out ancient ones. We covered procurement in the administration section
starting on page 915, but getting rid of old favorites always seems to be more of an
operations issue.

Every time hardware performance increases, software drags it back down, usually
by getting bigger and more complex. For example, Windows 95 and 98 survived just
fine with 32MB of memory. Windows 2000 ran poorly unless you had at least 128MB,
and a laptop running Windows XP now seems to need more than 256MB just to run
the task manager. Of course, this bloat is not only a problem with Windows; current
Linux desktop environments need tons of memory as well.

Because users and management are often reluctant to upgrade obsolete equipment,
you sometimes have to take the initiative. Financial information is the most persua-
sive evidence. If you can demonstrate on paper that the cost of maintaining old
equipment exceeds the cost of replacement, you can remove many of the intellectual
objections to upgrading. Sometimes it’s also useful to replace heterogeneous hard-
ware just to save the time and effort needed to keep all the different OS and software
versions up to date.

Inexpensive Intel/PC hardware is the standard architecture base on the desktop, es-
pecially now that Apple ships on Intel hardware. The prevalence of PCs has over the
years shifted the expense of computing from the hardware side to the software and
support sides.

You can ease the transition for the users of old systems by keeping them available.
Leave the old systems powered on, but step down the level of support that your ad-
ministrative group provides. Discontinue hardware maintenance on old machines
and allow them to limp along until they die of their own accord.

You can use older machines for dedicated services that don’t require a lot of hard-
ware resources (e.g., print, DHCP, or license servers). Just make sure you have a plan
drawn up for fixing or replacing the machines or for moving services to another
server in the event of problems.

Universities often receive donations of old computer gear from businesses that want
the tax deduction. Often, the right answer is, “No thanks, we don’t need 2,000 nine-
track tapes and racks to put them in.” One university in Budapest was given an IBM
mainframe several years ago. Instead of saying no and buying fast PCs, they dedi-
cated their whole budget to shipping and electrical wiring in the first year and main-
tenance in following years. Status just isn’t worth it. On the other hand, many uni-
versities establish strong relationships with their local computer industry and get
lots of valuable hardware donated—it’s just last year’s model. Consider total cost of
ownership and know when to say “No, thanks.”

If you are a company and have surplus computer gear, consider donating it to your
local schools or colleges; they often do not have the budget to keep their labs current
and may welcome your older PCs.

M
a

n
a

g
e

m
e

n
t

30.7 The work of support 927

Obsolete computers that cannot be fobbed off on a charitable organization must be
properly recycled; they contain hazardous materials (e.g., lead) and cannot go in reg-
ular trash. If your organization does not have a facilities department that can deal
with old equipment, you may have to take the equipment to a local recycling center
for disposal. The going rate for disposal in the United States is about $10 per system.

30.7 THE WORK OF SUPPORT

The task of the support division is to deal with the human beings who use and de-
pend on the computer systems you maintain. In addition to offering the usual help
desk or hotline support, this division can also offer consulting services to customers
or produce training seminars on specific topics. Ideally, these ancillary services in-
crease customers’ self-sufficiency and reduce the number of support requests.

Availability

Good IT support means that qualified staff are available to help whenever a cus-
tomer needs them.

Most problems are minor and can safely enter a service queue. Others are work-
stoppers that merit immediate attention. Automated responses from a request-
tracking system and recorded telephone messages announcing regular office hours
just cause annoyance. Make sure that users can always access a path of last resort if
the need arises. A cell phone that rotates among sysadmin staff outside of business
hours is usually sufficient.

Unfortunately, excellent support breeds dependence. It’s easy for users to get in the
habit of consulting the help desk even when that isn’t appropriate. If you recognize
that someone is using the support system for answers they could get just as easily
from the man pages or from Google, start answering their questions by quoting the
relevant man page or URL. This tactic works well for students; it’s probably less ef-
fective for executives.

Scope of service

You must clearly define the services your support group will supply; otherwise, us-
ers’ expectations will not match reality. Here are some issues to consider:

• Response time

• Service during weekends and off-hours

• House calls (support for machines at home)

• Weird (one of a kind) hardware

• Ancient hardware

• Supported operating systems

• Standard configurations

• Expiration of backup tapes

• Special-purpose software

• Janitorial chores (cleaning screens and keyboards)

928 Chapter 30 – Management, Policy, and Politics

In a Linux shop, every user has access to the source code and could easily build a
custom kernel for his or her own machine. You must consider this in your corporate
policy and should probably try to standardize on a few specific kernel configura-
tions. Otherwise, your goal of easy maintenance and scaling to grow with the orga-
nization will meet some serious impediments. Encourage your creative, OS-hacking
employees to suggest kernel modifications that they need for their work. Make them
a part of the standardization process so that you don’t have to maintain separate
kernels for each engineer.

In addition to knowing what services are provided, users must also know about the
priority scheme used to manage the work queue. Priority schemes always have wig-
gle room, but try to design one that covers most situations with few or no excep-
tions. Some priority-related variables are listed below:

• The service level the customer has paid for/contracted for

• The number of users affected

• The importance of the affected users (this is a tricky one, but in general
you don’t want to annoy the person who signs your paycheck)

• The loudness of the affected users (squeaky wheels)

• The importance of the deadline (late homework vs. research grant pro-
posal or contract)

Although all these factors will influence your rankings, we recommend a simple set
of rules together with some common sense to deal with the exceptions. Basically, we
use the following priorities:

• Many people cannot work

• One person cannot work

• Requests for improvement

If two or more requests have top priority and the requests cannot be worked on in
parallel, we base our decision about which problem to tackle first on the severity of
the issues (e.g., email not working makes almost everybody unhappy, whereas the
temporary unavailability of some web service might hinder only a few people).
Queues at the lower priorities are usually handled in a first-in, first-out manner.

You might want to calibrate your support staff ’s common sense.We usually ask them
questions like, “What are you going to do if Ms. Big Boss walks into your office, you
are working on a priority 1 issue, and she wants you to fix her printer because she
needs to print some slides she is going to present at a meeting. The taxi to the airport
leaves in 15 minutes, and of course, everybody on the IT staff except you is out to
lunch.” Any reasonable support person will realize (at least on second thought), that
there is just no point in arguing with this person who is already under a lot of pres-
sure. To provide some butt-coverage, it’s reasonable to ask if it’s okay to leave the
broken central file server alone. If the answer is yes, it’s appropriate to just drop ev-
erything and get the slides out.

M
a

n
a

g
e

m
e

n
t

30.7 The work of support 929

Then we ask, “What are you going to do when Ms. Big Boss gets you into a similar
situation a few weeks later?” Once again there’s no point in arguing, but this time it’s
probably a good idea to schedule an appointment with her after she returns to dis-
cuss her support needs. Perhaps she really does need a person assigned to her per-
sonal support, and if she is willing to pay for that, what’s the harm. Just don’t try to
have this discussion while she is worrying about missing her plane.

Users generally assume that all their important data is stored on backup tapes that
will be archived forever. But backup tapes don’t last indefinitely; magnetic media
have a finite lifetime after which reading data becomes difficult. (You must periodi-
cally rewrite your data, possibly to newer media, if you want to keep it for a long
time.) Backup tapes can also be subpoenaed; your organization may not want old
data to be available forever. It’s best to work with the people in charge of such deci-
sions to draw up a written agreement that specifies how long backups must be kept,
whether multiple copies are to be made (required? permissible? never?), and
whether those copies must be stored at different locations.

You should make this information available to the users of your systems because it
promotes realistic expectations regarding backups. It also puts users on notice that
they should take precautions of their own if they feel they need better protection of
their data.

Skill sets

There is nothing more annoying to an experienced user than a support contact who
asks, “Have you plugged in the power cable?” while frantically searching a customer
service database in the background. On the other hand, it’s a waste of resources to
have your most experienced administrator explain to a novice user how to find the
delete key in some word processing system.

In our environment, each staff member is assigned a certain number of support
hours per week.4 Support staff reserve this time in their weekly planning and draw
from it whenever a support request is assigned. Assignments are made according to
the skills required to fix the problem and the time remaining in everybody’s weekly
support budget.

For this scheme to work successfully, make sure your skill list is balanced. Over the
long term, everybody on the support staff must be able to fulfill their allocated sup-
port time. In general, a staff member with many entries in the skill list is more
“valuable.” However, there is nothing wrong with having staff with fewer skills, as
long as you have enough work for them to do.

An accurate skill list helps you verify that you have sufficient skill-specific man-
power to deal with vacations and illnesses. You can build the skill list as problems

4. By default, each sysadmin is assigned 25% time in support. When a project requires the full-time atten-
tion of a particular sysadmin, we deviate from the default scheme by removing that person from the
support pool for the duration of the project.

930 Chapter 30 – Management, Policy, and Politics

arise and are solved by members of the staff. Include the task, the staff member’s
name, and the demonstrated level of expertise.

Skills should be defined at an appropriate level of abstraction, neither too specific
nor too general. The following list of sample skills demonstrates the appropriate
level of granularity:

• Create users, remove users, set passwords, change quotas

• Create CVS or SVN accounts

• Restore files from backups

• Integrate new hardware drivers into RIS (Windows)

• Package a Windows application in MSI Format

• Create and install software application packages on Linux

• Analyze log files

• Debug mail server issues

• Debug printing problems

• Debug general hardware problems

• Make DNS entries

• Manage software licenses

• Answer Windows security questions

• Answer UNIX security questions

• Resolve Samba-related requests

• Configure DHCP

• Configure an LDAP server

• Add or remove web sites (configure Apache)

Time management

System administration involves more context switches in a day than most jobs have
in a year, and user support personnel bear the brunt of this chaos. Every administra-
tor needs good time-management skills. Without them, you won’t be able to keep up
with your day-to-day responsibilities and you will become frustrated and depressed.
(Or, if already frustrated and depressed, you will become more so.)

Sysadmin burnout is rampant. Most administrators last only a few years. No one
wants to be constantly on call and continually yelled at. Finding ways to manage
your time efficiently and keep your customers happy is a win/win situation.

In his recently published book Time Management for System Administrators, Tom
Limoncelli suggests ways of avoiding these pitfalls. A complete reference is given at
the end of this chapter.

30.8 DOCUMENTATION

Just as most people accept the health benefits of exercise and leafy green vegetables,
everyone appreciates good documentation and has a vague idea that it’s important.

M
a

n
a

g
e

m
e

n
t

30.8 Documentation 931

Unfortunately, that doesn’t necessarily mean that they’ll write or update documen-
tation without prodding.

Why should we care, really?

• Documentation reduces the likelihood of a single point of failure. It’s won-
derful to have tools that deploy workstations in no time and distribute
patches with a single command, but these tools are nearly worthless if no
documentation exists and the expert is on vacation or has quit.

• Documentation aids reproducibility. When practices and procedures
aren’t stored in institutional memory, they are unlikely to be followed con-
sistently. When administrators can’t find information about how to do
something, they have to extemporize.

• Documentation saves time. It doesn’t feel like you’re saving time as you
write it, but after spending a few days re-solving a problem that has been
tackled before but whose solution has been forgotten, most administrators
are convinced that the time is well spent.

• Finally, and most importantly, documentation enhances the intelligibility
of a system and allows subsequent modifications to be made in a manner
that’s consistent with the way the system is supposed to work. When mod-
ifications are made on the basis of only partial understanding, they often
don’t quite conform to the architecture. Entropy increases over time, and
even the administrators that work on the system come to see it as a disor-
derly collection of hacks. The end result is often the desire to scrap every-
thing and start again from scratch.

Local documentation serves many purposes. Have you ever walked into a machine
room needing to reboot one server, only to face racks and racks of hardware, all
alike, all different, and all unlabeled? Or had to install a piece of hardware that you’ve
handled before, but all you can remember about the chore was that it was hard to
figure out?

Local documentation should be kept in a well-defined spot. Depending on the size of
your operation, this might be a directory on a file server that is mounted on all your
machines, or perhaps even in the home directory of a special system user account.

Standardized documentation

Our experience suggests that the easiest and most effective way to maintain docu-
mentation is to standardize on short, lightweight documents. Instead of writing a
system management handbook for your organization, write many one-page docu-
ments, each of which covers a single topic. Start with the big picture and then break
it down into pieces that contain additional information. If you have to go into more
detail somewhere, write an additional one-page document that focuses on steps that
are particularly difficult or complicated.

932 Chapter 30 – Management, Policy, and Politics

This approach has several advantages:

• Your boss is probably only interested in the general setup of your environ-
ment. That is all that’s needed to answer questions from above or to con-
duct a managerial discussion. Don’t pour on too many details or you will
just tempt your boss to interfere in them.

• The same holds true for customers.

• A new employee or someone taking on new duties within your organiza-
tion needs an overview of the infrastructure to become productive. It’s not
helpful to bury such people in information.

• It’s more efficient to use the right document than to browse through a large
document.

• It’s easier to keep documentation current when you can do that by updat-
ing a single page.

This last point is particularly important. Keeping documentation up to date is a huge
challenge; it’s often is the first thing to be dropped when time is short. We have
found that a couple of specific approaches keep the documentation flowing.

First, set the expectation that documentation be concise, relevant, and unpolished.
Cut to the chase; the important thing is to get the information down. Nothing makes
the documentation sphincter snap shut faster than the prospect of writing a mil-
spec dissertation on design theory. Ask for too much documentation and you may
not get any.

Second, integrate documentation into processes. Comments in configuration files
are some of the best documentation of all. They’re always right where you need them,
and maintaining them takes virtually no time at all. Most standard configuration
files allow comments, and even those that aren’t particularly comment friendly can
often have some extra information snuck into them. For example, the standard con-
tents of the GECOS field of the passwd file (office, telephone number, etc.) are often
not the most useful information you could put there. Feel free to define your own
site-wide conventions. (But in this specific case, remember that users can change the
contents of this field, so you cannot always believe the information stored there.)

Locally built tools can require documentation as part of their standard configura-
tion information. For example, a tool that sets up a new computer can require infor-
mation about the computer’s owner, location, support status, and billing informa-
tion even if these facts don’t directly affect the machine’s software configuration.

Documentation should not create information redundancies. For example, if you
maintain a site-wide master configuration file that lists machines and their IP ad-
dresses, there should be no other place where this information is updated by hand.
Not only is it a waste of your time to make updates in multiple locations, but incon-
sistencies are also certain to creep in over time. When this information is required in
other contexts and configuration files, write a script that obtains it from (or updates)

M
a

n
a

g
e

m
e

n
t

30.8 Documentation 933

the master configuration. If you cannot completely eliminate redundancies, at least
be clear about which source is authoritative. And write tools to catch inconsisten-
cies, perhaps run regularly from cron.

Hardware labeling

Some documentation is most appropriate when written out on a piece of paper or
taped to a piece of hardware. For example, emergency procedures for a complete
system or network failure are not particularly useful if they are stored on a dead or
unreachable machine.

Every computer should be identifiable without someone’s switching it on and logging
in, because those activities will not always be possible. Uniquely label each worksta-
tion (hostname, IP address) and put a sticker on it that includes contact information
for the help desk.

In a server room, all systems and their external devices must be labeled with a host-
name (fully qualified if machines from different domains are located there). It is use-
ful to have these labels on both the front and the back of the machines (especially in
cramped racks) so that you can easily find the power switch of the machine you want
to power-cycle.

If your environment includes many different types of systems, it may be useful to
add additional information such as architecture, boot instructions, special key se-
quences, pointers to additional documentation, the vendor’s hotline, or the phone
number of the person in charge. Recording key sequences may seem a bit silly, but
servers are often connected to an aging terminal or console server rather than a ded-
icated monitor.

Be sure your central records or inventory data contain a copy of the information on
all these little sticky labels. It will come in handy if you manage your machines
through a TCP/IP connection to your console server instead of spending your work-
day in a noisy machine room.

Also tape the hostname to other pieces of hardware that are associated with each ma-
chine: disk drives, modems, printers, tape drives, etc. If several identical external
subsystems are attached to the same host, make sure that the labels are unique.5 In
our installation, even the SCSI and Fibre Channel cables are labeled (and of course,
the various ports on the server) so that we really know which device is connected to
which interface.

If a host is an important citizen (for example, a major server or a crucial router),
include the location of its circuit breaker. If a floppy disk or flash memory card is
required for booting, point to its location. Major file servers should have information
about disk device names, partition tables, mount points, and the locations of

5. One of our co-workers replaced the write-cache backup battery of the wrong RAID array recently. For-
tunately, only degraded performance resulted from this particular mistake. But imagine if you replaced
the wrong disk in a RAID5 array, didn’t notice it, and then had a second disk fail.

934 Chapter 30 – Management, Policy, and Politics

backup superblocks readily available. Tape the information to the disk subsystems
themselves or store it in a well-known location, perhaps in the machine room.

Tape drives should be labeled with the device files and commands needed to access
them. It’s also a good idea to list the type of tapes the drive requires, the nearest place
to buy them, and even the approximate price.

Printers should be labeled with their names, brief printing instructions, and the hosts
on which they depend. Printers often come with network interfaces and are full citi-
zens of the network, but they still depend on a Linux host for spooling and configura-
tion.

Network wiring must be scrupulously documented. Label all cables, identify patch
panels and wall outlets, and mark network devices. Always make it easy for your wir-
ing technician to keep the documentation up to date; keep a pencil and forms hang-
ing on the wall of the wiring closet so that it’s painless to note that a cable moved from
one device to another. Later, you should transfer this data to on-line storage.

Yet another level of complexity is added if your network devices (e.g., routers and
switches) can be reconfigured over the network. Although you can now move ma-
chines among subnets from your cozy office, documentation becomes even more
important. Be even more careful, because you can screw up a much bigger part of
your infrastructure more quickly and more thoroughly.

User documentation

It’s a good idea to prepare a printed document that you can give to new users. It
should document local customs, procedures for reporting problems, the names and
locations of printers, your backup and downtime schedules, and so on. This type of
document can save an enormous amount of sysadmin or user services time. You
should also make the information available on the web. A printed document is more
likely to be read by new users, but a web page is easier to refer to at the time ques-
tions arise. Do both and keep them updated regularly. There is nothing more annoy-
ing than outdated on-line documentation or FAQs.

In addition to documenting your local computing environment, you may want to
prepare some introductory material about Linux. Such material is essential in a uni-
versity environment in which the user community is transient and often Linux illit-
erate. We provide printed one-page crib sheets that list the commands and applica-
tions commonly needed by our user community.

30.9 REQUEST-TRACKING AND TROUBLE-REPORTING SYSTEMS

If you have a large staff, you will find it helpful to impose some formal structure on
your work queue with a request-tracking system. Even if your IT organization is a
one-person shop, such a system can be very helpful for tracking all the pending
problems and requests. Request trackers are also a great source of historical infor-
mation about the work your group has done, and they’re an easy way to track your

M
a

n
a

g
e

m
e

n
t

30.9 Request-tracking and trouble-reporting systems 935

internal to-do lists and projects. Managers always want to know what you’re doing;
most systems can produce reports that show your workload, your resources, and
your righteous need for more staff and a larger budget.

These system go by various names; most common are “request tracking systems,”
“trouble ticket systems,” or “bug trackers.” These are all names for the same kind of
beast. The web site linas.org/linux/pm.html lists and categorizes a variety of open
source implementations.

Common functions of trouble ticket systems

A trouble ticket system accepts requests through various interfaces (email, web
forms, and command lines being the most common) and tracks them from submis-
sion to solution. Managers can assign tickets to staff groups or to individual staff
members. Staff can query the system to see the queue of pending tickets and per-
haps resolve some of them. Users can find out the status of a request and see who is
working on it. Managers can extract high-level information such as

• The number of open tickets

• The average time to close a ticket

• The productivity of sysadmins

• The percentage of unresolved (rotting) tickets

• Workload distribution by time to solution

The request history stored in the ticket system becomes a history of the problems
with your IT infrastructure and the solutions to these problems. If that history is
easily searchable, it becomes an invaluable resource for the sysadmin staff.

Resolved trouble messages can be sent to novice sysadmins and trainees, inserted
into a FAQ system, or just logged. It can be very helpful for new staff members to see
the closed tickets because those tickets include not only technical information but
also examples of the tone and communication style that are appropriate for use with
customers.

Like all documents, your ticketing system’s historical data can potentially be used
against your organization in court. Follow the document retention guidelines set up
by your legal department.

Most request-tracking systems automatically confirm new requests and assign them
a tracking number that submitters can use to follow up or inquire about the request’s
status. The automated response message should clearly state that it is just a confir-
mation. It should be followed promptly by a message from a real person that ex-
plains the plan for dealing with the problem or request.

User acceptance of ticketing systems

Receiving a prompt response from a real person is a critical determinant of cus-
tomer satisfaction, even if the personal response contains no more information than
the automated response. For most problems, it is far more important to let the sub-
mitter know that the ticket has been reviewed by a real person than it is to fix the

936 Chapter 30 – Management, Policy, and Politics

problem immediately. Users understand that administrators receive many requests,
and they’re willing to wait a fair and reasonable time for your attention. But they’re
not willing to be ignored.

Our trouble-reporting system uses an email alias called “support”. At one time we
were bombarded with trouble reports that were either incomplete or incomprehen-
sible. We wrote a script that asked the user specific questions, such as

• On what host does the problem occur?

• Is the problem repeatable?

• How important is it that the problem be fixed immediately?

The user rebellion started about an hour later, and within a day we had backed the
system out. Its only value seemed to be that with the furor over the script, many
users actually read the questions it was asking, and the quality of our free-form
trouble reports improved.

Another site dealt with this problem by sending out a message that explained what
information is important in a trouble report and showed examples of useless re-
ports. When a useless report was received, it was answered with an apology (“Sorry,
I don’t have enough information to…”) and a copy of the explanatory message. The
users caught on quickly.

In our experience, forms only work for tasks that are highly standardized, such as
account creation or deletion requests. In these contexts, your customers understand
that the requested information is necessary for you to do your job. Some tasks can
be totally automated once the form is filled out, such as setting up a vacation mes-
sage for a user. Others, such as account creation, may be partially automatable but
require authorization or other staff processing.

Ticketing systems

Tables 30.1 and 30.2 below summarize the characteristics of several well-known
trouble ticketing systems. Table 30.1 shows open source systems, and Table 30.2
shows commercial systems.

Table 30.1 Open source trouble ticket systems

Name Ina Lang Backb URL

Mantis WE PHP M www.mantisbt.org
RT: Request Tracker W Perl M www.bestpractical.com
Scarab W Java M scarab.tigris.org
Double Choco Latte W PHP PM dcl.sourceforge.net
OTRS WE Perl PMOD www.otrs.org
JitterBugc WE C F www.samba.org/jitterbug
WREQc WE Perl G math.duke.edu/~yu/wreq

a. Input types: W = web, E = email
b. Back end: M = MySQL, P = PostgreSQL, O = Oracle, D = DB2, F = flat files, G = gdbm
c. No longer maintained

www.mantisbt.org
www.bestpractical.com
www.otrs.org
www.samba.org/jitterbug

M
a

n
a

g
e

m
e

n
t

30.9 Request-tracking and trouble-reporting systems 937

We like Mantis a lot. It was originally developed to track bugs in the software for a
video game. It runs on Linux, Solaris, Windows, Mac OS, and even OS/2. It’s light-
weight, simple, easily modifiable, and customizable. It requires PHP, MySQL, and a
web server. But its most important feature is good documentation!

Another nice system is OTRS, the Open Ticket Request System. OTRS features web
interfaces for both customers and sysadmins, as well as an email interface. OTRS is
highly customizable (e.g., greeting messages configurable by queue) and can even
log the time spent on a ticket. Packages for each of our example Linux platforms are
available from the OTRS web site.

RT: Request Tracker release 3 has a rich set of features, including highly configurable
web interfaces for both users and system administrators. Because it uses a myriad of
Perl modules, it can be a bit of a pain to install. Its command line interface is also
basic at best. Some sites use a patched version of release 1 (see ee.ethz.ch/tools) that
fixes some of RT’s more annoying shortcomings without adding the complexity of
the more recent releases.

Table 30.2 shows some of the commercial alternatives for request management.
Since the web sites for commercial offerings are mostly marketing hype, details such
as the implementation language and back end are not listed.

Some of the commercial offerings are so complex that they need a person or two
dedicated to maintaining, configuring, and keeping them running (you know who
you are, Remedy and ServiceDesk). These systems are appropriate for a site with a
huge IT staff but are a waste for the typical small, overworked IT staff.

Ticket dispatching

In a large group, even one with an awesome ticketing system, one problem still re-
mains to be solved. It is inefficient for several people to divide their attention be-
tween the task they are working on right now and the request queue, especially if
requests come in by email to a personal mailbox. We have experimented with two
solutions to this problem.

Our first try was to assign half-day shifts of trouble queue duty to staff members in
our sysadmin group. The person on duty would try to answer as many of the incom-
ing queries as possible during their shift. The problem with this approach was that
not everybody had the skills to answer all questions and fix all problems. Answers

Table 30.2 Commercial trouble ticket systems

Name Scale URL

Remedy (now BMC) Huge www.bmc.com/remedy
ServiceDesk Huge manageengine.adventnet.com
HEAT Medium www.frontrange.com
Track-It! Medium www.numarasoftware.com

www.bmc.com/remedy
www.frontrange.com
www.numarasoftware.com

938 Chapter 30 – Management, Policy, and Politics

were sometimes inappropriate because the person on duty was new and was not
really familiar with the customers, their environments, or the specific support con-
tracts they were covered by. The result was that the more senior people had to keep
an eye on things and so were not really able to concentrate on their own work. In the
end, the quality of service was worse and nothing was really gained.

After this experience, we created a “dispatcher” role that rotates monthly among a
group of senior administrators. The dispatcher is responsible for checking the tick-
eting system for new entries and farming tasks out to specific staff members. If nec-
essary, the dispatcher contacts users to extract any additional information that is
necessary to prioritize requests. The dispatcher uses a home-grown staff-skills data-
base to decide who on the support team has the appropriate skills and time. The
dispatcher also makes sure that requests are resolved in a timely manner.

30.10 DISASTER RECOVERY

Your organization depends on a working IT environment. Not only are you respon-
sible for day-to-day operations, but you must also have plans in place to deal with
any reasonably foreseeable eventuality. Preparation for such large-scale problems
influences both your overall game plan and the way that you define daily operations.

In this section, we look at various kinds of disasters, the data you need to gracefully
recover, and the important elements of a disaster plan.

We suggest that you make an explicit, written catalog of the potential disasters that
you want to protect against. Disasters are not all the same, and you may need several
different plans to cover the full range of possibilities. Consider the following threats:

• Security breaches: before the year 2000, about 60% originated from within
the organization. By 2001, the sheer number of external attacks had driven
the percentage down to more like 30%. In 2005, internally based attacks
were back up to 47%.6

• Environmental problems: power spikes and outages, cooling failures,
floods, hurricanes, earthquakes, meteors, terrorist or alien invasions

• Human error: deleted or damaged files and databases, lost configuration
information

• Spontaneous hardware meltdowns: dead servers, fried hard disks, mal-
functioning networks

Ask yourself, what benefits do my users get from the IT environment? Which of
these are most important? What endangers these benefits? How can we protect
against these threats? Getting the problem definition right is not a trivial task, and it
is critical that your entire organization be involved, not just the system administra-
tion group.

6. This data comes from the FBI and the Computer Security Institute.

M
a

n
a

g
e

m
e

n
t

30.10 Disaster recovery 939

Backups and off-line information

For obvious reasons, data backups are a crucial part of disaster planning, and one
that is covered in more detail in Chapter 9, Backups. But creating reliable off-site
backups is only part of the story. How quickly can you access these backups? How
will you bring together replacement hardware, manpower, and backup data to re-
place a server that has failed?

We are accustomed to using the network to communicate and to access documents.
However, these facilities may be unavailable or compromised after an incident. Store
all relevant contacts and procedures off-line. Know where to get recent dump tapes
and what restore command to use without looking at /etc/dumpdates.

In all disaster scenarios, you will need access to both on-line and off-line copies of
essential information. The on-line copies should, if possible, be kept on a self-suffi-
cient machine: one that has a rich complement of tools, has key sysadmins’ environ-
ments, runs its own name server, has a complete local /etc/hosts file, has no file
sharing dependencies, has a printer attached, and so on. Don’t use an old junker
that’s no good for anything else; the disaster recovery machine should be fast and
should have plenty of memory and scratch disk space you can use for restores and
compares during recovery. The machine needs a complete development environ-
ment so that it can patch and recompile any compromised software. It helps if the
machine also has interfaces for all the types of disk drives used at your site (IDE,
SATA, SCSI, FC-AL, etc.).

Here’s a list of handy data to keep on the backup machine and in printed form:

• Outline of the disaster procedure: people to call, when to call, what to say

• Service contract phone numbers and customer numbers

• Key local phone numbers: staff, police, fire, boss, employment agency

• Data on hardware and software configurations: OS version, patch levels,
partition tables, PC hardware settings, IRQs, DMAs, and the like7

• Backup tapes and the backup schedule that produced them

• Network maps

• Software serial numbers, licensing data, and passwords

• Vendor contact info for that emergency disk you need immediately

Staffing your disaster

Decide ahead of time who will be in charge in the event of a catastrophic incident.
Set up a chain of command and keep the names and phone numbers of the princi-
pals off-line. It may be that the best person to put in charge is a sysadmin from the
trenches, not the IT director (who is usually a poor choice for this role).

The person in charge must be somebody who has the authority and decisiveness to
make tough decisions based on minimal information (e.g., a decision to disconnect

7. Network discovery and inventory tools can compile much of this data automatically. Two candidates to
consider are H-Inventory (sourceforge.net/projects/h-inventory) and LANsurveyor (www.neon.com).

www.neon.com

940 Chapter 30 – Management, Policy, and Politics

an entire department from the network). The ability to make such decisions, com-
municate them in a sensible way, and actually lead the staff through the crisis are
probably more important than having theoretical insight into system and network
management. We keep a little laminated card with important names and phone
numbers printed in microscopic type. Very handy—and it fits in your wallet.

An important but sometimes unspoken assumption made in most disaster plans is
that sysadmin staff will be available to deal with the situation. Unfortunately, people
get sick, graduate, go on vacation, leave for other jobs, and in stressful times may
even turn hostile. It’s worth considering what you’d do if you needed extra emergency
help. (Not having enough sysadmins around can sometimes constitute an emer-
gency in its own right if your systems are fragile or your users unsophisticated.)

You might try forming a sort of NATO pact with a local consulting company or uni-
versity that has sharable system administration talent. Of course, you must be will-
ing to share back when your buddies have a problem. Most importantly, don’t oper-
ate close to the wire in your daily routine. Hire enough system administrators and
don’t expect them to work 12-hour days.

Power and HVAC

Test your disaster recovery plan before you need to use it. Test your generators and
UPSes on a monthly or quarterly schedule, depending on how much risk your man-
agement is willing to accept. Verify that everything you care about is plugged into a
UPS, that the UPS batteries are healthy, and that the failover mechanism works. To
test an individual UPS, just unplug it from the wall. To make sure that critical equip-
ment is properly UPSified, you may have to throw the circuit breakers. Know your
power system’s dependencies and points of failure.

UPSes need maintenance, too. This function is probably outside the scope of your
sysadmin duties, but you are responsible for ensuring that it is performed.

Most power hits are of short duration, but plan for two hours of battery life so that
you have time to shut down machines properly in the event of a longer outage. Some
UPSes have a serial port or Ethernet interface that you can use to initiate a graceful
shutdown of noncritical machines after 5 minutes (configurable) of power outage.

Take advantage of power outages to do any 5-minute upgrades that you have already
tested but have not yet deployed. You’re down anyway, so people expect to be incon-
venienced. In some shops, an extra 5 minutes during a power outage is easier to ac-
cept than a scheduled downtime with a week’s notice. If you have old machines that
you suspect are not in use anymore, leave them turned off until someone complains.
It might not be until weeks later—or never—that the “missing” machine is noticed.

See page 776 for more
information about
environment issues.

Cooling systems often have a notification system that can call you if the temperature
gets too high. Tune the value of “too high” so that after the cooling system pages you,
you have time to get in before machines start to fry; we use 76 degrees instead of 90,
but live in the mountains 45 minutes away (in summer, indeterminate in winter).
Keep a couple of mechanical or battery-operated thermometers in the machine

M
a

n
a

g
e

m
e

n
t

30.10 Disaster recovery 941

room—losing power means that you lose all those nifty electronic indicators that
normally tell you the temperature.

A large U.S. government lab recently built a fancy new machine room and filled it
with a 256-node Linux Alpha cluster for running large scientific models. Everything
was plugged into a UPS, and all the facilities were state of the art. Unfortunately, a
minor power outage brought the center down for four hours. Why? The PC that con-
trolled the HVAC (air conditioner) was not on the UPS. It failed and messed up the
air conditioning system. Test carefully.

If you co-locate equipment at a remote site, ask to see the hosting site’s backup
power facilities before you sign a contract. Verify that the generator is real and is
tested regularly. Ask to be present at the next generator test; whether or not you get
to see an actual test, you’re likely to get useful information.

Network redundancy

ISPs are occasionally swallowed as part of a merger. Such mergers have demolished
many companies’ carefully laid plans for maintaining redundant connections to the
Internet. A post-merger ISP often consolidates circuits that belonged to the inde-
pendent companies. Customers that formerly had independent paths to the Internet
may then have both connections running through a single conduit and once again
be at the mercy of a single backhoe fiber cut.

ISPs have also been known to advertise “redundant circuits” or “backup connec-
tions” of questionable value. On closer inspection you may find that yes, there are
two fibers, but both are in the same conduit, or the backup connection transits an
already saturated ATM cloud. Hold a yearly review with your ISPs to verify that you
still have genuine redundancy.

Security incidents

System security is covered in detail in Chapter 20, Security. However, it’s worth men-
tioning here as well because security considerations impact the vast majority of ad-
ministrative tasks. There is no aspect of your site’s management strategy that can be
designed without due regard for security. For the most part, Chapter 20 concen-
trates on ways of preventing security incidents from occurring. However, thinking
about how you might recover from a security-related incident is an equally impor-
tant part of security planning.

Having your web site hijacked is a particularly embarrassing type of break-in. For
the sysadmin at a web hosting company, a hijacking can be a calamitous event, espe-
cially at sites that handle credit card data. Phone calls stream in from customers,
from the media, from the company VIPs who just saw the news of the hijacking on
CNN. Who will take the calls? What should that person say? Who is in charge? What
role does each person play? If you are in a high-visibility business, it’s definitely
worth thinking through this type of scenario, coming up with some preplanned an-
swers, and perhaps even having a practice session to work out the details.

942 Chapter 30 – Management, Policy, and Politics

Sites that accept credit card data have legal requirements to deal with after a hijack-
ing. Make sure your organization’s legal department is involved in security incident
planning, and make sure you have relevant contact names and phone numbers to
call in a time of crisis.

When CNN or Slashdot announces that your web site is down, the same effect that
makes highway traffic slow down to look at an accident on the side of the road causes
your Internet traffic to increase enormously, often to the point of breaking whatever
it was that you just fixed. If your web site cannot handle an increase in traffic of 25%
or more, consider having your load balancing device route excess connections to a
server that presents a page that simply says “Sorry, we are too busy to handle your
request right now.”

Second-hand stories from the World Trade Center

We’ve heard some instructive stories that relate to the September 11, 2001, attack on
the World Trade Center in New York City. Unfortunately, the sysadmins that “owned”
these stories were unable to obtain their management’s permission to share them.
Rather than give up, we here include some second- and third-hand stories of unver-
ified authenticity. They are certainly not the last word on disaster management, but
they are interesting nonetheless.

One ISP routed all their calls and network traffic through a facility located in one of
the smaller buildings of the World Trade Center complex. The ISP’s building survived
the attack, and the facility continued to operate under power from emergency gen-
erators, although it had trouble dissipating heat once the building’s air conditioning
had been disabled. Unfortunately, the ISP’s staff were unable to enter the site to refill
the generators’ fuel tanks. Moral: make sure you have at least a few days’ worth of
generating capacity available for sustained emergency situations.

Another organization located in one of the WTC towers once maintained its disaster
recovery facility in the other tower. Fortunately, the company rethought its defini-
tion of “off-site” before the attack. A third organization was able to recover because
all of its critical data was replicated to multiple devices in multiple locations, mir-
rored synchronously over Fibre Channel. However, this particular organization lost
a lot of paper documents—not everything was computerized.

One financial business located in the towers was outsourcing the storage of its off-site
backups. However, the business didn’t know that the storage facility was also in one
of the towers. It can be important to know where your off-site materials are kept.

CNN’s web site experienced traffic on September 11th that defied measurement. The
telephone system in New York City was overloaded, and TV stations that had broad-
cast from antennas atop the WTC were knocked out. Everyone turned to the Inter-
net and pummeled cnn.com. At first, the site was overwhelmed by the load. After
trying to cope for a while by moving servers around, CNN eventually reduced the
complexity of its home page to a single image and plain text with no links. After a
couple of hours, the site was up again and handling the load.

M
a

n
a

g
e

m
e

n
t

30.11 Written policy 943

The experience of this massive spike in web traffic resulted in policy changes at CNN
regarding when the complexity of the home page can be reduced and who can de-
cide on such a change. The power and responsibility moved down the management
hierarchy toward the sysadmin trenches.

30.11 WRITTEN POLICY

While researching this chapter, we talked to bigshots in the system administration
world, in computer security, in the standards community, and in computer law. We
were surprised that they all mentioned “signed, written policy” as being essential to
a healthy organization.

Several different policy documents should exist:

• Administrative service policies

• Rights and responsibilities of users

• Policies regarding sysadmins (users with special privileges)

• Guest account policy

Procedures in the form of checklists or recipes can be used to codify existing prac-
tice. They are useful both for new sysadmins and for old hands. Better yet are proce-
dures in the form of executable scripts. Several benefits of standard procedures are:

• The chores are always done in the same way.

• Checklists reduce the likelihood of errors or forgotten steps.

• It’s faster for the sysadmin to work from a recipe.

• The changes are self-documenting.

• Written procedures provide a measurable standard of correctness.

Today, Linux is replacing the big mainframes of the past and is performing mission-
critical functions in the corporate world. In big shops, checklists, often called “run
books,” serve as the documentation for common tasks. They’re usually kept on-line
and also in the form of printed manuals. The sysadmins that write and maintain the
run books are often a layer away from the support crew that uses them, but such
organization and standardization pays off in the long run.

Here are some common tasks for which you might want to set up procedures:

• Adding a host

• Adding a user

• Localizing a machine

• Setting up backups for a new machine

• Securing a new machine

• Restarting a complicated piece of software

• Reviving a web site that is not responding or not serving data

• Unjamming and restarting a printer

• Upgrading the operating system

• Patching software

944 Chapter 30 – Management, Policy, and Politics

• Installing a software package

• Installing software from the net

• Upgrading critical software (sendmail, gcc, named, etc.)

• Backing up and restoring files

• Expiring backup tapes

• Performing emergency shutdowns (all hosts, all but important hosts, etc.)

Many issues sit squarely between policy and procedure. For example:

• Who can have an account?

• What happens when they leave?

The resolutions of such issues need to be written down so that you can stay consis-
tent and avoid falling prey to the well-known, four-year-old’s ploy of “Mommy said
no, let’s go ask Daddy!” Often, the “if ” portion is the policy and the “how” portion is
the procedure

Some policy decisions will be dictated by the software you are running or by the pol-
icies of external groups, such as ISPs. Some policies are mandatory if the privacy of
your users’ data is to be protected. We call these topics “nonnegotiable policy.”

In particular, we believe that IP addresses, hostnames, UIDs, GIDs, and usernames
should all be managed site-wide. Some sites (multinational corporations, for exam-
ple) are clearly too large to implement this policy, but if you can swing it, site-wide
management makes things a lot simpler. We know of a company that enforces site-
wide management for 35,000 users and 100,000 machines, so the threshold at which
an organization becomes too big for site-wide management must be pretty high.

Other important issues may have a larger scope than just your local sysadmin group:

• Handling of security break-ins

• Filesystem export controls

• Password selection criteria

• Removal of logins for cause

• Copyrighted material (e.g., MP3s and DVDs)

• Software piracy

Maintaining good channels of communication among administrative groups at a
large site can prevent problems and help develop trust and cooperation. Consider
throwing a party as a communication vehicle. Some sysadmin groups use an IRC-
like MUD or MOO or other chat system as a communication vehicle. It can get very
chatty, but if used properly can make your organization run more smoothly, espe-
cially if some staff work off-site or from home. Chats can be snooped, so be careful
not to send sensitive information about your network and organization over a third-
party network.

M
a

n
a

g
e

m
e

n
t

30.11 Written policy 945

Security policies

What do you want to protect? Your data? Your hardware? Your ability to recover
quickly after a disaster? You must consider several tradeoffs when designing a secu-
rity policy for your site:

• Services offered vs. security provided (more services = less secure)

• Ease of use and convenience vs. security (security = 1/convenience)

• Cost of security vs. risk (cost) of loss

RFC2196, the Site Security Handbook, is a 75-page document written in 1997 by a
subgroup of the Internet Engineering Task Force (IETF). It advises sysadmins on var-
ious security issues, user policies, and procedures. It does not include a recipe for
securing an Internet site, but it does contain some valuable information. The last 15
pages are a wonderful collection of both on-line and published references.

RFC2196 suggests that your policy documents include the following points:

• Purchasing guidelines for hardware and software. It can be a big win to
involve sysadmins in the procurement process because they often know
about hardware quirks, software limitations, and support issues that are
not advertised by the vendors’ marketing teams.

• A privacy policy that sets expectations regarding the monitoring of users’
email and keystrokes and sets policies for dealing with user files

• An access policy: who can have access, what they can do with their access,
what hardware and software they can install, etc. This document should
include the same warnings about authorized use and line monitoring that
are included in the privacy policy.

• An accountability policy that spells out the responsibilities of both users
and sysadmins. The policy should explicitly say who can snoop network
traffic, read users’ email, and investigate other similarly sensitive areas. It
should also outline the circumstances in which such investigations might
take place.

• An authentication policy that sets guidelines for passwords and remote
access

• An availability policy that describes when the system is supposed to be up,
lists scheduled maintenance times, gives instructions for reporting prob-
lems, and sets expectations regarding response times

• A maintenance policy that includes rules about outsourcing and specifies
procedures for giving access to third-party maintenance personnel

946 Chapter 30 – Management, Policy, and Politics

Noticeably missing from the RFC2196 list is an authorization policy that specifies
who can authorize new accounts and extended privileges. The original Site Security
Handbook, RFC1244, contained lists of concrete issues rather than types of policies,
which might be a bit more useful from the sysadmin’s point of view. The newer RFC
includes recommendations for each type of service a machine might run and de-
scribes the problems of the services and potential solutions.

ISO 117999 is a more up-to-date reference and is seeing widespread use in the indus-
try. COBIT is another popular standard (and one that covers more than just security).

Whatever policies you adopt, they must be explicit, written down, understood, and
signed by all users and sysadmins. Enforcement must be consistent, even when us-
ers are customers who are paying for computing services. Failure to apply policies
uniformly weakens their legal and perceived validity.

User policy agreements

At the University of Colorado’s computer science department, user policy is deliv-
ered in the form of an initial shell that prints the policy and requires users to agree to
and “sign” it before they can get a real shell and use their accounts. This scheme saves
time and hassle, but check with your own lawyers before implementing it at your site.

Here are some explicit issues that should be addressed in a user policy agreement:

• Sharing accounts with friends and relatives (we suggest: never)

• Running password crackers on the local system’s passwords

• Running password crackers on other sites’ passwords

• Disrupting service

• Breaking into other accounts

• Misusing or forging electronic mail

• General use of email and electronic media

• Looking at other users’ files (if readable? writable? invited?)

• Importing software from the net (never? always? if the user checks?)

• Mandatory use of firewall and antivirus software on Windows hosts

• Using system resources (printers, disk space, modems, CPU)

• Duplicating copyrighted material (software, music, movies, etc.)

• Allowing others to duplicate copyrighted material

• Using resources for private or commercial activities

• Practicing illegal activities (fraud, libel, etc.)

• Pursuing activities that are legal in some places but not others (e.g., porn,
political activity)

You should realize, however, that no policy agreement can prevent somebody from
violating it. You can use it as a weapon to hit the culprit on the head, have his or her
account terminated, have him fired or expelled, or whatever seems appropriate in
your environment.

M
a

n
a

g
e

m
e

n
t

30.11 Written policy 947

Here is an example of a short and simple policy agreement that the computer science
department at the University of Melbourne requires students to sign in order to use
the university’s computers:

I, the undersigned, HEREBY DECLARE that I will abide by the rules set out below:

• I will use the Department's computing and network facilities solely for aca-
demic purposes directly related to my study of Computer Science subjects.

• I understand that the Department grants computer accounts for the exclu-
sive use of the recipient. Therefore, I will not authorise or facilitate the use of
my account or files by any other person, nor will I divulge my password to
any other person.

• I will not access, or attempt to gain access to any computer, computer
account, network or files without proper and explicit authorisation. Such
access is illegal under State and Federal laws, and is contrary to University
regulations. I will inform the Computer Science Office immediately should I
become aware that such access has taken place.

• I understand that some software and data that reside on file systems that I may
access are protected by copyright and other laws, and also by licenses and other
contractual agreements; therefore, I will not breach these restrictions.

• I will not use University facilities for obtaining, making, running or distrib-
uting unauthorised copies of software.

• I will undertake to keep confidential any disclosure to me by the University
of software (including methods or concepts used therein) licensed to the Uni-
versity for use on its computers and I hereby indemnify and hold harmless
the University against claims of any nature arising from any disclosure on
my part to another of the said software in breach of this undertaking.

• I undertake to maintain the highest standard of honesty and personal integ-
rity in relation to my usage of the Department's computing and network
facilities. I further warrant that I will avoid any actions in relation to my
usage of the Department's computing or network facilities that may bring
any disrepute upon the Department or the University.

I understand that I am bound by Regulation 8.1.R7 of the University of Melbourne (set
out in the Student Diary), which also governs and regulates my use of University com-
puting and network facilities.

I understand that acting in breach of any of the principles set out above will incur
severe penalties including failure in an assignment or a subject, the suspension or
withdrawal of access to University computing facilities, suspension or expulsion from
the University, imposition of fines, and/or legal action taken under the Crimes (Com-
puter) Act 1988.8

8. Keep in mind that this is an Australian law, although similar computer- and software-related legislation
has been passed in the United States.

948 Chapter 30 – Management, Policy, and Politics

Take special note of the weasel words about honesty, personal integrity, and not
bringing the University into disrepute. Vague requirements such as these are meant
to give some room for later maneuvering and to cover any specifics that may have
been inadvertently left out of the policy. Although their true legal weight is probably
negligible, it might be a good idea to include such requirements in your policy
agreements.

Sysadmin policy agreements

The sysadmin policy agreement must set guidelines for using root privileges and for
honoring users’ privacy. IT managers must make sure that the sysadmin staff under-
stand and uphold the implications of such a document. At the same time, it is hard
to respond to a user’s complaint that mail is broken without looking at the messages
that have bounced. (However, a copy of the headers is often sufficient to characterize
and fix the problem.)

See page 48 for
more information
about sudo and page
690 for more about
John the Ripper.

If your site uses a tool such as sudo for root access, it is essential that your sysadmins
use good passwords and not share their logins with anyone. Consider running John
the Ripper on sysadmins’ passwords regularly. It’s also essential that admins not ex-
ecute sudo sh or use a shell escape after sudo-ing their favorite text editor; these are
just token usages of sudo and defeat sudo’s logging feature. The log is not there to
spy on administrators; it’s there to help reconstruct the sequence of events when
something goes wrong.

For some sysadmins, the urge to show off rootly powers overcomes common sense.
Gently but firmly suggest other career alternatives.

At some sites, having the root password is a status symbol, perhaps more valuable
than a key to the executive washroom or access to the close-in parking lot. Often, the
people having the password are engineers who don’t need it or shouldn’t have it. One
site we know offered engineers the root password, but stipulated that any takers
would have to wear a beeper and help others when necessary. Requests plummeted.

Another technique we have used with good success is to seal the root password in an
envelope and hide it in a spot accessible to the sysadmin staff. Sysadmins generally
use sudo to do their work; if they actually need the root password for some reason,
they open the envelope. They must then change the root password and stash a new
envelope. The procedure is straightforward while still being painful enough to moti-
vate the use of sudo. It’s important to keep the old passwords around for a while for
those machines that were down or off-line when the new password was pushed out.

If your staff knows the root password, you must change it whenever a staff member
leaves. There may be multiple administrative passwords at your site: for computers,
printers, network hardware, PROMs or BIOSes, databases, etc. Write down all the
things that must be changed (and how to do it) if a staff member leaves.

M
a

n
a

g
e

m
e

n
t

30.12 Legal Issues 949

30.12 LEGAL ISSUES

The U.S. federal government and several states have laws regarding computer crime.
At the federal level, there are two from the early 1990s and two more recent ones:

• The Federal Communications Privacy Act

• The Computer Fraud and Abuse Act

• The No Electronic Theft Act

• The Digital Millennium Copyright Act

Some big issues in the legal arena are the liability of sysadmins, network operators,
and web hosting sites; strong cryptography for electronic commerce; peer to peer
networks and their threat to the entertainment industry; copyright issues; and pri-
vacy issues. The topics in this section comment on these issues and a variety of other
legal debacles related to system administration.

Encryption

The need for encryption in electronic commerce and communication is clear. How-
ever, encryption is against the law in some countries. Law enforcement agencies do
not want citizens to be able to store data that they (the police) cannot decrypt.

In the United States, the laws regarding encryption are changing. In the past, it was
illegal to export any form of strong encryption technology. Companies had to create
two versions of software that incorporated encryption: one for sale in the domestic
market and a crippled version for export. One side effect of this policy was that many
encryption-related software projects came to be based in other countries. The pol-
icy’s patent absurdity (the rest of the world has had cryptographic technology for a
long time) and the needs of electronic commerce eventually motivated the govern-
ment to change its stance.

Although the export restrictions are not yet completely gone, changes introduced in
2004 make the situation in the United States better than it used to be. To see how you
might be effected, refer to www.bis.doc.gov/Encryption.

The IETF has worked on standards in the area of end-to-end secure communica-
tions at the protocol level—the IPsec effort—and vendors are beginning to ship sys-
tems that include it. The authentication part is typically bundled, but the encryption
part is often installed separately. This architecture preserves flexibility for countries
in which encryption cannot be used.

In a recent (2006) U.S. court decision, software code was likened to free speech and
was judged to be protected under the first amendment to the Constitution of the
United States. In 1990, Dan Bernstein developed a new cryptographic algorithm
while a graduate student at U.C. Berkeley. However, he was denied permission to
discuss the algorithm in public by the U.S. State Department, which classified the
technology as a “munition.” The Electronic Frontier Foundation (eff.org) pursued
the case and eventually won. It only took 16 years!

www.bis.doc.gov/Encryption

950 Chapter 30 – Management, Policy, and Politics

Copyright

The music and movie industries have noticed with some consternation that home
computers are capable of playing music from CDs and displaying movies on DVD. It
is both an opportunity and a threat for them. The ultimate outcome will depend on
whether these industries respond in a proactive or reactive way; unfortunately, they
seem to be headed down the reactive path.

The DVD format uses an encryption key to scramble the contents of a disk with an
algorithm called CSS, the Content Scrambling System. The idea was to limit the abil-
ity to play DVDs to licensed and approved players. Consumer DVD players include
the appropriate decoding key, as do the software players that come with most DVD
computer drives.

A student from Norway reverse-engineered the CSS encryption process and posted
a program called DeCSS to the web. The program did not bypass the DVD encryp-
tion scheme; it simply used the decryption key from a legitimate Windows player to
decode the DVD data stream and save it to disk so he could play it on Linux instead
of having to use Windows.

The Motion Picture Association of America and the DVD Copy Control Association
both filed lawsuits against numerous “distributors” of the DeCSS software; everyone
whose web site linked to a copy of DeCSS was considered a distributor. The lawsuits
alleged that the defendants were engaged not in the theft of copyrighted materials
but in the distribution of trade secrets and the “circumvention of copy protection.”9

In the United States, the latter activity was redefined as a form of copyright infringe-
ment by the Digital Millennium Copyright Act (DMCA) of 1998. The MPAA won
this case; DeCSS was found to be in violation of the DMCA. Currently (2006), no
open source DVD players are legal for use in the United States.

In two recent cases, companies have tried to use the copyright and anti-reverse-en-
gineering aspects of the DMCA law to stifle their competition: Sears tried to prohibit
third-party garage door openers from being used to operate Sears-branded garage
doors, and Lexmark tried to use the law to ban companies from refilling Lexmark’s
empty laser printer cartridges and selling them more cheaply than new ones. In
both cases, the EFF represented the little guy and won.

Another DMCA case, MGM vs. Grokster and Streamcast, made it to the U.S. Supreme
Court. Previous decisions (e.g., the precedent-setting Sony Betamax case from the
1970s) had said that selling technology capable of infringing on someone’s copy-
righted material was not illegal; you had to use it to actually infringe to be guilty. In
the Grokster case, Streamcast made money by advertising their software as being
capable of duplicating copyrighted music and movies. This inducement to infringe
was judged to be in violation of the DMCA, and the court ruled 9-0 against Grokster
and for MGM.

9. The DMCA prohibits the “circumvention” of measures intended to keep digital content secure, even if
the reason for circumvention falls under the “fair use” exemptions of traditional copyright law. Need-
less to say, this change represents a significant abridgement of the fair use exemptions.

M
a

n
a

g
e

m
e

n
t

30.12 Legal Issues 951

Peer-to-peer networks such as BitTorrent may be safe from this “inducement” argu-
ment since many applications of file sharing do not involve copyrighted material.
However, the details are still quite murky.

SCO has been shaking down Linux providers for using copyrighted bits of UNIX
code in their distributions. They filed thousands of lawsuits against individuals and
one against IBM. ODSL, the Open Source Development Labs, has set up a $10 mil-
lion legal fund to protect Linux users. Some of the companies supporting ODSL in-
clude Cisco, Dell, Ericsson, Fujitsu, Hitachi, HP, IBM, Intel, Nokia, Red Hat, Sun, and
Toshiba. A recent (July 2006) court decision supported IBM’s contention that most
of SCO’s 250+ claims were too general and should be thrown out; see groklaw.net for
additional details. The language of the decision discouraged an appeal, so perhaps
the SCO lawsuits have hit a roadblock and the silliness will stop.

Privacy

Privacy has always been difficult to safeguard, but with the rise of the Internet, it is
in more danger than ever. The medical records of patients in the University of Michi-
gan health care system were inadvertently published on the Internet. The data was
freely available for months until a student noticed the oversight. Databases full of
credit card numbers have been compromised. Fake email arrives almost daily that
appears to be from your bank and alleges that problems with your account require
you to verify your account data. A closer glance at the email as text instead of letting
it be interpreted as a web page shows that the data would go to a hacker in eastern
Europe or Asia and not to your bank.

DoubleClick

Another big privacy scandal, this one intentional, has involved DoubleClick.net, an
advertising agency that provides many of the banner ads shown on web pages. Dou-
bleClick promised for years that users in their system were never tracked or identi-
fied. Recently, however, they purchased a company that does data mining and began
gathering data from each user that visited a web page containing a DoubleClick ad.
The furor that ensued caused DoubleClick to withdraw the project for now and to
hire two high-powered lawyers into “privacy” positions to find a way for DoubleClick
to legally stalk the users who are subjected to their ads.

Sony’s rootkits

Sony included a program called XCP (for eXtended Copy Protection) on several
dozen music CD products. The software installed itself on the owner’s computer, hid
its own files so the user wouldn’t notice, and reported back to Sony about the music
that was being listened to. Since XCP is a form of rootkit, the files installed could
expose the machine to hackers; see page 688.

Mark Russinovich bought a Sony CD with DRM (Digital Rights Management) from
amazon.com and installed it on his Windows system. Later, he discovered the Sony
rootkit and analyzed its impact and extent.

952 Chapter 30 – Management, Policy, and Politics

“Not only had Sony put software on my system that uses techniques com-
monly used by malware to mask its presence, the software is poorly writ-
ten and provides no means for uninstall. Worse, most users that stumble
across the cloaked files with a rootkit scan will cripple their computer if
they attempt the obvious step of deleting the cloaked files.

“While I believe in the media industry’s right to use copy protection mech-
anisms to prevent illegal copying, I don’t think that we’ve found the right
balance of fair use and copy protection, yet. This is a clear case of Sony
taking DRM too far.”

The fact that the rootkit is there and cannot be uninstalled is not mentioned in the
EULA license that users must sign to install the CD on their computers.10 In the
United Kingdom, this is in clear violation of their Computer Misuse Act. It’s also
illegal in California under the California Business & Protections Code and is punish-
able by a fine of $1,000 per infected computer. The EFF has filed a class action suit
against Sony; to claim damages, go to www.sonybmgcdtechsettlement.com.

Why should sysadmins care? Well, if your desktop PCs have Sony’s rootkit installed,
your entire site is potentially vulnerable to exploitation.

Call records and web logs

Three of the largest American telephone companies have been accused of giving the
phone and Internet records of their 200 million customers to the National Security
Agency. Qwest, another large American telephone company, had refused to cooper-
ate with the NSA because of privacy concerns. They even held out when the NSA
strongly hinted that Qwest might not receive any more classified government con-
tracts. Good for Qwest; the EFF is suing the other three telephone companies.

History illustrates the potential abuse that can be made of call records. In 2002, a
Colombian drug cartel’s computer was seized by police.11 When the data contained
on the computer’s hard disks was analyzed, it revealed that in 1994, call records from
phone switches had been used to determine the “distance” of cartel employees from
law enforcement officials. Several employees who were “too close” were eliminated.
Traffic analysis is a powerful tool, and it is being used.

Several of the large search engines and portal web sites (e.g., Yahoo!) were providing
the U.S. government with data from users’ web searches. Google is the only one that
didn’t cave in to government demands. However, Google did provide a crippled
search engine to the Chinese government, which wanted to censor web search re-
sults throughout China. Google is reported to be rethinking that decision.

The U.S. cell phone network is also ruffling some privacy feathers. As you move
around the country with a cell phone in your pocket, the phone automatically checks

10. EULA stands for End-User License Agreement.
11. See amsterdam.nettime.org/Lists-Archives/nettime-l-0207/msg00015.html.

www.sonybmgcdtechsettlement.com

M
a

n
a

g
e

m
e

n
t

30.12 Legal Issues 953

in with local cells so that calls can be routed to you. Unfortunately, the government
does not need a warrant or even probable cause to track your cell phone’s location.

The underlying legal issue is the definition of so-called pen-register data. In the con-
text of telephones, it is the information about who called whom and when, indepen-
dent of the actual contents of the conversation. In 1984, the Electronic Privacy Com-
munications Act distinguished pen-register data from content (both of which were
formerly protected) and said it was OK for phone companies to disclose pen-register
data based on an easy-to-obtain court order. In 2001, the Patriot Act extended the
definition of “phone numbers” to include software programs and Internet-related
information such as IP addresses and URLs.

Hence, the URLs that you visit and the web searches you perform are now classified
as pen-register data. They are explicitly not protected as private information. A war-
rant is required before a sysadmin must turn over email or user files, but the con-
tents of most log files require only a court order.

Another feature of pen-register data is that it can be used in court proceedings even
if obtained illegally by law enforcement officers. Scary times.

Click-through EULAs

EULA is the acronym for the End User License Agreements that you are asked to
accept when you install a piece of software you have purchased. Most folks don’t
read them carefully, or if they do read them, they click Yes anyway since they have
already paid for the software, opened the CD, and started the installation process—
it’s too late to return the software and request your money back. Some EULAs are
downright evil; here are some of the things you may be asked to agree to:

• Allow the vendor to monitor or audit your computer (Red Hat!)

• Not criticize the product or the vendor (Microsoft)

• Not benchmark the product or communicate the results (McAfee)

• Waive the right to enforce the company’s stated privacy policy (McAfee)

• Refrain from customizing or repairing your computer

• Allow automatic software updates

• Not reverse-engineer the product

• Not remove the product from your computer

• Not use the product in conjunction with a competitor’s product

Rather a long list, and we have surely missed many...

Policy enforcement

Log files may prove to you beyond a shadow of a doubt that person X did bad thing
Y, but to a court it is all just hearsay evidence. Protect yourself with written policies.
Log files sometimes include time stamps, which are useful but not necessarily admis-
sible as evidence unless your computer is running the Network Time Protocol (NTP)
to keep its clock synced to a reference standard.

954 Chapter 30 – Management, Policy, and Politics

You may need a security policy in order to prosecute someone for misuse. It should
include a statement such as this: Unauthorized use of University computing systems
may involve not only transgression of University policy but also a violation of state and
federal laws. Unauthorized use is a crime and may involve criminal and civil penal-
ties; it will be prosecuted to the full extent of the law.

We advise you to put a warning in /etc/motd (the message of the day file) that ad-
vises users of your snooping policy. Ours reads:

Your keyboard input may be monitored in the event of a real or
perceived security incident.

You may want to ensure that users see the notification at least once by including it in
the startup files you give to new users. If you require the use of ssh to log in (and you
should), then configure sshd.config to always show the motd file.

Be sure to specify that by the act of using their accounts, users acknowledge your
written policy. Explain where users can get additional copies of policy documents
and post key documents on an appropriate bulletin board. Also include the specific
penalty for noncompliance (deletion of the account, etc.).

Control = liability

ISPs typically have an appropriate use policy (AUP) dictated by their upstream pro-
viders and required of their downstream customers. This “flow down” of liability
assigns responsibility for users’ actions to the users themselves, not to the ISP or the
ISP’s upstream provider. These policies have been used to attempt to control spam
(unsolicited commercial email) and to protect ISPs in cases of customers’ storing
illegal or copyrighted material in their accounts. Check the laws in your area; your
mileage may vary.

Suppose something naughty is emailed or posted to the web from your site. If you
are CompuServe (now part of AOL), this is a problem. In a case called Cubby v. Com-
puServe, something libelous was posted. The judge ruled that CompuServe was not
guilty, but found the moderator of the newsgroup to which it was posted negligent.
The more you try to control information, the more liable you become.

This principle is beautifully illustrated by the story of a Texas business founded by
an enterprising computer science student of ours, Cheeser. He wrote Perl scripts to
mine the Usenet news groups, collect naughty pictures, and build a subscription web
site based on that content. He charged $12/month to subscribers and was raking in
money hand over fist.

Cheeser tried to be a responsible pornographer and did not subscribe to newsgroups
known to carry child pornography. He also monitored several newsgroups that were
on the edge, sometimes with illegal content, sometimes not. This minimal oversight
and his choice of a conservative county in Texas in which to locate his business were
his downfall.

M
a

n
a

g
e

m
e

n
t

30.12 Legal Issues 955

Acting on an anonymous tip (perhaps from a competitor), the local police confis-
cated his computers. Sure enough, they found an instance of child pornography that
had been posted to one of the “safer” newsgroups. The criminal case never went to
trial, but during the plea bargaining it became clear that the judge thought Cheeser
was guilty—not because he had created the content, but because he was not a good
enough censor. The implication was that if Cheeser had done no censoring at all, he
would have been legally OK. Never censor your porn!

This principle also applies to other interactions with the outside world. From a legal
standpoint, the more you monitor your users’ use of the Internet, the more you may
be liable for their actions or postings. If you are aware of an illegal or actionable activ-
ity, you have a legal duty to investigate it and to report your findings to Big Brother.

For this reason, some sites limit the data that they log, the length of time for which
log files are kept, and the amount of log file history kept on backup tapes. Some soft-
ware packages (e.g., the Squid web cache) help with the implementation of this policy
by including levels of logging that help the sysadmin debug problems but that do not
violate users’ privacy. But be aware of what kind of logging might be required by
your local laws.

System administrators should be familiar with all relevant corporate or university
policies and should make sure the policies are followed. Unenforced or inconsistent
policies are worse than none, from both a practical and legal point of view.

Software licenses

Many sites have paid for K copies of a software package and have N copies in daily
use, where K << N. Getting caught in this situation could be damaging to the com-
pany, probably more damaging than the cost of those N-minus-K other licenses.
Other sites have received a demo copy of an expensive software package and hacked it
(reset the date on the machine, found the license key, etc.) to make it continue work-
ing after the expiration of the demo period. How do you as a sysadmin deal with
requests to violate license agreements and make copies of software on unlicensed
machines? What do you do when you find that machines for which you are responsi-
ble are running pirated software? What about shareware that was never paid for?

It’s a very tough call. Management will often not back you up in your requests that
unlicensed copies of software be either removed or paid for. Often, it is a sysadmin
who signs the agreement to remove the demo copies after a certain date, but a man-
ager who makes the decision not to remove them.

Even if the job is the best one you’ve ever had, your personal and professional integ-
rity are on the line. Fortunately, even in today’s job market, quality sysadmins are in
high demand and your job search will be short. We are aware of several cases in which
a sysadmin’s immediate manager would not deal with the situation and told the
sysadmin not to rock the boat. The sysadmin then wrote a memo to the boss asking
to correct the situation and documenting the number of copies of the software that
were licensed and the number that were in use. The admin quoted a few phrases

956 Chapter 30 – Management, Policy, and Politics

from the license agreement and cc’ed the president of the company and his boss’
managers. In one case, this procedure worked and the sysadmin’s manager was let go.
In another case, the sysadmin quit when even higher management refused to do the
right thing. Whatever you do in such a situation, get things in writing. Ask for a
written reply, or if all you get is spoken words, write a short memo documenting
your understanding of your instructions and send it to the person in charge.

Regulatory compliance

A rash of high-profile accounting scandals at companies such as Enron and World-
Com (MCI) prompted the passage of a 2002 U.S. law called the Sarbanes-Oxley Act,
known colloquially as SOX. SOX sets accountability rules for publicly traded compa-
nies in the United States and holds corporate officers personally responsible for the
validity of their financial data.

Since computers keep track of most companies’ records, SOX affects system admin-
istration. Some of the measures mandated by SOX are easy (email logs, audit trails,
internal controls), but some are a bit harder. For example, SOX requires you to de-
termine a baseline of normal activity for a data repository (e.g., database) and create
tools to detect anomalous behavior or access. You must also document everything
and prove that you make regular use of the controls you implemented. Compliance
extracts a sizable toll on productivity and sysadmin morale.

On the other hand, Sarbanes-Oxley is a big win if you sell storage devices or ac-
counting services. For large companies, the average cost of compliance was $4 mil-
lion last year, and this is an ongoing expense. Now that executives are directly ac-
countable for violations and can go to jail, they have sometimes demanded bizarre
new system administration procedures in the name of SOX compliance.

SOX affects private and nonprofit companies, too. Written policy agreements that
document how long data is kept and when scheduled purges will occur have become
important for both printed and electronic documents.

A sysadmin was doing some penetration testing for a large computer company un-
der the direction of an international accounting firm. He proved that almost anyone
could get into a company’s Oracle Financials database as root and mess with the
company’s books without being detected—exactly the sort of thing that SOX com-
pliance is supposed to guarantee is impossible. The accounting firm wanted him to
prove his claims by altering the customer’s financial data. He refused, they persisted,
and after much soul searching he decided to report the accounting firm to the cus-
tomer’s business conduct office. In the end the accounting firm was fired, and the
sysadmin lost his job soon after.

IT auditing and governance are big issues today. Regulations and quasi-standards
for specifying, measuring, and certifying compliance have spawned myriad acro-
nyms: SOX, ITIL, COBIT, and ISO 17799, to name a few. Unfortunately, this alphabet
soup is leaving something of a a bad taste in system administrators’ mouths, and

M
a

n
a

g
e

m
e

n
t

30.13 Software patents 957

software to implement all the controls deemed necessary by recent legislation is cur-
rently lacking.

30.13 SOFTWARE PATENTS

In the beginning, the patent office ruled that you could not patent a mathematical
theorem. Then the theorem became an algorithm, and it still could not be patented.
Then the algorithm was implemented in hardware, and that could certainly be pat-
ented. Firmware, maybe. Software, still no. But patents can be appealed, and one of
the lower courts liked software patents. Against its will, the patent office started is-
suing them, in some cases for applications that were filed 10 to 15 years earlier.

Unfortunately, the patent office has historically had scant comprehension of the state
of the art in software and has issued many inappropriate (some would say, stupid)
patents. Five different patents exist for the Lempel-Ziv data compression algorithm.
That algorithm was published in a mathematical journal and was implemented and
distributed in Berkeley UNIX. The concept of an include file is patented. The con-
cept of a cursor is patented. Subtraction was patented as a measure to fix software
that was not Y2K compliant. The process of copying an image from memory to an
on-screen window is patented, as is the use of the XOR operation to handle overlap-
ping windows. Several data encryption standards are patented. The concept of em-
bedding advertising material in a user interface is patented.

According to U.S. patent law, if a certain invention is patentable, so is every minor
improvement upon that invention. In the case of software, just about everything can
be viewed as a step forward in the patent sense. The U.S. Patent and Trademark Of-
fice’s naivete with respect to software, and their persistent inability to judge what
constitutes prior art or obviousness, have caused them to issue thousands of shaky
software patents every year.

In the United States, an even bigger threat has emerged: the business method soft-
ware patent. Companies have persuaded the patent office that virtually any method
of computerizing a standard business procedure is a patentable invention. Patents
have been issued for mundane activities such as pulling up a customer’s account
from a computer database when the customer calls in to a help desk. Amazon.com
obtained a business practice patent on “1-click technology”; they obtained an in-
junction requiring Barnes and Noble to make their customers perform at least two
mouse clicks to purchase books.12

By contrast, the European Union ruled in July 2005 that anything that consists of
“schemes, rules and methods for performing mental acts, playing games or doing
business, and programs for computers” is not an invention and is therefore not pat-
entable. The vote was a resounding 648 to 14.

The U.S. patent office is attempting to clean up its act, but the damage seems to have
already been done in many cases. A major milestone was the 1994 recall of a patent

12. Perhaps DoubleClick.net could beat them to the punch by patenting double-clicking…

958 Chapter 30 – Management, Policy, and Politics

belonging to Compton’s New Media which involved retrieval systems for data stored
on CD-ROM. Some analysts considered it broad enough to cover 80% of all existing
CD-ROM products, although that is probably an exaggeration. In the end, each of 41
claims was invalidated through an expensive and time-consuming campaign on the
part of software vendors to demonstrate the existence of prior art.

The discovery of prior art is the real weakness in the patent office’s process. Patent
applications are kept secret, and with very little software expertise in the patent of-
fice, it is difficult for them to know which applications really represent new technol-
ogy. Lawsuits will eventually decide, with the lawyers being the ultimate winners of
every case.

In the U.S. system, even the patent office’s failure to grant a patent to a proposed
invention does not stop patent-related shenanigans from coming to court. NTP, Inc.
applied for five patents in the broad area of wireless email. The patent office rejected
them all; two of the five were final rejections without possibility of appeal. Yet based
on these five bogus and rejected patents, NTP sued the Canadian company Research
in Motion, makers of the email-receiving BlackBerry cell phone.

RIM was clearly in a strong position. They had done all their own research and de-
velopment, and the NTP patent applications had been rejected by the patent office.
Nevertheless, the judge hearing the case seemed inclined to award NTP an injunc-
tion that would have made it illegal for RIM to sell new BlackBerrys in the United
States. More importantly, the injunction would have made it impossible for existing
customers to continue to use their Blackberries for email.

RIM judged the risk of an injunction to be too great; they settled the lawsuit with a
one-time payment of $612,500,000 in exchange for a permanent license to use the
technology covered by NTP’s five rejected patent applications. A happy day for
BlackBerry users like us, but a sad day for small companies with good ideas and
good products.

Check out the Electronic Frontier Foundation’s archives at www.eff.org for more spe-
cifics. A good source of breaking news is slashdot.org’s patent area.

30.14 STANDARDS

The standardization process helps us in some cases (Wi-Fi interfaces from different
manufacturers can talk to each other) and hurts us in others (OSI network proto-
cols, millions of dollars worth of software engineering down the drain). Standards
committees should codify and formalize existing practice, not invent.

Standards are intended to level the playing field and make it possible for customers
to buy compatible products from competing vendors. Some of the parties involved
in the standardization process really do just want to codify existing practice. Others
have a more political purpose: to delay a competitor or to reduce the amount of work
required to bring their own company’s products into conformance.

www.eff.org

M
a

n
a

g
e

m
e

n
t

30.14 Standards 959

Government organizations are often the biggest procurers of standards-based sys-
tems and applications. The use of standards allows them to buy competitively with-
out favoring a particular brand. However, some cynics have called standards a non-
monetary trade barrier—companies slow down the standards process until their
products catch up.

There are several standards bodies, both formal and informal. Each has different
rules for membership, voting, and clout. From a system or network administrator’s
perspective, the most important bodies are the Free Standards Group’s LSB (Linux
Standard Base), POSIX (pronounced PAHZ-icks, Portable Operating System Inter-
faces) and the IETF (the Internet Engineering Task Force, described on page 273).

LSB: the Linux Standard Base

The Free Standards Group is a nonprofit organization that promotes open source
standards—in particular, the Linux standardization effort. Currently, about 20 cor-
porations contribute to the effort, including major manufacturers such as HP, IBM,
and Silicon Graphics. Major Linux distributors such as Red Hat, Novell (SUSE), De-
bian, Mandriva, and Turbolinux also participate. The goal is to make it easier for
third-party software developers to build a software product for Linux and have that
be one product, not 20 or 50 slightly different variations of the same product.

The list of items being threaded through the standards process includes

• Library interfaces, including common shared libraries

• Configuration files

• System commands

• A common package format and installation guidelines

• An API for system interfaces

• Filesystem hierarchy standards

As of this writing, LSB 3.1, released in mid-2006, incorporates the ISO standard LSB
core (ISO/IEC 23360) and for the first time also includes desktop functionality which
standardizes the Gtk and Qt GUI toolkits. The Chinese government, which is creat-
ing a national standard for Linux in China, has signed an agreement to base their
standard Linux on the LSB.

Sadly, no vendor has released an LSB-compliant application—not one. It’s a great
idea with good industry support that has gone nowhere.

POSIX

POSIX, an offshoot of the IEEE that charges for copies of their standards, has engaged
itself for the last several years in defining a general standard for UNIX. Their major
effort in the past has been focused on the commands and system call or library in-
terfaces. Linux is POSIX compliant and tracks the POSIX standards.

960 Chapter 30 – Management, Policy, and Politics

ITIL: the Information Technology Interface Library

This is a procedural standard rather than a technical standard for Linux, but it’s one
that is relevant to larger IT shops.

Back in the 1980s, the ITIL system was developed in England to help manage main-
frame computers and software development at large sites. The focus was on pro-
cesses rather than people so that tasks within the organization could be executed
consistently no matter who quit or went on vacation. Twelve functional areas were
identified that mapped pretty well to the high-level IT needs of most European com-
panies (disaster recovery, change control, capacity planning, etc.).

ITIL lay dormant until the Internet sparked the birth of information technology as a
mandatory component of most organizations. Large organizations need some struc-
ture in their IT processes, and ITIL is no worse than any other structure. Industry
best practices were defined for each of the ITIL areas.

To tame the chaos, ITIL classifies every operational IT event or activity as a “change,”
an “incident” (some kind of unexpected event), or a “problem” (something to be
fixed in the long term).

There is now an ISO standard (ISO 20000) that is similar to ITIL, so you will occa-
sionally see sites advertising themselves as being ITIL or ISO compliant. Typically,
the ITIL/ISO model isn’t quite right for your organization and you hire a consulting
house to customize it. Several of the commercial trouble ticketing systems men-
tioned on page 937 claim partial ITIL compliance.

Many large corporations operating in the U.S. are looking to ITIL to help them solve
their database and system administration problems related to the Sarbanes-Oxley
Act. See page 956 for more information about SOX.

COBIT: Control Objectives for Information and related Technology

Like ITIL, COBIT is a framework for information management and is based on in-
dustry best practices. COBIT’s mission is “to research, develop, publicize, and pro-
mote an authoritative, up-to-date, international set of generally accepted information
technology control objectives for day-to-day use by business managers and auditors.”

COBIT is a child of the Information Systems Audit and Control Association (ISACA)
and the IT Governance Institute (ITGI). See www.isaca.org/cobit for details.

The first edition of the framework was published in 1996, and we are now at version
4.0, published in 2005. This latest iteration was strongly influenced by the require-
ments of the Sarbanes-Oxley Act. It includes 34 high-level objectives that cover 215
“control objectives” categorized into four domains: Plan and Organize, Acquire and
Implement, Deliver and Support, and Monitor and Evaluate. (Hey wait, isn’t that
eight domains?)

www.isaca.org/cobit

M
a

n
a

g
e

m
e

n
t

30.15 Linux culture 961

30.15 LINUX CULTURE

In the 1980s and 90s you could differentiate PC users from Mac users by their level of
intensity. PC users found their computers a useful tool, but Mac users loved theirs. A
Mac user’s computer was a member of the family, like a favorite pet.

The same intensity that pervaded the Mac world is now very strong in the Linux com-
munity. Linux users don’t just like their systems—they are ready to do battle to de-
fend them, fix them, and make them better and faster and more secure than a Win-
dows box ever dreamed of being. Energy is pouring into Linux at an amazing rate,
and Linux culture has its own ethics, myths, gods, and heroes.

A group of Linux enthusiasts from the Bergen Linux User Group in Bergen, Norway,
were intrigued by one of the April Fools’ Day RFCs from the IETF: RFC1149, A Stan-
dard for the Transmission of IP Datagrams on Avian Carriers. This RFC defines the
Carrier Pigeon Internet Protocol (CPIP), which the team implemented with a neigh-
bor’s flock of pigeons. Here is a test of their implementation (taken from the project
site at blug.linux.no/rfc1149):

Script started on Sat Apr 28 11:24:09 2001
vegard@gyversalen:~$ /sbin/ifconfig tun0
tun0 Link encap:Point-to-Point Protocol

inet addr:10.0.3.2 P-t-P:10.0.3.1 Mask:255.255.255.255
UP POINTOPOINT RUNNING NOARP MULTICAST MTU:150 Metric:1
RX packets:1 errors:0 dropped:0 overruns:0 frame:0
TX packets:2 errors:0 dropped:0 overruns:0 carrier:0
collisions:0
RX bytes:88 (88.0 b) TX bytes:168 (168.0 b)

vegard@gyversalen:~$ ping -i 900 10.0.3.1 13

PING 10.0.3.1 (10.0.3.1): 56 data bytes
64 bytes from 10.0.3.1: icmp_seq=0 ttl=255 time=6165731.1 ms
64 bytes from 10.0.3.1: icmp_seq=4 ttl=255 time=3211900.8 ms
64 bytes from 10.0.3.1: icmp_seq=2 ttl=255 time=5124922.8 ms
64 bytes from 10.0.3.1: icmp_seq=1 ttl=255 time=6388671.9 ms

--- 10.0.3.1 ping statistics ---
9 packets transmitted, 4 packets received, 55% packet loss
round-trip min/avg/max = 3211900.8/5222806.6/6388671.9 ms
vegard@gyversalen:~$ exit

Script done on Sat Apr 28 14:14:28 2001

One might say that these folks had too much time on their hands, but it’s exactly this
kind of creativity and enthusiasm that make the open source movement (and
Linux’s part in it) so powerful and so much fun. Linux rocks.

13. Note the appropriate use of RFC1918 private address space. Clearly, a pigeon-based NAT implementa-
tion would be needed to connect the test network to the outside world.

962 Chapter 30 – Management, Policy, and Politics

30.16 MAINSTREAM LINUX

Linux is currently the fastest -growing operating system, and it runs on everything
from mainframes to wristwatches. However, it’s beginning to suffer a bit from the
incompatibilities and minor differences that hampered UNIX in its heyday.

It used to be common to hear statements such as “Oh, we can’t use Linux—it’s not
supported!” in corporate circles. But the world has been changing fast enough to
worry Microsoft. Linux is sneaking its way into the business world. It often arrives
first with newly hired students who have used Linux in college and who run it either
openly or surreptitiously on their desktop machines. After establishing a beachhead,
Linux often becomes the preferred platform for mail or web servers, where its secu-
rity, performance, and scalability make it preferable to proprietary solutions from
Microsoft. Cost of ownership is also a big plus on the Linux side.

The “free” in free software has two meanings: free as in free beer—you don’t have to
pay for it—and free as in having relatively few limits on what you are allowed to do
with it. The GNU Public License enforces both of these meanings, and this fact
scares some corporate IT departments. Derivatives of GPL-licensed works inherit
the GPL stipulations if you distribute them. Some managers view Linux developers
as long-haired hippies and greet the GPL with fear, uncertainty, and doubt. But
Linux seems to be winning them over, slowly but surely.

For the last few years, www.distrowatch.com has ranked the top 100 Linux distribu-
tions based on visitors to their web site. There is quite a bit of churn in the relative
positions of our five example distributions. Table 30.3 shows some of the numbers.

The actual number of hits per day typically ranges from less than 100 to more than
3,000. More than anything, these rankings clearly show the rise of Ubuntu and the
split between Red Hat Enterprise Linux and Fedora.

Major corporate players are now shipping and supporting the development of Linux:
IBM, Hewlett-Packard, Silicon Graphics, and Sun, to name a few. It has been inter-
esting to observe the marriage between these huge, sluggish software shops and a
Linux culture driven by young, inexperienced software engineers whose energy of-
ten more than makes up for their rough edges. IBM has had to undergo a major
paradigm shift to adapt to life in the anarchistic open source world of Linux. It has

Table 30.3 Distrowatch.com popularity rankings over time (as of 9/06)

Distro past 6 mo past 12 mo 2005 2004 2003

Ubuntu 1 1 1 13 –
SUSE 2 2 3 4 7
Fedora 3 4 4 2 –
Debian 7 7 6 5 5
Red Hat 29 24 23 12 2

www.distrowatch.com

M
a

n
a

g
e

m
e

n
t

30.16 Mainstream Linux 963

contributed by porting its extensive libraries of well-tested code. See ibm.com/linux
and ibm.com/developerworks/opensource for more information.

SGI started the Linux Test Project, a series of test suites and stress testing methods
that validate the reliability, robustness, and stability of Linux. IBM now maintains it.
The latest release (June 2006 at the time of this writing) includes over 2,900 tests,
plus documentation and testing tools.

The Linux Documentation Project (www.tldp.org) provides documentation at many
levels of technical expertise, including longish introductory booklets, FAQs, HOW-
TOs for various common chores, and man pages for all the Linux core commands
and packages.14 The LDP also supports two online magazines, Linux Gazette and
Linux Focus. All the documentation is available without charge over the Internet.

At least one provider of computer intrusion insurance recognizes Linux’s robustness
in its pricing and charges 5% to 15% less to insure Linux web servers than to insure
equivalent Microsoft systems. An August, 2001, ZDNet article made the following
comments.15

“Insurance broker J.S. Wurzler Underwriting Managers has started charg-
ing up to 15 percent more in premiums to clients that use Microsoft’s Inter-
net Information Server software, which the Code Red worm feasted on...
Wurzler, who has been selling hacker insurance since 1998, based his deci-
sion on more than 400 security analyses done by his firm over the past
three years. Wurzler found that system administrators working on open
source systems tend to be better trained and stay with their employers
longer than those at firms using Windows software.”

Of our five example distributions, two are supported by large commercial organiza-
tions: Red Hat by itself and SUSE by Novell; Ubuntu is supported by a small com-
pany founded by South African Mark Shuttleworth called Canonical Ltd. Debian
and Fedora are the little guys for now.

Within the Linux community, something of a schism has developed between Debian
and the more enterprise-targeted distributions such as Red Hat and SUSE. Debian
folks have had trouble having their good ideas taken seriously and incorporated into
the standardization efforts of the LSB. We hope that the recent popularity of Ubuntu
will help to integrate Debian a bit more solidly into the Linux mainstream.

The CentOS (Community ENTerprise Operating System) distribution, based in En-
gland, is gaining popularity in environments that want a stable Linux system with-
out Red Hat’s involvement. It’s essentially a clone of Red Hat Enterprise Linux. The
GPL requires Red Hat to make its software patches available to the public. The
CentOS folks patch the source trees, remove Red Hat logos and trademarks, and

14. The web site used to be linuxdoc.org, but an internal scandal involving a forgetful or malicious webmaster,
disputes over the ownership of the name, and a copycat commercial web site called linuxdoc.com all
motivated the project to change its domain.

15. www.zdnet.com/zdnn/stories/news/0,4586,2805929,00.html

www.tldp.org
www.zdnet.com/zdnn/stories/news/0,4586,2805929,00.html

964 Chapter 30 – Management, Policy, and Politics

rebuild the distribution from scratch, yielding something similar to RHEL without
cost or support contracts. Of course, support is nothing to sneeze at, and RHEL is
guaranteed to be supported for 7 years—close to an eternity in the Linux world.

For most companies, total cost of ownership is important, too. Most distributions
are free to start with, and they’re also cheaper to maintain thanks to their inherent
manageability over the network. Windows XP Professional currently costs about
$250/seat just for the OS. Once applications have been added on, the price tag for a
large company can be daunting. Google.com currently runs on hundreds of thou-
sands of Linux boxes; imagine buying a Windows license for each of those machines.

Software piracy is rampant in the Far East. In an effort to “clean up their act,” the
Chinese government has endorsed Linux over Windows because it is open source
and therefore not piratable. There are several Linux distributions with Chinese lan-
guage capabilities. Red Flag Linux is one of the best known and boasts over 200
million users.

Linux is used by many branches of the U.S. government, including NASA, NERSC,
NIH, NOAA, and USGS. It’s also used at the Fermilab, Los Alamos, Oak Ridge, and
Sandia National Laboratories. Many of the most powerful computers today are still
big-iron systems, but Beowulf clusters (see www.beowulf.org) of Linux machines are
catching up. In September 2004, IBM announced that it had produced the world’s
then fastest supercomputer, a cluster of 16,250 CPUs in only eight racks of space,
running under Linux at a sustained performance of 36 teraflops.16

30.17 ORGANIZATIONS, CONFERENCES, AND OTHER RESOURCES

Many UNIX and Linux support groups—both general and vendor specific—help
you network with other people that are using the same software. Table 30.4 presents
a brief list of organizations. Plenty of national and regional groups exist that are not
listed in this table.

Some of the organizations hold conferences dedicated to Linux-related topics, al-
though most conferences are broader than just Linux or UNIX and include tracks
and events for Windows, too.

Linux International and the Linux Professional Institute promote Linux in various
ways—LI through marketing efforts to bring Linux into the business community
(and to fund some of the open source development efforts) and LPI through its
Linux system administrator certification program, discussed in the next section.

LI’s web site has some good fodder for managers who are reluctant to use open source
operating systems. They sponsor a Linux booth at several trade shows, including
LinuxWorld, Linux Expo, and CeBit. LI is also leading an internationalization
project to bring all the world’s character sets to Linux. Their summer internship pro-
gram matches students with Linux developers to give the students hands-on experi-
ence writing production-quality code.

16. A teraflop is one trillion floating-point calculations per second.

www.beowulf.org

M
a

n
a

g
e

m
e

n
t

30.17 Organizations, conferences, and other resources 965

Linux International is winding down now that its objective of bringing Linux into
the corporate world has been accomplished. LI may turn into a Linux user group of
some sort in the near future.

FSF, the Free Software Foundation, is the sponsor of the GNU (“GNU’s Not Unix,” a
recursive acronym) project. The “free” in the FSF’s name is the “free” of free speech
and not that of free beer. The FSF is also the origin of the GNU Public License, which
covers the majority of Linux software. GPLv3 is now under development and drafts
are available for public comment.

OSDL, the Open Source Development Lab, is a nonprofit group whose goal is to ac-
celerate the deployment of Linux in the corporate enterprise arena. OSDL is sup-
ported by the major Linux customers and provides testing and technical support for
the Linux development community.

Conferences and trade shows

Table 30.5 lists details for the three yearly Linux development conferences.

Table 30.4 Linux and UNIX organizations

Name URL What it is

LPI www.lpi.org Linux Professional Institute
LI www.li.org Linux International, may become a user group
FSF www.fsf.org Free Software Foundation, sponsor of the GNU project
OSDL www. osdl.org Open Source Development Lab, for developers
USENIX www.usenix.org UNIX users group, quite technical
SAGE www.sage.org The System Administrators Guild associated with

USENIX; holds the LISA conference each year
LOPSA www.lopsa.org League of Professional System Administrators, a

spinoff from USENIX/SAGE
SANS www.sans.org Runs sysadmin and security conferences; less techni-

cal than SAGE with a focus on tutorials
EUROPEN www.europen.org Used to be the United Nations of national user groups,

but now largely defunct; remnants remain in NLUUG,
DUUG, UKUUG, GUUG and others

AUUG www.auug.org.au Australian UNIX Users Group, covers both technical
and managerial aspects of computing

SAGE-AU www.sage-au.org.au Australian SAGE, holds yearly conferences in Oz
SANE www.sane.nl System Administration and Network Engineering

group holds yearly conferences in northern Europe

Table 30.5 Linux development conferences

Conference URL Length Where

Linux Symposium www.linuxsymposium.org 4 days Ottawa, Canada
linux.conf.au linux.conf.au 5 days Australia
Linux Kongress www.linux-kongress.org 4 days Germany

www.lpi.org
www.li.org
www.fsf.org
www.osdl.org
www.usenix.org
www.sage.org
www.lopsa.org
www.sans.org
www.europen.org
www.auug.org.au
www.sage-au.org.au
www.sane.nl
www.linuxsymposium.org
www.linux-kongress.org

966 Chapter 30 – Management, Policy, and Politics

The Ottawa conference, usually held in August, includes three tracks of papers and a
parallel tutorial track. The Australian development conference offers tutorials, semi-
nars, keynotes, and mini-conferences, one of which is dedicated to system adminis-
tration. The conference is held in various Australian cities, usually in January. The
German conference, Linux Kongress, includes two days of tutorials and two days of
technical presentations, mostly in English. It moves around Germany and is most
often held in September.

Linux Weekly News, lwn.net, is an online magazine devoted to Linux. It was started
by Elizabeth Coolbaugh and Jonathan Corbet in 1997. It is supported by subscrip-
tions, with members getting immediate access to all articles and nonmembers hav-
ing to wait a week or so. The subscription rate varies depending on your category.
“Starving hacker” is cheapest at $2.50/month, followed by “professional hacker” at
$5/month and “project leader” at $10/month.

USENIX, an organization of users of Linux, UNIX, and other open source operating
systems, holds one general conference and several specialized (smaller) conferences
or workshops each year. The general conference has a parallel track devoted to open
systems that features ongoing OS development in the Linux and BSD communities.

The big event for sysadmins is the USENIX LISA (Large Installation System Admin-
istration) conference held in late fall. Trade shows are often associated with these
conferences.

For the last several years, USENIX has also dedicated one of its workshops to Linux
kernel development as a service to the Linux community. Access to this two-day
event is by invitation only.

SAGE, USENIX’s System Administrators Guild, is the first international organization
for system administrators. It promotes system administration as a profession by
sponsoring conferences and informal programs. See www.sage.org for all the details.

In 2005, a falling out between USENIX and SAGE left the future of SAGE in doubt.
The result was that some of the old-timers in the SAGE organization formed a sepa-
rate organization called LOPSA, the League of Professional System Administrators,
www.lopsa.org. They don’t yet hold conferences but might start soon. SAGE had a
sysadmin certification program, but has given it up; hopefully, LOPSA will pick it up.

Many local areas have regional UNIX, Linux, or open systems user groups. Some of
these are affiliated with USENIX and some are not. The local groups usually have
regular meetings, workshops with local or visiting speakers, and often dinner to-
gether before or after the meetings. They’re a good way to network with other sysad-
mins in your area.

The biggest Linux trade show is the LinuxWorld Expo conference and exposition,
which is now held once a year in the United States, usually in San Francisco in the
fall. It is also repeated in Europe and Asia throughout the year; coming up are events
in Beijing, Moscow, and Singapore.

www.sage.org
www.lopsa.org

M
a

n
a

g
e

m
e

n
t

30.17 Organizations, conferences, and other resources 967

The premier trade show for the networking industry is Interop; its tutorial series is
also of high quality. Interop used to be an annual event that was eagerly awaited by
techies and vendors alike. Interops now happens several times a year—a traveling
network circus, so to speak. The salaries of tutorial speakers have been cut in half,
but the quality of the tutorials seems to have survived.

LPI: the Linux Professional Institute

The LPI certifies Linux system administrators. That is, it administers tests that mea-
sure a sysadmin’s competence and knowledge of various Linux tasks. Three levels of
certification are available, each of which consists of a two-part test. The tests so far
(Levels 1 and 2) are in a multiple-choice or short-answer format and are administered
over the web by Vue Electronic Testing Service (www.vue.com/lpi).

Level 1 seems to cover Linux power-user commands and very basic sysadmin tasks.
Level 2 is more in-depth and includes networking. Level 3 is defined but has not yet
been fully developed. Sadly, the status of Level 3 has not changed since the last edi-
tion of this book five years ago. The LPI web site (www.lpi.org) outlines the kinds of
knowledge expected at each level of certification and provides sample questions
from each of the tests.

Certification is important and hard to do well. System administration is a hands-on
type of science (or is it an art?). A multiple-choice test, while easy to administer and
grade, is not very good at measuring the problem-solving skills that are the hallmark
of a good sysadmin. We hope that Level 3 of the LPI suite will involve a hands-on lab
component, more like the Cisco CCIE certification than the Microsoft MCSE exam.

Red Hat and SUSE have their own certification programs. Ubuntu’s certification is
currently piggybacking on top of the LPI certification.

Mailing lists and web resources

Sysadmins have access to a huge variety of mailing lists and web search engines. We
list some of our favorites in Chapter 1, Where to Start. In addition, an extensive list
of Linux-related mailing lists is available from www.linux.org/docs/lists.html.

For Linux-specific issues, a Linux-specific Google search can be quite effective. Go
to www.google.com/linux and see how well it works.

There are also mailing lists that focus on particular distributions; Table 30.6 shows
some specifics for our example distributions.

Table 30.6 Distribution-specific mailing lists

Distro URL

Red Hat www.redhat.com/mailing-lists
Fedora www.redhat.com/mailing-lists
SUSE www.suse.com/us/support/online_help/mailinglists/
Debian www.debian.org/MailingLists/
Ubuntu lists.ubuntu.com

www.vue.com/lpi
www.lpi.org
www.linux.org/docs/lists.html
www.google.com/linux
www.redhat.com/mailing-lists
www.redhat.com/mailing-lists
www.suse.com/us/support/online_help/mailinglists/
www.debian.org/MailingLists/

968 Chapter 30 – Management, Policy, and Politics

Red Hat hosts a zillion mailing lists that cover both the Enterprise Linux and Fedora
distributions; www.redhat.com/mailing-lists includes the list name and a brief sum-
mary of each. In addition to the URL shown in the table, SUSE also has mailing list
info at www.suse.com/us/business/mailinglists.html. Archives of these lists can be
found at lists.suse.com/archives.

Sysadmin surveys

SAGE, the System Administrators Guild associated with the USENIX Association,
and SANS, the System Administration, Networking, and Security Institute, perform
annual surveys focused mainly on the compensation of system administrators, but
including other topics as well. The surveys are available from www.sage.org/salsurv
and www.sans.org/salary2005. Recent SAGE surveys (50–60 pages) are available
only to members; old ones can be downloaded by anyone. The SANS URL yields
only a five-page PDF summary of the results of their most recent survey.

Some of the statistics gathered are

• Salary data: median salary, raise history, bonuses, and overtime pay

• Platform mix

• Hours worked per week

• Market demand for system administrators

• Experience level, education level, years on the job

• Geographic, sex, and age distribution of administrators

• Most bothersome and most appreciated parts of the job

It’s interesting to see how your organization compares to the industry as portrayed
by these results. However, the survey data must be interpreted carefully. The results
are influenced by local conditions and the state of the economy. Salaries, costs of
living, and tax rates can vary widely among countries or even regions.

30.18 RECOMMENDED READING

Infrastructure

TRAUGOTT, STEVE. “Bootstrapping and Infrastructure.” Boston: LISA 1998.
www.infrastructures.org/papers/bootstrap/bootstrap.html

SCHWEIKERT, DAVID. “ISGTC: an alternative to ~bofh/bin.” Amsterdam, Nether-
lands: SANE 2004. isg.ee.ethz.ch/publications/papers/isgtc-sane.pdf

OETIKER, TOBIAS. “TemplateTree II: The Post-Installation Setup Tool.” San Diego,
CA: LISA 2001. isg.ee.ethz.ch/tools/tetre2/pub/tetre-lisa.pdf

BURGESS, MARK S. Principles of Network and System Administration (2nd Edition).
Hoboken, NJ: Wiley, 2003.

Many of the tools and concepts described in the management section of this chapter
can be found at isg.ee.ethz.ch/tools.

www.redhat.com/mailing-lists
www.suse.com/us/business/mailinglists.html
www.sage.org/salsurv
www.sans.org/salary2005
www.infrastructures.org/papers/bootstrap/bootstrap.html

M
a

n
a

g
e

m
e

n
t

30.18 Recommended Reading 969

Management

LIMONCELLI, THOMAS A., AND CHRISTINE HOGAN. The Practice of System and Network
Administration. Boston, MA: Addison-Wesley, 2001.

This book has an associated web site, www.everythingsysadmin.com, that is also
interesting. A new edition is due in 2007.

MACHIAVELLI, NICCOLÒ. The Prince. 1513.
Available on-line from www.gutenberg.org/etext/1232

LIMONCELLI, THOMAS A. Time Management for System Administrators. Sebastopol,
CA: O’Reilly Media, 2005.

BROOKS, FREDERICK P., JR. The Mythical Man-Month: Essays on Software Engineering.
Reading, MA: Addison-Wesley, 1995.

A wonderful little book, originally published in the 1975 and still mostly true.

MCCONNELL, STEVE. Software Project Survival Guide: How to Be Sure Your First Im-
portant Project Isn’t Your Last. Redmond, WA: Microsoft Press, 1998.

This book is written in a lively manner and has good content throughout.

Pressman, Roger S. Software Engineering: A Practitioner’s Approach (6th Edition).
Boston, MA: McGraw-Hill, 2005.

SOMMERVILLE, IAN. Software Engineering (8th Edition). New York, NY: Addison-
Wesley, 2006.

The site www.itil-toolkit.com is a good place to start if you seek to understand the
mountains of jargon and management-speak associated with ITIL processes and
standards.

Policy and security

RFC2196, Site Security Handbook, and its predecessor, RFC1244. The contents are
rather different, so it’s worth reviewing both versions.

Local policies, standards, and procedures for the San Diego Supercomputer Center
are available from security.sdsc.edu/help/SGs.shtml. This is a great collection of
policy documents, but it has gone a couple of years without an update.

Legal issues, patents, and privacy

The web site of the Electronic Frontier Foundation, eff.org, is a great place to find
commentary on the latest issues in privacy, cryptography, and legislation. Always
interesting reading.

www.groklaw.net is a great site for news of legal issues related to information tech-
nology. Issues are described and summarized in English rather than lawyer-speak.

www.everythingsysadmin.com
www.gutenberg.org/etext/1232
www.itil-toolkit.com
www.groklaw.net

970 Chapter 30 – Management, Policy, and Politics

General industry news

slashdot.org is a good source for technology news but is often a day or two behind
sources like the security mailing lists.

HARROW, JEFFREY R. The Harrow Technology Report. www.theharrowgroup.com

This site hosts some interesting articles about technology-related issues. It’s a com-
bination of news and editorial content. J. R. Harrow is the author of the defunct pe-
riodical The Rapidly Changing Face of Computing that was formerly published by
Compaq. The web site was maintained until the end of 2005.

www.heise.de is a great site for news. It’s in German, but www.heise.de/english pro-
vides an English translation.

www.theregister.co.uk or www.theregister.com is a good IT news site.

30.19 EXERCISES

E30.1 What are your organization’s recurring procedures? Which ones are in-
frequently performed and reinvented each time? Which ones are risky?

E30.2 What are your dependencies on external providers? Do you need and
have a plan B? Explain why or why not. Describe plan B if it exists.

E30.3 Briefly interview several internal customers to determine their expecta-
tions with respect to the availability of the computing infrastructure.
Are the expectations consistent? Are they reasonable? Are they consis-
tent with the system administration group’s stated goals?

E30.4 What organized infrastructure for system management is already estab-
lished at your site? Identify the pieces that are still missing.

E30.5 One of your co-workers is going to leave for lunch tomorrow and never
return, but you don’t yet know which one. What critical procedures
might be affected, and how prepared is your organization to cover for
the missing staff member? What documentation would have to exist in
order to avoid a service disruption?

E30.6 What would happen if you didn’t come in for the next three months?
How much would your colleagues hate you when you finally came back,
and why? What can you do in the next two weeks to reduce the trauma
of such an event?

E30.7 Your boss orders you to cut the system administration budget by 30% by
the end of the current year. Can you quantify the consequences of this
cut? Present a summary that will allow the boss to make an informed
decision regarding which services to reduce or discontinue.

www.theharrowgroup.com
www.heise.de
www.heise.de/english
www.theregister.co.uk
www.theregister.com

M
a

n
a

g
e

m
e

n
t

30.19 Exercises 971

E30.8 Who are some of the current major corporate supporters of Linux?
What are their interests and motivations? What sort of contributions are
they making?

E30.9 You are cleaning up after a disk crash and notice files in the lost+found
directory. When you investigate further, you find that some of the files
are mail messages that were sent between two students who are setting
up a back door around the department firewall to archive MP3 files on a
remote file server. What should you do? Are there policies or regulations
in place that cover such incidents?

E30.10 Evaluate your site’s local documentation for new users, sysadmins, stan-
dard procedures, and emergencies.

E30.11 Forecast the future of the various commercial and free UNIX and Linux
variants over the next five years. How will the current development and
distribution models hold up over time? What will be the long-term im-
pact of the adoption of Linux by hardware vendors? Differentiate be-
tween the server and desktop markets.

This page intentionally left blank

973

Index

We have alphabetized files under their last components. And in most cases, only the last com-
ponent is listed. For example, to find index entries relating to the /etc/passwd file, look under
passwd. Our friendly Linux distributors have forced our hand by hiding standard files in new
and inventive directories on each system.

A

A DNS records 396, 407
A6 DNS records 404
AAAA DNS records 404
Abell, Vic 74
access agents, email 533
access control lists see ACLs
access database, sendmail 589,

591–594
accounts see user accounts
ACLs, DNS 429–430, 451–453
ACLs, filesystem 88–92, 833
ACLs, firewall 701–708
Adams, Rick 320
address match lists, BIND 422
Address Resolution Protocol (ARP)

275, 296–297, 315
addresses, email 95, 535
addresses, Ethernet (aka MAC) 280,

292
addresses, IP see IP addresses
addresses, SCSI 117
adjtimex system call 903
ADSM/TSM backup system 197
agetty process 855–858
aio daemon 894
air conditioning 796–798
AirPort 360
AIT backup tapes 166
Albitz, Paul 423

aliases file 106, 545–551
aliases, email 544–551

see also email
see also sendmail
abuse 548, 594
distribution 156
examples 548
file format 545
global 95
hashed database 551
loops 546, 550
and mailing lists 551–554
for new users 95
postmaster 545
root 548

aliases.db file 551
alien 235
Allman, Eric 209, 530, 558, 566, 595
allow-recursion option, DNS 425
allow-update clause, DNS 433, 450
always_add_domain feature,

sendmail 575
Amanda backup system 197
amavisd email virus filter 637
amd 895
American Power Conversion (APC)

799
American Registry for Internet

Numbers (ARIN) 288–289, 293,
371

Amstadt, Bob 825
Anaconda 226

anacron 156, 887
Analog Apache log analyzer 727
Anderson, Paul 261
anonymous FTP see FTP
Anvin, H. Peter 225
Apache see web hosting
Apache Software Foundation 12,

724
/etc/apache2 directory 724
APC (American Power Conversion)

799
APNIC (Asia-Pacific Network Infor-

mation Center) 383
appropriate use policies (AUPs) 954
APT, software tool 241–246
apt-ftparchive 244
apt-get 241–246
apt-proxy 244
ARIN (American Registry for Inter-

net Numbers) 288–289, 293, 371
ARK language 262
Armstrong, Jason 620
ARP (Address Resolution Protocol)

275, 296–297, 315
arp command 296
ARPANET 272
Arusha Project 261
Asia-Pacific Network Information

Center (APNIC) 383
at 887
AT&T Bell Labs 5
ata daemon 894

974 Linux Administration Handbook

ATA/ATAPI interface see IDE
ATAPI CD-ROM device names 873
atd 887
Athena, Project 741
Atkins, Todd 220
ATM networks 362–363
auth.log file 206
authors, contacting xxxvi
/etc/auto.master file 497–498
autofs script 497
automount daemon 497–499, 895
automounters

amd 895
automount 497–499, 895
configuration 498–500
NFS and 497–500
Windows 834

autonomous systems 340
AutoYaST 230
AUUG group 965
avoid-v4-udp-ports option, DNS

427
AWStats Apache log analyzer 727

B

backspace vs. delete keys 859
backup software and systems

see also backups
see also Bacula
ADSM/TSM 197
Amanda 197
Bacula 179–196
commercial systems 197–198
cpio 178
dd 178
dump/restore 169–176
tar 177–178
Veritas 198

backups 158–198
see also backup software and

systems
see also Bacula
see also media, backup
compression 164
of a damaged disk 133
designing data for 163
disaster planning 939
filesystem size 161
fitting on media 160
full restore 175–176
hints 159–163

backups continued
incremental 170
interval between 159
off-site storage 161
programs 177–197
to removable disks 165
restoring 173–177, 939
schedules 171–173
security 161, 686
setting up 169–176
for ugprades 176–177
when to make 162
for Windows 197

Bacula 179–196
see also Bacula configuration

files
architecture 180
client file daemon 188
daemons, starting 189
installation 181–182
manual backup 190–192
media pools 190
restoring files 192–195
troubleshooting 195–196

Bacula configuration files 182–189
see also Bacula
/etc/bacula directory 182
/etc/bacula-dir.conf file 183–

187
/etc/bacula/bacula-fd.conf file

189
bacula-sd.conf file 187
bconsole.conf file 188

bad blocks, disk 123
Bailey, Mick 885
Baretta, Anne 860
bash shell 4, 32, 98
.bash_profile file 105
.bashrc file 105
Bastille Linux 710
baud rate 863
BCP documents 275
Beowulf clusters 964
Bergen Linux User Group 961
Berkeley DB library 169, 253–254,

551, 560, 577, 628
Berkeley Internet Name Domain

system see BIND
Berkeley UNIX 5
BGP routing protocol 339
bidirectional modems 864
/bin directory 75

BIND
see also DNS
see also name servers
see also named
ACLs 451–453
address match lists 422
client configuration 418–420
components 411
configuration 420–446
configuration examples 439–

446
configuration files 421–423
debugging 466–478
distribution-specific informa-

tion 478–481
DNSSEC 387, 456–463
.key DNSSEC key file 454
dnssec-keygen 454, 458
dnssec-signzone 460–461
doc (domain obscenity control)

476–478
documentation 481–482
forwarding zone, configuring

436
hardware requirements 421
incremental zone transfers 388,

429, 447
ISC configuration example 444
keys, generating 458
KSK (key signing key) 458, 460
localhost zone configuration ex-

ample 439
logging 411, 432, 446, 466–471
loopback address 437
master server, configuring 433
/etc/named directory 424
/etc/named.conf file 421–446,

450–451, 470, 480–481
named-checkconf 421, 455, 478
named-checkzone 421, 478
nanny script 446
notification options 424
nsupdate 449
performance 478
.private DNSSEC key file 454
query forwarding 427
/etc/resolv.conf file 418–420
resolver testing 420
rndc 436–438, 447, 471–473
/etc/rndc.conf file 437
/etc/rndc.key file 437
rndc-confgen 437
root server hints 435
root.cache file 435

Index 975

BIND continued
security 417, 424, 451–464
shell interfaces see dig and

nslookup
signed zones, creating 458
slave server, configuring 434
split DNS 438–439, 441–444
statistics 473
stub zones, configuring 434
/etc/syslog.conf file 466
updating zone files 447–450
versions 410–411
zone transfers 413, 425, 447–448

BIOSes 25–26
bootstrapping and IDE 113
on SCSI cards 134

black hole lists, spam 598, 635
blackhole option, DNS 428
Blandy, Jim 253
block device files 77, 79, 871
blocking factor, tape 177
bogus directive, DNS 431
/boot directory 75
boot loaders 23, 26–31, 124, 138

GRUB 26–28, 30, 32
LILO 28–29, 31–32
multibooting 30

boot.log file 207
boot.msg file 206
BOOTP protocol 312
/etc/bootparams file 899
bootstrapping 21–25

automatic vs. manual 22
device probing 23
directly to bash 37
filesystem checking 132
fsck and 25
kernel initialization 23
kernel options 29
kernel threads 23
mounting NFS filesystems 495
multibooting 30–31
options 883
PC-specific issues 25
single-user mode 22, 24–25, 31–

33
startup scripts 32–40
/etc/sysconfig directory 37–38

breakout boxes 865
broadcast addresses 281
broadcast domain 352
broadcast storms 301, 357
browsers, web 720
BSD (Berkeley UNIX) 6

BSD FFS filesystem 120
BugTraq 713
Burgess, Mark 260
bus errors 58
BUS signal 58
butt blocks (RJ-45 connectors) 851
byte swapping 178

C

CA (Certificate Authority) 731
cable modems 365
cables

see also connectors
10*Base* 352–355
Category * 352–355, 366
DB-9 to DB-25 848
Ethernet 278, 353–355
IDE 114
labeling 370, 934
mini DIN-8 to DB-25 848
modem 846
null modem 846–847
RJ-45 to DB-25 850
SATA 114
SCSI 115–117
serial, length limits 853
STP 844
straight-through 846
UTP 844
Yost RJ-45 standard 850–852

Cacti performance monitoring tool
664

CAIDA (Cooperative Association
for Internet Data Analysis) 291,
402

Card, Rémy 120
ccTLDs 379
cdebconf 231
cdebootstrap 231
CentOS 7
Cerf, Vint 273
CERT 712
Certificate Authority (CA) 731
Certificate Signing Request (CSR)

731
Certified Information Systems Au-

ditor (CISA) 675
cf/cf directory, sendmail 568
cfengine 260
CGI scripting 722
chage password aging program 680
ChaosNet 390

Chapman, Brent 552
character device files 77, 79, 871
chat 325
chat scripts, PPP 323, 326–328
Chatsworth Products 799
chattr 87
checklists, system administration

943
checksendmail 617
chfn 98
chgrp 86
chkconfig 36, 39, 520
chmod 81, 84–86, 89
chown 86
chroot

for FTP 735
for named 451, 453
for Postfix 625
for sendmail 607

chsh 98–99
ci, RCS check in 249–250
CIA triad 673
CIDR (Classless Inter-Domain

Routing) 283, 286–288
CIFS see Samba
CIM (Common Information Mod-

ule) system configuration 262
CISA (Certified Information Sys-

tems Auditor) 675
Cisco routers 346–348, 701, 714
CiscoWorks 667
CISSP (Certified Information Sys-

tems Security Professional) 674
clocks, synchronization 902
clone system call 56
closelog routine 218–220
CNAME DNS records 399
co, RCS check out 249, 251
COBIT (Control Objectives for In-

formation and related Technolo-
gy) 960

commands, finding 15
commands, scheduling 150–157
Computer Systems Research Group

(CSRG) 5
concentrators see Ethernet, hubs
confCOPY_ERRORS_TO option,

sendmail 569
.config file for kernel 877–878
configuration files

copying 505–511
pulling 510
pushing 505–510
sharing 502–526

976 Linux Administration Handbook

ConnectionRateThrottle option,
sendmail 608

connectors
see also cables 843
DB-25 844–847
DB-9 848
IDE 113
mini DIN-8 847
RJ-45 849
RS-232 to USB adapters 865
SCSI 115–117

console emulators 859
/dev/console file 218
console, logging to 218
CONT signal 58, 61, 68
contacting the authors xxxvi
control characters

in filenames 77
and the terminal driver 859–861

control terminal 56
controls statement, DNS 436–438
conventions used in this book 9–10
cookies, NFS 486
cooling systems 940
Cooper, Mendel 11
Cooperative Association for Inter-

net Data Analysis (CAIDA) 402
copyright issues 950
Corbet, Jonathan 325
core files 154
Council of European National Top-

level Domain Registries 383
country code top-level domains 379
cpio 178
CPIP 961
CPU

load averages 808
statistics 808
usage, analyzing 806–809, 813

cracklib 682
cron daemon 150–156, 887

common uses 154–156
configuration (crontab) files

151–153, 887
logs 151
management 153
skipped commands 156
to automate logging 201

/etc/cron.allow file 153
/etc/cron.deny file 153
crond see cron daemon
crontab command 153
crontab files 151–153, 887
crypt library routine 679

Crypto-Gram newsletter 713
cryptography

DES algorithm 679
Diffie-Hellman key exchange

456, 679
in DNS 387, 453–463
IPsec 709
in LDAP 526
legal issues 949
MD5 algorithm 96, 454
password encryption 94, 96,

542, 830
public key 456
in sendmail 603–610
SSL 730

.cshrc file 105
CSLIP protocol 320
CSMA/CD (Ethernet) 351
CSR (Certificate Signing Request)

731
CSRG (Computer Systems Research

Group) 5
ctime file attribute 83
CTS (clear to send) signal 853
cu 864
CUPS 767–790, 894

administration 772–780
architecture 767–772
command line utilities 779
comparison to ATT/BSD print-

ing 779
compatibility commands 778
configuration examples 775
documentation 780
filters 771–772
HTTP and 769
logging 781
network printing 768
PPD printer description files

770–771
print queues 767
printer autoconfiguration 774
printer classes 775
printing a document 767
removing a printer 776
startup scripts 773, 780
troubleshooting 780–782

/etc/cups directory 772
cupsd daemon 768, 780
/etc/cups/cupsd.conf file 768, 773,

781
cupsdconf 773
CVS 251–253
Cygwin X server tools 823, 827

cylinders, disk 120
cyrus mailer 573

D

daemons
see also individual daemon

names
booting 898
configuration 898
email 897
kernel 893
network 900–901
NFS 895–896
printing 894
remote command execution 898
remote login 898
Samba 895–896
sendmail queue runner 613

damaged filesystems 133
DARPA (Defense Advanced Re-

search Project Agency) 272, 712
data center

cooling 797
power 798
racks 799
standards 800
temperature monitoring 798
tool box 800
wiring tracks 799

data compression, modems 864
databases

see also MySQL
administrative 504, 511
DNS 378, 389–409
Foomatic printer database 771,

782
NIS 511–512
sendmail 577–578, 591–594
of supported USB devices 784

datasize option, DNS 426
date 203
Dawson, Terry 12
DB-25 connectors 844–847
DB-9 connectors 848
dbm/ndbm library 577
DCD (data carrier detect) signal

852–853
DCE (Data Communications Equip-

ment) interface 845–847
dd 133, 178
DDS/DAT tapes 166
.deb software package format 235

Index 977

Debian network configuration 310
debian-installer 231
debugging see troubleshooting
DEC VT100 terminal 858
DeCSS 950
default route 305, 329, 336
DEFAULT_HOME variable in log-

in.defs 98
DefaultUser option, sendmail 547,

603
DELAY_LA option, sendmail 608,

613
delegation-only option, DNS 429
delete vs. backspace keys 859
delivery agents, email 532
denial of service (DOS) attacks 213,

397, 511, 608, 817
Deraison, Renaud 690
DES encryption 679
desktop environments 757–759
/dev directory 75, 79, 870–872
device drivers 79, 868–870

adding to kernel 878–880
device awareness 880
device numbers 870–872
hot-plugging 882–883
loadable modules 880–882
MODULE_DEVICE_TABLE

macro 880
for PC hardware 870
printer 765
serial 872
terminal and control characters

859–861
Windows printer 838–839

device files 79
attributes 84
block vs. character 871
creating 871
for disks 122
major/minor device numbers

870–872
MAKEDEV script 79, 872
names 872–873
security 684
for serial ports 853–855, 872
for tape drives 171, 873
udev 79

devices, pseudo 871
df 127, 494
DFS (Distributed File System, Win-

dows) 834

DHCP (Dynamic Host Configura-
tion Protocol) 311–314

backward compatibility 312
BIND and 449
client configuration 314
daemon 899
duplicate addresses 314
server configuration 313–314

dhcp.leases file 313–314
dhcpcd daemon 313–314
dhcpd daemon 899
/etc/dhcpd.conf file 313–314
dial-in modems 855
dial-out programs 864
dial-up networks see PPP protocol
Diffie-Hellman key exchange 456,

679
dig 408, 410, 435, 452, 473–476
Digital Millennium Copyright Act

(DMCA) 950
directed broadcasts, network 317
directories 76–78
directories, copying 177
directory indexes 611
directory statement, DNS 424
disaster

planning for 163, 939
power supplies 940
recovery 710–712, 938–943

diskless clients 232–234, 898
disks

see also LVM, RAID, SATA, IDE,
and SCSI

as backup media 168
boot loaders 124
checking 131–133
connecting 122
device files for 122
displaying free space 127
failure and RAID 139
Fibre Channel 112
formatting 123
geometry 119–120
hot-swappable 112, 116, 145
I/O analysis 813–815
IDE 112–114, 118, 130
installing 122–129, 133–138
interfaces 111–119
labels 124–125
LBA (Logical Block Addressing)

112
load balancing 805, 814

disks continued
partitions 124–125, 134–136
PATA see IDE
performance 806–816
performance tuning 130
quotas 486
RAID 805
RAM 815
reallocating storage space 146
removable 165
SCSI 112, 114–118
Serial ATA see SATA
swap space 812, 814
testing 123
tracks and sectors 120
USB 112, 147–148, 165

DISPLAY variable 744, 748
displays (monitors) 794
distance-vector routing protocols

338
Distfile 506–508
Distributed Management Task

Force (DMTF) 262
distributions, Linux 6–9, 962

logos 10
popularity 962

DIX Ethernet II 278
DMA, tuning 130
DMCA (Digital Millennium Copy-

right Act) 950
dmesg command 206
dmesg file 206
DMTF (Distributed Management

Task Force) 262
DNAME DNS records 404
DNS 377–386

see also BIND
see also domain names, DNS
see also name servers
see also resource records, DNS
see also zones, DNS
adding a new machine 374–375
anycast routing 424
architecture 415–418
asynchronous notification of

zone changes 388
authoritative servers 413, 416
caching 384–386
caching servers 413, 417
use with CIDR 400–401
client configuration 306
CNAME hack 400–401

978 Linux Administration Handbook

DNS continued
country code top-level domains

379
cryptography in 387, 453–463
database 378, 389–409
delegation 383
denial of service (DOS) attacks

397
design 415–418
doc (domain obscenity control)

476–478
domain names see domain

names, DNS
dynamic updates 312, 448–450
EDNS0 protocol 389
efficiency 384–386
forward mapping 378, 382
forward zone files 378
fully qualified domain names

381
gTLDs (generic top-level do-

mains) 378–379
history 375
implementations 376–377
in-addr.arpa domain 396
internationalization 388
IP addresses 374–375, 396–397
ip6.arpa for reverse IPv6 map-

pings 404
IPv6 support 404–405
ISP domain resgistration 381
lame delegations 469, 475–476
load balancing 385
lookups, sendmail 576
master name server 413
Microsoft and 464–466
namespace 378, 381, 415
negative answers 463
negative caching 385
nonauthoritative servers 413
nonrecursive servers 413
protocol 376, 386
public key cryptography 456
Punycode 388
query recursion 425
record types 391
recursive servers 413
referrals 414
resolver configuration 418–420
resolver library 414
resolver testing 420
resource records see resource

records, DNS

DNS continued
reverse mapping 378, 382, 396–

397, 405, 444
reverse zone files 378
RFCs 375–376, 482
root servers configuration file

383
round-robin 723
security 417, 424, 451–464
server architecture 418
server hints 414
service switch file 306–307
setup 415–418
slave server 413
SOA record serial number 393
SOA record shell interfaces 415
SOA record timeout values 393
spam, eliminating 403
SPF (Sender Policy Framework)

pseudo-records 403
split DNS 438
stub servers 413
stub zones 408–409
subdomains 383
TKEY 453–456
top-level domains 378–379, 381
traceroute and 649
TSIG (transaction signatures)

444, 453–456
TTL harmonization 390
us domain 380
VeriSign Site Finder tool 429
ZSK (zone-signing keys) 458

DNSKEY DNS records 457–458
DNSSEC 387, 456–463
dnssec-keygen 454, 458
dnssec-signzone 460–461
doc (domain obscenity control),

DNS 476–478
documentation

Linux 11–14
local 17, 930–934
sources 11–13
user 934

Doering, Gert 856
domain directive, DNS 420
DOMAIN macro, sendmail 572
domain names, DNS 378–383

case sensitivity 380
fully qualified 381
hierarchy 378
in-addr.arpa domain 396
internationalization 388
registration 371, 383

domain names, DNS continued
rules 378–383
second-level 383
selecting 382
squatting 380
subdomains 383
syntax 380
top-level 378, 381
trailing dot in 381

domainname 520
domains, setting up NIS 517–520
DontBlameSendmail option 603,

605
DOS (denial of service) attacks 397,

511, 608, 817
dot files 105–106
DoubleClick.net 951
dpkg 237
drivers directory, kernel source tree

879
drivers see device drivers
DS DNS records 458, 460
DSL networks 364–365
DSR (data set ready) signal 852–853
DTE (Data Terminal Equipment)

interface 845–847
DTR (data terminal ready) signal

853
dual booting 30–31, 826
dump 123, 169–173
/etc/dumpdates file 170
dumps see backups
duplex, setting interface see mii-

tool
DVD Copy Control Association 950
DVMRP protocol 343

E

e2label 127
ECN TCP option 307
EDITOR environment variable 103
EFF (Electronic Frontier Founda-

tion) 958, 969
effective user IDs (EUIDs) 55
EIGRP protocol 339, 342
.emacs file 105
email

see also MX DNS records
see also Postfix
see also sendmail
access agents 533
addresses 95, 535

Index 979

email continued
aliases see aliases, email
architecture 539–544
backup servers, ISP 541
blacklists 594–595
bounced messages 569
clients 532
components 530–534
daemons 897
delivery agents 532
delivery status codes 593
denial of service (DOS) attacks

608
envelope 534
Exim 621–623
fallback MX 614
forgery 608–609
forwarding 549–550
headers 535–539
home mailbox 106, 542
IMAP protocol 533, 543
loops 546, 550
mailing lists 551–554
message stores 533
message structure 534–535
POP protocol 533, 543
privacy 610
proxies 540
queue directory 563–565
relaying 589–591
SASL 610
security 547, 603–610
server setup 540–541, 614
spam see spam
submission agents (MSA) 533–

534
system administration tasks 530
system components 530–534
system design 539–544
to a disabled account 108
to files 547
to programs 547
transport agents 532
undeliverable messages 613
user agents 531

emergency see disaster
encryption see cryptography
Engarde Linux 710
enscript 778, 780
environmental monitoring 798
equipment racks 799
error correction protocols 863–864
ESMTP protocol 532
/etc directory 75

Ethernet 351–359
addresses 280
autonegotiation 302
broadcast domain 352
cables 278, 353–355
collisions 352, 649–650
congestion 356–357, 369
design issues 368–370
DIX II 278
evolution 352
frames see packets
framing standards 277
hardware addresses 280, 292
hubs/concentrators 356
packet encapsulation 276–277
routers 358–359
speed 352
speed, setting 303
switches 353, 356–358
topology 352
troubleshooting 366
UTP cables 353–355, 366

EUIDs (effective user IDs) 55
EULAs (End User License Agree-

ments) 953
EUROPEN 965
event correlation 221
events daemon 894
exec system call 56
executable maps, NFS automounter

499
Exim mail system 621–623
expect 104, 348
EXPN command 588
exportfs 52, 491
/etc/exports file 489–491
EXPOSED_USER macro, sendmail

581, 584
ext2fs filesystems 87, 120
ext3fs filesystems 87, 120, 125

F

FAI 231
fallback MX, email 614
FAT filesystems 120
fax mailer 573
FC-AL (Fibre Channel Arbitrated

Loop) 112
fcntl system call 486
fcron 157
FDDI networks 361–362
fdisk 134–136, 140–141

FEATURE macro, sendmail 574–
585

Fedora network configuration 308
FHS (Filesystem Hierarchy Stan-

dard) 75
Fibre Channel 112
file attributes 81–88

ACLs 88–92
change time 83
changing 81, 84–86
chattr 87
on device files 84
directory search bit 82
displaying using ls 81–84
group ID number 83
inode number 84
link count 83
lsattr 87
permission bits 81, 684
setuid/setgid bits 45, 82–83
sticky bit 82–83
supplemental 87
symbolic links 80
user ID number 83

file statement, DNS 434
filenames

control characters in 77
encoding under Samba 830
length restrictions 72
pattern matching 10, 77
quoting 72
removing sneaky 77–78
shell globbing 10, 77
spaces in 72

files
see also configuration files
see also device files
see also file attributes
see also filenames
block device 77
character device 77
deleting 77
device 122
directory 77–78
hard links 78
links vs. original files 78
local domain sockets 77, 80
modes see file attributes
named pipes 77, 80
NFS locking 486
ownership of 44–46
permissions 81, 684
regular 77–78
removing temporary 154

980 Linux Administration Handbook

files continued
servers, dedicated NFS 496
servers, system files 510
sharing with Samba 833
symbolic links 77, 80
types of 76–81

Filesystem Hierarchy Standard
(FHS) 75

filesystems 70–71
see also partitions
automatic mounting 127
backing up 160
BSD FFS 120
checking and repairing 25, 128,

131–133, 137
cleaning using cron 154–155
converting ext2fs to ext3fs 121
copying 178
creating 125–126, 136–138
damaged 131–133
disabling setuid execution 684
enabling ACLs 88
exporting NFS 489–492
ext2fs 87, 120, 125
ext3fs 87, 120
FAT 120
fuser 74
inodes 126
journaling 121
labels 127
Linux 120–122
load balancing 805, 814
loopback 73
lost+found directories 127, 133
lsof 74
mounting 73–74, 126–129, 835
mounting at boot time, NFS 495
naming conventions, NFS 487
organization 75
patching 133
quotas 486
reinitializing 69
ReiserFS 121
root 24, 32, 75, 124
sizing for backups 161
smbfs 835
superblocks 126
sysfs 872, 882
unmounting 73

filters, CUPS 771–772
find 72, 155
finger 98
FireWall-1 318

firewalls 701–708
host-based 318
ICMP blocking 645, 647–648
Linux IP tables 704–708
Netfilter 704–708
packet-filtering 701–702
proxy 703
stateful 703–704
traceroute and 648

flock system call 486
flow control, serial line 852–853
Fogel, Karl 253
Foomatic database 771, 782
fork system call 56
formatting disks 123
.forward file, email 549–550, 605
forward mapping, DNS 382
forwarders option, DNS 427
ForwardPath variable, sendmail

549
fragmentation, IP 279
frame relay networks 363
frames see packets
framing standards, Ethernet 277
Frampton, Steve 12
free 811
Free Software Foundation (FSF) 965
free space, displaying 127
Free Standards Group 959
fsck 25, 128, 131–133, 137
/etc/fstab file 127–129, 132, 137,

495, 497, 836
FSUID process parameter 55
FTP

chrooted 735
through firewalls 702–703
and HTTP, compared 735
permissions 736
security 684, 736
server setup 734–736

ftp 900
ftpd daemon 735, 900
/etc/ftpusers file 736
fully qualified hostnames 381, 396
functions script 208
fuser 74
FYI documents 275

G

gated routing daemon 344, 901
/etc/gateways file 344
GDI printers 783

gdm 743
GECOS information 98
Geer, Dan 161
$GENERATE directive, DNS 401,

406
generic top-level domains 379
genericstable feature, sendmail

579
getfacl 89
gethostbyname routine 414, 516
gethostent routine 819
getty process 25, 855–858
gettydefs file 858
Ghostscript 780
Ghostview 785
GIAC (Global Information Assur-

ance Certification) 675
GIDs see group IDs
globbing, shell 10, 77
GNOME 758–759

see also X Window System
GNU

Free Software Foundation (FSF)
965

Openwall GNU/*/Linux (Owl)
710

Public License (GPL) 962
Stow 266
Zebra routing package 344

greet_pause feature, sendmail 597
greylisting for spam 636
/etc/group file 101–102

defining groups 45, 97
editing 104
for FTP servers 735
permissions 684

group IDs
see also /etc/group file
globally unique 102
kernel and 104
in ls output 83
mapping to names 45
numbers 45
real, effective, and saved 45
saved 55

groups
see also /etc/group file
default 97
effective 55
file attribute 83
numbers (GIDs) 45
passwords for 101
of a process 55

grub 138

Index 981

GRUB boot loader 26–28
multiboot configuration 30
options 883
single-user mode 32

grub.conf file 27, 30, 883
grub-install 27
/etc/gshadow file 102
guest user accounts 944
Gutenprint project 771
gv 785

H

hald 899
halt 42
halting the system 40–42
Hamilton, Bruce 14
hard carrier 852
hard disks see disks
hard links 78
hardened Linux 710
hardware

see also disks
see also Ethernet
see also maintenance
see also networks
see also PC hardware
air conditioning 796–798
BIND requirements 421
computer displays 794
cooling systems 940
decommissioning 791
environment 796–798
equipment racks 799
hubs 356
kernel adaptation 869
labeling 933
logs 791
memory 23, 794–795, 804
power supplies 798
probing 23
purchasing 782–787, 916–917
routers 358–359
static electricity 793
switches 353, 356–358, 360
temperature monitoring 798
tools 800
USB see USB
warranties 793
wiring 366–368, 934

Hayes command language 864
Hazel, Philip 621
hdparm 129–131

header checking, sendmail 595–
596

Hesiod 390
home directories 75

creating 105
location 75
logging in to 98
missing 98
removing 107

/home partition 125
host 474
/etc/host.conf file 307
hostname command 299
/etc/hostname file 310
hostnames

fully qualified 396
mapping to IP addresses 281,

298
/etc/hosts file 281, 298–299, 420
/etc/hosts.allow file 691–692
/etc/hosts.deny file 691–692
/etc/hosts.equiv file 685, 898
hot-plugging kernel modules 882–

883
hot-swappable drives 112, 116, 145
Hotz, Steve 473
HPAGE_SIZE kernel parameter 809
HTTP

CUPS and 769
protocol 720–722
server see web hosting

httpd see web hosting
httpd.conf file 726–732
hubs, Ethernet 356
HUP signal 58–59
hwconf file 37
HylaFAX 573

I

I/O schedulers 815–816
ICANN (Internet Corporation for

Assigned Names and Numbers)
273, 289, 371, 383

ICMP 275
firewall blocking 645, 647–648
netstat output 653
packets 707
ping and 645
redirects 295, 317
sequence numbers 646
tracroute and 648
TTL and 647

IDE 112–114
accessing more than 1024 cylin-

ders 112
altering disk parameters 129–

131
device names 873
DMA, tuning 130
history 112–113
performance tuning 130
vs. SCSI 118

IDENT protocol 609
IEEE 802.* standards 278, 352, 356,

358–359
IETF (Internet Engineering Task

Force) 273
ifconfig 299–302

adding routes using 304, 335
PPP and 321
subnet masks and 283
virtual addresses and 728

ifdown 309, 311
ifup 40, 309, 311, 327
IGMP (Internet Group Management

Protocol) 281
IGRP (Interior Gateway Routing

Protocol) 339, 342
IIS web server 827
IMAP (Internet Message Access

Protocol) 533, 543, 897
imapd 897
in.fingerd 901
in.rlogind 898
in.rshd 898
in.telnetd 898
in.tftpd 899
in-addr.arpa domain 396
$INCLUDE directive, DNS 406
:include: directive, for email aliases

546
include statement, DNS 423
incremental backups 170
indirect maps, NFS automounter

499
inetd 885, 887–888, 890–893
/etc/inetd.conf file 890–892
init process 22–23, 56, 855–857,

886–887
bootstrapping and 25
logins and 886
run levels and 33–36, 42, 886
startup scripts and 32, 38, 40
zombie processes and 56, 61

/etc/init.d directory 34–35, 38, 40
initlog 207

982 Linux Administration Handbook

/etc/inittab file 34, 855–857, 886
inodes 84, 126
insmod 880–882
installation, Linux see Linux instal-

lation
INT signal 58–59
integrity monitoring 692
/etc/interfaces file 311
interfaces, network see networks
International Organization for Stan-

dardization (ISO) 354
Internet

dial-up connections see PPP
protocol

Cache Protocol (ICP) 733
Control Message Protocol see

ICMP
Corporation for Assigned

Names and Numbers
(ICANN) 289

Engineering Task Force (IETF)
273

governance 273–275
history 272–274
Network Information Center

(InterNIC) 288
Official Protocol Standards 274
protocol security (IPsec) 709
protocol see IP
registries 289
RFC series 274–275
Society (ISOC) 273
standards and documentation

274–275
system administration resources

13
Systems Consortium (ISC) 12,

312
Worm 669

InterNIC (Internet Network Infor-
mation Center) 288

intrusion detection, samhain 692–
693

IOS (Cisco router OS) 346–348
iostat 813
IP 275

see also IP addresses
see also IPv6
see also routing
directed broadcast 317
fragmentation 279
masquerading see NAT

IP continued
packet forwarding 303, 316
source routing 317
spoofing 317–318
TOS (type-of-service) bits 330

IP addresses 279–293
see also IPv6
allocation 288–289
broadcast 281
CIDR (Classless Inter-Domain

Routing) 283, 286–288
classes 282
hostnames and 281, 298
loopback interface 282, 294,

302, 397
multicast 281–282
netmasks 282–285
ports 281
PPP 322
private 289–291, 409, 416, 438,

465
shortage of 285–286
subnetting 282–285
unicast 292

ipcalc 284
IPsec (Internet Protocol security)

709, 949
iptables 319, 704–708
IPv6 286, 291–293

DNS support 387, 404–405
vs. CIDR 286

ISC (Internet Systems Consortium)
312, 376

ISDN networks 364
IS-IS protocol 339, 343
ISO (International Organization for

Standardization) 354
ISO/IEC 17799 standard 675
ISOC (Internet Society) 273
ISPs

AOL 954
domain registration 381
IP address allocation 289–293

/etc/issue file 856
ITIL (Information Technology In-

terface Library) 960

J

Jacobson, Van 273, 320, 329, 647,
656

JFS filesystem 122

jobs, scheduling 887
John the Ripper 690
journaling filesystems 121
jukeboxes, tape media 167

K

kacpid daemon 894
Kahn, Bob 273
Kalt, Chrisophe 266
kblockd daemon 894
KDE 758–759

see also X Window System
Konqueror 789
Print Manager 773
printing under 788–790

kdm 743
Kerberos 464, 695–696
kermit 864
kernel 868–869

ARP cache 296
boot time options 29, 883
building 876–878
.config file, customizing 877–

878
configuration 873–874
daemons 893
device drivers 79, 868–870
hot-plug blacklist 883
hot-plugging modules 882–883
HPAGE_SIZE 809
initialization 23
loadable modules 880–882
location 75
logging 206–208, 894
network security variables 319
options 874, 876–878
panics 131, 133
saved group IDs 55
source tree 876–877, 879
swappiness parameter 811
threads 23
TOS-based packet sorting 330
tuning 314–316, 614, 874

kernel directory 877
KEY DNS records 455, 458
.key DNSSEC key file, DNS 454
key statement, DNS 430
keymap file, corrupted 37
keys, generating BIND 458
keys, SSH 697

Index 983

kghostview 788
Kickstart 226–229
kill 60, 818
KILL signal 58–60
killall 60, 203
Kim, Gene 617
Kirch, Olaf 12
kjournald daemon 894
klogd daemon 207, 894
Knoppix 6, 232
Kolstad, Rob 617
Konqueror 789
Kotsikonas, Anastasios 553
kprinter 788–789
Kristensen, Peter 266
ks.cfg file 227–229
ksoftirqd daemon 894
kswapd daemon 810, 894
Kudzu 37

L

lame delegations, DNS 469, 475–
476

LAMP platform 719
LANs 351

ATM 362
Ethernet 351–359
FDDI 361–362

lastlog file 206
LBA (Logical Block Addressing)

112
LCFG (large-scale configuration

system) 261
LDAP (Lightweight Directory Ac-

cess Protocol) 520–526
attribute names 522
documentation 523–524
OpenLDAP 523
security 526
setup 524–525
structure of data 521
use with sendmail 547, 555–

557, 580–581
user IDs and 97
uses of 522–523

ldap_routing feature, sendmail
556, 580–581

LDP (Linux Documentation
Project) 11

leadership 907
Leffler, Sam 573

legal issues 949–958
appropriate use policies (AUPs)

954
call records and web logs 952
copyrights 950
cryptography 949
EULAs (End User License

Agreements) 953
liability for data 954
pornography 954
privacy 951
software licenses 955

Libes, Don 104
licenses, software 955
lilo 28–29, 31, 138
LILO boot loader 28–29

configuring 883
multiboot configuration 31
single-user mode 32

/etc/lilo.conf file 28, 31, 883
limit shell builtin 818
link layer, networks 277–279
links, hard 78–80, 83
link-state routing protocols 339
Linux

culture 961, 963
distributions 6–9, 962
documentation 11–14
Documentation Project (LDP)

11
history 5
installation see Linux installa-

tion
International (LI) 964
mailing lists 967
popularity 962
Professional Institute (LPI) 964,

967
resources 964–968
security flaws 670
standards 958–960
Test Project 963
vendor logos 10
vs. UNIX 4

/usr/src/linux directory 876
Linux installation 224–232

see also system administration
see also system configuration
automating from a master sys-

tem 232
automating with AutoYaST

230–231
automating with cdebconf 231

Linux installation continued
automating with cdebootstrap

231
automating with debian-in-

staller 231
automating with FAI 231
automating with Kickstart 226–

229
automating with system-con-

fig-kickstart 231
ks.cfg file 227–229
netbooting 224–226
PXE protocol 225–226
PXELINUX 225
system-config-netboot 226
TFTP protocol 225

LinuxWorld conference 966
listen-on option, DNS 426
listmanager 554
ListProc 553
LISTSERV Lite 554
Liu, Cricket 423
LMTP protocol 625
ln 78, 80
load average, sendmail 613
load averages 808
load balancing

disks and filesystems 805, 814
DNS 385
servers 805
web server 722–724

loadable modules 880–882
LOC DNS records 401
local delivery agents, sendmail 533
local domain sockets 77, 80
/usr/local hierarchy 255–260

compilation 258–259
distribution 259
organizing 256–257
testing 257–258

LOCAL_* macros, sendmail 586
local_lmtp feature, sendmail 585
local_procmail feature, sendmail

585
localhost 282
localhost zone configuration exam-

ple, BIND 439
local-host-names file 574
locate 15, 771
lockd daemon 486
lockf system call 486
/var/log directory 204

984 Linux Administration Handbook

log files 209–220
see also logging
see also syslog
analyzing and searching 220–

221
for Apache 727
archiving 204
lists of 205, 218
for logins and logouts 206
monitoring 220–221
replacing while in use 203
rotating 156, 202, 208–209
to system console 218
web hosting 727

/dev/log socket 210
logcheck 220
logger 217–218
logging

see also log files
see also syslog
for BIND 411, 432, 446, 466–471
boot-time 206–208
to central server 214, 216
for cron 151
for CUPS 781
hardware failures 791
kernel 206–208
for sendmail 619–621
for sudo 49
through syslog 218–220
to system console 218

logging in from Windows 821–822
logging statement, DNS 432, 466
logical unit numbers, SCSI 117
logical volume managment see LVM
login command 46, 856
.login file 105
login process 855
login see user accounts
/etc/login.defs file 98, 100
logos, vendor 10
logrotate 208–209
/etc/logrotate.conf file 208
/etc/logrotate.d directory 208
logwatch 221
loopback

address, BIND 437
filesystem 73
interface 282, 294, 302, 397

LOPSA 965
lost+found directories 127, 133
low-level formatting, disks 123
lpd daemon 894
lpd-errs file 215

lpinfo 772
ls 45, 77, 81–84
lsattr 87
lsmod 881
lsof 74, 494
LTO backup tapes 167
lvcreate 144
lvextend 146
LVM 139, 143–147

creating 143–144
resizing 146–147

lwresd 897

M

m4 566–570, 586
MAC addresses 280, 292
Mackerras, Paul 508
macros, sendmail 570–574
magic cookies, NFS 486
magic cookies, X Windows 746
mail see email
mail.local delivery agent 533, 585,

605
MAIL_HUB macro, sendmail 583,

600
MAILER macro, sendmail 573–574
mailers 573

cyrus 573
discard 596
error 591, 596
fax 573
local 573
pop 573
qpage 574

mailertable feature, sendmail 578
mailing list software 551–554

listmanager 554
ListProc 553
LISTSERV Lite 554
Mailman 553
Majordomo 552
SmartList 554

mailing lists 546, 551–554, 967
mailq 619
.mailrc file 105
mailstats 615
main.cf file 626
maintenance 791–800

see also hardware
contracts 792–793
environment 796–798
equipment racks 799

maintenance continued
power 798
preventive 795–796
Uninterruptible Power Supply

(UPS) 799
major device numbers 79, 870–872
Majordomo 552–553, 605
makedbm 512
MAKEDEV script 79, 872
makemap 576–577
man pages 11–13
management 907–915
management standards, networks

658
Manheimer, Ken 553
MANs 351
many-answers option, DNS 425
map files, NFS automounter 499–

500
masks in ACLs 90
MASQUERADE_AS macro, send-

mail 581–583, 616
masquerading, sendmail 581–583
master boot record (MBR) 26
master name server, DNS 413
master server, NIS 511–513, 517–

518
master.cf file 623
masters statement, DNS 432, 434
match-clients clause, DNS 438
max-cache-size option, DNS 426
MaxDaemonChildren option,

sendmail 608
MaxMessageSize option, sendmail

608
MaxRcptsPerMessage option,

sendmail 608
MBR (master boot record) 26
McKusick, Kirk 120
MDA (mail delivery agent) 532
mdadm RAID management utility

141–143, 145
mdrecoveryd daemon 894
/proc/mdstat file 142, 145
media, backup 163–169

see also tapes
CD and DVD 164
jukeboxes 167
labeling 159
life of 163
magnetic 164
optical 164
summary of types 168
verifying 162

Index 985

memory
buffering 40
effect on performance 804, 806
kernel initialization and 23
management 809–811
modules 794–795
paging 809–814, 818
RAM disks 815
usage, analyzing 811–813
virtual (VM) 810–811

message of the day 856, 954
message stores 533
/var/log/messages file 207, 215
Metcalfe, Bob 351
mgetty process 855–858
Microsoft Windows see Windows
mii-tool 303
Miller, Todd 49
miltering, sendmail 597
MIME (Multipurpose Internet Mail

Extensions) 531, 601
/etc/cups/mime.convs file 772
/etc/cups/mime.types file 771
Minar, Nelson 902
mingetty process 855–858
mini DIN-8 connectors 847
minicom 864
minor device numbers 79, 870–872
mkdir 78
mke2fs 125, 136–137
mkfs 69
mknod 79–80, 871
mkpasswd 104
MKS Toolkit 827
mkswap 138
Mockapetris, Paul 375
model file 771
modems 852, 862–864
modprobe 881
/etc/modprobe.conf file 881
MODULE_DEVICE_TABLE macro

880
Mondo Rescue 197
monitoring log files 220–221
monitors 794
Moore’s Law 273
Morris, Robert, Jr. 669
MOSPF protocol 343
/etc/motd file 856, 954
Motion Picture Association of

America 950

mount 73, 126–128
enabling filesystem ACLs 88
NFS filesystems 492–495

mount point, filesystem 73
mount.smbfs 836
mountd daemon 489
mounting filesystems see filesys-

tems, mounting
mpstat 808
/var/spool/mqueue directory 563,

619
mreport program 620
MRTG (Multi-Router Traffic Gra-

pher) 664
MSA (mail submission agent) 533
mt 178
MTA (mail transport agent) 532
MTU (maximum transfer unit)

278–279, 361
mtx 179
MUA (mail user agent) 531
multibooting 30–31
multicast addresses 281–282
multiprocessor machines, analyzing

performance 808
Multipurpose Internet Mail Exten-

sions (MIME) 531, 601
multiuser mode 25
MX DNS records 397–399
MySQL 180–182, 377, 719, 936

N

Nagios SNMP monitoring tool 665
name servers

see also DNS
see also BIND
see also named
authoritative 413, 416
caching 384–386, 417
caching-only 413
delegation 383
dynamic updates 448–450
forwarding 427
hints 414
keep-running script 417
lame delegations 469, 475–476
master 413
negative caching 385
nonauthoritative 413

name servers continued
recursion 413, 425
resolver 414, 418–420
slave 413
stub 413
switch file 479
zone delegation 407–409
zone serial numbers 447

named 412, 446
see also BIND
see also DNS
see also name servers
acl statement 430
ACLs 429, 451–453
allow-recursion option 425
allow-update clause 433, 450
avoid-v4-udp-ports option 427
blackhole option 428
bogus directive 431
chrooted 451, 453
command-line interface see

named, rndc
compiling with OpenSSL 458
configuration 420–446
configuration examples 439–

446
confining with chroot 453
controls statement 436–438
datasize option 426
debugging 466–478
delegation-only option 386,

429
directory statement 424
domain directive 420
error messages 469
file statement 434
forwarders option 427
forwarding zone, configuring

436
$GENERATE directive 401, 406
hardware requirements 421
$INCLUDE directive 406
include statement 423
init scripts 446
ISC configuration example 444
keep-running script 417
key statement 430
listen-on option 426
localhost zone configuration ex-

ample 439
logging 411, 446, 466–471

986 Linux Administration Handbook

named continued
logging statement 432, 466
many-answers option 425
master server, configuring 433
masters statement 432, 434
match-clients clause 438
max-cache-size option 426
/etc/named.conf file 421–446,

450–451, 470, 480–481
named.run file 471
named-checkconf 421, 455, 478
named-checkzone 421, 478
notify option 424
options statement 423–429
$ORIGIN directive 406
provide-ixfr option 448
query-source option 426
recursion option 425
recursive-clients option 426
request-ixfr option 448
rndc 436–438, 447, 471–473
root server hints 435
root.cache file 435
rrset-order statement 428
search directive 419
server statement 431, 448
slave server, configuring 434
sortlist option 428
starting 448
statements, list of 422
stub zones, configuring 434
testing 466–478
topology statement 428
transfers-in option 425
transfer-source option 426,

445
transfers-out option 425
transfers-per-ns option 425
trusted-keys statement 430
$TTL directive 390, 394, 406
TTL options 428
update-policy clause 450
updating zone files 447–450
versions 411, 424
view statement 438
zone commands 405–407
zone serial numbers 447
zone statement 432–436
zone-statistics option 433

named pipes 77, 80
/etc/named.conf file 421–446, 450–

451, 470, 480–481
named.run file 471

named_dump.db file 472
named-checkconf 421, 455, 478
named-checkzone 421, 478
namespace, DNS 378
naming conventions

device files 872
shared filesystems 487

nanny script 446
NAT 290–291, 319
National Science Foundation (NSF)

381
ncftp 510
ndbm library 169
neigh directory 315
Nemeth, Evi 679
Nessus 690
NetBIOS 828, 896
netbooting 224–226
Netfilter 704–708
/etc/netgroup file 517
netgroups, NIS 517
netmasks 282–285
NeTraverse 826
NET-SNMP 661–664
netstat 649–654

displaying interface names 300
examining the routing table 294
examples 335–337
interfaces 649
monitoring connections 651
network statistics 649–654
and NFS UDP overflows 492
open ports 652
routing table 652

Network Appliance, Inc. 496
network configuration 298, 307–

311
Debian and Ubuntu 310
Red Hat and Fedora 308
SUSE 309

Network Information Service see
NIS

Network Solutions, Inc. 381
Network Time Protocol (NTP) 902
network unreachable error 304
network wiring 934

building 366–368
cable analyzer 366
cable choices 352–355, 366
for offices 367
maintenance and documenta-

tion 370
Wireshark network sniffer 366

networks
see also Ethernet
see also IP addresses
see also network configuration
see also network wiring
see also routing
see also TCP/IP
adding a machine to a LAN 297–

307
address translation see NAT
addresses 279–293
administrative databases 504,

511
ARP (Address Resolution Proto-

col) 296–297
ATM 362–363
broadcast storms 301, 357
CIDR (Classless Inter-Domain

Routing) 286–287
connecting and expanding 355–

359
connecting with PPP 321
daemons 900–901
debugging with mii-tool 302–

303
default route 293–294, 305, 329,

336
design issues 368–370
DHCP (Dynamic Host Configu-

ration Protocol) 311–314
firewalls 318, 701–708
interface activity reports 654
interface configuration 299–302
load balancing 385, 805
loopback 282, 294, 302, 397
management issues 370–371,

643
management protocols 657–661
management standards 658
monitoring 650–651
MTUs 278–279, 361
NAT 290–291, 319
netmasks 282–285
packets see packets
PAT 319
ping and 645–647
port scanning 688–690
ports 281
PPP 320–330
redundancy 941
routing tables 652
scanner, Nessus 690
security see security

Index 987

networks continued
statistics 649–654
subnetting 282–285
troubleshooting 366, 644–654
tuning 314–316
virtual private networks see

VPNs
VLANs 357
wireless 278, 359–361

network-scripts directory 38
newaliases 551
newgrp 102
NFS (Network File System) 484–500

all_squash option 488, 491
anongid option 488, 491
anonuid option 488, 491
buffer sizes 494
client 492–495
common options 491
configuration, server 489–492
cookies 486
daemons 895–896
dedicated file servers 496
disk quotas 486
and dump 170
exporting filesystems 489–492
file locking 486
firewalls and 488
and the fstab file 127
hard vs. soft mounts 493
insecure option 491, 495
mount 492–495
mounting filesystems at boot

time 495
naming conventions 487
no_root_squash option 488,

491
nobody account 51, 488
protocol versions 484
root access 488
RPC and 485
secure option 491, 495
secure_locks option 491
security 487–489, 495, 686
statistics 495
subtree_check option 491
TCP vs. UDP 485
tuning 494
using to export email 542

nfsd daemon 489, 492, 494
nfsstat 495
nice 61–62, 818
nice value 55

NIS (Network Information Service)
511–520

architecture 512–514
commands 514
configuring clients 519
configuring servers 518
database files 511–512
files to share 503
LDAP vs. 525
map files 512
master server 511–513, 517–518
netgroups 517
query procedure 513
security 685–686
setting access control options

519
setting up a domain 517–520
slave servers 512–514, 517

nmap 688–690
nmbd 829, 896
nocanonify feature, sendmail 576
nohup 59
notify option, DNS 424
NS DNS records 395, 407
nscd daemon 504, 897
/etc/nscd.conf file 505, 897
NSEC DNS records 463
NSF (National Science Foundation)

381
NSFNET 272
/etc/nsswitch.conf file 307, 515,

562
nsupdate 449
NTP (Network Time Protocol) 902
/etc/ntp.conf file 902
ntpd 902–903
ntpdate 902
null modem serial cable 846–847
nullclient feature, sendmail 584–

585
NXT DNS records 458

O

Oetiker, Tobias 262, 664
office wiring 367
off-site backup storage 161
Oja, Joanna 11
one-time passwords 698
open relaying, email 589
OpenLDAP 523, 555
openlog routine 218–220
OpenOffice.org 826

Openwall GNU/*/Linux (Owl) 710
operating system installation see

Linux installation
oprofile 817
options statement, DNS 423–429
$ORIGIN directive, DNS 406
orphaned processes 56, 61, 63
OSI layers 276
OSPF protocol 339, 342–343
OSTYPE macro, sendmail 570–572

P

Pack Management Project 266
package management 234–247

alien conversion tool 235
automating 244–246
.deb format 235
dpkg/APT 235, 237, 241–246
Red Hat Network 240
repositories 239–240
RPM format 235
rpm/yum 235–238, 246–247

packages see software packages
packets

see also networks
dropped 646
encapsulation 276–277
filtering 677, 701
forwarding 335–337
handling with Netfilter 704–708
ICMP 707
round trip time 646
sniffers 366, 655–657
tracing 647–649

pages, memory 809–811
paging 129, 809–814, 818
Painter, Mark 376
PAM (Pluggable Authentication

Modules) 681–682
paper sizes for printers 777–778
paperconfig 778
PAPERSIZE environment variable

778
/etc/papersize file 778
Parain, Will 261
partitions 124–125, 134–138

see also filesystems
load balancing 814
resizing with LVM 146–147
root 124
setting up 134–136
swap 124, 129, 138

988 Linux Administration Handbook

passwd command 46, 96, 104
/etc/passwd file 93–99

editing 96, 103
for FTP servers 735
group ID numbers 83
permissions 684
security 678–681, 684
user ID numbers 45, 83

passwords
aging 680
boot loader 673
cracking 690
encryption 94, 96, 830
FTP 735
group 101
initial 104
one-time 698
root 47
Samba 830
security 47, 678–681
selection 47, 104, 679–680
shadow 94, 99–100, 678
strength 682, 690

PAT (Port Address Translation)
319

PATA see IDE
patches, software 677
patents

EU patent policy 957
software 957–958
U.S. patent office 957

pathnames 48, 72
PC hardware

see also hardware
BIOSes 25
boot device priority 26
bootstrapping 25
delete character 859
device drivers 870
multibooting 30–31
vs. UNIX hardware 25

PCL printer language 763, 766
PDF 764, 766
pdftops 772
performance 803–819

BIND 478
CPU 806–809, 813
disk 806, 813–815
factors affecting 806–807
improving 803–806
kernel tuning for email 614
load averages 808

performance continued
measuring and monitoring 664,

807
memory 68, 804, 806, 811–813
network, TOS bits 330
NFS 494
nice 61
partitioning disks to improve

124
PPP 321
using RAID to improve 139
SDSC Secure Syslog 210
sendmail 611–615
Squid web cache 733–734
st_atime flag 87
syncing log files 213
troubleshooting 817–819
tuning IDE drives 130
web server 722–724, 727

performance analysis tools
free 811
iostat 813
mpstat 808
oprofile 817
procinfo 812
sar 816
top 809
uptime 808
vmstat 807

Perl 14, 150, 719, 722, 827, 923
in administrative scripts 4
example scripts 525
generating passwords 524
insecure example 672
module sources 662
null password check 679
and swatch 220
and syslog 219
user ID check 681
wrapping cron jobs 511

permissions
chmod and 84
file 81, 684
important 684
sendmail 604–605
umask and 86

personnel management 908–910
PGP (Pretty Good Privacy) 610, 696
Phonetics Sensaphone 798
PIDs 54
PIM protocol 343
ping 317, 645–647

pipes, named 77, 80
piracy 955
PIX firewall box 318
PJL printer language 765
.plan file 901
platters, disks 119
Pluggable Authentication Modules

(PAM) 681–682
poff command 330
policy

agreements 107, 946–948
backups 939
documents 943–948
enforcement 953
logging 201
Postfix policy daemons 636
security 945–946

pon command 330
POP (Post Office Protocol) 533, 543,

828, 897
pop mailer 573
popd 897
pornography 954
portmap daemon 488, 888, 893
ports, network 281

numbers 893
privileged 281, 689, 702
scanning 688–690
well known 688, 702

ports, serial 844–847
POSIX 683, 959

APIs under Windows 827
root account capabilities 46

Post Office Protocol (POP) 533, 543,
828, 897

postconf Postfix configuration tool
627

Postel, Jon 273
Postfix 623–638

access control 632–634, 638
amavisd virus filter 637
architecture 623
authentication 634
black hole lists 635
chrooted 625
command-line utilities 625
configuring 626–634
content filtering 636
debugging 637–639
greylisting 636
local delivery 629
lookup tables 627

Index 989

Postfix continued
policy daemons 636
queue manager 624
receiving email 624
security 625
sending email 625
spam control 634–637
virtual domains 630–632
virus filtering 637

PostScript 763, 766
power management 798
power supplies, emergency 940
poweroff 42
/etc/cups/ppd file 771
PPD printer description files 770–

771
PPIDs 54
/etc/ppp directory 323
PPP protocol 320–330

commands, list of 324
configuration 323–330

pppd daemon 323, 325, 327, 329
pppstats 329
pr 780
Practical Extraction and Report

Language see Perl
Pre-boot eXecution Environment

(PXE) 225–226, 899
Preston, W. Curtis 198
Pretty Good Privacy (PGP) 610,

696–697
printers

see also printing
accounting 787
cartridges 786
drivers 765
languages 763–766
network 773, 784
PPD printer description files

770–771
purchasing 782–787
security 787
selection 782–785
serial and parallel 784
USB 774, 781
WinPrinters 783

printing
see also CUPS
see also printers
banner pages 784–785
daemons 894
Foomatic database 771, 782
Gutenprint project 771
history 761–762

printing continued
KDE Print Manager 773
Konqueror and 789
paper sizes 777–778
PPD printer description files

770–771
previewers 785
sharing printers using Samba

836–839
software 779
under KDE 788–790
using kprinter 789
Windows driver installation

838–839
XHTML 764

priority, processes 55, 61–62
privacy 951
.private DNSSEC key file 454
private IP addresses 289–291, 409,

416, 438, 465
privileged ports 281, 689, 702
/proc filesystem 65–66, 314–316,

872, 874
processes 53

changing ownership credentials
45

changing user and group IDs 46
control terminal 56
EGID (effective group ID) 55
EUID (effective user ID) 55
execution states 60–61
FSUID parameter 55
GID (group ID) 55
identities: real, effective, and

saved 45
IDs 54
monitoring 62–65
orphaned 56, 61, 63
owner 45, 54
PPID (parent PID) 54
priority 55, 61–62
runaway 67–69
scheduling 45
sending signals to 60
spontaneous 23
standard I/O channels 56
stopping and starting 61
UID (user ID) 54
zombie 56, 61, 63, 886

procinfo 812–813, 818
procmail 533, 585, 636
/etc/profile file 106
/etc/profile.d directory 106
profiler, system 817

programs, finding 15
Project Athena 741
.project file 901
promiscuous relaying, sendmail

589
provide-ixfr option, DNS 448
proxies, service 703
proxies, web servers 733
ps 62–64, 809, 817
pseudo-devices 871
pseudo-users 97
PTR DNS records 396, 444
/dev/pts directory 75
public key cryptography 456, 697
Punycode 388
purchasing hardware 782–787,

916–917
PuTTY 821
pvcreate LVM utility 143
PXE (Pre-boot eXecution Environ-

ment) 225–226, 899
PXELINUX 225
Python 4, 15–16, 523, 923

Q

qmgr 625
qpage mailer 574
qpopper email server 543
qshape 638
quad A DNS records 404
query-source option, DNS 426
queue groups, sendmail 611–612
queue runners, sendmail 613
QUIT signal 58–59
quotas, disk 486

R

racks, equipment 799
RAID 139–147, 805, 894
raidtools 141
RAM disks 815
/dev/ram0 and /dev/ram1 files 815
rc scripts see startup scripts
rc.local script 36
rcmd 898
rcp 685, 898
RCPT command, SMTP 588
RCS 249–251
rcsdiff 250

990 Linux Administration Handbook

rdesktop 825
rdist 505–508
RDP (Remote Desktop Protocol)

824
rdump 171
real-time scheduling 56
RealVNC 824
reboot 42
rebooting 40–41
recursion option, DNS 425
recursive-clients option, DNS 426
Red Hat network configuration 308
Red Hat Network, software reposi-

tory 240
redirect feature, sendmail 575
REFUSE_LA option, sendmail 608
registration of domain names see

domain names, registration
regular files 77–78
Reiser, Hans 121
ReiserFS filesystem 121
/etc/mail/relay-domains file 589
Remote Desktop Protocol (RDP)

824
Remote Procedure Call see RPC
renice 61–62, 818
repositories, software 239, 266
request-ixfr option, DNS 448
reset 862
resize_reiserfs 147
resizing disk partitions 146–147
/etc/resolv.conf file 418–420
resolver library, DNS 414
resource records, DNS 389–405

A 396, 407
A6 404
AAAA 404
CNAME 399
DNAME 404
DNSKEY 457–458
DS 458, 460
format 389
glue 407–409
KEY 455, 458
LOC 401
MX 397–399
NS 407
NSEC 458, 460, 463
NXT 458
PTR 396, 444
quad A 404
RRSIG 457–458, 460, 463
SIG 458
SOA 392–395, 447

resource records, DNS continued
special characters in 389
SRV 402–403, 464
time to live 390
trailing dot in names 389
TXT 403, 424
WKS 403

restore 173–176, 939
reverse mapping, DNS 382, 396–

397, 405, 444
revision control 248–255

CVS 251–253
RCS 249–251
Subversion 253–255

RFCs
BCP documents 275
DNS-related 375–376, 482
email-related 532, 640
FYI documents 275
LDAP-related 523
NFS-related 500
overview 274–275
private address space 289–291
SNMP-related 667
STD documents 275
subnetting 285

RHN, repository package 240
.rhosts file 685, 898
Riggle, David 376
RIP protocol 339, 341–344
RIP-2 protocol 341
RJ-11 connectors 862
RJ-45 connectors 355, 849
rlog 250
rlogin 685
rm 77, 79
rmdir 78
rmmod 881
rndc 436–438, 447, 471–473
/etc/rndc.conf file 437
/etc/rndc.key file 437
rndc-confgen 437
root account 44, 46, 681

accessing 48–51
accessing via NFS 488
operations 46
passwords 47
POSIX capabilities 46
restricting access 685
squashing, NFS 488
/etc/sudoers file 49–50
user ID 46

root filesystem 24, 32, 75
rootkits 688, 951

Rossi, Markku 778
rotating log files 156, 202, 208–209
route command 294, 303–305, 309,

900
routed daemon 341, 343–344, 900
Router Discovery Protocol 343
routers 358–359
routing 293–295, 334–348

autonomous systems 340
BGP protocol 339
CIDR (Classless Inter-Domain

Routing) 283–288
Cisco routers 346–348
cost metrics 340
daemons and protocols 337–

344
default route 293–294, 305, 329,

336
distance-vector protocols 338,

342
EIGRP protocol 342
exterior gateway protocols 340
ICMP redirects 295, 317, 337
IGRP protocol 342
interior gateway protocols 341–

343
IS-IS protocol 343
link-state protocols 339
netmasks 282–285
OSPF protocol 339, 342–343
packet forwarding 303, 316,

335–337
PPP 322
protocols 341–343
RIP protocol 339, 341–344
sendmail 583
static routes 294, 303–305
static vs. dynamic routing 344–

345
strategy 344–345
subnetting 282–285
tables 293–295, 335–337, 652
unreachable networks 304
with multiple ISPs 340
XORP (eXtensible Open Router

Platform) 344
Zebra package 344

Rowland, Craig 220
RPC (Remote Procedure Call)

managing port assignments 888
mapping service numbers to

ports 893
NFS and 485
portmap and 893

Index 991

rpc.bootparamd daemon 899
rpc.lockd daemon 895
rpc.mountd daemon 489, 895
rpc.nfsd daemon 489, 895
rpc.rquotad daemon 896
rpc.statd daemon 895
rpc.ypxfrd daemon 896
rpciod daemon 896
rpm 235–237
RPM software package format 235
rquotad daemon 486
RRDTool graphing tool 664
rrestore 175
rrset-order statement, DNS 428
RRSIG DNS records 457–458, 460,

463
RS-232 standard 844–847, 853
RS-232 to USB adapters 865
rsh 898
rsync 197, 508–511, 900
rsyncd daemon 900
rsyncd.secrets file 510
RTS (request to send) signal 853
run levels 856

changing 887
init and 33–36, 42, 856, 886

RunAsUser sendmail user account
603

runaway processes 67–69
running Linux programs from Win-

dows 822–823
Russinovich, Mark 951
rxvt 827

S

S/MIME 610
SafeFileEnvironment option,

sendmail 606
SAGE guild 965–966, 968
SAIT tapes 166
Samba 828–841

see also Windows
CIFS 828
command-line file transfer pro-

gam 835
configuration 829
daemons 829, 895–896
debugging 840–841
display active connections and

locked files 840
file and printer server daemon

896

Samba continued
file sharing 833
filename encoding 830
group shares 833
installation 829–830
listing configuration options

830
log files 840
Network Neighborhood brows-

ing 831
password encryption 830
printer sharing 836–839
security 829
setting up passwords 830
sharing files 828
user authentication 832
UTF-8 encoding 830
WINS server 831

samhain 692–693
SAN (Storage Area Network) serv-

ers 496
SANE 965
SANS Institute 675, 713, 965, 968
sar 654, 816
Sarbanes-Oxley Act (SOX) 675, 956,

960
SASL (Simple Authentication and

Security Layer) 610
SATA (Serial ATA) 112, 114
savelog 209
Sawyer, Michael 473
/sbin directory 75
SCA (Single Connector Attachment)

plug 116
schedulers, I/O 815–816
scheduling classes 56
scheduling commands 150–157
SCO 951
scp 697
SCSI 112, 114–118

BIOS 134
connectors 115–117
device names 873
fast and wide 115
installing 134
troubleshooting 118
vs. IDE 118

scsi_eh_N daemon 894
SDSC Secure Syslog 210
search directive, DNS 419
search path 15
SEC (Simple Event Correlator) 221
sectors and tracks, disks 120
secure file 206

secure terminals 685
/etc/securetty file 685
security

account hygiene 93
Application Security Checklist

676
auth.log file 206
backups 161, 686
BIND 417, 424, 451–464
certifications 673–675
CISA (Certified Information

Systems Auditor) 675
CISSP (Certified Information

Systems Security Professional)
674

vs. convenience 673
denial of service (DOS) attacks

397, 511, 608, 817
device files 684
directed broadcast 317
DNS 417, 424, 451–464
DNSSEC 387, 456–463
DOS attack via syslog 213
email 588
email to programs 547, 605–606
file permissions 684
firewalls 701–708
firewalls, host-based 318
flaws in Linux 670
FTP 684, 736
GIAC (Global Information As-

surance Certification) 675
of group file 684
handling attacks 710–712
hardened Linux 710
hints 678
hot-plug blacklist 883
ICMP redirects 295, 317
identifying open ports 652
information sources 712–715
intrusion detection 692–693
IP forwarding 316
IP spoofing 317–318
iptables 704–708
Kerberos 695–696
kernel network variables 319
LDAP and 526
log files 201, 214
login names, uniqueness 95
monitoring 17, 677–678, 688,

692, 704
of named 451, 453
network 316–319
NFS 487–489, 495, 686

992 Linux Administration Handbook

security continued
NIS 519, 685–686
overview 669–670
packet sniffers 655–657
PAM (Pluggable Authentication

Modules) 681–682
of passwd file 678–681, 684
of passwords 47, 94, 96, 679–

680, 690
policy 945–946
port scanning 688–690
of Postfix 625
of PPP 323
of printers 787
remote event logging 685
reporting break-ins 712
restricting root access 685
.rhosts file 685
root account 48, 681
rootkits 688, 951
running su 48
Samba 829
SDSC Secure Syslog 210
search path 48
secure file 206
/etc/securetty file 685
SELinux 693–694
of sendmail 558, 588–598, 603–

610, 686
setuid programs 683–684
/etc/shadow file 678–681
shadow passwords 94, 99–100,

678
SNMP 660
social engineering 671
software patches 677
source routing 317
SSH 685, 697–698
SSL 730–732
standards 675–676
stunnel 699–701
syslog 214
terminals 685
tools 688–701
Trojan horses 687
TSIG (transaction signatures)

444, 453–456
viruses 686–687
of VPNs (virtual private net-

works) 318, 708–710
of wireless networks 360
X Window System 744–748, 823

SecurityFocus.com 713
segmentation violations 58

SEGV signal 58
SELinux 693–694
Sender ID 599
Sender Policy Framework (SPF)

403, 599
sendmail 530, 897

see also email
see also spam
access database 591–594
acting as MSA/MTA 534
aliases see aliases, email
authentication and encryption

603–610
chrooted 607
command line flags 562
configuration 559–561, 565–

587, 590–598
configuration examples 599–

603
configuration options 586–587
controlling forgery 609
debugging 558, 566, 615–621
delivery agents 533
delivery modes 611
documentation 566
email to a disabled account 108
envelope splitting 611–612
headers 535–539, 595–596
history 557
Installation and Operation

Guide 639
installing 559–562
logging 619–621
m4 and 566–570, 586
masquerading 581–583
miltering 597
MX backup sites 565
ownership, files 603–604
performance 611–615
permissions 604–605
privacy options 606–607
queue groups 611–612
queue runners 613
queues 563–565, 611–613, 619
rate and connection limits 596
relaying 589–591
security 558, 588–598, 603–610,

686
and the service switch file 562
slamming 597
using SMTP to debug 618
spam control features 588–598
startup script 38
statistics 615

sendmail continued
tables and databases 576–580
verbose delivery 617–618
versions 557
virtusertable feature 579–580

Sendmail, Inc. 530, 610
sendmail.cf file 559, 563, 565
sendmail.cw file 574
sendmail.st file 615
SEPP 266
serial

breakout boxes 865
cables see serial cables
connectors see serial connectors
device drivers 872
device files 853–855
devices, software configuration

855
drivers, special characters 859–

862
interface, DCE vs. DTE 845–847
line, debugging 864
line, flow control 852–853
ports see serial ports
terminals, configuring 855–859

Serial ATA (SATA) 112, 114
serial cables

length limits 853
null modem 846–847
straight-through 846–847
Yost RJ-45 standard 850–852

serial connectors
DB-25 844–847
DB-9 848
mini DIN-8 847
RJ-11 862
RJ-45 849

serial ports 844–847
flow control 852–853
hard/soft carrier 852
parameters, setting 854–855
resetting 862
setting options 860–862

server statement, DNS 431, 448
servers

Apache see web hosting
DNS/BIND 412–414
email backup 541
FTP 734–736
HTTP 724
Kerberos Windows and DNS

464
load balancing 385, 805
master NIS 511–513, 517–518

Index 993

servers continued
name see BIND, DNS, and

named
network printer 773
NFS 489–492, 496
NIS slave 512–514, 517
Squid 733–734
Storage Area Network (SAN)

496
system files 510
TUX 727
VNC 824
web proxy 733
web see web hosting
WINS 831
X Window System for Windows

823, 827
service proxy firewalls 703
service switch file 306–307, 562
service.switch file 562
/etc/services file 281, 702, 892–893
setfacl 89, 91
setrlimit system call 818
setserial 854
setuid/setgid file attribute 45, 82–

83, 683–684
/etc/shadow file 99–100, 678–681,

856
shadow passwords 94, 99–100, 678
Shapiro, Gregory 610
share (Samba) 828
shell

filename globbing 10, 77
login 98
search path 48
startup files 105

SHELL variable 861
/etc/shells file 98, 108
showmount 492
shutdown 41–42, 215
shutting the system down 40–42
SIG DNS records 458
signals 57–60

see also individual signal names
caught, blocked, or ignored 57
CONT 61, 68
KILL 59–60
list of important 58
sending to a process 60
STOP 61, 68
TERM 59–60
tracing 66
TSTP 61

Simple Network Management Pro-
tocol see SNMP

single-user mode
booting to 24, 32
bypassing 24
entering 31
manual booting 22, 24
remounting the root filesystem

24, 32
size, file attribute 84
skel directory 106
slamming, controlling in sendmail

597
slapd daemon 523, 555
slave servers, NIS 512–514, 517
SLIP 320
slurpd daemon 523
SMART_HOST macro, sendmail

583, 600
SmartList 554
SMB protocol see Samba
smb.conf file 829–831, 836, 840
smbclient 835
smbcontrol 840
smbd daemon 829, 896
smbfs filesystem 835
smbpasswd 830
smbstatus 840
SMP (symmetric multiprocessing)

808
smrsh email delivery agent 533,

585, 605–606
SMTP protocol 532, 618, 625, 827
smtpd 897
smtpd/smtpfwdd 540
smurf attacks 317
SNMP 658–667, 900

agents 661–662
using Cacti 664
CiscoWorks and 667
community string 660
data collection 664
data organization 659–660
MIBs (Management Informa-

tion Bases) 659–660
using Nagios 665
NET-SNMP 661–664
OIDs (object identifiers) 659–

660
RMON MIB 661
tools 663–666
traps 660

snmpd daemon 662, 900
snmpd.conf file 662

snmpwalk 663
SOA DNS records 392–395, 447
socket system call 80
sockets, local domain 80
soft carrier 852
soft links 80
software

see also software package tools
see also software packages
configuration errors 673
development 919–924
engineering principles 923–924
licenses 955
management tools 266
patches 677
patents 957–958
piracy 955
printing 779
recommended 266
sharing over NFS 263
vulnerabilities 672

software package tools
see also package management
see also software
see also software packages
alien 235
APT 241–246
apt-ftparchive 244
apt-get 241–246
apt-proxy 244
dpkg 237
high level 237–247
RHN (Red Hat Network) 240
rpm 235–237
/etc/apt/sources.list file 242–

243
yum 246

software packages
see also software
see also software package tools
dependencies 265
installers 234
list of 267
localizations 255–260
management 234–247
namespaces 264
repositories 239
revision control 248–255
RPM format 235

software RAID 139
Sony rootkits 951
sortlist option, DNS 428
source routing 317
/etc/apt/sources.list file 242–243

994 Linux Administration Handbook

SOX (Sarbanes-Oxley Act) 675, 956,
960

spam
amavisd virus filter 637
blacklists 594–595, 598
danger of replying to 588, 598
eliminating using DNS 403
email header checking 595–596
fighting 598–599
greylisting 636
mobile spammers 598
Postfix 634–637
relaying 589–591
Sender ID 599
sendmail control features 588–

598
Spam Cop 598
SpamAssassin 598
SPF 403, 599
web resources for fighting 598

Spam Cop 598
SpamAssassin 598
speed, setting for a network inter-

face see mii-tool
SPF (Sender Policy Framework)

403, 599
split DNS 438–439, 441–444
squatting, domain 380
Squid web cache 733–734, 955
SRV DNS records 402–403, 464
SSH 697–698

forwarding for X 747–748
security 685
Windows clients 821
X forwarding 823

ssh 697
sshd daemon 697, 898
/etc/sshd_config file 698, 823
SSL 730–732
stackers, tape media 167
Stafford, Stephen 11
standards 958–960

COBIT (Control Objectives for
Information and related Tech-
nology) 960

data center 800
Ethernet 277, 352
FHS (Filesystem Hierarchy

Standard) 75
IEEE 802.* 278, 352, 356, 358–

359
Internet 274–275
ISO/IEC 27001 675

standards continued
ITIL (Information Technology

Interface Library) 960
Linux 958–960
LSB (Linux Standard Base) 959
network management 658
POSIX 959
security 675–676
Windows email and web com-

pliance 827
star 197
StarOffice 826
startup files 105–106
startup scripts 32–40

bootstrapping 32–40
CUPS 773, 780
examples 34, 38
init and 22, 32, 38, 40
/etc/init.d directory 34–35, 38,

40
NFS server 489
sendmail 38

startx 743
statd daemon 486
stateful inspection firewalls 703
static electricity 793
static routes 294, 303–305
statistics

BIND 473
CPU 808
network 649–654
NFS 495
performance 816
reporting 816
sendmail 615

STD documents 275
sticky bit 82–83
STOP signal 58, 61, 68
Stow, GNU 266
STP cables 844
strace 66
straight-through serial cables 846–

847
stty 852, 860–862
stunnel 699–701
su 48
subdomains, DNS 383
submission agents, email (MSA)

533
submit.cf file 559, 566
subnet masks see networks, net-

masks
subnetting 282–285
Subversion 253–255

sudo 48–51, 97, 206
sudo.log file 206
/etc/sudoers file 49–50
superblocks 126
superuser see root account
SUSE network configuration 309
svn 254
svnserve daemon, Subversion 253
svnserve.conf file 254
swap space 124, 129, 138, 812, 814
swapon 128, 138, 812, 814
swatch 220
switch file 420, 479
switches 353, 356–358, 360
Swpkg 266
symbolic links 77, 80
symmetric multiprocessing (SMP)

808
sync command 42
sync system call 42, 126
synchronization of clocks 902
synchronizing files

copying 505
rdist 505–508
rsync 508–510
wget/ftp/expect 510–511

/proc/sys directory 874
/sys directory 872
/etc/sysconfig directory 37–38, 309
sysctl 874
/etc/sysctl.conf file 316, 874
sysfs virtual filesystem 872, 882
syslog 209–220

see also log files
see also logging
actions 213
alternatives 209
architecture 210
central server 214, 216
configuration examples 214–

217
configuring 210–213
debugging 217–218
and DNS logging 466–471
DOS attack via 213
example using Perl 220
facility names 212
libraries 218–220
output 216
programming interface 218–

220
remote logging 685
restarting 210
security 214

Index 995

syslog continued
setup 214
severity levels 212
software that uses 218
/etc/syslog.conf file 204, 210–

216
syslogd daemon 203, 210–213,

901
time stamps 211

syslog routine 210, 218
/etc/syslog.conf file 204, 210–216,

620
syslogd daemon 203, 210–213, 901
syslog-ng 209
system administration 18

see also hardware
see also security
see also system administration

group responsibilities
automation 922–924
checklists 943
configuring multiple machines

502
development 919–924
disaster recovery 163, 938–943
documentation 930–934
emergency power supplies 940
essential tasks 16–18
Internet resources 13
keeping users happy 904–906
legal issues 949–958
list of email tasks 530
local scripts 922–924
management 907–915
operations 924–926
orgs and conferences 964–967
personality syndrome 18
policy agreements 948
purchasing hardware 782–787,

916–917
role of 915–919
SOX (Sarbanes-Oxley Act) 956
support 927–930
survey results 968
testing solutions 910
toolbox 800, 922–923
trouble ticketing and tracking

935–938
system administration roles

administration 915–919
development 919–924
management 906–915
operations 924–927
support 927–930

system configuration 255–263
see also hardware
see also Linux installation
see also system administration
Arusha Project 261
cfengine 260
CIM (Common Information

Model) 262
LCFG (large-scale configuration

system) 261
management 260–263
Template Tree 2 262

system-config-kickstart 231
system-config-netboot 226

T

talk 900
talkd daemon 900
Tanenbaum, Andrew S. 5
tape drives, device names 873
tapes, backup

see also media, backup
4mm 166
8mm 166
AIT 166
blocking factor 177
copying 178
DDS/DAT 166
device files 171
DLT/S-DLT 166
library, robotic 179
LTO 167
positioning 178
SAIT 166
stackers 167
VXA/VXA-X 167

tar 177–178
target number, SCSI 117
TCP

connection states 651
vs. UDP for NFS 485
wrappers 887

TCP/IP 271, 275–281
CIDR (Classless Inter-Domain

Routing) 283, 286–288
fancy options (SACK, ECN) 307
fragmentation 279, 646
history 272
IPsec 949
IPv6 286, 291–293
loopback interface 282, 294,

302, 397

TCP/IP continued
NAT 290–291, 319
netmasks 282–285
network model 276
packet encapsulation 276–277
ports 281
protocol suite 275–276
subnetting 282–285
TOS bits 330

tcpd daemon 887
tcpdump 656
tcpflow 657
telinit 32, 42, 857, 887
telnet 346
TELNET protocol 898
Tel-splice connector 852
Template Tree 2, system configura-

tion 262
temporary files, removing 154
Tera Term Pro 821
TERM environment variable 859,

861
TERM signal 58–60
/etc/termcap file 858–859
Terminal Server service, Windows

825
terminals 855–859

capability databases 858–859
control 56
secure 685
setting options 860–862
special characters 859–862
unwedging 862

terminators, SCSI 117
/etc/terminfo file 858
Terry, Douglas 376
testing, system 257
testparm 830
Texinfo 11
TFTP 312, 899
tftp 347
Thomas, Eric 554
threads, kernel 23
TIA (Telecommunications Industry

Association) 354
TightVNC 824
time synchronization 902–903
tip 864
TLS see SSL
TLT/S-DLT tapes 166
/tmp directory 75
/tmp partition 125
tools, hardware 800
top 65, 809, 817

996 Linux Administration Handbook

top-level domains 379, 381
topology statement, DNS 428
Torvalds, Linus 5
traceroute 647–649
tracks and sectors, disks 120
transfers-in option, DNS 425
transfer-source option, DNS 426,

445
transfers-out option, DNS 425
transfers-per-ns option, DNS 425
transport agents, email 532
Tridgell, Andrew 508, 828
Troan, Erik 208
Trojan horses 687
Trojnara, Michal 699
trouble ticketing and tracking 935–

938
troubleshooting

Bacula 195–196
BIND 466–478
CUPS 780–782
named 466–478
network hardware, cable analyz-

ers 366
network hardware, sniffers 366
network hardware, T-BERD line

analyzer 366
network printing 781
networks 366, 644–654
networks with mii-tool 302–

303
Postfix 637–639
printers 780–782
RAID 144–145
runaway processes 67–69
Samba 840–841
SCSI 118
sendmail 615–621
serial line 864–865
sluggish system 817–819
syslog 217–218
wedged terminal 862
X Window System 754–757
Xorg X server 754–757

trusted-keys statement, DNS 430
TrustedUser sendmail user ac-

count 603
Ts’o, Theodore 120
tset 861–862
TSIG (transaction signatures) 444,

453–456
Tsirigotis, Panos 887

TSM (Tivoli Storage Manager) 197
TSTP signal 58, 61
TTL (time to live), packets 647
$TTL directive, DNS 390, 394, 406
TTL for DNS resource records 390
tune2fs 121, 132
tuning

IDE disks 130
the kernel 314–316, 874
network parameters 314–316
NFS 494

TUX server 727
Tweedie, Stephen 120
TXT DNS records 403, 424
typographic conventions 9–10

U

U (rack unit) 791
Ubuntu network configuration 310
udev 79
udev system 872
udev.conf directory 872
udevd 872, 899
UDP (User Datagram Protocol)

271, 275, 485
UIDs see user IDs
Ultr@VNC project 824
Ultra SCSI see SCSI
umask 86, 105
umount 73, 129, 494
uname 881
undeliverable messages, sendmail

613
unicast addresses 292
Uninterruptible Power Supply

(UPS) 799
UNIX vs. Linux 4
unlink system call 80
unshielded twisted pair see UTP ca-

bles
unsolicited commercial email see

spam
update-policy clause, DNS 450
update-rc.d 40
updating zone files, DNS 447–450
upgrades 176–177
uptime 808, 818
URLs 720–721
us domain 380

USB 865–866
device identification 869
disks 112, 147–148, 165
printers 774, 781
RS-232 adapters 865
in place of SCSI 115
supported devices 784

use_cw_file feature, sendmail 574
USENIX association 965–966, 968
user accounts

adding 102–107, 109
aliases, global (email) 95
authentication under Samba

832
bin 51
daemon 51
deleting 110
disabling 108
email home machine 106
ftp 735
GECOS information 98
guest 944
home directories 75, 98, 105
hygiene 93
ID number see user IDs
login process 46
login shell 98
modifying 109
names 94–95
nobody (NFS) 51, 488
passwords 104
pseudo-users 51
removing 107
root see root account
sendmail use of 603
shared 680
site-wide management 944
startup files 105
superuser see root account

user agents, email 531
User Datagram Protocol see UDP
user IDs 45, 54–55, 96–97, 104
useradd 102, 109
userdel 110
usermod 99, 109
usernames see user accounts, names
users

see also user accounts
documentation 934
keeping them happy 904–906
policy agreements 946–948

/usr directory 75
UTP cables 353–355, 366, 844

Index 997

V

V.90 modem standard 863
van den Berg, Stephen R. 554, 585
/var filesystem 75, 125
variables, initializing in startup files

105
vendor logos 10
vendors we like 371–372
Venema, Wietse 623, 856
VeriSign Site Finder tool 429
Veritas, backup tool 198
VERSIONID macro, sendmail 570
VFS (Virtual File System) 120
vgcreate LVM utility 143
vgdisplay LVM utility 143, 146
vgscan LVM utility 143
Viega, John 553
view statement, DNS 438
.vimrc file 105
vipw 103
virtual domains, Postfix 630–632
Virtual File System (VFS) 120
virtual hosts, web 727–730
virtual memory (VM) 124, 129,

810–811
Virtual Network Computing see

VNC protocol
virtual network interfaces 300
virtual private networks see VPNs
virtual terminals and X 754–755
VirtualHost clause, Apache 729
virtusertable feature, sendmail

579–580
viruses 686–687
visudo 50
Vixie, Paul 150, 376
Vixie-cron see cron daemon
VLANs 357
vmlinuz file 29, 75
vmstat 807–808, 818
VMware 825
VNC protocol 824
vncserver 824
VPNs (virtual private networks)

318, 328, 708–710
IPsec tunnels 709
SSH tunnels 709

VRFY command 588
VT100 terminal 858
VXA/VXA-X backup tapes 167

W

wait system call 57
Wall, Larry 388
WANs 351
Ward, Grady 47
WarGames 669
warranties 793
Warsaw, Barry 553
Wassenaar, Eric 474
Watchguard Firebox 319
WBEM (Web-Based Enterprise

Management) standard 658
web see World Wide Web
Web 2.0 719
web hosting 719–734

Apache 724–732
Apache configuration 726–732
Apache installation 724–726
caching server 733–734
certificates 731–732
CGI scripting 722
httpd 901
IIS (Windows) 827
load balancing 385, 722–724
log files 727
performance 722–724
proxy server 733–734
Squid cache 733–734
SSL 730–732
static content 727
TUX 727
virtual interfaces 727–730

Weeks, Alex 11
well-known ports 688, 702
Wheeler, David A. 55
whereis 15
which 15
white pages 901
Win4Lin 826
WINCH signal 58–59
Windows

see also Samba
accessing remote desktops 822–

825
ACLs 833
automounter 834
backups 197
DFS (Distributed File System)

834
dual booting 826
email and web standards com-

pliance 827

Windows continued
FAT filesystems 120
IMAP 828
Kerberos server and DNS 464
logging in from 821–822
mounting Windows filesystems

835
multibooting with LINUX 30–

31
Network Neighborhood brows-

ing using Samba 831
POP (Post Office Protocol) 828
printing 838–839
RDP (Remote Desktop Proto-

col) 824
running Linux programs from

822–823
running under VMware 825
running Windows programs un-

der Linux 825
sharing files 828
SMTP 827
SSH clients 821
Terminal Server service 825
UNIX software running on 827
VNC servers 824
Wine project 825
X forwarding 823
X Window System servers 823,

827
xterm for 827

Wine project 825
Winmodems 863
WinPrinters 783
WINS server, Samba 831
WinSCP 822
wireless networks see networks,

wireless
Wireshark packet sniffer 366, 657
wiring see network wiring
Wirzenius, Lars 11
WKS DNS records 403
workstations, diskless 898
World Wide Web

see also web hosting
browsers 720
HTTP protocol 720–722
URLs 720

wrapper scripts for localization 265
wtmp file 206
WU-FTPD 900
wvdial 325
WWW see World Wide Web

998 Linux Administration Handbook

X

X display manager 743–744
X Window System

see also Xorg X server
architechture 742
client authentication 745–746
desktop environments 757–759
DISPLAY environment variable

744, 748
display manager 743–744
history 741–742
killing the X server 755
magic cookies 746
running an application 744–748
security 744–748
security under Windows 823
SSH and 747–748
startup files 105
terminal window 859
troubleshooting 754–757
virtual terminals 754–755
Windows servers 823, 827
X forwarding 823
X server output 755–756

/etc/X11 directory 743
X11 see X Window System
xargs 72
xauth 746
.Xclients file 105
.Xdefaults file 105
xdm directory 743
xdm program 743
xdpyinfo 756
xdvi 785
XFS filesystem 122
xhost 745–746
XHTML 764
xinetd 887–890

configuring 888–890
ftpd and 735
/etc/services file 892–893
/etc/xinetd.conf file 888–890

/etc/xinetd.conf file 888
/etc/xinetd.d directory 888
xinit 743
.xinitrc file 105
xntpd 62
XON/XOFF 852–853
Xorg X server 748–754

configuring 748–754
debugging 754–757
logging 755–757

xdpyinfo 756
/etc/X11/xorg.conf file 749–

754
xorgconfig 749

/etc/X11/xorg.conf file 749–754
xorgconfig 749
XORP (eXtensible Open Router

Platform) 344
Xsession 743
~/.xsession file 105, 743
xtab file 489, 895
xterm console emulator 827

Y

Yellow Pages see NIS
Ylönen, Tatu 697
Yost serial wiring system 850–852
Yost, Dave 850
/var/yp file 512
yp* commands 513–518
/etc/yp.conf file 512
ypbind daemon 896
ypserv daemon 896
ypxfr 896
yum 246

Z

Zebra routing package 344
Zhou, Songnian 376
Zimmermann, Philip 696
zombie processes 56, 61, 63, 886
zone statement, DNS 432–436
zones, DNS 388, 412

commands 405–407
files 389
incremental transfers 388, 429
IXFRs 447
linkage 407–409
signed, creating 458
transfers 413, 425, 447–448
updating files 447–450

zone-statistics option, DNS 433

999

About the Contributors

Lynda McGinley has been doing system and network administration for 20 years in
an educational environment and was a contributor to the third edition of the UNIX
System Administration Handbook. She currently works at the University Corpora-
tion for Atmospheric Research as a system security engineer. Lynda believes she will
be best remembered for being Evi’s sysadmin for a number of years at the University
of Colorado. :-)

Ben Whaley is a senior engineer at Applied Trust Engineering. He holds a degree in
computer science from the University of Colorado and is a Red Hat Certified Engi-
neer. In addition to dirtying his hands with Perl and PHP programming, Ben is a
mentor in the Big Brother Big Sister program.

Adam Boggs was a student administrator in the trenches at the University of Colo-
rado’s undergraduate lab through the late 1990s. He has spent the past several years
as a kernel developer working on filesystems and storage for Solaris and Linux. He is
currently working as a network, storage, and cluster administrator for supercom-
puters used in atmospheric modeling.

Jeffrey S. Haemer (jsh@usenix.org) has been doing commercial UNIX and Linux
work since 1983 and has still never used Microsoft Word. Eleven of those years were
at various incarnations of the printer manufacturer QMS. Evi taught Jeff to drive.
His favorite palindrome is, “A man, a plan, a canal, Suez.”

Tobi Oetiker (tobi@oetiker.ch) is an electrical engineer by education and a system
administrator by vocation. He has been working in system administration since
1994. After furnishing a deluxe computing environment to the students and staff of
ETH Zurich for years and writing a few popular open source applications such as
MRTG, RRDtool, and SmokePing, he is now working at Oetiker+Partner AG, a pro-
vider of IT and consulting services. He is married and lives in Switzerland. More
information about Tobi can be found at tobi.oetiker.ch.

1000 About the Contributors

Fritz Zaucker is a physicist by training. After a few years of climate change research,
he spent the last 10 years leading the IT Support Group (ISG.EE) at the Department
of Information Technology and Electrical Engineering at ETH Zurich. Together with
a group of dedicated coworkers, he transformed ISG.EE into a professional organi-
zation focused on efficient system administration, reliable IT infrastructure, and
customer satisfaction. He has now joined some of his friends and colleagues at Oet-
iker+Partner AG, an IT and management consulting firm and provider of IT services.
Please visit Fritz at www.zaucker.ch. Fritz sailed with Evi and her nieces in the Medi-
terranean and wholeheartedly recommends your joining her on Wonderland.

Scott Seidel is a senior engineer at Applied Trust Engineering, where he specializes
in enterprise security and performance management. He holds a degree in business
administration with areas of emphasis in information systems and in finance from
the University of Colorado at Boulder. Scott’s research interests include system mon-
itoring and server virtualization. When not administering Linux systems, Scott can
be found in the kitchen perfecting a new homebrew.

Bryan Buus is the vice president of engineering at Adeptive Software, a custom soft-
ware development company. Before the dot-com bust, Bryan was vice president of
development at XOR, leading the firm’s web and Internet services division. Bryan
holds a bachelors and masters degree in computer science from Boston University.

Ned McClain (ned@atrust.com) is co-founder and CTO of Applied Trust Engineer-
ing. He lectures about various system administration and security topics at techni-
cal conferences such as USENIX in the United States and APRICOT in Asia. Ned has
a degree in computer science from Cornell University’s College of Engineering and
is CISSP #39389.

David Schweikert works as system administrator at ETH Zurich in Switzerland,
where he is, among others, responsible for the email system for the Department for
Electrical Engineering. He is the developer of the open source projects Mailgraph (a
tool that plots mail statistics) and Postgrey (a greylisting implementation for Post-
fix). David is also interested in databases and large-site system administration.

www.zaucker.ch

1001

About the Authors

For general comments and bug reports, please contact linux@book.admin.com.
Because of the volume of email that this alias receives, we regret that we are
unable to answer technical questions.

Evi Nemeth (sailingevi@yahoo.com) has retired from
the computer science faculty at the University of Colo-
rado but still dabbles in network research at CAIDA,
the Cooperative Association for Internet Data Analysis
at the San Diego Supercomputer Center. She is cur-
rently exploring the Caribbean on her new toy, a 40-
foot sailboat named Wonderland.

Garth Snyder (garth@grsweb.us) has worked at NeXT
and Sun and holds a degree in electrical engineering
from Swarthmore College and an MD and MBA from
the University of Rochester.

Trent R. Hein (trent@atrust.com) is the co-founder of
Applied Trust Engineering, a company that provides
network infrastructure security and performance con-
sulting services. Trent holds a BS in computer science
from the University of Colorado.

1002

Colophon

This book was produced on Windows XP. We used Adobe FrameMaker for layout and
a variety of other Adobe applications for graphics and production.

Tyler Curtain drew the cartoons, using pen and ink. We scanned them on a desktop
scanner, cleaned them up in Photoshop, and converted them to PostScript artwork
with Adobe Streamline. (Streamline’s features are now built into Adobe Illustrator.)

The body text is Minion Multiple Master, designed by Robert Slimbach. Headings,
tables, and illustrations are set in Myriad Multiple Master by Robert Slimbach and
Carol Twombly.

The “code” font is PMN Caecilia, designed by Peter Matthias Noordzij. We searched
in vain for a long time for a fixed-width font that looked similar to Courier but
lacked Courier’s many typesetting problems. We finally settled on this proportional
font and used tabs to line up columns of output. This approach works pretty well,
but Caecilia is missing some of the characters needed for technical typesetting, and
its italic version is noticeably slimmer than its roman. The lack of good fonts for this
application represents a sizable hole in an otherwise saturated and commodified
typeface market. Type designers take note!

Our current software has worked well for us, but it’s unlikely that we can continue
with it for much longer. Adobe no longer sells or admits the existence of multiple
master type, and the features that supported this format have been systematically
removed from Adobe applications. Adobe also seems to be signalling the imminent
death-by-attrition of FrameMaker. Unfortunately, no other document production
software includes the detailed cross-referencing, indexing, and conditional text fea-
tures that are used throughout this book. We’re actively seeking a replacement that
offers a credible migration path for FrameMaker users. If you know of one, please
drop us a line at linux@book.admin.com.

	CONTENTS
	FOREWORD TO THE FIRST EDITION
	PREFACE
	ACKNOWLEDGMENTS
	SECTION ONE: BASIC ADMINISTRATION
	CHAPTER 1 WHERE TO START
	Suggested background
	Linux’s relationship to UNIX
	Linux in historical context
	Linux distributions
	Notation and typographical conventions
	Where to go for information
	How to find and install software
	Essential tasks of the system administrator
	System administration under duress
	Recommended reading
	Exercises

	CHAPTER 2 BOOTING AND SHUTTING DOWN
	Bootstrapping
	Booting PCs
	Using boot loaders: LILO and GRUB
	Booting single-user mode
	Working with startup scripts
	Rebooting and shutting down
	Exercises

	CHAPTER 3 ROOTLY POWERS
	Ownership of files and processes
	The superuser
	Choosing a root password
	Becoming root
	Other pseudo-users
	Exercises

	CHAPTER 4 CONTROLLING PROCESSES
	Components of a process
	The life cycle of a process
	Signals
	kill and killall: send signals
	Process states
	nice and renice: influence scheduling priority
	ps: monitor processes
	top: monitor processes even better
	The /proc filesystem
	strace: trace signals and system calls
	Runaway processes
	Recommended reading
	Exercises

	CHAPTER 5 THE FILESYSTEM
	Pathnames
	Filesystem mounting and unmounting
	The organization of the file tree
	File types
	File attributes
	Access control lists
	Exercises

	CHAPTER 6 ADDING NEW USERS
	The /etc/passwd file
	The /etc/shadow file
	The /etc/group file
	Adding users
	Removing users
	Disabling logins
	Managing accounts
	Exercises

	CHAPTER 7 ADDING A DISK
	Disk interfaces
	Disk geometry
	Linux filesystems
	An overview of the disk installation procedure
	hdparm: set IDE interface parameters
	fsck: check and repair filesystems
	Adding a disk: a step-by-step guide
	Advanced disk management: RAID and LVM
	Mounting USB drives
	Exercises

	CHAPTER 8 PERIODIC PROCESSES
	cron: schedule commands
	The format of crontab files
	Crontab management
	Some common uses for cron
	Other schedulers: anacron and fcron
	Exercises

	CHAPTER 9 BACKUPS
	Motherhood and apple pie
	Backup devices and media
	Setting up an incremental backup regime with dump
	Restoring from dumps with restore
	Dumping and restoring for upgrades
	Using other archiving programs
	Using multiple files on a single tape
	Bacula
	Commercial backup products
	Recommended reading
	Exercises

	CHAPTER 10 SYSLOG AND LOG FILES
	Logging policies
	Linux log files
	logrotate: manage log files
	Syslog: the system event logger
	Condensing log files to useful information
	Exercises

	CHAPTER 11 SOFTWARE AND CONFIGURATION MANAGEMENT
	Basic Linux installation
	Diskless clients
	Package management
	High-level package management systems
	Revision control
	Localization and configuration
	Configuration management tools
	Sharing software over NFS
	Recommended software
	Recommended reading
	Exercises

	SECTION TWO: NETWORKING
	CHAPTER 12 TCP/IP NETWORKING
	TCP/IP and the Internet
	Networking road map
	Packets and encapsulation
	IP addresses: the gory details
	Routing
	ARP: the address resolution protocol
	Addition of a machine to a network
	Distribution-specific network configuration
	DHCP: the Dynamic Host Configuration Protocol
	Dynamic reconfiguration and tuning
	Security issues
	Linux NAT
	PPP: the Point-to-Point Protocol
	Linux networking quirks
	Recommended reading
	Exercises

	CHAPTER 13 ROUTING
	Packet forwarding: a closer look
	Routing daemons and routing protocols
	Protocols on parade
	routed: RIP yourself a new hole
	gated: gone to the dark side
	Routing strategy selection criteria
	Cisco routers
	Recommended reading
	Exercises

	CHAPTER 14 NETWORK HARDWARE
	LAN, WAN, or MAN?
	Ethernet: the common LAN
	Wireless: nomad’s LAN
	FDDI: the disappointing, expensive, and outdated LAN
	ATM: the promised (but sorely defeated) LAN
	Frame relay: the sacrificial WAN
	ISDN: the indigenous WAN
	DSL and cable modems: the people’s WAN
	Where is the network going?
	Network testing and debugging
	Building wiring
	Network design issues
	Management issues
	Recommended vendors
	Recommended reading
	Exercises

	CHAPTER 15 DNS: THE DOMAIN NAME SYSTEM
	DNS for the impatient: adding a new machine
	The history of DNS
	Who needs DNS?
	The DNS namespace
	How DNS works
	What’s new in DNS
	The DNS database
	The BIND software
	Designing your DNS environment
	BIND client issues
	BIND server configuration
	BIND configuration examples
	Starting named
	Updating zone files
	Security issues
	Testing and debugging
	Distribution specifics
	Recommended reading
	Exercises

	CHAPTER 16 THE NETWORK FILE SYSTEM
	General information about NFS
	Server-side NFS
	Client-side NFS
	nfsstat: dump NFS statistics
	Dedicated NFS file servers
	Automatic mounting
	Recommended reading
	Exercises

	CHAPTER 17 SHARING SYSTEM FILES
	What to share
	nscd: cache the results of lookups
	Copying files around
	NIS: the Network Information Service
	LDAP: the Lightweight Directory Access Protocol
	Recommended reading
	Exercises

	CHAPTER 18 ELECTRONIC MAIL
	Mail systems
	The anatomy of a mail message
	Mail philosophy
	Mail aliases
	Mailing lists and list wrangling software
	sendmail: ringmaster of the electronic mail circus
	sendmail configuration
	Basic sendmail configuration primitives
	Fancier sendmail configuration primitives
	Spam-related features in sendmail
	Configuration file case study
	Security and sendmail
	sendmail performance
	sendmail statistics, testing, and debugging
	The Exim Mail System
	Postfix
	Recommended reading
	Exercises

	CHAPTER 19 NETWORK MANAGEMENT AND DEBUGGING
	Network troubleshooting
	ping: check to see if a host is alive
	traceroute: trace IP packets
	netstat: get network statistics
	sar: inspect live interface activity
	Packet sniffers
	Network management protocols
	SNMP: the Simple Network Management Protocol
	The NET-SMNP agent
	Network management applications
	Recommended reading
	Exercises

	CHAPTER 20 SECURITY
	Is Linux secure?
	How security is compromised
	Certifications and standards
	Security tips and philosophy
	Security problems in /etc/passwd and /etc/shadow
	POSIX capabilities
	Setuid programs
	Important file permissions
	Miscellaneous security issues
	Security power tools
	Cryptographic security tools
	Firewalls
	Linux firewall features: IP tables
	Virtual private networks (VPNs)
	Hardened Linux distributions
	What to do when your site has been attacked
	Sources of security information
	Recommended reading
	Exercises

	CHAPTER 21 WEB HOSTING AND INTERNET SERVERS
	Web hosting basics
	HTTP server installation
	Virtual interfaces
	The Secure Sockets Layer (SSL)
	Caching and proxy servers
	Anonymous FTP server setup
	Exercises

	SECTION THREE: BUNCH O' STUFF
	CHAPTER 22 THE X WINDOW SYSTEM
	The X display manager
	Running an X application
	X server configuration
	Troubleshooting and debugging
	A brief note on desktop environments
	Recommended Reading
	Exercises

	CHAPTER 23 PRINTING
	Printers are complicated
	Printer languages
	CUPS architecture
	CUPS server administration
	Troubleshooting tips
	Printer practicalities
	Other printer advice
	Printing under KDE
	Recommended reading
	Exercises

	CHAPTER 24 MAINTENANCE AND ENVIRONMENT
	Hardware maintenance basics
	Maintenance contracts
	Electronics-handling lore
	Monitors
	Memory modules
	Preventive maintenance
	Environment
	Power
	Racks
	Data center standards
	Tools
	Recommended reading
	Exercises

	CHAPTER 25 PERFORMANCE ANALYSIS
	What you can do to improve performance
	Factors that affect performance
	System performance checkup
	Help! My system just got really slow!
	Recommended reading
	Exercises

	CHAPTER 26 COOPERATING WITH WINDOWS
	Logging in to a Linux system from Windows
	Accessing remote desktops
	Running Windows and Windows-like applications
	Using command-line tools with Windows
	Windows compliance with email and web standards
	Sharing files with Samba and CIFS
	Sharing printers with Samba
	Debugging Samba
	Recommended reading
	Exercises

	CHAPTER 27 SERIAL DEVICES
	The RS-232C standard
	Alternative connectors
	Hard and soft carrier
	Hardware flow control
	Cable length
	Serial device files
	setserial: set serial port parameters
	Software configuration for serial devices
	Configuration of hardwired terminals
	Special characters and the terminal driver
	stty: set terminal options
	tset: set options automatically
	Terminal unwedging
	Modems
	Debugging a serial line
	Other common I/O ports
	Exercises

	CHAPTER 28 DRIVERS AND THE KERNEL
	Kernel adaptation
	Drivers and device files
	Why and how to configure the kernel
	Tuning Linux kernel parameters
	Building a Linux kernel
	Adding a Linux device driver
	Loadable kernel modules
	Hot-plugging
	Setting bootstrap options
	Recommended reading
	Exercises

	CHAPTER 29 DAEMONS
	init: the primordial process
	cron and atd: schedule commands
	xinetd and inetd: manage daemons
	Kernel daemons
	Printing daemons
	File service daemons
	Administrative database daemons
	Electronic mail daemons
	Remote login and command execution daemons
	Booting and configuration daemons
	Other network daemons
	ntpd: time synchronization daemon
	Exercises

	CHAPTER 30 MANAGEMENT, POLICY, AND POLITICS
	Make everyone happy
	Components of a functional IT organization
	The role of management
	The role of administration
	The role of development
	The role of operations
	The work of support
	Documentation
	Request-tracking and trouble-reporting systems
	Disaster recovery
	Written policy
	Legal Issues
	Software patents
	Standards
	Linux culture
	Mainstream Linux
	Organizations, conferences, and other resources
	Recommended Reading
	Exercises

	INDEX
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	ABOUT THE CONTRIBUTORS
	ABOUT THE AUTHORS

