
8051 Tutorial D.Heffernan © 2000, 2001 1

8051

TUTORIAL

Donal Heffernan

University of Limerick
May-2002

8051 Tutorial D.Heffernan © 2000, 2001 2

Blank

8051 Tutorial D.Heffernan © 2000, 2001 3

Some reference material:

Test books

+ MacKenzie Scott. The 8051 Microcontroller, Prentice Hall. 3rd. Ed., 1999

+ Yeralan and Ahluwalia. Programming and Interfacing the 8051 Microcontroller.
 Addison-Wesley. 1995.

U.L. Server (Shared folder)

Go to ‘Network Neighborhood’, then ‘Entire Network’, then pick Domain
‘Intel_Data_Comm’ and choose the server ‘Intel_Comm’. In the folder ‘ET4514’ you
will find the required information

Web Sites

8052 tutorial information by Vault Information Services:
http://www.8052.com

Intel’s site for 8051 based products:
http://developer.intel.com/design/mcs51/

Philips’ site for 8051 based products:
http://www-us.semiconductors.philips.com/microcontrol/

Infineon (formerly Siemens) site for 8051 based products:
http://www.infineon.com/products/micro/micro.htm

Keil development tools:
http://www.keil.com/home.htm

Information on Analog Devices ADuC812 (8051/8052 compatible processor):
www.analog.com/microconverter

.

8051 Tutorial D.Heffernan © 2000, 2001 4

CONTENTS

Chapter 1 8051 Microcomputer Overview 6

Chapter 2 A Simple Design Example 31

Chapter 3 Software Delay Routines 36

Chapter 4 Interrupts 45

Chapter 5 Timer/Counters 53

Chapter 6 The 8051 Serial Port 65

Appendix A Example Term Assignments A1

Appendix B Sample Exam Questions & Answers B1

Appendix C A Brief Introduction to Using Keil Tools C1

8051 Tutorial D.Heffernan © 2000, 2001 5

8051 Tutorial D.Heffernan © 2000, 2001 6

Chapter 1 8051 Microcomputer Overview

1.1 INTRODUCTION

Figure 1.1 shows a functional block of the internal operation of an 8051
microcomputer. The internal components of the chip are shown within the broken line
box.

ADDRESS BUS (External) 16 bit

I-RAM
General Registers

STACK
Bit-addressable

SFRs etc.

Temporary
register

ALU
8-bit

D
AT

A
 B

U
S

 (E
xt

er
na

l)
 8

 b
it

Internal data bus

Memory Address
Register

(Uses P0 and P2)

D
P

TR

P
.C

.

Internal Memory

Instruction
Register

Acc
AccumulatorB

Temporary
register

Instruction
decoder/

control logic

C
AC
F0

RS1
RS2
OV
P

PSW
flags

C
on

tro
l L

in
es

RD/ WR/ PSEN/
ALE/ etc.

Figure 1.1 8051 functional block diagram.

8051 Tutorial D.Heffernan © 2000, 2001 7

Figure 1.2 shows the external code memory and data memory connected to the 8051
chip.

Note – part of the external code memory can be located within the chip but we will
ignore this feature for now. Also, variants of the chip will allow a lot more memory
devices and I/O devices to be accommodate within the chip but such enhanced
features will not be considered right now.

8051
External
DATA

Memory
(RAM)

External
CODE

Memory
(ROM)

I-RAM

ADDRESS BUS (16-bit)

DATA BUS (8-bit)

control lines

I/O ports
e.g. P1, P3 etc.

12MHz

Figure 1.2 8051 chip with external memory

8051 Tutorial D.Heffernan © 2000, 2001 8

A quick comparison with the well known Pentium processor
A modern PC is powered by a Pentium processor (or equivalent), which is really a
very powerful microprocessor. Where the 8051 microcontroller represents the low
end of the market in terms of processing power, the Pentium processor is one of the
most complex processors in the world. Figure 1.3 shows a simplified block diagram
of the Pentium processor and a simple comparison between the 8051 and the Pentium
is given in the table below.

PENTIUM
Chip

The Pentium's
Memory
Space

DATA BUS (64-bit)

control lines

ADDRESS BUS (32-bit)

multiple
32-bit ALUs

(Super-
scalar)

1,
00

0M
H

z
(1

 G
H

z.
)

Figure 1.3 Simplified diagram of a Pentium processor

Simple comparison: Pentium vs. 8051

FEATURE 8051 PENTIUM COMMENT
Clock Speed 12Mhz. typical

but 60MHz. ICs
available

1,000 MHz. (1GHz.) 8051 internally divides clock
by 12 so for 12MHz. clock
effective clock rate is just
1MHz.

Address bus 16 bits 32 bits 8051 can address 216, or
64Kbytes of memory.
Pentium can address 232, or
4 GigaBytes of memory.

Data bus 8 bits 64 bits Pentium’s wide bus allows
very fast data transfers.

ALU width 8 bits 32 bits But - Pentium has multiple
32 bit ALUs – along with
floating-point units.

Applications Domestic appliances,
Peripherals, automotive
etc.

Personal Computers
And other high
performance areas.

Power
consumption

Small fraction of a watt Tens of watts Pentium runs hot as power
consumption increases with
frequency.

Cost of chip About 2 Euros. In
volume

About 200 Euros –
Depending on spec.

8051 Tutorial D.Heffernan © 2000, 2001 9

The basic 8051 chip includes a number of peripheral I/O devices including two t
Timer/Counters, 8-bit I/O ports, and a UART. The inclusion of such devices on the
8051 chip is shown in figure 1.4. These I/O devices will be described later.

ADDRESS BUS (External) 16 bit

I-RAM
General Registers

STACK
Bit-addressable

SFRs etc.

Temporary
register

ALU
8-bit

D
AT

A
 B

U
S

 (E
xt

er
na

l)
 8

 b
it

Internal data bus

Memory Address
Register

(Uses P0 and P2)

D
P

TR

P
.C

.

Internal Memory

Instruction
Register

Acc
AccumulatorB

Temporary
register

Instruction
decoder/

control logic

C
AC
F0

RS1
RS2
OV
P

PSW
flags

Port 1
etc...

Timer/
Counter 0

Timer/Couter
1 UART

C
on

tro
l L

in
es

RD/ WR/ PSEN/
ALE/ etc.

Figure 1.4 8051 showing the on-chip I/O devices

8051 Tutorial D.Heffernan © 2000, 2001 10

1.2 MEMORY AND REGISTER ORGANISATION

The 8051 has a separate memory space for code (programs) and data. We will refer
here to on-chip memory and external memory as shown in figure 1.5. In an actual
implementation the external memory may, in fact, be contained within the
microcomputer chip. However, we will use the definitions of internal and external
memory to be consistent with 8051 instructions which operate on memory. Note, the
separation of the code and data memory in the 8051 architecture is a little unusual.
The separated memory architecture is referred to as Harvard architecture whereas
Von Neumann architecture defines a system where code and data can share common
memory.

Figure 1.5 8051 Memory representation

External Code Memory
The executable program code is stored in this code memory. The code memory size is
limited to 64KBytes (in a standard 8051). The code memory is read-only in normal
operation and is programmed under special conditions e.g. it is a PROM or a Flash
RAM type of memory.

External RAM Data Memory
This is read-write memory and is available for storage of data. Up to 64KBytes of
external RAM data memory is supported (in a standard 8051).

Internal Memory
The 8051’s on-chip memory consists of 256 memory bytes organised as follows:

First 128 bytes: 00h to 1Fh Register Banks

20h to 2Fh Bit Addressable RAM
30 to 7Fh General Purpose RAM

Next 128 bytes: 80h to FFh Special Function Registers

The first 128 bytes of internal memory is organised as shown in figure 1.6, and is
referred to as Internal RAM, or IRAM.

External
DATA

Memory
(up to 64KB)

RAM

External
CODE

Memory
(up to 64KB)

ROM

8051 chip

Internal
Memory

Internal
RAM

Internal
SFRs

0000h

FFFFh

FFFFh

0000h

8051 Tutorial D.Heffernan © 2000, 2001 11

Byte
Address Bit address
 b7 b6 b5 b4 b3 b2 b1 b0
7Fh

30h

General purpose

 RAM area.
80 bytes

2Fh 7F 78
2Eh 77 70
2Dh 6F 68
2Ch 67 60
2Bh 5F 58
2Ah 57 50
29h 4F 48
28h 47 40
27h 3F 38
26h 37 30
25h 2F 28
24h 27 20
23h 1F 18
22h 17 10
21h 0F 08
20h 07 00
1Fh
18h

Regs 0 ..7 (Bank 1)

17h
10h

Regs 0 ..7 (Bank 1)

0Fh
08h

Regs 0 ..7 (Bank 1)

07h
00h

Regs 0 ..7 (Bank 0)

Figure 1.6 Organisation of Internal RAM (IRAM) memory

Register Banks: 00h to 1Fh
The 8051 uses 8 general-purpose registers R0 through R7 (R0, R1, R2, R3, R4, R5,
R6, and R7). These registers are used in instructions such as:

ADD A, R2 ; adds the value contained in R2 to the accumulator

Note since R2 happens to be memory location 02h in the Internal RAM the following
instruction has the same effect as the above instruction.

ADD A, 02h

Internal Memory

SFRs

Internal
RAM

FFh

80h
7Fh

00h

Reg. 7
Reg. 6
Reg. 5
Reg. 4
Reg. 3
Reg. 2
Reg. 1
Reg. 0

07h
06h
05h
04h
03h
02h
01h
00h

Register Bank 0

8051 Tutorial D.Heffernan © 2000, 2001 12

Now, things get more complicated when we see that there are four banks of these
general-purpose registers defined within the Internal RAM. For the moment we will
consider register bank 0 only. Register banks 1 to 3 can be ignored when writing
introductory level assembly language programs.

Bit Addressable RAM: 20h to 2Fh
The 8051 supports a special feature which allows access to bit variables. This is
where individual memory bits in Internal RAM can be set or cleared. In all there are
128 bits numbered 00h to 7Fh. Being bit variables any one variable can have a value 0
or 1. A bit variable can be set with a command such as SETB and cleared with a
command such as CLR. Example instructions are:

SETB 25h ; sets the bit 25h (becomes 1)

CLR 25h ; clears bit 25h (becomes 0)

Note, bit 25h is actually bit b5 of Internal RAM location 24h.

The Bit Addressable area of the RAM is just 16 bytes of Internal RAM located
between 20h and 2Fh. So if a program writes a byte to location 20h, for example, it
writes 8 bit variables, bits 00h to 07h at once.

Note bit addressing can also be performed on some of the SFR registers, which will
be discussed later on.

General Purpose RAM: 30h to 7Fh
These 80 bytes of Internal RAM memory are available for general-purpose data
storage. Access to this area of memory is fast compared to access to the main memory
and special instructions with single byte operands are used. However, these 80 bytes
are used by the system stack and in practice little space is left for general storage. The
general purpose RAM can be accessed using direct or indirect addressing modes.
Examples of direct addressing:

MOV A, 6Ah ; reads contents of address 6Ah to accumulator

Examples for indirect addressing (use registers R0 or R1):

MOV R1, #6Ah ; move immediate 6Ah to R1
MOV A, @R1 ; move indirect: R1 contains address of Internal RAM which
 contains data that is moved to A.

These two instructions have the same effect as the direct instruction above.

SFR Registers

The SFR registers are located within the Internal Memory in the address range 80h to
FFh, as shown in figure 1.7. Not all locations within this range are defined. Each SFR
has a very specific function. Each SFR has an address (within the range 80h to FFh)
and a name which reflects the purpose of the SFR. Although 128 byes of the SFR

8051 Tutorial D.Heffernan © 2000, 2001 13

address space is defined only 21 SFR registers are defined in the standard 8051.
Undefined SFR addresses should not be accessed as this might lead to some
unpredictable results. Note some of the SFR registers are bit addressable. SFRs are
accessed just like normal Internal RAM locations.

Byte Bit address
address b7 b6 b5 b4 b3 b2 b1 b0

FFh

F0h B *

E0h A (accumulator) *

D0h PSW *

B8h IP *

B0h Port 3 (P3) *

A8h IE *

A0h Port 2 (P2) *

99h SBUF
98h SCON *

90h Port 1 (P1) *

8Dh TH1
8Ch TH0
8Bh TL1
8Ah TL0
89h TMOD
88h TCON *
87h PCON

83h DPH
82h DPL
81h SP
80h Port 0 (P0) *

* indicates the SFR registers which are bit addressable

Figure 1.7 SFR register layout

We will discuss a few specific SFR registers here to help explain the SFR concept.
Other specific SFR will be explained later.

Port Registers SFR
The standard 8051 has four 8 bit I/O ports: P0, P1, P2 and P3.

Internal Memory

SFRs

Internal
RAM

FFh

80h
7Fh

00h

8051 Tutorial D.Heffernan © 2000, 2001 14

For example Port 0 is a physical 8 bit I/O port on the 8051. Read (input) and write
(output) access to this port is done in software by accessing the SFR P0 register which
is located at address 80h. SFR P0 is also bit addressable. Each bit corresponds to a
physical I/O pin on the 8051. Example access to port 0:

SETB P0.7 ; sets the MSB bit of Port 0
CLR P0.7 ; clears the MSB bit of Port 0

The operand P0.7 uses the dot operator and refers to bit 7 of SFR P0. The same bit
could be addressed by accessing bit location 87h. Thus the following two instructions
have the same meaning:

CLR P0.7
CLR 87h

PSW Program Status Word
PSW, the Program Status Word is at address D0h and is a bit-addressable register.
The status bits are listed in table 1.1.

Table 1.1. Program status word (PSW) flags
Symbol Bit Address Description
C (or CY) PSW.7 D7h Carry flag
AC PSW.6 D6h Auxiliary carry flag
F0 PSW.5 D5h Flag 0
RS1 PSW.4 D4h Register bank select 1
RS0 PSW.3 D3h Register bank select 0
0V PSW.2 D2h Overflow flag
 PSW.1 D1h Reserved
P PSW.0 D0h Even Parity flag

Carry flag. C
This is a conventional carry, or borrow, flag used in arithmetic operations. The carry
flag is also used as the ‘Boolean accumulator’ for Boolean instruction operating at the
bit level. This flag is sometimes referenced as the CY flag.

Auxiliary carry flag. AC
This is a conventional auxiliary carry (half carry) for use in BCD arithmetic.

Flag 0. F0
This is a general-purpose flag for user programming.

Register bank select 0 and register bank select 1. RS0 and RS1
These bits define the active register bank (bank 0 is the default register bank).

Overflow flag. OV
This is a conventional overflow bit for signed arithmetic to determine if the result of a
signed arithmetic operation is out of range.

8051 Tutorial D.Heffernan © 2000, 2001 15

Even Parity flag. P
The parity flag is the accumulator parity flag, set to a value, 1 or 0, such that the
number of ‘1’ bits in the accumulator plus the parity bit add up to an even number.

Stack Pointer
The Stack Pointer, SP, is an 8-bit SFR register at address 81h. The small address field
(8 bits) and the limited space available in the Internal RAM confines the stack size
and this is sometimes a limitation for 8051 programmes. The SP contains the address
of the data byte currently on the top of the stack. The SP pointer in initialised to a
defined address. A new data item is ‘pushed’ on to the stack using a PUSH instruction
which will cause the data item to be written to address SP + 1. Typical instructions,
which cause modification to the stack are: PUSH, POP, LCALL, RET, RETI etc.. The
SP SFR, on start-up, is initialised to 07h so this means the stack will start at 08h and
expand upwards in Internal RAM. If register banks 1 to 3 are to be used the SP SFR
should be initialised to start higher up in Internal RAM. The following instruction is
often used to initialise the stack:

MOV SP, #2Fh

Data Pointer
The Data Pointer, DPTR, is a special 16-bit register used to address the external code
or external data memory. Since the SFR registers are just 8-bits wide the DPTR is
stored in two SFR registers, where DPL (82h) holds the low byte of the DPTR and
DPH (83h) holds the high byte of the DPTR. For example, if you wanted to write the
value 46h to external data memory location 2500h, you might use the following
instructions:

MOV A, #46h ; Move immediate 8 bit data 46h to A (accumulator)

MOV DPTR, #2504h ; Move immediate 16 bit address value 2504h to A.

; Now DPL holds 04h and DPH holds25h.

MOVX @DPTR, A ; Move the value in A to external RAM location 2500h.

 Uses indirect addressing.

Note the MOVX (Move X) instruction is used to access external memory.

Accumulator
This is the conventional accumulator that one expects to find in any computer, which
is used to the hold result of various arithmetic and logic operations. Since the 8051
microcontroller is just an 8-bit device, the accumulator is, as expected, an 8 bit
register.

The accumulator, referred to as ACC or A, is usually accessed explicitly using
instructions such as:

INC A ; Increment the accumulator

8051 Tutorial D.Heffernan © 2000, 2001 16

However, the accumulator is defined as an SFR register at address E0h. So the
following two instructions have the same effect:

MOV A, #52h ; Move immediate the value 52h to the accumulator

MOV E0h, #52h ; Move immediate the value 52h to Internal RAM location E0h,
 which is, in fact, the accumulator SFR register.

Usually the first method, MOV A, #52h, is used as this is the most conventional (and
happens to use less space, 2 bytes as oppose to 3 bytes!)

B Register
The B register is an SFR register at addresses F0h which is bit-addressable. The B
register is used in two instructions only: i.e. MUL (multiply) and DIV (divide). The B
register can also be used as a general-purpose register.

Program Counter
The PC (Program Counter) is a 2 byte (16 bit) register which always contains the
memory address of the next instruction to be executed. When the 8051 is reset the PC
is always initialised to 0000h. If a 2 byte instruction is executed the PC is incremented
by 2 and if a 3 byte instruction is executed the PC is incremented by three so as to
correctly point to the next instruction to be executed. A jump instruction (e.g. LJMP)
has the effect of causing the program to branch to a newly specified location, so the
jump instruction causes the PC contents to change to the new address value. Jump
instructions cause the program to flow in a non-sequential fashion, as will be
described later.

SFR Registers for the Internal Timer

The set up and operation of the on-chip hardware timers will be described later, but
the associated registers are briefly described here:

TCON, the Timer Control register is an SFR at address 88h, which is bit-addressable.
TCON is used to configure and monitor the 8051 timers. The TCON SFR also
contains some interrupt control bits, described later.

TMOD, the Timer Mode register is an SFR at address 89h and is used to define the
operational modes for the timers, as will be described later.

TL0 (Timer 0 Low) and TH0 (Timer 0 High) are two SFR registers addressed at 8Ah
and 8Bh respectively. The two registers are associated with Timer 0.

TL1 (Timer 1 Low) and TH1 (Timer 1 High) are two SFR registers addressed at 8Ch
and 8Dh respectively. These two registers are associated with Timer 1.

8051 Tutorial D.Heffernan © 2000, 2001 17

Power Control Register
PCON (Power Control) register is an SFR at address 87h. It contains various control
bits including a control bit, which allows the 8051 to go to ‘sleep’ so as to save power
when not in immediate use.

Serial Port Registers
Programming of the on-chip serial communications port will be described later in the
text. The associated SFR registers, SBUF and SCON, are briefly introduced here, as
follows:

The SCON (Serial Control) is an SFR register located at addresses 98h, and it is bit-
addressable. SCON configures the behaviour of the on-chip serial port, setting up
parameters such as the baud rate of the serial port, activating send and/or receive data,
and setting up some specific control flags.

The SBUF (Serial Buffer) is an SFR register located at address 99h. SBUF is just a
single byte deep buffer used for sending and receiving data via the on-chip serial port

Interrupt Registers
Interrupts will be discussed in more detail later. The associated SFR registers are:

IE (Interrupt Enable) is an SFR register at addresses A8h and is used to enable and
disable specific interrupts. The MSB bit (bit 7) is used to disable all interrupts.

IP (Interrupt Priority) is an SFR register at addresses B8h and it is bit addressable.
The IP register specifies the relative priority (high or low priority) of each interrupt.
On the 8051, an interrupt may either be of low (0) priority or high (1) priority. .

1.3 ADDRESSING MODES

There are a number of addressing modes available to the 8051 instruction set, as
follows:

Immediate Addressing Register Addressing Direct Addressing
Indirect Addressing Relative Addressing Absolute addressing
Long Addressing Indexed Addressing

Immediate Addressing
Immediate addressing simply means that the operand (which immediately follows the
instruction op. code) is the data value to be used. For example the instruction:

MOV A, #99d

 Accumulator

number 99d

8051 Tutorial D.Heffernan © 2000, 2001 18

Moves the value 99 into the accumulator (note this is 99 decimal since we used 99d).
The # symbol tells the assembler that the immediate addressing mode is to be used.

Register Addressing
One of the eight general-registers, R0 to R7, can be specified as the instruction
operand. The assembly language documentation refers to a register generically as Rn.
An example instruction using register addressing is :

ADD A, R5 ; Adds register R5 to A (accumulator)

Here the contents of R5 is added to the accumulator. One advantage of register
addressing is that the instructions tend to be short, single byte instructions.

Direct Addressing
Direct addressing means that the data value is obtained directly from the memory
location specified in the operand. For example consider the instruction:

MOV A, 47h

The instruction reads the data from Internal RAM address 47h and stores this in the
accumulator. Direct addressing can be used to access Internal RAM , including the
SFR registers.

Indirect Addressing
Indirect addressing provides a powerful addressing capability, which needs to be
appreciated. An example instruction, which uses indirect addressing, is as follows:

MOV A, @R0

Note the @ symbol indicated that the indirect addressing mode is used. R0 contains a
value, for example 54h, which is to be used as the address of the internal RAM

Accumulator R5

Accumulator

Internal RAM

48h
47h
46h

Accumulator R0

Internal RAM

55h
54h
53h

54h

8051 Tutorial D.Heffernan © 2000, 2001 19

location, which contains the operand data. Indirect addressing refers to Internal RAM
only and cannot be used to refer to SFR registers.

Note, only R0 or R1 can be used as register data pointers for indirect addressing when
using MOV instructions.

The 8052 (as opposed to the 8051) has an additional 128 bytes of internal RAM.
These 128 bytes of RAM can be accessed only using indirect addressing.

Relative Addressing
This is a special addressing mode used with certain jump instructions. The relative
address, often referred to as an offset, is an 8-bit signed number, which is
automatically added to the PC to make the address of the next instruction. The 8-bit
signed offset value gives an address range of + 127 to –128 locations. Consider the
following example:

SJMP LABEL_X

An advantage of relative addressing is that the program code is easy to relocate in
memory in that the addressing is relative to the position in memory.

Absolute addressing
Absolute addressing within the 8051 is used only by the AJMP (Absolute Jump) and
ACALL (Absolute Call) instructions, which will be discussed later.

Long Addressing
The long addressing mode within the 8051 is used with the instructions LJMP and
LCALL. The address specifies a full 16 bit destination address so that a jump or a call
can be made to a location within a 64KByte code memory space (216 = 64K). An
example instruction is:

LJMP 5000h ; full 16 bit address is specified in operand

Code
Memory

2006h
2005h
2004h
2003h
2002h
2001h
2000h
1FFFh

80
04 SJMP

LABEL_X

PC is set to next instruction
address: 2002h when SJMP
begins execution. The target
address is then the sum of the PC
+ relative offset needed to reach
LABEL_X. Offset is 4 in this
case. 2002h +4h = 2006h

8051 Tutorial D.Heffernan © 2000, 2001 20

Indexed Addressing
With indexed addressing a separate register, either the program counter, PC, or the
data pointer DTPR, is used as a base address and the accumulator is used as an offset
address. The effective address is formed by adding the value from the base address to
the value from the offset address. Indexed addressing in the 8051 is used with the
JMP or MOVC instructions. Look up tables are easy to implemented with the help of
index addressing. Consider the example instruction:

MOVC A, @A+DPTR

MOVC is a move instruction, which moves data from the external code memory
space. The address operand in this example is formed by adding the content of the
DPTR register to the accumulator value. Here the DPTR value is referred to as the
base address and the accumulator value us referred to as the index address. An
example program using the indexed addressing mode will be shown later.

1.4 ASSEMBLY LANGUAGE PROGRAMMING

Number Representation for Different Bases

The following is an example showing the decimal number 46 represented in different
number bases:

46d ; 46 decimal
2Eh ; 2Eh is 46 decimal represented as a hex number
56o ; 56o is 46 decimal represented as an octal number
101110b ; 101110b is 46 decimal represented as a binary number.

Note a number digit must be used in the first character of a hexadecimal number. For
example the hexadecimal number A5h is illegally represented and should be
represented as 0A5h.

The Arithmetic Operators
The arithmetic operators are:

+ add
- subtract
* multiply
/ divide
MOD modulo (result is the remainder following division)

The Logical Operators
The logical operators are:

8051 Tutorial D.Heffernan © 2000, 2001 21

AND Logical AND
OR Logical OR
XOR Logical XOR (exclusive OR)
NOT Logical NOT

The Relational Operators
The result of a relational operation is either true (represented by minus 1), or false
(represented by zero). The relational operators are:

Equal to EQ =
not equal to NE <>
greater than GT >
greater than or equal to GE >=
less than LT <
less than or equal to LE <=

(note ‘EQ’ symbol and ‘= ‘ symbol have the same meaning)

Operator Precedence
Like a high level language, assembly level programs define operator predence.
Operators with same precedence are evaluated left to right. Note, brackets () means to
evaluate this first. HIGH indicates the high-byte and LOW indicates the low-byte.
Later examples will clarify the use of such special operators. The precedence list,
highest first, is as follows:

()
HIGH LOW
* / MOD SHL SHR
+ -
= <> < <= > >=
NOT
AND
OR XOR

Some Assembler Directives
The assembler directives are special instruction to the assembler program to define
some specific operations but these directives are not part of the executable program.
Some of the most frequently assembler directives are listed as follows:

ORG OriGinate, defines the starting address for the program in program

(code) memory

EQU EQUate, assigns a numeric value to a symbol identifier so as to make

the program more readable.

DB Define a Byte, puts a byte (8-bit number) number constant at this

memory location

DW Define a Word, puts a word (16-bit number) number constant at this

memory location

8051 Tutorial D.Heffernan © 2000, 2001 22

DBIT Define a Bit, defines a bit constant, which is stored in the bit

addressable section if the Internal RAM.

END This is the last statement in the source file to advise the assembler to

stop the assembly process.

Types of Instructions

The assembly level instructions include: data transfer instructions, arithmetic
instructions, logical instructions, program control instructions, and some special
instructions such as the rotate instructions.

Data Transfer
Many computer operations are concerned with moving data from one location to
another. The 8051 uses five different types of instruction to move data:

MOV MOVX MOVC
PUSH and POP XCH

MOV
In the 8051 the MOV instruction is concerned with moving data internally, i.e.
between Internal RAM, SFR registers, general registers etc. MOVX and MOVC are
used in accessing external memory data. The MOV instruction has the following
format:

MOV destination <- source

The instruction copies (copy is a more accurate word than move) data from a defined
source location to a destination location. Example MOV instructions are:

MOV R2, #80h ; Move immediate data value 80h to register R2
MOV R4, A ; Copy data from accumulator to register R4
MOV DPTR, #0F22Ch ; Move immediate value F22Ch to the DPTR register
MOV R2, 80h ; Copy data from 80h (Port 0 SFR) to R2
MOV 52h, #52h ; Copy immediate data value 52h to RAM location 52h
MOV 52h, 53h ; Copy data from RAM location 53h to RAM 52h
MOV A, @R0 ; Copy contents of location addressed in R0 to A

 (indirect addressing)

MOVX
The 8051 the external memory can be addressed using indirect addressing only. The
DPTR register is used to hold the address of the external data (since DPTR is a 16-bit
register it can address 64KByte locations: 216 = 64K). The 8 bit registers R0 or R1 can
also be used for indirect addressing of external memory but the address range is
limited to the lower 256 bytes of memory (28 = 256 bytes).

8051 Tutorial D.Heffernan © 2000, 2001 23

The MOVX instruction is used to access the external memory (X indicates eXternal
memory access). All external moves must work through the A register (accumulator).
Examples of MOVX instructions are:

MOVX @DPTR, A ; Copy data from A to the address specified in DPTR
MOVX A, @DPTR ; Copy data from address specified in DPTR to A

MOVC
MOVX instructions operate on RAM, which is (normally) a volatile memory.
Program tables often need to be stored in ROM since ROM is non volatile memory.
The MOVC instruction is used to read data from the external code memory (ROM).
Like the MOVX instruction the DPTR register is used as the indirect address register.
The indirect addressing is enhanced to realise an indexed addressing mode where
register A can be used to provide an offset in the address specification. Like the
MOVX instruction all moves must be done through register A. The following
sequence of instructions provides an example:

MOV DPTR, # 2000h ; Copy the data value 2000h to the DPTR register
MOV A, #80h ; Copy the data value 80h to register A
MOVC A, @A+DPTR ; Copy the contents of the address 2080h (2000h + 80h)
 ; to register A

Note, for the MOVC the program counter, PC, can also be used to form the address.

PUSH and POP
PUSH and POP instructions are used with the stack only. The SFR register SP
contains the current stack address. Direct addressing is used as shown in the following
examples:

PUSH 4Ch ; Contents of RAM location 4Ch is saved to the stack. SP is

 incremented.
PUSH 00h ; The content of R0 (which is at 00h in RAM) is saved to the stack and

 SP is incremented.
POP 80h ; The data from current SP address is copied to 80h and SP is

 decremented.

XCH
The above move instructions copy data from a source location to a destination
location, leaving the source data unaffected. A special XCH (eXCHange) instruction
will actually swap the data between source and destination, effectively changing the
source data. Immediate addressing may not be used with XCH. XCH instructions
must use register A. XCHD is a special case of the exchange instruction where just
the lower nibbles are exchanged. Examples using the XCH instruction are:

XCH A, R3 ; Exchange bytes between A and R3
XCH A, @R0 ; Exchange bytes between A and RAM location whose address is in R0
XCH A, A0h ; Exchange bytes between A and RAM location A0h (SFR port 2)

8051 Tutorial D.Heffernan © 2000, 2001 24

Arithmetic
Some key flags within the PSW, i.e. C, AC, OV, P, are utilised in many of the
arithmetic instructions. The arithmetic instructions can be grouped as follows:

Addition
Subtraction
Increment/decrement
Multiply/divide
Decimal adjust

Addition
Register A (the accumulator) is used to hold the result of any addition operation.
Some simple addition examples are:

ADD A, #25h ; Adds the number 25h to A, putting sum in A
ADD A, R3 ; Adds the register R3 value to A, putting sum in A

The flags in the PSW register are affected by the various addition operations, as
follows:

The C (carry) flag is set to 1 if the addition resulted in a carry out of the accumulator’s
MSB bit, otherwise it is cleared.

The AC (auxiliary) flag is set to 1 if there is a carry out of bit position 3 of the
accumulator, otherwise it is cleared.

For signed numbers the OV flag is set to 1 if there is an arithmetic overflow
(described elsewhere in these notes)

Simple addition is done within the 8051 based on 8 bit numbers, but it is often
required to add 16 bit numbers, or 24 bit numbers etc. This leads to the use of
multiple byte (multi-precision) arithmetic. The least significant bytes are first added,
and if a carry results, this carry is carried over in the addition of the next significant
byte etc. This addition process is done at 8-bit precision steps to achieve multi-
precision arithmetic. The ADDC instruction is used to include the carry bit in the
addition process. Example instructions using ADDC are:

ADDC A, #55h ; Add contents of A, the number 55h, the carry bit; and put the

 sum in A

ADDC A, R4 ; Add the contents of A, the register R4, the carry bit; and put

 the sum in A.

Subtraction
Computer subtraction can be achieved using 2’s complement arithmetic. Most
computers also provide instructions to directly subtract signed or unsigned numbers.
The accumulator, register A, will contain the result (difference) of the subtraction
operation. The C (carry) flag is treated as a borrow flag, which is always subtracted

8051 Tutorial D.Heffernan © 2000, 2001 25

from the minuend during a subtraction operation. Some examples of subtraction
instructions are:

SUBB A, #55d ; Subtract the number 55 (decimal) and the C flag from A; and

 put the result in A.

SUBB A, R6 ; Subtract R6 the C flag from A; and put the result in A.

SUBB A, 58h ; Subtract the number in RAM location 58h and the C flag

 From A; and put the result in A.

Increment/Decrement
The increment (INC) instruction has the effect of simply adding a binary 1 to a
number while a decrement (DEC) instruction has the effect of subtracting a binary 1
from a number. The increment and decrement instructions can use the addressing
modes: direct, indirect and register. The flags C, AC, and OV are not affected by the
increment or decrement instructions. If a value of FFh is increment it overflows to
00h. If a value of 00h is decrement it underflows to FFh. The DPTR can overflow
from FFFFh to 0000h. The DPTR register cannot be decremented using a DEC
instruction (unfortunately!). Some example INC and DEC instructions are as follows:

INC R7 ; Increment register R7
INC A ; Increment A
INC @R1 ; Increment the number which is the content of the address in R1
DEC A ; Decrement register A
DEC 43h ; Decrement the number in RAM address 43h
INC DPTR ; Increment the DPTR register

Multiply / Divide

The 8051 supports 8-bit multiplication and division. This is low precision (8 bit)
arithmetic but is useful for many simple control applications. The arithmetic is
relatively fast since multiplication and division are implemented as single
instructions. If better precision, or indeed, if floating point arithmetic is required then
special software routines need to be written. For the MUL or DIV instructions the A
and B registers must be used and only unsigned numbers are supported.

Multiplication
The MUL instruction is used as follows (note absence of a comma between the A and
B operands):

MUL AB ; Multiply A by B.

The resulting product resides in registers A and B, the low-order byte is in A and the
high order byte is in B.

Division
The DIV instruction is used as follows:

8051 Tutorial D.Heffernan © 2000, 2001 26

DIV AB ; A is divided by B.

The remainder is put in register B and the integer part of the quotient is put in register
A.

Decimal Adjust (Special)

The 8051 performs all arithmetic in binary numbers (i.e. it does not support BCD
arithmetic). If two BCD numbers are added then the result can be adjusted by using
the DA, decimal adjust, instruction:

DA A ; Decimal adjust A following the addition of two BCD numbers.

Logical

Boolean Operations
Most control applications implement control logic using Boolean operators to act on
the data. Most microcomputers provide a set of Boolean instructions that act on byte
level data. However, the 8051 (somewhat uniquely) additionally provides Boolean
instruction which can operate on bit level data.

The following Boolean operations can operate on byte level or bit level data:

ANL Logical AND
ORL Logical OR
CPL Complement (logical NOT)
XRL Logical XOR (exclusive OR)

Logical operations at the BYTE level
The destination address of the operartion can be the accumulator (register A), a
general register, or a direct address. Status flags are not affected by these logical
operations (unless PSW is directly manipulated). Example instructions are:

ANL A, #55h ; AND each bit in A with corresponding bit in number 55h, leaving
 the result in A.

ANL 42h, R4 ; AND each bit in RAM location 42h with corresponding bit in R4,

 leaving the result in RAM location 42h.

ORL A,@R1 ; OR each bit in A with corresponding bit in the number whose address

 is contained in R1 leaving the result in A.

XRL R4, 80h ; XOR each bit in R4 with corresponding bit in RAM location 80h

 (port 0), leaving result in A.

CPL R0 ; Complement each bit in R0

8051 Tutorial D.Heffernan © 2000, 2001 27

Logical operations at the BIT level
The C (carry) flag is the destination of most bit level logical operations. The carry flag
can easily be tested using a branch (jump) instruction to quickly establish program
flow control decisions following a bit level logical operation.

The following SFR registers only are addressable in bit level operations:

PSW IE IP TCON SCON

Examples of bit level logical operations are as follows:

SETB 2Fh ; Bit 7 of Internal RAM location 25h is set
CLR C ; Clear the carry flag (flag =0)
CPL 20h ; Complement bit 0 of Internal RAM location 24h
MOV C, 87h ; Move to carry flag the bit 7of Port 0 (SFR at 80h)
ANL C,90h ; AND C with the bit 0 of Port 1 (SFR at 90)
ORL C, 91h ; OR C with the bit 1 of Port 1 (SFR at 90)

Rotate Instructions
The ability to rotate the A register (accumulator) data is useful to allow examination
of individual bits. The options for such rotation are as follows:

RL A ; Rotate A one bit to the left. Bit 7 rotates to the bit 0 position

RLC A ; The Carry flag is used as a ninth bit in the rotation loop

ACCUMULATOR
b7 b6 b5 b4 b3 b2 b1 b0

Carry flag
C

ACCUMULATOR
b7 b6 b5 b4 b3 b2 b1 b0

8051 Tutorial D.Heffernan © 2000, 2001 28

RR A ; Rotates A to the right (clockwise)

RRC A ; Rotates to the right and includes the carry bit as the 9th bit.

Swap = special
The Swap instruction swaps the accumulator’s high order nibble with the low-order
nibble using the instruction:

SWAP A

Program Control Instructions
The 8051 supports three kind of jump instructions:

LJMP SJMP AJMP

LJMP
LJMP (long jump) causes the program to branch to a destination address defined by
the 16-bit operand in the jump instruction. Because a 16-bit address is used the
instruction can cause a jump to any location within the 64KByte program space (216 =
64K). Some example instructions are:

LJMP LABEL_X ; Jump to the specified label
LJMP 0F200h ; Jump to address 0F200h
LJMP @A+DPTR ; Jump to address which is the sum of DPTR and Reg. A

SJMP
SJMP (short jump) uses a singe byte address. This address is a signed 8-bit number
and allows the program to branch to a distance –128 bytes back from the current PC

ACCUMULATOR
b7 b6 b5 b4 b3 b2 b1 b0

Carry flag
C

ACCUMULATOR
b7 b6 b5 b4 b3 b2 b1 b0

ACCUMULATOR
b7 b6 b5 b4 b3 b2 b1 b0

high nibble low nibble

8051 Tutorial D.Heffernan © 2000, 2001 29

address or +127 bytes forward from the current PC address. The address mode used
with this form of jumping (or branching) is referred to as relative addressing,
introduced earlier, as the jump is calculated relative to the current PC address.

AJMP
This is a special 8051 jump instruction, which allows a jump with a 2KByte address
boundary (a 2K page)

There is also a generic JMP instruction supported by many 8051 assemblers. The
assembler will decide which type of jump instruction to use, LJMP, SJMP or AJMP,
so as to choose the most efficient instruction.

Subroutines and program flow control
A suboutine is called using the LCALL or the ACALL instruction.

LCALL
This instruction is used to call a subroutine at a specified address. The address is 16
bits long so the call can be made to any location within the 64KByte memory space.
When a LCALL instruction is executed the current PC content is automatically
pushed onto the stack of the PC. When the program returns from the subroutine the
PC contents is returned from the stack so that the program can resume operation from
the point where the LCALL was made

The return from subroutine is achieved using the RET instruction, which simply pops
the PC back from the stack.

ACALL
The ACALL instruction is logically similar to the LCALL but has a limited address
range similar to the AJMP instruction.

CALL is a generic call instruction supported by many 8051 assemblers. The
assembler will decide which type of call instruction, LCALL or ACALL, to use so as
to choose the most efficient instruction.

Program control using conditional jumps
Most 8051 jump instructions use an 8-bit destination address, based on relative
addressing, i.e. addressing within the range –128 to +127 bytes.

When using a conditional jump instruction the programmer can simply specify a
program label or a full 16-bit address for the conditional jump instruction’s
destination. The assembler will position the code and work out the correct 8-bit
relative address for the instruction. Some example conditional jump instructions are:

JZ LABEL_1 ; Jump to LABEL_1 if accumulator is equal to zero

JNZ LABEL_X ; Jump to LABEL_X if accumulator is not equal to zero

JNC LABEL_Y ; Jump to LABEL_Y if the carry flag is not set

8051 Tutorial D.Heffernan © 2000, 2001 30

DJNZ R2, LABEL ; Decrement R2 and jump to LABEL if the resulting value of
 R2 is not zero.

CJNE R1, #55h , LABEL_2
; Compare the magnitude of R1 and the number 55h and jump to LABEL_2 if the
 magnitudes are not equal.

Note, jump instructions such as DJNZ and CJNE are very powerful as they carry out a
particular operation (e.g.: decrement, compare) and then make a decision based on the
result of this operation. Some example code later will help to explain the context in
which such instructions might be used.

8051 Tutorial D.Heffernan © 2000, 2001 31

Chapter 2 A Simple Design Example

A simple burglar alarm project is described to demonstrate an 8051 based control
application. A four zone burglar system is realised. The design makes use of the input
and output ports of the 8051 processor.

2.1 HARDWARE DESCRIPTION
Figure 2.1 shows a hardware diagram for the burglar alarm system. Port 3 (P3) is used
as an input port. The four input pins, P3.0 to P3.3, are connected to separate alarm
zones. A single zone consists of a series of normally close switches. When any one of
these switches is opened the corresponding input pin transitions to a logic high level
and the processor becomes aware of an alarm situation for the corresponding zone.
Pins P3.4 to P3.7 are not used and are tied to ground, logic low. This is a crude alarm
system design and the zone wiring could not operated over any long distances.
However, the example will suffice to demonstrate the concept.

The burglar alarm’s output consists of a seven-segment display device and an alarm
bell. The alarm bell is connected to Port 1, bit 7, and the bell is sounded when this
output pin is set to a logic high level by the software. The seven-segment display
device is connected to Port 1, bits 0 to 6. Each output pin is fed to the relevant display
segment via a non-inverting buffer device. The seven-segment display device is a
common-cathode device so writing a logic high level to any segment will cause that
segment to light.

2.2 SOFTWARE DESCRIPTION
The first example program, ALARM_1, is a simple program which continuously
polls the four input zones. If any zone input goes to logic high then the alarm bell is
sounded by writing a logic high level to Port 1, bit 7. The flow chart for this program
is shown in figure 2.2 and the actual program source code is shown in listing 2.1. Port
3 is put into an initial state by writing all ones to this port, so that the port does not
pull down any of the input lines. Port 1 is put into an initial state of all zeros. This has
the effect of blanking the display and the alarm bell is off. The display device is not
used in the ALARM_1 program example.

Note how the program reads the P3 SFR register (Internal memory location B0h) to
read the physical Port 3 and how it writes to the P1 SFR register (Internal memory
location 90h) to write to the Port 1. Figure 2.1 shows the relationship between the
physical ports and the SFR registers. Thus the programmer can simply access internal
registers to achieve real input/output port access.

A second example program, ALARM_2, is an enhanced program which displays the
active alarm zone number on the display. If more than one zone is activated a ‘C’ is
displayed to indicate a combination of activated zones. The flowchart for this program
is shown in figure 2.3 and the actual source code for the program is shown in listing
2.2. The truth table for the Port 1 bit patterns to drive the seven-segment display
device and the alarm bell is shown in table 2.1.

8051 Tutorial D.Heffernan © 2000, 2001 32

Figure 2.1 Burglar alarm system hardware

+ 5 volts

10 kOhms

b

f

e

d

c

a

g

a

b f

e

d
c g

+ volts

I-RAM

7 6 5 4 3 2 1 0

SF
R

s

Internal Memory

B0h

90h

PO
R

T
3

(P
3)

PO
R

T
1

(P
1)

P3.0
P3.1
P3.2
P3.3
P3.4
 .5
 .6
 .7

P1.0
P1.1
P1.2
P1.3
P1.4
P1.5
P1.6
P1.7

Zone 4
Zone 3
Zone 2
Zone 1

8051 Chip

b

e

d

c

a

f
g

a
e.g. 200 Ohm

Internal circuit within 7-segment
display device. (Common cathode
i.e. +5v input causes LED to light)

S
w

itc
he

s
ar

e
no

rm
al

ly
 c

lo
se

d

If any switch is opened
Input x goes high to indicate an

alarm condition

+ 5 volts

input x

8051 Tutorial D.Heffernan © 2000, 2001 33

Figure 2.2 ALARM_1 Program flow chart

; ALARM_1.A51
; Simple program to poll 4 input zones. If any zone input, P3.0
; to P3.3 goes to 1 (logic 1) then the BELL is activated by writing
; a 1 (logic high) to P1.7
;
; Rev. 0.0 D.Heffernan 25-Feb-99
;==

 ORG 0000h ; define memory start address 0000h

; Initialise the I/O ports

 MOV P3, #0ffh ; write all ones to P3 to use as an input port
 MOV P1, #00 ; all zeros to put P1 in a known output state

POLL:
 MOV A, P3 ; read P3 to accumulator
 CJNE A, #00h, ALARM ; if not all zeros then jump to ALARM
 LJMP POLL ; else loop back to POLL

ALARM:
 SETB P1.7 ; enable the BELL by setting P1.7 high

END_LOOP:
 LJMP END_LOOP ; program just loops around here

END ; end of program

Listing 2.1 ALARM_1 Program source code

Initialise I/O
ports P1 and P3

Read port P3

Are all
P3 inputs at 0

YES

NO

Sound alarm
Bell

8051 Tutorial D.Heffernan © 2000, 2001 34

Figure 2.3 ALARM_2 Program flow chart

 PORT 1
 P1.7 P1.6 P1.5 P1.4 P1.3 P1.2 P1.1 P1.0

Display
Value

Bell
1=on

g f e d c b a

0 0 0 1 1 1 1 1 1
1 0 0 0 0 0 1 1 0
2 0 1 0 1 1 0 1 1
3 0 1 0 0 1 1 1 1
4 0 1 1 0 0 1 1 0
C 0 0 1 1 1 0 0 1

Table 2.1 Truth table for Port 1

Is Zone One
Activated?

Display ‘1’
YES

NO

Is Zone Two
Activated?

Display ‘2’
YES

NO

Is Zone Three
Activated?

Display ‘3’
YES

NO

Is Zone Four
Activated?

YES

NO

Initialise I/O
ports P1 and P3

Read port P3

Are all
P3 inputs at 0

YES NO

Display ‘4’

Display ‘C’

Sound alarm
Bell

8051 Tutorial D.Heffernan © 2000, 2001 35

; ALARM_2.A51
; Simple program to poll 4 input zones. If any zone input, P3.0 to P3.3 goes to 1 (logic 1) then the zone
; number is displayed and the BELL is activated by writing a 1 (logic high) to P1.7. If more than one
; zone is activated, display C (C for Combination)
; Rev. 0.0 D.Heffernan 25-Feb-99
;==
; Equates
NUM_0 EQU 00111111B ; code to display 0 on 7 segment
NUM_1 EQU 00000110B ; code to display 1 on 7 segment
NUM_2 EQU 01011011B ; code to display 2 on 7 segment
NUM_3 EQU 01001111B ; code to display 3 on 7 segment
NUM_4 EQU 01100110B ; code to display 4 on 7 segment
LET_C EQU 00111001B ; code to display C on 7 segment

 ORG 0000h ; define memory start address 0000h
; Initialise the I/O ports

MOV P3,#0ffh ; write all ones to P3 to use as an input port
 MOV P1,#NUM_0 ; P1 displays zero and alarm is off
POLL:
 MOV A, P3 ; read P3 to accumulator
 CJNE A, #00h, ALARM ; if not all zeros then jump to ALARM
 LJMP POLL ; else loop back to POLL

ALARM:
TEST_ZONE_1:
 CJNE A, #00000001B, TEST_ZONE_2 ; if not zone 1 then jump to zone 2
 MOV P1, #NUM_1 ; display number 1
 LJMP BELL_ON ; jump to BELL_ON

TEST_ZONE_2:
 CJNE A, #00000010B, TEST_ZONE_3 ; if not zone 1 then jump to zone 3
 MOV P1, #NUM_2 ; display number 2
 LJMP BELL_ON ; jump to BELL_ON

TEST_ZONE_3:
 CJNE A, #00000100B, TEST_ZONE_4 ; if not zone 1 then jump to zone 4
 MOV P1, #NUM_3 ; display number 3
 LJMP BELL_ON ; jump to BELL_ON

TEST_ZONE_4:
 CJNE A, #00001000B, DISPLAY_C ; if not zone 1 then jump to display C
 MOV P1, #NUM_4 ; display number 4
 LJMP BELL_ON ; jump to BELL_ON

DISPLAY_C:
 MOV P1, #LET_C ; display letter C
 LJMP BELL_ON ; jump to BELL_ON

BELL_ON:
 SETB P1.7 ; enable the BELL by setting P1.7 high

END_LOOP:
 LJMP END_LOOP ; program just loops around here

END ; end of program

Listing 2.2 ALARM_2 Program source code

8051 Tutorial D.Heffernan © 2000, 2001 36

Chapter 3 Software Delay Routines

This chapter introduces software based timing delay routines. The examples introduce
the useful programming concept of sub-routines.

For an 8051 microcomputer a single instruction cycle is executed for every 12 clock cycles of the
processor clock. Thus, for an 8051 clocked at 12MHz. the instruction cycle time is one
microsecond, as follows:

 12 clock cycles
Instruction cycle time = ------------------------------- = 10-6 seconds, or 1 µsec.
 12 x 106 cycles/sec.

The shortest instructions will execute in one instruction cycle, i.e. 1 µsec. Other instructions may
take two or more instruction cycle times to execute.

A given instruction will take
one or more instruction cycles
to execute (e.g. 1, 2 or 3 µsecs.)

3.1 SOME EXAMPLE ROUTINES

Sample routine to delay 1 millisecond: ONE_MILLI_SUB
Consider a software routine called ‘ONE_MILLI_SUB’,written as a subroutine
program, which takes a known 1000 instructions cycles (approx.) to execute. Thus it
takes 1000 µsecs, or 1 millisecond, to execute. The program is written as a subroutine
since it may be called on frequently as part of some longer timing delay routines. The
flow chart for the routine is shown in figure 3.1 and the source code for the subroutine
is shown in listing 3.1. Note, register R7 is used as a loop counter. It is good practice
in writing subroutines to save to the stack (PUSH) any registers used in the subroutine
and to restore (POP) such registers when finished. See how R7 is saved and retrieved
in the program. We say that R7 is ‘preserved’. This is important as the program which
called the subroutine may be using R7 for another purpose and a subroutine should
not be allowed to ‘accidentally’ change the value of a register used elsewhere.

When calling a subroutine the Program Counter (PC) is automatically pushed onto the
stack, so the SP (Stack Pointer) is incremented by 2 when a subroutine is entered. The
PC is automatically retrieved when returning from the subroutine, decrementing the
SP by 2.

In the ONE_MILLI_SUB subroutine a tight loop is executed 250 times. The number of
instruction cycles per instruction is known, as published by the 8051 manufacturer.
The tight loop is as follows:

8051 12MHz

8051 Tutorial D.Heffernan © 2000, 2001 37

NOP takes 1 instruction cycle to execute
NOP takes 1 instruction cycle to execute
DJNZ R7, LOOP_1_MILLI takes 2 instruction cycle to execute
Total instruction cycles = 4

So, it takes 4 instruction cycles, or 4 µsecs, to execute the loop. Thus, if we execute
the loop 250 times it will take a 1000 µsecs (250 x 4), i.e. 1 millisecond, to complete
the loops.

Figure 3.1 ONE_MILLI_SUB flow chart

;==
; ONE_MILLI_SUB:
; Subroutine to delay ONE millisecond
; Uses register R7 but preserves this register
;==
ONE_MILLI_SUB:

 PUSH 07h ; save R7 to stack
 MOV R7, #250d ; 250 decimal to R7 to count 250 loops

LOOP_1_MILLI: ; loops 250 times

NOP ; inserted NOPs to cause delay
 NOP ;
 DJNZ R7, LOOP_1_MILLI ; decrement R7, if not zero loop back

 POP 07h ; restore R7 to original value

 RET ; return from subroutine

Listing 3.1 Source code for: ONE_MILLI_SUB

E n ter

Save R 7

L oop-counter (R 7)
= 250

N O P delays
fo r tun ing

R estore R 7

D ecrem ent
L oop-counter (R 7)

R etu rn from
subroutine

Is
R 7 = zero ?

Y E S

N O

O ne
m illi-
sec.
delay

8051 Tutorial D.Heffernan © 2000, 2001 38

Sample routine to delay 1 second: ONE_SEC_SUB
The ONE_SEC_SUB subroutine, when called, causes a delay of ONE second. This
subroutine calls the ONE_MILLI_SUB subroutine and is structured so that the
ONE_MILLI_SUB subroutine is called exactly 1000 times, thus causing a total delay
of 1000 milli. seconds, i.e. ONE second. (There are some small inaccuracies, which
will be ignored for now). Note, R7 is used again as the loop counter (we could have
used another register). Since R7 is preserved in the ONE_SEC_SUB subroutine, its
value is not corrupted within the ONE_SEC_SUB subroutine. This example shows
how one subroutine can call another subroutine, demonstrating the concept of
subroutine nesting. It is interesting to track the value of the Stack Pointer (SP) during
program operation. The flow chart for the ONE_SEC_SUB routine is shown in figure
3.2 and the source code is shown in listing 3.2.

Figure 3.2 ONE_SEC_SUB flow chart

E n te r

S a v e R 7

L o o p -c o u n te r (R 7)
= 2 5 0

R e s to re R 7

D e c re m e n t
L o o p -c o u n te r (R 7)

R e tu rn f ro m
s u b ro u tin e

I s
R 7 = z e ro ?

Y E S

N O

C a ll O n e _ m ill i_ s u b ro u tin e

C a ll O n e _ m ill i_ s u b ro u tin e

C a ll O n e _ m ill i_ s u b ro u tin e

C a ll O n e _ m ill i_ s u b ro u tin e

O n e
s e c o n d
d e la y

8051 Tutorial D.Heffernan © 2000, 2001 39

;==
; ONE_SEC_SUB
; Subroutine to delay ONE second
; Uses register R7 but preserves this register
;==

ONE_SEC_SUB:

 PUSH 07h ; save R7 to stack

 MOV R7, #250d ; 250 decimal to R7 to count 250 loops

LOOP_SEC: ; Calls 4 one millisec. delays, 250 times

 LCALL ONE_MILLI_SUB ; call subroutine to delay 1 millisecond
 LCALL ONE_MILLI_SUB ; call subroutine to delay 1 millisecond
 LCALL ONE_MILLI_SUB ; call subroutine to delay 1 millisecond
 LCALL ONE_MILLI_SUB ; call subroutine to delay 1 millisecond

 DJNZ R7, LOOP_SEC ; decrement R7, if not zero loop back

 POP 07h ; restore R7 to original value

 RET ; return from subroutine

Listing 3.2 Source code for: ONE_SEC_SUB

Sample routine to delay N seconds: PROG_DELAY_SUB
PROG_DELAY_SUB is a subroutine, which will cause a delay for a specified
number of seconds. The subroutine is called with the required number, N, of delay
seconds specified in the accumulator. The subroutine calls the ONE_SEC_SUB
subroutine, which in turn calls the ONE_MILLI_SUB subroutine. Here is a further
example of nesting subroutines. The PROG_DELAY_SUB subroutine preserves the
accumulator value. The subroutine also checks to see if it has been called with a zero
value in the accumulator. If this is the case the subroutine returns immediately without
causing further delay. A maximum delay of 255 seconds can be specified, i.e.
accumulator can have a maximum value of 0FFh (255 decimal). The program
provides a simple example of passing a parameter to a subroutine where the
accumulator is used to pass a number N into the subroutine. The flow chart for the
PROG_DELAY_SUB routine is given in figure 3.3 and the assembly language source
code is given in listing 3.3.

8051 Tutorial D.Heffernan © 2000, 2001 40

Figure 3.3 PROG_DELAY_SUB flow chart

;==
; PROG_DELAY_SUB Programmable Delay Subroutine
; Subroutine to delay N number of seconds. N is defined in A (accumulator)
; and passed to the subroutine. A is preserved.
; If N=0 the subroutine returns immediately. N max. value is FFh (255d)
;==

PROG_DELAY_SUB:

 CJNE A, #00h, OK ; if A=0 then exit
 LJMP DONE ; exit

OK: PUSH Acc ; save A to stack

LOOP_N: ; calls one second delay, no. of times in A

 LCALL ONE_SEC_SUB ; call subroutine to delay 1 second

 DJNZ Acc, LOOP_N ; decrement A, if not zero loop back

 POP Acc ; restore Acc to original value
DONE:
 RET ; return from subroutine

Listing 3.3 Source code for: PROG_DELAY_SUB

E n te r

S a v e A c c

R e sto re A c c

D e c re m e nt
L o o p -c o u n te r (A c c)

R e tu rn fro m
su b ro u tin e

Is
A c c = z e ro ?

Y E S

N O

N
se c o n d s

d e la y

Is
A c c = z e ro ?

Y E S

N O

C a ll O n e S e c o n d
su b ro u tin e

8051 Tutorial D.Heffernan © 2000, 2001 41

Example application using a time delay
In this example an 8051 microcomputer, clocked at 12MHz., will be connected to a
loudspeaker and a program will be written to sound the loudspeaker at a frequency of
500Hz. Figure 3.4 shows the hardware interface where the loudspeaker is connected
to Port 1 at pin P1.0. A simple transistor is used as an amplifier as the 8051 output
port does not have enough current drive capability to drive the loudspeaker directly.
Figure 3.4 also shows a simple timing diagram to explain how the 500Hz. square
wave is generated by the software. The ONE_MILLI_SUB subroutine is used to
provide the basic time delay for each half cycle. Listing 3.4 shows the source code for
the program.

8051

P
or

t 1

P1.0

+ volts

Loudspeaker

Clock
12 MHz.

RESET

delay
1 ms.

delay
1 ms.

delay
1 ms.

delay
1 ms.

delay
1 ms.

SETB P1.0 SETB P1.0 SETB P1.0

CLR P1.0 CLR P1.0CLR P1.0

T = 2 msecs.

f = 1/T = 1 / 0.002
 = 500 Hz.

P1.7

Figure 3.4 Hardware circuit with timing diagram

8051 Tutorial D.Heffernan © 2000, 2001 42

;===
; SOUND.A51
; This program sounds a 500Hz. tone at Port 1, pin 0
; Rev. 0.0 D.Heffernan 19-December-2000
;==

 ORG 0000h ; start address is 0000h

 MOV P1, #00 ; clear all bits on P1

LOOP:
 SETB P1.0 ; set P1.0 high
 LCALL ONE_MILLI_SUB ; delay one millisecond
 CLR P1.0 ; set P1.0 low
 LCALL ONE_MILLI_SUB ; delay one millisecond

 LJMP LOOP ; loop around!

;==
; ONE_MILLI_SUB:
; Subroutine to delay ONE millisecond
; Uses register R7 but preserves this register
;===
ONE_MILLI_SUB:

 PUSH 07h ; save R7 to stack
 MOV R7, #250d ; 250 decimal to R7 to count 250 loops

LOOP_1_MILLI: ; loops 250 times

NOP ; inserted NOPs to cause delay
 NOP ;
 DJNZ R7, LOOP_1_MILLI ; decrement R7, if not zero loop back

 POP 07h ; restore R7 to original value

 RET ; return from subroutine

END ; end of program

Listing 3.4 Source code for example program to sound 500Hz. note

8051 Tutorial D.Heffernan © 2000, 2001 43

3.2 A NOTE ON THE OPERATION OF THE STACK POINTER

When a subroutine is called the current content of the Program Counter (PC) is save
to the stack, the low byte of the PC is save first, followed by the high byte. Thus the
Stack Pointer (SP) in incremented by 2. When a RET (return from subroutine)
instruction is executed the stored PC value on the stack is restored to the PC, thus
decrementing the SP by 2.

When a byte is PUSHed to the stack, the SP in incremented by one so as to point to
the next available stack location. Conversely, when a byte is POP’ed from the stack
the SP is decremented by one.

Figure 3.5 shows the organisation of the stack area within the I-RAM memory space.

The stack values during the operation of the nested subroutine example are shown in
figure 3.6. Here it is assumed that the SP is initialised to 07h. This is possible where
the alternative register banks are not used in a program. The stack then has a ceiling
value of 20h, if we want to preserve the ‘bit addressable’ RAM area. It is probably
more common to initialise the SP higher up in the internal RAM at location 2Fh. The
diagram shows how data is saved to the stack.

 I-RAM

Following PUSH of Acc to stack, SP = 0Ah………………… 0Ah
Following LCALL to PROG_DELAY_SUB, SP = 09h…….. 09h

SP is initialised to 07h. …………………………………… 07h

Figure 3.5 The stack operation

Registers R0 ..R7
(not to scale)

Saved PC high byte
Saved PC low byte

Saved Acc value

8051 Tutorial D.Heffernan © 2000, 2001 44

 Some main program box indicates current value of SP. Assume SP
 is initialised to 07h in the main program

LCALL
PROG_DELAY_SUB

 PROG_DELAY_SUB

 PUSH Acc

 LCALL
 ONE_SEC_SUB

 ONE_SEC_SUB

 PUSH R7

 CALL
 ONE_MILLI_SUB
 ONE_MILLI_SUB

 PUSH R7

 POP R7

 RET

 POP R7

 RET

 POP Acc

 RET

 Main program Figure 3.6 Example showing values of the Stack

Pointer during nested subroutine operation.

09h

0Ah

0Ch

0Dh

0Fh

10h

0Fh

0Dh

0A

07h

0C

09h

07h

07h

8051 Tutorial D.Heffernan © 2000, 2001 45

Chapter 4 Interrupts

An interrupt causes a temporary diversion of program execution in a similar sense to
a program subroutine call, but an interrupt is triggered by some event, external to the
currently operating program. We say the interrupt event occurs asynchronously to the
currently operating program as it is not necessary to know in advance when the
interrupt event is going to occur.

4.1 8051 INTERRUPTS

There are five interrupt sources for the 8051. Since the main RESET input can also be
considered as an interrupt, six interrupts can be listed as follows:

Interrupt Flag Vector address

System RESET RST 0000h
External interrupt 0 IE0 0003h
Timer/counter 0 TF0 000Bh
External interrupt 1 IE1 0013h
Timer/counter 1 TF1 001Bh
Serial port RI or TI 0023h

We will concentrate on the external interrupts for now, and later we will examine the
other interrupt sources. Here’s a brief look at some of the register bits which will be
used to set up the interrupts in the example programs.

The Interrupt Enable, IE, register is an SFR register at location A8h in Internal RAM.
The EA bit will enable all interrupts (when set to 1) and the individual interrupts must
also be enabled.

Interrupt Enable register
EA
msb

 ES ET1 EX1 ET0 EX0
lsb

For example, if we want to enable the two external interrupts we would use the
instruction:

MOV IE, #10000101B

Each of the two external interrupt sources can be defined to trigger on the external
signal, either on a negative going edge or on a logic low level state. The negative edge
trigger is usually preferred as the interrupt flag is automatically cleared by hardware,
in this mode. Two bits in the TCON register are used to define the trigger operation.
The TCON register is another SFR register and is located at location 88h in Internal
RAM. The other bits in the TCON register will be described later in the context of the
hardware Timer/Counters.

TCON register

msb

 IT1 IT0
lsb

8051 Tutorial D.Heffernan © 2000, 2001 46

To define negative edge triggering for the two external interrupts use instructions as
follows:

SETB IT0 ; negative edge trigger for interrupt 0
SETB IT1 ; negative edge trigger for interrupt 1

Figure 4.1 shows the flow of operation when a system is interrupted. In the example it
is assumed that some program, say the main program, is executing when the external
interrupt INT0 occurs. The 8051 hardware will automatically complete the current
machine level (assembler level) instruction and save the Program Counter to the
stack. The IE register is also saved to the stack. The IE0 flag is disabled (cleared) so
that another INT0 interrupt will be inhibited while the current interrupt is being
serviced. The Program Counter is now loaded with the vector location 0003h. This
vector address is a predefined address for interrupt INT0 so that program execution
will always trap to this address when an INT0 interrupt occurs. Other interrupt
sources have uniquely defined vector addresses for this purpose. The set of these
vector addresses is referred to as the interrupt vector table.

Program execution is now transferred to address location 0003h. In the example a
LJMP instruction is programmed at this address to cause the program to jump to a
predefined start address location for the relevant ISR (Interrupt Service Routine)
routine. The ISR routine is a user written routine, which defines what action is to
occur following the interrupt event. It is good practice to save (PUSH) to the stack
any registers used during the ISR routine and to restore (POP) these registers at the
end of the ISR routine, thus preserving the registers’ contents, just like a register is
preserved within a subroutine program. The last instruction in the ISR routine is a
RETI (RETurn from Interrupt) instruction and this instruction causes the 8051 to
restore the IE register values, enable the INT0 flag, and restore the Program Counter
contents from the stack.

Since the Program Counter now contains the address of the next instruction which
was to be executed before the INT0 interrupt occurred, the main program continues as
if it had never being interrupted. Thus only the temporal behaviour of the interrupted
program has been affected by the interrupt; the logic of the program has not been
otherwise affected.

4.2 EXAMPLE INTERRUPT DRIVEN PROGRAM
Figure 4.2 shows and oven control system where a heating oven, as part of a
manufacturing process, is to be controlled within the temperature range, between
190oC and 200 oC . An 8051 microcomputer based system is used to control the
temperature. The oven has two built-in temperature sensors. The low threshold sensor
outputs a logic 0 if the temperature is below 190 oC, otherwise it outputs a logic high
level (say 5 volts). The high threshold sensor outputs a logic low level if the
temperature exceeds 200 oC, otherwise it outputs a logic high level. The temperature
sensors are connected to the 8051’s interrupt inputs, INT0 and INT1, as shown in the
diagram. Both of these interrupt inputs are set to trigger at negative voltage
transitions. The microcomputer outputs a logic 1 on the P1.0 output pin to turn on the
heater element and it outputs a logic 0 to turn off the heating element. Assume the
necessary hardware driver circuitry, to switch power to the oven, is included in the
oven.

8051 Tutorial D.Heffernan © 2000, 2001 47

Main program
in execution

INT0 occurs

 Done in 8051 hardware

 -complete current

 instruction
-save PC to stack
-IE flags are saved.
-This interrupt flag is
 cleared (disabled)
-PC is loaded with

 ISR vector address
(0003h) USER WRITTEN ISR ROUTINE

 ISR0

PUSH to stack any registers
 used in this ISR

Execution of body
of the ISR

POP any saved registers

 Done in 8051 hardware RETI

-IE flags are
restored, enabling this
interrupt
-PC is restored from
stack

 Main program
 continues

Figure 4.1 Interrupt operation example

0003h

0000h

Code

Interrupt
1E0 vector

RESET
vector LJMP Main

LJMP ISR 0

 Interrupt
 TF0 vector
 000Bh

8 bytes

8051 Tutorial D.Heffernan © 2000, 2001 48

The microcomputer’s program is written so that an interrupt from the low threshold
sensor will cause the heating element to turn on and interrupt from the high threshold
sensor will cause the heating element to turn off. Figure 4.3 shows a timing diagram
for the oven’s operation.

Figure 4.2 Temperature controlled heating oven

Figure 4.3 Timing diagram for the oven control

TEMP

200oC

190oC

HEAT_OFF

HEAT_ON

8051

Sensor logic 0 if > 200oC

Sensor logic 0 if < 190oC

Heating element

1 turn ON

0 turn OFF

INT0

INT1 P1.0

RST
Reset

HEAT_OFF

HEAT_ON

Power
switch

8051 Tutorial D.Heffernan © 2000, 2001 49

The assembler language source program to control the oven is shown in listing 4.1.
Since the ISR routines (Interrupt Service Routines) are very short they could have
been positioned within the 8 bytes of memory available at the respective vector
locations. However, the ISR routines are located higher up in memory to show the
memory positioning structure which would be used for larger ISR routines. Three
vector locations are defined at the beginning of the program. The RESET vector, at
address 0000h, contains a jump instruction to the MAIN program. Location 0003h is
the vector location for external interrupt 0, and this contains a jump instruction to the
relevant ISR routine, ISR0. External interrupt 1uses the vector location 0013h which
contains a jump instruction to the ISR routine, ISR1. In this oven control program
example the main program just loops around doing nothing. When an interrupt occurs,
the required action is carried out by the relevant ISR routine. However, in a more
sophisticated program the main program could be doing something very useful and
would be interrupted only when the oven temperature needs to be adjusted, on or off.
Thus the main program does not have to waste time polling the sensor inputs.

The resulting allocation of space in code memory for the OVEN.A51 program is
shown in figure 4.4

ISR1

 ISR1

ISR0

 ISR0

Main

0100h

 MAIN

Serial port RI or TI 0023h
Timer/counter 1 TF1 001Bh
External interrupt 1 IE1 0013h
Timer/counter 0 TF0 000Bh
External interrupt 0 IE0 0003h
System RESET RST 0000h

Figure 4.4 Code positioning in code memory space

Vector
table

CODE

8051 Tutorial D.Heffernan © 2000, 2001 50

;==
; OVEN.A51
; Simple interrupt driven program to control oven temperature. If 200C
; sensor goes low INT1 interrupts causing ISR1 to turn off heater. If
; 190C sensor goes low INT0 interrupts causing ISR0 to turn on heater.
; Port 1, bit0, i.e. P1.0 connects to the heater.
;
; Rev. 0.0 D.Heffernan 12-Mar-99
;==

 ORG 0000h ; entry address for 8051 RESET
 LJMP MAIN ; MAIN starts beyond interrupt vector space

 ORG 0003h ; vector address for interrupt 0
 LJMP ISR0 ; jump to start of ISR0

 ORG 0013h ; vector address for interrupt 1
 LJMP ISR1 ; jump to start of ISR1

;===
; MAIN enables the interrupts and defines negative trigger operation.
; Heater is turned on and program just loops letting the ISRs do the work.
;===

ORG 0100h ; defines where MAIN starts..
MAIN:
 MOV IE, #10000101B ; enable external interrupts IE0, IE1
 SETB IT0 ; negative edge trigger for interrupt 0
 SETB IT1 ; negative edge trigger for interrupt 1

; Initialise heater ON
 SETB P1.0 ; heater is ON

LOOP:
 LJMP LOOP ; loop around doing nothing!

;==
; ISR0 simply turns ON the heater
;==
ISR0:
 SETB P1.0 ; turn ON heater
 RETI ; return from interrupt

;==
; ISR1 simply turns OFF the heater
;==
ISR1:
 CLR P1.0 ; turn OFF heater
 RETI ; return from interrupt

END ; end of program

Listing 4.1 Program for interrupt driven oven control

8051 Tutorial D.Heffernan © 2000, 2001 51

4.3 OTHER SOURCES OF INTERRUPTS

Figure 4.5 shows the set of 8051 interrupt sources. If we follow the external interrupt
INT0, for example, we see that this external interrupt connects to the processor at the
P3.2 pin. Note Port 3 can be used as a standard input/output port as shown earlier –
but various Port 3 pins have alternative functionality. When INT0 is activated
(negative edge usually), internally within the 8051 the EX0 request is raised. This
flags an interrupt request but the relevant interrupt bit within the IE register must be
set, along with the EA bit if this interrupt request is to raise an interrupt flag. The
interrupt flag IE0 is then raised and causes the program counter (PC) to vector to
vector location 0003h, as discussed earlier. Note, the Timer/Counter interrupt flags
can be software polled even if the ETx bits are not enabled. Interrupts can also be
software generated by setting the interrupt flags in software. The interrupt flags are
accessible as flags on the TCON and SCON registers as follows:

TCON register
TF1
msb

 TF0 IE1 IT1 IE0 IT0
lsb

SCON register

msb

 TI RI
lsb

8051 8051
external internal

 T1
 Timer/counter 1

 INT1
 External int. 1

 T0
 Timer/counter 0

 INT0
 External int. 0

Figure 4.5 Interrupt sources

Timer 1

UART

Timer 0

EA

ES

ET1

EX1

ET0

EX0

RI
or TI

TF1

IE1

TF0

IE0

0023h

001Bh

0013h

000Bh

0003h

P3.3

P3.5

P3.2

P3.4

Vector
Table

Interrupt
FLAGS
in TCON
and
SCON
registers

Interrupt
Requests
Enables
Via
IE register

Tx
Rx

8051 Tutorial D.Heffernan © 2000, 2001 52

4.4 INTERRUPT PRIORITY LEVEL STRUCTURE

An individual interrupt source can be assigned one of two priority levels. The
Interrupt Priority, IP, register is an SFR register used to program the priority level for
each interrupt source. A logic 1 specifies the high priority level while a logic 0
specifies the low priority level.

IP register
x
msb

x PT2 PS PT1 PX1 PT1 PX0
lsb

IP.7 x reserved
IP.6 x reserved
IP.5 PT2 Timer/counter-2 interrupt priority (8052 only, not 8051)
IP.4 PS Serial port interrupt priority
IP.3 PT1 Timer/Counter-1 interrupt priority
IP.2 PX1 External interrupt-1 priority
IP.1 PT0 Timer/Counter-0 interrupt priority
IP.0 PX0 External interrupt-0 priority

An ISR routine for a high priority interrupt cannot be interrupted. An ISR routine for
a low priority interrupt can be interrupted by a high priority interrupt, but not by a low
priority interrupt.

If two interrupt requests, at different priority levels, arrive at the same time then the
high priority interrupt is serviced first. If two, or more, interrupt requests at the same
priority level arrive at the same time then the interrupt to be serviced is selected based
on the order shown below. Note, this order is used only to resolve simultaneous
requests. Once an interrupt service begins it cannot be interrupted by another interrupt
at the same priority level.

Interrupt Priority within
source a given level

IE0 highest
TF0
IE1
TF1
RI, TI
TF2 (8052, not 8051) lowest

8051 Tutorial D.Heffernan © 2000, 2001 53

Chapter 5 Timer/Counters

The 8051 has two internal sixteen bit hardware Timer/Counters. Each Timer/Counter
can be configured in various modes, typically based on 8-bit or 16-bit operation. The
8052 product has an additional (third) Timer/Counter.

Figure 5.1 provides us with a brief refresher on what a hardware counter looks like.
This is a circuit for a simple 3-bit counter which counts from 0 to 7 and then
overflows, setting the overflow flag. A 3-bit counter would not be very useful in a
microcomputer so it is more typical to find 8-bit and 16-bit counter circuits.

Figure 5.1 3-bit counter circuit

5.1 8-bit COUNTER OPERATION
First let us consider a simple 8-bit counter. Since this is a modulo-8 set up we are
concerned with 256 numbers in the range 0 to 255 (28 =256). The counter will count
in a continuous sequence as follows:

Hex Binary Decimal
00h 00000000 0
01h 00000001 1
02h 00000010 2
. . .
. . .
FEh 11111110 254

D

Q

Q D

Q

Q D

Q

Q

D

Q

Q

Logic 1

Clock in

0 1 0 1 0 1 0 1 0

0 0 1 1 0 0 1 1 0

0 0 0 0 1 1 1 1 0

Q0 Q1 Q2

Clear

Overflow FLAG
1 = set

Clock in

Q0

Q1

Q2

0 1 2 3 4 5 6 7 0

Overflow Flag

Overflow
Condition

8051 Tutorial D.Heffernan © 2000, 2001 54

FFh 11111111 255
00h 00000000 0 here the counter overflows to zero1
01h 00000001 1
etc.
etc.

We will use Timer/Counter 1 in our examples below.

Supposing we were to initialise this Timer/Counter with a number, say 252, then the
counter would overflow after just four event pulses, i.e.:

FCh 11111100 252 counter is initialised at 252
FDh 11111101 253
FEh 11111110 254
FFh 11111111 255
00h 00000000 0 here the counter overflows

An 8-bit counter can count 255 events before overflow, and overflows on the 256th.
event. When initialised with a predefined value of say 252 it overflows after counting
just four events. Thus the number of events to be counted can be programmed by pre-
loading the counter with a given number value.

5.2 8-bit TIMER OPERATION
The 8051 internally divides the processor clock by 12. If a 12 MHz. processor clock is
used then a 1 MHz. instruction rate clock, or a pulse once every microsecond, is
realised internally within the chip. If this 1 microsecond pulse is connected to a
Timer/Counter input, in place of an event input, then the Timer/Counter becomes a
timer which can delay by up to 255 microseconds. There is a clear difference between
a timer and a counter. The counter will count events, up to 255 events before
overflow, and the timer will count time pulses, thus creating delays up to 255
microseconds in our example.

To be precise we would refer to the counter as an event counter and we would refer to
the timer as an interval timer.

Timer/Counter 8-bitevent
TF1

Overflows after
255 events, i.e.
on the 256th.
event. TL1

8051 Tutorial D.Heffernan © 2000, 2001 55

If the timer is initialised to zero it will count 256 microseconds before overflow. If the
timer is initialised to a value of 252, for example, it will count just 4 microseconds
before overflow. Thus this timer is programmable between 1 microsecond and 256
microseconds.

5.2.1 HOW DO WE PROGRAM THE 8-BIT TIMER/COUNTER?

Let’s look at how to do the following:

o Configure the Timer/Counter as a TIMER or as a COUNTER
o Program the Timer/Counter with a value between 0 and 255
o Enable and disable the Timer/Counter
o How to know when the timer has overflowed – interrupt vs. polling.

The TMOD register (Timer Mode Control) is an SFR register at location 89h in
internal RAM and is used to define the Timer/Counter mode of operation.

 TMOD register
Gate
msb

C/T M1 M0 Gate

C/T M1 M0
Lsb

--------- timer 1 --------------|-----------timer 0 --------------

Consider Timer/Counter 1 only. The Gate bit will be ignored for now and will be set
to 0 in the examples. The C/T bit is set to 1 for COUNTER operation and it is set to 0
for TIMER operation. MI and M2 bits define different modes, where mode 2 is the 8
bit mode, i.e.:

M1 M0
0 0 mode 0: 13 bit mode (seldom used).
0 1 mode 1: 16-bit mode
1 0 mode 2: 8-bit mode (with auto reload feature)
1 1 mode 3: ignore for now

To run in TIMER mode using 8-bit operation, the TMOD register is initialised as
follows:

MOV TMOD, #00100000b ; assume timer 0 is not considered

Timer/Counter 8-bit

1 MHz. i.e. pulse
every 1 micro. Sec.

TF1
Overflows at
256 micro secs. 12MHz.

clock ÷ 12
TL1

8051 Tutorial D.Heffernan © 2000, 2001 56

Program the Timer/Counter value
The 8-bit Timer/Counter is pre-programmed with a value in the range 0..255. This is
achieved by writing this value into the TH1 register for the Timer/Counter. TH1 is an
SFR register (located at 8Dh in Internal RAM). An example is as follows:

MOV TH1, #129d ; Timer/Counter 1 is programmed for 129 counts

How to know when the timer has overflowed?
The TCON register (Timer Control) has some bits which represent Timer/Counter
status flags as well as some bits which can be set or cleared to control the
Timer/Counter operation. The relevant bits for Timer/Counter 1 are bolded in the
diagram. TR1 is set to 1 to enable Timer/Counter 1. Clearing TR1 turns the
Timer/Counter off. TF1 is the Timer/Counter overflow flag. When the Timer/Counter
overflows TF1 goes to a logic 1. Under interrupt operation TF1 is automatically
cleared by hardware when the processor vectors to the associated ISR routine.

TCON register
TF1
msb

TR1 TF0 TR0 IE1 IT1 IE0 IT0
lsb

Auto reloading of the 8-bit Timer/Counter
The TL1 SFR register (located at 8Bh in Internal RAM) represents the current value
in the 8-bit Timer/Counter. The Timer/Counter can be programmed by initialising this
register with a number between 0 and 255. However, there is an interesting automatic
reload feature in mode 2, where, when TL1 overflows (its value reaches 0), the
Timer/Counter is automatically reloaded with the 8-bit value stored in SFR register
TH1 (The pre-programmed value in TH1 does not change during this operation).

5.3 THE 16 BIT TIMER/CONTER
When the Timer/Counter is configured for mode 1 operation it operates in 16 bit
mode. Since this is a modulo-16 set up we are concerned with 65,536 numbers in the
range 0 to 65,535 (216 = 65,536). Consider a 16 bit Timer/Counter as shown below,
which will count in the sequence as follows:

Hex Binary Decimal
0000h 0000000000000000 0
0001h 0000000000000001 1
0010h 0000000000000010 2
. . .
. . .
FFFEh 1111111111111110 65,534
FFFFh 1111111111111111 65,535
00000h 0000000000000000 0 here it overflows to zero.

8051 Tutorial D.Heffernan © 2000, 2001 57

Now we have a 16-bit Timer/Counter and we can preload it with a sixteen bit number
so as to cause a delay from bewteen 1 to 65,535 microseconds (65.535 millisecs.), or
in counter mode it can count between 1 and 65,535 events. To preload the
Timer/Counter value simply write the most significant byte into the TH1 register and
the least significant byte into the TL1 register. The 16-bit counter is not automatically
reloaded following an overflow and such reloading must be explicitly programmed.
We will see this in some examples below.

Interrupt vs. polling operation
When a Timer/Counter overflow occurs it can be arranged to automatically cause an
interrupt. Alternatively the Timer/Counter interrupt can be disabled and the software
can test the TF1 (Timer 1 flag) bit in the TCON register to check that the overflow
has occurred.

It is also possible to read the Timer/Conter value (TH1, TL1) so as to assertain the
current value. (Beware, care must be exercised in reading the 16 bit values in this
manner as the low byte might overflow into the high byte between the successive read
operations).

5.4 EXAMPLE PROGRAMS
Here we will look at some short example programs to illustrate the following:

o TIMER1.A51 8-bit TIMER, polled overflow flag. See listing 5.1.
o TIMER2.A51 16-bit TIMER, polled overflow flag. See listing 5.2.
o TIMER3.A51 16-bit TIMER, interrupt driven. See listing 5.3.
o TIMER4.A51 16 bit COUNTER, interrupt driven. See listing 5.4.

TIMER1.A51 program example
The TIMER1.A51 program preloads the timer with value of minus 250 decimal. This
means that the TIMER will have to count 250 microseconds to reach overflow. Port 1
bit 7, P1.7, is complemented every time the TIMER overflows hence a square wave
with a period of 500 microseconds (2 x 250) is produced at P1.7, realising a frequency
of 2kHz. The software simply polls the overflow bit, TF1, and acts on TF1 being set.
Note, the TIMER is automatically reloaded (with –250d) each time it overflows so
there is no need to explicitly reload the TIMER initialisation value. Note the line
where the TIMER value is initialised, as follows:

Timer/Counter 16-bit

Event or time pulse
depending on
C/T bit setting

TF1
Overflows after
65,536 events

TL1 TH1

8051 Tutorial D.Heffernan © 2000, 2001 58

MOV TH1, #-250d

Since (256-250) = 6 , this could have been written as:

MOV TH1, #6d

Figure 5.3 (a) shows a programmer’s view of the 8-bit Timer/Counter showing how
the Timer/Counter is accessed via the SFR registers.

TIMER2.A51 program example
The TIMER2.A51 program uses Timer/Counter 1 in 16 bit mode (mode 1). This
example program delays for 10 milliseconds. By complementing P1.7 at every
TIMER overflow a square wave with a period of 20 milliseconds, or a 50Hz. square
wave, is achieved. Note how the 16-bit timer is not automatically reloaded and this
must be explicitly done within the program. Since the timer is stopped for short
periods during the program operation this will introduce some inaccuracies into the
timing loop. Figure 5.3 (b) shows a programmer’s view of the 16-bit Timer/Counter
showing how the Timer/Counter is accessed via the SFR registers.

Note the Timer/Counter in the standard 8052 product (Timer/Counter 2) does have
additional features such as 16-bit mode auto reload facility.

TIMER3.A51 program example
The TIMER3.A51 program shows a 16-bit TIMER operation where the overflow flag
TF1 causes an interrupt. Like the TIMER2.A51 program, this program generates a
50Hz. Square wave; but because it is an interrupt driven program it does not need to
use valuable processing time for polling purposes. The loop where it sits ‘doing
nothing’ could be used for more productive processing, doing other tasks. Every time
the TIMER overflows the interrupt can be serviced and then the program can return to
the more productive work.

TIMER4.A51 program example
The TIMER4.A51 program shows an example where the 16-bit Timer/Counter is used
as an event counter. The counter counts 20,000 events and then sets P1.7 to a logic
high. The program is interrupt driven so when TF1 is set the program vectors to
location 001Bh (Timer/Counter 1). A real application example for this sort of
program might be to count n devices pasing down a manufacturing assembly line and
then to take some action once n devices have passed through. Figure 5.2 illustrates the
example.

8051 Tutorial D.Heffernan © 2000, 2001 59

Figure 5.2 Counting items on a conveyor line.

Device
sensor

8051

T1 P1.7

Motor
1 = stop
0 = go

8051 Tutorial D.Heffernan © 2000, 2001 60

a) Programmer’s view of Timer/Counter 1, Mode 2, 8-bit

b) Programmers view of Timer/Counter 1, Mode 1, 16-bit

Figure 5.3 Programmer’s view of Timer/Counter

TL1
8-bit

TF1

External
pin T1 for

events

/12

Osc

e.g. 12MHz.

e.g. 1
micro sec.

C/T,M1,M0

C/T=0:timer
C/T=1:counter

TMOD MOV TMOD, #00100000B

mode 2
8-bit

TF1,TR1

loads
and re-loads

TCON SETB TR1
 JNB TF1, Label

TL1 This is the 8-bit counter content

TH1 MOV TH1, #06

SFR
registers

TL1, TH1
16-bit

TF1

External
pin T1 for

events

/12

Osc

e.g. 12MHz.

e.g. 1
micro sec.

C/T,M1,M0

C/T=0:timer
C/T=1:counter

TMOD MOV TMOD, #00010000B

mode 1
16-bit

TF1,TR1

loads TL1
low byte (0..7)

does NOT re-load

TCON SETB TR1
 JNB TF1, Label

TL1 MOV TL1, #0F0h

TH1 MOV TH1, #0D8h

SFR
registers

loads TH1
high byte (8..15)

does NOT re-load

8051 Tutorial D.Heffernan © 2000, 2001 61

;===
; TIMER1.A51
; Example program to generate a 2KHz. square wave at P1.7 using
; Timer/counter 1 in 8-bit TIMER mode. Polled , NOT interrupt driven.
;
; Rev. 0.0 D.Heffernan 17-Mar-99
;==

 ORG 0000h ; entry address for 8051 RESET
 LJMP MAIN ; MAIN starts beyond interrupt vector space

;===
; MAIN initialises Timer/counter 1 and loops polling Timer overflow flag TF1
; and toggles Port 1 bit 7 each time Timer overflows (every 250 micro secs.)
;===
 ORG 0100h ; entry address for main
MAIN:

 MOV TH1, #-250d ; timer is initialised with -250 to count 250 usecs.
 MOV TMOD, #00100000b ; timer 1 is set for mode 2, TIMER operation
 SETB TR1 ; start Timer 1

LOOP:
 JNB TF1, LOOP ; loop around until Timer 1 overflows
 CLR TF1 ; clear overflow flag
 CPL P1.7 ; complement P1 bit 7
 LJMP LOOP ; jump back for polling

END

Listing 5.1 TIMER1.A51

8051 Tutorial D.Heffernan © 2000, 2001 62

;===
; TIMER2.A51
; Example program to generate a 50Hz. square wave at P1.7 using
; Timer/counter 1 in 16-bit mode. Polled, NOT interrupt driven.
;
; Rev. 0.0 D.Heffernan 17-Mar-99
;==

ORG 0000h ; entry address for 8051 RESET
 LJMP MAIN ; MAIN starts beyond interrupt vector space

;==
; MAIN initialises Timer 1 and loops polling Timer overflow flag TF1
; and toggles port 1 bit 7 each time Timer overflows (every 10 milli.secs.)
; 65536 - 10000 = 55536,or D8F0h
;==

ORG 0100h ; entry address for main
MAIN:
 MOV TMOD, #00010000b ; Timer 1 is set for mode 1, TIMER operation

LOOP: MOV TH1, #0D8h ; Timer 1 high byte is loaded
 MOV TL1, #0F0h ; Timer 1 low byte is loaded
 SETB TR1 ; start Timer 1

POLL:
 JNB TF1, POLL ; loop around until Timer 1 overflows
 CLR TR1 ; stop Timer 1
 CLR TF1 ; clear overflow flag
 CPL P1.7 ; complement P1 bit 7
 LJMP LOOP ; jump back for polling

END

Listing 5.2 TIMER2.A51

8051 Tutorial D.Heffernan © 2000, 2001 63

;===
; TIMER3.A51
; Example program to generate a 50Hz. square wave at P1.7 using
; Timer/counter 1 in 16-bit mode. INTERRUPT driven.
;
; Rev. 0.0 D.Heffernan 17-Mar-99
;==

 ORG 0000h ; entry address for 8051 RESET
 LJMP MAIN ; MAIN starts beyond interrupt vector space

 ORG 001Bh ; vector address for interrupt
 LJMP ISR_TIMER1 ; jump to start of ISR_TIMER1

;==
; MAIN initialises Timer 1 and enables Timer 1 interrupt, then
; it just waits around letting the interrupt routine ISR_TIMER1 do the work.
; The Timer 1 is loaded with a value (65536 - 10000 = 55536,
; or D8F0h) so that it interrupts every 10 milliseconds.
;==
 ORG 0100h ; entry address for main
MAIN:
 MOV TMOD, #00010000b ; Timer 1 is set for mode 1, TIMER operation

 MOV TH1, #0D8h ; Timer 1 high byte is loaded
 MOV TL1, #0F0h ; Timer 1 low byte is loaded
 MOV IE, #10001000b ; enable Timer 1 interrupt
 SETB TR1 ; start Timer 1

 LOOP: LJMP LOOP ; just loop around doing nothing

;===
; ISR_TIMER1
; In Timer 16 bit operation the Timer 1 must be reloaded each
; time it overflows. The overflow flag is cleared automatically.
;===
ISR_TIMER1:

 CLR TR1 ; stop Timer 1
 MOV TH1, #0D8h ; reloads Timer 1 values in TH1
 MOV TL1, #0F0h ; and in TL1

 CPL P1.7 ; complement P1 bit 7
 SETB TR1 ; start Timer 1

 RETI ; return from interrupt

END

Listing 5.3 TIMER3.A51

8051 Tutorial D.Heffernan © 2000, 2001 64

;===
; TIMER4.A51
; Example program to count 20,000 events and to generate an interrupt
; following the 20,000 events, and then set bit P1.7 high. This
; example shows Timer/counter 1 being used as a COUNTER. The program is
; INTERRUPT driven.
;
; Rev. 0.0 D.Heffernan 17-Mar-99
;==

 ORG 0000h ; entry address for 8051 RESET
 LJMP MAIN ; MAIN starts beyond interrupt vector space

 ORG 001Bh ; vector address for interrupt
 LJMP ISR_TIMER1 ; jump to start of ISR_TIMER1

;===
; MAIN initialises Timer 1 as a COUNTER and enables Timer 1
; interrupt, then
; it just waits around letting the interrupt routine do the work.
; The Timer 1 is loaded with a value (65,536 - 20,000 = 45,536,
; or B1E0h) so that it interrupts after 20,000 events.
;==

ORG 0100h ; entry address for main
MAIN:
 MOV TMOD, #01010000b ; Timer 1 is set for mode 1, COUNTER operation

 MOV TH1, #0B1h ; Timer 1 high byte is loaded
 MOV TL1, #0E0h ; Timer 1 low byte is loaded
 MOV IE, #10001000b ; enable Timer/counter 1 interrupt
 SETB TR1 ; start Timer/counter 1

 LOOP: LJMP LOOP ; just loop around doing nothing

;==
; ISR_TIMER1
; P1.7 is set to logic 1 to flag that 20,000 counts have occurred
;==
ISR_TIMER1:

 CLR TR1 ; stop Timer 1 to be safe

 SETB P1.7 ; set high P1 bit 7

 RETI ; return from interrupt

END

Listing 5.4 TIMER4.A51

8051 Tutorial D.Heffernan © 2000, 2001 65

Chapter 6 The 8051 Serial Port

6.1 OVERVIEW OF ASYNCHRONOUS SERIAL COMMUNICATIONS

RS-232 Serial Communications
The EIA RS-232 serial communication standard is a universal standard, originally
used to connect teletype terminals to modem devices. Figure 6.1(a) shows a PC
connected to a device such as a modem or a serial printer using the RS-232
connection. In a modern PC the RS-232 interface is referred to as a COM port. The
COM port uses a 9-pin D-type connector to attach to the RS-232 cable. The RS-232
standard defines a 25-pin D-type connector but IBM reduced this connector to a 9-pin
device so as to reduce cost and size. Figure 6.1(b) shows a simple simplex serial
communication link where data is being transmitted serially from left to right. A
single Tx (transmit) wire is used for transmission and the return (Gnd) wire is
required to complete the electrical circuit. Figure 6.1(c) shows the inclusion of
another physical wire to support full-duplex (or half-duplex) serial communication.
The RS-232 (COM port) standard includes additional signal wires for “hand-shake”
purposes, but the fundamental serial communication can be achieved with just two or
three wires as shown.

a) Serial communication link

b) Simple transmission using two wires

c) Two way communication using three wires

Figure 6.1 Serial communications

PC
Device

e.g. Modem
or Printer

RS-232 Serial Comms.
Connection

0 0 1 0 0 1 1 0 1 0

Tx

Gnd

9-pin
D-type

connector

9-pin
D-type

connector

Gnd

9-pin
D-type

connector

9-pin
D-type

connector

Tx
Rx

8051 Tutorial D.Heffernan © 2000, 2001 66

The serial data is transmitted at a predefined rate, referred to as the baud rate. The
term baud rate refers to the number of state changes per second which is the same as
the bit rate for this particular communication scheme. Typical baud rates are: 9600
bps; 19,200 bps; 56kbps etc.

Asynchronous Serial Communications
Since data is sent is a serial fashion, without any reference to a timing clock to help
synchronise the receiver clock in terms of frequency and phase, the system is said to
be non-synchronous, or asynchronous. The baud rate clocks at each end of the RS-232
link are set to the same frequency values but there is no mechanism to synchronise
these clocks. Figure 6.2(a) shows three bytes transmitted by the PC. Assume the bytes
are ascii coded to represent the characters A, B and C. The receiver needs to know
exactly where each character starts and finishes. To achieve this the data character is
framed with a start bit at the beginning of each character and a stop bit at the end of
each character. Figure 6.2(b) shows the start bit as a low logic level and the stop bit as
a high logic level. Thus the receiver can detect the start bit and it then clocks in the

next eight
a) Sequence without framing

b) Framed data

 c) Framed data including a parity bit

Figure 6.2 Asynchronous transmission

character bits. The receiver then expects to find the stop bit, existing as a logic high
bit. This is a crude form of synchronisation applied to a system which is inherently

PC
Device

e.g. Modem
or Printer

RS-232 Serial Comms.
Connection

'A'

'B'

'C'

D7 D6 D5 D4 D3 D2 D1 D0
'C''A'

'B'

'B'
D7 D6 D5 D4 D3 D2 D1 D0

'C''A'

Stop
bit

Start
bit

Character frame,10 bits in total

'B'
D7 D6 D5 D4 D3 D2 D1 D0

'C''A'

Stop
bit

Start
bit

Character frame,11 bits in total

Parity
bit

P

8051 Tutorial D.Heffernan © 2000, 2001 67

non-synchronous. A high price is paid for this form of synchronisation in terms of
bandwidth, as for every eight bits of data transmitted two bits are required to support
the framing. Ten bits are transmitted to support eight bits of data thus the scheme is, at
best, just eighty percent efficient. Figure 6.2(c) shows the inclusion of an additional
parity bit for error control purposes.

Single Bit Parity for Error Checking
All communication systems are prone to errors. An RS-232 communication system is
susceptible to bit errors as data bits can become corrupted (bit changes from 1 to 0 or
from 0 to 1). Such corruption is often caused by unwanted electrical noise coupled
into the wiring. Figure 6.3(a) shows an example where an 8-bit data character is
transmitted and a single bit becomes corrupted during transmission. The receiver gets
the wrong data. The receiver cannot known that the received data contains an error.
Figure 6.2(b) show a single bit parity scheme where the parity bit is calculated at the
transmitter and this parity bit is sent along with the eight data bits. The receiver can
apply a test on the received data to establish whether or not an error exists in the

a) Undetected error

b) Presence of error is detected

Figure 6.3 Single bit parity error detection

received data. In this example even parity is used. The parity bit is calculated at the
transmitter so that all of the bits, including the parity bit add up to an even number of
ones. Thus, in the example, the parity bit is set to 0 so that an even number of ones
(two ones) exists across the 9 bits. The receiver checks the received data for even
parity and in this case finds that the parity test fails. The receiver now knows that an
error exists and it is up to a higher layer protocol to act on the error. Note, the receiver
does not know which bit is in error, it is simply aware than an error exist in the
received data. If the parity bit itself had been corrupted the same parity test would
detect this error also. If any odd number of bits (1, 3, 5, 7 or 9 bits) are in error the
simple parity test will detect the error. However, if an even number of bits are in error
(2, 4, 6 or 8 bits) then such errors will go unnoticed in the parity test. Since the
majority of errors in communication systems are single bit errors then the simple
single bit parity scheme is worthwhile. There are more complex techniques used to
provide more rigorous error checking and error correction.

01000001 01000101

A bit gets corrupted during transmission
and an incorrect data byte is received

Transmitter Receiver

01000001 01000101

A bit gets corrupted during transmission and an
incorrect data byte is received; but the receiver is

now aware of an error due to the parity check!

Transmitter Receiver
0

Even
parity

bit

Even
parity

bit

0

8051 Tutorial D.Heffernan © 2000, 2001 68

6.2 THE 8051 UART

The 8051 includes a hardware UART to support serial asynchronous communications
so that, typically, the product can support RS-232 standard communication. The
UART (Universal Asynchronous Reveiver and Transmitter) block diagram is shown
in figure 6.4. In our examples the BAUD clocks are, in fact, a single clock source
provided by Timer/Counter 1.

8 data
SBUF

8

BAUD Clk.
e.g. 9600

TI

Stop bit

Start bit

Send
8-bit
data

Transmitter
Buffer is
empty

10 bit
parallel
to serial
conversion

Serial data transmit

TRANSMITTER HALF

8 data bits
start
bit

stop
bit

8 data
SBUF

8

RI

Start bit

Stop bit

Receive
8-bit
data

Receive
data is

available

10 bit
serial to
parallel
conversion

Serial data receive

RECEIVER HALF

8 data bits
stop
bit

start
bit

Tx

Rx

Figure 6.4 UART block diagram

8051 Tutorial D.Heffernan © 2000, 2001 69

The UART can be configured for 9-bit data transmission and reception. Here 8 bits
represent the data byte (or character) and the ninth bit is the parity bit. Figure 6.5
shows a block diagram for the UART transmitter, where the ninth bit is used as the
parity bit.

8 dataSBUF

8

TI

Stop bit

Start bit

Send
8-bit
data

Transmitter
Buffer is
empty

11 bit
parallel
to serial
conversion

Serial data transmit

8 data bits
start
bit

stop
bit

Tx

9th. bit
TB8

Put parity bit here
(ninth bit!)

p

parity bit

Figure 6.5 Block diagram of UART transmitter, using the 9th. bit

Figure 6.6 shows a block diagram for the UART receiver, where the ninth bit is used
as the parity bit.

8 data

SBUF

8

RI

Start bit

Stop bit

Receive
8-bit
data

Receive
data is

available

11 bit
serial to
parallel
conversion

Serial data receive

8 data bits
stop
bit

start
bit

Rx

9th. bit

p

parity bit

RB8
Read parity bit here

(ninth bit!)

Figure 6.6 Block diagram of UART receiver, using the 9th. bit

8051 Tutorial D.Heffernan © 2000, 2001 70

SBUF is an SFR register which can be written to, so as to hold the next data byte to be
transmitted. Also it can be read from to get the latest data byte received by the serial
port. SBUF is thus effectively two registers: one for transmitting and one for
receiving.

The SCON (Serial Control) register is an SFR register, used for configuring and
monitoring the serial port status.

SCON register
SM0
msb

SM1 SM2 REN TB8 RB8 TI RI
lsb

SM0, SM1 bits define the mode of operation, such as the number of data bits (8 or
9), the clock source etc. Our examples will use mode 3, which specifies 9 data bits (8
data plus a parity bit) with the clock source being Timer/Counter 1.

SM2 is set to 0 for normal operation

REN is set to 1 to enable reception, 0 to disable reception

TB8 is the ninth bit (parity bit) to be transmitted

RB8 is the ninth bit received (parity bit)

TI Transmit Interrupt flag. A logic 1 indicates that transmit buffer (SBUF) is empty.
This flag must be cleared by software.

RI Receive Interrupt flag. A logic 1 indicates that data has been received in the
receive buffer (SBUF). This flag must be cleared by software.

In the example programs the serial port is initialised for mode 3 operation with the
receiver enabled using the following instruction:

MOV SCON, #11010000B

SETTING THE BAUD RATE
Timer/Counter 1 (in SCON mode 3) provides the serial port baud rate clock. Usually
the 8-bit auto reload operation (Timer/Counter mode 2) is used. The table shows some
values defined for the TH1 register to achieve some of the more common baud rates.
The values shown assume a processor clock rate of 11.059MHz. This is a common
crystal value for 8051 based designs as it divides down to provide accurate baud rates.

Baud rate Timer/Counter1

 TH1 value
PCON.7
SMOD

8051clock
 frequency

300 A0h 0 11.059MHz.
1,200 D0h 0 11.059MHz.
2,400 FAh 0 11.059MHz.
9,600 FDh 0 11.059MHz.

8051 Tutorial D.Heffernan © 2000, 2001 71

Note. The most significant bit of the PCON register is assumed to be at 0. If this were set to 1
the baud rate value would be doubled.

Based on the above we could set up the timer for 9,600 baud operation using the
following code:

MOV TMOD, #00100000B ; timer/counter 1 set for mode 2, 8-bit TIMER operation
MOV TH1, #0FDh ; timer/counter 1 is timed for 9600 baud
SETB TR1 ; timer/counter 1 is enabled and will just free run now

Some sample programs using the serial port are listed below as follows:

SEND_1.A51
This program continuously transmits the ascii ‘A’ character. The 9th. bit exists but is
ignored. Listing 6.1 shows the source code listing.

SEND_2.A51
This program example is similar to SEND_1.A51 above but puts an even parity bit
into the ninth bit. Listing 6.2 shows the source code listing.

READ_1.A51
This program reads a character from the serial port and stores the character in R7. The
parity bit is ignored. Listing 6.3 shows the source code listing.

READ_2.A51
This program is an interrupt driven version of the READ_1.A51 program. Listing 6.4
shows the source code listing.

SEND_3.A51
This program sends a block of 100 characters from external memory out through the
serial port. Listing 6.5 shows the source code listing.

8051 Tutorial D.Heffernan © 2000, 2001 72

;==
; SEND_1.A51
; Transmits the ascii 'A' character continuously using the 8051 serial port.
; Uses 9 bit data at 9600 baud. Parity bit exists but is not calculated.
; Uses POLLED operation, not interrupt driven
; Rev. 0.0 D.Heffernan 19-April-99
;===

ORG 0000h ; entry address for 8051 RESET
 LJMP MAIN ; MAIN starts beyond interrupt vector space

 ORG 0100h
MAIN:

; set up timer/counter 1 to drive 9600 baudrate
 MOV TMOD, #00100000B ; timer/counter 1 is set for mode 2 8-bit TIMER
 MOV TH1, #0FDh ; timer/counter 1 is timed for 9600 baud
 SETB TR1 ; timer/counter 1 is enabled and will free run

; Initialise serial port for mode 3: operation
 MOV SCON, #11010000B

SEND:
 MOV SBUF, #41h ; acsii 'A' to SBUF

LOOP:
 JNB TI, LOOP ; loop testing TI to know when data is sent
 CLR TI ; clear TI
 LJMP SEND ; back to send 'A' again

END

Listing 6.1 SEND_1.A51

8051 Tutorial D.Heffernan © 2000, 2001 73

;===
;SEND_2.A51
;
; Like SEND_1.A51 above but parity bit is calculated and used. EVEN parity.
; The program transmits the ascii 'A' character continuously, using the 8051
; serial port. It uses 9 bit data at 9600 baud. Uses POLLED operation,
; Not interrupt driven
;
; Rev 0.0 D.Heffernan 19-April-1999
;===

 ORG 0000h ; entry address for 8051 RESET
 LJMP MAIN ; MAIN starts beyond interrupt vector space

 ORG 0100h
MAIN:

;set up timer/counter 1 to drive 9600 baudrate
 MOV TMOD, #00100000B ; timer/counter 1 is set for mode 2, 8-bit TIMER
 MOV TH1, #0FDh ; timer/counter 1 is timed for 9600 baud
 SETB TR1 ; timer/counter 1 is enabled and will free run

; Initialise serial port for mode 3: operation
 MOV SCON, #11010000B

; Move Ascii ‘A’ to SBUF via the accumulator so that parity bit is calculated

SEND: MOV A, #41h
 MOV SBUF, A ; acsii 'A' to SBUF

 MOV C, P ; the parity flag in the PSW is moved to carry flag
 MOV TB8, C ; the carry flag is move to TB8

 LOOP:
 JNB TI, LOOP ; loop testing TI to know when data is sent
 CLR TI ; clear TI
 LJMP SEND ; back to send 'A' again

END

Listing 6.2 SEND_2.A51

8051 Tutorial D.Heffernan © 2000, 2001 74

;==
; READ_1.A51
; Program to receive a character from serial port and save this character
; in R7. Uses 9 bit data at 9600 baud. Parity bit exists but is ignored.
; Uses POLLED operation, not interrupt driven.
;
; Rev. 0.0 D.Heffernan 19-April-1999
;===

 ORG 0000h ; entry address for 8051 RESET
 LJMP MAIN ; MAIN starts beyond interrupt vector space

 ORG 0100h
MAIN:

;set up timer/counter 1 to drive 9600 baudrate
 MOV TMOD, #00100000B ; timer/counter 1 is set for mode 2 8-bit TIMER
 MOV TH1, #0FDh ; timer/counter 1 is timed for 9600 baud
 SETB TR1 ; timer/counter 1 is enabled and will free run

; initialise serial port for mode 3: operation
 MOV SCON, #11010000B

INCHAR:

LOOP: JNB RI, LOOP ; loop testing RI to know when data is received
 CLR RI ; clear RI
 MOV R7, SBUF ; read data to R7

END

Listing 6.3 READ_1.A51

8051 Tutorial D.Heffernan © 2000, 2001 75

;===
; READ_2.A51
; Like READ_1.A51 program but this is an interrupt program. When a character is
; received from serial port RI interrupt ISR saves the received character in R7.
; Uses 9 bit data at 9600 baud. Parity bit exists but is ignored.
;
; Rev. 0.0 D.Heffernan 19-April-1999
;===

 ORG 0000h ; entry address for 8051 RESET
 LJMP MAIN ; MAIN starts beyond interrupt vector space

 ORG 23h ; vector address serial port interrupt
 LJMP ISR_SERIAL

 ORG 0100h
MAIN:

;set up timer/counter 1 to drive 9600 baudrate
 MOV TMOD, #00100000B ; timer/counter 1 is set for mode 2 8-bit TIMER
 MOV TH1, #0FDh ; timer/counter 1 is timed for 9600 baud
 SETB TR1 ; timer/counter 1 is enabled and will free run

; initialise serial port for mode 3: operation
 MOV SCON, #11010000B

; enable the serial port interrupt
 MOV IE, #10010000B

LOOP: LJMP LOOP ; Main just loops around doing nothing!

;==
; ISR_SERIAL
; TI or RI will cause a serial port interrupt. This routine ignores TI
; but on RI it reads the received character to R7
;===
ISR_SERIAL:

 JNB RI, RETURN ; return if RI is not set (TI caused int.)
 MOV R7, SBUF ; read data to R7
 CLR RI ; clear RI

RETURN:
 RETI ; return from interrupt
END

Listing 6.4 READ_2.A51

8051 Tutorial D.Heffernan © 2000, 2001 76

;===
; SEND_3.A51
; Program sends block of 100 characters to serial port from XDATA RAM
; starting at location 2000h.
; Uses 9 bit data at 9600 baud. Parity bit exist but is ignored.
; Uses POLLED operation, not interrupt driven.
;
; Rev. 0.0 D.Heffernan 23-April-1999
;===

 ORG 0000h ; entry address for 8051 RESET
 LJMP MAIN ; MAIN starts beyond interrupt vector space

 ORG 0100h
MAIN:

;set up timer/counter 1 to drive 9600 baudrate
 MOV TMOD, #00100000B ; timer/counter 1 is set for mode 2 8-bit TIMER
 MOV TH1, #0FDh ; timer/counter 1 is timed for 9600 baud
 SETB TR1 ; timer/counter 1 is enabled and will free run

; initialise serial port for mode 3: operation
 MOV SCON, #11010000B

;Initialise DPTR as memory pointer, starting at 2000
;and initialise R6 as send character counter with value 100d
 MOV DPTR, #2000h
 MOV R6, #100d

SEND_BLOCK:
 LCALL SEND_CHAR ;send a character
 INC DPTR ;increment DPTR memory pointer
 DJNZ R6, SEND_BLOCK ; decrement R6 and loop back if not zero

STOP: LJMP STOP ; program is finished and stops

SEND_CHAR:
 MOVX A, @ DPTR ; Memory data to SBUF, via Acc
 MOV SBUF, A

LOOP:
 JNB TI, LOOP ; loop testing TI to know when data is sent
 CLR TI ; clear TI
 RET

END

Listing 6.5 SEND_3.A51

8051 Tutorial D.Heffernan © 2000, 2001 77

APPENDIX A

Example term assignments

8051 Tutorial D.Heffernan © 2000, 2001 78

EXAMPLE TERM ASSIGNMENT

Module: ET4514 Digital Systems 2 Term: Example

D. Heffernan 15/Oct/1999

OBJECTIVES:

1) Learn how to use the Keil development environment for 8051 based assembly language

programming

2) Design an electronic organ product as an exercise in 8051 assembly language

 programming and system design.

METHODOLOGY:
The Keil development environment provides an Editor, an Assembler, Debugger and
Simulator. Students will learn the Keil development environment in a ‘hands-on’ fashion in
the lab. Further information on Keil tools can be found at :

http://www.keil.com

TIME-SCALE, ASSESSMENT AND OTHER RULES

Due Date: The completed report must be submitted no later than 17:00 on xxxx.. LATE
REPORTS WILL NOT BE ACCEPTED!

Working rules:
- Students can work alone or in pairs. A student pair will submit a single report
 with both names on the front cover.

- It is each student’s responsibility to sign the Lab. Attendance sheet.

Assessment:
- Proficiency in the use of the Keil tools will be assessed in the Lab., on a PASS/FAIL

basis

- The grading will be based on the submitted report.

8051 Tutorial D.Heffernan © 2000, 2001 79

SPECIFIC REQUIREMENTS FOR ELECTRONIC ORGAN PRODUCT

Objective: Design a simple microcomputer based toy electronic organ, as described below.
Note, this is a paper design only with program code tested in the Simulator environment. You
are not required to build the real system. The design is to be presented in a quality standard
report showing:

- Product requirements specification
- Hardware diagram along with description etc.
- Flow charts along with description of program behaviour, table values etc.
- Assembler language source code program.
- Include an Appendix explaining how an interrupt driven 8-bit timer/counter
 can be used to generate a single musical note.

Product requirements specification. The product is to be based on a low-cost 8051
microcomputer. A simple keyboard consisting of 8 keys (push switches) are to represent the
eight keys for the musical scale of C, starting at the note Middle C. A simple speaker will be
connected to an output pin, through a simple amplifier circuit. On pressing a key the
corresponding frequency is to be sounded for 500 milliseconds. These are the basic
requirements. The student will list these requirements and any other relevant detail in a more
formal product requirements specification section of the report.

Hardware design. Design the hardware circuit based on the 8051 microcontroller. Show a
circuit diagram, which is as complete as possible showing the actual pin connections etc. used
on the chip. State how much memory will be used and show (if possible) that a single-chip
8051 is sufficient, without resorting to the use of external memory. State the power supply
requirements in terms of voltage and current etc. Include an estimated cost for the product by
showing a costed parts list. Assume PCB level only; no need to consider enclosure etc.
(packaging).

Software. The software will be written so that the keys (switches) are polled and the
frequency and timing for the different notes will be generated using software loops. Do not
use the 8051 hardware timers and do not use hardware interrupts. The input keys will be
polled continuously and the note will be sounded at the correct frequency for the correct
duration i.e. 500 m.secs. Use a flow chart to show your software design. Write your program
in 8051 assembler language source code. Document your program to a professional standard.

HINT: The ONE_MILLI_SUB subroutine covered in the lectures could be re-written as a
programmable delay subroutine which could be called using two arguments, one which
specifies the frequency and the other specifying the delay duration.

Appendix on Timer/Counter. Instead of using software delay loops this project could have
been based on the use of hardware Timer/Counters. The appendix needs to include only one
program example showing how a Timer/Counter with interrupt support can be used to
generate a single musical note. Your example code needs to be tested in the Simulator.

8051 Tutorial D.Heffernan © 2000, 2001 80

SOME BACKGROUND ON MUSICAL NOTES

 C# D# F# G# A#

 Middle C

Each musical note has a defined frequency. If Middle C is represented by a frequency of 262
Hz., then the higher C is one octave higher, or twice the Middle C frequency: 524 Hz. There
are 12 notes, including sharps, within the range of a single octave, where 8 notes represent a
scale for a given musical key. For example the key of C (C_Major to be precise) uses the
notes C, D, E, F, G, A, B, C’ and does not include any sharps. The frequency increases on a
log. scale where any one of 12 notes is n times the frequency of the lower adjacent key (white
or black) on the keyboard. Now n is the twelfth root of 2, calculated to be 1.059463094 as
follows:

Frequency of piano (key i) = (frequency of (key i-1)) x 2 1/12

12√2 or 21/12 = 1.059463094 which is 1.059 to 3 decimal places. Integer numbers for
frequency values will be sufficiently accurate in this project, so round frequency to integer
numbers.

So, if Middle C = 262 Hz. 262 Hz.
C# = 262 * 1.059 = 277.458 Hz. 277 Hz.
D = 277.458 * 1.059 = 293.828 294 Hz.
--
C’ 524 Hz.

Another hint: How would we sound a 500Hz. note for a 500 ms. duration?

LOOP 250 TIMES { Delay ONE millisecond

 Set port bit
 Delay ONE millisecond
 Clear port bit }

B

A

B

E

F

G

D

C

D

E

A

C

8051 Tutorial D.Heffernan © 2000, 2001 81

EXAMPLE TERM ASSIGNMENT

Module: ET4514 Digital Systems 2 Term: Example

D. Heffernan 21/12/1999

Objective: Use the 8051 Timer/Counters to play musical notes. The program will be interrupt
driven, based on two ISR routines. The purpose of the exercise is to give the student
experience of writing an interrupt driven real-time program based on timer/counters.

Due Date: The completed report must be submitted no later than xxxx. Reports may be
handed in during the lecture, or they can be posted under the office door, E2011, no later than
17:00 on that day. LATE REPORTS WILL NOT BE ACCEPTED!

Assessment: Each student can provide an individual report, or students may work in the pairs
chosen for assignment #1. Names and I.D. numbers are to be shown clearly on the front
cover. The report will represent x % of the module assessment.

Program requirements:
Write a program which will simply play the scale of C Major: C, D, E, F, G, A, B, C’. Each
note is to sounded for 500 ms. The program can halt once the scale is played. The program
will use two separate timer/counters as follows:

- Frequency generation
A timer/counter is to be used to generate the individual frequencies. This timer/counter is to
be written as an interrupt driven program. HINT: you could base this on the TIMER3.A51
example program.

- 500 ms Timer duration
A separate timer/counter is to be used to generate the 500ms duration for sounding each note.
This timer/counter is also to be used in an interrupt driven mode. This ISR routine will set up
the frequency generation timer/counter for the next note, until the full scale has been played.

What needs to be presented in the report
The report does not need to be a long detailed report as was presented in assignment #1. A
well commented program, which is easy to read and understand, can be provided in just a few
pages.

8051 Tutorial D.Heffernan © 2000, 2001 82

APPENDIX B

Some sample exam questions and answers

8051 Tutorial D.Heffernan © 2000, 2001 83

ET4514 Digital Systems 2 Sample Questions 10/12/1999

Q1 A simple 8-bit analog-to-digital converter device, as shown, is to be interfaced to an
8051 microcomputer. The READY line goes low when conversion data is available. The
READY line should be used to interrupt the 8051 microcontroller.

a) With the aid of a block diagram show how this device can be interfaced to the 8051. 10

b) Write an assembly language program which will capture 250 data samples from the 23
A/D converter and store this data in XDATA memory. The program is to be interrupt
driven.

Q2 [33 marks]

Write an 8051 assembly language program which will cause a timed program delay of n seconds,
where n can have a value between 1 and 255. The program design is to be based on the use of
nested subroutines which will include a one milli-second delay subroutine and a one second delay
subroutine. The program is to be based on software timing loops and it will not employ hardware
timers. Show all timing calculations and assumptions. Assume that the basic instruction cycle time
for the 8051 is 1 microsecond.

Q3 A simple burglar alarm system has 4 zone inputs connected to an 8051 I/O port. If any
one of these inputs is activated a bell will sound for 5 minutes and the corresponding zone
LED, or LEDS, will be activated.

a) With the aid of a diagram describe the hardware circuit for this alarm device. 10

b) Design an 8051 assembly language program to implement the required functionality 23
 for this system.

A/D
ConverterVin

Ready

8-bit
digital data

8051 Tutorial D.Heffernan © 2000, 2001 84

Q4 A single digit 7-segment display device, as shown, is to be interfaced to Port 1 of an
8051 microcomputer. The 8051 will produce the correct 7-bit codes for the desired display
outputs.

a) With the aid of a simple hardware diagram, explain how this device can be

connected 10
 to the 8051. Assume that the 7-segment display is a common-cathode device.
 Show connections to the power supply source and state the estimated current
 consumption for your circuit.

b) Write an 8051 assembly language program which can output any number (0..9)

 23
 to the display. As part of your program show a table which defines the bit
patterns
 for each number.

Q5 Write an 8051 assembly language program which will output a musical note, at a
 33
defined frequency, to an I/O pin. The program is to be written as a sub-routine which
will accept two arguments: a number representing the frequency of the desired note
and
a number which will cause the note duration to be 500 millisecs. For this question
show the argument values used to produce the correct frequency for the note ‘Middle
C’ (262 Hz.) only. The program is to be based on software timing loops and it will not
employ hardware timers. Show all calculations. Assume that the basic instruction
cycle time is 1 microsecond.

Q6 A heating oven in a manufacturing process is to be maintained at a temperature level
between 210oC and 215oC. The controller device is to be based on an 8051 microcomputer.
Two temperature sensor devices are fitted to the oven as follows:

(i) Sensor_A outputs a logic 0 if temperature exceeds 215oC
(ii) Sensor_B outputs a logic 0 if temperature falls below 210oC

a) With the aid of a block diagram show the design of the 8051 microcontroller based 10

system used to control this oven, where each sensor device is used to cause an
 real-time interrupt to the system.

b) For your design in a) above, write an assembly level program to implement the 23
 control of the oven temperature. Use interrupt driven routines in your solution.

a

b

ce

f
g

d

8051 Tutorial D.Heffernan © 2000, 2001 85

8051 Tutorial D.Heffernan © 2000, 2001 86

Q7
a) Draw a simple block diagram for the transmitter section of an 8051 UART which 10
 supports 9-bit data transmission. Briefly explain the function of each block in your
 diagram.

b) Write an 8051 assembly language program to send a block of 256 bytes from the 23
 external memory (XDATA) out through the serial port UART. You can choose to
 ignore the parity bit if you wish. Include the necessary code to configure the UART,
 baudrate timer etc.

Q8
a) With the aid of a block diagram explain the operation of an 8051 UART device. 10

b) Write an 8051 assembly language subroutine which will transmit an 8-bit data 23

character via the serial port. A ninth bit is to be used as an even parity bit. Your
program must insert the correct parity bit.

 Write an 8051 assembly language subroutine which will receive an 8-bit data
 character via the serial port. The subroutine is to be interrupt driven but it can
 ignore receive parity if you choose.

Q9 As part of a industrial automation system two wheels are driven by two separate 33
motors, motor A and motor B. The rotation sensors give a logic low level as the wheel
magnet passes the sensor. Each motor can be turned on of off by providing a logic signal
as indicated in the diagram. An 8051 is to be used to control these motors where a
motor can be turned on and allowed run for N rotations and then turned off. The sensor
signals will cause timer/counter interrupts.

a) With the aid of a block diagram describe the 8051 based hardware circuit for this 10

system.

b) Write an 8051 assembly language program which will turn on the two motors at the 23
same time. Motor A will do 200 rotations and will then be stopped. Motor B will do
20,000 rotations and will then be stopped. A separate timer/counter interrupt is to be
used for the control of each motor.

Magnetic
Rotation
Sensor A

 Belt drive

Motor A
1= on
0 =off

Magnetic
Rotation
Sensor B

Belt drive

Motor B
1= on
0 =off

A B

8051 Tutorial D.Heffernan © 2000, 2001 87

Q10 Assume that the 8051 hardware timers have a 1 microsecond clock input.
a) Write an 8051 assembly language program which will generate a 50 Hz square wave 16

at an output pin. The program is to use a 16 bit timer/counter. The timer is to be
interrupt driven.

b) Write an 8051 assembly language program which will generate a 5 KHz square vave 17

at an output pin. The program is to use an 8 bit timer/counter. The timer is to be
interrupt driven.

Q11 33
The figure shows a D/A (digital to analog) converter which drives a dc motor. Assume
the power stage is included in the D/A converter so that the motor can be driven directly
by Vout.

An 8051 microcomputer has this D/A converter connected to an I/O port. The 8051 is
connected to a PC via the serial port. When a 8 bit data character is received from the PC it
interrupts the 8051 through the 8051’s serial port interrupt and the received 8-bit data value is
passed to the D/A converter so that the PC is effectively controlling the motor speed. Write an
8051 assembly language program to implement this system. Assume a serial data baud rate of
9,600 baud. Show all configuration of the UART etc.

Q12 33
An 8051 based system constantly outputs a square wave at some frequency through an I/O
port bit. The frequency is timed based on an 8-bit timer (assume a 1 microsecond timer input).
The 8051 is connected to a PC via the serial port. When an 8-bit data character is received
from the PC it interrupts the 8051 through the 8051’s serial port interrupt and the received 8-
bit data value is passed to the timer so as to respecify the frequency. Thus a PC programmable
frequency generator is achieved. Write an 8051 assembly language program to implement this
system. Assume a serial data baud rate of 9,600 baud. Show all configuration of the UART,
timer etc. etc. Calculate the programmable frequency range for your system, showing all
calculations.

D/A
Converter 8-bit

digital data
in

Vout

DC Motor

8051 Tutorial D.Heffernan © 2000, 2001 88

ET4514 EXAM SUPPORT DATA FOR 8051
PROGRAMMING

D,Heffernan 26/April/1999

8051 SFR REGISTERS

Byte Bit address
address b7 b6 b5 b4 b3 b2 b1 b0

FFh

F0h B *

E0h A (accumulator) *

D0h PSW *

B8h IP *

B0h Port 3 (P3) *

A8h IE *

A0h Port 2 (P2) *

99h SBUF
98h SCON *

90h Port 1 (P1) *

8Dh TH1
8Ch TH0
8Bh TL1
8Ah TL0
89h TMOD
88h TCON *
87h PCON

83h DPH
82h DPL
81h SP
80h Port 0 (P0) *

SFR register layout
* indicates the SFR registers

which are bit addressable

8051 Tutorial D.Heffernan © 2000, 2001 89

8051 INTERRUPT PROGRAMMING SUPPORT DATA

THE INTERRUPT VECTOR TABLE

ISR1

 ISR1

ISR0

 ISR0

Main (example start addr.)

0100h

 MAIN

Serial port RI or TI 0023h
Timer/counter 1 TF1 001Bh
External interrupt 1 IE1 0013h
Timer/counter 0 TF0 000Bh
External interrupt 0 IE0 0003h
System RESET RST 0000h

IE Interrupt Enable register
EA
ms
b

 ES ET1 EX1 ET0 EX0
lsb

EA Enable all ES Enable serial port
ET1 Enable Timer/counter 1 EX1 Enable external interrupt 1
ET0 Enable Timer/counter 0 EX0 Enable external interrupt 0

Vector
table

CODE MEMORY

8051 Tutorial D.Heffernan © 2000, 2001 90

8051 TIMER/COUNTER PROGRAMMING SUPPORT DATA

The TMOD register (Timer Mode Control) is an SFR and is used to define the
Timer/Counter mode of operation.

 TMOD register
Gate
ms
b

C/T M1 M0 Gate

C/T M1 M0
lsb

--------- timer 1 --------------|-----------timer 0 --------------

The Gate bit can be set to 0 for these examples.
 The C/T bit is set to 1 for COUNTER operation and it is set to 0 for TIMER
operation.

 MI and M2 bits define different modes i.e.:

M1 M0
1 0 mode 0: 13 bit mode seldom used these days. Ignore.
2 1 mode 1: 16-bit mode
3 0 mode 2: 8-bit mode (with auto reload feature)
1 1 mode 3: ignore for now

TCON Timer Control Register

TCON register
TF1
ms
b

TR1 TF0 TR0 IE1 IT1 IE0 IT0
lsb

TF1 Timer 1 overflow flag. Set when timer overflows. Clear by software
TR1 Set to enable Timer 1
TF0 Timer 0 overflow flag. Set when timer overflows. Clear by software
TR0 Set to enable Timer 0
IEI Interrupt flag for interrupt 1
ITI Set for negative edge trigger for interrupt 1, clear for level trigger
IE0 Interrupt flag for interrupt 0
IT0 Set for negative edge trigger for interrupt 0, clear for level trigger

8051 Tutorial D.Heffernan © 2000, 2001 91

8051 SERIAL PORT PROGRAMMING SUPPORT DATA

The SCON is an SFR register, used for configuring and monitoring the serial port.

SCON register
SM0
ms
b

SM1 SM2 REN TB8 RB8 TI RI
lsb

SM0, SM1 bits define the mode of operation, such as the number of data bits (8 or 9), the
clock source etc. Our examples will use mode 3, which specifies 9 data bits (8 data plus a
parity bit) with the clock source being Timer/Counter 1.

SM2 is set to 0 for normal operation

REN is set to 1 to enable reception, 0 to disable reception

TB8 is the ninth bit (parity bit) to be transmitted

RB8 is the ninth bit received (parity bit)

TI Transmit Interrupt flag. 1 indicates that transmit buffer (SBUF) is empty. This flag must
be cleared by software.

RI Receive Interrupt flag. 1 indicates that data has been received in the receive buffer
(SBUF). This flag must be cleared by software.

Serial port baud rate configuration.

For exam purposes assume that the following values for TH1 to achieve the listed baud rates.

Baud rate Timer/Counter1

 TH1 value
300 A0h

1,200 D0h
2,400 FAh
9,600 FDh

8051 Tutorial D.Heffernan © 2000, 2001 92

8051 INSTRUCTION SET

ARITHMETIC OPERATORS

MNEMONIC DESCRIPTION BYTES CYCLES C OV AC
ADD A, Rn Add register to ACC 1 1 x x x
ADD A, direct Add direct byte to ACC 2 1 x x x
ADD A, @Ri Add indirect RAM to ACC 1 1 x x x
ADD A, #data Add immediate data to ACC 2 1 x x x
ADDC A, Rn Add register to ACC with Carry 1 1 x x x
ADDC A, direct Add direct byte to ACC with Carry 2 1 x x x
ADDC A, @Ri Add indirect RAM to ACC with Carry 1 1 x x x

ADDC A, #data Add immediate data to ACC with
Carry 2 1 x x x

SUBB A, Rn Subtract Register from ACC with
borrow 1 1 x x x

SUBB A, direct Subtract indirect RAM from ACC with
borrow 2 1 x x x

SUBB A, @Ri Subtract indirect RAM from ACC with
borrow 1 1 x x x

SUBB A, #data Subtract immediate data from ACC
with borrow 2 1 x x x

INC A Increment ACC 1 1
INC Rn Increment register 1 1
INC direct Increment direct byte 2 1
INC @Ri Increment direct RAM 1 1
DEC A Decrement ACC 1 1
DEC Rn Decrement Register 1 1
DEC direct Decrement direct byte 2 1
DEC @Ri Decrement indirect RAM 1 1
INC DPTR Increment Data Pointer 1 2
MUL AB Multiply A and B 1 4 0 x
DIV AB Divide A by B 1 4 0 x
DAA Decimal Adjust ACC 1 1 x

BOOLEAN OPERATORS

MNEMONIC DESCRIPTION BYTES CYCLES C OV AC
CLR C Clear carry flag 1 1 0
CLR bit Clear direct bit 2 1
SETB C Set carry flag 1 1 1
SETB bit Set direct bit 2 1
CPL C Complement carry flag 1 1 x
CPL bit Complement direct bit 2 1
ANL C,bit AND direct bit to carry 2 2 x

ANL C,/bit AND complement of direct bit to
carry 2 2 x

ORL C,bit OR direct bit to carry 2 2 x

ORL C,/bit OR complement of direct bit to
carry 2 2 x

MOV C,bit Move direct bit to carry 2 1 x
MOV bit,C Move carry to direct bit 2 2
JC rel Jump if carry is set 2 2

8051 Tutorial D.Heffernan © 2000, 2001 93

JNC rel Jump if carry is NOT set 2 2
JB bit,rel Jump if direct bit is set 3 2
JNB bit,rel Jump if direct bit is NOT set 3 2

JBC bit,rel Jump if direct bit is set and clear
that bit 3 2

8051 Tutorial D.Heffernan © 2000, 2001 94

LOGICAL OPERATIONS
MNEMONIC DESCRIPTION BYTES CYCLES C OV AC

ANL A,Rn AND register to ACC 1 1
ANL A,direct AND direct byte to ACC 2 1
ANL A,@Ri AND indirect RAM to ACC 1 1
ANL A,#data AND immediate data to ACC 2 1
ANL direct,A AND ACC to direct byte 2 1
ANL direct,#data AND immediate data to direct byte 3 2
ORL A,Rn OR register to ACC 1 1
ORL A,direct OR direct byte to ACC 2 1
ORL A,@Ri OR indirect RAM to ACC 1 1
ORL A,#data OR immediate data to ACC 2 1
ORL direct,A OR ACC to direct byte 2 1
ORL direct,#data OR immediate data to direct byte 3 2
XRL A,Rn XOR register to ACC 1 1
XRL A,direct XOR direct byte to ACC 2 1
XRL A,@Ri XOR indirect RAM to ACC 1 1
XRL A,#data XOR immediate data to ACC 2 1
XRL direct,A XOR ACC to direct byte 2 1
XRL direct,#data XOR immediate data to direct byte 3 2
CLR A Clear the ACC 1 1
CPL A Complement the ACC 1 1
RL A Rotate the ACC left 1 1
RLC A Rotate the ACC left through Carry 1 1 x
RR A Rotate the ACC right 1 1
RRC A Rotate the ACC right through Carry 1 1 x
SWAP A Swap nibbles in the ACC 1 1

JUMPS AND BRANCHES

MNEMONIC DESCRIPTION BYTES CYCLES C OV AC
ACALL addr11 Absolute call within 2K page 2 2
LCALL addr16 Absolute call (Long call) 3 2
RET Return from subroutine 1 2
RETI Return from interrupt 1 2
AJMP addr11 Absolute jump within 2K page 2 2
LJMP addr16 Absolute jump (Long jump) 3 2

SJMP rel8 Relative jump within +/- 127
bytes (Short jump) 2 2

JMP @A+DPTR Jump direct relative to DPTR 1 2
JZ rel8 Jump if ACC is zero 2 2
JNZ rel8 Jump if ACC is NOT zero 2 2

CJNE A,direct,rel8 Compare direct byte to ACC, jump
if NOT equal 3 2 x

CJNE A,#data,rel8 Compare immediate to ACC, jump
if NOT equal 3 2 x

CJNE Rn,#data,rel8 Compare immediate to register,
jump if NOT equal 3 2 x

CJNE @Ri,#data,rel8 Compare immediate to indirect,
jump if NOT equal 3 2 x

DJNZ Rn,rel8 Decrement register, jump if NOT 2 2

8051 Tutorial D.Heffernan © 2000, 2001 95

zero

DJNZ direct,rel8 Decrement direct byte, jump if
NOT zero 3 2

NOP No operation (Skip to next
instruction) 1 1

8051 Tutorial D.Heffernan © 2000, 2001 96

DATA TRANSFER
MNEMONIC DESCRIPTION BYTES CYCLES C OV AC

MOV A,Rn Move Register to ACC 1 1
MOV A,direct Move Direct byte to ACC 2 1
MOV A,@Ri Move Indirect byte to ACC 1 1
MOV A,#data Move Immediate data to ACC 2 1
MOV Rn,A Mov ACC to Register 1 1
MOV Rn,direct Move Direct byte to Register 2 2
MOV Rn,#data Move Immediate data to Register 2 1
MOV direct,A Move ACC to Direct byte 2 1
MOV direct,Rn Move Register to Direct byte 2 2
MOV direct,direct Move Direct byte to Direct byte 3 2
MOV direct,@Ri Mov Indirect RAM to Direct byte 3 2

MOV direct,#data Move Immediate data to Direct
byte 3 2

MOV @Ri,A Move ACC to Indirect RAM 1 1

MOV @Ri,direct Move direct byte to indirect
RAM. 2 2

MOV @Ri,#data Move Immediate data to Indirect
RAM 2 1

MOV DPTR,#data16 Load datapointer with 16 bit
constant 3 2

MOVC A,@A+DPTR Move code byte at ACC+DPTR to
ACC 1 2

MOVC A,@A+PC Move code byte at ACC+PC to ACC 1 2
MOVX A,@Ri Move external RAM to ACC 1 2
MOVX @Ri,A Move ACC to external RAM 1 2
MOVX A,@DPTR Move external RAM to ACC 1 2
MOVX @DPTR,A Move ACC to external RAM 1 2
PUSH direct Push direct byte to stack 2 2
POP direct Pop direct byte from stack 2 2
XCH A,Rn Exchange register with ACC 1 1
XCH A,direct Exchange direct byte with ACC 2 1
XCH A,@Ri Exchange indirect RAM with ACC 1 1

XCHD A,@Ri Exchange low order digit
indirect RAM with ACC 1 1

8051 Tutorial D.Heffernan © 2000, 2001 97

SAMPLE ANSWERS TO SOME OF THE QUESTIONS

Q1 A simple 8-bit analog-to-digital converter device, as shown, is to be interfaced to an
8051 microcomputer. The READY line goes low when conversion data is available. The
READY line should be used to interrupt the 8051 microcontroller.

a) With the aid of a block diagram show how this device can be interfaced to the 8051. 10

c) Write an assembly language program which will capture 250 data samples from the 23
A/D converter and store this data in XDATA memory. The program is to be interrupt
driven.

Q1 Sample Answer

a) Block diagram. Student will also provide a brief explanation.

A/D
ConverterVin

Ready

8-bit
digital data

8051

12 MHz.

Reset

8-bit
A to D

Converter

Analog in

P
or

t 1

INT0

XDATA
RAM

Addr (16)

Data (8)

Control

8051 Tutorial D.Heffernan © 2000, 2001 98

b)
;==
; CAPTURE.A51
; Capture 250 samples from ADC. When a sample is ready the 8051 is interrupted.
; Uses External interrupt 0. ADC is connected to Port 1.
;
; Rev. 0.0 D.Heffernan 7-Dec-99
;==

ORG 0000h ; define memory start address 0000h
LJMP MAIN ; jump to MAIN program

ORG 0003h ; define vector location for INT0
LJMP ISR0 ; jump to ISR0

MAIN:

MOV P1, #0FFh ; initialise Port 1 for use as input

MOV DPTR, #2000h ; set up memory pointer
MOV R6 , #250d ; use R6 to count

SETB IT0 ; define negative edge trigger for int 0
MOV IE, #10000001b ; enable Interrupt 0

LOOP:

LJMP LOOP ; just loop around!

ISR0:

MOV A, P1 ; read the ADC

MOVX @DPTR, A ; save to memory location
INC DPTR ; increment memory pointer
DJNZ R6, AGAIN ; decrement R6 count: if not 0 go again
MOV IE, #00000000b ; else disable interrupt!

AGAIN:

RETI ; return from interrupt

8051 Tutorial D.Heffernan © 2000, 2001 99

Q2 [33 marks]

Write an 8051 assembly language program which will cause a timed program delay of n seconds,
where n can have a value between 1 and 255. The program design is to be based on the use of
nested subroutines which will include a one milli-second delay subroutine and a one second delay
subroutine. The program is to be based on software timing loops and it will not employ hardware
timers. Show all timing calculations and assumptions. Assume that the basic instruction cycle time
for the 8051 is 1 microsecond.

Q2 Sample Answer

Simple calculations for timing loops
No attempt is made to tune out minor inaccuracies due to code overhead

Inner loop
There is an inner loop in the ONE_MILLI_SUB subroutine which will cause a 4 microsecond
delay. Instruction execution times are taken from instruction set data which is given in the back of
the exam paper.

NOP 1
NOP 1
DJNZ R7, LOOP_1_MILLI 2

 4

ONE_MILLI_SUB
The ONE_MILLI_SUB subroutine simply executes the inner loop 250 times.

250 x 4 = 1000 microseconds = 1 milliseconds

ONE_SEC_SUB
The ONE_SEC_SUB subroutine has an inner loop which calls the ONE_MILLI_SUB
four times; giving an inner delay of 4 milliseconds. This 4 millisecond delay is called 250
times.

250 x 4 milliseconds = 1 second.

PROG_DELAY_SUB
The PROG_DELAY_SUB subroutine is called with a value 1..255 in the accumulator; to
cause the corresponding delay in seconds. If the accumulator has a value of zero the
subroutine immediately returns.

8051 Tutorial D.Heffernan © 2000, 2001 100

;==
; SOFTIME1.A51
; TIME DELAYS.
;
; Rev. 0.0 D.Heffernan 2-Nov-99
;==

 ORG 0000h ; define memory start address 0000h

MOV A, #10d ; example value to delay 10 seconds
LCALL PROG_DELAY_SUB

LOOP: LJMP LOOP

;===
; PROG_DELAY_SUB
; Subroutine to delay n number of seconds. n is defined in A (acc)
; and passed to the subroutine (call-by-ref). A is preserved.
; If n=0 the subroutine returns immediately. n max. value is FFh ;(256d)
;==

PROG_DELAY_SUB:

 PUSH Acc ; save A to stack
 CJNE A, #00h, OK ; If Acc is zero exit
 LJMP DONE ; exit

OK:

LOOP_N: ; Calls one sec delay, no. of times in A

 LCALL ONE_SEC_SUB ; call subroutine to delay 1 second

 DJNZ Acc, LOOP_N ; decrement A, if not zero loop back

DONE: POP Acc ; restore R7 to original value

 RET ; return from subroutine

8051 Tutorial D.Heffernan © 2000, 2001 101

Q2 Continued………

;==
; ONE_SEC_SUB
; Subroutine to delay ONE second
; Uses Register R7 but preserves this register
;==

ONE_SEC_SUB:

 PUSH 07h ; save R7 to stack
;
 MOV R7, #250d ; 250 decimal to R7 to count 250 loops

LOOP_SEC: ; Calls the one millisec. delay, 250 times

 LCALL ONE_MILLI_SUB ; call subroutine to delay 1 m.sec
 LCALL ONE_MILLI_SUB ; call subroutine to delay 1 m.sec
 LCALL ONE_MILLI_SUB ; call subroutine to delay 1 m.sec
 LCALL ONE_MILLI_SUB ; call subroutine to delay 1 m.sec

 DJNZ R7, LOOP_SEC ; decrement R7, if not zero go back

 POP 07h ; restore R7 to original value

 RET ; return from subroutine

;==
; ONE_MILLI_SUB:
; Subroutine to delay ONE millisecond
; Uses Register R7 but preserves this register
;==
 ONE_MILLI_SUB:

 PUSH 07h ; save R7 to stack
 MOV R7, #250d ; 250 decimal to R7 to count 250 loops

LOOP_1_MILLI: ; loops around 250 times

 NOP ; inserted NOPs to cause delay
 NOP ;
 DJNZ R7, LOOP_1_MILLI ; decrement R7, if not zero loop back

 POP 07h ; restore R7 to original value

 RET ; return from subroutine

END ; End of program

8051 Tutorial D.Heffernan © 2000, 2001 102

Q3 A simple burglar alarm system has 4 zone inputs connected to an 8051 I/O port. If any
one of these inputs is activated a bell will sound for 5 minutes and the corresponding zone
LED, or LEDS, will be activated.

a) With the aid of a diagram describe the hardware circuit for this alarm device. 10

b) Design an 8051 assembly language program to implement the required functionality 23
 for this system.

Q3 Sample Answer

a) A brief description will accompany the diagram.

8051

12 MHz.+5V

A
s

P
3.

0

0 1 2 3 4 5 6 7 P
or

t 3

P
or

t 1

0 1 2 3 4 5 6 7

+5V

Reset

+

8051 Tutorial D.Heffernan © 2000, 2001 103

b)
;==
; SIMPLE_ALARM.A51
; Alarm system demonstration program
;
; Rev. 0.0 D.Heffernan 2-Nov-99
;==

ORG 0000h ; define memory start address 0000h

MOV P3, # 0FFh ; initialise Port 3 for input
MOV P1, # 00h ; initialise Port 1: LEDs off and bell off

POLL:

MOV A, P3 ; read P3 to accumuator
CJNE A, 00h, ALARM ;If not all zeros them ALARM
LPMP POLL ; else back to POLL

ALARM:

MOV P1 , A ; Output code for LEDs
SETB P1.7 ; Turn on Bell

MOV A, #150d ; set up for 150 sec (2.5 min) delay
LCALL PROG_DELAY_SUB ; delay 2.5 mins
LCALL PROG_DELAY_SUB ; delay 2.5 mins

CLR P1.7 ; turn off the Bell

LOOP: LJMP LOOP ; just looping around!

END

NB: The student will show the code for the PROG_DELAY_SUB as found elsewhere in these notes.

8051 Tutorial D.Heffernan © 2000, 2001 104

Q4 A single digit 7-segment display device, as shown, is to be interfaced to Port 1 of an
8051 microcomputer. The 8051 will produce the correct 7-bit codes for the desired display
outputs.

a) With the aid of a simple hardware diagram, explain how this device can be

connected to the 8051. Assume that the 7-segment display is a common-cathode
device. Show connections to the power supply source and state the estimated
current consumption for your circuit.

b) Write an 8051 assembly language program which can output any number (0..9) to

the display. As part of your program show a table which defines the bit patterns
 for each number.

Q4 Sample Answer
a) Diagram is shown. Each segment will consume 10 ma current approx. The buffers are powered from a
5v supply. The 7-segment display device is not separately powered, each segment effectively sinks current
to ground to light the relevant LED. 8051 will be shown to connect to 5v etc.

a

b

ce

f
g

d

8051

P
or

t 1

Reset

0 1 2 3 4 5 6 7

e

a

c

bf

d

g

a b c d e f g

300 ohm

8051 Tutorial D.Heffernan © 2000, 2001 105

b)

A table can be devised to show the truth table for decoding the 7-segment display, as follows:

For Port 1:
 P1.7 P1.6 P1.5 P1.4 P1.3 P1.2 P1.1 P1.0
Number x g f e d c b a
 0 0 0 1 1 1 1 1 1
 1 0 0 0 0 0 1 1 0
 2 0 1 0 1 1 0 1 1
 3 0 1 0 0 1 1 1 1
 4 0 1 1 0 0 1 1 0
 5 0 1 1 0 1 1 0 1
 6 0 1 1 1 1 1 0 0
 7 0 0 0 0 0 1 1 1
 8 0 1 1 1 1 1 1 1
 9 0 1 1 0 0 1 1 1

Now, this table is built into the program using equates (EQU) as shown in the example below:

;==
; DISPLAY.A51
; Demonstrates 7-sement decode
; Actual program just demonstrates a display of number zero!
;
; Rev. 0.0 D.Heffernan 9-Dec-99
;==

; Build the truth table using equates…

NUM_0 EQU 00111111b
NUM_1 EQU 00000110b
NUM_2 EQU 01011011b
NUM_3 EQU 01001111b
NUM_4 EQU 01100110b
NUM_5 EQU 01101101b
NUM_6 EQU 01111100b
NUM_7 EQU 00000111b
NUM_8 EQU 01111111b
NUM_9 EQU 01100111b

ORG 0000h ; start at memory location zero

MOV P1, #NUM_0 ; displays a zero

Etc……….

8051 Tutorial D.Heffernan © 2000, 2001 106

Q9 As part of a industrial automation system two wheels are driven by two separate 33
motors, motor A and motor B. The rotation sensors give a logic low level as the wheel
magnet passes the sensor. Each motor can be turned on of off by providing a logic signal
as indicated in the diagram. An 8051 is to be used to control these motors where a
motor can be turned on and allowed run for N rotations and then turned off. The sensor
signals will cause timer/counter interrupts.

c) With the aid of a block diagram describe the 8051 based hardware circuit for this 10

system.

d) Write an 8051 assembly language program which will turn on the two motors at the 23
same time. Motor A will do 200 rotations and will then be stopped. Motor B will do
20,000 rotations and will then be stopped. A separate timer/counter interrupt is to be
used for the control of each motor.

Q9 Sample Answer

a) BLOCK DIAGRAM TO BE DONE !!

Magnetic
Rotation
Sensor A

 Belt drive

Motor A
1= on
0 =off

Magnetic
Rotation
Sensor B

Belt drive

Motor B
1= on
0 =off

A B

8051 Tutorial D.Heffernan © 2000, 2001 107

b) Sample program.

;===
; Motors.A51
; Example control program to start two motors; generate an interrupt
; following 200 motor A rotation events, and then stop motor A.
; Generate an interrupt following 20,000 rotation events of motor B,
; and then stop motor B. Timer/counter 0, 8-bit, is used for motor A,
; Timer/Counter 1, 16-bit, is used for motor B. The program is
; INTERRUPT driven.
;
; Rev. 0.0 D.Heffernan 2-Nov-99
;==

 ORG 0000h ; entry address for 8051 RESET
 LJMP MAIN ; MAIN starts beyond interrupt vector space

 ORG 000Bh ; vector address for interrupt
 LJMP ISR_TIMER0 ; jump to start of ISR_TIMER0

 ORG 001Bh ; vector address for interrupt
 LJMP ISR_TIMER1 ; jump to start of ISR_TIMER1

;==
; MAIN initialise Timer/Counter 0 and Timer/Counter 1 as COUNTERs
; and enable these Counter interrupts.
; Timer/Counter 0 is 8-bit and Timer/Counter 1 is 16-bit.
; it just waits around letting the interrupt routine do the work.
; The Timer/Counter 1 is loaded with a value
;(65,536 - 20,000 = 45,536,
; or B1E0h) so that it interrupts after 20,000 events.
;===
MAIN:
 MOV TMOD, #01010110b ; Timer/Counter 1 :mode 1, COUNTER – 16 bit
 ; Timer/Counter 0 :mode 2, COUNTER – 8 bit
 MOV TH0, #-200d ; Timer/Counter 0 value is loaded

 MOV TH1, #0B1h ; Timer/Counter 1 high byte is loaded
 MOV TL1, #0E0h ; Timer/Counter 1 low byte is loaded

 MOV IE, #10001010b ; enable both Timer/counter interrupts
 SETB TR0 ; Start Timer/Counter 0
 SETB TR1 ; Start Timer/Counter 1

 SETB P1.6 ; Turn on motor A
 SETB P1.7 ; Turn on motor B

 LOOP: LJMP LOOP ; just loop around doing nothing!

8051 Tutorial D.Heffernan © 2000, 2001 108

Motors.A51 continued...................

;==
; ISR_TIMER0
; P1.6 is set to logic 0 to turn off motor A as 200 counts have
; occurred
;==
ISR_TIMER1:

 CLR TR0 ; stop Timer 0 to be safe

 CLR P1.6 ; clear P1 bit 6 to turn off motor A

 RETI ; return from interrupt

;==
; ISR_TIMER1
; P1.7 is set to logic 0 to turn off motor B as 20,000 counts have
; occurred
;==
ISR_TIMER1:

 CLR TR1 ; stop Timer 1 to be safe

 CLR P1.7 ; clear P1 bit 7 to turn off motor B

 RETI ; return from interrupt

END

8051 Tutorial D.Heffernan © 2000, 2001 109

Some Sample Mini-Questions

Typically one of these mini-questions would be worth about 10% of a full exam question.

PROGRAM DEVELOPMENT

a) Briefly describe the steps involved in the development and debugging of a microcomputer

based assembly language programme. Draw a simple block for the flow of the
development process.

b) What is the function of the assembler in microcontroller program development?

c) What is the function of the editor in microcontroller program development?

d) What is the function of the linker in microcontroller program development?

e) What is the function of the simulator in microcontroller program development?

f) What is the function of the downloader in microcontroller program development?

g) What is the function of the debugger in microcontroller program development?

HARDWARE RELATED MINI-QUESTIONS

a) Draw a simple block diagram of an 8051 processor connected to external CODE memory

and external DATA memory.

b) The 8051 address bus is 16 bits wide and the data bus is 8-bits wide – what is the

maximum size for the external CODE memory or DATA memory. Show your
calculation.

c) What is a typical clock speed for an 8051 processor?

d) What is the function of the PC register i.e. the Program Counter?

e) What is the function of the SP register i.e, the Stack Pointer?

f) Explain how the hardware RESET signal works and what memory location (reset vector)
 is used by the RESET scheme in the 8051 microcomputer?

g) Explain what is meant by an on-chip I/O port on the 8051 microcomputer.

8051 Tutorial D.Heffernan © 2000, 2001 110

PROGRAMMING RELATED MINI-QUESTIONS

a) What is meant by the term: immediate addressing?

b) What is meant by the term: direct addressing?

c) What is meant by the term: indirect addressing?

d) Explain what the CJNE instruction does and show an example program line using CJNE

instruction.

e) What is an 8051 SFR register and describe an example SFR register

g) There is no STOP instruction in the 8051 instruction. Describe a method for

implementing program stop.

h) If the instruction cycle time in a 8051 microcomputer is 1 microsecond, suggest a simple
 programming method of delaying for, say, six microseconds.

8051 Tutorial D.Heffernan © 2000, 2001 111

APPENDIX C

A brief introduction to using the Keil tools

This is for uVision –1 .. not the latest product!

8051 Tutorial D.Heffernan © 2000, 2001 112

This information will help to get the student started on the use of the Keil development tools.
The Keil tools include two components of immediate interest:

a) µVision: A project editor with 8051 assembler, linker etc.

b) dScope: A simulator environment for testing and debugging 8051 programs.

STEP BY STEP GUIDE TO USING KEIL TOOLS

N.B. The Alarm1.A51 program will need to be modified as described in last page of this note.

The following is a step by step guide on how to create, build and debug an 8051 assembly
language program using µVision and the dScope Debugger.

The Alarm1.A51 program from the module notes is the example program.

Editing and Assembling a Program in µVision:
Make a folder to hold your source files and other project files. Create a folder called, say,
D:\MY_PROGS. Copy the Alarm1.A51 source file in here. Be careful to copy all your saved
files to a floppy disk when you finish the Lab. as your system’s disk may be wiped clean at
regular intervals during the week.

• Run µVision from C:\C51Eval\Bin (or use short-cut if available!)
• From the Project menu click New Project.
• In Create New Project window enter a file name for your project (use ALARM1.PRJ),

specify your folder D:\MY_PROGS, and click OK.
• In the Project dialog box click Add and browse through your source files to get

Alarm1.A51. Note: choose List files of type: (assembly Source(*.A51).
• Click Save to save your project.
• Go to the Project menu and click Edit Project. Just click on your source file to open it.

THIS WOULD BE A GOOD TIME TO MODIFY Alarm1.A51 AS DETAILED ON
THE FINAL PAGE OF THIS NOTE.

• Go to the Project menu and click Make: Build Project. Your project is now assembled
and linked. Click OK on successful completion.

You now have successfully created your program as a project. You can now proceed to
executing your program using dScope. Here is a sample µVision window:

8051 Tutorial D.Heffernan © 2000, 2001 113

Debug and Run the Program Using dScope Debugger:

• Within µVision go to the Run menu and click dScope Debugger. This launches the

dScope program.

Before you can debug you have to set up dScope:
• Go to File menu and click Load CPU Driver, and select 8051.DLL
• Go to View menu and ensure the following are selected:

Toolbar
Status Bar

Register Window
Debug Window

Command Window
Toolbox

• Go to Peripherals menu, select I/O.Ports -Port 1, then I/O.Ports - Port 3
• Go to File menu and click Load object file... Browse your project files and select Alarm1

(note – no extension!). Your program source code is now shown in
the Debug window. (If comments and labels are not shown then in µVision
from Options menu choose A51 Assembler and tick Include symbols in Listings and
Include debug information in Object).

Now you can execute your program:

• In the Toolbox window click Reset.

8051 Tutorial D.Heffernan © 2000, 2001 114

• In the Debug window click Go. You program should now be running. If you activate an
alarm zone, by clicking on Port 3, bit 0, for example, the alarm bell is activated. Click
P3’s upper row P3:, not the Pins.You will see Port 1, bit 7, become enabled.

Now you can single-step through your program:

• Press Stop in the Debug window. Press Reset in the Toolbox window. Clear the Port pins

again. Now you can single-step through your program by clicking
StepInto in the Debug Window. This is useful to watch register values etc.

• You can click Stop and do a Toolbox - Reset at any time and then run the program again.

Try setting a single break-point:
Sometimes it is useful to allow the program to run until it hits a pre-defined beak-point.

• Press Stop in the Debug window. Press Reset in the Toolbox window. Clear the Port pins

again.
• Double click on a line, say line number 18. The line turns yellow so indicate a break-

point. Now run the program and it will stop at the break-point.

8051 Tutorial D.Heffernan © 2000, 2001 115

 Example dScope Debugger window:

HINT: To switch between µVision and dScope click on the Task bar on the bottom of the
screen. Do not start multiple µVision and dScope sessions as this can lead to problems.

NB: MODIFICATION TO ALARM1.A51 PROGRAM
In the Alarm1.A51 program Port 3 is initialised by writing all ones to it. In a real 8051 this
has the effect of disabling the output drive and allows the external pins to act as inputs.
However in the dScope Debugger, since we do not have any real circuitry connected to Port 3
the output pins stay high and hamper our experiment. This problem is overcome by writing all
zeros to Port 3 and clicking on the P3: bits, instead of the Pins to simulate an input. So, in
your Alarm1.A51 program initialise Port 3 as follows:

MOV P3, #00h ; Write all zeros to P3 for dScope purposes

The same modification will apply to Alarm2.A51 etc.

8051 Tutorial D.Heffernan © 2000, 2001 116

