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   Foreword 

   It is with great pleasure that I write this foreword to Structural Analysis: In 
Theory and Practice, by Alan Williams. Like many other engineers, I have uti-
lized Dr. Williams ’ numerous publications through the years and have found 
them to be extremely useful. This publication is no exception, given the 
extensive experience and expertise of Dr. Williams in this area, the credibil-
ity of Elsevier with expertise in technical publications internationally, and the 
International Code Council (ICC) with expertise in structural engineering and 
building code publications. 

   Engineers at all levels of their careers will find the determinate and indeter-
minate analysis methods in the book presented in a clear, concise, and practical 
manner. I am a strong advocate of all of these attributes, and I am certain that 
the book will be successful because of them. Coverage of many other impor-
tant areas of structural analysis, such as Plastic Design, Matrix and Computer 
Methods, Elastic-Plastic Analysis, and the numerous worked-out sample prob-
lems and the answers to the supplementary problems greatly enhance and rein-
force the overall learning experience. 

   One may ask why, in this age of high-powered computer programs, a com-
prehensive book on structural analysis is needed. The software does all of the 
work for us, so isn't it sufficient to read the user’s guide to the software or to 
have a cursory understanding of structural analysis? 

   While there is no question that computer programs are invaluable tools that 
help us solve complicated problems more efficiently, it is also true that the soft-
ware is only as good as the user’s level of experience and his/her knowledge of 
the software. A small error in the input or a misunderstanding of the limita-
tions of the software can result in completely meaningless output, which can 
lead to an unsafe design with potentially unacceptable consequences. 

   That is why this book is so valuable. It teaches the fundamentals of struc-
tural analysis, which I believe are becoming lost in structural engineering. 
Having a solid foundation in the fundamentals of analysis enables engineers 
to understand the behavior of structures and to recognize when output from a 
computer program does not make sense. 

   Simply put, students will become better students and engineers will become 
better engineers as a result of this book. It will not only give you a better 
understanding of structural analysis; it will make you more proficient and 
efficient in your day-to-day work. 

   David A. Fanella, Ph.D., S.E., P.E. 
   Chicago, IL 

   March 2008   



   Part One 

 Analysis of Determinate Structures   



                                 1       Principles of statics  

    Notation 

  F       force  
  fi       angle in a triangle opposite side Fi   
  H       horizontal force  
  l       length of member  
  M       bending moment  
  P       axial force in a member  
  R       support reaction  
  V       vertical force  
  WLL       concentrated live load  
  wDL       distributed dead load  
  θ       angle of inclination   

    1.1     Introduction 

   Statics consists of the study of structures that are at rest under equilibrium 
conditions. To ensure equilibrium, the forces acting on a structure must bal-
ance, and there must be no net torque acting on the structure. The principles 
of statics provide the means to analyze and determine the internal and external 
forces acting on a structure. 

   For planar structures, three equations of equilibrium are available for the 
determination of external and internal forces. A statically determinate struc-
ture is one in which all the unknown member forces and external reactions 
may be determined by applying the equations of equilibrium. 

   An indeterminate or redundant structure is one that possesses more 
unknown member forces or reactions than the available equations of equilib-
rium. These additional forces or reactions are termed redundants. To determine 
the redundants, additional equations must be obtained from conditions of geo-
metrical compatibility. The redundants may be removed from the structure, 
and a stable, determinate structure remains, which is known as the cut-back 
structure. External redundants are redundants that exist among the external 
reactions. Internal redundants are redundants that exist among the member 
forces.  
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    1.2     Representation of forces 

   A force is an action that tends to maintain or change the position of a struc-
ture. The forces acting on a structure are the applied loads, consisting of both 
dead and imposed loads, and support reactions. As shown in  Figure 1.1   , the 
simply supported beam is loaded with an imposed load WLL located at point 
3 and with its own weight wDL, which is uniformly distributed over the length 
of the beam. The support reactions consist of the two vertical forces located at 
the ends of the beam. The lines of action of all forces on the beam are parallel. 

1 2
3

WLL
wDL

Figure 1.1             

100 kips

75 kips 25 kips 25 kips

100 kips

75 kips

50 kips 50 kips 50 kips 50 kips

(i) (ii)

Figure 1.2             

   In general, a force may be represented by a vector quantity having a magni-
tude, location, sense, and direction corresponding to the force. A vector repre-
sents a force to scale, such as a line segment with the same line of action as the 
force and with an arrowhead to indicate direction. 

   The point of application of a force along its line of action does not affect the 
equilibrium of a structure. However, as shown in the three-hinged portal frame 
in  Figure 1.2   , changing the point of application may alter the internal forces in 
the individual members of the structure. 

   Collinear forces are forces acting along the same line of action. The two hor-
izontal forces acting on the portal frame shown in  Figure 1.3    (i) are collinear 
and may be added to give the single resultant force shown in (ii). 
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   Forces acting in one plane are coplanar forces. Space structures are three-
dimensional structures and, as shown in  Figure 1.4   , may be acted on by non-
coplanar forces. 

50 kips 20 kips 30 kips

1

2 3 2 3

44 1

(i) (ii)

Figure 1.3             

Figure 1.4             

Figure 1.5             

   In a concurrent force system, the line of action of all forces has a common 
point of intersection. As shown in  Figure 1.5    for equilibrium of the two-hinged 
arch, the two reactions and the applied load are concurrent. 
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   It is often convenient to resolve a force into two concurrent components. The 
original force then represents the resultant of the two components. The direc-
tions adopted for the resolved forces are typically the x- and y-components in a 
rectangular coordinate system. As shown in  Figure 1.6   , the applied force F on 
the arch is resolved into the two rectangular components: 

H F

V F

�

�

cos

sin

θ

θ      

F
V

H
θ

Figure 1.6             

F

Fl Fl Fl

F M � Fl

F F F

1 1 12 2 2
� �

l

(i) (ii) (iii)

Forces

Moment

Figure 1.7             

   The moment acting at a given point in a structure is given by the product 
of the applied force and the perpendicular distance of the line of action of the 
force from the given point. As shown in  Figure 1.7   , the force F at the free end 
of the cantilever produces a bending moment, which increases linearly along 
the length of the cantilever, reaching a maximum value at the fixed end of: 

M Fl�      

   The force system shown at (i) may also be replaced by either of the force 
systems shown at (ii) and (iii). The support reactions are omitted from the fig-
ures for clarity.  

Structural Analysis: In Theory and Practice
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    1.3     Conditions of equilibrium 

   In order to apply the principles of statics to a structural system, the structure 
must be at rest. This is achieved when the sum of the applied loads and sup-
port reactions is zero and there is no resultant couple at any point in the struc-
ture. For this situation, all component parts of the structural system are also in 
equilibrium.

   A structure is in equilibrium with a system of applied loads when the result-
ant force in any direction and the resultant moment about any point are zero. 
For a system of coplanar forces this may be expressed by the three equations 
of static equilibrium: 

∑

∑

∑

H

V

M

�

�

�

0

0

0      

   where H and V are the resolved components in the horizontal and vertical 
directions of a force and M  is the moment of a force about any point.  

    1.4     Sign convention 

   For a planar, two-dimensional structure subjected to forces acting in the  xy  
plane, the sign convention adopted is shown in  Figure 1.8   . Using the right-
hand system as indicated, horizontal forces acting to the right are positive and 
vertical forces acting upward are positive. The z-axis points out of the plane of 
the paper, and the positive direction of a couple is that of a right-hand screw 
progressing in the direction of the z-axis. Hence, counterclockwise moments 
are positive. 

y

x

z

Figure 1.8             
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    Example 1.1 

   Determine the support reactions of the pin-jointed truss shown in  Figure 1.9   . 
End 1 of the truss has a hinged support, and end 2 has a roller support.  

(i) Applied loads (ii) Support reactions

V3 � 20 kips V4 � 20 kips

V1 � 15 kips

H1 � 10 kips

H3 � 10 kips

V2 � 25 kips

43

1
8 ft

8 ft

8 ft
5 2

Figure 1.9             

    Solution 

   To ensure equilibrium, support 1 provides a horizontal and a vertical reaction, 
and support 2 provides a vertical reaction. Adopting the convention that hori-
zontal forces acting to the right are positive, vertical forces acting upward are 
positive, and counterclockwise moments are positive, applying the equilibrium 
equations gives, resolving horizontally: 

H H
H H

1 3

1 3

0

10

� �
� �
� � kips  acting to the left…      

   Taking moments about support 1 and assuming that  V  2  is upward: 

16 8 4 12 02 3 3 4V H V V� � � �      
V2 8 10 4 20 12 20 16

25
� � � � � �
�

( )/
kips  acting upward as assumed…      

   Resolving vertically: 

V V V V
V

1 2 3 4

1

0
25 20 20

15

� � � �
� � � �
� kips  acting upward…      

   The support reactions are shown at (ii).   
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    1.5     Triangle of forces 

   When a structure is in equilibrium under the action of three concurrent forces, 
the forces form a triangle of forces. As indicated in  Figure 1.10 (i)   , the three 
forces F  1, F  2, and F  3 are concurrent. As shown in  Figure 1.10 (ii) , if the initial 
point of force vector F  2 is placed at the terminal point of force vector F  1, then 
the force vector F  3 drawn from the terminal point of force vector F  2 to the ini-
tial point of force vector F  1 is the equilibrant of F  1 and F  2. Similarly, as shown 
in  Figure 1.10 (iii) , if the force vector  F  3 is drawn from the initial point of force 
vector F  1 to the terminal point of force vector F  2, this is the resultant of F  1 and 
F  2 . The magnitude of the resultant is given algebraically by: 

( ) ( ) ( ) cosF F F F F f3
2

1
2

2
2

1 2 32� � �     

F 3
F 3

Equilib
ran

t

f2 f3

f1

F2 F2

F1F1

F3

F1

F2

Resu
lta

nt

(i) (ii) (iii)

Figure 1.10             

  and:   

F F f f3 1 3 1� sin csc     

  or:   

F f F f
F f

1 1 2 2

3 3

/ /
/

sin sin
sin

�
�      

    Example 1.2 

   Determine the angle of inclination and magnitude of the support reaction at 
end 1 of the pin-jointed truss shown in  Figure 1.11   . End 1 of the truss has a 
hinged support, and end 2 has a roller support.  
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    Solution 

   Taking moments about support 1 gives: 

V2 8 20 16
10

� �
�

/
kips  acting vertically upward…      

   The triangle of forces is shown at (ii), and the magnitude of the reaction at 
support 1 is given by: 

R V F V F f

R

2
2

2
3

2
2 3

2 2
2

10 20 2 10 20 90
100 400

� � �

� � � � � �

� �

( ) ( ) cos
cos

(

r

))
.

.0 5

22 36� kips      

   The angle of inclination of  R  is: 

θ �
� �

atan /( )
.

10 20
26 57      

   Alternatively, since the three forces are concurrent, their point of concur-
rency is at point 6 in  Figure 1.11  (i), and: 

θ �
� �

atan /( )
.

8 16
26 57     

  and   

R � � �
�

20 90 63 43
22 36

sin sin .
.

/
kips      

F3 � 20 kips

F3 � 20 kips

V2 � 10 kips

8 ft

8 ft 8 ft

V2

1 5 2

3 4

6

R

θ

θ

(i) (ii)

R

Figure 1.11             
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   The reaction R may also be resolved into its horizontal and vertical 
components:

H R

V R

1

1

20

10

�
�
�
�

cos

sin

θ

θ
kips

kips        

    1.6     Free body diagram 

   For a system in equilibrium, all component parts of the system must also be 
in equilibrium. This provides a convenient means for determining the internal 
forces in a structure using the concept of a free body diagram.  Figure 1.12    (i) 
shows the applied loads and support reactions acting on the pin-jointed truss 
that was analyzed in Example 1.1. The structure is cut at section A-A, and 
the two parts of the truss are separated as shown at (ii) and (iii) to form two 
free body diagrams. The left-hand portion of the truss is in equilibrium under 
the actions of the support reactions of the complete structure at 1, the applied 

(i) Applied loads and
    support reactions

(ii) Left hand free
      body diagram

(iii) Right hand free
      body diagram

V3 � 20 kips

V2 � 25 kips

V2 � 25 kips

12.5 kips

5.59 kips

5.59 kips

12.5 kips

15 kips

15 kipsH3 � 10 kips H3 � 10 kips

H1 � 10 kips

V1 � 15 kips V1 � 15 kips

H1 � 10 kips

cut  line

V4 � 20 kips

V4 � 20 kips

V3 � 20 kips

A

3

1 5 A 2

4

Figure 1.12             
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loads at joint 3, and the internal forces acting on it from the right-hand por-
tion of the structure. Similarly, the right-hand portion of the truss is in equilib-
rium under the actions of the support reactions of the complete structure at 2, 
the applied load at joint 4, and the internal forces acting on it from the left-
hand portion of the structure. The internal forces in the members consist of a 
compressive force in member 34 and a tensile force in members 45 and 25. By 
using the three equations of equilibrium on either of the free body diagrams, 
the internal forces in the members at the cut line may be obtained. The values 
of the member forces are indicated at (ii) and (iii). 

    Example 1.3 

   The pin-jointed truss shown in  Figure 1.13    has a hinged support at support 
1 and a roller support at support 2. Determine the forces in members 15, 35, 
and 34 caused by the horizontal applied load of 20 kips at joint 3.  

8 ft

8 ft

8 ft

5

43

21

H1� 20 kips

H3 � 20 kips

V1� 10 kips
V2� 10 kips

P15

V2

P35

P34

2

3

5

Cut line
A

A

(i) Loads and support reactions (ii) Free body diagram

θ

Figure 1.13             

    Solution 

   The values of the support reactions were obtained in Example 1.2 and are 
shown at (i). The truss is cut at section A-A, and the free body diagram of the 
right-hand portion of the truss is shown at (ii). 

   Resolving forces vertically gives the force in member 35 as: 

P V35 2
10 63 43
11 18

�
� �
�

/
/

kips  compression

sin
sin .
.

θ

…      

   Taking moments about node 3 gives the force in member 15 as: 

P V15 212 8
12 10 8
15

�
� �
�

/
/

kips  tension…      



Principles of statics 13

   Taking moments about node 5 gives the force in member 34 as: 

P V34 28 8
8 10 8
10

�
� �
�

/
/

kips  compression…        

    1.7     Principle of superposition 

   The principle of superposition may be defined as follows: the total displacements 
and internal stresses in a linear structure corresponding to a system of applied 
forces is the sum of the displacements and stresses corresponding to each force 
applied separately. The principle applies to all linear-elastic structures in which 
displacements are proportional to applied loads and which are constructed from 
materials with a linear stress-strain relationship. This enables loading on a struc-
ture to be broken down into simpler components to facilitate analysis. 

   As shown in  Figure 1.14   , a pin-jointed truss is subjected to two vertical 
loads at (i) and a horizontal load at (ii). The support reactions for each loading 

V3 � 20 kips V4 � 20 kips

V1 � 20 kips V2 � 20 kips V1 � 5 kips V2 � 5 kips

H3 � 10 kips

H1 � 10 kips

3 34 4

5 52 21 1

(i) (ii)

�

V1 � 15 kips

H1 � 10 kips 

H3 � 10 kips

V3� 20 kips V4� 20 kips

V2 � 25 kips

5 21

4 23

(iii)

�

Figure 1.14             
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case are shown. As shown at (iii), the principle of superposition and the two 
loading cases may be applied simultaneously to the truss, producing the com-
bined support reactions indicated.  

    Supplementary problems 

    S1.1 Determine the reactions at the supports of the frame shown in  Figure S1.1   . 

48 ft

24 kips 24 kips

48 ft

100 ft 20 ft 100 ft 20 ft 100 ft

V1 V2

21 3 4

Figure S1.2             

10 kips

3 ft 7 ft

2

M1

H1

V1

H4

V4

3

4

1

10 ft

20 kips

Figure S1.1             

    S1.2 Determine the reactions at supports 1 and 2 of the bridge girder shown 
in  Figure S1.2   . In addition, determine the bending moment in the girder at 
support 2. 
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    S1.3 Determine the reactions at the supports of the frame shown in Figure
S1.3   . In addition, determine the bending moment in member 32. 

10 kips
10 kips

H1 H7

V7
V1

10 ft 10 ft

20 ft

10 ft 10 ft

3 4 5

7

62

1

Figure S1.3             

30 ft

50 kips

20 ft 10 ft

H2H1

V1 V2

1

3

2

Figure S1.4             

    S1.4 Determine the reactions at the supports of the derrick crane shown in 
Figure S1.4   . In addition, determine the forces produced in the members of the 
crane.
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20 ft

H4

V4

H1

V1

20 ft

10 kips 2

1

3

4

Figure S1.5             

10 ft 20 ft

5 ft

5 ft

20 kips

10 kips
2

1

4

3

H1

V1

V4

Figure S1.6             

    S1.6 Determine the reactions at the supports of the bent shown in  Figure S1.6   . 
In addition, determine the bending moment produced in the bent at node 3. 

    S1.5 Determine the reactions at the supports of the pin-jointed frame shown in 
 Figure S1.5   . In addition, determine the force produced in member 13. 
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4 ft

20 kips

4 ft 4 ft

3 410 kips

H1

V1
V6

2

61 5

Figure S1.7             

10 ft

1

3
2

H1

V1

V3

H3

20 ft

10 ft

1 kip/ft

Figure S1.8             

    S1.7 Determine the reactions at the supports of the pin-jointed truss shown in 
 Figure S1.7   . 

    S1.8 Determine the reactions at the supports of the bent shown in  Figure S1.8   . 
The applied loading consists of the uniformly distributed load indicated. 
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    S1.9 Determine the reactions at the support of the cantilever shown in Figure
S1.9   . The applied loading consists of the distributed triangular force shown. 

21 ft

2

1 H1

M1

1 kip/ft

Figure S1.9             

6 ft

4 ft

7 ft

4 kips

V1

H1M1

2

1

4

3

Figure S1.10             

    S1.10 Determine the reactions at the support of the jib crane shown in Figure
S1.10  . In addition, determine the force produced in members 24 and 34.     



                                    2        Statically determinate pin-jointed 
frames  

    Notation     

  a       panel width  
  F       force  
  H       horizontal force  
  h       truss height  
  l       length of member  
  M       bending moment  
  P       axial force in a member due to applied loads  
  P  �       axial force in a member of the modified truss due to applied loads  
  R       support reaction  
u      axial force in a member due a unit virtual load applied to the modified truss 
  V       vertical force  
  WLL       concentrated live load  
   θ        angle of inclination     

    2.1     Introduction 

   A simple truss consists of a triangulated planar framework of straight mem-
bers. Typical examples of simple trusses are shown in  Figure 2.1    and are cus-
tomarily used in bridge and roof construction. The basic unit of a truss is a 
triangle formed from three members. A simple truss is formed by adding mem-
bers, two at a time, to form additional triangular units. The top and bottom 
members of a truss are referred to as chords, and the sloping and vertical mem-
bers are referred to as web members. 

   Simple trusses may also be combined, as shown in  Figure 2.2   , to form a 
compound truss. To provide stability, the two simple trusses are connected at 
the apex node and also by means of an additional member at the base. 

   Simple trusses are analyzed using the equations of static equilibrium with 
the following assumptions: 

      ●    all members are connected at their nodes with frictionless hinges  
      ●    the centroidal axes of all members at a node intersect at one point so as to avoid 

eccentricities  
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      ●    all loads, including member weight, are applied at the nodes  
      ●    members are subjected to axial forces only  
      ●    secondary stresses caused by axial deformations are ignored     

    2.2     Statical determinacy 

   A statically determinate truss is one in which all member forces and external 
reactions may be determined by applying the equations of equilibrium. In a 
simple truss, external reactions are provided by either hinge supports or roller 
supports, as shown in  Figure 2.3    (i) and (ii). The roller support provides only 
one degree of restraint, in the vertical direction, and both horizontal and 

Bowstring Sawtooth

Howe

FinkWarren

Pratt

Figure 2.1             

Figure 2.2           
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rotational displacements can occur. The hinge support provides two degrees of 
restraint, in the vertical and horizontal directions, and only rotational displace-
ment can occur. The magnitudes of the external restraints may be obtained 
from the three equations of equilibrium. Thus, a truss is externally indetermi-
nate when it possesses more than three external restraints and is unstable when 
it possesses less than three. 

   In a simple truss with j nodes, including the supports, 2 j equations of equi-
librium may be obtained, since at each node: 

ΣH � 0     
and ΣV � 0     

   Each member of the truss is subjected to an unknown axial force; if the truss 
has n members and r external restraints, the number of unknowns is ( n       �       r ). 
Thus, a simple truss is determinate when the number of unknowns equals the 
number of equilibrium equations or: 

n r j� � 2      

   A truss is statically indeterminate, as shown in  Figure 2.4   , when: 

n r j� � 2      

(i) (ii)

V V
H

Figure 2.3           

(i) (ii)

Figure 2.4           

   The truss at (i) is internally redundant, and the truss at (ii) is externally 
redundant.

   A truss is unstable, as shown in  Figure 2.5   , when: 

n r j� 	 2      



Structural Analysis: In Theory and Practice22

   The truss at (i) is internally deficient, and the truss at (ii) is externally 
deficient.

   However, a situation can occur in which a truss is deficient even when the 
expression n       �       r       �      2 j is satisfied. As shown in Figure 2.6   , the left-hand side of 
the truss has a redundant member, while the right-hand side is unstable.  

(i) (ii)

Figure 2.5           

Figure 2.6           

�P �P

Tension Compression

Figure 2.7           

    2.3     Sign convention 

   As indicated in  Figure 2.7   , a tensile force in a member is considered positive, 
and a compressive force is considered negative. Forces are depicted as acting 
from the member on the node; the direction of the member force represents 
the force the member exerts on the node.  

    2.4     Methods of analysis 

   Several methods of analysis are available, each with a specific usefulness and 
applicability. 
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    (a)       Method of resolution at the nodes 

   At each node in a simple truss, the forces acting are the applied loads or support 
reactions and the forces in the members connected to the node. These forces con-
stitute a concurrent, coplanar system of forces in equilibrium, and, by applying 
the equilibrium equations Σ  H     �   0 and Σ  V     �   0, the unknown forces in a maxi-
mum of two members may be determined. The method consists of first deter-
mining the support reactions acting on the truss. Then, each node, at which not 
more than two unknown member forces are present, is systematically selected in 
turn and the equilibrium equations applied to solve for the unknown forces. 

   It is not essential to resolve horizontally and vertically at all nodes; any con-
venient rectangular coordinate system may be adopted. Hence, it follows that 
for an unloaded node, when two of the three members at the node are col-
linear, the force in the third member is zero. 

   For the truss shown in  Figure 2.8   , the support reactions V  1 and V  9, caused 
by the applied load WLL, are first determined. Selecting node 1 as the starting 
point and applying the equilibrium equations, by inspection it is apparent that: 

P13 0�     
and P V12 1� … compression      

P24

P23

P12

V1 V9WLL

P56 � 0

P13 � 0

4
2

1

3 5 7

6 8 10

9θ

Figure 2.8           

   Node 2 now has only two members with unknown forces, which are given by: 

P P23 12� / tensionsinθ…     
and P P24 23� cosθ… compression      

   Nodes 3 and 4 are now selected in sequence, and the remaining member 
forces are determined. Since members 46 and 68 are collinear, it is clear that: 

P56 0�      
   This technique may be applied to any truss configuration and is suitable 

when the forces in all the members of the truss are required.  
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    Example 2.1 

   Determine the forces produced by the applied loads in the members of the saw-
tooth truss shown in  Figure 2.9   .  

49.11°

79.11°
60° 60° 60° 60° 30°

30°

V1 � 10 kips V7 � 10 kipsW3 � 10 kips W5 � 10 kips

1

3 5

8 ft 8 ft 8 ft

7

2

4

6

Figure 2.9           

    Solution 

   The support reactions are calculated, and the directions of the member forces 
are assumed as indicated. 

   Resolving forces at node 7: 

P V

P V

67 7

57 7

20

17 32

� �

�

� �

�

/ 30

 kips compression

/ 30

 kips

sin

tan

.

…

… ttension      

   Resolving forces at node 6: 

P P

P

46 67

56

20
0

�
�
�

 kips compression…

     

   Resolving forces at node 5: 

P W

P P W

45 5

35 57 5

11 55

11 55

� �

�

� � �

�

/ 60

 kips tension

/ 60

 ki

sin

.

tan

.

…

pps tension…      



Statically determinate pin-jointed frames 25

   Resolving forces at node 4: 

P P

P P P

34 45

24 46 45

5 77

10

� �

�

� � �

�

/ 30

 kips compression

 60

sin

.

sin

…

kkips compression…      

   Resolving forces at node 2: 

P P23 24 11

15 28

� �

�

/ 49

 kips tension

cos .

. …      

   Resolving forces at node 1: 

P V

P V

12 1

13 1

11 55

60

5 77

� �

�

� �

�

/ 60

kips compression

/

 kips

sin

.

tan

.

…

…… tension       

    (b)       Method of sections 

   This method uses the concept of a free body diagram to determine the member 
forces in the members of a specific panel of a truss. The method consists of 
first determining the support reactions acting on the truss. Then, a free body 
diagram is selected so as to cut through the panel; the forces acting on the 
free body consist of the applied loads, support reactions, and forces in the cut 
members. These forces constitute a coplanar system of forces in equilibrium; 
by applying the equilibrium equations Σ  M       �      0, Σ H       �      0 and Σ  V       �      0, the 
unknown forces in a maximum of three members may be determined. 

   For the truss shown in  Figure 2.10   , the support reactions V  1 and V  9, caused 
by the applied load WLL, are first determined. To determine the forces in 

(i) Applied loads (ii) Free body diagram

2
4 6 8 10

9 9

7

8

753

1

P68 10

P58

P57

V9V9

h

V1

A

A

a a aWLL a

θ

Figure 2.10           
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members 68, 57, and 58 of the truss, the structure is cut at section A-A, and 
the right-hand portion separated as shown at (ii). 

   Resolving forces vertically gives the force in member 58 as: 

P V58 9� / tensionsinθ…      

   Taking moments about node 8 gives the force in member 57 as: 

P aV h57 9� / tension…      

   Taking moments about node 5 gives the force in member 68 as: 

P aV h68 92� / compression…      

   This technique may be applied to any truss configuration and is suitable when 
the forces in selected members of the truss are required. For the case of a truss 
with non-parallel chords, by taking moments about the point of intersection of 
two of the cut members the force in the third cut member may be obtained. 

    Example 2.2 

   Determine the forces produced by the applied loads in members 46, 56 and 57 
of the sawtooth truss shown in  Figure 2.11   .  

30°

60°
60°60° 60°79.11°

10 kips 10 kips 10 kips 10 kips6 ft

8 ft8 ft

3 5

4 ft8 ft

A

A

4

6

7
5

6

7

2

1

6.93 ft

P57

3.46 ft

P46

P 56

V7 � 10 kips

(i) Applied loads (ii) Free body diagram

Figure 2.11           

    Solution 

   The support reactions are calculated and the truss cut at section A-A as shown. 
The directions of the member forces on the right-hand free body diagram are 
assumed as indicated in (ii). 
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   Taking moments about node 7 gives the force in member 56 as: 

P56 0 6 93

0

�

�

/ .

     

   Taking moments about node 5 gives the force in member 46 as: 

P V46 78 4

8 10 4

20

�

� �

�

/

 kips compression

/

…      

   Taking moments about node 6 gives the force in member 57 as: 

P V57 76 3 46

6 10 3 46

17 32

�

� �

�

/

kips tension

.

/ .

. …       

    (c)       Method of force coefficients 

   This is an adaptation of the method of sections, which simplifies the solution 
of trusses with parallel chords and with web members inclined at a constant 
angle. The forces in chord members are determined from the magnitude of 
the moment of external forces about the nodes of a truss. The forces in 
web members are obtained from knowledge of the shear force acting on a 
truss. The method constitutes a routine procedure for applying the method of 
sections.

   The shear force diagram for the truss shown in  Figure 2.12    is obtained by 
plotting at any section the cumulative vertical force produced by the applied 
loads on one side of the section. The force in a vertical web member is given 
directly, by the method of sections, as the magnitude of the shear force at the 
location of the member. Thus, the force in member 12 is equal to the shear 
force at node 1 and: 

P V

W
12 1

3

�

� … compression      

   The force in member 34 is equal to the shear force at node 3 and: 

P V W

W
34 1 2� �

� … compression      

   The force in member 56, by inspection of node 6, is: 

P56 0�      
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   The force in a diagonal web member is given directly, by the method of sec-
tions, as the magnitude of the shear force in the corresponding panel multi-
plied by the coefficient l / h. Thus, the force in member 23 is equal to the shear 
force in the first panel multiplied by l / h  and: 

P V l h

W l h
23 1

3

� �

� �

/

/ tension…      

   The force in member 45 is equal to the shear force in the second panel mul-
tiplied by l / h  and: 

P V W l h

W l h
45 1 2� � �

� �

( ) /

/ tension…      

2w 2w 2w
3 5 7

1

Applied loads

Shear force
diagram

Bending moment
diagram

6 8 10
2

4

a a a a

W

l

�3W

V9 � 3WV1 � 3W

4Wa

�W

3Wa

3W

9

h

Figure 2.12           
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   The bending moment diagram for the truss shown in  Figure 2.12  is obtained 
by plotting at each node the cumulative moment produced by the applied loads 
on one side of the node. The force in the bottom chord of a particular panel 
is given directly, by the method of sections, as the magnitude of the moment 
at the point of intersection of the top chord and the diagonal member in the 
panel multiplied by the coefficient 1/ h. Thus, the force in member 13 is equal 
to the bending moment at node 2 multiplied by 1/ h  and: 

P M h13 2 1

0

� �

�

/

     

   The force in member 35 is equal to the bending moment at node 4 multi-
plied by 1/ h  and: 

P M h

V a h

Wa h

35 4

1

1

1

3

� �

� � �

�

/

/

/ tension…      

   The force in the top chord of a particular panel is given directly, by the 
method of sections, as the magnitude of the moment at the point of intersec-
tion of the bottom chord and the diagonal member in the panel multiplied 
by the coefficient 1/ h. Thus, the force in member 24 is equal to the bending 
moment at node 3 multiplied by 1/ h  and: 

P M h

V a h

Wa h

24 3

1

1

1

3

� �

� � �

�

/

/

/ compression…      

   The force in member 46 is equal to the bending moment at node 5 multi-
plied by 1/ h  and: 

P M h

V a W a h

Wa h

46 5

1

1

2 2 1

4

� �

� � � � �

�

/

( ) /

/ compression…      

   This technique may be applied to any truss with parallel chords and 
with web members at a constant angle of inclination. It may be used 
when the forces in all members or in selected members of the truss are 
required.  
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V1 � 15 kips V8 � 15 kips

W3 � 10 kips W5 � 10 kips W7 � 10 kips

10 ft 10 ft 10 ft 10 ft

14.14 ft

10 ft

Figure 2.13           

    Example 2.3 

   Determine the forces produced by the applied loads in the members of the 
truss shown in  Figure 2.13   .  

    Solution 

   The support reactions are calculated as shown. By inspection, the force in the 
vertical web members is obtained directly. Thus, the force in member 23 is 
given as: 

P W

P

23 3

45

10

0

�

�

�

 kips tension…

     

   The force in the diagonal web member 12 is given by the magnitude of the 
shear force in the first panel multiplied by the coefficient l / h. Thus, the force in 
member 12 is: 

P V l h12 1

15 14 14 10

21 21

� �

� �

�

/

/

kips compression

.

. …      

   The force in the diagonal web member 25 is given by the magnitude of the 
shear force in the second panel multiplied by the coefficient l / h. Thus, the force 
in member 25 is: 

P V W l h25 1 3

5 14 14 10

7 07

� � �

� �

�

( ) /

/

kips tension

.

. …      
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   The force in the bottom chord member 13 is given by the magnitude of the 
moment at node 2 multiplied by the coefficient 1/ h. Thus, the force in member 
13 is: 

P M h

V a h
13 2

1

1

1

150 1 10

15

� �

� � �

� �

�

/

/

/

kips tension…      

   Similarly, the force in the bottom chord member 35 is given by the magni-
tude of the moment at node 2 multiplied by the coefficient 1/ h. Thus, the force 
in member 35 is: 

P M h

V a h
35 2

1

1

1

150 1 10

15

� �

� � �

� �

�

/

/

kips tension

/

…      

   The force in the top chord member 24 is given as the magnitude of the 
moment at node 5 multiplied by the coefficient 1/ h. Thus, the force in member 
24 is: 

P M h

V a W a h
24 5

1 3

1

2 1

300 100 1 10

20

� �

� � � � �

� � �

�

/

( ) /

( )

 kips compres

/

… ssion       

    (d)       Method of substitution of members 

   A complex truss, as shown in  Figure 2.14    (i), has three or more connecting 
members at a node, all with unknown member forces. This precludes the 
use of the method of sections or the method of resolution at the nodes as a 
means of determining the forces in the truss. The technique consists of remov-
ing one of the existing members at a node so that only two members with 
unknown forces remain and substituting another member so as to maintain 
the truss in stable equilibrium. 

   The forces in members 45 and 59 are obtained by resolution of forces 
at node 5. However, at nodes 4 and 9, three unknown member forces 
remain, and these cannot be determined by resolution or by the method of 
sections. As shown at (ii), member 39 is removed, leaving only two unknown 
forces at node 9, which may be determined. To maintain stable equilibrium, 
a substitute member 38 is added to create a modified truss, and the origi-
nal applied loads are applied to the modified truss. The forces P  � in all the 
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remaining members of the modified truss may now be determined. The force 
in member 38 is P�38   . 

   The applied loads are now removed, and unit virtual loads are applied to the 
modified truss along the line of action of the original member 39, as shown at (iii). 
The forces u in the modified truss are determined; the force in member 38 is –u  38 . 
Multiplying the forces in system (iii) by P u�38 38/     and adding them to the forces in 
system (ii) gives the force in member 38 as: 

P P u P u38 38 38 38 38

0

� � � � �

�

( ) /

     

   In effect, the substitute member 38 has been eliminated from the truss. 

7 8

9

5

432

1

1

6

(ii) Modified truss with applied load

(iii) Modified truss with unit virtual load

(i) Complex truss with applied load

W

W

P �38

u38

1

� P�38 /u38 �

�

Figure 2.14           
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   Hence, by applying the principle of superposition, the final forces in the 
original truss are obtained from the expression: 

P P uP u� � � �38 38/     

  where tensile forces are positive and compressive forces are negative. The final 
force in member 39 is:   

P P

P u
39 38 38

38 38

1� � �

� �

/u

/       

    Example 2.4 

   Determine the forces produced by the applied loads in members 49, 39, and 89 
of the complex truss shown in  Figure 2.15   .  

20 kips

19.56 kips

11.16 kips

1.
53

 k
ip

s

87

6

1

2 3 4

5

9

4 ft 4 ft 4 ft 4 ft

4 ft

6 ft

4 ft 4 ft 4 ft 4 ft

Figure 2.15           

    Solution 

   The modified truss shown in  Figure 2.16    is created by removing member 
39, adding the substitute member 38, and applying the 20 kips load. The 
member forces in the modified truss may now be determined; the values 
obtained are: 

P

P

P

� �

� � �

� �

49

89

38

7 51

13 98

21 54

.

.

.

kips tension

kips compression

…

…

kkips tension…      

   The 20 kips load is removed from the modified truss, and unit virtual loads 
are applied at nodes 3 and 9 in the direction of the line of action of the force in 
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member 39. The member forces for this loading condition may now be deter-
mined; the values obtained are    : 

u

u

u

49

89

38

0 81

0 50

1 9

� �

� �

� �

.

.

.

kips compression

kips compression

…

…

33 kips compression…      
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   The multiplying ratio is given by: 

P u� �

�

38 38 21 54 1 93

11 16

/ /. .

.      

   The final member forces in the original truss are: 

P49 7 51 11 16 0 81

1 53

� � �

� �

. . ( .

.

)

kips compression…        
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P

P P u

89

39 38 38

13 98 11 16 0 50

19 56

� � � �

� �

� �

. . .

.

( )

kips compression

/

…

�� 11 16. kips tension…

    Supplementary problems 

    S2.1 Determine in  Figure S2.1    the reactions at the supports of the roof truss 
shown and the forces in members 34, 38, and 78 caused by the applied loads. 

1H1

V1 V5

6

7

8

2 3 4 5

2 
ki

ps

4 
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2 
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ps

6 ft 6 ft 6 ft 6 ft
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Figure S2.1           
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Figure S2.2           

    S2.2 For the pin-jointed truss shown in  Figure S2.2    determine the forces in 
members 45, 411, and 1011 caused by the applied loads. 
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    S2.3 For the roof truss shown in  Figure S2.3    determine the forces in members 
23, 27 and 67 caused by the applied loads. 

1 2 3
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Figure S2.3           

    S2.4 For the pin-jointed truss shown in  Figure S2.4    determine the forces in all 
members caused by the applied loads. 

1
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2 3
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5 ft5 ft5 ft
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    S2.6 For the truss shown in  Figure S2.6    determine the forces in members 12, 
114, 110, 23, 310, 315, 1014, and 1415 caused by the applied loads. 

1 2 3 4

6 ft6 ft6 ft
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    S2.5 For the roof truss shown in  Figure S2.5    determine the forces in all mem-
bers due to the applied loads. 
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    S2.8 For the roof truss shown in  Figure S2.8    determine the forces in all mem-
bers due to the applied loads. 
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    S2.7 For the roof truss shown in  Figure S2.7    determine the forces in members 
23, 27, 37, 78, and 67 caused by the applied loads. 
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    S2.9 For the roof truss shown in  Figure S2.9    determine the forces in members 
23, 26, 27, 67, and 37 caused by the applied loads. 
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    S2.10 For the roof truss shown in  Figure S2.10    determine the force in members 
49, 59, 89, and 78 due to the applied loads.     



                                          3       Elements in flexure  

    Notation 

      c       rise of an arch  
  F       force  
  H       horizontal force, support reaction  
  h       height of a rigid frame  
  l       length of span  
  M       bending moment  
  P       axial force in a member  
  Q       shear force in a member  
  R       support reaction  
  V       vertical force, support reaction  
  W       concentrated load  
  w       distributed load  
  δ       displacement  
  θ       rotation     

    3.1      Load intensity, shear force, and bending moment 
diagrams 

   A uniformly distributed load of magnitude �  w is applied to a simply sup-
ported beam as shown in  Figure 3.1    (i). The sign convention adopted is that 
forces acting upward are defined as positive. The support reaction at end 1 of 
the beam is obtained by considering moment equilibrium about end 2. Hence: 

M
lV w l

2

1
2

0
2

�

� � �( ) /     
  and:   

V wl1 2�  /     

  Similarly:   

V wl2 2 � /      
   The load intensity diagram is shown at (ii) and consists of a horizontal line of 
magnitude �  w . 

   The shear force acting on any section A-A at a distance x from end 1 is 
defined as the cumulative sum of the vertical forces acting on one side of the 
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section. The vertical forces consist of the applied loads and support reactions. 
Considering the segment of the beam on the left of section A-A; the shear force 
is given by: 

Q V w x
V wx

x � � �
�  � 

1 ( )

1     

  where ( �  wx) represents the area of the load intensity diagram on the left of 
section A-A from x       �      0 to x       �       x. In general, the change in shear force between 
two sections of a beam equals the area of the load intensity diagram between 
the same two sections.   

   The variation of shear force along the length of the beam may be illus-
trated by plotting a shear force diagram as shown at (iii). The sign convention 
adopted is that resultant shear force upward on the left of a section is positive. 
The maximum shear force occurs at the location of zero load intensity, which 
is at the ends of the beam. 

   The bending moment acting on any section A-A at a distance x from end 1 
is defined as the cumulative sum of the moments acting on one side of the sec-
tion. Considering the segment of the beam on the left of section A-A, the bend-
ing moment is given by: 

M V x w x
V x Q V x
V Q x

x

x

x

� � �
� �  � 
� �

1
2

1 1

1

2
2

2

( ) /
( ) /

( ) /      

2

A w

l

l/2

V2

wx �w

Mx Mmax

Qx
V1

V2

V1 A

Applied loading(i)

(ii)

(iii)

(iv)

Load intensity diagram

Shear force diagram

Bending moment diagram

x

1

Figure 3.1           
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   where ( V  1       �       Qx ) x/2 represents the area of the shear force diagram on the left 
of section A-A from x       �      0 to x       �       x. In general, the change in bending moment 
between two sections of a beam equals the area of the shear force diagram 
between the same two sections. 

   The variation of bending moment along the length of the beam may be illus-
trated by plotting a bending moment diagram as shown at (iv). The sign con-
vention adopted is that a bending moment producing tension in the bottom 
fibers of the beam is positive. The maximum bending moment occurs at the 
location of zero shear force in the beam. 

    Example 3.1 

   For the simply supported beam shown in  Figure 3.2    (i) draw the load intensity, 
shear force, and bending moment diagrams.  

12 kips/ft

�12 kips/ft

234 kip-ft

348 kip-ft364 kip-ft

�20 kips

�39 kips

�19 kips53 kips

20 kips

V0
12 ft

10.30 ft

6 ft 6 ft
V24

Applied loading(i)

(ii)

(iii)

(iv)

Load intensity diagram

Shear force diagram

Bending moment diagram

Figure 3.2           

    Solution 

   The intensity of loading diagram is shown at (ii) and consists of triangularly 
shaped sections varying from zero to � 12    kips/ft over the left half of the beam 
and a concentrated force of � 20 kips acting at  x       �      18     ft. 

   The support reaction at the left end of the beam is derived by taking 
moments about the right end of the beam to give: 

M
V

24

0

0
24 12 3 12 2 20 6

�
� � � � � � � �( / 12)( 12 / ) ( )     
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  and:   

V
V V

0

24 0

53
72
39

 �
� �  � 
�

 kips
20

kips      

   The ordinate of the shear force diagram at x     �   0 equals the support reaction at 
the left end of the beam. The change in shear force between x     �   0 and x     �   12   ft
equals the area of the load intensity diagram over the initial 12    ft of the beam. 
Hence, the ordinate of the shear force diagram at x     �   12   ft is given by: 

Q V12 0 12 12 2
53 72

19

�  � �
� �
��

/

kips      

   The shear force diagram crosses the base line at a distance x from the end of 
the beam given by: 

Q
V w x

x

x

x

�
�  � 

�  � 

0
2

53 2
0

2
/

/     

  and:

    

x
x

2

10 30
�
�

106
ft.      

   Between x       �      12    ft and x       �      18    ft the ordinate of the shear force diagram 
remains constant at a value of �19 kips since the load intensity is zero over 
this segment of the beam. At x       �      18    ft, the location of the concentrated load of 
20 kips, the ordinate of the shear force diagram reduces to the value: 

Q18 19 20
39

��  � 
�� kips      

   Between x       �      18 ft and  x       �      24    ft the ordinate of the shear force diagram 
remains constant at a value of �39 kips. At x       �      24    ft the ordinate of the shear 
force diagram changes to the value: 

Q24 39
0

�� �
�

39
kips      

   The bending moment ordinates at each end of the beam are zero. Between 
x       �      0 and  x       �      12     ft the ordinate of the bending moment diagram is given by: 

M V x w x x
x x

x x� �

� �
0

3
2 3

53 6
( / )( / )

/      
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   The maximum bending moment over this length occurs when: 

 d /d
/

M x
x

x �

� �

0
53 22

    

  and:

    x �10 30. ft      

   This is the same location at which the shear force diagram crosses the base 
line, and the maximum bending moment is: 

Mmax 53 10.30 ( ) /
546 182
364 kip-ft

� � �
� �
�

10 30 63.

     

   At  x       �      12     ft the bending moment is: 

M12
312 12 6

636 288
348

� � �
� �
�

53 /

 kip-ft      

   At  x       �      18     ft the bending moment is: 

M M18 12 19
348 114
234

� � � �
� �
�

( ) 6

 kip-ft     

  and the bending moment decreases linearly between  x       �      12     ft and  x       �      18     ft.   
   At  x       �      24     ft the bending moment is: 

M M24 18 39 6
234 234
0

� � � �
� �
�

( )

 kip-ft     

  and the bending moment decreases linearly between  x       �      18     ft and  x       �      24     ft.     

    3.2      Relationships among loading, shear force, and 
bending moment 

   A small element of the beam shown in  Figure 3.1  is taken at a distance  x from 
end 1. The forces acting on the element are shown in  Figure 3.3   . Resolving 
forces vertically gives the expression: 

Q Q Q w x� � �( )δ δ     
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  and:   

δ δQ x w/ � �      

   The limiting condition is: 

d /dQ x w� �     

  which indicates that the slope of the shear force diagram, at any section, equals 
the intensity of loading at that section. This also indicates that the shear force 
reaches a maximum or a minimum value where the load intensity diagram 
crosses the base line. Alternatively, since:   

d  d
d  d

 d

Q w x

Q w x

Q Q w x
x

x

��

�  �

� � �

∫ ∫
∫2 1

1

2

    

  where Q  1       �      shear force in the beam at x       �       x  1, Q  2       �      shear force in the beam 
at x       �       x  2, and the change in shear force between the two sections equals the 
area of the load intensity diagram between the two sections.   

   Taking moments about the lower right corner of the element gives the 
expression:

M M M Q x w x � � � �( )  ( ) /δ δ δ 2 2      

   Neglecting the small value ( δ  x ) 2  gives: 

δ δM x Q/ �      

   The limiting condition is: 

d /dM x Q�     

w

M M � dM

Q � dQ

Q

dx

Figure 3.3           
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  which indicates that the slope of the bending moment diagram at any sec-
tion equals the force at that section. In addition, it indicates that the bending 
moment reaches a maximum or a minimum value where the shear force dia-
gram crosses the base line. Alternatively, since:   

d  d
d  d

 d

M Q x

M Q x

M M Q x
x

x

�

� 

�  �

∫ ∫
∫2 1

1

2

     

   where M  1       �      bending moment in the beam at x       �       x  1, M  2       �      bending moment 
in the beam at x       �       x  2, and the change in bending moment between the two 
sections equals the area of the shear force diagram between the two sections. 

    Example 3.2 

   For the simply supported beam shown in  Figure 3.2  use the load-shear-moment 
relationships to draw the shear force and bending moment diagrams.  

    Solution 

   The support reactions were determined in Example 3.1: 

V
V

0

24

53
39

 �
 �

 kips
 kips      

   The change in shear force between  x       �      0 and  x       �      12     ft is: 

Q V w x

x x

x x

x

12 0 0

12

0

12

0

12

2
0
12

12

2
72

� � �

� �  

� �

� �

��

 d  

12 /  d

 d

[ / ]

∫
∫
∫

 kips     
  and:

    

Q12 53 72
19

� �
��  kips      

   At intermediate sections between x       �      0 and x       �      12    ft, the ordinates of the 
shear force diagram are given by: 

Q V wx
x

x � �

�  � 
0

2
2

53 2
/

/     

  which is the equation of a parabola.   
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   The shear force diagram crosses the base line at a distance x from the end of 
the beam, given by: 

Q
V wx

x

x �
�  �

�  � 

0
2

53 2
0

2
/

/     

  and:

    

x
x

2 106
10 30

�
� .  ft      

   Between x       �      12    ft and x       �      18    ft the load intensity is zero, and the shear force 
diagram is a horizontal line. At x       �      18    ft, a concentrated load of 20 kips is 
applied to the beam; this constitutes an infinite load intensity and produces a 
vertical step of �20 kips in the ordinate of the shear force diagram. The ordi-
nate of the shear force diagram is given by: 

Q V18 12 20
19 20
39

� �
��  � 
��  kips      

   The ordinate of the shear force diagram remains constant at a value of � 39 
kips to the end of the beam. 

   The change in bending moment between  x       �      0 and  x       �      12     ft is: 

M M Q x 

V wx x

x x

x

12 0 0

12

00

12

2
0

12

2

53 2

53

� �

� �  

� �

�

d

( / ) d

( / ) d  

[

∫
∫
∫

��

� �
�

x3
0
126

636 288
348

/ ]

kip-ft      

   At intermediate sections between x       �      0 and x       �      12    ft, the ordinates of the 
bending moment diagram are given by: 

M V x wx x
x x

x � �

� �
0

3
2 3

53 6
( / )( / )

/     

  which is the equation of a cubic parabola.   
   The maximum bending moment occurs when: 

d /d 0
/

M x
x

x �

� �53 22
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  and:

    x � 10 30.  ft      

   The change in bending moment between  x       �      12     ft and  x       �      18     ft is: 

M M Q x

x

x

18 12 12

18

18

12
18

� �  

� �  

� �

�� �
��

 d

19 d

[ 19 ]
19 6
114kip-f

12

∫
∫

tt      
   Hence: 

M18 348 114
234

� �
� kip-ft      

   The bending moment decreases linearly between  x       �      12     ft and  x       �      18     ft. 
   At x       �      18    ft a concentrated load of 20 kips is applied, and the change in 

bending moment between x       �      18     ft and  x       �      24     ft is: 

M M Q x

x

x

24 18 18

24

18

24

18
24

39

39
39 6

� � 

� �  

� �

� � �
� �

 d

 d

[ ]

234 kip-

∫
∫

fft      
   Hence: 

M24 234 234
0

� �
�  kip-ft        

    3.3     Statical determinacy 

   A statically determinate beam or rigid frame is one in which all member forces 
and external reactions may be determined by applying the equations of equili-
brium. In a beam or rigid frame external reactions are provided by either hinge 
or roller supports or by a fixed end, as shown in  Figure 3.4   . The roller support 

V

Roller support Hinge support Fixed end

V

H H M

V

Figure 3.4           
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provides only one degree of restraint, in the vertical direction, and both hori-
zontal and rotational displacements can occur. The hinge support provides 
two degrees of restraint, in the vertical and horizontal directions, and only 
rotational displacement can occur. The fixed end provides three degrees of 
restraint, vertical, horizontal, and rotational. Identifying whether a structure is 
determinate depends on the configuration of the structure. 

    (a) Beam or rigid frame with no internal hinges 

   In a rigid frame with j nodes, including the supports, 3 j equations of equili-
brium may be obtained since, at each node: 

∑
∑

H
V

�
�

0
0     

  and:   

∑ M � 0      

   Each member of the rigid frame is subjected to an unknown axial and shear 
force and bending moment. If the rigid frame has n members and r external 
restraints, the number of unknowns is (3 n       �       r). Thus, a beam or frame is 
determinate when the number of unknowns equals the number of equilibrium 
equations or: 

3 3n r j� �      

   A beam is statically indeterminate, as shown in  Figure 3.5   , when: 

3 3n r j+ �      

21

Figure 3.5           

   In this case: 

3j � �
�

3 2
6     

  and:   

3 3 1 4
7
3

n r

j

� � � �
�
�    
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   A rigid frame is unstable, as shown in  Figure 3.6   , when: 

3 3n r j� 	      

32

1

Figure 3.6           

   In this case: 

3 3 3
9

j � �
�     

  and:   

3 3 2 2
8
3

n r

j

� � � �
�
	       

    (b) Beam or rigid frame with internal hinges or rollers 

   The introduction of an internal hinge in a beam or rigid frame provides an 
additional equation of equilibrium at the hinge of M       �      0. In effect, a moment 
release has been introduced in the member. 

   The introduction of a horizontal, internal roller provides two additional 
equations of equilibrium at the roller of M       �      0 and H       �      0. In effect, a moment 
release and a release of horizontal restraint have been introduced in the mem-
ber. Thus, a beam or frame with internal hinges or rollers is determinate when: 

3 3 2n r j h s� � � �     

  where n is the number of members, j is the number of nodes in the rigid frame 
before the introduction of hinges, r is the number of external restraints, h is 
the number of internal hinges, and s  is the number of rollers introduced.   

   The compound beam shown in  Figure 3.7    is determinate since: 

3 3
1

n r� � � �
�

3 5
4    
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  and:   

3 2 3 4 2 0
14
3

j

n r

� � � � � �
�
� �

h s

      

    (c) Rigid frame with internal hinges at a node 

   The introduction of a hinge into i of the n members meeting at a node in a 
rigid frame produces i releases. The introduction of a hinge into all n members 
produces ( n   �  1) releases. 

   Thus, a rigid frame with hinges at the nodes is determinate when: 

3 3n r j c� � �     

  where n is the number of members, j is the number of nodes in the rigid frame, r  
is the number of external restraints, and c is the number of releases introduced.   

   As shown in  Figure 3.8   , for four members meeting at a rigid node there are three 
unknown moments. The introduction of a hinge into one of the members produces 
one release, the introduction of a hinge into two members produces two releases, 
and the introduction of a hinge into all four members produces three releases. 

M2

M1

M1 � M2 � M3

M3

M2

M2

M2

M2 � M3

M3

Figure 3.8           

3 421

Figure 3.7           

   The rigid frame shown in  Figure 3.9    is determinate since: 

3 3 3 4
13

n r�  � � �
�     

  and:   

3 3 4 1
13
3

j c

n r

� � � �
� 
� �        
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    3.4     Beams 

   Beams are normally subject to transverse loads only, and roller and hinge 
supports are typically represented by vertical arrows. Typical examples of 
beams are shown in  Figure 3.10   . Beams may be analyzed using the equations 
of static equilibrium and the method of sections, as illustrated in Section 3.1. 
Alternatively, the principle of virtual work may be utilized to provide a simple 
and convenient solution. 

2 3

1 4

Figure 3.9           

Simply supported Beam with overhangs

Compound beamCantilever

Figure 3.10           

   The principle of virtual work may be defined as follows: If a structure in 
equilibrium under a system of applied forces is subjected to a system of dis-
placements compatible with the external restraints and the geometry of the 
structure, the total work done by the applied forces during these external dis-
placements equals the work done by the internal forces, corresponding to the 
applied forces, during the internal deformations corresponding to the external 
displacements.

   The expression “virtual work ” signifies that the work done is the product 
of a real loading system and imaginary displacements or an imaginary loading 
system and real displacements. 

   For the simply supported beam shown in  Figure 3.11    (i), the support reac-
tion V  2, caused by the applied load W, may be determined by the principle of 
virtual work. As shown at (ii), a unit virtual displacement of δ       �      1 is imposed 
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on end 2 in the direction of V  2 and the internal work done equated to the 
external work done. Then: 

V W a l2 1� � � /   

  and:   

V Wa l2 � /      

   Similarly, as shown at (iii), the bending moment produced at point 3 by the 
applied load may be determined by cutting the beam at 3 and imposing a unit 
virtual angular discontinuity of θ       �      1. Equating internal work done to external 
work done gives: 

M V b3 21� � �     

  and:   

M Wab l3 � /      

   Alternatively, after cutting the beam at 3 and imposing a unit virtual angu-
lar discontinuity, the ends may be clamped together to produce the deformed 
shape shown in (iv). Equating internal work done to external work done gives: 

M c a c b W c3( / / )� � �     

  and:   

M Wab l3 � /      

1(i)

(ii)

(iii)

(iv)

2

V1 V2

V2

V2
M3

M3

M3

M3 M3

W

3

a b

l

W

W

a/l d � 1

u � 1

u � 1

b

cc/a

c/b

Figure 3.11           
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    Example 3.3 

   Use the virtual work method to determine the support reactions and significant 
bending moments for the compound beam shown in  Figure 3.12    due to the 
applied loads indicated. Hence, draw the shear force and the bending moment 
diagrams for the beam.  

50 ft

1

5 6 7

2

0.1

0.6

0.2 c

50

0.5

3 4

50 ft

W5 � 40 kips

W5 � 40 kips

W5 � 40 kips

W5 � 40 kips

d � 1

d � 1

u � 1

u � 1

W6 � 40 kips

W6 � 40 kips

W6 � 40 kips

W6 � 40 kips

W5 � 40 kips

W7 � 40 kips

50 ft 50 ft 50 ft 50 ft20 ft 20 ft

V4V3V2V1

V1

V1100

c

c/50 c/50

V2

M2

M5

M5

16 kips

(i)

(ii)

(iii)

(iv)

(v)

(vi)

(vii)

24 kips

800 kip-ft

400 kip-ft 400 kip-ft

800 kip-ft1000 kip-ft

20 kips

20 kips 24 kips

16 kips

Shear force
diagram

Bending moment
diagram

Figure 3.12           

    Solution 

   As shown at (ii), a unit virtual displacement of δ       �      1 is imposed on end 1 in 
the direction of V  1 and the internal work done equated to the external work 
done. Then: 

V W W1 5 61 0 1� � �  � �0.5 .     
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  and:   

V1 40 0 4
16

� �
�

.
 kips      

   As shown at (iii), a unit virtual displacement of δ       �      1 is imposed at support 2 
in the direction of V  2 and the internal work done equated to the external work 
done. Then: 

V W W2 � � � � �1 0 5 0 65 6. .     

  and:   

V2 40 1 1
44

� �
�

.
 kips      

   As shown at (iv), the beam is cut at 2 and a unit virtual angular discontinuity 
of θ       �      1 is imposed. The internal work done is equated to the external work 
done to give: 

M W V2 5 11 50 100� � �  � �     

  and:   

M2 � � � �
�

40 50 16 100
400 kip-ft ... tension in the top fibers      

   As shown at (v), the beam is cut at 5, and a unit virtual angular discontinuity 
of θ       �      1 is imposed. The internal work done is equated to the external work 
done to give: 

M W W5 5 650 50 0 2(c/ c/ )  c c� � �  � � .     

  and:   

M5 25 40 0 8
800

 � � �
� 

.
 kip-ft ... tension in the bottom fibers      

   Similarly: 

M6 40
1000

� �
�

25
 kip-ft ... tension in the bottom fibers      

   The shear force and bending moment diagrams are shown at (vi) and (vii). The 
bending moment is drawn on the compression side of the beam.   

    3.5     Rigid frames 

   The support reactions of rigid frame structures may be determined using the 
equations of static equilibrium, and the internal forces in the members from a 
free body diagram of the individual members. The internal forces on a member 
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are most conveniently indicated as acting from the node on the member: i.e., 
as support reactions at the node. 

   The vertical reaction at support 4 of the frame shown in  Figure 3.13    is 
obtained by considering moment equilibrium about support 1. Hence: 

M
lV Wh

1

4

0�
�  �     

  and:   

V Wh l4 � /  ... upward      

   Resolving forces vertically gives: 

V V
Wh l

1 4� �
� � /  ... downward      

   Resolving forces horizontally gives: 

H W1 � �  ... to the left     

  and the support reactions are shown at (ii). The deformed shape of the frame 
is shown at (iii).   

2 3

1 4

l

h

W

(i) Applied loads (ii) Support reactions (iii) Deformed shape

W

H1 � W

V1 � Wh/l V4 � Wh/l

Figure 3.13           

   The internal forces in member 12 are determined from a free body diagram 
of the member, as shown in  Figure 3.14   . Resolving forces vertically gives the 
internal force acting at node 2 as: 

V V
Wh l

2 1��
� /  ... upward      

   Considering moment equilibrium about node 2 gives the internal moment at 
node 2 as: 

M hH
Wh

21 1��
�  ... counter-clockwise      
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   Hence, member 12 is subject to a tensile force of P  12       �       Wh / l, the shear force 
diagram is shown at (ii) and the bending moment diagram at (iii) with the 
moment drawn on the compression side of the member. 

   The internal forces in member 34 are determined from a free body diagram 
of the member, as shown in  Figure 3.15   . Resolving forces vertically gives the 
internal force acting at node 3 as: 

V V
Wh l

3 4��
�� /  ... downward      

W

W

W

(i) Member 12 (ii) Shear force
 diagram

(iii) Bending moment
 diagram

Wh

1

V2 � Wh/l

M21 � Wh

2

V1 � Wh/l

Figure 3.14           

3
V3 � Wh/l

Member 34

V4 � Wh/l
4

Figure 3.15           

   Considering moment equilibrium about node 3 gives the internal moment at 
node 3 as: 

M34 0�      
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   Resolving forces horizontally gives the internal force acting at node 3 as: 

H3 0�      

   Hence, member 34 is subject to a compressive force of P  34       �       Wh / l, and both 
the shear force and the bending moment are zero. 

   The internal forces in member 23 are determined from a free body diagram 
of the member, as shown in  Figure 3.16   . Resolving forces vertically gives the 
internal force acting at node 2 as: 

V V
Wh l

2 3��
�� /  ... downward      

Wh/l

(ii) Shear force diagram

Wh

(iii) Bending moment diagram

V2 � Wh/l

V3 � Wh/lM23 � Wh

(i) Member 23

2
3

Figure 3.16           

   Considering moment equilibrium about node 2 gives the internal moment at 
node 2 as: 

M lV
Wh

23 3��
��  ... clockwise    

   Resolving forces horizontally gives the internal force acting at node 2 as: 

H2 0 �      

   Hence, member 23 has no axial force. The shear force diagram is shown at (ii) 
and the bending moment diagram at (iii), with the moment drawn on the com-
pression side of the member. 

    Example 3.4 

   Determine the support reactions and member forces in the rigid frame shown 
in  Figure 3.17    due to the applied loads indicated. Hence, draw the shear force 
and the bending moment diagrams for the members.  
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    Solution 

   The vertical reaction at support 4 of the frame is obtained by considering 
moment equilibrium about support 1. Hence: 

M
lV Wh wl

V

1

4
2

4

0
2

10 20 10 100 2

�

�  � �
�  � � � �

/
5 /     

  and:   

V4 45�  kips ... upward      

   Resolving forces vertically gives: 

V V wl1 4
45 5 10

5

�� �
�� � �
� kips ... upward      

   Resolving forces horizontally gives: 

H W1
20

��
� kips ... to the left     

  and the support reactions are shown at (ii).   
   The internal forces in member 12 are determined from a free body diagram 

of the member, as shown in  Figure 3.18   . Resolving forces vertically gives the 
internal force acting at node 2 as: 

V V2 1
5

��
�� kips ... downward      

2 3

1 4

l � 10 ft

h
�

 1
0 

ft

W � 20 kips

w � 5 kips/ft 5 kips/ft

(i) Applied loads (ii) Support reactions

20 kips

H1 � 20 kips

V1 � 5 kips V4 � 45 kips

Figure 3.17           
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   Considering moment equilibrium about node 2 gives the internal moment at 
node 2 as: 

M hH21 1
10 20

200kip-ft ... counter-clockwise

��
�� ��
�      

   Hence, member 12 is subject to a compressive force of P  12       �      5 kips. The 
shear force diagram is shown at (ii) and the bending moment diagram at (iii), 
with the moment drawn on the compression side of the member. 

   The internal forces in member 34 are determined from a free body diagram 
of the member, as shown in  Figure 3.19   . Resolving forces vertically gives the 
internal force acting at node 3 as: 

V V3 4
45

��
�� kips ... downward      

3
V3 � 45 kips

Member 34

V4 � 45 kips
4

Figure 3.19           

20 kips

20 kips

(i) Member 12 (ii) Shear force
 diagram

(iii) Bending moment
 diagram

200 kip-ftV2 � 5 kips

H1 � 20 kips

M21 � 200 kip-ft

2

V1 � 5 kips

1

Figure 3.18           
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   Considering moment equilibrium about node 3 gives the internal moment at 
node 3 as: 

M34 0�      

   Resolving forces horizontally gives the internal force acting at node 3 as: 

H3 0�      

   Hence, member 34 is subject to a compressive force of P  34       �      45 kips, and 
both the shear force and the bending moment are zero. 

   The internal forces in member 23 are determined from a free body diagram 
of the member, as shown in  Figure 3.20   . Resolving forces vertically gives the 
internal force acting at node 2 as: 

V V wl2 3
45 5 10

5

�� �
�� � �
� kips ... upward      

2 3

(i) Member 23

M23 � 200 kip-ft
V2 � 5 kips

(ii) Shear force
 diagram

5 kips5 kips/ft

45 kips1 ftV3 � 45 kips

(iii) Bending moment diagram

200
kip-ft

1 ft

Mmax � 202.5 kip-ft

Figure 3.20           

   Considering moment equilibrium about node 2 gives the internal moment at 
node 2 as: 

M lV  wl23 3
2 2

10 45 5 100 2
200

�� �
�� � � �
��

/
/

 kip-ft ... clockwise      
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   Resolving forces horizontally gives the internal force acting at node 2 as: 

H2 0�      

   Hence, member 23 has no axial force. The shear force diagram is shown at 
(ii) and the bending moment diagram at (iii), with the moment drawn on the 
compression side of the member.   

    3.6     Three-hinged arch 

   The three-hinged arch has hinged supports at each abutment that provide four 
external restraints. The introduction of another hinge in the arch member pro-
vides a moment release. The extra hinge provides an additional equation of 
equilibrium that, together with the three basic equations of equilibrium, makes 
the solution of the arch possible. Typical examples of three-hinged arches are 
shown in  Figure 3.21   . 

Symmetrical Unsymmetrical

Spandrel braced Compound

Figure 3.21           

   For a three-hinged arch subjected to vertical loads only, the horizontal sup-
port reactions at the arch springings are equal and opposite and act inward. 
The vertical support reactions at the arch springings are equal to those of a 
simply supported beam of identical length with identical loads. 

   For the symmetrical three-hinged arch shown in  Figure 3.22    with a vertical 
applied load W, the unknown horizontal thrust at the springings is H, and the 
unknown vertical reactions are V  1 and V  2. The vertical reaction at support 2 is 
obtained by considering moment equilibrium about support 1. Hence: 

M
lV Wa

1

2

0�
�  �     
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  and:   

V Wa l2 � /      

   Resolving forces vertically gives: 

V W V
W a l

1 2
1

�  � 
�  � ( / )      

   These values for V  1 and V  2 are identical to the reactions of a simply sup-
ported beam of the same span as the arch with the same applied load W . 

l

a

W(i)

(iii) (iv) (v)

(ii)

H

a

l

H H

c

l/2 l/2

H

Hc

c

V1 V2 V2

V2

3 3

Wa(l � a)/l

1 2 2

Figure 3.22           

   The horizontal thrust at the springings is determined from a free body dia-
gram of the right half of the arch, as shown at (ii). Considering moment equi-
librium about the crown hinge at 3: 

M
lV Hc

3

2

0
2

�
� �/     

  and:   

H lV c� 2 2/      

   This value for H is identical to the bending moment at the center of a simply 
supported beam of the same length with the same applied load W multiplied 
by 1/ c.  
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   The bending moment in the arch at any point a distance x from the left sup-
port is given by the expressions: 

M V x Hy x a
V l x Hy a x l

x �  � 

�  �  � 	 


1

2

 ... for 
( )  ... for     

  where  y  is the height of the arch a distance  x  from the left support.   
   At  x       �       l /2,  y       �       c , and the bending moment at the crown hinge is: 

Ml/2 0�      

   The expressions for bending moment may be considered as the superposition 
of the bending moment of a simply supported beam of the same span with the 
same applied load W plus the bending moment due to the horizontal thrust H . 
The bending moment due to the applied load on a simply supported beam is 
shown at (iii) and the bending moment due to the horizontal thrust is shown at 
(iv); this is identical to the shape of the arch. Since the bending moment is zero 
at the crown hinge, the combined bending moment for the arch is obtained 
by adjusting the scale of the free bending moment to give an ordinate of mag-
nitude c at x       �       l/2 and superimposing this on a drawing of the arch. This is 
shown at (v), drawn on the compression side of the arch. In the case of a three-
hinged parabolic arch with a uniformly distributed applied load, no bending 
moment is produced in the arch rib. 

    Example 3.5 

   Determine the support reactions in the parabolic unsymmetrical three-hinged 
arch shown in  Figure 3.23    due to the applied load indicated. Hence, draw the 
bending moment diagram for the arch.  

    Solution 

   The equation of the arch rib is: 

y x l x l � �( )/      

   The reactions at support 2 are obtained by considering moment equilibrium 
about support 1. Hence: 

M
V H

1

2 2

0
15 3 75 5 40 45 3 75 40 45

 � 
� �  � � � � �  �. . sin cos     

  and:   

� �  � 15 3 75 247 492 2V H. .      
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   Resolving forces vertically gives: 

0 40 45
28 28

1 2

1 2

� � � �
� � �

V V
V V

 sin  
.      

   Resolving forces horizontally gives: 

0 40 45
28 28

1 2

1 2

� � � �
� � �

H H
H H

 cos  
.      

   Considering moment equilibrium about the crown hinge at 3 for the free 
body diagram of section 23 of the arch shown at (ii) gives: 

M
V H

3

2 2

0
5 1 25

�
�  � .      

   Solving these equations simultaneously gives: 

H
H
V
V

1

2

1

2

4 72
33 00
20 03
8 25

�
�
�
�

.
.
.

.      

   The maximum moment occurs at the location of the applied load and is: 

M Vmax

 kip-ft

�
� �
�

10
10 8 25
82 50

2
.

.      

5 ft

40 kips

(i) (ii)

(iii)

3

3

3

1

82.50 kip-ft

2

22 1.25 ft

3.75 ft

45°

H1

V1

V2

H2

H2

H2

V2

V2

1

5 
ft

3.
75

 f
t

5 ft 5 ft

5 ft 5 ft 5 ft

Figure 3.23           
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   The bending moment is shown at (iii), drawn on the compression side of the 
arch.   

    Supplementary problems 

    S3.1 Determine whether the beams shown in  Figure S3.1    are determinate, inde-
terminate, or unstable. 

1

(i) (ii)

(iii) (iv)

2 1 2 3 4

1 2 1 2 3

Figure S3.1           

    S3.2 Determine whether the rigid frames shown in  Figure S3.2    are determinate, 
indeterminate, or unstable. 

1

2

1

2

4

3

1

2

4

3

6

5

3

(i) (ii) (iii)

1

2 3

1

2 3

4

(iv) (v)

Figure S3.2           
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    S3.4 For the beam shown in  Figure S3.4   , determine the support reactions and 
draw the shear force and bending moment diagrams. 

1 2

(i)

1 2

(ii)

1 2

(iii)

1 2

(iv)

Figure S3.3           

1 2

3

4 ft 4 ft 8 ft

4

100 kips
10 kips/ft

45°

Figure S3.4           

    S3.5 For the beam shown in  Figure S3.5   , determine the support reactions and 
draw the shear force and bending moment diagrams. 

1

32

5 ft 5 ft 5 ft

4
10 kips/ft

Figure S3.5           

    S3.6 For the beam shown in  Figure S3.6   , determine the support reactions and 
draw the shear force and bending moment diagrams. 

    S3.3 Determine whether the arch structures shown in  Figure S3.3    are determi-
nate, indeterminate or unstable. 
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    S3.7 For the frame shown in  Figure S3.7   , determine the support reactions and 
draw the shear force and bending moment diagrams. 

1 2

6 ft 6 ft

3
10 kips/ft

Figure S3.6           

2

1

320 kips
10 kips/ft

8 ft

8 ft

Figure S3.7           

    S3.8 For the frame shown in  Figure S3.8   , determine the support reactions and 
draw the shear force and bending moment diagrams. 

2

3

5

1

420 kips 40 kips

5 ft 5 ft

5 ft

5 ft

Figure S3.8           

    S3.9 For the frame shown in  Figure S3.9   , determine the support reactions and 
draw the shear force and bending moment diagrams. 
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    S3.10 For the three-hinged arch shown in  Figure S3.10   , determine the support 
reactions and the bending moment in the arch rib at the location x       �      8     ft.     

1

2
3

10 kips 10 kips

4 ft

4 ft

8 ft

4 ft4 ft4 ft

4

5 6

7

Figure S3.9           

1 3

2

x

16 ft 16 ft

8 ft

10 kips/ft

Figure S3.10           



                                  4       Elastic deformations  

    Notation 

      A       cross – sectional area of a member  
  c       rise of an arch  
  C       constant of integration  
  E       modulus of elasticity  
  F       force  
  G       modulus of torsional rigidity  
  h       height of a rigid frame  
  H       horizontal force  
  I       moment of inertia  
  l       length of member  
  m       bending moment in a member due to a unit virtual load  
  M       bending moment in a member due to the applied loads  
  M  �        bending moment in a conjugate member due to the elastic load  
  P       axial force in a member due to the applied load  
  q       shear force in a member due to a unit virtual load  
  Q       shear force in a member due to the applied load  
  Q  �       shear force in a conjugate member due to the elastic load  
  R       redundant force in a member, radius of curvature  
  u       axial force in a member due to a unit virtual load  
  V      vertical force  
  w       intensity of applied distributed load on a member  
  w  �        intensity of elastic load on a conjugate member, expressed as  M/EI   
  W       concentrated load, applied load on a member, expressed as  �  w d x   
  W  �       elastic load on a conjugate member, expressed as  �  M d x/EI   
  x       horizontal deflection  
  y       vertical deflection  
  δ       deflection due to the applied load  
   δ   x       element of length of a member  
   δ   θ       relative rotation between two sections in a member due to the applied 

loads  
  θ       rotation due to the applied loads  
  μ       form factor in shear     
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    4.1     Deflection of beams 

    (a)       Macaulay's method 

   Macaulay's method provides a simple and convenient method for determining 
the deflection of beams. It may be used to obtain an expression for the entire 
elastic curve over the whole length of a beam. 

   A small element δ  s of a beam is shown in  Figure 4.1    and is assumed to be 
bent in the shape of an arc of a circle of radius R. The slope of the elastic curve 

y

Elastic curve

R

Initial position of beam axis

x θ

δθ
δθ

δs

Figure 4.1             

at one end of the element is θ. The change in slope of the elastic curve over the 
length of the element is δ  θ, and the curvature, or rate of change of slope, over 
the element is: 

� � �
� �

θ
θ

/ /
/   positive as shown

s R
x

1
� …      

   The slope of the beam is positive as shown and for small displacements is 
given by: 

θ θ�
�

tan
� �y x/      

   In the limit: 

d /d /
d /d

θ
θ
x R

y x
�
�

1

    

  and:   

d /d d/d d /d
d /d
/
/

θ x x y x
y x
R

M EI

�

�
�
�

( )
2 2

1
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   and: 

EI y x M d /d2 2 �      

   Hence, by setting up an expression for M in terms of the applied loads on a 
beam and x and integrating this expression twice, an equation is obtained for 
the deflection of the beam. 

   Thus, the curvature of the elastic curve is given by the expression: 

d /d /
/

2 2 1y x R
M x EI

�
� ( )      

   The slope of the elastic curve is given by the expression: 

d /d
/

y x

M x EI C

�

� �

θ
( ) 1∫      

   The deflection of the elastic curve is given by the expression: 

y

M x EI C x C

�

� � �

δ
( )/ 1 2∫∫      

   where: 

C
C

M x

1

2

�
�
�

constant of integration
constant of integration
b( ) eending moment at any point in the beam in terms of 
rad

x
R � iius of curvature      

   The expression for the bending moment at any point in the cantilever shown 
in  Figure 4.2    is: 

EI y x M
W l x

d /d
 tension in the top fiber of the can

2 2 �
� � �( ) …  ttilever
� � �Wl Wx      

   Integrating this expression with respect to  x  gives: 

EI y x Wlx Wx Cd /d /� � � �2
12     

  where:   

C1
0

�
�

constant of integration
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  since:   

d /d  at y x x� �0 0    

   Hence, the slope of the elastic curve is given by the expression: 

EI y x Wlx Wxd /d /  � � � 2 2      

   Integrating this expression with respect to  x  gives 

EIy Wlx Wx C� � � �2 3
22 6/ /     

  where:   

C2
0

�
�

constant of integration

    

  since:   

y x� �0 0at      

   Hence, the deflection of the elastic curve is given by the expression: 

EIy Wlx Wx� � �2 32 6/ /      

   At  x       �       l  the deflection of the cantilever is: 

y Wl EI Wl EI
Wl EI

� � �

� �

3 3

3
2 6
3

/ /
/   downward…      

   The expression for the bending moment at any point in the cantilever shown 
in  Figure 4.3    is: 

EI y x M
W a x W x a

 d /d
[

2 2 �
� � � � �( ) ]    

W

2
y

x

l

x

1

y

Figure 4.2             
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   The term [ x       �       a ] is valid only when positive: i.e., when  x       �       a . 
   Hence: 

EI y x Wa Wx W x a d /d2 2 � � � � �[ ]      

   Integrating this expression with respect to x for the terms outside the brack-
ets and with respect to ( x       �       a ) for the term in brackets gives: 

EI y x Wax Wx W x a C d /d / /� � � � � �2 2
12 2[ ]      

   where: 

C1
0

�
�

constant of integration

     

   since: 

d /d aty x x� �0 0    

   Hence, the slope of the elastic curve is given by the expression: 

EI y x Wax Wx W x ad /d / /  � � � � �2 22 2[ ]      

   Integrating this expression gives: 

EIy Wax Wx W x a C� � � � � �2 3 3
22 6 6/ / /[ ]     

  where:   

C2
0

�
�

constant of integration

     

   since: 

y x� �0 0at    

W

2

l

x

1

α

y

Figure 4.3             
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   Hence, the deflection of the elastic curve is given by the expression: 

EIy Wax Wx W x a� � � � �2 3 32 6 6/ / /[ ]    

   At  x       �       a  the deflection of the cantilever is: 

y Wa EI Wa EI
Wa EI

� � �

� �

3 3

3
2 6
3

/ /
/  downward…    

   At  x       �       l  the deflection of the cantilever is: 

y Wal EI Wl EI W l a EI
Wal EI Wl EI W l a

� � � � �

� � � � �

2 3 3

2 3 3
2 6 6
2 6 3

/ / /
/ /

( )
( ll a l a EI

Wa l a EI

2 2 3

2
3 6

3 6
� �

� � �

)
( )

/
/  downward…       

    Example 4.1 

   For the simply supported beam shown in  Figure 4.4   , determine the maxi-
mum deflection due to the applied load. The flexural rigidity of the beam is 
EI       �      7      �      10 6  kip in 2 .  

    Solution 

   The expression for the bending moment at any point in the beam shown in 
 Figure 4.4  is: 

EI y x V x W x a
x x

 d /d2 2
1

20 60 12
� � �
� � �

[ ]
[ ]    

xV1 � 20 kips

W � 60 kips

a � 12 ft b � 6 ft

l � 18 ft

V2 � 40 kips

y

1 2

Figure 4.4             
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   Integrating this expression with respect to x for the terms outside the brack-
ets and with respect to ( x       �       a) for the term in brackets gives an expression for 
the slope of the elastic curve of: 

EI y x x x C d /d � � � �10 30 122 2
1[ ]     

  where:   

C1 � constant of integration      

   Integrating this expression gives an expression for the deflection of the elas-
tic curve of: 

EIy x x C x C� � � � �10 3 10 123 3
1 2/ [ ]     

  where:   

C2 constant of integration�     

  At   

x y� �0 0,     

  and:   

C2 0�     

  At   

x y� �18 0ft,     

  and:   

0 10 18 3 10 18 12 183 3
1� � � � � �/ ( ) C     

  then   

C1
2960� � kip ft    

   Hence, the deflection of the elastic curve is given by the expression: 

EIy x x x� � � �10 3 10 12 9603 3/ [ ]      
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   The maximum deflection occurs where the slope of the elastic curve is 
zero and: 

EI y x
x

 d /d �

� �

0
10 9602     

  and:   

x � 9 80. ft      

   The maximum deflection is given by: 

EIy

y

max

max

. .

( )
.

� � � �
� �

� � � �
� �

10 9 8 3 960 9 8
6273
6273 144 7 10
0 12

3

6

/

/
99

1 55
ft

 in  downward� � . …       

    (b)       Virtual work method 

   The virtual work, or unit-load, method may be used to obtain the displace-
ment of a single point in a beam. The principle may be defined as follows: if a 
structure in equilibrium under a system of applied forces is subjected to a sys-
tem of displacements compatible with the external restraints and the geometry 
of the structure, the total work done by the applied forces during these exter-
nal displacements equals the work done by the internal forces, corresponding 
to the applied forces, during the internal deformations, corresponding to the 
external displacements. The expression “virtual work ” signifies that the work 
done is the product of a real loading system and imaginary displacements or 
an imaginary loading system and real displacements. 

   To the cantilever shown in  Figure 4.5    (i), the external loads W are gradually 
applied. This results in the deflection of any point 3 a distance δ, while each 
load moves a distance y in its line of action. The loading produces a bending 
moment M and a relative rotation δ  θ to the ends of the element shown at (ii). 
From the principle of conservation of energy and ignoring the effects of axial 
and shear forces, the external work done during the application of the loads 
must equal the internal energy stored in the beam. 

   Then: 

Wy M/ /2 2∑ ∑� δ  …θ (1)      

   To the unloaded structure a unit virtual load is applied at 3 in the direction 
of δ  as shown at (iii). This results in a bending moment  m  in the element. 
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   Now, while the virtual load is still in position, the real loads  W are gradually 
applied to the structure. Again equating external work and internal energy: 

∑ ∑ ∑Wy M m/ /2 1 2� � � �δ θ θδ δ  … (2)      

   Subtracting expression (1) from expression (2): 

1 � �
�
�

δ θ∑
∑
∑

m
m x R
m x EI

δ
δ
δ

/
/    

W

1

(i)

(iii)

1

(iv)

(ii)

1

θ
δ

W W

1

3

2

2

MM

R

δθ

3

1

23

δx

Figure 4.5             
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   In the limit: 

1 � �δ Mm x EId /∫      

   If it becomes necessary to include the deflection due to shear, the expression 
becomes:

1 � � �δ μMm x EI Vv x AGd / d /  ∫∫      

   where M and V are the bending moment and shear force at any section 
due to the applied loads, and I, G, and A are the second moment of area, 
the rigidity modulus, and the area of the section; μ is the form factor; and m  
and v are the bending moment and shear force at any section due to the unit 
virtual load. 

   In a similar manner, the rotation  θ of any point 3 of the structure may be 
obtained by applying a unit virtual bending moment at 3 in the direction of θ , 
as shown at (iv). 

   Then: 

1 � � �θ μMm x EI Vv x AGd / d /  ∫∫      

   where m and v are the bending moment and shear force at any section due to 
the unit virtual moment. 

   For a beam, moments produced by the virtual load or moment are con-
sidered positive, and moments produced by the applied loads, which are of 
opposite sense, are considered negative. A positive value for the displacement 
indicates that the displacement is in the same direction as the virtual force or 
moment.

   The deflection and slope at the free end of the cantilever shown in  Figure 4.6    
may be obtained by the virtual work method. Taking the origin of coordinates 
at point 3, the expression for the bending moment due to the applied load is 
obtained from  Figure 4.6  (ii) as: 

M Wx�      

   A unit vertical load is applied at the end of the cantilever and the function m  
derived from (iii) as: 

m l a x� � �      



Elastic deformations 81

   The vertical deflection at 2 is given by: 

1

2 2 3

0

0
2 2 3

0

� �

� � �

� � �

δ Mm x EI

W x l a x x EI

W x l x a x E

a

a

a

 d /

 d /

/ / / /

∫
∫ ( )

[ ] II
W a l a a EI
Wa l a EI

� � �

� �

( )
( )

2 3 3

2
2 2 3

3 6
/ / / /

/  downward…      

   To determine the slope at the end of the cantilever, a unit clockwise rotation 
is applied at the end of the cantilever and the function m  derived from (iv) as: 

m � 1      

   The slope at 2 is given by: 

1

2

0

0
2

� �

�

�

θ Mm x EI

W x x EI

Wa EI

a

a

d /

d /

/  clockwise

∫
∫

…       

    Example 4.2 

   For the simply supported beam shown in  Figure 4.7   , determine the deflec-
tion at the location of the applied load. The flexural rigidity of the beam is 
EI       �      7    �      10 6  kip in 2 .  

(i)

1

W

3 2

a

l

M

m

1

Wa

x

(iv)

1 3 2

1

(ii)

1

W

3

x

2

a

l

(iii)

1 3 2

1

x

ml

Figure 4.6             
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    Solution 

   Taking the origin of coordinates at end 1 and end 2 in turn, the expressions for 
the bending moment due to the applied load are obtained from Figure 4.7(i)  as: 

M V x
x

�
�

1
20     

  and:   

M V x
x

�
�

2
40      

   A unit vertical load is applied at 3 and the corresponding functions for m  
derived from (ii) as: 

m x� /3     

a � 12 ft

x x
1 3

M

(i)

240 kip-ft

2

b � 6 ft

l � 18 ft

W � 60 kips

V1 � 20 kips V2 � 40 kips

x x
1 2

1 kip

1/3 2/3

4 kip-ft

(ii)

Figure 4.7             
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  and:   

m x� 2 3/      

   The vertical deflection at 3 is given by: 

1

20 3 80 3

2

0 0

2
0

2
0

� � �

� �

�

δ Mm x EI Mm x EI

x x EI x x EI

a b

a b

d / d /

  d /  d /

∫ ∫
∫ ∫

00 9 80 9
3840 1920
5760 144 7 10

3
0
12 3

0
6

6

[ ] [ ]

(

x EI x EI
EI EI
/ /
/ /

/

�

� �

� � � ))
.
.

�
�

0 118
1 422

 ft
 in  downward…      

   As an alternative to evaluating the integrals in the virtual work method, 
advantage may be taken of the volume integration method. For a straight pris-
matic member: 

Mm x EI Mm x EId / d / .∫ ∫� � 1
     

   The function m is always either constant along the length of the member or 
varies linearly. The function  M may vary linearly for real concentrated loads 
or parabolically for real distributed loads. Thus, �  Mm d x may be regarded 
as the volume of a solid with a cross-section defined by the function M and 
a height defined by the function m. The volume of this solid is given by the 
area of cross-section multiplied by the height of the solid at the centroid of the 
cross-section.

   Commonly occurring values of �  Mm d x are provided in Part 2, Chapter 2, 
Table 2.3 for various types of functions  M  and  m .  

    Example 4.3 

   Determine the slope at the free end of the cantilever shown in  Figure 4.8    using 
the volume integration method.  

    Solution 

   The functions M and m derived from Figure 4.8  (i) and (ii) and the solid 
defined by these functions are shown at (iii). The slope at the end of the canti-
lever is given by the volume of this solid      �      1 �  EI , which is: 

θ � � � �

�

Wa a EI
Wa EI

/ /
/

2 1 1
22      
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   Alternatively, the value of  �  Mm d x/EI may be obtained directly from Part 2, 
Table 2.3, and is given by: 

θ � � �

�

a Wa EI
Wa EI

1 2
22

/
/        

    4.2     Deflection of rigid frames 

    (a)       Virtual work method 

   The virtual work method may be applied to rigid frames to obtain the dis-
placement at a specific point on the frame. Integration is carried out over 

(i)

(iii)

(ii)

1

W

M

m

Wa

3

x

x

2

1 3 2

1

1

a

aWa

1

l

Figure 4.8             
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all  members of the frame and the values summed to provide the required 
displacement.

   To determine the horizontal deflection of node 2 for the frame shown in 
Figure 4.9    (i), use is made of the bending moment diagrams produced by the 
applied load and by a unit virtual horizontal load at node 2. These are shown 
at (ii) and (iv). Member 34 has zero bending moment under both loading cases. 

2

W

(i) (ii)

(iv)

3

h

W

Wh/l

Wh

x

x

41

l

1

h/l

h

x

x
2

1

(iii)

3

41

Figure 4.9             

   With the origin of coordinates as indicated, expressions for the bending 
moment produced by the applied load are obtained from  Figure 4.9  (ii) as: 

M Wx�   member … 12     

  and:   

M Whx l� /   member … 23      

   A unit horizontal load is applied at node 2, as shown at (iii), and the corre-
sponding functions for m  derived from (iv) as: 

m x�   member … 12     
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  and:   

m hx l� /   member … 23      

   The horizontal deflection at node 2 is obtained by summing the values for 
members 12 and 23 to give: 

1
0 0

2
0

2 2 2
0

� � �

� �

δ Mm x EI Mm x EI

W x x EI W h x x l EI

h l

h l

 d /  d /

  d /  d /

∫ ∫
∫ ∫

�� �

� �

W x EI W h x l EI
W h EI h l EI

h l[ ] [ ]
( )

3
0

2 3 2
0

3 2

3 3
3 3
/ /
/ /       

    Example 4.4 

   Determine the horizontal deflection of node 2 for the frame shown in Figure
4.10   . The flexural rigidity of the members is  EI       �      30      �      10 6  kip in 2 .  

2

W � 20 kips

w � 5 kips/ft

(i) (ii)

(iv)

3

h
�

10
 f

t

H1 � 20 kips

V4 � 45 kips

200 kip-ft

x

x

41

l � 10 ft

1 kip

1 kip

10 kip-ft

x

x
2

1 kip

(iii)

3

41

Figure 4.10             
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    Solution 

   The bending moments produced in the members of the frame by the applied 
loads shown in  Figure 4.10  (i) are obtained from (ii). With the origin of coor-
dinates as indicated, the expressions for the moments are: 

M H x
x

�
�

1 12
20

  member …
    

  and:   

M V x wx
x x

� �

� �
4

2

2
2 23

45 5 2
/   member 
/

…

     

   A unit horizontal load is applied at node 2, as shown at (iii), and the corre-
sponding functions for m  derived from (iv) as: 

m x�   member … 12     

  and:   

m hx l
x

�
�

/   member … 23
     

   No moments are produced in member 34, and the horizontal deflection at 
node 2 is obtained by summing the values for members 12 and 23 to give: 

1

20 5 9 2

0 0

2
0

10
2 3

0

� � �

� � �

δ Mm x EI Mm x EI

x x EI x x x EI

h l
d / d /

 d / / d /

∫ ∫
∫ ( )

110

3
0
10 3 4

0
10

6

20 3 5 3 8
15 417 144 30 10

∫
� � �

� � �

[ ] [ ]
, ( )
x EI x EI x EI/ / /

/
��
�

0 074
0 89

.

.
 ft

 in       

    (b)       Conjugate beam method 

   The conjugate beam method may be used to obtain an expression for the entire 
elastic curve over the whole of a rigid frame or beam. 

   The beam shown in  Figure 4.11    (i) is subjected to a distributed applied load 
of intensity w, positive when acting upward as indicated. The shear force at 
any section is given by the area under the load intensity curve as: 

Q w x� d∫      
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   with shear force upward on the left of a section regarded as positive. The shear 
force diagram is shown at (ii) and is negative at end 1 and positive at end 2. 

   The bending moment at any section is given by the area under the shear 
force curve as: 

M Q x

w x

�

�

d

d
∫
∫∫      

   with bending moment producing tension in the bottom fiber regarded as 
positive. The bending moment diagram is shown at (iii) and is negative as 
indicated.

   In addition, the curvature of the elastic curve at any section is given by: 

d /d d /d
/
/

2 2

1
y x x

R
M EI

�
�
�

θ

     

Real beam

w

x

1 12 2

M/EI

Loading

Shear force
diagram

Bending moment
diagram

Elastic curve
�θ �θ

�δ

(i) (v)

(vi)

(vii)

y

Conjugate beam

�

�

�

�

�

�

(ii)

(iii)

(iv)

Figure 4.11             
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   and the slope and deflection at any section are given by: 

d /d
d /

d

Md /

y x

M x EI

y

x

x EI

�

�

�

�

�

θ

δ
θ

∫

∫
∫∫      

   with x positive to the right and y positive upward. The elastic curve is shown 
at (iv) with deflections positive (i.e., upward) as indicated and with a positive 
slope (i.e., counterclockwise rotation) at end 1 and a negative slope (i.e., clock-
wise rotation) at end 2. 

   An analogous beam known as the conjugate beam and of the same length as 
the real beam, as shown in  Figure 4.11  (v), is subjected to an applied loading 
of intensity: 

w M EI� � /      

   where M is the bending moment in the actual beam at any section and � M d x/
EI is known as the elastic load, W  �. The elastic load acts in a positive direction 
(upward) when the bending moment in the real beam is positive. The loading 
diagram is shown at (v) and is negative as indicated. 

   Then, the shear at any section in the conjugate beam is given by: 

Q w x

M x EI

� � �

�

�

d

d /
∫
∫
θ      

   where θ is the slope at the corresponding section in the real beam. The shear 
force diagram is shown at (vi) and is positive at end 1 and negative at end 2. 
Hence, as shown at (iv), the slope of the elastic curve is positive at end 1 and 
negative at end 2. 

   The bending moment at any section in the conjugate beam is given by: 

M Q x

M x EI

� � �

�

�

d

d /
∫
∫∫
δ      

   where δ is the deflection at the corresponding section in the real beam. The 
bending moment diagram is shown at (vii) and is positive as indicated. Hence, 
as shown at (iv), the deflection of the elastic curve is positive. 
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   Thus, the slope and deflection at any section in the real beam are given by 
the shear and bending moment at the corresponding section in the conjugate 
beam, and the elastic curve of the real beam is given by the bending moment 
diagram of the conjugate beam. The end slope and end deflection of the real 
beam are given by the end reaction and end moment of the conjugate beam. 
The maximum deflection in the real beam occurs at the position of zero shear 
in the conjugate beam. 

   In the case of frames, the elastic load applied to the conjugate frame is posi-
tive (i.e., acts vertically upward) when the outside fiber of the real frame is in 
compression. Then, the displacement of the real frame at any section is perpen-
dicular to the lever arm used to determine the moment in the conjugate frame 
and is outward when a positive bending moment occurs at the corresponding 
section of the conjugate frame. 

   The restraints of the conjugate structure must be consistent with the dis-
placements of the real structure. Details of the necessary restraints in the con-
jugate structure are provided in Part 2, Chapter 4,  Table 4.1   . 

   At a simple end support in a real structure, there is a rotation but no deflec-
tion. Thus, the corresponding restraints in the conjugate structure must be a 
shear force and a zero moment, which are produced by a simple end support 
in the conjugate structure. 

   At a fixed end in a real structure, there is neither a rotation nor a deflection. 
Thus, there must be no restraint at the corresponding point in the conjugate 
structure, which must be a free end. 

   At a free end in a real structure, there is both a rotation and a deflection. 
Thus, the corresponding restraints in the conjugate structure are a shear force 
and a bending moment, which are produced at a fixed end. 

   At an interior support in a real structure, there is no deflection and a smooth 
change in slope. Thus, there can be no moment and no reaction at the cor-
responding point in the conjugate structure, which must be an unsupported 
hinge.

   At an interior hinge in a real structure, there is a deflection and an 
abrupt change of slope. Thus, the corresponding restraints in the conjugate 
structure are a moment and a reaction, which are produced by an interior 
support.  

    Example 4.5 

   Determine the rotation of nodes 1 and 4 and the horizontal deflection of node 
2 for the frame shown in  Figure 4.12   . The flexural rigidity of the members is 
EI       �      30      �      10 6  kip in 2 .  
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    Solution 

   It is convenient to utilize the principle of superposition and consider the dis-
tributed load and the lateral load separately. 

   The lateral load is applied to the frame at (ii), which results in the bending 
moment diagram, drawn on the compression side of the members, shown at (iv). 
The elastic loads are applied to the conjugate frame at (vi) and are given by: 

W W
EI

EI

� �1 2
0 5 10 200
1000

�

� � �
�

. /
/   upward…      

Real frame:
Loads � reactions

Real frame:
Bending moments

Conjugate frame:
loads � reactions

2

θ1

20 kips

5 kips
45 kips

5 kips/ft

(i)

(ii)

(iii)

(iv) (vi)

(vii)(v)

3

10 ft

41

10 ft

10 ft

θ1

25 kips
25 kips

5 kips/ft

1

θ1

20 kips

20 kips 20 kips
20 kips

200
kip-ft

W ′1

2′

x4

y4 � 0

y4 � 0

θ1

θ1

θ4

1′

3′

4′

W ′2

W ′3

62.5 kip-ft

x4

θ4

10
 ft

Figure 4.12             



Structural Analysis: In Theory and Practice92

   Since the vertical deflection at 4 is zero, the bending moment at 4 � about 
axis 3 � 4 � is zero. Hence, the rotation at 1 is obtained by taking moments in the 
conjugate frame about axis 3 � 4 �  and is given by: 

θ1 2 120 3 10 10
1667

� � � � � � �

� �

( )/ /
/   clockwise

W W
EI …      

   The rotation at 4 is obtained by resolving forces vertically in the conjugate 
frame and is given by: 

θ θ4 2 1 1
333

� � � � � �

� �

W W
EI/   clockwise…      

   The horizontal deflection at 2 is given by the bending moment at 2 � in the 
conjugate frame about axis 2 � 3 � , which is: 

δ θ2 1 110 10 3
13 336

� � � � �

�

/
/   to the right

W
EI, …      

   The distributed load is applied to the frame at (iii), which results in the bend-
ing moment diagram, drawn on the compression side of the members, shown 
at (v). The elastic load is applied to the conjugate frame at (vii) and is given by: 

W EI
EI

� � � �

�
3 0 667 10 62 5

416 9
. .

.
/

/   upward…      

   Since the vertical deflection at 4 is zero, the bending moment at 4 � about 
axis 3 � 4 � is zero. Hence, the rotation at 1 is obtained by taking moments in the 
conjugate frame about axis 3 � 4 �  and is given by: 

θ1 310 2 10
208 4

� � � �

� �

( )
.

/ /
/    clockwise

W
EI …      

   The rotation at 4 is obtained by resolving forces vertically in the conjugate 
frame and is given by: 

θ θ4 3 1
208 4

� � � �

� �

W
EI. /    clockwise…      

   The horizontal deflection at 2 is given by the bending moment in the conju-
gate frame about axis 2 � 3 � , which is: 

δ θ2 110
2084

� �
� /   to the rightEI …      
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   The total horizontal deflection at 2 is obtained by summing the individual 
values calculated for the lateral load and the distributed load and is given by: 

δ2
6

13 336 2084
15420 144 30 10
0 074
0 89

� �

� � �
�
�

,
( )

.

.

/ /
/

 ft
 in 

EI EI

… to the right      

   The total rotation at 1 is obtained by summing the individual values for the 
lateral load and the distributed load and is given by: 

θ1
6

1667 208 4
1875 4 144 30 10
0 0090

�� �

�� � �
��

/ /
/

 rad  cl

EI EI.
. ( )

. … oockwise      

   The total rotation at 4 is obtained by summing the individual values for the 
lateral load and the distributed load and is given by: 

θ4
6

333 208 4
541 4 144 30 10
0 00260

�� �

�� � �
��

/ /
/

 rad  clo

EI EI.
. ( )

. … cckwise        

    4.3     Deflection of pin-jointed frames 

   The virtual work method may be applied to pin-jointed frames to obtain the 
displacement at a node on the frame. 

   To the pin-jointed frame shown in  Figure 4.13 (i)   , the external loads W  
are gradually applied. This results in the deflection of any node 3 a distance δ , 

(i) (ii)

1 3

42

WW

Forces P

5 1
1

3

42

Forces u

5

Figure 4.13             
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while each load moves a distance y in its line of action. The loading produces 
an internal force P and an extension δ  l in any member of the frame. The exter-
nal work done during the application of the loads must equal the internal 
energy stored in the structure, from the principle of conservation of energy. 
Then:

∑ ∑Wy P l/ /   2 2� δ …  (1)      

   To the unloaded structure a unit virtual load is applied at node 3 in the 
direction of δ, as shown in  Figure 4.13 (ii) . This results in a force  u in any 
member. 

   Now, while the virtual load is still in position, the real loads  W are gradually 
applied to the structure. Again equating external work and internal energy: 

∑ ∑ ∑Wy P l u l/ / /2 1 2� � � �δ δ δ …  (2)      

   Subtracting expression (1) from expression (2): 

1
/

� �
�

δ ∑
∑

u l
Pul AE

δ

     

   where P is the internal force in a member due to the applied loads and l, A and 
E are its length, area, and modulus of elasticity, and  u is the internal force in a 
member due to the unit virtual load. 

   For a pin-jointed frame, tensile forces are considered positive and compres-
sive forces negative. Increase in the length of a member is considered positive 
and decrease in length negative. The unit virtual load is applied to the frame in 
the anticipated direction of the deflection. If the assumed direction is correct, 
the deflection obtained will have a positive value. The deflection obtained will 
be negative when the unit virtual load has been applied in the opposite direc-
tion to the actual deflection. 

    Example 4.6 

   Determine the vertical deflection of node 5 for the pin-jointed frame shown 
in  Figure 4.14   . All members of the frame have a constant value for AE of 
100,000 kips.  
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2

1

15 kips 15 kips

10 kips10 kips10 kips

10 ft 10 ft 10 ft 10 ft

10 ft

14.14 ft

3 5 7
8

4 6

Figure 4.14             

    Solution 

   Because of the symmetry in the structure and loading, only half of the mem-
bers need be considered. The member forces P due to the applied loads and u  
due to the unit virtual load are tabulated in  Table 4.1 . 

Table 4.1        Determination of forces and displacements in 
Example 4.6  

   Member          P         l  u  Pul  

   12 �21.21 14.14 �0.707 212
   23 10.00 10.00 0 0
   13 15.00 10.00 0.500 75
   45 0.00 10.00 0 0
   24 �20.00 10.00 �1.000 200
   25 7.07 14.14 0.707 71
   35 15.00 10.00 0.500 75
   Total  633 

   The vertical deflection is given by: 

δ5
2 633 12 100 000
0 15

�
� � �
�

∑ Pul AE/
/

in downward
,

.        

    Supplementary problems 

    S4.1 Determine the rotations at nodes 1 and 2 and the deflection at node 3 of 
the uniform beam shown in  Figure S4.1   . 
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    S4.2 Determine the deflection at node 2 of the uniform beam shown in 
 Figure S4.2   . 

1
2 3

6 ft6 ft

10 kips/ft

Figure S4.2             

5 ft 5 ft

5 ft

5 ft

1

220 kips 4

5

3

40 kips

Figure S4.3             

1 2 3

6 ft12 ft

10 kips

Figure S4.4             

    S4.3 Determine the rotation at node 1 and the deflection at node 2 of the uni-
form beam shown in  Figure S4.3   . 

    S4.4 Determine the equation of the elastic curve for the uniform beam shown in 
Figure S4.4   . Determine the location of the maximum deflection in span 12 and 
the magnitude of the maximum deflection. Determine the deflection at node 3. 

1

2 3
4

5 ft 5 ft 5 ft

10 kips/ft

Figure S4.1             
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    S4.5 Determine the deflection at node 3 of the uniform beam shown in 
 Figure S4.5   . 

2

3
1

V1 � 58 kips V2 � 38 kips

w � 2 kips/ft

12 ft6 ft

l � 18 ft

W � 60 kips

x

y

Figure S4.5             

6 ft
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6
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1

432
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Figure S4.6             
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t
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1 2

8

9
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11
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3 4 5 6 7

Figure S4.7             

    S4.6 Determine the deflection at node 3 of the pin-jointed truss shown in 
 Figure S4.6   . 

    S4.7 Determine the deflection at node 4 of the pin-jointed truss shown in 
 Figure S4.7   . 
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    S4.8 Determine the deflection at node 2 of the pin-jointed truss shown in 
 Figure S4.8   . 

12 kips 12 kips

5 ft 5 ft 5 ft 5 ft

5 ft

4

1 2 3

5 6 7 8

Figure S4.8             

1 2

5

6

7

3 4

3 
ft

3 
ft

6 ft 6 ft6 ft

4 kips

4 kips4 kips

Figure S4.9             

    S4.9 Determine the deflection at node 3 of the pin-jointed truss shown in 
 Figure S4.9   . 
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    S4.10 Determine the deflection at node 2 of the pin-jointed truss shown in 
 Figure S4.10   .       

2

1 3

6

5

4

8 ft 8 ft

2 kips

2 kips2 kips

6 
ft

6 
ft

Figure S4.10             



  5   Influence lines 

    Notation 

      A       cross-sectional area of a member  
  E       modulus of elasticity  
  I       second moment of area of a member  
  l       length of a member  
  M       bending moment in a member due to the applied loads  
  P       axial force in a member due to the applied loads  
  Q       shear force in a member due to the applied loads  
  V       vertical reaction  
  W       applied load  
  δ       deflection  
  θ       rotation     

    5.1     Introduction 

Roof truss

(i) (ii)

Trolley
Crane gantry girder

Figure 5.1             

   The maximum design force in a member of a structure subjected to a system 
of stationary loads is readily determined. The static loads are applied to 
the structure as shown in  Figure 5.1    (i) and the member forces calculated. 
However, a member such as a bridge girder or a crane gantry girder are sub-
jected to moving loads, and the maximum design force in the member depends 
on the location of the moving load. As shown in  Figure 5.1  (ii), this involves 
the trial and error positioning of the crane loads on the girder to determine 
the most critical location. Alternatively, an influence line may be utilized to 
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determine the location of the moving load that produces the maximum design 
force in a member.  

    5.2     Construction of influence lines 

   An influence line for a member is a graph representing the variation in shear, 
moment or force in the member due to a unit load traversing a structure. The 
construction of an influence line may be obtained by the application of Müller-
Breslau’s principle. 

1

(iii)

(iv)

1

3

W � 1

d3

21

(i)

(ii)

V1

d � 1

2

Figure 5.2             

   In accordance with Müller-Breslau ’s principle, the influence line for any con-
straint in a structure is the elastic curve produced by the corresponding unit 
virtual displacement applied at the point of application of the restraint. The 
term “ displacement ”  is used in its general sense, and the displacement corre-
sponding to a moment is a rotation and to a force is a linear deflection. The 
displacement is applied in the same direction as the restraint. To obtain the 
influence line for the support reaction at end 1 of the simply supported beam 
shown in  Figure 5.2    (i), a unit virtual displacement is applied in the line of 
action of V  1. This results in the elastic curve shown at (ii). A unit load is 
applied to the beam at any point 3, as shown at (iii), and the unit displacement 
applied to end 1. The displacement produced at point 3 is δ  3, as shown at (iv). 
Then, applying the virtual work principle: 

V W
V

1 3

1 3

1 1� � � � �
�

( ) ( )δ δ
δ     

  and the elastic curve is the influence line for  V  1 .   
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   Similarly, as shown in  Figure 5.3    (ii), the influence line for shear at point 3 
is obtained by cutting the beam at 3 and displacing the cut ends a unit distance 
apart. The influence line for bending moment at 3 is produced by cutting the 
beam at 3 and imposing a unit virtual rotation, as shown at (iii).  

    5.3     Maximum effects 

    (a) Single concentrated load 

   A concentrated load W produces the maximum positive shear at point 3 in the 
beam shown in  Figure 5.3  (i) when the load is located just to the right of 3. 
The shear is given by: 

Q W
Wb

max influence line ordinate to the right of point 
/

� �
�

3
ll      

l

a

31

1

1

b


 � 1

2
Beam

a/l

Influence line
for Q3

Influence line
for M3

(i)

(ii)

(iii)

b

�

�

�

b/l

ab/l

a

Figure 5.3             
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   As shown in  Figure 5.3  (ii), the maximum negative shear at point 3 occurs 
when the load is located just to the left of 3 and is given by: 

Q W
Wa l

min influence line ordinate to the left of point 
/

� �
�

3
     

   As shown in  Figure 5.3  (iii), the maximum moment at point 3 occurs when 
the load is located at 3 and is given by: 

M W
Wab l

max influence line ordinate at point 
/

� �
�

3

      

    Example 5.1 

   Determine the maximum shear force and maximum moment at point 3 in the sim-
ply supported beam shown in  Figure 5.4    due to a concentrated load of 10 kips. 

31 2

a � 10 ft b � 30 ft

W � 10 kips

Figure 5.4             

    Solution 

   The influence line for shear is shown in  Figure 5.3  (ii), and the maximum shear 
at point 3 occurs when the 10 kip load is immediately to the right of 3. The 
maximum shear is; 

Q Wb l�
� �
�

/
 /
  kips

10 30 40
7 5.      

   The influence line for moment is shown in  Figure 5.3  (iii), and the maxi-
mum moment at point 3 occurs when the 10 kip load is at 3. The maximum 
moment is; 

M Wab l�
� � �
�

/
/

 kip-ft
10 10 30 40
75       
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    (b) Uniformly distributed load 

l

c

w

b/l

a/l
c

w

31 2
(i)

(ii)

(iii)

(iv)

31 2

a b

b/l

a/l

Figure 5.5             

   A uniformly distributed load w of length c is applied to the beam, as shown in 
Figure 5.5   (i). This produces the maximum positive shear at point 3 when the 
distributed load is located just to the right of 3. As shown in (ii), the shear is 
given by; 

Q wmax area under the influence line� �      

   As shown at (iii) and (iv), the maximum negative shear at point 3 is 
given by; 

Q wmin area under the influence line� �       

    Example 5.2 

   Determine the maximum shear force at point 3 in the simply supported beam 
shown in  Figure 5.6    due to a distributed load of 2 kips/ft over a length of 10     ft.  
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    Solution 

w

1(i)

(ii)

(iii)

3 2

0.75
0.5

0.25

a � 10 ft b � 30 ft

c � 10 ft

w � 2 kips/ft

Figure 5.6             

w

31 2

Beam with
distributed load

Influence line
for M3

(i)

(ii)

a b

c

c2c1

Figure 5.7             

   The influence line for shear is shown in  Figure 5.6  (iii), and the maximum 
shear at point 3 occurs when the distributed load is immediately to the right of 
3, as shown at (ii). The maximum shear is; 

Q wmax area under the influence line
10( )/

� �
� � �
�

2 0 75 0 5 2
12 5

. .
.  kips      

   The maximum moment at point 3 is produced when point 3 divides the dis-
tributed load in the same ratio as it divides the span. As shown in  Figure 5.7    (i), 
this occurs when: 

c c a b1 2/ /�      
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   As shown at (ii), the maximum moment at point 3 is given by: 

M wmax area under the influence line� �       

    Example 5.3 

   Determine the maximum bending moment at point 3 in the simply supported 
beam shown in  Figure 5.8    due to a distributed load of 2 kips/ft over a length 
of 10     ft.  

w � 2 kips/ft

3

7.5 5.63

5.63

1 2

Beam with
distributed load

Influence line
for M3

(i)

(ii)

a � 10 ft b � 30 ft

c � 10 ft

c2 � 7.5 ftc1 � 2.5 ft

Figure 5.8               

    Solution 

   The maximum moment at point 3 is produced when point 3 divides the dis-
tributed load in the same ratio as it divides the span. As shown in  Figure 5.8 
(i), this occurs when: 

c c a b1 2
10 30

/ /
/

�
�     

  

and:

   

c
c

1

2

2 5
7 5

�
�

.

.
ft
ft      

   As shown at (ii), the maximum moment at point 3 is given by: 

M wmax  area under the influence line
[ ( )/

� �
� � �2 2 5 5 63 7 5 2 7. . . .55 5 63 7 5 2

2 10 5 63 7 5 2
131

( )/ ]
( )/

 kip-ft

. .
. .

�
� � �
�       
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    (c) Train of wheel loads 

W
1

W
2

W
3

W
4

W
1

c1 c2 c3

W
2
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3

W
4

31 2

31 2
(i)

(ii)

W
1

W
2

W
3

W
4

31 2
(iii)

W
1

W
2

W
3

W
4

31 2
(iv)

a b

l

Figure 5.9             

   A train of wheel loads is applied to the beam, as shown in  Figure 5.9    (i). This 
produces the maximum positive shear at point 3 when the first load is located 
just to the right of 3, as shown in (ii), provided that: 

W c W l1 1/ /� ∑     

  
where:

   

∑W
l

�
�

total weight of the wheel loads
span length      

   The maximum positive shear at point 3 occurs when the second load is 
located just to the right of 3, as shown in (iii), provided that: 

W c W l2 2/ /� ∑      

   The maximum positive shear at point 3 occurs when the third load is located 
just to the right of 3, as shown in (iv), provided that: 

W c W l3 3/ /� ∑     

  and so on.    

    Example 5.4 

   Determine the maximum shear at point 3 in the simply supported beam shown 
in  Figure 5.10    due to the train of wheel loads indicated.  
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    Solution 

   The ratio of total weight of wheel loads to span length is: 

∑ W l/ /
 kips/ft

�
�

24 40
0 6.      

   Placing the first wheel at point 3 gives: 

W c1 1 2 4
0 5 0 6

/ /�
� 	. .�      

   Placing the second wheel at point 3, as shown in (ii), gives: 

W c2 2 10 3
3 3 0 6

/ /
, governs

�
� �. .�      

   Hence, the maximum shear occurs at point 3 when the second load is 
located immediately to the right of 3; the ordinates of the influence line 
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diagram at the positions of the wheel loads is shown at (iii). The shear at 3 is 
given by: 

Q3 2 0 15 10 0 75 10 0 675 2 0 575
15 1

� � � � � � � � �
�

. . . .
.  kips      

   Alternatively, the shear at 3 may be determined by resolving forces vertically. 
   The support reaction at end 1 is: 

V1 24 28 5 40
17 1

� �
�

.
.

/
 kips      

   The shear at 3 is given by: 

Q3 17 1 2
15 1

� �
�

.

.  kips      
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   A train of wheel loads is applied to the beam, as shown in  Figure 5.11    (i). 
This produces the maximum bending moment at a specific point 3 when a 
specified load is located at 3, as shown in (ii), such that if the load is moved 
to the left of 3, the intensity of loading on section 13 is greater than on section 
23, but if it moves to the right of point 3, the intensity of loading on section 23 
is greater than on section 13. The first requirement is shown at (ii) and is: 

∑ ∑W a W bL R/ /�     

where:

   
∑
∑

W W W
W W W

L

R

� �
� �

1 2

3 4      
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   The second requirement is shown at (iii) and is: 

∑ ∑W b W aR L/ /�     

where:  ∑
∑

W W
W W W W

L

R

�
� � �

1

2 3 4       

    Example 5.5 

   Determine the maximum bending moment at point 3 in the simply supported 
beam shown in  Figure 5.12    due to the train of wheel loads indicated.  
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    Solution 

   Placing the second wheel on the left of point 3, as shown at (i), gives an inten-
sity of loading on section 23 of: 

∑ W b W W bR / ( )/
/

� �
�
�

3 4
12 30
0 4.     

  and an intensity of loading on section 13 of:   

∑ W a W W aL/ ( )/
/

� �
�
�
�

1 2
12 10
1 2
0 4

.

.      

   Placing the second wheel on the right of point 3, as shown at (ii), gives an 
intensity of loading on section 23 of: 

∑ W b W W W bR / ( )/
/

� � �
�
�

2 3 4
22 30
0 733.     

  and an intensity of loading on section 13 of:   

∑ W a W aL/ ( )/
/

�
�
�
	

1
2 10
0 2
0 733

.
.      

   Hence the maximum bending moment occurs at point 3 when the second wheel 
load is located at point 3, as shown at (iii). The influence line for bending moment 
at 3 is shown at (iv), and the maximum bending moment at 3 is given by: 

M3 2 4 5 10 7 5 10 6 75 2 5 75
163

� � � � � � � �
�

. . . .
 kip-ft      

   Alternatively, the bending moment at 3 may be determined by resolving 
forces vertically. The support reaction at end 1 is: 

V1 24 28 5 40
17 1

� �
�

.
.

/
 kips      
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   The moment at 3 is given by: 

M3 17 1 10 2 4
163

� � � �
�

.
 kip-ft      
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d(l�d )/l

Figure 5.13             

   The maximum bending moment produced by a train of wheel loads in a 
simply supported beam always occurs under one of the wheels and does 
not necessarily occur at midspan. As shown in  Figure 5.13    (i), a train of wheel 
loads produces the maximum possible bending moment in a simply supported 
beam under one of the wheels when the center of the span bisects the distance 
between this wheel and the centroid of the train. The maximum moment usu-
ally occurs under one of the wheels adjacent to the centroid of the train. The 
influence line for bending moment at the location of the maximum moment is 
shown at (ii).  

    Example 5.6 

   Determine the maximum possible bending moment in the simply supported 
beam shown in  Figure 5.14    due to the train of wheel loads indicated.  
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    Solution 

   Placing the train of wheel loads as indicated in  Figure 5.14  (ii) produces the 
maximum bending moment under the second wheel load. Hence, the maxi-
mum bending moment occurs under the second wheel load when it is located 
at a distance of 0.75    ft left of midspan, as shown at (ii). The influence line for 
bending moment at the location of the second wheel load is shown at (iii), and 
the maximum bending moment at this location is given by: 

Mmax
 kip-ft

� � � � � � � �
�

2 7 911 10 9 986 10 8 542 2 6 617
214 336

. . . .
.      

   Alternatively, the bending moment may be determined by resolving forces 
vertically. The support reaction at end 1 is: 

V1 24 19 25 40
11 55
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   The maximum moment is given by: 

Mmax
 kip-ft

� � � �
�

11 55 19 25 2 4
214 338

. .
.      

   Because of symmetry in the train of wheel loads, this moment also occurs 
under the third wheel load when it is located at a distance of 0.75    ft right of 
midspan.

   When the second or third wheel load is located at midspan, the moment at 
midspan is: 

M � 214 00.  kip-ft     

  and this is the maximum bending moment that occurs at midspan.    

    (d) Envelope of maximum effects 

   To design a member, it is necessary to determine the maximum bending 
moment and shear force that can occur at all sections of the member. Diagrams 
indicating maximum values are known as envelope diagrams and are deter-
mined using influence lines at selected points along the member.  

    Example 5.7 

   Construct the maximum possible bending moment envelope in the simply sup-
ported beam shown in  Figure 5.15    due to a concentrated load of 100 kips.  
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Figure 5.15             
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    Solution 

   The maximum bending moment occurs at any section when the concentrated 
load is located at the section. Values of the moment are calculated in  Table 5.1   , 
and the bending moment envelope is shown in  Figure 5.15  (ii).   

    5.4     Pin-jointed truss 

    (a) Stringers and cross beams 

   As moving loads traverse a pin-jointed truss, the loads are transferred to the 
truss panel points by a system of stringers and cross beams. This is shown in 
Figure 5.16    for a deck bridge with the loads applied to the top chord of the 
truss. The moving load is transferred from one panel point to the next as the 
load moves across the stringer. Hence, the influence line for axial force in a 
member is completed by connecting the influence line ordinates at the panel 
points on either side of a panel with a straight line.  

Table 5.1            

    x ft Influence line ordinate   M  max  

    4  4      �      36/40    �      3.6  360 
  8  8      �      32/40    �      6.4  640 

   12  12      �      28/40    �      8.4  840 
   16  16      �      24/40    �      9.6 960
   20  20      �      20/40    �      10.0  1000 

Wheel
loads

Train of wheel loads

Deck

Stringer
Cross girder
Top chord

Web members

Bottom chord

Figure 5.16             
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Figure 5.17             

    (b) Influence lines for a Warren truss 

    Figure 5.17    (i) shows a Warren truss with the loads from the stringers applied 
to the bottom panel points. The influence lines for axial force in members 34, 
35, and 24 are obtained by taking a section through these three members and 
considering the relevant free body diagrams. 

   The influence line for axial force in web member 34 is obtained by multiply-
ing the influence line for shear force in panel 34 by 1/sin θ and is shown at (ii). 
Positive sense of the influence line indicates tension in member 34. Because of 
the effect of the stringers, the influence line between nodes 3 and 5 is obtained 
by connecting the ordinates at 3 and 5 with a straight line. 

   The influence line for axial force in bottom chord member 35 is obtained 
by multiplying the influence line for moment at node 4 by 1/ h and is shown at 
(iii). The influence line is positive, indicating tension in member 35. 
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   The influence line for axial force in top chord member 24 is obtained by 
multiplying the influence line for moment at node 3 by 1/ h .  

    (c) Influence lines for a Pratt truss 

    Figure 5.18    (i) shows a Pratt truss with the loads from the stringers applied 
to the bottom panel points. The influence line for axial force in web member 
58 is obtained by multiplying the influence line for shear force in panel 58 by 
1/sin θ and is shown at (ii). Positive sense of the influence line indicates tension 
in member 58. The influence line for axial force in member 78 is identical in 
shape and of opposite sign. 

   The influence line for axial force in bottom chord member 57 is obtained by 
multiplying the influence line for moment at node 8 by 1/ h and is shown at (iii). 
The influence line is positive, indicating tension in member 57. 

   The influence line for axial force in top chord member 810 is obtained by 
multiplying the influence line for moment at node 7 by 1/ h. This influence line 
is identical in shape to the influence line for P  57  and of opposite sign.  
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    (d) Influence lines for a bowstring truss 
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Figure 5.19             

    Figure 5.19    (i) shows a bowstring truss with the loads from the string-
ers applied to the bottom panel points. The influence lines for axial force in 
members 89, 810, and 79 are obtained by taking a section through these three 
members and considering the relevant free body diagrams. 

   The influence line for axial force in web member 89 is obtained by multiply-
ing the influence line for moment at point 12 by 1/ p, where p is the perpen-
dicular from point 12 to the line of action of member 89. The influence line 
for P  89  is shown at (ii). 
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   The influence line for axial force in top chord member 810 is obtained by mul-
tiplying the influence line for moment at node 9 by 1/ n, where n is the perpen-
dicular from node 9 to member 810. The influence line for P  810 is shown at (iii). 

   The influence line for axial force in bottom chord member 79 is obtained by 
multiplying the influence line for moment at node 8 by 1/ r, where r is the perpen-
dicular from node 8 to member 79. The influence line for P  79 is shown at (iv). 

    5.5     Three-hinged arch 
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Figure 5.20             

   The horizontal thrust at the springings of a three-hinged arch is equal to 
the bending moment at the center of a simply supported beam of the same 
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length multiplied by 1/ c. Hence, the influence line for horizontal thrust is the 
influence line for the free bending moment multiplied by 1/ c and is shown in 
 Figure 5.20    (ii). 

   The influence line for bending moment at point 4 is the influence line for free 
bending moment at 4 minus the horizontal thrust multiplied by r and is given by: 

M M Hrs4 4� �( )      

   The influence line is shown at (iii). 
   The influence line for thrust at point 4 is given by: 

P H V
H V

4 2

2

1 4� �
� �

cos sin
cos sin

α α
α α

…
…

 unit load from  to 
 unit lload from  to 4 2      

   The influence line is shown at (iv). 
   The influence line for shear at point 4 is given by: 

Q H V
H V

4 2

1

1 4� � �
� � �

sin cos
sin cos

α α
α α

… unit load from  to 
… unitt load from  to 4 2      

   The influence line is shown at (v).   

    Supplementary problems 

    S5.1 Construct the influence lines for V  2 and M  2 for the beam shown in Figure
S5.1   . Determine the maximum value of M  2 due to a distributed load of 2 kips/
ft over a length of 60     ft. 
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Figure S5.1             

1 2
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3 4

Figure S5.2             

    S5.2 Construct the influence line for V  2 for the beam shown in  Figure S5.2   . 
Determine the maximum value of V  2 due to distributed load of 10 kips/ft over 
a length of 6     ft. 
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    S5.3 Construct the influence line for V  4 for the beam shown in  Figure S5.3   . 
Determine the maximum value of V  4 due to a train of three wheel loads each 
of 3 kips at 2     ft on center. 
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    S5.4 Figure S5.4    shows a truss with the loads from the stringers applied to the 
bottom panel points. Construct the influence line for axial force in member 24. 
Determine the maximum value of P  24  due to a concentrated load of 5 kips. 
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Figure S5.4             

    S5.5 Figure S5.5    shows a truss with the loads from the stringers applied to the 
bottom panel points. Construct the influence line for axial force in member 45. 
Determine the maximum value of P  45  due to concentrated load of 10 kips. 
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    S5.6 Figure S5.6    shows a truss with the loads from the stringers applied to the 
bottom panel points. Construct the influence line for axial force in member 1718. 
Determine the maximum value of P  1718 due to concentrated load of 20 kips.       



                    6       Space frames  

    Notation 

  F       force  
  Fx       force component along the x-axis  
  Fy       force component along the y-axis  
  Fz       force component along the z-axis  
  fi       angle in a triangle opposite side Fi   
  H       horizontal force  
  l       length of member  
  M       bending moment  
  Mx       bending moment about the x-axis  
  My       bending moment about the y-axis  
  Mz       bending moment about the z-axis  
  P       axial force in a member  
  R       support reaction  
  V       vertical force  
  WLL       concentrated live load  
  wDL       distributed dead load  
  θ       angle of inclination   

    6.1     Introduction 

   The design of a building is generally accomplished by considering the structure 
as an assemblage of planar frames, each of which is designed as an independ-
ent two-dimensional frame. In some instances, however, it is necessary to con-
sider the building as a whole and design it as a three-dimensional structure. 

   The sign convention shown in  Figure 6.1    may be adopted for a three-
dimensional structure acted on by a generalized system of forces. A space 
structure is illustrated in  Figure 6.2 (i)   . The plan view of the structure is in the xz  
plane, as shown in  Figure 6.2 (ii) , and the elevation of the structure is in the  xy  
plane, as shown in  Figure 6.2 (iii) . 

   Displacements in a space structure may occur in six directions, a displace-
ment in the x, y, and z directions and a rotation about the x-, y-, and z -axes. 
The sign convention for displacements is shown in  Figure 6.3 (i)   . A total of six 
displacement components define the restraint conditions at support 1 of the 
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structure shown in  Figure 6.2 . The arrows indicate the positive directions of 
the displacement components, and, using the right-hand screw system, rota-
tions are considered positive when acting clockwise as viewed from the origin. 
Similarly, a total of six force components, as shown in  Figure 6.3 (ii) , define 
the support reactions at support 1 of the structure in  Figure 6.2 .  
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    6.2     Conditions of equilibrium 

   For a three-dimensional structure, six conditions of static equilibrium may be 
obtained at any point in the structure and at each support. These six equations 
of statics are: 

∑ ∑ ∑
∑ ∑ ∑

F F F
M M M

x y z

x y z

� � �

� � �

0 0 0
0 0 0
, ,  
, ,      

   A three-dimensional structure is externally determinate when six external 
restraints are applied to the structure, since these restraints may be determined 
by the available six equations of static equilibrium. 

   The cranked cantilever of  Figure 6.4 (i)    has an applied load W at the free 
end that has the components Wx, Wy, and Wz as shown. The magnitude of W  
is given by: 

W W W Wx y z� � �( )2 2 2 0 5.     

  and the three direction cosines of the applied load are given by:   

cos
cos
cos

θ
θ
θ

x x

y y

z z

W W
W W
W W

�
�

�

/
/
/      

Mz1

(i) Structure (ii) Free-body diagram

Wx

Wz

Wy

Mx1

My1

Ry1

y

x 2

1

3

z

Rz1
Rx1

Mz4

Wx

Wz

Wy

Mx4

My4

Fy4

2

4

3

Fz4
Fx4

Figure 6.4           

   As shown in  Figure 6.4 (i) , the cranked cantilever is statically determinate 
since six restraints are provided at the fixed end. 

   Similarly, six member stresses may be determined at a section cut through 
the structure, at any point 4, as shown by the free-body diagram shown in 
 Figure 6.4 (ii) . 
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    Example 6.1 

   The cranked cantilever shown in  Figure 6.4 (i)  has an applied load at the free 
end with components Wx       �       � 10    kips, Wy       �       � 15    kips, and Wz       �       � 20     kips. 
The relevant lengths of the cantilever are l  12       �      12 feet and l  23       �      6 feet. 
Determine the magnitude of the reactions at support 1.  

    Solution 

   Applying the equilibrium equations, with the origin of the coordinates at sup-
port 1, gives: 

   Resolving along the  x -axis: 

R W
R W

x x

x x

1

1

0

10

� �
� �
� kips      

   Resolving along the  y -axis: 

R W

R W
y y

y y

1

1

0

15

� �

� �

�  kips      

   Resolving along the  z -axis: 

R W
R W

z z

z z

1

1

0

20

� �

� �

� kips      

   Taking moments about the  x -axis: 

M W l
W l

x y

x y

1

1M
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� �

� �
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� �
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6
90      

   Taking moments about the  y -axis: 

 M W l W l
M W l W l
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   Taking moments about the  z -axis: 

= 180 kip-ft

1

1

M W l
M W l

z y

z y

� �
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� �

12

12

0

15 12

       

    6.3     Pin-jointed space frames 

   In a pin-jointed three-dimensional space frame with j nodes, including the sup-
ports, 3 j equations of equilibrium may be derived, since each node provides 
the relationships: 

∑ ∑ ∑F F Fx y z� � �0 0 0, ,
     

   If the frame has n members and r external restraints, the number of 
unknowns is ( n       �       r). In a pin-jointed three-dimensional space frame the frame 
is statically determinate when: 

( )n r j� � 3      

   The frame is indeterminate when: 

( )n r j� � 3      

    Example 6.2 

   The pin-jointed space frame shown in  Figure 6.5    consists of nine members. The 
supports consist of a fixed pin at node 1, providing three restraints as shown, 
and rollers at nodes 2, 3, and 4, providing only vertical restraint. Determine if 
the structure is statically determinate.  

    Solution 

   The total number of external restraints is: 

r � � �
�

3 3 1
6      

   Hence, the structure is stable and determinate externally. 
   The total number of members is: 

n � 9      
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   The total number of nodes is 

j
n r

j

�
� � �

�
� �
�

5
9 6
15

3 3 5
15

( )

     

   Hence: 

( ) 3  ... n r j� �      

   and the structure is statically determinate.   

    6.4     Member forces 

   The member forces in a pin-jointed space frame may be obtained by resolu-
tion of forces at the nodes.  Figure 6.6    shows a total of i members, 01, 02 … 0 i  
with a common node 0. The force in member 0 i is P  0  i, and the three direction 
cosines of member 0 i are cos θ  x  0  i, cos θ  y  0  i, and cos θ  z  0  i. The force components of 
member 0 i  along the three coordinate axes are: 

P P
P P
P P

x i i x i

y i i y i

z i i z i

0 0 0

0 0 0

0 0 0

�
�

�

cos
cos
cos

θ
θ
θ      

Ry4Ry1

Rz1

Rx1

Ry3Ry2

4

2

W

1

3

5

Figure 6.5           
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   The length of member 0 i is l  0  i, and the projections of member 0 i along the 
three coordinate axes are: 

x l
y l
z l

i i x i

i i y i

i i z i

0 0 0

0 0 0

0 0 0

�
�

�

cos
cos
cos

θ
θ
θ      

   Assuming that no external force is applied at node 0, resolving along the 
three coordinate axes gives: 

∑
∑
∑

P
P
P

x i

y i

z i

0

0

0

0

0

�
�

�

0

    

  and   

P l P x P y P z ii i x i i y i i z i0 0 0 0 0 0 0 0/ / / /� � �
     

    Example 6.3 

   The pin-jointed space frame shown in  Figure 6.7    consists of three members. 
The supports consist of fixed pins at nodes 1, 2, and 3, each providing three 
restraints as shown. Determine the member forces produced by the 100 kip 
vertical load applied at node 4.   

    Solution 

   The total number of external restraints is: 

r � �
�

3 3
9      

P0i

P01

P02

P03

y

i

1

2

3

0
x

z

Figure 6.6           



Structural Analysis: In Theory and Practice132

   Hence, the structure is stable. 
   The total number of members is: 

n � 3      
   The total number of nodes is: 

j
n r

j

�
� �

�
� �
�

4
3 9
12

3 3 4
12

( ) +

     

   Hence: 

( )  ... the structure is statically determinaten r j� � 3      

   And the structure is statically determinate. 
   The lengths of the members are: 

l x y z

l

14 14
2

14
2

14
2 0 5

2 2 2 0 5

24

40 20 10
45 83
45 83

� � �

� � �
�
�

( )
 ( )

ft

.

.

.

. fft
( )
 ( )

ft

2

l x y z34 34
2

34
2

34
2 0 5

2 2 0 540 20 0
44 72

� � �

� � �
�

.

.

.      

Ry3

Ry2

Ry1

Rx1

Rz1

x
y

z

Rx3

Rz3

3 (0, 40, 0)

4 (40, 20, 0)

Wy4 � �100 kips

1 (0, 0, 10)

2 (0, 0, �10)
Rx2

Rz2

Figure 6.7           
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   The direction cosines are: 

cos
.

.
cos

.
.

θ

θ

x

y

x l

y l

14 14 14

14 14 14

40 45 83
0 873

20 45 83
0 4

�

�

�

�

�

�

/
/

/

/
336

10 45 83
0 218

40 44 7

14 14 14

34 34 34

cos
.

.
cos

.

θ

θ

z

x

z l

x l

�

� �

� �

�

�

/
/

/
/ 22

0 894

20 44 72
0 447

34 34 34

34 34 34

�

�

� �

� �

�

�

.
cos

.
.

cos

θ

θ

y

z

y l

z l

/

 /

 /
00 44 72
0

/ .
�      

   Because of the symmetry of the structure and the loading, the forces in mem-
bers 14 and 24 are identical. Hence: 

P P14 24�      

   Resolving along the  x -axis at node 4 gives: 

2 0
2 0

1 746 0 894 0

14 34

14 14 34 34

14 34

P P
P P

P P

x x

x x

� �
� �

� �
cos cos

. .
θ θ

     

   Resolving along the  y -axis at node 4 gives: 

2
2

0 872 0 447

14 34 4

14 14 34 34 4

14 3

P P W
P P W

P P

y y y

y y y

� � �

� � �

�

cos cos
. .

θ θ

44 100� kips      

   Hence: 

P
P

34

14

111 86
57 21

� �
� �

.
.

kips ... tension
kips ... compression       
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    Supplementary problems 

    S6.1 The cranked cantilever shown in  Figure S6.1    has a load of 100 kips 
applied at the free end. Determine the magnitude of the reactions at support 1. 

Ry3

Rx3

Rz3

Rz1

Rz2

Rx1

Rx2

Ry2

Ry1

x

y

z

1 (0, �10, 0)

4 (8, �10, 0)

�100 kips

2 (0, 0, 6)

3 (0, 0, �6)

Figure S6.2           

My1

Ry1

Rx1 Rz1

Mz1y

x
2

4

�100 kips

1

z 3

2�

4�

10�

Figure S6.1           

    S6.2 The pin-jointed space frame shown in  Figure S6.2    consists of three mem-
bers. The supports consist of fixed pins at nodes 1, 2, and 3, each providing 
three restraints as shown. Determine the member forces produced by the 100 
kip vertical load applied at node 4. 
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    S6.3 The pin-jointed space frame shown in  Figure S6.3    consists of three mem-
bers. The supports consist of fixed pins at nodes 1, 2, and 3, each providing 
three restraints. Determine the member forces produced by the 100 kip vertical 
load applied at node 4. 

2 (0, 0, �5)

y

x

z

�100 kips

4 (20, 10, 0)

3 (10, 0, 0)

1 (0, 0, 5)

Figure S6.3           

1 (0, 0, 5)

y
x

z

3 (0, �10, 0)

4 (10, 0, 0)

2 (0, 0, �5)

Figure S6.4           

    S6.4 The pin-jointed space frame shown in  Figure S6.4    consists of three mem-
bers. The supports consist of fixed pins at nodes 1, 2, and 3, each providing 
three restraints. Determine the member forces produced by the 100 kip vertical 
load applied at node 4.       



   Answers to supplementary 
problems part 1  

    Chapter 1 

        S1.1    V  1     �      14     kips 
    H  1     �      10     kips  
    M  1     �      100     kip-ft  
    V  4     �      6     kips  
    H  4     �      0     kips     

    S1.2    V  1     �       – 4.8     kips  …  downward 
    V  2     �      28.8     kips  …  upward  
    M  2     �      480     kip-ft  …  producing tension in the top fi ber of the girder     

    S1.3    V  1     �      5     kips 
    H  1     �      5     kips  
    M  32     �      100     kip-ft  …  producing tension in the top fi ber of the member  
    V  7     �      5     kips  
    H  7     �      5     kips     

    S1.4    V  1     �      25     kips 
    H  1     �      25     kips  
    V  2     �      75     kips  
    H  2     �      25     kips  
    P  13     �      35.33     kips  …  tension  
    P  23     �      79.04     kips  …  compression     

    S1.5    V  1     �      10     kips 
    H  1     �      10     kips  
    V  4     �      10     kips  
    H  4     �      0     kips  
    P  13     �      14.14     kips  …  tension     

    S1.6    V  1     �      11.67     kips 
    H  1     �      10     kips  
    V  4     �      8.33     kips  
    H  4     �      0     kips  
     M  34     �   166.6   kips  …  producing tension in the bottom fi ber of the member     
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    S1.7    V  1     �      30     kips 
    H  1     �      10     kips  
    V  6     �      50     kips  
    H  6     �      0     kips     

    S1.8    V  1     �      10     kips 
    H  1     �      10     kips  
    V  3     �      10     kips  
    H  3     �      10     kips  
    P  12     �      14.14     kips  …  compression  
    P  23     �      10     kips  …  compression     

    S1.9    V  1     �      0     kips 
    H  1     �      10.5     kips  
    M  1     �      147     kip-ft     

    S1.10    V  1     �      4     kips 
    H  1     �      0     kips  
    M  1     �      24     kip-ft  
    P  34     �      7.2     kips  …  tension  
    P  24     �      6.0     kips  …  compression        

    Chapter 2 

        S2.1    V  1     �      2.24     kips 
    H  1     �      3.57     kips  
    V  5     �      4.92     kips  
    P  34     �      5.37     kips  …  compression  
    P  38     �      5.0     kips  …  tension  
    P  78     �      4.0     kips  …  tension     

    S2.2    P  45     �      32     kips  …  tension 
    P  411     �      3.2     kips  …  compression  
    P  1011     �      30.93     kips  …  compression     

    S2.3    P  23       �      17.78     kips  …  tension 
    P  27       �      21.89     kips  …  tension  
    P  67       �      33.33     kips  …  compression     

    S2.4    P  12       �      12     kips  …  tension 
    P  14       �      0     kips  
    P  15       �      16.97     kips  …  compression  
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    P  45       �      0     kips  
    P  56       �      12     kips  …  compression  
    P  25       �      0     kips  
    P  26       �      0     kips     

    S2.5    P  12       �      9     kips  …  tension 
    P  15       �      10.82     kips  …  compression  
    P  23       �      6     kips  …  tension  
    P  56       �      9.02     kips  …  compression  
    P  25       �      3.35     kips  …  compression  
    P  26       �      3.35     kips  …  tension     

    S2.6    P  12     �      5     kips  …  tension 
    P  114     �      30     kips  …  compression  
    P  110     �      7.07     kips  …  compression  
    P  23     �      5     kips  …  tension  
    P  310     �      35.35     kips  …  tension  
    P  315     �      10     kips  …  compression  
    P  1014     �      42.43     kips  …  tension  
    P  1415     �      30     kips  …  compression     

    S2.7    P  23       �      6.67     kips  …  tension 
    P  27       �      2.10     kips  …  compression  
    P  37       �      0     kips  
    P  78       �      6.67     kips  …  compression  
    P  67       �      6.72     kips  …  compression     

    S2.8    P  12       �      3.35     kips  …  tension 
    P  14       �      5.41     kips  …  compression  
    P  24       �      1.12     kips  …  compression  
    P  45       �      3.60     kips  …  compression  
    P  25       �      4     kips  …  tension     

    S2.9    P  23       �      13.34     kips  …  tension 
    P  26       �      2.5     kips  …  compression  
    P  27       �      3     kips  …  tension  
    P  67       �      16.77     kips  …  compression  
    P  37       �      0     kips     

    S2.10    P  49       �      0     kips 
    P  59       �      28.28     kips  …  compression  
    P  89       �      22.36     kips  …  compression  
    P  78       �      20     kips  …  compression        
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    Chapter 3 

        S3.1   (i)     Determinate 
   (ii)     Indeterminate  
   (iii)     Unstable  
   (iv)     Indeterminate     

    S3.2   (i)     Indeterminate 
   (ii)     Indeterminate  
   (iii)     Indeterminate  
   (iv)     Determinate  
   (v)     Determinate     

    S3.3   (i)     Indeterminate 
   (ii)     Unstable  
   (iii)     Determinate  
   (iv)     Indeterminate     

    S3.4   Support reactions: 

     V  1     �      73.03     kips  
     H  1     �       � 70.71     kips  
     V  4     �      77.68     kips  

   Shears:  

     Q  21       �      73.03     kips  
     Q  23       �      2.32     kips  
     Q  32       �      2.32     kips  
     Q  34       �      2.32     kips  
     Q  43       �       � 77.68     kips  

   Moments:  

     M  21     �      292.12     kip-ft  …  compression in top fi ber  
     M  32     �      301.40     kip-ft  …  compression in top fi ber  
     M  max     �      301.67     kip-ft  …  at  x       �      8.23 ft     

    S3.5   Support reactions: 

     V  1     �      0     kips  
     H  1     �      0     kips  
     V  2     �      100     kips  
     V  4     �      0     kips  

   Shears:  

    Q  21       �       � 50     kips  
    Q  23       �      50     kips  
    Q  32       �      0     kips  
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    Q  34       �      0     kips  
    Q  43       �      0     kips  

   Moments:  

    M  21       �      125     kip-ft  …  compression in bottom fi ber  
    M  32       �      0     kip-ft  
    M  34       �      0     kip-ft     

    S3.6   Support reactions: 

    V  1     �      30     kips  
    H  1     �      0     kips  
    M  1     �      180     kip-ft  
    V  3     �      30     kips  

   Shears:  

    Q  21       �      30     kips  
    Q  23       �      30     kips  
    Q  32       �       � 30     kips  

   Moments:  

    M  12     �      180     kip-ft  …  compression in bottom fi ber  
    M  21     �      0     kip-ft  
    M  32     �      0     kip-ft  
    M  max     �      45     kip-ft  …  at  x       �      9 ft, compression in top fi ber     

    S3.7   Support reactions: 

    V  1       �      20     kips  
    H  1     �       � 20     kips  
    M  1     �      0     kip-ft  
    V  3     �      60     kips  

   Shears:  

    Q  12       �        20    kips  
    Q  21       �      20     kips  
    Q  23       �      20     kips  
    Q  32       �       � 60     kips  

   Moments:  

    M  21     �      160     kip-ft  …  compression in outer fi ber  
    M  23     �      160     kip-ft  …  compression in top fi ber  
    M  32     �      0     kip-ft  
    M  max       �      180     kip-ft  …  at  x       �      2 ft, compression in top fi ber     

    S3.8   Support reactions: 

    V  1     �      0     kips  
    H  1     �       � 20     kips  
    M  1     �      0     kip-ft  
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    V  5     �      40     kips  
    H  5     �      0     kips  

   Shears:  

    Q  12       �      20     kips  
    Q  21       �      20     kips  
    Q  23       �      0     kips  
    Q  32       �      0     kips  
    Q  34       �       � 40     kips  
    Q  43       �       � 40     kips  
    Q  45       �      0     kips  
    Q  54       �      0     kips  

   Moments:  

    M  21       �      200     kip-ft  …  compression in outer fi ber  
    M  23       �      200     kip-ft  …  compression in top fi ber  
    M  32       �      200     kip-ft  …  compression in top fi ber  
    M  34       �      200     kip-ft  …  compression in top fi ber  
    M  43       �      0     kip-ft  
    M  45       �      0     kip-ft  
    M  54       �      0     kip-ft     

    S3.9   Support reactions: 

    V  1     �       � 10     kips  
    H  1     �      3.33     kips  
    M  1     �      0     kip-ft  
    V  7     �       � 10     kips  
    H  7     �       � 3.33     kips  

   Shears:  

    Q  12       �       � 3.33     kips  
    Q  21       �       � 3.33     kips  
    Q  23       �      7.45     kips  
    Q  32       �      7.45     kips  
    Q  34       �       � 1.49     kips  
    Q  43       �       � 1.49     kips  

   Moments:  

    M  21       �      26.64     kip-ft  …  compression in inner fi ber  
    M  23       �      26.64     kip-ft  …  compression in bottom fi ber  
    M  32       �      6.70     kip-ft  …  compression in top fi ber  
    M  34       �      6.70     kip-ft  …  compression in top fi ber  
    M  43       �      0     kip-ft     

    S3.10   Support reactions: 

    V  1     �       � 160     kips  
    H  1     �      160     kips  
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    M  1     �      0     kip-ft  
    V  3     �       � 160     kips  
    H  3     �       � 160     kips  
    M  2     �      0     kip-ft      

   At  x       �      8 ft the bending moment in the arch rib is 
    M     �      0     kip-ft        

    Chapter 4 

        S4.1    θ  1       �      52/ EI  rad 
    θ  2       �      156/ EI  rad  
    y  3       �      1560/ EI  ft     

    S4.2    y  2       �      2160/ EI  ft  

    S4.3    θ  1       �      1917/ EI  rad 
    x  2       �      15837/ EI  ft     

    S4.4   The equation of the elastic curve is 

    y       �       � 2.5 x  3 /3 EI       �      2.5[ x �  12] 3       �      120 x   

   The location of the maximum defl ection in span 12 is  

    x       �      6.93 ft  

   The maximum defl ection in span 12 is  

    y       �      554/ EI  ft  

   The defl ection at node 3 is  

    y  3       �       � 2158/ EI      

    S4.5    y  3       �      8136/ EI  ft  

    S4.6    y  3       �      247/ EA  ft  

    S4.7    y  4       �      3062/ EA  ft  

    S4.8    y  2       �      410/ EA  ft  

    S4.9    y  3       �      317/ EA  ft  

    S4.10    y  2       �      199/ EA  ft     

    Chapter 5 

        S5.1    M  2       �      1800     kip-ft  

    S5.2    V  2       �      96     kips  
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    S5.3    V  3       �      6.75     kips  

    S5.4    P  24       �      5     kips  …  compression  

    S5.5    P  45       �      10.67     kips  …  tension  

    S5.6    P  1718       �      15     kips  …  compression     

    Chapter 6 

        S6.1    Mx  1     �      400     kip-ft 
    Mz  1     �      1000     kip-ft  
    Ry  1     �      100     kips     

    S6.2    P  14       �      80     kips 
    P  24       �      70.71     kips  
    P  34       �      70.71     kips     

    S6.3    P  14       �      114.55     kips 
    P  24       �      114.55     kips  
    P  34       �      282.80     kips     

    S6.4    P  14       �      55.90     kips 
    P  24       �      55.90     kips  
    P  34       �      141.40     kips             



   Part Two 

 Analysis of Indeterminate 
Structures   



                                1       Statical indeterminacy  

    Notation 

      c       number of releases introduced in a structure  
  d       degree of indeterminacy  
  h       number of internal hinges introduced in a structure  
  H       horizontal reaction  
  j       number of joints  
  M       bending moment  
  n       number of members  
  r       number of external restraints  
  s       number of internal rollers introduced in a structure  
  V       vertical reaction     

    1.1     Introduction 

   A structure is in equilibrium with a system of applied loads when the resultant 
force in any direction and the resultant moment about any point are zero. For 
a two-dimensional plane structure, three equations of static equilibrium may 
be obtained: 

Σ
Σ
Σ

H
V
M

�
�
�

0
0
0     

  where H and V are the resolved components in the horizontal and vertical 
directions of all forces and M  is the resultant moment about any point.   

   A statically determinate structure is one in which all member forces and 
external reactions may be determined by applying the equations of equilibrium. 

   An indeterminate or redundant structure is one that possesses more 
unknown member forces and reactions than available equations of equilib-
rium. To determine the member forces and reactions, additional equations 
must be obtained from conditions of geometrical compatibility. The number of 
unknowns, in excess of the available equations of equilibrium, is the degree of 
indeterminacy, and the unknown forces and reactions are the redundants. The 
redundants may be removed from the structure, leaving a stable, determinate 
structure, which is known as the cut-back structure. External redundants are 



Structural Analysis: In Theory and Practice148

redundants that exist among the external reactions. Internal redundants are 
redundants that exist among the member forces. 

   Several methods have been proposed              1 – 5   for evaluating the indeterminacy of 
a structure.  

    1.2     Indeterminacy in pin-jointed frames 

   In a pin-jointed frame, external reactions are provided by either roller supports 
or hinge supports, as shown in  Figure 1.1    (i) and (ii). The roller support pro-
vides only one degree of restraint in the vertical direction, and both horizon-
tal and rotational displacements can occur. The hinge support provides two 
degrees of restraint in the vertical and horizontal directions, and only rota-
tional displacement can occur. The magnitudes of the external restraints may 
be obtained from the three equations of equilibrium. Thus, a structure is exter-
nally indeterminate when it possesses more than three external restraints and 
unstable when it possesses fewer than three. 

V

(i)

V

H

(ii)

Figure 1.1           

(i) (ii)

Figure 1.2           

    Figure 1.2    (i) and (ii) shows pin-jointed frames that have three degrees of 
restraint and are stable and determinate.  Figure 1.3    (i) shows a pin-jointed 
frame that has four degrees of restraint and is one degree indeterminate. The 
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cut-back structure is shown in  Figure 1.3  (ii). Figure 1.4    (i) shows a pin-jointed 
frame that is two degrees indeterminate; the cut-back structure is shown in 
 Figure 1.4  (ii). 

(i) (ii)

Figure 1.3           

(i)

(ii)

Figure 1.4           

   In a pin-jointed frame with j joints, including the supports, 2 j equations of 
equilibrium may be obtained, since at each joint: 

Σ ΣH V� �0 0and      

   Each member of the frame is subjected to an axial force, and if the frame has 
n members and r external restraints, the number of unknowns is ( n       �       r). Thus, 
the degree of indeterminacy is: 

D n r j� � � 2      

    Figure 1.5    (i) and (ii) shows pin-jointed frames that are determinate. For 
frame (i): 

D � � � � �5 3 2 4 0( )     
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  and for (ii):   

D � � � � �2 4 2 3 0( )      

    Figure 1.6    (i) and (ii) shows pin-jointed frames that are indeterminate. For 
frame (i) 

D � � � � �10 3 2 6 1( )     

  and for (ii):   

D � � � � �11 4 2 6 3( )       

(i) (ii)

Figure 1.5           

(i) (ii)

Figure 1.6           

V

H
M

Figure 1.7           

    1.3     Indeterminacy in rigid frames 

   In addition to roller and hinge supports a rigid frame may be provided with a 
rigid support, shown in  Figure 1.7   , which provides three degrees of restraint. 
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   In a rigid frame with j joints, including the supports, 3   j equations of equilib-
rium may be obtained, since at each joint: 

Σ Σ ΣH V M� � �0 0 0, ,      

   Each member of the frame is subjected to three forces, axial and shear forces 
and a moment, and the number of unknowns is (3 n       �       r). Thus, the degree of 
indeterminacy is: 

D n r j� � �3 3      

   The degree of indeterminacy of the arches shown in  Figure 1.8    is 

   arch (i)  D       �      3      �      4    �      (3      �      2)     �      1 
   arch (ii)  D       �      3      �      4    �      (3      �      2)     �      1 
   arch (iii)  D       �      3      �      5    �      (3      �      2)     �      2 
   arch (iv)  D       �      3      �      6    �      (3      �      2)     �      3 
   arch (v)  D       �      3      �      3    �      (3      �      2)     �      0 

   and arch (v) is the cut-back structure for (i), (ii), (iii), and (iv). 

(i)

(iv) (v)

(ii) (iii)

Figure 1.8           

(i) (ii) (iii) (iv) (v)

Figure 1.9           

   The degree of indeterminacy of the portal frame shown in  Figure 1.9    (i) is: 

D � � � � � �( ) ( )3 3 6 3 4 3     

  and the cut-back structure is obtained by introducing three releases, as at (ii), 
(iii), or (iv).   
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   The redundants in the portal frame may also be regarded as the axial 
and shear forces and the moment in the beam, and the cut-back structure is 
obtained by cutting the beam as shown at (v). Similarly in a multibay, multi-
story frame the degree of indeterminacy equals 3      �      the number of beams. 

   For the rigid frame shown in  Figure 1.10   , the degree of indeterminacy is: 

D � �
�

3 6
18       

Figure 1.10           

    1.4     Indeterminacy in rigid frames with internal hinges 

    (a) Hinges within a member 

   The introduction of an internal hinge in a rigid frame provides an additional 
equation of equilibrium at the hinge of M       �      0. In effect, a moment release has 
been introduced in the member. 

   The introduction of a horizontal, internal roller provides two additional 
equations of equilibrium at the roller of M       �      0 and H       �      0. In effect, a moment 
release and a release of horizontal restraint have been introduced in the mem-
ber. Thus, the degree of indeterminacy is: 

D n r j h s� � � � �3 3 2     

  where n is the number of members, j is the number of joints in the rigid frame 
before the introduction of hinges, r is the number of external restraints, h is 
the number of internal hinges, and s  is the number of rollers introduced.   

   The degree of indeterminacy of the frames shown in  Figure 1.11    is: 

   (i) D       �      (3      �      3)      �      4    �      (3      �      4)      �      1    �      0 
   (ii) D       �      (3      �      1)      �      4    �      (3      �      2)      �      1    �      0 
   (iii) D       �      (3      �      7)      �      12      �      (3      �      8)      �      3    �      6 

   The degree of indeterminacy of beam 15, which has a hinge and a roller 
introduced in span 34 ,  as shown in  Figure 1.12   , is: 

D � � � � � � � � �( ) ( ) ( )3 4 6 3 5 2 1 1 0       
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    (b) Hinges at a joint 

   For two members meeting at a rigid joint there is one unknown moment, as 
shown in  Figure 1.13    , and the introduction of a hinge is equivalent to produc-
ing one release. 

(i) (ii) (iii)

Figure 1.11           

1 2 3
4 5

Figure 1.12           

M

M

Figure 1.13           

M2 M1

M

MM1 � M2

Figure 1.14           

   For three members meeting at a rigid joint there are two unknown moments, 
as shown in  Figure 1.14    , and the introduction of a hinge into one of the mem-
bers produces one release; the introduction of a hinge into all three members 
produces two releases. 

   For four members meeting at a rigid joint there are three unknown moments, 
as shown in  Figure 1.15   ; the introduction of a hinge into one of the members 
produces one release, the introduction of a hinge into two members produces 
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two releases, and the introduction of a hinge into all four members produces 
three releases. 

   In general, the introduction of hinges into i of the n members meeting at a 
rigid joint produces i releases. The introduction of a hinge into all n members 
produces ( n       �      1) releases. 

   Thus, the degree of indeterminacy is given by: 

D n r j c� � � �3 3     

  where  c  is the number of releases introduced.   
   The degree of indeterminacy of the frames shown in  Figure 1.16    is: 

   (i) D       �      (3      �      5)      �      3    �      (3      �      4)      �      5    �      1 
   (ii) D       �      (3      �      6)      �      3    �      (3      �      6)      �      2    �      1 
   (iii) D       �      (3      �      2)      �      3    �      (3      �      2)      �      2    �      1 
   (iv) D       �      (3      �      5)      �      9    �      (3      �      6)      �      1    �      5 
   (v) D       �      (3      �      4)      �      5    �      (3      �      4)      �      4    �      1   

(i)

(iv) (v)

(ii) (iii)

Figure 1.16           

M2 M1

M3
M1 � M2 � M3

Figure 1.15           
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    S1.2 Determine the degree of indeterminacy of the tied arch shown in 
 Figure S1.2   . 

Figure S1.1           

Figure S1.2           

Figure S1.3           

    Supplementary problems 

    S1.1 Determine the degree of indeterminacy of the braced beam shown in 
 Figure S1.1   . 

    S1.3 Determine the degree of indeterminacy of the rigid-jointed frame shown 
in  Figure S1.3   . 
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    S1.4 Determine the degree of indeterminacy of the open spandrel arch shown 
in  Figure S1.4   . 

(i) (ii)

Figure S1.5           

(i) (ii) (iii) (iv)

Figure S1.6           

Figure S1.4           

    S1.5 Determine the degree of indeterminacy of the frames shown in 
 Figure S1.5   . 

    S1.6 Determine the degree of indeterminacy of the gable frames shown in 
 Figure S1.6   . 
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    S1.7 Determine the degree of indeterminacy of the bridge structures shown in 
 Figure S1.7   .   

(ii)(i)

(iii) (iv)

(v)

Figure S1.7           
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                            2       Virtual work methods  

    Notation 

      A       cross – sectional area of a member  
  E       Young's modulus  
  G       modulus of torsional rigidity  
  H       horizontal reaction  
  I       second moment of area of a member  
  I  o       second moment of area of an arch at its crown  
  l       length of a member  
  m       bending moment in a member due to a unit virtual load  
  M       bending moment in a member due to the applied loads  
  P       axial force in a member due to the applied loads  
  q       shear force in a member due to a unit virtual load  
  Q       shear force in a member due to the applied loads  
  u       axial force in a member due to a unit virtual load  
  V       vertical reaction  
  W       applied load  
  x       horizontal deflection  
  y       displacement of an applied load in its line of action; vertical deflection  
  δ       deflection due to the applied load  
  δ l       extension of a member, lack of fit of a member  
  δ x       element of length of a member  
  δ  θ       relative rotation between two sections in a member due to the applied 

loads  
  θ       rotation due to the applied loads  
  μ       form factor in shear  
  φ       shear deformation due to the applied loads     

    2.1     Introduction 

   The principle of virtual work provides the most useful means of obtaining the 
displacement of a single point in a structure. In conjunction with the principles 
of superposition and geometrical compatibility, the values of the redundants in 
indeterminate structures may then be evaluated. 

   The principle may be defined as follows: if a structure in equilibrium under 
a system of applied forces is subjected to a system of displacements compatible 
with the external restraints and the geometry of the structure, the total work 
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done by the applied forces during these external displacements equals the work 
done by the internal forces, corresponding to the applied forces, during the inter-
nal deformations, corresponding to the external displacements. The expression 
“virtual work ” signifies that the work done is the product of a real loading sys-
tem and imaginary displacements or an imaginary loading system and real dis-
placements. Thus, in Chapters 2 and 3 and Sections 6.2, 6.4, 6.5, 9.8, and 10.3 
displacements are obtained by considering virtual forces undergoing real dis-
placements, while in Sections 7.8 –7.14, 9.5 –9.8, and 11.3 equilibrium relation-
ships are obtained by considering real forces undergoing virtual displacements. 

   A rigorous proof of the principle based on equations of equilibrium has been 
given by Di Maggio 1  . A derivation of the virtual-work expressions for linear 
structures is given in the following section.  

    2.2     Virtual-work relationships 

�

Pl /AE

MM

R

P

Q

1

1 1

1 1

Q

P
W

23

y

4
�l

�θ ��x/R
�M�x/EI

l

�

f

f�x

�x �x
(i)

(ii) (iii)

3 2 3 2

4 4

Figure 2.1           
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   To the structure 123 shown in  Figure 2.1    (i), the external loads W are gradu-
ally applied. This results in the deflection of any point 4 a  distance δ while 
each load moves a distance y in its line of action. The loading produces an 
internal force P and an extension δ  l in any element of the structure, a bending 
moment M and a relative rotation δθ to the ends of any element, a shear force 
Q, and a shear strain φ. The external work done during the application of the 
loads must equal the internal energy stored in the structure from the principle 
of conservation of energy. 

   Then: 

  ∑ ∑ ∑ ∑Wy P l M Q x/ / / /2 2 2� � � � � �2 θ φ (1)      

   To the unloaded structure a unit virtual load is applied at 4 in the direction of 
δ as shown in  Figure 2.1  (ii). This results in a force  u, a bending moment m , 
and a shear force q  in any element. 

   Now, while the virtual load is still in position, the real loads  W are gradually 
applied to the structure. Again, equating external work and internal energy: 

  
δ θ φ

θ φ
∑ ∑ ∑ ∑ ∑

∑ ∑
� � � � � � � � � �

� � � �
/2 1  /2  /2  /2 /Wy P l M Q x u l

m q x (2)      

   Subtracting expression (1) from expression (2): 

  1 � � � � � � �δ θ∑ ∑ ∑u l m q x   φ    

   For pin-jointed frameworks, with the loading applied at the joints, only the 
first term on the right-hand side of the expression is applicable. 

   Then: 

1 � � �
�

δ ∑
∑

u l
Pul/AE    

  where P is the internal force in a member due to the applied loads and l; A and 
E are its length, area, and modulus of elasticity; and u is the internal force in a 
member due to the unit virtual load.   

   For rigid frames, only the last two terms on the right-hand side of the 
expression are significant. 

   Then: 

  

1 � � � � �

� �

δ ∑ ∑

∫ ∫
m q x

Mm x EI Qq x AG d /  d /
θ φ

μ
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  where M and Q are the bending moment and shear force at any section due to 
the applied loads and I, G and A are the second moment of area, the rigidity 
modulus, and the area of the section; μ is the form factor; and m and q are the 
bending moment and shear force at any section due to the unit virtual load.   

   Usually the term representing the deflection due to shear can be neglected, 
and the expression reduces to: 

1 � �δ Mm x EI d /∫    

   In a similar manner, the rotation  θ of any point 4 of the structure may be 
obtained by applying a unit virtual bending moment at 4 in the direction of θ . 

   Then: 

  
1 � � �θ μMm x EI Qq x AG d /  d /∫ ∫�    

  where m and q are the bending moment and shear force at any section due to 
the unit virtual moment.    

    2.3     Sign convention 

   For a pin-jointed frame, tensile forces are considered positive and compressive 
forces negative. Increase in the length of a member is considered positive and 
decrease in length negative. The unit virtual load is applied to the frame in the 
anticipated direction of the deflection. If the assumed direction is correct, the 
deflection obtained will have a positive value. The deflection obtained will be 
negative when the unit virtual load has been applied in the opposite direction 
to the actual deflection. 

   For a rigid frame, moments produced by the virtual load or moment are 
considered positive, and moments produced by the applied loads, which are of 
opposite sense, are considered negative. A positive value for the displacement 
indicates that the displacement is in the same direction as the virtual force or 
moment.  

    2.4     Illustrative examples 

    Example 2.1  

Determine the horizontal and vertical deflection of point 4 of the pin-jointed 
frame shown in  Figure 2.2   . All members have a cross-sectional area of 8     in 2    
and a modulus of elasticity of 29,000     kips/in 2 . 
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    Solution 

   Member forces u  1 due to a vertical unit load at 4 are obtained from (i) and are 
tabulated in  Table 2.1   . The stresses in each member,  P/A, due to the real load 
of 16     kips are given by: 

P A u
u

/ /� �
�

16 18
2

1

1    

   Member forces u  2 due to a horizontal unit load at 4 are obtained from (ii) 
and are tabulated in  Table 2.1 . 

3 4

16k 1k

1k

12
�

12
�

5

6

9�9�

2

1

(i) (ii)

Figure 2.2           

Table 2.1        Determination of forces and displacements in Example 2.1  

   Member     P / A    l u1 u  2   Pu  1  l / A Pu  2  l / A  

   12 2.0 12 1.00 �2.67 24.00 � 64.0 
   23 2.5 15 1.25 �1.67 46.88 � 62.5 
   34 1.5 9 0.75 �1.00 10.12 � 13.5 
   45 �2.5 15 �1.25 0 46.88 0
   56 �4.0 12 �2.00 1.33 96.00 � 64.0 
   53 �2.0 12 �1.00 1.33 24.00 � 32.0 
   52 �1.5 9 �0.75 0 10.12 0
   26 0 15 0 1.67 0 0

   Total 258.0 � 236.0 

   The vertical deflection is given by: 

v Pu l AE�
� �
�

∑ 1
258 12 29 000
0 107

/
/ ,

.  in downward      
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   The horizontal deflection is given by: 

h Pu l AE�
� � �
�

∑ 2
236 12 29 000

0 098

/
/ ,

.  in to the right      

    Example 2.2  

Determine the deflection at the free end of the cantilever shown in  Figure 2.3   . 
The cross-section is shown at (i), the modulus of elasticity is 29,000     kips/in 2 , 
the modulus of rigidity is 11,200     kips/in 2, and the shear stress may be assumed 
to be uniformly distributed over the web area.  
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24
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3

1k

(i) (ii) (iii)

Figure 2.3           

    Solution 

   The origin of coordinates is taken at 2 and the functions M and Q derived 
from (ii) as: 

M x� 3    
   and   Q � 3    

   A unit vertical load is applied at 3 and the functions m and q derived from 
(iii) as: 

m x� �4    
   and   q � 1.    

   The moment of inertia and the area of the web are given by: 

  

I

A

� � � �

�

� �

�

6 14 12 5 6 12 6 12
440

0 4 14 1 4

5 04

3 3( ) . ( . ) /

. ( . )

.

/
in

in

4

2
   



Virtual work methods 165

   Since M and Q are zero over the length 23, the vertical deflection at 3 is 
given by: 

  

1

3 12 4 29 000 440

0

8

0

8

3 2
0

8

� � �

� � � �

δ Mm x EI Qq x AG

x x x

 d /  d

 d

∫ ∫ /

( ) /( , )∫∫
∫� � �

� �
�

3 12 11 200 5 04

0 121 0 005
0 126

0

8
d

in

x/( , . )

. .

.    

    Example 2.3  

Determine the vertical deflection of point 4 of the pin-jointed frame shown in 
Figure 2.2  if members 12 and 23 are made 0.1 in too short and members 56 
and 53 are made 0.1 in too long.  

    Solution 

   Member forces u  1 due to a vertical downward unit load at 4 have already been 
determined in Example 2.1 and are tabulated in  Table 2.2   . 

Table 2.2        Determination of forces and 
displacements in Example 2.3  

   Member       δ l        u  1    u  1  δ  l  

   12 �0.1 1.0 � 0.1 
   23 �0.1 1.25 � 0.125 
   53 0.1 �1.0 � 0.1 
   56 0.1 �2.0 � 0.2 

   Total   � 0.525 

   The vertical deflection is given by: 

v u l� �
� �
�

∑ 1
0 525

0 525
.

.  in upward      

    Example 2.4  

Determine the deflection at the free end of the cantilever shown in  Figure 2.4   . 
The moment of inertia has a constant value I over the length 23 and increases 
linearly from I  at 2 to 2 I  at 1.  
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    Solution   

   The origin of coordinates is taken at 2 and the function  M  derived from (i) as: 

M Wx� .    

   A unit vertical load is applied at 3 and the function  m  derived from (ii) as: 

m l x� � .    

   The moment of inertia is given by: 

I I Ix lx � � / .    

   Since the value of M is zero over the length 23, the vertical deflection at 3 is 
given by: 

  

1

1

2

0

0

0
3

� �

� � �

�

�

δ Mm x EI

Wx l x x EI x l

W lx x EI

Wl

l

l

l

∫
∫

∫

 d

 d

 d

/

( ) / ( / )

/

/ EEI       

    2.5     Volume integration 

   For straight prismatic members, Mm x EI Mm x EI d  d ./ /� � 1∫∫     The func-
tion m is always either constant along the length of the member or varies 
linearly. The function  M may vary linearly for real concentrated loads or para-
bolically for real distributed loads. Thus, Mm x d∫     may be regarded as the 
volume of a solid with a cross-section defined by the function M and a height 
defined by the function m. The volume of this solid is given by the area of cross-
section multiplied by the height of the solid at the centroid of the cross-section. 

   The value of Mm x d∫     has been tabulated 2   for various types of functions 
M  and  m , and common cases are given in  Table 2.3   . 
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Ix
x

2
W

3

l

I

1

2I

l

M

m

x

W

x (i)

(ii)(iii)

Figure 2.4           
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Table 2.3        Volume integrals  

    M

m    l

c

      l

c

      l

c d

      αl βl

c

      l /2 l /2

c d e

    

    

a

l     

  lac lac/2 la ( c       �       d)/2 lac/2 la ( c       �      4 d       �       e )/6 

    

a

l     

  lac/2 lac/3 la (2 c       �       d)/6 lac (1      �       β)/6 la ( c       �      2 d )/6 

    

a

l     

  lac/2 lac/6 la ( c       �      2 d)/6 lac (1      �       α)/6 la (2 d       �       e )/6 

    

a
b

l     

  lc ( a       �       b)/2 lc(2a       �       b)/6 la (2 c       �       d )/6 
  �   lb ( c       �      2 d )/6 

  lac (1      �       β )/6 
  �   lbc (1      �       α )/6 

  la ( c       �      2 d )/6 
  �   lb (2 d       �       e )/6 
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    Example 2.5  

Determine the deflection at the free end of the cantilever shown in  Figure 2.5   . 

W

1

M

W
l

l

W

W
l

l m

x

x

(i)

(ii)

(iii)

l

l

2 l /3

Figure 2.5           

    Solution 

   The origin of coordinates is taken at the free end and the functions M and m  
derived from (i) and (ii) as: 

M Wx�      
   and   m x�      

   The deflection at the free end is given by: 

1

3

0

2
0

3

� �

�

�

δ Mm x EI

W x x EI

Wl EI

l

l

 d /

d

∫
∫ /

/    

   Alternatively, the solid defined by the functions  M and m is shown at (iii); its 
volume is: 

Wl l Wl2 32 2 3 3/ / /� �    

  and the deflection at the free end is given by:   

δ � Wl EI3 3/ .    
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   Alternatively, from  Table 2.3 , the value of  Mm x EI d /∫     is given by: 

δ �

�

lac EI
Wl

/
/

3
33    

    Example 2.6  

Determine the rotation at the free end of the cantilever shown in  Figure 2.6   .  

w lb/in w lb/in

1 lb-in

wl2 /2

l �

l

M

m

(i)

(ii)(iii)

x

x1

1
w

l2 /2

Figure 2.6           

    Solution 

   The functions  M  and  m  are derived from (i) and (ii) as: 

M wx� 2 2/      
   and   m � 1      

   The rotation at the free end is given by: 

1

2

6

0
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3

� �

�

�

θ Mm x EI

w x x EI

wl EI

l

l

 d

 d

/

/
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∫
∫

   

   Alternatively, the solid defined by these functions is shown at (iii); its volume is: 

Wl l wl2 36 6� �/ /    
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  and the rotation at the free end is given by:   

θ � wl EI3 6/ .    

   From  Table 2.3 , the value of  Mm x EI d /∫     is given by: 

θ � � �

� � �

�

l c d e EI
l wl wl EI
wl EI

( ) /
( / / )/

/

4 6
2 2 0 6

6

2 2

3
      

    2.6     Solution of indeterminate structures 

   The principle of superposition may be defined as follows: the total displace-
ments and internal stresses in a linear structure corresponding to a system of 
applied forces are the sum of the displacements and stresses corresponding to 
each load applied separately. 

   The principle of geometrical compatibility may be defined as follows: the 
displacement of any point in a structure due to a system of applied forces must 
be compatible with the deformations of the individual members. 

   The two above principles may be used to evaluate the redundants in indetermi-
nate structures. The first stage in the analysis is to cut back the structure to a deter-
minate condition and apply the external loads. The displacements corresponding 
to and at the point of application of the removed redundants may be determined 
by the virtual-work relations. To the unloaded cut-back structure, each redundant 
force is applied in turn and the displacements again determined. The total displace-
ment at each point is the sum of the displacements due to the applied loads and 
the redundants and must be compatible with the deformations of the individual 
members. Thus, a series of compatibility equations is obtained equal in number 
to the number of redundants. These equations are solved simultaneously to obtain 
the redundants and the remaining forces obtained from equations of equilibrium. 

    Example 2.7  

Determine the reaction in the prop of the propped cantilever shown in Figure
2.7    (a) when the prop is firm and rigid, (b) when the prop is rigid and settles 
an amount y,  and (c) when the prop is elastic. 

w lb/in w lb/in
V�

l �

1
1

2
V

� �
x x

(i) (ii)

M

3l /4

l m

�
w

l2 /2

2l/3

Figure 2.7           
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    Solution 

   (a) The structure is one degree redundant, and the reaction in the prop is selected as 
the redundant and removed as shown at (i). The deflection of the free end of the 
cantilever in the line of action of V  is: 

′δ2
3

4
6 3 4
8

� � �

� �

wl l EI
wl EI

/ /
/    

  To the cut-back structure, the redundant  V is applied as shown at (ii). The deflec-
tion of the free end of the cantilever in the line of action of V  is: 

′′δ2
2

3
2 2 3
3

� �

�

Vl l EI
Vl EI

/ /
/    

  The total deflection of 2 in the original structure is: 

δ δ δ2 2 2
0

� �

�

′ ′′

   

  Thus: 

� � �wl EI Vl EI4 38 3 0/ /    

  and 

V wl� 3 8/    

   (b) The total deflection of 2 in the original structure is: 

δ δ δ2 2� �

� �

′ ′′2
y    

  Thus: 

� � � �wl EI Vl EI4 38 3/ / y    

  and 

V / 3� �3 8 3wl EIy l/    

   (c) The total deflection of 2 in the original structure is: 

δ δ δ2 2� �

� �

′ ′′2
VL AE/    

  where L, A, and E are the length, cross-section, and modulus of elasticity of the prop. 
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  Thus: 

� � � �wl EI Vl EI VL AE4 38 3/ / /    

   and 

V wl EI l EI L AE� �4 38 3/ ( / / )    

    Example 2.8  

The parabolic arch shown in  Figure 2.8    has a second moment of area that var-
ies directly as the secant of the slope of the arch rib. The value of the thrust 
required to restore the arch to its original span is H  1, and the value of the 
thrust required to reduce the deflection of 2 to zero is H  2. Determine the ratio 
of H  2  to  H  1 , neglecting the effects of axial and shearing forces.  

1

2

3

W

l

l/
4

H1

y

x

x3 � 0

� � �

H1

W W

1 1

1 1

W/2

H1

� �H2

(i)

(ii)

W/2

H2

y

x

y2 � 0

�

H2

W W

W/2 W/2

Figure 2.8           

    Solution 

   The equation of the arch axis, taking the origin of coordinates at 1, is: 

y x l x l� �( )/    

   The second moment of area at any section is given by: 

I I
I s x

o

o

� �
�

 sec 
 d /d    

  where  I  o  is the second moment of area at the crown.   
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   The horizontal deflection at 3 due to W is obtained by considering a virtual 
unit load applied horizontally inwards at 3. Then from (i) the deflection due to 
W  is obtained by integrating over the length of the arch: 

  

1

2 2

3

0

2

2 3

� �

�

� �

� � �

′ ∫
∫

∫

x Mm s EI

Mm x EI

Wxy x EI

W lx x

o

o

l

 d

 d

 d

 d

/

/

/

( )

/

xx lEI

Wl EI
o

l

o

/

/

/

0

2

35 192
∫

� �    

   The horizontal deflection at 3 due to  H  1  is: 

  

1 2

2 2

3 1
2

0

2

1
2 2 3 4 2

0

2

� �

� � �

�

′′ ∫
∫

x H y x EI

H l x lx x x l EI

H

o

l

o

l

 d

 d

/

( ) /

/

/

11
3 30l EIo/    

   The total horizontal deflection of 3 in the original structure is: 

x x x3 3 3
0

� �
�

′ ′′

   

   Thus, 

H Wl � 25 32/    

   The vertical deflection of 2 due to W is obtained by considering a virtual 
unit load applied vertically upwards at 2. Then, from (ii): 

1 2 4

2

48

2
2

0

2

2
0

2

3

� � �

� �

� �

′ ∫
∫

y Wx x EI

W x x EI

Wl

l

o

l

o

/

/

/

/

/

 d

 d

   

   The vertical deflection at 2 due to  H  2  is: 

  

1 2

5 19

2 20

2

2
2 3 2

0

2

2
3

� �

� �

�

′′ ∫
∫

y H xy x EI

H lx x x l EI

H l

o

l

o

l

 d

 d

/

/

( ) /

/

/

22EIo    
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   The total vertical deflection of 2 in the original structure is: 

y y y2 2 2 0� � �′ ′′
   

   Thus, 

H W2 4 5� /    

   and 

H H2 1 128 125
1 024

/ /
.

�
�    

    Example 2.9  

The parabolic arch shown in  Figure 2.9    has a second moment of area that var-
ies directly as the secant of the slope of the arch rib. Determine the bending 
moment at 2, neglecting the effects of axial and shearing forces.  

l

W

W

Wl/ 2

y
� �H V

x

1 3

V

2
W

H al
2 /4

y y

x 1 x

(i) (ii) (iii)

� � �

1

Figure 2.9           

    Solution 

   The redundant forces consist of the reactions H and V at 3, and the cut-back 
structure is a curved cantilever. 

   The equation of the arch axis is: 

y ax l x� �( )    

   The horizontal deflection of 3 due to condition (i) is obtained by considering 
a virtual-unit load applied horizontally inwards at 3. Then, over the span from 
x       �      0 to  x       �       l/ 2: 

m y�    
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   and 

M Wl Wx� �/2    

   Thus the horizontal deflection at 3 is: 

  

′ ∫
∫

x W l x y x lEI

Wa l x lx x x EI

o

l

o

l

3 0

2

2 2 3
0

2

2

2 3 2

� �

� � �

( / ) /

( / / ) /

/

/

 d

 d

�� Wal EIo
4 64/    

   The horizontal deflection of 3 due to condition (ii) is: 

  

′′ ∫
∫

x H y x EI

Ha l x lx x x EI

Ha l EI

o

l

o

l

o

3
2

0

2 2 2 3 4
0

2 5

2

30

�

� � �

�

 d

 d

/

( ) /

/    

   The horizontal deflection of 3 due to condition (iii) is: 

′′′ ∫
∫

x V xy x EI

Va lx x x EI

Val EI

o

l

o

l

o

3 0

2 3
0

4 12

� �

� � �

�

 d

 d

/

( ) /

/    

   The total horizontal deflection of 3 in the original structure is: 

x x x xs � � � �′ ′′ ′′′3 3 3 0    

   Thus: 

W V Hal/ / /32 6 15 0� � � (1)      

   The vertical deflection of 3 due to condition (i) is obtained by considering 
a virtual-unit load applied vertically upwards at 3. Then, over the span from 
x       �      0 to  x       �       l /2: 

m l x� �    

   and 

M /2� �Wx Wl    
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   Thus, the vertical deflection of 3 is: 

  

′ ∫y W x l l x x EI

W l lx x x EI

o

l

o

l

3 0

2

2 2
0

2

2

2 3 2

� � �

� � � �

( / )( ) /

( / / ) /

/

/

 d

 d∫∫
� �5 483Wl EIo/    

   The vertical deflection of 3 due to condition (ii) is: 

′′ ∫y H yx x EI

Hal EI
o

l

o

3 0
4 12

� �

� �

 d /

/    

   The vertical deflection of 3 due to condition (iii) is: 

′′′ ∫y V x x EI

Vl EI

l

o

o

3
2

0
3 3

�

�

 d /

/    

   The total vertical deflection of 3 in the original structure is: 

y y y ys � � � �′ ′′ ′′′3 3 3 0    

   Thus, 

� � � �5 16 4 0W V Hal/ / (2)      

   Solving (1) and (2) simultaneously: 

H W al� 5 6/    

   and 

V W� 25 48/    

   Thus, the bending moment at 2 is: 

M Vl Hal
Wl

2
22 4

5 96
� �
�

/ /
/      
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    Supplementary problems 

    S2.1 Determine the deflection at the free end of the cantilever shown in  Figure S2.1   . 

w 1b/in

a b

l

l 2

Figure S2.1           

10@12� � 120�

12
�

Figure S2.2           

1 2

8�
20k

8� 8�

5 6

3 4

8�

Figure S2.3           

    S2.2 Determine the vertical deflection at the center of the pin-jointed truss 
shown in  Figure S2.2    if the top chord members are all 0.1 percent in excess of 
the required length. 

    S2.3 The pin-jointed truss shown in  Figure S2.3    has a vertical load of 20     kips 
applied at panel point 2. Determine the resulting vertical deflection at panel 
points 2 and 3. What additional vertical load W must be applied at panel point 
3 to increase the deflection at panel point 2 by 50 percent? All members have a 
cross-sectional area of 2     in 2  and a modulus of elasticity of 29,000     kips/in 2 . 

    S2.4 A cantilever circular arch rib with a uniform section is shown in  Figure S2.4   . 
A horizontal force H is applied to the free end of the rib so that end 2 can deflect 
only vertically when the vertical load V is applied at 2. Determine the ratio of H/V . 

120°

H
V

2

1

Figure S2.4           
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    S2.5 The frame shown in  Figure S2.5    has a vertical load of 10    kips applied 
at 5. Determine the resulting vertical deflection at node 4. The cross-sectional 
areas of the members are 13      �      10     in 2, 24      �      5     in 2, and 34      �      4     in 2. The second 
moment of areas of the members are 13      �      90     in 4 and 24      �      50     in 4. The modu-
lus of elasticity of all members is 29,000     kips/in 2 . 

1

12�

4� 4�

10k

6�

2

3

4
5

Figure S2.5           

    S2.6 The two-story, single-bay frame shown in  Figure S2.6    has the relative sec-
ond moments of area indicated. The cross-sectional area of the columns is A . 
The modulus of elasticity of all members is E, and the modulus of rigidity is G . 
Determine the bending moments and shear forces in the members and calculate 
the horizontal deflection of node 3 due to the load of 4     kips. 

10�

10�

10�

1

2 5

4

2I

2I

3 6

II

I I

4k

Figure S2.6           
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    S2.7 The parabolic arch shown in  Figure S2.7    has a second moment of area 
that varies directly as the secant of the slope of the arch rib and a temperature 
coefficient of thermal expansion of α per °F. Neglecting the effects of axial and 
shearing forces, determine the support reactions at the fixed end produced by 
a temperature rise of t  °F.    

l

1 2

al2/4

Figure S2.7           
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    3       Indeterminate pin-jointed frames  

    Notation 

      A       cross-sectional area of a member  
  At       cross-sectional area of the tie of a tied arch  
  E       Young's modulus  
  H       horizontal reaction  
  I       second moment of area of a member  
  I  o       second moment of area of an arch at its crown  
  l       length of a member; span of an arch  
  m       bending moment in a member due to a unit virtual load applied to the 

cut-back structure  
  M       bending moment in a member due to the external loads applied to the 

cut-back structure  
  P       axial force in a member due to the external loads applied to the cut-back 

structure  
  R       redundant force in a member  
  t       change in temperature  
  u       axial force in a member due to a unit virtual load applied to the cut-back 

structure  
  V       vertical reaction  
  y       settlement of a support  
  α       temperature coefficient of expansion  
  δ       deflection  
  δ l       lack of fit  
  δ x       spread of arch abutments     

    3.1     Introduction 

   The solution of indeterminate pin-jointed frames and two-hinged arches may 
be readily obtained using the principles of superposition and compatibility. 
In the case of polygonal two-hinged arches, the preferred solution is by the 
method of column analogy and is dealt with in Section 6.3.  

    3.2     Frames one degree redundant 

   The pin-jointed frame shown in  Figure 3.1    contains one redundant member 
12 with its unknown force R, assumed tensile. The indeterminate frame can be 
replaced by system (i) plus R   �  system (ii). 
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   The relative inward movement of the points of application of R in system (i) 
may be determined by the virtual work method by considering R replaced by 
virtual unit loads. The relative movement is: 

δ� �12 ∑Pul AE/     

  where P and u are the member forces in the cut-back structure due to the 
applied loads and the virtual unit loads, respectively.   

   The relative inward movement of the points of application of R in system 
(ii) is: 

δ� �12
2∑  /u l AE

     

   The relative movement of the points of application of R in the actual struc-
ture is outward and consists of the extension in member 12, which is: 

δ
δ δ

12 12 12 12

12 12

� �

� � � �

Rl A E
R

/

     
Thus:   R l A E u l AE Pul AE( / / )  /12 12 12

2� � �∑ ∑      

   If the summations are considered to extend over all the members of the 
actual structure with P  12       �      0 and  u  12       �      1, we obtain: 

R Pul AE u l AE� � ( / )/ /∑ ∑( )2     

  and the value obtained for  R  is positive if tensile and negative if compressive.   
   The actual force in any member is given by ( P       �       uR ). 

R

R � R �

(i) (ii)

1

1

2

1

�

Figure 3.1           
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   The horizontal deflection of joint 1 of the actual structure may be deter-
mined by considering a virtual unit load applied horizontally at 1 in systems (i) 
and (ii). The horizontal deflection is: 

δ δ δ1 1 1

1 1

1

� � � �

� �
� �

R
Pu l AE R uu l/AE
P uR u l AE

∑ ∑
∑

/
( ) /     

  where u  1 is the force in any member of the cut-back structure due to the hor-
izontal virtual unit load, ( P       �       uR) is the force in any member of the actual 
structure, and the summation extends over all members of the cut-back struc-
ture. In general, to determine the deflection of an indeterminate structure, the 
unit virtual load may be applied to any cut-back structure that can support it.   

   Initial inaccuracies in the lengths of members of an indeterminate frame pro-
duce forces in the members when they are forced into position. If the member 
12 in  Figure 3.2    is made too short by an amount �  δ l, a tensile force, R, is pro-
duced in it on forcing it into position. 

R

R

2

�    R �

1

1

1

Figure 3.2           

   Then, the relative movement of points 1 and 2 in the actual structure con-
sists of the extension in member 12 and the initial lack of fit, and: 

δ12 12 12 12� � � ��Rl A E l/ ( )      

   There are no applied loads on the structure, thus δ� �12 0     and 
δ� �12

2∑ u l AE/     as before. 
Thus:

   δ δ δ12 12 12� � � �R      

and:

   R l A E u l AE l( )12 12 12
2/ /� � ��∑      
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   If the summation is considered to extend over all the members of the actual 
structure with u  12       �      1, we obtain: 

R l u l AE� �δ / /2( )∑     

  where δ l is the lack of fit of the member and is positive if too long and negative 
if too short, and the value obtained for R is positive if tensile and negative if 
compressive.   

   The remaining member forces are given by the expression  uR . 

    Example 3.1 

   All members of the frame shown in  Figure 3.3    have a constant value for AE  
of 10,000    kips. Determine (a) the forces in the members due to the applied 
load of 10    kips, (b) the horizontal deflection of point 2 due to the applied 
load of 10    kips, (c) the force in member 24 due to member 24 being 0.1% 
too long. 

�  R �

2
10k 10k

R

R

1

�

(i)

3

4

10�

10
�

1

(ii)

(iii)

1

1

Figure 3.3           

    Solution 

   (a) The force R in member 24 is chosen as the redundant, and member forces P and u  
are obtained from (i) and (ii) and are tabulated in  Table 3.1   . 
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    Thus the force in member 24 is: 

R Pul u� �
� �
�

∑ ∑/
/

kips compression

2

341 4 43 28
7 88

l
. .

.      

   The remaining member forces are given by the expression ( P       �       uR ). 
   (b) The forces u  1 in the cut-back structure due to a virtual unit load applied horizon-

tally at 2 are obtained from (iii) and are tabulated in  Table 3.1 . The horizontal 
deflection of 2 is: 

δ2 1
214 12 10 000

0 257

� �

� �
�

∑ ( ) /
 /

 in

P uR u l AE
,

.      

   (c) The force  R  in member 24 due to the lack of fit is: 

R � ��
� �
�

l u l AE/ /

kips compression

( )
. / .

.

∑ 2

141 4 43 28
3 27       

    Example 3.2 

   Determine the forces in the members of the structure shown in  Figure 3.4   . All 
members have the same cross-sectional area and modulus of elasticity.  

    Solution 

   The force R in member 13 is chosen as the redundant, and member forces P  
and u  are obtained from (i) and (ii) and are tabulated in  Table 3.2   . 

   Thus the force in member 13 is: 

R Pul u l� �
� �
�

∑ ∑/
/

kips compression

2

44 7 21 03
2 13

. .
.      

Table 3.1        Determination of forces and displacements in Example 3.1 

   Member P l u  Pul u2l P      �      uR u1  u1l(P      �      uR)

   12 0.0 10.0 �0.707 0.0 5.0 5.56 0.0 0.0
   23 �10.0 10.0 �0.707 70.7 5.0 �4.44 �1.0 44.4
   34 �10.0 10.0 �0.707 70.7 5.0 �4.44 �1.0 44.4
   13 14.14 14.14 1.0 200.0 14.14 6.26 1.414 125.2
   24 0.0 14.14 1.0 0.0 14.14 �7.88 0.0 0.0
   Total  341.4 43.28 214.0
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   The remaining member forces are given by the expression ( P       �       uR).  

    3.3     Frames two degrees redundant 

   The pin-jointed frame shown in  Figure 3.5    contains the two redundant mem-
bers 12 and 34, with unknown forces R  1 and R  2 assumed tensile. The inde-
terminate frame can be replaced by system (i) plus R  1       �      system (ii) plus 
R  2       �      system (iii). 

5�

5� 5�

� �  R �
5�

32 5

(i) (ii)

1

1

10k 10k

1

4

R

R

Figure 3.4           

Table 3.2        Determination of forces in Example 3.2  

   Member P l u Pul u2l P      �      uR 

   12 10 10 �0.447 �44.7 2.0 10.95
   23 0 5 �0.447 0 1.0 0.95
   34 �20 5 �0.894 89.4 4.0 � 18.10 
   24 0 7.07 0.632 0 2.83 � 1.35 
   13 0 11.2 1.000 0 11.2 � 2.13 
   Total  44.7 21.03

1

1

1

1

R1

R1

3
2

1

4

R2

�

R2

� R1 � � R2 �

(i) (ii) (iii)

Figure 3.5           
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   The relative movement of points 1 and 2 in the actual structure consists of 
the extension in member 12 and is: 

δ12 12 12 12 12� �R l A E/      

   The relative inward movement of points 1 and 2 in systems (i), (ii), and (iii) is: 

δ δ δ� � � � �� � � �12 12 12 1 1
2

1 2∑ ∑ ∑Pu l AE u l/AE u u l/AE/
    

  where the summations extend over all the members of the cut-back structure.   
  Since:

δ δ δ δ12 12 1 12 2 12� � � � � ��R R
     

  then:

0 1 1 1
2

2 1 2� � �∑ ∑ ∑Pu l AE R u l AE R u u l/AE/ /
(1)     

  where the summations extend over all the members of the actual structure, 
P       �      0 for both redundant members, u  l       �      1 for member 12 and 0 for member 
34, and u  2       �      1 for member 34 and 0 for member 12.   

   Similarly, by considering the relative movement of points 3 and 4 we obtain: 

0 2 1 1 2 2 2
2� � �∑ ∑ ∑Pu l AE R u u l AE R u l AE/ / /

(2)      

   Equations (1) and (2) may be solved simultaneously to obtain the value of 
the redundant forces R  1 and R  2. The actual force in any member is given by 
the expression ( P       �       u  1  R  1       �       u  2  R  2 ). 

   Frames with more than two redundants are best solved by the flexibility 
matrix method given in Section 10.3.  

    3.4     Frames redundant externally 

   The reactions V  1 and V  2 may be considered the external redundants of the 
frame shown in  Figure 3.6   . The displacements corresponding to and in the line 
of action of V  1  and  V  2  are: 

δ1 1 1 1
2

2� � �∑ ∑ ∑Pu l AE V u l AE V u u l AE/ / /1 2      

  and:

δ2 2 1 1 2 2 2
2� � �∑ ∑ ∑Pu l AE V u u l AE V u l/AE/ /

    

  where P, u  1, and u  2 are the member forces in the cut-back structure due to the 
applied loads, the virtual unit load corresponding to V  1, and the virtual unit 
load corresponding to V  2 , respectively.   

   In the case of rigid supports, δ  1       �       δ  2       �      0, and the two equations may be 
solved simultaneously to obtain V  1  and  V  2 . 
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   In the case of settlement of the supports by amounts y  1 at support 1 and y  2  
at support 2, δ  1       �       �  y  1 and δ  2       �       �  y  2. Again, the two equations obtained may 
be solved for V  1  and  V  2 . 

   An alternative method of solving the problem is to consider members 34 and 
56 as internal redundants. The values of the redundants may be obtained by 
the method of Section 3.3.  

    3.5     Frames with axial forces and bending moments 

   When the loading on pin-jointed frames is applied between the panel points as 
shown in  Figure 3.7   , bending moments are produced in some members in addi-
tion to axial forces. The force R in member 12 is regarded as the redundant, 
and the inward movement of the points of application of R  in system (i) is: 

δ� � �12 ∑ ∑∫Pul/AE Mm x EId /
    

3 4 5 6

21
V1

� V1 �

� V2 �

V2

�

1

1

(i)

(ii)

(iii)

Figure 3.6           
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  where M and m are the bending moments at any point in a member of the cut-
back structure due to the applied loads and the virtual unit loads correspond-
ing to R , respectively.   

   The inward movement of the points of application of  R  in system (ii) is: 

δ� � �12
2∑ ∑∫ d2u l/AE m x/EI

     

   The inward movement of the points of application of R in the actual struc-
ture is: 

δ
δ δ

12 12 12 12

12 12

� �

� � � �

Rl /A E
R      

  
Thus R u l AE m x EI Pul AE Mm x EI( )∑ ∑ ∑ ∑∫ ∫2 2/ d / / d /� � �

     

   where the summations extend over all the members of the actual structure 
with P  12     �   0 and u  12     �   1. In the particular structure shown in  Figure 3.7 ,
�  Mm d x/EI     �   0 for all members, and �  m  2 d x/EI is applicable only to member 23. 

� �   R   �
R

R
1

2

3

1

1

(i) (ii)

Figure 3.7           

    Example 3.3 

   Determine the tension in the member 13 that connects the cantilever to the bracket 
234 as shown in  Figure 3.8   . The cross-sectional areas, second moment of areas, 
and modulus of elasticity of the members are A  13     �   1 in 2, A  34     �     A  23     �   2 in 2 , 
I  12     �   1440 in 4, E  12     �   10,000   kips�in2, and E  13     �     E  23     �     E  34     �   30,000   kips/in2 .  

    Solution 

   The force in member 13 is considered as the redundant, and the actual struc-
ture is replaced by system (i) plus R       �      system (ii). 

   In system (i), member 12 is subjected to a bending moment, and there are no 
axial forces in the members. Then, over the cantilever from x     �   0 to x     �   8.66 ft: 

M x� �15     
and:

m x�     
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  and the relative inward movement of 1 and 3 is:   

δ� �

� �

� � � �

13 1

2

2
0

8 66

3 2

15

15 10

Mm x/EI 

x x EI

d

d /  

(8.66) (12) / (3

∫
∫

.

,,000 1440
10 3

�

� � � �

)
 32.47  ft      

   In system (ii), member 12 is subjected to a bending moment, and members 23 and 
34 are subjected to axial forces, and the relative inward movement of 1 and 3 is: 

δ� � �

� � � � �

�

13
2 2

1

2

2 2 2
0

8 66
2 1 10 12

m x EI u l AE

x x EI /AE

d / /  

d / ( )

(

∑∫
∫

.

88 66 3 10 000 1440 2 2 30 000
2 17 0 33

3 2. , , )
. .

) (12) /( ) 10/(
( )

� � � � � �

� � � 110
2 50 10

3

3

�

�� �. ft      
   The extension in member 13 in the actual structure is: 

δ13
3

5 1 30 000
0 167 10

� � � �

� � � � �

R
R

( )
ft

,
.      

Thus:

   � � � �0 167 32 47 2 50. . .R R      
and:

   R � 12 18. kips       

    Example 3.4 

   Determine the maximum bending moment in the braced beam shown in Figure
3.9   . The cross-section areas of the members are A  12       �      10 in 2, A  34       �      5 in 2 , 

3

4

� �  R �
60°

2

5�
5�

1

R

R

15k 15k

x

x

1

1

1

1

1

1

(i) (ii)

Figure 3.8           
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�  R �
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1
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x x

R
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4
R2�

(i) (ii)

�

Figure 3.9           

A  14       �       A  24       �      2.5 in 2. The second moment of area of member 12 is 1440 in 4 , 
and the modulus of elasticity is constant for all members.  

    Solution 

   The force in member 43 is considered the redundant, and the actual structure 
is replaced by system (i) plus R       �      system (ii). 

    �  Mm d x  �  EI and �  m  2 d x/EI are applicable only to member 12 with M       �      3 x  
and m       �       x/ 2,  Σ  Pul/AE       �      0 and  Σ  u  2  l/AE  is applicable to all members: 

Mm x EI x x EI

E
/E

m x

 d / 2 d /2  

/

 d
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2
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� �

� �
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2

2 2

2
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2 2 55 10 2

∫ ∫

∑

�

� �

� � � �

.
. . 22 / ( )
/ /

( ) /

2

2

2 5 2 50 20
12 10 1 2 12 5

53 12 5 0 4 12

2

2 2
. .

. .

E
E E

E

� �

� � � �

� � � �

�� �65 9. 12 / 2 E      
   Thus: 

� � �R( )16 7 65 9 100. .     

   and:

R � 1 21. kips compression      

   The vertical component of the tensile force in member 14 is 0.605     kips. 
   Thus, the maximum bending moment in the beam at 3 is: 

M3 3 0 605 10
23 95

� � �
�

( )
kip ft
.

.       

    Example 3.5 

   Determine the force in member 56 of the frame shown in  Figure 3.10   . All 
members have the same cross-sectional area, modulus of elasticity, and second 
moment of area.  
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    Solution 

   The tensile force in member 56 is considered the redundant, and the actual 
structure is replaced by system (i) plus R       �      system (ii). �  Mm d x/EI is appli-
cable only to member 34, with M       �       � ( Wl/ 6      �       Wx/2) and m       �       h. �  m  2 d x/EI  
is applicable to member 34 and also to members 53 and 64, with m       �       x . 
Σ  Pul/AE     �   0, and Σ  u  2  l/AE is applicable only to members 34 and 56 with u     �   1. 

Then:

   

Mm x EI Wh l x x EI

Whl EI

m x EI

l
 d /  ( / / )d /

/

d /

/

3

4

0

6

2

2
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5 72
∫ ∫

∫∑
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h l EI

l h

2
3

4
2

5

3

2
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2
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2
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3

d / d /  

d / 2 d /  

/

/

∫ ∫
∫ ∫

�

� �

� ��

� � �
�

2 /
/ 2 /

/

3h EI
u l AE l AE

l AE

3
1 3

2 3

2∑
     

   Thus: 

R h l EI h EI l AE Whl EI( / / / ) 5 /2 3 2 3 2 3 723 2� � �        

    3.6     Two-hinged arch 

   The two-hinged arch shown in  Figure 3.11    is one degree indeterminate, with 
the horizontal reaction H considered the external redundant. The value of H  
may be determined from system (i) and system (ii) by considering the effects of 

h

1

l/3 l/3 l/3
1 1

3 24

5 6

W W
x

x x

x
x x

� R ��

(i) (ii)

Figure 3.10           

HH

2

y y
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�

(i) (ii)

Figure 3.11           
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moments, axial thrust, and shear on the arch rib. Usually the arch axis closely 
follows the funicular polygon for the applied loads, and shear effects are small 
and may be neglected. 

   The inward movement of 1 in system (i) is: 

x Mm s EI Pu s AE� � �1 ∫ ∫/d d /
    

  where P and u are the axial thrusts in the cut-back structure due to the applied 
loads and the virtual unit loads, respectively, and  M and m are the moments in the 
cut-back structure due to the applied loads and the virtual unit loads, respectively.   

Thus:

   

x My s EI V s AE

My s EI

� � �1 ∫ ∫
∫≈

d / d /

d /

sin cosα α

     

   The inward movement of 1 in system (ii) is: 

x m s EI u s AE

y s EI s AE

y s EI

� � �

� �

� �

1
2 2

2

2

∫ ∫
∫ ∫
∫ ∫

d / d /

d / d /

d / d

2 cos

cos

α

α xx AE

y s EI l/AE

/

d /2� �∫     

  where  l  is the arch span and  α  is the slope of the arch axis.   
   When the arch abutments are rigid, the movement of 1 in the actual struc-

ture is: 

x1 0�     

 and:  

x x Hx1 1 1� � � �      

Thus:  

H My s EI y s EI l AE� � �d / /( d / / )2∫∫      

   When the rise to span ratio of the arch exceeds 0.2, the rib-shortening effects 
may be neglected and: 

H My s EI y s EI� � d / / d /2∫∫      

   In the case of spread of the abutments by an amount  δ  x : 

x x1 � ��     

 and:  

H x My s EI y s EI� � � �( d / )/ d /2∫∫      
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   A change in temperature from that at which the arch was erected causes 
a change in H. For a rise in temperature of t°F and a coefficient of thermal 
expansion α : 

x tl My s EI� � � �1 α d /∫     

and:   

H tl My s EI y s EI� � �( d / )/ d /α 2∫∫     

  where t is positive for a rise in temperature and negative for a fall in 
temperature.   

   In the case of reinforced-concrete arch ribs, the shrinkage of the concrete 
has a similar effect to a fall in temperature. For concrete with an ultimate 
shrinkage strain of 300      �      10 � 6 in/in and a coefficient of thermal expansion of 
6      �      10 � 6  in/in/°F, the shrinkage is equivalent to a fall in temperature of 50°F. 

   The axial thrust, shear, and bending moment at any section 3 of the arch 
may be obtained from  Figure 3.12    as: 

P H V W
Q H V
M Hy Vx Wx

� � �
� � �
� � � �

cos sin sin
sin cos cos

α α α
α α αW

34      

x34
P

3
W

H

V

M
Q

y4

2
x

α

Figure 3.12           

    Example 3.6 

   The parabolic arch shown in  Figure 3.13    has a second moment of area that 
varies directly as the secant of the slope of the arch rib. Neglecting the effects 
of axial and shear forces, determine the horizontal thrust at the supports and 
the bending moment at a point 20 ft from the left-hand support.  

    Solution 

   The equation of the arch axis, taking the origin at 1, is: 

y x x� �( )/80 160      
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   The second moment of area at any section is given by: 

I I
I s dx

�
�

o

o

sec 
d /

α

    

  where  I  o  is the second moment of area at the crown.   
  Thus:

H My s EI y s EI

My x y x

x y x y x
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∫
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�

( / )d / (

)d

x x x x x x

x xx
� 80 kips      

   At  x      �       20 ft,  y      �       7.5 ft, and the bending moment in the rib is: 

M � � � � � �
�

60 20 80 7 5 2 2
200

2. (20) /
kip-ft with tension on the insiide of the arch        

    3.7     The tied arch 

   The two-hinged tied arch shown in  Figure 3.14    is one degree indeterminate, 
and the tension in the tie may be considered as the redundant. 

H

60k 80�

21 H H H 0 0

20k 40k

2k/ft

� �

1k/ft 1k/ft
�1k/ft

40k 20k 20k
10

�

Figure 3.13           
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   The inward movement of 1 in system (i) is: 

x My s EI� �1 d /∫      

   The inward movement of 1 in system (ii), allowing for rib shortening, is: 

x y s EI l AE� � �1
2 d / /∫      

   The movement of 1 in the actual structure is outward and consists of the 
extension in the tie, which is given by: 

x Hl A Et1 � � /     

  where  At  is the cross-sectional area of the tie.   
Then:  

x x x1 1 1� � � �     

and:   

H My s EI y s EI l AE l A Et� � � �d / / d / / /  ( )2∫∫
     

    Example 3.7 

   The two parabolic arches shown in  Figure 3.15    have second movement of 
areas that vary directly as the secant of the slope of the arch ribs and have the 
same value at the crown. Neglecting the effects of axial and shear forces, deter-
mine the horizontal component of the axial forces in the arches.  

10k

10
�

� �

30�

20
�

80� 5k 5k

5k

2

1

3

5k 5k 5k

y

Figure 3.15           

    Solution 

   For the upper arch: 

y x x� �3 80 160( )/      
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and:  

My s/EI My dx EI My x EI
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   For the tie,  y       �       x (80      �       x )/160, and the extension is: 

H y s EI H y x EI

H EI

2 2
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40
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d / d /

/
o

o

�

�

∫∫
     

Thus:  

H � �
�

185 000 38 400 4270
4 35

, /( )
kips

,
.        

    3.8 Spandrel braced arch 

   The two-hinged spandrel braced arch shown in  Figure 3.16    is one degree inde-
terminate, and the horizontal reaction at the hinges may be regarded as an 
external redundant. Allowing for a rise in temperature t°F and a spread of the 
abutments by an amount δ  x , the reaction is: 

H tl x Pul AE u l AE� � � �( / ) ( )α ∑ ∑/ /2
     

1

H H

2

Figure 3.16           

   An alternative procedure is to regard member 12 as an internal redundant 
and obtain a solution by the method of Section 3.2. 
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    Example 3.8 

   Determine the member forces in the two-hinged spandrel braced arch shown 
in  Figure 3.17   . All members have the same cross-sectional area and the same 
modulus of elasticity.  

6k 6k4k 4k

2 3

5 � �  R �
R

60° 60°

15�

10�
R

1

1

1 4

(i) (ii)

Figure 3.17           

Table 3.3        Determination of forces in Example 3.8  

   Member P l u Pul u2l P      �      uR

   12 �6.94 11.56 �0.85 68.2 8.36 � 4.30 
   23 �3.47 3.44 �1.10 13.1 4.16 � 0.05 
   34 �5.53 11.56 �0.85 54.3 8.36 � 2.89 
   51 1.06 11.05 1.0 11.7 11.05 � 2.06 
   53 1.06 2.55 1.0 2.7 2.55 � 2.06 
   52 0 2.55 1.0 0.0 2.55 � 3.11 
   54 0 11.05 1.0 0.0 11.05 � 3.11 
   Total  150.0 48.08

Structural Analysis: In Theory and Practice

    Solution 

   The force R in member 54 is chosen as the redundant, and member forces P  
and u  are obtained from (i) and (ii) and are tabulated in  Table 3.3   . 

Thus:  

R Pul u l� �
� �
�

 /  

kips compression

2∑ ∑
150 48 08

3 11
/ .

.      

   The remaining member forces are given by the expression ( P       �       uR).  
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    Supplementary problems 

    S3.1 All members of the pin-jointed frame shown in  Figure S3.1    have a con-
stant value for AE of 60,000 kips. Member 24 is fabricated 1/8 in too long. 
Determine the resultant force in member 24 due to the lack of fit and the 
applied load of 20     kips. 
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Figure S3.1           
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Figure S3.2           

    S3.2 All members of the pin-jointed frame shown in  Figure S3.2    have a con-
stant value for AE of 60,000 kips. Member 26 is fabricated 1/20 in too long. 
Determine the resultant force in members 24 and 26 due to the lack of fit. 

a/2 a/2

2

41

3

a

W

Figure S3.3           

    S3.3 All members of the frame shown in  Figure S3.3    are of uniform section. 
Determine the force in member 13 due to the applied load W . 
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    S3.4 The trussed beam shown in  Figure S3.4    is constructed with a wood beam 
12 and strut 34 and 1 in diameter steel tie rods 41 and 42. The cross- sectional
area and second moment of area of the beam are 86 in 2 and 952 in 4. The 
cross-sectional area of the strut is 26 in 2, and the ratio of the modulus of elas-
ticity of steel and wood is 18. Calculate the force in the strut caused by a uni-
formly distributed load of 1 kip/ft over the beam. 

5�

40�

100k

Figure S3.5           

80�

10�

10�

100k

Figure S3.6           
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21
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Figure S3.4           

    S3.5 The tied parabolic arch shown in  Figure S3.5    has a flexural rigidity that 
varies directly as the secant of the slope of the arch rib and has a value of EI  o  
at the crown. The area and modulus of elasticity of the tie rod are A  t and E  t , 
and the ratio EI  o / A  t  E  t       �      2.5 ft 2. Determine the force in the tie rod caused by 
the 100 kip concentrated load at the crown. 

    S3.6 The two parabolic arches shown in  Figure S3.6    have second movement of 
areas that vary directly as the secant of the slope of the arch ribs and have the 
same value at the crown. Neglecting the effects of axial and shear forces, deter-
mine the horizontal component of the axial force in the arches. 
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    S3.7 The two-hinged arch shown in  Figure S3.7    has a uniform cross-section 
throughout. Neglecting the effects of axial and shear forces, determine the hor-
izontal thrust at the supports caused by the 10 kip load located as indicated. 

8� 4� 8�

6�

10�

10k

Figure S3.7           
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    S3.8 The parabolic arch rib shown in  Figure S3.8    has a flexural rigidity that 
varies directly as the secant of the slope of the arch rib and has a value of EI  o  
at the crown. The flexural rigidity of both columns also has a value of EI  o . 
Determine the horizontal thrust at the supports caused by the concentrated 
load W  at the crown. Neglect the effects of axial and shear force. 
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   Member E I A  
   kips/in2 in4 in2  

   Cable 30,000  – 20
   Tower  3000  – 100
   Girder 3000 100,000 1000

    S3.9 The cable-stayed bridge shown in  Figure S3.9    consists of a continuous 
main girder 12, supported on rollers where it crosses the rigid piers, and two 
cables that are continuous over frictionless saddles at the tops of the towers. 
The modulus of elasticity, cross-sectional areas, and second moments of area 
of the members are given in the Table. Determine the force  T in the cables pro-
duced by a uniform load of 1 kip/ft over the girder.

30� 30� 30� 30� 30�

21

10
�

Figure S3.9           



    4       Conjugate beam methods  

    Notation 

      A       cross - sectional area of a member  
  E       Young's modulus  
  I       second moment of area of a member  
  l       length of a member  
  M       bending moment in a member due to the applied load  
  M  �       bending moment in a conjugate member due to the elastic load  
  P       axial force in a member due to the applied load  
  Q       shear force in a member due to the applied load  
  Q  �       shear force in a conjugate member due to the elastic load  
  R       redundant force in a member  
  w       intensity of applied load on a member  
  w  �       intensity of elastic load on a conjugate member,  M  �  EI   
  W       applied load on a member,  �  w  dx  
  W  �       elastic load on a conjugate member,  �  M  d x  �  EI   
  x       horizontal deflection  
  y       vertical deflection  
  δ       deflection due to the applied load  
  δ  ij       deflection at i  due to a unit load applied at  j   
  δ  12       extension produced in member 12 by the applied load  
  Δ  2       angle change at joint 2 of a triangular frame due to the applied load  
  ε  12       strain produced in member 12 by the applied load  
  θ       rotation due to the applied load     

    4.1     Introduction 

   The conjugate beam method may be used to obtain an expression for the 
entire deflection curve over the whole of a structure. This, in combination with 
M ü ller-Breslau ’s principle, may then be used to obtain influence lines for the 
structure.

   The method may also be used to determine fixed-end moments and support 
reactions in continuous beams and frames, though generally the column anal-
ogy and moment distribution methods are preferred methods of solution.  
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    4.2     Derivation of the method 

   The simply supported beam shown in  Figure 4.1    is subjected to an applied 
loading of intensity w, positive when acting upward. The shear force at any 
section is given by the area under the load intensity curve as  : 

Q w x�  d∫     

2
w

1

x

y

Figure 4.1           

  with shear force upward on the left of a section regarded as positive. The bend-
ing moment at any section is given by the area under the shear force curve as:   

M Q x �  d∫     

  with the bending moment producing tension in the bottom fiber regarded as 
positive. In addition, the curvature at any section is given by:   

 d /d /
/

2 2 1y x R
M EI

 � 
�     

  and the slope and deflection at any section are given by:   

d /d
 d /

 d /

y x

M x EI

y

M x EI

� 

�  

�

� 

θ

δ
∫

∫∫     

  with  x  positive to the right and  y  positive upward.   
   An analogous beam, known as the conjugate beam, shown in  Figure 4.2   , is 

subjected to an applied loading of intensity: 

w M EI� � /     

  where M is the bending moment in the actual beam at any section, and �  M  �  EI  
is known as the elastic load.   
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   The shear and bending moment at any section in the conjugate beam are 
given by: 

Q w x

M x EI 

M Q x

M x EI

� � �

� 

�

� � �

�

� 

 d

 d /

 d

 d /

∫
∫

∫
∫∫

θ

δ    

  where  θ  and  δ  are the slope and deflection at any section in the real beam.   
   Thus, the slope and deflection at any section in the real beam are given by the 

shear and bending moment at that section in the conjugate beam, and the elas-
tic curve of the real beam is given by the bending moment diagram of the con-
jugate beam. The end slope and end deflection of the real beam are given by the 
end reaction and end moment of the conjugate beam. The maximum deflection 
in the real beam occurs at the position of zero shear in the conjugate beam. 

    4.3     Sign convention 

   The conjugate structure consists of the centerlines of the real structure and is 
placed in a horizontal plane. 

   In the case of beams, the elastic load applied to the conjugate beam is posi-
tive (i.e., acts vertically upward) when the bending moment in the real beam is 
positive (i.e., tension in the bottom fiber). The deflection of the real beam at 
any section is positive (i.e., upward) when a positive bending moment occurs 
at the corresponding section of the conjugate beam. The slope of the real beam 
is positive when a positive shear force occurs at the corresponding section of 
the conjugate beam. 

   In the case of frames, the elastic load applied to the conjugate frame is posi-
tive (i.e., acts vertically upward) when the outside fiber of the real frame is in 
compression. The displacement of the real frame at any section is perpendicu-
lar to the lever arm used to determine the moment in the conjugate frame and 
outward when a positive bending moment occurs at the corresponding section 
of the conjugate frame.  

w � � M/EI
1� 2�

Figure 4.2           
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    4.4     Support conditions 

   The restraints of the conjugate structure must be consistent with the displace-
ments of the real structure. 

   At a simple end support in the real structure, shown in  Table 4.1    (i), there is 
a rotation but no deflection. Thus, the corresponding restraints in the conju-
gate structure must be a shear force and a zero moment, which are produced 
by a simple end support in the conjugate structure. The elastic load on the 
conjugate beam is upward and is expressed as W�       �       Wl  2  � 8 EI. The slope of the 
real beam at 1 and the deflection at 3 are: 

θ

δ θ

1
2

3 1
3

2
16

2 12
48

� � �

� �
� � �

� �

W
Wl EI
l W l

Wl

/
/  ... clockwise

/ /
/ EEI  ... downward      

   At a fixed end in the real structure, shown in  Table 4.1  (ii), there is neither a 
rotation nor a deflection. Thus, there must be no restraint at the corresponding 
point in the conjugate structure, which must be a free end. The elastic loads on 
the conjugate beam consist of a downward load due to the fixing moments 
of W Ml EI� � �1 /     and an upward load due to the free bending moment of 
W Wl EI� �2

2 8/    . For equilibrium of the conjugate beam, W W� � � �1 2     and 
M       �       Wl  � 8, with tension in the top fiber as shown. 

   At a free end in the real structure, shown in  Table 4.1  (iii), there is both a 
rotation and a deflection. Thus, the corresponding restraints in the conjugate 
structure are a shear force and a bending moment, which are produced at the 
fixed end. The elastic load on the conjugate beam is downward and is expressed 
as W�     �     �  Wl  2  �2EI. The slope and deflection of the real beam at 2 are: 

θ

δ

2
2

2
3

2
2 3

3

� � �

� 
 � �

� �

W
Wl EI

W l
Wl EI

/  ... clockwise
/
/  ... dowwnward      

   At an interior support in the real structure, shown in  Table 4.1  (iv), there 
is no deflection and a smooth change in slope. Thus, there can be no moment 
and no reaction at the corresponding point in the conjugate structure, which 
must be an unsupported hinge. The elastic loads on the conjugate structure 
consist of downward loads due to the fixing moment of W Ml EI� � �1 2/     and 
upward loads due to the free bending moments of W Wl EI� �2

2 8/    . The slope 
of the real beam at 1 is: 

θ1 1 2
22 8

 � � � � �

� �

W W
Ml EI Wl EI/ /      
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Table 4.1          

(i)

(ii)

(iii)

(iv)

(v)

(vi)

1

1

1

1

1

l

l

l

l l

ll

l

2

2

2

3

2

2

2
1

3�

3�

3

3

3

M M

M
M

W

W

W

W

W

W

w�1

y �1

w �1

x�1

w �2

w�

w �w �

w
l/2

w
l/4

w
l/4

w
l/4

w �2

x1

y1

θ1

θ1

θ2

θ2

θ2

θ2θ1

θ1

x�2

w�2 w�2

w�1

w �1

w �2

W
l

w �

2�

2�

1�

1�

1�

1�

1�

3�

w�1

h

W

W
M M

δ2 δ2

δ2

3�2�1�
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   Taking moments about 2 �  for member 1 � 2 � : 

0 3 21 1 2 � � � � �l lW lWθ / /
    

  And  :   

M Wl� 3 16/ ... with tension in the top fiber as shown.      

   At an interior hinge in the real structure, shown in  Table 4.1  (v), there is a 
deflection and an abrupt change of slope. Thus, the corresponding restraints in the 
conjugate structure are a moment and a reaction, which are produced by an inte-
rior support. The elastic loads on the conjugate structure are downward and are 
expressed as W�     �     �  Wl   2  �8EI. The slope and deflection of the real beam at 2 are: 

θ

δ

2
2

2
3

2
4

5 6
5 48

� � �

� 
� �

� �

W
Wl EI

lW
Wl EI

/
/

/    

   The outside fibers of both members of the real frame, shown in  Table 4.1 
(vi), are in tension throughout. Thus, the elastic loads on both members of 
the conjugate frame are downward and are expressed as W Whl EI� � �1 /     and 
W Wl EI� � �2

2 2/    , respectively. The vertical deflection of the real frame at 1 is: 

y W x
W x W x

Whl EI Wl EI

1

1 1 2 1
2 3 3

� � �

� � � � � �

� �  � 

∑

/ /   

  and is inward (downward) since the bending moment at 1 � produces tension in 
the top fiber. The horizontal deflection of the real frame at 1 is:   

x W y
W y

Wh EI

1

1 1
2 2

 � �

� � �

� �

∑ �

/
     

   The sense of this deflection is obtained by considering the deflection of the 
real frame at 2. The bending moment at 2 � produces tension in the top fiber, 
and thus the deflection of 2 is inward (to the right) and the deflection of 1 
must also be to the right.  

    4.5     Illustrative examples 

    Example 4.1 

   Determine the deflection and rotation at the free end of the cantilever shown 
in  Figure 4.3    (i) and derive the equation of the elastic curve.  
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    Solution 

   For the real beam, the intensity of loading is: 

w Wx l��2 2/     

  the shear is:   

Q Wx l� � 2 2/     

  and the moment is:   

M Wx l�� 3 23/      

   For the conjugate beam, the intensity of loading is: 

w Wx EIl��� 3 23/     

  and the rotation at 1 is given by  :   

θ1

3 2
0

2

3

12

�� �

�

�

W

Wx x EIl

Wl EI

l
d /  

/   anticlockwise
∫

...     

  and the deflection at 1 is given by  :   

δ1

0

4 2
0

3

3

15

� �

�� �

��

��

W x

w x x

Wx x EIl

Wl EI

l

l

d

d /

/  ... downward

∫
∫

     

   The slope at any section in the real beam is: 

Q w x

Wl EI Wx x EIl

W l x EIl

�� � �

�  �  

�  � 

θ1

2 3 2

4 4 2

12 3

12

d

/ d /

( )/

∫
∫

     

(i) (ii)

21

xl

x
y

W
W�

1� 2�

θ1

δ1

Figure 4.3           
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   The deflection at any section in the real beam is: 

M Q x

Wl EI W l x x EIl

W 4l

�� � �  

�� �  � 

��  � 

δ1

3 4 4 2

5

15 12

 d

/ ( ) d /   

( 5

∫
∫

ll x x EIl4 5 260� )/       

    Example 4.2 

   A simply supported steel beam of 20    ft effective span carries a uniformly 
distributed load of 20 kips. Flange plates are added to the central 10    ft of 
the beam in order to limit the deflection to 1 �480 of the span. Determine 
the second moment of area required for the central portion if the second 
moment of area of the plain beam is 200 in 4 and the modulus of elasticity is 
29,000     kips � in 2 .  

5� 5�10�

3�1�

W1�

W2�
W3�

W5�
W4�

2�

θ1 θ2
3.75�

1.875�

2.5�

(i)

(ii)

(iii)

�

�

�

50/EI1

12.5/EI1

37.5/EI1

37.5/EI2

12.5/EI2

Figure 4.4           

    Solution 

   The loading on the conjugate beam is shown in  Figure 4.4   , which can be 
replaced by the three loading conditions (i), (ii), and (iii) where I  1 and I  2 are 
the second moment of areas of the plain beam and the plated beam, respec-
tively, and the bending moment at the center of the real beam is 50 kip-ft. 
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   Thus, the elastic loads are: 

W EI
EI

W EI
EI

W

� � � �

�

� �� � �

��

� �

1 1

1

2 1

1

3

0 67 10 50
333

0 67
42

.

.

/
/

5 12.5/
/

�� �

��

� � � �

�

� � �

5 37 5
187

0 67 5 12 5
42
5 37 5

1

1

4 2

2

5

.

. .

.

/
/

/
/

/

EI
EI

W EI
EI

W EEI
EI

2

2187� /     
  and:   

θl W W W W W
EI EI

 � � � � � � � � � � �

� � �
1 2 3 4 5

1 2104 229/ /      

   The central deflection of the real beam is: 

δ θ3 1 2 3

4

10 3 75 1 875 2 5
1 875

� � �  � � �  � � � � �

� � �

( ) ( ) ( ) ( )
(

l W W W
W

. . .
. )) ( )

/ 1 /
/

2

� � �

�� �
��

2 5
339 745
20 480

5

1

. W
EI EI

     
   Thus: 

1745 20 29 000 480 144 339 2002/ /( ) /I � � �  � ,     

  and:   

I2
4260�  in       

    Example 4.3 

   Determine the horizontal displacement of the roller 1 of the rigid frame shown 
in  Figure 4.5   . All the members of the frame have the same second moment of 
area and the same modulus of elasticity.  

    Solution 

   The bending moment diagram, drawn on the compression side of the mem-
bers, is shown at (i), and the elastic load on the conjugate frame is shown at 
(ii). The elastic loads are: 

W W EI
W EI

W W EI
W EI

� � � �

�

� � �

�

1

2

0 5 15 30
225
9 30
270

. /
/

/
/    



Structural Analysis: In Theory and Practice212

W W EI
W EI

W W EI
W EI

W W E

� � � �

�

� � �

�

� � � �

3

4

5

0 5 6 6
18
6 24
144
0 5 18 18

.

.

/
/

/
/

/ II
W EI�162 /      

   The horizontal displacement at 1 is: 

x W y
W W W W

W EI

1

1 2 3 4 524 24 22 21 12
17 244

� � �

� � � � � � � � � �

�

∑
W

, /
    

  and is outward since the moment at 1 �  produces tension in the bottom fiber.    

    Example 4.4 

   Determine the bending moments in the continuous beam shown in  Figure 4.6   . 
Flange plates are added to the 24    ft portion of the beam between the applied 
loads so as to double the second moment of area.  

4 1

24�

4� 1�

3�
2�

3�

3 2

2W

W4�

W5�

W3� W2� W1�

2W
W

W

2W 2W
6W

(i)

18W

30W

18
�

6�
9�

(ii)

x1θ4

Figure 4.5           
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    Solution 

   The bending moment diagram is shown at (i), where �  M  l and �  M  3 are the 
fixed-end moments and �  M  2  is the support moment. 

   The elastic loads on the conjugate beam are shown at (ii), where EI       �      1 over 
the central portion of the beam and EI       �      ½ over the end 12    ft portions. The 
elastic loads are: 

W
W
W M M
W M M
W M M
W

� �

� �

� �  � 

� �� �

� ��  � 

�

1

2

3 2

4 2

5 2

144
72
6

12
( )

( )
3( )

l

l

l

66 2

7 3 2

8 3 2

9 3 2

10

12
3
12
6

��

� ��  � 

� �� �

� ��  � 

� �

(
( )

( )

M
W M M
W M M
W M M

W

)

2288      

   For equilibrium of the conjugate beam: 

2 2 01 2 10 3 4 5 6 7 8 9W W W W W W W W W W� � � � � � � � � � � � � � � � � � � �
    

2k

1

12� 12� 12� 12�

W3
�

W1
�

W2
� W1

�

W10
�

W4
�

W5
�

W6
� W6

�

W8
�

W9
�

W7
�

122 3

(i)

(ii)

4k
M1 M2 M3

24

48
2M

3

2M
1

24

Figure 4.6           
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  and:   

216 7 10 7 01 2 3 �  �  � �M M M  ...  (1)      

   Taking moments about 2 �  for member 1 � 2 � : 

16 8 20 18 8 6 01 2 3 4 5 6W W W W W W� � �  � � � � � � � � �
    

  and:   

40 5 2 01 2 �  � �M M  ...  (2)      

   Taking moments about 2 �  for member 2 � 3 � : 

80 5 2 03 2 �  � �M M  ...  (3)      

   Solving equations (1), (2), and (3) simultaneously: 

M
M
M

1

2

3

3 63
10 83
11 63

�
�
�

.
.
.

 kip-ft
 kip-ft
 kip-ft        

    Example 4.5 

   The grid shown in  Figure 4.7    is simply supported at the four corners and con-
sists of members of uniform section pinned together at their intersections. 
Determine the distribution of bending moment in each member. 

    Solution 

   The deflections produced at the interconnections are indicated at (i). The inter-
nal reactions at the interconnections may be considered as the redundants and 
are indicated at (ii). Along the diagonals, these reactions are zero due to the 
symmetry of the structure and applied loading. The applied loads and deflec-
tions of beams 11, 22, and 33 are indicated at (iii), (iv), and (v). 

   Let 
    δ  ij        �      deflection at  i  due to a unit load at  j . 
   Then, the values of  δ  ib  may be obtained from (vi) and (vii) as: 

δ

δ

bb b

cb

M
a a
a

M
a a
a

�

�� �

��
�

�� �

�� �

�

�

/ /
/

/ /
c

7 8 3 24
3 4

10 8 2 6
11

3 3

3

3 3

3 112
�
�

δ
δ

bc

dc    
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1 2 3 2
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2
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2
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0

0

0
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δ4 δ3 δ4 δ1

δ2 δ3 δ5 δ3 δ2
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Figure 4.7           
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δdb dM
a a
a

�

�� �

��

�

/ /
/

5 8 24
7 12

3 3

3
    

  where:   

EI �1      

   The values of  δ  ic  may be obtained from (viii) and (ix) as: 

δcc cM
a a
a

�

�� �

�� �

�

/2 2 3
4 3

3 3

3
    

  where:   

EI � 1      

   The deflections of beam 11 are obtained from (iii) as: 

δ δ δ δ1 1 2

1
3

2
316 12 11 12 1

� � �

��  � 

R R
R a R a
bb bd bc( )

/ / ... ( )        
δ δ δ δ2 1 2

1
3

2
322 12 4 3 2

� � �

��  � 

R R
R a R a
cb cd cc( )

/ / ... ( )       

    The  deflections of beam 22 are obtained from (iv) as: 

 ( )
/

lδ δ δ3 3

3
34 3 3

 � �

��

R
R a
cc

... ( )        

   The deflections of beam 33 are obtained from (v) as: 

( ) ( )
/ /

δ δ δ δ δ3 2 3

3
3 3

0 5
4 3 11 24 4

 � �� � �

�  � 

R W
R a Wa

bb bd bc.
... ( )        

   Equation (2)  �  equation (1)      �      equation (3)  �  equation (4). Thus: 

12 10 64 11 01 2 3R R R W�  � � �  ...  (5)      

   Considering the equilibrium of beams 11 and 22: 

2 4 01 2R R W�  � �/ ... (6)     

  and:   

2 01 3R R � � ... (7)      
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   Solving equations (5), (6) and (7) simultaneously, we obtain: 

R W
R W
R W

1

2

3

0 1

0 2

�
�
�

.

.
0.05

    

  and the bending moments in the members are shown at (x), (xi), and (xii).   
   When the number of internal reactions exceeds three, the matrix method 

given by Stanek 2  is a preferred method of solution.   

    4.6     Pin-jointed frames 

   The change in slope for a member of a rigid structure is given by: 

d d /δ � M x EI     

  and constitutes the load on a small element d x  of the conjugate beam.   
   The change in slope of a pin-jointed frame is concentrated at the pins and is 

known as the angle change. Thus, the deflections at the panel points of a pin-
jointed frame are given by the bending moments at the corresponding points in 
a conjugate beam loaded with the total angle change at the panel points. 

   In the pin-jointed frame shown in  Figure 4.8   , the applied load produces a 
force in each member and a change in the length of each member. Due to these 
changes in length, all angles in the frame change. The total angle changes at 
the bottom chord panel points are Σ  Δ  2, Σ  Δ  3, Σ  Δ  4, Σ  Δ  5, and Σ  Δ  6 and are 
the applied loads on the conjugate beam at (i), with a decrease of angle giving 
a positive load. The deflections of panel points 2, 3, 4, 5, and 6 are given by 
the bending moments at 2 �, 3 �, 4 �, 5 �, and 6 � and are positive when the corre-
sponding conjugate beam moment produces tension in the bottom fiber of the 
conjugate beam. 

1 32

2�1� 3� 4� 5� 6� 7�

74

W

5 6

(i) ΣΔ2 ΣΔ3 ΣΔ4 ΣΔ5 ΣΔ6

Figure 4.8           
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   The member forces, P, due to the applied loads in a basic triangle of a pin-
jointed frame shown in  Figure 4.9(i)    produce extensions in the members of δ  12 , 
δ  23 ,  δ  31 . The angle change at 1 is given by: 

Δ1 � ∑ Pul/AE     

  where u is the force in a member due to a unit couple applied to 1 and 3, as 
shown at (ii).   

   Thus: 

Δ δ δ δ1 12 12 23 23 31 31

12 12

31 31

23

2
3

�  �  � 
��
��

u u u
u l
u l
u

cot /
cot /

∠
∠

��
� �

1
3 2 23

/
(cot cot )/

p
l∠ ∠      

   Hence: 

Δ δ δ δ δ1 23 23 12 12 23 23 13 132 3
2

�  � �  � 
�

cot ( / / ) cot ( / / )
cot

∠ ∠
∠

l l l l
(( ) cot ( )ε ε ε ε23 12 23 133 � �  � ∠     

  where ε is the strain produced in a member by the applied loads on the pin-
jointed frame with tensile strain positive. Similarly:   

Δ ε ε ε ε
Δ ε ε

2 13 23 13 12

3 12 13

3 1
1

�  � �  � 
�  � �

cot ( ) cot ( )
cot ( ) co

∠ ∠
∠ tt ( )∠2 12 23ε ε �      

   A comprehensive review of the method has been given by Lee 3 . 

    Example 4.6 

   Determine the deflections at the panel points of the pin-jointed frame shown in 
Figure 4.10   . All members of the frame have the same length, area, and modu-
lus of elasticity.  

1/l13

1/l121/l12

1/l13

1 2

3
3

2

P

1

(ii) Forces u (i) Forces P

Figure 4.9           
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    Solution 

   The member forces due to the applied load are indicated on the figure, where 
α       �      1 � 3 � 3.   The total angle changes at the panel points are: 

∑

∑

Δ α
β

Δ

2

3

4 4 4 2 4 4 4 4 4 6 4 4 3
16

� � � � � � �  � � � �  �  � 
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{( ) ( ) ( )} /
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AE�

44 6 4 4 8 4 8 2 2 2 2 7 3
53

7 2 2 64

� � � � � � � � � � �
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� � � � � �

) ( ) ( )} /

{( ) (

α
β

Δ

AE�

∑ 2 �� � � � � � �
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2 5 4 2 4 2 25
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Δ

AE�
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16
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� �
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)} /

{( ) ( ) ( )} /

α
β

Δ α

AE

AE

�

∑ 2 �� 3
8� β     

  where  β       �      1 � 9 AE . The loads on the conjugate beam are shown at (i).   
   The panel point deflections are given by the bending moments at the corre-

sponding points in the conjugate beam: 
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Figure 4.10           
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    Supplementary problems 

   Use the conjugate beam method to solve the following problems. 
    S4.1 Determine the support moment at the end 1 of the fixed-ended beam 
shown in  Figure S4.1   . 

a b

W
1 2

Figure S4.1           

    S4.2 For the non-uniform beam shown in  Figure S4.2   , determine the rotation 
produced at support 1 and the deflection produced at point 3 by the concen-
trated load W . The relative  EI  values are shown ringed. 

l /2

l /4 l /2 l /4

W
3 111 22

Figure S4.2           

    S4.3 Determine the deflection at the free end of the cantilever shown in Figure
S4.3   . A uniformly distributed load w is applied over a length a from the 
support.

w

l � a

1 2

a

Figure S4.3           

    S4.4 Determine the fixed-end moments produced by the application of the 
moment M at point 3 in the non-prismatic beam shown in  Figure S4.4   . The 
relative EI  values are shown ringed. 
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    S4.5 Determine the fixed-end moments produced by the applied load indicated 
in the non-prismatic beam shown in  Figure S4.5   . The relative EI values are 
shown ringed. 

4�

8k 12k

12� 4�

21 1 1.8 1

Figure S4.6           

8� 8� 8�

1k/ft 6k 12k

1 2

2 21

Figure S4.7           

2a

31 2

a

3 1

M

Figure S4.4           

10� 10� 10�

21

1k/ft
2 1

Figure S4.5           

    S4.6 Determine the fixed-end moments produced by the applied loads indi-
cated in the non-prismatic beam shown in  Figure S4.6   . The relative EI values 
are shown ringed. 

    S4.7 Determine the fixed-end moments produced by the applied loads indi-
cated in the non-prismatic beam shown in  Figure S4.7   . The relative EI values 
are shown ringed. 
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    S4.8 Determine the fixed-end moments produced by the applied loads indicated 
in the prismatic beam shown in  Figure S4.8   . 

P P

ba

a
l

1 2

Figure S4.8           

    S4.9 Determine the fixed-end moment produced by the applied load indicated 
in the propped cantilever shown in  Figure S4.9   . 

l

a b

P
1 2

Figure S4.9           

1 2

4� 8�

10k

2 1

Figure S4.10           

    S4.10 Determine the fixed-end moments produced by the load of 10 kips 
applied at point 3 as indicated in the non-prismatic beam shown in Figure
S4.10   . The relative  EI  values are shown ringed.   
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    5       Influence lines  

    Notation 

      A       cross – sectional area of a member  
 E      modulus of elasticity  
  I       second moment of area of a member  
  l       length of a member  
  M       bending moment in a member due to the applied loads  
  M  �       bending moment in the conjugate beam  
  P       axial force in a member due to the applied loads  
  Q       shear force in a member due to the applied loads  
  Q  �       shear force in the conjugate beam  
  R       redundant force in a member due to the applied loads  
  V       vertical reaction  
  w  �       intensity of loading on the conjugate beam  
  W       applied load  
  W  �       elastic load on the conjugate beam, M d x/EI   
  δ  ij       deflection at i due to a unit load at j  
  δ  x       element of length of a member  
  δ  θ        relative rotation between two sections in a member due to the 

applied loads  
  θ       rotation     

    5.1     Introduction 

   An influence line for a structure is a curve showing the variation in shear, 
moment, member force, or external reaction due to a load traversing the struc-
ture. Influence lines for statically indeterminate structures may be obtained 
by the applications of M üller-Breslau's principle and Maxwell's reciprocal 
theorem.

   Influence lines for arches and multibay frames may be obtained by the 
methods given in Sections 6.4 and 7.14. A comprehensive treatment of the 
determination of influence lines for indeterminate structures has been given by 
Larnach  1  .  
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    5.2     General principles 

    (a)       M üller – Breslau's principle 

   The influence line for any restraint in a structure is the elastic curve produced 
by the corresponding unit virtual displacement applied at the point of applica-
tion of the restraint. The term “ displacement ”  is used in its general sense, the 
displacement corresponding to a moment is a rotation and to a force, a linear 
deflection. The displacement is applied in the same direction as the restraint. 

   To obtain the influence line for reaction in the prop of the propped canti-
lever shown in  Figure 5.1   , a unit virtual displacement is applied in the line of 
action of V. The displacement produced under a unit load at any point i is δ  i . 
Then, applying the virtual work principle: 

V W i� � � � �( ) ( )δ δ1 1     

  that is:        
V i� δ

     
   and the elastic curve is the influence line for  V . 

W � 1

δi

δ 
�

1

V
i

Figure 5.1             

   To obtain the influence line for moment at the fixed end of the propped can-
tilever shown in  Figure 5.2   , the cantilever is cut at the fixed end and a unit 

u � 1

M

i

W � 1

δi

Figure 5.2             
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virtual rotation is imposed in the line of action of M. The deflection produced 
under a unit load at any point i  is  δ  i . Then, applying the virtual work principle: 

M W i� � � � �( ) ( )θ δ1 1      

   that is:     M i� δ      

   and the elastic curve is the influence line for  M.   

    Example 5.1 

   Obtain the influence lines for V  1 and M  2 for the propped cantilever shown in 
 Figure 5.3   .  

x

l

W�

M2

V1

M
/E

I

u1

2�

δ � 1

(i)

1

1

1�

2

nl

Figure 5.3             

    Solution 

   A unit upward displacement is applied to 1 and produces a moment M at the 
fixed end 2. The elastic load on the conjugate beam is shown at (i); taking 
moments about 1 � : 

2 3 1W l� �/      

   Thus: 

M El l� 3 2/      

   The intensity of loading on the conjugate beam is: 

w l x l� � �3 32 3/ /      
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   The shear is: 

Q w x

x l x l

� � �

� �

 d

/ /

∫
3 3 22 2 3      

   The moment is: 

M Q x

x l x l

� � �

� �

 d

/ /

∫
3 2 22 2 3 3      

   and this is the equation of the elastic curve of the real beam. 
   Substituting  x       �       nl , the expression for the influence line for  V  1  is: 

V n n1
2 33 2 2� �/ /      

   The expression for the influence line for  M  2  is: 

M nl V l
l n n n

2 1
2 33 2 2

� �

� � �( )/ /       

    Example 5.2 

   Obtain the influence line for M  12 for the fixed-ended beam shown in  Figure 5.4   .  

(i)

2

2

2�

2EI/l

x2/
l

4EI/l

4/
l

1

(ii)

1

nl

l

1

x

1�

u � 1

u � 1

M F
12

Figure 5.4             
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    Solution 

   The beam is cut at 1 and a unit clockwise rotation imposed. This requires a clock-
wise moment of M  12     �   4EI/l and induces a clockwise moment of M  21     �   2EI/l, as 
shown at (i). 

   The intensity of loading on the conjugate beam at (ii) is: 

w x l l x l
x l l

� � � �

� �

2 4 4
6 4

2 2

2
/ / /
/ /      

   The shear is: 

Q x l x l� � � �3 4 12 2/ /      

   The moment is: 

M x l x l x� � � �3 2 22/ /      

   and this is the equation of the elastic curve of the real beam. 
   Substituting  x       �       nl , the expression for the influence line for  M12

F    : 

M nl n12
21F � �( )

     

   The values of the influence line ordinates, at intervals of 0.2      �       l, are given in 
 Table 5.1   .  

Table 5.1        Influence line ordinates for Example 5.2  

   n 0.2 0.4 0.6 0.8

    M12
F        �      1/ l 0.128 0.144 0.096 0.032

    M21
F        �      1/ l �0.032 �0.096 �0.144 � 0.128 

    Example 5.3 

   A non-prismatic beam deflects in the form of a sine wave when it is simply 
supported and displaced vertically at its center. The beam is then supported at 
its center to form a two-span continuous beam. Obtain the influence line for 
bending moment for a point midway between one end support and the center 
support.  
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    Solution 

   The influence line for  V  2  for the two-span beam shown in  Figure 5.5    is: 

V x l2 � sin( )π /      

x

l/2 l/2

3l
/1

6

l/8

l/4

1

1

2

4

3

(i)

Figure 5.5             

δij

δij

i
W � 1

W � 1

j

i j

Figure 5.6             

   For unit load to the left of section 4 the influence line for  M  4  is: 

M V l
x l x l l

x l x l

4 3 4
4

4 8

�
� � � �
� � �

/
{ / ( ) ( / )} /

/ / sin / )
½ sin

( ) (
π
π      

   For unit load to the right of section 4 the influence line for  M  4  is: 

M V l V l
l x l x l

4 1 23 4 4
3 4 8

� �
� � � �

/ /
/ / ( /( ) sin )π      

   The influence line may be plotted as shown at (i).  

    (b)       Maxwell's reciprocal theorem 

   The displacement produced at any point i in a linear structure due to a force 
applied at another point j equals the displacement produced at j due to the same 
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force applied at i. The displacement is measured in the line of action of the 
applied force; the displacement corresponding to an applied moment is a rota-
tion and to a force, a linear deflection. 

   Referring to  Figure 5.6   , the deflection at  i  due to a unit load at  j  is: 

δij

j i

Mm x EI

m m x EI

�

�

 d /

d /
∫
∫      

   where mi and mj are the bending moments produced at any section due to a 
unit load applied at i  and  j , respectively. 

   Similarly, the deflection at  j  due to a unit load at  i  is: 

δ

δ

ji

i j

ij

Mm x EI

m m x EI

�

�

�

 d /

d /
∫
∫

     
   Thus, the influence line for deflection at i is the elastic curve produced by a 

unit load applied at i . 

δj

i j

ui

W � 1

M � 1

i j

Figure 5.7             

   Referring to  Figure 5.7   , the rotation at  i  due to a unit load at  j  is: 

θi

j i

Mm x EI

m m x EI

�

�

 d /

d /
∫
∫      

   where mj is the bending moment at any section due to a unit load at j and mi is 
the bending moment at any section due to a unit moment at i . 

   Similarly, the deflection at  j  due to a unit moment at  i  is: 

δ

θ

j

i j

i

Mm x EI

m m x EI

�

�

�

 d /

d /
∫
∫

     

   Thus, the influence line for rotation at i is the elastic curve produced by a 
unit moment applied at i . 
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   A general procedure for obtaining the influence lines for any restraint in a 
structure is to apply a unit force to the structure in place of and corresponding 
to the restraint. The elastic curve produced is the influence line for displace-
ment corresponding to the restraint. Dividing the ordinates of this elastic curve 
by the displacement occurring at the point of application of the unit force gives 
the influence line for the required restraint. 

   The influence line for relative rotation, δ  θ, between two sections in a struc-
ture a distance δ  x apart is the elastic curve produced by equal and opposite 
unit moments applied to the two sections. From Figure 2.1: 

δ δ
δ

θ �
�

x R
M x EI

/
 /       

    Example 5.4 

   Obtain the influence line for V  1 for the propped cantilever shown in  Figure 5.8   .
The second moment of area varies linearly from a value of I at end 1 to 2 I  
at end 2.  

2

2�

x

x

l V1

1� (i)

1

Figure 5.8             

    Solution 

   The second moment of area at any section is: 

I I x lx � �( )2 /      

   The reaction V  1 is replaced by a unit load acting vertically upward, and the 
elastic load on the conjugate beam is shown at (i). The intensity of loading on 
the conjugate beam is: 

w M EI
l l x EI l x

x x� �
� � �

/
/( ) ( )2      
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   The shear is: 

Q w x

lx l l x EI l l El
lx l x l

� � �

� � � �

� � �

d

/ /
/

∫
{ log( )} ( log )
{ log(

2
2

2
2 2
1 2 ))}/EI      

   The moment is: 

M Q x

lx l x l x l l x EI

� � �

� � � � � �

d

/ / /
∫
{ ( ) log( ) }2 2 22 2 1 2      

   and this is the equation of the elastic curve of the real beam for unit load at 1. 
   At  x       �       l  the deflection of the real beam is: 

δ1 1

30 1932

� �

� � �

�

M
l EI

l EI

3(1 2 log )/2
/

½
.      

   The expression for the influence line for  V  1  is: 

V M
lx l x l x l l x l

1 1
2 2 2 32 2 1 2 0 1932

� �

� � � � � �

/
/ / /
δ

{ ( ) log( ) } .       

    Example 5.5 

   Obtain the influence line for V  1 as unit load crosses the beam of the rectangu-
lar frame shown in  Figure 5.9   . The beam has a second moment of area three 
times that of each column.  

3

4 1

2

30�

4�

3�
2�

1�

x

W �

30

1

W �

20

2

x

u1 δ1

15
�

1

x

Figure 5.9             
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    Solution 

   For each column  EI       �      1, and for the beam  EI       �      3. 
   The reaction V  1 is replaced by a unit load acting vertically upward; the elas-

tic loads on the conjugate frame are shown at (i) and are given by: 

W
W

� �

� �
1

2

450
150     

   The rotation and vertical deflection at 1 are: 

θ
δ
1

1 1 2

600
30 20
16 500

� �

� � � �

�

W W
,      

   The deflection of the real frame, due to unit load at 1 at any point a distance 
x  from 2 is: 

δ
δ θ

x xM
x x x

x x

� �

� � � �

� � �
1 1

2

3
10 60 3

16 500 600 18
( ) ( )

,
/ /

/      

   The expression for the influence line for  V  1  is: 

V
x x

x1 1
31 6 165 297 000

�

� � �

δ δ/
/ / ,        

    5.3     Moment distribution applications 

M2

2

(i)

(ii)

1

u � 1

2EI/l

4EI/l

M1

M1

Figure 5.10             
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   To obtain the influence line for moment  M  1 at the support 1 of the continuous 
beam shown in  Figure 5.10   , the beam is cut at 1 and a unit virtual rotation 
imposed at 1 with end 2 clamped as shown at (i). The moment required to pro-
duce the unit rotation is derived in Section 6.7 as: 

s EI l12 4� /      

   where  l  is the span length 12 and the moment induced at 2 is: 

c s EI l12 12 2� /      

   The cut ends at 1 are clamped together to maintain the unit rotation between 
the members meeting at 1, and these initial moments are distributed through-
out the beam to produce the final moments shown at (ii). The elastic curve of 
the structure, due to these final moments, is, from M üller-Breslau's principle, 
the influence line for M  1 . 

2

2

y

2

12 W � 1

u21

u � 1

u12

MF
21

MF

1

11

1

Figure 5.11             

   The elastic curve of the structure may be obtained from the values of fixed-
end moments tabulated in  Table 5.1 . Thus, referring to  Figure 5.11   , the elastic 
curve of member 12 due to a unit rotation at 1 is the influence line for the 
fixed-end moment at 1. For any other rotation, the elastic curve is obtained 
as the product of the rotation and the influence line ordinate for M12

F     at the 
corresponding section. When a rotation also occurs at 2, the elastic curve is 
obtained as the algebraic sum of the two products. Thus, the elastic curve ordi-
nate, y , at any section as shown is: 

y M M� �θ θ12 12 21 21
F F

     

   where clockwise rotations and clockwise fixed-end moments are positive. 
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M21

4EIu21/l

2EIu21/l

2EIu12/l

4EIu21/l

1

1

2

2

M12

2 1

�

�

Figure 5.12             

   The rotations of the structure at the supports may be obtained from the final 
support moments as shown in  Figure 5.12   . Thus: 

M EI l EI l

M EI l EI l
12 12 21

21 21 12

4 2

4 2

� �

� �

θ θ
θ θ

/ /

/ /      

   And: θ
θ
12 12 21

21 21 12

2 6

2 6

� �

� �

l M M EI

l M M EI

( )

( )

/

/      

   where clockwise rotations and moments are positive. 
   The method may be readily extended to structures with non –prismatic mem-

bers using stiffness factors, carry-over factors and fixed-end moments that have 
been tabulated  4   for a large variety of non-prismatic members. 

    Example 5.6 

   Determine the influence line ordinates for M  2 over the central span of the con-
tinuous beam shown in  Figure 5.13   . The second moment of area of span 34 is 
twice that of spans 12 and 23.  
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4

l l l

3

nl

2 11

1

Figure 5.13             

Table 5.2        Distribution of moments in Example 5.6  

   Member 21 23 32 34

   Relative  EI/l 4 4 4 8
   Modified stiffness  3 4 4 6
   Distribution factor  3/7  4/7  2/5 3/5

  ← 1/2
   Carry-over factor 1/2 →  

   Initial moments 400 200
   Distribution   �228 � 80 
   Carry-over   �40 � 114 
   Distribution 23 46
   Carry-over 23 12
   Distribution   �13 � 5 
   Carry-over   �2 � 6 
   Distribution 1 2
   Carry-over 1 0

   Final moments 165 55

    Solution 

   The beam is cut at 2 and clamped at 3. A rotation θ  23 is produced by applying 
a clockwise moment of M  23       �      400 units; this induces a clockwise moment of 
M  32       �      200 units. These initial moments are distributed in  Table 5.2   . 

   The final rotations at 2 and 3 are: 

θ

θ

23

32

330 55 600
0 46

110 165 600

� �
�

� �
� �

( )
.

( )

/
 radians clockwise

/
00 09.  radians anticlockwise      

   The influence line ordinates, at intervals of 0.2 l are obtained in  Table 5.3    
from:

M M M2 23 320 46 0 09� �. .F F
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Table 5.3        Influence line ordinates for Example 5.6  

    n 0.2 0.4 0.6 0.8

    M23
F        �      1/ l 0.128 0.144 0.096 0.032

    M32
F        �      1/ l �0.032 �0.096 �0.144 � 0.128 

    M23
F        �      0.46    �      1/ l 0.059 0.066 0.044 0.014

    M32
F        �       � 0.09      �      1/ l 0.003 0.009 0.013 0.012

   Ordinates    �      1/ l 0.062 0.075 0.057 0.026

3

2
1

1

l

nl

l

Figure 5.14             

    Example 5.7 

   Determine the influence line ordinates for M  1, over the beam 12, for the frame 
shown in  Figure 5.14   . The second moment of area and modulus of elasticity is 
constant for all members.  

    Solution 

   The frame is cut at 1 and clamped at 2. A rotation θ  12 is produced by applying 
a clockwise moment of M  12       �      400 units; this induces a clockwise moment of 
M  21       �      200 units. These initial moments are distributed in  Table 5.4   . 

   The final rotations at 1 and 2 are: 

θ

θ

12

21

686 86 600
1 0

172 343 600
0

� �
�

� �
� �

( )
.

( )

/
 radians clockwise

/
..285 radians anticlockwise      
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Table 5.4        Distribution of moments in Example 5.7  

   Member 12 21 23 32

   Relative  EI/l 4 4 4 4
   Modified stiffness 4 3
   Distribution factor 4/7 3/7
   Carry-over factor   ← 1/2 0 →  

   Initial moments 400 200     
   Distribution and carry-over  �57 �114 � 86 

   Final moments 343 86 �86 0

Table 5.5        Influence line ordinates for Example 5.7  

    n 0.2 0.4 0.6 0.8

    M12
F        �      1/ l 0.128 0.144  0.096  0.032

    M21
F        �      1/ l �0.032 �0.096 �0.144 � 0.128 

    M21
F        �       � 0.285    �      1/ l 0.009 0.027  0.041  0.037

   Ordinates    �    1/ l 0.137 0.171  0.137  0.069

    5.4     Non-prismatic members 

   When tabulated values for stiffness factors, carry-over factors, and fixed-end 
moments for non-prismatic members are not available, it is necessary to use 
the general procedure for obtaining influence lines for the structure. 

   To determine the influence line for  V  1 for the two-span continuous beam 
shown in  Figure 5.15   , the beam is divided into short segments of length s. The 
second moment of area is regarded as constant over the length of each seg-
ment, as indicated at (i). The reaction V  1 is replaced by a unit load acting ver-
tically upward, and the bending moment diagram on the cut-back structure is 
shown at (ii). The bending moment is regarded as constant over the length of 
each segment and has the values indicated. The elastic loads on the conjugate 
beam are given by W  �       �       xs/EI and are considered to be concentrated at the 
center of each segment, as shown at (iii). The bending moment in the conju-
gate beam at any section is the ordinate of the elastic curve of the real beam 

   The influence line ordinates, at intervals of 0.2 l, are obtained in  Table 5.5    from: 

M M M1 12 210 285� �F F.
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at the corresponding section, as shown at (iv), and these values, when divided 
by δ  1, are the required influence line ordinates, as shown at (v). The influence 
line for any other restraint may now be obtained by the direct application of 
statics.
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   To determine the influence line for  V  2 for the three-span continuous beam 
shown in  Figure 5.16   , reactions V  2 and V  3 are removed to produce the 
cut-back structure. The beam is divided into short segments of length s, and 
the second moment of area is regarded as constant over the length of each 
segment, as indicated at (i). A unit load is applied vertically upward at 2, as 
shown at (ii), and the bending moment at the center of each segment is deter-
mined, as shown at (iii). The bending moment is regarded as constant over 
the length of each segment, and the elastic loads on the conjugate beam are 
considered to be concentrated at the center of each segment, as shown at (iv). 
The ordinates of the elastic curve of the real beam, simply supported at 1 and 
4 and with a unit load applied at 2, are given by the bending moments at the 
corresponding section in the conjugate beam and are shown at (v). 

   A correction must be applied to these ordinates to reduce the deflection at 
3 to zero since, with V  3 in position, there can be no deflection at 3. A unit 
load acting vertically downward is applied at 3, as shown at (vi). The ordi-
nates of the elastic curve for this loading condition are obtained by the above 
procedure and are shown at (vii). For a symmetrical structure, curve (vii) is the 
inverted mirror image of curve (v). 

   The ordinates of curve (vii) are multiplied by the factor δ  32 / δ  33 and added 
to curve (v) to give curve (viii), which is the elastic curve produced by unit 
load at 2 with supports 1, 3, and 4 in position. These ordinates, when divided 
throughout by δ  2 , are the influence line ordinates for  V  2  as shown at (ix). 

   Similarly, the influence line for  V  3 may be obtained and, for a symmetrical 
structure, is the mirror image of the influence line for V  2. The influence line for 
any other restraint may now be obtained by the direct application of statics. 

   When the number of redundants exceeds 2, the flexibility matrix method, 
given in Section 10.3, is a preferred method of solution and has been used by 
Jenkins  5  . 

    Example 5.8 

   Determine the influence line ordinates for V  1 and M  2 for the three-span sym-
metrical beam shown in  Figure 5.17   . The relative EI values are indicated on 
the figure and may be assumed to be constant over the lengths indicated, as 
may also the elastic loads on the conjugate beam.  

    Solution 

   The cut-back structure is produced by removing V  1 and V  4; a vertically upward 
load of 0.4 kip is applied at 1. This produces the bending moment diagram 
shown at (ii) and the elastic loads on the conjugate beam at (iii). 

   The bending moment in the conjugate beam at the center of each segment is 
given in line (2) of  Table 5.6    and represents the ordinate of the elastic curve of 
the real beam, simply supported at 2 and 3 and with a load of 0.4 kip applied 
at 1. Due to the symmetry of the structure, the ordinates of the elastic curve 
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Table 5.6        Influence line ordinates for Example 5.8  

   1 Section 1 5 6 2 7 8 9 3 10 11 4

   2 0.4 kip at 1  1455 730 122.5 0 �122.5 �280 �77.5 0 77.5 310 465
   3 0.4 kip at 4   �465 �310 �77.5 0 77.5 280 122.5 0 �122.5 � 730  �1455
   4 (3)      �      465/1455 �148 �99 �24.5 0 24.5 90 39.5 0 �39.5 �233 �465
   5 (2)      �      (4) 1307 631 98 0 �98 �190 �38 0 38 77 0
   6 (5)      �     1/1307 1 0.483 0.075 0 �0.075 �0.146 �0.029 0 0.029 0.059 0

   7 M  2 0 �11 �5.5 0 �4.5 �8.75 �1.75 0 1.75 3.55 0

due to a vertically downward load of 0.4 kip applied at 4 are as indicated in 
line (3). Line (4) gives the values of line (3) multiplied by the factor 465/1455; 
it is added to line (2) to give line (5). This represents the ordinates of the elastic 
curve produced by a load of 0.4 kip at 1 and with supports 2, 3, and 4 in posi-
tion. Line (5) multiplied by the factor 1/1307 gives the influence line ordinates 
for V  1  which are given in line (6). 

   For unit load to the right of 2, the influence line ordinates for M  2 are given by: 

M V2 160�      
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   For unit load to the left of 2, the influence line ordinates for M  2 are given by: 

M V x2 160 60� � �( )      

   where x is the distance of the unit load from 1. The values of the influence line 
ordinates for M  2  are given in line (7).   

    5.5     Pin-jointed frames 

    (a)       Frames redundant internally 

Rx

1

(ii)

1
�

(i)

1
3

2

R

R

1

�

1

Figure 5.18             

   The pin-jointed frame shown in  Figure 5.18    contains one redundant member 
12, with its unknown force R assumed tensile when unit load is at panel point 
3. The indeterminate frame can be replaced by system (i) plus R       �      system (ii). 
The relative inward movement of the points of application of R in system (i) is 
δ�12     and in system (ii) is δ�12    . The relative movement of the points of applica-
tion of R in the actual structure is outward and consists of the extension δ  12 in 
member 12, given by: 

δ
δ δ

12 12 12 12

12 12

� �

� � � �

Rl A E
R
/
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   Thus: R l A E� � � � �δ δ12 12 12 12 12/ /( )
     

   From Maxwell ’s reciprocal theorem, the displacement δ�12    , in system (i) due 
to a unit load at 3 equals the vertical displacement of 3 in system (ii) due to 
unit load replacing R, and 3 may be any panel point. Thus, all the information 
required to obtain the influence line ordinates for R may be obtained from 
one Williot-Mohr diagram constructed for system (ii). The vertical deflection 
of each lower panel point is measured on the diagram and divided by ( δ�12         �       
l  12 / A  12  E  12 ) to give the influence line ordinate at that panel point. 

R1 x
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1
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(ii)

(iii)
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1
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1
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1

1

1
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   The pin-jointed frame shown in  Figure 5.19    contains the two redundant 
members 12 and 23 with unknown forces R  1 and R  2, assumed tensile when 
unit load is applied at panel point 5. The indeterminate frame can be replaced 
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by system (i) plus R  1       �      system (ii) plus R  2       �      system (iii). The relative move-
ment of points 1 and 2 in the actual structure consists of the extension in mem-
ber 12 and is: 

δ12 1 12 12 12� �R l A E/      

   and: 

� � � � � � �R l A E R R1 12 12 12 12 1 12 2 12/ δ δ δ  (1)      

   where δ�12     and δ�12    are the relative inward movement of points 1 and 2 in sys-
tems (ii) and (iii) and δ�12     is the relative inward movement of points 1 and 2 in 
system (ii), where 5 may be any panel point. 

   Similarly, by considering the relative movement of points 3 and 4: 

� � � � � � �R l A E R R2 34 34 34 34 1 34 2 34/ δ δ δ  (2)      

   where δ�34    and δ�34    are the relative inward movement of points 3 and 4 in sys-
tems (ii) and (iii) and δ�34    is the relative inward movement of points 3 and 4 in 
system (iii), where 5 may be any panel point. 

   Thus, all the information required to obtain the influence lines for R  l and R  2  
may be obtained from the two Williot-Mohr diagrams constructed for systems 
(ii) and (iii). For each panel point in turn, the required deflections are obtained 
from the diagrams and substituted in equations (1) and (2), which are solved 
simultaneously to give the influence line ordinates for R  l  and  R  2 . 

   When the internal redundants exceed two, the flexibility matrix method, 
given in Section 10.3, is a preferred method of solution and has been used by 
Wang  6  .  

    (b)       Frames redundant externally 

   The technique used to obtain the influence line ordinates for the external 
reactions in frames with not more than two external redundants is similar to 
that used in Section 5.4 for non-prismatic beams. The deflections of the panel 
points are most readily obtained using the method of angle changes. 

   When the external redundants exceed two, the flexibility matrix method, 
given in Section 10.3, is a preferred method of solution and has been used by 
Wang  6  .  

    Example 5.9 

   Determine the influence line ordinates for V  1, V  3, and V  6 for the pin-jointed 
frame shown in  Figure 5.20    and the influence lines for member force in mem-
bers 27, 23, and 39. All members of the frame have the same cross-sectional 
area, modulus of elasticity, and length.  
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    Solution 

   Reaction V  3 is replaced by a vertically upward load of 5 �3 units, and the 
resulting member forces are shown at (i). 

   The total angle changes at the bottom chord panel points are: 

∑
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   and the relative loads on the conjugate beam are shown at (ii). The deflections at 
the bottom chord panel points are given by the bending moments at the corre-
sponding section in the conjugate beam and are shown at (iii). These deflections, 
when divided by 146, give the influence line ordinates for V  3 as shown at (iv). 

   Taking moments about 1, the influence line ordinates for  V  6  are given by: 

V x lR l6 32 5� �( )/      

   where x is the distance of the unit load from 1 and l is the length of the frame 
members. These values are shown at (v). 

   Resolving vertically, the influence line ordinates for  V  l  are given by: 

V V V1 3 61� � �      

   and these values are shown at (vi). 
   The influence line ordinates for member force  P  27  are given by: 

P V27 12 3� / �      

   and these values are shown at (vii). 
   The influence line ordinates for member force  P  23  are given by: 

P V
P V

23 1

23 1

3 3 4 5 6
3 1 3

�

� �

�
� �

… for unit load at    and 
/ … for

, ,
 unit load at 2      

   and these values are shown at (viii). 
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   The influence line ordinates for member force  P  39  are given by: 

P
P V

39 6

39 6

2 3 1 2 3
2 2 3

�

� �

V /  for unit load at   and 
/ 3 /   f

�
� �

…
…

,
oor unit load at ,  and 4 5 6      

   and these values are shown at (ix).  

    Example 5.10 

   Determine the influence line ordinates for V  3 for the three-span pin-jointed 
frame shown in  Figure 5.21   . All members have the same cross-sectional area, 
modulus of elasticity, and length.  
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Figure 5.21             

    Solution 

   Supports V  3 and V  5 are removed, and a unit load is applied vertically upward 
at 3. The deflections of the lower panel points were obtained in Example 4.6, 
and the relative values are shown at (i). When unit load is applied vertically 
downward at 5, the relative deflections shown at (ii) are produced, and (ii) is 
the inverted mirror image of (i) due to the symmetry of the frame. 

   The ordinates at (ii) are multiplied by 91.3/118.7 to give (iii), which is added 
to (i) to give (iv). The ordinates at (iv) are multiplied by 1/48.4 to give (v), 
which is the influence line for V  3 .   
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    Supplementary problems 

    S5.1 The two-span continuous beam shown in  Figure S5.1    has a second 
moment of area that varies linearly from a maximum value of I at the center 
to zero at the ends. Determine the influence line ordinates, at intervals of 0.2 l , 
for the central vertical reaction. 

1 2 3

l l

Figure S5.1             
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Figure S5.2             

    S5.2 The relative EI / l values are shown ringed for each member of the struc-
ture shown in  Figure S5.2   . Determine the influence line ordinates for M  2 at 
intervals of 0.2 l  over members 12 and 23. 

    S5.3 The two-hinged symmetrical polygonal arch shown in  Figure S5.3    has a 
second moment of area for the beam three times that of the inclined columns. 
Determine the influence line ordinates, at intervals of 20 ft, for horizontal 
thrust at the hinges as unit load moves from 5 to 7. 



Influence lines 249

    S5.4 Determine the influence line ordinates for R  1 for the two-span pin-jointed 
truss shown in  Figure S5.4    as unit load crosses the bottom chord. All members 
have the same cross-sectional area, modulus of elasticity, and length.   
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Figure S5.4             
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                                                           6        Elastic center and column 
analogy methods  

    Notation 

      A       elastic area  
  c  12       carry-over factor for a member 12 from the end 1 to the end 2  
  ′c12          modified carry-over factor  
  ex       eccentricity of the elastic load with respect to the x-axis through O  
  ey       eccentricity of the elastic load with respect to the y-axis through O  
  E       Modulus of elasticity  
  H       horizontal reaction  
  H  O       horizontal reaction acting at the elastic center  
  HF       horizontal thrust in a fixed-ended arch due to the applied loads  
  Hδ  � 1       translational stiffness of an arch  
  Hθ  � 1       horizontal thrust induced by a unit rotation at one end of an arch  
  I       second moment of area  
  I  o       second moment of area of an arch at its crown  
  Ix       second moment of the elastic area about the x-axis through O  
  Iy       second moment of the elastic area about the y-axis through O  
  l       length of a member, span of an arch  
  L  l2       equivalent length of an elastically restrained member 12, l  12       �      3 EIη12   
  M       bending moment in the cut-back structure  
  M  1       actual bending moment at section 1  
  M  c       actual bending moment at the crown of an arch  
  M  O       bending moment acting at the elastic center  
  Mx       moment of the elastic load about the x-axis through O  
  My       moment of the elastic load about the y-axis through O  
  MF       fixed-end moment  
  MFE       fixed-end moment in an elastically restrained member  
  Mδ  � 1       fixed-end moment induced by a unit horizontal translation at one end 

of an arch  
 O      elastic center, centroid of the elastic area  
  s       length of segment  
  s  12       restrained stiffness at the end 1 of a member 12, moment required to 

produce a unit rotation at the end 1, end 2 being fixed  
  ′s12          modified stiffness  
  t       change in temperature  
  V       vertical reaction  
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  V  O       vertical reaction acting at the elastic center  
  W       elastic load  
  x  O       horizontal displacement of elastic center  
  y  O       vertical displacement of elastic center  
  α       temperature coefficient of expansion  
  δ  x       spread of arch abutments  
  δ  y       settlement of arch abutment  
  η  12       elastic connection factor at the end 1 of an elastically restrained member 12 
  θ       angle of rotation  
  ′φ12          relative rotation between an elastically connected beam and column at 

the end 1 of beam 12     

    6.1     Introduction 

   The elastic center method provides a rapid means for the solution of the two-
hinged polygonal arch and for the determination of influence lines for the 
fixed-ended arch. The method is applied here to symmetrical structures only 
but may be readily extended to unsymmetrical frames and arches  1  . 

   The column analogy method provides the most useful means for the deter-
mination of fixed-end moments, stiffness, and carry-over factors for non-
prismatic members. The method is derived here from the elastic center method, 
but may be derived independently  2   if required.  

    6.2     Elastic center method 

   The symmetrical fixed-ended frame shown in  Figure 6.1    (i) is three degrees 
redundant, and these redundants may be regarded as the restraints M  1, H  1, V  1  

EI1

E
I 2
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V1

H11

(i) (ii)
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y
ds1/

E
I 2

1/EI1
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2� 1�

y

y�

O
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Figure 6.1           
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at end 1. An analogous frame, known as the elastic frame, is shown in Figure
6.1 (ii) and consists of members with a width at any section of 1/ EI, where E  
and I are the modulus of elasticity and the second moment of area at the cor-
responding section in the real frame. The area of the elastic frame is: 

A � d /s EI∫    

   The centroid O of the elastic area is known as the elastic center and must lie 
on the vertical axis of symmetry at a distance y     from the base, given by: 

Ay d /� ′∫ y s EI
   

   The second moment of the elastic area about the  x -axis through O is: 

Ix � y s EI2∫ d /
   

   The second moment of the elastic area about the  y -axis through O is: 

Iy � x s EI2∫ d /
   

   The symmetrical fixed-ended frame shown in  Figure 6.2    may be replaced 
by systems (i) and (ii). The cut-back structure is produced by releasing end 1. 
An infinitely rigid arm, with its free end at the elastic center, is attached to 1. 
Since the arm is infinitely rigid, it has no effect on the flexural properties of 
the real frame or on the elastic area, as its � d s / EI value is zero. To the cut-back 
structure is applied the external load in system (i) and the redundants M  O  , H  O  ,
V  O in system (ii). Displacement of the elastic center in systems (i) and (ii) is 
transferred through the rigid arm and causes a corresponding displacement 
at 1. The bending moment at any point in the frame in system (i) is M, with 
moment producing tension on the inside of the frame regarded as positive. 

12 12 12
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MO

x

y

OO
� �

(i) (ii)

Figure 6.2           
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   The elastic frame is placed in a horizontal plane as shown in  Figure 6.3    and 
loaded with an elastic load of: 

W � M s EId /∫    

  where M is the bending moment in the cut-back structure at a given section and 
E and I are the modulus of elasticity and the second moment of area at the same 
section. A positive moment in the cut-back structure produces a vertically down-
ward load on the elastic frame. The moment of W about the x-axis through O is:   

M
W

x �
�

My s EI
ex

d /

   

   The moment of  W  about the  y -axis through O is: 

M
W

y d /�

�

Mx s EI

ey

∫
   

   The horizontal displacement of the elastic center in system (i) is: 

′ ∫x Mm s EIo d /�
   

  where m is the bending moment at any section due to a unit virtual load acting 
horizontally to the right at O and m       �      1    �       y.    

   Thus: 

′ ∫x My s EIO d /�

� Mx    

   The horizontal displacement of the elastic center in system (ii) is: 

′′ ∫ ∫ ∫x M y s EI H y s EI V xy s EI
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   In the original structure the displacement of end 1 is zero and thus: 

0 � �′ ′′x xO O    

   Hence: 

HO /� M Ix x    

   The vertical displacement of the elastic center in system (i) is: 

′ ∫y Mm s EIO d /�
   

  where m is the bending moment at any section due to a unit virtual load acting 
vertically downward at O and m       �      1    �       x.    

   Thus: 

′ ∫y Mx EIO ds/�

� My    

   The vertical displacement of the elastic center in system (ii) is: 

′′ ∫∫∫y M x s EI H xy s EI V x s EI

V
O O O O

O

d / d / d /� � � �

� � � �

2

0 0 Iy    

   In the original structure the displacement of end 1 is zero and thus: 

0 � �′ ′′y yO O    

   Hence: 

VO � M Iy y/
   

   The rotation of the elastic center in system (i) is: 

′ ∫θO  d /� Mm s EI
   

  where m is the bending moment at any section due to a unit virtual anticlock-
wise moment acting at O and m       �      1.   

   Thus: 

′ ∫θO  d /�

�

M s EI

W    
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   The rotation of the elastic center in system (ii) is: 

′′ ∫ ∫∫θO O O O

O

d / d / d /� � � �

� � � �

M s EI H y s EI V x s EI

M A 0 0    

   In the original structure the displacement of end 1 is zero and thus: 

0 � �′ ′′θ θO O    

   Hence: 

MO /� W A    

   The bending moment at any point in the original structure with coordinates 
x  and  y  is given by: 

M M H y V x M y x� � � � � � �O O O / / /W A M I M Ix x y y    

   Allowing for rib-shortening effects, spread of the abutments, and tempera-
ture rise, the horizontal displacements of the elastic center in the original struc-
ture in system (i) and system (ii) are: 

x xO � δ    

  where  δ  x  is the spread of the abutments:   

′x tlO � �Mx α    

  where α is the temperature coefficient of expansion, t is the rise in temperature 
and l  is the span of the arch.   
   And: 

′′x H H l AEO O O /� � �Ix    

  where HO l / AE is the approximate allowance for rib shortening derived in 
Section 3.6:   

x x xO O O� �′ ′′
   

   and: 

H ( )/( /O � � � �M Ix xαtl l AExδ )    
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   Allowing for vertical settlement of one abutment, the vertical displacements 
of the elastic center in the original structure in system (i) and in system (ii) are: 

y yO � δ
   

  where  δ  y  is the settlement of the abutment:   

′yO � My    

   and: 

′′y VO O� � Iy    

   Thus: 

V yO ( )/� �M Iy yδ
   

   Allowing for a clockwise rotation of θ at end 1 of the frame shown in Figure
6.4   , the displacements of the elastic center are: 
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   The values of the redundants at the elastic center are, then: 
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    6.3     Two-hinged polygonal arch 

   The symmetrical, two-hinged polygonal arch shown in  Figure 6.5    (i) is one 
degree redundant, the redundant being the horizontal restraint H. The two 
hinges have zero stiffness, and the elastic arch has two infinite areas concen-
trated at the foot of the columns, as shown at (ii). The elastic center lies cen-
trally between the two feet, and the elastic area and the second moment of the 
elastic area about the y -axis are infinite. 

y

xOH H
� �

(i) (ii)

Figure 6.5           

   Hence: 

V MO O�
� 0    

   and: 

H
H

O /�
�

M Ix x

   

    Example 6.1 

   Determine the horizontal reaction at the hinges of the two-hinged arch shown 
in  Figure 6.6   . The section is uniform throughout, and deformations due to 
axial effects and shear may be neglected.  
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    Solution 

   The cut-back structure is produced by replacing one hinge with a roller, and 
the elastic load on the elastic arch is shown at (i). The value of 1/ EI may be 
taken as unity. 

   Then: 
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   and: 
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M Ix x
8 28.       

    6.4     Influence lines for fixed-ended arches 

   The influence lines for the restraints at the end of 1 of the fixed-ended symmet-
rical arch shown in  Figure 6.7    may be most readily obtained from the influence 
lines for M  O, H  O, and V  O. The arch is divided into short segments of length s , 
and the second moment of area is regarded as constant over the length of each 
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segment, as indicated in the figure. The elastic area and the height of the elastic 
center above the base of the arch are given by: 

A
A

�

� �

Σs I
y s I
/

y / /Σ ′ 1    

  where I is the second moment of area at the center of a given segment and y  � is 
its height above the base.   

   The cut-back structure is produced by introducing a cut in the crown of the 
arch to form two identical cantilevers, one of which is shown in  Figure 6.8    
(i). The reactions at the elastic center for the other cantilever are equal and 
opposite to those shown. To determine the influence line for  H  O, a unit load 
is applied in place of H  O  , as shown at (ii). The bending moment at the center 
of each segment is given by M       �       �  y and is regarded as constant over the 

y

y5 y4 y3
y2

y1

s

x
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length of each segment. The elastic loads on the conjugate beam are given by 
 W  �       �       �  ys  �  EI and are considered as concentrated at the center of each segment, 
as shown at (iii). The ordinates of the elastic curve of the cut-back structure, 
with a unit load applied in place of H  O  , are given by bending moments at the 
corresponding section in the conjugate beam and are shown at (iv). These ordi-
nates, when divided throughout by the total horizontal displacement between 
the two cantilevers at O due to the unit load, are the influence line ordinates 
for H  O . The horizontal displacement of O due to the unit load is: 

x y s EIO d /�

�

2∫
Ix    

   To determine the influence line for  V  O, a unit load is applied in place of V  O , 
as shown at (v). The bending moment at the center of each segment is given by 
M       �       x and is regarded as constant over the length of each segment. The elastic 
loads on the conjugate beam are given by W�         �       xs/EI and are considered as 
concentrated at the center of each segment, as shown at (vi). The ordinates of 
the elastic curve of the cut-back structure are given by the bending moments at 
the corresponding section in the conjugate beam and are shown at (vii). These 
ordinates, when divided throughout by y  O, the total vertical displacement 
between the two cantilevers at O, are the influence line ordinates for V  O. The 
influence line for V  O over the left half of the span is the inverted mirror image 
of the influence line over the right half. 

   To determine the influence line for  M  O, a unit moment is applied in place of 
M  O  , as shown at (viii). The bending moment at the center of each segment is given 
by M     �   1. The elastic loads on the conjugate beam are given by W�     �     s/EI and 
are considered as concentrated at the center of each segment, as shown at (ix). The 
ordinates of the elastic curve of the cut-back structure are given by the bending 
moments at the corresponding section in the conjugate beam and are shown at (x). 
These ordinates, when divided throughout by θ  O, the total rotation at O due to the 
unit load, are the influence line ordinates for M  O. The rotation of O is given by: 

θO d /�

�

s EI∫
A    

   The influence line ordinates for  H  1  are given by: 

H H1 � O    

   The influence line ordinates for  V  1  are given by: 

V V
V V

1

1 1
� �
� �

O

O

  left half
 ... right half

...
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   The influence line ordinates for  Mc  are given by: 

    M M H hc � � �O O( y)     with tension in the bottom fiber positive 

   The influence line ordinates for  M  1  are given by: 

M M H V l
M x M H V l

1

1

2
2

� � �

� � � � �
O O O

O O O

y /  ... left half
y /  ... righ′′ tt half    

   where x  � is the horizontal distance of the unit load from 1, and tension in the 
bottom fiber is positive. 

    Example 6.2 

   Determine the influence line ordinates for the elastic center reactions, the 
springing reactions, and the bending moment at the crown of the arch shown 
in  Figure 6.9   . The equation of the arch is: 

y x x� � 0 0133 2.    

  and the second moment of area varies as indicated in  Table 6.1   .    

y

x

2 1

75�

18
.7

5�

Figure 6.9           

Table 6.1        Properties of elastic arch for Example 6.2  

   Segment       1       2      3      4       5  2      �       Σ  

   Length  s 8.60 8.60 8.60 8.60 8.60
   Relative  EI 5.10 3.07 2.03 1.45 1.11
    y  � 2.95 8.45 13.05 16.50 18.50
    s/EI 1.69 2.80 4.24 5.94 7.75 44.84
    y� s/EI 5.00 23.70 55.30 98.00 139.50 643.00
    y �11.55 �6.05 �1.35 2.15 4.15
    y  2  s/EI 225.00 102.50 7.70 27.40 133.60 992.40
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    Solution 

   The properties of the elastic arch are obtained in  Table 6.1 . The elastic area, the 
height of the elastic center, and the second moment of the elastic area about the 
x-axis are:  

A

Ix

�
�
�
�

44 84
643 0 44 84
14 4
992 4

.
. / .

.
.

y
 ft

   

   The influence line ordinates for the elastic center reactions are derived in 
Table 6.2    and plotted in  Figure 6.10   . The influence line ordinates for V  O over 
the left half of the span are � 1      �      the corresponding ordinate over the right 
half of the span. 

Table 6.2        Influence line ordinates for Example 6.2  

   1 Segment 1 2 3 4 5 Crown

   2 y �11.55 �6.05 �1.35 2.15 4.15 4.35
   3 �  ys/EI 19.50 16.95 5.72 �12.75 �32.20  –  
   4 x  � 6.60  7.25  7.80 8.40 4.35  –  
   5 M  �  for  H  O       �      1 0  129  393 723 970 957
   6 (5)      �      1 � 992.4    �       H  O 0  0.13  0.40 0.73 0.98 0.97
   7 x 34.40  27.80  20.55 12.75 4.35 0
   8 xs/EI 58.20  78.00  87.00 75.70 33.70  –  
   9 M  �  for  V  O       �      1 0 384 1372 3122 5632 7082
   10 (9)      �      1 � (2      �      7082)    �       V  O 0 0.027 0.097 0.221 0.398 0.500
   11 s  �  EI 1.69  2.80  4.24 5.94 7.75  –  
   12 M�  for  M  O       �      1 0  11.20  43.70 112 235 333
   13 (12)    �      1 � 44.84    �       M  O 0  0.25  0.97 2.50 5.25 7.43
   14 M  c 0 �0.32 �0.77 �0.67 0.99 3.08
   15 V  1  left half 0 0.027 0.097 0.221 0.398 0.500
   16 V  l  right half 1 0.973 0.903 0.779 0.602 0.500
   17 M  l  left half 0  1.11  3.09 4.70 4.35 3.08
   18 M  1  right half   �3.10 �6.57 �6.58 �3.45 1.20 3.08

   The influence line ordinates for  M  c  are given by: 

M M Hc O O4.35  ... tension in the bottom fiber positive� �    

   The influence line ordinates for  M  1  are given by: 

M M H V
M x M H V

1

1

14 4 37 5
14 4 37 5

� � �

� � � � �
O O O

O O O

 ... left half. .
. .′′  ... right half    
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  where x  � is the horizontal distance of the unit load from 1 and bending 
moment producing tension in the bottom fiber is positive.   

   The influence line ordinates for Mc, M1, and V1 are derived in  Table 6.2  and 
plotted in  Figure 6.11   .   

M1

Mc

V1

Figure 6.11           

MO

HO

VO

Figure 6.10           
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    6.5     Column analogy method 

   The fixed-ended beam shown in  Figure 6.12    may be replaced by systems (i) 
and (ii), the cut-back structure being produced by introducing a moment 
release at 1 and 2. For a beam with a straight axis, the elastic center O is on 
the beam axis and Mx       �       H  O        �      0. Then, the bending moment at any section, 
with coordinates x  in the original beam is given by: 

M M V x M e xy� � � � �( ) ( / / )O O W A W Iy    

  where M is the bending moment in the cut-back structure and the expression 
in brackets is the bending moment due to the elastic center reactions, with 
bending moment producing tension in the bottom fiber regarded as positive.   

y

x

VO

MO

O

ww

2 1EI

� �

(i) (ii)

Figure 6.12           

   The analogous column shown in  Figure 6.13    consists of a short column with 
a width at any section of 1/ EI subjected to an applied knife-edge load W with an 
intensity at that section of M/EI, where E and I are the modulus of elasticity and 
the second moment of area at the corresponding section in the real beam. That 
is, the cross-section of the column consists of the elastic area A, with its centroid 
at O, loaded with the elastic load W. A positive moment in the cut-back structure 

y

1�
2�

x

1/EI

ey

O

M/EI
W

Figure 6.13           
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produces a vertically downward load on the analogous column. Then, the stress at 
any section, with coordinates x in the analogous column, is given by: 

W A W Iy/ /� e xy    

  with compressive stress regarded as positive.   
   This expression for stress in the analogous column is identical to that for 

moment in the cut-back structure due to the elastic center reactions. Thus, a 
value for the stress at any section in the analogous column is equivalent to the 
moment at the corresponding section in the cut-back structure due to the elas-
tic center reactions. 

   While the column analogy method has been restricted here to straight beams, 
it may be readily extended, in the same manner as the elastic center method, to 
frames and arches, which may be symmetrical or unsymmetrical. 

   A vertical displacement δ  y of end 1 of the fixed-ended beam shown in Figure
6.14    produces an equal displacement of the elastic center, which is given by: 

δy Mx s EI�

�

d /∫
My    

δy δyEI

1/EI

y y

2

My � δy My � δyx x

O O

1 1

2

(i) (ii)

Figure 6.14           

   Thus, the effect of a vertical displacement on the real beam is equivalent to 
the effect of a bending moment applied to the y-axis of the analogous column. 
The displacement produces positive moment at 1 and negative moment at 2, 
and the equivalent stresses in the analogous column are tension at 1 and com-
pression at 2. For cases (i) and (ii) the sense of My  is as indicated. 

   A rotation θ at end 1 of the fixed-ended beam shown in  Figure 6.15    pro-
duces a rotation and displacement of the elastic center, which are given by: 

θ θ

θ

O

O

d /

�

�

�
�

�

M s EI

y e
e
y

y

∫
W

W
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   Thus, the effect of a rotation θ at 1 is equivalent to the effect of a concen-
trated load W applied to the analogous column at 1. The rotation produces a 
negative moment at 1 and a positive moment at 2, and the equivalent stresses 
in the analogous column are compression at 1 and tension at 2. For cases (i) 
and (ii) the sense of W  is as indicated. 

   The column analogy method may be readily extended 3   to the solution of 
frames and continuous beams in which there are displacements and rotations 
of the supports.  

    6.6     Fixed-end moments 

    Example 6.3 

   Determine the bending moments in the column shown in  Figure 6.16   . The rela-
tive EI  values are shown ringed.  

O

EI

2 21 1

u u

1/EI

y y

ey ey
O

W � u W � u

x x

(i) (ii)

Figure 6.15           
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    Solution 

   The analogous column is shown at (i), where 1/ EI for member 12 is taken as 
4 units. The cut-back structure is produced by releasing 3. The intensity of 
loading on the analogous column is, then: 

5 2 4 40� � � units    

   and: 

W � 400    

   The properties of the analogous column are: 

A

Iy

� � � �
�
� � � �
�
� � � �

�

10 4 20 1
60
40 25 20 10 60
20
40 100 3 20 400 3

x ( )/
ft

/ /
44000
5ey � ft

   

   The moments in the real column are: 

M ey12 10 10
400 60 20 000 4000

10

� � �

� � �
� � �
� �

( / / )
10 ( / / )

6.67 5
1

W A W Iy

,

..67 kip-ft ... tension on left side
0 /

kip-ft 
M21 1

3 33
� �
�

W A
. .... tension on right side

/
kip-ft ... tensio

M23 0
6 67

� �
� �

W A
. nn on left side
( / / )
( / / )

M ey32 0 20
0 400 60 40 000 4000

� � �

� � �

W A W Iy

,
��  � �
�

0 6 67 10
3 33

.
. kip-ft ... tension on right side      

    Example 6.4 

   Determine the fixed-end moments in the non-prismatic beam shown in Figure
6.17   . The relative  EI  values are shown ringed.  
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    Solution 

   The analogous column is shown at (i), where 1/ EI for member 12 is taken as 
2 units. The cut-back structure is produced by releasing 5, and the column 
loads, eccentricities, and moments about the y-axis are: 

W

M
W

M
W

M

1

l

2

2

3

3

�

�
�
�
�
�
�
�

40

107
240
7
1680
396
8
3168

e

e

e

1

2

3

 = 2.67

   

   The properties of the analogous column are: 

A � � � �
�

20 2 8 1
32    

Iy � � � �

�

40 400 12 8 64 12
1290

/ /

   

   The fixed-end moments in the real beam are: 

M ey12 86 10
86 32 10 4955 1290
26 5

� � � � �

� � � � � �
� �

( / / )
( 676/ / )
ki

W A W Iy

. pp-ft ... tension in the top fiber
( / / )M ey54 0 10

0
� � � �

� �

W A W Iy

(( / )
kip-ft ... tension in the top

� � � �
� �

676 32 10 4955 1290
17 3.  fiber      

13
2

40

W3

W2 W1

y

O

1

1�

(i)

5�

x

2

6� 4� 4� 6�

51 2 3 4
5k6k

1221

Figure 6.17           
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    Example 6.5 

   Determine the fixed-end moments in the non-prismatic beam shown in Figure
6.18   . The relative  EI  values are shown ringed.  

10� 6� 16�

l�

4�

41 2 3
16k

231

x–

O

W

y

6 2

3
38

4

x

(i)

Figure 6.18           

    Solution 

   The analogous column is shown at (i), where 1/ EI for member 12 is taken as 
6 units. The cut-back structure is produced by releasing 1, and the column 
properties are: 

A

Iy

� � �
�
� � � � � �
�

� �

60 12 48
120
60 5 12 13 48 24 120

13 4
60 100

x ( )/  
ft.

// ( ) / ( )

/ ( )

212 60 8 4 12 36 12 12 0 4 48

256 12 48 10 6
111

2

2

� � � � � � � �

� �
�

. .

.
990

384 16 3
2050

W � �
�
� �

/

18.6 4 
= 14.6 ft

ey

   

   The fixed-end moments in the real beam are: 

M12 0 2050 120 13 4 2050 14 6 11190
18 7

� � � � � �
� �

( / / , )
 kip-ft  t

. .
. ... eension in the top fiber

( /M43 128 2050 120 18 6 2050 14 6� � � � � � �. . // , )
 kip-ft  tension in the top fiber

11190
61 3� � . ...      

    Example 6.6 

   Determine the fixed-end moments in the non-prismatic beam shown in Figure
6.19    due to support 2 settling a distance  δ . The  EI  values are shown ringed.  
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    Solution 

   The analogous column is shown at (i), and the settlement of 2 is equivalent to a 
moment δ acting on the analogous column as shown. The column properties are: 

A

Iy

� �
�
� � � �
�
� � � �

�

2 4
6
2 4 4 10 6

8
2 64 3 4 16 3

/ /
/

x ( )/
 ft
/ / / /

EI EI
EI

EI EI
664/EI    

   The fixed-end moments in the real beam are: 

M
EI

M

12

21

0 8
8

0 4

� �

� �
� �

δ
δ

δ

/
/  ... tension in the top fiber
/

I

I

y

y

�� EIδ/   tension in the bottom fiber16 ...       

    6.7     Stiffness and carry-over factors 

    (a)       Prismatic members 

   The restrained stiffness s  12 at the end 1 of a member 12, which is fixed at 2, 
as shown in  Figure 6.20   , is defined as the bending moment required at 1 to 
produce a rotation there of one radian. The carry-over factor is defined as the 
ratio of the moment induced at 2 to the moment required at 1. 

   The analogous column is shown at (i), and the unit rotation of 1 is equiv-
alent to a unit load acting on the analogous column as shown. The column 
properties are: 

A

y

�

�

l EI
l EI
/

I /3 12
   

8� 4�

1�
2�

21
EI4EI

y

ε

x

O

x–

1/4EI

1/EI
(i)

Figure 6.19           
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   The moments in the real beam are: 

M l
EI l

M

12
2

21

0 1 4
4

� � �

� �

�

( / / )
/  ... tension in the top fiber
A Iy

00 1 4
2

2� �

�

( /A / I )
/  ... tension in the bottom fiber

l
EI l

y

   

   Thus, the restrained stiffness and carry-over factors are: 

s M
EI l

c M M

12 12

12 21 12

4
�
�
�

�

/  ... clockwise positive
/

1
2    

   For a beam hinged at 2, as shown in  Figure 6.21   , the analogous column is 
shown at (i) and has an infinite area concentrated at 2 �. The column properties are: 

A

y

�

�

∞
I l EI3 3/

   

EI
M12

M21

2 1

l


 �1 W� 1

x

y

1/EI

1�2�

(i)

O

Figure 6.20           
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Figure 6.21           

   The moments in the real beam are: 

M l
EI l

M

12
2

21

0 1
3

0

� � �

� �
�

( / )
/   tension in the top fiber
∞ /
...

Iy

�� �
�

( / )1 0
0

∞
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   Thus, the stiffness and carry-over factors are: 

′

′

s M
El l

c M M

12 12

12 21 12

3

0

�
�

�
�

/   clockwise positive
/

...

     

    (b)       Non-prismatic members 

   Stiffness and carry-over factors have been tabulated for a large range of non-
prismatic beams with parabolic and straight haunches        4,5  , and for beams with 
discontinuous flanges 6  . The characteristics of members for which tabulated 
values are not available may be obtained by the methods detailed in Examples 
6.7 and 6.8.  

    Example 6.7 

   Determine the stiffness s  21 and the carry-over factor c  21 for the non-prismatic 
beam shown in  Figure 6.22   . The  EI  values are shown ringed.  

8� 4�

1�
2�

21
EI4EI

y

x

x–

1/4EI

1/EI

(i)

O

W �1

Figure 6.22           

    Solution 

   The analogous column is shown at (i), and the unit rotation of 2 is equivalent 
to a unit load acting on the analogous column as shown. The column proper-
ties are: 

A

Iy

� �
�
� � � �
�
� � � �

�

2 4
6
2 4 4 10

8
2 64 3 4 16 3
64

/ /
/

( )/6
 ft

/ /

EI EI
EI

EI EI

x

//EI    
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   The moments in the real beam are: 

M
EI

M

21 0 1 4 4 1
12

� � � � �

� �

( / / )
5 /  ... tension in the top fiber

A Iy

112 0 1 8 4 1
3

� � � � �

�

( / / )
/   tension in the bottom fiber

yA I
EI ...    

   Thus the stiffness and carry-over factors are: 

′

′

s M
EI

c M M

21 21

21 12 21

12

4

�
�

�
�

5 /   clockwise positive
/

/5

...

     

    Example 6.8 

   Determine the stiffness, carry-over factor, and influence line for the fixed-end 
moment at the end 1 of the steel beam shown in  Figure 6.23   . The modulus of 
elasticity may be taken as 30,000     kips/in 2 .  

y

3�

29
�

3� 3� 3� 2� 2� 2� 2�

2
1" Web

O

1– � 18" Flange1"
2

1– � 18" Flange1"
2

58
"

l

x � 11.9�

I1 I2 I3

x5 x�5

I4 I5
I6

I7
I8

Figure 6.23           

    Solution 

   The properties of the analogous column are obtained in  Table 6.3    with E       �      1 
and I  in ft units: 

A

Iy

�
�
�
� �

�

27 80
330 5 27 8
11 9
676 18
694

.
. .

.
x /

 ft
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   The influence line for M  1 is given by the elastic curve produced by a unit 
rotation at 1 and is equivalent to a unit load at 1 � on the analogous column. 
The bending moment at the center of each segment is given by:

M xx� � �0 1( / / )A yI
   

  and is regarded as constant over the length of each segment. The ordinates of 
the elastic curve are given by the bending moments at the corresponding sec-
tions in the conjugate beam, and the load on the conjugate beam is:   

′W � sM I/    

  where s is the length of the segment. The influence line ordinates for M  1 are 
obtained in  Table 6.4    and shown in  Figure 6.24   .   

Table 6.3        Properties of analogous column for Example 6.8  

   Segment 1 2 3 4  5  6  7 8   Σ  

   Length,  s , ft  3 3 3 3  2  2  2 2
    I , ft 4 0.56 0.56 0.56 0.56  0.73  1.16  1.7 2.37
    x  � 18.50 15.5 12.5 9.5 7  5  3 1
    s / I 5.33 5.33 5.33 5.33  2.73  1.73  1.18 0.84 27.8
    x  �  s/I 98.6 82.6 66.6 50.6 19.1 8.7 3.5 0.8 330.5
    x �6.60 �3.60 �0.60 2.4  4.9  6.9  8.9 10.9   
    x  2 s /I 232 69 2 31  65  82  94  101 676
    x  3 /12 I 4 4 4 4  1  0.6 0.4 0 18

Table 6.4        Influence line ordinates for Example 6.8  

   Segment 1 2 3  4  5  6  7 8

    M 0.077  0.026  �0.026 �0.077 �0.120 �0.154 �0.189 � 0.223 
    W  � 0.415  0.138  �0.138 �0.415 �0.322 �0.267 �0.223 � 0.188 
   Influence 
ordinates

0 1.25 2.9 4.15  4.15  3.51  2.33  0.7

2 1

Figure 6.24           
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   The moments in the real beam due to a unit rotation at 1 are: 

M

M l

12
2

21

0 1
0 036 0 204
0 240

0 1

� � �

� � �
� �
� � � �

( / x / )
( )

( / ( )/

A I

I

y

. .
.

A x x yy )
( )� � �

�
0 036 0 139

0 103
. .

.    

   Thus, the stiffness and carry-over factors are: 

′

′

s E

c

12

21

0 240
0 240 30 000 144
1360
0 103 0 240
0

�
� � �
�

�
�

.

.

. .

,
 kip-ft
/

..430      

    (c)       Curved members 

   In addition to rotational stiffness and carry-over factors, the translational 
stiffness of curved members is also required. The translational stiffness is the 
horizontal force required to produce unit translation at one end of a curved 
member, all other displacements being prevented. The characteristics of a large 
range of symmetrical segmental, parabolic, and elliptical members are avail-
able        1,7  . The characteristics of unsymmetrical curved members may be deter-
mined in a similar manner to that detailed in Example 6.2.  

    Example 6.9 

   The parabolic arch shown in  Figure 6.25    has a second moment of area that 
varies directly as the secant of the slope of the arch axis. Determine (i) the 
rotational stiffness and carry-over factor, (ii) the translational stiffness, (iii) the 
fixed-end moments and thrust due to a unit load at the crown. 
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h

l

Figure 6.25           
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   The second moment of area of the arch at any section is: 
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 d /d
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  where  I  O  is the second moment of area at the crown.   
   The equation of the arch axis is: 
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   The properties of the analogous column are: 
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   (i) The rotational stiffness s  12 at the end 1 of the arch is the bending moment 
required at 1 to produce unit rotation there, as shown in  Figure 6.26   . This is 
equivalent to a unit load acting on the analogous column in the sense indicated 
for case (i) and (ii). Using the convention of clockwise moments positive, the 
moments in the arch are: 
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   Thus: 

c12 1/3� �    

   The horizontal thrust associated with the unit rotation is given by Section 6.2 as: 
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  and has the sense indicated for case (i) and (ii).   
   (ii) The translational stiffness Hδ  � 1 at the end 1 of the arch is the thrust 

required at 1 to produce unit translation there, as shown in  Figure 6.27    and is 
given by Section 6.2 as: 
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δ� �
�

�

1

2
1
45 4

o

O

/
/

Ix

   

  and has the sense indicated for case (i) and (ii).   
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   The fixed-end moment associated with the unit translation is given by 
Section 6.2 as: 

M H

EI hl
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1 y
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= 15 /2

Ix

   

  and has the sense indicated for case (i) and (ii).   
   (iii) The cut-back structure is shown in  Figure 6.28   , and the elastic load is: 
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Figure 6.28           

   The moment of  W  about a vertical axis through O is: 
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   The moment of  W  about a horizontal axis through O is: 
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   The moments in the arch are: 
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   The horizontal thrust is given by Section 6.2 as: 
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    (d)       Elastically restrained members 

   A bending moment transmitted through a riveted or bolted beam-column con-
nection causes a relative angular displacement between the beam and the col-
umn. A linear relationship may be assumed between the transmitted moment 
and the relative rotation and is: 

′φ η� M    

  where η is the elastic connection factor. Expressions for determining the value 
of η have been derived 8   for a number of different types of connections. For a 
fully restrained connection η       �      0 and for a hinge  η       �       � .   

   The beam 12 shown in  Figure 6.29    is attached to columns at 1 and 2 by 
means of elastic connections with factors of η  12 and η  21. The stiffness of the 
beam at 1 is the bending moment, s  12�  required to produce a unit rotation of 
the column there, the column at 2 being clamped in position. The relative rota-
tions between the beam and the columns at 1 and 2 are: 
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Figure 6.29           

   The analogous column and its loading is shown at (i), and the column prop-
erties are: 
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/123
   

   Using the convention of clockwise moments positive, the moments in the 
real beam are: 
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  where the equivalent lengths of the elastically restrained member are:   

L l EI12 123� � η    

  and:   L l EI21 213� � η    

   When the connection at end 2 is fully rigid: 

′s EI l EI12 4� �/( 4 )12η    

  and:   ′c12 �
1
2

   

   When the connection at end 2 is hinged: 

′s EI l EI12 � �3 /( 3 )12η    

  and:   ′c12 0�    

   When the connection at end 1 is fully rigid: 

′s EI l EI l l EI12 � � �4 ( 3 )/ ( 4 )21 21η η    

  and:   ′c l l EI12 � �/2( 3 )21η    

  and these two values also apply to a column 12 with an elastically restrained 
base at 2.   

   The fixed-end moments due to a unit lateral translation of the end 1 of 
column 12 shown in  Figure 6.30    may be obtained from the analogous col-
umn shown at (i). Using the convention of clockwise moments positive, the 
moments in the real column are: 
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   When lateral loads are applied to a member that is elastically restrained at 
its ends, as shown in  Figure 6.31   , the ends of the member rotate, and this pro-
duces the modified fixed-end moments shown. These may be obtained in any 
particular instance from the analogous column shown at (i).   
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    6.8     Closed rings 

   The distribution of bending moment in closed rings is readily obtained by the 
column analogy method. 

   Displacements in a closed ring are given by the moment of the elastic load 
about an axis through the elastic center parallel to the displacement. Since this 
requires the determination of the position of the elastic center, displacements 
are more conveniently determined by the conjugate structure method given in 
Examples 6.10 and 6.13. 

    Example 6.10 

   Determine the distribution of bending moment and the extension of the hori-
zontal diameter for the uniform circular ring shown in  Figure 6.32   .  

    Solution 

   The cut-back structure is shown at (i), and the bending moment at any section 
defined by the angle θ is: 

M PR� �(1 cos )/2θ    

  with moment producing tension on the inside of the ring regarded as positive.   
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   The elastic load on half the analogous column is shown at (ii) and is 
given by: 
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   The elastic load is symmetrical and  Mx       �      M y       �       0. 
   The area of the analogous column is: 

A � 2 /πR EI    

   The moments in the ring are: 
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   The extension of diameter 11 is given by 1/ EI � the moment of the bending 
moment in the real structure about axis l � 1 � in the conjugate structure shown 
at (iii). This is: 
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    Example 6.11 

   Determine the distribution of bending moment, thrust, and shear force in the 
uniform circular ring shown in  Figure 6.33   . The ring is subjected to a uni-
formly distributed load of intensity w  in plan.  
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Figure 6.33           

    Solution 

   The cut-back structure is shown at (i), and the bending moment at any section 
defined by the angle θ  is: 
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   The elastic load is given by: 
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   The elastic load is symmetrical and  Mx       �       My       �      0. 
   The area of the analogous column is: 

A � 2 /πR EI    

   The moment in the ring is: 
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   The shear in the ring is: 
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   The thrust in the ring is: 

P wR wR
wR

θ θ θ
θ

� � �

�

 cos { (1 cos )}
 cos2

     

    Example 6.12 

   The uniform square culvert shown in  Figure 6.34    is filled with water of density w  
and stands on a rigid foundation. Determine the terminal moments in the culvert. 
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    Solution 

   The properties of the analogous column, with 1/ EI       �      1, are: 
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   The pressure distribution on the cut-back structure is shown at (i), and the 
elastic load on the analogous column is: 
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   The elastic load is symmetrical about the y-axis as shown at (ii). 
   The moments in the culvert are: 
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    Example 6.13 

   Determine the distribution of bending moment and the extension of the hori-
zontal diameter for the uniform link shown in  Figure 6.35   .  

    Solution 

   The area of the analogous column, with 1/ EI       �      1, is: 

A � �2 4πR h    

   The cut-back structure is shown at (i), and the bending moment at any sec-
tion defined by the angle θ  is: 

M PR� � �(  )/1 2cos θ    
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   The elastic load on half the analogous column is shown at (ii) and is given by: 
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   The elastic load is symmetrical, and Mx      �      My      �      0. 
   The moments in the link are: 
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   The extension of the horizontal axis is: 
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    Supplementary problems 

   Use the column analogy method to solve the following problems. 

    S6.1 Determine the fixed-end moments produced by the application of the 
moment M at point 3 in the non-prismatic beam shown in  Figure S6.1   . The 
relative EI  values are shown ringed. 

3 13 21

2a a

M

Figure S6.1           
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Figure S6.2           

1

3 18�

6�
25k-ft

2k

Figure S6.3           

    S6.2 Determine the fixed-end moments produced by the applied load indicated 
in the non-prismatic beam shown in  Figure S6.2   . The relative EI values are 
shown ringed. 

    S6.3 Determine the bending moment at the base of the column shown in Figure
S6.3 . The relative  EI  values are shown ringed.     
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    S6.4 Determine the fixed-end moments produced by the applied loads indi-
cated in the non-prismatic beam shown in  Figure S6.4   . The relative EI values 
are shown ringed. 
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4� 12� 4�

8k 12k

Figure S6.4           
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    S6.5 Determine the fixed-end moments produced by the applied loads indi-
cated in the non-prismatic beam shown in  Figure S6.5   . The relative EI values 
are shown ringed. 

    S6.6 Determine the fixed-end moments produced by the applied load indicated 
in the prismatic beam shown in  Figure S6.6   . 

    S6.7 Determine the fixed-end moments produced by the applied load indicated 
in the propped cantilever shown in  Figure S6.7   . 
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    S6.8 Determine the stiffness s  12 and the carry-over factor c  12 for the non-pris-
matic beam shown in  Figure S6.8   . The relative EI values are shown ringed. 
Determine the fixed-end moments produced by the load of 10 kips applied at 
point 3 as indicated 
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Figure S6.9           
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    S6.9 The two-hinged portal frame shown in  Figure S6.9    is fabricated from a 
uniform section with a second moment of area of 280 in 4 and a modulus of 
elasticity of 29,000 kips/in 2. Determine the horizontal force produced at the 
hinges if the supports spread apart horizontally by 0.5 in. 

    S6.10 The circular pipe shown in  Figure S6.10    has two concentrated loads 
applied as shown. Determine the bending moments produced at the location of 
the loads. 
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    S6.11 Figure S6.11    shows a monolithic reinforced concrete culvert of constant 
section. Determine the bending moments produced at sections 1 and 2 by the 
lateral earth pressure, assuming that this is equivalent to the pressure of a fluid 
having a density of 30 lb/ft 3 .   

2 3

1 4

4�

4�

Figure S6.11           
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    7       Moment distribution methods  

    Notation 

  a  12       flexibility factor at the end 1 of a member 12   �   restrained stiffness of the 
member/(ditto   �   adjacent actual stiffnesses) � � �s s s s12 12 1 12/( )n∑ a a      

  a�12          
s s s s12 21 2 21/( )� �∑ n

a a
     

  b  12       moment transmission coefficient, the proportion of the out-of-balance 
moment at the joint 1, which is transmitted to the fixed end 2 of a 
member when joint 1 is balanced � �a c12 12      

  b�12          rotation transmission coefficient, equals the proportion of the angle of 
rotation imposed at the end 1 of a member 12, which is transmitted to 
the end 2 21 12� � �a c      

  c  12       carry-over factor for a member 12 from the end 1 to the end 2,   �      ½ for 
a straight prismatic member  

  c  �       modified carry-over factor  
  CS       left-hand side of sway equation after substituting M  S  values  
  CW       left-hand side of sway equation after substituting M  W  values  
  d  12       restrained distribution factor at the end 1 of a member 12      �       s  12 / ∑  s  1n   
  da

12          actual distribution factor at the end 1 of member 12 12 1� s sa a/ n∑      
  E       Young ’s modulus 
  G       modulus of torsional rigidity  
  h       height of a column  
  H       horizontal reaction  
  H  12       outward thrust exerted at the end 1 by a curved member 12  
  I       second moment of area of a straight prismatic member  
  I  o       second moment of area of a curved member at its crown  
  J       torsional inertia  
  l  12       length of a member 12  
  M       clockwise moment of the applied loads on a structure above a particu-

lar story about the top of the story  
  M  12       moment acting at the end 1 of a member 12  
  MF

12          fixed-end moment at the end 1 of a member 12  
  MS       final moments in a structure due to an arbitrary sway displacement  
  MW       final moments in a structure due to the applied loads after a non-sway 

distribution  
  Q       shear force, acting from left to right in a structure, due to all the loads 

applied above the base of a particular story  
  r       ratio of distances between bottom of columns and top of columns for a 

particular story in a frame with inclined columns  
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  s  12       restrained stiffness at the end 1 of a member 12, moment required to 
produce a unit rotation at the end 1, end 2 being fixed,      �      4 EI / l  12 for a 
straight prismatic member 12  

  s  �       modified stiffness  
  sa

12          actual stiffness at the end 1 of a member 12      �      moment required to 
produce a unit rotation at the end 1, end 2 having its actual stiffness      �    
   s  12 (1      �       a  21  c  12  c  21 )  

  V       vertical reaction  
  W       applied load  
  x       horizontal sway displacement  
  y       vertical sway displacement  
  δ       deflection  
  θ  12       angle of rotation at the end 1 of a member 12  
  φ  12       angle of rotation at the end 1 of a member 12 due to sway deformation 
  ψ  1       rotation at the end 1 of a curved member 12  
  η       elastic connection factor   

    7.1     Introduction 

   Since its introduction in 1930 1   the moment distribution method has become 
established as the most useful hand-computational method in the analysis of rigid 
frames and continuous beams. Numerous developments have been made to the 
original system, and these have been recorded in comprehensive textbooks          2,3,4  . 

   Moment distribution is essentially a relaxation technique where the analysis 
proceeds by a series of approximations until the desired degree of accuracy has 
been obtained. The method may be considered as an iterative form of the more 
recently developed stiffness matrix method. The moment distribution method 
provides a quantitative solution to a problem but may also be used to provide 
a qualitative understanding of structural behavior. In this way, it may be used 
to develop a clearer perception of the relationship between load and deforma-
tion  5  . Alternative relaxation techniques have been developed on the continent 
of Europe          6,7,8   for the analysis of rigid frames. These will not be considered 
here, as moment distribution is the customary method employed in English-
speaking countries and has a more extensive literature.  

    7.2     Sign convention and basic concepts 

   Bending moments at the ends of a member are shown acting from the sup-
port to the member: i.e., the support reactions are considered. These are posi-
tive when acting in a clockwise direction, as also are clockwise rotations at the 
ends of a member. The directions and sense of the terminal moments in a con-
tinuous beam are indicated in  Figure 7.1   , and it will be noticed that the arrow 
heads point towards the face of the member, which is in tension. 



Moment distribution methods 295

   The restrained stiffness at the end 1 of a member 12 that is fixed at 2, as 
shown in  Figure 7.2   , is defined as the bending moment required at 1 to pro-
duce a rotation there of one radian. 

�M21 �M32 �M34�M23

1 2 3 4

Figure 7.1             

s12 s12 2EI/l 4EI/lc12 θ � 1

2 1

�

Figure 7.2           

   The carry-over factor is defined as the ratio of the moment induced at 2 to 
the moment required at 1. 

   In Section 6.7 the restrained stiffness and carry-over factors for a straight, 
prismatic member were obtained as: 

s EI l

c

12 12

12

�

�

4
1
2

/

     

   Consider the clockwise moment s  0 applied to the rigid joint 0 of  Figure 7.3   , 
causing the joint to rotate one radian. Then, s  0 is the stiffness of the joint. Since the 

3

4

n

1

2

s0

0

Figure 7.3             
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rigid joint maintains fixed angles between the members, each member at 0 rotates 
through one radian, and this requires the application of moments s  01, s  02, etc. 
   Hence: 

s s s s
s

0 01 02 0

0

� � � �
�

…
n

nΣ      

   The distribution factor for a member is defined as the ratio of the stiffness of 
the member to the stiffness of the joint: 

d s s
s s

01 01 0

01 0

�
�

/
/Σ n     

  and is that proportion of the moment applied at a joint that is absorbed by 
the member. It is clear that at any joint:   

Σd0 1n �      

   The fixed-end moments for a number of common cases of loading applied to 
straight, prismatic members are summarized in  Table 7.1   . These are readily 
obtained by the column analogy method given in Section 6.6. A number of hand-
books          9,10,11   provide a comprehensive list of fixed-end moments.  

    7.3      Distribution procedure for structures with joint 
rotations and specified translations 

   The first stage in the distribution procedure consists of considering the structure 
as a number of fixed-ended members. Each member may then be analyzed indi-
vidually and the fixed-end moments derived as shown in stage (i) of  Figure 7.4   . 
In general, these fixed-end moments will not be in equilibrium at a particular 
joint, and the algebraic sum of the fixed-end moments is the support reaction 
required there to prevent the rotation of the members. Applying a balancing 
moment equal and opposite to this constraint produces equilibrium at the sup-
port and is equivalent to allowing the joint to rotate to a position of temporary 
equilibrium, where it is again clamped. The balancing moment is distributed to 
each member at the joint in accordance with its distribution factor. 

   The constraints at each joint are balanced in turn, and, due to the carry-over 
of moments to adjacent clamped joints, previously balanced joints become 
unbalanced. Hence, several cycles of the balancing procedure are required until 
the carry-over moments are of negligible magnitude. The sum of all the required 
balancing cycles is then as shown in stage (ii) of  Figure 7.4 , where the joints 
have rotated to their positions of final equilibrium, and the terminal moments 
are obtained by summing (i) and (ii). 
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   The magnitudes of the joint rotations may be readily obtained if required 
once distribution is completed but are not an essential part of the procedure. 
Figure 7.5    shows prismatic member 12, with a stiffness s, which forms part of 
a framework. The final terminal moments are given by: 

M M s s
M M s s

F

F
12 12 1 2

21 21 2 1

2
2

� � �

� � �

θ θ
θ θ

/
/     

l/2 l/2

M/4 M/4

�M

Mb (2a � b)/l2 M(2b � a)/l2

�M
ba

l

�3EIδ/l2 �6EIδ/l2
�6EIδ/l2

δ δ

l l

�Wa(3a2 � 8al � 6l2)/12l2

Wa2(4l � 3a)/12l2 �Wl/12 Wl/12
W

la b

l

W

�Wab2/l 2 �Wl/8 Wl/8Wa2b/l 2

W W

l/2 l/2a b

l

Table 7.1        Fixed-end moments  
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  and hence, θ  1 and θ  2 may be obtained. Due regard must be paid to the signs of 
the moments and rotations.   

    Example 7.1 

Determine the bending moments in each member of the structure shown in 
 Figure 7.6   . The relative  EI / l  values are shown ringed alongside the members. 

�M23 M32 �M34 �M43

�MF
12 �MF

23MF
21 MF

32

�M2� �M3� �M4�M1�

M21

2 3 41

θ2

θ2

θ3

θ3

θ1

θ1

�

�

(i)

(ii)

Figure 7.4             

M21 M12

sθ1/2

2 1

sθ1

sθ2

θ2

θ2
θ1

θ1

sθ2/2

�

�

�

�MF
21 MF

12

Figure 7.5             
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Figure 7.6             

    Solution 

   Both the propped frame and the continuous beam shown in  Figure 7.6  are ana-
lyzed in an identical manner. The relative  EI / l values are also the relative stiff-
ness values, and the distribution factors at 2 are: 

d

d

21

23

2 2 3
2 5
3 2 3
3 5

� �
�
� �
�

/( )
/
/( )
/    

  and the distribution factors at 3 are:   

d

d

32

34

3 3 4
3 7
4 3 4
4 7

� �
�
� �
�

/( )
/
/( )
/     
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  and the distribution factors at 1 and 4 are:   

d

d

12

43

2
0
4
0

�
�
�
�

/

/

∞

∞
     

   The fixed-end moments are: 

M

M

F

F

32

23

20 80 8
200

� �

�

� �

/
 kip-in

     

   The distribution procedure is shown in  Table 7.2   , and the final moments for 
the continuous beam are shown at (i) on  Figure 7.6 . 

   The reactions at 1 and 4 are obtained by taking moments about 2 and 3 for 
members 12 and 43, respectively. Then: 

H V M M l1 1 12 21 12
154 80
1 93

� � �
�
�

( )/
/

. kips     
H V

M M l
4 4

43 34 34
235 100
2 35

�
� �
�
�

( )/
/

. kips

  and act in the direction shown.   

Table 7.2        Distribution of moments in Example 7.1  

   Joint 1 2 3 4
   Member 12 21 23 32 34 43
   Relative  EI / l 2 2 3 3 4 4
   Distribution factor 0 ²⁄5 ³⁄5 ³⁄7 4⁄7 0
   Carry-over factor   ← ½   
      ← ½ ½ → ½ →  

   Fixed-end moments   �200 200   
   Distribution   80 120 �86 � 114   
   Carry-over 40     �43 60     � 57 
   Distribution   17 26 �26 � 34   
   Carry-over 8     �13 13     � 17 
   Distribution   5 8 �6 � 7   
   Carry-over 3     �3 4     � 3 
   Distribution and carry-over   1 2 �2 �2 � 1 

   Final moments, kip-in  51 103 �103 157 �157 � 78 
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   The bending moment diagram for the continuous beam, drawn on the ten-
sion side of the structure, is shown at (ii) on  Figure 7.6  and is obtained by 
combining the diagram for the fixing moments and the free moments.   

    7.4     Abbreviated methods 

    (a) Hinged ends 

   When the end 2 of a prismatic member 12 is hinged, it is possible to derive a 
modified value for the stiffness at 1 that eliminates the carry-over of moment 
to end 2. Referring to  Figure 7.7   , where the restrained stiffness of 12 is denoted 
by s , it is seen that the modified stiffness at 1 is given by: 

s s c
EI l
EI l

� � �

� �
�

12
21

4 3 4
3

( )
/ /
/    

�

�

�

2 1

sc ss�

2 1

0

θ � 1

θ � 1

θ � 1

�sc �sc2

s(1�c2)

Figure 7.7             

    Example 7.2  

Determine the bending moments in each member of the structure shown in 
 Figure 7.8   . The relative  EI / l  values are shown ringed alongside the members.  
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    Solution 

   The distribution procedure is shown in  Table 7.3    and is identical for both the 
propped frame and the continuous beam.  

20k

20k

2

4

2 3 4

1

1

3

2

23 3 4

4 80�80
�

80� 100�

Figure 7.8             

Table 7.3        Distribution of moments in Example 7.2  

   Joint 1 2 3 4
   Member 12 21 23 32 34 43
   Relative  EI / l 2 2 3 3 4 4
   Modified stiffness 8 6 12 12 12 16
   Distribution factor 1 ¹⁄3 ²⁄3 ½ ½ 1
   Carry-over factor ½ → ← ½ ← ½
      ← 0 ½ → 0 →  

   Fixed-end moments   �200 200
   Distribution 200 �67 � 133 
   Carry-over    100     � 66 
   Distribution     �33 �67 33 33   
   Carry-over 16 � 34 
   Distribution     �5 �11 17 17   
   Carry-over 9 � 6 
   Distribution     �3 �6 3 3   
   Carry-over 2 � 3 
   Distribution     �1 �1 2 1   
   Final moments, kip-in  0 191 �191 �54 54 0

    (b) Cantilevers 

   The stiffness s�12    , of a cantilever 12 with the free end 2 not restrained in posi-
tion or direction is clearly zero. Hence, the distribution factor,  a  12 , is also zero. 
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    Example 7.3  

Determine the bending moments in each member of the propped frame shown 
in  Figure 7.9   . The relative EI / l values are shown ringed alongside the members. 

4

32

1

4

3

2

20k 10k

10�80�

0

Figure 7.9           

    Solution 

   The distribution procedure is shown in  Table 7.4   . 

Table 7.4        Distribution of moments in Example 7.3  

   Joint 1 2 3 4
   Member 12 21 23 32 30 34 43
   Relative stiffness  2 2 3 3 0 4 4
   Distribution factor  0 ²⁄5 ³⁄5 ³⁄7 0 4⁄7 0
   Carry-over factor   ← ½
      ← ½ ½ →    ½ →  

   Fixed-end moments   �200 200 � 100 
   Distribution   80 120 � 43     � 57   
   Carry-over 40     �22 60   � 29 
   Distribution   9 13 � 26     � 34   
   Carry-over 4     �13 6   � 17 
   Distribution   5 8 � 2     � 4   
   Carry-over 3     �1 4   � 2 
   Distribution and 
carry-over

  1 0 � 2     �2 � 1 

   Final moments, 
kip-in

47 95   � 95  197   �100 �97 � 49 
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    Solution 

   The stiffness s�21     is 3 EI/l since 1 is a hinged end. The distribution procedure is 
shown in  Table 7.5   .  

0

10� 80� 80� 100�

20k10k

1 2 3 4
32 4

Figure 7.10             

Table 7.5        Distribution of moments in Example 7.4  

   Joint 1  2 3 4
   Member 10 12 21 23 32 34 43
    EI / l    2 2 3 3 4 4
   Modified stiffness  0 8 6 12 12 12 16
   Distribution factor  0 1 ¹⁄3 ²⁄3 ½ ½ 1
   Carry-over factor   ½ → ← ½ ← ½
     ← 0 ½ → 0 →  

   Fixed-end moments  100 �200 200
   Distribution   100 �67 � 133 

   Carry-over  50     � 66 
   Distribution   �17 �33 33 33   
   Carry-over 16 � 16 
   Distribution   �5 �11 8 8   
   Carry-over 4 � 6 
   Distribution   �1 �3 3 3   
   Carry-over 2 � 2 
   Distribution   �1 �1 1 1   
   Final moments, kip-in  100 �100 159 �159 �45 45 0

    Example 7.4  

Determine the bending moments in each member of the continuous beam shown 
in  Figure 7.10   . The relative EI/l values are shown ringed alongside the members. 

    (c) Symmetry in structure and applied loading 

   In a symmetrical structure subjected to symmetrical loading, the bending 
moments and rotations at corresponding points in the structure are equal and 
of opposite sense. 
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   For the continuous beam shown at (i) in  Figure 7.11   , which has an even 
number of spans, there is zero rotation at the center support and the members 
meeting there can be considered fixed-ended. Hence, distribution is required in 
only half the structure, there is no carry-over between the two halves, and the 
modified stiffnesses are as shown on the figure. 

3EI/l

(ii)

(i)

3EI/l

3EI/l4EI/l

4EI/l

4EI/l

4EI/l 3EI/l2EI/l

Figure 7.11             

   The modified stiffnesses for a continuous beam with an odd number of 
spans are shown at (ii) in  Figure 7.11 . The modified stiffness for the central 
span is derived as shown in  Figure 7.12    and is given by: 

s s c
EI l
EI l

� � �

� �
�

12 1
4 1 2
2

( )
/ /
/    

�s�

�s

�

�

�

�sc

�s (1�c) s (1�c)

s� sc

2 1

s
θ � �1

θ � �1

θ�1 θ�1

Figure 7.12             
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   Again, distribution is required in only half the structure, there is no carry-
over between the two halves, and the usual values of the initial fixed-end 
moments apply in all members. 

    Example 7.5  

A longitudinal beam 11 �, which is under the action of a vertical load W applied 
at the center 3, lies on five simply supported transverse beams, arranged in 
a horizontal plane as shown in  Figure 7.13   . All the beams have the same 

1

10
�

10
�

1�2 2�

5�

0.34 W 0.34 W

1.94 W

y1

V1
V2 V3

V2
V1

y2 y3 y2 y1

5� 5� 5�

3W

W

(i)

(ii)

Figure 7.13             
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second moment of area. Draw the bending moment diagram for the longitudi-
nal beam.  

    Solution 

   The deflection of the longitudinal beam is shown at (i) in  Figure 7.13 , and the 
relationship between deflection of the transverse beams and support reaction is: 

y Vl EI
V EI

�
�

3 48
500 3

/
/    

   Due to these deflections, the fixed-end moments for the longitudinal beam are: 

M EI y y
V V

M M
EI y y

F

F F

21 2 1

2 1

23 32

3 2

3 25
20

6 25
40

� � �

� � �

�
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� �

( )/
( )

( )/
(( )V V3 2�     

  and the distribution procedure is shown in  Table 7.6   .   
   Considering clockwise moments at 2 for member 12: 

35 80 200 120 0
115 200 120 0

1 1 2 3

1 2 3

V V V V
V V V

� � � �
� � �      

Table 7.6        Distribution of moments in Example 7.5  

    Joint 2 3
   Member 21 23 32
   Modified stiffness 3 4 4
   Distribution factor  ³⁄7 4⁄7 0
   Carry-over factor   ½ →  

   Fixed-end moments  � 20( V  2       �       V  1) � 40( V  3       �       V  2) � 40( V  3       �       V  2 ) 
   Distribution and 
    carry-over 

 60(2 V  3       �       
V  2       �       V  1 )/7 

 80(2 V  3       �       
V  2       �       V  1 )/7 

 40(2 V  3       �    
   V  2       �       V  1 )/7 

   Final moments  40(2 V  1       �      5 
V  2       �      3 V  3 )/7 

  � 40(2 V  1       �   
5V  2       �      3 V  3 )/7 

 40( �  V  1       �   
6V  2       �      5 V  3 )/7 

   Considering clockwise moments at 3 for member 13: 

70 35 40 240 200 0
30 275 200 0

1 2 1 2 3

1 2 3

V V V V V
V V V

� � � � �
� � �      
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   Considering the equilibrium of the longitudinal beam: 

2 21 2 3V V V W� � �    

   Solving these three equations simultaneously, we obtain: 

V W
V W
V W

1

2

3

0 067
0 253
0 36

�
�
�

.

.

.    

  and the bending moment diagram may be drawn as shown at (ii) in  Figure 7.13 .   

    Example 7.6  

Determine the bending moments for all the members of the two-story frame 
shown in  Figure 7.14   . The second moments of area of the beams are 160     in 4  
and of the columns 100     in 4 .  

3

2
24k

24�

15
�

15
�

1

2�

1�

3�

Figure 7.14             

    Solution 

   The fixed-end moments are: 

MF
22 24 24 12

48
� � �

�

/
 kip-ft    

   The distribution procedure for the left half of the frame is shown in Table 
7.7   , and the final moments in the right half of the frame are equal and of 
opposite sense to those obtained for the left half. Because of the symmetry of 
the structure and the loading, no relative displacements occur between the ends 
of the members and only joint rotations need be considered.  
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    (d) Skew symmetry 

   A symmetrical structure subjected to loading that is of opposite sense at cor-
responding points undergoes skew symmetrical deformation. The bending 
moments and rotations at corresponding points in the structure are equal and 
of the same sense, and a point of contraflexure, which is equivalent to a hinge, 
occurs at the center of the structure. 

   For a continuous beam with an even number of spans, both members at the 
central support can be considered hinged, and the modified stiffnesses are as 
shown at (i) in  Figure 7.15   . For a continuous beam with an odd number of 

Table 7.7        Distribution of moments in Example 7.6  

   Joint 1 2 3
   Member 12 21 22� 23 32 33�  
    I/l 100/15 100/15 160/24 100/15 100/15 160/24
   Relative  EI / l 1 1 1 1 1 1
   Modified stiffness  4 4 2 4 4 2
   Distribution factor  0 ²⁄5 ¹⁄5 ²⁄5 ²⁄3 ¹⁄3
   Carry-over factor  0 →      ← ½   
      ← ½   ½ →    
   Fixed-end moments   � 48 
   Distribution and 
 carry-over 

9 19 10 19 9   

   Distribution and 
 carry-over 

  �3 �6 � 3 

   Distribution and 
 carry-over 

1 1 1 1 1 � 1 

   Final moments, 
 kip-ft 

10 20 �37 17 4 � 4 

3EI/l

3EI/l 4EI/l 3EI/l4EI/l6EI/l 6EI/l

3EI/l 3EI/l 3EI/l(i)

(ii)

Figure 7.15             
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spans, the central member can be considered as two hinged members each of 
length l /2, which results in the modified stiffness shown at (ii) in  Figure 7.15 . 

   As in the case of symmetrical loading, distribution is required in only half 
the structure, there is no carry-over between halves, and the usual values of the 
fixed-end moments apply in all members.   

    7.5     Illustrative examples 

    Example 7.7  

Determine the reactions at the support 3 of the rigid frame shown in Figure
7.16   . The relative  EI  values are shown ringed. 

10�
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10k 10k
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�53

�17 35123

7.
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15� 6� 4�

3

3
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221 4
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6

2 2 2 411

H3

V3

1 12

3

H3

3

� �
(ii)

Figure 7.16             

    Solution 

   The fixed-end moments are: 

M M

M

F F

F

21 12

64

10 120 12
100
10 4 36 12 100
173

� � � �

�

� � � �

�

/

/
 kip-in

 kip--in

 kip-in
MF

46 10 6 16 12 100
115

� � � � �

� �

/

    

  and the distribution procedure is shown in  Table 7.8   . Distribution to the 
tops of the columns is unnecessary, as the moments there may be obtained 
after completion of the distribution by considering the algebraic sum of the 
moments at joints 2 and 4. The moment at the foot of column 23 is half the 
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moment at the top since the carry-over factor is ½ and there are no sway or 
initial fixed-end moments.   

   The reaction H  3 is obtained by taking moments about 2 for member 23, as 
shown at (i) in  Figure 7.16 . Then: 

H3 106 53 120
1 33

� �
�

( )/
.  kips      

   The reaction V  3 is obtained by considering the vertical reaction at 2 due to 
the fixing moments on spans 12 and 24, due to the distributed load on span 12 
treated as a simply supported beam. Then, referring to (ii) in  Figure 7.16 , the 
vertical reaction is given by: 

V3 5 123 120 18 180
5 92

� � �
�

/ /
.  kips      

    Example 7.8  

Determine the slope of the beam at 2 and the final moments in the continuous 
beam shown in  Figure 7.17    when the support 2 sinks by ½ in and the support 
3 sinks by 1    in. The second moment of area of the beam is 120     in 4, and the 
modulus of elasticity is 29,000 kips/in 2 .  

Table 7.8        Distribution of moments in Example 7.7  

Joint 1 2 4 6
   Member 12 21 23 24 42 45 46 64
   Relative  EI / l 1/10 1/10 3/10 2/15 2/15 6/15 1/10 1/10
   Modified 
 stiffness 

4/10 4/10 12/10 8/15 8/15 18/15 3/10 4/10

   Distribution 
 factor 

1 9/61 36/61 16/61 16/61 36/61 9/61 1

   Carry-over 
 factor 

½ → ½ →   ←   ½ 

      ←  0   ←  ½ 0 →  

   Fixed-end 
 moments 

  �100 100 �115 173

   Distribution 100 �15 �26 30 17 � 173 
   Carry-over 50 15 �13 �86
   Distribution �10 �17 26 15
   Carry-over 13 �9
   Distribution �2 �3 2 1
   Carry-over and 
 distribution 

1 �1

   Final moments, 
kip-in

0 123 �106 �17 35 133 �168 0
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    Solution 

   Due to the applied loading: 

M

M

F

F
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12 6 16 12 100
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12 4 36 12 100
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� � � �
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� �
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/
 kip-in
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   Due to the sinking of the supports: 

M M
M
M

F F

F

F

12 21

23

32
6 29 000 120 1 2 1 14 400
725

�

�

�
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� �

, / / ,
 kip-in      

   The distribution procedure is shown in  Table 7.9   . 

12k
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21 3

6� 10�

10k

Figure 7.17             

Table 7.9          Distribution of moments in Example 7.8

   Joint 1 2   3
   Member 12 21 23 32
   Relative  EI / l 1 1 1 1
   Distribution factor  0 ½ ½ 0
   Carry-over factor   ← ½ ½ →  

   Fixed-end moments   �932 �587 �825 � 625 
   Distribution and 
 carry-over 

353 706 706 353

   Final moments, kip-in   �579 119 �119 � 272 
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   Since there is no rotation at the fixed ends, we have: 

M M sF
21 21 2

2119 587 4 29 000 120 120
� �

� � � � � �

θ
θ , /     

  and   θ2 0 00609� .  radians, clockwise        

    7.6     Secondary effects 

   Triangulated trusses are normally analyzed as if they are pin-jointed, although 
the members are invariably rigidly connected. The direct stresses obtained in 
this analysis are referred to as the primary stresses. These direct stresses cause 
axial deformations in the members, which produce relative lateral displace-
ments of the ends of each member. The bending moments caused by these lat-
eral displacements produce additional or secondary stresses in the members. 
It is customary to neglect the secondary stresses in light trusses with flexible 
members, but in heavy trusses the secondary stresses may be considerable. 

   The procedure of allowing for secondary effects consists of determining the 
primary stresses and, from a Williot –Mohr diagram, the lateral displacements 
of the ends of each member. The fixed-end moments due to these displace-
ments are then distributed in the normal way, and the secondary stresses are 
obtained from the final moments. 

   The reactions due to the final moments may be obtained at the ends of each 
member. In general, these reactions will not be in equilibrium at a particular joint, 
and the algebraic sum of the reactions is equivalent to a constraint required at the 
joint to prevent its displacement. Applying a force equal and opposite to the con-
straint produces equilibrium. This causes additional axial forces and deformations 
in the members and additional secondary moments. The magnitude of the con-
straints is usually small compared with the applied loads and may be neglected. 

    Example 7.9  

Determine the secondary bending moments in the members of the rigidly jointed 
truss shown in  Figure 7.18   . The second moment of area of members 14, 34, and 
24 is 30    in4, and that of members 12 and 23 is 40    in4. The cross-sectional area 
of members 14, 34, and 24 is 4    in2, and that of members 12 and 23 is 5    in2 .  

    Solution 

   The primary structure is shown at (i) in  Figure 7.18 , and the axial forces and 
deformations are listed in  Table 7.10   . The Williot –Mohr diagram is shown at 
(iii) in  Figure 7.18 , and the relative lateral displacement of the ends of mem-
bers 12 and 14 is indicated; no lateral displacement is produced in member 24 
due to the symmetry of the structure. 
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Figure 7.18             

Table 7.10        Determination of forces and displacements in Example 7.9  

   Member I A l P Pl/A    δ        �      E

   12 40 5 116 7 162 584
   14 30 4 100 6.07 152 658.5
   24 30 4 58 5 72.5 0

   Due to these displacements, the fixed-end moments are: 

M M
EI l

M M

F F

F F

12 21
2

14 41

6
6 40 584 13 300
10 5

�

� �
� � � �
� �

�

�

δ /
/ ,

.  kip-in

�� � �
� �

6 30 658 5 10 000
11 8

. / ,
.  kip-in    
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   Due to symmetry, member pairs 21 and 23 and 41 and 43 can be considered 
fixed-ended at 2 and 4, respectively; member 24 carries no moment; and the 
distribution procedure is shown in  Table 7.11   . 

Table 7.11        Distribution of moments in Example 7.9  

   Joint 2 1   4
   Member 21 12 14 41
   Relative  EI / l    346 300   
   Distribution factor 0 0.535 0.465 0
   Carry-over factor   ← ½ ½ →  

   Fixed-end moments   �10.5 �10.5 �11.8 � 11.8 
   Distribution and carry-over  6 12.1 10.4 5.2

   Final moments, kip-in   �4.5 1.4 �1.4 � 6.6 

2 3

12�

24k

8�
4�

4

1

2
1

Figure 7.19             

   The final moments, together with the forces required to maintain equilib-
rium at the joints, are shown at (ii) in  Figure 7.18 . These forces are approxi-
mately 3% of the applied loads and may be neglected.  

    7.7     Non-prismatic members 

   The methods of obtaining the stiffness, carry-over factors, and fixed-end 
moments for non-prismatic members were given in Sections 6.6 and 6.7. In 
addition, tabulated functions are available for a large range of non-prismatic 
members              2,3,4,11,12  . 

    Example 7.10  

Determine the bending moments in the frame shown in  Figure 7.19   . The sec-
ond moments of area of the members are shown ringed. 
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    Solution 

   The stiffness and carry-over factors for member 21 have been obtained in 
Example 6.7 and are: 

s EI
c
� �

� �
21

21

5 12
4 5

/
/

     

   The fixed-end moments are: 

M MF F
32 23

24 12 12
24

� �

� �
�

/
 kip-ft      

   The distribution procedure is shown in  Table 7.12   .   

Table 7.12        Distribution of moments in Example 7.10  

   Joint 1 2 3
   Member 12 21 23 32
   Stiffness    5 EI/12 8EI /12   
   Distribution factor 0 5/13 8/13 0
   Carry-over factor   ← 4⁄5 ½   →
   Fixed-end moments   �24 24
   Distribution and 
 carry-over 

7.4 9.25 14.75 7.38

   Final moments, kip-ft  7.4 9.25 �9.25 31.38

    7.8      Distribution procedure for structures subjected to 
unspecified joint translation 

    (a) Introduction 

   All frames subjected to lateral loads and frames unsymmetrical in shape or 
loading will deflect laterally, as shown in  Figure 7.20   . The horizontal displace-
ment, denoted by x in the figure, is termed the side sway. In a similar man-
ner, vertical sway displacements, y, are produced in the structures shown in 
 Figure 7.21   . 

   The sway produces relative lateral displacement of the ends of some of 
the frame members, which causes moments in addition to those due to joint 
rotations. The final moments are obtained by superposition, as shown in 
Figure 7.22   , the magnitude of the sway being obtained from equations of static 
equilibrium known as the sway equations.  
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    (b) The sway equations 

   The frame shown at (i) in  Figure 7.23    may be considered to deform as the 
mechanism indicated under the action of the applied loads. Applying the equa-
tion of virtual work to the small displacements involved, the external work 
done by the applied loads equals the internal work done by the terminal 
moments in the columns rotating through an angle φ. Due to the sign con-
vention adopted (clockwise moments positive) these terminal moments are all 

x x

Figure 7.20           

y

y

Figure 7.21           

x x

��

Figure 7.22           
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Figure 7.23           

negative, and a change of sign must be introduced to satisfy the virtual work 
equation. Then: 

� � � � � � �
� � � � �

( ) ( )M M M M W h W h W h
M M M M W

12 21 34 43 1 1 2 2 3 3

12 21 34 43

φ φ φ φ φ
11 1 2 2 3 3h W h W h� �    

  and the final terminal moments in the frame must satisfy this sway equation.   
   Similarly, for the frame shown at (ii) in  Figure 7.23 , the sway equation is: 

� � � � �( ) ( )M M M M W h12 21 1 34 43 4 1 1φ φ φ1    

   Since the sway displacements at the tops of the columns are equal: 

h h1 1 2 4� � �φ φ    

  and:   

� � � � �( ) ( )/M M h M M h W h12 21 1 34 43 2 1 1   

   In the case of a frame with inclined columns, as shown in  Figure 7.24   , the 
beam also rotates, and it is necessary to construct the displacement diagram, 
shown at (i), to establish the sway equation. Since axial deformations in the 
members of the frame are negligible, the points 1, 2, 3, and 4 coincide. A unit 
horizontal displacement is imposed on 2, and, as 2 must move perpendicularly 
to the original direction of 12, the point 2 � is obtained. Similarly, 3 must move 
perpendicularly to 23 and 34, and the point 3 � is obtained. The member rota-
tions are obtained from the diagram as: 

φ
φ
φ

1 12

2 23

4 34

22
2 3
33

� �
� � �
� �

/
/

/

l
l

l     

  where  φ  2  is anticlockwise and produces clockwise moments  M  23  and  M  32 .   
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   The vertical displacement of 5 is 05 � where 5 � divides 2 � 3 � in the ratio 5 
divides 23. The sway equation is: 

� � � � � � � � � � �( ) ( ) ( ) ( )M M M M M M W W12 21 1 23 32 2 34 43 4 1 21 05φ φ φ     

  and the rotations may be eliminated by using the expressions obtained from 
the displacement diagram.   

   The two-story frame shown in  Figure 7.25    has two degrees of sway freedom, 
as shown at (i) and (ii), corresponding to the different translations possible at 
the beam levels. Considering sway (1) and (2) in turn, the sway equations are: 

� � � � �
� � � � � �

( ) ( )
( ) ( ) ( )
M M M M W h
M M M M W W h

32 23 45 54 2 2

21 12 56 65 1 2 1    

W1

W2 3� 3�

5�

2�

0

Unit sway

Unit sway

2�

3,4

1,2

5 3

4

2

1

�φ2

φ1

φ4

(i)

Figure 7.24           
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h 2
h 1
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5

6

2

1

φ

φ�

Figure 7.25           

  and the terminal moments in the frame must satisfy both these equations.   
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   The two-bay frame shown in  Figure 7.26    has the two degrees of sway free-
dom shown at (i) and (ii). The sway equations are: 

� � � � �
� � � � �

( ) ( )
( ) ( ) (
M M M M Wl
M M M M M

12 21 1 34 43 2 12 1

45 54 4 34 43 5

φ φ φ
φ φ 667 76 3 0� �M )φ    

2 3W

4

1 5

6

(i) (ii)

7

Sway (1) Sway (2)

�φ5

φ4

φ2

φ3

φ1

FIGURE 7.26           

  and the rotations may be eliminated by considering the geometry of the 
structure.   

   The ridged portal shown in  Figure 7.27    has the two degrees of sway freedom 
shown at (i) and (ii). Considering sway (1) and (2) in turn, the sway equations are: 

� � � � �
� � � � � �
( ) ( )

( ) ( ) (
M M M M W l

M M M M M M
12 21 54 45 1 12

12 21 1 54 45 1 23 3φ φ 22 2

34 43 2 43 34 2 2 1 12 11
)

( ) ( )
φ

φ φ φ� � � � � � �M M M M W W l    

  and the rotations in the second equation may be eliminated using expressions 
obtained from a displacement diagram.   

W1

W2

3

2

1 5

4
�φ2

φ2

�φ1 φ1φ φ

Sway (1) Sway (2)

Unit sway

(i) (ii)

Figure 7.27           
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   In all cases, the sway equations can be considered as consisting of a left-
hand side involving moments in the structure and a right-hand side involving 
the loads applied to the structure.  

    (c) Sway procedure 

   The analysis of structures subjected to sway proceeds in two stages as shown 
at (i) and (ii) in  Figure 7.28   . The first stage consists of a non-sway distribu-
tion with the external loads applied to the structure, which is prevented from 
displacing laterally. The fixed-end moments are obtained, and the distribution 
proceeds normally to give the final moments MW . The second stage consists of 
determining the moments produced by a unit sway displacement. The fixed-
end moments due to the unit displacement are obtained, and the distribution 
proceeds normally to give the final moments MS . The actual moments in the 
structure are: 

M M xMW S� �     

�  x   ��

Unit sway

SwayNon-sway(i) (ii)

x

Figure 7.28           

  and these moments satisfy the sway equation. Hence, if substituting the 
moments MW and MS in the left-hand side of the sway equation produces the 
values CW  and  CS ,  respectively, then:   

C xCW S� � right-hand side of sway equation     

  and the value of  x  may be obtained.   
   The analysis of a structure with two degrees of sway freedom proceeds in 

three stages as shown at (i), (ii), and (iii) of  Figure 7.29   . The moments pro-
duced by the non-sway, sway (1), and sway (2) stages are  MW, M S  1, and MS  2 , 
and these, when substituted in turn in the left-hand side of sway equation 
(1) and sway equation (2), give the values C C CW S S

1 1
1

1
2, ,     and C C CW S S

2 2
1

2
2, ,     

respectively. 
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   Then C x C x CW S S
1 1 1

1
2 1

2� � � right-hand side of sway equation (1)

  and   C x C x CW S S
2 1 2

1
2 2

2� � � right-hand side of sway equation (2)    

   The values of x  1 and x  2 are obtained by solving these two equations simulta-
neously, and the actual moments in the structure are: 

M M x M x MW S S� � �1
1

2
2

     

   In a similar fashion, structures having more than two degrees of freedom 
may be analyzed. 

   In practice, it is not necessary to impose unit displacement on the structure; 
any arbitrary displacement may be imposed that produces convenient values 
for the initial fixed-end moments. The value obtained for x will thus not be 
the actual displacement of the structure, but this in any case is generally not 
required.

   When the external loads are applied to the joints of the structure, the non-
sway distribution is not required, since the loading produces no fixed-end 
moments.  

x2

� x1 � x2 �

�

x1

�

Unit sway Unit sway

Non-sway Sway (1) Sway (2)(i) (ii) (iii)

Figure 7.29           
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    (d) Illustrative examples 

    Example 7.11  

Determine the bending moments in the frame shown in  Figure 7.30   . The sec-
ond moments of area of the members are shown ringed.  

3

1

12

16
�

16�8�
24

�

32

1

4

10k

Figure 7.30           

    Solution 

   The sway equation is derived in a manner similar to that used for the frame 
shown at (ii) in  Figure 7.23  and is: 

M M M M12 21 34 433 2 0� � � �( )/    

   The fixed-end moments due to the applied loads are: 

M

M

F

F

23

32

10 8 16 16 12 24 24
427

10 16 8 8 12

� � � � � � �

� �

� � � � �

/( )

/(
 kip-in

224 24
213

�

�

)
 kip-in      

   The fixed-end moments due to an arbitrary sway displacement are: 

M M
E
E

x
M M

E

F F

F F

12 21
2

34 43
2

6 48 24
6 12
400

6 16 16

�

� � �
� �
� �

�
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� �

δ
δ

δ

/
/

/
66 16
300

E
x

δ /
� �      
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   The distribution procedure for the sway and non-sway stages is shown in 
 Table 7.13   . 

Table 7.13        Distribution of moments in Example 7.11  

   Joint 1 2  3  4
   Member 12 21 23 32 34 43
   Relative  EI / l 2 2 8 8 1 1
   Distribution 
factor

0 1/5 4/5 8/9 1/9 0

   Carry-over 
factor    

  ←  
  

 ½ 
  

  ←  
 ½ 

 ½ 
  →  

  
 ½ 

  
  →  

    MF , sway   �400 � 400   �300 � 300 
   Distribution   80 320 267 33   
   Carry-over 40   134 160    16 
   Distribution     �27 �107 �142 � 18   
   Carry-over � 14     �71 � 54     � 9 
   Distribution   14 57 48 6   
   Carry-over 7   24 28    3 
   Distribution     �5 �19 �25 � 3   
   Carry-over � 2     �12 � 9     � 1 
   Distribution   2 10 8 1   
   Carry-over 1   4 5
   Distribution     �1 �3 �4 �1   
    MS �368 �337 337 282 �282 � 291 

    MF,  non-sway   �427 213
   Distribution   85 342 �189 � 24   
   Carry-over 42     �95 171     � 12 
   Distribution   19 76 �152 � 19   
   Carry-over 10     �76 38     � 10 
   Distribution   15 61 �34 � 4   
   Carry-over 8     �17 30     � 2 
   Distribution   3 14 �27 � 3   
   Carry-over 2     �13 7     � 2 
   Distribution   3 10 �6 � 1   
   Carry-over 1     �3 5
   Distribution   1 2 �4 � 1   
    MW 63 126 �126 52 �52 � 26 
   0.046    �       MS �17 �16 16 13 �13 � 13 

    M  kip-in  46 110 �110 65 �65 � 39 

   Substituting the final non-sway moments in the left-hand side of the sway 
equation gives: 

189 3 78 2 72� � �/    
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   Substituting the final sway moments in the left-hand side of the sway equa-
tion gives: 

� � � � �705 3 573 2 1565/      

   Then: 72      �      1565 x       �      0 
   And:  x       �      0.046 

   The actual moments are obtained by adding the final non-sway moments to 
x       �      the final sway moments. 

    Example 7.12  

Determine the position on the beam, for the frame shown in  Figure 7.31   , at 
which a unit load may be applied without causing sway. All the members are 
of uniform cross-section.  

a

2

1 4

3

20�

10
�

b

1k

Figure 7.31           

    Solution 

   The sway equation is: 

M M M12 21 34 0� � �     

  and a sway distribution is not required since there is no sway.   
   The fixed-end moments due to the applied loads are: 

M ab
M ba

F

F
23

2

32
2

400
400

� �

�

/
/

    

  and these are in the ratio  � 300b:300a.   
   The distribution procedure is shown in  Table 7.14   ; substituting the final 

moments in the sway equation gives: 

279 125 0b a� �     
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  Also:   

b a� � 20    

   Solving these equations simultaneously, we obtain: 

a � 13 8. ft    

    Example 7.13  

Determine the bending moments in the frame shown in  Figure 7.32   . All the 
members of the frame have the same second moment of area.  

Table 7.14        Distribution of moments in Example 7.1  2

   Joint 1 2 3 4
   Member 12 21 23 32 34 43
   Relative  EI / l 2 2 1 1 2 2
   Modified stiffness   4 2 2 3   
   Distribution factor  0 2/3 1/3 2/5 3/5 1
   Carry-over factor   ← ½ ← ½
   ½ → 0 →  

    MF , non-sway   �300b 300a
   Distribution   200b 100b �120b � 180a   
   Carry-over 100b     �60a 50b
   Distribution   40a 20a �20b � 30b   
   Carry-over 20a     �l0b l0a
   Distribution   7b 3b �4a � 6a   
   Carry-over 3b     �2a 2b
   Distribution   a a �b � b   
    MW 20a 41a �41a 186a �186a 0
      �103b �207b �207b �31b � 31b   

2 3

a
a

5

15� 12�

3�

2�2,3
1,44

(i)

1

4

316
�

2k
5k

Figure 7.32           
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    Solution 

   The displacement diagram, for a horizontal displacement of 4    ft units imposed 
at 2 is shown at (i), and the sway equation is: 

� � � � � �
� � �� � � � �� � � �

( ) / ( )
( )

M M M M
M M

12 21 23 32

34 43

22 16
2 3 15 33 20 2 22 �� � � �

� � � � � �
� � � � � �

5 2 3
4 16 3 15
5 20 2 4

12 21 23 32

34 43

( ) / ( ) /
( ) /
M M M M
M M 55 3

5 4 5 14012 21 23 32 34 43

�
� � � � � � �( ) ( ) ( )M M M M M M      

   The fixed-end moments due to the sway displacements are: 

M M
EI
EI x

M M
EI

12 21
2

2

23 32

6 22 16
6 4 16 750

6 2 3

�

� � � �

� � � � �
�

� � � �

( )/
/

( )/115
6 3 15
640

6 32 20
6 5 20
600

2

2

34 43
2

2

� �
�
�

� � � �

� � �
� �

EI
x

M M
EI
EI

x

/

( )/
/

     

Table 7.15        Distribution of moments in Example 7.13  

   Joint 1 2 3 4
   Member 12 21 23 32 34 43
   Relative  EI / l 1/16 1/16 1/15 1/15 1/20 1/20
   Distribution 
 factor 

0 15/31 16/31 4/7 3/7 0

   Carry-over factor   ← ½ ← ½
   ½ → ½ →  

    MS , sway   �750 �750 640 640 �600 � 600 
   Distribution   53 57 �24 � 16   
   Carry-over 26     �12 28     � 8 
   Distribution   6 6 �16 � 12   
   Carry-over 3     �8 3     � 6 
   Distribution and
 carry-over 

2 4 4 �2 �1 0

    MS �719 �687 687 629 �629 � 614 

    � 0.00757    �       MS 5.4 5.2 �5.2 �4.8 4.8 4.7
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    Solution 

   Due to symmetry of the structure and the loading only one mode of sway, 
shown at (i) in  Figure 7.27 , is possible. The displacement diagram for a vertical 
displacement of 24    ft units imposed at 3 is shown at (i) in  Figure 7.33 , and the 
sway equation is: 

( ) / ( ) / ( ) /
( )

M M M M M M
M M

12 21 23 32 34 43

45 54

10 14 26 26 26 26� � � � � � � �
� � � 110 14 48 12 24 2/ /� � �      

   Since the bending moments at corresponding points of the symmetrical 
frame are equal and of opposite sense, this reduces to: 

� � � � � � � � �5 7 7 24 12 24 2 24 19012 21 23 32( ) ( ) / ,M M M M  kip-in      

5

(i)

14
� 24

10
�

4
3

2

1

2�

26

3�

1,2,3

48�

48k 10

Figure 7.33           

   The distribution procedure is shown in  Table 7.15   , and substituting the final 
sway moments in the sway equation gives: 

( )
.

� � � �
� �

7030 5264 6215 140
0 00757

x
x     

  The final moments are shown in the table.   

    Example 7.14  

Determine the bending moments in the symmetrical ridged portal frame shown 
in  Figure 7.33   , which carries a uniformly distributed load of 1    kip/ft on plan. 
All the members have the same cross-section.  
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   The fixed-end moments due to the applied loads are: 

M MF F
32 23

24 24 12 12
576

� �

� � �
�

/
 kip-in    

   The fixed-end moments due to the sway displacement are: 

M M
EI
EI

y
M M

EI

F F

F F

12 21
2

32 23
2

6 10 14
6 10 196
260

6 26 26

�

� �
� �
�

�

� � �
�

/
/

/
�� �

� �
6 1 26
196

EI
y

/

   

   The distribution procedure for the sway and non-sway stages is shown 
in  Table 7.16   , where joint 3 is considered fixed and there is no carry-over 
between the two halves of the frame. Substituting the final moments for these 
two stages in the left-hand side of the sway equation gives: 

5 457 7 425 5260� � � �    

Table 7.16        Distribution of moments in Example 7.14  

   Joint 1 2 3
   Member 12 21 23 32
   Relative  EI / l 1/14 1/14 1/26 1/26
   Distribution factor 0 13/20 7/20 0
   Carry-over factor ← ½ ½ →  

    MF , sway 260 260 �196 � 196 
   Distribution and carry-over   �21 �42 �22 � 11 

    MS 239 218 �218 � 207 

    MF , non-sway   �576 576
   Distribution and carry-over  187 374 202 101

    MW 187 374 �374 677
   4.48    �       MS 1065 975 �975 � 930 

    M  kip-in 1252 1349 �1349 � 253 

   and: 5 561 7 303 684� � � �      

   Then: 684 5260 24 190� �y ,      
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y � 4 48.    

  and the final moments are shown in the table.   

    Example 7.15  

Determine the bending moments in the two bay frame shown in  Figure 7.34   . 
The relative EI / l  values are shown ringed.  

10k 3

5

4 6

(i)  Sway (1) (ii)  Sway (2)

2

1 7

10
�

10� 10�

10
�

4

4

2

2

1

1

2φ

φ

φ

φφ

Figure 7.34           

    Solution 

   The two sway equations are: 

sway (1),  kip-ft
sway (2),

� � � � �
� �

( ) ( )
(
M M M M
M M

12 21 34 43

34 4

2 200

33 45 54 67 76 0) ( ) ( )� � � � �M M M M    

   The fixed-end moments due to sway (1) are: 

M M

x
M M

x

F F

F F

12 21

1

43 34

1

6 4 20
100

6 2 10
100

�

� �
� �

�

� � �
� �

δ

δ

/

/

   

   The fixed-end moments due to sway (2) are: 

M M
M
M

x

F F

F

F

43 34

45

54

2

6 2 10
100

�

� �

� �
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� �

δ /
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Table 7.17        Distribution of moments in Example 7.15  

Joint1 1 2 3 4 6 7 5
   Member 12 21 23 32 34 43 45 46 64 67 76 54
   Relative  EI / l 4 4 1 1 2 2 2 1 1 4 4 2
   Distribution 
 factor 

0 4/5 1/5 1/3 2/3 2/5 2/5 1/5 1/5 4/5 0 0

   Carry-over factor   ← ½ ← ½ ← ½     ←  ½   
   ½ → ½ →    ½ → ½ →    
    ½   →  

    MF , sway (1)   �100 � 100   �100 � 100   
   Distribution   80 20 33 67 40 40 20
   Carry-over 40   17 10 20 34  10  20 
   Distribution     �13 �4 �10 �20 �13 �13 �8 �2 � 8   
   Carry-over � 7     �5 �2 �7 � 10     �1 � 4     �4 � 7 
   Distribution   4 1 3 6 4 4 3 1 3
   Carry-over 2    2   2 3  2   2 2
   Distribution     �1 �1 �1 �1 �1 �1 �1 �1 � 1 

    MS1 �65 �30 �30 33 �33 �43 30 13 6 �6 �2 15

    MF , sway (2) 100 100 � 100   �200 �200 � 100 
   Distribution   �33 �67 0 0 0 40 160   
   Carry-over   � 17   � 34    20  80   
   Distribution   14 13 5 5 4   
   Carry-over 7 2 3  2  3 
   Distribution   �2 � 3   � 2   
    MS  2 7 14 �14 �33 33 71 �95 24 42 �42 �120 � 97 

   1.05    �       MS  1 �68 �32 32 35 �35 �45 31 14 6 �6 �2 16
   0.26    �       MS  2 2 4 �4 �9 9 18 �24 6 11 �11 �31 � 25 

    M  kip-ft   �66 �28 28 26 �26 �27 7 20 17 �17 �33 � 9 
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M M
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F F
67 76
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200
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δ /

   The distribution procedure for the two sway stages is shown in  Table 7.17   . 
Substituting the final sway (1) and sway (2) moments in the left-hand side 
of sway equation (1) gives 247 and – 229, respectively. Substituting the final 
sway (1) and sway (2) moments in the left-hand side of sway equation (2) gives 
 – 113 and 458, respectively. Then: 

and:
247 229 200
113 458 0

1 2

1 2

x x
x x

� �
� � �

        

   Solving these two equations simultaneously, we obtain: 

x
x

1

2

1 05
0 26

�
�

.
.    

  and the actual moments are obtained as shown in the table.     

    7.9     Symmetrical multi-story frames with vertical columns 

   The analysis of a single bay frame with lateral loads at the joints and vertical 
loads on the beams proceeds in two stages, as shown at (i) and (ii) in  Figure 7.35   . 

   The first stage consists of a symmetrically loaded frame, which is readily 
analyzed as there is no sway. Only the left half of the frame need be consid-
ered, with a modified stiffness of 2 EI / l applied to the beams and no carry-over 
between the two halves. The final moments in the right half are equal and of 
opposite sense to the corresponding moments in the left half. 

   The second stage consists of a skew symmetrical distribution. Again, only 
the left half of the frame need be considered, with a modified stiffness of 6 EI / l  
applied to the beams and no carry-over between the two halves. In addition, it 
is possible to impose initial lateral displacements causing fixed-end moments in 
the columns, which satisfy the sway equations for each story, and to use modi-
fied stiffness and carry-over factors for the columns, which will ensure that the 
sway equations remain balanced throughout the distribution. Since the struc-
ture is symmetrical, the sway equation for the second story is: 

� � � �2 2 212 21 3 2 2( ) ( )M M W W h    

   For symmetrical columns, the fixed-end moments produced by a sway dis-
placement are equal at the top and bottom of each column. Then, the initial 
fixed-end moments required to satisfy the sway equation are: 

M M
W W h

F F
12 21

3 2 22 2 4
�

� � �( ) /    



Moment distribution methods 333

   The out of balance moment at joint 1 is distributed while allowing joint 2 to 
translate laterally without rotation so that the sway equation remains satisfied. 
Then, the distribution and carry-over moments in column 12 must sum to zero. 

   From  Figure 7.36   , where s  � and c  � refer to the modified stiffness of 12 and 
the modified carry-over factor from 1 to 2: 

s s c�� � � � 0      

2W3

2W2

2W1

2W
W3 W3W3 W3

W

(i) (ii)

0 0�

1�

2�

1

2

W

W W

W2 W2W2 W2

W1 W1W1 W1

h 2
h 3

h 1

��

Figure 7.35         
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δ � 1δ � x
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Figure 7.36           

   and 

c
s s xs c l

s c s
sc xs c l

� � �
� � � �

� � � � �
� � �

1
1

1

( )/

( )/      
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   Hence:  x       �       l/2

   

and: s s s c
s EI

� � � �
� �

( )/
/ /

1 2
4 1    

  for a straight prismatic column. Similarly, the modified stiffness of 21 and the 
modified carry-over factor from 2 to 1 are EI / l  and  � 1, respectively.   

   In the bottom story the stiffness and carry-over factor from 1 to 0 are EI / l  
and � 1, as before, but there is no carry-over from 0 to 1. 

   Should the column feet be hinged at the foundation, the initial fixed-end 
moment required to satisfy the sway equation is: 

M W W W hF
10 3 2 1 12 2 2 2� � � �( ) /

     

   For the sway equation to remain satisfied, there can be no distribution to 
member 10, and the modified stiffness of member 10 is zero. 

   Any lateral loads applied to the columns in the skew symmetrical case, as 
shown in  Figure 7.37   , will produce fixed-end moments in the columns. The 
initial fixed-end moments due to sway must now be adjusted so that, when 
added to the fixed-end moments due to the applied loading, the combined 
fixed-end moments in the columns satisfy the sway equations for each story. 

Figure 7.37           

   The Vierendeel girder, shown in  Figure 7.38   , in which the top and bottom 
chords in each panel are parallel and of equal stiffness, may be analyzed in a simi-
lar manner. For the skew symmetrical distribution, the stiffness of the vertical posts 
is 6 El/l, and the stiffnesses and carry-over factors for the chords are EI/l and �1, 
respectively. The sway equations are derived as shown at (i), (ii), and (iii) and are: 

2 2
2
2

12 21

23 32

34 43

( )
( )
( )

M M Wl
M M Wl
M M Wl

� � �
� � �

� �     

  for panels 1, 2, and 3, respectively.   
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   Multi-bay frames of the type shown in  Figure 7.39    can be replaced by the 
two substitute frames at (i) and (ii). The ratio of applied load to member stiff-
ness is the same for frame (i) and frame (ii), and the joint rotations and sway 
displacements are identical in frame (i), frame (ii), and the original frame. Such 
a frame is said to satisfy the principle of multiples, and the moments obtained 
in the analysis of the two substitute frames sum to give the moments in the 
original structure. 

3W

2W
2W

W

W

2�1� 3� 4�

21 3 4

3 � l � 3l
W (i)

(ii)

(iii)

Figure 7.38           
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Figure 7.39           

    Example 7.16  

Determine the bending moments in the symmetrical frame shown in Figure
7.40   . The relative  EI / l  values are shown ringed. 
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    Solution 

   The sway equations and the initial fixed-end moments due to sway are:
top story: 

2 2 12 12

72

43 34

43 34

( )M M
M MF F

� � � � �

�

� �  kip-in     

  third story:   

2 6 12 12

216

23 32

23 32

( )M M
M MF F

� � � � �

�

� �  kip-in     

  second story:   

2 10 12 12

360

12 21

12 21

( )M M
M MF F

� � � � �

�

� �  kip-in     

  bottom story:   

2 14 12 12
1008

10

10

� � � � �

� �

M
MF  kip-in      

4
�

 1
2�

�
 4

8�

12k

2k

4k

4k

4k

24k

24k

24k

24�

4 4�1

3 3�2

2 2�2

1 1�

0 0�

3

1 1

3 3

5 5

8 8

Figure 7.40           
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Table 7.18        Distribution of moments in Example 7.16  

   Joint 0 1 2 3 4
   Member 1 10 11� 12 21 22� 23 32 33� 34 43 44�  
   Relative  EI / l 8 8 3 5 5 2 3 3 2 1 1 1
   Modified 
 stiffness 

  24 6 20 10 2 6 6 2 2 2 1

   Distribution 
 factor 

1 12/25 3/25 2/5 5/9 1/9 1/3 3/5 1/5 1/5 2/3 1/3

   Carry-over factor   ← 0     ← ½     ← ½     ← ½   
   ½ →    ½ →    ½ →    
    MF , non-sway   � 576   � 576   � 576   � 288 
   Distribution   276 69 231 320 64 192 346 115 115 192 96
   Carry-over 160 115   173 96   96 57   
   Distribution     �77 �19 �64 �160 �32 �96 �116 �38 �38 �38 � 19 
   Carry-over   �80 � 32     �58 � 48     �19 � 19   
   Distribution   38 10 32 50 10 30 40 13 14 12 7
   Carry-over 25 16   20 15     �6 7   
   Distribution     �12 �3 �10 �20 �4 �12 �12 �5 �4 �4 � 3 
   Carry-over   �10 � 5     �6 � 6     �2 � 2   
   Distribution   5 1 4 6 1 4 4 2 2 1 1
   Carry-over 3 2   2 2  1   
   Distribution     �1 �1 �1 � 2     �2 � 2   � 1   
    MW 0 229 �519 290 290 �537 247 319 �489 170 206 � 206 

   Modified 
 stiffness 

  0 18 5 5 12 3 3 12 1 1 6

   Distribution 
 factor 

  0 18/23 5/23 1/4 3/5 3/20 3/16 3/4 1/16 1/7 6/7

(Continued)



Structural A
nalysis: In T

heory and Practice
338

Table 7.18        (Continued)  

   Joint 0 1 2 3 4
   Carry-over factor   → 0     → � 1     → � 1     → � 1   
     �1 →      �1 →      �1 →    

    MF , sway     � 1008     �360 � 360     �216 � 216     �72 � 72   
   Distribution 1070 298 144 346 86 54 216 18 10 62
   Carry-over   �144 � 298     �54 � 86     �10 � 18   
   Distribution 113 31 88 211 53 18 72 6 3 15
   Carry-over   �88 � 31     �18 � 53     �3 � 6   
   Distribution 69 19 12 30 7 11 42 3 1 5
   Carry-over   �12 � 19     �11 � 7     �1 � 3   
   Distribution 9 3 7 18 5 1 6 1 0 3
   Carry-over   �7 � 3     �1 � 5   � 1   
   Distribution 6 1 1 2 1 1 4 0 0 1

    MS 0 �1008 1267 �259 �459 607 �148 �282 340 �58 �86 86

    M  kip-in  0 �779 748 31 �169 70 99 37 �149 112 120 � 120 

   Member 0� 1 � 1� 0 � 1�1 1� 2 � 2� 1 � 2�2 2� 3 � 3� 2 � 3�3 3� 4 � 4� 3 � 4� 4 
    M  kip-in  0 �1237 1786 �549 �749 1144 �395 �601 829 �228 �292 292
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   The fixed-end moments due to the applied loads are: 

M

M M
M

F

F F

F
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11 22
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12 24 12 12
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24 24 12
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� �
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� �

�

�

� � � �

/

/

 kip-in

112
576� �  kip-in    

   The distribution procedure for the non-sway and sway cases is tabulated in 
 Table 7.18   , and the final moments are obtained as shown. 

    Example 7.17  

Determine the bending moments in the Vierendeel girder shown in  Figure 7.41   . 
All the members are of uniform cross-section.  

3 � 12� � 36�

40/3k 50/3k10k 20k

1 2 3 4

4�3�2�
12

�
1�

Figure 7.41         

    Solution 

   The sway equations and the initial fixed-end moments due to sway are: 
   panel 1: 

2 40 12 12 3

480

12 21

12 21

( ) /M M
M MF F

� � � � �

�

� �  kip-in    

   panel 2: 

2 10 12 12 3

120

23 32

23 32

( ) /M M
M MF F
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�

� �  kip-in    



Structural A
nalysis: In T

heory and Practice
340

Table 7.19        Distribution of moments in Example 7.17  

   Joint 1 2 3 4
   Member 11� 12 21 22� 23 32 33� 34 43 44�  
   Relative  EI / l 1 1 1 1 1 1 1 1 1 1
   Modified 
 stiffness 

6 1 1 6 1 1 6 1 1 6

   Distribution 
 factor 

6/7 1/7 1/8 3/4 1/8 1/8 3/4 1/8 1/7 6/7

   Carry-over 
 factor 

    ←       
�      1 

  � 1
→  

    ←       
�      1 

  � 1 
→  

    ←    
   �      1 

  � 1 
→  

  

    MF , sway     �480 � 480     �120 � 120   600 600   
   Distribution 411 69 75 450 75 �60 360 �60 �86 � 514 
   Carry-over     �75 � 69   60 � 75   86 60   
   Distribution 64 11 1 7 1 �1 �9 �1 �9 � 51 
   Carry-over     �1 � 11   1 � 1   9 1   
   Distribution 1 0 1 8 1 �1 �6 �1 0 � 1 

    M  kip-in  476 �476 �483 465 18 �258 �375 633 566 � 566 

   Member 1�1 1� 2 � 2� 1 � 2�2 2� 3 � 3� 2 � 3�3 3� 4 � 4� 3 � 4� 4 
    M  kip-in  476 �476 �483 465 18 �258 �375 633 566 � 566 
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   panel 3: 

2 50 12 12 3

600

34 43

43 34

( ) /M M
M MF F

� � � �

�

�  kip-in    

   There are no fixed-end moments due to applied loading, and the sway distri-
bution procedure is shown in  Table 7.19   . 

    Example 7.18  

Determine the bending moments in the symmetrical two-bay frame shown in 
 Figure 7.42   . The relative  EI / l  values are shown ringed.  
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Figure 7.42           

    Solution 

   The original structure and loading are equivalent to the two cases shown at (i) 
and (ii). Case (i) consists of a symmetrical structure subjected to symmetrical 
loads. The moments at corresponding points are equal and of opposite sign, 
and there are no moments in the interior column. This can be replaced by the 
two identical substitute frames shown at (iii) and (iv). The fixed-end moments 
due to the applied loading are: 
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Table 7.20        Distribution of moments in Example 7.1  8

   Joint 1   2  3    3 �     2�  1
   Member 12 21 22� 23 32 33� 3�3 3� 2 � 2�2 2� 3 � 2� 1 � 1� 2 �  
   Relative  EI / l 2 2 3 1 1 2 2   
   Distribution 
 factor 

0 1/3 1/2 1/6 1/3 2/3 0 0   

  ← ½ ←  ½ 
   Carry-over factor    ½ →      ½ →         

 ½ →

    MF , non-sway   � 300   �200 200    300   
   Distribution   100 150 50 66 134   
   Carry-over 50 33 25    67    75   
   Distribution     �11 �17 �5 �8 � 17   
   Carry-over � 5   �4 � 2     � 8     � 8   
   Distribution and 
 carry-over 

  1 2 1 1 1  1   

    MW 45 90 �165 75 82 �82 259 0 368 0 0 0

    EI/l , substitute 
 frame 

2 2 3 1 1 2   

   Modified stiffness  0 2 18 1 1 12   
   Distribution 
 factor 

  2/21 6/7 1/21 1/13 12/13   

   Carry-over factor  ← � 1     ←        � 1    
�    1 →

    MF , sway   �72 � 72     �60 � 60 
   Distribution   12 114 6 5 55   
   Carry-over � 12   �5 � 6 
   Distribution   0 5 0 0 6   
    MS �84 �60 119 �59 �61 61 61 �122 119 �118 �120 � 168 

    M  kip-in   �39 30 �46 16 21 �21 320 �122 487 �118 �120 � 168 

   Member 1� 2 � 2� 1 � 2� 2 � 2� 3 � 3� 2 � 3� 3 � 3� 3 �     2 � 2 �  
    M  kip-in   �129 �150 284 �134 �143 143 � 198     � 249 
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   Case (ii) consists of a frame that satisfies the principle of multiples and 
is subjected to lateral loading at the joints. This can be replaced by the two 
identical substitute frames shown at (v) and (vi). The moments in the interior 
columns of the actual frame are equal to twice the moments in the columns 
of the substitute frame, and the remaining moments in thes actual frame are 
equal and of the same sense as the corresponding moments in the substitute 
frames. The sway equations for each substitute frame and the initial fixed-end 
moments du to sway are: 

   top story: 

2 2 10 12

60

32 23

32 23

( )M M
M MF F
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�

� �  kip-in      

   bottom story: 

2 2 12 12

72

12 21

12 21

( )M M
M MF F
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�

� �  kip-in      

   The distribution procedure for the non-sway and sway cases is tabulated in 
 Table 7.20   , and the final moments are obtained as shown. 

    Example 7.19  

Determine the sway displacement of the tops of the columns of the multi-bay 
frame shown in  Figure 7.43   .  
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Figure 7.43           
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    Solution 

   The frame satisfies the principle of multiples and can be replaced by the three 
identical substitute frames shown. The sway equation for each substitute frame 
and the initial fixed-end moments due to sway are: 

2 2

2

12 21

12 21

( )

/

M M WL
M M

WL

F F
� � �

�

� �      

   The distribution procedure is in  Table 7.21   . 

Table 7.21        Distribution of moments in Example 7.1  

   Joint 1 2   
Member 12 21 22�  
   Relative  EI / L 6 6 1
   Modified stiffness   6 6
   Distribution factor 0 ½ ½
   Carry-over factor   ← � 1   
    MF , sway   �  WL/2 �  WL /2   
   Distribution and carry-over   �  WL/4 WL/4 WL /4 

    M � 3 WL/4 �  WL/4 WL /4 

   The sway displacement may be obtained from the final moments as shown 
at (i) and (ii) in  Figure 7.44   . Then: 

M EI L EI L
WL

M EI L EI L
WL

21
2

12
2

24 36
4

12 36
3 4

� �
� �

� �
� �

θ δ

θ δ

/ /
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/ /
/     

  and   

δ � 5 1442WL EI/      

    Example 7.20  

Determine the bending moments in the symmetrical frame shown in Figure
7.45   . The relative  EI / L  values are shown ringed.  

    Solution 

   The original structure and loading are equivalent to the two cases shown at (i) 
and (ii). Case (i) consists of a symmetrical structure subjected to symmetrical 
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Figure 7.45           

loads and may be replaced by the two identical substitute frames shown at (iii) 
and (iv). The fixed-end moments due to the applied loading are: 

M MF F
3 3 33

25 25 12 12
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 kip-in      
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   Case (ii) does not satisfy the principle of multiples, but an approximate solu-
tion may be obtained by means of the two identical substitute frames shown 
at (v) and (vi). The sum of the second moments of area for the columns of the 
two substitute frames equals the sum of the second moments of area for the 
columns of the real frame. The sway equations for each substitute frame and 
the initial fixed-end moments due to sway are: 

   top story: 

2 3 10 12 2

45

32 23

32 23

( ) /M M
M MF F
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�

� �  kip-in      

   bottom story: 

2 3 15 12
135

12 21

12 21

( )M M
M MF F
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� � �  kip-in      

   These sway moments are distributed as shown in  Table 7.22   . The column 
moments obtained are multiplied by the ratio (stiffness of actual column)/
(stiffness of substitute column) to give the actual column moments since, if the 
columns in the actual structure undergo identical deformations, the moments 
must be proportional to the actual column stiffnesses. In this case, the multi-
plying ratio for both the external and interior columns in the top and bottom 
stories is 4/3. 

   The moments at the joints are now unbalanced, as shown in  Figure 7.46   , and 
must be distributed. An approximate solution may be obtained from the pre-
vious substitute frames as shown at (i) and (ii). The unbalanced moments are 
equivalent to symmetrical loads on the symmetrical substitute frames, and distri-
bution proceeds as shown in the table with a modified stiffness of 2EI/l for the 
beams. The correcting moments so obtained are small, and it is unnecessary to 
multiply the correcting moments for the columns by the stiffness ratios. 

   The final moments in the frame are obtained by adding the non-sway, 
proportioned, and correcting moments.   

    7.10     Symmetrical multi-story frames with 
inclined columns 

   The analysis of a single bay frame, with all beams parallel to the base and 
with the two columns in each story of equal stiffness and subjected to lateral 
loads at the joints, consists of a skew symmetrical distribution. The frame need 
not necessarily satisfy conditions of geometrical symmetry but must be sym-
metrical as regards stiffness of the columns. Only the left half of the frame 



Table 7.22        Distribution of moments in Example 7.20  

   Joint 1 2 3  3 �   2 � 1 �  
   Member 12 21 22� 23 32 33� 3�3 3� 2 � 3� 3 � 2�2 2� 3 � 2� 1 � 2� 2 � 1� 2 �  
   Relative  EI / l 5 5 1 3 3 1 1 3 1 1 3 5 1 5
   Distribution factor  0 5/9 1/9 1/3 3/4 1/4 0  0   

← ½ ½ → ½ →
   Carry-over factor    ←   ½          

 ½ →

    MF , non-sway   �625 625   
   Distribution and 
 carry-over 

234 469 156 78   

   Distribution and 
 carry-over 

  �65 �130 �26 �78 � 39   � 13   

   Distribution and 
 carry-over 

15 29 10 5   

   Distribution and 
 carry-over 

  �4 �8 �2 �5 �1 1   � 1   

    MW �69 �138 �28 166 458 �458 708 0 �708 �14 0 0 14 0

    EI  �  l, substitute frame   15/4 1 9/4 9/4 1   
   Modified stiffness 
 (skew) 

  15 24 9 9 24   

   Distribution factor  0 5/16 1/2 3/16 3/11 8/11   
   ← � 1     � 1  →          
Carry-over factor ← �    1

    MF ,  sway   �135 � 135     �45 � 45   
   Distribution   56 90 34 12 33   
   Carry-over � 56   �12 � 34   
   Distribution   4 6 2 9 25   
   Carry-over � 4   �9 � 2   
   Distribution   3 4 2 1 1   
   Carry-over and 
 distribution 

  � 3   1 �1 �2 2   

(Continued)



Table 7.22        (Continued)  

   Joint 1 2 3  3 �   2 � 1 �  
    MS �198 �72 101 �29 �61 61   
   Proportioned 
 moments 

  �264 �96 101 �39 �81 61 61 �81 61 101 �39 �96 101 � 264 

   Modified stiffness 
 (symm.) 

  15 2 9 9 2   

   Distribution factor  0 15/26 1/13 9/26 9/11 2/11   
← �½ ← ½

   Carry-over factor            ½   →    
   Distribution   20 2 12 16 4   
   Carry-over 10 8 6   
   Distribution     �5 0 �3 �5 � 1   
   Carry-over � 3   �3 � 1   
   Distribution and 
 carry-over 

1 2   1 1   

   Correcting 
 moments 

8 17 2 15 17 3 �3 �35 �3 �2 �30 �33 �2 � 16 

    M  kip-in   �325 �217 75 142 394 �394 766 �116 �650 85 �69 �129 113 � 280 

   Member 1� 2 � 2� 1 � 2� 2 � 2� 3 � 3� 2 � 3� 3 �    
    M  kip-in   �187 59 131 �190 �522 522   
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�20

�34

�20

�34

�

34 34

�20

�34

20 20

67

�20

�34

41

9/4

15/4 15/4

9/4

1

1

(i) (ii)

Figure 7.46           

is considered, with a modified stiffness of 6 EI / l applied to the beams and no 
carry-over between the two halves. As in the analysis of frames with vertical 
columns, fixed-end moments that satisfy the sway equations are imposed on 
the columns, and modified stiffness and carry-over factors are applied to the 
columns, which will ensure that the sway equations remain balanced through-
out the distribution. 

   The sway mechanism for panel 1234 of the frame shown in  Figure 7.47    
is shown at (i). The displacement diagram, for a horizontal displacement of 
φ h  1 units imposed at 2, is shown at (ii), and, since 2 must move perpendicu-
larly to the original direction of 12, the point 2 � is obtained. Similarly 4 moves 
perpendicularly to 24 and 34, and the point 4 � is obtained. The member rota-
tions are: 

φ
φ

φ
φ

φ
φ

1 12

2 34

3 24

24 24 24

22

44

2 4

� �
�
� ��
�
� � � ��
� � �
� � �

/

( ) /
(

l

l

l
rl l l

r 11)φ      
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   During the sway displacement, beams 13 and 24 are held infinitely rigid 
so that no deformations and no moments occur in them. Hence, as shown in 
Figure 7.48   , the columns rotate through a sway angle φ at their bases and a 
sway angle rφ at their tops, and the frame above 24 rotates through an angle  –   
(r       �      1) φ and translates a distance φ h  l to the right. The sway equation for panel 
1234 is: 

� � � � � � �
� � � �

( ) ( ) ( )
{ ( )( )

M M r M M W W W h
W h h r W h

12 34 21 43 1 2 3 1

3 3 2 21
φ φ φ

φ 11 1( )r � φ}
    

  and   

M M r M M M r Qh12 34 21 43 11� � � � � �( ) ( )     

  where M is the clockwise moment of the external loads above the story about 
the top of the story and Q is the shear to the right due to all external forces 

Figure 7.47           

0

m nl24

l 12

rl24

h 1
h 2

h 3

l 34

3 311

2 4

W2

W1

W3

2,4

1,3

(ii)

(i)

h1
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above the bottom of the story. The columns are of equal stiffness, and the ini-
tial fixed-end moments required to satisfy the sway equation are:   

2 2 112 21 1M rM M r QhF F� � � �( )    

   From  Figure 7.48 , the fixed-end moments due to an arbitrary rotation  φ of the 
columns, while the beams are maintained infinitely rigid, are: 

M M s rc s r cF F
12 21 1/ ( ) / ( )� � �φ φ

     

1

(r�1)φ

(r�1)φ

φ

φ
rφMF

12

MF
21

1

2

2�

2�

2

�

�

�rs φ

�rscφ �sφ

�scφ

rφ
φ

�

φ

Figure 7.48           

   Hence: 

2 1 2 121 21 1M rc r c rM M r QhF F( ) /( ) ( )� � � � � �      

   and: 

M M r Qh r c r rF
21 1

21 2 1 2� � � � � �{ ( ) }( ) / ( )      

M M r Qh rc rc rF
12 1

21 1 2 1 2� � � � � �{ ( ) }( ) / ( )      
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   For straight, prismatic columns these values reduce to: 

M M r Qh r r r
M M r Qh r

F

F
12 1

2

21 1

1 2 4 1
1 1 2 4

� � � � � �

� � � �

{ ( ) }( ) / ( )
{ ( ) }( ) / (11 2� �r r )      

   The out of balance moment at joint 1 is distributed while allowing joint 2 to 
translate laterally and maintaining the beams as infinitely rigid. This procedure 
is shown in  Figure 7.49   , where s�12    and c�12     refer to the modified stiffness of 
12 and the modified carry-over factor from 1 to 2 required to leave the sway 
equation is left undisturbed. Then, substituting in the sway equation with the 
right-hand side set at zero: 

s rs c� � � � �12 12 12 0      

   and 

c r� � �12 1/
     

θ � 1 θ � 1

�s(1�rc)/l

�s(r�c)/l

2

sc

δ � x δ � 1

� �   x �

s�12

s�12 s

c�12

1

Figure 7.49           

   From  Figure 7.49 : 

s s xs rc l
rs c s rsc rxs r c l

� � � �

� � � � � � � �
12

12 12 12

1( ) /
( ) /      

   Hence: 

x l rc rc r� � � �( ) /( )1 1 2 2
   

   and 

s sr c rc r� � � � �12
2 2 21 1 2( )/( )
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   For straight prismatic columns this reduces to: 

s EIr l r r� � � �12
2 23 1/ ( )

     

   Expressions for s�21     and c�21     may be obtained by substituting r       �      1/ r in the 
expressions for s�12     and c�12    . 

   Then: 

s EI l r r� � � �21
23 1/ ( )

     

   and 

c r� � �21    

   In the bottom story of the frame, the stiffness and carry-over factor at the 
top of the column are as above, but there is no carry-over from the fixed base. 

   Should the column feet be hinged at the foundations, the initial fixed-end 
moment required at the top of the column to satisfy the sway equation is: 

M M r Qh rF
10 11 2� � �{ ( ) } /

   

  and the modified stiffness of 10 is zero.   
   The Vierendeel girder shown in  Figure 7.50   , which has inclined top chords 

and the two chords in any panel of equal stiffness, may be analyzed in a simi-
lar manner. The end panel 012 has a value of infinity for  r . Then: 

M M
c

F F
10 01

10
0

�

� �

�     

  and   

s EI l� �10 3 /
     

1

2

0

Figure 7.50           
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    Example 7.21  

Determine the bending moments in the frame shown in  Figure 7.51   . All mem-
bers have the same second moment of area. 

30�

2�

8�
8�

3�

6�
4k

2

3

1�1

Figure 7.51           

    Solution 

   For the top story: 

r
M r Qh

M

M

F

� �
� � � �

� �

� � � � �

� �

18 6 3
1 0 32

32
32 2 3 4 1 3 9
3 08

1

23

32

/
( )

( )/ ( )
.

FF

c

c
s EI

� � � � �

� �

� � �

� �

� � �

� �

32 1 6 4 1 3 9
4 31
1 3
0 333
3

27

23

32

23

( )/ ( )
.
/
.

// ( )
.

/ ( )
.

10 1 3 9
0 207
3 10 1 3 9
0 023

32

� �

�

� � � �

�

EI
s EI

EI    

   For the bottom story: 

r

M r Qh

MF

�
�

� � � � �
� �

� � �

30 18
1 67

1 32 0 67 32
10 67
10 67 3 67 4

1

12

/
.

( ) .
.
. . / (( . . )

.
1 1 67 2 80

1 80
� �

� �    
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M

c
s EI

F
21

21

21

10 67 4 33 4 1 1 67 2 80
2 12
1 67

3 10

� � � � �

� �

� � �

� �

. . / ( . . )
.
.
/ (( . . )

.
1 1 67 2 80

0 055
� �

� EI

   For the beams: 

s EI
EI

s EI
EI

� �

�

� �

�

�

�

33

22

6 6

6 18
0 333

/

/
.      

   The distribution procedure and the final moments are shown in  Table 7.23   .   

Table 7.23        Distribution of moments in Example 7.21  

   Joint 1 2 3
   Member 12 21 22� 23 32 33�  
   Modified stiffness   0.055 0.333 0.207 0.023 1
   Distribution factor  0 0.092 0.56 0.348 0.023 0.977
   Carry-over factor   ← �1.670 ← � 3.000   
      �0.333 →    
    MF       �      100 kip-ft   �180 � 212     �308 � 431   
   Distribution   48 291 181 10 421
   Carry-over � 80   �30 � 60   
   Distribution   3 17 10 1 59
   Carry-over � 5   �3 � 3   
   Distribution   0 2 1 0 3
   Carry-over and
 distribution 

 0 0 �1 1

   Final moments      �    
   100 kip-ft 

  �265 �161 310 �149 �484 484

    7.11    Frames with non-prismatic members subjected to sway 

   The fixed-end moments produced in non-prismatic members by a unit dis-
placement are determined by the column analogy method given in Section 6.5. 
In addition, the stiffness, carry-over factors, and fixed-end moments due to lat-
eral loads on the members are required and are also determined by the column 
analogy method. 
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    Example 7.22  

Determine the bending moments in the frame shown in  Figure 7.52   . The sec-
ond moments of area of the members are shown ringed. 

2I

4I

I

4I

I

10k

2 2�

1�1

12�

8�
4�

Figure 7.52           

    Solution 

   The stiffness, carry-over factors, and fixed-end moments due to an arbitrary dis-
placement have been obtained for member 21 in Examples 6.6 and 6.7 and are: 

s EI
c
M EI

x
M EI

x

F

F

� �

� �

� �

� �

� �

� �

21

21

21

12

5 12
4 5

16
170

8
340

/
/

/

/

δ

δ
   

   The sway equation is: 

� � �
�

M M12 21 1440 2
720

/
 kip-in   

   Due to the skew symmetry, the modified stiffness of member 22 �  is: 

s E I
EI

� �

�
�22 6 2 12( ) /

   

   The distribution procedure is shown in  Table 7.24   , and substituting the final 
sway moments in the sway equation gives: 

( )
.

300 120 720
1 71

� �
�

x
x    

   The final moments are shown in  Table 7.24 .   
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    7.12     Frames with curved members 

   A single bay frame with the two columns connected by means of a straight 
beam has one degree of sway freedom. The single bay frame with a curved 
beam, shown in  Figure 7.53   , has the two degrees of sway freedom shown at 
(ii) and (iii), corresponding to the different translations that occur at the top of 
each column. The analysis proceeds in the three stages as shown at (i), (ii), and 
(iii), and the two sway equations required are obtained by considering a unit 

Table 7.24        Distribution of moments in Example 7.22  

   Joint 1   2  
   Member 12 21 22�  
   Modified stiffness   5/12 1
   Distribution factor  0 5/17 12/17
   Carry-over factor   ← 4/5   
    MF ,  sway   �340 � 170   
   Distribution and 
 carry-over 

40 50 120

    MS �300 �120 120
    M       �      1.71    �       MS �513 �207 207

2 3

1 4

�

1 1

�  x1 � �  x2 �

Nonsway Sway (1) Sway (2)

(i) (ii) (iii)

Figure 7.53           
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horizontal displacement at the top of each column. Considering sway (1) and 
(2) in turn, the sway equations are: 

� � � �
� � � �

( ) /
( ) /
M M l H W
M M l H

12 21 12 23

34 43 34 32 0     

  where H  23 and H  32 are the outward thrusts of the arch at 2 and 3. The out-
ward thrusts are determined by considering the arch to be initially fixed-
end and subjected to the applied loads and translations and allowing for the 
change in thrust produced as the ends of the arch rotate to their positions of 
final equilibrium. Then:   

H H
H H H H HF

23 32
2 1 3 1

2
2 1

3
3 1

�

� � � � �� � � �δ δ θ θψ ψ     

  where HF is the initial thrust due to the applied loads, Hδ  2� 1 and Hδ  3� 1 are 
the initial thrusts due to unit translations to the right at 2 and 3, H  θ 2 � 1 and 
H  θ 3 � 1 are the thrusts produced by unit rotations at 2 and 3, and ψ  2 and ψ  3  
are the final clockwise rotations of 2 and 3. The final rotations are given by:   

ψ2 23 23� ΣM sB /
    

  and   

ψ3 32 32� ΣM sB /
    

  where ΣMB
23     is the sum of the balancing moments distributed to joint 23 from 

its initial to its final equilibrium position and s  23   is the rotational stiffness of 
the arch. 

    Example 7.23  

Determine the bending moments in the frame shown in  Figure 7.54   . The 
curved beam is parabolic in shape, and its second moment of area varies 
directly as the secant of the slope, with a value at the crown of I  o. The second 
moment of area of the columns is 2 I  o . 

    Solution 

   The characteristics of the arch, which were determined in Example 6.9, are: 

s s
EI l

EI
c c

23 32

0

0

32

9
5

1 3

�
�
�
�
� �

/
/

/

 kip-ft

23
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1 4

2 3
10k

20k

l � 45�

20
�

h
�

 1
0�

Figure 7.54           

H EI h l
EI

H EI h l
EI

θ

δ

�

�

�
�

�

�

1
0

2

0

1
0

2

0

15 2
0 0167

45 4
0 0025

/
.

/
.

 kip/rad

��

�

� �

� �

�

�

�

12

15 2
0 0167 12

3

1
0

0
2

23

 kip/in

 kip-in/in
M EI hl

EI

MF

δ /
.

MM
Wl

H Wl h

F

F

32
32

337

15 64
21 10

�
�

�
�

/

/
.

 kip-in

 kip outward    

   The stiffness and carry-over factors for the columns are: 

s s
E I
EI

c

21 34

0

0

34

4 2 20
2 5

1 2

�
�
�

�
�

( ) /
/

/

 kip-ft

c21

   

   The distribution procedure for the non-sway stage is shown in  Table 7.25   . 
   The initial fixed-end moments due to sway (1) are: 

M M
EI
EI

F F

o

o

23 32
2

2
0 0167 12
0 0167 12

� �

� �

� �

�

�

.

.
δ
δ  kip-in    
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M M
E I

EI

F F

o

o

12 21
2

2
6 2 20 12

0 0300 12

�

� � �

� � �

( ) /( )
.

δ
δ  kip-in

  and the corresponding thrust is:   

H EI
EI

δ δ δ
δ

� �

�

� �

� �

0 0025 12
0 000208 12

0
3

0
2

.

.  kip    

   The distribution procedure for the sway (1) stage is shown in  Table 7.25 . The 
distribution procedure for sway (2) is similar, and the final moments are shown 
in the table. 

Table 7.25        Distribution of moments in Example 7.23  

   Joint 1 2 3   4 
   Member 12 21 23 32 34 43
   Relative stiffness  2 2 1 1 2 2
   Distribution
 factor 

0 2/3 1/3 1/3 2/3 0

   Carry-over factor  ← ½ ← 1/3 ½ →  
     �  1/3 →    

    MF , non-sway 337 � 337   
   Distribution     �225 �112 112 225   
   Carry-over � 112     �37 37    112 
   Distribution   25 12 �12 � 25   
   Carry-over 12   4 � 4     � 12 
   Distribution and 
 carry-over 

  �2 �3 �1 1 3 2

    MW �102 �203 203 �203 203 102
    Σ  MB    �101 101   

    MF , sway (1)   �300 �300 167 � 167   
   Distribution   89 44 56 111   
   Carry-over 44     �19 � 15    56 
   Distribution   13 6 5 10   
   Carry-over 6     �2 � 2    5 
   Distribution   1 1 1 1   
    MS1 �250 �197 197 �122 122 61
    ΣMB    51 62

    MS2 61 122 �122 197 �197 � 250 
    Σ  MB    62 51

   Final moments   �213 223 �223 905 �905 � 1506 
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   Substituting the final non-sway, sway (1), and sway (2) moments in sway 
equation (1) gives: 

C M M l H H HW F
1 12 21 12 2

2 1
3

3 1

305 240 21 10 2 5
� � � � � �

� � � � �

� �( ) / ( )
/ .

ψ ψθ θ

00 0167 101 12
20 97

. /
.

�
�

C M M l H H HS
1

1
12 21 12

2 1
2

2 1
3

3 1

447 240 2 08 5
� � � � � �

� � �

� � �( ) / ( )
/ .

δ θ θψ ψ
�� �

�

� � � � � �� �

0 0167 51 62 12
3 86

1
2

12 21 12
3 1

2
2 1

. ( ) /
.

( ) / (C M M l H HS δ θψ ψψ θ
3

3 1

183 240 2 08 5 0 0167 62 51 12
2 76

H �

� � � � � �
� �

)
/ . . ( ) /

.    

   Then: 

20 97 3 86 2 76 101 2. . .� � �x x      

   Substituting the final non-sway, sway (1), and sway (2) moments in sway 
equation (2) gives: 

� � � �20 97 2 76 3 86 01 2. . .x x      

   Solving these two equations simultaneously: 

x
x

1

2

2 14
6 95

�
�

.

.    

  and the final moments are given by:   

M x M x MW S S� �1
1

2
2

       

    7.13     Rectangular grids 

   Rectangular grids, which have a large number of degrees of sway freedom, are 
most readily analyzed by a method of successive sway corrections  13  . 

   The load W, applied to the grid shown in  Figure 7.55   , produces bending 
moments and torsion in all the members. The sign convention adopted is that, 
in a member parallel to the x-axis, bending moment is positive if clockwise 
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when viewed in the positive direction of the y-axis, and torsion is positive if 
clockwise when viewed in the positive direction of the x-axis. Each unsup-
ported node of the grid undergoes a vertical deflection, and sway equations 
must be developed for each one. The sway equation for node 1 is obtained by 
considering unit vertical deflection of 1 and is: 

( ) / ( ) / ( ) /
( ) /

M M l M M l M M l
M M l W

12 21 12 13 31 13 14 41 14

15 51 15

� � � � �
� � � � 00      

   Similar equations may be developed for nodes, 2, 3, 4, 5, 6, and 7. 
   An initial estimate is made of the vertical deflection at each node, and 

these deflections are imposed on the grid, with no joint rotations permitted. 
The initial fixed-end moments due to all the sway modes applied simultane-
ously are: 

M M
EI y y l

M M
EI y y l

F F

F F

12 21

1 2 12
2

15 51

1 5 15
2

6

6

�

� �

�

� � �

( ) /( )

( ) /( ) ,  ettc     

  where  y  1 ,  y  2  , y  3 ,..., are the estimated deflections at nodes 1, 2, 3,....   
   These initial fixed-end moments are distributed and the resulting moments 

substituted in the sway equations. Any residual that is produced means that 
the sway equation is not satisfied, as the initial estimate of the deflections was 
incorrect and additional sway moments must be applied and distributed. The 
procedure continues until all the sway equations are satisfied. 

   Distribution is required for all beams in the x and y directions, and the 
distribution factor at each node must allow for the torsional stiffness of the 
cross-members framing into the node from the y and x directions. The tor-
sional stiffness of a member is GJ/l, where G is the modulus of torsional rigid-
ity,  J is the torsional inertia, and l is the length of the member. The carry-over 

56
10

11

14
9

8
7 3 12

2

W

xy

Figure 7.55           
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factor for torsion is �1. Any out of balance moment at node 4 that is dis-
tributed to cross-member 46 during the distribution of moments in beam 92, 
is carried over to 64 with the sign changed. This produces an out of balance 
moment at node 6 during the distribution of moments in beam 1011, which 
must be distributed to the three members meeting there. Thus, the distribution 
of moments must proceed simultaneously in beams 1011, 92, 812, 67, 53, and 
1112, and the balancing operation at any node affects the adjacent nodes on 
parallel beams. 

   When loading is applied between the nodes, the fixed-end moments due 
to this loading must be distributed at the same time as the initial fixed-end 
moments due to the sway deflections. 

    Example 7.24  

Determine the moments in the grid shown in  Figure 7.56   . All members are of 
uniform section, and the flexural rigidity is twice the torsional rigidity. 

100� 100� 100�

1

1

1
2 2

2 2 1

100k 100k

100k100k

100�

100�

100�

xy 1� 1�

1�1�

Figure 7.56           

    Solution 

   Due to the symmetry of the structure and loading, equal deflections occur at 
nodes 2 and there is no torsion in members 22 . Distribution is required in only 
half of beam 11, and the flexural and torsional stiffness of each member is: 

flexural stiffness of 12

flexural stiffness of 

�
�

4
8

EI l
GJ l

/
/

222

torsional stiffness of 21

�
�

� �

2
4

EI l
GJ l

GJ l

/
/

/    
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   The sway equation is obtained by considering unit vertical deflection 
imposed simultaneously at all nodes 2   and is: 

� � � �
� � � �

2 100 100 0
5000 0

12 21

12 21

( ) /M M
M M      

   The initial sway moments are: 

M M Ely
M

F F

F
12 21 2

22

6 1000 4000
0

� � � � �

�

/ ,  say 

   

   The distribution proceeds as shown in  Table 7.26   , and the residual is indicated 
at several stages. Equal correcting moments MF

21     and MF
12     are imposed at 

each stage, and the final moments are shown in the table.   

Table 7.26        Distribution of moments in Example 7.24  

   Joint 1 2  Residual
   Member 12 21 21� 22   
   Relative stiffness   8 1 4   
   Distribution factor   8/13 1/13 4/13   
   Carry-over factor   ← ½ � 1   
    MF,  sway   �4000 � 4000   
   Distribution   2460 310 1230   
   Carry-over 1230   � 690 
   1st correction   �600 � 600 
   Distribution   370 45 185   
   Carry-over 185   �  45 
   2nd correction   �43 � 43   
   Distribution   27 3 13   
   Carry-over 13  1 

   Final moments, kip-in   �3215 �1786 358 1428   

    7.14     Direct distribution of moments and deformations 

   Direct moment distribution was introduced by Lin 14   as a means of eliminat-
ing the iteration required in the standard moment distribution procedure. 
The parameters required for the direct distribution of fixed-end moments 
require considerable preliminary effort, but, once these parameters have been 
obtained, alternative loading conditions can be quickly investigated. To assist 
in the calculation of these parameters, a number of graphs and charts          15,16,17   
are available. Several alternative methods          18,19,20   have been developed for the 
direct distribution of moments but will not be considered here. 
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   The direct distribution of deformation provides the most convenient way of 
determining influence lines for rigid frames 21  . The basic parameters required 
are obtained in a similar manner to the parameters required for the direct dis-
tribution of moments, and both techniques may be readily applied to a par-
ticular structure. 

    (a) Direct distribution of moment 

   The actual stiffness at the end 1 of any member 12 of a frame is the moment 
sa  12 required to produce unit rotation at 1, with all members meeting at 1 
and 2 having their actual stiffnesses. As indicated in  Figure 7.57 , this may be 
obtained as the sum of the two operations shown at (i) and (ii). In operation 
(i), unit rotation is imposed at 1 with 2 clamped. In operation (ii), joint 2 is 
released and allowed to rotate to its position of final equilibrium while joint 1 
is clamped. The balancing moment required at 2 is �  c  12  s  12, and this is distrib-
uted to each member in accordance with its distribution factor. The stiffness of 
21 is the restrained stiffness s  21 since joint 1 is clamped, while all the other n  
members meeting at 2 have their actual stiffnesses. The distribution factor for 
21 is: 

a s s s sn
a a

21 21 21 2 21� � �/( )Σ
   

  where  sa
21     is the actual stiffness of member 21.   

θ � 1 θ21

2 1 21

M21

S a
12

θ � 1

θ � 1

θ21

21

�

�

�a21c12s12

�a21c12c21s12

c12s12

S12
(i)

(ii)

Figure 7.57           

   The balancing moment distributed to 21 is �  a  21  c  12  s  12, and the moment 
transmitted to 1 is: 

� �a c c s b c s21 12 21 12 21 12 12    
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  Then the actual stiffness at 1 is:   

s s a c ca
12 12 21 12 211� �( )    

  and the actual distribution factor for member 12 is:   

d s sa a a
12 12 1� /Σ n    

   The proportion of the out-of-balance moment at joint 2 which is transmitted 
to the fixed-end 1 when 2 is balanced, is: 

b a c21 21 21� �    

   For any member 12, the value of a  12 is zero when joint 1 is fixed and unity   
when joint 1 is hinged. 

   The direct distribution procedure may be summarized as: 

      ●    determine the fixed-end moments produced by the applied loads  
      ●    starting with the extreme left-hand-side joint of the frame, transmit the out-of-balance 

moments at each joint to the next joint on the right, which is clamped  
      ●    repeat this operation starting at the extreme right-hand-side joint and transmit to 

the left with moments transmitted previously not included in the out-of-balance 
moments  

      ●    at each joint, balance the fixed-end moments and the transmitted moments using 
the actual distribution factors    

    Example 7.25  

Determine the bending moments in the members of the frame shown in Figure
7.16 . The relative  EI  values are shown ringed.  

    Solution 

   The parameters required are shown in  Table 7.27    and are derived as follows: 

a12 1�     

  and:   

s

s

a

a

21

23

3 1 1 4
2 25
9

� �

�

�

( / )
.
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  and   

a

s

s

a

a

24

42

45

4 4 9 2 25
0 26
4 1 0 26 4
3 74
9

� � �
�

� �

�

�

/( . )
.
( . / )
.

    

  and   

a46 3 3 9 3 74
0 19

� � �
�

/( . )
.      

   The remaining parameters are readily obtained, and the transmission and dis-
tribution proceeds as shown in the table.  

    (b) Direct distribution of deformations 

   The rotation θ  21 produced at the end 2 of member 12 shown in  Figure 7.57    is 
given by: 

θ21 � � � �

� �

�

c s s s s
a c

b

n
a a

12 12 21 2 21

12 12

12

/( )Σ
′

′
   

Table 7.27        Distribution of moments in Example 7.25  

   Joint 1 2 4 6
   Member 12 21 23 24 42 45 46 64
   Relative 4 EI / l 3 3 9 4 4 12 3 3
    sa    2.25 9 3.74 3.74 9 2.25   
    a 1 0.19   0.26 0.26   0.19 1
    b �0.50 � 0.10     �0.13 � 0.13     �0.10 � 0.50 
    da 1 0.15   0.25 0.25   0.15 1

    MF , kip-in   �100 100   �115 173
   Transmission 
 L to R 

   50   � 20  13 

   Transmission 
 R to L 

  � 13  28   � 87   

   Distribution 113 � 27     �45 56   33 � 173 

   Final moments  0 123 �106 �17 36 133 �169 0
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   Thus, the final rotation at joint 2 when a rotation  θ  12  is imposed at 1 is: 

θ θ21 12 12� ′b
   

   For symmetrical members: 

s s
a a
b b

12 21

12 21

12 21

�

� �

� �    

   Using the principles of Section 5.3, the direct distribution of deformation 
provides a rapid method of determining influence lines. The influence line for 
M  23 for the frame shown in  Figure 7.58    is obtained by imposing a unit clock-
wise rotation on member 23 with respect to members 20 and 21. The deflected 
form of structure is, from M üller−Breslau's principle, the influence line for 
M  23 . The absolute rotation of member 23 is: 

θ23 20 21 2� �( ) /s s sa a
n

aΣ
   

1 2 3

0

0

0

Figure 7.58         

   The rotation of member 21 is: 

θ θ21 23

23 2

23

1� �

� �

� �

s s
d

a
n

a

a

/Σ

   

   These two imposed rotations may be readily transmitted through the structure. 
Thus, the final rotations of all the members in the structure are obtained, and 
the ordinates of the elastic curve are obtained from tabulated values of fixed-
end moments. 

   A correction must be applied to these ordinates because of the sway that 
occurs in the frame. A unit sway displacement is imposed on the frame, as 
shown in  Figure 7.59    (i), and the final moments are determined by the direct 
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distribution procedure. The rotations θ  S at each joint are readily obtained by 
dividing the balancing moment distributed to any member at the joint by its 
actual stiffness, and the moment in member 23 is MS

23     .
   A unit horizontal load applied at 1, as shown at (ii), produces a sway dis-

placement x, a vertical deflection of δ at any point 4, and a moment in mem-
ber 23 of xMS

23   . The value of x is determined by substituting the MS values 
obtained in system (i) in the sway equation. Thus: 

� � � � � �x M M xM x M MS S S S S( ) ( )10 01 20 30 03 1
   

   A unit vertical load applied at 4 will, from Maxwell's reciprocal theorem, 
produce a sway displacement of δ, as shown at (iii). The moment in member 
23, due only to this displacement δ, is δMS

23    . This value, then, is the sway cor-
rection that must be added to the non-sway moment at 23 due to a unit load 
at any point 4. Thus, the corrections are given by the ordinates of the elastic 
curve, with rotations at each joint of θS SxM� 23   . 

   The corrections are best applied to the non-sway rotations, and the true 
influence line ordinates for M  23 are given by the deflected form of the structure 
with joint rotations of: 

θ θNS S SxM� � 23    

  where θ  NS is the rotation at a joint due to the imposed rotation with sway pre-
vented, θ  S is the rotation at the same joint due to a unit sway displacement, 

W � 1

W � 1

δ

δ

Ms
23 xMs

23

4

4

x
Unit sway

(i) (ii)

(iii)

Figure 7.59           
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MS
23     is the moment produced in member 23 due to a unit sway displacement, 

and x  is the sway displacement produced by a unit horizontal load.   

    Example 7.26  

Determine the influence line ordinates for M  46 over span 46 of the frame 
shown in  Figure 7.16 .  

    Solution 

   A unit clockwise rotation is imposed on 46 with respect to members 45 and 
42. The absolute rotation of member 42 is then: 

θ42 46
0 15

� �

� �

da

.    

   The rotation of 46 is: 

θ θ46 421
0 85

� �
� .    

   These imposed rotations are transmitted in  Table 7.28    to obtain the final rota-
tions shown. 

Table 7.28        Distribution of deformations in Example   7.26

   Joint 1 2  4 6
   Member 12 21 24 42 46 64
    b  �      �0.50 �0.13 � 0.50   
   Imposed 
 deformations 

  �0.15 0.85   

   Transmitted 
 deformations 

  �0.00975 0.0195   � 0.425 

   Final rotations   �0.00975 0.0195 �0.15 0.85 � 0.425 

   The influence line ordinates, at intervals of 0.2      �      the span of 10    ft, are 
obtainable in  Table 7.29    from: 

M M MF F
46 46 640 85 0 425� � � �. .
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    Solution 

   The modified stiffness and carry-over factor for member 21 are: 

s EI l EI l l EI
EI l

c l l EI

� � � �

�

� � �

�

21 12 12

21 12

4 3 4
11 3

2 3
4

( ) / ( )
/

/ ( )

η η

η
//11    

Table 7.29        Influence line ordinates for Example 7.26  

   Section 4 4.2 4.4 4.6 4.8 6
    MF

46  ft units  0 �1.28 �1.44 �0.96 �0.32 0
    MF  64  ft units  0 0.32 0.96 1.44 1.28 0

    M  F46       �      0.85 0 �1.09 �1.22 �0.82 �0.27 0
    MF  64       �       �0.425 0 �0.14 �0.41 �0.61 �0.54 0

   Ordinates, ft units  0 �1.23 �1.63 �1.43 �0.81 0

l l/2l/2

21 3
W

Figure 7.60           

    7.15     Elastically restrained members 

   Modified stiffness, carry-over factors, and fixed-end moments are required for 
members that are elastically restrained at their ends. These may be obtained by 
the methods given in Section 6.7. 

    Example 7.27  

Determine the moments in the uniform beam shown in  Figure 7.60   . The beam 
is elastically restrained at end 1 with a rotation-moment ratio of η  12       �       l /8 EI . 
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Table 7.30        Distribution of moments in Example 7.27  

   Joint 1 2 3
   Member 12 21 23 32
   Modified stiffness   11/3 4   
   Distribution factor   11/23 12/23   
   Carry-over factor   ← 4/11 1/2 →  

    MF    �100 100
   Distribution and 
 carry-over 

17 48 52 26

   Final moments 17 48 �48 126

   The initial fixed-end moments are: 

M M
Wl

F F
23 32

8
100

� �

� �
� �

/
,  say    

   The distribution proceeds as shown in  Table 7.30   .   

2 kips 10 kips 1 kip/ft

1 2 3 43III

6� 7� 11� 4� 6�

Figure S7.1           

    Supplementary problems 

   Use the moment distribution technique to solve the following problems. 
    S7.1 The continuous beam shown in  Figure S7.1    has a second moment of area 
for member 34, which is 3      �      that for members 12 and 23. Determine the reac-
tions at supports 2, 3, and 4. 

    S7.2 Figure S7.2 shows a propped rigid frame with the relative EI / L values 
shown ringed alongside the members. Determine the reactions at supports 
1 and 4.                  
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2

1

3

32

1

4

6 Kips

5�

5�

5�5�

Figure S7.2         

1 2 3 4

12� 12� 12�

Figure S7.3           

    S7.3 The continuous beam shown in  Figure S7.3    has a second moment of area 
of 376     in 4 and a modulus of elasticity of 29,000 kips/in 2. Determine the bend-
ing moments produced in the beam by a settlement of support 1 by 1    in, sup-
port 2 by 2 in, and support 3 by 1     in. 

    S7.4 Determine the moments produced in the members of the rigidly jointed 
frame shown in  Figure S7.4    by the indicated load of 10 kips. The second 
moment of area of all members is 20     in 4. The cross-sectional area of all mem-
bers is 2     in 2 . The modulus of elasticity is constant for all members. 
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    S7.6 Determine the forces produced at the joints of the rigidly jointed frame 
shown in  Figure S7.6    by the indicated loads. The EI / L value is constant for all 
members.

    S7.5 Figure S7.5    indicates a sway frame, with pinned supports, with the rela-
tive EI / L values shown ringed alongside the members. Determine the bending 
moments at joints 2 and 3 caused by the lateral load. 

10 kips

9�

12�

Figure S7.4           

20�

4

4

3

4

32

1

10�

10�

10 kips

Figure S7.5           
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    S7.7 Determine the bending moments produced at the joints of the rigidly 
jointed frame shown in  Figure S7.7    by the indicated loads. The relative EI / L  
values are shown ringed alongside the members. 

1 kip
4 kips

2

1

3

4

12�

20�

20� 16�

Figure S7.6           

4 4

5

20 kips

20�

10� 12�

Figure S7.7         

    S7.8 The dimensions and loading on a symmetrical, single-bay, two-story 
frame are shown in  Figure S7.8   . The relative second moment of area values are 
shown ringed alongside the members. Determine the bending moments, shears, 
and axial forces in the members. 



Structural Analysis: In Theory and Practice376

1  4

2I

2I

I

I

I

I

2 5

4 kips
3 6

10�

10�

10�

Figure S7.8           

6 2 2

2

2 2

3 3 3 2

2

2

2

2

6�

1 2 3 4 5

7 8 9 10

100 kips300 kips

400 kips

4 � 10� � 40�

Figure S7.9           

    S7.9 Determine the bending moments produced at the joints of the Vierendeel 
girder shown in  Figure S7.9    by the indicated loads. The relative EI / L values 
are shown ringed alongside the members. 

    S7.10 Determine the bending moments produced at the joints of the rigidly 
jointed frame shown in  Figure S7.10    by the indicated loads. The EI / L value is 
constant for all members. 
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1 2

3 4

8765

100 kips 300 kips 200 kips

3 � 12� � 36�

8�

Figure S7.10           

1 2 1

2 4 2

4 8 4

1 1

22

22

3

4 8 12

11

10

951

62

7

15�

20�20�

12�

12�

1 kip

2 kips

2 kips

Figure S7.11         

    S7.11 Determine the bending moments produced in the left-hand columns of 
the rigidly jointed frame shown in  Figure S7.11     by the indicated loads. The 
relative EI / L  values are shown ringed alongside the members.   
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                       8       Model analysis  

    Notation 

      a       area displaced by a deformed model  
  A       cross-sectional area  
  d       depth of member  
  E       Young’s modulus  
  f       stress  
  g       gravitational acceleration  
  G       modulus of torsional rigidity  
  H       horizontal reaction  
  I       second moment of area  
  J       torsional inertia  
  k       scale factor  
  l       length of a member  
  L       dimension of length  
  m       model (used as suffix)  
  M       dimension of mass  
  p       prototype (used as suffix)  
  P       axial force  
  Q       shear force  
  rp       radius of gyration of prototype member  
  tm       thickness of model member  
  T       dimension of time  
  V       vertical reaction  
  w       distributed load  
  W       applied load  
  W�       knife-edge load  
  y       influence line ordinate  
  α       equals fp / fm   
  β       equals �  p / �  m   
  δ       deflection, displacement imposed on a model  
  �       strain  
  θ       rotation imposed on a model  
  ρ       density  
  υ       Poisson’s ratio     
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    8.1     Introduction 

   A structural model is required to reproduce an actual structure (the prototype) 
to some convenient scale and in such a manner that it is possible to predict the 
behavior of the prototype subjected to its applied loads from the behavior of 
the model subjected to a system of proportional loads. Model analysis may 
be employed in the design of a complex structure for which a mathematical 
analysis is not possible or may be used to check the validity of a new theoreti-
cal method of analysis. In addition, simple model techniques may be utilized        1,2   
to develop an appreciation of structural behavior in young engineers. No sim-
plifying approximations are necessary for a model analysis, and all secondary 
effects are automatically included in the analysis. 

   Model analysis may be classified under the headings direct methods and 
indirect methods. The loading applied to an indirect model is unrelated to 
the applied loading on the prototype. An arbitrary deformation is applied to the 
model, and the deflected form obtained represents, to some scale, the influ-
ence line for the force corresponding to the applied deformation. The indirect 
method is applicable only to linear structures. The loading applied to a direct 
model is similar to the applied loads on the prototype. Strains and deflec-
tions of the model are recorded and stresses and deflections of the prototype 
deduced. The direct method is applicable to structures in both the elastic and 
inelastic states. For both direct and indirect methods, knowledge of the laws of 
similitude is necessary for the correct proportioning of the model and its loads 
and the correct interpretation of results. 

   Methods of constructing and testing models will not be considered here but 
may be referred to in several comprehensive textbooks            3,4,5,6  .  

    8.2     Structural similitude 

   The required similitude between model and prototype quantities may be 
obtained by the method of dimensional analysis 7  . The relationship between 
the n fundamental variables affecting structural behavior can be expressed 
as a function of ( n � i) dimensionless products, where i is the number of 
dimensions involved. The dimensionless products are referred to as the pi
terms . 

   The variables affecting structural behavior are given in  Table 8.1  together 
with the exponents of their dimensions of mass, length, and time. Only the 
first eight of these variables are fundamental; the remainder have been included 
in order to derive their interdependence. The fifteen variables contain three 
dimensions, and thus the structural behavior can be expressed as the relation-
ship between twelve pi terms. The pi terms are obtained by considering the 
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exponents of the dimensions of the product formed by g, W, l, and one other 
variable at a time. Thus: 
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   Any number of the dimensionless products may be combined to give a dif-
ferent expression for the pi term, as shown by the five different expressions 
given for π  6 . 

   For complete similitude, each variable affecting the behavior of the model 
and the prototype must be in a fixed ratio, which is dimensionless and is 
referred to as the scale factor. In addition, the pi terms of the model and the 
prototype must be in a fixed ratio and establish the relationships between the 
scale factors. Thus, for geometrical similarity, lengths on the model must be in 

Table 8.1        Variables involved in structural similitude  

   Variable   �  l I E W   ρ υ   g   δ  f w W�  A J G

           D
im

en
si

on
 

 M 0 0 0 1 1 1 0 0 0 1 1 1 0 0 1
 L 0 1 4 �1 1 �3 0 1 1 �1 �1 0 2 4 � 1 
 T 0 0 0 �2 �2 0 0 �2 0 �2 �2 �2 0 0 � 2 
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a fixed ratio to the corresponding lengths on the prototype and to lp / lm       �       kl , 
the linear scale factor. Considering each pi term in turn: 

� �p m
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   When it is known that some variables have a negligible effect on the behav-
ior of a particular structure, it is unnecessary to fulfill all the above conditions 
of similitude, and a distorted model may prove satisfactory and be easier to 
construct  8  .  

    8.3     Indirect models 

    (a)       Similitude requirements 

   Indirect model methods make use of the M üller-Breslau principle presented in 
Section 5.2. The influence line for any restraint in a structure is the deformed 
shape of the structure produced by a unit displacement replacing the restraint. 
The displacement corresponds to and is applied in the same direction as the 
restraint. The influence line ordinates obtained are positive when the deforma-
tion produced moves in opposition to the direction of an applied load at any 
point. It is impracticable to apply the displacements to the prototype, and a 
model is constructed to a suitable linear scale such that the deformations in the 
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model and the prototype, due to a given displacement, are in a constant ratio 
at all corresponding points. Thus: 

δ δ δp m

W l E I

W l E A

W l G J

W l G A

k

k k k k
k k k k
k k k k
k k k k

/

/
/
/
/

�

�

�

�

�

3

3

     

   If only flexural deformations are significant in the prototype, the expression 
reduces to: 

k k k k kW l E Iδ � 3/
     

   Since loads are not measured or reproduced, the only requirement to be 
observed is that the ratio ( EI ) p /( EI ) m is maintained constant for all members. It 
is not essential for kI       �       kl

4 or kv        �      1. Hence any suitable material may be used 
and any shape of cross-section chosen for ease of fabrication and prevention 
of buckling. Thus, the model members may be cut from a sheet of material of 
uniform thickness such that the ratio ( dm ) 3 /( EI ) p  is constant for all members. 

   If only axial deformations are significant in the prototype, the expression 
reduces to: 

k k k k kW l E Aδ � /      

   The only requirement to be observed is that the ratio ( EA ) p /( EA ) m is main-
tained constant for all members. Thus, the model members may be cut from a 
sheet of material of uniform thickness such that the ratio dm /( EA ) p  is constant 
for all members. 

   If both flexural and axial deformations are significant in the prototype, the 
expression reduces to: 

k k k k k
k k k k

W l E I

W l E A

δ �

�

3/
/     

  and:   

k k /kl I A
2 �

    

  Using rectangular model sections, this reduces to:   

k A r A t d t d

r d
l p p p m m m m

p m

2 2 3

2 2

12

12

� �

�

/ /

/
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   Thus, the model members may be of rectangular section with dm       �       rp (12) 0.5 / kl  
and with the thickness adjusted such that the ratio dm t m /( EA ) p is constant for 
all members. 

   If both flexural and shearing deformations are significant in the prototype, 
the expression reduces to: 

k k k k k
k k k k

W l E I

W l G A

δ �

�

3/
/     

  using a model material such that kv         �      1 , k E       �       kG . Thus kl
2       �       kI / kA, as in the 

case of significant flexural and axial deformations.   
   If both flexural and torsional deformations are significant in the prototype, 

the expression reduces to: 

k k k k k

k k k k

W l E I

W l G J

δ �

�

3

3

/

/
     

   using a model material such that kv        �      1 , k E       �       kG . Thus, kI       �       kJ, and the 
model and prototype member cross-sections must be geometrically similar. 
Using a model material such that kv   � 1, the model members may be of any 
suitable section such that the ratio kE kl/kG k J  is  constant for all members.  

    (b)       Testing technique 

   To determine the reactions  H  1  , V  1, M  1 of the arch shown in  Figure 8.1    (i), 
a model is constructed to a suitable linear scale factor,  kl, with the necessary 
similitude conditions satisfied. A convenient horizontal displacement, δ , is 
imposed on the model at 1, as shown at (ii), and the ordinate y and the area 
a measured. Had the displacement, δ , been applied to the prototype; the cor-
responding area displaced would have been akl . The horizontal reaction in the 
prototype is given by: 

H Wy wakl1 � �/ /δ δ      

   A convenient vertical displacement, δ , is imposed on the model at 1, as shown 
at (iii), and the ordinate y and the area a measured. The vertical reaction in the 
prototype is given by: 

V Wy wakl1 � �/ /δ δ      

   A convenient anticlockwise rotation, θ, is imposed on the model at 1, as 
shown at (iv), and the ordinate y and the area a measured. Had the rotation, θ , 
been applied to the prototype, the corresponding ordinate and displaced area 
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would have been ykl and akl
2, respectively. The moment in the prototype is 

given by: 

M Wyk wakl l1
2� �/ /θ θ

     

   To determine the internal forces  Pc, Qc, Mc at the crown of the arch shown 
in  Figure 8.2    (i), the model must be cut at the crown. A convenient relative 
horizontal displacement, δ, is imposed on the cut ends, as shown at (ii), and 
the ordinate y and the area a measured. The axial thrust in the prototype at 
the crown is given by: 

P Wy wakc l� �/ /δ δ      

   A convenient relative vertical displacement, δ, is imposed on the cut ends, as 
shown at (iii), and the ordinate y and the area a measured. The shear force in 
the prototype at the crown is given by: 

Q Wy wakc l� � �/ /δ δ      
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   A convenient relative rotation, θ, is imposed on the cut ends, as shown at 
(iv), and the ordinate y and the area a measured. The internal moment in the 
prototype at the crown is given by: 

M Wyk wakc l l� �/ /θ θ2
     

   The technique, as described above, may be readily applied to space frames  9  . 
   An alternative technique for obtaining internal moments that avoids cut-

ting members involves the use of a moment deformeter        3,4  . However, it may be 
applied only to members that are initially straight and prismatic. To determine 
the internal moment, M  1, in the frame shown in  Figure 8.3    (i), a model is con-
structed to a suitable linear scale factor with the necessary similitude condi-
tions satisfied. The moment deformeter applies the reaction system shown at 
(ii) to the model. This is equivalent to applying equal and opposite moments, 
of magnitude, V δ x, to two sections in the model a short distance, δ x, apart. 
Thus, as shown in Section 5.2(b), the ordinates of the elastic curve produced 
by the deformeter represent the value: 

V x V x R
VM x E Im m m

  ( ) /
( ) /

δ δθ δ
δ

�

�

2

2
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  with the exception of the short length 2      �       δ x. The deformed shape of 
the model is shown at (iii) and the internal moment at 1 in the prototype is 
given by:   

Μ δ1
2� Wyk E I V xl m m / ( )      

   This technique may be readily modified 10   and used to determine the influ-
ence surface for the bending moment at any point in a slab.  

    Example 8.1 

   The value of the horizontal thrust at the springings is required for the two-
hinged arch shown in  Figure 8.4    (i). A model is constructed to a suitable scale 
and a horizontal displacement of 0.375 in imposed on the end 1 produces the 
displacements shown at (ii). 

    Solution 

   The linear scale factor is: 

k ll � 2160/      

Figure 8.3           
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   The area displaced on the model is: 

a l
l

� � � � � �
�

{ ( ) }/0 2 0 11 0 22 0 30 0 35 0 37 20
0 1165

. . . . .
.      

   The distributed loading on the model is: 

w �
�

2 12
1 6

/
/  kip/in      

   The horizontal thrust in the prototype is given by: 

H wak
l l

l�
� � �
�

/
/( )

 kips

δ
2160 0 1165 6 0 375
112

. .

       

    Example 8.2 

   The values of the moments M  1 and M  2 are required for the symmetrical 
frame shown in  Figure 8.5    (i). The column feet are initially hinged; an anti-
clockwise rotation of 0.004 radian imposed at 1 produces the displacements 
shown at (ii).  

    Solution 

   Because of the symmetry of the structure, a clockwise rotation of 0.001 
radian imposed at 2 will produce the displacements shown at (iii). Thus, the 

Figure 8.5           
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displacements produced by a clockwise rotation of 0.00375 radian at 1 with 
end 2 clamped are shown at (iv). The values of the moments are given by: 

M

M

1  10 0.045/0.00375 15 0.0075/0.00375 
 150 kip-in
 15

� � � �
�
� �2 00.045/0.00375 10 0.0075/0.00375 

 200 kip-in
� �

�        

    8.4     Direct models 

   A direct model must be true to linear scale and, for complete similitude, must 
satisfy all the similitude conditions listed in Section 8.2. The linear scale factor 
should not be so large that the internal texture of the model material affects 
the results. Where a large linear scale factor is essential, the existence of scale 
effects can be distinguished by constructing several models to different lin-
ear scales. As with indirect models, complete geometrical similitude of cross-
sections may often be disregarded, provided that the loading scale factor is 
modified. Thus, if only flexural effects are significant: 

k k
k k k k

l

W l E I

δ �

� 3/     

  And:   

k kI l� 4
     

   Hence, the modified loading scale factor is: 

k k k kW E I l� / 2
     

   If only axial effects are significant: 

k k
k k k k

l

W l E A

δ �
� /     

  And:   

k kA l� 2
     

   Hence, the modified loading scale factor is: 

k k kW E A�      
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   When the self weight of the structure appreciably affects the behavior of the 
prototype, an essential condition is: 

k k k k
k k k

W g l

E g l

ρ �

�

/
/

3

     

   Thus, the linear scale factor is automatically fixed by the properties of the 
model material. When a linear scale factor larger than this is required, the den-
sity of the model material may be artificially increased by suspending weights 
from the model, or a centrifuge may be used to provide an increased gravita-
tional field. 

   When torsional and shearing effects are significant, an essential condition is: 

kυ � 1      

   To investigate the elastic behavior of flexible structures in which deflections 
are large and stress is not proportional to the applied loads, the two essential 
conditions are: 

k k kw E l� 2
    

  and:   

k k /k
k

f w l

E

�

�

2

    

  Then:   

k klδ �     

  And:   

k� � 1      

   The condition kW     �     kEkl
2 fixes the relationship between applied loads and 

elastic critical loads. If this condition is ignored and an arbitrary value is 
assigned to kW, it is possible to magnify model strains and deflections. However, 
changes in geometry of the model under load are no longer similar to those in 
the prototype, and errors in predicting elastic critical loads are incurred. 

   To investigate the elastic behavior of linear structures in which deflections 
are small, stress is proportional to the applied loads, and the principle of super-
position is valid, arbitrary values may be assigned to kW  and  kE : 

k k kW E l� 2
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  Then:   

k k /kf E� �
    

  And:   

k k k /kf l Eδ �
    

  since stress is proportional to strain in both model and prototype.   

   To investigate the plastic behavior of structures in which the deformations at 
failure have little influence on the structural behavior, the stress-strain curves 
for the prototype and model materials must be related as shown in  Figure 8.6   . 
Then:

kf � α
    

  and:   

k� � β     

  and:   

k klδ β�     

  and changes in geometry of the model under load are not similar to those in 
the prototype. In addition, the following scale factors must be observed:   

k k k

k
k k k k

k k

k k k

W f l

l

W g l

g l

w W l

�

�

�

�

�

�

2

2

3

2

α

α

α

ρ /
/

/
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   To investigate the plastic behavior of structures in which changes in geom-
etry of the prototype under load must be reproduced in the model, the stress-
strain curves for the prototype and model materials must be related as shown 
in  Figure 8.7   . Thus, the strains in prototype and model are equal at corre-
sponding stresses and: 

kf � α
    

  and:   

k� � 1     

  and:   

k klδ �     

  and:   

k kW l� α 2
    

  and:   

k k kg lρ α� /
    

  and:   

kw � α      

   To investigate composite structures, the model materials used must all have 
the same scale factors α and β. Alternatively, for reinforced and prestressed 
concrete structures, it is possible to use steel reinforcement for the model and 

Figure 8.7           
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ensure that the scale of forces in the reinforcement is correct 11  . Thus, if kS rep-
resents the scale factor for reinforcement areas in the prototype and model: 

α
β

k k f f
k E E

l S p m

S S m S m

2 �

� � �

/
/     

  And:   

k kS l� α β2/
     

   In addition, it is necessary for the model reinforcement to yield at a strain of 
�  S / β , where  �  S  is the strain in the prototype reinforcement at yield. 

    Example 8.3 

   A model is constructed of a prototype in which only axial effects are signifi-
cant. The model is constructed from the same material as the prototype, using 
the scale factors kl       �      20 and kA       �      100. Determine the required scale factor for 
loading if geometrical similitude is to be maintained during loading.  

    Solution 

k k
k k k k

l

W l E A

δ �
� /    

   Thus: 

k kW A�
� 100       

    Example 8.4 

   A model is constructed of a prototype, in which only flexural effects are sig-
nificant, using the scale factors kl       �      20 and kE       �      100. The model members 
are constructed to a distorted scale so that kI       �      1000 and kd       �      10. Determine 
the scale factors kW, kf, and k� if the required scale factor for deflection is 
kδ       �      10.  

    Solution 

k k k k kW l E Iδ � 3/
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   Thus: 

k

k k k k k

k k k

W

f W l d I

f E

�
�
�

�
�

�

1000 8
125

25

0 25

/

.

 /

/�

      

    Example 8.5 

   A model is constructed of a prototype, in which both axial and flexural effects 
are significant, using the scale factors kl       �      20 and kEI       �      2    �      10 6. Determine 
the required scale factors kW and kEA if geometrical similitude is to be main-
tained during loading.  

    Solution 

k k
k k k
k k k  

l

W l EI

W l EA

δ �

�

�

/
/

3

   

   Thus: 

k kEA W�
� 5000       

    Example 8.6 

   A model is constructed of an arch dam using a linear scale factor kl       �      40. 
Determine the stress scale factor kf if hydrostatic loads are produced in the 
model with mercury.  

    Solution 

kρ � 1 13 6/ .
   

  and:   

kg � 1
   

   Thus: 

k k /k
k k k

f W l

g l

�

�

�

2

40 13 6
ρ

/ .        
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    Supplementary problems 

    S8.1 Figure S8.1    shows a symmetrical, rigid frame bridge with a 20 ft wide 
deck. The bridge is designed for loading, which consists of a uniformly distrib-
uted load of intensity 220 lb/ft 2 of any continuous length, plus a knife-edge 
load of 2700 lb/ft placed anywhere on the deck  12  . 

Table S8.1        Displacements of the model  

   Section 3.0 3.2 3.4 3.6 3.8 4.0

   Displacements (i)  0.00 0.10 0.35 0.75 0.95 1.00
   Displacements (ii)  0.20 0.27 0.26 0.16 0.06 0.00

   A model is constructed to a scale of 1 in      �      2 ft, and the following displace-
ments are imposed: 

    (i)   a vertical displacement of 1 in on column base 40  
    (ii)   a vertical displacement of �0.2 in and a clockwise rotation of 0.2 radians on 

column base 30    

   The measured vertical displacements over the central span at intervals of 
0.2 �  span are shown in the  Table S8.1   , with upward displacements positive. 

   Determine the maximum value of M  30 that can be produced in the prototype 
by the applied loading and the value of V  30  that occurs simultaneously. 

    S8.2 A prototype shown in  Figure S8.2    (i) consists of an unsymmetrical, fixed-
ended, haunched beam, 12, with a concentrated load of 10 kips located at 
point 3 a distance of one-third its length from end 1. A model is constructed 
to a scale of 1 in      �      1 ft, as shown in Figure S8.2 (ii), with hinged ends. The 
following displacements are imposed on the model: 

    (i)   a clockwise rotation of 0.1 radians at end 1 �, which produces an anticlockwise 
rotation of 0.04 radians at end 2 �  and a downward deflection of 0.15 in at point 3 �   

Figure S8.1           
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    (ii)   an anticlockwise rotation of 0.1 radians at end 2 �, which produces a clockwise 
rotation of 0.05 radians at end 2 �  and a downward deflection of 0.12 in at point 3 �     

   Determine the bending moment produced at end 1 in the prototype by the 10 
kips load. 

    S8.3 An aluminum model with a modulus of elasticity of 10      �      10 6 lb/in 2 is 
constructed of a steel W section with a modulus of elasticity of 29      �      10 6 lb/
in2. The second moment of area of the W section is 5900 in 4 and of the model 
is 0.9 in 4. The linear scale factor adopted is lp / lm       �       kl       �      10. Determine the 
load scale factor,  kW, required if geometric similarity is to be maintained after 
loading the model (i.e., δ  p / δ  m       �       kδ       �       kl).

Figure S8.2           
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    S8.4 Figure S8.3    shows a pin-jointed frame with a vertical load of 10 kips 
applied to node 1. A model is constructed to a linear scale factor of 
lp / lm       �       kl       �      10. In the model, member 47 is shortened by 0.5 in and the 
vertical displacement of node 1 is 0.43 in. Determine the force in the prototype 
in member 47 caused by the 10 kip load. 

    S8.5 The symmetrical, cable-stayed bridge shown in  Figure S8.4    (i) consists of 
a continuous main girder, which is supported on rollers where it crosses the 
piers. The ties are anchored to the girder and the tops of the towers, and the 
dimensions of the prototype structure are indicated. The main girder has a sec-
ond moment of area Ib and a modulus of elasticity Eb. Each tie has a cross-
sectional area Ac  and a modulus of elasticity  Ec . 

   A model is constructed as shown at (ii). The stiffness of the ties is repre-
sented by equivalent cantilevers 13   of length l in, cut from the same sheet of 
Perspex and finished to the same section as the main beam. Axial effects in the 
beam and towers and flexural effects in the towers are neglected. The follow-
ing displacements are imposed: 

      (i)    strut 12 is shortened by 1 in, and the vertical displacements y  12 of the main girder 
are recorded  

     (ii)    strut 34 is shortened by 1 in, and the vertical displacements y  34 of the main girder 
are recorded  

    (iii)     a vertical displacement of �1 in is imposed at hinge 5 and the vertical displace-
ments y  5  of the main girder are recorded.    

   The measured vertical displacements, over the left half of the main girder, 
at intervals of 5 in, are shown in the  Table S8.2   , with upward displacements 
positive.

Figure S8.4           
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Table S8.2        Displacements of the main girder  

    x, in  0 5 10 15 20 25

    y  12, in  0.13 0.06 0 �0.06 �0.13 � 0.21 
    y  34, in  �0.05 �0.03 0 0.03 0.04 0.01
    y  5, in  �0.36 �0.18 0 0.18 0.37 0.59

   Derive the following: 

      (i)    the length of the equivalent cantilever,  l, in terms of the properties of the main 
beam and ties  

     (ii)   an expression for the bending moment at node 6, the center of the main girder  
    (iii)   the influence line ordinates for bending moment at the center of the main girder      
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                                                               9       Plastic analysis and design  

    Notation 

      A      cross-sectional area of a member 
  c  �      carry-over factor for plastic moment distribution 
  D      Degree of indeterminacy of a structure 
  E      Young’s modulus 
  fy      yield stress 
  I      second moment of area of a member 
  m      bending moment in a member due to a virtual load 
  mi      number of independent mechanisms 
  M      bending moment in a member due to the applied load 
  Mp      plastic moment of resistance of a member 
  ′Mp         plastic moment of resistance modified for axial compression 
  My      moment at which the extreme fibers of a member yield in flexure 
  M  max      maximum theoretical elastic moment 
  M  min      minimum theoretical elastic moment 
  Mr      residual moment 
  N      load factor against collapse due to proportional loading      �       Wu / W  
  Na          load factor against collapse due to alternating plasticity      �       Wa / W  
  Ns      load factor against incremental collapse equals      �       Ws / W  
  p      number of possible hinge positions 
  P      axial force in a member 
  S      elastic section modulus 
  V      vertical reaction 
  W      applied load 
  Wa      load producing collapse by alternating plasticity 
  Ws      load producing incremental collapse 
  Wu      ultimate load for proportional loading 
  Z      plastic section modulus      �       Mp / fy  
  δ      deflection 
  θ      relative rotation at a plastic hinge during motion of collapse mechanism 
  λ      shape factor      �       Z / S  
  φ      total rotation at a plastic hinge during loading    

    9.1     Introduction 

   The plastic method of structural analysis is concerned with determining the 
maximum loads that a structure can sustain before collapse. The collapse 
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load is known variously as the failure load, the ultimate load, and the limit 
load. A number of comprehensive textbooks dealing with plastic design are 
available  1   ,   2   ,   3   ,   4   ,   5  . 

   The plastic method is applicable to structures constructed with an ideal elastic-
plastic material that exhibits the stress-strain relationship shown in  Figure 9.1    (i). 
The moment-curvature relationship for any section of the structure is assumed 
to have the ideal form shown in  Figure 9.1  (ii). Thus, on applying a uniform 
sagging moment to a member the moment-curvature relationship is linear until 
the applied moment reaches the value of Mp the plastic moment of resistance of 
the section. At this stage, all material above the zero-strain axis of the section 
has yielded in compression and all material below has yielded in tension, and a 
plastic hinge has formed. Then the section can offer no additional resistance to 
deformation, and increase in curvature continues at a constant applied moment. 
In addition, in determining the collapse load of a structure, it is assumed that 
elastic deformations are negligible and do not affect the geometry of the struc-
ture. Thus, the structure behaves in a rigid-plastic manner with zero deformation 
until the formation of sufficient plastic hinges to produce a mechanism. 
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    9.2     Formation of plastic hinges 

   A fixed-ended beam is subjected to a uniformly distributed working load of 
total magnitude W, as shown in Figure 9.2   . The elastic distribution of bending 
moment in the member, drawn on the tension side of the member, is as shown 
at (i). The moment at the ends of the beam is twice the moment at the center, 
and, if the applied load is increased, at some stage the plastic moment of resist-
ance will be reached simultaneously at both ends of the member; the distribu-
tion of bending moment is as shown at (ii). Further increase in the applied load 
causes the two plastic hinges to rotate, while the moment at the ends remains 
constant at the value Mp . Thus, the system is equivalent to a simply sup-
ported beam with an applied load and restraining end moments of value Mp , 
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as shown at (iii). Finally, as the applied load is increased still further, a plastic 
hinge forms in the center of the beam, and the distribution of bending moment 
is as shown at (iv). The beam has now been converted to the unstable collapse 
mechanism shown at (v), and collapse is imminent under the ultimate load Wu  
The ratio of the collapse load to the working load is: 

W W Nu / �    

  where N is the load factor. Since the structure is statically determinate at the 
point of collapse, the collapse load is readily determined as:   

W M lu p� 16 /
   

   and this value is unaffected by settlement of the supports or elastically 
restrained end connections.   

    9.3     Plastic moment of resistance 

   After the formation of a plastic hinge in the section shown in  Figure 9.3   , the 
rectangular stress distribution shown at (i) is produced. Equating horizontal 
compressive and tensile forces: 

P P

f A f A
c t

y c y t

�

�′
   

Figure 9.2           
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MpMp Wu
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(iv)

(iii)

(ii)

(i)

Mp

Mp
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  where fy and ′fy     are the yield stresses in tension and compression (which may 
be assumed to be equal) and At and Ac are the cross-sectional areas in tension 
and compression. Thus, the plastic moment of resistance is:   

M f A lp y t a�
   

  where la is the lever arm and equals the distance between the centroids of At  
and Ac . Also:   

M f Zp y�
   

  where Z is the plastic section modulus. The ratio of the plastic moment of 
resistance to the moment producing yield in the extreme fibers is:   

M M f Z f S Z Sp y y y/ / /� � � λ
   

  where  λ  is the shape factor.   
   An axial force applied to the section shown in  Figure 9.4    reduces the value 

of the plastic moment of resistance that the section can develop. Assuming the 
axial force P is compressive, the rectangular stress distribution shown at (i) is 
produced after the formation of a plastic hinge with the cross-sectional area 

′Ac    resisting the axial force  P . Equating horizontal forces gives: 

P C T
f A f A f A

f A
y c y c y t

y c

� �

� � �

�

Σ Σ
′ ′ ′
′ ′

   

   and: 

′f A f Ay c y t�
   

At Pt

fy

f �y

Pc

Ac

la

Figure 9.3           
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   Thus, the modified plastic moment of resistance is: 

′ ′M f A lp y t a�
   

   where  ′la     is the distance between the centroids of areas  Ac  and  At . 

    Example 9.1 

   Determine the shape factor for the built-up steel beam shown in  Figure 9.5   .  

Ac
Pc

P

PtAt

A�c

f �y

f y

l�a

Figure 9.4           

8�

1�

1/2�

10
�

1/2�

1/
2�

2�

9�

Figure 9.5           

    Solution 

   The area of the section is: 

A � � � � � �

�

10 8 2 1 8 5 7 5
18 25 2

. .
. in    

   The height of the centroid is: 

y � � � � � �
�

( )/18.25
 in

80 5 2 9 63 75 5 25
4 56

. .
.    
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   The second moment of area of the section is: 

I � � � � � � � �

� � � �

80 100 12 2 4 12 63 75 72 12 80 0 46
2 4 46 63 75 0 71

2

2
/ / /. .

. . . 22

4309�  in    

   The smaller elastic section modulus is: 

S �

�

309 5 44
56 8 3

/
 in

.
.    

   The areas in tension and compression after the formation of a plastic hinge are: 

A At c�

� 9 125 2.  in    

   The zero strain axis is at a height above the base of: 

1 2 25 3 25� �. .  in    

   The centroid of  At  is at a height above the base of: 

( )/  in8 0 5 1 125 2 125 9 125 0 70� � � �. . . . .    

   The centroid of  Ac  is at a height above the base of: 

( )/  in4 9 75 2 9 3 125 6 375 9 125 8 42� � � � � �. . . . .    

   The lever arm is: 

la � �
�

8 42 0 7
7 72
. .
.  in

   

   The plastic section modulus is: 

Z � �

�

9 125 7 72
70 4 3

. .
.  in    

   The shape factor is: 

λ �
�

70 4 56 8
1 24

. .
.

/
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    Example 9.2 

   The T-section shown in  Figure 9.6    consists of a material that has a yield stress 
in compression 25% greater than the yield stress in tension. Determine the 
plastic moment of resistance when the section is subjected to (i) a bending 
moment producing tension in the bottom fiber and (ii) a bending moment pro-
ducing tension in the top fiber.  

12
�

1�

1�

12� 1.25fy

1.25 fy

yc

yc

xt
xt

Pt

Pt

Pc

fy

Pc

fy
(i) (ii)

Figure 9.6           

    Solution 

        (i)   The stress distribution, after the formation of a plastic hinge, is shown at (i). 
Equating horizontal forces:   

1 25 12 11 12 1. � � � �y yc c( )    

  and: 

yc � 0 85.  in    

  The position of the centroid of  At  is given by: 

xt � � � �

�

( )/
 in

11 5 65 1 8 0 075 12 8
4 87

. . . .
.    

  The lever arm is: 

la � �
�

4 87 0 425
5 295

. .

.  in    

  The plastic moment of resistance is: 

M f
f

p y

y

� �

�

5 295 12 8
67 6

. .
.    
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    (ii)   The stress distribution after the formation of a plastic hinge is shown at (ii). The 
depth of the compressive stress block is:   

1 25 12 11. y yc c� � �( )    

  and: 

yc � 10 2.  in    

  The position of the centroid of  At  is given by: 

xt � � � �

�

( )/
 in

12 1 3 0 8 0 4 12 8
1 24

. . . .
.    

  The lever arm is: 

la � �

�

1 24 5 1
6 34
. .
.  in    

  The plastic moment of resistance is: 

M f
f

p y

y

� �

�

6 34 12 8
80

. .

      

    9.4     Statical method of design 

   The statical method may be used to determine the required plastic modulus for 
continuous beams. 

   The continuous beam shown in  Figure 9.7    is first cut back to a statically deter-
minate condition and the applied loads multiplied by the load factor as shown 
at (i). The statical bending moment diagram for this condition is shown at (ii). 
The fixing moment line due to the redundants is now superimposed on the static 
moment diagram, as shown at (iii), so that the collapse mechanism, shown at (iv), 
is formed. Collapse occurs simultaneously in the two end spans, and the required 
plastic modulus is Mp     �   0.686M. An alternative fixing moment line is shown at 
(v) for a non-uniform beam section. Then Mp  1     �   0.5M and Mp  2     �   0.766M, and 
collapse occurs simultaneously in all spans, as shown at (vi). 

   A similar procedure may be adopted for determining the collapse load 
of a given structure. A bending moment distribution is drawn in which the 
given value of Mp is not exceeded and the collapse load is computed. A pos-
sible moment diagram for the two-span beam of  Figure 9.8    is shown at (i), and 
the computed collapse load is Wu     �   4Mp/l. This is equivalent to the system 
shown at (ii) and is clearly not a collapse mechanism, which indicates that the 
assumed moment diagram is safe. An alternative moment diagram is shown at 
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ω

l l l

Nω Nω Nω

M

Mp1

0.414l

0.439l

(i)

(ii)

(iii)

(iv)

(v)

(vi)

Mp
Mp

Mp2 Mp1
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(iii) and is equivalent to the collapse mechanism shown at (iv). The computed 
collapse load is Wu     �   6Mp/l and is the maximum possible value. Thus, col-
lapse loads computed by the statical method are either equal to or less than the 
correct values. That is, the statical method provides a lower bound on the col-
lapse load, and the correct collapse load is that producing a collapse mechanism. 

    Example 9.3 

   Determine the required plastic modulus in each span of the continuous beam 
shown in  Figure 9.9   . The collapse loads are indicated, and collapse is to occur 
in all spans simultaneously.  

V2V1

Mp1

Mp1 Mp2 Mp3

Mp2

Mp3

Mp1
Mp3

V3 V40.414I

16�

8k 8k 8k

16� 16�

(ii)

(i)

MpI

Figure 9.9           

    Solution 

   The collapse moment diagram is shown at (i), and the required plastic moduli are: 

M

M

M

p

p

p

1

3

2

8 16 12 8
192

0 686 8 16 12 8
132

� � �

�

� � � �

�

�

/
 kip-in

/
 kip-in

.

88 16 12 8 192 132 2
30

� � � �

�

/ ( )/
 kip-in    
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   The reactions at collapse may be obtained from the collapse mechanism 
shown at (ii) and are: 

V

V

V

1

2

3

8 2
4 0

8 192 132 16 12
8 31

8 0 31 132

�
�

� � � �
�

� � �

/
 kip

( )/( )
 kip

.

.

. //
 kip

 kip

( )
.

.
.

16 12
8 38

4 0 69
3 31

4

�
�

� �
�

V
      

    9.5     Mechanism method of design 

   The mechanism, or kinematic, method may be used to determine the plastic 
modulus required for the members of rigid frames  6   ,   7   and grids  8  . 

   The fixed-ended beam shown in  Figure 9.10    is assumed to collapse when the 
mechanism shown at (i) has formed. A virtual displacement δ is imposed on 
the mechanism, as shown at (ii), and the internal work equated to the external 
work. Thus: 

4M Wp uθ δ�
   

Mp

Wu

Wu

Mp

Mp

Mp

MpMp

Mp

Mp

3θ

4θ

2θ

21 3

θ θ

θ

Mp

δ

δ

I/4

Wu

Wu

MpMp

I

MpMp

(i)

(ii)

(iii)

(iv)

(v)

(vi)

Wu

Mp

Figure 9.10           
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   and: 

M W lp u� /8
   

   The moment diagram for this mechanism is shown at (iii) and is satisfactory, 
since Mp  is nowhere exceeded. 

   A similar procedure may be adopted for determining the collapse load of a 
given structure. A collapse mechanism is assumed, as shown at (iv), and the 
collapse load determined in terms of the plastic moment of resistance of the 
members. A virtual displacement is imposed on the mechanism, as shown at 
(v), and equating internal and external work gives: 

8M Wp uθ δ�
   

   and: 

W M lu p� 16 /
   

   The moment diagram for this assumed mechanism is shown at (vi) and is unsafe, 
since Mp is exceeded over the central portion of the beam. The maximum possi-
ble collapse load corresponds to the correct mechanism shown at (ii) and is: 

W M lu p� 8 /
   

   Thus, collapse loads computed by the mechanism method are either equal to 
or greater than the correct values. That is, the virtual work method provides 
an upper bound on the collapse load, and the correct collapse load is that pro-
ducing a moment diagram in which Mp  is  nowhere exceeded. 

   The correct location of plastic hinges is a prior requirement of the virtual 
work method of analysis. Hinges are usually formed at the positions of maxi-
mum moment, which occur at the ends of a member, under a concentrated 
load, and at the position of zero shear in a prismatic member subjected to a 
distributed load. In the case of two members meeting at a joint, a plastic hinge 
forms in the weaker member. In the case of three or more members meeting at 
a joint, plastic hinges may form at the ends of each of the members. Possible 
locations of plastic hinges are shown in  Figure 9.11   . 

Figure 9.11           
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   The position of the plastic hinge in a member subjected to a distributed load 
depends on the values of the fixing moments Mp  1 and Mp  2 at the ends of the 
member, as shown in  Figure 9.12   . Equating internal and external work for the 
virtual displacement shown at (ii): 

M M x l x M l l x Wp p p u1 2 3 2θ θ θ δ� � � � �/( ) /( ) /
   

   and: 

W M l M x M x M l x l xu p p p p� � � � �2 1 1 2 3( )/ ( )
   

   The value of  x  is such as to make  Wu  a minimum, or  ∂  Wu / ∂  x       �      0. Thus: 

l M M lx M M x M Mp p p p p p
2

1 3 1 3
2

1 22 0( ) ( ) ( )� � � � � �
   

   and the value of x may be determined in any particular instance. This value 
may also be readily determined by means of charts 4  . As a first approxima-
tion, the hinge may be assumed in the center of the member and subsequently 
adjusted if necessary when the collapse mechanism is known. 

   The position of the plastic hinge in a non-prismatic member subjected to a 
distributed load depends on the variation of the plastic moment Mx along the 
member in addition to the fixing moments. A fixed-ended beam, in which the 
plastic moment of resistance varies linearly with the distance from the end, is 
shown in  Figure 9.13   . The plastic hinge occurs at the point where the static 

θl/(l � x)

θθx/(l � x)

δ

Mp1

Mp1

Mp2

Mp2

Mp3
2 1

x

I

Wu

(i)

(ii)

Mp3

Figure 9.12           
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moment diagram touches the Mx diagram, as shown at (i). Equating internal 
and external work for the virtual displacement shown at (ii): 

W M l M x M x M l x l xu p p p px� � � � �2 1 1 2( )/ ( )
   

   and 

M M M M x lpx p p p� � �1 2 1( ) /
   

   Thus, substituting for Mpx and equating ∂  Wu / ∂  x to zero, the value of x may be 
obtained.

   The different types of independent mechanisms that may cause collapse of 
the structure shown in  Figure 9.11  are listed in Figure 9.14   . These may be clas-
sified as beam mechanisms Bl, B 2 , B 3 , B 4 , B 5 ;  sway mechanism S; gable mech-
anism G; and joint mechanisms J1, J2. In addition, collapse may occur through 
the combination of any of these independent mechanisms, such as ( B 4      �       J 2) 
and ( B 4      �       J 2      �       S). In the mechanism method of design, to determine the 
maximum required value for Mp, it is necessary to investigate all independ-
ent mechanisms and combinations that eliminate a hinge and thus reduce the 
internal work. To ensure that no combination has been overlooked, a bending 
moment diagram for the assumed collapse mechanism will show that Mp is 
nowhere exceeded when the assumed mechanism is the critical one. 

   An independent mechanism corresponds to a condition of unstable equi-
librium in the structure. A structure that is indeterminate to the degree D  
becomes stable and determinate when D plastic hinges have formed and the 
formation of one more hinge will produce a collapse mechanism. Thus, in a 
structure in which there are p possible hinge positions, the number of inde-
pendent mechanisms is given by: 

m p Di � �    

θl/(l � x)

θx/(l � x)
Mp1

Mp1

Mp1
Mp2

Mp2

Mp2

Mx

Wu

(i) (ii)

Mpx θ δ

Figure 9.13           
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    Example 9.4 

   The propped cantilever shown in  Figure 9.15    is fabricated from two 12 in      �      1 in 
flange plates and a thin web plate, which may be neglected in determining the 
plastic moment of resistance. The yield stress of the flange plates is 36     kips/in 2 . 
Determine the collapse load.  

(B4 � J2 � S)

(B4 � J2)

J2J1

G

S

B5

B2
B4

B3
B1

Figure 9.14           
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    Solution 

   The plastic moments of resistance at end 1, end 2, and at a section a distance x  
ft from 1 are: 

M f
f

M f
f

M f x

p y

y

p y

y

px y

1

2

12 12
144

24 12
288

12 12 3 8

� �

�

� �

�

� �( / )
   

   Equating internal and external work for the mechanism shown at (i): 

M x l x M l l x W W xp px u u2 2 2θ θ δ θ/( ) /( ) / /� � � � �
   

   and: 

W f x x xu y� � �288 32 32( 3 )/ ( )
   

   The minimum value of  Wu  is obtained by equating  ∂  Wu / ∂  x  to zero. Thus: 

3 32 32 2 32 3

3 64 1024 0

10 67

2

x x x x

x x

x

( ) ( )( )

 ft

� � � �

� � �

� .    

   Then: 

Wu � � � � �

�

288 36 64 10 67 12 21 33

243

/( )

 kips

. .

     

Mp2

Mp2

Mp2

Mp1

Mpx

Mpx

Wu 12
x

θl/(l � x)

θx/(l � x) θ

25�
13�

l � 32�

(i) (ii)

δ

Figure 9.15           
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    Example 9.5 

   The rigid frame shown in  Figure 9.16    has columns with a plastic section modu-
lus of 15.8     in 3 and a beam with a plastic section modulus of 30.8     in 3. The shape 
factor of both sections is 1.125, and the yield stress of the steel is 50     kips/in 2.  
Neglecting the effects of axial loads and instability, determine the ratio of  W to 
H for all possible modes of plastic collapse of the frame. Determine the values 
of W  and  H  when  W       �      1.8      H .  

40�

20
�

1 4

2 3

W

B (B � S)

W
H

Hθ θ
θ

θ

θ

θ θ θ

2θ
2θ

2θ

S

Figure 9.16           

    Solution 

   The plastic moment of resistance of the columns is: 

Mp � � �

�

15 8 1 125 50 12

74 1

. .

.

/

 kip-ft    

   The plastic moment of resistance of the beam is: 

M M
M

pb p

p

�

�

30 8 15 8
1 95

. .
.

/

   

   The number of independent collapse mechanisms is: 

m p Di � �
� �
�

5 3
2    

   and these are shown in the figure together with the combined mechanism 
(B       �       S). The hinge rotations and displacements of mechanism ( B       �       S) are 
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obtained as the sum of the rotations and displacements of mechanism B and 
mechanism S. Thus, the hinge at 2 is eliminated since the rotation there is θ  
closing in the case of mechanism B and θ opening in the case of mechanism 
S Similarly, the hinge at 3 rotates 2 θ closing, since the rotation there is θ  
closing in the case of mechanism B and θ closing in the case of mechanism S . 
In addition, the external work done is the sum of the external work done in 
the mechanism B and mechanism S cases since the displacements of the applied 
loads are the sum of the corresponding displacements in the mechanism B and 
mechanism S  cases. 

   For mechanism  B : 

2 2 1 95 20

0 295

M M W

W M

p p

p

� � �

�

.

./
   

   For mechanism  S : 

4 20

0 20

M H

H M

p

p

�

�/ .
   

   For mechanism (B      �      S):

4 2 1 95 20 20

0 396

M M W H

W M H M

p p

p p

� � � �

� �

.

./ /
   

   These three expressions may be plotted on the interaction diagram shown in 
Figure 9.17   . The mode of collapse for a particular ratio of W to H is deter-
mined by plotting a line with a slope equal to this ratio. The mechanism 
expression that this line first intersects gives the collapse mode. 

0.2

0.2

0.4

0.4

B
�

S

W
�

 1
.8

H

B

S

W
/M

p

H/Mp

Figure 9.17           
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   When  W       �      1.8      H,  mechanism ( B       �       S ) controls and: 

W H

H

� � �

�

0 396 74 1

2 8

. .

.    

   Thus: 

H � 10 48.  kips    

   and: 

W � 18 85.  kips      

    Example 9.6 

   The two-bay rigid frame shown in  Figure 9.18    is fabricated from members of a 
uniform section having a shape factor of 1.15 and a yield stress of 50    kips/in2 . 
Neglecting the effects of axial loads and instability, determine the required plas-
tic section modulus to provide a load factor against collapse of N     �   1.75.

12
�

12� 12� 6� 6�

2k
2k 4k

2 7

2N 4N

2N

3 8 5

1 4 6

θ

θ θ

θ

θ

θ θ

θ θ θ

θ θ

θ
θθ

θθ

θ

θ θ

θ
θ

θ

θ
2θ

2θ

2θ 2θ
2θ

2θ

2θ

B2

2θ

2θ

B1

S

(S � B1 � J ) (S � B 1 � J � B2)

(S � B 1)

J

Figure 9.18           
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    Solution 

   The number of independent collapse mechanisms is: 

m p Di � �
� �
�

10 6
4    

   and these are shown in the figure together with a number of combined 
mechanisms.

   For mechanism  B 1: 

4 12 2

6

M N

M N

p

p

� �

�  kip-ft
   

   For mechanism  B 2: 

4 6 4

6

M N

M N

p

p

� �

�  kip-ft
   

   For mechanism  S : 

6 12 2

4

M N

M N

p

p

� �

�  kip-ft
   

   For mechanism J:

3 0Mp �
   

   For mechanism (B1      �      S):

8 24 24

6

M N N

M N

p

p

� �

�  kip-ft
   

   For mechanism (B1      �      S  � J):

9 24 24 0

5 33

M N N

M N

p

p

� � �

� .  kip-ft
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   For mechanism (BI      �      B2      �      S  � J):

11 24 24 24 0

6 55

M N N N

M N

p

p

� � � �

� .  kip-ft
   

   and this mechanism controls, since Mp is nowhere exceeded in the structure, as 
is shown by Example 9.11. The required plastic section modulus is: 

S � � � �

�

6 55 1 75 12 50 1 15
2 4 3
. . .
.

/( )
 in      

    Example 9.7 

   The members of the rigid frame shown in  Figure 9.19    have the relative plas-
tic moments of resistance shown ringed, and the frame is to collapse under 
the loading shown. Assuming as a first approximation that plastic hinges 
occur either at the joints or at the mid-span of the members and neglecting the 
effects of axial loads and instability, determine the required plastic moments of 
resistance.  

    Solution 

   The number of independent collapse mechanisms is: 

m p Di � �
� �
�

16 9
7    

   and these are shown in the figure together with a number of combined 
mechanisms.

   For mechanism  B 1: 

4 10 10 2

12 5

M

M

p

p

� �

�

/

 kip-ft.
   

   For mechanism  B 2 and  B 3: 

8 20 10 2

12 5

M

M

p

p

� �

�

/

 kip-ft.
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   For mechanism  S 1: 

4 3 12

9

M

M

p

p

� �

�  kip-ft
   

   For mechanism  S 2: 

12 9 15

11 25

M

M

p

p

� �

� .  kip-ft
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20k 20k
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20�
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�
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�
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θ
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Figure 9.19           



Plastic analysis and design 421

   For mechanism  J 1: 

5 0Mp �
   

   For mechanism  J 2: 

7 0Mp �
   

   For mechanism ( S 1      �       S 2      �       B 2      �       J 1): 

19 36 135 100 0

14 25

M

M

p

p

� � � �

� .  kip-ft
   

   For mechanism ( S 1      �       B 1): 

6 36 50

14 33

M

M

p

p

� �

� .  kip-ft
   

   For mechanism ( S 1      �       S 2      �       B 1      �       B 2      �       B 3      �       J 1      �       J 2): 

26 36 135 50 100 100

16 2

M

M

p

p

� � � � �

� .  kip-ft
   

   and this mechanism controls as the plastic moments of resistance are nowhere 
exceeded, as shown by Example 9.12.  

    Example 9.8 

   The members of the Vierendeel girder shown in  Figure 9.20    have their relative 
plastic moments of resistance shown ringed. The shape factor of the section 
is 1.15, the yield stress of the steel is 50     kips/in 2, and the required load factor 
against collapse is N       �      1.75. Neglecting the effects of axial loads and instabil-
ity, determine the required elastic section moduli.  

    Solution 

   The number of independent collapse mechanisms is: 

m p Di � �
� �
�

16 9
7    
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   and these are shown in the figure together with a number of combined 
mechanisms.

   For mechanism  S 1:  

10 10 10

10

M N

M N

p

p

� �

�  kip-ft
   

   For mechanism S2:

8 10 10

12 5

M N

M N

p

p

� �

� .  kip-ft
   

   For mechanism S3:

10 20 10

20

M N

M N

p

p

� �

�  kip-ft
   

   For mechanism (S1      �      S2      �      2J):

10 100 100 0

20

M N N

M N

p

p

� � �

�  kip-ft
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Figure 9.20           
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   For mechanism (S3      �      2J):

10 200 0

20

M N

M N

p

p

� �

�  kip-ft
   

   and this mechanism controls since the plastic moments of resistance are 
nowhere exceeded, as shown by Example 9.13. 

   The required elastic section modulus for the central post members is: 

S � � � �

�

20 1 75 12 50 1 15

7 30 3

. .

.

/( )

 in      

    Example 9.9 

   The ridged portal frame shown in  Figure 9.21    is fabricated from members 
of a uniform section and is to collapse under the loading shown. Neglecting 
the effects of axial loads and instability, determine the plastic moment of 
resistance.  

    Solution 

   The independent and combined mechanisms are shown in the figure. In the 
case of the gable mechanism, it is necessary to construct the displacement dia-
gram shown to determine the relative rotations of the members. A rotation θ  
is imposed on member 23, and 4 moves a horizontal distance 44 �. The point 
3 must move perpendicularly to the original directions of 23 and 34, and the 
point 3 �  is obtained. The rotation of member 45 is: 

44 20 2045′/ /l �

�

θ

θ    

   The rotation of member 34 is: 

′ ′3 4 34/l � θ    

   Thus, the rotation of the hinge at 4 is 2 θ  and of the hinge at 3 is 2 θ .  
   For mechanism  B : 

4 10 2

5

M W

M W

p

p

� �

�
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   For mechanism  S : 

4 20

5

M W

M W

p

p

� �

�
   

   For mechanism  G : 

6 10 2 10 2

6 67

M W W

M W

p

p

� � � �

� .
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   For mechanism ( G       �       S ): 

8 40 20

7 5

M W W

M W

p

p

� �

� .
   

   For mechanism ( G       �      2 B ): 

10 40 40

8

M W W

M W

p

p

� �

�
   

   For mechanism ( G       �      2 B       �      3 S ): 

16 40 40 60

8 75

M W W W

M W

p

p

� � �

� .
   

   and this mechanism controls since this value of  Mp  is nowhere exceeded.  

    Example 9.10 

   The single-bay multi-story frame shown in  Figure 9.22    consists of n storys 
each of height l. The plastic moment of resistance of each beam is Mp, and 
the columns are infinitely rigid. A load factor of N  1       �      1.75 is required against 
collapse due to vertical loads only, and a load factor of  N  2       �      1.4 is required 
against collapse involving wind loads. Determine the value of n, in terms of 
W / H , for all the possible modes of collapse of the frame.  

    Solution 

   The beam, sway, and combined mechanisms are shown in the figure. 
   For mechanism  B : 

4

4

7

1

1

M N Wl

M N Wl

Wl

p

p

�

�

�

/

/16    

   For mechanism  S : 

2 1 2 1 2

1 1 1 2 2

2

2

2

nM N lH n n

N lH n n n

N lH

p � � � � � �

� � � � �

�

{ ( ) / }

( ){ ( )}/ / ]

�

[

nn

M N lHn

lHn

p

2

2

2

4

5 6

/

/

/16

�
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   For mechanism ( B       �       S ): 

4 2

2 8

2 8 2 16

2 2
2

2

nM N Wln N lHn

M N l W Hn

l W Hn

p

p

� �

� �

� �

/

( )/

( )/.    

   Thus, mechanism B controls when n       	       W /2 H; mechanism S controls when 
n       �      2 W / H ; and mechanism ( B       �       S ) controls when  W /2 H       	       n       	      2 W / H .   

    9.6     Plastic moment distribution 

   The plastic moment distribution, or moment balancing, method 9  ,  10   may be used 
to determine the bending moment diagram for an assumed collapse mechanism. 
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The assumed mechanism is the critical mechanism when the plastic moment of 
resistance is nowhere exceeded in the structure. The method may also be used 
as a direct method of designing a structure subjected to several loading combi-
nations9  . As the distribution proceeds simultaneously for all loading combina-
tions, suitable plastic moments of resistance may be assigned to each member in 
the structure. In addition, the method is particularly suitable for the design of 
grids, in both the no-torsion 11   and torsion 12   ,   13   cases. An alternative approach 
to the design of grids is the yield line analysis technique 14  . 

l

W

2

3

θ θ

2θ

1

(i)

θ θ

(ii)
1 4

2 3W

l

Figure 9.23           

   The sign convention adopted for the bending moments in plane frames is 
that clockwise end moments acting from the support on the member are posi-
tive and moments within a member that produce tension on the bottom fibers 
of the member are positive. Knowledge is required of the equations of equilib-
rium for a structure, and these may be obtained from  Figure 9.23   . The equi-
librium equation for the beam shown at (i) may be obtained by considering it 
to deform as the beam mechanism indicated. Equating internal and external 
work, the equilibrium equation is given by: 

M M M Wl12 3 212 2� � � /    

   The equilibrium equation for the frame shown at (ii) is obtained by equating 
internal and external work for the sway mechanism indicated and: 

� � � � �M M M M Wl12 21 34 43    

   The equilibrium equation for any joint in a structure is that the moments in 
the members meeting at the joint must sum to zero. 

   To determine the bending moment diagram for a particular collapse 
mechanism, the known plastic moments of resistance are first inserted at the 
hinge positions. The remaining moments are selected arbitrarily to satisfy 
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the beam and sway equations of equilibrium. In general, these initial moments 
will not be in equilibrium at the joints, and the balancing moments required 
may be distributed to the members at a joint in any convenient proportions—
the stiffness of the members is immaterial. The carry-over factors employed 
must ensure that the beam and sway equations of equilibrium remain satisfied. 
The carry-over factors for a beam are derived as shown in  Figure 9.24    (i) and 
are:

′

′

′

′

c

c

c

c

23
1

2

21

13
1

2

12

0

0

�

�

� �

�    

   The carry-over factor for a column is derived as shown at (ii) and is: 

′c21 1� �    

   Alternatively, the carry-over may be made to adjacent columns in any conven-
ient proportions, and the sum of the carry-over moments must equal the distri-
bution moment with change of sign. 

   The sign convention adopted for the bending moments and torsions in grids 
is given in Section 7.13. A sway equation may be developed for each unsup-
ported node, and the initial moments are selected to satisfy these equations 
and the hinge positions of the assumed collapse mechanism. The balancing 
moment required at any node may be distributed to the members at the node 
in any convenient way, and any moment or torque distributed to one end of a 
member is carried over to the other end with sign reversed. 

    Example 9.11 

   Determine the bending moments at collapse in the rigid frame shown in 
Figure 9.18 .  
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Figure 9.24           
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    Solution 

   In Example 9.6 it is shown that mechanism ( B       �       B 2      �       S       �       J) controls, and the 
required plastic moment of resistance is: 

Mp � � �

�

6 55 1 75 12

138

. .

 kip-in    

   The equilibrium equations are obtained by considering the independent 
mechanisms.

   For mechanism  B 1: 

� � � � � � � �M M M23 7 322 12 2 1 75 12 504.    

   For mechanism  B 2: 

� � � � � � � �M M M36 8 532 6 4 1 75 12 504.    

   For mechanism  S : 

  � � � � � � � � � � �M M M M M M12 21 34 43 56 65 12 2 1 75 12 504.    

   The initial moments are: 

M M

M

M

M

M

M

M

M

7 32

8

53

12

43

65

23

35

138

504 3 138

90

504

�

�

�

� �

� �

� �

�

� � � �

�

� � � 33 138

90

504 3 138 3

30

21 34

56

�

�

� � �

� �

� � �

�

M M

M

( )/

   

   These are inserted in  Table 9.1   , and the distribution proceeds and the final 
moments are obtained as shown.  
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    Example 9.12 

   Determine the bending moments at collapse in the rigid frame shown in 
Figure 9.19 .  

    Solution 

   In Example 9.7 it is shown that mechanism ( S 1      �       S 2      �       B 1      �       B 2      �       B 3      �       J 1      �       
J2) controls, and the required plastic moments of resistance are 194 kip-in and 
389 kip-in. 

   For mechanism  B 1:  

� � � �M M M34 9 432 600    

   For mechanism  B 2: 

� � � �M M M25 10 522 1200    

   For mechanism  B 3: 

� � � �M M M57 11 752 1200    

   For mechanism  S 1: 

� � � � �M M M M23 32 45 54 432    

   For mechanism  S 2: 

� � � � � � �M M M M M M12 21 56 65 78 87 1620    

Table 9.1        Plastic moment distribution in Example 9.11  

   Joint  1   4   6 2  3 5
   Moment 12 43 65 21 23 7 32 34 35 8 53 56

   Initial moments   �138 �138 �138 �30 �90 138 138 �30 �90 138 138 � 30 
   Distribution  120  
   Sway equilibrium  �12 � 108 

   Final moments    �138 �138 �138 90 �90 138 138 �42 �90 138 138 � 138 
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   The initial moments are: 

M M

M

M M

M

M

M

M

M

M

M

9 43

45

10 52

11

75

78

12

65

87

23

194

389

�

� �

�

�

�

�

� �

� �

� �

� �

�

� �� �

� �

� �

�

� � �

� � �

�

�

M

M

M M

M

54

32

21 56

432 194 3

79 33

1620 4 389 2

32

( )/

( )/

.

225 57

34

1200 3 389

33

600 3 194

18

� �

� � �

�

� � � �

�

M

M

   

   These are inserted in  Table 9.2   , and the distribution proceeds and the final 
moments are obtained as shown.

Table 9.2        Plastic moment distribution in Example 9.12  

   Joint 1   6    8 3 4
   Moment 12  65  87  32  34 9 43 45

   Initial moments   �389 �389 �389 �79 �18 194 194 � 194 
   Distribution     97     
   Sway equilibrium          

   Final moments   �389 �389 �389 18 �18 194 194 � 194 
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   Joint      2 5 7
   Moment 21 23 25  10  52 56 54 57  11  75 78

   Initial moments   �32 �79 �33 389 389 �32 �80 �33 389 389 � 389 
   Distribution 144             
   Sway equilibrium          �144 �97     

   Final moments  112 �72 �33 389 389 �176 �177 �33 389 389 � 389 

    Example 9.13 

   Determine the bending moments at collapse in the Vierendeel girder shown in 
 Figure 9.20 .  

    Solution 

   In Example 9.8 it is shown that mechanism ( S 3      �      2 J) controls, and the 
required plastic moments of resistance are: 

   For mechanism  S 1: 

M M34 43 1050� �    

   For mechanism  S 2: 

M M32 23 1050� �    

   For mechanism  S 3: 

M M21 12 2100� �    

   The initial moments are: 

M M

M

M M

M

M

12 11

23

22 33

21

32

840

420

840 2100

1260

1

� �

� �

� �

� � �

� �

� �

� �

�

�

� �

0050 840

210

1050 2
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34 43

�

�

�

�

�

M M

/
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   These are inserted in  Table 9.3   , and the distribution proceeds and the final 
moments are obtained as shown.  

Table 9.3        Plastic moment distribution in Example 9.13  

   Joint 1 2 3 4
   Moment 11� 12 21 22� 23 32 33� 34 43 44�  

   Initial moments  840 �840 �1260 420  840  210 420  525  525 � 525 
   Distribution       �840 �315
   Sway equilibrium        315    � 315 

   Final moments  840 �840 �1260 420  840  210  �420 210 840 � 840 

    Example 9.14 

   Determine the bending moments at collapse in the no-torsion grid shown in 
Figure 9.25   . All the members of the grid are of uniform section, and collapse is 
to occur under the loading shown.  

10� 10� 10� 10�

10�

10�

10�

10�

1

1

2

3 4

2 4
5

100

x

y

(i)

Figure 9.25           

    Solution 

   The assumed collapse mechanism is shown at (i), and, equating internal and 
external work: 

4 2 2 4 100 20 2

250

� � � � � �

�

M M

M

p p

p  kip-ft
   

   The sway equations are obtained by considering a unit vertical deflection at 
nodes 3, 4 and 5. 
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   For mechanism  S 1: 

M M M34 43 31 0� � �    

   For mechanism  S 2: 

M M M M M45 54 42 34 432 2 0� � � � �    

   For mechanism  S 3 :

� � �M M45 54 250    

   Due to the symmetry of the grid, distribution is required only in beams 14 and 
25, and the initial moments are: 

M M

M

M

M

M

43 54

45

31

34

42

250

250 250

0

0

250

250 500 500

250

�

� �

� �

�

�

�

� � � �

� �    

   These are inserted in  Table 9.4   , and the distribution proceeds and the final 
moments are obtained as shown.   

Table 9.4        Plastic moment distribution in Example 9.14  

   Beam 14 25

   Joint   3 4  4 5
   Moment 31  34  43 42 45 54

   Initial moments 0 250 �250 �250 0 � 250 
   Distribution �125 �125
   Sway equilibrium      250

   Final moments, kip-ft   �125 125 �250 0 0 � 250 

    9.7     Variable repeated loads 

   The collapse analysis of the preceding sections has been based on the assumption 
of proportional applied loads. That is, all the applied loads act simultaneously and 
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are continuously increased in a constant ratio until collapse occurs. In practice, 
horizontal applied loads due to wind and seismic effects may reverse in direction 
and may be applied in a random manner. 

2 3

1 4

2l
(i)

l

W

θ
θ

Wu

Figure 9.26           

   The uniform two-hinged portal frame shown in  Figure 9.26    is subjected 
to a working load W applied horizontally at the top of the columns. If W is 
increased continuously to the value Wu the frame collapses as in the mecha-
nism shown at (i). The required plastic moment of resistance is: 

M W lp u� /2
   

   and the load factor against collapse is  N       �       Wu / W.  
   When the applied load may act in any direction, as shown in  Figure 9.27   , and 

the frame is subjected to the loading cycle shown at (i), (ii), (iii), and (iv), col-
lapse will occur under a load Wa. At this value of the load, yielding has just been 
produced in the outer fibers of the frame at sections 2 and 3 at stage (ii) of the 
cycle. When the load is reversed, as at stage (iv), yielding is again just produced 
at sections 2 and 3 but in the opposite sense. Thus, sections 2 and 3 are subjected 
to alternating plasticity, and failure will occur, due to brittle fracture at these sec-
tions, after a sufficient number of loading cycles. The required yield moment is: 

M W l
M

y a

p

�

�

/
/
2
λ

   

   and the load factor against failure due to alternating plasticity is: 

N W Wa a� /    

   For the frame to just collapse under an alternating load Wa       �      Wu the required 
plastic moment of resistance is: 

M W lp u� λ/2
   

   which is greater than that required for proportional loading. 
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   Under a general system of random loads, a plastic hinge may be produced 
at a section in the structure at one stage of the loading cycle, and yield in the 
opposite sense may be produced at the same section at another stage. The 
moment-curvature relationship for these two stages at this section is as shown 
by the solid lines in  Figure 9.28   . 

1

(i) (ii) (iii) (iv)

2

2l

l

3

4

W

Wa Wa

My �My My

�My

Figure 9.27           
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Mmax

Mr

Figure 9.28           

   Thus, in general, the total range of bending moment that a section can sus-
tain is 2 My. If the maximum theoretical elastic moment applied to the section 
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exceeds Mp then, on unloading, an elastic change in bending moment will 
occur and a residual moment will remain at the section of: 

M M Mr
p� �max

   

   where Mr is the residual moment and M  max is the maximum theoretical elastic 
moment for the worst loading combination. Hence: 

M M M
M

y

p

max min

/
� �

�

2
2 λ    

   where Mmin is the minimum elastic moment for the worst loading combination. 
For an ideal elastic-plastic material and members with unit shape factor: 

M M Mp
max min� � 2

   

   The uniform frame subjected to the proportional loading shown in  Figure 9.29    
will collapse as the mechanism shown at (i), and the required plastic moment 
of resistance is: 

M W lp u� 0 75.
   

2 3

1 4

2l
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W
2W

Wu 2Wu 2θ

2θ

Figure 9.29           

   When the loads shown in  Figure 9.30    are applied in a random manner and reach 
full magnitude independently, failure will occur under the loads  Wa due to alter-
nating plasticity. The magnitudes of the elastic bending moments due to each 
load applied independently are shown in  Table 9.5   , and the maximum range in 
moments at sections 2, 3, and 5 are obtained. The sign convention adopted is 
that moments producing tension on the inside of the frame are positive. 

   Thus, at sections 2 and 3: 

11 8 2

2

11 16

W l M

M

M W l

a y

p
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�

�

λ
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   The loading cycle causing failure at section 2 is shown at (i), (ii), (iii), and (iv). 
For the frame to just fail under the random loads Wu and 2 Wu and with a 
shape factor of 1.15, the required plastic moment of resistance is: 

M W

W l

p u

u

�

�

12 65 16

0 79

.

.

/

   

   which is greater than that required for proportional loading. 
   In practice, because of the dead weight of the structure, some proportion of 

the vertical load must be continuously applied, and this significantly increases 
the load factor against failure due to alternating plasticity 15   ,   16   ,   17   ,   18  .  Table 9.6    
gives the magnitudes of the elastic bending moments when half of the vertical 
load remains permanently in position. 

   Thus, at sections 2 and 3: 

19 16 2

2

W l M

M

a y

p

/

/

�

� λ
   

   The loading cycle causing failure at section 2 is shown in  Figure 9.31   . For 
the frame to just fail under loads of Wu and 2 Wu, and with a shape factor of 
1.15, the required plastic moment of resistance is: 

M W lp u� 0 68.
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(i) (ii) (iii) (iv)
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2l
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35

4
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Wa Wa
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Figure 9.30           

Table 9.5        Elastic moments for the frame shown in Figure 9.30  

   Loading M  2 M  5 M  3  

   2 Wa  vertical   � 3 Wa l  �8 5Wa l  �8 � 3 Wa l  � 8 
    Wa  horizontal   Wa l  �2 0 �  Wa l  � 2 
    �  Wa  horizontal   �  Wa l  �2 0 Wa l  � 2 

   Maximum moment   Wa l  �2 5Wa l  �8 Wa l  � 2 
   Minimum moment   � 7 Wa l  �8 0 � 7 Wa l  � 8 

   Moment range  11 Wa l  �8 5Wa l  �8 11Wa l  � 8 
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   Thus, proportional loading is the more critical condition. 
   When the loads applied to a structure are random but nonreversible, col-

lapse will occur under a load Ws. The application of some combination of 
the applied load to a magnitude Ws results in the formation of plastic hinges 
at some sections. However, insufficient hinges are formed to produce a col-
lapse mechanism. The removal of this loading combination produces elastic 
changes in the bending moments and a residual bending moment pattern in the 
structure. The application of another loading combination to a magnitude Ws  
results in a moment pattern that, combined with the residual moment pattern, 
causes plastic hinges at some sections. Again, insufficient hinges are formed to 
produce a collapse mechanism. However, if the hinges produced by the two 
loading combinations are such that a collapse mechanism would be produced 
if they all occurred simultaneously, repetitions of this loading cycle will pro-
duce eventual collapse as regular increments of plastic yield occur during each 
cycle. Thus, the resulting deformed shape is the same as a collapse mechanism, 
and the correct mode of incremental collapse may be obtained by investigating 
each possible independent and combined mechanism. The application of the 
loading combinations to a magnitude less than Ws results after a few cycles 
in a residual stress pattern such that the applied loading causes purely elastic 
changes in the moments and the structure is said to have shaken down. The 
load factor against failure due to incremental collapse is: 

N W Ws s� /    

Table 9.6        Elastic moments for the frame shown in Figure 9.30 with 
half of the vertical load permanently in position  

   Loading M2 M5 M3  

    Wa  vertical   � 3 Wa l  �16 5Wa l  �16 � 3 Wa l  � 16 
    Wa  vertical    �       Wa  horizontal  5 Wa l  �16 5Wa l  �16 � 11 Wa l  � 16 
    Wa  vertical    �       Wa  horizontal   � 11 Wa l  �16 5Wa l  �16 5Wa l  � 16 

   Maximum moment  5 Wa l  �16 5Wa l  �8 5Wa l  � 16 
   Minimum moment   � 7 Wa l  �8 5Wa l  �16 � 7 Wa l  � 16 

   Moment range  19 Wa l  �16 15Wa l  �16 19Wa l  � 16 

(i) (ii) (iii) (iv)

Wa

Wa

Wa
2Wa Wa Wa

Figure 9.31           
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   and the criteria for shake-down to just occur is: 

M M M

M M M

r
p

r
p

� �

� � �

max

min
   

   The residual bending moment pattern for any assumed mode of collapse 
must satisfy the virtual work equilibrium equations with the external work set 
equal to zero, as no applied loads are acting. Thus, for the span 12 of the con-
tinuous beam shown in  Figure 9.32    (i): 

� � � �M M Mr r r
1 3 22 0

   

   where moments producing tension in the bottom fibers are regarded as posi-
tive. For the frame shown in  Figure 9.32  (ii): 

� � � � �M M M Mr r r r
1 2 3 4 0

   

   where moments producing tension on the inside of the frame are regarded as 
positive.

1 2

3

(i) (ii)

1 4

32

Figure 9.32           

    Example 9.15 

   Determine the plastic moment of resistance required for the uniform frame 
shown in  Figure 9.33    if incremental collapse is just to occur under the random 
loading shown.  

    Solution 

   The magnitudes of the elastic bending moments due to each load applied inde-
pendently are shown in  Table 9.7   , and the maximum range in moments at sec-
tions 2, 3, and 5 are obtained. 

   For incremental failure in the beam mode shown at (i): 

M M

M M

M M

r
p

r
p

r
p

2

3

5

90

210

150

� � �

� � �

� �
   



Plastic analysis and design 441

   Substituting in the beam equilibrium equation: 

90 2 150 210 4

150

� � � �

�

M

M

p

p  kip-in
   

   For incremental failure in the sway mode shown at (ii): 

M M

M M

r
p

r
p

2

3

120

210

� �

� � �
   

   Substituting in the sway equilibrium equation: 

120 210 2

165

� �

�

M

M

p

p  kip-in
   

   For incremental failure in the combined mode shown at (iii): 

M M
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p
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p
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5
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4k
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2θ

(i) (ii) (iii)

Figure 9.33           

Table 9.7        Elastic moments in Example 9.15  

   Loading M2 M5 M3  

   4 kip vertical   �90 150 � 90 
   2 kip horizontal  120 0 � 120 

   Maximum moment  120 150 0
   Minimum moment   �90 0 � 210 
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   Substituting in the combined equilibrium equation: 

2 210 2 150 4

180

� � � �

�

M

M

p

p  kip-in
   

   The critical sections for alternating plasticity are at 2 and 3 and: 

210 2

2

121

�

�

�

M

M

M

y

p

p

/

 kip-in

λ

   

   Thus, incremental failure in the combined mode controls, and the loading 
cycle causing failure is shown in  Figure 9.34   .  

(i) (ii) (iii) (iv)

4k 4k

2k

Figure 9.34           

    Example 9.16 

   Determine the plastic moment of resistance required for the uniform frame 
shown in  Figure 9.35    if collapse is just to occur under the random loading 
shown. The members of the frame have a shape factor of unity. 

1k

1k 1k

1k

1k

1

(i)

2 5

15�

10
�

3

4

(ii) (iii) (iv)

Figure 9.35           
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   The magnitude of the elastic bending moments due to each load applied 
independently are shown in  Table 9.8   , and the maximum range in moments at 
sections 1, 2, 3, 4, and 5 are obtained. 

Table 9.8        Elastic moments in Example 9.16  

   Loading M1 M2 M5 M3 M4  

   1 kip distributed  5.63 �11.25 11.25 �11.25 5.63
   1 kip to right   �36.00 24.00 0.00 �24.00 36.00
   1 kip to left 36.00  – 24.00 0.00 24.00 � 36.00 

   Maximum moment  41.63 24.00 11.25 24.00 41.63
   Minimum moment   �36.00 �35.25 0.00 �35.25 � 36.00 

   Moment range, kip-in  77.63 59.25 11.25 59.25 77.63

   Collapse occurs under proportional loading in the sway mode, and the 
required plastic moment of resistance is: 

Mp �

�

120 4

30

/

 kip-in    

   For incremental failure in the beam mode: 

35 25 2 11 25 35 25 4

23 25

. . .

.

� � � �

�

M

M

p

p  kip-in
   

   For incremental failure in the sway mode: 

36 24 35 25 41 63 4

34 22

� � � �

�

. .

.

M

M

p

p  kip-in
   

   For incremental failure in the combined mode: 

36 2 11 25 2 35 25 41 63 6

28 46

� � � � � �

�

. . .

.

M

M

p

p  kip-in
   

   The critical sections for alternating plasticity are at 2 and 3 and: 

77 63 2 2

38 82

.

.

� �

�

M M

M

y p

p    

   Thus, failure due to alternating plasticity controls, and the loading cycle 
causing failure is shown in  Figure 9.35  at (i), (ii), (iii), and (iv).   
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    9.8     Deflections at ultimate load 

   The deflections in a structure at incipient collapse may be readily determined. 
It is assumed that all sections of the structure have the ideal elastic-plas-
tic moment-curvature relationship shown in  Figure 9.1  (ii), that plastic yield 
is concentrated at the plastic hinge positions, and that the remaining portion 
of each member retains its original flexural rigidity. In addition, it is assumed 
that continuous rotation occurs at each hinge at a constant value of the plas-
tic moment of resistance and that the loading is proportional. A conservative 
estimate of the deflections at working load may be obtained by dividing the 
deflection at incipient collapse by the load factor. 

   As the applied loading on a structure is progressively increased, plastic hinges 
are formed and discontinuities are produced in the structure due to the hinge 
rotations, φ. Eventually the last hinge that is required to produce a mechanism 
is formed. Immediately before the mechanism motion begins, the moment at the 
last hinge equals the plastic moment of resistance, and there is no discontinuity 
there as the hinge rotation equals zero. The required deflection must be calcu-
lated on the assumption that one particular hinge is the last to form. The cal-
culation is then repeated in turn, assuming that the other hinges are the last to 
form and the largest value obtained is the correct one. The choice of an incor-
rect hinge as the last to form is equivalent to determining the deflection after 
a reversed mechanism motion such that the rotation that has occurred at this 
hinge before collapse is just eliminated. Thus, the deflection obtained using an 
incorrect assumption is necessarily smaller than the correct value. The deflection 
may be computed using slope-deflection 19   ,   20  ,conjugate beam 21  , virtual work 19   ,   22  , 
or moment distribution 23   methods. The virtual work method will be used here, 
as it leads to the quickest solution. 

   The collapse mechanism for the structure is first obtained, and the moments 
M in the structure at collapse are determined. Then the deflection at a particu-
lar point is given by: 

δ � �Σ ΣMm x EI m d / φ∫    

   where φ is the total rotation at a hinge during the application of the loads, m is 
the bending moment at any section due to a unit virtual load applied to the struc-
ture at the point in the direction of the required displacement, and the summations 
extend over all the hinges and all the members in the structure. It was shown in 
Section 3.2 that the unit virtual load may be applied to any cut-back structure that 
can support it. Thus, if a cut-back structure that gives a zero value for m at all 
plastic hinge positions except the last to form is selected, the term Σ  mφ is zero and 
it is unnecessary to calculate the hinge rotations. A suitable form of the cut-back 
structure may be obtained by inserting frictionless hinges in the actual structure 
at all plastic hinge positions except the last to form. The term �  Mm dx/EI may be 
determined by the method of volume integration, given in Section 2.5 if desired. 
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   When failure occurs by partial collapse of the structure, plastic hinges addi-
tional to those predicted by the rigid-plastic collapse mechanism may be required 
for the elastic-plastic solution. The redundant moments in the frame at collapse 
are obtained from the equilibrium equations, and at those sections at which the 
plastic moment of resistance is exceeded, an additional plastic hinge is inserted. 
The remaining redundant moments are obtained by reapplying the equilibrium 
equations. The introduction of the additional plastic hinges does not affect col-
lapse of the structure, as a mechanism is not produced until the last hinge pre-
dicted by the rigid-plastic solution forms. Virtual work equilibrium equations 
additional to those derived in Section 9.6 may be required. These are obtained 
by applying virtual internal forces, which are in equilibrium with zero external 
load, to a cut-back structure with frictionless hinges inserted at the plastic hinge 
positions. Thus, the external work and the term Σ  mφ are zero and: 

0 � Σ Mm EId /x∫    

   where m is the bending moment at any section due to the applied internal 
forces.

    Example 9.17 

   Determine the deflection at incipient collapse at the position of the final hinge 
in the propped cantilever shown in  Figure 9.36   .  

2 2
3

(i) (ii)

3
2 1

1
1 1

l

W Wu

M m

0.414l 0.414I
0.414T 0.586T

Figure 9.36           

    Solution 

   The collapse mechanism is shown at (i), and the ultimate load and reactions are: 
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   The last hinge to form is a distance 0.414 l from the prop, and the unit virtual 
load applied to the cut-back structure is shown at (ii). The deflection of 3 at 
incipient collapse is: 

δ � �

   � �

Mm x EI Mm x EI

M x l M x l xp p

 d /  d /

( / / )
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3

2

3

∫ ∫
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0
x EI

M x l M x l M x x EI

l
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0
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.
. . .

∫
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    Example 9.18 

   Determine the horizontal deflection at incipient collapse at joint 2 of the uni-
form frame shown in  Figure 9.37   .  
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l 2θ

2θ

θ θ
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(iii) (iv) (v)

(ii)

Figure 9.37           

    Solution 

   The collapse mechanism and final bending moment diagram are shown at (i) 
and (ii). Assuming the hinge at 4 forms last, the unit virtual load is applied to 
the cut-back structure shown at (iii). The deflection of 2 at incipient collapse is 
then:

δ � � �

�

M x l x x EI

M l El
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2
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   Assuming the hinge at 5 forms last, the unit virtual load is applied to the cut-
back structure shown at (iv). The deflection of 2 at incipient collapse is then: 

δ � � � � �

� �

M x l x lEI x l x x lEI

M x l x x EI

p

l l

p

( )

( )

dx/ ( / )d /

/ d /

Mp0 0
2

1 2 2

∫ ∫

00

2 4

l

pM l EI

∫
� /

   

   Assuming the hinge at 1 forms last, the unit virtual load is applied to the cut-
back structure shown at (v). The deflection of 2 at incipient collapse is then: 

δ �

�

M x x lEI

M l EI

p

l

p

2
0

2 3

d /

/

∫

   

   and this value controls.  

    Example 9.19 

   Determine the horizontal deflection at incipient collapse at joint 2 of the uni-
form frame shown in  Figure 9.38   .  

2 5 3
θ

2θ
θ

1 4

2l

1

11

l

W
3W

M1 M4

3Wu

(i) (ii)

(iii) (iv)

Figure 9.38           

    Solution 

   The collapse mechanism and final bending moment diagram are shown at (i) 
and (ii) and: 

W l Mu p� 4 3/
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   From the sway equilibrium equation, using the convention that positive 
moments produce tension on the inside of the frame: 

� � � � � �

� � �

M M M M W l M

M M M

p p u p

p

1 4

1 4

4 3

4 3

/

/
   

   An additional equilibrium equation is obtained by applying unit virtual 
moments to the column feet of the cut-back structure shown at (iii). Then: 

0 10 40

1 4

� � � � � � � �

� �

{ ( ) / } d { ( ) / }  dM M M x l x x M M M x l x x

M M M

p p

l

p p

l

p

∫ ∫

   

   Solving these two equations for  M  1  and  M  4  gives: 

M Mp4 7 6� /
   

   and: 

M Mp1 6� � /
   

   The plastic moment of resistance is exceeded at 4, and hence a plastic hinge 
must be formed there in addition to the hinges predicted by the rigid-plastic 
collapse mechanism. 

   Then: 

M Mp4 �
   

   and: 

M Mp1 3� � /
   

   Thus, for the elastic-plastic solution, plastic hinges are required at 2, 3, 4, 
and 5, and the deflection at collapse is the maximum value obtained by assum-
ing the rotations at 2, 3, and 5 are zero in turn. 

   Assuming the hinge at 2 forms last, the unit virtual load is applied to the 
cut-back structure shown at (iv). The deflection of 2 at incipient collapse is: 

δ � �

�

M x l x x EI

M l EI

p

l

p

( / ) d /

/

1 2 3

5 18
0

2

∫

   

   and this value controls, as identical values are obtained by assuming the hinges 
at 3 and 5 form last.   
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    Supplementary problems 

    S9.1 Figure S9.1    shows a continuous beam of total length l with a uniform 
plastic moment of resistance Mp supporting a distributed load w, including its 
own weight. Using a load factor of N, determine the ratio of l / a for plastic 
hinges to occur simultaneously in each span and at the supports. For this con-
dition, calculate the maximum value of w  that may be supported. 

1 2

a b

W

a

3 4

Figure S9.1           
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Figure S9.3           

    S9.2 A rectangular portal frame of uniform section is hinged at the base and 
subjected to the loads shown in  Figure S9.2   . The shape factor of the section 
is 1.15, the yield stress of the steel is 16     kips/in 2, and the required load fac-
tor is 1.75. Neglecting the effects of axial loads and instability, determine the 
required elastic section modulus of the members. 

    S9.3 The rigid frame shown in  Figure S9.3    has a uniform plastic moment of 
resistance of Mp. Determine the ratio of W to H for the three possible modes 
of collapse of the frame and plot the relevant interaction diagram. 
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    S9.4 The members of the rigid frame shown in  Figure S9.4    have the relative 
plastic moments of resistance shown ringed, and the frame is to collapse under 
the loading shown. Neglecting the effects of axial loads and instability, deter-
mine the required plastic moments of resistance. 
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Figure S9.4           
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Figure S9.5           

    S9.5 The members of the Vierendeel girder shown in  Figure S9.5    have the 
relative plastic moments of resistance shown ringed, and the frame is to col-
lapse under the loading shown. Determine the required plastic moments of 
resistance.

    S9.6 The ridged portal frame shown in  Figure S9.6    is fabricated from mem-
bers of a uniform section and is to collapse in the combined mechanism 
(gable   �   sway) under the loading shown. Neglecting the effects of axial loads 
and instability, determine the required plastic moment of resistance. If the last 
hinge forms at joint 3, determine the horizontal deflection of joint 2 at collapse. 
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    S9.7 The right bridge grid shown in  Figure S9.7    consists of three simply sup-
ported main beams and five diaphragms. Determine the magnitude of the col-
lapse load W  for each of the following three situations. 

     (i)   Main beams: plastic moment of resistance in flexure      �       Mp  ,  
           plastic moment of resistance in torsion      �      0     
      Diaphragms: plastic moment of resistance in flexure      �      0.25 Mp  ,  
      plastic moment of resistance in torsion      �      0        
   (ii)   Main beams: plastic moment of resistance in flexure      �       Mp  ,  
           plastic moment of resistance in torsion      �      0.3 Mp      
      Diaphragms: plastic moment of resistance in flexure      �      0.25 Mp  ,  
      plastic moment of resistance in torsion      �      0        
    (iii)   Main beams: plastic moment of resistance in flexure      �       Mp  ,  
           plastic moment of resistance in torsion      �      0.15 Mp      

   Diaphragms: plastic moment of resistance in flexure      �      0.25 Mp  ,  
   plastic moment of resistance in torsion      �      0          
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Figure S9.6           
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    S9.8 The members of the right grid shown in  Figure S9.8    are of uniform sec-
tion, and the grid is to collapse under the loading shown. The grid is simply 
supported at the four corners. Neglecting torsional restraint, determine the 
required plastic moment of resistance.   
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a
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WW

W

W

Figure S9.8           
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                                              10       Matrix and computer methods  

    Notation 

    A       cross-sectional area of a member  
  c  12       carry-over factor for a member 12 from the end 1 to the end 2  
  D       degree of indeterminacy  
  E       Young’s modulus  
  fij       element of [ F ]      �      displacement produced at point i by a unit force 

replacing the redundant force at j     
 [ F ]      flexibility matrix of the cut-back structure  
 [ Fi   ]      element of [ F    ]    �      flexibility sub-matrix for member  i   

 [ F    ]      diagonal matrix formed from the sub-matrices [ Fi ]  
  G       modulus of torsional rigidity  
  H       horizontal reaction  
  {  H  }       lack of fit vector  
  I       second moment of area of a member  
  J       torsional inertia  
  l       length of a member  
  M  12       moment produced at the end 1 of a member 12 by the joint displacements 

  MF
12         moment produced at the end 1 of a member 12 by the external loads, 

all joints in the structure being clamped    
  Pi        element of  {  P  }     �      equals the total internal force at joint  i   
  P  12       axial force produced at the end 1 of a member 12 by the joint displacements 
  Pxi       element of {  P  }     �      total internal force, acting in the x-direction, produced 

at joint i  by the joint displacements  
  Pyi       element of {  P  }     �      total internal force, acting in the y-direction, produced 

at joint i  by the joint displacements  
  Pθ i       element of {  P  }     �      total internal moment produced at joint i by the joint 

displacements  
  PF

12          axial force produced at the end 1 of a member 12 by the external loads, 
all joints in the structure being clamped  

  Pxi
F          element of {  PF  }     �      equals the total internal force, acting in the x -direction, 

produced at joint i by the external loads, all joints in the structure being 
clamped  

  Pyi
F          element of {PF  }    �   total internal force, acting in the y-direction, produced 

at joint i by the external loads, all joints in the structure being clamped 
  P i

F
θ

         element of {  PF  }     �      total internal moment produced at joint i by the 
external loads, all joints in the structure being clamped  

  Pi
R          element of {  PF  }     �      force produced in member i by the redundants 

applied to the cut-back structure  
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  Pi
W          element of {  PW  }  equals the force produced in member i by the external 

loads acting on the cut-back structure  
  {  P  }       vector of total internal forces at the joints produced by the joint 

displacements 
  {  P  �  }       vector of member forces, referred to the member axes, produced by the 

joint displacements  
  {  P  12  }       vector of member forces at the end 1 of member 12, referred to the 

x - and  y -axes, produced by the joint displacements  
  {  PF  }       vector of total fixed-end forces at the joints produced by the external loads 
  {  PF  �  }       vector of member forces, referred to the member axes, produced by the 

external loads, all joints in the structure being clamped  
  {  PR  }       vector of support reactions, vector of forces produced in the cut-back 

structure by the redundants  
  {  PW  }       vector of forces produced in the cut-back structure by the external loads 
  Q  12       shear force produced at the end 1 of a member 12 by the joint displacements 

  QF
12          shear force produced at the end 1 of a member 12 by the external 

loads, all joints in the structure being clamped  
  Rj       redundant force acting at joint j   
  {  R  }       vector of redundant forces  
  s  12       restrained stiffness at the end 1 of a member 12  
  Sij       element of [ S ]      �      equals the force produced at point i by a unit displace-

ment at point j , all other joints being clamped  
 [ S ]      stiffness matrix for the whole structure  
 [ ′Sij    ]      element of [ S    ]   �   stiffness sub-matrix of member ij, referred to its own axis 

 [ S    ]      diagonal matrix formed from the sub-matrices [ ′Sij    ]  
 [ T  ]      orthogonal transformation matrix  
  uij       element of [ U ]      �      force produced in member i by unit value of the 

redundant Rj  acting on the cut-back structure  
 [ U ]      force matrix for unit value of the redundants  
  vik       element of [ V ]      �      force produced in member i by unit value of the exter-

nal load Wk  acting on the cut-back structure  
  V       vertical reaction  
 [ V  ]      force matrix for unit value of the external loads  
  Wk       element of  {  W   }     �      external load applied at joint  k   
  Wxi       element of  {  W   }     �      external load applied at joint  i  in the  x -direction  
  Wyi       element of  {  W   }     �      external load applied at joint  i  in the  y -direction  
  Wθ i       element of  {  W   }     �      external moment applied at joint  i   
  {  W   }       applied load vector  
  x       horizontal displacement  
  y       vertical displacement  
  α       angle of inclination of member  
  δi       element of  {  Δ  } , displacement at joint  i   
  {  Δ  }       displacement vector  
  {  Δ  �  }       displacement vector referred to member axes  
  {  Δ  I  }       initial displacements at the releases due to lack of fit in the members  
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  {  Δ  R  }       vector of support displacements, vector of displacements at the releases 
produced by the redundants  

  {  Δ  W  }        vector of displacements at the releases produced by the external loads  
  θ       rotation  
  λ       equals cos α   
  μ       equals sin α      

    10.1     Introduction 

   Matrix algebra is a mathematical notation that simplifies the presentation and 
solution of simultaneous equations. It may be used to obtain a concise statement 
of a structural problem and to create a mathematical model of the structure. The 
solution of the problem by matrix structural analysis techniques            1,2,3,4   then pro-
ceeds in an entirely systematic manner. All types of structures, whether statically 
determinate or indeterminate, may be analyzed by matrix methods. In addition, 
matrix concepts and techniques, because of their systematic character, form the 
basis of the computer analysis and design of structures            5,6,7,8  . Highly indeterminate 
structures may be easily handled in this way and alternative loading conditions 
readily investigated. There are two general approaches to the matrix analysis of 
structures: the stiffness matrix method and the flexibility matrix method. 

   The stiffness method is also known as the displacement or equilibrium 
method. It obtains the solution of a structure by determining the displace-
ments at its joints. The number of displacements involved equals the number 
of degrees of freedom of the structure. Thus, for a pin-jointed frame with j  
joints the solution of 2 j equations is required, and for a rigid frame, allowing 
for axial effects, the solution of 3 j equations is required. If axial effects in rigid 
frames are ignored, the number of equations involved reduces to j plus the 
number of degrees of sway freedom. Irrespective of the number involved, these 
equations may be formulated and solved automatically by computer. The stiff-
ness matrix method is the customary method utilized in computer programs 
for the solution of building structures. 

   The flexibility method is also known as the force or compatibility method. It 
obtains the solution of a structure by determining the redundant forces. Thus, 
the number of equations involved is equal to the degree of indeterminacy 
of the structure. The redundants may be selected in an arbitrary manner, and 
their choice is not an automatic procedure. The primary consideration in the 
selection of the redundants is that the resulting equations are well conditioned.  

    10.2     Stiffness matrix method 

    (a)       Introduction 

   The structure subjected to the applied loads shown in  Figure 10.1    may be con-
sidered as the sum of system (i) and system (ii). In system (i) the external loads 
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Figure 10.1           

imposed between the joints are applied to the structure with all joints clamped. 
The total fixed-end forces {  PF  }  at the joints are readily determined. In system 
(ii) the actual joint displacements {  Δ  }  are imposed on the structure. These 
produce the total internal forces {  P  }  at the joints. The expressions force and 
displacement are used in their general sense and imply moment, shear, thrust, 
rotation, deflection, and axial deformation. Since the forces at any joint are in 
equilibrium, the applied loads at a joint are given by: 

{ } { } { }W P PF� �    

   The total internal forces at a joint are given by the principle of superposition as: 
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  where the stiffness coefficient Sij is the force produced at point i by a unit dis-
placement at point j, all other joints being clamped, and δ  j is the displacement 
at j  in the actual structure. Thus:   
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  or,   

{ } [ ]{ }P S� Δ     

  where [ S] is the complete stiffness matrix for the whole structure. This may 
be obtained from the stiffness sub-matrices of the individual members and is 
a symmetric matrix since sij       �       sji  by Maxwell’s reciprocal theorem. Thus:   

{ } [ ]{ } { }W S PF� �Δ     

  and:   

{ } [ ] {{ } { }}Δ � ��S W PF1
     

   The internal forces in any member may now be obtained by back substitu-
tion in the stiffness sub-matrix of the member. The stiffness matrix depends 
solely on the geometrical properties of the members of the structure. Thus, 
once the stiffness matrix has been inverted, the displacements and internal 
forces due to alternative loading conditions may be quickly investigated. 

   The sign convention and notation used for rectangular frames is shown in 
Figure 10.2   . The positive sense of the applied loads, joint displacements, fixed-end 
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Figure 10.2           
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forces, and internal forces due to the joint displacements are shown at (i), (ii), 
(iii), and (iv). Thus, the total fixed-end forces at joint 2 are: 

P Q P

P P Q

P M M

x
F F F

y
F F F

F F F

2 21 23

2 21 23

2 21 23

� �

� �

� �θ      

   The total internal forces at joint 2 are: 

P Q P

P P Q

P M M

x

y

2 21 23

2 21 23

2 21 23

� �

� �

� �θ      

   For structures containing inclined members, additional notation is required for 
fixed-end forces, joint displacements, and internal forces due to joint displace-
ments referred to the member axes. In  Figure 10.3    (i), the positive sense of the 
fixed-end forces {  PF  �  }  acting on an inclined member 12 is shown, referred to 
the longitudinal axis of the member. In  Figure 10.3  (ii), the positive sense of 
the joint displacements,  { Δ  �  }  is shown, referred to the inclined member axis. 
In  Figure 10.3  (iii), the positive sense of the internal forces  {  P  �  }  due to the joint 
displacements is shown, referred to the inclined member axis.  

Figure 10.3           
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    (b)       Rigid frames and grids 

   The stiffness matrix for rectangular frames in which axial effects are neglected 
may be readily assembled manually 9  . The elements of the stiffness sub-matrix 
for a vertical prismatic member may be obtained by applying unit displace-
ments in turn to the ends of the member, as shown in  Figure 10.4   . Thus: 
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   The elements of the stiffness sub-matrix for a horizontal prismatic member 
may be obtained by applying unit rotations to the ends, as shown in  Figure 10.5   . 

Figure 10.4           
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Thus:
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   For members that are fixed or hinged to supports, the sub-matrices may be 
modified to allow for zero displacements at the fixed end. Thus, for the frame 
shown in  Figure 10.1 , which is of uniform section: 
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   The total internal forces at the joints are obtained by selecting the relevant 
elements from the sub-matrices. 

Thus:
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  or:   
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  that is:   

{ } { } { } [ ]{ }P W P SF� � � Δ      

   The force vector {{W  }    �     {PF  }} is readily obtained, and inversion of the stiffness 
matrix gives the values of θ  2, θ  3, θ  4, x  2. The member forces may then be obtained 
from the sub-matrices. Thus, the actual moment at end 2 of member 21 is: 

M M M EI l EIx lF F
21 21 21 2 2

24 6� � � �θ / /      

   Similarly, frames with non-prismatic members and curved members may be 
analyzed if the stiffness, carry-over factors, and fixed-end forces are known for 
each member. The elements of the stiffness sub-matrix for a vertical non-prismatic 

Figure 10.6             
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member may be obtained by applying unit displacements in turn to the ends of 
the member, as shown in  Figure 10.6   . Since s  21  c  21       �       s  12  c  12, the stiffness sub-
matrix is determined as: 
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        The values of s  12, s  21 and c  12 may be obtained by the methods of Section 
6.7(b).

   The elements of the stiffness sub-matrix for a symmetrical curved member 
may be obtained by applying unit displacements in turn to the ends of the 
member, as shown in  Figure 10.7   . Thus: 
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   The values of s  12, c  12, Hθ  � 1, and Hx  � 1 may be determined by the methods of 
Section 6.7(c). For a curved member, the carry-over factor is negative, and thus 
the term s  12  c  12  is negative. 

   For hand computational purposes, it is desirable to reduce the order of the 
matrix that requires inversion. When the force vector {  W       �       PF  }  contains zero 
elements, this may be achieved by partitioning the matrices in the form: 
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  where {  Δ  1  }  are the displacements at the joints subjected to an applied force 
and  {  Δ  2  }  are the displacements at the remaining joints. Thus:   

{ } [ ] [ ]{ }Δ Δ2 4
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3 1� �S S     

  and:   

{{ } { }} [[ ] [ ][ ] [ ]]{ }W P S S S SF� � � �
1 2 4

1
3 1Δ      

   Hence the displacements  {  Δ  1  }  and  {  Δ  2  }  may be obtained. 
   Support reactions may be determined by considering the equilibrium of the 

members at the supports after the internal forces are obtained. Alternatively, 
the internal forces at the supports may be included in the force matrix and the 
matrices partitioned in the form: 
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  where {  Δ  }  and {  P  }  are the displacements and total internal forces at the joints 
and {  PR  }  are the internal forces at the supports with zero corresponding 
displacements.   

   Thus: 
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  and the reactions are given by:   

{ } { }P PR F�      
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   For a structure that undergoes settlement at the supports, the internal forces 
at the supports that yield must be included in the force matrix and the matrices 
partitioned in the form: 

{ }

{ }

[ ] [ ]

[ ] [ ]

{ }

{ }
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S S
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⎢
⎢
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⎢
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⎥
⎥
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⎣

⎢
�
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3 4

Δ

Δ
⎢⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
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  where {  PR  }  are the internal forces at the supports that yield and {  Δ  R  }  are the 
corresponding known displacements. 

Thus:   

{ } [ ] {{ } [ ]{ }}Δ Δ� ��S P S R
1

1
2    

  and:   

{ } [ ]{ } [ ]{ }P S SR R� �3 4Δ Δ    

   For a structure resting on flexible supports, the stiffness of the supports may 
be incorporated in the complete stiffness matrix as illustrated in Example 10.4. 

   In the case of symmetrical and skew symmetrical conditions, only half the 
structure may be considered and modified stiffness factors adopted for members 
that cross the axis of symmetry. Applied loads and the cross-sectional properties 
of members that lie along the axis of symmetry must be halved in value. 

   The stiffness sub-matrix for a straight prismatic member that is hinged 
at one end may be modified to allow for the hinge. The modified matrix is 
obtained from  Figure 10.8    as: 
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Figure 10.8             
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   The stiffness matrix for rectangular grids may be assembled manually from 
the sub-matrices for each member        10,11  . The sub-matrix for a member paral-
lel to the x-axis of the grid, shown in  Figure 10.9   , is obtained by applying 
unit displacements, in the positive directions shown, in turn to the ends of the 
member. The torsional stiffness of the member about the  x-axis is GJ / l where 
G is the modulus of torsional rigidity,  J is the torsional inertia, and l is the 
length of the member. The sub-matrix is given by: 
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    Example 10.1 

   Determine the bending moments at joint 5 in the frame shown in  Figure 10.10    
for values of W       �      8 kips and l       �      10 ft. The relevant second moment of area 
values are shown ringed.  

Figure 10.9             
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Figure 10.10             
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    Solution 

   The member fixed-end forces are: 
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F F

F
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   The total fixed-end forces at the joints are: 
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   The applied loads at the joints are: 
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   The sub-matrices for members 12, 23, 34, 35, and 56 are: 
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   Collecting the relevant elements from the stiffness sub-matrices gives: 
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   Inverting the stiffness matrix gives: 
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   The rotations at joints 3 and 5 are: 
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   The bending moment at joint 5 is: 

M M EI lF
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25 556
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θ θ /
 kip-ft      

    Example 10.2 

   Determine the bending moments in the frame shown in Figure 7.52. The sec-
ond moments of area of the members are shown ringed.  

    Solution 

   The stiffness and carry-over factors for the non-prismatic columns were given 
in Example 7.22 as: 
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   Due to the skew symmetry, the modified stiffness of member 22 �  is: 
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  and:   
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   The sub-matrices for members 12 and 22 �  are: 
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   Collecting the relevant elements from the stiffness sub-matrices gives: 
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   Inverting the stiffness matrix gives: 
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   The bending moment at joint 2 is: 
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.    

   The bending moment at support 1 is: 

� � � �60 17 14 42 86. .  kip-ft       

    Example 10.3 

   Determine the bending moments in the arched frame shown in Figure 7.54.  
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    Solution 

   The stiffness, carry-over factors, and fixed-end reactions were given in 
Example 7.23 as: 
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  where:   
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   The sub-matrices for members 23, 21, and 34 are: 
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   Collecting the relevant elements from the sub-matrices gives: 
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   Inverting the stiffness matrix gives: 
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⎥
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⎢
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⎢
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   The bending moments at joints 2 and 3 are: 

M EI l EI x l

M EI l EI

21 2 2

34 3

18 1 35
18 6

18 1 35

� �
�

� �

o o

o o

/ /
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θ

θ

.
.

. xx l3
75 5

/
 kip-ft� � .      
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    Example 10.4 

   Determine the support reactions of the longitudinal beam 11 �, which is simply 
supported on the five transverse beams shown in Figure 7.13. All the beams 
are of the same second moment of area.  

    Solution 

   The longitudinal beam may be considered as resting on flexible supports that 
have a stiffness of: 

s EI l� 3 4 3/     

  where:   

l � 5 ft.      

   Due to the symmetry, only half the longitudinal beam need be considered. 
There is no rotation at 3, and the applied load and the stiffness of the spring at 
3 must be halved. 

   The stiffness sub-matrices for members 12 and 23 and supports 10, 20, and 
30 are: 
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⎢
⎢
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⎢
⎢
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⎥
⎥
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⎢
⎢
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   Collecting the relevant elements from the sub-matrices gives: 
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   Inverting the stiffness matrix gives: 
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   The support reactions at 1, 2, and 3 are: 

V EIy l
W

V EIy l
W

V EIy

1 1
3

2 2
3

3 3

0 75
0 0665

0 75
0 254

2 0 375

�
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� �

.

.

.

.

.

/

/

/ll
W

3

0 359� .       

    Example 10.5 

   Determine the bending moments and support reactions in the continuous beam 
shown in Figure 7.17 due to the loading shown and settlements of ½ in at 
support 2 and 1 in at support 3. The second moment of area of the beam is 
120 in 4 , and the modulus of elasticity is 29,000 kips/in 2 .  

    Solution 

   The fixed-end reactions due to the applied loads were given in Example 7.8 as: 

M

M

M M

F

F

F F

21
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32 23
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�

� �

� �
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 kip-in

 kip-in

Q
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Q Q
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F F

21
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23 32

4 225

7 775

5
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� �

�
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.

.
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 kips      

   Collecting relevant elements gives: 

P W P

M M

F

F F

θ θ θ2 2 2

21 230

138 100

38
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� � �
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( )
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   The sub-matrices for members 12 and 23 are: 
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   Collecting the relevant elements and partitioning the matrices give: 
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   From Section 10.2(b), for the partitioned matrix: 

{ } [ ] {{ } [ ]{ }}Δ Δ� ��S P S R
1

1
2    

  where {  P  }  and {  Δ  }  are the internal forces and displacements at the supports 
that yield, and  {  Δ  R  }  are the corresponding known displacements. Thus:   

θ2 1 8 38 6
1 8 38 120 29 000 120 6 120
0

� � �
� � � � �
�

( )( )
( )[ ( , ) ]

.

/ / /
/ / /

l EI l

0006086rad      

   From the sub-matrix for member 12, the bending moment in the beam at 2 is: 

M M l EI lF
21 21 24 3
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( )θ / /

 kip-in      
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   From the partitioned matrix   
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   The vertical reactions at 2 and 3 are: 
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   From the partitioned matrix: 
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   The bending moments at 1 and 3 and the vertical reaction at 1 are: 

M M PF R
12 12 1

207 372
579

� �

� � �
� �

θ

 kip-in

M M P

V Q P

F R

F
y
R

31 32 3

1 12 1

100 372

272

391 120 7 7

� �

� �

� �

� �

� � �

θ

 kip-in

/ . 775

11 033� � .  kips      

    Example 10.6 

   Determine the moments in the grid shown in  Figure 10.11   : (i) due to a single 
load at 5, (ii) due to equal loads at 2, 3, 4, and 5. All members are of uniform 
section, and the flexural rigidity is twice the torsional rigidity.  
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    Solution 

        (i)   The sub-matrices for members 24, 21, and 41 are:   
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  and the sub-matrices for members 35, 13, and 51 are similar.   
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Figure 10.11           
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   The sub-matrices for members, 23, 26, and 36 are: 
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  and the sub-matrices for members 45, 64, and 56 are similar.   
   Collecting the relevant elements from the sub-matrices gives:
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   Since the grid is symmetrical, the following relationships are obtained: 
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  and the stiffness matrix may be condensed to:   
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   Inverting the condensed stiffness matrix gives: 
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   The internal moments in the members, which are identical to the actual moments 
since there are no fixed-end moments, are obtained by back substitution in the sub-
matrices and are given by: 

M M
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  where:   

Wa � 1000.      

    (ii)   Due to the symmetry of the loading and of the grid:    

θ θ θ θ θ θ θ θy x y x y x y x

z z z z
2 2 3 4 4 3 5 5

3 4 2 5
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� � �      

   The stiffness matrix may be condensed to: 
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   Inverting the condensed matrix gives: 

θx

z a
a EI

2

2

500
142 9 35 71

71 43 38 69

0

/
/

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

�

�

�

. .

. . WWa

Wa EI

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

�
�

2 500
35 71

38 69
/

.

.    

   Back-substitution in the sub-matrices gives: 
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  where:   

Wa � 1000.       

    (c)       Automation of procedure 

   The stiffness sub-matrices for inclined members in a structure must be referred to 
the main x- and y-axes before assembling the complete stiffness matrix. This is 
readily accomplished 12   by using an orthogonal transformation matrix that trans-
fers displacements from the member axes to the x- and y-axes. The elements of 
the orthogonal transformation matrix T are the member deformations produced 
by unit joint displacements in the x- and y-axes, and have the property: 

[ ] [ ]T TT � �1
    

  where [ T  ] T is the transpose of [ T ]. The use of the orthogonal transformation 
matrix also provides an automatic means of analyzing a structure by a digital 
computer.   

   The member displacements and internal forces are related to the joint dis-
placements and the total internal forces referred to the x- and y-axes by the 
expressions:

{ } [ ]{ }

{ } [ ]{ }

{ } [ ]{ }

Δ Δ� �

� �

��

T

P T P

P T PF F
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   The member internal forces and displacements referred to the member axes 
are given by: 

{ } [ ]{ ]P S� � �Δ     

  where:   
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  and  ′Sij     is the stiffness sub-matrix for member  ij  referred to its own axis.   
   Thus: 
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  Hence:   

{ } [[ ] [ ][ ]] {{ } [ ] { }}Δ � �� �T S T W T PFT T1
   

  and:   

{ } [ ][ ][[ ] [ ][ ]] {{ } [ ] { }}P S T T S T W T PF� � �� �T T1
     

   The final member forces are given by: 

{ } { }P PF� � �
   

   The orthogonal transformation matrix for the frame shown in  Figure 10.1  is 
given by: 
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   The matrix [ S    ] is given by: 
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   The joint displacements are given by: 
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  and the final member forces are readily obtained.   
   The stiffness sub-matrix [ ′S12   ] for the inclined member 12 shown in Figure

10.3, allowing for axial effects and referred to the inclined member axis, is 
given by: 
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   The orthogonal transformation matrix [ T  12] for the inclined member 12 is 
obtained by considering unit joint displacements in the x- and y-axes, as shown 
in  Figure 10.3  (iv), and is given by: 
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  where λ       �      cos α and μ       �      sin α and the angle α is measured in the positive 
direction of M .   

   The triple matrix product [ T  12 ] T [ ′S12    
][T  12], which represents the stiffness 

sub-matrix of member 12 referred to the x - and  y -axes, is given by: 
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   Similarly, the stiffness sub-matrices of all the members in a structure 
may be referred to the x- and y-axes, and these may be readily combined 13   
to give the complete stiffness matrix of the structure. Thus, the triple 
matrix product [ T]T[ S    ][T] has been eliminated from the analysis, and this 
reduces the computer capacity required and enables larger structures to be 
handled. 

   The complete stiffness matrix of the frame shown in  Figure 10.12    is 
given by: 
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  where {Pi  } and {Δ  i  } are the three components of force and displacement at joint 
i and [ Zij] is a 3   �   3 matrix relating the forces at joint i to the displacements 
at joint j. The complete stiffness matrix is square and symmetric, and its size is 
p     �     q where p is the number of rows and q is the number of columns and:   

p q
d

�
�     

  where d is the number of joint displacements. The number of joint displace-
ments, neglecting the support restraints, is:   

d nj� 3
   

  where nj is the total number of joints in the structure. This provides the com-
plete stiffness matrix of the free structure and may be utilized in the solution 
of structures with known support displacements. The number of joint displace-
ments, allowing for the support restraints, is:   

d n rj� �3
    

  where  r  is the total number of support restraints.   
   For the frame shown in  Figure 10.12 , the size of the complete stiffness 

matrix, neglecting support restraints, is: 

p q n nj j� � �

� � � �
� �

3 3
3 8 3 8
24 24
( ) ( )

   

   The joint displacements are obtained by inverting the stiffness matrix, and 
back substituting these values in the stiffness sub-matrix [ Tij ] T [ ′Sij    ][ Tij] for each 
member gives the internal forces referred to the x- and y-axes. The shear force 
and axial force in each member may then be obtained by resolving forces or by 
using the expression: 

{ } [ ]{ }′P T Pij ij ij�
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l l l
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Figure 10.12             
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   All internal forces are considered to be acting from the joint on the member. 
   The complete stiffness matrix of a structure is symmetric and, provided the 

joints are numbered in a systematic manner, banded about the leading diago-
nal. The band width of the stiffness matrix is: 

b j i� � �3 3 3    

  where member ij is that member with the maximum numerical difference 
between the joint numbers at its ends. Advantage may be taken of the banded 
form of the matrix to reduce the computer storage space required. Only the 
elements within the banded region need be stored in order to define the matrix, 
and this produces a condensed rectangular matrix with b columns and d rows 
where d is the number of joint displacements. The positions of the elements in 
each row are adjusted to bring the elements of the leading diagonal [ Zij] to the 
left-hand side of the condensed matrix.   

   Provided the joints are numbered systematically, the band width is depend-
ent on the number of joints across the width of the structure. The narrower the 
structure, the smaller the band produced. 

   For the frame shown in  Figure 10.12 , the band width is: 
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   The number of joint displacements, neglecting the support restraints, is: 

d nj�
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   The size of the condensed stiffness matrix, neglecting the support restraints, is: 

p q d b� � �
� �24 9    

   The condensed stiffness matrix of the frame shown in  Figure 10.12  is: 
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   The solution of the equilibrium equations using the condensed stiffness 
matrix may be achieved with the Gaussian elimination process 14  . Since the 
band width of the stiffness matrix, rather than the number of joint displace-
ments, determines the time required for the analysis, which is proportional to 
the band width squared, this provides a rapid and efficient solution procedure. 
In addition, as the elimination proceeds, the reduced rows overwrite the loca-
tions occupied by the original rows, thus conserving computer storage require-
ments. Back substitution, starting from the last row of the reduced matrix, 
continues in a similar manner to the elimination process to obtain the values 
of the displacements. 

   When the structure is subjected to several alternative loading conditions, 
these may be analyzed simultaneously by replacing the load vector with a load 
matrix and the displacement vector with a displacement matrix. 

   When the available computer capacity limits the order of the matrix that can 
be inverted, advantage may also be taken of the banded form of the stiffness 
matrix  15   by partitioning it as shown to give: 
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   This is equivalent to dividing the structure into two sub-frames with com-
mon joints 4 and 5. Sub-frame 1 consists of members 42, 21, 13, 34, and 35, 
while sub-frame 2 consists of members 46, 68, 87, 75, and 56. 

   Expanding the expression gives: 
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  Thus, the number of arithmetic operations is increased but the order of the 
matrices requiring inversion is reduced, and this reduces the computer capacity 
required.    

    Example 10.7 

   Determine the member forces in the frame shown in Figure 7.51, ignoring axial 
effects. All members have the same second moment of area.  
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    Solution 

   Due to the skew symmetry, only half of the frame need be considered, with 
a hinge inserted at the center of both beams. The vertical deflection of both 
hinges is zero, and the applied load is: 

Wx3 4 2
2

�
�

/
 kips      

   The member displacement ′y32    , produced by unit joint displacements x  3 and 
y  3,  may be obtained from  Figure 10.13    (i) and (ii). Thus: 
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Figure 10.13             

   The relationship between x  3 and y  3 is obtained from the displacement 
 diagram at (iii) as: 
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   The transformation matrix is given by: 
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   Taking the value of  EI  as 100 kip-ft units, the matrix [ S    ] is given by: 
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   The matrix [ T ] T [ S    ][ T ] is given by: 
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   The displacements are given by: 
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   The member forces, in kip and ft units, are obtained by pre-multiplying the 
displacement vector by [ S    ][ T ], since there are no fixed-end forces. Thus: 
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    Example 10.8 

   Determine the member forces in the rigidly jointed truss shown in Figure 7.18. 
The second moment of area of members 14, 34, and 24 is 30 in 4 and of mem-
bers 12 and 23 is 40 in 4. The cross-sectional area of members 14, 34, and 24 is 
4 in 2  and of members 12 and 23 is 5 in 2 .  

    Solution 

   Due to the symmetry,  θ  2, θ  4, x  2, and x  4 are zero. Only half of the frame need 
be considered, with the applied loads at joints 2 and 4 and the cross-sectional 
area of member 24 halved in value. 

   For member 12, λ       �      (3) 0.5/2 and μ       �       �0.5, and the stiffness sub-matrix 
referred to the x - and  y -axes is given by: 
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   For member 14,  λ       �      1 and  μ       �      0 and: 

P

M

P

E

x

y

14

14

41

4 100

0 4 30 100

0 6

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

� �

� �

/

/ symmetric

330 100 12 30 1002 3

1

1

4/ /( ) ( )�

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥x

y

θ
⎥⎥
⎥
⎥
⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

�

�

E

0 04

0 1 2

0 0 018 0 00036

.

.

. .

symmetric

xx

y

1

1

4

θ

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

   

   For member 24,  λ       �      0 and  μ       �      1 and: 
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   The complete stiffness matrix of the truss is given by: 
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   The joint displacements are: 
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   The member forces, referred to the x- and y-axes and acting from the joint 
on the member, are obtained by back substitution in the sub-matrices for each 
member. Thus: 
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   The axial forces and remaining moments are given by: 
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    Example 10.9 

   Determine the member forces in the Vierendeel girder shown in  Figure 10.12  for 
values of l     �   12 ft and W     �   10 kips. All the members are of uniform cross-section. 

    Solution 

   Due to the skew symmetry, only the lower half of the frame need be consid-
ered, with a hinge inserted at the center of each post and the applied load at 
joint 4 halved in value. 

   For members 21, 43, 65, and 87, λ       �      0 and μ       �       �1, and the stiffness sub-
matrix referred to the x - and  y -axes is given by: 

M EI21 2

2

3 6
72

�
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[ ]/ θ
θ    
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  where axial effects are ignored and the value of EI is taken as (12) 2  
kip-ft2  units.   

   For member 46,  λ       �      1 and  μ       �      0, and the stiffness sub-matrix is given by: 
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   For member 24,  y  2       �      0,  λ       �      1, and  μ       �      0 and: 
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   For member 68,  y  8       �      0,  λ       �      1, and  μ       �      0 and 
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   The complete stiffness matrix of the frame is: 
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   Using the partitioning shown: 
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    10.3     Flexibility matrix method 

    (a)       Introduction 

   The structure shown in  Figure 10.14    is two degrees redundant, and these 
redundants may be considered to be the internal moments M  2 and M  3 at joints 
2 and 3. The structure is cut back to a statically determinate condition by 
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introducing releases corresponding to the redundants. The external loads are 
applied in system (i) and the redundant forces applied in system (ii). The actual 
structure may be considered as the sum of system (i) and system (ii). The loads 
applied in system (i) produce discontinuities {  Δ  W  }  at the releases, and these 
discontinuities may be calculated by virtual work or conjugate beam methods. 
The redundant forces applied in system (ii) produce discontinuities {  Δ  R  }  at the 
releases. Since there are no discontinuities in the original structure at the posi-
tions of the releases: 

{ } { }Δ ΔR W� �      

   The discontinuities produced in system (ii) are given by: 
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  where the flexibility coefficient f  ij is the displacement produced at point i by a 
unit force replacing the redundant at j , and  Rj  is the redundant at  j . Thus:   
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  or:   
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Figure 10.14             
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  where [ F] is the flexibility matrix of the cut-back structure and {  R  }  is the 
redundant force vector. The elements in the flexibility matrix may be deter-
mined by virtual work or conjugate beam methods, and the matrix is symmet-
ric since fij       �       fji  by Maxwell’s reciprocal theorem.   
   Thus: 

[ ]{ } { }F R W� � Δ     

  and {  R  }  may be determined. The internal forces in any member may now be 
obtained by summing the internal forces in system (i) and system (ii).   

   To ensure that the equations [ F ] {  R  }     �       �  {  Δ  W  }  are well conditioned, the ele-
ments on the main diagonal should predominate. This is achieved by choosing 
a cut-back structure such that the unit value of each redundant produces its 
maximum displacement at its own release. 

   Lack of fit in the members of a structure is equivalent to initial discontinui-
ties  {  Δ  I  }  at the releases. 

Thus:

[ ]{ } {{ } { }}F R I W� � �Δ Δ      

   The relation between deflections and redundant forces in the cut-back struc-
ture is: 

{ } [ ]{ }ΔR F R�     

  Thus:   

{ } [ ] { }R F R� �1 Δ     

  and the stiffness matrix of the cut-back structure is the inverse of the flexibility 
matrix of the cut-back structure.    

    Example 10.10 

   Determine the bending moment at the support 1 of the frame shown in 
 Figure 10.15   .  

    Solution 

   The cut-back structure with the three redundants H  1, V  1, M  1 is shown at (i), 
and the displacements corresponding to the redundants are shown at (ii). 

   The external load W applied to the cut-back structure produces the bend-
ing moment diagram shown at (iii). The resulting displacements x yW W W

1 1 1, , θ     
may be determined from the conjugate frame shown at (iv), where the elastic 
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loads are represented by concentrated loads for clarity and E has been taken as 
unity. Thus: 

θ1 2 1

1 2 1
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   Unit value of H applied to the cut-back structure produces the bending 
moment diagram shown at (v). The resulting displacements may be determined 
from the conjugate frame shown at (vi) and are given by: 
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   Unit value of V applied to the cut-back structure produces the bending 
moment diagram shown at (vii). The resulting displacements may be deter-
mined from the conjugate frame shown at (viii) and are given by: 
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   Unit value of M applied to the cut-back structure produces the bending 
moment diagram shown at (ix). The resulting displacements may be deter-
mined from the conjugate frame shown at (x) and are given by: 
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   Then, the expression: 

[ ]{ } { }F R � � ΔW  is    
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   Substituting  b       �       hI  2 / lI  1  this becomes: 
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   Multiplying the first row by 3 l ( b       �      1)/2 h (2 b       �      3) and adding to the second 
row give: 
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   Thus: 
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   From symmetry, 

V W1 � /2    

  hence:   

M Wl b1 � �/12(6 2)       

    (b)       Automation of procedure 

   The flexibility matrix [ F] of the cut-back structure may be assembled auto-
matically from the flexibility sub-matrices of the individual members. The 
sub-matrices for the members shown in  Figure 10.16    may be determined by 
the conjugate beam method or by inversion of the corresponding stiffness 
matrix. For the member 12, fixed-ended at 2 as shown at (i), the sub-matrix is 
given by: 
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   For the member 12, pinned at each end as shown at (ii), the sub-matrix is 
given by: 
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   For the member 12 of a pin-jointed frame subjected to an axial force only as 
shown at (iii), the sub-matrix is given by: 

x l EA P1 12[ / ]�    

   A structure containing n members, subjected to m applied loads and indeter-
minate to the degree D, may be cut back to a determinate condition by remov-
ing D redundants. The force produced in member i by the application of the 
redundants to the cut-back structure is: 
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   In general, 

{ } [ ]{ }P U RR �     

  where the element uij, of the matrix [ U] is the force in member i due to a unit 
value of the redundant Rj, {  R  }  is the column vector of redundants, and {  PR  }  is 
the column vector of the member forces produced by the redundants acting on 
the cut-back structure. The discontinuity produced at release j by the applica-
tion of all the redundants to the cut-back structure is:   
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  where  fi  is the flexibility of member  i . In general:   
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  and [ Fi] is the flexibility sub-matrix for member i. The triple matrix product 
[U ] T [ F    ][U ] is equivalent to the flexibility matrix [ F ] of the cut-back structure.   

   The force produced in member i by the application of the external loads to 
the cut-back structure is: 

P v W
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   In general: 

{ } [ ]{ }P V WW �     

  where the element vik of the matrix [ V] is the force in member i due to a unit 
value of the applied load Wk, {  W  }  is the column vector of applied loads, and 
 {  PW  }  is the column vector of the member forces produced by the applied loads 
acting on the cut-back structure. The discontinuity produced at release j by the 
application of all the external loads to the cut-back structure is:   
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   In general: 
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   For the case of zero initial discontinuities: 

{ } { }Δ ΔR W� �     
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  and:     { } [[ ] [ ][ ]] [ ] [ ][ ]{ }T TR U F U U F V W� � �1
     

   The final member forces in the structure are given by: 

{ } {P } [[ ] [ ][[ ] [ ][ ]] [ ][ ]]{ }R T TP V U U F U U F V WW � � � �1[ ]      

   The deflection produced at the point of application of load Wk by all the 
external loads acting on the real structure is: 
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  or, in general:   
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   The discontinuity produced at release j by the final member forces in the 
structure is 
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   In general: 

[ ] [ ]{{ } { }}TU F P PW R� � 0     

  and this may be used as a check on the computation.   
   The discontinuity produced at release j by lack of fit h of the members, due 

to thermal changes or manufacturing errors, is: 
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or:
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   The final member forces in the structure are given by: 
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R �
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   The analysis of structures with loads applied between the joints may be 
obtained in a similar manner 16  . The displacements at the joints in the cut-
back structure due to the loads applied between the joints are used to form the 
matrix  {  H  } .

    Example 10.11 

   Determine the forces in the members of the pin-jointed frame shown in Figure
10.17   . All members have the same value for  EA / l .  
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    Solution 

   The two redundants may be considered to be the tensile forces R  1 and R  2  
in members 15 and 24. The matrix [ U ] is obtained from (i) and (ii) and the 
matrix [ V  ] from (iii) and (iv), and these are given by: 
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  where a      �      (2) 0.5  and tensile forces have been considered positive.   
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   The matrix [ F    ] is: 

1

0 1

0 0 1

0 0 0 1

0 1

0 0 0 0 0 1

0 0 0 0 0 0 1

0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 1
0 0 0 0
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⎢
⎢
⎢
⎢
⎢
⎢
⎢
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⎢
⎢
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⎥
⎥
⎥
⎥
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  and:   
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⎢
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⎥
⎥
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⎢
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⎥
⎥
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⎥
⎥
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⎥
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   The final member forces are given by: 
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    Example 10.12 

   Determine the support moments of the continuous beam shown in Figure 7.8. 
The relative EI / l  values are shown ringed.  

    Solution 

   The support moments M  2 and M  3 may be considered to be the redundants, 
and matrix [ U ] is obtained from  Figure 10.18    (i) and (ii) as: 

M

M

M
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R

R

R
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⎢
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⎢
⎢
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⎥
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⎢
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⎥
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   The flexibility sub-matrices for members 21 and 23 are: 

θ21 213� [ ]l EI M/    

θ

θ
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32
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1 3 1 6

1 6 1 3
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⎢
⎢
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   The matrix [ F    ] is: 

[ ]F �
�

�
1 72

12 0 0 0

0 8 4 0

0 4 8 0

0 0 0 6

/

⎡

⎣

⎢
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⎢
⎢
⎢
⎢
⎢
⎢
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⎥
⎥
⎥
⎥
⎥      

   The discontinuities produced by the application of the redundants to the cut-
back structure are given by [ U ] T [ F    ][ U ] {  R  }  and are: 

θ

θ
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⎥
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⎢
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⎥
⎥
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4

     

   The displacements produced in the cut-back structure by the applied load 
are obtained from (iii) as: 
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� �
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Figure 10.18             
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   The discontinuities produced by the applied load are given by [ U ] T  {  H  }  
and are: 
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   The support moments are given by  � [[ U ] T [ F    ][ U ]] � 1 [ U ] T  {  H  }  and are: 
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    Example 10.13 

   Determine the forces in the members of the frame shown in  Figure 10.19   . All 
the members are of uniform section.  

32

41

110k

10′
(i) (ii)

M1

V1

M1

10
′

Figure 10.19             

    Solution 

   The reactions H  1, V  1, and M  1 may be considered to be the redundants, and the 
matrices [ U ] and [ V ] are obtained from (i) and (ii) as: 
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   Ignoring axial effects, the flexibility sub-matrix for member 12 is: 
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   The matrix [ F    ] is: 
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   The final member forces, in kips and kip-ft units, are given by: 
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    (c)       Nonprismatic members 

   When the value of EI varies along the length of a member, the integrals 
involved in the application of the flexibility matrix method may be evaluated 
by Simpson’s rule. The member is divided into an even number of segments of 
equal length, and the integral of the function shown in Figure10.20    is given by: 

e s s e e e e e e e
n

n n nd
1

1 2 3 4 2 14 2 4 2 4 3∫ � � � � � � � �� �δ ( )� /

     

e1

(n � 1) @ δs

Mm/EI

δs

e2 e3 e4 e5 enen�1

Figure 10.20             
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    Example 10.14 

   Determine the support reactions of the symmetrical, continuous beam shown 
in  Figure 10.21   . The relative  EI  values are given in  Table 10.1   .  
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��

Figure 10.21           

Table 10.1        Properties of continuous beam in Example 10.14  

    x  ft 0 20 40 60 80 100 120

    EI 1 3 10 3 1 3 10
    M  kip-ft  0 0 0 �600 �800 �600 0
    m  2  kip-ft  0 1/2 1 3/4 1/2 1/4 0
    m  3  kip-ft  0 0 0 1/4 1/2 3/4 1
    Mm  2 / EI 0 0 0 �150 �400 �50 0
        m2

2/EI 0 1/12 1/10 3/16 1/4 1/48 0
    m  2  m  3 / EI 0 0 0 1/16 1/4 1/16 0

    Solution 

   Because of the symmetry of the structure and loading, the support reactions at 
2 and 3 are equal. The moment M  2 at these supports is taken as the redundant 
and releases introduced at 2 and 3 to produce the cut-back structure. 

   The external load applied to the cut-back structure produces the distribution 
of moment M shown at (i). Unit value of each redundant applied in turn to the 
cut-back structure produces the moments m  2 and m  3 shown at (ii) and (iii). 
Values of  M ,  m  2  and  m  3  are tabulated in  Table 10.1 . 

   The discontinuities produced at the releases 2 and 3 by the external load 
applied to the cut-back structure are: 

θ θ2 3

2

20 0 4 150 2 400 4 50 0 3
32 000 3

W W

Mm s EI

�

�

� � � � � � � �
� �

d /

/
/

∫
( )

,    
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   The discontinuity produced at release 2 by the application of unit value of 
M  2  in (ii) is: 

f m s EI

f

22 2
2

33

20 0 4 12 2 10 12 16 2 4 4 48 0 3
112 9

�
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d /
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∫
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  where f  33 is the discontinuity produced at release 3 by the application of unit 
value of M  2  in (iii).   

   The discontinuity produced at release 2 by the application of unit value of 
M  2  in (iii) is: 
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  where f  32 is the discontinuity produced at release 3 by the application of unit 
value of M  2  in (ii).   

   Since there are no discontinuities in the original structure at the positions of 
the releases: 
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  and:   

M

V

V

2

1
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32 000 37 3 20
558
558 40
14

� �
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, ( . )/
kip-ft
/

kips  downward�
�� 54 kips  upward�      

    (d)       Concordant cable profile 

   The application of the pre-stressing force P, with an eccentricity e, to the con-
tinuous beam shown in  Figure 10.22    results in the production of indeterminate 
reactions at the supports. The pre-stressing force tends to deflect the beam, 
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which is restrained against lateral displacement by the supports. This causes sec-
ondary moments in the beam, and the resultant line of thrust no longer coin-
cides with the cable profile, as is the case with a statically determinate beam. 
The indeterminate moments M  2 and M  3 at the supports may be considered the 
redundants and releases introduced at 2 and 3 to produce the cut-back structure. 

   The application of the pre-stressing force to the cut-back structure produces 
the distribution of moment M       �       Pe shown at (i). Unit value of each redundant 
applied in turn to the cut-back structure produces the moments m  2 and m  3  
shown at (ii) and (iii). 

   The discontinuities produced at the releases 2 and 3 by the pre-stressing 
force applied to the cut-back structure are: 
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   The discontinuities produced at release 2 by unit values of M  2 and M  3  
applied in turn to the cut-back structure are: 
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   The discontinuities produced at release 3 by unit values of M  2 and M  3  
applied in turn to the cut-back structure are: 
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Figure 10.22             
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   Since there are no discontinuities in the original structure at the positions of 
the releases: 

m s EI m m s EI
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   Expanding this expression gives: 
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   The final distribution of moment in the beam due to the pre-stressing force 
and secondary effects is: 

Pe Pe M m m� � � �2 2 3 3Μ    

  where the effective cable eccentricity is:   

e e M m P M m P� � � �2 2 3 3/ /    

  and the line of thrust has been displaced by an amount:   

M m P M m P2 2 2 3/ /�    

   A cable with an initial eccentricity e  � produces discontinuities at releases 2 
and 3 of: 
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   Thus, there are no secondary moments produced on tensioning this concord-
ant cable, and the resultant line of thrust coincides with the cable profile.  
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    Example 10.15 

   Determine the distribution of moment produced in the frame shown in Figure
10.23    by the pre-stressing force and secondary effects. The magnitude of the 
pre-stressing force in the beam is 500    kips and in each column is 100     kips. 
The pre-stressing cable has zero eccentricity in the left -hand column, and the 
eccentricities in the beam and right-hand column are tabulated in  Table 10.2    
together with the EI values. The effects of axial compression in the frame may 
be neglected.  

20�

20
�

60�

2

1

M m1 m2

(i) (ii) (iii)

3

x1 x2

y

Figure 10.23             

    Solution 

   The vertical reaction V at support 1 and the horizontal reaction H at support 2 
may be considered the redundants and releases introduced at 1 and 2. 

   The application of the pre-stressing force to the cut-back structure produces 
the distribution of moment M shown at (i). Unit values of V and H applied 
in turn to the cut-back structure produce the moments m  1 and m  2 shown at 
(ii) and (iii). These values are tabulated in  Table 10.2  together with values of 
Mm  1 / EI ,  Mm  2 / EI ,  m EI1

2/    ,  m EI2
2/    , and  m  1  m  2 / EI . 

   The discontinuities produced at the releases 1 and 2 by the pre-stressing 
force are: 
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Table 10.2        Properties of prestressed beam in Example 10.15  

    x  1  ft  0 10 20  –  –  –  –  –  –  –  –  
    x  2  ft   –  –  – 0 15 30 45 60  –  –  –  
    y  ft   –  –  –  –  –  –  –  – 0 10 20
    e  ft  0 0.25 1.0 1.0 0 �1.0 0.25 2.0 0.5 0.25 0

    EI 2 6 15 15 9 4 12 30 9 4 1
    M 0 125 500 500 0 �500 125 1000 50 25 0
    m  1 0 10 20 20 15 10 5 0 0 0 0
    m  2 0 0 0 �20 �20 �20 �20 �20 20 10 0
    Mm  1  /EI 0 208 667 667 0 �1250 52 0 0 0 0
    Mm  2  /EI 0 0 0 �667 0 2500 �208 �667 111 63 0
              m2

1/EI 0 17 27 27 25 25 2 0 0 0 0
               m2

2/EI 0 0 0 27 44.4 100 33.3 13.3 44.4 25 0
    m1 m  2 / EI 0 0 0 �27 �33.3 �50 �8.3 0 0 0 0

    Pe 0 125 500 500 0 �500 125 1000 50 25 0
    Vm  1 0 �44 �88 �88 �66 �44 �22 0 0 0 0
    Mm  2 0 0 0 118 118 118 118 118 �118 �59 0

    Pe  � 0 81 412 530 52 �426 221 1118 �68 �34 0



Structural Analysis: In Theory and Practice522

   The discontinuities produced at releases 1 and 2 by the application of unit 
value of V  are: 
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   The discontinuity produced at release 2 by the application of unit value of 
H  is: 
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   Since there are no discontinuities in the original structure at the positions of 
the releases: 
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   The final distribution of moment in the frame due to the pre-stressing force 
and secondary effects is: 

Pe Pe Vm Mm� � � �1 2   

  and values of  Pe  �  are tabulated in  Table 10.2 .    

    (e)       Interchanging cut-back systems 

   The vertical reaction V at the support 1 of the propped cantilever shown in 
Figure 10.24    is taken as the redundant. The external load applied to the cut-
back structure at (i) produces the distribution of moment M, and unit value of 
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V applied to the cut-back structure at (ii) produces the moment m. The actual 
moment in the original structure is ( M       �       Vm ). 

   The deflection under the applied load is obtained by applying unit virtual 
load, in place of W, to the structure, as shown in  Figure 10.25   . The moment in 
the structure is then ( M       �       Vm )/ W . The deflection under the load is given by: 

y M Vm M Vm s WEI
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Figure 10.24             
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Figure 10.25             

1

(i) (ii)

1

Figure 10.26           

   However, to obtain the deflection  y, it was shown in Section 3.2 that the 
unit virtual load may be applied to any cut-back structure that will support it. 
Applying the virtual load to the cut-back structures shown in  Figure 10.26    
(i) and (ii) produces the moments M / W and M  1 / W, where M  1 is the moment 
produced in the cut-back structure at (ii) by the applied load W. Thus, the 
required deflection y  is also given by: 

y M M Vm s WEI� �( )d /∫    

  and:   

y M M Vm s WEI� �1( )d /∫    
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  and:   

y M M Vm s WEI Vm M Vm s WEI

M Vm M Vm s WEI
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∫      

   Thus, the actual moment in the original structure is given by: 

( ) ( )M Vm M Vm� � �1    

  and this is equivalent to employing the two cut-back systems shown in Figure
10.27   .   

   This interchanging of the cut-back systems may result in considerable sim-
plification in the flexibility matrix method.  

    Example 10.16 

W
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Figure 10.27             

   Determine the bending moment at the support 1 of the frame shown in Figure
10.28   . 

   Using the cut-back systems shown, the redundants H  5, V  5, and M  5 are 
given by: 
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   Substituting:

b hI lI� 2 1/  gives    
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   Expanding this expression gives: 
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   The bending moment at support 1 is given by: 
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    Supplementary problems 

   Use the stiffness matrix technique to solve the following problems. 
    S10.1 The continuous beam shown in Figure S10.1    has the relative EI / l val-
ues shown ringed alongside the members. Set up the stiffness matrix for the 
beam and determine the bending moments at the supports due to the applied 
loading.

321 2

20k 20k

80� 80� 80�

3 44

Figure S10.1             
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    S10.2 Figure S10.2    shows a propped frame with members of uniform section 
and with a value of 16 kip-ft for Wl. Set up the stiffness matrix for the frame 
and determine the bending moments at the ends of each member. 
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Figure S10.2           
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Figure S10.3             

    S10.3 Set up the stiffness matrix for the rigid frame shown in  Figure S10.3    (i), 
in which all the members are of uniform section and there is a fixed support at 
1 and a hinged support at 4. The inverse of this matrix is: 
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   Determine the horizontal displacement of joint 2 and the clockwise rotation 
of joint 4 due to a clockwise unit moment applied at support 4. Hence, for the 
frame shown in  Figure S10.3  (ii), determine the bending moment  M  4 due to 
the indicated load H . 
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    S10.4 Set up the stiffness matrix for the structure shown in Figure S10.4    and 
determine the forces in the members. The relative EA values are shown ringed 
alongside the members. 
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Figure S10.4             
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Figure S10.5             

    S10.5 Set up the stiffness matrix for the pile group shown in  Figure S10.5    and 
determine the force in each pile. The piles are end-bearing and may be consid-
ered pin-ended. The pile cap may be assumed to be rigid, and the soil under 
the cap carries no load. The value of AE / l is constant for all piles, and it may 
be assumed that sin  α       �      1.0 and cos  α       �      1/4, where α       �      angle of inclination of 
a pile. 

   Use the flexibility matrix method to solve the following problems. 
    S10.6 The cable-stayed bridge shown in  Figure S10.6    consists of a continuous 
main girder 12, supported on rollers where it crosses the rigid piers, and two 
cables, which are continuous over frictionless saddles at the tops of the tow-
ers. The modulus of elasticity, cross-sectional areas, and second moments of 
area of the members are given in the table. Consider the force R in the cable 
as the redundant and set up the flexibility matrix for the cut-back structure. 
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Determine the force R in the cables produced by a uniform load of 1 kip/ft 
over the girder.

  E    I  A  
       Member kips/in2 in4 in2  

   Cable 30,000 -   20 
   Tower     3000 -  100 
   Girder    3000 100,000 1000

30� 30�

10
�

1 2

30� 30� 30�

Figure S10.6             
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Figure S10.7             

    S10.7 The symmetrical, two-hinged arch shown in  Figure S10.7    has a constant 
second moment of area, and the arch axis is defined by the coordinates given 
in the table. Determine the value of the horizontal thrust at the supports.

    x  ft  0  7.5  16.8  27.4  39.0 50.0

    y  ft  0  9.4  17.0  22.6  26.0 27.2

    s  ft  0 12.0  24.0  36.0  48.0 60.0
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    11       Elastic instability  

    Notation 

      c  12       carry-over factor for a member 12 from end 1 to end 2  
  E       Young’s modulus  
  I       second moment of area of a member  
  j       stability function      �      2( q       �       r )      �       ρ  π  2   
  j  �       stability function      �       q  �       �       ρ  π  2   
  l       length of a member  
  m       stability function      �      2( q       �       r )/ j   
  m  �       stability function      �       q  � / j  �   
  M  12       moment acting at end 1 of a member 12  
  MF

12         fixed-end moment at end 1 of a member 12  
  n       stability function      �       q       �       m ( q       �       r )/2  
  n  �       stability function      �       n  { 1      �      ( o / n ) 2   }    
  o       stability function      �       r       �       m ( q       �       r )/2  
  P       axial force in a member  
  PE       Euler load  
  Px  1       total internal force, acting in the x-direction, produced at joint 1 by the 

joint displacements  
  Pθ  1       total internal moment produced at joint 1 by the joint displacements  
  P�12          axial force produced at end 1 of a member 12 by the joint displace-

ments, referred to the member axis  
  q       stability function   �     sl/EI     �     α l(sinα l     �     α l cos  α l)/(2   �   2 cosα l     �     α l sin  α l )  
  q  �       stability function      �       q (1      �       c  2 )  
  Q  12       shear force produced at end 1 of a member 12 by the joint 

displacements  
  Q�12          shear force produced at end 1 of a member 12 by the joint displace-

ments, referred to the member axis  
  r       stability function      �       qc       �       α l ( α l       �      sinα l )/(2      �      2 cosα l       �       α l sinα l )  
  s  12       restrained stiffness at end 1 of a member 12  
 [ S ]      stiffness matrix for the whole structure  
  t       stability function      �      6/( q       �       r )  
  W       applied load  
  Wc       critical load  
  {  W   }       vector of external loads applied at the joints  
  x       horizontal displacement  
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  y       vertical displacement  
  α            �      ( P / EI ) 0.5   
  θ       rotation  
  λ            �      cos  φ   
  μ            �      sin  φ   
  ρ            �       P / PE   
  τ            �       λ       �       μ  tan  φ   
  φ       angle of rotation due to sway  
  {  Δ  }       vector of joint displacements     

    11.1     Introduction 

   If the applied loads on a structure are continuously increased, the axial forces 
and bending moments in the members increase until collapse eventually occurs 
either by plastic yielding, by buckling of the members, or by a combination of 
both. When the axial forces are appreciable, the dominant factor is buckling. 
In this chapter, attention will be confined to structures in which the stresses 
in the members are entirely within the elastic range at collapse and buckling 
occurs in the plane of the structure. The load at which the structure collapses 
is known as the critical load. 

   The effect of an axial compression on a member is to reduce its stiffness 
and of an axial tension is to increase its stiffness. As the applied loads on a 
structure increase, the member forces increase and the overall resistance of the 
structure to any random disturbance decreases. At the critical load, the struc-
ture offers no resistance to the disturbance, the configuration of the structure 
is not unique, and any displaced position may be maintained without addi-
tional load. An alternative definition of the elastic failure load for structures 
subjected to primary bending moments is the load at the transition from sta-
ble to unstable equilibrium. The members of such a structure are subjected to 
deformations associated with the buckling mode before failure occurs. The 
load-displacement curve reaches a peak at the failure load, with increased dis-
placement being produced by decreasing load. 

   Several methods are available for determining the critical load. The stiffness 
matrix of the structure may be formed and, by trial and error, the critical load 
is obtained as the load that produces a singular matrix        1,2  . Alternatively, the 
largest latent root of a matrix, derived from the stiffness matrix, may be used 
as a criterion 3  . Moment-distribution methods may be applied to determine the 
stiffness offered by the structure to a random disturbance          4,5,6  . Alternatively, the 
rate of convergence of the moment-distribution technique may be used as a cri-
terion  7  . An estimate of the critical load may be determined from a mathemati-
cal approximation to the applied load-stiffness relationship of the structure 8  . 
The first method is readily applied to simple structures; for complex structures, 
the determinant of the stiffness matrix may be evaluated by computer. 
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   The analysis here is confined to structures consisting of straight prismatic 
members. The critical loads of structures consisting of non-prismatic members 
may be obtained similarly with the aid of additional tabulated functions  9  . 

   The stability of structures in both the elastic and partially plastic ranges has 
been covered by Horne and Merchant  10  .  

    11.2     Effect of axial loading on rigid frames without sway 

    (a)       Modified moment-distribution procedure 

   The restrained stiffness s of the straight, prismatic member 12 subjected to an 
axial force P, as shown in  Figure 11.1   , is the bending moment required to pro-
duce unit rotation at end 1, end 2 being fixed. The carry-over factor is the 
ratio of the moment induced at 2 to the moment required at 1. The bending 
moment at any section at distance x  from 1 is given by: 

�  �  � � �EI y x s sx c l Pyd /d ( )/22 1      

P

y

1 P2
(s � sc)/l

s u� 1

(s � sc)/l

sc
x

Figure 11.1           

   The general solution of this differential equation is: 

y A x B x s P sx c Pl� �  � � � cos  sin / ( )/α α 1     

  where α       �      ( P / EI ) 0.5. The constants A and B are determined from the end con-
ditions, y       �      0 at  x       �      0 and at  x       �       l  and:   

y s x l c l x x c l P �  � �  � � �{cos (cot cosec ) sin ( )/ }/α α α α 1 1      

   The value of  c  is determined from the end condition, d y /d x       �      0 at  x       �       l  and: 

c l l l l l�  �  � ( sin )/(sin  cos )α α α α α      

   The value of  s  is determined from the end condition, d y /d x       �      1 at  x       �      0 and: 

s EI l l l l�  �  � α α α α α(  cot )/ (tan / / )1 2 2 2      

   Values of  s and c have been tabulated        11,12   and graphed            13,14,15,16  . In  Table 11.1    
the functions q       �       sl / EI and r       �       qc have been tabulated in terms of the variable 
ρ       �       P / P  E       �       α  2  l  2 / π  2 where PE is the Euler buckling load for a column hinged at 
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Table 11.1        Stability functions for frames without sway  

   ρ q r q�  t ρ q r q�  t

   4.0 �  � � 0.00 � 1.3 1.89 2.69 �1.94 1.310
   3.9 �78.33 78.57 0.49 24.770 1.2 2.09 2.61 �1.17 1.277
   3.8 �38.17 38.65 0.96 12.610 1.1 2.28 2.54 �0.53 1.245
   3.7 �24.68 25.39 1.42 8.555 1.0 2.47 2.47 0.00 1.216
   3.6 �17.87 18.79 1.89 6.523 0.9 2.65 2.41 0.46 1.188
   3.5 �13.72 14.85 2.35 5.309 0.8 2.82 2.35 0.86 1.162
   3.4 �10.91 12.24 2.83 4.497 0.7 2.98 2.29 1.22 1.138
   3.3 �8.86 10.40 3.33 3.916 0.6 3.14 2.24 1.54 1.115
   3.2 �7.30 9.02 3.86 3.480 0.5 3.29 2.19 1.83 1.093
   3.1 �6.05 7.96 4.42 3.141 0.4 3.44 2.15 2.10 1.073
   3.0 �5.03 7.12 5.05 2.868 0.3 3.59 2.11 2.35 1.053
   2.9 �4.18 6.44 5.77 2.646 0.2 3.73 2.07 2.58 1.035
   2.8 �3.44 5.88 6.61 2.460 0.1 3.87 2.03 2.80 1.127
   2.7 �2.81 5.42 7.63 2.302 0.0 4.00 2.00 3.00 1.000
   2.6 �2.25 5.02 8.95 2.167 �0.2 4.26 1.94 3.37 0.969
   2.5 �1.75 4.68 10.75 2.049 �0.4 4.50 1.88 3.71 0.940
   2.4 �1.30 4.38 13.47 1.946 �0.6 4.74 1.83 4.03 0.913
   2.3 �0.89 4.13 18.19 1.855 �0.8 4.96 1.79 4.31 0.889
   2.2 �0.52 3.90 28.78 1.774 �1.0 5.18 1.75 4.58 0.867
   2.1 �0.18 3.70 77.83 1.702 �1.5 5.68 1.67 5.19 0.817
   2.0 0.14 3.53 �86.86 1.636 �2.0 6.15 1.60 5.73 0.775
   1.9 0.44 3.37 �25.35 1.577 �2.5 6.58 1.54 6.22 0.738
   1.8 0.72 3.22 �13.78 1.522 �3.0 6.99 1.50 6.67 0.707
   1.7 0.98 3.10 �8.83 1.473 �3.5 7.37 1.46 7.08 0.679
   1.6 1.22 2.98 �6.03 1.427 �4.0 7.74 1.43 7.47 0.655
   1.5 1.46 2.87 �4.22 1.385 �5.0 8.42 1.38 8.18 0.612
   1.4 1.68 2.78 �2.92 1.346 �7.0 9.62 1.30 9.45 0.549

both ends and is given by PE       �       π  2 EI / l  2. Positive values of ρ indicate that P is 
compressive and negative values indicate that P is tensile. For negative values 
of ρ, α is imaginary, and the trigonometrical functions in the expressions for  c  
and s  are replaced by their hyperbolic equivalents. 

   The modified stiffness of the member 12 when the end 2 is hinged is given by: 

s s c� �  � ( )1 2
    

  and values of  q  �       �       s  �  l / EI  are tabulated in  Table 11.1 .   
   Axial loading in a member also modifies the fixed-end moments in the mem-

ber. The bending moment at any section a distance  x from 1, for the uniformly 
loaded member shown in  Figure 11.2   , is given by: 

� � � � � �EI y x M Wx  Wx l PyFd /d /  /2 2 22 2      
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   The general solution of this differential equation is: 

y A x B x M P W x xl PlF � � � �  �  � cos sin / ( / )/α α α2 22 2     

  where α       �      ( P / EI ) 0.5. The constants A and B are determined from the end con-
ditions, y       �      0 at  x       �      0 and d y /d x       �      0 at x      �       l /2 and:   

d /d ( / )( sin cos  tan / )/ / /y x W l M x x l P Wx Pl WlF � � � � �  � α α α α α2 2 22P      

   The value of MF is determined from the end condition, d y /d x       �      0 at x       �      0 
and:

M W l l l
tWl

F �  �
�

( cot / )/
/

2 2 2
12

2α α α
    

  where t       �      6/( q       �       r) is a magnification factor to allow for the effect of the axial 
load and is tabulated in  Table 11.1 . Similarly, the fixed-end moments for mem-
bers subjected to concentrated loads may be obtained, and a wide range of val-
ues have been presented          13,14,15  . The notation adopted in the stability analysis 
of frames without sway is shown in  Figure 11.3   .   

   A graphical representation of the functions is shown in  Figure 11.4   .  

    Example 11.1 

   Determine the moments in the frame shown in  Figure 11.5    for a value of 
W       �      0 . 625 PE . All the members are of uniform section.  

    Solution 

   Neglecting the axial force in the beam, the stiffness (allowing for symmetry) 
and fixed-end moments for the beam are: 

s EI l M WlF
23 232 0 25� � �/ and .

     

   For a value of W       �      0.625 PE and ρ       �      1.25, the stiffness and carry-over fac-
tors for the columns are obtained from  Table 11.1  as: 

s qEI l EI l
c r q

21

21

2
2 65 2 1 325

� �
� � �

/ /
/ /. .      

P

W/2 x

y

W/2

P
MF

W MF

Figure 11.2           



Structural Analysis: In Theory and Practice536

80

60

40

20

0 2 4 ρ

rq�

qq�

�2�4�6�8

�20

�40

�60

�80

Figure 11.4           

P

P

P

2

P
W

tWl�12

qEI�l

rEI�I

1

P

P

2

l

1

q�EI�l

tWl�12

u� 1u� 1

Figure 11.3           

   The distribution factors at joint 2 are 0.5 and the final moments are: 

M Wl Wl
M Wl Wl

21

12

0 5 0 125
0 125 1 325 0 166

� � �
� � �

0.25 . .
. . .      
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   The corresponding values obtained when the axial forces in the columns are 
neglected are: 

M Wl Wl
M Wl Wl

21

12

0 25 0 67 0 167
0 167 0 5 0 083

� � �
� � �

. . .

. . .       

    (b)       Determination of the critical load 

   Consider the small clockwise moment M applied to the rigid joint o of Figure
11.6   , causing the joint to rotate through an angle  θ . The stiffness of joint  o  is: 

s so on� Σ     

and

  θ � M so/      

W

2 3

1

l

4

l

2W W

Figure 11.5           

2

4

0
M

31

n

Figure 11.6           

   If axial compressive forces are applied to the n members, their stiffnesses 
decrease, so decreases, and θ increases. As the axial forces are continuously 
increased, so continues to decrease until eventually, at the critical load, elastic 
instability occurs at the joint and θ becomes infinite. In general, it is unneces-
sary to apply the exciting moment M since initial imperfections in the members 
and unavoidable eccentricity of the axial forces produce sufficient disturbance. 
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   Instability of the propped frame shown in  Figure 11.7    occurs in the sym-
metrical mode shown at (i). The applied loads are transferred directly to the 
foundations, and there is no axial force in beam 23. The rotation of joint 3 
is equal and opposite to the rotation of joint 2, and the critical load may be 
determined by considering the stiffness of joint 2 only. Thus: 

s s s
EI l q EI l

2

/ /
 � �

� � �
23 21

212      

W

2 3

1

(i)l

4

l

W Wc Wc

Figure 11.7           

   At the critical load: 

s2 0 �     

and

  
q� ��21 2

     

   From  Table 11.1 : 

ρ �
�

W Pc E/
1 31.     

and

  W EI lc � 1 31 2 2. π /      

   For zero applied load, the stiffness of joint 2 is 5EI/l. The variation of the stiff-
ness may be determined for different values of ρ and is plotted in  Figure 11.8   . 

   When several joints in a structure are involved, it is necessary to set up the 
stiffness matrix of the structure. In section 10.2 it was established that this is 
given by: 

{ } [ ]{ }W S� Δ     

  where {W }  is the vector of external loads applied at the joints, {  Δ  }  is the vector 
of joint displacements, and [S] is the stiffness matrix of the whole structure. 
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As the external loads are continuously increased, the axial forces in the mem-
bers increase and the elements in the stiffness matrix change. At any particular 
loading stage, the joint displacements are given by:   

{ } [ ] {Δ  � �S W1 }     

and

  [ ] adj [ ]/| |S S S� �1     

  where adj [S] is the transpose of the matrix of the cofactors of [ S] and | S| is the 
determinant of [S]. At the critical load, all joint displacements become infinite 
and |S|      �      0, i.e., the stiffness matrix is singular.   

   To determine the critical load for a particular structure, a trial-and-error 
procedure is adopted. A trial value is chosen for the load factor, and the axial 
forces in the members are estimated. From  Table 11.1  the values of the stability 
functions are obtained and substituted in the stiffness matrix. The determinant 
of the stiffness matrix is now evaluated. Several values of the load factor are 
tried until the value producing a singular stiffness matrix is obtained. A lower 
bound and an upper bound on the critical load may be obtained by consider-
ing the member with the largest axial force. If this member is pin-ended, insta-
bility will occur at a value of ρ       �      1. If this member is fixed-ended, instability 
will occur at a value of ρ       �      4. It is unnecessary to evaluate the determinant for 
all trial values, as the condition of the structure may be deduced by inspection 
of the stiffness matrix. Thus, if the matrix is dominated by its leading diago-
nal, the structure is stable; and if any element on the leading diagonal is zero 
or negative, the structure is unstable and the critical load has been exceeded.  

    Example 11.2 

   Determine the value of W at which elastic instability occurs in the rigid frame 
shown in  Figure 11.9   . All the members are of uniform section.  

Figure 11.8           
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    Solution 

   The stiffness of joint 2 is: 

s s s
EI l q EI l

2 23 21

212 2
� �

� �/ /�      

   At the critical load: 

s2 0�     

and

  

q� � �

�
21

21

1
1 18ρ .      

   Hence, instability occurs at a value of the applied load of: 

W Pc E� 1 18.      

   where  PE  is the Euler load for a column.  

    Example 11.3 

   Determine the value of W at which elastic instability occurs in the rigid frame 
shown in  Figure 11.10   . All the members are of uniform section.  

    Solution 

   Instability occurs in the mode shown at (i), and the rotation of joint 5 is equal 
and of the same sense as the rotation of joint 2. Thus, instability at joints 2 
and 3 only need be considered. 

W

2

2l

l

3

1 4

W

Figure 11.9           
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   The axial strains in the columns produce no flexural deformations, and the 
stiffness sub-matrices of the members are given by: 

M

M
EI l

M

M
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/      

   Collecting the relevant terms gives: 

P
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   For a value of ρ       �      2.6 , q       �       �2.25 and the determinant of the stiffness 
matrix is: 

1 75 2

4 5 75
2 10

.

.
.�

     

   For a value of  ρ       �      2.7 , q       �       � 2.81 and the determinant is: 

1 19 2

4 5 19
1 82

.

.
.� �
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l
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Figure 11.10           
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   Hence, instability occurs at a value of  ρ       �      2.65 and the critical load is: 

W Pc E� 2 65.       

    Example 11.4 

   Determine the value of W at which elastic instability occurs in the rigid frame 
shown in  Figure 11.11   . All the members are of uniform section.  
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Figure 11.11           

    Solution 

   Instability occurs in the mode shown at (i), and only joints 2 and 3 need be 
considered.

   Neglecting the effect of axial strains in the columns, the stiffness sub-
matrices of the members are given by: 

M

M
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   Collecting the relevant terms gives: 
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   For values of ρ  21       �      1.3 and ρ  34       �      2.6, q  21       �      1.89 and q  34       �       �2.25 and the 
determinant of the stiffness matrix is: 

3 89 1

1 0 75
1 92

.

.
.�

     

   For values of ρ  21       �      1.4 and ρ  34       �      2.8, q  21       �      1.68 and q  34       �       �3.44 and the 
determinant of the stiffness matrix is: 

3 68 1

1 0 44
2 62

.

.
.

�
� �

     

   Hence, instability occurs at a value of  ρ  21       �      1.34 and the critical load is: 

W Pc E� 1 34.       

    Example 11.5 

   Determine the value of W at which elastic instability occurs in the rigid truss 
shown in  Figure 11.12   . All the members are the same length and are of uni-
form section. 

W W
w/2√−

3 w/2√−
3
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3w/√−

3
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3

�w/√−
3

�w/√−
3

1

3 4

2 5 u1

u3

�u1

�u3

(i)

Figure 11.12           

   Instability occurs in the mode shown at (i), there is zero rotation at joint 2, 
and only joints 1 and 3 need be considered. The axial forces in the members, 
assuming all joints in the truss are pinned, are shown at (i), and the relation-
ships between the P / PE  values are  ρ  23       �       �  ρ  13       �       �  ρ  34       �      2 ρ  12 . 

   The stiffness sub-matrices of the members are given by: 
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M q EI l
M q EI l

12 12 1

32 23 3

 /
/

� 
 � 

θ
θ      

   Collecting the relevant terms gives: 
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   For a value of ρ  12       �      1.7, q  12       �      0.98, q  13       �      7.30, q  23       �       �10.91, q  34       �      7.30, 
and r  34       �       r  13       �      1.47 and the determinant of the stiffness matrix is: 

8 28 1 47

1 47 2 22
16 22

. .

. .
.�

     

   For a value of ρ  12     �   1.75, q  12     �   0.85, q  13     �   7.37, q  23     �     �13.72, q  34     �   7.37,
and r  34     �     r  13     �   1.46 and the determinant of the stiffness matrix is: 

8 22 1 46

1 46 0 44
5 75

. .

. .
.

�
� �

     

   Hence, instability occurs at a value of  ρ  12       �      1.74 and the critical load is: 

W P
P

c E

E

� �
� 

2 3 1 74
6 03

0 5( ) . .
.       

    (c)       Effect of primary bending moments 

   When the loading on a structure is applied only at the joints, the members 
remain straight prior to buckling and no bending moments are produced by 
the loads. When the loading on a structure is applied within the lengths of 
the members, primary bending moments are produced that in general cause 
deformations associated with the buckling mode. In the case of a single-bay 
frame with loading applied to the beam, the buckling load is lower than the 
critical load of an identical frame with the loading system replaced by statically 
equivalent loads at the joints          17,18,19  . The buckling load, associated with the 
symmetrical mode of instability, is considerably decreased by primary bending 
moments, owing to the fact that the axial force in the beam reduces its stiff-
ness. The buckling load, associated with the side-sway mode of instability, is 
only slightly decreased by primary bending moments, and the actual loading 
system may be replaced by statically equivalent loads at the joints with very 
small error. 
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    Example 11.6 

   Determine the value of W at which elastic instability occurs in the rigid frame 
shown in  Figure 11.13   . All the members are of uniform section.  

2 3

1

2l

4

l

W

H H

Figure 11.13           

    Solution 

   The primary moments produce an axial thrust in the beam that is equal to the 
horizontal reaction at the base of the columns. Allowing for this axial thrust, 
the stiffness of joint 2 and the fixed-end moment at joint 2 due to the distrib-
uted load are: 

s s s
q q r EI l

M t WlF

2 21 23

21 23 23

23 23

2
6

� �

� � � �

� �

{ ( )/ } /
/      

   Equating internal and external moments at joint 2: 

{ ( )/ } / /q q r EI l t Wl� � � � �21 23 23 2 232 6 0θ
     

   The axial thrust in the beam is: 

P H
EI q l

23

2 21
2

 � 

� �θ /      

   Eliminating  θ  2  from these two equations gives: 

P q q r q t W23 21 23 23 21 232 6 0{ ( )/ } /� � � � � �      

   Dividing by  π  2 EI / l  2  gives: 

ρ ρ23 21 23 23 21 23 212 4 3 0{ ( )/ } /q q r q t� � � � � �      

   Values of  ρ  23 are assumed, and the corresponding values of ρ  21 are obtained 
from this expression by trial and error. 
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    For a value of ρ  23       �      0.4, ( q  23       �       r  23 )    �      1.29, t  23       �      1.073 and ρ  21       �      0.36,  
q�21          �      2.20.  

    For a value of ρ  23       �      0.8, ( q  23       �       r  23 )    �      0.47, t  23       �      1.162 and ρ  21       �      0.59,  
q�21          �      1.58.  

    For a value of ρ  23       �      1.0, ( q  23       �       r  23 )    �      0.00, t  23       �      1.216 and ρ  21       �      0.617,  
q�21          �      1.49.  

    For a value of ρ  23       �      1.2, ( q  23       �       r  23 )    �       – 0.52, t  23       �      1.277 and ρ  21       �      0.59,  
q�21          �      1.58.    

   The variation of ρ  21 with ρ  23 is shown plotted in  Figure 11.14   . At the origin, 
with ρ  21  and  ρ  23  approaching zero, the gradient of the curve is given by: 

ρ ρ21 23 3 3 2 2 12
1

/ ( / )/  � �
�      

0.6

0.4

0.2

0
0 0.4 0.8 1.2

ρ 21

ρ
23

Figure 11.14           

   The maximum value of W that the frame can sustain is the critical value and 
is given by the maximum value of ρ  21. Hence, instability occurs at a value of 
ρ  21       �      0.617, and the critical load is 

W P
P

c E

E

� �
� 

2 0 617
1 234

.
.     

  where  PE  is the Euler load for a column.   
   This result may be compared with the value of ρ  21       �      1.18 obtained in 

Example 11.2 for an identical frame with the loading applied at the joints.   

    11.3      Effect of axial loading on rigid frames 
subjected to sway 

    (a)       Modified moment-distribution procedure 

   The methods of Sections 7.8 and 7.9 may be readily modified and applied 
to the analysis of structures subjected to axial loads. An initial estimate is 



Elastic instability 547

required of the axial forces in the members and the corresponding stiffness 
and carry-over factors obtained. In addition, in setting up the sway equations 
allowance must be made for the magnification effect of the axial loads. A sub-
sequent analysis may be performed if necessary, using revised values for the 
axial forces. 

   The sway moments produced in the straight, prismatic member 12, shown 
in  Figure 11.15(i)   , are: 

M M Ql
s c x l

F F
12 21 2

1
� �

� �

/
( ) /      

P

2

Q Q

Q

(i) (ii)

x

1

MF
21 MF

21

MF
12 MF

12

l

2

Q

mx

1

ρ

Figure 11.15           

   The application of an axial force P to the member, as shown at (ii), results in 
the increased lateral displacement mx , and the sway moments are: 

M M mQl
s c mx l

F F
12 21 2

1
� �

� �

/
( ) /     

  where m is the magnification factor. Thus, by establishing a relationship 
between P and m, the fixed-end moments in an axially loaded member sub-
jected to sway may be obtained as m times the moments in the member with 
the axial load neglected. In addition, the lateral displacement of an axially 
loaded member subjected to a shear force Q  is given by:   

δ �

� �

mx
mQl c2 2 1/ s( )      
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   Taking moments about end 1 for the axially loaded member shown at (ii): 

M M Ql Pmx
s c mx l Ql Pmx

F F
12 21

2 1
� � �

� � �( ) /      

   Neglecting the magnification effect and the moment due to  P  gives: 

2 1s c x l Ql( ) /� �      

   Thus: 

2 1 1 2s c m Pmxl EImx l( ) ( ) /� � � � � ρπ     

  and:   

m q r q r� � �  � 2 2 2 2( )/( )ρπ      

   Similarly, when end 1 is hinged, the magnification factor is given by: 

m q q� � � � �/( )ρπ2
     

   The sway equation for the second story of the symmetrical single-bay frame 
shown in  Figure 11.16    is: 

� � � �2 12 21 2 3 2( )  ( )M M mh W W      

WW3

W3

W

h3

h2

h1

2 3

W1 1 4

Figure 11.16           
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   The initial fixed-end moments required to satisfy the sway equation are: 

M M
mh W W

F F
12 21

2 3 2 4
 � 

 � � �( )/      

   The out-of-balance moment at joint 1 is distributed while allowing joint 2 to 
translate laterally without rotation so that the sway equation remains satisfied. 

   From  Figure 11.17    where s  � and c  � refer to the modified stiffness of 12 and 
the modified carry-over factor from 1 to 2: 

s s mxs c l
s c sc mxs c l

� �  � �
� �  �  � �

( )/
( )/
1
1      
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2

1
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�

u� 1

P P

P P

s

u� 1

s (1 � c)�I

s (1 � c)�I

mx

� mx �

1

Figure 11.17           

   Neglecting the magnification effect, it is shown in Section 7.9 that: 

s s s c
s c sc s c

��  � �
� ��  � �

( )/
( )/
1 2
1 2      

   Allowing for the magnification effect: 

s s ms c
nEI l

s c sc ms c
oEI l

��  � �
�

� ��  � �
�

( )/
/

( )/
/

1 2

1 2

     

   The modified carry – over factor is: 

c o n� � /      
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   The modified stiffness of the member 12 when end 2 is hinged is given by: 

s nEI o n l
n EI l

� �  � 
� �

{ ( / ) }/
/

21
     

   Values of  m, n, n  �, and o have been tabulated 11   and graphed 13   and are pre-
sented in  Table 11.2   . The notation adopted in the stability analysis of frames 
with sway is shown in  Figure 11.18.    

Table 11.2        Stability functions for frames with sway  

    ρ m n o n�    ρ m n o n�  

   1.50 �1.41 4.51 5.93 �3.28 0.27 1.30 �0.10 �1.64 26.46
   1.40 �1.82 5.73 6.83 �2.41 0.25 1.27 0.00 �1.57 �  
   1.30 �2.50 7.60 8.40 �1.69 0.23 1.24 0.10 �1.51 � 23.45 
   1.20 �3.85 11.13 11.65 �1.06 0.20 1.21 0.24 �1.43 � 8.4 
   1.10 �7.90 21.32 21.57 �0.51 0.15 1.15 0.45 �1.30 � 3.29 
   1.02 �40.33 101.47 101.51 �0.20 0.10 1.09 0.65 �1.19 � 1.53 
   1.00 � � � 0.00 0.05 1.04 0.83 �1.09 � 0.59 
   0.98 40.73 �98.47 �98.51 0.20 0.00 1.00 1.00 �1.00 0.00
   0.95 16.41 �38.41 �38.53 0.24 �0.10 0.93 1.31 �0.85 0.75
   0.90 8.31 �18.33 �18.57 0.48 �0.20 0.86 1.59 �0.73 1.25
   0.85 5.60 �11.58 �11.93 0.72 �0.40 0.76 2.06 �0.56 1.91
   0.80 4.25 �8.16 �8.63 0.97 �0.60 0.69 2.47 �0.43 2.40
   0.75 3.44 �6.08 �6.66 1.22 �0.80 0.63 2.83 �0.34 2,79
   0.70 2.90 �4.67 �5.35 1.48 �1.00 0.58 3.15 �0.27 3.13
   0.65 2.51 �3.63 �4.43 1.77 �1.20 0.55 3.45 �0.22 3.43
   0.60 2.22 �2.84 �3.74 2.08 �1.40 0.51 3.72 �0.18 3.71
   0.55 2.00 �2.21 �3.21 2.46 �1.60 0.49 3.98 �0.15 3.97
   0.50 1.82 �1.69 �2.79 2.92 �1.80 0.46 4.22 �0.13 4.21
  0.45 1.67 �1.25 �2.45 3.54 �2.00 0.44 4.44 �0.11 4.44
   0.40 1.55 �0.88 �2.17 4.50 �2.50 0.40 4.97 �0.07 4.97
   0.35 1.44 �0.55 �1.94 6.28 �3.00 0.36 5.44 �0.05 5.44
   0.30 1.35 �0.26 �1.74 11.39 �3.50 0.34 5.88 �0.03 5.88
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Figure 11.18             
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   A graphical representation of the functions is shown in  Figure 11.19   .  
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Figure 11.19           

    Example 11.7 

   Determine the moments in the frame shown in  Figure 11.20    for a value of 
W       �      0.01375 PE . All the members are of uniform section. 
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   As a first approximation, the axial force in each column is taken as 10 W and in 
the beam as zero. The stiffness, carry-over factors, and initial sway moments are: 

s EI l
s nEI l

EI l
c o n

M MF F
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21
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2 54
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���
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mWl
Wl

/4
0 282.      

   The distribution factors at joint 2 are d  23       �      12/13 and d  21       �      1/13, and the 
final moments are: 

M Wl
Wl

M Wl Wl

23

12

0 282 12 13
0 260

0 282 2 54 0 022
0

� �
�
��  � �
��

.

.
. . .
.

/

3338Wl      

   The corresponding values obtained when the axial forces in the columns are 
neglected are: 

M Wl
Wl

M Wl Wl
Wl

23

12

0 25 6 7
0 214

0 25 1 0 036
0 286

� �
�
��  � �
��

.

.
. .
.

/

      

    Example 11.8 

   Determine the moments in the frame shown in  Figure 11.21   . For the columns, 
EI       �      3      �      10 9  lb/in 2  and for the beams,  EI       �      6      �      10 9 lb/in 2 .  

10W
W

2 3

1

l

4

l

10W

Figure 11.20           
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    Solution 

   The Euler load for each column is: 

PE � � �
� 

π2 9 23 10 120
2 055 000

/( )  
 lb, ,      

   As a first approximation, the axial force in each column is taken as 112 kips 
and in each beam as zero. The ρ , m, n , and  o  factors are: 

ρ � 
� 

112 000 2 055 000
0 055

, , ,
.

/

   

   and: 

m n o� � � �1 045 0 81 1 1. , . , .      

   Because of the skew symmetry, only the left half of the frame needs to be 
considered, with a modified stiffness of 6 EI / l applied to the beams and no 
carry-over between the two halves. 

   The initial sway moments are: 

M M

M M

F F

F F

23 32

12 21

4 48 1 045 4
140

13 44

�

�� � � �
��

�

�� �

. .

.

10 12 /
 kip-in

110 12 1 045 4
420

� �
��

. /
 kip-in      

   The distribution procedure and the final moments are given in  Table 11.3   .  
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Table 11.3        Distribution of moments in Example 11.8  

   Joint 1   2    3   
   Member 12 21 22� 23 32 33�  
   Relative  EI / l 3 3   2  3 3   2 
   Modified stiffness 2.43 2.43 12 2.43 2.43 12
   Distribution factor  0 0.144 0.144 0.168
   Carry-over factor ←  �1.35 ← �1.35
   �1.35 →

    MF  sway   �420 �420 �140 �140
   Distribution      81       81       24   
   Carry-over �109    �32 �109
   Distribution          5        5       18   
   Carry-over �7    �24      �7
   Distribution          3          3         1
   Carry-over �4      �1      �4

   Final moments, kip-in   �540 �331 438 �107 �217 217

    (b)       Modified matrix methods 

   The methods of Section 10.2 may be readily modified and applied to the anal-
ysis of structures subjected to axial loads. The stiffness matrix for a structure 
must be expressed in terms of the m, q, and r functions. An initial estimate is 
required of the axial force in each member in order to determine initial val-
ues of the stability functions, and the analysis is then carried out. A subse-
quent analysis may be required with revised values of the stability functions if 
the axial forces derived in the first analysis differ appreciably from the initial 
estimates.

   The stiffness matrix for a straight prismatic member 12, allowing for axial 
strains and referred to the member axis, is given by: 
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    Example 11.9 

   Determine the moments in the frame shown in  Figure 11.20  for a value of 
W       �      1.01375 PE . All the members are of uniform section.  
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    Solution 

   The axial forces in the members may be estimated from the results of Example 
11.7, neglecting the sway displacement, as: 
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   The corresponding stability functions are: 
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q r mρ 1126      

   Neglecting axial strains, the stiffness submatrices for the members are given by: 
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   Collecting the relevant terms gives: 
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   The joint displacements are: 
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   The moments and axial forces are: 

M x l Wl
M x l

34 3 2

43 3 2

3 810 5 859 0 2610
2 049 5 859

�  � � �
�  � � �

. . .
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/ 00 3376
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� �
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)/ .
.      

   An additional analysis is unnecessary, as the revised values of the axial forces 
differ only slightly from the initial estimate.  

    (c)       Determination of the critical load 

   Instability of frames that are liable to sway occurs in a skew-symmetrical 
mode, and the critical load is invariably lower than that of an identical frame 
in which sway is prevented. In the case of a symmetrical single-bay frame, the 
stiffness of the columns is readily expressed in terms of the n and o functions, 
and the critical load is the one that produces a singular stiffness matrix. 

   Instability of the frame, shown in  Figure 11.22 , occurs in the skew-symmet-
rical mode shown at (i). The rotation of joint 3 is equal and of the same sense 
as the rotation of joint 2, and the critical load may be determined by consider-
ing the stiffness of joint 2 only. Thus: 

s s s
EI l n EI l

2 23 21

216
� �

� �/ /+      

1

(i)

4

l

2

W

l

W

3

Wc Wc

Figure 11.22           

   At the critical load: 

s2 0�     

  and   

n�  ��21 6
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   From  Table 11.2 : 

ρ �

�

W Pc E/

0 177.     

  and   

W EI lc � 0 177 2 2. π /      

   This result may be compared with the value of ρ       �      1.31 obtained in Section 
11.2(b) for an identical frame with sway prevented. 

   In the case of multi-bay frames, a procedure similar to that used in Section 
7.9 may be employed to reduce the structure to an equivalent single-bay sym-
metrical frame. However, for the determination of the critical load, it is unnec-
essary for the original structure to satisfy exactly the principle of multiples 20  . 
The frame, shown in  Figure 11.23   , may be reduced with sufficient accuracy to 
the single-bay frame shown at (i). The EI / l value for the beam of the equivalent 
frame is given by Σki

b
   , where ki

b
    is the EI / l for beam i of the original frame. 

The EI / l value for each column of the equivalent frame is given by Σkj
c /2   

,

where kj
c     is the EI / l value for column j of the original frame. The ρ value for

each column of the equivalent frame is given by Σ  Wn / Σ  PEn, where Σ  Wn is the 
sum of the applied loads and Σ  PEn is the sum of the column Euler loads of the 
original frame.  

k1
c

PE1

k2
c

PE2

k3
c

PE3

W1 W2

(i)

k1
b k2

b W3 ΣkI
b ΣWn/2

ΣPEn/2

ΣW c
j /2

�

Figure 11.23           

    Example 11.10 

   Determine the value of W at which elastic instability occurs in the rigid frame 
shown in  Figure 11.24   . All the members are of uniform section.  

    Solution 

   The stiffness of joint 2 is: 

s s s
EI l n EI l

2 23 21

216 2
� �

� �/ ′ /      
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   At the critical load: 

s2 0�      

   and: 

n� ��

�
21

21

3
0 142ρ .      

   Hence, instability occurs at a value of the applied load: 

W EI lc � 0 142 2. π / 2
      

    Example 11.11 

   Determine the value of W at which elastic instability occurs in the rigid frame 
shown in  Figure 11.25   . All the members are of uniform section.  

1 4
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2l 2l 2l

2W
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2W
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8

l

W

7

Figure 11.25           

1 4

l

2

W

2l

W

3

Figure 11.24           
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    Solution 

   The frame may be replaced by an equivalent single-bay frame with a beam 
stiffness of: 

6 3 2 9E I l EI l( )/ /�      

   and a column stiffness of: 

nE I l nEI l( )/ /4 2 2�      

   At the critical load: 

n

W P

 � �
� 
� 

4 5
0 69
6 4

.
.

/
ρ

E      

   Hence, the critical load is: 

W Pc E� 0 46.      

   A more accurate value may be obtained by setting up the stiffness matrix for 
the original frame. Instability occurs in a skew-symmetrical mode with θ  3       �       θ  5  
and θ  2       �       θ  7. Neglecting axial strains, the stiffness sub-matrices for the mem-
bers are given by: 
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   Collecting the relevant terms gives: 
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  where:   

j q r m21 21 21 212�  �( )/      

  and:   

j q r m34 34 34 342 � �( )/      

   For values of ρ  21       �      0.44 and ρ  34       �      0.88 the determinant of the stiffness 
matrix is: 

5 39 1 00 5 55

1 00 7 68 5 07

5 55 5 07 8 22

10 8

. . .

. . .

. . .

.

�

�

� �

�

     

   For values of ρ  21       �      0.46 and ρ  34       �      0.92 the determinant of the stiffness 
matrix is: 

5 34 1 00 5 53

1 00 7 61 5 03

5 53 5 03 7 49

17 0

. . .

. . .

. . .

.

�

�

� �

� �

     

   Hence, the critical load is: 

W Pc E� 0 448.       

    Example 11.12 

   Determine the value of W at which elastic instability occurs in the rigid frame 
shown in  Figure 11.26   . All the members are of uniform section.  

W
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Wl
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3W/2

43

1 6

52

1.5 1.5

1.5 1.5

2

2

(i)

Figure 11.26           
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    Solution 

   The frame may be replaced by the equivalent single-bay frame shown at (i), 
with the relative second moment of area values ringed. The stiffness sub-matri-
ces for the members are given by: 
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   Collecting the relevant terms gives: 
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   For values of ρ  23       �      0.30 and ρ  21       �      0.60 the determinant of the stiffness 
matrix is: 

0.90 1.74

1.74 3.74
0.34

�

�
=

     

   For values of ρ  23       �      0.31 and ρ  21       �      0.62 the determinant of the stiffness 
matrix is: 

0.54 1.78

1.78 3.68
1.18

�

�
��

     

   Hence instability occurs at a value of  ρ  23       �      0.302 and the critical load is: 

W Pc E� 0 302.       

    (d)       Effect of primary bending moments 

   The buckling load of a structure liable to side sway is only slightly reduced by 
primary moments caused by vertical loads. Immediately prior to buckling, the 
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expressions derived in Section 11.2(c) for the no-sway case are applicable. As 
buckling occurs, an additional expression involving the n and o functions must 
be satisfied. 

   A structure subjected to lateral loads, as in Figure 11.20 , has no defined 
buckling load 21  . The frame displacements approach infinity as the vertical 
loads approach the elastic critical load of an identical frame subjected only to 
vertical loads.  

    Example 11.13 

   Determine the value of W at which elastic instability occurs in the rigid frame 
shown in  Figure 11.27   . All the members are of uniform section.  

2

2l

l

W

3

1 4

Figure 11.27           

    Solution 

   There is no sway of the frame until buckling occurs, and the relationship 
between ρ  21 and ρ  23 established in Example 11.6 and plotted in Figure 11.14  is 
applicable.

   As buckling occurs, the stiffness of joint 2 is: 

s
s s
q r EI l n EI l

q r n

2

23 21

23 23 21

23 23 21

0

2
2

�
� �

� � � �
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( ) / /

     

   At the skew-symmetrical buckling load, the relationship between ρ  21 and ρ  23  
is almost linear with: ρ  21   �   ρ  23 . 

   For a value of:  ρ  21       �       ρ  23       �      0.12 

q r n23 23 212 1 42� � � � .      

   For a value of:  ρ  21       �       ρ  23       �      0.14 

q r n23 23 212 0 02� � � �� .      
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   Hence, instability occurs at a value of  ρ  21       �      0.14 and the critical load is: 

W P
P

c E

E

� �
�

2 0 14
0 28

.
.     

  where  PE  is the Euler load for a column.   
   This result may be compared with the value of ρ  21       �      0.142 obtained in 

Example 11.10 for an identical frame with the loading applied at the joints.  

    Example 11.14 

   Determine the value of W at which elastic instability occurs in the rigid frame 
shown in  Figure 11.28   . All the members are of uniform section.  
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1 4

Figure 11.28           

    Solution 

   The stiffness sub-matrices for the members are given by: 

M

M
EI l

q r

r q

23

32

23 23

23 23

2

3

2
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥� /

θ

θ ⎥⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

M

lQ
EI l

q q

q q m

21

21

21 21

21 21 21

�
� � �

� � � �
/

/

θθ2

2

34

34

34 34

34 34

x l

M

lQ
EI l

q q

q q

/

/
/

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

�
� � �

� � � mm x l�34

3

2

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥/

θ

     

   Collecting the relevant terms gives: 
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   where 

j q m j q m� � � � � � � �21 21 21 34 34 34/  and /      

   Values of  P  23 and P  34 are estimated and the corresponding stability functions 
inserted in the stiffness matrix. Inverting this matrix gives the displacements, 
and thus Q  34  , M  23, and M  32 may be obtained. The axial forces in the members 
are given by: 

P Q23 34�      

   and: 

P W M M l34 23 32 2� � �( )/      

   The analysis is correct when these values agree with the initial estimates. 
   For a value of W       �      0.04 PE where PE is the Euler load for a column, 

ρ  23       �      0.0078,  ρ  34       �      0.0427, and  θ  2       �      0.0090     rad. 
    For a value of W       �      0.08 PE, ρ  23       �      0.0139, ρ  34       �      0.887, and 

θ  2       �      0.0290     rad.  
    For a value of W       �      0.12 PE, ρ  23       �       �0.0089, ρ  34       �      0.1541, and 

θ  2       �      1.145     rad.  
    For a value of W       �      0.13 PE, ρ  23       �       �0.0788, ρ  34       �      0.1908, and 

θ  2       �      2.047     rad.    
   In  Figure 11.29   , values of W / PE are plotted against θ  2 and it may be seen 

that θ  2 approaches infinity as W / PE approaches 0.142. In the same figure values 
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Figure 11.29           
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of W / PE are plotted against θ  2 for Examples 11.2 and 11.10, and values of ρ  21  
are plotted against θ  2  for Examples 11.6 and 11.13.  

    (e)       Effect of finite displacements 

   The previous analyses have been based on small deflection theory, and the stiff-
ness matrix of the structure when instability occurs has been assumed identical 
to the stiffness matrix of the unloaded structure. In practice, the finite deflec-
tions produced before instability may significantly change the geometry of the 
structure. The columns of the frame shown in  Figure 11.30    (i) are initially ver-
tical. On the application of a lateral load, as shown at (ii), the geometry of 
the frame changes, and the columns are inclined at a sway angle φ       �       x2 / l. The 
elements in the stiffness matrix of the frame depend on the inclination of the 
columns, and thus the stiffness matrix is continuously changing as the lateral 
load increases. In structures that undergo a severe change in geometry, elastic 
instability may not occur  22  .  

2

l

3

φ

1

(i) (ii)

4

φ

Figure 11.30           

    Example 11.15 

   Determine the relationship between W and θ  2 for the frame shown in Figure
11.28 . All the members are of uniform section.  

    Solution 

   At any given loading stage, the columns are inclined at an angle φ to the verti-
cal where φ       �       x  2 / l. The relationship between horizontal and vertical displace-
ment of a column top is y  2       �       x  2 tan φ, and the orthogonal transformation 
matrix [ T  21 ] of column 21 is given by: 
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   where λ       �      cos   φ, μ       �      sinφ, and y�21     is the displacement of 2 perpendicular to 
member 21. 
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   The stiffness sub-matrix for column 21, referred to the x- and y-axes, is 
given by [ T  21 ] T [ S  21 ][ T  21 ] and: 
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   where  τ       �      ( λ       �       μ  tan  φ ). 
   The complete stiffness matrix of the frame is given by: 
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   Values of  P  21, P  23, P  34, and φ are estimated and the corresponding stability 
functions inserted in the stiffness matrix. Inverting this matrix gives the dis-
placements, and thus Q  34, M  23, and M  32 may be determined. The axial forces 
in the members are given by: 

P Q

P W M M Q

P W M M

23 34

34 23 32 34

21 23 32

2

2

�
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� � �

{ ( )/ }
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oos sinφ φ� �( / )W Q10 34      

   The analysis is correct when these values and the value of φ   agree with the 
initial estimates. 

    For a value of W       �      0.04 PE, ρ  23       �      0.0078, ρ  34       �      0.0427, ρ  21       �      0.0372, 
φ       �      0.0182, and  θ  2       �      0.00898     rad.  

    For a value of W       �      0.08 PE , ρ  23       �      0.0139, ρ  34       �      0.0883, ρ  21       �      0.0710, 
φ       �      0.0586, and  θ  2       �      0.02869     rad.  

    For a value of W       �      0.12 PE, ρ  23       �       �0.0019, ρ  34       �      0.1467, ρ  21       �      0.0862, 
φ       �      0.1995, and  θ  2       �      0.0995     rad.  

    For a value of W       �      0.13 PE , ρ  23       �       �0.0266, ρ  34       �      0.1668, ρ  21       �      0.0801, 
φ       �      0.2736, and  θ  2       �      0.1392     rad.    

   Values of  W / PE are plotted against θ  2 in  Figure 11.29 , and it may be seen 
that θ  2 continuously increases as W increases and that elastic instability does 
not occur.   

    11.4     Stability coefficient matrix method 

   A relatively direct determination of the critical load is possible if member 
forces are related to joint displacements by the normal stiffness matrix plus a 
stability coefficient matrix to allow for the axial load. The stability coefficient 
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matrix is derived from the assumption that the elastic curve of a member may 
be defined by a cubic polynomial. For a member 12, subjected to the joint dis-
placements and member forces shown in  Figure 11.31   , the lateral displacement 
is given by: 

y a a x a x a x� � � �1 2 3
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4
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Figure 11.31           

   Thus: 
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   and: 
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  where  M  is the bending moment in the member due to the member end forces.   
   The joint displacements are obtained by substituting the coordinates of 

joints 1 and 2 into the displacement functions. Thus: 
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   or: 
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   The coefficients of the cubic polynomial are given by: 
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   where {  A  }  is the vector of undetermined constants in the displacement func-
tions. The total moment in the member is the sum of M due to the member 
end forces and M

–
 due to the axial load  P. The moment due to the member 

end forces is given by: 
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   The member deformations are given by: 
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   The moment due to the axial load is given by:  
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   The member end forces {  P  }  are statically compatible with the total moment 
in the member ( M       �       M    ). Hence, during any imposed virtual displacements, 
the internal work done and the external work done sum to zero. The external 
work done is the sum of each member end force multiplied by the correspond-
ing virtual displacement. The internal work done is the product of the virtual 
deformation in the member and the total moment, including the moment due 
to the axial load 23  . Applying unit virtual joint displacements successively while 
the remaining displacements are prevented produces the virtual deformations 
[C ][ B ] � 1 [ I ]. Then, equating external and internal work: 
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   Expanding each term separately: 
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  where:   
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  and this is the normal stiffness matrix for a member,   
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  where:   
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  and this is the stability coefficient matrix. The individual elements in the 
matrix do not involve the axial load as a parameter. The matrix may be com-
puted explicitly for each member and remains independent of the axial load.   

   Thus the relationship between member forces and joint displacement is: 
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      and this is valid for a tensile load with a change of sign.   
   The displacement function used in the above derivation is exact so far as 

member forces are concerned and provides an approximate expression for the 
displacements produced by an axial load. Provided that failure of the structure 
occurs in the sway mode, the axial loads are small and the deformations of the 
members agree closely with the assumed displacement function. Thus, a good 
estimate of the critical load is obtained, and this is an upper bound because of 
the constraints imposed by the assumed displacement function. The accuracy 
may be further improved by dividing each member into a number of smaller 
segments  24  , thus increasing the number of degrees of freedom. Alternatively, 
additional terms may be introduced into the sub-matrix for each member, cor-
responding to the first and second buckling modes of a built-in strut  25  . 
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   For the column shown in  Figure 11.32    the relationship between member 
forces and joint displacements is similarly obtained as: 

lQ

M
EI l

12

12

2
3 3

3 3
5

6 1

1 1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥�
�

�
�

�

�
/ /ρπ ⎥⎥

⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

/x l1

1θ
     

1y1

M12

Q12

u1

2
l

P

Figure 11.32             

    Example 11.16 

   Determine the value of W at which elastic instability occurs in the rigid frame 
shown in  Figure 11.22 . All the members are of uniform section.  

    Solution 

   The stiffness sub-matrices for the members are given by: 
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  Collecting the relevant terms gives:   
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   The determinant of the stiffness matrix is zero for a value of: 

ρ � 0.185     

  and:   

W EI lc � 0.185 /2 2π       

    Example 11.17 

   Determine the value of W at which elastic instability occurs in the rigid frame 
shown in  Figure 11.25 . All the members are of uniform section.  

    Solution 

   The stiffness sub-matrices for the members are given by: 
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   Collecting the relevant terms gives: 
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   The determinant of the stiffness matrix is zero for a value of: 

ρ � 0.453     

  and:   

W EI lc � 0.453 /2 2π        
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    Supplementary problems 

    S11.1 Determine the value of W at which elastic instability occurs in the rigid 
frame shown in  Figure S11.1   . The frame is braced against lateral translation, 
and all the members are of uniform section. 
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Figure S11.2           
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l
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Figure S11.1           

    S11.2 All the members of the symmetrical rigid frame shown in  Figure S11.2    
are of uniform section. Determine the value of W at which elastic instability of 
the frame occurs in its own plane. 
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    S11.3 All the members of the braced frame shown in  Figure S11.3    are of uni-
form section. Set up the stiffness matrix for the frame and hence determine the 
value of W at which elastic instability occurs. The loading on the members 
may be replaced by equivalent static loading at the joints. 
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Figure S11.3             

    S11.4 All the members of the rigid frame shown in  Figure S11.4    are of uni-
form section, and the frame is hinged at supports 1 and 5. The dimensions and 
loading are indicated on the figure, and the Euler load for member 12 is 8      W . 
Determine the load factor against collapse by elastic instability of the frame in 
its own plane. 
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    S11.5 Set up the stiffness matrix and determine the value of W in terms of the 
Euler load at which elastic instability occurs in the symmetrical rigid frame 
shown in  Figure S11.5   . All the members are of uniform section.   
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Figure S11.5             
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                           12       Elastic-plastic analysis  

    Notation 

    c       carry-over factor for a member  
  {  C  }       plastic force vector  
  E       modulus of elasticity  
  I       second moment of area of a member  
  j       stability function      �      2( q       �       r  )  –   ρ  π  2   
  j�       stability function      �       q�  –  ρ  π  2   
  l       length of a member  
  m       stability function      �      2( q       �       r )/ j   
  M  12       moment acting at end 1 of a member 12  
  n       stability function      �       q   –   m ( q       �       r )/2  
  N       load factor  
  Nc       load factor against elastic instability  
  Nd       load factor against elastic instability of the deteriorated structure  
  Nf       load factor against elastic-plastic failure  
  NR       Rankine-Merchant load factor  
  Nu       load factor against rigid-plastic collapse  
  o       stability function      �       r   –   m ( q       �       r )/2  
  P       axial force in a member  
  PE       Euler load  
  q       stability function   �     sl/EI     �     α l(sin α l   –   α l cos α l)/(2  –  2 cos  α l   –   α l sin α l )  
  q�       stability function      �      equals  q (1  –   c  2 )  
  r       stability function      �       qc       �       α l ( α l   –  sin  α l )/(2  –  2 cos  α l   –    α l  sin  α l )  
 [ S ]      stiffness matrix for the whole structure  
  W       applied load  
  Wc       critical load  
  Wd       critical load of the deteriorated structure  
  Wf       load producing elastic-plastic failure  
  WR       Rankine-Merchant load  
  Wu       load producing rigid-plastic collapse  
  {  W  }       vector of external loads applied at the joints  
  x       horizontal displacement  
  y       vertical displacement  
  α       equals ( P / EI ) 0.5   
  θ       rotation  
  ρ       equals P / PE   
  {  Δ  }       vector of joint displacement     
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    12.1     Introduction 

   The collapse of a normal structure is influenced by both elastic instability 
effects and by plastic yielding in the members. In chapter 9 plastic theory is 
used to determine the collapse load of an ideal rigid-plastic structure in which 
bending effects predominate and axial effects may be neglected. Chapter 11 
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considers the ideal elastic structure in which axial forces are appreciable and 
the stresses in the members are entirely within the elastic range at collapse. 
Thus, failure occurs due to buckling effects at the elastic critical load of the 
structure. The present chapter deals with the determination of the failure load 
of a structure, taking account of both plastic yielding and instability effects. 

    (a)     Linear elastic response 

   The uniform frame shown in  Figure 12.1    is designed with a load factor Nu  
against rigid-plastic collapse (ignoring instability effects) and with a load fac-
tor Nc against elastic instability (assuming that the members exhibit indefinite 
elastic behavior). Disregarding both instability effects and plastic yielding, the 
linear elastic response of the frame to a proportional increase in the applied 
loads is linear, as shown in  Figure 12.2   . A linear relationship exists between 
the horizontal deflection, x  2 , of joint 2 and the applied load  W .  

    (b)     Rigid-plastic response 

   The rigid-plastic collapse mode of the frame is shown in  Figure 12.1  (i), and 
the ultimate load for proportional loading is: 

W M lu p� 3 /
    

  where  Mp  is the plastic moment of resistance of the member.   
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   For a value of the plastic moment of resistance of 0.667 Wl, the load factor 
against rigid-plastic collapse is: 

N W Wu u�
�

/
2      

   Ignoring the change in the geometry of the frame as loading increases, the 
rigid-plastic response curve is shown in  Figure 12.2  as a horizontal line, with 
no displacements being produced until the load Wu  is applied.  

    (c)     Linear elastic-plastic response 

   The linear elastic-plastic response curve is determined by tracing the forma-
tion of plastic hinges as loading increases. Allowing for the linear elastic effects 
at loads less than Wu, the linear response curve is followed as the loads are 
increased until the first plastic hinge forms in the frame at joint 4 at a load 
factor of 1.60. The equivalent loading applied to the frame subsequent to the 
formation of this plastic hinge is shown in  Figure 12.1  (ii). The formation of 
the hinge may be simulated by the insertion of a frictionless hinge at 4 and 
the application of a moment of magnitude Mp. The stiffness of the frame is 
reduced, and displacements, for a given increase in applied load, are greater 
than in the original frame. The linear elastic-plastic response is thus a series of 
straight lines with the rate of growth of displacements increasing as the stiff-
ness deteriorates with the formation of each plastic hinge. The sequence of for-
mation of the hinges is shown in  Figure 12.2 , and the equivalent frame, on 
the formation of each additional hinge, is shown in  Figure 12.1  at (iii) and 
(iv). The second hinge forms at joint 3 at a load factor of 1.74, and the third 
hinge forms at 5 at a load factor of 1.94. The collapse mechanism is produced 
when the last hinge forms at joint 1 on the application of the load Wu at a load 
 factor of 2.00.  

    (d)     Elastic instability 

   Assuming indefinite elastic behavior, the elastic critical load may be obtained 
from the equivalent frame and loading shown in  Figure 12.1  (v) by equat-
ing the stiffness of joint 2 to zero. Thus, allowing for the skew symmetry and 
ignoring the axial force in the beam: 

n EI l EI l
n

12 12 23

12

/ 6 / 0
3 0

� �
� �     

  and from Table 11.2:   

1.5 / 0.61W Pc E �     
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  where PE is the Euler load of column 12. For a value of PE of 9.82 W the load 
factor against elastic instability is:   

N W Wc c�
�

/
4      

   No displacement occurs in the frame until the critical load is applied when 
infinite displacements are produced, resulting in the horizontal line shown in 
 Figure 12.2 .  

    (e)     Elastic response 

   The elastic response of the actual frame to the actual loading, allowing for 
instability effects and assuming indefinite elastic behavior, is non-linear, and 
displacements approach infinity as the elastic critical load is approached. A 
close approximation to the elastic response is obtained by multiplying the lin-
ear elastic displacement at a given load factor N by the amplification factor 
1/(1 �   N / Nc). This follows since the deflected shape of the structure is largely 
controlled by the sway deflections, and the displacement components of the 
lowest critical mode predominate as the first critical load is approached        1,2  .  

    (f)     Elastic-plastic response 

   In the actual frame, allowing for both instability effects and plastic yielding of 
the members, the elastic response is followed until the first plastic hinge forms 
at joint 4 at a load factor of 1.21. Displacements now increase more rapidly as 
the response follows a new elastic curve corresponding to the reduced, or dete-
riorated, structure. This deteriorated structure is obtained by taking only that 
part of the actual structure that is still behaving elastically. The deteriorated 
structure, on the formation of the first hinge, is shown in  Figure 12.1  (vi), and 
its deteriorated critical load, Wd  1, is the value of the applied load that causes 
the stiffness matrix of the deteriorated structure to become singular. This value 
is given by: 

1.5 / 0.381W Pd E �      

   Thus, the first deteriorated structure has a load factor against instability of: 

N W Wd d1 1 /
2.5

�
�      

   After the formation of the first hinge, the displacements follow the curve 
shown by the broken line in  Figure 12.2 , and this is asymptotic to the load 
factor Nd  1. The first plastic hinge forms at a lower load than in the linear 
elastic-plastic case due to the reduction in the stiffness of the frame by the 
instability effects. 
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   The second plastic hinge forms at joint 3 at a load factor of 1.30, and the 
deteriorated critical load, for the second deteriorated structure shown in Figure 
12.1 (vii), is Nd  2     �   1.7. This is lower than the rigid-plastic load factor, and it is 
clear that this load factor cannot be attained. The load-displacement curve again 
exhibits a discontinuity of slope on the formation of the plastic hinge at joint 3, 
and displacements follow a curve that is asymptotic to the load factor Nd  2 . 

   The third plastic hinge forms at joint 1 at a load factor of 1.33, and the criti-
cal load for the deteriorated structure shown in  Figure 12.1  (viii) is  Nd  3       �      0.35. 
The structure is now unstable; loading must be decreased to maintain equilib-
rium; and the load factor Nf at which the third hinge forms represents the load 
factor against elastic-plastic failure. The increasing displacements produced by 
a reduction in the loading follow a curve that approaches the load factor Nd  3  
from above. 

   The last plastic hinge forms at joint 2 at a load factor of 0.98, and this pro-
duces the collapse mechanism shown in  Figure 12.1  (ix). The elastic-plastic 
collapse mechanism is thus quite different from the rigid-plastic collapse mech-
anism. In addition, the sequence of hinge formation differs from that obtained 
in a linear elastic-plastic analysis, and this is a general characteristic  3   .

   Several methods have been proposed for determining the elastic-plastic 
failure load, and three of these methods will be considered here.  

    12.2     The Rankine-Merchant load 

   The Rankine-Merchant method 4   is a means of estimating the failure load of 
a structure from values of the rigid-plastic collapse load and the elastic insta-
bility collapse load. A good approximation to the elastic-plastic load factor is 
provided by the Rankine load factor,  NR , which is given by: 

1 1 1/ / /N  N NR c u� �      

   When yield effects predominate, this empirical expression equates NR to Nu . 
Similarly, when instability effects predominate,  NR is equated to Nc. Hence, 
for these limiting states, NR provides an exact estimate of Nf. For intermediate 
conditions the Rankine expression also gives good results        5,6  . 

   The linear elastic load-displacement relationship of a typical frame is shown 
in  Figure 12.3    (i). The load factor against elastic instability is Nc, the linear dis-
placement at this load factor is δ  c, and the linear displacement at an arbitrary 
load factor,  N , is  δ  l . Then: 

N Nc c lδ δ�      

   The point P is obtained from the point of intersection of the horizontal 
and vertical lines RP and QP. The linear displacement of the frame at the load 
factor N�  is  δ  � . Then: 

N Nc c� � �δ δ      
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   From the similar triangles  RPQ  and  SON : 

δ δ
δ δ

δ

� � � �
� � �
� �

 ( )/
( )/

/(1 / )

c

c l

l c

N N N
N N

N N     

  where 1/(1 –   N / Nc) is the amplification factor discussed in section 12.1. Thus, 
δ  � is the elastic displacement of the frame at the load factor N, and the point P  
lies on the elastic response curve. 

   The load factor against rigid-plastic collapse of a typical frame is Nu  ,  and 
the linear displacement at this load factor is δ  u . Then from  Figure 12.3  (ii): 

δ δu c u cN N/ /�      
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   From the similar triangles  SON  and  STQ : 

N N
N N

u R c u c

u c

/ ( )/
/

� �
� �

δ δ δ
1     

  and:   

1/ 1/ 1/N N NR c u� �      

   The linear elastic-plastic response of an ideal frame is shown in Figure
12.3 (iii). Frame displacements follow the linear response curve until all plas-
tic hinges form simultaneously at the rigid-plastic collapse load. The elastic-
plastic response of this ideal frame follows the elastic curve OP, derived in 
(ii) to the point P when all plastic hinges form simultaneously and collapse 
occurs. Hence, for this ideal frame, the elastic-plastic load factor Nf equals the 
Rankine load factor NR. In an actual structure, allowing for both instability 
effects and plastic yielding of the members, the elastic response is followed 
until the first plastic hinge forms in the structure. Displacements now increase 
more rapidly as the response follows a new elastic curve corresponding to the 
reduced, or deteriorated, structure. The stiffness of the deteriorated structure 
corresponds to the part of the actual structure that is still behaving elastically, 
the formation of the plastic hinge being simulated by the insertion of a fric-
tionless hinge and the application of an external moment of magnitude Mp . 
Thus, in an actual structure, the elastic-plastic response lies below the ideal 
response as hinges form one at a time and displacements increase more rapidly 
as the stiffness deteriorates. The value of Nf thus appears to be lower than NR . 
In practice, it is found that NR gives a reasonable lower bound to Nf, provided 
that side loads are not excessive  7  . 

   The Rankine load factor for the frame shown in  Figure 12.1  is, given by: 

NR � �
�

4/(1 2)
1.333      

   The actual elastic-plastic load factor is: 

Nf � 1 336.
      

    Example 12.1 

   Determine the load factors against elastic instability and rigid-plastic collapse 
of the frame shown in  Figure 12.4   . Determine the Rankine load factor for a 
ratio Mp / I       �      2 kip in � 3. The values of the plastic moments of resistance and 
the second moments of area of the members are shown in the figure, and the 
modulus of elasticity is 29,000 kip/in 2 . 
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   The Euler load of column 21 is: 

P E I
I

E �
�

π2 (2 )/(180)
17.67  kips

2

     

   The Euler load of column 23 is: 

P EI
I

E �
�

π2 2/(144)
13.81  kips      

   At the elastic critical load, as shown at (i), the  P / PE  ratios in the columns are: 

ρ
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  and:   

ρ ρ21 232.735�      

   The stiffness sub-matrices for the members are given by: 
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   Collecting the relevant terms gives: 
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   The determinant of the stiffness matrix is zero for a value of ρ  21 of 0.775. 
Thus:

N I
I

c �
�

0.775 /0.475
1.63      

   Rigid-plastic collapse of the frame occurs in the mechanism shown at (ii) and: 

24 12 (28.8 72.0 6.0 22.5)
64.65  kip-in

M N
M N

p u

p u

� � � �

�
    

  thus:   

N M
I

u p�

�

0.0155
0.031      

   The Rankine load factor is given by: 

1/ 1/ l/N N NR c u� �      

   and: 

N IR � 0.030        

    12.3     The deteriorated critical load 

   The formation of plastic hinges in a frame is equivalent to the insertion of fric-
tionless hinges in the frame. The stability of the frame now depends on the 
stiffness of the remaining elastic structure, and in general the elastic critical load 
of the deteriorated frame is lower than the critical load of the original frame. 
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   The frame shown in  Figure 12.5    collapses as the combined mechanism 
shown at (i) at a load factor Nu. The load factor against elastic instability Nc is 
assumed to be higher than Nu. As the loading is progressively increased, plastic 
hinges are produced, and their formation at the center of each beam results in 
the deteriorated structure shown at (ii). This deteriorated structure has a criti-
cal load identical with that of the original frame, since the hinges are at points 
of contraflexure in the beams. The formation of plastic hinges at the right-hand 
end of each beam results in the deteriorated structure shown at (iii). This dete-
riorated structure has a critical load lower than that of the original frame, since 
the beam stiffnesses are reduced to approximately 75 percent of their original 
values. The formation of plastic hinges at both the center and right-hand end 
of each beam results in the deteriorated structure shown at (iv). The beams 
have now been reduced to zero stiffness, and the remaining elastic structure 
consists of two freestanding cantilevers, three stories in height, which have a 
much lower critical load than that of the original frame. If, at any stage in the 
formation of plastic hinges, the critical load of the deteriorated frame is lower 
than the applied load producing the hinges, the failure load has been attained. 

   The procedure for determining the failure load consists of tracing the devel-
opment of plastic hinges as the applied loading is increased and determining 

(i)

(ii) (iii) (iv)

Figure 12.5           
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the critical load for each deteriorated frame 8  . For simple structures, this may 
be effected by moment distribution methods, making an initial estimate of the 
axial forces in the members and allowing for the modified stiffness and carry-
over values. For more complex structures, the use of a digital computer is nec-
essary, and this procedure is presented in section 12.4. 

    Example 12.2 

   The bottom two stories of a multistory frame are shown in  Figure 12.6   , where 
the second-story columns, at 3 and 4, are free to sway but are fixed against 
rotation. Beam 25 has a second moment of area of I in 4   and a plastic moment of 
resistance of 180 kip-in. All columns have a second moment of area of 0.6 I and 
a plastic moment of resistance of 100 kip-in. Determine the load factor against 
elastic-plastic failure if the axial load in the columns is 0.28 of the Euler load. 
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   The stiffness of the members of the frame shown at (i) are: 

s s
qE I

EI
EI

s EI

21 23

25

(0.6 )/10
3.62 0.6 /10
0.217
2 /30
0.067

�
�
� �
�
�
� EEI      
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   The distribution factors at joint 2 are: 

d d

d

21 23

25

0.217/0.501
0.434
0.067/0.501
0.132

�
�
�
�
�      

   The initial fixed-end moments in the frame are: 

M MF F
2 525

7.5 360/12
225 kip-in

� �

� �
�      

   The final moments in the frame are: 

M M

M

21 23

25

225 0.434
98 kip-in

196 kip-in

�
� � �
� �
�      

   Thus, as loading is increased, plastic hinges are produced simultaneously at 
both ends of the beam at a load factor of: 

N �
�

180/196
0.92      

   The deteriorated structure, at this load factor, is shown at (ii), and the deteri-
orated critical load is obtained by equating the stiffness of joint 2 to zero. Thus: 

2 0.6 /10 0 0
0

21

21

� � �
�

n
n      

   and: 

W P
N

d E

d

1

1

/ 0.25
0.25/0.28
0.89

�
�
�      

   This is less than the load factor required to produce the plastic hinges, and 
thus elastic-plastic failure occurs at a load factor of: 

Nf � 0.92
       

    12.4     Computer analysis 

   Methods, have been proposed for both the linear elastic-plastic analysis of frames 
and grids        9,10   and for the elastic-plastic analysis of frames        11,12  . An alternative 
method is available for the elastic-plastic analysis of frames            13,14,15,16  , but this has 
the disadvantage of producing a larger stiffness matrix that is non-banded. 
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   Neglecting instability effects, the procedure consists of setting up the stiff-
ness matrix in the usual way and obtaining the linear elastic displacements by 
inverting and multiplying by the load vector. The member forces are obtained 
by back substitution in the stiffness sub-matrices for each member. The load 
vector is progressively increased until the first plastic hinge forms in the struc-
ture, when both the stiffness matrix and the load vector require modification. 

    (a)     Linear elastic-plastic analysis 

   For the uniform frame shown in  Figure 12.7   , the linear elastic-plastic response 
curve has been obtained and is shown in  Figure 12.18 . The first plastic hinge 
forms at joint 7 in member 47. Prior to the formation of this hinge, the stiff-
ness submatrix for member 47, for the displacements and forces shown in Figure 
12.8  , is given by: 
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   After the formation of the hinge at joint 7, the member may be replaced by 
a member hinged at 7 with an applied moment Mp. The member forces are 
obtained from  Figure 12.9    and are given by: 
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  or:   

{ } [ ]{47P S C� �′ } { }47 47 47Δ
     

   where {  P  47  }  and {  Δ  47  }  are the member forces and end displacements of member 
47, [ S  �  47] is the modified stiffness matrix, and {  C  47  }  is the plastic force vector
for member 47. The stiffness sub-matrices of all the members are combined in 
the usual way to give the complete stiffness matrix of the deteriorated struc-
ture [ S], and the modified load vector is obtained by subtracting the plastic 
force vector from the corresponding terms of the vector of external loads [ W ]. 
In general: 

{ } { } [ ]{ }W C S� � Δ     

  and the analysis continues with a reduced loading system applied to the dete-
riorated structure. Frame displacements are obtained by inverting the stiffness 
matrix and multiplying by the modified load vector {  W   – C  } . Member forces 
are obtained by back substitution in the stiffness submatrices for each member, 
modified where necessary. 

   As the modified load vector is progressively increased, the second plastic 
hinge forms at joint 8 in member 58. For subsequent loading the stiffness sub-
matrix for member 5 is modified, the load vector is again modified, and the 
member forces are given by: 

{ } [ ]{58P S C� �′ } { }58 58 58Δ
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   The third plastic hinge forms at joint 4 in member 47, which is now hinged at 
both ends. The member forces are obtained from  Figure 12.10    and are given by: 
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Figure 12.11           

   The complete stiffness matrix of the structure and the load vector are again 
modified, and loading proceeds until the last hinge forms at joint 5 in member 
58. The collapse mechanism is shown in  Figure 12.11   , and the complete linear 
elastic-plastic response curve is shown in  Figure 12.18 .  

    (b)     Elastic-plastic analysis 

   For elastic-plastic analysis the procedure is similar and consists initially of 
assembling the stiffness matrix of the structure using the stiffness submatrices 
for each member, allowing for instability effects. For a member 12, considering 
the forces and displacements shown in  Figure 12.12   , this is given by: 
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  where the stability functions are defined in the notation. An initial estimate is 
made of the axial forces in the members, and the complete stiffness matrix is 
obtained. Solving for joint displacements and member forces provides revised 
values of the axial forces. The procedure continues until the revised values of 
the axial forces are in close agreement with the previous values.   

   As the applied loading is progressively increased, the first plastic hinge 
forms in a member; this corresponds to the insertion of a frictionless hinge 
in the member and the application of an external moment Mp. The modified 
stiffness matrix for a member 12 with a plastic hinge at 2 is obtained from 
 Figure 12.13    as: 
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  or:   

{ } [ ]{12P S C� �′ } { }12 12 12Δ
     

   These values are used to assemble the stiffness matrix of the deteriorated struc-
ture [ S�] and the reduced load vector {  W  } – {  C  12  } . Thus, for the deteriorated 
structure:

{ } { } [ ]{ }W C S� � �12 Δ     

  where {  W  }  is the vector of applied loading, which is progressively increased 
until the next plastic hinge forms, and so on.   

   The modified stiffness matrix for a member with a plastic hinge at both ends 
is obtained from  Figure 12.14    as: 
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   When allowance is made for instability effects in the frame shown in Figure
12.7 , the modified stiffness sub-matrix for member 47 is given by: 
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   An initial estimate is made of the axial forces in all members, and the com-
plete stiffness matrix is obtained. Solving for displacements and member forces 
provides revised values of the axial forces. The procedure continues until the 
correct values are obtained. 

   As the loading is progressively increased, the elastic response curve is fol-
lowed until the first plastic hinge forms at joint 7 in member 47. The member 
forces are given by: 
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   For subsequent loading, the stiffness matrix and the load vector are modi-
fied, and the response now follows a new elastic curve, which is asymptotic 
to the critical load factor of the first deteriorated structure with Nc       �      3.00. 
Loading proceeds until the second plastic hinge forms at joint 8 in member 58. 

   The third plastic hinge forms at joint 2 in member 12 at the elastic-
plastic load factor of Nf       �      1.56. Prior to the formation of this hinge, the stiff-
ness sub-matrix for member 12, for the displacements and forces shown in 
 Figure 12.15   , is given by: 
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   Subsequent to the formation of the plastic hinge at 2, the member forces are 
obtained from  Figure 12.16    as: 
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   The modified stiffness sub-matrix and the plastic force vector are given by: 
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   The structure becomes unstable on the formation of the plastic hinge at 2, and 
loading must be decreased to maintain equilibrium. The last plastic hinge forms 
at joint 7 in member 76, producing the collapse mechanism shown in Figure 
12.17  . The complete elastic-plastic response curve is shown in  Figure 12.18   .    
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   Answers to supplementary 
problems part 2   

            Chapter 1 

   The degree of indeterminacy of the frames are: 

    S1.1    D       �      1  

    S1.2    D       �      1  

    S1.3    D       �      12  

    S1.4    D       �      22  

    S1.5   (i)      D       �      7 
     (ii)      D       �      7     

    S1.6   (i)      D       �      3 
   (ii)      D       �      0  
   (iii)      D       �      0  
   (iv)      D       �      0     

    S1.7   (i)      D       �      5 
   (ii)      D       �      9  
   (iii)      D       �      3  
   (iv)      D       �      1  
   (v)      D       �      1        

    Chapter 2 

        S2.1    δ       �       wa  4 (4 l /3 a   –  1/3)/8 EI   

    S2.2    δ       �      2.16 in upward  

    S2.3    δ  2       �      0.114 in 
    δ  3       �      0.068 in  
    W       �      16.75     kips     

    S2.4    H / V       �      0.65  

    S2.5    δ  4       �      0.59 in  
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    S2.6    M  12     �       � 138     kip-in 
    M  21     �       � 102     kip-in  
    M  23     �       � 112     kip-in  
    M  32     �       � 128     kip-in  
    Q  12     �       �  Q  21       �       Q  23       �       �  Q  32       �      2     kips  
    δ  3       �      907,200/ EI       �      480/ AG      

    S2.7    M  1     �      20 α tEI / al  2  
    V  1     �      20 α tEI / al  3   
    M  1     �      80 α tEI / a  2  l  4         

    Chapter 3 

        S3.1    P  24       �      32.66     kips compression  

    S3.2    P  24       �      1.07     kips tension 
    P  26       �      10.33     kips compression     

    S3.3    P  13       �       W /(5.407    �      0.472 a  2  A / I ) compression  

    S3.4    P  34       �      11     kips compression  

    S3.5    P  12       �      132     kips tension  

    S3.6    H       �      62.5     kips  

    S3.7    H       �      8.28     kips  

    S3.8    H       �      0.166 W   

    S3.9    T       �      20.5     kips     

    Chapter 4 

        S4.1    M  1       �       Wab  2 / l  2   

    S4.2    θ  1       �      5 Wl  2 /128 EI  
    δ  3       �      3 Wl  3 /256 EI      

    S4.3    δ  2       �       wa  3 ( l �  a /4)/6 EI   

    S4.4    M  12       �      0.345 M  
    M  21       �       � 0.147 M      

    S4.5    M  12       �       � 47.5     kip-ft 
    M  21       �       � 31.3     kip-ft     
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    S4.6    M  12       �       � 25.74     kip-ft 
    M  21       �       � 32.45     kip-ft     

    S4.7    M  12       �       � 101     kip-ft 
    M  21       �       � 113     kip-ft     

   S4.8   M  12       �       �  Pab ( a �   b )/ l  2

  M  21       �       �Pab(a   �   b )/ l  2

   S4.9   M  12       �        Pb(l  2  � b  2 )/2 l  2  

    S4.10    M  12       �       � 21.45     kip-ft 
    M  21       �       � 7.10     kip-ft        

    Chapter 5 

        S5.1                

    x / l 0.2 0.4 0.6 0.8 1.0
    V  2 0.36 0.64 0.84 0.96 1.00

    S5.2   For member 12   

    x / l 0.2 0.4 0.6 0.8
    M  2 / l 0.048 0.084 0.096 0.072

For member 23

    x / l 0.2 0.4 0.6 0.8
    M  2 / l 0.064 0.072 0.048 0.016

    S5.3                

    x 0� 20� 40� 60� 80�  
    H  1 0.153 0.264 0.375 0.462 0.486

    S5.4                

   Panel point  1  2  3 4    5     6  7 
    R  1 1.000  0.610  0.264 0.000 �0.069 �0.055 0.000

    Chapter 6 

        S6.1    M  12       �      0.345 M  
    M  21       �       � 0.147 M      
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    S6.2    M  12       �       � 47.6     kip-ft 
    M  21       �       � 31.3     kip-ft     

    S6.3    M  12       �      2.54     kip-ft  

    S6.4    M  12       �       � 25.7     kip-ft 
    M  21       �       � 32.5     kip-ft     

    S6.5    M  12       �       � 101     kip-ft 
    M  21       �       � 133     kip-ft     

    S6.6    M  12       �       �  Pab  2 / l  2  
    M  21       �       �  Pba  2 / l  2      

    S6.7    M  12       �       Pb(l  2  � b  2 )/2 l  2   

    S6.8    s  12       �       � 0.275 EI  
    c  12       �      0.444  
   M 12       �       � 21.55     kip-ft  
    M  21       �       � 7.05     kip-ft     

    S6.9    H       �      1.08     kips  

    S6.10    M       �      34.4     kip-in  

    S6.11    M  12       �       � 44     lb-ft 
    M  21       �       � 36     lb-ft        

    Chapter 7 

        S7.1    V  2     �      7.60     kips 
    V  3     �      8.32     kips  
    V  4     �      2.08     kips     

    S7.2    M  1     �      19     kip-in 
    V  1     �      2.68     kips  
    H  1     �      0.48     kips  …  acting to the right  
    M  4     �      38     kip-in  
    V  4     �      3.32     kips  
    H  4     �      1.9     kips  …  acting to the left     

    S7.3    M  2     �      1682     kip-in 
    M  3     �      421     kip-in     
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   S7.4   M  2     �      3.5     kip-in
M1     �      10.5     kip-in
M3     �      0.7     kip-in

    S7.5    M  2     �      75     kip-ft 
    M  3     �      50     kip-ft     

    S7.6    M  2     �      9.1     kip-ft 
    M  3     �      13.5     kip-ft  
    M  4     �      15.1     kip-ft     

    S7.7    M  2     �      197     kip-in 
    M  3     �      237     kip-in     

    S7.8    M  12     �       � 138     kip-in 
    M  21     �       � 102     kip-in  
    M  23     �       � 112     kip-in  
    M  32     �       � 128     kip-in  
    M  36     �      128     kip-in  
    M  25     �      214     kip-in  
    P  12     �      5.70     kips  …  tension  
    P  23     �      2.13     kips  …  tension  
    P  36     �      2.00     kips  …  compression  
    P  25     �      0     kips  
    Q  12     �      2.00     kips  
    Q  23     �      2.00     kips  
    Q  36     �      2.13     kips  
    Q  25     �      3.57     kips     

    S7.9    M  12     �       � 687     kip-ft 
    M  21     �       � 811     kip-ft  
    M  23     �      347     kip-ft  
    M  32     �      154     kip-ft  
    M  34     �      257     kip-ft  
    M  43     �      242     kip-ft  
    M  45     �      239     kip-ft  
    M  54     �      259     kip-ft     

    S7.10               M  12     �       � 322     kip-ft  
    M  21     �       � 277     kip-ft  
    M  23     �       � 184     kip-ft  
    M  32     �       � 415     kip-ft  
    M  34       �      652     kip-ft  
    M  43       �      548     kip-ft     
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    S7.11    M  21       �       � 225     kip-ft 
    M  23       �       � 28     kip-ft  
    M  32       �       � 80     kip-ft  
    M  34       �       � 14     kip-ft  
    M  43       �       � 22     kip-ft        

    Chapter 8 

        S8.1    M  30       �      1351.7    �      712.8    �      2064.5     kip-in 
    V  30       �      94.7      �      40.5      �      135.2     kips     

    S8.2    M  1       �      153     kip-in  

    S8.3    kW       �      190  

    S8.4    P  47       �      8.6     kips  

    S8.5   (i)      lm       �       lp /120    �      0.133( Eb I b / At E t ) 1/3  
   (ii)      M  6       �      250 y  12 /(5) ½       �      50 y  34 /(5) ½       �      150 y  5   
   (iii)     The infl uence line ordinates for  M  6  are:      

    x,ft      0     50  100 150 200 250
   I L ordinates for  M  6 �40.5 �21.0     0  21.0 41.8 65.2

    Chapter 9 

        S9.1    l / a       �      3.17 
    w       �      58.5 Mp / l  2      

    S9.2   S      �      14.8 in 3   

    S9.3    W / H   �  8/3  …  for the beam mode 
    W / H   
  2/3  …  for the sway mode  
   2/3      	       W / H       	      8/3  …  for the combined mode     

    S9.4    Mp       �      9.42     kip-ft  …  for the columns 
    Mp       �      18.84     kip-ft  …  for the beams     

    S9.5    Mp       �      25     kip-ft  …  for the posts 
    Mp       �      50     kip-ft  …  for the chords     

    S9.6    Mp       �       Wl  
    x  2       �      5 Mp l  2 (5) 0.5 /24 EI      
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    S9.7   (i)      W       �      2.0 Mp / a  
   (ii)      W       �      3 Mp / a   
   (iii)      W       �      2.80 Mp / a      

    S9.8    Mp       �       Wa /2     

    Chapter 10 

        S10.1   The stiffness matrix is:   

  

P

P
EI l

θ

θ

θ

θ

2

3

2

3

20 6

6 28

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

� /

     

   The final moments are: 

M
M
M
M

12

21

34

43

42 75
85 5
236 6
181 7

�
�
�
�

.

.
.
.

 kip-in
 kip-in

 kip-in
 kiip-in      

    S10.2   The stiffness matrix is:    

P

P
EI l

θ

θ

θ

θ

2

1

2

1

8 2

2 4

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

� /

   

   The final moments are: 

  

M
M

21

32

12 7
12 14

�
�

/  kip-ft
/  kip-ft      

    S10.3   The stiffness matrix is:    

  

P

P

P

lP

EI l

x

θ

θ

θ

2

3

4

2

8

2 8

0 2 4

6

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

�

� �

/
symmetric

66 6 24

2

3

4

2�

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

θ

θ

θ

x l/ ⎥⎥
⎥

/
/

x l EI
l EI

M lH

2
2

4

4

0 136
0 477

0 285

�
�
� �

.

.
.

θ

     



Structural Analysis: In Theory and Practice606

    S10.4   The stiffness matrix is:    

P

P
EA l

x

y

x

y

1

1

1

1

2 723 0 548

0 548 2 296

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢� /
. .

. .
⎢⎢
⎢

⎤

⎦

⎥
⎥
⎥
     

   The member forces are: 

P W
P W
P W
P W

12

13

14

15

0 490
0 460
1 428

0 433

� �
�
�
� �

.
.
.

.      

    S10.5   The stiffness matrix is:    

P

P

P

EA l

x

y

o

o

o

/

symmetric

1/θ

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

⎡

�

3 16

1 4 3

9 8 2 41 4

/

/

/ /⎣⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

x

y

o

o

oθ
     

   The member forces are: 

P
P
P

1

2

3

0 00
8 52
11 48

�
�
�

.
.
.

kips
kips
kips      

    S10.6   The fl exibility matrix is:    

�

�
�

δ

δ

1

2

3002 0

0 3002

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

R

R      

   The cable force is: 

R � 20 5.  kips      

    S10.7   The horizontal thrust H may be taken as the redundant. 
Then:    

H � 11 kips       

    Chapter 11 

        S11.1    Wc       �      2.55 PE   

    S11.2    Wc       �      3.1 PE   
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    S11.3   The stiffness matrix is given by   

P

P
EI l

q

q

θ

θ

θ

θ

2

3

21

34

2

3

4 2

2 6
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�
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/

(

( )

� ) ⎤⎤

⎦

⎥
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w P lc E� 1 55. /      

    S11.4   The stiffness matrix is given by   

P

P

P

EI l

q q q q r r

r

θ

θ

θ

2

3

4

21 23 24 25 23 24

2

2⎡
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⎢
⎢
⎢
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q q r

r r q q q
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ρc21 1 055
2 81

�
�

.
.Load Factor      

    S11.5   The stiffness matrix is given by   

P

P
EI l

n o

o n

θ

θ

θ

θ
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9 4 2

2 9 2
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W Pc E� 0 455.           
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