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Preface

Nanotechnology has rapidly developed in recent years, making it possible to en-
gineer mechanical, optical and electronic devices that are the size of only a few
hundred atomic diameters. The equations of motion of such nanoscopic systems
are generically nonlinear and frequently operate in a regime where a linear approx-
imation is not justified. The comprehension of nonlinear dynamical processes in
nanosystems is a new field of research that is certainly of considerable technologi-
cal importance.

Miniaturization leads to new effects that radically change the dynamical prop-
erties. Thus, nanoscopic systems do not operate in the same way as their macro-
scopic counterparts. In particular, scaling effects, stochasticity, and quantum effects
distinguish nanosystems from macroscopic systems. Scaling the size of a physical
system changes the dominant forces, for example, macroscopic systems are fre-
quently dominated by bulk effects that are proportional to mass. In contrast, sur-
face effects such as adhesion and surface tension add new sources of nonlinearity
in small systems. Stochasticity of nanoscopic devices is caused by thermal motion
at the atomic level. Nanosystems and their environment form a high-dimensional
chaotic system by the strong nonlinearity of interatomic forces. By their nature
as averages, thermodynamic laws cannot be directly applied to systems that are so
small that the motion of single atoms is relevant. Quantum mechanics enters macro-
scopic physics via large ensemble averages, while nanoscopic devices can directly
achieve quantum states.

These effects are both an impediment and an opportunity for applications. On
one hand, devices may not work when they are simply scaled down, for example, a
miniaturized electric motor may be locked by adhesive forces and can be randomly
forced by thermal motion. On the other hand, nanosystems can perform functions
which cannot be achieved with larger devices. Current research is increasingly con-
cerned with two fundamental objectives The first is the analysis of nonlinear dynam-
ical effects in nanosystems. As it turns out, nonlinear effects cannot be suppressed
in many nanoscopic applications, and indeed, they offer new opportunities in en-
gineering. Control of nonlinear nanosystems is therefore the fundamental task for
applications.

This book introduces the crucial fields of nonlinear dynamics of nanosystems.
The topics cover a wide range of current research in this field. It includes 15 re-

Nonlinear Dynamics of Nanosystems. Edited by Glinter Radons, Benno Rumpf, and Heinz Georg Schuster
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Preface

views organized in the five parts: Fluctuations, Surface effects, Nanoelectromechanics,
Nanoelectronics, and Optic-electronic coupling.

Part 1: Fluctuations

The chapters by Gaspard and by Evans, Williams, and Searles survey the extreme-
ly important recent generalizations of the second law of thermodynamics to a
group of theorems that are significant for such small systems. Gaspard treats
the statistical thermodynamics of nonequilibrium nanosystems with mechanical,
mechanochemical, and chemical applications. Evans, Williams and Searles present
the fluctuation theorem, the nonequilibrium work relation and the dissipation the-
orem. Regarding applications, randomness seems to impede the directional mo-
tion of nanosystems. The chapter by Grifoni introduces the theoretical framework
of Brownian motors, that is, engines that make use of thermal noise and quantum
tunneling in order to achieve directed motion.

Part 2: Surface Effects

Surface effects are fundamentally important in nanoscopic systems. Mecke, Falk
and Rauscher show that the effect of stochasticity is particularly important for
interfaces and films in contrast to bulk fluid mechanics in hydrodynamics. They
discuss the new phenomena in films at the nanometer scale resulting from ther-
mal fluctuations. Surfaces of solids show a rich dynamic behavior. Krug investi-
gates the intrinsic nonlinear dynamics of surface steps, and in particular of single
layer islands under external forces. Casimir and van der Waals forces are funda-
mentally important quantum mechanical surface effects in small systems, as Emig
shows.

Part 3: Nanoelectromechanics

Oscillating micro- and nanoscopic beams are exploited in atomic force spec-
troscopy. Nanomechanical oscillators such as miniaturized cantilevers or carbon
nanotubes can easily be excited into a strongly nonlinear regime with an amplitude-
dependent frequency. As the chapters by Aldridge and by Lifshitz and Cross show,
nanoelectromechanical systems are experimental realizations of the Duffing os-
cillator. The frequency of cantilever oscillations increases for a decreasing system
size. Therefore, in the near future mechanical oscillators may be manufactured
for which energy quantization is relevant. The control of the nonlinear dynamics
of nanomechanical devices is a crucial task for future applications of force mi-
croscopy, as Yamasue and Hikihara show. In particular, this implies the possibility
of catching and releasing single atoms from a surface.



Preface

Part 4: Nanoelectronics

Richter and Waltner study the fundamental connection of classical chaotic dynam-
ics of charge carriers with quantum wave interference and hence, discuss the tran-
sition of electronic transport from micro- to nanoscales. Kaiser and Kohler give a
detailed investigation of the emergence of nonlinearity in electric conductivity, giv-
ing a quantum mechanical analysis of the Coulomb blockade. Schéll investigates
nonlinearities in the conductance and the resulting patterns. Time delayed feed-
back is demonstrated to be a powerful tool for the control of these structures.

Part 5: Optic-Electronic Coupling

Optic-electronic coupling is an important method of controlling electronic devices.
Padurariu, Amin and Kleinekathéfer analyze the electron flux through molecu-
lar junctions and quantum dots. Their means of controlling the dynamics at the
nanoscale is the use of ultra-short laser pulses. Bauer, Bayer, Wiemann and Aeschli-
mann employ localized surface plasmons as a tool to probe nanoscopic devices.
Resonance of plasma oscillations gives information about the size and shape of the
device or particle. The interaction of optical waves and complex photonic lattices is
discussed by Terhalle, Rose, Gories, Imbrock and Denz.

This book reflects an ongoing interdisciplinary discussion initiated by a Volks-
wagen-Symposium on the same topic that was held in Chemnitz in 2006. The edi-
tors thank the Volkswagen Foundation for financial support.

Chemnitz and Kiel, December 2009 Giinter Radons
Benno Rumpf
Heinz Georg Schuster
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Nonequilibrium Nanosystems
Pierre Gaspard

1.1
Introduction

The nanometer is the length scale just above that of atoms. Accordingly, the
nanoscale is the basis of higher order structures made of atoms: molecules, macro-
molecules, polymers, fullerenes and nanotubes, atomic or molecular clusters,
supramolecular assemblies, molecular machines, and even viruses, organelles or
cells in the organic world, and gases, liquids, or solids in the inorganic world. It
should be emphasized that the importance of these atomic systems lies not only in
their 3D spatial structure, but also in the 4D spatiotemporal paths they can execute,
as is the case for catalysts or molecular motors.

In principle, their motions are ruled by Newton’s equations based on molecular
forces which typically have nonlinear dependences on the interatomic distances.
A key feature of atomic motions is their randomness that results from the inces-
sant collisions among the atoms or molecules composing the nanosystem. This
randomness manifests itself in the thermal and molecular fluctuations affecting,
to some extent, every observable at the nanoscale. Accordingly, nanosystems are
often described in terms of stochastic processes, as is the case for the Brownian
motion of micrometric particles suspended in a liquid. In this example, the forces
between the Brownian particle and the molecules of the surrounding liquid are ran-
dom on long time scales, the heavy Brownian particle being much slower than the
light molecules of the liquid. Accordingly, the Newtonian equation for the Brow-
nian particle contains a Langevin fluctuating force because of the interaction with
its surroundings. Since Brownian motion is stochastic, its description is based on
a probability distribution which obeys a time-evolution equation called the master
equation. As already pointed out by Einstein [1], Brownian particles are examples
of mesoscopic systems which are larger than the molecules obeying microscopic
Newtonian dynamics, but smaller than the macroscopic systems where the molec-
ular fluctuations are so small with respect to their size that a deterministic descrip-
tion should be considered. In this regard, the stochastic description developed for
Brownian motion is expected to apply at the nanoscale as well. A stochastic ap-
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proach is valid if one or more degrees of freedom of the nanosystem is intrinsically
weighted heavier than the others. This results in a separation of time scales in the
system that occurs between the slow degrees of freedom and the others responsible
for the fast thermal fluctuations.

Because of the interaction between the slow and fast degrees of freedom, energy
is exchanged. The asymmetry of the coupling between a few slow and many fast
degrees of freedom leads to an energy flux from the former to the latter, which
is the phenomenon of energy dissipation. Dissipation happens, for instance, if an
excess of energy is initially deposited on the slow degrees of freedom and progres-
sively dissipated over the fast degrees of freedom during a relaxation which is de-
termined by the interaction. If the subsystem is interacting with the many degrees
of freedom of a thermal bath at a given temperature, its probability distribution
undergoes a relaxation towards the equilibrium Boltzmann-Maxwell distribution
at the temperature of the bath. During this relaxation, the subsystem is transiently
out of equilibrium, though ultimately reaches thermal equilibrium after enough
time. These relaxation processes occur in isolated nanosystems such as atomic
or molecular clusters where the slow degrees of freedom are associated with the
spherical or nonspherical shape of the cluster, and the fast degrees of freedom de-
scribe the motion of the individual atoms relative to the global shape. Statistical
ensembles of clusters can be described in terms of probability distribution for all
of the internal degrees of freedom of the cluster, allowing several possible distribu-
tions for the total energy depending on the experimental technique producing the
beam of clusters [2]. Such nanosystems remain out of equilibrium during some
relaxation time, though finally reach the thermodynamic equilibrium state after
a long enough time [3]. Strictly speaking, the concepts of equilibrium state or re-
laxation times are associated with the probability distribution and its time evolu-
tion. The probability distribution describes a statistical ensemble of copies of the
nanosystem, each launched from different initial conditions statistically distributed
according to the initial probability density. Consequently, the concepts of equilibri-
um states or relaxation times do not apply to individual nanosystems, but instead
ensembles composed of infinitely many copies of the nanosystem with statistically
distributed degrees of freedom.

In addition to the aforementioned nanosystems which relax towards an equilib-
rium state, nanosystems exist which are in contact with at least two heat or parti-
cle reservoirs at different temperatures or chemical potentials. These nanosystems
present the remarkable feature of reaching a nonequilibrium steady state after some
transient behavior. Contrary to the previous cases, such nanosystems sustain cur-
rents or fluxes of heat or particles and remain out of equilibrium due to a supply of
energy from the external reservoirs. Although the instantaneous currents fluctuate
in time, they are described by a probability distribution which remains stationary in
the nonequilibrium steady state. The mean values of the fluctuating currents are
not vanishing and controlled by the differences of temperatures or chemical po-
tentials between the external reservoirs. These mean currents are sustained at the
expense of energy dissipation. Therefore, such nonequilibrium nanosystems are
characterized by a positive entropy production according to the second law of ther-
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modynamics. In contrast, the entropy production vanishes in the equilibrium sta-
tionary state reached by nanosystems in contact with a single heat or particle reser-
voir. Examples of nonequilibrium nanosystems include the electronic circuits con-
sidered in semiconductor or molecular electronics, the chemical nanoreactors in
heterogeneous catalysis, or the molecular motors in biology. These examples show
the variety of nonequilibrium nanosystems and their importance for nanoscience
and nanotechnology.

Further nonequilibrium nanosystems are those which are driven by a time-
dependent external force. Examples of such nanosystems are macromolecules
such as RNA undergoing repeated unfolding and folding processes by optical
tweezers [4] or nanosystems with electric charges driven by electromagnetic fields.
In these cases as well, the energy supplied by the external forces is dissipated
during the process, leading to thermodynamic entropy production.

The nonequilibrium nanosystems are also of fundamental importance in biol-
ogy [5]. Indeed, one of the key features of biological systems is their metabolism,
meaning that biological systems are functioning out of equilibrium as open ther-
modynamic systems with an internal dissipation of the chemical energy from the
nutrients supplied by the environment. The thermodynamic aspects of metabolism
are traditionally envisaged at the macroscale. However, the biological systems
are hierarchically structured from the nanoscale up to the macroscale. Indeed,
molecules, such as lipids, form cellular membranes while copolymers, such as
proteins, RNA, and DNA, combine into supramolecular assemblies functioning
as machines: polymerases, ribosomes, flagellar motors, linear motors for cargo
transport or muscle contraction. Many of these molecular structures exist only
because of their ability to perform a specific motion powered by some energy
source as provided by transmembrane pH differences or the hydrolysis of adeno-
sine triphosphate (ATP). In this regard, energy transduction plays a fundamental
role at the molecular level in all the biochemical processes of metabolism [6]. The
directionality so essential to biological functions is acquired at the nanoscale when
the molecular structures are driven out of equilibrium by metabolism. In this re-
spect, the time scale over which a correlated motion can be maintained in some
3D molecular structure is here an essential property characterizing a biological
function [7-10]. Thus, the nonequilibrium nanosystems find their importance
not only for technological applications, but also for our fundamental understand-
ing of biological systems from the viewpoint of the physico-chemical laws of
nature.

The purpose of the present contribution is to give an overview of nonequilibrium
nanosystems and to outline their statistical thermodynamics.

In Section 1.2, the statistical thermodynamics of nanosystems is presented start-
ing from the problem of their multi-scale description with, on the one hand, New-
ton’s equations ruling the microscopic dynamics of their constituent atoms over the
scales of picometers and femtoseconds and, on the other hand, stochastic process-
es describing the motion of some of their degrees of freedom on the spatial scales
of nanometers or larger and over the time scales of picoseconds or longer. Recent
advances in statistical thermodynamics are reviewed, such as the fluctuation theo-
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rems that are large-deviation relations for the fluctuations of nonequilibrium work,
currents, or other quantities [11-27], as well as a new relationship established be-
tween the thermodynamic entropy production and the breaking of time reversal
in the property of temporal disorder [28-31]. The latter is at the basis of a new
understanding of information processing at the molecular level [32, 33].

Section 1.3 is devoted to mechanical nanosystems and, in particular, the study
of friction in double-walled carbon nanotubes. This is an example of an isolated
nanosystem evolving towards an equilibrium stationary state because it is not pow-
ered by a continuous energy supply.

In Section 1.4, the case of mechanochemical nanosystems is considered. These
nanosystems — such as the F;-ATPase nanomotor — are continuously powered by
chemical energy and can thus be driven into nonequilibrium stationary states. Due
to their large molecular architecture, the mechanics of these molecular motors can
be tightly coupled to their chemistry, allowing sustained rotary or linear motions
under nonequilibrium conditions.

Section 1.5 touches on the existence of chemical nanosystems such as chemical
clocks in far-from-equilibrium oscillatory regimes. In such systems, the direction-
ality is maintained in a noisy limit cycle of the populations of small molecules
involved in a network of coupled chemical reactions.

Conclusions and perspectives are drawn in Section 1.6.

1.2
Statistical Thermodynamics of Nonequilibrium Nanosystems

1.2.1
From Newton’s Equations to Stochastic Processes

The same nanosystem may be described in several different ways depending upon
the spatial and temporal scales at which its motion is observed.

At room temperature, the dynamics of atoms can be supposed to be classical
in many circumstances. Under these conditions, the microscopic dynamics are
ruled by Newton’s equations for all the atoms of masses {m,}_, and positions
{ro}N_, composing the system. These atoms are coupled by interatomic forces
F(ro—rp) = =V U(r,—r}), deriving from the Born-Oppenheimer potential energy
U(r, — rp) of the interaction between the atoms in the electronic quantum state
of the molecular system. Besides, an external force can be applied to the system,
Fext(ra) = —V Uext(r4). The sum over all the forces acting on the atom is thus equal
to its acceleration multiplied by its mass

d*r
Ma—gy = Fex(ra) + > F(ra—m), (1.1)
b(#a)
where a,b = 1,2,..., N are the labels of all the atoms composing not only the

nanosystem, but also the reservoirs which are in contact with it if the latter is not
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isolated. Equivalently, Hamilton’s equations

dr, 0H
dt =~ 9
Pe (1.2)
dp, _ _0H
dt — 9r,

govern the time evolution of the positions {r,}Y_, and momenta {p, =
mydr, /dt}g]=1 of all the atoms in the system. This formulation is expressed in
terms of the Hamiltonian function which represents the total energy of the whole

system

2
H= ) [2’;;‘ +Uext(ra)]+ > Ura—r). (1.3)

1<a<N @ 1<a<b<N

The Hamiltonian dynamics are deterministic in the sense that, according to
Cauchy’s theorem, a unique trajectory is issued from initial conditions taken as
a point in the phase space of the positions and momenta

I'=(ri,r,...,tN,P1, Py PN) - (1.4)

Therefore, the time evolution of a time-independent system is given by a flow, for
example, a one-parameter continuous group defined in the phase space:

I)=ao'[ro)]. (1.5)

Moreover, the Hamiltonian system (1.3) is symmetric under the time reversal de-
fined by the operation

O(ri,10,...,TN, P1, Py PN) = (T, 72, -, TN, —P 1, —Pos-- - —PN)
(1.6)

because the Hamiltonian (1.3) is an even function of the momenta. Accordingly,
the time reversal of every solution of Hamilton's equations (1.2) is also a solution, a
property called microreversibility. It is fundamental to notice that microreversibility
does not necessarily imply the coincidence of a trajectory with its time reversal so
that the selection of initial conditions can break the time reversal symmetry of the
actual history followed by the system [34-37].

Since the phase space is a continuum, the real numbers (1.4) defining the ini-
tial conditions are practically known by their few first digits so that the effective
knowledge of the initial conditions is always limited. Therefore, an error always
affects the preparation of initial conditions launching a trajectory. This inherent
limitation of the knowledge of initial conditions taking their values in a continuum
justifies the introduction of a probability distribution for the initial positions and
momenta compatible with the precision with which they are prepared, po(I’). This
probability distribution evolves in time according to the Liouville equation

8tp = {H, p}Poisson = ip , (17)
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where the Poisson bracket with the Hamiltonian defines the Liouvillian operator L.
According to Liouville’s theorem, the probability density at time t is given in terms
of the initial probability density by

p(l,t)=po[@"(I)], (18)

which defines the so-called Perron—Frobenius operator [38]. If the total system is
isolated, the probability distribution may converge in the weak sense towards a sta-
tionary probability distribution defining an invariant probability measure, which
should correspond to the thermodynamic equilibrium state, peq(I”). The condi-
tion for this weak convergence is the property of mixing [39, 40]. We notice that
nonequilibrium states can also be defined as conditionally invariant measures by
suitably renormalizing the transient probability distribution evolving in time un-
der given nonequilibrium constraints [38]. In this way, conditionally invariant mea-
sures have been constructed in the escape-rate theory or in the hydrodynamic-mode
theory [38].

The determinism of Hamiltonian systems does not preclude the possibility of dy-
namical randomness, for example, temporal disorder in the long-time evolution of
such systems. This dynamical randomness finds its origin in the sensitivity to ini-
tial conditions. We notice that this property manifests itself in the so-called chaotic
systems, but does not appear in integrable systems having as many constants of
motion as degrees of freedom. The sensitivity to initial conditions is characterized
by the positivity of at least one Lyapunov exponent [41]. These latter quantities are
the rates of exponential separation

1 [lor(t)]

between a reference trajectory (1.5) and perturbed trajectories issued from in-
finitesimally close initial conditions I"(0) 4+ 0I';(0) taken in any possible direction i
in the 6 N-dimensional phase space (1.4). In molecular dynamics, typical Lyapunov
exponents are of the order of the inverse of the intercollisional time which cor-
responds to the time scale of the thermal fluctuations [42-45]. The dynamical
instability characterized by positive Lyapunov exponents implies that trajectories
issued from nearby initial conditions may have very different histories which are
thus unpredictable beyond the time scale given by the inverse of the maximal
Lyapunov exponent. Over time scales longer than this Lyapunov horizon of pre-
dictability, the trajectory appears random, listing in time the digits of the real
numbers defining its initial conditions. Therefore, dynamical randomness can be
characterized as temporal disorder in terms of the so-called Kolmogorov—Sinai
entropy per unit time which is equal to the sum of positive Lyapunov exponents
according to Pesin’s theorem [41]

hes =) Ai. (1.10)
Ai>0

This property of temporal disorder manifests itself in the stochasticity of the ran-
dom processes describing the slow degrees of freedom of the system where it is
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characterized by the (e, 7)-entropy per unit time [46]. Accordingly, the motion of
atoms in condensed phases at room temperature is highly random as observed by
their thermal and molecular fluctuations.

Methods have been developed in chaos theory to construct solutions of Liou-
ville’s equation, in particular, conditionally invariant measures, by using the Lya-
punov exponents associated with each trajectory, as it is the case in the periodic-
orbit theory [38, 47]. The idea is that the larger the positive Lyapunov exponents of
a trajectory, the higher its instability and the lower its probability weight. Methods
based on this idea allow us to construct exact solutions of Liouville’s equation on
fine scales in the phase space of the system. In this regard, the methods of chaos
theory fundamentally justify the existence of relaxation times which are intrinsic
to the dynamics.

In many systems, these relaxation times can be obtained with excellent approx-
imations thanks to the coarse-grained descriptions established by the pioneer-
ing work of Boltzmann [48], Einstein [1], Langevin [49], Fokker [50], Planck [51],
Pauli [52], and others. Such coarser descriptions focus on a few relevant observ-
ables among all the degrees of freedom of the total system. Examples are given
by the indicator functions of subsets w taken inside the phase space: I,(I') = 1
if I' € w and zero otherwise. The probability that the system visits this subset at
the time t is given by the mean value of this observable taken over the phase-space
probability distribution (1.8) at the time

P(w,t) = / I,(F)p(T, t)dI . (1.11)

If these probabilities evolve slower than the other observables, the memory of the
fast degrees of freedom may be lost over the time scale of variation of these proba-
bilities, which may justify that their time evolution is ruled by a Markovian master
equation such as

dP(w,t)

Fra Z[P(a)’,t) Wi,(0'|w) — P(w, t) W_,(w|o’)] , (1.12)

pw’

where W,(w’|w) is the rate of the transition o’ £ o induced by some elementary
mechanism p [53-56]. The relaxation times of the stochastic process ruled by this
master equation can be obtained in terms of the eigenvalues of this equation. It
is interesting to note that stochastic processes have a dual description either in
terms of the probabilities ruled by the master equation or in terms of individual
random realizations of the time evolution as simulated, for instance, by Gillespie’s
algorithm [57, 58]. Such random realizations are paths in the space of the coarse-
grained states {w}

p1 02 3 on
0= Wy—W1—>W)y—>—>W, , (1.13)

. . p . . .
with random jumps j_l—j>a) j between dwelling time intervals t; < t < tj41,
during which the system stays in the state ;. By construction, such a random path

7
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should be statistically equivalent to the path that would be obtained from the de-
terministic trajectory starting from some compatible initial conditions: w [I'(t)] =
w{@'[[(0)]}.

In the case of Brownian motion in an external force field Fex(r), random paths
can be simulated by integrating Langevin’s equation

d?r dr
mﬁ = Fext(r) - Ca + FL(t) ’ (1'14)
which is a Newtonian equation where the friction force Fgiq = —¢dr/dt and

the associated fluctuating Langevin force F|(t) represent the contributions of the
forces between the Brownian particle and the molecules of the surrounding flu-
id [59]. The Langevin forces can be modeled as Gaussian white noises

(FLi(t)) =0 (1.15)

(Fui(t)Fuj(t')) = 28k TO(t —t')0i; , (1.16)

where i, j = x,y, z denote the Cartesian components of the force, ¢ the friction
coefficient, T the temperature of the surrounding fluid, and kg = 1.38 x 10723 J/K
Boltzmann’s constant. The Langevin equation (1.14) is a stochastic differential
equation. Its solutions r(t) mimic the motion of the Brownian particle as given by
typical solutions of Hamilton’s equations (1.2), r(t) = r{ [I'(t)] = r {®@'[T'(0)]},
supposing that the Brownian particle has the label a = 1 among the N particles of
the system.

In the stochastic model by Langevin, the time correlation functions of the fluctu-
ating force coming from the fluid are delta-correlated, meaning that the time over
which the correlation functions decay to zero is much shorter than the time scale
of the described process. This correlation time is of the order of the intercollision-
al time of the Brownian particle with surrounding molecules. We should notice
that the friction coefficient can generally be calculated in terms of the integral of
the time correlation function of the fluctuating force according to the Kirkwood
formula [60]

1 (t7
¢ = m/_T <FL,i(t)FL,i(0)) dt, (1.17)
where 7 is a time scale longer than the correlation time but shorter than the time
over which the conservation of the total linear momentum of the total system might
manifest itself. If the system is infinite, the limit 7 — oo may be taken. The Kirk-
wood formula for the friction coefficient has been extended to the famous Green—
Kubo formulas for the coefficients of transport properties such as the viscosities,
the conductivities, as well as the diffusivities [61-63].
The master equation corresponding to the Langevin equation (1.14) is the
Fokker—Planck equation

P 0P  Fey OP
— 4y — + ’“._:E

0 kg T %P
ot ar m oy m oy

P+ =t (1.18)
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where P denotes the probability density in order to find the Brownian particle with
the position r and the velocity v at the time ¢ [59]. This probability density corre-
sponds in principle to the probability distribution obeying Liouville’s equation (1.7)
according to

P(r,v,t)E/6(r—r1)6(v—p1/m)p(r,t)dr. (1.19)

In this regard, the delta distributions play a similar role as the indicator function
in (1.11).

In the case where the external force is time independent and derives from a
potential Fey(r) = —V Uex(r), the solution of the Fokker—Planck equation under-
goes a relaxation towards an asymptotic equilibrium state given by the Boltzmann—
Maxwell distribution

(1.20)

. B mv2  Ueg(r)
ll_l)rgop(r, Vv, t) = Peqg(r,v) = Nexp |:— - ]

2k T kg T

with a normalization constant A" such that [ Peq(r, v)drdv = 1.

In contrast, if the external force is time dependent, the system remains out of
equilibrium. If the Brownian particle is dragged by an optical trap moving at the
velocity u, the external potential is given by Uy = (k/2)(r—ut)? and the probability
density can reach a nonequilibrium stationary solution in the frame of the optical
trap. In this nonequilibrium state, the energy supplied by the optical trap is dissi-
pated by the friction of the Brownian particle on the surrounding fluid, leading to
a positive thermodynamic entropy production.

Brownian motion is the paradigm of physico-chemical stochastic processes. This
paradigm can be extended down to the nanoscale and applied to mechanical sys-
tems such as multiwalled carbon nanotubes as well as to molecular motors where
mechanics is coupled to chemistry. Multiwalled carbon nanotubes have slow and
fast degrees of freedom and thus qualify for a description in terms of stochastic
processes (see Section 1.3). In molecular motors, the stochastic process is a com-
bination of diffusive mechanical motions interrupted by random jumps between
discrete chemical states due to reactive events. Such diffusion-reaction stochastic
processes are governed by coupled Fokker—Planck equations (see Section 1.4).

The paradigm also extends to mesoscopic chemical systems where reactions
transform populations of molecules. In mesoscopic chemical systems, such as
nanoreactors or nanoelectrodes, the numbers of molecules are random variables
jumping at each reactive event. Therefore, the molecular numbers obey a stochas-
tic process compatible with the mass-action law of chemical kinetics [53-56]. At the
macroscale, the molecular fluctuations disappear and the chemical concentrations
follow deterministic differential equations of chemical kinetics. At the mesoscale,
chemical systems can be described as continuous-time jump processes ruled by a
master equation for the probability P({N;}, t) of finding N; molecules of species
i = 1,2,...,cin the system, or as diffusive processes ruled by a Fokker—Planck
equation for the probability density P({x;}, t) defined in the space of chemical con-
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centrations x; = N;/N where N = Y i_, N; is the total number of molecules in
the system (see Section 1.5).

Master equations have also been deduced for quantum systems at the nano-
scale [64].

1.2.2
Entropy and the Second Law of Thermodynamics

Since its historical origin in the pioneering work by Sadi Carnot on the efficiency
of steam engines, the concept of entropy is associated with the idea of partitioning
the system into microscopic degrees of freedom having their own dynamics and
macroscopic ones which can be manipulated at will. In a steam engine, the former
are the degrees of freedom of the water molecules and the latter the piston and
the valves of the engine. In this regard, the thermodynamic entropy appears as
a property of the system of microscopic degrees of freedom with respect to their
manipulation by a coarser device which is external to the described system. A priori,
the thermodynamic entropy is thus a property of the system with respect to a coarse
graining superimposed by some external apparatus.

Accordingly, the concept of entropy applies to nanosystems described in terms of
the probabilities (1.11) to visit some coarse-grained states w. The thermodynamic
entropy associated at time ¢ can be defined as

S(t) =Y _ S(w)P(w,t)— ks Y _ P(w,t)In P(w, 1) . (1.21)
The first term is the mean contribution of the entropy S(w) due to the statistical
distribution of all the degrees of freedom which are not specified by the coarse-
grained state w [20]. For instance, if the coarse-grained state w only specifies the
numbers of the molecules of the different chemical species, S(w) is the entropy of
the statistical distribution of the positions and momenta of the particles enumer-
ated by w. The second term characterizes the disorder in statistical distribution
P(w, t) over the different coarse-grained states {w}.
Since the probability distribution { P(w, t)} evolves in time according to the mas-
ter equation (1.12), the entropy (1.21) varies accordingly. It is well known that the
time variation of the entropy can be decomposed as [65, 66]

as _ds  ds
dt — dt di

into the entropy flow or entropy exchange between the system and its environment

(1.22)

and the entropy production which is internal to the system. The entropy flow is
given by
de S ,
4 = Z/ [P(a/, ) Wi (@ |0) = P(w, 1) W (o] )]
@ L , (1.23)
\\%
x| S(w)— = 1n Wop(e'|w) }
2 W_,(w|w’)
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which can be either positive or negative. On the other hand, the entropy production
diS ks
=2 Y [P ) W0 0) — P, ) W (0] )]
pw,0’
/ 4
P )W)
Plw, ) W_p(w|a’)

(1.24)

is always nonnegative, in agreement with the second law of thermodynamics [65,
66]. In a system without external nonequilibrium constraint, the probability dis-
tribution P(w, t) undergoes a relaxation towards the equilibrium state Peq(w) for
which the entropy production vanishes because of the detailed balancing condi-
tions

Peg ) Wiy p(@'|0) = Peg(00) W—p(]0') (1.25)

which should hold for all the possible transitions o’ Lo [67, 68]. During relax-
ation, the system is transiently out of equilibrium so that the entropy production is
positive. The entropy production vanishes asymptotically as the time goes to infin-
ity and the thermodynamic equilibrium is reached.

If external nonequilibrium constraints are imposed on the system, the re-
laxation proceeds towards a nonequilibrium steady state, (d/dt)Ppeq(®w) = O,
in which the detailed balancing conditions (1.25) do not hold and the entropy
production remains positive. Therefore, the thermodynamic entropy produc-
tion allows us to distinguish between nonequilibrium and equilibrium steady
states among all the stationary solutions of the master equation (1.12) such that

(d/dt) Py(w) = 0.

1.2.3
Identifying the Nonequilibrium Constraints and the Currents with Graph Analysis

The nonequilibrium constraints are the control parameters driving the nanosystem
out of equilibrium. These control parameters are the differences of temperatures
or chemical potentials between the heat or particle reservoirs in contact with the
nanosystem. In the case of chemical reactions, the difference of chemical potentials
is taken between the reactants and the products of each reaction and are controlled
by chemical concentrations. These control parameters are hidden in the transition
rates W,(w’|w) of the stochastic process and it is of great important to identify
them.

A systematic method is provided with graph theory, as developed by Hill and
Schnakenberg [6, 65]. A graph is associated with the stochastic process as follows.

Each state w of the system defines a vertex or node of the graph while each allowed
. tr .
transition o = o’ corresponds to an edge. In this respect, two states can be con-
—p
nected by several edges if several elementary processes p allow transitions between
them.

1
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An orientation is assigned to each edge of the graph G. The directed edges are
thus defined by

e=w > . (1.26)

Let F be a directed subgraph of G. The orientation of the subgraph F with respect
to its edges {e} is described by introducing the quantity

+1 ifeand F are parallel
Ge(F) = {—1 ifeand F are antiparallel (1.27)

0 ifeisnotin F

where e and F are said to be parallel (respectively antiparallel) if F contains the
edge e in its reference (respectively opposite) orientation.

In order to identify all the cycles of a graph, a concept of maximal tree is intro-
duced [65]. Every maximal tree T(G) of the graph G should satisfy the following
properties:

1. T(G) is a covering subgraph of G, that is, T(G) contains all the vertices of
G and all the edges of T(G) are edges of G;

2. T(G) is connected;

3. T(G) contains no cycle (i.e., no cyclic sequence of edges).

The edges [ of the graph G which do not belong to the maximal tree T(G) are called
the chords of T(G). If we add a chord I to T(G), the resulting subgraph T(G) + |
contains exactly one cycle Cj, which is obtained from T(G) + I by removing all the
edges which are not part of the cycle. The orientation is taken such that ¢;(C;) = 1,
that is, the cycles are oriented as the chords I. A maximal tree T(G) together with its
associated fundamental set of cycles {Cy, C,,..., Ci, ...} provides a decomposition
of the graph G.

We notice that a given graph G has several maximal trees T(G) and that all the max-
imal trees of a graph can be obtained by linear combinations of a given maximal
tree T(G) with its associated cycles, as described in [65].

A remarkable property is that the ratio of the products of the transition rates
W, (w’|w) along the two possible directions of any cycle C; of the graph is indepen-
dent of the states composing the cycle and will thus only depend on the external
nonequilibrium constraints imposed to the system [65]. Thanks to this property,
the thermodynamic forces, also called the affinities [69, 70], can be introduced ac-
cording to [65]

Wil
I1 LJ) =exp A(C)), (1.28)
4 VplaTo)
where ¢ € C; denotes the edges (1.26) in the cycle C;. In the equilibrium state, the
affinities vanish and we recover the conditions of detailed balancing between every
forward and backward transition. An important observation is that many of these
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affinities are equal, A(C)) = A, for all C; € a, which defines the macroscopic
affinities A, imposed by the external reservoirs.
The instantaneous current on the chord [ is defined by [22]

—+oc0

Ji = Y ci(en)d(t—t), (1.29)

n=—0oo

where t, is the time of the random transition e, during a path of the stochastic
process. The convention is used that j is oriented as the graph G since g(e,) is
equal to (—)1 if the transition e, is (anti)parallel to the chord . The current (1.29) is
a fluctuating random variable. The different microscopic currents corresponding
to a given macroscopic process o can now be regrouped as [22]

+oo
Ja) =Y I =D Y ci(en)d(t—ta) . (1.30)

lea leq n=—00

Examples of nonequilibrium stochastic processes described by the Markovian
master equation (1.12) and their graph analysis are provided in the following sec-
tions.

1.2.4
Fluctuation Theorem for the Currents

In the previous framework, a fundamental result can be obtained for the full
counting statistics of the fluctuating currents (1.30) which are flowing across the
nanosystem in some nonequilibrium steady state. The generating function of all
the statistical cumulants of the fluctuating currents is defined as

Q(4, A) = ll_i)rgo—%ln<exp |:—/l . /Ol dt’j(t/)]> (1.31)

with 4 = {A.}, A = {A.}, and j(t) = {j.(t)}. We notice that the generating
function depends on the affinities because the statistical average (-) is carried out
in the steady state corresponding to the values A of the affinities. The mean value
of a current is given by differentiating the generating function with respect to the
parameter 1, and afterward setting all these parameters to zero:

d
Jul) = 32

1 t
— 1 - -a / d/. .
im 7 [ Ul s (132)

=0 t—00 t

The diffusivities or second cumulants of the fluctuating currents can be defined as

1 1 [tee Cr. ,
Dop(A) = _Ea/laz%ﬂ ‘,1:0 = 5/ ([Ja(t) = (i) ] [1s(0) = (jp)])dt -

) (1.33)
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Higher-order statistical cumulants can be defined similarly such as the third and
fourth cumulants

Capy(A) =

rQ ‘ (1.34)

020402, l1=0
1 9Q

B, As———7—77—7F—
prolA) = = whg0h, 97 ‘;;o

(1.35)

which all characterize the full counting statistics of the coupled fluctuating currents

alt)s-

We have the fluctuation theorem for the currents:

Theorem 1.1: Fluctuation Theorem for Currents

The generating function (1.31) obeys the symmetry relation

O(4, A) = Q(A— 1, A). (1.36)

This theorem has been proved in the framework of graph theory [21-23] and can
also be proved for open quantum systems as a consequence of microreversibili-
ty [26, 27].

The Legendre transform of the generating function (1.31)

H(&, A) = Max; [Q(4, A) — 4 - §] (1.37)

is the decay rate of the probability that the fluctuating currents averaged over the
finite time interval t have their values in the range (£, § + d&), yielding

H(§, A) = l_1)m ——lnP|: /_1 t~§] (1.38)

where P denotes the probability distribution of the nonequilibrium steady state
corresponding to the affinities A. In terms of these decay rates, the fluctuation
theorem (1.36) can be written as

H(-§, A)—H(§, A =A-§&, (1.39)

which means that the ratio of the probabilities that the fluctuating currents take
oppositive values behaves exponentially in time with a rate equal to the affinities A
multiplied by the supposed values & for the currents:

P[L )y jr)ar ~ +¢]
Pl jwyar = g]

If the fluctuating currents take their mean values (1.32), § = J, the decay rate
vanishes by the law of large numbers, H(J, A) = 0, so that (1.40) shows that the
probability of the opposite values — J decays at a rate equal to

14d;S

o =ATz0, (1.41)

~exp(A-§t) for t—o00. (1.40)



1.2 Statistical Thermodynamics of Nonequilibrium Nanosystems

which is the well-known expression of the entropy production in nonequilibrium
thermodynamics [70]. This relation shows that the fluctuation theorem provides an
extension of the second law of thermodynamics to small systems. At equilibrium,
the affinities vanish with the currents and the thermodynamic entropy production,
as expected. When not at equilibrium, the fluctuation theorem (1.40) shows that an
asymmetry appears between the probabilities of opposite fluctuations: the farther
from equilibrium, the lower the probability of reversed fluctuations. Since the ratio
of probabilities depends exponentially on the time and the affinities, the reversed
fluctuations rapidly become negligible as the system is driven far from equilibrium.
Ultimately, the probability of the reversed fluctuations vanishes in fully irreversible
regimes where the entropy production is infinite.

1.2.5
Consequences for Linear and Nonlinear Response Coefficients

Typically, the currents flowing across the nanosystem have a nonlinear dependence
on the affinities. It is only if the nonequilibrium constraints are weak and the sys-
tem remains close to equilibrium that the currents may have a linear dependence
on the affinities. This is the case for transport properties such as heat conduc-
tivity, viscosity, or diffusion in macroscopic fluids. However, nonlinearities tend
to manifest themselves in nanosystems because of their inherent heterogeneities.
These nonlinearities are well known in chemical reactions which are completed af-
ter the breaking of chemical bonds over subnanometric distances [54, 70]. Accord-
ingly, we should expect that nanosystems might present highly nonlinear proper-
ties.

The affinities are the thermodynamic forces driving the system out of equilibri-
um. In this regard, they represent the control parameters probing the responses
of the system to external perturbations. If the perturbations are weak, the system
remains in the linear regime around its state of thermodynamic equilibrium. If the
perturbations are stronger, the effects of the nonlinear responses become observ-
able. Therefore, the response properties of the system with respect to the nonequi-
librium constraints can be defined by expanding the currents in powers of the
affinities as

Ja=)_ La,ﬂAﬂJr% > Ma,ﬂyAﬂAer% > NupypoApAyAs+--- (142)
B By By.0

The linear response of the currents |, with respect to a small perturbation in the

affinities Ag is characterized by the Onsager coefficients L, g and the nonlinear

response by the higher-order coefficients M, g,, Ny gy, - -

Since the currents can be deduced from the generating function (1.31) accord-
ing to (1.32), any symmetry of the generating function will imply special relations
among the linear and nonlinear response coefficients in the expansion (1.42). This
is the case for the symmetry relation given by the fluctuation theorem (1.36). In-
deed, the response coefficients can be found by differentiating the relation (1.36)
with respect to the parameters 4 and the affinities A.
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The linear response coefficients L, g are given by differentiating twice the gener-
ating function with respect to 1, and Ag. By using the fluctuation theorem (1.36),
the linear response coefficients can be shown to be equal to the diffusivities (1.33)
taken at equilibrium, L, = Dgg(0). We notice that this is the content of the
fluctuation-dissipation theorem and the Green—Kubo formulas [61-63]. Since the
diffusivities are symmetric under the exchange of the indices a and 3, we recover
Onsager’s reciprocity relations [71]

Lap=Lpa- (1.43)

The remarkable result is that this method can proceed to higher orders, leading
to new relations between the nonlinear response coefficients and quantities charac-
terizing the nonequilibrium fluctuations of the currents [21, 72]. The second-order
response coefficients can be related to the diffusivities according to

aDaﬁ BDay
Mapy =\ 34 9A :
4 B/ A=o0

(1.44)

Similarly, the third-order response coefficients turn out to be related to the fourth
and second cumulants by

N _ 32Daﬁ 82Day 02Dy 1B 1.45
“Pr0 =\ 9A,0A,  0AgdA, | 0AgdA, 2 ). .7 (1.43)
while the third and fourth cumulants are linked by
9Capy
B, 0)=|—— . 1.46
.3}’6( ) ( aAa )A:O ( )

Such relations exist at arbitrary orders as consequences of the fluctuation theo-
rem [72]. Similar relations can be deduced in the presence of an external magnetic
field [26]. They characterize the nonlinear response properties of nonequilibrium
nanosystems.

1.2.6
Temporal Disorder

At the nanoscale, the currents are fluctuating either at equilibrium or out of equi-
librium. These fluctuations are the manifestation of dynamical randomness due to
the incessant collisions among the particles composing the system. This dynam-
ical randomness can be characterized as a property of disorder in the successive
pictures of the system in movies of the stochastic process. The time series of the
fluctuating currents can be analyzed and its temporal disorder characterized by an
entropy per unit time. Such a quantity is defined as an (¢, 7)-entropy per unit time
for the fluctuating signal sampled with a resolution ¢ and a sampling time 7 [46]. In
deterministic dynamical systems, the (g, 7)-entropy per unit time would converge
to the Kolmogorov—Sinai entropy per unit time in the limit where ¢ goes to zero.
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Such dynamical entropies are the decay rates of the probabilities
P(o) = P(wow10; ... 0,—1) (1.47)

that the system follows given paths or histories ® = wowi ;... w,—; where the
symbols  ; are the coarse-grained states observed with the resolution & at the
successive times t = jr with j = 0,1,2,...,n — 1. In (1.47), P denotes the sta-
tionary probability distribution of the process. Because of the temporal disorder,
the probability of a typical path is known to decay exponentially at a rate defining
the (&, t)-entropy per unit time [46]

h(e,7) = lim L P(o)ln P(w) . (1.48)

n—oo nT

In nonequilibrium steady states, we expect that the time-reversal symmetry is
broken at the level of the invariant probability distribution so that a path & =
Wow1W5 ... w,—1 and its time reversal ®® = w,_; ... w; w1, should have differ-
ent probabilities [34-38]

out of equilibrium: P(®) # P(o) . (1.49)

Accordingly, the probability of a time-reversed path should decay at a rate which
is different from the entropy per unit time (1.48). This observation motivates the
introduction of the time-reversed (¢, 7)-entropy per unit time [28]

hR(e,7) = lim L P(w)In P(0?), (1.50)

where the average is still carried out with the path probabilities themselves. If
the average was performed with the time-reversed path probabilities in (1.50), we
would recover the quantity (1.48) because the sum over the paths o is equivalent to
the sum over their reversals @®. In this regard, the time-reversed entropy per unit
time characterizes the temporal disorder of the time-reversed paths among the set
of the typical paths of the forward process.

The remarkable result is that the difference between the time-reserved and the
standard entropies per unit time is equal to the thermodynamic entropy production

é(z—ts = S}Tirgo[hR(s, 7)— h(e,7)] =0, (1.51)
as can be shown for several classes of nonequilibrium stochastic processes as well
as in other frameworks [28, 36]. Furthermore, this fundamental connection has
been verified experimentally for driven Brownian motion and R C electric circuits,
providing evidence for the breaking of time-reversal symmetry in nonequilibrium
fluctuations down to the nanoscale [30, 31].

The difference of entropies, h® — h, is always nonnegative in agreement with the
second law of thermodynamics. At equilibrium, both entropies are equal. There-
fore, the equilibrium temporal disorder looks the same for the typical paths and

17



18

1 Nonequilibrium Nanosystems

their time reversals, which is an expression of the principle of detailed balancing.
In contrast, the time-reversed entropy per unit time is larger than the standard one
if the system is driven out of equilibrium because the nonequilibrium constraints
perform a selection of typical paths, whereupon the time-reversal symmetry is bro-
ken. The probabilities of the time-reversed paths decay faster than for the corre-
sponding typical paths so that the time-reversed paths appear more random in this
regard. We have the theorem of nonequilibrium temporal ordering:

Theorem 1.2: Theorem of Nonequilibrium Temporal Ordering

In nonequilibrium steady states, the typical paths are more ordered in time than
their time reversals in the sense that their temporal disorder characterized by h
is smaller than the temporal disorder of the corresponding time-reversed paths
characterized by h® [29].

This theorem mathematically expresses the fact that nonequilibrium systems
manifest a directionality. For instance, the mean current flowing across a resis-
tance goes downbhill in the chemical potential landscape in spite of its upward or
downward fluctuations. The farther away from equilibrium, the more regular the
flow will look. In the limit of ballistic transport, the current is perfectly regular.
This result applies to nonequilibrium nanosystems, showing the potentialities of
evolving out of equilibrium to generate or process information at the nanoscale.
In particular, Landauer’s principle according to which the erasure of information
generates thermodynamic entropy production can be deduced from the relation-
ship (1.51) [73]. The consequences of these results for nanosystems will be dis-
cussed below.

1.2.7
Nanosystems Driven by Time-Dependent Forces

Fundamental results have also been obtained for systems driven by some time-
dependent control parameter A(t) [11, 12]. Let us suppose that the dynamics are
described by the Hamiltonian function H(I', ). The work performed on the sys-
tem while the control parameter varies from 44 to A p is given by

W = H(I}, Ag) — H(I4, A (1.52)

if Iy is the initial condition of the trajectory followed by the system. Therefore, the
work is a random variable depending on the probability distribution of the initial
conditions. Following Jarzynski [11], this initial probability distribution is taken as
the canonical ensemble

1 )
paly) = —— e PHIAAA (1.53)
Zy
with the inverse temperature 8 = (kg T)~'. The free energy of the system in this
initial canonical state is equal to F4 = —kgTln Z,. The probability density of
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the work performed on the system driven by the forward protocol while the control
parameter A(t) varies as A4 — A is defined by

pr(W)

with HA = H(FA,/‘LA) and HB = H(FB,/‘LB).

(0[W — (Hp — Ha)]), (1.54)

A reversed protocol can be similarly defined by the reversed driving 15 — 44 with
AT — t) from the other initial state
1
pa(ly) = ——e PHIBD (1.55)
Zp
at the same inverse temperature as in the canonical distribution (1.53). The work
performed on the system submitted to this reversed protocol has the following prob-
ability distribution:

pr(W) = (0 [W — (Ha— Hp)]),. (1.56)

In this framework, the following fluctuation theorem of Crooks can be proved
on the basis of Hamiltonian dynamics by using the Liouville theorem and microre-
versibility [35]:

Theorem 1.3: Crook’s Fluctuation Theorem

The probability densities of the work W performed on the system during the for-
ward and reversed protocols have the universal ratio

pe(W) _ piw—an
oR(—W) e (1.57)

which only depends on the inverse temperature 3, the work W itself, and the free
energy difference AF = Fp — F, between the thermodynamic equilibria at A
and A4 [12].

This result has been verified in experiments on the unfolding of single RNA
molecules [4].

A similar relation as (1.57) holds if the work is measured on n successive inter-
mediate times t4, = tp < t; < f < -+- < t,—1 < t, = tg. The multivariate
probability density that the work takes given successive values is defined for the
forward protocol as

pF(Wl,WZ,...,Wn)E<l_[ 6[Wj—(Hj—Hj_1)]> (1.58)
j=1 A
and for the reversed protocol as
pR(Wl,WZ,...,Wn)E<H6[Wj —(Hj_l—Hj)]> (1.59)
j=1 B
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with H; = H [I'(t;), A(t;)]. For these protocols, the fluctuation theorem reads

pe(W1, Wa, ..., Wi = BVt Wott Wy —AF) (1.60)
PrR(=W1,=Wy,...,.—Wy)

A consequence of Crooks’ fluctuation theorem (1.57) is

Theorem 1.4: Jarzynski’s Nonequilibrium Work Theorem

The free energy difference AF = Fy — F, between the thermodynamic equilibria
at A5 and A 4 can be evaluated in terms of the nonequilibrium work W by

(e—ﬂW>==e—ﬂAF, (1.61)

where (-) denotes the statistical average over an ensemble of random realizations
of the forward protocol [11].

This theorem allows the measurement of free energy landscapes with single-
molecule force spectroscopy [74]. Extensions to quantum systems have also been
obtained [26, 27, 75, 76]. Moreover, Jarzynski's theorem implies Clausius’ thermo-
dynamic inequality:

(W) > AF . (1.62)

More recently, Kawai, Parrondo and Van den Broeck have shown [77] that the aver-
age value of the nonequilibrium work can be expressed as

pr(l, 1)

—pR(@F, 0 (1.63)

(W)= AF + kBT/ dr' pe(I',t)In
in terms of the phase-space probability distributions of the positions and momenta
of the particles at some intermediate time ¢t during the aforementioned protocol.
We notice that the equality (1.63) of statistical mechanics completes Clausius’ ther-
modynamic inequality (1.62).

The difference between the work W performed on the system and the free energy
AF gained by the system is the work dissipated in the process: Wy = W — AF.
In this regard, Clausius’ inequality (1.62) means that the average dissipated work is
always nonnegative, ( Wgiss) > 0, which is a statement of the second law of thermo-
dynamics. The last term of (1.63) thus provides an exact expression for the work
dissipated in the process. If the time-dependent driving is such that a coupling
is switched-on between the nanosystem and reservoirs at different temperatures
or chemical potentials over a long enough time interval 7 for reaching a steady
state, (1.63) can be used to obtain the entropy production in nonequilibrium steady
states. The driving can be chosen to be time-reversal symmetric, A(t) = 4(7 —t), in
order for the forward and reversed protocols to be identical. In such circumstances,
the thermodynamic entropy production is given by

&s 1 1
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On the other hand, the phase-space integral in (1.63) can be partitioned into the
cells Coporwny = Cop N @ "Cyp, N--- N Q_("_I)TCM_I obtained by sam-
pling the dynamics at the successive times t = jt with j = 0,1,2,...,n — 1.
If these phase-space cells are supposed of volume AT, the probability densities
in (1.63) give approximations for the stationary probabilities P(@) >~ pg(I', t)AI’
and P(w®) ~ pr(OT,t)AT of the paths @ and their reversals ®®. In this way,
the thermodynamic entropy production can be expressed as a relative entropy be-
tween path probabilities [78] and the relationship (1.51) is recovered, confirming
that the thermodynamic entropy production finds its origin in the breaking of the
time-reversal symmetry at the level of the probability distribution describing the
nonequilibrium steady state.

In the following section, selected studies of nonequilibrium nanosystems will be
reviewed.

13
Mechanical Nanosystems

The mechanical systems considered in this section are Hamiltonian systems which
conserve their total energy in the absence of external driving force.

1.3.1
Friction in Double-Walled Carbon Nanotubes

Carbon nanotubes have remarkable properties which have been systematically in-
vestigated since their discovery in 1991 [79]. They appear in the form of nested
coaxial tubes called multiwalled carbon nanotubes (MWCNT), which can move rel-
ative to one another, presenting the possibility of fabricating mechanical devices at
the nanoscale. The relative sliding motion of nested carbon nanotubes was demon-
strated in the experiment of Cumings and Zettl [80]. More recently, Fennimore
et al. [81] and Bourbon et al. [82] used multiwalled carbon nanotubes as the shaft of
rotary motors or actuators. In multiwalled carbon nanotubes, the different coaxial
tubes interact with each other by the same van der Waals interactions as between
graphene sheets in graphite. Whether the relative motion of nested nanotubes is
translational or rotational, the mutual interaction between the nanotubes is the
cause of friction and energy dissipation. This friction is a fundamental preoccu-
pation in nanotribology, which requires the use of nonequilibrium statistical me-
chanics at the nanoscale, as explained below.

We now turn towards double-walled carbon nanotubes (DWCNT) [83-86]. Car-
bon nanotubes can have different geometries depending on the way the graphene
sheet is rolled onto itself in order to form the nanotube. The different geometries
are specified by the integers (n, m) with 0 < |m| < n, which define the chiral vec-
tor naj + ma, giving the equator of the nanotube in terms of the lattice vectors a,
and a, of the hexagonal lattice of graphene. The diameter of the nanotube can be
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Figure 1.1 (a) The armchair—armchair DWCNT

(4,4) @ (9,9) with respectively Ny = 400 and N, = 900 car-
bon atoms. (b) The zigzag-armchair DWCNT (7,0)@ (9,9) with
N7 = 406 and N, = 900. Both DWCNTs have outer diameter
13.2 A and length 61.5 A [84].

evaluated by
d= %\/ n2+m?+nm (1.65)

with a ~ 2.5A [87]. The so-called armchair nanotubes correspond to the inte-
gers (n,n), the zigzag ones to (n,0), and the chiral nanotubes to (n,m) with
n # m [87]. Double-walled carbon nanotubes are denoted as (n1, m1)@(n2, m;)
(see two examples in Figure 1.1).

The carbon atoms within the inner or outer nanotube interact by Tersoff—
Brenner potentials, VT(Q or VT(ZB) respectively [88]. The intertube potential is com-
monly modeled by the 6-12 Lennard-Jones potential

Viy(r) = 4e [(g)u - (%)6] (1.66)

with € = 2.964meV and o = 3.407 A, which was successfully used to study Cgo
solids [89] and the sliding of nanotubes on a graphite surface [90]. Accordingly, the
total Hamiltonian describing a DWCNT can be written as

N Ny
H=T0+ 710+ v+ vig + 33 v, (‘
i=1j=1

A H) : (1.67)

where T and T® are respectively the kinetic energies of the inner and outer
nanotubes. The positions and momenta of the carbon atoms of both nanotubes are

(a)) Ne (ay) Ne
denoted by {ri } ) and { P; } ) with a = 1 (resp. a = 2) for the inner (resp.
= =

outer) tube. The kinetic energies are given by T = Zf\]:"l (p(i”))2 /(2m), where
m = 12 amu is the mass of a carbon atom.

The molecular dynamics of the DWCNT system can be simulated by Hamilton’s
equations (1.2). The molecular dynamics conserves the total energy E = H, the
total linear momentum, as well as the total angular momentum. The phase-space

volumes are preserved according to Liouville’s theorem. The molecular dynamics
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are carried out with a velocity Verlet algorithm with a time step of 2fs. The total
energy corresponds to a room temperature of about T = 300 K.

Within each nanotube, the carbon atoms undergo thermal fluctuations around
their equilibrium position. Moreover, large amplitude motions are possible be-
tween the two nanotubes which interact with each other by an attractive van der
Waals potential and constitute a mechanical oscillator if they form an isolated sys-
tem. Molecular dynamic simulations reveal three different time scales characteris-
tic of these motions [83, 84]:

e The time scale of the vibration of the carbon atoms around their equilibrium
position is determined by the inverse of the Debye frequency of graphene:
tc ~ 50fs.

e The translational relative motion of the two nanotubes presents inertial os-
cillations with a period of about tp ~ 10 ps if the inner nanotube is initially
extracted from the outer nanotube by a fraction of their common length.

o The relative sliding motion of the two nanotubes is damped by the dissi-
pation of the energy contained in the relative motion. This dissipation is
caused by dynamic friction between the nanotubes, resulting into a rise in
temperature. The relaxation time of the inertial oscillations is of the order
of tg =~ 1000 ps.

We notice that these time scales are separated from each other by several orders of
magnitudes: tc < tp K fg.

The sliding motion of the nanotubes can be translational or rotational. Although
both types of motion can manifest themselves during a single simulation, their
friction properties can be separately investigated.

1.3.1.1 Translational Friction

The translational sliding motion of two nanotubes concerns the relative position r
and velocity v = 7 between the nanotubes. The relative position can be defined
as [84]

r(t) = ey (t) - [RP(t) — RU(1)] (1.68)

in terms of the centers of mass R!Y) and R of both nanotubes. The unit vector e,
points in the direction of the axis of the DWCNT and can be obtained by diagonal-
izing the inertia tensor of the total system and selecting the eigenvector associated
with its smallest eigenvalue. This eigenvector slightly fluctuates around its initial
orientation during the time evolution, which justifies its use in order to define the
relative position by (1.68).

The relative position of the nanotubes admits a reduced description in terms of
a Newtonian equation of Langevin type:

dZT’ _ dVL](T')

Y2 = a4
where u = m (N; ' + Nz_l)_1 is the relative mass of the DWCNT system. The
force in the right-hand side of (1.69) has three contributions.

+ Fict + Fuct(t) (1.69)
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Figure 1.2 Plot of the total Lennard-Jones potential V{; versus
the distance r between the centers of mass of the nanotubes
for (a) the armchair-armchair (4,4)@(9,9) and (b) the zigzag-
armchair (7,0)@ (9,9) DWCNTs [84]. The insets show that the
force decreases with the temperature because of dilation.

The first contribution is the force of the V-shaped potential

V(r)=Fyr2+4¢*—-C~F|r|-C (1.70)

due to the van der Waals interaction between the two nanotubes (see Figure 1.2).
This potential is obtained by averaging the interaction at a fixed relative position r
between the nanotubes. We notice the absence of corrugation because of the aver-
aging. The V shape finds its origin in the proportionality of the interaction potential
with the number of van der Waals bonds between the nanotubes. The potential is
parabolic around its minimum because of thermal fluctuations around the config-
urations with the maximum number of bonds. If the energy of the relative motion
is not too high, the potential forms a well in which the motion presents oscillations
which would persist if dissipation could be neglected [91]. This inertial oscillator is
anharmonic with a period of about tp =~ 10 ps.

The second contribution to the total force in (1.69) is the dynamic friction force:

dr dr?
Fice = — Fri o (E) (1.71)
with the friction coefficient { given by Kirkwood formula (1.17). The force—force
correlation function decreases to zero over the time scale of vibration of the car-
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Figure 1.3 Friction coefficient calculated by the Kirkwood for-
mula (1.17) versus the relative position r between the nano-
tubes for (a) the armchair-armchair (4,4)@(9,9) and (b) the
zigzag-armchair (7,0)@ (9,9) DWCNTSs [84].

bon atoms around their equilibrium position in graphene [83]. This time scale
is determined by the inverse of the Debye frequency wp of graphene, that is,
tc ~ 2n/wp =~ 50fs. According to the Kirkwood formula (1.17), the friction co-
efficient can be estimated to be { ~ tcAF?/(2kgT) = nAF?/(wpksT) where
AF is the standard deviation of the fluctuating intertube force. The latter increases
with the temperature T approximately as AF ~ T so that the friction coefficient
also increases as § ~ T [83].

The force—force correlation function should be evaluated by fixing the relative
position r between the nanotubes. This is carried out by constrained molecular dy-
namic simulations [83, 84]. The constraint is enforced by modifying the force on all
of the atoms of each nanotube according to F Ea) — F Ea) — (1/Nyg) Z?]":l F (j“). This
modification has the required effect of canceling the acceleration of the centers of
mass of each nanotube, while conserving the total energy E. This method gives the
dependence of the friction coefficient on position as seen in Figure 1.3. There we
observe that the friction coefficient has a slow dependence on position, justifying
that the friction coefficient is taken to be a constant in (1.71) at the approximate
value { ~ 6amu/ps for the present case [84]. We notice that the friction coeffi-
cient also depends on properties affecting the intertube interaction, such as the
distance between the nanotubes, the ends of the nanotubes, deformations, defects,
or possible impurities composed of atomic species other than carbon.

Although the dynamic friction force is proportional to the velocity at moderate
sliding velocities, nonlinear dependences on the sliding velocity become important
at larger velocities. These nonlinear effects appear in the form of resonances at spe-
cific values of the sliding velocity where dynamic friction is enhanced because of
the excitation of radial breathing modes of the outer nanotube. This phenomenon
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was first observed in the oscillatory system described above [84], as well as in oth-
er systems where a finite inner nanotube moves at given sliding velocity inside
an infinitely long outer nanotube [92]. This latter configuration allows a precise
determination of the resonant velocities. If the nanotubes move at the relative ve-
locity v, the spatial period a = 2.5 A of the corrugation of the intertube potential
results in the periodic driving at the washboard frequency wy, = 2mv/a. Thus,
resonances are possible when the washboard frequency wyy, coincides with some
vibration frequency. The vibration modes of the nanotubes and, in particular, of
the outer tube form a spectrum of dispersion relations w = w;(k) characterizing
the acoustic and optical phonons of each nanotube. Phonons of type i and wave
number k are excited if the resonance condition wy, = w;(k) is satisfied together
with a further condition selecting the resonant values of the sliding velocity. This
further condition can be shown to be given by the equality of the sliding velocity
with the group velocity of the excited phonons: v = dw;(k)/dk [92]. More recent-
ly, a related phenomenon of chiral symmetry breaking has been discovered in the
sliding dynamics of DWCNTs made of perfectly left-right symmetric and nonchi-
ral nanotubes [93]. These phenomena of dynamic friction enhancement find their
origin in the nonlinear dynamics of DWCNTs.

We notice that the DWCNT system is a weakly under-damped oscillator [83—
85]. Therefore, molecular dynamics simulations show many oscillations which are
slowly damped because the friction coefficient is relatively small. Figure 1.4 depicts
the amplitudes R(t) of the successive oscillations during the relaxation. The results
of molecular dynamics are compared with the prediction of the model (1.69) that
these amplitudes are exponentially damped as R(t) = R(0)exp(—Irt) with the

O Il Il Il Il
0 500 1000 1500 2000 2500 3000 3500 4000
time (ps)

Figure 1.4 Evolution of the amplitude of the damped oscilla-
tions for (a) the armchair-armchair (4,4) @ (9,9) and (b) the
zigzag-armchair (7,0)@ (9,9) DWCNTSs [84]. The numerical re-
sults of molecular dynamics (solid lines) are compared with the
theoretical expectation of the model (1.69) (dashed lines).
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damping rate I'r = 2§/(3u). The damping of the oscillations means that the ener-
gy of the one-dimensional sliding motion of the two nanotubes is dissipated in the
many vibrational degrees of freedom of each nanotubes, which indeed undergo a
rise in temperature from 300 K at the beginning of the simulation up to 338 K after
relaxation.

The third contribution to the total force in (1.69) is the fluctuating Langevin
force which is present as a corollary of dynamic friction force by the fluctuation-
dissipation theorem. Accordingly, the Langevin force is taken as a Gaussian white
noise satisfying

(Faua(t) = 0 (1.72)

(Fﬂuct(t)Fﬂuct(t/» = ngB Té(t_ t/) (173)

for |t—t’| > tc, in consistency with the Kirkwood formula (1.17). As a consequence
of the smallness of friction, the fluctuating force is also small and plays a significant
role only after the large amplitude oscillations have been damped and no longer
overwhelm thermal fluctuations in the relative motion between the nanotubes. The
Langevin fluctuating force thus describes a state of thermodynamic equilibrium in
the sliding motion. For the total system, this equilibrium state is microcanonical at
the energy of the initial conditions of each molecular dynamics simulation. Since
the total system has many degrees of freedom, f = 3(N; + N;) >~ 3900, the equi-
librium statistical distribution of each degree of freedom is practically canonical
at the temperature corresponding to the initial total energy. The equilibrium fluc-
tuations of the relative position between the nanotubes remain very small, on the
order of a fraction of a nanometer as seen in Figure 1.5.

02 T T T T T T T

(b)
0 500 1000 1500 2000 2500 3000 3500 4000
time (ps)

Figure 1.5 Equilibrium fluctuating oscillations of the rela-
tive position between the nanotube mass centers for (a) the
armchair—armchair (4,4)@(9,9) and (b) the zigzag-armchair
(7,0)@(9,9) DWCNTs [84].
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As explained in Section 1.2.1, the stochastic process described by the Langevin
equation (1.69) admits an equivalent description in terms of a Fokker—Planck equa-
tion such as (1.18) for the probability density of the relative position and velocity
between the two nanotubes:

P(rv,t) = / O[r—r)]o[v—vl)]p, tydrI . (1.74)

This Fokker—Planck equation describes, in particular, the relaxation towards a state
of equilibrium such as (1.20) [84]. This relaxation is characteristic of isolated sys-
tems with a few slow degrees of freedom coupled to baths of many fast degrees
of freedom. The Poincaré recurrences back close to initial conditions are extreme-
ly long in an individual system, but they never occur in the statistical ensemble
composed of infinitely many copies of the system described by the probability dis-
tribution p(I, t), if the dynamics has the ergodic property of mixing. Molecular
dynamics shows that this property is practically fulfilled at a temperature of 300 K.

1.3.1.2 Rotational Friction

Besides translational sliding motion, the two nanotubes may rotate relative to one
another (see Figure 1.6a). A friction property can be associated with this rotatio-
nal motion [85], which is of importance in shafts of nanomachinery made of
MWCNTs [81, 82]. For an isolated DWCNT, the total angular momentum is con-
served. For sufficiently long DWCNTS, the inner and outer nanotubes essentially
rotate around a common axis with their respective angular velocities {w1, w,} and
angular momenta {L;, L,}. Under these circumstances, the rotational motion can
be supposed to be one-dimensional and ruled by the coupled equations

dL1 I da)1 N

—— = h— =M

dt dt (1.75)
sz - da)z - N, = —N

a a0

where I, denote the moments of inertia around the common axis and N, the
torques acting on each nanotube. These torques are opposite by the conservation
of the total angular momentum L; + L,. The moment of inertia of a nanotube of
radius R, and length [ is given by I, = 270l R? in terms of the surface mass den-
sity 0 = 4m/(3\/§aéc) ~ 4.55 amu/A2 where m = 12amu is the atomic mass of
carbon and acc = 1.42 A the carbon—carbon bond length in the hexagonal lattice
of graphene.

When the relative angular velocity and the angular velocity of the center of inertia
are written as

w=w;— W) (176)

0 = Ilwl + IZ(UZ (177)
L+
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Figure 1.6 (a) Coaxial view of a DWCNT
showing that the outer nanotube can rotate
around the inner nanotube as in the shaft of a
rotary motor [83]. (b) Schematic picture of the
rotary motor built in Berkeley [81]. The metal

It rotates around a shaft made of a MWCNT
attached to its anchor pads (A1, A2). The

rotor is driven by an oscillating electric field
between the electrodes Ej, E; and E3 (adapted
from [81]).

plate rotor R has a size of about 300 nm.

the equations (1.75) become

4o _y
at !
o

— =0
dt

(1.78)

with the relative moment of inertia I = (I;' + I, 1)L

The torque N; = —N, between the nanotubes is determined by the intertube
van der Waals interaction. Since the rotation of one nanotube with respect to the
other does not change the number of van der Waals bonds, the average potential is
essentially flat with negligible corrugation as it is the case for translational motion.
However, a dynamic friction torque proportional to the angular velocity and the cor-
responding Langevin fluctuating torque should be taken into account, as in (1.69).
Accordingly, the relative sliding rotation between the two nanotubes is described
by the Langevin equation

dw

[— = —XW + Nﬂuct(t) B

= (1.79)

where y is the rotational friction coefficient and Ny, (t) is the Gaussian white noise

(Nﬂuct(t)> =0 (180)

(Nfuct(t) Nauer(t)) = 2xkp TO(t — 1) (1.81)

for |t —t'] > tc [85].
This stochastic model accurately describes the molecular dynamics simula-
tions [85]. If the relative angular velocity has a non-vanishing initial value, the
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sliding rotation is damped exponentially with the relaxation time v = I/y until an
equilibrium state is reached where the angle between the nanotubes undergoes a
random walk of diffusion coefficient D = kg T/y. The relaxation time is observed
to behave as 7 = 7o0l/(l + lp) in terms of the length | of the DWCNT and a
constant [ of the order of the nanometer [85]. Hence, the relaxation time becomes
independent of the length if the DWCNT is long enough. On the other hand, the
relative moment of inertia is proportional to the length I = 2mol(R;> + R;%)™!
so that the friction coefficient is also proportional to the length of the DWCNT. This
dependence has been shown to be consistent with the proportionality between the
friction force and the intertube contact area [85]. Additionally, the rotational friction
coefficient is observed to increase with temperature as y ~ T" with the exponent
v = 1.53+0.04 [85]. As for translational sliding motion, the isolated DWCNT is an
undriven nonequilibrium system reaching a state of equilibrium after relaxation
since friction dissipates kinetic rotational energy.

The rotational friction is the cause of energy dissipation in rotary motors using
a DWCNT or MWCNT shaft (see Figure 1.6b). Such nanomotors have been fabri-
cated by attaching a metal rotor plate to a single MWCNT suspended between two
anchor pads, as carried out by a group at Berkeley [81]. The motor is controlled
by voltages between the rotor plate and three surrounding electrodes. All of these
components are integrated on a silicon chip, forming an electromechanical system
with a rotor of about 300 nm and an angular frequency of several Hertz. The fab-
rication of a similar system has been carried out by a collaboration between Paris
and Lausanne [82]. Such nanoelectromechanical devices are driven nonequilibrium
nanosystems where energy dissipation due to rotational friction is compensated by
the electric energy supply.

13.2
Electromagnetic Heating of Microplasmas

1.3.2.1 The Undriven System and Its Hamiltonian
Microplasmas are small mechanical systems composed of atomic ions moving in
a Penning trap [94-96]. Their spatial extension is in the range of micrometers [95].
These systems can be considered as isolated Hamiltonian systems in which energy
is conserved, as long as the system is not subjected to a time-dependent driving. As
for isolated DWCNTS, these systems undergo a relaxation towards a microcanon-
ical equilibrium state if their initial conditions correspond to a given total energy.
Remarkable crystalline-like configurations of the ions have been observed at low
mean kinetic energy [94, 95]. These ordered configurations melt as their kinetic
energy is increased (see Figure 1.7). The dynamics are known to be chaotic with a
spectrum of positive Lyapunov exponents [97].

In a frame rotating at the Larmor frequency associated with the magnetic field
of the Penning trap, the Hamiltonian of the microplasma is given by

Ho= Y [lpg i (1 - V_Z) (52 +y2) + y—zzﬁ} YL sy
—|2 8 4 2 1y
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Figure 1.7 Simulation of Hamiltonian trajectories of five atomic
ions in an oblate Penning trap with y = 0.7. The total angular
momentum in the z-direction is vanishing. The total energy
(1.82) is (@) E = 1.6, (b) E = 1.7,and (c) E = 2.

in terms of the momenta p, = (Pxa PyarPza) and the distances r,, =
V(%a — %)% + (ya — ¥b)? + (2a — 2p)? between the ions (a,b = 1,2,...,N).
The parameter y controls the geometry of the trap. The trap is elongated or
prolate if 0 < |y| < (1/+/6), spherical if |y| = (1/+/6), and flat or oblate if
(1/V6) < Iyl < (1/¥2).

1.3.2.2 The Driven System and the Fluctuation Theorem
The microplasma can be heated if it interacts with an electromagnetic wave. In this
case, the Hamiltonian becomes time dependent:

N
H=Hy—A) zsinwt (1.83)

a=1

and Crooks fluctuation theorem (1.57) applies. In order for the forward and reverse
protocols to be identical, the driving is considered over a time interval with an
odd number of half periods, for example, 7 = 37/w. In this case, the Hamiltoni-
an (1.83) is the same at the beginning and the end of the driving so that the forward
and reversed protocols have the same probability distribution of nonequilibrium
work, pr = pr = p, and the difference of free energy is vanishing, AF = 0. In
this case, Crooks fluctuation theorem (1.57) can be expressed as

w w

/ p(W/)dW/:/ AV p(—WdwW . (1.84)
—0o0 —00

The numerical verification of this result is shown in Figure 1.8 for a heated mi-

croplasma of five ions. The effect of heating is seen by the shift of the cumulative

functions away from the mid-pointat W = 0.

We notice that the quantum versions of the fluctuation theorem can also be ap-
plied to atoms, molecules, or ions trapped in quantum states, which might be of
great interest for the control of quantum information devices and other ultracold
systems.




32

1 Nonequilibrium Nanosystems

12—
| —=—[p(W) aw
e exp(BW) p(-W) dW .
[ +JP(— :,.&
. 08 | .
= L |
2
= b |
g L |
206
= L |
E 04 ; ]
B
8 » t/\ A ]
02 L R S VAV a1
1 t
L A -1 4
0 A e N S B
-1.5 -1 0.5 0 0.5 1 1.5
work W
Figure 1.8 Numerical verification of Crooks side (filled squares) and right-hand side (filled
fluctuation theorem for a microplasma of five  circles) of (1.84). The initial distribution is
atomic ions in an oblate Penning trap with canonical with temperature T = 1. The final
y = 0.7 and heated by the time-dependent distribution is no longer canonical. The cu-
external field shown in inset over the time in- mulative function of the negative values of the

terval 7 = 3m/w = 5. The verification of the ~ work (open circles) is shifted with respect to
Crooks fluctuation theorem is the coincidence  the others because of heating.
of the cumulative functions in the left-hand

1.4
Mechanochemical Nanosystems

1.4.1
F1-ATPase Motor

F;-ATPase is the hydrophilic part of the F,F;-ATPase also known as ATP synthase,
which is an adenosine triphosphate (ATP) producing protein common to most liv-
ing organisms [5]. In vivo, the two parts of ATP synthase, F, and F;, are attached to
each other and mechanically coupled by the central y-subunit. The F, part is em-
bedded in the inner membrane of mitochondria and is rotating as a turbine when
a proton current flows across the membrane. This turbine drives the rotation of the
y -subunit inside the hydrophylic F; part. The latter is composed of three a- and
three S-subunits spatially alternated as a hexamer (af); and forming a barrel for
the rotation of the shaft made of the y-subunit [98, 99]. Upon rotation, the y-shaft
induces conformational changes in the hexamer, leading to the synthesis of ATP in
catalytic sites located in each $-subunit.

In their experimental work [100, 101], Kinosita and coworkers have succeeded in
building a nanomotor by separating the F; part and attaching an actin filament or
a colloidal bead to its y-shaft (see Figure 1.9). In vitro, ATP hydrolysis drives the
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Figure 1.9 Schematic representation of the F1-ATPase fixed on a
surface and with a bead attached to its y-shaft [101].

rotation of this nanomotor, transforming chemical free energy from ATP into the
mechanical motion of the y -shaft. This motion proceeds in steps of 120°, revealing
the three-fold symmetry of F;-ATPase [98-100]. The diameter of the F;-ATPase is
10 nm, which makes it one of the smallest motors in nature, with a power of only
about 1071 W.

The rotation of this nanomotor is powered by the chemical energy supplied by
the hydrolysis of adenosine triphosphate (ATP) into adenosine diphosphate (ADP)
and inorganic phosphate (P;):

ATP = ADP + P; . (1.85)

The thermodynamic force or affinity of this reaction is given by the difference of
chemical potential Au between the three species:

[ATP]

. e (1.86)
[ADP][Pi]

Ap = unre — ptapp — up, = Au’ + kg Tln
where the concentrations are counted in mole per liter (M), T is the temperature,
and kg the Boltzmann’s constant. The Gibbs free energy of ATP hydrolysis takes
the value AG® = —Au® = —30.5kJ/mol = —7.3kcal/mol = —50pN nm at the
temperature of 23 °C, the external pressure of 1atm, and pH 7 [102]. We notice that
ATP hydrolysis provides a significant amount of free energy of Au® = —AG? =
12.2kg T above the thermal energy kg T = 4.1 pN nm. At equilibrium, where the
chemical potential difference (1.86) vanishes, the concentrations of ATP, ADP, and
P; satisfy

[ATP] AGY 49%x107°M™! 1.87
s — = X ~ 4, 5 .
[ADP][P;] PosT (1.87)

€eq

showing that ATP tends to hydrolyze into its products. The motor is in a nonequi-
librium state if the concentrations do not satisfy (1.87), whereupon its self-
sustained rotation becomes possible thanks to the chemical free energy (1.86)
supplied by the reaction.

The motor is functioning along a cycle based on the following kinetic scheme.
As reported [101], the first substep, the 90° rotation of the y-shaft, is induced by
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the binding of ATP to an empty catalytic site. The second substep, the 30° rota-
tion of the y-shaft, is induced by the release of ADP and P;. The process can be
summarized by the following chemical scheme

W. § W.
ATP + [0, y(0)] = [ATPY, (6 + 90°)] = [0, 7 (6 + 120°)] +ADP + P; .
~—— W W_,
state 1 state 2 state 1

(1.88)

In state 1, ATP can bind to an empty f-catalytic site @ of F; with the y-shaft at
angular position 6. The binding of ATP fills this catalytic site and induces the 90°
rotation of the y-shaft from y(6) to y (6 + 90°). ATP* stands for any transition
state of ATP between the initial triphosphate molecule to the products of hydrolysis
ADP and P; before the evacuation of the f-catalytic site. State 2 is thus denoted by
[ATP*, y (6 4 90°)]. If the F;-ATPase proceeds to hydrolysis, the products ADP and
P; are released together, which induces the secondary 30° rotation and empties a
f-subunit.

The nanomotor can be subjected to an external torque, for instance, coming from
the proton turbine F,. In a nonequilibrium steady state, the nanomotor has the
mean rotation rate

\% 1 [do 1.89
_<E> (1.89)

2m

in revolution per second and the mean ATP consumption rate

_ [dNarp\  [dNapp\  [dNp
R=< dt >_ < dt >_ <dt > (1.90)

In this steady state, the thermodynamic entropy production is given by

di—szzn—TV—F%R>0 (1.91)
dt T T ~ '
in terms of the so-called thermodynamics forces or affinities, 277/ T and Au/ T,
and the corresponding fluxes or currents, V and R [103]. The two terms in the
entropy production correspond to the possibility of the coupling between the me-
chanical motion and the chemical reaction. It is thanks to this mechanochemical
coupling that ATP is synthesized in vivo from the torque induced by the proton
turbine F, and the rotation of the nanomotor F; is powered in vitro by ATP hydrol-
ysis. We notice that the mechanochemical coupling can be tight or loose depending
on the regime of functioning of the nanomotor [104]. In order to further investi-
gate the properties of the nanomotor, stochastic models have been proposed [105—
108].
The modeling can be carried out at different levels of coarse graining. The finest
level is certainly obtained by molecular dynamics following the phase-space tra-
jectories of all the atoms of the motor and its environment with ATP, ADP and
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P; molecules in water. A stochastic description is obtained by considering the re-
active events of the kinetic scheme (1.88) as random events happening upon the
random arrival and exit of ATP, ADP or P; molecules into or out of the catalytic
sites of the nanomotor. These reactive events correspond to transitions between
the different chemical states of the motor. Since the three catalytic sites can be
either occupied or unoccupied, there is a minimum of six states for the motor,
which corresponds to the two states of (1.88) for a single catalytic site. On the oth-
er hand, the y-shaft takes an angle 6 with respect to the barrel. In each chemical
state, this angle moves in a free-energy potential. Since the motor is nanomet-
ric, this motion is affected by the thermal fluctuations and is thus similar to a
rotational Brownian motion driven by the torque induced by the conformation-
al changes of the barrel. This suggests a continuous-state description in terms
of Fokker—Planck equations for the Brownian motion of the angle 6 in a free-
energy potential corresponding to each chemical state of the motor. These Fokker—
Planck equations should be coupled together by the transitions due to the chemi-
cal reactions [105, 106]. If the motor has six chemical states, the continuous-state
model is thus defined by six diffusion-reaction type, coupled Fokker—Planck equa-
tions [107].

However, if the free-energy potentials present important wells and the time in-
tervals to reach these wells are short compared to the dwell times, the angle 6
can be supposed to jump between discrete values corresponding to the minima
of the potential wells, neglecting the thermal fluctuations of the angle 6 around
these minima. Under these circumstances, a discrete-state description is appropri-
ate, which further simplifies the modeling [108]. Nevertheless, this simplification
carries an assumption of tight coupling between the mechanics and the chemistry
of the motor. Indeed, a discrete-state model in which the different angles of the
shaft uniquely correspond to the different chemical states of the motor supposes a
tight coupling. This is not the case in the continuous-state description where the
angle can take several possible values notwithstanding the chemical state. Accord-
ingly, the comparison between both descriptions is necessary in order to determine
the regimes of loose or tight coupling [104]. This interesting distinction is impor-
tant because the chemical and mechanical efficiencies depend on the quality of the
mechanochemical coupling.

1.4.2
Continuous-State Description

In the continuous-state model [107], the system is found at a given time ¢ in one
out of six chemical states 0 = 1,2,...,6 and the y-shaft at an angle 0 < 6 < 2.
There are six chemical states because the three -subunits can be either empty or
occupied by a molecule of ATP or by the products ADP and P; of hydrolysis. Con-
sequently, the system is described by six probability densities p, (0, t), normalized
according to ZZ:l fozn po(6,t)d6 = 1. The time evolution of the probability den-
sities is ruled by a set of six Fokker—Planck equations coupled together by the terms
describing the random jumps between the chemical states o due to the chemical
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reactions of ATP binding and of the release of the products ADP and P; with their
corresponding reversed reactions [107]:

atpa(oft)'i'a(i]a(oft)
=Y > [P0 )wpr—o(0) = P8, )W—po—or(6)]. (192)

=12 0’'(#0)

where the probability current densities are given by
1
Jo(0,8) = =Didgpo0,1) + 7 [0 Uo0) + 7] pol0. 1) (1.93)

The diffusion coefficient D is expressed in terms of the friction coefficient § accord-
ing to Einstein’s relation D = kg T/{. The friction coefficient { can be evaluated
for a bead of radius r attached off-axis at a distance x = rsin a from the rotation
axis according to

& =2nnr’(4+3sin’a), (1.94)

with the water viscosity 7 = 1072 pN s nm~2 and a = m/6[102, 107].

When the motor is in the chemical state o, the y -shaft is subjected to the external
torque 7 and the internal torque —dy U, due to the free-energy potential U,(6) of
the motor with its y-shaft at the angle 6. Applying an external torque to the motor
has the effect of tilting the potentials into U,(6) — 76, which eases the rotation
or makes it harder, depending on the sign of 7. These free-energy potentials have
been fitted to experimental data and are depicted in Figure 1.10 together with the
potentials associated with the transition states of the reactions. We notice that these
potentials generate power strokes if their variations are large with respect to the
thermal energy kg T, which is the case here, except at the bottom of the potential
wells where thermal fluctuations dominate.

The transition rates w,, o/ 4(6) of the reactions are given by [107]

w(0) = ko[ATP]exp {—f [U*(0) — U(0) — Gpp ]} (1.95)
w_(0) = koexp {~B[U*(0) - U(0)]} (1.96)
Wy (0) = koexp }—ﬁ [Ui(e) -U (0 + 27“)}} (1.97)
W_(0) = ko[ADP][Pi]exp {—B [ UF(0) — U(0) — Glpp — G|} (1.98)

in terms of the concentrations of ATP, ADP, and P; molecules in the solution sur-
rounding the nanomotor and the free-energy potentials U(6) and U(6) for the
wells and the potentials U¥(0) and U#(6) for the transition states. Equations 1.95—
1.98 represent, respectively, the transition rates of binding and unbinding of ATP,
and of unbinding and binding of ADP and P; to the first -subunit. The other tran-
sitions rates are obtained by 120° rotations of the rates (1.95)—(1.98) in order to
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Figure 1.10 The potentials of the chemi- Us(0) = U(0 —2m/3), Us(0) = U(0 —4xn/3),
cal states U, (6) and of the transition states Uz (6) = U(0), Us(0) = U(6 — 2m/3), and
UZ%(0) with a schematic representation of Us(0) = U(0 — 4m/3) in terms of only the
the transitions between them during the two potentials U(#) and U(0) correspond-
motor cycle [107]. Because of the three- ing to the empty and occupied catalytic sites.
fold symmetry of the Fy motor, the differ- A similar symmetry reduction holds for the
ent potentials are given by Uy (0) = U(0), transition states.

reproduce the threefold symmetry of Fi-ATPase. We notice that the system has a
threefold rotational symmetry but no reflection symmetry, which is attributed to
the chirality of the supramolecular architecture of the F; molecular motor and is
essential for its unidirectional rotation in the presence of its chemical fuel.

The stochastic process ruled by the Fokker—Planck equations (1.92) can be simu-
lated by Gillespie’s algorithm [57, 58], which provides realistic random trajectories
as shown in Figure 1.11. The rotation proceeds by rapid jumps due to the pow-
er strokes generated after each reactive event by the free-energy potentials of Fig-
ure 1.10. Between two successive jumps, the angle undergoes thermal fluctuations
around the minima of the potential wells of Figure 1.10. In this respect, the shaft
performs a random motion with a mean rotation rate fixed by the chemical con-
centrations of ATP, ADP, and P;. For vanishing concentrations of the products of
ATP hydrolysis, the mean rotation rate depends on ATP concentration in a way
characteristic of typical Michaelis—Menten kinetics:

_ Vau[ATP]
~ |ATP] + Ky’

with the constant Ky >~ 16 uM, as depicted in Figure 1.12. At low ATP concen-
tration, the rotation rate increases with ATP concentration. However, the rate satu-
rates at the maximum value Vp,, >~ 130rev/s at high ATP concentration where the
speed of the motor is limited by the time scale of the release of the products, ADP
and P;.

In order to determine the regimes of loose and tight couplings between the
chemistry and the mechanics of the F; motor, both the rotation rate V and the

(1.99)
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Figure 1.11 Stochastic trajectories of the rotation of the y-shaft
of the Fy motor [107]. The number of revolutions 0 (t)/2m is
plotted versus time t in seconds for [ATP] = 2 pM, 20 pM,
2mM, and [ADP][P;] = 0. The diameter of the bead is d =

40 nm. The temperature is of 23 °C. The external torque is zero.
This figure is to be compared with Figure 4 [101].
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Figure 1.12 Mean rotation rate of the y-shaft of the Fy motor
in revolutions per second, versus ATP concentration in mole
per liter for [ADP][P;] = 0 [107]. The diameter of the bead is

d = 40 nm. The temperature is of 23 °C. The external torque is
zero. The circles are the experimental data [107]. The solid line
is the result of the present model.

ATP consumption rate R have been simulated with the continuous-angle mod-
el (1.92) for different values of the external torque v and chemical potential dif-
ference Ay, which are the corresponding affinities. Figure 1.13 depicts the plane
(7, Au) with the curves where either the rotation stops, V = 0, or the ATP con-
sumption rate vanishes, R = 0. The value of the external torque where the rotation
stops is called the stalling torque. The two curves V = 0 and R = 0 intersect at
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Figure 1.13 Chemical potential difference
A in units of kg T In 10 versus the external
torque 7 for the situations where the rota-
tion rate V (circles) and the ATP consump-
tion rate R (squares) vanish in the contin-
uous model (1.92) [108]. The straight line
Au = —2m7/3 where the chemomechani-
cal affinity (1.101) vanishes, A = 0, is drawn
for comparison. The concentrations are fixed
according to [ATP] = 4.9 x 10%3¢=11
and [ADP|[P]] = 10792975 M, in terms

of the quantitya = Au/(kg T In 10). The
bead attached to the y-shaft has the diameter
d = 2r = 80nm and the temperature is of
23 °C. The torque where V = 0 is called the
stall torque. Curves V. = Oand R = Oare
difficult to determine close to the thermody-
namic equilibrium point (v = 0, Au = 0)
because both the rotation rate V and the ATP
consumption rate R are very small in this re-
gion, which explains the absence of dots close
to the origin.

the origin (z = 0, Au = 0), which is the thermodynamic equilibrium point. We
notice that the curve V = 0 is above the curve R = 0 in the plane of the chemical
potential difference Au versus the torque, as it should be in order to satisfy the
second law of thermodynamics (1.91).

We observe that the two curves V = 0 and R = 0 are very close to each other if
the external torque is larger than about —30 pN nm. In this regime, the following
condition is satisfied:

. . 1
tight coupling: V = ER (1.100)
for which one revolution is driven by the hydrolysis of three ATP molecules. In the

tight-coupling regime, there remains a single independent current and its associ-
ated affinity defined as [108]

2n T Au
A= —— — 1.101
3 kgT kg T ( )
N—— ~——
mechanics chemistry
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Consequently, the thermodynamic entropy production (1.91) becomes

. . 14d;S
tight couplingg —— = AR >0, (1.102)
kg dt
which vanishes under the condition Au = —2m7/3, as observed in Figure 1.13 for

—30pNnm < 7 <0.

Beyond this regime, the free-energy potentials U;(0)— 76 are so tilted by the ex-
ternal torque 7 that the rotation can proceed independent of the reaction, and thus
the coupling becomes loose [107]. Therefore, we recover two independent currents
and affinities in the loose-coupling regime.

Chemical and mechanical efficiencies can be introduced for such molecular mo-
tors [103]. In the regime of ATP synthesis under a negative external torque, the ATP
consumption rate as well as the rotation rate are negative, R < 0 and V < 0. In this
regime, a chemical efficiency can be defined as the ratio of the free energy stored
in the synthesized ATP over the mechanical power due to the external torque [103]

AuR

_ , 1.103
e 2ntV ( )

such that 0 < #. < 1. In the regime where the rotation is powered by ATP, a
mechanical efficiency can be defined as the inverse of the chemical efficiency [103]

A (1.104)
Nm = AuR .
l——————7
d =160 nm Al
08 [ [ATP]=49107"M N ]
[ADP]= 10*M
[P]=10"M
506 .
§ nC nm
2
£04 - e
02 - f
O rY L n n 1 n n n 1 n n n
-100 -80 -60 -40 -20 0
torque (pN nm)
Figure 1.14 Chemical efficiency (1.103) atT = Tg, = —27.0pNnm. The con-
and mechanical efficiency (1.104) versus centrations are [ATP] = 4.9 x 1077 M,
the external torque 7 in the continuous- [ADP] = 10™* M, and [P;] = 1073 M. The di-
state model (respectively circles and ameter of the bead is d = 2r = 160 nm with
squares joined by a solid line) and com- a temperature of 23 °C. The predictions of
pared with the prediction (1.105) of tight tight coupling (dashed lines) are respectively
coupling (dashed lines) [108]. The verti- Ne = Tstall /T fOr T < Tgtall, and nm = 7/ Tstall

cal solid line indicates the stalling torque for Tspal < T < 0, with 75, = —27.0pN nm.
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The mechanical efficiency satisfies 0 < 7., < 1 in the regime where the external
torque is negative, while both the rotation rate and the ATP consumption rates
are positive, V > 0 and R > 0. Both efficiencies are depicted in Figure 1.14 and
compared with the values

1 3Au

tight coupling: .= — =—

; e (1.105)
m

expected from the tight-coupling conditions (1.100). This plot confirms that the
nanomotor is functioning above the stalling torque in the tight-coupling regime
and below in a loose-coupling regime. The efficiencies can nearly reach unit values
around the stalling torque where the rotational motion of the motor is very slow
and nearly adiabatic.

1.4.3
Discrete-State Description

In the tight-coupling regime, the rotation of the shaft is directly driven by each
reactive event, which justifies the modeling of the stochastic process by a master
equation for the probabilities in order to find the motor in each one of its different
chemical states [108]

dP,(t)
dt

=3 " [Por () We (0] 0) — Po(t) W—,(0]0)], (1.106)

p,0’

with a sum over the reactions p and the chemical states ¢’ before the transition
0’250 or after the reverse transition 6—>0’. The master equation conserves the
total probability >, Py(t) = 1 for all times t.

The discrete-state model (1.106) can, in principle, be obtained by coarse grain-
ing the continuous-state model (1.92). Since the discrete states correspond to the
angular intervals 6, < 0 < 6, + 27/3 where the y-shaft spends most of its time
while in the chemical state o, the probabilities ruled by the master equation (1.106)
are related to the probability densities of the continuous-state description (1.92) ac-
cording to

0,427/3
P,(t) = / po(6,t)d6 . (1.107)

In general, this method would lead to a non-Markovian master equation. In the
case where there is a net separation of time scales between the dwell times and
the jump times, the non-Markovian effects may be negligible and a description in
terms of a Markovian equation such as the master equation (1.106) may be ob-
tained. This is the situation we now consider.

The quantities W,(0’|0) are the transition rates per unit time from the state ¢’
to the state o due to the reaction p. According to the mass-action law of chemical
kinetics, the reaction rates W, in (1.88) depend on the molecular concentrations in
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the solution surrounding the motor as follows [108]

Wiy = ky[ATP] (1.108)
W, =k, (1.109)
Wiy = kys (1.110)
W_, = k_,[ADP][P;] (1.111)

where the quantities k, (o = %1, £2) are the constants of the forward and back-
ward reactions of binding and unbinding of ATP or ADP with P; while [ATP],
[ADP], and [P;] represent the concentrations of these species. k-1 is the constant of
ATP binding, k—; the ATP unbinding constant, k4, the constant of ATP synthesis,
and k_, the constant of product release. These constants can be fit to data from
experiments or numerical simulations of the continuous-state model. In the latter
case, we notice that the reaction constants are effective constants which depend on
the external torque and are not identical with those entering the definition of the
continuous-state model [108].

An advantage of the discrete-state model is that its solutions can be obtained
analytically [108]. In a stationary state, the mean rotation and ATP consumption
rates are given by [108]

_ Vinax (JATP] — Kq[ADP][Pi]) 1

- —_R (1.112)
[ATP] + Ky + Kp[ADP|[P;] 3

in terms of the constants

1
Vinax = §k+2 (1113)
k—1+k
Ky = ~=Lt F+2 (1.114)
ki
k_
Kp=—2 (1.115)
kit
k_1k— 1 2
Keq = p 1k 2 = exp (AGO—?JTT)
AR B (1.116)
~ 49 %10~ M exp [~ 2
~ 4, P 3T

We recover the Michaelis—Menten kinetics (1.99) for vanishing concentrations of
ADP or P;. An important observation is that the mean rotation and ATP consump-
tion rates, which are the nonequilibrium fluxes of the nanomotor, both have a high-
ly nonlinear dependence on the thermodynamic force or affinity (1.101) driving the
motor out of equilibrium. This mechanochemical affinity allows us to express the
ATP concentration as

[ATP] = K. [ADP][Pj]e” . (1.117)
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The state of thermodynamic equilibrium thus corresponds to the vanishing of the
affinity (1.101), as it should. Substituting (1.117) into (1.112), we obtain the follow-
ing expression for the mean rotation rate [108]

Vinax (€4 — 1)

V:—
A __ 3Vinax ’
e 1+ =—p=

(1.118)

where the coefficient L depends on the concentrations of ADP and P; as well as the
constants (1.113)—(1.116) and controls the linear response of the molecular motor
because

1
LA for A<1

v JikA o A (1.119)
Viax for A>1.

The analytic form (1.118) shows that the rotation rate depends on the thermody-
namic force A in a highly nonlinear way, in contrast to what is often supposed.
The nonlinear dependence is very important as observed in Figure 1.15. The linear
regime extends around the thermodynamic equilibrium pointat Au = 0 where the
function V(A) is essentially flat because the linear-response coefficient assumes the
very small value I ~ 107> s™'. Since the affinity is about A ~ 21.4 under the phys-
iological conditions [ATP] ~ 1073 M, [ADP] ~ 10~*M, and [P;] ~ 1073 M [102],
the rotation rate would take the extremely low value V >~ LA/3 =~ 6.5rev/day if
the motor was functioning in the linear regime. Remarkably, the nonlinear depen-

140
120[| * TADPIP]=10° M
| * [ADPI[P] =107 M2
™ [ADP][P ]
2 " [ADP][P] = 108 M?
5 sof ]
£ 60f ]
g [
£ dof ]
e [
20f ]
(s ]
_20:‘“\“‘\“‘\“‘\“‘\“"
0 4 8 12 16 20 24
f v
eq ksT
Figure 1.15 Mean rotation rate versus the [ATP] = [ADP|[Pi] exp[(Au — Au®)/(ks T)] =~
affinity (1.107) for a zero external torque, 4.9 x 1078 M~ [ADP][P;] exp[Au/ (ks T)] since
in which case the affinity is equal to the Au® = —AG® = 50pN nm. The results of
chemical potential difference Au in units the discrete model (solid lines) are compared
of the thermal energy kg T [108]. The ther- with the continuous model (dots) for three
modynamic equilibrium corresponds to different values of [ADP][P;]. The diameter of
Au = 0. The ATP concentration is given in the bead is d = 2r = 40 nm with a tempera-

terms of the chemical potential difference by ture of 23 °C.
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dence of (1.118) on the affinity A allows the rotation rate to reach the maximum
value Vyax > 130rev/s under physiological conditions.

The fluctuation theorem can be verified from the statistics of the random forward
and backward substeps undergone by the y-shaft of the F; motor, a full revolution
corresponding to six substeps [111]. The graph associated with the stochastic pro-
cess has six vertices simply connected as the edges of a hexagon. Therefore, there
is a single independent current or flux because of the tight coupling between the
mechanical rotation and the chemistry. According to (1.40), we should thus expect
the following fluctuation relation

P(Si = +s) _ oA/

PS5, =5 (1.120)

for the probability P(S; = s) that the nanomotor performs s = S, substeps over
the time interval t. The quantity A is the affinity (1.101) for a zero external torque
T=0.

Figure 1.16 shows that the fluctuation relation (1.120) is indeed satisfied [111].
As seen in Figure 1.16, the probability distribution of the displacements takes a
specific form where the odd displacements are almost never occurring. Indeed, for
the values of the chemical concentrations considered in Figure 1.16, the probability
to be on odd sites is about four orders of magnitude lower than the probability to
be on even sites. Therefore, the system almost never stays on an odd site and im-
mediately jumps to the next or previous site. We notice that the backward substeps
of the motor are possible here because the concentrations are close to chemical
equilibrium. Under physiological conditions, the motor is already far enough from
equilibrium that the backward rotations become very improbable.

L e LA B e o e e e e LA m s e

o o
— I )
7 o G

probability

o
=

Figure 1.16 Probability P(S; = s) (open circles) that the F,
motor performs s = S; substeps during the time interval t =
10* s compared with the expression P(S; = —s) e**/? (crosses)
expected from the fluctuation theorem for [ATP] = 6 x 1078 M
and [ADP][P]] = 1072 M2 [111].
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The theorem 1.2 of nonequilibrium temporal ordering also applies to the molec-
ular motor, showing that their motion is more ordered out of equilibrium than at
equilibrium. If the motion of the shaft of the F; rotary motor was recorded with the
integers w € {1, 2, 3} corresponding to the three main steps, a stochastic trajectory
as depicted in Figure 1.11 would correspond toapath ... w,— 1@, @41 . .. At equi-
librium where the principle of detailed balancing holds, the forward and backward
motions are equiprobable and a typical path ...212132131223132...would contain
short sequences as well as their time reversals, for instance 132 and 231. In con-
trast, the time reversals of typical sequences are less probable out of equilibrium
by the theorem of nonequilibrium temporal ordering. This remarkable property
leads to the emergence of directionality in the rotation of the shaft as observed
in Figure 1.11 where the paths are now restricted to ...123123123123123... For
this nonequilibrium trajectory, the probability of the time reversal 321 of the ob-
served short sequence 123 is essentially vanishing. In the regime of Figure 1.11, the
time-reversed temporal disorder (1.50) is thus very large while the temporal disor-
der (1.48) is very small. According to (1.51), the thermodynamic entropy production
is thus large and positive, confirming that the motor is functioning away from equi-
librium. This example shows that the directionality of the motion of molecular ma-
chines finds its origin in the nonequilibrium driving of these systems. The theorem
of nonequilibrium temporal ordering is thus establishing a fundamental relation-
ship between the second law of thermodynamics and the dynamical order that is
observed, in particular, in biology. Indeed, the metabolism of biological systems is
functioning out of equilibrium thanks to the energy supplied by the environment.
This nonequilibrium driving allows the directionality of the various internal ma-
chines. This directionality means that the motion is dynamically ordered, a concept
often intuitively quoted in biology. Remarkably, this dynamical order finds its fun-
damental understanding with the theorem of nonequilibrium temporal ordering.

In conclusion, the highly nonlinear dependence of the mean rotation rate of
the y-shaft (1.118) on the chemomechanical affinity (1.101) shows that, typically,
the F; motor does not function in the linear-response regime defined by Onsager’s
linear-response coefficients, but instead runs in a nonlinear-response regime which
is more the feature of far-from-equilibrium systems than of close-to-equilibrium
ones. This remarkable property is attributed to the molecular architecture of the
F; motor at the nanoscale, which allows for tight coupling between the mechanical
motion and the chemical reactions powering the motor.

1.5
Chemical Nanosystems

Besides the aforementioned mechanical and mechanochemical nanosystems,
there also exist chemical systems where populations of molecules evolve in time by
reactions. These reactions can take place in a small recipient playing the role of a
reactor, such as catalytic or electrochemical reactions at the surface of a nanoparti-
cle or nanoelectrode. Other examples concern the biochemical reactions occurring
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in the nucleus or the cytosol of biological cells. Such reactions may form networks,
as in the case for the metabolic networks or the genetic regulatory networks in-
side cells. Since the number of molecules is limited in such small systems, their
time evolution is stochastic. These numbers are jumping at the random times
corresponding to the random reactive events. This stochastic process is ruled by
a chemical master equation for the probability that the system contains certain
numbers of molecules of the species involved in the reactions. Such systems are
out of equilibrium as long as the concentrations of these species have not reached
their equilibrium ratios. The systems can be maintained out of equilibrium if the
reactants are continuously supplied to the reactor from some reservoirs and the
products are evacuated. This is the case for heterogeneous catalytic reactions on a
solid surface in contact with a mixture of gases at fixed partial pressures. Since the
reactions only happen at the surface thanks to its catalytic properties, the gaseous
mixture acts as a reservoir containing large amounts of reactants. The reactions
proceed out of equilibrium if the ratios of partial pressures do not take their equilib-
rium values. Since the numbers of molecules at the surface are small with respect
to the numbers in the gaseous mixture, the nonequilibrium constraints can be
maintained for arbitrarily long time intervals. Such nonequilibrium conditions are
also satisfied if the reactants and products are supplied in larger quantities than
the intermediate species. The ultimate situation is a reactive process taking place
on a single molecule such as a molecular motor or a copolymer in the process-
es of DNA replication or protein synthesis. The importance of stochasticity has
been emphasized in the context of genetic regulatory networks inside the cellular
nucleus where the number of DNA molecules is necessarily limited [112, 113].

1.5.1
Chemical Transistor

An example of purely chemical systems is provided by the “chemical transistor”
defined by the network of the following three chemical reactions:

k1 k42 k43
Ri =X, R =X, Ry=X, (1.121)
k—1 k—2 k—3

in which the molecules of the species X can be produced from three different re-
actant or product species coming from different reservoirs. The parameters k, are
the reaction constants. The number X of molecules of the intermediate species X is
a random variable that is incremented by one every time a molecule coming from
a reservoir is converted into X and decreased by one if a reversed reaction occurs.

For this stochastic process, the probability P(X,t) that the system contains
X molecules at time ¢ is ruled by the master equation [20, 21, 53, 54, 109, 110]

d
aP(X, t) = Z[P(X = Vp ) W (X — vl X) — P(X, ) W_o(X|X —v,)],
P

(1.122)
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where v, denote the stoichiometric coefficients of the reactions p = +1, £2, £3.
The transition rates are given by

Win(X|X 4+ 1) = ki p(R)) vy =41 (1.123)

W (X|X—1)=k_,X v_,=—1 (1.124)
with p = 1,2, 3 [114]. The concentrations of the species in the reservoir determine
the mean numbers (R,) = 2[R,] where £ is the volume of the reservoir.

The concentration of the species X is defined in terms of the mean number of
molecules as

(x) 1
X] = =0
X

™2

o XP(X,t). (1.125)

0

This concentration evolves in time according to the following rate equation of
macroscopic chemical kinetics:

d[X
S = Y kIR, - Y kI (1.126)
p P

We notice that the macroscopic kinetic equation is exactly recovered because the
chemical reaction network (1.121) is linear in the sense that the transition rates
(1.123)—(1.124) are at most linear in X. For such linear reactions, the stationary
solution of the master equation is given by the Poisson probability distribution:

o (X)X
Py(X)=e (X)T (1.127)
with the mean value
ki, (R
(x) = Zo bR (1.128)

Zp k_/’ -

The graph associated with the stochastic process has an infinite number of ver-
tices for X = 0,1,2,... Each pair (X, X + 1) of vertices is connected by three
non-directed edges, one for each of the three reactions (1.121). Figure 1.17 depicts
the associated graph as well as alternative choices of maximal tree together with ex-
amples of possible chords defining cycles. Every time a transition occurs on one of
these chords, the corresponding current (1.30) presents a delta peak. The analogy
of this reaction network with a transistor is made by associating the three reser-
voirs with the source, the drain, and the gate of the transistor. Therefore, two in-
dependent affinities that control two independent currents can be defined in such
systems.

By using the cycle which starts from the state X, goes to the state X + 1 by the
chord p = a, and returns to the state X by the edge p = —3, the corresponding
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Figure 1.17 (a) Graph G associated with to the current j; of affinity Aq. (d) Subgraph
the reaction network (1.127) of the “chem- T(G) + | composed of the maximal tree T(G)

ical transistor” [21]. (b) Maximal tree T(G)
obtained after removing all the edges cor-
responding to the reactions p = 1and

p = 2. (c) Subgraph T(G) + | composed
of the maximal tree T(G) and the chord

and the chord | = X p:>2 X + 1, form-

ing a cycle contributing to the current j, of
affinity A,. (e) Alternative maximal tree T/(G)
obtained after removing all the edges corre-
o1 sponding to the reactions p = 2 and p = 3.

| = X — X471, forming a cycle contributing

macroscopic affinity is defined by (1.28) as

A, =1In Wia(XIX+ D Ws(X +11X) | k—skta(Ra) (1.129)
W_o(X + 1| X) Wis(X[X +1) k—aky3(Rs)

for a = 1 or 2, as shown respectively in Figure 1.17c or 1.17d. Therefore, there are
only two independent affinities in this chemical reaction network. These affinities
only depend on the concentrations of the external reservoirs. The state of thermo-
dynamic equilibrium is reached if both affinities vanish, that is, if the following
detailed balancing conditions are satisfied:

i—:’(RP) = (X)eq with p=1,23. (1.130)
These conditions fix the concentrations of two reservoirs in terms of the third reser-
voir R;. The equilibrium states thus depend on the third concentration [R;] =
(R3)/£2 and form a hyperplane of codimension-one in the three-dimensional space
of the concentrations. The distance with respect to this equilibrium hyperplane is
controlled by the two affinities (1.129).
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The independent random fluxes or currents corresponding to the two affini-
ties (1.129) can be defined by (1.30). The generating function of the statistical cu-
mulants of these currents can be precisely calculated and is given by [114]

Q(A1,42) = w |:k—1 e +k_pe* + ks
—3

k_reM +k_jetr 4+ k_
_ 1€ + 2€ + 3 (k—l eAl—ll + k—Z eAz—lz + k_3):|,

ki + ko4 ks
(1.131)

which satisfies the fluctuation theorem (1.36)
QA1 42) = QA1 — A1, Ay — 42) (1.132)

in terms of the macroscopic affinities (1.129). The independent macroscopic flux-
es (1.32) are given by [21]

_ k—1ky3(Rs) A k=2 4y
= PR b 1+ = (et —e™?) (1.133)
k_rky3(R3) A, k1 a, oA
= —14 — (ef2 —eM 1.134
J2 k1 + ko + ks ¢ + k—;3 (e ¢ ) ’ ( )

which can be expanded in powers of the affinities according to (1.42). The Onsager
reciprocity relations (1.43) can be verified as well as their generalizations (1.44)
and (1.45) relating the higher-order response coefficients to the cumulants (1.33)-
(1.35) [114]. The macroscopic expression of the thermodynamic entropy produc-
tion (1.41) is thus recovered. In this reaction network, the fluxes have a strong
nonlinear dependence on the thermodynamic forces or affinities, A; and A,, in
spite of their linear dependence on the concentrations.

This is also the case for the chemical diode which is the special case where the
second reservoir is decoupled from the system by setting k4, = 0. There remains
a single flux between the first and the third reservoir which is given by [21]

k—l k+3<R3> (eAl _ 1) )

=

(1.135)
The flux can become arbitrarily large for positive values of the affinity, but saturates
for negative values. This is the behavior of an electric diode or rectifier.

We notice that the nonlinear dependences of the fluxes on the affinities have
the same origin as those found in (1.118) and Figure 1.15 for mechanochemical
systems.
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1.5.2
Chemical Multistability

An example of a bistable chemical system is given by Schlogl’s trimolecular reac-
tion network [115, 116]

k
A2 X (1.136)
k—1
k2
X £ 2X 4 B. (1.137)
—2

On mesoscopic scales, the reaction is described as a stochastic process ruled by the
master equation (1.122) with the transition rates:

Wii(X|X +1) = ki[A]Q vy =41 (1.138)
W_1(X|X-1) =k X vy =-1 (1.139)
X—-1X-2
W+2(X|X - 1) = k+2X 0 T V4o = -1 (1140)
X—-1
Woo(XIX +1) = ko[BIX=5— v =+1. (1.141)

The macroscopic kinetic equation for the concentration (1.125) of the intermedi-
ate species X is given by

%[X] = ka[A] — k—1[X] — k42fXP + k_o[B]IX , (1.142)
which is obtained from the master equation by neglecting the effects of fluctua-
tions at O(1/8) in the limit £ — oo [20]. This kinetic equation is nonlinear in the
concentration, which leads to a phenomenon of bistability far from thermodynam-
ic equilibrium as observed in Figure 1.18a. Figure 1.18b depicts the entropy pro-
duction, showing that the regime of bistability exists far from the thermodynamic
equilibrium state where the entropy production vanishes. Bistability is a particular
case of multistability, which plays an important role in many nonlinear dissipative
systems, especially in genetic regulatory networks controlling cell differentiation
and its maintenance [54].

A stochastic trajectory simulated by Gillespie’s algorithm [57, 58] is depicted in
Figure 1.18c in the regime of bistability. Because of the fluctuations, the concentra-
tion does not remain forever in one of the two macroscopic steady states but ran-
domly jumps between the upper and lower states. In this nonequilibrium regime,
the stationary probability distribution is not Poissonian [20]. As suggested by the
reaction network (1.136) and (1.137), a current is flowing between the reservoirs
of molecules A and B. The graph associated with the stochastic process is shown
in Figure 1.19 confirming the existence of a single independent current associated
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Figure 1.18 Schlogl trimolecular model
(1.136)—(1.137) with the control parameters

eq.

k+][A] = 0.5, k_1 = 3, and k+2 = k_z =1

(a) Bifurcation diagram of the concentration
[X], obtained from the macroscopic equa-
tion (1.142) (dashed lines) and the stochastic
description for 2 = 10 (solid line). (b) En-
tropy production versus the control concen-
tration [B] given by the macroscopic theory
(dashed lines) and by the stochastic descrip-
tion for 2 = 10 (solid line). The thermody-

namic equilibrium is located at [Bleq = %.
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(c) Stochastic time evolution of the number X
of molecules of the intermediate species X,
simulated by Gillespie's algorithm for [B] = 4
and 2 = 10. (d) Stochastic time evolution
of the quantity Z(t) for the trajectory (c) for
[B] = 4and 2 = 10. The increase of Z(t)
fluctuates between the entropy production
rate of the lower (long-dashed line) and upper
(dashed line) macroscopic stationary concen-
trations, in correlation with the jumps seen in
(c). (Adapted from [20]).

Figure 1.19 Graph associated with the stochastic process of Schlégl’s trimolecular model.

with the affinity

A=ln

Wi (XX + 1) Wi (X + 1] X)

kt1k42[A]

W_1(X + 1| X) W_(X| X + 1)

(1.143)

k_1k_[B]

The generating function (1.31) of the unique current j(t) obeys the fluctuation

theorem Q(1) = Q(A—1).
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An alternative fluctuating quantity has been defined by Lebowitz and Spohn [18]
as the following ratio

Wot 1 (Xol X1) Wty (X0 X5) - == Wepp, (Xn—1] Xi)

Z(t)=ln .
W_p (X1| Xo) W—p, (Xa| X1) -+ W p, (X | Xip—1)

(1.144)

Over long time intervals, this quantity is proportional to the fluctuating current,
Z(t)y~ A jot dt’ j(t'). Accordingly, its statistical average in a stationary state gives
the entropy production

14d;S 1
— 7 — lim —(Z(t))=AT>0. 1.145
A Am p(Zm) = AT = (1.145)
The generating function of the statistical cumulants of the quantity (1.144) is de-
fined as

q(y) = lim 1 In(e™741) (1.146)

t—00 t

and obeys the fluctuation theorem

q(n) =q(l—n). (1.147)

The behavior of the quantity (1.144) in the bistable regime is shown in Fig-
ure 1.18d for the same stochastic trajectory as in Figure 1.18c. Since the entropy
production rate is larger in the upper state than in the lower, the quantity (1.144)
increases faster during the time intervals when the system is in the upper state.
The generating function of this quantity can be calculated numerically and is de-
picted in Figure 1.20 for different values of the reservoir concentration [B] from the
monostable to the bistable regime. In all cases, the generating function is symmet-
ric around 5 = 1/2, as predicted by the fluctuation theorem (1.147), which is thus
verified in this far-from-equilibrium bistable chemical system.

Figure 1.20 Generating function (1.146) of the fluctuating
quantity Z(t) versus 7 in the Schlégl model (1.136)—(1.137) for
ki1[Al = 05 k1 =3, ki, =k =T11[B=12,...,6
and 2 = 10. We notice that () = 0 at the equilibrium
[Bleq = 1/6 (Adapted from [20]).
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We point out that the verification of the fluctuation theorem requires the coex-
istence of direct and reversed reactions in the network (1.136)—(1.137). If the rate
constants k, of some reactions were vanishing, the quantity (1.144) could not be
defined and the thermodynamic entropy production (1.145) would be infinite. In
this case, the reaction network is said to be fully irreversible.

1.5.3
Chemical Clocks

If the chemical reaction network involves two intermediate species X and Y, a self-
sustained cyclic process becomes possible if the system is maintained far from
equilibrium [70]. In such regimes, the chemical concentrations oscillate in time
along a so-called limit cycle which is a periodic solution of the macroscopic kinet-
ic equations [54]. Such rhythmic phenomena have been called chemical clocks [54]
and observed not only in the famous Belousov-Zhabotinsky chemical reaction [117,
118], but also in biochemical reactions and in the regulatory networks at the basis
of circadian rhythms [119]. On mesoscopic scales, the oscillations are affected by
molecular fluctuations and the limit cycle is noisy. The description of such stochas-
tic processes can be carried out in terms of the chemical master equation (1.122)
now extended to the time evolution of the multivariate probability in order to find
the system with given numbers of the different molecular species [54].

A model of oscillatory chemical reactions is provided by the so-called Brusselator
model, which is defined by the following reaction network [120]:

k41
A=X (1.148)
k—1
k-2
B+X=Y+C (1.149)
k—2
ki3
2X+Y = 3X (1.150)

k—3

involving two intermediate species X and Y. The species A, B, and C are supposed
to enter the system with the constant concentrations [A], [B], and [C]. We notice
that the trimolecular reaction network (1.148)—(1.150) can be conceived as the re-
duction of a larger bimolecular reaction network [121]. Because of the autocatalytic
reaction (1.150), the macroscopic kinetic equations are nonlinear and this nonlin-
earity is at the origin of the oscillations. These oscillations persist in the fully ir-
reversible Brusselator where the constants of the reversed reactions are vanishing,
k—1 = k—5 = k—3 = 0, and the thermodynamic entropy production is infinite.
In order to keep the entropy production finite, all of the reaction constants should
take non-vanishing values, which is herein supposed.

At the mesoscopic level, the random reactive events are described as a birth-
and-death stochastic process for the numbers, X(t) and Y(t), of molecules of the
intermediate species. This stochastic process is ruled by a Markovian master equa-
tion for the probability P(X, Y, t) that the system contains the numbers X and Y of
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molecules at time ¢ [20, 21, 53, 54, 109, 110]. For the Brusselator, the transitions
rates of the master equation are given by [122]

Wil (X, Y|X +1,Y) = ki [A] Q (1.151)
W (X, Y|X—1,Y)=k X (1.152)
Wia(X, Y|X —1,Y +1) = kg, [B] X (1.153)
WX, Y|X+1,Y—1)=k,[C]Y (1.154)
Wis(X, Y| X +1,Y—1) = kﬂ%—;w (1.155)
W_3(X, Y|X—1,Y+1) = k*W’ (1.156)

where £ is the extensivity parameter characterizing the volume of the system.

Figure 1.21 shows examples of stochastic trajectories numerically simulated
by Gillespie’s algorithm [57, 58] for different values of the extensivity parameter
£ [122]. The reaction constants and the reservoir concentrations correspond to
the same regime of oscillations. Since the numbers of molecules in the system is
proportional to the extensivity parameter 2, the size of the system increases with
the parameter 2. In the small system of Figure 1.21a, the molecular fluctuations
are so important that regular oscillations are not visible. Indeed, the time autocor-
relation function depicted in the third column rapidly decays to zero before the
completion of a single cycle. Regular oscillations emerge if the system contains
a few hundred molecules at larger values of 2, as seen in Figure 1.21b. In this
case, the time autocorrelation function presents several oscillations before decay-
ing to zero. The oscillations become more regular as the size further increases in
Figure 1.21c and d. For any finite size, the time autocorrelation function presents
exponentially damped oscillations

(X(t) X(0))

X2 1~ e " cos(wt + @) (1.157)

C X X(t) =
with a correlation time proportional to the extensivity parameter y ! ~ Q. The
constant of proportionality can be calculated by the Hamilton—Jacobi method in
the weak-noise limit [123] and determines how the nonlinearities of the reaction
network controls the robustness of the oscillations with respect to the molecular
fluctuations.

Remarkably, the fluctuation theorem (1.147) is satisfied in the far-from-equili-
brium oscillatory regime for both the quantity (1.144) and the fluctuating currents
between the reservoirs [122]. In particular, the generating function of the quanti-
ty (1.144) is symmetric for a reflection around 5 = 1/2, as verified in Figure 1.22.
For [B] = 7, the system evolves in the oscillatory regime of Figure 1.21.

We notice the analogy between the cyclic processes of molecular motors and
chemical clocks. Both types of cyclic processes can be self-sustained if the system
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Figure 1.21 Simulation by Gillespie’s algo- (a) 2 = 10, (b) 2 = 100, (c) £ = 1000,
rithm of the oscillatory regime for the re- and (d) 2 = 10000. The first column de-
versible Brusselator (1.148)—(1.150). The picts the phase portrait in the plane of the
values of the concentrations are [B] = 7, numbers X and Y of molecules. The second
[A] = [C] = 1, and the reaction con- column shows the number X as a function of
stants ky1 = 0.5, ki, = kg3 = 1, time. The third one depicts the autocorrela-
k—y = k—; = k—3 = 0.25. From (a) to tion function (1.157) of the number X, which

(b), the extensivity parameter takes the values:  is normalized to unity. (Adapted from [122]).

is driven out of equilibrium with appropriate thermodynamic forces or affinities.
What is most remarkable is that such nonequilibrium systems are functioning in
regimes of rotations or oscillations, although there is no time-dependent external
driving. The temporal periodicity is an intrinsic feature to the system. Both types
of systems have important differences. The functionality of molecular motors finds
its origin in their molecular architecture with proteins playing the roles of shaft and
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Figure 1.22 The generating function (1.146) ter values, the equilibrium state is found at
numerically obtained for the Brusselator. [Bleg = 0.0625, the steady state is a stable
The extensivity parameter takes the value node for 0 < [B] < 4.030 24 and a stable focus
©Q = 15 while the control parameter for 4.03024 < [B] < 6.366 67. The Hopf bi-
takes the values [B] = 0.5,4,7. There- furcation happens at the critical concentration
action constants and the other concentra- [Blhopr = 6.366 67. Below this critical value,
tions are fixed at the values k17 = 0.5, the steady state is an attractor. Above critical-
k4o = kg3 =1, k1 =k—y = k3 =0.25  ityfor6.36667 < [B], the attractor is the limit
and [A] = [C] = 1. For these parame- cycle of Figure 1.21. (Adapted from [122]).

barrel in the F; motor, for instance. On the other hand, chemical clocks are func-
tioning by the time evolution of molecular populations. One must speculate as to
which is most efficient in generating regular oscillations. The results above show
that populations with several hundreds or thousands of molecules are required for
chemical clocks to emerge from the molecular fluctuations [123]. These sizes are
not significantly different from the numbers of atoms composing molecular mo-
tors, although the molecular architecture tends to confer to the latter well-defined
shapes of their own [7-10].

1.5.4
Chemical Clocks Observed in Field Emission Microscopy

Nanometric chemical clocks have been experimentally observed thanks to field
emission microscopy [124-129]. The principle of this microscopy is the magnifi-
cation provided by an electric field extending from the nanometric tip of a metallic
needle to a fluorescent screen [130].

Under a negative voltage, electrons are emitted by the needle and move along
the lines of the electric field, arriving at the fluorescent screen at the points corre-
sponding to the emission points at the surface of the needle tip. As a consequence,
an image of the surface of the needle is projected on the screen with a magnifica-
tion factor equal to the ratio of the curvature radii of the screen and the needle tip.
This method is called field electron microscopy (FEM).
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An alternative method is field ion microscopy (FIM). In this case, the needle is
subjected to a positive voltage and the vacuum chamber is filled with a gas such as
neon. When the neutral neon atoms collide with the surface of the needle, they are
ionized and the resulting positive ion is projected to the screen along the line of
electric field corresponding to the locus of ionization. The image seen on the flu-
orescent screen is the magnification of the surface of the needle. Since the needle
is crystalline, its surface presents terraces and steps. The electric field is higher at
the steps where the ionization rate is enhanced and, therefore, appear more clearly
on the screen. Invented by Erwin Miiller in the fifties, this was the first microscopy
method that achieved atomic resolution [131].

In the nineties, chemical clocks were first observed in FEM [124, 125] and later in
FIM with a higher (close to atomic) resolution [126, 127]. An example is provided
by the reaction of catalytic water formation from hydrogen and oxygen on rhodi-
um [128, 129]. The electric field at the tip of the rhodium needle is about 12 V/nm.
The rhodium field emitter tip is exposed to a gaseous mixture of hydrogen and
oxygen at fixed partial pressures. The radius of curvature of the tip is of the order
of 10 nm. Since the reaction is concentrated at the tip because of the enhance-
ment of the partial pressures by high electric fields, the field emitter tip constitutes
a nanoreactor. Regular oscillations with a period of 30-40 seconds are observed
around the partial pressures Py, = 2x 1073 Pa, Py, = 2x 1073 Pa, Py,0 = 0, and
temperature T = 550 K. These oscillations are self-sustained because the partial
pressures of hydrogen, oxygen, and water are not in their chemical equilibrium
ratios and the system is driven far from equilibrium.

The oscillations can be explained by the following reaction network [132]

adsorption-desorption of hydrogen:

ka
H, (gas) + 20(ad) = 2H (ad) (1.158)
kan
diffusion of hydrogen:
ki
H (ad) + f(ad) = f(ad) + H (ad) (1.159)

adsorption-desorption of oxygen precursor:

ka
0, (gas) + surface = O, (pre) + surface (1.160)

dissociation of molek(t:iular oxygen and recombination:
0, (pre) + 20(ad) :: 20 (ad) (1.161)
d
oxidation and reduction of rthodium:
O (ad) + @(sub) :: @(ad) + O (sub) (1.162)
red

reaction of water formation:

2H (ad) + O (ad) 3 30(ad) + H,0 (gas) (1.163)
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Both hydrogen and oxygen diatomic molecules undergo a dissociative adsorption
on the rhodium surface. The hydrogen atoms are highly mobile on rhodium. On
the other hand, the oxygen atoms are strongly bounded to the surface and some
of them move below the surface, forming a surface rhodium oxide layer with the
stoichiometry of RhO,. This surface oxide modifies the rate of adsorption of oxygen
on the surface, which is the feedback mechanism at the origin of the oscillations.
Water is formed from the combination of hydrogen and oxygen atoms and desorbs
from the surface. Most of the water molecules leave the surface in a neutral form,
but a fraction is ionized and contributes to the imaging of the surface by FIM.
Remarkable oscillatory patterns are observed in FIM [128, 129, 132]. These pat-
terns have a length scale of tens of nanometers, which is much smaller than the
typical length scales of ten to hundred micrometers for the patterns of reaction-
diffusion processes in heterogeneous catalysis [133, 134]. The nanopatterns of the
reactions observed in FIM can be explained in terms of the structural anisotropy of
the crystalline tip, which results in different catalytic powers for the various exposed
nanofacets [132]. Indeed, the activation energy E{ and the prefactor k2 of each rate
coefficient depend on the crystalline orientation of the nanofacet where the reac-
tion occurs. Each crystalline nanofacet is characterized by its Miller indices (h, k, 1)
or, equivalently, by the unit vector n perpendicular to the corresponding crystalline
plane n = (h, k, 1)/~/h* + k? + I? (see Figure 1.23). Moreover, the activation ener-
gy and the prefactor also depend on the magnitude F of the electric field normal
to the metallic surface. If the tip is supposed to have the geometry of a paraboloid
with a radius of curvature R at its apex, the electric field is known [130, 135] to vary

(h,k,I)

n=

nanofacet (hkl)

Figure 1.23  Ball model of the field the field emitter. We notice that the mean elec-
emitter tip with the unit vectorn = tric field points in the same direction F = Fn
(sin 6 cos ¢, sin 6 sin ¢, cos 0) perpendic- because the electric field is always perpendic-
ular to the nanofacet of Miller indices (h, k,[)  ular to the surface of a conductor such as the
of an underlying FCC crystal. All the balls in- field emitter tip. The (001) nanofacet is at the

side a paraboloid are retained in this model of  tip’s apex. (Adapted from [132]).



1.5 Chemical Nanosystems

Figure 1.24 Series of FIM micrographs cov-
ering the complete oscillatory cycle as well as
the corresponding time evolution of the sub-
surface oxygen distribution on a logarithmic
scale as obtained within a kinetic model of
the field emitter tip. Starting from a surface in
the quasi-metallic state (a) and (d), an oxide
layer invades the topmost plane and grows
along the {011} facets, forming a nanomet-
ric cross-like structure (b) and (e). The oxide
front finally spreads to the whole visible sur-
face area (c) and (f). The temperature, electric

as
Fy

F =

field and partial pressures of oxygen in panels
(a), (b) and (c) are T = 550K, Fo = 12V/nm,
Po, =2 X 1073 Pa, respectively. On the oth-
er hand, the hydrogen pressure in panels (c),
(d) and (e) is Py, = 2 x 1073 Pa in the FIM
experiments and 4 x 1073 Pa in the kinetic
model (1.158)—(1.163). For the subsurface site
occupation, the white areas indicate a high
site occupation value while the dark areas in-
dicate a low site occupation value. (Adapted
from [132]).

(1.164)

where r is the radial distance with respect to the symmetry axis of the paraboloid
and F, is the magnitude of the electric field at the apex of the tip. According to
Arrhenius’ law, the rate coefficient of each reaction can thus be written as

Ef(n, F):|

ke = k2(n, F)exp |:_kB—T

(1.165)

giving the spatial dependence describing the anisotropy of the crystalline tip,
which is necessary to explain the nanopatterns observed in the experiment (see

Figure 1.24) [132].

In spite of the nanometric size of the chemical clocks, the oscillations are regular.
The reason is that the system contains several thousands of adsorbed atoms, which
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is above the minimum number of a few hundred required for regular oscillations
to emerge [123]. Consequently, chemical clocks can exist at the nanoscale.

1.5.5
Single-Copolymer Processes

The theorem 1.2 of nonequilibrium temporal ordering shows that dynamical or-
der may appear in temporal sequences of events if the system is driven away from
equilibrium. If the system had the ability to record the temporal sequence on a
spatial support, the dynamical order would result into spatial order. The idea of
coupling the dynamical order predicted by (1.51) with a spatial support of informa-
tion has been developed in [32] to explain the possibility of information generation
or information processing in nonequilibrium systems such as biosystems. Indeed,
the theorem of nonequilibrium temporal ordering suggests that a nonequilibrium
system can process information thanks to the directionality of its movements.

At the nanoscale, a natural spatial support of information is provided by random
copolymers where information can be coded in the covalent bonds between the
different monomers composing the copolymer chain. This is the idea of the ape-
riodic crystal that Erwin Schrédinger proposed in his well-known book, published
in 1944, What is Life? [136]. As discovered in 1953 by Watson and Crick [137], the
copolymer that codes genetic information is DNA. In DNA coding, a pair of nu-
cleotides composed of about 64 atoms codes for two bits of information at the
nanometer scale. DNA is but one among various types of copolymers in chemical
and biological systems. Such copolymers are synthesized either with or without a
template (see Figure 1.25). Styrene-butadiene is an example of a random copoly-
mer grown without a template. Examples of copolymerizations with a template

AABABAA A
® AABABAA A
%D,/‘/O AABABAA
(a) —O AABABAA
AABABAA
‘é’ AABABAA
® = AABABA
— Y _0 AABA
—O AABA
_42) 8 m 0 0O0—0-—O—- AA
(b) AA
A
(<) space
Figure 1.25 Schematic representations of space-time plot of the growth process of a
(a) a copolymerization process without a tem-  random copolymer composed of monomers
plate, (b) a copolymerization process with a A and B. The spatial sequence of monomers
template. The circles depict the monomers in the grown copolymer is directly determined
and the square predicts the catalyst of poly- by the temporal sequence of random attach-

merization (adapted from [32]). (c) Schematic ~ ments of A or B monomers at each time step.
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are provided by the processes of DNA replication, DNA-mRNA transcription, and
mRNA-protein translation [5].

Copolymerization necessarily proceeds away from equilibrium so that the
growth of copolymers is controlled by the nonequilibrium conditions fixed, in
particular by the chemical concentrations of the monomers in the solution sur-
rounding the growing copolymer. Since copolymers are of nanometer dimensions,
copolymerization processes are affected by the molecular fluctuations and should
be described as stochastic processes. At equilibrium, the principle of detailed bal-
ancing prevents the ordering of temporal events and the possibility to generate
or transmit information. Out of equilibrium, the ordering of temporal events
becomes possible thanks to energy supply. Under this condition, the molecular
motions acquire a directionality, allowing information generation or transmission
(see Figure 1.25c).

1.5.5.1 Copolymerization without a Template

The stochastic growth of a single copolymer @ = m;m;ms--- m; composed of
monomers m; € {1,2,..., M} can be described in terms of a master equation for
the probability P(w, t) in order to find the copolymer w at time t [32, 33]

dP(w,t)

TR Y [P ) W(o'|o) - P(o, 1) W(w|a')], (1.166)

W’

where W(w|w’) is the rate of the transition ® = mimyms---m—>w’ = mymym;
--- myp. During this transition, the length of the copolymer may change as | — I’ =
I + 1 because of the attachment or detachment of a monomer. For many processes
at fixed pressure and temperature T, the ratio of forward to backward transition
rates can be expressed as [6]

W(w|lo') G(w) — G(w')
Wo'lo) P kT

(1.167)

in terms of the free enthalpy G(w) of a single copolymer chain @ surrounded
by the solution. This Gibbs free energy is related to the enthalpy H(w) and the
entropy S(w) of the copolymer w in its environment at the temperature T by

G(w) = H(w) — TS(w). (1.168)

Since the system is described by the statistical distribution P(w, t) giving the prob-
ability in order to find the particular copolymer w at time t, the overall entropy
of the system is given by (1.21) and varies in time according to (1.22) because of
the exchange of entropy (1.23) between the copolymer and its surrounding and the
entropy production (1.24).

The growth may proceed in a regime described by the stationary statistical dis-
tribution u(w) giving the composition of the copolymer chain w, provided that its
length is equal to I [138, 139]. This distribution is normalized as )", u;(w) = 1. In
the regime of stationary growth, the probability distribution of the system becomes

P, ) = p(l, (), (1.169)
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where the time dependence is included in the statistical distribution p(l, t) of the
lengths I of the chains. The mean length of the chains is defined by (1), = Y, I x
p(l, t) and the mean growth velocity

d(1),

is supposed to be constant. Since the statistical composition of the copolymer is
stationary, it is characterized by the mean entropy, enthalpy and free enthalpy per
monomer defined as

1
s= ll_i)rglof;m(w)S(w) (1.171)

1
Ell_i)rgo—Zm(w)H(w) (1.172)
g= hm n o Zm =h—Ts. (1.173)

By substituting (1.169) in (1.21), the entropy of the system can be shown to have
a dominant linear dependence on the mean chain length over long time intervals
and its time derivative can be written as [32]

ds
dar

in terms of the mean entropy per monomer s and the spatial disorder per monomer
defined by the Shannon entropy per monomer [140-142]

v[s + D(polymer)] (1.174)

D(polymer) = hm —= Z wi(w)lnu(w (1.175)

On the other hand, the entropy exchange (1.23) can be expressed in terms of the
enthalpy per monomer as

deS h

—_— =V 1.176

a T (1.176)
so that the thermodynamic entropy production is given by

dS

— =vA>0 1.177

T (1.177)
in terms of the affinity per monomer

= —% + D(polymer) = & 4+ D(polymer) , (1.178)

where ¢ = —g/ T is the driving force of the copolymer growth [32]. This driv-

ing force is positive if the Gibbs free energy decreases as the copolymer grows, in
which case the growth is driven by energetic effect. If the copolymer is random, its
spatial disorder is positive so that the driving force can take negative values down
to its equilibrium value e.q = —D(polymer) where the affinity (1.178) is vanish-
ing. Consequently, a random copolymer can grow by entropic effects in an adverse
free-energy landscape [32, 143].
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1.5.5.2 Copolymerization with a Template

Similar considerations apply to the case of copolymerization processes taking place
with a template given, for instance, by another copolymer [32]. The latter is char-
acterized by the statistical distribution v;(a) of the sequences a of length [, which
is normalized as ), vi(a) = 1. The growing copolymer w now acquires a com-
position which depends on the template a. In the stationary regime, the statistical
distribution of the system can be written as

P, 1) = p(l, hur(w]a), (1.179)

where u(w|a) gives the conditional probability of the copy w given the composi-
tion a of the template over the length I of the copy [32]. The joint probability to find
the copy w and the template « is defined as

W, a) = vi(@um(la) (1.180)
and the probability of the copy w for all the possible templates « is given by
Zvl ayui(wla) =Y uiw, a). (1.181)

The Shannon conditional disorder of the copy grown on a given template is de-
fined as [140-142]

D(polymer|template) = hm —= Zvl a)u(w|a)lnu(w|a), (1.182)

while the Shannon disorder of all the possible copies is still defined by (1.175) with
the probability distribution (1.181). The mutual information per monomer between
the copy and the template is thus defined as [142]

I(polymer, template) = D(polymer) — D(polymer|template)

.1 Hi(w, a)
ll_l)rgoigul(w,a)lnm. (1.183)

The mutual information is always nonnegative and bounded as

0 < I(polymer, template) < Min { D(polymer), D(template)} . (1.184)

Following a similar reasoning, as in the case without a template, thermodynamic
entropy production can be written as (1.177) with the affinity per monomer given
by

A = ¢ + D(polymer|template) = ¢ + D(polymer) — I(polymer, template)
(1.185)

with the driving force ¢ = —g/ T [32]. This fundamental result shows that positive
mutual information becomes possible away from equilibrium where the thermo-
dynamic entropy production and the affinity are positive: The larger the mutual
information, the better the transmission of information between the template and
the copy. This phenomenon can be illustrated for the case of DNA replication [32].
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1.5.5.3 DNA Replication

In vivo, DNA replication is a nonequilibrium process which has a free energy cost
of two ATP molecules for the attachment of one nucleotide [5]. DNA replication
is performed by a whole machinery which separates the two strands of DNA and
catalyzes the growth of two new strands by DNA polymerases. Moreover, an exonu-
clease performs proofreading for the correction of possible errors [144, 145].

The influence of the nonequilibrium constraints has been studied in the case of
the DNA polymerase Pol y, which replicates the human mitochondrial DNA [32].
The human mitochondrial DNA is 16.5kb long and can be obtained from Gen-
Bank [146]. Forward kinetic constants k4, for the incorporation of both correct
and incorrect nucleotides are available [147]. The reversed kinetic constants are
taken as k—,, = k4-mn €7 ¢ in terms of the driving force €, which is the control pa-
rameter of the nonequilibrium constraints. The thermodynamic equilibrium cor-
responds to the value e.q = —In4. The replication process has been simulated by
Gillespie’s algorithm [57, 58].

Figure 1.26a depicts the mean velocity of replication in nucleotide per second as
a function of the driving force. The velocity vanishes at equilibrium and increas-
es towards a maximum value of about 34 nucleotides per second for a large and
positive driving force. On the other hand, the percentage of errors in the repli-
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Figure 1.26 Replication process of human mitochondrial DNA
by polymerase Pol y: (a) Velocity versus the driving force «.

(b) Percentage of DNA replication errors versus the driving
force €. (c) Affinity per copied nucleotide versus the driving
force ¢. (d) Mutual information between the copied DNA strand
and the original strand serving as template, versus the driving
force €. (Adapted from [32]).
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cation process takes the large value of 75% at equilibrium and drops by several
orders of magnitude away from equilibrium (see Figure 1.26b). The percentage of
replication errors does not vanish far from equilibrium and constitutes a source of
genetic mutations. Accordingly, the analysis shows that the thermal and molecular
fluctuations cause replication errors and, thus, mutations.

Since the growth velocity is positive, the thermodynamic entropy production per
copied nucleotide is given by the affinity (1.178) depicted in Figure 1.26c. The lo-
cal minimum around & =~ 0.015 marks the transition between the regime driven
by entropic effect and the one driven by energy effect. On the other hand, Fig-
ure 1.26d shows the mutual information per nucleotide (1.183) between the copy
and the template. This mutual information vanishes at equilibrium and reaches a
plateau at the maximum value I,, >~ 1.337 nats far from equilibrium. Therefore,
the transmission of information between the template and the copy is not possible
at equilibrium, but requires the process to be pushed far enough from equilib-
rium for replication to be accurate. The fidelity of replication is characterized by
the percentage of errors or by the mutual information between the copy and the
template [32].

If the copolymerization process was running too close to the thermodynamic
equilibrium, the mutations would be too frequent to allow replication and self-
reproduction. Therefore, the self-reproduction of biological systems is closely con-
nected to their metabolism, that is, to their nonequilibrium nature. This connec-
tion finds its origin in the aforementioned phenomenon of nonequilibrium tem-
poral ordering. It is remarkable that the ingredients of Darwinian evolution are so
closely related to the basic physico-chemical laws of nonequilibrium nanosystems.
The experimental study of copolymerization processes under tunable nonequilib-
rium conditions awaits the development of new single-molecule techniques such
as nanopore sequencing [33, 148, 149].

1.6
Conclusions and Perspectives

Many nanosystems play an important role because they function out of equilib-
rium. The nonequilibrium constraints allow useful motions to be sustained in
nanosystems as it is the case for molecular motors, electronic nanosystems, or
catalytic nanodevices.

Although nanosystems are affected by thermal and molecular fluctuations,
thermodynamic considerations continue to apply, thanks to recent advances in
nonequilibrium statistical thermodynamics, which have led to the discovery of
new fundamental relationships valid not only close to, but also far from equilibri-
um.

Nanosystems may be isolated or in contact with one or several reservoirs. Be-
cause of their intermediate size between the atoms and the macroscopic objects,
their study requires the connection between different levels of description. Their
microscopic dynamics are ruled by Newtonian or Hamiltonian equations for the
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motions of all the atoms. Often, a few degrees of freedom are relevant to the specif-
ic property of interest in a nanosystem. These few degrees of freedom are typically
slower than the other ones, which results into a separation of time scales justifying
a description in terms of stochastic processes, as explained in Section 1.2. Different
stochastic processes can be envisaged depending on the level of coarse graining of
the relevant quantities. These quantities may be the work performed on a nanosys-
tem by some external force or the currents flowing across the nanosystem. At the
nanoscale, these quantities are fluctuating in time so that their recording over some
time interval generates random temporal sequences called paths or histories. Each
path has a certain probability to occur in a long time series, which defines the prob-
ability distribution characterizing the stochastic process. If the stochastic process
is stationary, the probability distribution is invariant under time evolution. This
is the case at thermodynamic equilibrium where the microcanonical, canonical or
grand-canonical probability distributions describe the statistical averages as well
as the fluctuations of the relevant quantities. This concept of invariant probability
distribution has the subtle feature of remaining a stationary solution of Liouville
equation of time evolution while describing individual systems which are highly
dynamical with incessant temporal fluctuations. The conceptual advantage of prob-
ability distribution introduces two levels of descriptions: (1) the single-system level
which is dynamical and (2) the statistical-ensemble level in terms of a probabili-
ty distribution which can remain stationary and thus invariant in time. Since the
aforementioned equilibrium distributions are functions of the Hamiltonian, they
are symmetric under time reversal if the Hamiltonian is.

Now, the concept of stationary probability distribution extends to nonequilibri-
um nanosystems in which heat or particle currents are flowing across the system
between reservoirs at different temperatures or chemical potentials. Herein, the
quantities of interest may fluctuate and be highly dynamical at the single-system
level and, yet, be described by a stationary probability distribution for the possible
random paths or histories followed by the system. The bonus provided by the prob-
abilistic description is that nonequilibrium states such as chemical clocks, which
are considered as being time-dependent at the macroscale, can nevertheless be de-
scribed by a stationary probability distribution at the mesoscale in the presence of
fluctuations. Indeed, the stationary probability distribution of the paths may lead
to time correlation functions which present (damped) oscillations as illustrated in
Figure 1.21. Thus, there is no incompatibility to describe a system with non-trivial
time evolutions in terms of a stationary probability distribution.

Typically, the mean currents are non-vanishing in such nonequilibrium steady
states as they flow from one reservoir to another in a well-defined direction. Al-
though currents flowing in the opposite direction are possible, both nonequilib-
rium steady states are physically distinct. At the level of the stationary probability
distribution, the paths in the direction of the mean currents are more probable than
their time reversals. This fundamental remark shows that the stationary probabili-
ty distributions of nonequilibrium steady states break the time-reversal symmetry.
This symmetry breaking happens at the statistical level of description and, there-
fore, is perfectly compatible with microreversibility. The latter property only states
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that if Newton’s or Liouville’s equations admit a solution, they also admit its time
reversal as a solution. However, microreversibility does not mean that the solution
and its time reversal should coincide. In the case where they are physically distinct,
which most often occurs, the selection of one out of the pair is breaking the time-
reversal symmetry. This phenomenon is well known in condensed-matter physics
as spontaneous symmetry breaking. Nevertheless, this concept has not been con-
sidered until very recently for the time-reversal symmetry in nonequilibrium sta-
tistical mechanics [34-38].

Remarkably, the relationship (1.51) shows that the thermodynamic entropy pro-
duction is an order parameter for the breaking of the time-reversal symmetry in
nonequilibrium steady states. Indeed, (1.51) gives the entropy production as the
difference between the temporal disorders of the time-reversed and forward paths.
At equilibrium, the forward and reversed temporal disorders are equal because
of the principle of detailed balancing. Out of equilibrium, the time reversals are
less probable than the typical paths so that the time-reversed temporal disorder be-
comes larger than the forward one, which results into a positive thermodynamic
entropy production. Accordingly, a directionality manifests itself away from equilib-
rium, which is expressed by the theorem 1.2 of nonequilibrium temporal ordering.
Most remarkably, the breaking of time-reversal symmetry has been experimentally
verified down to the nanoscale [30, 31]. In this way, the property of irreversibili-
ty that was previously envisaged for macrosystems containing about 10?* atoms
is nowadays considered in small systems containing a few hundred or thousand
atoms.

The time-reversal symmetry breaking of the stationary probability distribution
concerns all of the large-deviation properties of nonequilibrium nanosystems, as
reported in Section 1.2. Amazingly, these properties obey universal relationships
which are the consequence of microreversibility. Such relationships have been dis-
covered in different types of dynamical systems and stochastic processes, and are
commonly called fluctuation theorems [11-27]. Recently, a fluctuation theorem has
been proved for all the independent currents flowing across a nonequilibrium sys-
tem thanks to graph theory [21-23]. This theory allows one to identify the ther-
modynamic forces, also called the affinities [69, 70], as well as the corresponding
random currents by using the cycles of the graph associated with the stochastic
process. To some extent, these cycles play a similar role as the periodic orbits in
dynamical systems theory [38, 47]. Once the affinities are identified in a stochas-
tic process, the symmetry (1.36) can be proved for the generating function of the
statistical cumulants of the fluctuating currents, which is the content of the fluctu-
ation theorem. This generating function provides us with the full counting statis-
tics of the particles flowing across a nonequilibrium system such as an electronic,
photonic, or chemical nanodevices [24-27]. Moreover, the symmetry of the fluctu-
ation theorem for the currents allows us to deduce not only the Onsager—Casimir
reciprocity relations for the linear response coefficients, but also the generaliza-
tions (1.44)—(1.46) of these relations to the nonlinear response coefficients [72].
These generalizations relate the nonlinear response coefficients to the statistical
cumulants (1.33)—(1.35) characterizing the fluctuations. The fluctuation theorem
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for currents has also been proved for open quantum systems and apply to boson
and fermion transport through mesoscopic junctions in electronic, photonic, or
ultracold-atom devices [26, 27].

Additionally, fluctuation theorems have been obtained for Hamiltonian systems
driven by time-dependent forces within Jarzynski's framework [11, 12]. The work
performed on the system is a random variable similar to the number of particles ex-
changed between reservoirs and their fluctuations also obey a symmetry relation.
In this way, the equilibrium free energy of conformation changes can be experi-
mentally measured by folding and unfolding biomolecules [4]. These new funda-
mental results present promising perspectives in our understanding of nonequi-
librium nanosystems, as revealed by the case studies presented in this review.

The mechanical nanosystems considered in Section 1.3 are Hamiltonian and
isolated, and possibly driven by external time-dependent forces.

The double-walled carbon nanotubes (DWCNT) can slide relative to one anoth-
er in a telescopic motion [83-86]. Systems containing about 1300 atoms can be
studied by molecular dynamics simulations, showing that the energy of the sliding
motion is dissipated among the vibrational degrees of freedom of each nanotube.
This dissipation is caused by the friction coming from the van der Waals interaction
between the nanotubes. The methods of Brownian motion theory extends from the
micrometer down to the nanometer. Accordingly, the translational and rotational
sliding motions are described by Langevin stochastic models with dynamic friction
coefficients given by the Kirkwood formula of nonequilibrium statistical mechan-
ics [60]. If the DWCNT system is isolated, it undergoes a relaxation towards a mi-
crocanonical equilibrium state with fluctuations in the sliding motions described
by Langevin equations. However, the internal rotation between the two nanotubes
can be driven by external forces as is the case in nanomechanical devices using
DWCNTs for the shaft of rotary motors. In such devices, the energy continuously
supplied by the external driving is dissipated by the property of rotational friction
described in Section 1.3.

The other example presented in Section 1.3 is the heating of a microplasma by
electromagnetic waves. This is a time-dependent Hamiltonian system to which
Crooks fluctuation theorem applies for the work performed by the time-dependent
electric force on the microplasma. This work represents the energy supplied to the
system and is a random variable depending on the initial conditions. Heating corre-
sponds to a positive value of the work and cooling to a negative value. As described
by the fluctuation theorem, the work is statistically distributed around a positive
most probable value, which corresponds to the heating of the system.

Section 1.4 presents the F;-ATPase motor, which is an example of a nanosys-
tem powered by a continuous supply of chemical energy [100, 101, 105, 106]. Both
the shaft and the barrel of this nanomotor are composed of proteins. The barrel
is a hexamer of proteins, three of which can bind adesonine triphosphate (ATP).
ATP hydrolysis is the source of energy allowing the active rotation of the shaft in
a mean unidirectional motion. The ATP molecules are coming from the aqueous
solution surrounding the protein and they bind in the catalytic sites of the mo-
tor at random arrival times. These arrival times form a stationary random process
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for constant values of ATP concentration. In this regard, the nanomotor does not
need an external cyclic driving, but has its own autonomous cycle as a car engine
at constant gas supply. In the F; nanomotor, ATP hydrolysis is catalyzed by the
conformational change of the protein, inducing the rotation of the shaft by a mech-
anism similar to a camshaft [102]. In this way, the chemical energy is transformed
into mechanical motion at the expense of some dissipation which necessarily re-
duces the efficiency of energy transduction. This process can be investigated in
detail thanks to continuous-state or discrete-state stochastic models [107, 108]. The
regimes of tight or loose coupling between the chemistry and the mechanics of the
motor can be identified. Although the chemical reaction and the mechanical rota-
tion constitute a priori two independent dissipative processes leading to entropy
production, they combine in the tight-coupling regime in such a way that a single
independent dissipative process remains. In this tight-coupling regime, the me-
chanical efficiency can reach its maximum possible value (1.105). Remarkably, the
rotation rate of the nanomotor has a highly nonlinear dependence on the thermo-
dynamic force or affinity driving the system out of equilibrium, contrary to what is
usually supposed. This nonlinear dependence allows the rotation to be much faster
than would be the case if the nanomotor was functioning in the regime of linear
response, whereupon a rotation rate of 130 rev/sec can be obtained under physi-
ological conditions [100, 101]. Consequently, the rotation rate drops to extremely
slow rates close to the equilibrium state and random backward rotations are very
rare, although the fluctuation theorem remains valid [111]. As discussed at the end
of Section 1.4, the directionality of the rotation is directly related to the fact that the
motor is functioning out of equilibrium, which can be understood as the conse-
quence of the theorem of nonequilibrium temporal ordering [29].

Further examples of nonequilibrium nanosystems evolving along an autonomous
cycle are provided by the nanometric chemical clocks described in Section 1.5. In
these systems, the time evolution concerns the populations composed of many
identical molecules of small size, instead of the motion of mechanical pieces
formed by large rigid molecules as carbon nanotubes or proteins. If the molecu-
lar architecture is instrumental to the mechanical rotation of molecular motors,
it plays a secondary role in chemical clocks where the chemical concentrations
of some intermediate species undergo oscillations. At the macroscale, these con-
centrations obey kinetic ordinary differential equations established by the laws of
chemical kinetics [54, 70]. These equations are nonlinear if the reaction network
contains autocatalytic steps. Far from equilibrium, their solutions may undergo
bifurcations leading to bistability, limit cycles, or even chaotic attractors. At the
nanoscale, the populations contain hundred or thousand molecules so that the
reactive events induce random jumps in the concentrations, whereupon their time
evolution is stochastic. Such stochastic processes can be driven out of equilibrium
if the reactants and the products are supplied in proportions different from their
chemical equilibrium values, in which case a source of chemical free energy main-
tains the matter fluxes from the reactants to the products. These fluxes are similar
to the currents across an electronic circuit and obey a fluctuation theorem which is
remarkably valid far from equilibrium, as shown in Section 1.5 for bistability in the
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Schlégl trimolecular model [20] and for oscillations in the Brusselator model [122].
As illustrated with the chemical transistor, the fluctuation theorem allows us to
recover the Onsager reciprocity relations for the linear response coefficients and
to verify their generalizations to the nonlinear response coefficients [21, 72, 114].
The discovery of these new relations in the nonlinear response regime constitutes
one of the most important advances in nonequilibrium statistical thermodynamics
since Onsager’s paper published in 1931 [71].

Field emission microscopy reveals the existence of nanometric chemical
clocks [132]. These nonequilibrium nanosystems are the stage of catalytic reac-
tions on metallic surface at the field emitter tip. By the localization of a high
electric field, the tip constitutes a nanoreactor of a few dozen nanometers where
patterns are observed in the coverage of the surface by adsorbed species. In some
regimes, these nanopatterns may oscillate as it is the case in the reaction of water
formation from hydrogen and oxygen on rhodium [132]. In spite of the nanometric
size of the tip, several thousand atoms are adsorbed on the surface so that the
system is large enough to sustain correlated oscillations and behave as a chemical
clock [123]. The observed nanopatterns can be understood in terms of the spa-
tial dependence of the reaction coefficients on the orientation of each nanofacet
composing the tip with respect to the underlying metallic crystal [132].

Further nonequilibrium nanosystems where chemical reactions play a funda-
mental role are those composed of a single copolymer which is growing by the
attachment of monomers coming from the surrounding solution [32, 33]. In this
case, the process is stochastic since the single copolymer is of nanometric size
and the reactive events occur at random with either attachment or detachment
of monomers. These copolymerization processes can take place freely or with a
template. The latter case is fundamental for biology since DNA replication, DNA-
mRNA transcription, and mRNA-protein translation are examples of copolymer-
ization processes. They are powered by a chemical energy supply and, therefore,
proceed in nonequilibrium regimes. For instance, DNA replication requires two
ATP for the attachment of each nucleotide [5]. In this regard, the self-reproduction
closely depends on metabolism. This close connection can be further established
by considering the nonequilibrium statistical thermodynamics of such copolymer-
ization processes. In this way, the thermodynamic entropy of a single copolymer
can be shown to depend on the Shannon disorder in the sequence of monomers
composing the copolymer [32]. This spatial disorder contributes to the thermo-
dynamic entropy production of copolymerization. Accordingly, the growth of the
copolymer can be driven by the entropic effect of this spatial disorder besides the
energetic effect due to the Gibbs free energy of monomer attachment. In the case
of copolymerization with a template, the thermodynamic entropy production also
depends on the mutual Shannon information between the template and the copy,
which shows that nonequilibrium thermodynamics plays a fundamental role in the
control of information processing at the molecular level [32, 33].

These new results pave the way for the statistical thermodynamics of nonequi-
librium nanosystems. They introduce new perspectives in our understanding of
the motions and processes that nanosystems can perform. The thermodynamic
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forces or affinities driving the fluxes and currents can be identified and related
to thermodynamic quantities such as energy and entropy, allowing us to study
energy dissipation in nanosystems and their efficiency. Moreover, a new light is
shed on the possible bridges between biology and the physico-chemical laws. In-
deed, biological systems present structures on all scales from the macroscale down
to the nanoscale. The hierarchical organization of living systems often appears in
contrast with textbook physico-chemical systems which are typically homogeneous
such as gases, liquids, and other continuous media. Therefore, the investigation of
nonequilibrium biological processes at the nanoscale is very new. In particular, the
new advances provide conceptual methods to study the metabolism of biological
systems at the molecular level and to shift from 3D to 4D molecular biology.

The new results also concern the dynamical aspects of information and estab-
lish the possibility of temporal ordering in nonequilibrium nanosystems. Indeed,
recent results suggest that the dynamical order characteristic of biological systems
can be understood on the basis of the second law of thermodynamics thanks to
the appreciation of the importance of path probabilities and the breaking of time-
reversal symmetry in the statistical description of nonequilibrium processes.
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2
Thermodynamics of Small Systems
Denis J. Evans, Stephen R. Williams, and Debra J. Searles

2.1
Introduction

Thermodynamics is the study of the flow and transformation of heat into work.
Until recently, our understanding of thermodynamics was largely confined to equi-
librium states. Linear irreversible thermodynamics is a simple extension of the
nineteenth century concepts of equilibrium thermodynamics to systems that are
sufficiently close to equilibrium, that intensive thermodynamic variables can be ap-
proximated by the same functions of local state variables as would be the case if the
entire system was in complete thermodynamic equilibrium. Classical thermody-
namics was limited in application to large systems where intensive thermodynam-
ic functions do not change their values if the system size is increased. This is often
referred to as the “thermodynamic limit”.

In spite of these restrictions, thermodynamics is arguably the most widely appli-
cable theory in physics. Its First and Second Laws are probably held with greater
conviction that any other statements in physics.

In the last fifteen years, three new theorems have been proven that revolution-
ize our understanding of thermodynamics. Firstly, these new theorems remove the
need to take the thermodynamic limit. This allows the application of thermody-
namic concepts to finite, and even “nano” systems. Secondly, these new theorems
can be applied to systems that are arbitrarily far from equilibrium. Thirdly, and
for the first time, these theorems explain how macroscopic irreversibility appears
naturally in systems that obey time reversible microscopic dynamics. Resolution of
the Loschmidt (Irreversibility) Paradox had defied our best efforts for more than
100 years. These theorems remove the need for the Second Law of thermodynam-
ics. That “law” now becomes a limiting (thermodynamic limit) consequence of the
laws of mechanics and the Axiom of Causality: that an event A, can only influence
event B, if A occurred prior to B.

Historically, the first of these theorems, the Fluctuation Theorem (FT), general-
izes the Second Law of Thermodynamics so that it applies to small systems, includ-
ing those that evolve far from equilibrium. It refers to a precisely defined mathe-
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matical function, namely, the dissipation function, and gives a precise statement
of the probability ratio that time-averaged values of this function take on opposite
values. In systems close to equilibrium, this dissipation function is what linear
irreversible thermodynamics terms the rate of spontaneous entropy production.

Typically, the second theorem, the Nonequilibrium Work Relation (WR), provides
amethod of predicting equilibrium free energy differences from experimental infor-
mation taken from nonequilibrium path integrals of “work” functions. These “work”
functions turn out to be the sum of the equilibrium free energy difference and the
time integrated dissipation function for the path.

The third of these theorems, the Dissipation Theorem, shows how the linear and
the nonlinear nonequilibrium response of systems are related to temporal corre-
lations in the dissipation function. The nonlinear response theory, known as the
Transient Time Correlation Function formalism, is just a special case of the Dis-
sipation Theorem, as is the more well known Green—Kubo linear response theory
and the Fluctuation Dissipation Theorem. Each of these theorems refers to the dis-
sipation function in some way. Thus, it is clear that the dissipation function is the
central function in nonequilibrium statistical mechanics and thermodynamics.

Each of these theorems is at odds with a traditional understanding of nineteenth
century thermodynamics. Indeed, conventional thermodynamics would have been
better named thermostatics rather than thermodynamics. Furthermore, these the-
orems are essential for the application of thermodynamic concepts to nanotech-
nology systems which are currently of interest to biologists, physical scientists and
engineers.

2.2
Thermostated Dynamical Systems

Consider a classical system of N interacting particles in a volume V. The microscop-
ic state of the system is represented by a phase space vector of the coordinates and
momenta of all the particles, in phase space — (q;,...qy, P1,---Pn) = (@ P) = T
where q;, p; are the position and momentum of particle i, and the internal ener-
gy is given by Hy(I') = ZL‘N=1 p?/(2m) + @ (q) where @ (q) is the interparticle
potential energy. Initially (at + = 0), the microstates of the system are distributed
according to a normalized probability distribution function f(I°,0). While the re-
sults in this review are generally applicable, in order to demonstrate its application
to realistic systems, we separate the N particle system into a system of interest and
a wall region containing Ny particles. We assume that the wall region contains
many more particles than the system of interest, Ny > (N — Ny ), and write the
equations of motion for the composite N-particle system as,

. P
4=+ G(I)- Fe

Fi(q) + Di(l') - Fe = Sia(l)p; , (2.1)
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where F. is the dissipative external field that couples to the system via the phase
functions C;(I") and D;(I"), Fi(q) = —0P(q)/dq; is the interatomic force on par-
ticle i, and the last term —S;a (") p; is a deterministic time reversible thermostat
used to add or remove heat from the particles in a reservoir region [1-4]. The values
of C;(I') and D;(I") can be set so that particles in the walls do not interact with the
dissipative field. The thermostat employs a switch, S;, which controls how many
and which particles are thermostated, S; = 0;1 < i < (N — Niperm), and S; = 1;
(N = Nigerm + 1) < i < N where Niperm < Ny, and Nperm = Y1y S

The thermostat multiplier can be chosen in a number of ways, such as using
Gauss’ Principle of Least Constraint, to fix some thermodynamic constraint (e.g.,
temperature or energy), or using a Nosé—Hoover thermostat where an equation
of motion is introduced for a [1-4]. Thus, although the equations of motion for
the particles in the thermostating region are modified by the thermostating term,
the equations of motion for the particles in the system of interest are quite nat-
ural. This construction has been applied in various studies (see, e.g., [5-8]). Of
course, if S; = 1 for all i, we obtain a homogeneously thermostated system that
has been studied in detail [3]. We assume that in the absence of the thermostat-
ing terms, the adiabatic equations of motion preserve the phase space volume,
(/) - ['*4 = 0. This is a condition known as the adiabatic incompressibility of
phase space, or AIT [3]. All Hamiltonian systems satisfy this condition. It is worth
pointing out that for constant F,, and appropriate choices of C;(I") and D;(I'), (2.1)
is time reversible and heat can be either absorbed or given out by the thermo-
stat.

One should not confuse a real thermostat composed of a very large (in princi-
ple, infinite) number of particles with the purely mathematical, albeit convenient,
term a. In writing (2.1), it is assumed that the reservoir momenta p; are peculiar
(i-e., measured relative to the local streaming velocity of the fluid or wall). When a
Gaussian thermostat is used, the thermostat multiplier is chosen to fix the peculiar
kinetic energy of the thermostated wall particles

N
Kiherm = Z Sl% = (dCNtherm - 1)kB Ttherm/2 . (22)

i=1 i

The quantity Tiperm defined by this relation is called the kinetic temperature of the
wall, kg is Boltzmann’s constant and dc is the Cartesian dimension of the system.
It is assumed that Nw, Nierm > (N — Niherm) = (N — Nyw). This means that
the entire wall region can be assumed to be arbitrarily close to equilibrium at the
thermodynamic temperature, therefore, Ty = 0Ew [0Sy .

Under adiabatic conditions (i.e., in the absence of the thermostating term) we
have assumed that the phase space is incompressible. Introduction of the thermo-
stating results in phase space compression with a rate given by A = (3/0I")-I". This
leads to a change in the energy due to the thermostating term. For dynamics de-
scribed by (2.1) and thermostated by a Gaussian thermostat, H'*™(I') = Q(I') =
_ZKtherma(r) = _(dCNtherm - 1)kB T:fherma(r) and A(r) = _dCNtherma(r) +
O(1). Therefore, the connection between the phase space compression factor and
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the heat exchange is given by
A(N) =B+ 0(1), (23)

where 8 = 1/(kp Tinerm). When a Nosé—Hoover thermostat is employed, a similar
analysis yields A (') = BQ(T') [3, 9].

One might object that our analysis is compromised by our use of artificial (time
reversible) thermostats. However, the artificial thermostat region can be made arbi-
trarily remote from the system of interest by ensuring that the particles with S; = 1
are far from the system of interest [5, 6, 10]. If this is the case, the system cannot
‘know’ the precise details of how heat was removed at such a remote distance. This
means that the results obtained for the system using our simple mathematical ther-
mostat must be the same as those we would infer for the same system surrounded
(at a distance) by a real physical thermostat (e.g., with a huge heat capacity). We
introduce the thermostat to simplify the bookkeeping of tracking changes to the
phase space volume in open systems that exchange heat with their surroundings.
In open Hamiltonian systems, phase space volumes are not preserved. This math-
ematical thermostat may be unnatural, however, in the final analysis it is a very
convenient, but physically irrelevant device [6].

In [6], a mathematical proof’is given showing that when the thermostating region
has a significantly larger number of degrees of freedom than the unthermostated
system of interest, the Fluctuation Theorem is independent of the mathematical
details of how the thermostating is accomplished. The proofis for an infinite family
of so-called u-thermostats.

The exact equation of motion for the N-particle distribution function is the time-
reversible Liouville equation [3]

af(r,t) 9 _
5 =35 WAL =—UD) AT, (24)

where iL(I) is the distribution function (or f—) Liouvillian and appears in the
propagator for the phase space distribution function (f(I',t) = exp[—iL(I')t]
f(I,0)). The Liouville equation can also be written in Lagrangian form [11],

dfir.y _ d +_
o = fTgp T =—AD) AT, (2.5)

The presence of the thermostat is reflected in the phase space expansion factor,
Ay =0/dI - ', which is A(I') = —dc Nperm @ to first order in Nipern, assuming
AIT. The equation of motion for an arbitrary phase function B(I'), is [11],

B(I'=TI--— =iL(I")B(I), (2.6)
where iL(I") is the phase variable (or p-) Liouvillian and appears in the propagator

for phase variables (B(I'(t)) = exp[—iL(I")t]B(I(0))). The difference between the
fLiouvillian and the p-Liouvillian is iL(I") — iL(I") = A(I"). The time-reversibility
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condition implies that there exists a time-reversal mapping, M" such that I’ =
MT exp(iLt) M T exp(iLt) I". Typically, M (q, p) = (q, —p)-

The solution of (2.5) gives the phase space density at a phase point after evolution
for a period t:

AC(8),1) = exp [— /0 dsA(ﬂs))] A (0),0). 2.7)

If one considers an infinitesimal co-moving phase volume, 0 I, centered on I', for
which the number of ensemble members is conserved, then (2.7) can be used to
determine the time evolution of the phase volume:

ore _ flro),0 _ t
ST~ FTmy exp [/o dsA(F(s)):|. (2.8)

2.3
The Transient Fluctuation Theorem

The first proof of any fluctuation theorem was for a special case of what is now
known as the Evans—Searles Transient Fluctuation Theorem (ESFT). Here, we give
a very general proof. Consider the response of a system initially in some known
but arbitrary distribution,

/ exp[—F(I")]

0= T4 expi— () 29
where F(I") is some arbitrary single-valued real function for which f(I’,0) =
F(MTT’,0). I'" is the extended phase space vector which includes the phase space
vector I" and may include additional dynamical variables such as the volume or
those associated with the thermostat. In the following, we drop the prime in cases
where the treatment is not altered and note where consideration of an extended
phase space is important.

Consider any system whose dynamics is described by deterministic, time-
reversible equations of motion. The equations of motion may have an applied
dissipative field as in (1), or the field may be zero. If the field is zero, then in order
to see anything interesting, the initial distribution should not be preserved by the
equations of motion (if it is preserved, then the ESFT is completely trivial). On the
other hand, if a dissipative field is applied, then it is often useful to consider the
case where the initial distribution is the equilibrium distribution for the field free
dynamics.

We assume the unthermostated equations of motion satisfy the AII" condition.
A thermostat may be added as in (2.1), but again, this is not absolutely essential.
However, the equations of motion must be time-reversal symmetric.
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80 | 2 Thermodynamics of Small Systems
The dissipation function, Q (I'), is defined as [12, 13]:

/ dsQ (I'(s)) _ 1y PU0),00)
)

p(F*(O ,6F*)
L (Ar.0) [
_ln(ﬂrm,m) , AN ds
= Qtt

(2.10)

where I'*(0) = MTT(t) is the time-reversal mapped image of I'(t) (the end-
point of the trajectory starting at I"(0)), as shown in Figure 1, and p(I"(0),01") =
f(I(0),0)0I is the probability of observing ensemble members inside the in-
finitesimal phase volume O I', centered on the phase vector I'(0), according to the
initial equilibrium distribution function, f(I"(0),0)".

In order for the dissipation function to be well-defined, for any f(17(0),0) # 0,
then f(I'(t),0) # 0, and vice versa. This is known as the ergodic conststency con-
dition for the d1551pat10n function [12]. There are systems that fail to satisfy this
condition. For example, if we let the initial distribution be microcanonical and fur-
ther assume that the dynamics do not preserve the energy (there may be no ther-
mostat or the thermostat may fix the kinetic temperature or so), then the ergodic
consistency obviously breaks down.

The ESFT[11, 12, 14] states that under the conditions given above, the dissipation
function satisfies the following time-reversal symmetry:

p(Q: = A)

(0= —A) = exp[At], (2.11)

where the notation p (2, = A) gives the probability that the time-averaged dissipa-
tion function takes on a value A+ 9 A. Once the concepts, dynamics and definitions
have been given, the proof of the ESFT is trivial. The probability, p(2, = A), is giv-
en by the integral of the phase space density over the set of all initial phase points
that have a specified value (within the small tolerance) for the time-average of the
dissipation function: p(2, = A,dA) = th(r):A drI" f(I',0). Next, we compute the
probability ratio required in (2.11),

p(Q: = A) _ Ja,roy=a 4T(0) f('(0),0)
P(2i=—A)  Ja,r+oy=—a AT *(0) f(*(0),0)

1) The time-integral of the dissipation ensemble of average is the relative
function can therefore be considered to entropy, or Kullback-Leibler divergence. This
be the difference in surprise of observing has recently been discussed for an adiabatic
trajectories and their time-reverse, according system [111].

to the initial distribution function, and its
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_ Jouwrw=4 970 f(7(0).0)
Jauroy=a 4T () fIT(),0)

B Ja,roy=a 4L (0) f(I'(0),0)
~ Jaroy=a 4T ) exp[A (T (O)] f(I (1), 0)

_ Jaroy=4 470 f(1(0).0)
Jouroy=a 4T (0) exp[— (T ()] f(T (0),0)

= exp[At], (2.12)

where we apply the fact that I'*(0) = MTI(t) is the time-reversal mapped im-
age of I'(t). For time-reversible dynamics, if Q,(I'(0)) = A, then Q,(I'*(0)) =
—A (see Figure 2.1). The third equality is obtained using (2.8), and the final
equality using (2.10). We note that in order for this ratio to be well defined,
fs‘gt(r*(()))=—A dr*(0) f(I'*(0), 0) must be nonzero. That is, the time-reversal map-
ping of the end-points of the trajectory that meet the condition Q,(I"'*(0)) = —A,
must be observable according to the equilibrium phase space density. This is the er-
godic consistency condition for the fluctuation theorem, and is a weaker condition
than the ergodic consistency condition mentioned above. An equivalent relation

Figure 2.1 Schematic diagram showing the construction re-
quired to derive the transient ESFT. Two trajectories that are re-
lated by time-reversal mappings are shown as dotted lines, and
the time evolution of a small phase volume centered on these
trajectories is also shown. The dashed line indicates points re-
lated by time-reversal mappings (MT).
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to (2.12) is given for the time-integral of the dissipation function:

p(2: = A)

The existence of the dissipation function (2.10) requires that the initial distribu-
tion is normalizable, that ergodic consistency holds and that the initial distribution
is invariant under the time-reversal map. This assumption was used in going from
line 1 to line 2 in (2.12). By definition, all equilibrium distributions satisfy this
requirement.

The instantaneous dissipation function can be determined by the differentiation
of (2.10) as

__ 3 oLt 2
QU= =5 T =55 ar /0
9 . . d
=35 rry-rar)- ﬁln f(T,0) (2.14)

and, therefore, Q(I') f(I",0) = —%-(f(F)f(F,0)),thedivergence of I'(I") f(I",0)
(i.e., the dissipation function weighted by the initial distribution is the weighted
divergence of the phase space flow field).

The ESFT has generated much interest, as it shows how irreversibility emerges
from the deterministic, reversible equations of motion?, and is arbitrarily valid far
from equilibrium. It provides a generalized form of the Second Law of Thermo-
dynamics that can be applied to small systems observed for short periods of time.
It also resolves the longstanding Loschmidt Paradox. The ESFT has been verified
experimentally [15-22] (See Section 2.9).

The form of the above equation applies to any valid ensemble/dynamics combi-
nation, provided the distribution function is invariant with respect to time-reversal.
However, the precise expression for Q, given in (2.10) is dependent on both the ini-
tial distribution and the dynamics. This result is extremely general. The ESFT is
so general because its proof requires so few assumptions: the ergodic consistency
and time reversibility of the dynamics.

2.4
Thermodynamic Interpretation of the Dissipation Function

Although the definition of the dissipation function in (2.10) seems quite abstract,
the dissipation function always takes on a physically significant form, which for
systems close to equilibrium has average values which are equal to the spontaneous
entropy production one meets in linear irreversible thermodynamics. Consider the

2) By time-reversible equations of
motion, we mean that there exists a
time reversal mapping MT such that
I = MT exp(iLt)M" exp(iLt)T".
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special case where the kinetic energy Kiperm (") of the thermostated particles is fixed
and the initial distribution is isokinetic for the thermostating region, but canonical
elsewhere. The distribution function is then

f(r,0)= fx(I,0)
_ 6(2 Kiherm — (dC Ntherm — 1) kB Ttherm) eXP[_ﬂ HO(F)]
B j dré(ZKtherm - (dC Ntherm - 1)kB T:fherm) eXP[—ﬁ HO(F)] ’
(2.15)

where Hy(I') is the internal energy of the entire system, and we recall § =
1/(kg Tiherm)- In this case, it is evident [9, 12] that the dissipation function is related
to the generalized entropy production X (I),

Q(y=3(')=-pJ)V-F,. (2.16)

Here, V is the volume of the system of interest and J(I") is the dissipative flux in
the system of interest,

N—Nw P,
~J(N)V-Fe = Z; [2-Di-Fi ¢ Fe
B dHo tot dHo therm_ dH() ad )17
T dt odt ’ (217)

where we have assumed that the field only acts directly on the particles in the sys-
tem of interest. The dissipative flux is thus the work performed on the system by
the dissipative field. It is the “work” because it is the total change in the energy
minus the change due to the thermostat.

Although we assumed a special dynamics where the kinetic energy of the ther-
mostated particles is fixed, the form of (2.16) must be true for other “thermostated”
dynamics (e.g., Nosé-Hoover or constant energy etc., see Appendix 1 of [9]). Fur-
thermore, if the reservoir region does not directly interact with the field and Nierm
is large, and much larger than the number of degrees of freedom in the system
of interest, the form of (2.16) is generally true (e.g., for thermostats where higher
order moments of the momenta are constrained, stochastic thermostats etc.) [6].
The dissipative flux, volume and field are properties of the system of interest and
the only relevant property taken from the thermostated region is its temperature.

One might think that (2.16) is at odds with conventional linear irreversible ther-
modynamics in which it might be expected that the entropy production would be
given by (2.16), except that the temperature appearing there would be the local ther-
modynamic equilibrium temperature rather than, as in (2.16), the equilibrium wall
temperature. Close to equilibrium, the difference between these two temperatures
is O(F?). This further implies that the difference between the dissipation function
and the entropy production conjectured for irreversible thermodynamics is in fact
O(F?). This goes beyond the domain of applicability of linear irreversible thermo-
dynamics which is at mosta O(F2) theory. Thus, to the order that linear irreversible
thermodynamics can be trusted (i.e., O(F2)) close to equilibrium, the dissipation
function is equal to the spontaneous entropy production.
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25
The Dissipation Theorem

We now derive the Dissipation Theorem, which shows that, as well as being the
subject of the ESFT, the dissipation function is the central argument of both lin-
ear response theory (i.e., Green—Kubo theory) and nonlinear response theory. This
theorem was first derived in 2008 [23, 24].

Taking the solution of the Lagrangian form of the Liouville equation (i.e.,

fC(t), 1) = exp [— N ds/l(]"(s))] F(I'(0),0) as given in (2.7)), we can substi-
tute for f(I"(0),0) using the definition of the time-integrated dissipation function
(2.10), thus obtaining

firwn = e[~ [ } r(9.0)
xexp[/ dsQ (I /ds/l :|
O)exp|:/ dsQ(F(s))i|. (2.18)
0

This is valid for any I'(t), therefore we select I'(t) = I'’* and note that this implies
I'(s) = I'*(s—t). Then,

f(r*,t)= f(r'*,0)exp |:/(; dsQ(F*(s—t))]

—t

= f(I'*,0)exp |:— ds/Q(F*(s’))] , (2.19)

0

where the second equality is obtained by introducing s* = s — t. Replacing the
dummy variables gives

—t

f(T,t) = f(T,0)exp [— dsQ(r(s))] . (2.20)

0
This result shows that the propagator for the N-particle distribution function,
exp [—iL(I')t], has a very simple relation to exponential time integrals of the
dissipation function. As shown below, in the case of isokinetic nonequilibrium
dynamics, this equation reduces to (7.2.17) of [23]”. In the case of adiabatic (i.e.,
unthermostated) dynamics for an ensemble that is initially a canonical ensemble,
the result is equivalent to (7.2.8) of [23], which is the distribution function derived
by Yamada and Kawasaki in 1967 [25]. However, (2.20) is much more general and,
like the ESFT, can be applied to any initial ensemble and any time-reversible, and
possibly thermostated dynamics that satisfies AIT .

3) Note that an alternative derivation of (20),
that more closely resembles the approach
used in [3], is given in [23, 24].
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From (2.20), we can calculate nonequilibrium ensemble averages in the Schro-
dinger representation

—t

dsQ(r(s))D (2.21)

(B(t)F,, fir0) = <B(0) exp [—
Fe, f(I',0)

0

and by differentiating and integrating (2.21) with respect to time, we can write the
averages in the Heisenberg representation as

<B(t)>Fe,f(1",O) = (B(0)>f(r,0) +/0 ds <Q(O)B(S))Fe,f(1",0) . (2.22)

On both sides of (2.20)—(2.22), the time evolution is governed by the field-
dependent thermostated equations of motion (2.1). The derivation of (2.21) and
(2.22) from the definition of the dissipation function (2.10), is called the Dissipation
Theorem. This Theorem is extremely general and allows the determination of the
ensemble average of an arbitrary phase variable under very general conditions. Like
the ESFT, it is valid arbitrarily far from equilibrium. Equations (2.20) and (2.21) can
be obtained for time-dependent fields by including the explicit time-dependence
of 2, but (2.22) cannot [26]. As in the derivation of the ESFT, the only unphysical
terms in the derivation are the thermostating terms within the wall region. How-
ever, because these thermostating particles can be moved arbitrarily far from the
system of interest, the precise mathematical details of the thermostat are unim-
portant. Since the number of degrees of freedom in the reservoir is assumed to
be much larger than that of the system of interest, the reservoir can always be
assumed to be in thermodynamic equilibrium. Therefore, there is no difficulty in
defining the thermodynamic temperature of the walls. This is in marked contrast
with the system of interest, which may be very far from equilibrium where the
thermodynamic temperature cannot be defined.

For the special case of isokinetic dynamics where the kinetic energy Kierm(I”) of
the thermostated particles is fixed and if the initial distribution is isokinetic (2.15),
(2.22) can be written as the Transient Time Correlation function expression [23] for
the thermostated nonlinear response of the phase variable B to the dissipative field
F.:

BO)s, ooy = (BO) joiro — BV fo ds (JO)B($)) s, s rgy - Fe - (223)

In the weak field limit, this reduces to the well known Green—Kubo expression [23]
for the linear response

Fleigo(B(t»Fe,fK(l",O) = (B(0) f(r.0) —ﬁV/O ds (J(0) B(s)) p,=o, f(r0) - Fe »
(2.24)

where the right-hand side is given by the integral of an equilibrium (i.e., F, = 0)
time correlation function. The Transient Time Correlation Function (TTCF) in

85



86

2 Thermodynamics of Small Systems

(2.23) has been used frequently to compute the nonlinear transport behavior of
systems over extremely wide values of the applied field [27-33]. For small fields,
the values of field-dependent properties of the system are often swamped by noise
from naturally occurring fluctuations making direct calculation of the left-hand
side of (2.23) or (2.24) problematic. This is particularly relevant regarding the cal-
culation of the transport coefficient which can be obtained from the ratio of the
flux to the field. The TTCF can be applied at any field strength, even zero, where it
reduces to the Green—Kubo expression for the linear response. Equation 2.24 has
the form of a susceptibility equation and, because the correlation function is the
equilibrium one, this equation is valid for time dependent fields.

It is interesting to compare a number of different relationships between the dis-
tribution function, the dissipation function and the phase space expansion factor.
The first such relations are (2.7) and (2.18) above. We note that although the time
argument in (2.20) is negative, the dynamics must still be governed by the field
dependent, thermostated equations of motion (2.1). By rewriting (2.10), we have

(T (t),0) = exp [—/O dsQ(I'(s)) —I—A(I"(s))] F((0),0). (2.25)

In a nonequilibrium steady state (SS), (2 (t)),, = — (A(t))s. We also note that
if the initial ensemble is microcanonical (has a uniform density) and the dynam-
ics are such that the total energy (system of interest plus walls and thermostat) is
constant, then Q (t) = —A(t), Vt.

Rather obviously, the results of the Dissipation Theorem (2.22) can also be used
to obtain a Fluctuation Dissipation Theorem as described in [34] by considering the
case where the phase function B(I") = J(I'). Furthermore, following [34], we find
that when the equilibrium dissipative flux autocorrelation function is d-correlated,
(J(t1) J(t2)) p.—0 = (J(t1) J(£2)O (2 — t1)) p.—o> and we obtain the fluctuation dissi-

pation relation, and Fligo (Jt)g, = —%ﬁV (J(0) - J(O)) g, —p * Fe-

2.6
Nonequilibrium Work Relations

Traditionally, free energy differences between two equilibrium states have been de-
termined by methods based on measuring the work performed along a quasistatic
(equilibrium, reversible) pathway between the two states, or by considering the ra-
tio of the partition functions. The Jarzynski Equality (JE) [35, 36] and the Crooks
Fluctuation Theorem (CFT) [37, 38] provide alternative approaches whereby the
work is measured along an ensemble of nonequilibrium pathways.

The JE and CFT were originally developed for determining the difference in free
energy of canonical equilibrium states at the same temperature; however more
recently, they have been extended to other systems [10, 39-46]. Here, we present
a very general formalism [40] for obtaining the nonequilibrium free energy theo-
rems that can be applied in all these cases. We then show how it leads the usual
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canonical JE and CFT under appropriate conditions (see (2.34) and (2.35) below).
In Section 2.7, the general approach will be employed in order to consider the case
of the physical problem of a varying temperature.

We consider two closed N-particle systems: 1 and 2. These systems may have
the same or different Hamiltonians, temperatures or volumes; it does not matter.
They may have the same or different temperatures or volumes which are again,
irrelevant. In addition, the type of ensemble does not matter, whether microcanon-
ical, canonical, isothermal, or isobaric and so on. A protocol and the corresponding
time-dependent dynamics are then defined that will transform system 1 to sys-
tem 2. The systems are distinguished by introducing a parameter, 4, which takes
on a value 4; in system 1, and 4, in system 2. The transformation is also param-
eterized through A(t) with 1(0) = 1; and A(t) = A,. We define a generalized di-
mensionless “work”, A X (I'), for a trajectory of duration 7, under these dynamics

as in [40],
p1(I'(0), 0 T'(0) Z(1)
AX;
SR AXADN = F(e), 0 (1) 2 (ko)
fl(F(O)YO) I'(0)Z(21) (2.26)

~ fa([(7),0001 (1) Z(22)

where Z(A;) is the partition function for the system with system i. If the sys-

tem is canonically distributed, then Z(A;) is related to the Helmholtz free energy,
A(Ay) = —kgTIn(Z (/l )). For other ensembles, the partition functions are well
known. p;(I',0I') = fi(I')0I is the probability of observing the infinitesimal
phase volume (3F , centered on the phase vector I, according to the initial equi-
librium distribution function f, In order for AX; to be well defined, for any
f1(I'(0),0) # 0, then f5(I'(7),0) # 0, and vice versa. This is known as the ergodic
con51stency for generahzed Work (47].

Although the physical significance of the variable X might seem obscure at this
point, we will show that for particular choices of dynamics and ensemble, it is
related to important physical properties. We identify a1 (z)/dI"(0) as the Jacobian
matrix and note that

ar(r)| _ ol(x)
ar©) || or(o) -

(2.27)

Since the distribution function is normalized and by means of (2.27), it is obvious
that

fo(I'(2),0)0I'(z) Z(22)
Ji(I(0),001(0) Z(21)

(exp[-A X (1)), = / dr'(0) f(1'(0),0)

_ Z(h)
= 2 (2.28)

where the brackets (...); denote an equilibrium ensemble average over the initial
distribution.

This relationship, called a generalized Jarzynski Equality, is widely applica-
ble [40, 47]. It relates the ensemble average of the exponential of a nonequilibrium
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path integral to equilibrium thermodynamic free energy differences. The validity
of (2.28) requires that there is an integrable region in the phase space of the final
equilibrium distribution for which f,(I'(7),0) # 0, that is, [ dI'(z) f2(I'(7),0)
# 0. We call this the ergodic consistency condition for the generalized JE. The
relationship is very general and even applies to stochastic dynamics (see [40]).
The paths do not need to be quasistatic paths as in traditional thermodynamics.
Additionally, other nonequilibrium (even dissipative) processes can be carried out
during the period 0 < t < 7, as is the case with the CFT and JE [48, 49].

The CFT considers the probability, p r(A X, = B), of observing values of AX, =
B + dB for forward trajectories starting from the initial equilibrium distribution
f1(I",0), and the probability p,(A X, = —B) of observing AX; = —B + dB for
reverse trajectories, though starting from the equilibrium given by f,(I",0), as in
Figure 2.2. Proof of the generalized CFT closely resembles the proof of the ESFT
(2.12):

dr'(0) f1(I'(0),0)

pr(AX; =B)  Ax(I'(0)=5
p(AX, = —B) i dr=(0) f2(I"*(0), 0)
AX((T*(0)=—B
dr(0) f1(1°(0), 0)
_ AXA(T(0)=B
[ A fAI(),0)
AX([(0)=B
[ ar(0) f(r0),0)
_ AXq(I'(0)=B
[ AL ) ep[=AX (D) fi(T(0),0)Z(A1)/ Z(22)
AX(I'(0)=B
_ Z(42)
= exp[B]Z(ll) .

(2.29)

Here, we use the fact that '*(0) = M"I'(z), and for time-reversible dynamics, if
AX,(['(0)) = B, then AX,(I"*(0)) = —B, as shown in Figure 2.2.

The derivation of the JE, as shown in (2.28), is trivial once the definitions have
been made. However, a more instructive approach is to obtain it by integration of
the CFT, (2.29):

(exp[-A X;]) = /_ dBpf(AX; = B)exp(—B)
I e _ mZA)
~ [ ampax. - By
_ Z(42)
-0 (2.30)

From the first line of (2.30), it is clear that trajectories for which the value of A X;
is negative have a contribution to the ensemble average that is exponentially en-
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(1)
p

f,(T')7)
P

0 T time

Figure 2.2 Schematic diagram showing the also shown. The dashed line indicates points
construction required to derive the Crooks related by time-reversal mappings (MT). It is
fluctuation relation. Two trajectories related assumed that the time-evolution of 4 for the
by time-reversal mappings are shown as dot- trajectories sampled from fyis A1 — A2, and
ted lines, and sampled from different initial it is reversed for the trajectories that start in
distributions. The time evolution of a small f2 (e, A2 = 41).

phase volume centered on these trajectories is

hanced. Therefore, in order to obtain numerical convergence of the ensemble av-
erage, it is important that these trajectories are well sampled. Many recent studies
have addressed this issue and have developed algorithms in order to improve con-
vergence [50-62]. If the averaging process is not sufficiently exhaustive for these
possibly extremely rare events to be observed, (2.29) and (2.30) will yield incorrect
results. This observation has an immediate impact on the calculation of free ener-
gy differences in the thermodynamic limit. This difference must be calculated in
finite systems for a series of system sizes and then extrapolation must be employed
in order to obtain the thermodynamic limit. If you apply the CFT or JE to extremely
large systems, one will never observe the required fluctuations and incorrect esti-
mates will be inferred.

We now show that these general results lead to the usual canonical forms of
the JE and CFT. The relevant distribution function is the canonical distribution
function,

Ar,0) = w : (2.31)

The thermodynamic potential is the Helmholtz free energy, A, which is related to
the phase space integral of the negative exponential of the Hamiltonian Hy(I") of
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the system?,
A() = —kpTln Z(A)
=—kgTln (/ dr exp(—ﬂHo(F,/l))) . (2.32)

In order to transform from the initial equilibrium state, with A = 4; = 1(0),
to the final equilibrium state with A = 1, = A(7), the functional form of the sys-
tem’s Hamiltonian may vary parametrically over the period 0 < ¢ < 7. For example,

N
Ho(I,A(t)) = X p?/(2m)+ D (q, A(t) where @ (g, A(t)) is the interparticle poten-
i=1
tial. For ¢t > 7, the Hamiltonian’s parametric dependence is fixed at Hy(I", A(7)).
Over the times 0 < t < 7, the ensemble is driven away from equilibrium, and
if the transformation is halted at t = 7, the system will eventually relax to a new

equilibrium state.
Using (2.26), the generalized “work” becomes:

or(o
AX, = B (H()(r(r), A(1)) — Ho(T'(0), 2(0)) + ln[ . rm)

= B(Ho(I'(7), A(%)) — Ho(I"(0), A(0)) — | dsA(I'(s))

= B(Ho(I'(7), A(7))) — Ho(I"(0), 2(0) — AQx)
=AW, . (2.33)

The final equality is obtained from the First Law of Thermodynamics, and the equa-
tions of motion must satisfy AII". We note that if ¢t = 7 at the end of the protocol,
then the system is not in equilibrium and it does not matter. Any subsequent relax-
ation processes will have no effect on A W. Furthermore, at the end of the proto-
col, the system cannot “know” how long the final relaxation process will take [47].
Analogous statements apply for A X in general, and stem from the fact that A X is
defined in terms of the ratio of the partition functions of the two equilibrium states
regardless of the relaxation that takes place after the protocol has ceased (t > 7).

For a system where the phase space is extended due to the introduction of ad-
ditional dynamical variables such as the volume or those associated with the ther-
mostat (such as in the case of Nosé—Hoover dynamics [63], as detailed below), the
work becomes AW, = Hg(I"'(t), A(t)) — Hg(I’(0),A(0)) — AQ,, where Hg is the
Hamiltonian of the extended system [46].

Using (2.29) and (2.33), the CFT is given as

AW, = B z
—piF((A M _;) = explfi Bl " = expl-H(AA - B)] (2.34)

4) We assume that the system’s center of mass
motion is zero.
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where AA = A(L;) — A(Ao), and using (2.28), the JE is
V4
(exp(—BAW,)) = ?2 = exp(—SAA) . (2.35)
1

The same results are obtained for the canonical distribution when the dynamics
are thermostated by a Gaussian thermostat [64], a Nosé—Hoover thermostat [46], or
the dynamics are adiabatic (i.e., unthermostated). For other ensembles and trans-
formations, (2.28) does not necessarily refer to a work (e.g., see [39, 40, 43]).

2.7
Nonequilibrium Work Relations for Thermal Processes

To obtain experimentally applicable forms of these theorems which are valid arbi-
trarily far from equilibrium, it is necessary to introduce a thermal reservoir that
is large and remote enough from the system of interest to effectively remain in
equilibrium. As in Section 2.2, we surround the system of interest with a large
synthetic thermostating region. We wish to consider a realistic model of a system
that is driven away from equilibrium by a reservoir whose temperature is changing
(e.g., see [43]). For this case, the simple parametric change in Hamiltonian or exter-
nal field, usually employed in the derivation of the JE or the CFT, is not applicable
and care is needed in developing the physical assumptions, as in [43, 65].

Here, we address the issue by considering a system of interest containing some
very slowly relaxing constituents, such as soft matter or pitch [66], in contact with
a rapidly relaxing reservoir. The reservoir may be formed from a copper block or
another highly thermally conductive material. Changing the temperature of the
reservoir (e.g., with a thermostatically controlled heat exchanger) then drives the
system of interest out of equilibrium. The change in temperature is slow enough
that the reservoir may be treated to high accuracy, as in undergoing a quasistatic
temperature change. The slowly relaxing system of interest is far from equilibrium.
We have developed generalized versions of the CFT and the JE applied to this sys-
tem. Importantly, the quantities that appear in the theory are physically measurable
variables.

Since we choose the thermostat to be large and remote, details of how it is imple-
mented will not affect the way the system behaves. For convenience, from a theo-
retical perspective, we choose the Nosé—Hoover thermostating mechanism and the
equations (based on (2.1)), including that of the thermostat multiplier, are thus:

. Pi

q9; = m

p; = Fi(q) — Sia(I')p;
N
N Sip.-p, 1

o= Zz—l ibi pl/m_l - (2.36)
dNtherka T(t) T%!

where 7, is the Nosé-Hoover time constant. The value of T(t) is the target
temperature of the thermostat. The extended, time-dependent internal energy

91



92

2 Thermodynamics of Small Systems

is Hy(T', @, t) = Ho(I') + % Ninermks T(t) 7% and the extended phase space of the
system is I'” = (I, a). The Liouville equation states: d f/dt = —A f, [3] and us-
ing (2.36) it is easy to show that kg TA = kg T (% T+ %d) = —dNpermks T

= Q, where Q is the rate of increase in Hg at constant T due to the thermostating
alone. The equilibrium distribution function for this system is then easily shown
to be

a dNt erm 2
g, T, ) = —eV S therm /170 VZ(}‘T)/(M exp(—BHy(I', T, a)) , (2.37)

where Z(T) is given in (2.32). In this case, the parameter that is varied in time is
the temperature of the wall, A(t) = T(¢).

We now consider applying the generalized JE, (2.28) when a thermal rather than
a mechanical process occurs. Consider a thermostated system of N particles whose
target temperature is changed from T; to T, over a period 0 < t < 7. We do not
change the Hamiltonian during this process. For simplicity, we consider a canon-
ical ensemble for the two equilibrium states (2.37), and use the equations of mo-
tion (2.36). The temperature dependence of the reservoir is achieved by making the
Nosé-Hoover target temperature T(t) in (2.36) a time dependent variable.

The change in temperature is slow enough that the reservoir may be treated as
changing quasi-statically at the target temperature T(t), while the slowly relaxing
system of interest is driven out of equilibrium: that is, it changes irreversibly. How-
ever, if one is only interested in the synthetic dynamics, this restriction may be lift-
ed and the temperature can be changed at an arbitrary rate. Either way, the system
of interest will approach the temperature T, in the limit t/7 — oco. We use (2.26)
with f; and f, given by (2.37) at the two different temperatures to obtain

AX(I'":0,7) = B2 He(I' (7)) — B1 He(I"'(0)) —/O dtB(H QI (1), (2.38)

where B(t) = 1/(kg T(t)) is the inverse, time-dependent target temperature. Now,
if we take the derivative of the extended Hamiltonian while the temperature is
changing, but with no other external agent acting on the system, by using (2.36) we
obtain

%HE(F’U» = QI (1) + gNtherkai‘maz(t)rz - (2.39)
We then obtain
d T(t)

a[ﬁ(t)HE(F'(t))] =—B() [Ho(r(t))m - Q(F'(t))} ) (2.40)

and combining these, the generalized “power” for a change in the target tempera-
ture with time is

X(I(t) = B(H) Ho(T' (1)) - (2.41)
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Note that (2.41) only depends upon I" and not the thermostat multiplier a. Equa-
tion 2.28 then becomes

T, 7
<exp (— / dtﬁ(t)Ho(F(t))»l:ﬁzexp[—ﬁzAﬁﬁlAl]. (242)

One can see that this equation is consistent with thermodynamics because in the
quasistatic limit, equilibrium thermodynamics yields the relation

. . d
B(t) (Ho)eg = T 7B A()]- (2.43)

The Hamiltonian of the total system may be split in parts representing the sys-
tem of interest, Hg;, the reservoir H, and the interaction between the reservoir
particles and the system of interest particles Hg;, yielding, in rather obvious no-
tation, Hy = Hgi([s) + H: (1) + Hsie(I'). Now, by construction, we have set up
our system such that the changes to (H,) and (Hg;) are quasistatic. This allows
us to take the contributions of these parts of the Hamiltonian through the average
appearing in (2.42),

<exp (— /0 dtﬁ(t)Hsi(rsim)))l X exp (— fo dt(t) (H; + Hsirml),eq)
= exp[—f24; + f1A41]

(2.44)
and obtain,

<exp (—/OT dsB(t)Hsi(Fsi(t)))>l = exp[-BrAsi2 + Br1Asi], (2.45)
where § and T are given by the temperature of the reservoir, and

/OT dsB(t) (Ha(T(t))eq = BaAsiz — P1Asi1 - (2.46)

For temperature changes at finite rates, the thermodynamic temperature of the
system of interest can not be defined and the kinetic temperature of the system
of interest may not be equal to the temperature of the thermal reservoir. Nonethe-
less, (2.45) can still be used to compute changes in the free energy of the system
of interest, as specified by (2.46), because the reservoir is being changed approxi-
mately quasistatically.

From the above, one observes that the function appearing in the quasistatic ther-
modynamic path integral (2.46) is the same as that which appears in the nonequi-
librium free energy relation. One could conjecture that any correct microscopic
expression for the thermodynamic path integral derived using classical statistical
thermodynamics would yield a correct Nonequilibrium Free Energy Relation for
some protocol. All that is required is sufficient ingenuity to design a protocol con-
sistent with the microscopic expression for the generalized work. To be absolutely

93



94

2 Thermodynamics of Small Systems

sure that your microscopic expression and protocol are consistent, one should sim-
ply check that when substituted into (2.28), that the protocol generates the required
generalized “work”. However, if the Nonequilibrium Free Energy Relation is to be
used beyond the synthetically thermostated dynamics, care is required. It must be
ensured that the system is controlled by a thermal reservoir which remains in equi-
librium.

If one constructs an algorithm (2.36) in order to accomplish some thermal trans-
formation (N, V4, T1) — (N, V4, Ty), then (2.28) gives a precise microscopic form
for the generalized “work” appearing in the classical thermodynamic path integral
for the free energy change. Although the quasistatic path integral expression is
unique, the nonequilibrium expression is certainly not. This is because there are
infinitely many protocols that accomplish the required change. Nonetheless, each
of these expressions gives identical values for the free energy difference.

2.8
Corollaries of the Fluctuation Theorem and Nonequilibrium Work Relations

In this section, we describe some of the results that can be derived using the fluc-
tuation theorem and nonequilibrium work relations, and provide references for
further details.

2.8.1
Generalized Fluctuation Theorem

For an arbitrary phase function ¢ (), one can derive an equality for the conjugate
probability ratio [12, 67]:

;= B —_
POe=B o) sz - (2.47)
pl¢: = —B]
In this equation, (...)5,—p denotes an average over those ensemble members for
which ¢, = B. A derivation can be found in references [12, 67].

28.2
Integrated Fluctuation Theorem

In experimental tests of the Fluctuation Theorem, it is almost always easier to test
the Integrated Fluctuation Theorem (IFT), rather than the distinct Fluctuation The-
orem [5, 15]. The IFT simply asks what the ratio between positive and negative
time-averaged values of the dissipation function is. The IFT states that

Q,>0 _
g = (o0l 20) 0,0 = (=205 - (249
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This can be obtained by integration of (2.13),

p(Q2 >0 [t dBp(Q, = B)

p(2: <0 [° dBp(, = B)

fo+oo dBp (2, = B)
f0+oo dBp(L2; = —B)

JyF>°dBp (@, = B)

Jo"°° dBp(Qs = B) exp|—B]

(exp[—2:]) o0 - (2.49)

2.83
Second Law Inequality

Linear irreversible thermodynamics asserts that the instantaneous local sponta-
neous entropy production must always be nonnegative. However, for a viscoelastic
fluid, this is not always the case. Given the fundamental status of the Second Law,
this presents a problem. The derivation of the Second Law Inequality (SLI) from
the FT provides new insight into this problem. The SLI shows that time averages
(rather than instantaneous values) of the entropy production are nonnegative. This
Second Law Inequality is valid for the appropriately time-averaged entropy pro-
duction, though the instantaneous entropy production may be negative for various
ranges of times.
The Second Law Inequality states that [68]

() =1, (2.50)

and is obtained by integration of (2.13)

“+o0
(@)= [ asp(@ =8

—0o0

+oo 0
=/ dBp(R2, = B)B+/ dBp(2, = B)B
0

—00

+o0 +oo
:/ dBp(L2; = B)B—/ dBp(2; =—-B)B
0 0

+oo
= / dBp(R2, = B)B(1 —exp[—B]) > 0. (2.51)
0

We note that the Second Law Inequality is a macroscopic consequence of the Fluc-
tuation Theorem. All previously derived consequences of ESFT and JE were mi-
croscopic in nature. This finding should have important consequences in widely
varied applications such as atmospheric physics and aerodynamics.
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If one applies the Second Law Inequality to the case of periodic time dependent
fields, then ergodic consistency limits its application to a discrete set of times that
are multiples of the period or in some cases, the half period. However, one can
also derive the Second Law Equality from the Crooks Fluctuation theorem for the
case where there is no change in the free energy AA = 0 (e.g., straining a liquid)
and consequently, there is no distinction between forward and reverse processes.
Because the ergodic consistency condition is much weaker for CFT, this more gen-
eral form of the Second Law Inequality applies for all integration times and for
arbitrary waveforms (i.e., periodic waveforms are not required).

The Second Law Inequality derived from CFT resolves a long-standing paradox
in linear irreversible thermodynamics [69]. In this theory, it is frequently stated
that the entropy production rate is nonnegative. This statement is manifestly false,
as any casual analysis of electric circuits in which time dependent voltages cause
currents to flow in circuits with a complex impedance shows. Similar systems in-
clude viscoelastic fluids. In these systems, there is a phase lag between the applied
field and the induced flux which guarantees that for short intervals of time, the
product of the force and the flux will be negative. The ensemble-averaged entropy
production can be negative. However, the Second Law Inequality must always be
satisfied.

2.8.4
Nonequilibrium Partition Identity

This identity (also referred to as the Kawasaki identity, Kawasaki normalisation fac-
tor, Kawasaki function, or integral fluctuation theorem) was first derived for Hamil-
tonian systems by Yamada and Kawasaki in 1967, and for thermostated dynamical
systems by Morriss and Evans in 1984 [11, 70, 71]. The Nonequilibrium Partition
Identity (NPI) is stated as:

(exp[—£2,]) = 1. (2.52)

A very simple proof can be obtained using the ESFT given in (2.13):

+oo
(expl-2,) = f dBp(Q, = B)exp|~B]

—00

+oo
/ dBp(Q,=—-B)=1. (2.53)

It is quite extraordinary that although the Second Law Inequality says the ex-
ponent of the NPI is negative on average, the rare instances when the dissipation
function has a negative time average occur with such frequency that their exponen-
tially enhanced effect insures the average of the exponential is always unity.

If one applies the Jarzynski Equality to a situation where the free energy differ-
ence of the two states is zero, one derives (2.53). Although the ESFT, JE and CFT
each imply the NPI, the converse is not true [71].
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2.8.5
The Steady State Fluctuation Theorem

In many nonequilibrium systems, if the system starts at equilibrium but is driv-
en away from equilibrium by a dissipative field and is thermostated in some way,
then after the relaxation of initial transients, the system relaxes to a nonequilibrium
steady state. Nonequilibrium steady states are curious states. All macroscopic ther-
mophysical properties are time independent. There is a balance between the work
done on the system by the dissipative field and the energy dissipated to the ther-
mostat. Not all thermostated nonequilibrium systems relax to steady states. Some
evolve into periodic or quasi-periodic nonequilibrium systems, others suffer from
thermal run-away (explosions) because the thermostated process cannot dissipate
sufficient heat, while other systems become turbulent. Other systems evolve into
multiple steady states with different macroscopic properties depending on the ini-
tial conditions. In what follows, we assume we are dealing with systems that evolve
into a unique steady state. The necessary and sufficient conditions for a thermostat-
ed nonequilibrium system to evolve into a unique nonequilibrium steady state are
unknown.

Deterministic nonequilibrium steady states display many fascinating properties.
The steady state distribution function collapses onto a strange attractor of lower
dimension than the phase space in which it is embedded. Indeed, the dimensional
reduction can be used to compute the entropy production and the associated trans-
port coefficients [72]. The fine-grained Gibbs entropy of deterministic steady state
systems diverges towards negative infinity. An extensive literature is devoted to this
subject [4, 73].

The transient fluctuation theorem (2.12) applies to systems where the trajectories
are sampled from a known initial (+ = 0) distribution function. It is exact, applies
at all times, and averages of the dissipation function are taken from the start of
each trajectory (t = 0) for a period of time, t. The same is true for the generalized
ESFT form (2.47).

However, these transient fluctuation theorems can be extended so that the time
averaging is carried out for a duration, t, but starting at a time t, (see Figure 2.3). As
to increases, the statistics of these delayed averages approach those of a nonequi-
librium steady state. For a given t, t, the (exact) transient fluctuation theorem gives
the following result [9, 13]:

P[Qto,to+t = B] 1
2 — exp[tB] + (exp[— Q0,2 5 _ 2.54
P[Prrots = —B] plt B] + (exp[—£20,, ,t0,2to+t])gt0vto+t_3 (2.54)

where we use the notation Qtl,tz = ﬁ tllz Q(s)ds = ﬁ!)tm. If fluctuations

in the dissipation function had no serial correlations, the second term on the right
hand side of (2.54) would be unity and, hence, would become insignificant in the
limit t — oo.
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Figure 2.3 Schematic diagram showing the is also shown. The trajectory segments over
construction required to derive the steady which the dissipation function is averaged are
state ESFT. Two trajectories that are related considered, and are considered in the steady
by time-reversal mappings are shown as dot- state fluctuation relation start at to and end at
ted lines, and the time evolution of a small to+t. The dashed line indicates points related
phase volume centered on these trajectories by time-reversal mappings (MT).

For an arbitrary phase function ¢ we have:

P[_‘Z’to,toﬂ-t = B]
Pl oo+t = —B]

If a steady state exists, and we choose ty to be much larger than the Maxwell time
so that the system has reached a steady state, these expressions will apply to the
statistics of steady state trajectories sampled from an initial distribution. In the
case of large to, the second term on the right hand side of (2.54) might be expected
to be bounded with respect to t. In that case, we can write [9]

lim Lin| 2P0t =Bl p (2.56)
oot PlRugt0+: = —B]

= (exp[~ Qo2+, 415 - (2.55)

and

1
lim —In
t—>00 t

[ PPttt = B

1
7 =1 -Q S (257
PlProtott = —B]:| ¢ n (exp| lo,lo+t])¢t0’to+t_3 ( )

We note that these equations do not explicitly refer to the behavior of properties
of the system before t, and therefore only refer to the steady state portion of the
dynamics. They will be independent of t, if it is much larger than the Maxwell
time. Furthermore, the statistics of the phase variables £ and ¢ will be the same
as that of trajectories selected from points along a single steady state trajectory,
provided there is only one steady state. Therefore, under these conditions, we can
drop the reference to ty, and write the steady state relations that will apply to both
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a set of trajectory segments generated from an initial ensemble or from a single
steady state trajectory

lim Lin M} =B (2.58)
=00 1| p[B, = —B]
and
1. T plg:= B] 1 -
| R = L 29)

We call (2.58) the steady state ESFT and (2.59) the generalized ESFT.

We emphasize that there are a number of conditions required to obtain (2.56)—
(2.59) that are not required for the transient relations or (2.54), (2.55) (for a full de-
scription see [9]). A steady state must exist which implies that the correlation time
is finite and the system must be chaotic; and if the phase function is singular, then
it must be integrable. For the relation to apply to samples from a single trajecto-
ry, only one steady state must exist. Furthermore, they will not apply at all times,
only asymptotically in the limit of long t. However, they do apply at arbitrary field
strengths [74].

An alternative way of obtaining (2.56) and (2.57) is to assume that the average
from time 0 to ¢y + ¢ will approach that of t to to + ¢t when t, is fixed and ¢ is made
large [12]. Therefore, the statistics of these sets will be indistinguishable. Then,
from (2.12) we can directly obtain (2.58) in this limit. The assumptions stated above
are still required.

Using the steady state fluctuation relations, the Einstein and Green—Kubo rela-
tions can be derived for systems close to equilibrium (see Section 2.5).

We note here that another type of Steady State Fluctuation Relation has been de-
veloped by Gallavotti, Cohen and co-workers [75-77]. It has been proven for Anosov
systems [78], but is anticipated to apply to a wider range of systems and can be writ-
ten as
lim Lin [M} — B for |B|<B*, (2.60)
pla4: = —B]
where /1 is the phase space expansion rate, and B* is some constant”. For isoener-
getic systems /4 = Q, and therefore, the relations (2.60) and (2.58) become identi-
cal, implying for this circumstance that B* = oo.

Application of the Gallavotti-Cohen Fluctuation Theorem (GCFT) to systems
that are not isoenergetic has recently been discussed [77, 79], and it has been found
that there are serious limitations to its utility. For instance, for many common sys-
tems the value of B* = O(F?) — 0as F, — 0, and it must be modified if the phase

5) The existence of the bound to the range of
fluctuations in phase space compression [78]
was not mentioned in the original
Gallavotti-Cohen papers [75, 76]. This has
caused confusion in the literature.
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space contraction is not bounded. Perhaps even more difficult is the fact that for
these systems the time required for convergence of the GCFT diverges as O(F,?).
Since much of the interest in fluctuation theorems arises from the fact that they
are exact arbitrarily far from equilibrium, the bound on the range of fluctuations
means that the GCFT is of limited use in large deviation theory.

2.8.6
Minimum Average Work Principle

From the Jarzynski Equality, it is easy to compute a bound on the work for a ther-
modynamic process [36]:

exp[—fAA] = (exp[-BAW])
= exp[—B (AW)] (exp[-BAW + B (AW)])
> exp[—f (AW)][(1 - AW + B(AW))
> exp[—f (AW)] (2.61)

In deriving this results, we have used the fact that e* > 1 + x, Vx. The above
equation implies that the ensemble average thermodynamic work is never less than
the free energy difference:

(AW) > AA. (2.62)

This is called the Minimum Work Principle (MWP). Naturally, if one considers the
purely dissipative work, namely, AW — A A, the Second Law Identity (2.50) for this
quantity is consistent with MWP (2.62).

If one studies a cyclic process, the total change in free energy around the cycle
is zero. Application of the MWP implies that the ensemble-averaged work for the
cyclic process is nonnegative.

2.9
Experiments

Until quite recently, these theorems were explored theoretically and numerically
using computer simulation. Numerical results can provide insight into practical
issues associated with application of the theorems such as the degree of sampling
required. In cases where fluctuation theorems have been obtained for a coarse-
grained or stochastic models of a system [22, 80], or there is uncertainty in the
initial distribution [47], numerical calculation provides information on the validity
of the models. It is only in the last few years that the practicality of these theorems,
applied to the small dynamical systems, has been experimentally explored. It is im-
portant to note that experimentation is in no way a “proof” of the theorems. Instead,
experiments verify that the conditions (e.g., ergodic consistency, time reversibility,
synthetic thermostats at a distance) required for satisfaction of the theorem are ac-
tually present under experimental conditions. If this is so, we can then conclude
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that the mathematical theorem is actually relevant to natural systems. Experiments
also give us information that may be presently theoretically unknown. An example
of this is the information provided by experiments (both laboratory and computer)
regarding B* in the GCFT. At the time of the experiments, almost nothing was
known about B*. The scaling properties for B* were only discovered theoretically
after the experiments had indicated the information.

Here, we briefly mention some of the experiments that have been carried out and
refer the reader to recent reviews including discussions on experiments [49, 81-84],
and a literature review by Searles and Evans on recent experiments [85].

The first conclusive experimental tests of the fluctuation relations were on a col-
loidal particle in water held by an optical trap [15, 16]. The trap was either translat-
ed by movement of the optical trap relative to the system, or used to ‘capture’ the
particle by increasing the strength of the optical trap [16]. Carberry et al. [71] later
experimentally demonstrated the NPI using this approach, and Wang et al. [86, 87]
verified the steady state version of the ESFT. In early studies, the particle was in
a viscous fluid and therefore the equations of motion of the particle were well
approximated by a white noise stochastic Langevin equation. In 2007, a capture
experiment was carried out in a viscoelastic solvent where this approximation no
longer applies [22]. It was shown that despite this, the experiments validated the
ESFT, and therefore could not be considered to be just a special property of Brow-
nian dynamics. Blickle et al. [88] verified the fluctuation relation for the work (or
dissipation function) for a system where the trap potential was not harmonic.

Narayan and Dhar [89] demonstrated the importance of choosing the correct ex-
pression for the entropy production (see discussion in Section 2.5) by demonstrat-
ing that an FT for heat (corresponding to the GCFT, (2.60)) is not obeyed in their ex-
perimental studies, whereas the FT for work (corresponding to the ESFT, (2.11)) is.

Garnier and Ciliberto [90] have studied fluctuations in the power injected to an
electrical dipole that is subject to a current and verified the steady state FT (2.58)
and a heat fluctuation relation as predicted by van Zon et al. [91-93]. This group
has more recently studied stochastic nonequilibrium steady states, verifying FTs
that are valid at all times [94].

Douarche et al. [95] verified the transient ESFT and steady state ESFT for a har-
monic oscillator (a brass pendulum in a water-glycerol solution that is driven out
of equilibrium by an applied torque). They also developed a steady state relation for
a system with a sinusoidal forcing and showed that the convergence time for the
steady state relation was considerably longer in this case.

Other systems used for verification of the ESFT have included a diamond with
a single defect periodically excited by a laser [21, 96], an electric circuit [97] and
particles undergoing diffusion [98].

The first tests of the JE and CFR were by Liphardt et al. [19], who used optical
tweezers to extend a DNA-RNA hybrid chain, measuring the work required as the
extension proceeded. As well as demonstrating the ability of observing fluctuations
that would allow the JE and CFR to be applied, it led to the use of the JE as an
experimental tool for studying protein folding and for generating free energy land-
scapes.
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More recently, Collin et al. [18] carried out an experiment using the CFR to deter-
mine the difference in free energies of an RNA molecule and a mutant that differs
by one base pair. The CFR was shown to be useful far from equilibrium where
insufficient sampling hampers convergence of the JE.

Hummer and Szabo [99] demonstrated that in single molecule stretching experi-
ments, the JE provides an expression for the work at different times, whereas from
an experimental point of view, it is of more interest to know the free energy differ-
ence between states at different extensions of the molecule. They show how this
can be obtained and apply it in experiments.

Douarche et al. [100] have verified the CFR and JE for fluctuations in the work
of a mechanical oscillator that is in contact with a reservoir and driven by a large
external field.

In the future, it will be interesting to see how the relationships can be bene-
ficially used in experimental studies or interpretation of experimental results. In
this vein, Noy has used [101] the JE to benefit in interpretation of experimental re-
sults of chemical force microscopy where the probes of atomic force microscopy
are functionalized.

2.10
Conclusion

At first sight, the definitions of the dissipation function and of the generalized work
function may seem a little obscure. However, we can give a more physical expla-
nation of why they take the form they do. If you look at the dissipation function
defined in (2.10), you can see that on the second line of (2.10) we have two terms.
Consider the first term. That term will be zero for microcanonical ensembles and
it will be a difference in energies or enthalpies for canonical or isothermal isobaric
ensembles.

Now, look at the second term. The integral of the phase space compression fac-
tor is just related to the energy lost to the thermostat (which would be zero for
unthermostated dynamics). Thus, the sum of the two terms on the right hand side
of (2.10) reduces to either the heat loss in the microcanonical case or a generalized
dissipative work (energy or enthalpy) for the other ensembles.

For the microcanonical ensemble and constant energy dynamics, (the dynamics
required to satisfy the ergodic consistency condition), the heat loss and the dissi-
pated work are exactly equal, so the dissipation function can be clearly interpreted
as the dissipated work®.

The same form of analysis can be carried out on the generalized work defined
in (2.26), however in this case, the probabilities are determined with respect to dif-
ferent ensembles. Because the distribution functions, free energies and associated
partition functions may be different for the two states, the only way we can ob-

6) If the initial distribution is microcanonical,
adiabatic dynamics cannot be used because
this would violate ergodic consistency.
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tain a generalized work is to multiply the distribution functions by their respective
partition functions, precisely as in (2.26). In the case of canonical dynamics, this
then leads to an expression based on the difference in the internal energies and
the energy lost to the thermostat. There is a second difference between general-
ized work and the dissipation function. Because the two equilibrium states may
have different free energies, the resulting generalized work is not purely dissipa-
tive. This observation leads to a rather simple derivation of the generalized Jarzyn-
ski Equality (2.28). We decompose the generalized work into its purely dissipa-
tive component and its reversible component: AX; = AXievr + A Xgiss,r Where
exp(—A Xrevr) = Z(A2)/Z(A1), we immediately see from the NPI that

(exp(—A X)) = (2.63)
This most simple and general derivation of the generalized JE, (also given by (2.28))
shows what is required for the Equality to work in practice. One needs to see the
anti-trajectories that correspond to the most probable trajectories in order for the
generalized JE to yield reliable averages in practice. These trajectories are required
for the Nonequilibrium Partition Identity to be unity. The derivation also points
out the intimate relationship between the Nonequilibrium Work Relations and the
Fluctuation Theorem.

Using the approach applied in Section 2.5, Williams and Evans have rederived
an exact expression for the time dependent nonlinear response [26]:

f(L,t) = f(I',0)exp [—ﬂ/o ds](F(—s)VFg(t—s)i| . (2.64)

For the case of time independent fields, this equation is consistent with the dis-
sipation Theorem (2.20). This equation was previously derived [102] by assum-
ing that the nonequilibrium fine-grained Gibbs entropy, S(t) = —kg [ dI f(I', )
In[ (I, t)], is a minimum, subject to the constraints that the distribution is normal-
ized, that the average energy is fixed and that the average dissipative flux is fixed at
any time and also is a continuous function of time. This result is now confirmed
without assumptions regarding the entropy or the free energy.

Recently, there has been some interest in what has become known as the Maxi-
mum Entropy Production (MEP) approach [103, 104] to nonlinear dynamical sys-
tems. This approach asserts that nonequilibrium systems arrange themselves in a
way that maximizes the rate at which entropy is produced, subject to a set of con-
straints. As Hoover pointed out in 1986 [105], the problem with these theories is
that there is no objective way to comprehensively list the set of such constraints.
Combining (2.64) with the work reported in [102] shows that the nonequilibri-
um distribution function for a dissipative system does indeed minimize the fine-
grained entropy of the nonequilibrium system. Subject to the constraints placed on
the system (the distribution is normalized, the initial average energy is fixed, and
the average dissipative flux is constrained at all times and is a continuous function
of time) the exact distribution function (2.64) minimizes the Gibbs entropy for all
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times, including the transient behavior of the system. This is in spite of the fact that
for a thermostated deterministic steady state, the entropy diverges towards negative
infinity as time increases [73]. This is a consequence of the fact that the steady state
distribution (which is only approached and never actually reached) is a strange at-
tractor of lower dimension than the ostensible dimension of phase space [4, 72].
It can be seen in [102] that at any finite time, assuming that the entropy to be a
minimum (subject to the correct constraints of course), results in the same ex-
pression, (2.64), which is rigorously derived in [26]. In the steady state, the average
rate of change of the entropy is constant. Thus, the rate of decrease of the Gibbs
entropy is maximal. However, the approach in [102] is far more complex than the
MEP approximations. The MEP only employs sets of Lagrange multipliers for the
corresponding sets of constraints. In order to achieve temporal continuity in the av-
erage dissipative flux, [102] employs a Lagrange multiplier functional (i.e., the set
of constraints becomes infinite). This functional becomes a memory function that
determines what happens in the future by what has happened in the past, ensuring
that the dissipative flux is a continuous function of time.

If we take the logarithm of (2.64) and assume the initial ensemble is canonical,
we see that

In[f(I", 1)] = BA(t = 0) — S Ho(I') —ﬁ/O dsJ(I'(=s)VF.(t —s)]. (2.65)

Since the logarithm is a monotonic increasing function of its argument, we see
that the probability of observing a phase I” at time ¢ is increased if the dissipation
integrated along the phase space trajectory that terminates at " at time ¢, is large
and positive. What is important here is that the probability is influenced by the path
integral and not just the instantaneous value. As we have seen in time dependent
systems (e.g., viscoelastic systems), the instantaneous entropy production is not al-
ways positive. However, the Second Law Inequality [69] guarantees that the average
time integral is positive and, in the long time limit, subject to the constraints, is
actually maximal.

We also see that the probability is increased if the value of the Hamiltonian at the
current phase point, namely, Ho(I), is also low. In the long time limit, we expect
that the integrated dissipation will dominate over the Hamiltonian term. This is
probably why MEP provides a reasonable approximation at long times in some
circumstances [103]. We note, as always, that the reciprocal temperature f is not
directly related to the temperature of the system of interest (this temperature may
not be well defined far from equilibrium), but rather to that of the large, effectively
equilibrium, heat bath to which the heat eventually dissipates.

The FT is a rigorous analytical result from which the SLI and then the Second
Law of Thermodynamics can be directly proven, despite the fact that the under-
lying equations of motion are microscopically reversible. It therefore explains the
Loschmidt Paradox, which remained a paradox until the FT was obtained in the
early 1990s (i.e., for about 100 years).

On page 33 of the Landau and Lifshitz’s textbook [106], they state, “The question
of the physical foundations of the law of monotonic increase of entropy thus re-
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mains open: it may be of cosmological origin and related to the general problem of
initial conditions in cosmology ... the violation of symmetry under time reversal
in some weak interactions between elementary particles may play some part ... in
all closed systems which occur in Nature, the entropy never decreases...” (for a
discussion on the cosmological approach see Chapter 7 of [107]). It is interesting
that in 1980, Landau and Lifshitz still talked of the monotonic increase of entropy as
though the Second Law was absolute rather than statistical. This same mistake was
made by Einstein in 1903 when he believed he had given a proof of the Second Law.
His proof does lead to a monotonic increase in entropy, but the proof rested on an
erroneous assumption, namely, that more probable distributions always follow less
probable ones!

Another quite frequent “explanation” of the origin of the Second Law is that the
Second Law is satisfied in our region of the Universe because we as complex bio-
logical organisms are here to observe this part of the Universe. This is the anthro-
pomorphic theory of the Second Law.

These views are each quite different from those of J. C. Maxwell, who wrote in
1878 ([108], p. 280), “Hence, the Second Law of thermodynamics is continually
being violated, and that to a considerable extent, in any sufficiently small group
of molecules belonging to a real body. As the number of molecules in the group is
increased, the deviations from the mean of the whole become smaller and less fre-
quent; and when the number is increased till the group includes a sensible portion
of the body, the probability of a measurable variation from the mean occurring in a
finite number of years becomes so small that it may be regarded as practically an im-
possibility”. Thus, it is quite clear that Maxwell would be completely unsurprised
by the Fluctuation Theorem. He understood that the Second Law is not absolute
and that it is “continually being violated” in small systems for short times.

If all the laws of mechanics and quantum mechanics are time-reversal symmet-
ric, then clearly, you cannot prove an asymmetric result like the Fluctuation Theo-
rem. In the first proof given by Evans and Searles in 1994 [14], this time symmetry
was indeed broken, though it was broken in such a natural way that many people
who have analyzed these proofs fail to see where the time-reversal symmetry is
broken. The assumption made was that processes are causal [109].

Once again, Landau and Lifshitz are quoted [106] (p. 32), “In quantum mechanics
... The fundamental equation is itself symmetrical under time reversal ... How-
ever, despite this symmetry, quantum mechanics does involve an important non-
equivalence of the two directions of time ... the probability of any particular result
of process B is determined by the result of process A, can only be valid if process A
occurred earlier than process B.”

This is the Axiom of Causality. It is used frequently in quantum mechanics and
(unrecognized by Landau and Lifshitz), it is also required in classical mechanics. In
the proof of the ESFT and the CFT, the probabilities of observing particular values
of time integrals of the dissipation function or of the generalized work are com-
puted from the probabilities of observing the initial states from which those sets
of trajectories began, f(I",0)dl". We never used the probabilities of the endpoints;
indeed, had we done so we would have proved the anti-Fluctuation Theorem and
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an anti-Second Law [109]. The Axiom of Causality is so natural that people fail to
observe that they have indeed made this assumption. Landau and Lifshitz failed
to notice that it is constantly used in classical mechanics. This is evidenced by the
simple fact that Laplace transforms are only defined by (0, co) time integrals rather
than (—oo, co) time integrals as for spatial Fourier transforms. Consequently, this
leads to memory functions rather than anti-memory functions. For an extensive
discussion of causality and thermodynamics, see [109].

The Mori-Zwanzig theory of thermal transport processes involves an exact ma-
nipulation of propagators and leads to exact expressions for linear transport coef-
ficients at zero wave-vector. It is not completely clear what the sign of these ex-
pressions is (there is no Second Law Inequality), but it is clear that time-reversal
symmetry has been broken because these expressions are odd under time-reversal
symmetry. Time reversal symmetry was broken within the Mori-Zwanzig formal-
ism by invoking the Axiom of Causality and employing memory functions rather
than anti-memory functions. Another instance of the application of the Axiom of
Causality is provided by the classical theory of electromagnetism where one finds
both “advanced” and “retarded” vector potentials as solutions of Maxwell’s time
symmetric field equations [110]. Ignoring the “advanced” potentials is just another
example of the application of the Axiom of Causality. This Axiom is so natural that
most physicists don’t even recognize instances of its application.

If one is prepared to accept the Axiom of Causality without proof, then the Fluctu-
ation Theorem and the Second Law are inescapable. In fact, the Second Law ceases
to be a “Law” and becomes, instead, the limiting case (N — o0) of a very generally
applicable theorem.
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3
Quantum Dissipative Ratchets

Milena Grifoni

3.1
Introduction to Microscopic Ratchets

This contribution is dedicated to quantum dissipative ratchets, which are a special
class of nano- or mesoscopic engines that employ asymmetric devices (ratchets)
to direct particle motion in one specified direction (for reviews see [1-4]). After a
brief introduction about the state of the art in the fields of theoretical and exper-
imental investigation of quantum ratchet systems, I will discuss some concrete
examples, placing more emphasis on the underlying physical principles and ob-
servable phenomena than on the mathematical treatment. The reader interested in
the mathematical details can consult the scientific articles cited in this manuscript.

In macroscopic objects, an example of the ratchet principle is demonstrated in
windmills. The issue of whether random microscopic fluctuations, such as those
due to thermal motion, can act as a random energy source that can cause particles
to flow in a single direction, however, is much subtler. In particular, Richard Feyn-
man showed that no work can be extracted from a microscopic ratchet acting at
thermal equilibrium, in agreement with the second law of thermodynamics (for a
detailed discussion see [2, 5]). The second law of thermodynamics places clear con-
straints upon the attainable efficiencies of heat engines, devices which use energy
in the form of heat to do work. Typically, the engine extracts energy in the form of
heat from a hot reservoir and uses part of it to do work, with the remaining ener-
gy given to a colder reservoir. In this context, the second law says that one cannot
create a heat engine that extracts heat and converts it all to useful work. In partic-
ular, the maximal or Carnot efficiency is determined by the temperature difference
between the two reservoirs. If the reservoirs are at the same temperature, no work
can be extracted. In other words, a global out of thermal equilibrium situation has to
be maintained in order to extract work.

Following Feynman’s ideas several quantum ratchet devices, that is, periodic
structures with broken spatial symmetry, have been investigated over the last sev-
eral years. As a minimal model, one considers a quantum particle moving in a
ratchet potential that simultaneously interacts with one or more equilibrium reser-
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voirs and is subject to unbiased forces. The latter insure that the whole system
is driven out of equilibrium. From the theoretical point of view one distinguish-
es between dissipative ratchets [6-14] where the tunneling particle continuously
interacts with the bath as it moves along the periodic structure, and coherent ratch-
ets [15-17] in which the dissipation originates from the coupling between a ballistic
device and fermionic reservoirs. In dissipative ratchets, the interplay of dissipative
tunneling [18] with unbiased driving enriches the quantum ratchet effect with fea-
tures absent in its classical counterpart, such as temperature-dependent current
reversals [6].

After the pioneering semi-classical work [6], further progress towards a full quan-
tum description was made in [9], in which the role of the band structure in ratchet
potentials sustaining only a few bands below the barrier was investigated. Such a
situation does not have a classical counterpart because of the different conditions
for the classical case. In the latter, many bands contribute to transport in such a
way that the band structure of the asymmetric periodic potential should be of no
importance. The classical situation is achieved if the temperature is large enough
that particles can be easily excited across the barrier separating two nearby energy
wells.

In [9] it was established that a ratchet state of particle transport can only be
achieved when at least the two lowest Bloch bands contribute to transport. On the
other hand, at least two harmonics of the potential should enter the dynamical
equations in order to obtain the ratchet effect in systems with weak periodic poten-
tials [11, 12]. Interestingly, in [11, 12] an expression for the ratchet current valid for
weak dissipation was found upon generalization of a duality relation put forward
in [19] for a cosine potential. The relation was generalized to an arbitrary ratchet
potential and a time-dependent driving.

The growing interest in spintronics, the field which exploits the spin degrees
of freedom for new applications in magneto-electronic devices, has stimulated the
first proposal for the realization of a dissipative spin ratchet [13, 14]. Such a device
exploits the spin-orbit interaction present in semiconductor heterostructures, in-
cluding dissipation and spatial asymmetry, in order to create a device where a net
spin current is produced while no net charge current occurs.

As mentioned above, the ratchet effect has also been discussed in quantum trans-
port across ballistic quantum wires. Here rectification is a result of the dissipative
coupling of the wire to fermionic baths. Coherent charge ratchets based on molec-
ular wires with an asymmetric level structure of the orbital energies were proposed
in [15]. The spin ratchet effect in coherent quantum wires with Rashba spin-orbit
interaction was first investigated in [16]. The Zeeman ratchet effect which occurs in
the presence of a non-uniform static magnetic field was studied in [17] for coherent
quantum wires formed in a two-dimensional electron gas (2DEG).

Despite the increasing number of theoretical works on the subject, quantum
ratchet systems have been realized in only a few experiments [20, 21]. In [20] the
experimental realization of a coherent quantum ratchet has been demonstrated for
electrons moving in nanopatterned asymmetric semiconductor heterostructures.
In the experiment an alternating bias voltage is applied. A net current is generated
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despite the fact that the time-averaged electric field is zero. A current reversal was
detected by sweeping the temperature while keeping all the other parameters fixed,
including potential shape and bias voltage. This was interpreted as a crossover from
the classical to the quantum tunneling regime in accordance with the prediction
in [6]. In [21] the ratchet effect in the deep quantum realm has been reported in
which only a few energy bands below the potential barrier contribute to transport.
In the experiment of Majer et al., the tunneling particles are topological excitations
present in superconducting Josephson junction arrays and are termed vortices.

3.2
The Feynman Ratchet

The Feynman ratchet is illustrated in Figure 3.1 and consists of an axle with a
sawtoothed wheel or ratchet at one end and a paddle at the other.

The whole device is surrounded by a gas of molecules in thermal equilibrium
at some temperature T. The gas of molecules hitting the paddle cause it to turn,
but the question of which direction arises. In a ratchet-pawl system, motion in one
direction is allowed by the ratchet and motion in the opposite direction is prevent-
ed by a pawl such that a small load can be lifted. This, however, would violate the
second law of thermodynamics. Feynman demonstrated that as the pawl will be of
a size comparable to the paddle, it will also undergo similar thermal fluctuations.
In particular, thermal noise causes the pawl to release so that the ratchet can move

“backwards”. As shown by Feynman, forward and backward motion compensate on
average and no net work is produced. No contradiction with the second principle
occurs if the ratchet-pawl system is operated out of equilibrium which, for exam-
ple, would be the case if the ratchet and paddle would be in contact with thermal
reservoirs at different temperatures.

Figure 3.1 Feynman ratchet and pawl system. In thermal equilibrium no load can be lifted.
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Figure 3.2 One-dimensional schematization of a Feynman
ratchet. A particle (dot) which sits in one of the minima of the
periodic ratchet potential can with equal probability be thermally
activated over the left or right barrier (upper arrow processes).
Hence, no preferred direction of motion exists (as indicated

by the equal length of the lower arrows).

Feynman’s analysis is schematized in Figure 3.2 which shows a particle (spot) in
a one dimensional asymmetric potential in the presence of equilibrium noise at a
temperature T. According to the laws of classical statistical mechanics, an energy
barrier can be overcome only if a particle acquires enough energy, for example by
thermal activation (upper arrows). For large enough barriers, the probabilities per
unit time /7 that the particle has to overcome the barrier to the left or to the right,
respectively, are equal. The probabilities depend exponentially on the height AU
of the barrier to be overcome and on the magnitude of the thermal fluctuations
(I1r ~ exp(—AU/kgT)). This implies that the larger the temperature/barrier ra-
tio, the larger the escape probability. Hence, no preferred direction of motion exists
and the ratchet current, being the difference between the probabilities to overcome
the barrier to the left and to the right (indicated by the lower arrows pointing to-
wards the left and right, respectively), is zero. This brings us to the general state-
ment that in order for a Brownian motor to produce useful work, the system has to
be driven permanently out of equilibrium.

33
Tunneling Ratchets: Temperature Driven Current Reversal

In the remainder of this article we focus on rocked ratchets, where the temperature
and the asymmetric potential stay constant in time but the system is subjected to
an external time dependent driving force that disrupts thermal equilibrium. The
external driving force is chosen to be unbiased, for example with zero time aver-
age for any of its odd moments such that it does not induce any additional asym-
metry. Moreover, we shall consider the regime of low enough temperatures such
that quantum tunneling provides an alternative mechanism to thermal activation
to overcome energy barriers and obtain directed motion. In Figure 3.3 the case is
shown in which the force can assume two opposite values. As we shall discuss be-
low, a classical particle will preferably move towards the right rather than to the left
due to the different potential slopes (a). The situation, however, may be reversed
for a quantum particle (b).

In a seminal work, Reimann et al. [6] predicted a current inversion with decreas-
ing temperatures in rocked quantum ratchets due to a transition to a tunneling
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Figure 3.3 Current reversal in a rocked ratchet. Depending

on the temperature, thermal activation over the barrier (upper
arrows) or tunneling through the barrier (gray arrows) are the
dominant escape mechanisms. For classical particles the net
motion, as determined by the lower arrows, is towards the right
(a), while for quantum particles is towards the left (b).

dominated regime. As explained in Figure 3.3, the occurrence of a current rever-
sal as the temperature is decreased can be understood as follows. Consider first
a classical particle in a periodic potential (a). Classically, a potential barrier can
be overcome only if a particle acquires enough energy to jump over the barrier,
for example by thermal fluctuations. If AU is the energy barrier seen by the
particle on its left/right side and T is the temperature, the probability per unit
time I7r to overcome the barrier to the left/right is given by the Arrhenius rate
Ijr ~ exp(—AUyr/ ks T) for large enough barriers, where kg is the Boltzmann
constant. In the tilted potential shown in the top (bottom) panel of Figure 3.3a,
the potential barrier to the right (left) is less than that to the left (right). By sum-
ming the contributions from the two tilting situations (lower arrows), a net ratchet
current to the right is expected.

In the quantum case, however, a finite probability occurs to go from one well to
the other via quantum tunneling, even if the energy of the particle is much less
than the potential height. This phenomenon can also occur at zero temperature as
it relies only on the wave nature of quantum particles. For a quantum particle mov-
ing against a potential hill, the wave function describing the particle can extend to
the other part of the hill. In particular, it turns out that the tunneling probability
exponentially depends not only on the barrier height, but also on the distance to
be traveled through the potential barrier. For the potential shown in Figure 3.3b,
tunneling in the tilted potential favors a net motion towards the left. Due to the
fact that the Arrhenius rate becomes exponentially smaller as the temperature is
lowered, a transition temperature is expected below which tunneling through the
barrier dominates over thermal activation above the barrier, and hence a current
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reversal is expected. This prediction was verified few years later in the first exper-
imental demonstration by Linke et al. [20] of the quantum ratchet effect in rocked
asymmetric semiconductor heterostructures.

3.4
Rocked Ratchets in the Deep Quantum Regime

One of the fundamental predictions of quantum mechanics for particles moving
in a periodic potential is that only discrete sets of energies forming “energy bands”
are allowed.

Significantly, in the temperature and driving regime in which the dynamics is
effectively restricted to the lowest band of the periodic potential, no current rectifi-
cation occurs as shown in [9]. In fact, a reduction to the lowest band of the ratchet
potential retains only information about the periodicity of the original Hamiltoni-
an, but not about its reflection properties. At least two bands should contribute in
order to take into account the vibrational motion within the well and thus the asym-
metry of the ratchet potential leading to the ratchet effect. Quantitative calculations
of ratchet currents in the limit in which only the three lowest bands contribute
to the dynamics have been performed in [9]. In this limit, a tight-binding model
with tight binding parameters related to the intraband and interband energies was
derived and solved in the limit of moderate to strong dissipation.

To date only one experimental realization of the ratchet effect in the deep quan-
tum realm has been reported, with only a few energy bands below the potential
barrier contributing to transport [21]. In the experiment of Majer et al., the tun-
neling particles are topological excitations present in superconducting Josephson
junction arrays named vortices (Figure 3.4).
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Figure 3.4 Ratchet potentials for vortices. Top: Schematic lay-
out of the devices, with one cross denoting a Josephson junc-
tion. The device | serves as a reference and yields a symmetric
periodic potential for the vortices. Bottom: Calculation of the
potential seen by the vortices for the regular sample | and the
samples II, 111 [21].
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The upper part of Figure 3.4 shows a schematic layout where the Josephson junc-
tions are represented by crosses. Cells are areas enclosed by four junctions.

The peculiarity of the device is that junctions of three different sizes, large,
medium, and small, are periodically repeated along the length of the quasi-one-
dimensional array. Applying a magnetic field perpendicular to the array induces
vortices in the system. Vortices have lower energy in cells with larger area and
smaller junctions. Hence, by properly choosing junction sizes and cell areas, dif-
ferent energy potentials felt by the vortices can be designed. In the lower part of
Figure 3.4 three different quasi-one-dimensional Josephson junction arrays and the
corresponding potentials felt by a single vortex are shown in units of the Joseph-
son energy Ej with Ej/kg = 5K and at temperatures of T = 12mK. In partic-
ular, the device denoted sample III yields the most asymmetric ratchet potential.
Sample [ yields a regular periodic potential, and serves to check that accidental
asymmetries in the measured voltage current characteristics are not present. Final-
ly, sample II also gives rise to a ratchet profile, but with only one band below the
barrier.

If a current is applied vertically and homogeneously along the length of the array,
the vortices start to move. Such motion can be detected as a voltage drop across the
array as shown in the bottom panels of Figure 3.4 and in Figure 3.5. As expect-
ed, samples I and II do not exhibit ratchet behavior, while sample III shows clear
rectification. The power law dependence V o I° with 6 > 1 of the voltage on the
applied current is noteworthy. This is a quantum effect, as classical dynamics and a
zero temperature Ohm’s law (0 = 1) is expected above the critical current. Indeed,
such a power law behavior characterizes the incoherent dynamics at low temper-
atures and large biases of tunneling particles in Ohmic environments [18]. How-
ever, a quantitative explanation of such behavior was not possible in [21], where it
is suggested that a realistic description of the experiment might require the aban-
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Figure 3.5 Experimental demonstration of the quantum ratchet
effect in superconducting Josephson junctions arrays. The
ratchet effect is observed in sample Ill where V(1) # —V(—1).
Astonishingly, sample | and Il exhibit identical behavior and no
rectification [21].
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donment of a noninteracting vortex picture and a full accounting of vortex—vortex
interaction.

3.5
Rocked Shallow Ratchets

A striking feature of the experiment shown in Figure 3.5 is that despite the fact
that samples I and II have seemingly different shapes, the resulting V — I curves
are the same. The qualitative understanding of this feature lies in the theoretical
investigations carried out in [11, 12]. A first observation is that a ratchet potential
can, in general, always be expanded in a Fourier series because it is periodic in
space, for example V(q) = Vo + Y, Vucos(2ng/L — n) for the one dimensional
case, where L is the periodicity length. For the two ratchets reported in [21], only
the first three harmonics were relevant. Moreover, the second harmonic was es-
sentially absent in the less asymmetric sample. In the theory developed in [11, 12],
it is shown that for the case in which an expansion of the tunneling current in
the amplitudes of the potential’s harmonics is rapidly converging, the terms that
dominate the ratchet current are those linear in the second harmonic. While these
contributions are present for the potential characterizing sample III, they vanish
for the potential characterizing sample II. Thus, sample II behaves in a similar
fashion as the symmetric sample I at low temperatures. Indeed, a deeper look at
the potentials in Figure 3.4 shows that while the potential in sample III possesses
narrow bands below the barrier, this is not the case for the shallow potentials in
samples I and II, which support no bands and one band below the barrier, respec-
tively.

In [11, 12] a duality transformation was used to map quantum Brownian motion
in a tight-binding description, with Ohmic damping characterized by a viscosity co-
efficient #. In this description weak dissipation in the original model corresponds
to strong dissipation in the tight-binding model and vice versa. Moreover, the
periodicity of the tight-binding model depends on the viscosity coefficient 1 and
the tight-binding matrix elements are proportional to the Fourier coefficients V,,.
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Figure 3.6 Dual relation between a dissipative ratchet system
and a tight-binding (TB) model sketched for a two-harmonics
ratchet potential (thick curve). Each harmonic (thin curves) gen-
erates couplings to different neighbors in the TB system. The
periodicity L of the TB model is determined by the viscosity # in
the original model [11, 12].



3.6 Spin Ratchets

By means of the duality relation, various quantities such as the mobility or the
ratchet current can be calculated as a correction to the dynamics in the absence
of the periodic potential. Due to the Eherenfest theorem, in the absence of the
potential the classical and quantum expectation values are the same, such that
in the limit of vanishing potential the duality relation yields the correct classical
limit. The quantum corrections due to the presence of the ratchet potential can
be calculated, for example, as a series expansion in the Fourier amplitudes V;,.
For shallow potentials, that is, small amplitudes, a truncation of the series yields a
good approximation to the ratchet current.

3.6
Spin Ratchets

During the last decade the new research field of spintronics has emerged, in which
one makes use of the spin degree of freedom of a particle for transport and storage
of information. One essential difference between spin and charge is that a particle
can have more than one spin state, while it has only one charge state. In the con-
text of transport, it is significant that the spin state of a particle can depend on the
transport conditions, as it happens, for example, in systems with spin-orbit interac-
tion. This fact has stimulated research on spintronics devices made up of nonmag-
netic materials but still exploiting the spin-orbit interaction. Among the various
different spin-orbit mechanisms, the Rashba spin-orbit interaction (RSOI) plays a
distinguished role because the spin-orbit coupling strength can be controlled by an
external electric field.

The possibility to transfer the spin separately from charge plays an important
role. This can be implemented by so-called pure spin currents that are not accom-
panied by charge currents. In a recent seminal work, Smirnov et al. [13] have ad-
dressed the challenging question of how to make use of the Rashba spin-orbit inter-
action and ratchet geometry to generate pure spin currents in dissipative quasi-one-
dimensional systems. In periodic quasi-one-dimensional systems with a periodic
potential along the longitudinal direction, the RSOI removes the spin degenera-
cy of the one dimensional Bloch bands and couples different transverse branches.
When only a few M transverse modes are relevant, each Bloch band splits into 2M
sub-bands which may carry different spin [22]. Following [9], the authors restricted
their attention to the lowest Bloch band in order to block the generation of charge
currents and investigate the possibility of pure spin current generation. The Rash-
ba Hamiltonian is not invariant under reflection of a transport direction. Thus the
Rashba Hamiltonian itself already has a built in spatial asymmetry. In coherent
quantum wires this asymmetry turns out to be sufficient to generate pure spin
currents [16]. As shown in [13], however, this is no longer the case for dissipative
wires. Despite the intrinsic Rashba asymmetry, the system must additionally lack
the spatial inversion symmetry and its orbital degrees of freedom must be coupled
in order to generate pure spin currents.
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4
Dynamics of Nanoscopic Capillary Waves

Klaus Mecke, Kerstin Falk, and Markus Rauscher

With the advent of nanofluidics in the last several years it has become evident that
thermal noise may play an important role in all hydrodynamic processes occurring
at free interfaces on small scales. Although in bulk fluids hydrodynamic Navier—
Stokes equations are proven to be valid down to the nanometer scale, in free inter-
face flow stochastic forces induced by molecular motion can significantly alter the
behavior even on a micrometer scale. Moseler and Landman, for instance, found
that the deterministic lubrication approximation for axial-symmetric free boundary
flow is not applicable for the description of nanoscopic cylindrical jets [1]. The lack
of thermally triggered fluctuations in the classical hydrodynamic continuum mod-
eling was identified as the most likely source for deviations of Navier—Stokes solu-
tions from molecular dynamics simulations. They derived a stochastic differential
equation that includes thermal noise, whose influence on the dynamics increases
as the radius of the nanojet becomes smaller, leading finally to the emergence of
symmetric double cone neck shapes during the breakup, instead of a long thread
solution as expected in the absence of noise. In [2], path integral methods were
applied to confirm that thermal noise indeed induces qualitative changes in the
breakup of a liquid nanometer jet. Thermal fluctuations speed up the dynamics
and make surface tension an irrelevant force for the breakup. Very recently, the im-
portance of thermal noise for drop formation was observed in a colloidal dispersion
with an ultra-low surface tension [3].

The hydrodynamics of liquid interfaces are particularly poorly understood on
microscopic length scales where the standard capillary wave theory [4, 5] is not
applicable. In contrast to solid surfaces, relevant experimental information is ab-
sent on the nanometer scale even for the simplest liquid—vapor interfaces. Recent
developments in grazing incidence X-ray scattering experiments has removed this
uncomfortable situation for the equilibrium structure, but has yet to do so for the
dynamics. The theoretical results and X-ray experiments reported in the last sev-
eral years in [6-8] give the first complete determination of the structure and the
equilibrium fluctuations of a liquid-vapor interface, and represent a significant
improvement in the understanding of fluid interfaces on a molecular level. In par-
ticular, it has been demonstrated that the dominant effect below a few nanometers
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4 Dynamics of Nanoscopic Capillary Waves

is a large decrease of the surface energy due to dispersion forces. This calls for a
reexamination of all small scale interfacial processes. For such a reexamination,
the hydrodynamics of capillary waves have to be studied on length scales compa-
rable to the range of molecular interactions. If the wavelengths of undulations are
below 50 nm, one expects new phenomena due to direct non-local interactions of
molecules which cannot be described by local hydrodynamics. The final theoretical
goal would be a derivation of the time dependence of capillary waves on nanometer
length scales and, in particular, the dependence of dispersion relations and damp-
ing factors on molecular interactions. Experimentally, the dynamics of capillary
waves may be measured on liquid-vapor interfaces by X-ray photon correlation
spectroscopy and scattering techniques.

4.1
Stochastic Hydrodynamics

The effect of thermal noise has already been introduced phenomenologically into
hydrodynamics by Landau and LifSic [9] and further discussed by Fox and Uhlen-
beck [10, 11]. A microscopic justification for the noisy hydrodynamical equations
has been provided by showing that the form proposed can be derived from the
deterministic Boltzmann equation by a long wave approximation [12]. The noisy
hydrodynamical equations have been discussed, for example, in the context of tur-
bulence in randomly stirred fluids [13, 14] as well as for the onset of instabilities in
Rayleigh—Bénard convection [15] and Taylor-Couette flow [16]. Introductions can
be found in [9, 17, 18].

4.1.1
Stochastic Interfaces

We consider an incompressible Newtonian liquid with a free fluid boundary as
sketched in Figure 4.1. We assume that the liquid-vapor interface can be param-
eterized by a single-valued function h(f{, t) of the lateral coordinates R = (%, 9),
which defines the plane of the averaged position (h) = 0 of the interface. For later
use we introduce the surface normal vector

1 (—Vh)
1+ (Vh)2\ 1

and also the tangent vectors £ = (1, Vh)//1 + (Vh)2 and ¥’ = 7 x 1 to the surface.

To the lowest order of the interface position, the mean curvature reads

S
Il



4.1 Stochastic Hydrodynamics

Figure 4.1 A fluid surface is parameterized by the single-valued
function h(ﬁ, t) of the lateral coordinates R. The flow is charac-
terized by the flow velocity ¥ = (vy, vy, v;) and the pressure p.
Capillary waves of wave vector § = ZT“ are thermally excited
which leads to moving boundary for the fluid.

The incompressibility condition and momentum conservation within the fluid
are given by the stochastic Navier—Stokes equations [9]

V.30 (4.1)
317 > - 2= o Y
) W-F(V‘V)V =nVV—=V(p+ V) +V-S. (+2)

By v and p, we denote velocity and pressure fields, respectively. An external poten-
tial Vey(7) may be given by gravity, Ve = pgz, or a substrate potential Ve (z) ~
—A/z® due to dispersion forces. The mass density p is constant within the flu-
id and # is the shear viscosity (kinematic viscosity v = #/p). The random stress
fluctuations S represent the effect of molecular motion. S is symmetric, has zero
mean

(8) =0
and the correlator is given as
(Sij(F )Sim(¥', 1)) = 2nks TO(F — F)O(t — £)(0i10 jm + Oim0 j1) (4.3)

with the thermal energy kg T. S is spatially uncorrelated, and therefore the diver-
gence of § in (4.2) poses mathematical questions we do not want to enter into at
this point. From a physical point of view, hydrodynamical equations are only valid
at a scale large compared to the molecular scale. Therefore, 6 (7 — 7') in (4.3) might
be replaced by a correlation function of small but finite width. In order to show
that equilibria are characterized by Gaussian velocity distributions as required by
thermodynamics, we need spatially uncorrelated noise. For this reason, we keep
the notation commonly used in physical literature.

We assume that at the free surface z = h(x, t) the normal and tangential stresses
are balanced, so that the boundary condition reads

(0—0"+8)-A=2yHi (4.4)

with the surface tension coefficient y and the stress tensor for an incompressible
fluid

gij = 77(3,'11]' +ij,~)—p<3,‘j .
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4 Dynamics of Nanoscopic Capillary Waves

In the vapor phase one finds ¢’ = —p’0;;. Finally, assuming that the fluid is non-
volatile, the component of the flow velocity normal to the surface is identical to the
surface normal velocity and we get the kinematic condition

. L 0h . .
rtroy =WV, (4.5)
that is,
oh dh oh
a:vz—vxa—vyg at z=nh
- .7, (4.6)

with the total flow current in the film at position R = (x, y)
L h(R,t) R
J(R,t) = / Vvyy(R, z,t)dz (4.7)
—I

where —L denotes the bottom of our container. It is often convenient to use the
Fourier transformation of a quantity a(7, z, t) parallel to the interface, for instance

(4, z, w) == / dzﬁ/ dta(R, z, t) i@ R+on) (4.8)
R2 R
to define the surface modes
h(g, ) :=/d2§/ dth(R, t) e 1@R+on
R2 R

Before we study capillary waves on a liquid interface, it is instructive to derive the
dispersion relation and damping of acoustic waves in the bulk of a compressible
liquid.

4.1.2
Acoustic Waves

Assuming that the liquid in equilibrium is at rest with %, = 0, oo = const., and
po = const., the thermal noise causes a velocity profile 0%(R, t) = ¥ and fluctu-
ations in density do(R,t) = 0o and pressure (3p(§, t) = Op. On may use the
thermodynamic relation

1
0p = ﬁép

with the adiabatic sound velocity ¢, so that the linearized compressible Navier—
Stokes equation and continuity equation,

007 = —Vop + AT+ (£ + 3 ) V(V-5) + V.S

9,00 = —0oV ¥ (4.9)



4.1 Stochastic Hydrodynamics
can be written as
4
(Bf—gvatA —CZA) dp = —c*V-(V-9), (4.10)

with the second viscosity  is set to zero. After Fourier transformation this is writ-
ten as

1

(wz - %viwkz - czkz) Sp(k, w) = —c?k - ( Sk, w)) . (4.11)

Non-trivial solutions for the averaged pressure (0 p) # 0 are only possible if

4
0= wz—iwgvkz—czkz (4.12)
because (S; ;) = 0. From this we can determine the dispersion relation w = ck for
acoustic waves in an ideal liquid as well as the damping coefficient 2vk?. In the
following we assume an incompressible fluid for convenience.

4.13
Capillary Waves

For an ideal liquid with vanishing viscosity # in a gravitational field, one may as-
sume a constant density g and introduce a potential ¢ so that the velocity is giv-
en by the gradient ¥ = Vg. Incompressibility of the fluid leads to the equation
Ag = 0. Ignoring the stochastic stress tensor and linearizing Euler’s equation,
that is, the inviscid Navier-Stokes equation, one finds for the pressure

p =—0001¢ — 008z (4.13)
with the boundary condition
Pl=o = —v4duyh. (4.14)

Using the pressure —god;¢p—0ogh at the free surface h and the kinematic boundary
condition d,h = d,¢ one obtains

o + (g_ ley) .0 =0 (4.15)
Qo z=0
and after Fourier transformation
o(R, 1) = goRe {ei(E'§+“’t)} (4.16)

one obtains the dispersion relation
K24+ k+k2=0

2 Y (12 2\ _
» (g+ o (kx + ky)) ik, =0 (4.17)
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Table 4.1 Density o, surface tension vy, adiabatic sound velocity
¢, kinematic viscosity v, capillary length . (4.19) and 4o for
water, ethanol, glycerol and mercury at 20°C [19].

o[Z] v00Y] cpoz] v[=] kim0 [m)

Water 1.00 72.8 1.48 0.01 0.27 0.21
Ethanol 0.79 22.6 1.16 0.015 0.17 0.14
Glycerol 1.26 63.4 1.90 11.8 0.23 0.09
Mercury 13.5 476 1.45 0.0012  0.19 0.10

with the parallel wave vector § := (ky, k,) and the perpendicular decay length
k, = £ig. Thus, one finds waves with wavelengths 1 = 27" and frequency
ve’
wg(q) = gq + — . (4.18)
Qo
The waves within the liquid are exponentially damped at a distance z from the free
surface. The capillary length

lo:i= |- (4.19)

separates gravitational waves with 4 > I from capillary waves with wavelengths
A < l.. In the following, we are interested in nanoscopic wavelengths for which
the gravitational term can be neglected. Comparing the dispersion relation for cap-
illary waves with acoustic modes @ = cq, one finds a crossover at a characteristic
frequency and wave vector

pc
Jo = ——
14
pc’
@Wo = (o€ = 7 . (420)

Resulting values are in the range 1y = % ~ 0.2 nm given the typical fluid param-

eters in Table 4.1. At these small length scales one cannot neglect the damping due
to viscous forces. Without derivation we mention that for wavelength

4> Grax = 1.69%

capillary waves are overdamped [19].

4.1.4
Linearized Stochastic Hydrodynamics

We now want to study an alternative approach to capillary waves which is based on
solving the stochastic Navier—Stokes equation (4.2). It is convenient to introduce
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the perpendicular v, and parallel velocities ¥)| := (v, vy). Decomposing the tensor
S accordingly yields

S = _Sy S”Z with S” = (Sxx SXY)
Sjz Sez Syx Sy

< Sxz _ Szx
and S||z = (Syz) = (Szy). (4.21)

92 8.2(2) + 2.4 - Sy2(2) — 4+ (- Sy(2))
1+ iw;%

Linearizing leads to

(2 -a2.)05(2) =

z) —ig - S|j=(2)
p IR S

p(2)

-

(92— q2) 5=(2) = 02 p(2) — 92 Sz
—10.4 (z)+3d-(G-Sy(2)

7 (92— q2,)iG-vy(z) = —q 9.7

(4.22)

with

iw
0 (9 0)=q" + >
2 2 w?
4p(0)=q"— F——F. (4.23)

cz—l—iw§1/

The solution has to fulfill the continuity equation
iw
c2po

and the Fourier transformed linearized boundary conditions

Op(z) +1 - V)j(2) + 0272(2) = 0 (4.24)

0= 7(d-3)(2) + ig) + Sji-

_‘yézﬁ = _ﬁ + 27782]72 + gzz|Z:0
iwh = 7], (4.25)

S

1w

which determines the velocities v, (z) and 5” (z), the pressure p(z), and the inter-
face position h. For an ideal liquid with # = 0 one finds

ia),oﬁz(z) + 82};(2:) =0, gzz(z) + lt_j : §||2(Z)
wpd - 7(2) + 47 F(2) = —i0:4- S)12(2) + G- (3~ $)1(2))
0 =ig-v)j(2) + 0:72(2) (4.26)

with the boundary conditions

ioh = 7,],_, . (4.27)
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Figure 4.2 Nanostructure and dynamics

of capillary waves: the sketch of dispersion
relations demonstrates the possible transi-
tion between acoustic modes and capillary
waves. Due intermolecular interaction poten-
tial V(r) the surface tension y (q) depends
on the wave vector leading to a dispersion

relation w? ~ g3y (q); assuming that an ex-
tension from hydrodynamics to smaller time
and length scales is provided by y (g). Does
one find a similar signature of the microscopic
forces —V’(r) on dynamical properties of cap-
illary waves, for instance, on damping factors
or viscosities?

Finally, one obtains the interface dynamics

P

o [wz - e - wz/czg—oqz} h(d, )

S.2(2) — ZiqulEq - S2(2) = Bq - (- §||(Z))) dz

Il
¢}
o
1
'_
N
/—\
‘»Q
R N
N

—0o0
O ~
+qu¢ f e1122i5, - §).(2) dz , (4.28)
—o0

which reduces to D(gq, w) <I’~L(é, w)> = 0 for the average position with the dispersion

term
D(q, ®) := w* — \/q* — cuz/czploq2 .

For ¢ — 0 one recovers the dispersion relation of (4.18) for an ideal incompressible
fluid. In contrast to the previous results, the coupling of acoustic and capillary
waves avoids a crossover of the dispersion relations but does lead to a crossover
of capillary waves to acoustic waves for ¢ — oco. For a more detailed analysis one
has to take into account the viscosity of a compressible fluid which is done in [19].

Next we want to focus on another important problem in the dynamics of
nanoscopic capillary waves: on these small length scales one can no longer ne-

(4.29)

glect the molecular interaction potentials. Recent X-ray scattering measurements
of the static structure function showed significant deviations of the surface tension
from its macroscopic value due to molecular interactions [7, 8]. From the stochastic
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hydrodynamics one obtains the dynamic structure function

3(4, w) = /RZ dq’/]R dw’(ﬁ(é,w)ﬁ*(é’,w’)>

=2kBTIm1 pL } (4.30)
Qo D(q, w)

and the static structure function by

cli) = [, o (@0 @)

/ T doga 431
= —5(4, w), .

58w (31)
which is proportional to the cross section (‘f—g of scattered X-rays with the differ-

ence g of in- and outcoming wavefronts. In the following section this relation is
used to determine the surface energy y experimentally.

4.2
Surface Tension at Nanometer Length Scales:
Effect of Long Range Forces and Bending Energies

Liquid interfaces are of fundamental importance in many areas of science and tech-
nology and have been the subject of continuous attention since van der Waals [20].
It is only in recent years, however, that a continuous effort in theory [6], experimen-
tal methods [7], and numerical simulations [21, 22] has given us a more complete
picture of their microscopic structures.

In the approach initiated by van der Waals [20, 23], the liquid—vapor interface was
described as a region of smooth transition (intrinsic profile) from the density of the
liquid to that of the gas over approximately the bulk correlation length &. Converse-
ly, the 1965 capillary-wave model of Buff, Lovett, and Stillinger [24] describes a wan-
dering, step-like interface whose structure is determined by the height correlation
spectrum (see (4.31))

- R R kg T
C(d) = (h(@)h(—7)) o ﬁ ,

where 27/q is the wavelength of the capillary excitation, in good agreement with
experiments [25, 26]. This description is necessarily expected to fail at small length
scales, at least for wavelengths 4 = 2mt/q ~ & [27]. Since the interfacial structure
is determined by the surface energy associated with the deformation modes, the
problem of the small scale structure can be addressed by considering corrections
to the surface energy through an effective Hamiltonian or wave vector-dependent
surface energy y (q). Following Helfrich [28], the surface free energy can be ex-
panded in powers of the mean curvature H and of the Gaussian curvature. Fourier
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transforming and applying the theorem of equipartition of energy, one obtains

v(@) =y +xq*, (4.32)

where y = y (q = 0) is the macroscopic surface tension and « is the bending rigid-
ity constant. A large reduction in the surface energy was predicted with increasing
wavevectors in a density functional theory [6], which was in strong contradiction to
an expected positive bending rigidity. The results could, however, be successfully
measured for water and other liquids using X-ray scattering [7, 8]. Thus, the ana-
Iytic expansion in (4.32) cannot be performed in the presence of long range forces,
but the surface tension should reach its macroscopic value from below as ~ g%In g
in the limit g — 0.

The density functional theory is constructed by describing the liquid using the
Carnahan-Starling equation of state and long range interactions with a potential

Wo Tg

Y=g

An effective interfacial Hamiltonian is constructed as the difference between the
grand potential minimized with the constraint of a given density on a given de-
formed surface, and that for the flat interface. This leads to a momentum depen-
dent surface tension:

+kq* — k"M (q)q* + O (q%). (4.33)

The density distribution at the fluctuating interface is different from the flat in-
trinsic density profile because there is a displacement of the average interface po-
sition due to capillary waves, and also because curvature induces density changes
in the intrinsic profile. The first term in (4.33) gives the contribution of long range
forces due to interface displacement, neglecting the distortion in the intrinsic pro-
file, and the other terms are bending terms, either local (kg2 as in (4.32)), or non-
local (kHH(q) g% and ™ due to long range interactions). For convenience one may
use a product approximation [6], which is valid for very short ranged intermolec-
ular potentials with ry <« &, but remains accurate to approximately 10% even for
& & 1y [6]. Within this approximation,

‘52
Cut 5 (1+ qro)e ™",
o

4
#M(g) = 0.74y c§5—2(1 + qro)e 1,
o
52

1
Kk = 0.74y CLE? (E + 7) . (4.34)
0
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Figure 4.3 The wavevector dependent surface energy y (q) of
water normalized to the macroscopic surface tension yq [7, 8].
The line is the analytical result of the density functional theory
described in [6] and given by (4.33) and (4.34).

Cy is the “susceptibility” of the density profile to curvature (see [6]), with the cur-
vature corrections to the profile being proportional to Cy. Landau theory gives
Cuy = 0.25, which yields a good description of the experimental data (see Fig-
ure 4.3) when used in (4.33).

Although the equilibrium properties of capillary waves seem to be well un-
derstood, there has been little work done on their dynamical properties at the
nanometer scale. What is the molecular nature of the flow field close to the fluctu-
ating interface? Do capillary waves in the liquid-vapor interface play a significant
role for the fluid flow in open nanochannels? As far as we know, these questions
are as yet unanswered and unexplored. The Navier—Stokes equations correctly de-
scribe the dynamics of Newtonian liquids in all cases where the time and spatial
scales on which the dynamics are investigated are well separated from the scales of
the microscopic dynamics of the molecules. In such cases the conservation laws for
mass, energy, and translational momentum, together with appropriate boundary
conditions, completely determine the dynamics of the fluids [9]. This is not the case
for capillary waves with wavelengths below 50 nm, where features of the molec-
ular dynamics become relevant for the spatiotemporal description of the fluid
dynamics.

Extensive measurements of dynamic properties of interfaces such as the spec-
trum of surface waves have been undertaken with dynamic light scattering [25, 29].
Lateral length scales below 100 pm are unattainable, however, because an unam-
biguous distinction between surface scattering and scattering from the bulk lig-
uid underneath becomes impossible. The use of X-ray photon correlation spec-
troscopy [30] allows improvement of the lateral resolution by two decades, but the
surface physics at wavelengths of about 1pm is nevertheless still dominated by
classical capillary waves. Consequently, the spectrum of the surface ripples can be
described by a linear response analysis of the equations of hydrodynamics (see pre-
vious section and [31]). Thus, the theoretical analysis is unambiguous for these
wavelengths that are much larger than intermolecular spacing.
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Further progress in experimental techniques, especially with high brilliance
sources for synchrotron radiation, opens up the possibility to study the dynamics
of surfaces at wavelengths close to intermolecular distances [32-37]. For these
length scales the hydrodynamic limit, which is always the long wavelength limit
of the dynamics of a statistical system, will certainly break down, and another
description is called for. The main theoretical challenge here lies not so much
in exhaustive simulations of the dynamical behavior of interfaces, but rather in
identifying the relevant dynamical variables which describe the fluctuations of
the surface. Nevertheless, it is indispensable to judge the viability of a theoretical
model by careful comparison to molecular dynamics data and, hopefully in a few
years, to new experiments.

In the following section a first example is presented in which thermal fluctua-
tions and capillary waves play an important role for the nonlinear dynamics of thin
liquid films.

4.3
Thermal Noise Influences Fluid Flow in Nanoscopic Films

Thin liquid films are ubiquitous in nature and the understanding of their dynam-
ical behavior is important for many technological applications. The fabrication of
electronic chips now requires thicknesses of insulating layers or photoresists on
the order of a few nanometers. Reliable predictions of the dynamics of ultra-thin
films play an important role in guaranteeing stability during production and use
of such devices. In bulk fluids, hydrodynamic Navier—Stokes equations are proven
to be valid down to the nanometer scale. Until recently thin film flow has been
studied solely by deterministic equations [38], although thermal noise plays an
increasingly important role the smaller the system size becomes, and may play
an important role in thin liquid films with thicknesses of a few nanometers. For
instance, in [39, 40] a stochastic version of the thin film equation was derived
based on the lubrication approximation for stochastic hydrodynamic equations.
To a linear approximation, this treatment predicted that the spectrum of capillary
waves changes from an exponential decay to a power law for large wave vectors
due to thermal fluctuations. Consequently, the time evolution of the film thick-
ness h(7,t), that is of the film roughness o%(t) = (h?), and also of the typical
wavelengths of the maximum of the power spectrum are found to change quali-
tatively. Whereas the deterministic equation predicts a constant wavelength in the
linear regime, the stochastically evolving structures coarsen in time and o2(t) is
expected to increase much faster due to thermal noise. These consequences of the
stochastic nature of the thin film dynamics are robust. The failure of the deter-
ministic hydrodynamic description due to thermal fluctuations is already expect-
ed for small noise amplitudes in thin liquid films and for a large class of sub-
strate interactions. Recent numerical studies of thin film evolution also indicate
that thermal noise might influence characteristic time scales of the dewetting pro-
cess [40].
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770 s 2270 s 4220 s 6500s

1880 s

Figure 4.4 A 3.9 nm polystyrene film beads off an oxidized

Si wafer [41]: temporal series of experimental scanning force
microscopy of the dewetting process (top) can be simulated

by the Navier—Stokes equation in lubrication approximation,
(4.37), with identical system parameters. The temporal evolu-
tion of the dewetting morphology can be modeled quantitatively
by stochastic Navier—Stokes equation (4.35).

In [42] these predictions of noisy hydrodynamics have been confirmed experi-
mentally by AFM measurements of the dewetting of thin polymer films [41]. The
experimental system consists of a polystyrene film with a molecular weight of
2kg/mol (PS(2k)) prepared on a silicon substrate with a 191 nm thick amorphous
oxide layer on top. The film thickness is chosen to be 3 to 4 nm so that the system
is unstable in the spinodal regime. Heating the sample above T, leads to capil-
lary waves at the PS surface. The amplitudes of the waves increase exponentially
with time, finally reaching the order of the film thickness and causing holes that
grow in the further stages of dewetting. The whole process of spinodal dewetting
is scanned in situ by SPM (Figure 4.4). This process involves the emergence and
amplification of capillary waves, the appearance, growth, and coalescence of holes,
and finally the formation of droplets.

4.3.1
Dynamics of the Film Thickness

The film can be described as an incompressible Newtonian liquid with a constant
mass density p on an infinite flat solid substrate, that is by the Navier—Stokes equa-

tion (4.2)

p(a—v+(a-V)§)=n%217—%(p—n)+%-s, (4.35)
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but with an additional disjoining pressure

LD (h)

Ik ===~

(4.36)

which is given by the effective interface potential (see (4.2))

A
127th?

P (h) =

and determines the dewetting properties of a substrate. Thus, the Hamaker con-
stant A determines the disjoining pressure in (4.35) if we neglect the short ranged
part of the potential. We also assume that there is no slip between the fluid and the
substrate and that at the free surface z = h(7, t) the normal and tangential stresses
are balanced in the polymer film.

For a smooth thin film, where the ratio of the characteristic film height hy is
much smaller than the length scale over which the film thickness varies laterally,
one can find an approximate solution for the free boundary flow. This approach is
well described in [38-40], so that we give here only the resulting nonlinear Langevin

equation
3 - - -
%v [cp’(h) —y Vzh] + ,/Zkf‘%hwm% (4.37)

for the film thickness h(7, t), with a single multiplicative conserved noise vector

N

N (7, t) obeying </\7 (7, t)> = 0 and the correlator

o -
@ _y.
T

(N7 NG (7, 1) = 0550 (F =)o (t — 1) .

The polystyrene (PS) film of thickness h ~ 4 nm on silicon dioxide is linearly un-
stable and the characteristic lateral length scale is given by the dispersive capillary
length

27 —32m?y
—:,/—:4h2,/n3 A.
90 H/(h()) 0 V/

With the Hamaker constant A ~ 2 - 1072° N'm and the surface tension coefficient
y ~ 3-107%N/m, we see that é—: ~ 400 nm. The viscosity is 7 ~ 1200 N s/m?.
In the deterministic part of (4.37) there are two terms which can drive the flow, the
disjoining pressure and the surface tension. The flow associated with each part is
of the order of ho U with two characteristic velocities, namely

Unp = A Ho 0.6nm/s
T~ Gxhon 27 '
h 3
U, = 2% (ﬁ) ~8-10° nm/s . (4.38)
3n \2m
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Taking the larger of the two velocities, the dimensionless noise amplitude is
T _ kBTh() (qo )3 _ 3kBT

nUg \2n/) — 8a2hly

This result is, in fact, independent of the form of the disjoining pressure and al-
so holds if the short ranged part is included. The experiments were performed at
53 °C which leads to the dimensionless amplitude T = 4 - 10~ of the noise. The
noise induced current is therefore about two orders of magnitude smaller than the
current induced by the disjoining pressure.

4.3.2
Comparison with Experiments

Quantitative information about the dewetting process can be obtained by measur-
ing the variance o2(t) = (3h(7,t) O h(¥, t)) of the film height h(¥, t), and the vari-
ance kX(t) = ((Vh(F, ))2)/(2ma%(t)) of the local slope of the film height, which
gives information about the preferred wave vector within the surface. Here, the
brackets represent an integration over all positions 7 of the image. We analyze on-
ly the early stage of spinodal dewetting where capillary waves are amplified until
the first holes appear (up to about 1000s). During the intermediate stage when
holes emerge and grow, typically between 1000 s and 4000, as well as during the
late stage of dewetting after 4000 s when the coalescence of holes and forming of
droplets take place, we analyze the prepared film only around the initial height hy
and ignore the emerging holes (details of the technique are given in [43]). Thus,
we restrict the integral {-) on regions without holes. The results for o2 and k? are
shown in Figure 4.5.

1 ‘ 300 ‘ :
—8&— experiment F experiment —&—
09 F — fitT>0 1 fit T>0
08 [ = fitT=0 ] 250 simulation (7 = 0) -
©-- simulation (I'=0) /¥y  {  fitT=0 ----—-
0.7
NE 0.6
=05
g 04
0.3
0.2 i 71
0.1
0 F-®@-————-——-0———-0-@O6 -
(a) 0 1000 ;5] 2000 by o 1000 ] 2000

Figure 4.5 Comparison of (a) the roughness
02 (t) and (b) the variance k?(t) of the local

slope as functions of time for the SPM experi-

ment shown in Figure 4.4 (boxes) and for the
deterministic simulations (T = 0) present-
ed in [41] (circles). 0%(t) and k2 (t) are fitted
with (4.42) and (4.43). While the experimen-

tal o (t) can be fitted with the deterministic
theory by adjusting the initial roughness o3
and the characteristic time scale to (T = 0,
dashed line), this is not possible for the ex-
perimental k? (t). The deterministic k? (t)

is always constant in time during the linear
regime — independent of 3 and to.

135



136

4 Dynamics of Nanoscopic Capillary Waves

Since the noise induced current is smaller than the current induced by the dis-
joining pressure, let us first neglect the thermal noise and solve (4.37) numeri-
cally with T = 0 and random initial conditions. This was done previously in [41]
and shows excellent agreement in the spatial structure. However, the time scales
and the time dependence of ¢?(t) and k?(t) do not match at all, as can be seen
in Figure 4.5. The discrepancy is assumed to be caused by thermal noise in the
experimental system, which was thus far neglected in the simulations. However,
the preliminary numerical results for (4.37) at finite temperature T # 0 presented
in [40] indicates that the influence of thermal fluctuations on the dewetting dy-
namics may fix the discrepancy in the early stages of dewetting, where the effect of
noise is largest. In this case noise can accelerate the initial dynamics of thin poly-
mer films by at least a factor five, if realistic values are chosen for surface tension,
substrate potential and viscosity [40].

433
Linearized Stochastic Thin Film Equation

We can study these early stages of dewetting further in a linear approximation
of (4.37). In the beginning of the dewetting process, the deviations Oh(F,t) =
h(7,t) — ho from the initial film height h, are small. By expanding (4.37) to the
first order of Oh and N , assuming that the noise amplitude is small as well, and
applying a Fourier transformation Sh(7,t) = [ %Sh(?]’, t)eld", we obtain the
linear stochastic equation

_ ) s
% = w(q)0h(q4, 1) + i‘IZkf;;th.N(q, ). (4.39)

The dispersion relation

ol = [1- (/83— 1] /t (440

has a maximum at the wave vector
gt = __45 " (ho)
0 2y
with @”(h¢) < 0 and a characteristic time

_ 3
yhias

1o

Note that the multiplicative noise in (4.37) becomes additive in the linear approxi-
mation in (4.39). Then the spectrum of the height reads

(or@ 3R, 1) = @m0+ ) C(ldl: 1
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Figure 4.6 Power spectrum of a spinodally dewetting film with
(solid line) and without noise (dashed line, for T = y g4 co)
for two different times t = 0.1tg and t = 2.0to, cf. (4.41). The
initial spectrum at ¢ = 0is C(g;0,0) = co. The inset shows the
dispersion relation w(qg).

with the static structure function (see (4.31))

kB Thé qZ

C q7t = C() q eza’(q)t +
(q:1) () 3 o)

[e*@" —1] (4.41)

and the initial power spectrum

~ 2
Co(q):<)6h(é,0)‘> at t=0.

The time evolution of the power spectrum with and without noise for a white ini-
tial spectrum C(q:0,0) = co is shown in Figure 4.6. Note that in the case of a
spinodally unstable film (@ (hq) < 0) the dispersion relation w(q) is negative for
q > ~/2qo (see inset in Figure 4.6). Thus, for t — oo one finds exponentially
decaying height-height correlations

C(q:t) > Co(q)e 2@l

for the deterministic dynamics (T = 0) but we recover the the algebraic capillary
wave spectrum

302
Clgiy—» elho & LT
3 el ve
for any finite temperature T. Note that the maximum of the deterministic spectrum
stays at g for all times, but the maximum of the stochastic spectrum approaches
qo from above as t — oo. This noise generated coarsening process can last until
nonlinearities become important, effectively masking the typical feature of the lin-
ear deterministic regime, namely that the maximum of the power spectrum stays
at a fixed wave number.
At this point we note that the spectrum necessarily has a microscopic cutoff
dmax = 27/19 > qo at the scale rq of the fluid particles. For simplicity we as-
sume (4.41) holds up to this point and C(q:t) = 0 for ¢ > Gmay. In order to
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illustrate further the spatial features of the dynamics, we calculate the roughness

of the film

d’q -
ol(t):/(zn?z C(g: 1)

Qmax

k % (02—
=0l (t & / de— (4.42)

with the deterministic evolution

Tty oL 2t
07—o(t) = 05\/ 8—:62‘0 erf( E)

of the roughness the initial roughness 02(0) = o3, and the initial spectrum
Co(q) = qé X g% for g < +/2 g and Cy(q) = 0 for g > +/2 qo. Due to a rapid increase
of thermal fluctuations on an atomistic time scale t,, the initial spectrum is irrel-
evant for the film evolution on the characteristic time scale ty. For large t we can
calculate the ratio 02(t)/0%_,(t) > 1+ Z + Ot ) with & = ZTIEBTTO(Z) > 0. Note
that 5 is given by the ratio of the thermal (capillary) roughness T/y to the initial
roughness 3. It is this ratio which determines the importance of thermal fluctu-
ations for the dynamics of the film. One may argue that the initial roughness is
due to thermally equilibrated capillary waves before the dewetting process starts, so
that one may expect = to be of order unity. A numerical integration of (4.42) shown
in Figure 4.7a illustrates that thermal noise is most important in the beginning of
the process. One finds a fast linear increase 0%(t)/0%_y(t) = 1+ St/tm + O(t?)

4
of the thermal roughness with the characteristic (microscopic) time t,, = q‘,ﬂto

due to a rapid build up of a thermal spectrum for g > +/2qo, followed by a
slower increase for t,, < t and up to t, due to the linear dewetting process.
However, for times t > t, thermal fluctuations become less important com-
pared to the exponential increase of the unstable mode gy and one reaches a

quasi -deterministic behavior 0% _ (t), but with a renormalized initial roughness

kT
+ 2wy *

For the variance of the local slope

resis T d’qq’
Znoz(t)kz(t)_<[V6h(r, t)] >_/ i E(g:t)

which is a measure for the characteristic wavelength of fluctuations, we find

qgnax —1
2
90

k(1 ks T 1—e oD
By, BT f oo-— " (4.43)
kg 41y o?(t) 0—-1

—1
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Figure 4.7 Variance k? of the local slope in the experiment
(boxes) and the deterministic simulation (circles) plotted
versus the roughness o2. Due to thermal noise one finds

k2 (t)/ k? (00) — 1 ~ 1/0?(t) for any noise amplitude T as long
as the characteristic wavelength 27t/qq is much larger than the
molecular cutoff 251/ Gmax. In contrast, simulations for T = 0
are consistent with a constant k2.

2
with the initial and final value k?(0) = k?(c0) = 4. Note that for the deterministic

dynamics k2_(t) = % is constant in time for the chosen initial spectrum, and
that the position of the maximum in the structure function C(g, t) does not change
during the dewetting process. In contrast, in the stochastic dynamics thermal noise
induces a time dependence of k?(t) that starts at the deterministic value at t = 0
and increases linearly in time until it reaches a maximum at ¢t ~ ty,,, before ap-
proaching the deterministic value k?(t)/k?(00) — 14 1z 3% + O(t?) from above
for t > ty. If the microscopic cutoff gmay is much larger than go, one obtains
an intermediate time regime t,, < t up to t ~ ty, where the integral in (4.43) is

approximately constant. One then gets

kg T 1
2y 1t o%(t)

(4.44)

for intermediate times up to t =& t;, independent of the initial conditions. Thus,
thermal noise generates coarsening even in the linear regime for which the de-
terministic linear dynamics predicts a fixed characteristic wave vector k%(t) =
k2(c0) = 2%21 The second term in (4.44) can easily be derived by calculating the
variance of the local slope

. T2 d?qq* - kg T
<[V6h(r, t)] > = / #Ceq(@ = 4:E_yq2max’

€q
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with the equilibrium capillary wave spectrum @q(q) = ’;}3—;. Thus, the variance

2mo (k2 (t) = <[%6 h(7, t)]2> = 202(t) + <[§6 h(7, t)]2>
eq

consists of two terms: the equilibrium contribution due to thermal noise and

the growing peak at gy due to the dewetting process [ d?qg>Co(q)e?®@" —

G2 [ d*qCy(q) €29, which is independent of the initial spectrum and proportion-

al to 0(t) in the limit t 3> t,.

For a glass-forming liquid such as polystyrene, one may argue that the equilibri-

um variance <[%6 h(7, t)]2 = 2na(T — T) is proportional to the temperature
e

difference T — Tj in the Vicir(}ity of the glass transition at Ty, so that (4.44) actually

reads k%(t) ~ k?(00) + a(T — Ty)/0?(t).

A separation of length scales gmax > go also leads to a separation of time scales
tm = q‘iqnix to < to, so that the algebraic decrease of k2(t) with o (t) is visible before
the exponentially growing peak in the structure function causes a crossover to an
algebraic behavior in time k?(t)/k3 — 1 ~ 1/t for t > to. We expect the linear
approximation in (4.39) to hold at least for the fast initial (¢ < t,,) formation of the
thermal spectrum for q > gy, as well as for the noise dominated spinodal dewetting
process up to t & .

Finally, one can conclude that the noise term in the structure function C(q; t) is
relevant for any value of the noise amplitude T, as long as the dispersion relation
o (q) becomes negative for large wave vectors gmay > q > ~/2qo. For realistic values
of surface tension and substrate potentials one finds 27/qo ~ 0.1...1 um, which
is much larger than the size of molecules and provides an upper cutoff g,y for
allowed wave vectors. Thus, the time evolution of o?(t) and k?(t) given by (4.42)
and (4.43), respectively, are always dominated by the thermal noise term for times
t < to up to the characteristic time t, of the fastest growing mode .

During the dewetting process of liquid films of nanometer thickness, the inter-
play of substrate potentials and thermal noise may result in qualitatively different
lateral behavior on scales up to microns. In particular, for the further development
of efficient tools to be used in the design of microfluidic devices or electronic com-
ponents whose function relies on thin film properties, it is essential to gain a quan-

titative understanding of thermal fluctuations in thin film flow and its interplay
with molecular interactions. In the course of miniaturization of microfluidic de-
vices, a fully quantitative description of Newtonian liquids at surfaces is essential
and requires quantitative stochastic modeling of ultrathin film dynamics as well as
mathematically well controlled numerical schemes.
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5
Nonlinear Dynamics of Surface Steps
Joachim Krug

5.1
Introduction

Surface steps are key elements in the dynamics of a crystal surface below its ther-
modynamic roughening transition because they constitute long-lived structural de-
fects that are nevertheless highly mobile and prone to strong fluctuations [1]. The
description of surface morphology evolution in terms of the thermodynamics and
kinetics of steps goes back at least half a century [2]. During the past few decades,
the subject has experienced a significant revival due to the availability of imaging
methods such as scanning tunneling microscopy that allow for a direct visualiza-
tion of step conformation and step motion on the nanoscale (see [3-7] for recent
reviews). In this chapter I will focus specifically on cases where steps have been
found to display complex dynamic behavior, such as oscillatory shape evolution un-
der constant driving.

The examples to be discussed below can be naturally organized according to
the underlying topology of the step configurations: I first consider driven single
layer islands (closed step loops), and then vicinal surfaces (arrays of parallel steps).
A certain familiarity with the basic thermodynamics and kinetics of crystal surfaces
is assumed. For an elementary introduction the reader may consult [8].

5.2
Electromigration-Driven Islands and Voids

Electromigration is the directed transport of matter in a current carrying material,
which is primarily caused by the scattering of conduction electrons off defects such
as interstitials or atoms adsorbed on the surface. The latter are henceforth referred
to as adatoms (Figure 5.1). Much of the work on electromigration has been moti-
vated by its importance as a damage mechanism limiting the lifetime of integrated
circuits [9]. Because electromigration forces are small compared to the typical en-
ergy barriers involved in the thermal diffusion of atoms, the direct observation of
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Figure 5.1 Schematic of the microscopic origin of the electro-
migration force: conduction electrons scattering off an adatom
give rise to a transfer of momentum in the direction of the cur-
rent flow.

electromigration effects in real time on atomistic length scales is difficult (see [10]
for recent progress in this direction). In this chapter the electromigration force will
be used as a conceptually simple way of driving a system of surface steps out of
equilibrium, giving rise to surprisingly complex dynamical behavior.

5.2.1
Electromigration of Single Layer Islands

Two-dimensional single layer islands are the simplest nanoscale structures that
appear on a surface during the early stages of thin film growth, when the amount
of deposited material is a small fraction of a monolayer [5]. Because of their
small size, such islands already display considerable shape fluctuations in ther-
mal equilibrium that may cause diffusive motion of the island as a whole [4]. The
electromigration-induced drift of single layer islands on the Si(111) surface was
observed experimentally by Métois and collaborators in 1999 [11]. In the following,
I summarize recent theoretical work on this problem that is based on a continuum
formulation due to Pierre-Louis and Einstein [12].

I focus here on the simplest case in which the motion of atoms is restricted to the
boundary of the islands, such that the island area is conserved.” The local normal
velocity vy, of the island boundary then satisfies a continuity equation,

vnz—% j = %o[%(fm)—ﬂ], (5.1)
where s denotes the arc length measured along the island contour. The mass cur-
rent j along the island boundary is proportional to the step edge mobility o, and
it is driven by capillary forces and the component F, of the electromigration force
tangential to the boundary. The capillary force, in turn, is given by the tangential
gradient of the edge chemical potential, which is the product of the edge stiffness y
and the edge curvature k. The stiffness ¥ is derived from the edge free energy per
unit length y accordingto # = y + y”/, where primes denote derivatives with re-
spect to the orientation angle of the edge. In the absence of external forces (F, = 0),
(5.1) guarantees the relaxation of the island to its equilibrium shape characterized
by ¥« = const. [5]. Throughout this section the electromigration force is assumed

7) A nonconserved situation where the step
exchanges atoms with the terrace is treated
below in Section 5.2.4.
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to be constant in magnitude and direction. This implies that
Fi = Fycos 0, (5.2)

where 6 denotes the angle between the boundary and the direction of the force.

In the absence of crystalline anisotropy the material parameters o and 7 in (5.1)
are constants and it is straightforward to check that (5.1), (5.2) are solved by a cir-
cle of arbitrary radius R moving at constant speed V = o Fy/R [13]. Linear sta-
bility analysis of the circular solution shows that it becomes unstable at a critical
radius [14]

Re ~ 3.26lg , (5.3)

where the characteristic length scale obtained by nondimensionalizing (5.1) reads

ls = V7 /Fo. (5.4)

Beyond the linear instability of the circular solution one finds a family of stationary
shapes that are elongated in the direction of the force and become increasingly
sensitive to breakup with increasing size [15, 16].

The effect of crystalline anisotropy in the mobility o was explored, mostly nu-
merically, in [15, 17]. Using the expression [18]

a(0) = ool + S cos*(n)], (5.5)

where 2n denotes the number of symmetry axes, a surprisingly rich phase diagram
of migration modes was obtained in the plane spanned by the anisotropy strength
S and the dimensionless island radius Ry = R/ I for the case of sixfold anisotropy
(n = 3) (Figure 5.2). In these calculations the force was oriented along a direction
of maximal mobility.

For small Ry the dynamics is dominated by capillarity and the island shape is
close to the equilibrium shape. The island moves at constant speed in the direc-
tion of the applied force (ss = straight stationary motion). With increasing size a
bifurcation to a regime of oblique stationary (os) motion occurs, in which the sym-
metry with respect to the force direction is spontaneously broken. A suitable order
parameter for this bifurcation is the angle between the direction of force and the
direction of motion (Figure 5.3). Increasing the radius further, another bifurcation
occurs to a phase in which the obliquely moving island displays periodic shape os-
cillations (the oo phase). At smaller values of S the island performs an oscillatory
zig-zag motion that is, on average, directed along the applied force (Figure 5.4).

A clear signature of the transition from stationary oblique to oscillatory behavior
shows up in the angle of island migration (Figure 5.3). In addition, it is observed
that the period 7 of the shape oscillation diverges as the critical radius R{° of the
transition is approached from above (Figure 5.5). Although the data show some
dependence on the number of discretization points, a power law fit indicates that
the period diverges as

7~ (Ry— RP)™>. (5.6)
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Figure 5.2 Numerically generated phase irregular, possibly chaotic. The cross on the
diagram of island migration modes as a func-  Ro-axis indicates the bifurcation from circular
tion of the anisotropy strength S, as defined to elongated shapes in the isotropic case at
in (5.5), and the dimensionless island radius the critical radius (5.3). The phase diagram is
Ro = R/Ig. In the regions denoted by zz based on a grid of resolution 0.5 x 0.5 in the
and oo the island shape oscillates periodi- S—Ro-plane.

cally, while in the co region the behavior is
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Figure 5.3 Angle enclosed by the direction of island motion
and the direction of the applied force as a function of the scaled
island radius for S = 2. The transitions between the different
phases in Figure 5.2 are manifest as slope discontinuities in
this graph.

Increasing the island size further, the oscillations become increasingly irregular.
This is illustrated in Figure 5.6 by the time series of the island perimeter. The up-
permost curve in the figure displays large scale fluctuations that can be traced back
to reversals of the direction of island motion that occur at irregular intervals [17].
The Fourier spectrum of such a time series is broad and shows clear signatures of
period doubling (Figure 5.7).
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Figure 5.4 Oscillatory island motion in the zig-zag phase of the
phase diagram. Parameters are Ry = 3.5, S = 0.5 for (a) and
Ro = 3.5, S = 1for (b). All lengths are measured in units of /.
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Figure 5.5 Period 7 of the shape oscillation near the transi-
tion from the oo to the os phase. Different curves show results
obtained for different numbers N of discretization points in
the numerical solution, with N increasing from right to left
(from [16]).

5.2.2
Continuum vs. Discrete Modeling

In the preceding section it was seen that electromigration-driven islands display
a number of features that are consistent with the behavior of a low-dimensional,
nonlinear dynamical system. This is remarkable since physically such an island
consists of a large number of atoms that move stochastically under the influence
of thermal fluctuations and a very small systematic force.

In order to determine whether the phenomena predicted on the basis of the
deterministic continuum model given in (5.1) also persist under experimentally
realistic conditions, extensive kinetic Monte Carlo (KMC) simulations were carried
out using a lattice model that has been shown to provide an accurate representation
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Figure 5.6 Time series of the island perimeter, measured in
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Figure 5.7 Fourier spectrum of the island perimeter time series
for S = 3and Ry = 6, plotted as a function of the period
7 = 2x/w (from [16]).

of metal surfaces® such as Cu(100) [19]. In a suitably chosen range of parameters, a
regime of oscillatory motion could be identified which shows dynamic behavior in
good, essentially quantitative agreement with the continuum model (Figure 5.8).

8) See [5, 7] for an overview of similar models,
and [12, 20] for earlier KMC simulations of
island electromigration.
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Figure 5.8 Comparison of island shape evolution obtained
from KMC simulations (a and b) and numerical solution of the
continuum model (c). The simulated islands consist of 1000
atoms in (a) and 4000 atoms in (b). (a) and (c) correspond to a
temperature of T = 700 K, while in (b) T = 500K. In (a) and
(b) lengths are measured in units of the lattice constant, in (c)

in units of .

For the comparison to KMC simulations, realistic expressions for the step edge
mobility o and the stiffness 7 in (5.1) were derived and implemented. Both of these
quantities display a fourfold anisotropy on the fcc(100) surface. A rough exploration
of the full phase diagram conducted within the continuum model is depicted in
Figure 5.9. Since the physical parameter controlling the anisotropy is the temper-
ature T, with lower temperatures corresponding to more pronounced anisotropy,
the temperature axis in Figure 5.9 replaces the anisotropy axis in Figure 5.2. The
regions displaying oscillatory behavior without leading to island breakup are much

& A

500 600 700 800 900 1000

T

Figure 5.9 Phase diagram of island migra- 100 K. Each rectangle corresponds to a single
tion modes obtained by numerical solution of  value of Ry and T, which is located in the

the continuum equations for a mobility and center of the rectangle. The cases T = 500K
stiffness of fourfold crystalline anisotropy. The  and T = 700 K, which correspond to the KMC
temperature is measured in Kelvin and the simulations, were explored with higher resolu-
anisotropy increases with decreasing tem- tion. The abbreviations used for the different
perature. Temperature was varied in steps of phases are explained in Figure 5.2 (from [16]).
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more limited than in the case of sixfold anisotropy. In particular, at T = 500K no
oscillatory regime was found in the continuum model, despite the fact that oscil-
lations are seen in the KMC simulations at this temperature (Figure 5.8b). This is
one of the indications of a breakdown of the continuum description at low temper-
atures which were reported in [19].

523
Nonlocal Shape Evolution: Two-Dimensional Voids

Formally, the island electromigration problem described in the preceding sections
is largely equivalent to the problem of electromigration of cylindrical voids in a thin
metallic film. The formation, migration, and shape evolution of such voids plays
an important part in the failure of metallic interconnects in integrated electronic
circuits [9]. In this context, the size scale of interest is usually in the range of mi-
crometers rather than nanometers, but on the level of the continuum description
on which (5.1) is based this difference is immaterial.

A more relevant distinction is illustrated in Figure 5.10. In the case of an is-
land on top of a thick metallic substrate, the disturbance of the electric current
distribution in the bulk due to the presence of the island can be neglected, and
correspondingly the force F; in (5.1) can be approximated by the simple constant
expression in (5.2). On the other hand, in the presence of an insulating void in a
current-carrying film, the current is obviously forced to flow around the void. As a
consequence the current distribution and, hence, the distribution of electromigra-
tion forces is strongly dependent on the void shape itself, and the shape evolution
becomes a non-local moving boundary value problem for the electric potential [18].
It is possible to interpolate between the two cases depicted in Figure 5.10 by con-
sidering a conducting void and varying the conductivity ratio between the interior
and the exterior regions [14].

Oscillatory shape evolution of two-dimensional voids was first observed numer-
ically by Gungor and Maroudas [21]. They considered edge voids located at the
boundary of a two-dimensional conducting strip. In the presence of crystalline
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Figure 5.10 Comparison between the electromigration problem
for islands (a) and voids (b). Arrows indicate the flow of the
electric current. The shape evolution problem in (a) is local,
whereas in (b) has to solve a nonlocal moving boundary value
problem.
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anisotropy in the mobility of adatoms along the inner void surface, a transition
from stationary to oscillatory behavior occurs with increasing electromigration
force or void area. Subsequent detailed analysis has shown that this transition has
the character of a Hopf bifurcation [22]. The experimental signature of oscillatory
void evolution is rapid oscillations in the resistance of the conductor, which have
indeed been reported in the literature [23].

524
Nonlocal Shape Evolution: Vacancy Islands with Terrace Diffusion

The exchange of atoms between the step and the surrounding terraces is another
source of nonlocality in the motion of the steps, as it necessitates the solution of
a moving boundary value problem for the concentration of adatoms on the ter-
races [2, 8]. A particular case in this class of problems is the interior model for
the electromigration of vacancy islands introduced in [12], and studied in detail
in [16, 24].

As illustrated in Figure 5.11, one considers a vacancy island (i.e., a surface region
which is one atomic height lower than the surrounding terrace) bounded by an
ascending step. Atoms can detach from the step and diffuse across the island, but
an energy barrier prevents atoms from entering the island from the exterior terrace.
This leads to a moving boundary value problem in the bounded interior domain
where the adatom concentration p(r, t) satisfies the drift-diffusion equation

2 D
with appropriate boundary conditions at the step edge (see [8] for a general dis-
cussion). If the exchange of atoms with the step edge is rapid, such that thermal
equilibrium is maintained at the boundary at all times, a circular stationary solu-
tion drifting at constant speed against the force direction can be found [12].

From the perspective of nonlinear dynamics, an intriguing feature of this prob-
lem is that the circular solution is linearly stable, although numerical simulation
of the fully nonlinear evolution shows that the circle develops an instability under
finite perturbations that eventually leads to the pinching off of a small island [24].

9 F-Vp (5.7)

Figure 5.11 Sketch of a vacancy island migrating by internal
terrace diffusion. The drift force leads to a net transport of ma-
terial from the left to the right, which implies island migration
in the opposite direction.
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The critical perturbation strength needed to trigger the instability decreases as the
dimensionless island size, defined in this case by

R kg T
—, gz_
3 |F|

is increased by increasing either the force or the island size. A similar scenario
combining linear stability with nonlinear instability was previously found in the
problem of two-dimensional void migration [18, 25] as well as in the dynamics of
ionization fronts [26, 27].

The effects of crystalline anisotropy in this problem have not been explored thus
far. However, in view of the results described in the preceding subsections, it seems
likely that oscillatory and other modes of complex shape evolution may arise in this
case as well.

Ry = (5.8)

53
Step Bunching on Vicinal Surfaces

A vicinal surface is obtained by cutting a crystal at a small angle relative to a high
symmetry orientation, such that a staircase of well separated atomic height steps
forms. When such an array of steps is set into motion by growing or sublimating
the crystal or by applying an electromigration force on the adatoms, a variety of
patterns emerges.

Quite generally, the pattern formation process can be understood as a compe-
tition between the destabilizing effects of the external forces and thermodynamic
forces arising from the step free energy and repulsive step—step interactions, which
act to restore the equilibrium state of straight, equidistant steps. The resulting in-
stability scenarios have been studied extensively on the level of linear stability anal-
ysis, (e.g. [28]). The two basic modes of instability are illustrated in Figure 5.12. In
step bunching the individual steps remain straight but the initially homogeneous
step train breaks up into regions of high step density (bunches) separated by wide
terraces. By contrast, in step meandering the individual steps become wavy; often
the repulsive interactions between the steps then force the different steps to mean-
der in phase, such that an overall periodic surface corrugation perpendicular to the

bunchin
/ \lndering

Figure 5.12 Schematic of the two main morphological instabilities of a vicinal surface.
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t Figure 5.13 Sketch of a one-dimensional step train. Under
sublimation, ascending steps move to the right.

direction of vicinality results. In some cases step bunching and step meandering
have been observed to coexist [29, 30].

In the following some recent results on the nonlinear evolution of step bunches
will be summarized, focusing again on instances of complex temporal behavior of
the step configurations. For a discussion of the nonlinear dynamics of meandering
steps we refer to [31].

When step bunching is the dominant instability, the steps, to a first approx-
imation, can be assumed to be straight, and the problem reduces to the one-
dimensional motion and interaction of point-like steps. Figure 5.13 illustrates the
situation for the case of sublimation, where ascending steps move (on average) to
the right. The equations of motion for the steps can be obtained from the solution
of a one-dimensional moving boundary value problem for the adatom concentra-
tion on the terraces. This procedure has been reviewed in detail elsewhere [8]. Here
we start the discussion directly from the nonlinear equations of motion, regarded
as a physically motivated many-dimensional dynamical system.

5.3.1
Stability of Step Trains

As a first orientation, suppose the velocity x; of the ith step is the sum of contribu-
tions f4 and f_, which are functions of the length of the leading terrace (in front
of the step) and the trailing terrace (behind the step), respectively, such that

da;
d_t = [ (%1 — %) + f(xi — xi—1) (>-9)

forthe Nstepsi = 1,..., N, and periodic boundary conditions are employed. Then
a uniform step train of equally spaced steps

O =il 4t (5.10)

is always a solution, with I denoting the step spacingand v = f (I)+ f—(!) the step
speed. A straightforward linear stability analysis of (5.9) reveals that the solution
given in (5.10) is stable if

d
T+ = f=@)lle=1 >0, (5.11)

and step bunching occurs when this condition is violated.

There are obviously different ways in which such an instability can be realized.
One possibility is that both contributions on the right hand side of (5.9) are in-
creasing functions of the terrace size, but the contribution from the trailing ter-
race is larger, that is the step motion is primarily driven from behind. This is
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the scenario first described by Schwoebel and Shipsey [32, 33], who pointed out
that the preferential attachment/detachment of adatoms from/to the lower terrace
bordering a step leads to step bunching during sublimation. The mechanism for
electromigration-induced step bunching first described by Stoyanov [34] is of a sim-
ilar nature. We will return to this case in the following sections.

A different scenario was investigated by Kandel and Weeks [35, 36], who consid-

ered a class of one-sided models with f_ = 0 and a nonmonotonic function f4 of
the form
fH(x) = cx(x — x) . (5.12)

This work was motivated by the physics of impurity-induced step bunching dur-
ing growth, where steps are slowed down by impurities that accumulate on the
terraces [37, 38]. Larger terraces have been exposed to the impurity flux for longer
times, which leads to a decrease of the step speed and ultimately to its vanishing
when x = xy. The equidistant step train is stable for | < xy/2 and unstable for
I > xy/2. Perturbing a single step in an unstable equidistant step train leads to a
disturbance wave which travels backwards because of the one-sided nature of the
dynamics, leaving behind a frozen configuration of step bunches separated by ter-
races of size x,. Varying the initial step spacing, one finds a sequence of spatial
bunching patterns which can be periodic, intermittent, or chaotic”.

5.3.2
Strongly and Weakly Conserved Step Dynamics

An important global characteristic of the step dynamics is the overall sublimation
or growth rate of the crystal, which is given by

R= dxi 5.13
T (5-13)
We distinguish between strongly conserved step dynamics in which R = 0, and
weakly conserved dynamics where R is nonzero but independent of the step config-
uration'. The latter case is realized during growth at relatively low temperature,
where desorption of adatoms can be neglected and therefore the growth rate is
completely determined by the external deposition flux [41].
A generic model that incorporates the strongly and weakly conserved situation is
given by

dx;
e (41— %)+ y—- (% —xi—1) + U-2fi — fix1— fi—1) (5.14)
with
13 13
fi= - . (5.15)

(% — xi—1)® (%41 — xi)3

9) A similar scenario has been found in a model ~ 10) In [40], only the strongly conserved case is
for sand ripple formation in an oscillatory referred to as “conserved”. The reason for our
flow [39]. choice of nomenclature will become clear

below in Section 5.3.6.
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These equations were first written down by Liu and Weeks [42] as a model for
electromigration-induced step bunching in the presence of sublimation™. In con-
trast to (5.9), here y and U are constant coefficients multiplying the terms in
parenthesis. Comparison with (5.9) shows that f__ are linear functions with slopes
¥4, such that the stability condition reads y4+ > y_. In addition to the linear
terms depending on the nearest neighbor step positions, (5.14) contains nonlinear
next-nearest neighbor contributions arising from repulsive thermodynamic step—
step interactions of entropic and elastic origin [3, 8] that drive the relaxation of the
step train to its equidistant or equilibrium shape.

The sublimation rate for the model given in (5.14) is R = (y+ + y—)!l, hence
for strongly conserved dynamics one has to set y4 = —y_. This case is realized
in electromigration-induced step bunching without growth or sublimation [43]. In
the following we will focus on the weakly conserved case where R > 0. It is then
convenient to normalize the time scale such that y4 + y_ = 1, and to introduce
the asymmetry parameter b through [44]

1) _1+b

=, y_="—"—" 5.16
Y+ 5 4 5 (5-16)

such that step bunching occurs for b > 0. Together (5.14), (5.15), (5.16) define a two
parameter family of nonlinear many body problems which have been investigated
in detail in [44—46]. In the following two sections some pertinent results of this
study will be summarized.

5.3.3
Continuum Limit, Traveling Waves and Scaling Laws

The analysis of the nonlinear dynamics of step bunches is greatly simplified if
it is possible to perform a continuum limit of the problem, thus passing from
the discrete dynamical system of (5.14) to a partial differential equation [8, 47].
Coarse graining the discrete equations of motion given in (5.14), one arrives first
at a “Lagrangian” continuum description for the step positions x; or the terrace
sizes I; = x;41 — x;. This is accomplished by converting the layer index i into a
continuous surface height h = ih,, where h( denotes the height of an elementary
step [43, 48]. In a second step this is transformed into an “Eulerian” evolution
equation for the surface height profile h(x, t) or, equivalently, the step density m =
dh/dx, which reads, for the model of (5.14), [44, 45]

2(4,2
dh 8|: b 1 dm ﬂa(m)] 1—=0. (5.17)

9 Tk | T2m emdox T 2m ox?

To unburden the notation, we have normalized vertical and horizontal lengths by
setting hy = I = 1. In the weakly conserved case the evolution law has the form

11) We will see below in Section 5.3.6 that the
weakly conserved form of (5.14) is, in fact,
not really appropriate in the presence of
sublimation.
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Figure 5.14 Sketch of a moving step bunch.

of a continuity equation, with the corresponding current given by the terms inside
the square brackets.

The solution h(x,t) = x/I —t of (5.17) is linearly unstable for b > 0. The physi-
cally relevant nonlinear solutions take the form of a generalized traveling wave

hix,t) = f(x — Vt)— Qt, (5.18)
as illustrated in Figure 5.14. The conserved nature of (5.17) implies the sum rule
Q+Vv=1, (5.19)

but the individual values of the vertical and horizontal speed are not fixed by the
ansatz”. An analysis of periodic solutions of the discrete equations of motion
shows that, under rather general conditions,

V~1/N. (5.20)

Since the mean velocity of a single step is unity in the present units, this implies
that bunches move more slowly than steps. Similar to cars in a traffic jam, steps
join the bunch from behind, move slowly through the bunch, and accelerate into
the outflow region which separates one bunch from the next".

Inserting (5.18) into (5.17) one arrives at a third order nonlinear ODE, which
can, to a large extent, be handled analytically [44]. A key result are scaling laws [50]
for the shape of stationary bunches. As illustrated in Figure 5.15, the shape can
be characterized by the bunch width W and the bunch spacing L, both of which
are functions of the number N of steps in the bunch. The global constraint on the
average slope of the surface implies that L ~ N, but the bunch width typically
scales with a sublinear power of N, which implies that bunches become steeper as
more steps are added. Related quantities of interest are the minimal terrace size
Imin in the bunch and the size [; of the first terrace in the bunch. On the basis of

12) For the relation of this problem to the 13) Note, however, that traffic jams generally
standard velocity selection problem for move in the direction opposite to the traffic
traveling waves moving into unstable states, flow [52, 53].

see [49].
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Figure 5.15 Quantities characterizing the shape of a step bunch.

the continuum model of (5.17) one finds that, asymptotically for large N [44],
W ~ 41(UN/B)'?,  lpin ~ 24(U/bNHY3 | 1y ~ QU/bN)Y?,  (5.21)

in good agreement with numerical simulations of the discrete model [45]. Note
that W ~ Nlyin, as one would expect, but Iy > lnin. An experimental study of
the shapes of electromigration-induced step bunches on Si(111) is consistent with
Iin ~ N™2/3[51].

534
A Dynamic Phase Transition

As with any hydrodynamic description, the validity of the continuum limit passing
from (5.14) to (5.17) is restricted to step configurations in which the step density is
slowly varying on the scale of the mean step spacing. To check the consistency of
this assumption, we consider the outflow region of the bunch, where the spacing
between steps leaving the bunch becomes large and hence the nonlinear interac-
tion terms on the right hand side of (5.14) can be neglected. We are thus left with
the linear system

de _1-b o 1+4b
@ - g WmmE

(2 — xi—1) , (5.22)
which can be solved by the exponential traveling wave ansatz

i = x4 — % = Aei T (5.23)
Inserting (5.23) into (5.22) yields the relation

b= sth—QQ% sth—Qy (5.24)
coshQ—1 coshQ—1

where we have used the fact that Q — 1 for large bunches according to (5.19)
and (5.20).

The step spacing is slowly varying when Q <« 1, which according to (5.24) re-
quires b < 1. More strikingly, (5.24) has no solution when b > 1. At b = 1 the
bunch undergoes a dynamic phase transition which is reflected, among other things,
in the number of “crossing” steps between bunches. For b < 1 this number grows
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with N as In N, whereas for b > 1 at most a single step can reside between two
bunches at one time [46].

The physical origin of this change of behavior can be traced back to the evolution
equations (5.22). For a step about to leave the bunch, the leading terrace is much
larger than the trailing terrace and x; {1 — x; 3> x; — x;_1, such that the right hand
side of (5.22) is dominated by the first term, which is negative for b > 1. The linear
term thus pushes the step back into the bunch, and it can escape only thanks to the
repulsive, nonlinear step—step interaction. Since the bunches become steeper with
increasing size, the ability of a bunch to eject crossing steps also depends on the
number of steps N that it contains.

The result of this interplay between linear and nonlinear effects is the phase
diagram in the U-N-plane depicted in Figure 5.16. At moderate values of U it pre-
dicts a qualitative change in the behavior of bunches with increasing N. For small
bunches the emission of steps ceases completely, such that all steps constituting
the bunch move at the speed of the whole bunch and V = 1 in our units. Larg-
er bunches emit one step at a time. Figure 5.17 shows the transition between the
two regimes in a time-dependent situation. The initial condition consists of 4 small
bunches of 16 steps each. These bunches initially merge in a hierarchical fashion
without exchanging steps. This behavior is characteristic of strongly conserved step
dynamics [40, 43], which in our units corresponds to b — co. After the last merger,
the bunch enters the region in the phase diagram of Figure 5.16 where step emis-
sion is possible, and, correspondingly, the overall bunch motion slows down. It can
also be seen that the emission of steps is accompanied by a periodic “breathing” of
the entire bunch [46].

A rough estimate of experimental parameters indicates that both regimes b < 1
and b > 1 can be accessed in experiments on electromigration-induced step bunch-
ing of the Si(111) surface by varying the temperature [44]. The identification of the

35
30 r
25 ¢
20
15
10 +

oo+
oo+ +
oo++
oo++
oo++

L
L

oo N\+EEOEEEEEEE 444+
eee\+OODDEOEE+++++
eed++ODDDOOOF++4++
eoilt+rmOOBEFFHd+
eookirimmrrrrr et

e \0DOOOEOOEOEOEEE+ ¢
e elOOEOOEODOEOOEE++
*e400DEODEEEEEEE++++
ee+\+0DDODODOEOED 44+
eeelononoononom++4++

eeIOOOOEEEEOOOEEEEEEEE +
¢ ehOEDOEEEEEEEEEEEEEEE +
YY) clelehtalatatatattaTatatatoTtapes

EXY: Clepeletetoroteareteetaratarot p e
eeehOODDDOOOOOEEEOT++

eeelINNENNNNENNENEENEEOEE+

0 2 4 6 8 10 12
U

Figure 5.16 Phase diagram for the behavior of step bunches
atb = 11.The line is the linear stability limit, below which
the equidistant step train is stable (full circles). In the linearly
unstable regime above this line, bunches either eject no steps
(open squares) or they eject one step at a time (crosses).
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Figure 5.17 Trajectories of 64 step evolving under the weakly
conserved dynamics (5.14) with b = 20and U = 12. Step
positions are shown in a frame moving with the mean step
velocity. Initially, the trajectories are horizontal because the
entire bunch moves at the mean step speed.

predicted phase transition is, however, not straightforward because real steps can
bend [54], thus invalidating the one-dimensional approximation used throughout
this section.

5.3.5
Coarsening

The time evolution depicted in Figure 5.17 is an example of coarsening, a term that
is generally used to describe the unlimited increase of bunch size with time. In
many cases coarsening proceeds according to a power law,

L~N~t", (5.25)

defining the coarsening exponent n. Despite recent progress in the theory of coars-
ening dynamics for one-dimensional fronts [55], a quantitative analysis of coarsen-
ing dynamics based on nonlinear continuum equations such as (5.17) seems still
out of reach. Nevertheless, heuristic arguments (to be explained below) in com-
bination with numerical [40, 42] and experimental [56] evidence indicate that the
coarsening exponent is

1
== 5.26
n=> (5.26)

under a wide range of conditions, as far as the weakly conserved system of (5.14) is
concerned, including its strongly conserved limit. In particular, the value of n does
not seem to be affected by the phase transition at b = 1 [57].

The first heuristic argument goes back to Chernov [58], and it is based on the
relation given in (5.20) for the bunch velocity. The key assumption is that Vis the
only velocity scale in the problem, such that the velocity difference between two
bunches of similar size ~ N is also of order AV ~ 1/N. The time required for two
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bunches to merge is then of order L/AV ~ N2, and (5.26) follows. A weakness of
this argument is that it assumes coarsening to proceed by the merging of bunches,
which does not need to be true when bunches can exchange steps.

The second argument, due to Liu and Weeks [42], is based on the generally con-
served form of the continuum equation for the height profile h(x, t), which reads

oh  0j

—+—=—=0 5.2
ot dx 6-27)

in a frame where the constant rate of sublimation has been subtracted. Without

further specifying the current j, Liu and Weeks assume the existence of a single

lateral length scale ~ t", such that both the height profile and the current take on

scaling forms

hix,t) = t"H(x/t"), j(x,t) = J(x/t"). (5.28)

Inserting (5.28) into (5.27) enforces the scaling in (5.26). Similar scaling arguments
have been advanced by Pimpinelli and coworkers [50].

Like the argument of Chernov, the ansatz of (5.28) is problematic because the
bunch spacing is not the only length scale in the system [31, 45]. For example, the
bunch width W defines a second time-dependent scale which cannot obviously be
ignored. An explicit counterexample where the existence of an additional length
scale leads to coarsening exponents that differ from (5.26) was presented in [49].

5.3.6
Nonconserved Dynamics

In the presence of sublimation the rate of volume change given in (5.13) couples
to the step configuration, and therefore the weakly conserved form of the discrete
(5.14) and continuous (5.17) evolution equations is no longer appropriate [28]. The
minimal modification of (5.14) which takes account of this fact reads [59]

dx; 1+b 1-b
d—’; =(14+gfi) [ —12_ (% — xi—1) + (%i41— xi)]
+ URfi — fi+1— fim1), (>-29)

where the new dimensionless parameter g is proportional to the strength of the
repulsive step—step interactions. On the linearized level the introduction of the new
term shifts the instability condition, which now reads [48, 59]

b > 6g. (5.30)

The nonlinear consequences of the new term are quite dramatic. Numerical simu-
lations of (5.29) [60] as well as of a more complicated nonconserved model [40] show
that the coarsening of step bunches is arrested when the bunches have reached a
certain size. Correspondingly, a large initial step bunch evolving under the dynam-
ics of (5.29) breaks up into smaller bunches, as illustrated in Figure 5.18.
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Profiles for different time: U=0.05, N=80steps, b=0.7, g=0.05
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Figure 5.18 Surface profiles generated with the nonconserved
discrete model of (5.29) with parameters b = 0.7and U = g =
0.05. The initial condition is a single large bunch, which first
relaxes into a quasi-stationary configuration and then breaks up
into smaller bunches after 4000 time steps. Height profiles at
different times have been shifted in the horizontal direction.

The absence of asymptotic coarsening in the nonconserved case is consistent
with analyses in which weakly nonlinear continuum equations, in the sense of [61],
are derived from the discrete step dynamics close to the instability threshold, that
isfor 1—6g/b <« 1[62, 63]. These equations typically display spatiotemporal chaos
or structure formation at a fixed length scale, but no coarsening [31]. However, for
strongly nonlinear continuum equations similar to (5.17) that are expected to apply
when b > g, such results are so far not available.

5.3.7
Beyond the Quasistatic Approximation

With few exceptions [64—66], most theoretical studies of step dynamics work in
the quasistatic approximation, which implies that the dynamics of the diffusing
adatoms on the terraces separating the steps are assumed to be much faster than
the step motion. As a consequence, a step reacts instantaneously to the motion of
its neighbors, which mathematically leads to coupled first order equations for the
step positions such as those of (5.14).

A simple and conceptually appealing way of explicitly including the time scale
of adatom dynamics was recently proposed by Ranguelov and Stoyanov, who de-
rived and studied a coupled system of two sets of evolution equations, one for the
terrace widths I; = x; 41 — x; and one for the suitably parametrized adatom con-
centration profile on the terraces. Remarkably, in this setting the equidistant step
train may undergo an instability into a new dynamic phase characterized by step
compression waves [67], even if it would be completely stable in the quasistatic
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limit. The instability is caused solely by the time delay that is introduced into the
interaction between steps by the finite time scale of the adatom dynamics, sim-
ilar to the instabilities induced in follow the leader models of highway traffic by
the finite reaction time of drivers [52, 53]. In the presence of electromigration and
sublimation, the non-quasistatic model reproduces the main features of the phase
transition described above in Section 5.3.4 [68].

5.4
Conclusions

The fact that the evolution of nanostructures is intrinsically noisy is by now widely
appreciated [1]. In contrast, the role of deterministic nonlinear dynamics, in the
sense of dynamical systems theory, as a source of complex behavior is largely unex-
plored in this context. Here I have presented the results of two case studies in which
concepts from nonlinear dynamics appear naturally in the analysis of the evolution
of surface nanostructures. In both cases surface steps constitute the relevant de-
grees of freedom which, despite satisfying simple equations of motion, can display
a wide range of dynamic phenomena. Many other systems not discussed here fit
into the same framework. An example of current interest is the thermal decay of
nanoscale mounds, either through the periodic collapse of the top island [69] or
through the jerky rotation of a spiral step emanating from a screw dislocation [70].
Hopefully it has become clear that much, perhaps most, of the work in this field
remains to be done.
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6
Casimir Forces and Geometry in Nanosystems

Thorsten Emig

Casimir interactions, predicted in 1948 [14, 15] between atoms and macroscop-
ic surfaces, and probed in a series of high precision experiments over the past
decade [8, 46, 50], are particularly important at micrometer to nanometer length
scales due to their strong power-law increase at short separations between parti-
cles. Therefore, in constructing and operating devices at these length scales, it is
important to have an accurate understanding of the material, shape and geometry
dependence of these forces. In particular, the observation of Casimir forces in de-
vices on submicron scales has currently generated a great deal of interest regarding
the exploration of the role of these forces for the development and optimization of
micro- and nanoelectromechanical systems [9, 16, 17]. These systems can serve as
on-chip fully integrated sensors and actuators with a growing number of applica-
tions. It was pointed out that Casimir forces can make an important contribution to
the principal cause of malfunctions of these devices in form of stiction that results
in permanent adhesion of nearby surface elements [10]. This initiated interest in
repulsive Casimir forces by modifying material properties as well as the geometry
of the interacting components [11, 43, 52].

The study of fluctuation induced forces has a long history. When these forces
result from fluctuations of charges and currents inside particles or macroscop-
ic objects, they are usually summarized under the general term, van der Waals
forces [55]. This interaction appears at the atomic scale in the guise of Keesom,
Debye, London, and Casimir—Polder forces. An important property of all these in-
teractions is their non-additivity. The total interaction of macroscopic objects is gen-
erally not given by the sum of the interactions between all pairs of particles forming
the objects. This inherent many-body character of the force leads to interesting and
often unexpected behaviors, but makes studying these forces a difficult problem.
Commonly used approximations as pairwise additivity assumptions become un-
reliable for systems of condensed atoms. The collective interaction of condensed
macroscopic systems is better formulated in terms of their dielectric properties.
Such a formulation was established by Lifshitz for two parallel and planar, infinitely
extended dielectric surfaces [47], extending Casimir’s original work for perfect met-
als. In practice, one encounters objects of finite size with curved surfaces and/or

Nonlinear Dynamics of Nanosystems. Edited by Glinter Radons, Benno Rumpf, and Heinz Georg Schuster
Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 978-3-527-40791-0

165



166

6 Casimir Forces and Geometry in Nanosystems

edges, like structured surfaces, spheres or cylinders. Also, in small-scale devices,
often more than two objects are at close separation and one would like to know the
collective effects resulting from non-additivity. In this chapter, we shall encounter
a selection of examples for the interesting behavior of fluctuation forces that result
from shape and material properties that have been obtained from a recently devel-
oped method that makes it possible to compute van der Waals—Casimir interactions
for arbitrary compact objects based on their scattering properties for electromag-
netic waves [30, 32, 33, 42].

6.1
Casimir Effect

The Casimir effect is the attraction between two uncharged, parallel and perfectly
conducting plates [14]. For this simple geometry, the interaction can be obtained
directly from the plate induced change of the energies of the quantum mechani-
cal harmonics oscillators associated with the normal modes of the electromagnet-
ic field. The derivation given here closely follows the one originally presented by
Casimir. Consider two parallel and planar surfaces of size L x L and separation d.
We assume that the system is at zero temperature so that the interaction is given
by the ground state energies of harmonic oscillators. When we are interested in the
pressure (force per plate area L) between large plates with L > d, we can ignore
edge effects ~ L and allow for a continuum of wave vectors parallel to the plates.
For a perfect conductor, the tangential electric field has to vanish at the surface and
the normal modes correspond to the allowed wave vectors k = (k;, wn/d) wherek;
is the two-dimensional wave vector parallel to the plates. The linear dispersion of

photons yields the eigenfrequencies w ., = ¢,/ kﬁ + (mtn/d)? so that the ground

state energy becomes

A (L)
E= EZ (E) /dzk”ankH, (6.1)
n=0

where we have included a factor of 2 since for each mode with n # 0, two po-
larizations exist. The primed summation assigns a weight of 1/2 to the term for
n = 0. Obviously, the expression of (6.1) is divergent. This is a consequence
of the assumption that the surfaces behave as a perfect conductor for arbitrarily
high frequencies. In practice, as pointed out by Casimir, for very high frequencies
(X-rays, e.g.) the plates are hardly an obstacle for electromagnetic waves and there-
fore the ground state energy of these modes will not be changed by the presence of
the plates. We implement this observation by introducing a cut-off function y(z)
that is regular at z = 0 with y(0) = 1 and vanishes, along with all its derivatives,

for z — oo sufficiently fast. After a change of variables, w = ¢ kﬁ + (nn/d)?
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with c2kdk; = wdw, we obtain the finite expression for the energy

h’ Z f(n) with f(n):/oo o*y(w/w)do , (6.2)

27[‘72 anc/d

where w. is a cut-off frequency. As mentioned before, we are interested in the
change of the energy due to the presence of the plates. Let us imagine that we in-
crease the separation d between the plates to infinity, thus creating empty space.
When we subtract the energy of the latter configuration from the total energy
of (6.2), we obtain the change in energy that is the relevant interaction potential
between the plates. When the separation d tends to infinity, the sum in (6.2) can be
replaced by an integral, yielding after the substitution 2 = mnc/d the energy

h o0 - 5 0o
Eoo = ZTEZCS-LZd/O de(.Q) with f(_Q) :L (UZX((U/(UC) do .
(6.3)

As expected, the energy Eo is proportional to the volume L2d of empty space and
to a cut-off dependent factor that is given by the integrals of (6.3). This factor de-
scribes the self-energy of the bounding surfaces. It is infinite for perfect conductors
which correspond to w. — co. For a non-ideal conductor or any other material, this
factor is finite but depends on material properties like the plasma wavelength for a
metal. Now, we compute the change in energy when the plates are moved in from

infinity,

hLZ oo/ [ee)
AE =F— Foo =5 LX:% f(n) —/O dnf(n):| . (6.4)

The difference between the sum and the integral is given by the Euler—-Maclaurin

formula Z‘;o:/() fn) =[5~ dnf(n) = =35 f/(0)+ & f”(0)+O( £*(0)). This series of
derivatives of odd order can be truncated in the limit of perfect conductors w. — oo
since f/(0) = 0, f”(0) = —2(mc/d)> and f)(0) ~ (c/d)3(c/dw.)" 3. The Casimir
potential hence becomes

n? he 2
E__72_0$ + O(w?), (6.5)

and the pressure for perfect metal plates is

F @’ he 66

7T a0 ©0)
The interesting fact is that the amplitude of the interaction is universal, that is,
independent of the cut-off that can be viewed as a simplified description of a real
metal. This implies that for any pair of surfaces with metallic response in the limit
of small frequencies w — 0, the interaction at asymptotically large separations is
described by the potential of (6.5). At a separation of d = 100 nm, (6.6) yields a
pressure of 1.28 - 10~* atm or 13.00 Pa.
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6.2
Dependence on Shape and Geometry

Casimir interactions result from a modification of the fluctuation spectrum of the
electromagnetic field due to boundaries or coupling to matter. This suggest that
these interactions strongly depend on the shape of the interacting objects and
geometry, that is, relative position and orientation. The most commonly encoun-
tered geometry is a sphere-plate setup that was used in the first high-precision
tests of the Casimir effect [46, 50]. Since then, this geometry has been successfully
used in most of the experimental studies of Casimir forces between metallic sur-
faces [17, 19-21, 25, 27, 51, 60]. In order to keep the deviations from two parallel
plates sufficiently small, a sphere with a radius much larger than the surface dis-
tance has been used. The effect of curvature has been accounted for by the “prox-
imity force approximation” (PFA) [55]. This scheme is assumed to describe the
interaction for sufficiently small ratios of radius of curvature to distance. However,
this an uncontrolled assumption since PFA becomes exact only for infinitesimal
separations, and corrections to PFA are generally unknown.

At the other extreme, the interaction between a planar surface and an object
that is either very small or at an asymptotically large distance is governed by the
Casimir-Polder potential that was derived for the case of an atom and a perfectly
conducting plane [15]. There have been attempts to go beyond the two extreme
limits of asymptotically large and small separations by measuring the Casimir force
between a sphere and a plane over a larger range of ratios of sphere radius to
distance [44].

Until very recently, no practical tools were available to compute the electromag-
netic Casimir interaction between objects of arbitrary shape at all distances, includ-
ing the important sphere-plate geometry. Progress in understanding the geometry
dependence of fluctuation forces was hampered by the lack of methods that are
applicable over a wide range of separations. Unlike the case of parallel plates, the
eigenvalues of the Helmholtz equation in more complicated geometries are gen-
erally unknown, and a summation over normal modes, as in the original Casimir
calculation of Section 6.1, is not practical. Conceptually, the effects of geometry and
shape are difficult to study due to the non-additivity of fluctuation forces.

For decades, there has been considerable interest in the theory of Casimir forces
between objects with curved surfaces. Two types of approaches have been pursued.
Attempts to compute the force explicitly in particular geometries and efforts to
develop a general framework which yields the interaction in terms of character-
istics of the objects, such as polarizability or curvature. Within the second type
of approach, Balian and Duplantier studied the electromagnetic Casimir interac-
tion between compact and perfect metallic shapes in terms of a multiple reflection
expansion and also derived explicit results to leading order at asymptotically large
separations [4, 5]. For parallel and partially transmitting plates, a connection to scat-
tering theory has been established which yields the Casimir interaction of the plates
as a determinant of a diagonal matrix of reflection amplitudes [40]. For nonplanar,
deformed plates, a general representation of the Casimir energy as a functional
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determinant of a matrix that describes reflections at the surfaces and free propaga-
tion between them has been developed in [31]. Later, an equivalent representation
has been applied to perturbative computations in the case of rough and corrugated
plates with finite conductivity [45, 53, 54].

Functional determinant formulas have been used also for open geometries that
do not fall into the class of parallel plates with deformations. For the Casimir in-
teraction between planar plates and cylinders, a partial wave expansion of the func-
tional determinant has been employed [6, 36]. More recently, a new method based
on a multipole expansion of fluctuating currents inside the objects has been de-
veloped [30, 32, 33]. This method allows for accurate and efficient calculations of
Casimir forces and torques between compact objects of arbitrary shape and materi-
al composition in terms of the scattering matrices of the individual objects. A sim-
ilar scattering approach has been developed in [42].

In this section, three examples for the strong geometry dependence of Casimir
forces will be made explicit. First, an overview on forces between deformed and struc-
tured surfaces will be given. The interactions are obtained from both a perturbative
and numerical evaluation of a functional determinant representation of Casimir
interactions between ideal metal surfaces. As a second example, we describe the
effects that occur in the interaction of one-dimensional structures as cylinders and
wires and related non-additivity phenomena for more than two objects. Finally, as
an example for the interaction between compact objects, the Casimir force between
metallic spheres is presented for the full range of separations, covering the crossover
from the asymptotic Casimir—Polder law to proximity approximations. The analysis
of the last two examples is based on a scattering approach.

6.2.1
Deformed Surfaces

The dependence of the Casimir force on shape and material properties offers the
opportunity to manipulate this interaction in a controlled way, for example, by im-
printing patterns on the interacting surfaces. It has been shown that a promising
route to this end is via modifications of the parallel plate geometry [34, 35, 38].
The corrections due to deformations, such as sinusoidal corrugations, of the
metal plates can be significant. In searching for non-trivial shape dependences,
Roy and Mohideen [61] measured the force between a sphere with large radius
and a sinusoidally corrugated plate with amplitude a ~ 60nm and wavelength
A &~ 1.1 pm. Over the range of separations H ~ 0.1-0.9 pm, the observed force
showed clear deviations from the dependence expected on the basis of decom-
posing the Casimir force to a sum of pairwise contributions (in effect, an average
over the variations in separations). Motivated by this experiment, the effect of
corrugations on the Casimir force between surfaces has been studied without
using pairwise additivity approximations. The analysis is based on a path inte-
gral quantization of the fluctuating field with appropriate boundary conditions
which leads to a functional determinant representation of the Casimir energy [38]
which can be evaluated perturbatively for a small deformation amplitude [34, 35]
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Figure 6.1 Configuration of a flat and a corrugated plate at mean separation H.

or numerically for general amplitudes [12, 13, 28]. In recent experiments [18]
the Casimir force between a gold sphere and a silicon surface with an array of
nanoscale, rectangular corrugations has been measured and the results were
found to be consistent with the theory based on a numerical evaluation of func-
tional determinants for ideal metals (see below). Qualitative agreement can be
expected only when material properties are taken into account in addition to
shape.

While we will be interested in the interaction between flat and corrugated sur-
faces as depicted in Figures 6.1 and 6.4, we must first consider the two surfaces
with arbitrary uniaxial deformations without overhangs so that their profiles can
be described by height functions h,(y1) (¢ = 1,2 for the two surfaces), with
[ dyiha(y1) = 0. It is further assumed that the surfaces are perfectly conducting
and infinitely extended along the plane spanned by y| = (y1, y2). As explained be-
fore, for two planar plates, the Casimir energy at zero temperature corresponds to
the difference of the ground state energies of the quantized electromagnetic field
for plates at distance H and at H — oo, respectively. To obtain this energy, we
employ a path integral quantization method. For general, non-uniaxial deforma-
tions or objects of more general shape, it is necessary to consider the action for
the electromagnetic field since the two polarizations (TM for transverse magnetic
waves and TE for transverse electric waves) are coupled. However, for the uniaxi-
al deformations under consideration here, we can develop a simpler quantization
scheme, by a similar reasoning also used in the context of waveguides with con-
stant cross-sectional shape [34]. In this case, the two polarizations are independent
modes which do not couple under scattering between the surfaces. For TM waves,
all field components are then fully specified by a scalar field corresponding to the
electric field along the invariant direction,

Drum(t, y1, Y2, 2) = Ealt, y1, ¥2, 2) » (6.7)

with the Dirichlet boundary condition @my|s, = 0 on each surface S,. The TE
waves are analogously described by the scalar field

Dre(t, Y1, Y2, 2) = Ba(t, y1,¥2, 2) (6.8)

with the Neumann boundary condition d, @rg|s, = 0, where 9, is the normal
derivative of the surface S, pointing into the space between the two plates. After a
Wick rotation to the imaginary time variable X° = ict, both fields ®ry and Prg
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can be quantized using the Euclidean action
1
S{d} = E/ d*xX(Ve)?. (6.9)

In order to obtain the change in the ground state energy that is associated with
the presence of the plates, we now consider the partition functions Zp and Zy for
the scalar field Euclidean action both with Dirichlet (D) and Neumann (N) bound-
ary conditions at the surfaces. We implement the boundary conditions on the sur-
faces S, using delta functions, which leads to the partition functions

2
2 = Zio / D@ [ [] 012 (Xo)exp(~Stdi/h) (6.10)
a=1 X,
1 2
2= 5 [ po [1TTow @ xajent-stoym, (6.11)

where Z is the partition function of the space without plates. Here, Xi(y) =
[y, h1(y1)] and Xa(y) = [y, H + ha(y1)], where y = (yo, y1,¥2) = (yo,¥y), and
Yo = ict, is a parametrization of the plates in 4-D Euclidean space. The Casimir
energy £ per unit area (at zero temperature) that results from moving the plates in
from infinity is obtained from the partition function as

£(H) = E(H) - lim E(H), (6.12)
with
E(H) = —% [In Zp + In Zy], (6.13)

where A is the surface area of the plates and the limit where the overall Euclidean
length in time direction, L, tends to infinity is implicitly assumed. The partition
functions can be expressed as functional determinants, using auxiliary fields (for
details see [35]),

1 1
anD — —ElndetMD , ]nZN = —ElndetMN . (614)

The kernels Mp and My are given by

[Mplap(y,y) = [ga(y)]"* G[Xauly) — Xp(y)Niga(yi)]'* (6.15)

[MNJap (v, Y) = [8a(Y1)] #3909 G Xaly) — Xp(y)]

x [gp(yD]'* (6.16)
where g,(y1) = 1 + [h),(y1)]? is the determinant of the induced metric, and
nq(y1) = (—1)“g21/2(yl)[h;(y1),0,—1] is the normal vector to the surface S,
while

11

W=

(6.17)
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is the free Euclidean space Green’s function with x = (y, z). Equations 6.12 to (6.17)
constitute the functional determinant representation of the Casimir interaction.
This representation is exact. To proceed, the determinant has to be evaluated either
by perturbation theory in the deformation amplitude or numerically for a specific
shape of the surface profiles. First, we present the perturbative approach.

For both boundary conditions (X = D, N), we divide by the partition func-
tion Zx oo for H — oo and expand In(Zx/Zx o) in a series In(Zx/Zx.00)lo +
In(Zx/Zx.00)|l1 + In(Zx/Zx.00)|2 + -+, where the subscript indicates the corre-
sponding order in h,. The lowest order result is

AL m?

In(Zx/ 2 LT
n(Ex/Zx.00llo = 75 1420

(6.18)

for both types of modes, corresponding to two flat plates, as in (6.5). The first order
result In(Zx/Zx oo)|1 vanishes since we assume, without loss of generality, that the
mean deformations are zero, f dy1he(y1) = 0. The second order contribution is
given by

21
In(Zx/ Zxco)l2 = 55775 / &y {(a(y2))” + [ha(y0)}

1
=3 [y [ @Rty =) {3t = P + 30t = hari?

=3 € [ €Yoty =y + bty ().
(6.19)

The terms in the first row are local contributions which are identical for TM and
TE modes. They also follow from a pairwise summation approximation (PWS) that
sums a “renormalized” Casimir-Polder potential over the volumes of the interact-
ing bodies [35]. The remaining terms are nonlocal and cannot be obtained in ap-
proximative schemes. For Dirichlet boundary conditions, the kernels depend only
on |y —y'| and are given by

1 m® 1 cosh’(s)
Kp(y) = — — , 6.20
o(v) 2mty8 18 HCy? sinh®(s) (6:20)
72 1 sinh’(s)
Op(y) = 752 (6.21)

128 Hy? cosh®(s) ’

where s = ny/(2H). The kernels for Neumann boundary conditions assume a
more complicated form since the normal derivative breaks the equivalence of space
and time directions. Hence, they depend separately on |y, — y{| and |y —yil |. Their
explicit form can be found in [35]. The results obtained thus far apply to general
uniaxial deformations of both surfaces.

Now, we apply these results to the important case of corrugated plates. We begin
with the geometry depicted in Figure 6.1 which is parametrized by

hi(y1) = acos(2my1/A), and hy(y1) =0. (6.22)
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For this profile, the computation of the partition function to second order in a
reduces to the Fourier transforming of the kernels with respect to y;. The corre-
sponding expression for £ in (6.12) can be written as

E=E+Es, (6.23)

where &) is the energy per unit area of two flat plates [see (6.5)] and

2
S = —7’;—‘; [GTM (%) 1 G (;)] + 0@, (6.24)

where the index cf of & stands for corrugated-flat geometry. The functions that
describe the A-dependence in this expression can be computed exactly [35]. They
can be expressed in terms of the polylogarithm function Li,(z) = Y 5o, z"/v",
leading to

c wx nzx41 . N L N nx3L,
—_— n — U 1 —u —LDh(u
™(¥) = 480 30 L)+ qg50, Ll =) 4 S Lia(u)
1
LY ~ L L
+ 24 i3(u) + —— o ig(u )+64n2 15 (1)
6.25
256 256703 % ( 945) (6-25)
G wx A g T
b n 1
Te(*) = a0~ 30 MM Tg0, 2~ ¥

xZ

. 1 5x _.
~ s (12 L) + (& 64) Lis (1) + G L ()

7
+ ——Lis(u) +

6
ZLig(u) — m2Lig(u) + =z
12872

25673 x (2 135
(6.26)

with u = exp(—4mx). Figure 6.2 separately displays the contributions from Gy
and Grg to the corrugation induced correction & to the Casimir energy. While
Grm(H/Z) is a monotonically increasing function of H/A, Grg(H/A) displays a
minimum for H/4 ~ 0.3.

Examining the limiting behaviors of (6.24) is instructive. In the limit A > H,
the functions Gy and Grg approach constant values, and the total Casimir energy
takes the A-independent form

hc m? a?
5_—ﬁ72—0( +3H)+O( @ . (6.27)

Note that only in this case, both wave types provide the same contribution to the
total energy and the result agrees with the pairwise summation approximation (see
Figure 6.2). In the opposite limit of A <« H, both Gty and Grg grow linearly in
H/A. Therefore, in this limit the correction to the Casimir energy decays according
to a slower power law in H, as

he w?

a2
__hc e 3
&= 720 (1+2n/1H)+(’)(a ), (6.28)
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Figure 6.2 Rescaled correction & to the Casimir energy due to
the corrugation as given by (6.24) (upper curve). The lower
curves show the separate contributions from TM and TE
modes. The rescaling of E is chosen such that the correspond-
ing prediction of the pairwise summation (PWS) approxima-
tion [corresponding to the local terms of (6.19)] is a constant

(dashed lines).

with an amplitude proportional to 1/4. Note that this behavior is completely missed
by the pairwise summation approach which always yields a A independent Casimir
energy in the presence of modulations on one plate [35]. As we will discuss be-
low, in the context of the numerical approach, the apparent divergence for A — 0
in (6.28) is an artifact of the perturbative expansion which assumes that the ampli-
tude a is the smallest length scale.

Next we turn to a numerical approach for computing the functional determi-
nants of (6.14). Such an approach has been developed for periodic surface profiles
in [12, 28]. In this approach, it is convenient to directly compute the Casimir force
F = —0y& per unit area which is the sum of TM and TE contributions, F =
Frm + Frg that according to (6.14), are given by (for X = D, N)

Fx = —Z’TCLTr (Mx'0yMx). (6.29)
The right-hand side of this expression is always finite, and no divergences due to
self-energies have to be subtracted. The trace in (6.29) can be efficiently comput-
ed by Fourier transforming M with respect to y, y'. The transformed operator can
then be transformed to block-diagonal form by making use of the periodicity of
the surface profile along the y; direction. In this representation, the blocks can be
numbered by the wave vector g; € [0, 27t/A) along the y; direction. A block matrix
with label g1 couples only waves whose momenta differ from the Bloch momen-
tum ¢, by integer multiples of 2;/4. The integers multiplying 25t/ number the
matrix elements within a block matrix. Hence, the problem of computing the to-
tal trace has been simplified to the computation of the trace of each block matrix
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with label g;. Finally, integration over g; from 0 to 27t/A and over the unrestrict-
ed momenta ¢, g, (along the time direction and invariant spatial direction of the
surfaces, respectively) yields the force of (6.29). For the particular choice of a rect-
angular corrugation (see Figure 6.5a), analytic expressions for all matrix elements
of M can be obtained. For details of the implementation of the numerical approach
and expressions for the matrix elements see [12].

In comparison to the profile of Figure 6.1, we consider the corresponding situa-
tion of a flat plate and a plate with a rectangular corrugation profile parametrized
by

+a for |yi| <Ai/4

hi(y1) = ,
WD =00 for A<yl <22

(6.30)

and continuation by periodicity hi(y1) = hi(y1 + n4) for any integer n. The nu-
merical results for the total Casimir force between the two plates is shown in Fig-
ure 6.3 for different corrugation wavelengths A. For all 4, the forces at a fixed sep-
aration H are bounded between a minimal force Fo, and a maximal force F,. For
small 1/a, the upper bound F, is approached, whereas for asymptotically large
Ala, the force converges towards the lower bound F. Analytic expressions can
be derived for these bounds. For large 4, the corrugated surface is composed of
large flat segments with a low density of edges. At sufficiently small surface sepa-

10

F/Fﬂat_l

0.1

Figure 6.3 Total Casimir force as a function of the mean plate
separation H. The relative change of the force compared to the
total Casimir force Fg, between two flat plates is shown. The
two bold curves enclosing the numerical data are the analytical
results Fo for A — 0 (upper curve) and Foo for A — 0o (lower
curve), see text.
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rations H < 4, the main contribution to the force comes from wavelengths which
are much smaller than the scale 1 of the surface structure. Thus, in the dominant
range of modes, diffraction can be neglected and a simple proximity force approx-
imation [55] should be applicable. Such an approximation assumes that the total
force can be calculated as the sum of local forces between opposite flat and parallel
small surface elements at their local distance H — hy(y1). No distinction is made
between TM and TE modes. This procedure is rather simple for the rectangular
corrugation considered here since the surface has no curvature (except for edges).
There are only two different distances H 4 a, H — a which each contribute one-half
across the entire surface area, leading for 4 — oo to the proximity approximation
for the force,

FoA— n’he 1 1 1 631
=/A="70 E[(H—a)4+(H+a)4]' (6:31)

In the limit A — 0, the important fluctuations should not get into the narrow
valleys of the corrugated plate. Even for small but finite 4, this picture should be
a good, though approximate, description since it still effects the wavelengths of
order H which give the main contribution to the force. Thus, one can expect that
the plates feel a force which is equal to the force between two flat plates at the
reduced distance H — a. Fortunately, this expectation can be checked by an explicit
calculation since the leading part of determinant of M in the limit A — 0 can
be computed. Indeed, this computation confirms the expectation, leading to the
Casimir force per surface area [12]

w2 1

FofA= -
of 240 (H — |a|)*

(6.32)
with equal contributions from TM and TE modes. Notice that this result is not
analytic in a/H and is exact in the limit A — 0. As we have seen before, per-
turbation theory for smoothly deformed surfaces always yields corrections to the
interaction of order a?. However, for small a/H, the result of (6.32) has the expan-

sion
a1 la| a\2
FoJA=————|14+4—+0((— 6.33
of 240 H4|: e ((H) )} (6:33)

which indicates that perturbation theory is not applicable if A < a. This implies
that the apparent divergent behavior for A — 0 in (6.28) actually disappears for
A>~a.

6.2.2
Lateral Forces

As a natural generalization of the geometry of the previous section, we study the
Casimir interaction between two sinusoidally corrugated plates. For direct corre-
spondence to experiments for this type of configuration [22], we consider the spe-
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cific profiles
hi(y1) = acos(2my1/A), and hy(y1) = acos(2w(y; + b)/A), (6.34)

which are shifted relative to each other by the length b (see Figure 6.4). When these
profiles are substituted into the general expression for the second order term of the
partition function of (6.19), one finds for the Casimir energy

£ =E + 26+ Eec (6.35)

with & given in (6.24), and where the corrugation—corrugation interaction energy
& can be calculated in terms of the kernels Qx(y) in (6.19). Besides oscillating
contributions to the normal Casimir force from E..(b), a lateral force

0Ecc
ab

is induced by the corrugation—corrugation interaction. This lateral force is better
suited for experimental tests of the influence of deformations since there is no
need for subtracting a larger baseline force (the contribution of flat plates) as in
the case of the normal force. The lateral force can be also employed as a actuation
mechanism in mechanical oscillators as we will see in Section 6.4. In analogy to
the previous section, the corrugation—corrugation interaction can be expressed as

2
= PO cos (”j—b) [JTM (%) Ty (%)} + o) (637)

Fat = — (6.36)

with

Jm(x) = % (16x* — 1) arctanh(/u)

Vi B (e A S s
12 80x 12 e
X 1
=D (u, 4,1 D (u,5,1 D (u,6,%) |,
Fron P+ 5 (WS )+ e P Z)}
(6.38)
Jr (x):n—2(16x4—1)arctanh(ﬁ)+ﬁ T 963—1-2—1-L
£ 120 12 2 80x
1 3 5 1
@ W2+ —(x*—2) D w31+ — x— —
xP (u 2)+24(x 4) (u z)Jrazyc(x ZOx)
7
x@(u,4,%)+@@(u,5,%)+256—3@(u,6,%):| 5
(6.39)

where u = exp(—4nx) and @ (2,5, 0) = Y oy 2¥/(a + k)° is the Lerch transcen-
dent. In the limit of large corrugation length, H/A — 0, this result agrees to lowest
order with a pairwise summation approximation where Jry(0) + Jrg(0) = 72/120.
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Figure 6.4 Geometry used for calculating the lateral Casimir
force between two corrugated plates with lateral shift b. The
equilibrium position is at b = 1/2.

Te+08 b/A=0.25 1
1 E
e+ I Ma=0.1 —o—
10000 Ma=10 —A— 1
100 1
(=}
w
- B 1
w
0.01 - 1
perturb.
0.0001 - 1
1e-06 - b
1e-08 - q
0.01 0.1 100
(b) d/a
Figure 6.5 (a) Geometry consisting of two The proximity force (PFA, dash-dotted curves)
parallel plates with laterally shifted uniaxial and pairwise summation (PWS, dashed
rectangular corrugations. (b) Lateral force Fiy  curves) approximations, and the perturba-
(in units of normal force Fy between flat sur- tive result Fp; that follows from a calculation
faces) at b = /4 for the geometry shown in for sinusoidal profiles (dotted curves) are also
(a) as a function of the gap o (solid curves). plotted.

At the other extreme of 1 < H, Jrm(x) + Jre(x) decays exponentially fast. This
decay distinguishes the lateral force from the normal force. In particular, for large
x = H/A, we arrive at the leading order

2
Jm(x) + Jre(x) = 4115 (x* + O(x%) e . (6.40)
Since Jrm(x) + Jre(x) is positive for all values of x, the equilibrium position of
two modulated surfaces is predicted at b = A/2. This corresponds to aligning the
maxima and minima of the two corrugations (see Figure 6.4).
The numerical approach for computing the functional determinant in the case
of periodic surfaces can be also applied to the lateral force [13]. Once again, we
consider a rectangular corrugation, though now, on both surfaces with a lateral shift
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Figure 6.6 Shape dependence of Fi,t on the lateral surface shift
b at fixed distance H = 10a for different corrugation lengths.
The dashed and the dotted curves represent the PWS and the
full perturbative result for sinusoidal profiles with arbitrary H/4,
respectively.

of b, as in Figure 6.5. The numerical results for the lateral force in this geometry
are summarized in Figures 6.5 and 6.6. Figure 6.5 shows the numerical result for
the lateral force for a shift b = 1/4 and different values of 1/a over more than four
orders of magnitude for the gap 6 = H—2a, together with two approximate results
(PFA and PWS) and the perturbative result for sinusoidal profiles for 1 < H. An
exponential decay of the force as predicted by perturbation theory can be clearly
observed.

The PFA yields a lateral force per unit area Fiyppa = [2E0(H) — Eo(H — 2a) —
Eo(H + 2a)]/4 for 0 < b < 1/2 where &, has the same meaning as before. Fjypra
changes sign at b = 1/2 discontinuously which is an artifact of this approximation.
The pairwise summation (PWS) of Casimir—Polder potentials is strictly justified
for rarefied media only but it is often also applied to metals, using the two-body
potential U(r) = —(m/24)hc/r” with the amplitude chosen such as to reproduce
the correct result for flat ideal metal plates [7]. It yields a lateral force Fpws =
- v &@x [i, &X' U(|lx—x|) with V; and V; denoting the semi-infinite regions to
the left and right of the two surfaces in Figure 6.5a, respectively. Fj,ipws can be
obtained by numerical integration. For small gaps 0, both approximations agree
and match the exact numerical results. Beyond 6 > /20 the PFA starts to fail
since it does not capture the exponential decay of Fp, for increasing 6. The PWS
approach has a slightly larger validity range and reproduces the exponential decay.
However it deviates by at least one order of magnitude from Fy, for 6 2 2.54.

Although the perturbative result of (6.37) applies to sinusoidal surfaces, it is in-
structive to compare it to the numerical results for the rectangular profiles. Since
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—2mH/A wwith the characteristic scale

the lateral force decays exponentially, Fj,; ~ e
set by the modulation wavelength of the profile, the force at large H should be
determined by the lowest harmonic of the periodic surface profile. This implies a
universal lateral force for large H > A that is independent of the precise form of
the surface corrugation. This universal force is the force between two sinusoidal
surfaces where the amplitude follows from the projection of an arbitrary periodic
profile of wavelength A onto a sinusoidal profile with the same wavelength. The

latter force follows from (6.37) and in the limit 4 < H is given by

8n’hc alA 2% o H
— in 22 —2nH/A
For = 5 1SH sm( i b) e A, (6.41)
where we assumed an amplitude a, for the sinusoidal profiles. For the rectangular
corrugation of Figure 6.5, the lowest harmonic has the amplitude ag = 4a/m.

When we compare Fp; and the numerical results of Figure 6.5b, we find excellent
agreement for distances 0 2 4.

The universal behavior of the lateral force is also clearly demonstrated by the
dependence of the lateral force on the surface shift b. Corresponding numerical
results together with PWS approximations and the force that follows from the full
perturbative result of (6.37) for sinusoidal surfaces with arbitrary H/4 are shown
in Figure 6.6 for fixed H = 10a and varying 1/a. With decreasing A, three regimes
can be identified. For 2 >> H, the force profile nearly resembles the rectangular
shape of the surfaces, and the PWS approximation yields consistent results. For
smaller 4, yet larger than H, the force profile becomes asymmetric with respect
to b = A/4 and more peaked, signaling the crossover to the universal regime for
A < H where the force profile becomes sinusoidal. In the latter case, for slightly
small 1/a ~ 10, the numerical results for Fy,; agree with the perturbative result
for sinusoidal surfaces with arbitrary H/A. We note that the PWS approach fails to
predict the asymmetry of the force profile, and the PFA even predicts no variation
with b for 0 < b < 1/2. To observe this universal behavior of the lateral force exper-
imentally, one should consider surfaces with very small corrugation wavelengths in
the range of nanometers so that the exponential decay does not diminish the force
for H > A too strongly.

6.2.3
Cylinders

In this section, we give examples for two central aspects of fluctuation forces:
Effects resulting from the nonadditivity and the particular properties of systems
with a codimension of two, which plays a special role as we will see below. These
problems are considered in the context of interactions between cylinders and side-
walls. It has been demonstrated that Casimir forces in these geometries have only
a weak logarithmic dependence on the cylinder radius [36] and can be nonmono-
tonic [56, 57, 59], consequences of codimension and nonaddivity. These forces be-
tween quasi-one-dimensional structures could be probed in mechanical oscillators
that are composed of nanowires or carbon nanotubes. Exact results for the inter-
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action can be obtained by employing a recently developed scattering approach for
Casimir forces [30, 32]. This approach is based on the concept that electromagnetic
Casimir interactions result from fluctuating currents inside the bodies. It is possi-
ble to formulate an effective action for the multipole moments Q,, x of the currents
inside the bodies where a labels the bodies and X is a multi-index that numbers
polarizations (electric and magnetic multipoles) and the elements of the basis for
the multipole expansion, for example, cylindrical waves. The effective action can
then be written as the quadratic form

=" Qi xMauuw xxQux (6.42)

a,a’ X, X'

with the matrix kernel
Maa/,XX/ =K {[(Ta)_l]xx/ 6(1(1/ - Uaa/,XX/(l - 6(10:/)} , (643)

where « is the Wick-rotated frequency, @ = ick, the matrix T,, is the so-called T-
matrix of object a that relates incoming and scattered waves and U, is a “trans-
lation” matrix that relates the incoming wave at object a to the outgoing wave at
object o’. The T-matrix is related to the scattering matrix of the object, S, by the
relation Ty, = (S, — 1)/2. Analytic results for all elements of the scattering matrix
are available for symmetric shapes such as cylinders and spheres. The S, matrix
contains all information about shape and material composition of the object that is
relevant to the Casimir interaction. The translation matrices U, are independent
of the properties of the interacting bodies and depend only on the relative position
(separation vector) of the objects a and a’, and the properties of the fluctuating
field. For the electromagnetic field, the translation matrices are known in many
bases, for example, for cylindrical and spherical waves [30]. To obtain the Casimir
energy, the multipole fluctuations are integrated out, leading to the determinant
of the infinite dimensional matrix M. Integration over all frequencies « yields the
interaction energy

detM
/ di In detM (6.44)

where the division by the determinant of the matrix M, accounts for the subtrac-
tion of the residual energy of the configuration where the separations between all
objects tend to infinity. Since the translation matrices decay to zero with increas-
ing separation, the matrix M is given by (6.43) with the U, set to zero. In the
special case of two objects, the energy can be simplified to [32]

he [°°
& = —/ de Indet(l — N), (6.45)
27 0

Where N = T1U12T2U21.

First, the scattering approach is applied to two parallel, infinitely long, perfectly
conducting cylinders of equal radius R and center-to-center separation d, see Fig-
ure 6.7. For this geometry, it is most convenient to use cylindrical vector waves
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Figure 6.7 Casimir energy for two cylinders ical results; the dashed lines represent the
of equal radius R as a function of surface-to- asymptotic results of (6.53). The inverse log-
surface distance d — 2R (normalized by the arithmic correction to the leading order result
radius). The energy is divided by the PFA es- for TM modes cause very slow convergence.
timate E;'y:lgcyl _ —#;oth /R/(d — 2R)S For the parameter range shown here, it was
for the energy which is applicable in the limit sufficient to consider m = 40 partial waves in
d — 2R only. The solid curves show numer-  order to obtain convergence.

for the multipole expansion. This basis consists of the vector fields M;;(:r)n (x) =
%V x Vi (x) for magnetic (M) multipoles and N,i(:ln(x) = quV x V x Vio)(x) for
electric (E) multipoles where g = /(w/c)? — k% and incoming (i) and outgoing
(0) waves differ in the definition of the vector fields Vi(x) = 2],,(qr)e™? elt=Z,
Vo(x) = zH ﬁ)(qr) eim? elk=z_Here, (1, ¢, z) denote cylindrical coordinates and J,,,
H i,l,) are Bessel and Hankel functions of the first kind. In this basis, the matri-
ces of (6.43) assume a simple form where the multi-index X now represent the
polarization (M or E), the wave vector k, along the cylinder axis and the partial
wave index m. The T-matrix is diagonal in polarizations k, and m, with diagonal

elements
I/ (gR)
Tvtom = (—1)" = L2— 6.4
wen = )" 38 (6.46)
m T In(qR)
Tetom = (1) —=—L .
Bem = (2175 Kn(qR) (6:47)

where we have applied a Wick rotation @ = ick which leads to modified Bessel
functions of the first (I,,) and second (K,,) kind. The translation matrices are diag-
onal in polarization and k., and the elements are identical for both polarizations,

2

UlZ,Manm = UlZ,Ekznm = H(_l)m nKm—n(p d) (648)
2 .

UniMkanm = U1 Bkonm = . i"" Kn—n(pd) (6.49)

with p = /k?+ k2. Due to the decoupling of electric and magnetic multi-
poles, corresponding to transverse magnetic (TM) and transverse electric (TE)
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field modes, respectively, the Casimir energy of (6.45) has two independent contri-
butions, & = Erm + Etr, with

hcL [°°
Erm(rr) = T / p dpIndet(l — Npyrg) , (6.50)
0

where L (— o0) is the cylinder length and the determinant only runs over the
partial wave indices m, m’ of the matrix elements

- I,,(pR) L,(pR)
N- omm/ — 1 ,—Kn+m Pd , Km/—l-n Pd 6.51
T 2 Koo R) P g gy Koo ) (6:51)
. In(pR) In(p R)
Nrvmm =1" 7" Y  ——"Kyym(pd K 4n(pd) - 6.52
™ Xn: Kn(pR) PR R (pe) (6:52)

This result for the energy can be also obtained from a scalar field theory where TM
(TE) modes correspond to Dirichlet (Neumann) boundary conditions [36, 56].

At large separations d >> R, only matrix elements with m = m’ = 0 for TM
modes and m = m’ = 0,%1 for TE modes contribute to the energy. When the
determinant in (6.50) is restricted to these elements, we find for the interaction of
two cylinders for large d/R to leading order

Eng = —hel—e— (1— 2, )
™ 87 d2 In(d/R) In(d/R) ’

7 R*

The asymptotic interaction is dominated by the contribution from TM modes that
only vanishes for R — 0 logarithmically.

For arbitrary separations, higher order partial waves have to be considered. The
number of partial waves has to be increased with decreasing separation. A numer-
ical evaluation of the determinant and integration has revealed an exponentially
fast convergence of the energy in the truncation order for the partial waves, leading
to the results shown in Figure 6.7 [56]. It should be noted that the minimum in
the curve for the total electromagnetic energy results from the scaling by the PFA
estimate of the energy. The total energy is monotonic and the force attractive at all
separations.

The interaction between cylinders is very distinct from the Casimir or van der
Waals interaction which is reported in literature [55]. Usually, the interaction is
proportional to the volumes of the interacting objects, that is, for two spheres of ra-
dius R where the Casimir energy ~ R®/d’. This scaling with volumes also follows
from a pairwise summation of two-body forces. However, from the interaction of
two parallel plates, one knows that the interaction can scale also with the surface
area. These two examples would suggest for two parallel cylinders of length L an in-
teraction energy ~ LR*/d® or ~ LR?/d*. However, the actual results of (6.53) has
a much weaker, only logarithmic dependence on the radius. It is interesting to look
at the variation of the decay exponent of d for the Casimir energy as a function of

183



184

6 Casimir Forces and Geometry in Nanosystems

the codimension of the object. The exponent is (—3, —2 + €, —7) for codimensions
1 (plates), 2 (cylinders), 3 (spheres), respectively, and hence not monotonic. For a
codimension of two, the Casimir interaction is typically long-ranged. The physical
reason for the unexpected scaling of the cylinder interaction is explained by con-
sidering spontaneous charge fluctuations. On a sphere, the positive and negative
charges can be separated at most by distances of order R « d. The retarded van
der Waals interactions between the dipoles on the spheres lead to the Casimir—
Polder interaction [15]. In the cylinder, fluctuations of charge along the axis of the
cylinder can create arbitrarily large positively (or negatively) charged regions. The
retarded interaction of these charges (not dipoles) gives the dominant term of the
Casimir force. This interpretation is consistent with the difference between the two
types of polarizations since for TE modes such charge modulations cannot occur
due to the absence of an electric field along the cylinder axis, as illustrated (6.53)
and Figure 6.7.

As a second example, the effect of sidewalls on the interaction of two cylinders
is considered. The geometry consisting of either one or two plates at a separa-
tion H from the two cylinders is shown in Figure 6.8. For this type of geometry,
the mean stress tensor has been computed numerically and it has been observed
that the force between two one-dimensional structures changes nonmonotonically
when H is increased [57, 59]. This many-body effect can be studied by the scat-
tering approach. Instead of studying the interaction of the cylinders and plates via
their T-matrices directly, it is more convenient to employ the method of images
to describe the effect of the sidewalls [30, 56]. For perfectly conducting sidewalls,
their effect on the electromagnetic field can be taken into account by replacing the
free space Green’s function by a half-space or slab Green’s function. This results
in an expression for the Casimir energy similar to (6.44) that depends only on the

1 T T T T

(H-R)/R

Figure 6.8 Casimir force between two cylin-
ders parallel to one plate or sandwiched
between two plates vs. the ratio of sidewall
separation to cylinder radius (H — R)/R, at
fixed distance d = 4R between the cylin-
ders, normalized by the total PFA force per

unit length between two isolated cylinders,
Fora = —3 (hen®/1920)/R/(d — 2R)7. The
solid lines refer to the case with one plate,
while dashed lines depict the results for two
plates. The individual TE and TM contribu-
tions to the force are also shown.
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T-matrices of the two cylinders and translation matrices that connect the original
cylinders and their mirror images. The expression of the energy can be computed
again numerically by truncating the partial wave expansion at a sufficiently high
order. The resulting Casimir force between two cylinders with one or two sidewalls
as a function of the sidewall separation H is shown in Figure 6.8. Two interesting
features can be observed. First, the attractive total force varies nonmonotonically
with H: Decreasing for small H and then increasing towards the asymptotic limit
between two isolated cylinders for large H, as in (6.53). The extremum for the one-
sidewall case occurs at H— R ~ 0.27R, and at H — R ~ 0.46R for the two-sidewall
case. Second, the total force between the cylinders for the two-sidewall case in the
proximity limit H — R is larger than for H/R — oo. As one might expect, the
H-dependence for one sidewall is weaker than for two sidewalls, and the effects
of the two sidewalls are not additive. Not only is the difference from the H — oo
force not doubled for two sidewalls compared to one, but the two curves actually
intersect.

A simple generic argument for the nonmonotonic sidewall effect has been given
in [57]. It arises from a competition between the force from TE and TM polariza-
tions as demonstrated by the results in Figure 6.8. An intuitive perspective for the
qualitatively different behavior of the TE and TM force as a function of the sidewall
distance is obtained from the method of images. For the TM polarization (corre-
sponding to Dirichlet boundary conditions in a scalar field theory), the Green’s
function is obtained by subtracting the contribution from the image so that the
image sources have opposite signs. Any configuration of fluctuating TM charges
on one cylinder is thus screened by images, more so as H is decreased, reducing
the force on the fluctuating charges of the second cylinder. This is similar to the
effect of a nearby grounded plate on the force between two opposite electrostatic
charges. Since the reduction in force is present for every charge configuration, it is
also there for the average over all configurations.

By contrast, the TE polarization (corresponding to Neumann boundary condi-
tions in a scalar field theory) requires image sources of the same sign. The total
force between fluctuating sources on the cylinders is now larger and increases as
the plate separation H is reduced. Note, however, that while for each fluctuating
source configuration, the effect of images is additive, this is not the case for the
average over all configurations. More precisely, the effect of an image source on
the Green’s function is not additive because of feedback effects: the image currents
change the surface current distribution, which changes the image, and so forth.
For example, the net effect of the plate on the Casimir TE force is not to double
the force as H — R. The increase is in fact larger than two due to the correlated
fluctuations.

A similar but weaker nonmonotonic dependence on H of the force between the
cylinders is also observed for separations d that are different from the particu-
lar choice in Figure 6.8. Also, the force between the cylinders and the sidewalls is
not monotonic in d but the nonmonotonicity is then smaller since the effect of a
cylinder on the force between two bodies is smaller than the effect of an infinite
plate.
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6.2.4
Spheres

Thus far, geometries with a direction of translational invariance have been consid-
ered. In the limit of ideal metal surfaces, this invariance leads to a decoupling of
the two polarizations of the electromagnetic field. Any geometry of experimental
interest will obviously lack this symmetry beyond some length scale. Hence, it is
important to study geometries without this symmetry. Compact objects of arbitrary
shape obviously do not have an invariant direction. Therefore, the two polarizations
are coupled and the matrices in (6.43) assume a more complicated form. A natural
choice for a basis are now vector spherical waves for which the translation matrices
Uqw xx carry an index X = (E or M, I, m) which represents polarization E or M
and the order | > 1, m = —I,..., [ of the spherical waves. In contrast to the cylin-
drical matrices of (6.48), the translation matrix couples E and M polarization and
all matrix elements are explicitly known [30].

Here we focus on the simplest case of two compact objects: two perfect metal
spheres of equal radius R and center-to-center separation d, see Figure 6.9. The
T-matrix of a dielectric sphere is known from the Mie theory for scattering of elec-
tromagnetic waves from spherical particles. Due to spherical symmetry, the E and
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Figure 6.9 Casimir energy of two metal spheres, divided by
the PFA estimate Eppa = —(73/1440)/icR/(d — 2R)?, which
only holds in the limit R/d — 1/2. The label | denotes the
multipole order of truncation. The curves | = oo are obtained
by extrapolation. The Casimir—Polder curve is the leading term
of (6.56). Inset: Convergence with the truncation order [ for
partial waves at short separations.
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M polarizations for all I, m are decoupled so that the T-matrix is diagonal and the
coupling of polarizations only occurs through the translation matrices. After a Wick
rotation to imaginary frequency w = ick, the matrix elements assume, in the per-
fect metal limit, the form

ym L1 (kR)

2 6ll/6mm/ (654)

TMMlml/m/ = (_

| I 1(kR) + ZKRII’+%(KR)

2 Kyt (kR) + 2cRK] | (kR)

TEElml/m/ = (_1) 6ll/6mm/ . (655)

Substitution of these matrix elements together with those of U, from [30]
in (6.45) yields the Casimir energy of two spheres. For asymptotically large d,
the energy has only contributions from I = I’ = 1 (dipoles) and one obtains
the Casimir—Polder interaction between two polarizable particles [15] where the
electric and magnetic dipole polarizabilities of a perfect metal sphere are given by
ag = R*and ay = —R?/2. This result can be extended to smaller separations by
including higher order multipoles with I > 1 that generate higher powers of R/d.
One obtains the asymptotic series [32]

6 o n
&= —%% > e (g) , (6.56)
where the first eight coefficients are ¢y = 143/16, ¢c; = 0, ¢; = 7947/160, ¢; =
2065/32, ¢i = 27705347/100800, cs = —55251/64, cs = 1373212550401/
144 506 880, ¢; = —7583389/320. The energy at all separations can be obtained
by truncating the matrix N defined below (6.45) at a finite multipole order I, and by
numerically computing the determinant and the integral. The result is shown in
Figure 6.9. It provides the force for all separations between the Casimir-Polder lim-
it for d > R, and the PFA result for R/d — 1/2. At a surface-to-surface distance
4R /3 (R/d = 0.3), the PFA overestimates the energy by a factor of ten. Including
up to | = 32 partial wave orders and extrapolating based on an exponential conver-
gence in [, the Casimir energy has been determined down to R/d = 0.49 [32]. The
interaction between a sphere and a plate has been obtained recently and deviations
from the PFA have been quantified [30].

6.3
Dependence on Material Properties

In previous sections, we have considered perfectly conducting bodies. For real met-
als with finite, frequency dependent conductivity or more general dielectric media,
Casimir interactions are modified. This is a natural consequence of the fact that
dipole and higher multipole polarizabilities depend on the material properties of a
body. Thus, the induced fluctuating currents depend not only on shape, but also on
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material composition. Therefore, for practical applications and experimental tests,
itis important to understand the collective effects of shape and material on Casimir
interactions. A macroscopic theory that fully accounts for the material dependence
of the interaction between two planar surfaces was established by Lifshitz [47] in
1956. Until recently, only approximations limited to short separations between bod-
ies or sufficiently diluted media have been available for studying the interaction of
dielectric media of arbitrary shapes. The scattering approach described in the pre-
vious section has paved the way for studying the material and shape dependence
of Casimir forces beyond the case of planar surfaces and without the common ap-
proximations in detail. We first provide a simple derivation of the Lifshitz result
for two surfaces within the scattering approach. Then, we focus on an example
that is of particular interest to the behavior of nanoparticles as they appear, that is,
in suspensions where correlations between material and shape effects are impor-
tant.

6.3.1
Lifshitz Formula

Consider two material half-spaces that are bounded by planar, parallel surfaces with
a vacuum gap of width d between them. The material in the two halfspaces can be
different and is characterized by the dielectric functions €, (w) and magnetic per-
meabilities u,(®) where a = 1,2 numbers the halfspaces. A compact derivation
of the Casimir-Lifshitz interaction between the two surfaces follows from the scat-
tering formula of (6.44). The T-matrix of a planar dielectric surface is given by the
Fresnel coefficients which are usually expressed in a planar wave basis. When we
define the two polarizations relative to the surface normal vector, the T-matrix is
diagonal in polarization and parallel to the surface in the wave vector k.. The diag-
onal matrix elements are

Ualick)p — pa

Ty sty = ,
“MET L (ick)p + pa

€q(icK)p — Pa

- , (6.57)
€q(ick)p + pa

Ta,E ky =

where p = | /k? +kj and p, = \/ea(icx)ya(icx)xz + kj. The translation ma-
trices for translations perpendicular to the surfaces by a distance d are also diag-
onal in kj in the planar wave basis and the diagonal elements have the simple
form

Uaa/,MkH = Uaa/,EkH = e_pd (658)

for a # a’ = 1,2, that is, they do not couple E and M polarizations and are iden-
tical for the two polarizations. The determinant of (6.44) leads to a product over all
k which becomes an integral after taking the logarithm. The resulting Casimir—
Lifshitz energy has two separate contributions form M and E polarizations (TE and
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TM modes, respectively),

_ heA e1(ick)p — p1 &fick)p — pa _zm)
T an? / dK/ b dky In |:( €1(ick)p + p1 ex(ick)p + p2
" (1 _ palick)p — p1 paick)p — pa —Zpd):|y

wilick)p + p1 ua(ick)p + p2

(6.59)

where A is the surface area. This result generalizes the Casimir interaction between
two perfect metal plates of (6.5) to dielectric materials.

6.3.2
Nanoparticles: Quantum Size Effects

The Lifshitz formula of (6.59), while derived for infinitely extended planar surfaces,
is also commonly applied to curved surfaces of particles of finite size within a prox-
imity approximation. This leads to predictions for the interaction that are limited
to particles that a very large compared to their separations. To be able to study the
interaction of particles of arbitrary sizes and separations, a theory is needed that is
a generalization of the Lifshitz formula to bodies of arbitrary shape. Such a general
theory provides the scattering formula of (6.44). The challenges in applying this for-
mula consist in the computation of the T-matrix for bodies with general dielectric
functions and in the proper modeling of the dielectric response of the bodies. The
latter is especially important for nanoparticles for which bulk optical properties are
modified by finite-size effects.

Some characteristic effects of the Casimir interaction between nanoparticles will
be discussed in this section by studying two spheres with finite conductivity in
the limit where their radius R is much smaller than their separation d. We as-
sume further that R is large compared to the inverse Fermi wave vector 7t/ kg of
the metal. Since typically nt/ kg is of the order of a few Angstrom, this assump-
tion is reasonable even for nanoparticles. To employ (6.44), we need the T-matrix
of a sphere with general dielectric function €(w) which generalizes the matrix
of (6.54), (6.55). All elements of this matrix are known explicitly, see, for exam-
ple, [32]. Relevant to the interaction for d > R are the dipole matrix elements
(I = I/ = 1) at low frequencies «. In order to proceed, we need information about
the dielectric function on the imaginary frequency axis w = ick for small k. The-
ories for the optical properties of small metallic particles [62] suggest a Drude-like
response

o(ick)

elick) = 1+ 4n——— (6.60)
CK

where o(ick) is the conductivity which approaches for k¥ — 0 the dc conductivity

O4c. For bulk metals, 04, = wf,r/ém where w, = |/4¢? ki—/3n me is the plasma
frequency with electron charge e and electron mass m., and 7 is the relaxation
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time. With decreasing dimension of the particle, o4.(R) is reduced compared to its
bulk value due to finite size effects and hence becomes a function of R [62].

In the low frequency limit, with €(ick) of (6.60), the T-matrix elements for mag-
netic and electric dipole scattering (I = I’ = 1) are diagonal in m and have the
series expansion

47 Rogc(R)

Ve ; (kR)* +--- (6.61)

TMMlmlm = -

2 1 c
TEElmlm = _(KR)3 -

4

To leading order ~ i3, the electric dipole matrix elements are identical to those of
a perfectly conducting sphere and finite conductivity only modifies higher orders.
In the magnetic dipole matrix elements, however, the leading term —(«R)?/3 of the
perfect conductor result of (6.54) is absent. This is consistent with the observation
that the magnetic dipole polarizability is reduced by a factor ~ (xR)?[e(ick) — 1] and
e(ick) — 1 ~ k! due to (6.60).

When the matrix elements of (6.61), (6.62) together with the translation matrices
Uy in spherical coordinates are substituted into (6.45), an expansion for large
distance d yields the Casimir energy of two spheres

E 23 RS Rog(R) 45 c R’
£ S (9 e A L S R (6.63)

he  4md c 472 Rog.(R)

The leading term is material independent but different from that of the perfect
metal sphere interaction of (6.56) since only the electric polarization contributes to
it. At next order, the first and second terms in the parentheses come from magnetic
and electric dipole fluctuations, respectively. Notice that the term ~ 1/d® is absent
in the interaction between perfectly conducting spheres, see (6.56). The limit of
perfect conductivity, 04c — 00, cannot be taken in (6.63) since this limit does not
commute with the low « or large d expansion.

In order to estimate the effect of finite conductivity and its dependence on the
size of the nanoparticle, we have to employ a theory that can describe the evolution
of 04c(R) with the particle size. A theory for the dielectric function of a cubical
metallic particle of dimensions R > m/kr has been developed within the random
phase approximation in the limit of low frequencies < ¢/R [62]. In this theory,
it is further assumed that the discreteness of the electronic energy levels, and not
the inhomogeneity of the charge distribution, is important. This implies that the
particle responds only at the wave vector of the incident field which is a rather
common approximation for small particles. From an electron number-conserving
relaxation time approximation, the complex dielectric function is obtained which
yields the size-dependent dc conductivity for a cubic particle of volume a® [62]. It
has been shown that the detailed shape of the particle barely matters, and we can
set a = (4m/3)}/° R which defines the volume equivalent sphere radius R. This
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yields the estimate

04c(R) = 0gc(o0) | 1—

with

where og4c(

3nkpa + m? 487
4(kpa)? (kpa)3I?

kra/m

x Re Z ((kpa/m)* — m?) x

o0) = w;r/4n is the bulk Drude dc conductivity and I =

—znytanz,, m even

(6.64)

+z,cotz,, modd

(6.65)

(h/Ter)

(kpa/m)? is a linewidth with Fermi energy er. The factor in square parentheses

multiplying o4.(c0

) describes quantum size effects and leads to a substantial re-

duction of the dc conductivity for nanoscale particles. While the above expression
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is applicable for 7/ kr < a, it suggests that for 7t/ kg >~ a, the particle ceases to
conduct, which is consistent with a metal-insulator transition due to the localiza-
tion of electrons for particles with a size of the order of the mean free path. It
is instructive to consider the size dependence of o4c(R) and of the Casimir inter-
action for a particular choice of material. Following [62], we focus on small Alu-
minum spheres with e = 11.63 eV and 7 = 0.8 - 10~ *s. These parameters cor-
respond to 7w/ kr = 1.8A and a plasma wavelength 1, = 79nm. It is useful to
introduce the dimensionless conductivity G4.(R), which is measured in units of
e?/2haq with Bohr radius ay, so that the important quantity of (6.63) can be writ-
ten as Rogc(R)/c = (a/2)(R/a0)G4c(R) where a is the fine-structure constant. The
results following from (6.64) are shown in Figure 6.10. For example, for a sphere
of radius R = 10 nm, the dc conductivity is reduced by a factor &~ 0.15 compared
to the bulk Drude value. If the radius of the sphere is equal to the plasma wave-
length 4,, the reduction factor ~ 0.8. These results show that shape and material
properties are important for the Casimir interaction between nanoparticles. Po-
tential applications include the interaction between dilute suspensions of metallic
nanoparticles.

6.4
Casimir Force Driven Nanosystems

We have seen that Casimir forces increase strongly with decreasing distance and
hence it can be expected that they are important in devices that are composed of
moving elements at short separations. Indeed, a common phenomena seen in
nanomechanical devices is stiction due to attractive van der Waals and Casimir
forces. This effect imposes a minimum separation between objects in order to pre-
vent them from sticking together. However, one can also make good use of Casimir
interactions in nanodevices by employing them to actuate components of small
devices without contact [1, 2, 29]. In [29], it has been demonstrated that this can
be achieved by coupling two periodically structured parallel surfaces by the zero-
point fluctuations of the electromagnetic field between them. We will consider this
effect as an example for Casimir force induced nonlinear dynamics, providing a
direct application of the results obtained in Section 6.2.2. We have seen that the
broken translation symmetry parallel to the surfaces results in a sideways force
which has been predicted theoretically [34, 35] and observed experimentally be-
tween static surfaces [21]. If at least one of the surfaces is structured asymmetri-
cally, there is an additional breaking of reflection symmetry and the surfaces can
in principle be set into relative lateral motion in the direction of broken symme-
try. The energy for this transport has to be pumped into the system by external
driving. This can be realized by setting the surfaces into relative oscillatory motion
so that their normal distance is an unbiased periodic function of time. Since the
sideways Casimir force decays exponentially with the normal distance (see 6.41),
the surfaces experience an asymmetric periodic potential that strongly varies in
time.
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This scenario resembles so-called ratchet systems [58] that have been studied
extensively during the last decade in the context of Brownian particles [41], molec-
ular motors [3] and vortex physics in superconductors [24], to name a few recent
examples. Most of the works on ratchets consider an external time-dependent driv-
ing force acting on overdamped degrees of freedom to rectify thermal noise. For
nanosystems, however, it has been pointed out that inertia terms due to finite mass
should not be neglected and, actually, can help the ratchets to perform more ef-
ficiently than their overdamped companions [48]. Finite inertia typically induces
deterministic chaos in Langevin dynamics. This chaos has been shown to be capa-
ble of mimicking the role of noise, and hence to generate directed transport in the
absence of external noise [49]. Here, we use this effect in the different context of
so-called pulsating (or effectively on—off) ratchets where the strengths of the peri-
odic potential varies in time [58]. We consider weak thermal noise only to test for
stability of the inertia induced transport, not as the source of driving'?.

It has been demonstrated that the system described above indeed allows for di-
rected relative motion of the surfaces due to chaotic dynamics caused by the lateral
Casimir force [29]. The transport velocity is stable across sizeable intervals of the
amplitude and frequency of surface distance oscillations and damping. The veloci-
ty scales linear with frequency across these intervals and is almost constant below
a critical mean distance beyond which, it drops sharply. The system exhibits mul-
tiple current reversals as function of the oscillation amplitude, mean distance and
damping. This “Casimir ratchet” allows contact-less transmission of motion which
is important since traditional lubrication is not applicable in nanodevices. This ac-
tuation mechanism should be compared to other actuation schemes as magneto-
motive or capacitive (electrostatic) force transmission. The Casimir effect induced
actuation has the advantage of working also for insulators and does not require any
electrical contacts and/or external fields. Other applications of zero-point fluctua-
tion induced (van der Waals) interactions to nanodevices have already been exper-
imentally realized in order to construct ultra-low friction bearings from multi-wall
carbon nanotubes [23].

In the following, we consider two (on average) parallel metallic surfaces with
periodic, uni-axial corrugations (along the y;-axis) that have distance H, see inset
(a) of Figure 6.11. To begin with, we assume that both surfaces are at rest with a
relative lateral displacement b. Then the surface profiles can be parametrized as

oo

hi(y1) = a Z c e2mimnit e (6.66)
n=1
st .

ha(y1) = a Z e inn=b/t 4 ¢ e (6.67)
n=1

where a is the corrugation amplitude, 11, 1, are the corrugation wave lengths, and
cn, d, are Fourier coefficients.
14) In the absence of inertia, finite thermal noise

is necessary for on—off ratchets to generate
directed motion.
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()

-1 b=b/\ 1

Figure 6.11 The lateral Casimir force acting between the two
surfaces as function of the shift b at time s = 0 and half period
s = m/w (drawn to a larger scale by a factor 10%) for parame-
ters n = 0.65, Ho = 0.14. Insets: (a) Surface profiles at their
equilibrium position ath = 0.182 (b) Periodic variation of the
maximum force at b = 0 with time.

The dependence of the Casimir energy £ on H and b causes macroscopic forces
on the surfaces. For a varying separation H, this is the normal Casimir attraction
between metallic surfaces modified by the corrugations. Below, we will assume
H = H(t) to be a time-dependent distance that is kept at a fixed oscillation by
an additional external force from clamping to an oscillator. In such a setup, the
surfaces can react freely only to the lateral force component Fi, (b, H) = —9&/0b.
The results of Section 6.2.2 are readily extended to periodic profiles of arbitrary
shapes as described by (6.66). The corrugation lengths have to be commensurate,
A1/A, = p/q with integers p, q in order to produce a finite lateral force per surface
area. For the purpose of this example, it is sufficient to consider the case p = 1.
Generalizing the result of (6.37), the lateral (b-dependent) part of the Casimir ener-
gy per surface area can then be written as

2hca? o ywinb H
— —2minb/A1
E(b) I7E WE=1 (cnd_nqe + c.c.) ] (nll) (6.68)
to order a?. The exact form of the function J(x) = Jrm(x) + Jre(x) is given

by (6.38), (6.39). For the present purpose, it is sufficient to use the simplified ex-
pression

2

J(x) ~ 172—0 (1+2mx + yx? + 32x*) e 2™ (6.69)
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with y = 12.4133, which is exact for both asymptotically large and small x and
approximates the exact results with sufficient accuracy for all x (The maximal de-
viation from the exact result is ~ £0.5% around x = 0.5). The Casimir potential
of (6.68) has two interesting properties which are useful to the construction of a
ratchet. First, it decays exponentially with H, and thus can be essentially switched
on and off periodically in time by oscillating H. Second, the potential is not only
periodic in b, but acquires asymmetry from the surface profiles at small H « 4
and an universal symmetric shape for H 3> 1 since the effect of higher harmonics
of the surface profile is exponentially diminished, as discussed in Section 6.2.2.

The relative surface displacement b(t) can be considered as a classical degree of
freedom with inertia. Its equation of motion is described by Langevin dynamics of
the form

pb + ypb = Fiulb, H(t)] + /2y pTE(t) (6.70)

where p is the mass per surface area, y the friction coefficient, T the intensity (di-
vided by surface area) of the Gaussian noise & (t) with zero mean and correlations
(&(t)E (1)) = O(t — t’) so that the Einstein relation is obeyed. This stochastic term
describes ambient noise due to effects of temperature and pressure. (Additional
contributions from thermally excited photons to the Casimir force can be neglect-
ed at surface distances well below the thermal wavelength #c/(2T).) The system
is driven by rigid oscillations of one surface so that the distance H(t) = Hyg(t)
oscillates about the mean distance H, with g(t) = 1 — 5 cos(L2t). For simplicity,
we now consider equal corrugation lengths 1; = 1, = 1. We define the following
dimensionless variables: b = b /A, s = t/t for lateral lengths and time with the

typical time scale T = (1/a),/pH;/hc resulting from a balance between inertia
and Casimir force. Therefore, velocities will be measured in units of vy = 1/7.
There are five dimensionless parameters which can be varied independently for
fixed surface profiles: the damping 7 = vy, the angular frequency 0 = 79,
the driving amplitude 7, the scaled mean distance Hy/4 and the noise intensity
T = (T/h ¢)(Hg /a%). The dimensionless equation of motion for l;(s) reads

b+ b = Fiulb, §(5)] + 29 TE(s5) (6.71)
with the Casimir force

noa . A & A . Ho
Fulb 8) = 55 > fucos@unb)] (ng—=), (6.72)
n=1

where we have chosen surface profiles with ¢, = i/ f,/(2n), d, = / fu/(2n) with
real coefficients f, in (6.66), and g(s) = 1 — 5 cos(ws).

Directed transport is possible in certain parameter ranges, even in the determin-
istic case where noise is absent. However, to probe the robustness of transport,
we primarily consider the limit of weak noise by choosing T = 1073, In fact, it
has been shown for underdamped ratchets with time-independent potentials and
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periodic driving that even an infinitesimal amount of noise can change the rec-
tification from chaotic to stable [48]. To look for similar generic behavior of the
pulsating ratchet, we consider a specific geometry consisting of a symmetric and a
sawtooth-like surface profile corresponding to three harmonics with f; = 0.0492,
f2» = 0.0241, f3 = 0.0059 and f, = 0 for n > 3. Inset (a) of Figure 6.11 shows
these profiles in their stable position with b = 0.182 that minimizes the Casimir
energy. The resulting spatial variation of the Casimir force with b is plotted in
Figure 6.11 for minimal (s = 0) and maximal (s = wt/w) surface distance with
parameters Hy/A = 0.1, 7 = 0.65. It can be clearly seen that the asymmetry is
reduced at a larger distance where the variation of the force becomes more sinu-
soidal. Inset (b) shows the on-off-like time-dependence of the force amplitude at
b = 0 due to the oscillating surface distance.

The nonlinear equation of motion of (6.71) has to be solved numerically. The
trajectory P;(s) was obtained from a second order Runge—Kutta algorithm. For initial

conditions, an equidistant distribution over the interval [—1, 1] for B(O) and P;(O) =0
is used. For each set of parameters, 200 different trajectories are calculated from
varying initial conditions and noise, each evolving over 4 x 10° periods 27t/ so that
transients have decayed. The average velocity ((v)) involves two different averages

of l:)(s): The first average is over initial conditions and noise for every time step,
then the averaged trajectory is averaged over all discrete times of the numerical
solution. For an efficient directed transport, it is not sufficient to have only a finite
average ((v)). To exclude trajectories with a high number of velocity reversals, the
fluctuations about the average velocity must be small, that is, the variance ¢ =
({v?)) — {{v))? must be smaller than ({v))?.

Naively, one can expect directed motion of the surface profile h;(y;) into the

positive yj-direction (l; < 0) since the Casimir force in Figure 6.11 is asymmetric
with negative values lasting for a longer time than positive ones. However, the
actual behavior is more complicated due to chaotic dynamics. Figure 6.12 shows
the dependence of the average velocity and its standard deviation ¢ on the driving
amplitude # and frequency w for Hy = 0.14, # = 0.9. For a fixed frequency,
there is an optimal interval of driving amplitudes across which the average velocity
is almost constant with ((v)) >~ —w/(2m). Small deviations from the latter value
result from noise, as has been checked by studying the dynamics at T = 0. At
higher driving amplitudes, a second narrower interval with maximal ((v)) is ob-
served which is more strongly reduced and smeared out from its deterministic
value —2 x w /(27) by noise. At the plateaus of constant velocity, the standard devia-
tion o is substantially reduced, rendering transport efficient. Outside the plateaus,
velocity reversals occur and o increases linearly with #. For fixed amplitude 7, the
average velocity is stable at the value —w/(27) over a sizeable frequency range (see
inset of Figure 6.12).

In order to understand the observed behavior it is instructive to analyze the dy-
namics in the three-dimensional extended phase space. Attractors of the long-time
dynamics can be identified from Poincaré sections using the period 2r/w of the
surface oscillation as stroboscopic time. To obtain a compact section, the trajecto-
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Figure 6.12 Mean ({(v)) and standard deviation ¢ of the (neg-
ative) velocity as function of the driving amplitude # for the
frequencies @ = 5.0 and w = 4.72 (for the latter, only the sta-
ble plateau is shown). The parameters are Hp = 0.14, 7 = 0.9,
T = 1073. Inset: Dependence of the same quantities on fre-
quency for fixed 7 = 0.65. Straight dashed lines correspond in
both graphs to the velocity w/(2m).

ry is folded periodically in y; on one period of the Casimir potential. From these
sections, we can distinguish between periodic and chaotic orbits. As a start, we
consider the deterministic limit with T = 0. The plateaus around 7 = 0.65 and
1 = 0.7 both result from periodic orbits of period one, corresponding to a single
point in the Poincaré section. On the right (downward) edges of the first plateaus,
we observe period doubling, that is, a periodic attractor with period two. Upon a
further increase of #, chaotic orbits dominate the motion. Therefore, the system
exhibits a period-doubling route to chaos with enhanced velocity fluctuations. The
findings also basically apply to weak noise (f" = 1073), but the sharp points of the
periodic attractors in the Poincaré sections are smeared out, leading to a decreased
((v)). The transition from chaotic to periodic dynamics at the beginning of the ris-
ing edge of the plateaus is accompanied by a velocity reversal. This is consistent
with the observation for non-pulsating potentials that velocity reversals are due to
a bifurcation from chaotic to periodic dynamics [49].

The amplitude of the Casimir potential can be tuned by varying the mean dis-
tance Hy. From Figure 6.13a, we see that the dynamics show a sharp transition
at a critical Hy/A from efficient transport with large ((v)) and small o to chaotic
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Figure 6.13 Mean ((v)) and standard deviation o of the (neg-
ative) velocity as a function of (a) the mean plate distance Hg
for 7 = 0.9 and (b) damping 7 for Hy = 0.14. The other
parameters are 7 = 0.65, ® = 5.0, T =1073.

dynamics with vanishing velocity. The transition is accompanied by a velocity re-
versal and peaked velocity fluctuations. Interestingly, below the transition ((v)) is
almost constant independently of Hy/A. The observed transport behavior is also
stable against a change of effective damping 7, as shown in Figure 6.13b. Whereas
fluctuations increase with decreasing 7, there is a stable plateau of constant aver-
age velocity across which fluctuations are diminished. In the deterministic limit,
additional plateaus with inverted and doubled average velocity are observed by vary-
ing 7 and 7. Remnants of a second plateau around 7 = 1.9, washed out by noise,
can be seen in Figure 6.13b.

It is interesting to estimate typical velocities vy = A /7. With the typical lengths
Hy = 0.1um, o = 10nm realized in recent Casimir force measurements [21] and
an area mass density of p = 10 g/m? for silicon plates with a thickness of a few

microns, one obtains vy = (/hca?/pH; ~ 5.5 mm/s. The actual average velocity
vow /27 is of the same order for the frequencies studied above. For A = 1 um, the
time scale is T = /vy ~ 10™*s, leading to driving frequencies and damping rates
in the kHz range for the parameters considered here.

The results show that Casimir interactions can offer novel contact-less transla-
tional actuation schemes for nanomechanical systems. Similar ratchet-like effects
are expected between objects of different shapes as, for example, periodically struc-
tured cylinders inducing rotational motion. The use of fluctuation forces also ap-
pear promising to move nano-sized objects immersed in a liquid where electro-
static actuation is not possible. Another application is the separation and detection
of particles of differing mass adsorbed to the surfaces. For surfaces oscillating at
very high frequencies, additional interesting phenomena related to the dynamical
Casimir effect occur [37], leading to the emission of photons that could contribute
to ratchet-like effects as well.
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6.5
Conclusion

Recently, there has been much interest in applying Casimir interactions to the de-
sign of nanomechanical devices [9-11, 16, 17]. In such devices as sensors and ac-
tuators, attractive Casimir forces can strongly influence their function due to un-
wanted stiction between small elements at nanoscale separations. However, one
can also utilize Casimir interactions in actuators where they can lead to interesting
nonlinear dynamics. Recently, repulsive Casimir forces between bodies in a liquid,
predicted some decades ago by Lifshitz, Dzyaloshinskii and Pitaevskii for planar
surfaces [26], have also been measured between a sphere and a plane [52], suggest-
ing a way to suppress stiction. Thus, it is important to understand the dependence
of Casimir forces on shape and material properties beyond common approxima-
tions that only apply to weakly curved surfaces. This conclusion is corroborated by
the relevance of Casimir interactions to a plethora of phenomena such as wetting,
adhesion, friction, and quantum scattering of atoms from surfaces. In this chap-
ter, some characteristic effects of shape and material on Casimir interactions have
been presented using the examples of geometries that are typical to nanosystems.
Most of the presented results could only be obtained recently by newly developed
theoretical tools that have been described here. The important study of correlations
between shape and material effects and the additional implications of interacting
fields in Casimir effects due to critical fluctuations [39] are largely unexplored. It is
expected that the recent progress on the experimental and theoretical side will un-
veil novel phenomena and provide a better understanding of fluctuation induced
interactions with interesting implications for nanosystems.
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7
The Duffing Oscillator for Nanoelectromechanical Systems
Sequoyah Aldridge

This chapter will explore the Duffing nonlinearity in the context of nanoelectrome-
chanical systems (NEMS). As it turns out, nanoresonators are simple experimental
devices for studying this nonlinearity. Both NEMS and MEMS devices will show
nonlinear phenomena. These phenomena include the Duffing instability and
parametric amplification. The consequences of the Duffing nonlinearity in NEMS
devices has not been thoroughly explored to date. As resonators shrink to the
nanoscale, the onset of nonlinearity becomes more and more relevant because
the dynamic range of the oscillator, defined as the ratio of the kinetic energy at
the critical amplitude divided by the thermomechanical energy, scales linearly
with dimension [1]. Nanomechanical resonators have recently been the subject of
much attention due to the ability to make very high frequency, high quality factor
resonators with applications in weak force and small mass detection, frequency
stabilization, and possibly quantum computation [2-14].

7.1
Basics of the Duffing Oscillator

A mechanical oscillator with a nonlinear restoring force was first studied by Duff-
ing in 1918 [15]. The equation of motion for the Duffing equation, for a natural
resonance frequency £, and quality factor Q, driven at frequency £, has the form

2

M% + M%i—: + MQFY + KY? = Bcos(2t) + Buoise(t) » (7.1)
where Y denotes the displacement amplitude, M denotes the mass of the resonator,
B the amplitude of the external driving force, and Byoise(f) the stochastic forcing
function due to thermal and external noise [7, 16, 17].

This equation assumes that the beam oscillates in the mode with natural fre-
quency £, that the displacement amplitude Y{(t) is the only relevant degree of
freedom, and that the equation of motion includes only the third-order nonlin-
earity, with strength K. The second-order nonlinearity can be ignored for now be-
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cause a second-order nonlinearity only mixes signals to dc and to twice the driving
frequency. Only odd orders of nonlinearity can mix signals back to the operating
frequency band. We will also disregard fifth order and higher odd terms at the
moment.

The parameter K determines the strength of the nonlinearity. Deviations from
a linear spring can be either softening or stiffening. Positive K yields a stiffening
spring; Negative K yields a softening spring.

The basic principle of the Duffing nonlinearity is the following: For the simple
harmonic oscillator with no nonlinearity, the resonance curve is a Lorentzian. The
root mean square amplitude of motion of the resonator follows (7.2)

B/M
V2QEQ2+ (2 — QYY)

Yims =

(7.2)

However, for a stiffening nonlinearity, as the amplitude is increased, the reso-
nant frequency must increase. This nonlinear detuning of the resonator distorts
the shape of the resonance curve. The peak of the curve is pulled in one direction
until, ultimately, the curve will have three values for a given frequency. A good ref-
erence that describes how to calculate the new shape of the resonance curve for the
Duffing resonator is [16]. Figure 7.1 shows the calculated resonance curve after it
has been distorted by the Duffing nonlinearity. When there are three possible val-
ues for amplitude at a given frequency, two values are stable and one is metastable.
The large amplitude and small amplitude branch are stable, whereas the branch in
between is metastable.

Because the resonance curve is multi-valued, hysteresis can occur. Figure 7.2
shows the hysteresis curve of a nanobeam resonator. The amplitude is normalized
to the peak maximum expected for the calculated curve. If the frequency of the drive
is swept from the left to the right in Figure 7.2, the motion will remain stable in the
upper branch of the loop. If the frequency is swept high enough, the amplitude will
catastrophically drop to the lower amplitude. On the other hand, if the frequency
is swept from right to left, the motion will remain stable in the lower branch of

Y (normalized)

|

92.90 9294 9298
Frequency (MHz)

Figure 7.1 This figure shows the amplitude as a function of
frequency calculated for a Duffing resonator 7 dB past the crit-
ical point. The peak amplitude is normalized to one. At this
drive level, three values of amplitude can exist for one value of
frequency.
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Figure 7.2 This figure shows the amplitude as a function of
frequency for a Duffing resonator 7 dB past the critical point.
The amplitude is normalized to calculated peak maximum.
Hysteresis is observed where three values of amplitude can
exist for one frequency.

the loop. If the frequency is swept low enough, the amplitude will catastrophically
switch to the upper branch.

Because of the hysteresis, one bit of information can be stored. We can assign
the large amplitude state as the one state and the small amplitude state as the
zero state. To load the bit into the one state, the frequency must be swept from
left to right and then held constant on the upper branch. To load the bit into the
zero state, the frequency must be swept from right to left and held constant on the
lower branch. Later in the chapter, I will discuss the lifetime of this data bit for a
nanoresonator.

For a stiffening nonlinearity, the resonance curve will be pulled upward in fre-
quency. However, it is possible to fabricate devices with a softening nonlinearity. In
this case, the nonlinearity coefficient K becomes negative. At large amplitudes, for
a softening nonlinearity, the peak of the resonance curve is pulled toward negative
frequency.

7.2
NEMS Resonators and Their Nonlinear Properties

Using advanced processing techniques, mechanical resonators have been scaled
down to sub-micron dimensions. At this size scale, there are three common ge-
ometries. They are the doubly-clamped beam, the nanocantilever, and the torsional
resonator. These are shown in Figure 7.3.

It is interesting to consider the effect of the geometry of the nanodevice on the
nonlinear coefficient. For the doubly-clamped beam system, at large amplitudes,
the beam must stretch in order to move. This extra stretching effect causes a stiff-
ening nonlinearity. Therefore, conceptually, a doubly-clamped beam will have a
positive value of K.

For the cantilever system, we find a different result. An to consider when think-
ing about the cantilever system is the simple pendulum. It is easy to show that the
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Figure 7.3 This figure shows three typical geometries for nano-
devices. They are the doubly-clamped beam, the cantilever, and
the torsional resonator.

Figure 7.4 This figure shows a suspended nanowire made
from aluminum nitride. The top surface has been covered with
titanium then gold. The wire is three microns long.

equation of motion for a driven simple pendulum follows (7.3):

de )
MlW—l—Mgsm@ = Bcos(L21t) . (7.3)
Here, O is the angle the pendulum deviates from vertical. Taylor expanding for
small O gives

2

Mli—f—i—Mg(@—@WG—i—---)=Bcos(!2t). (7.4)

We find that in this case, the nonlinearity coefficient is in fact negative, leading

to a softening spring. As the pendulum swings to large amplitudes, it gains height.

This increase in height requires potential energy and saps kinetic energy of the

motion. Therefore, the vibrational frequency of the pendulum is decreased at large
amplitudes.
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Figure 7.5 This figure shows a suspended nanowire viewed from the side.

Figure 7.6 This figure illustrates the calculated curve of a res-
onator that will show dual hysteresis. The hysteretic regions
are bounded by the vertical lines.

Similarly, the tip of a cantilever will begin to have motion that is not precisely in
and out of plane at large amplitudes. This motion requires extra energy, and causes
a frequency downshift. Therefore, cantilevers can have a negative value of K.

A third effect that determines the sign of the nonlinearity is the material non-
linearity. Materials become either stiffer of softer for large strains. At some large
deflection, the NEMS device will become affected by the material nonlinearity.

Finally, nanodevices have very large built-in strains. For example, a doubly-
clamped beam may have a very large compressional strain in its rest state. The
amount of strain will vary to a large degree from device to device. This can lead to
a positive or negative nonlinearity coefficient K.

It may be possible to tune the material nonlinearity of a cantilever against the
natural softening nonlinearity. Both terms may cancel each other. This would lead
to a cantilever with higher linearity and therefore larger dynamic range.

Because a cantilever is free to move at one end, it generally has a higher dynamic
range than a doubly-clamped beam. Therefore, a doubly-clamped beam will gener-
ally have a higher value of K relative to a cantilever.

I have observed nanodevices that are both softening and stiffening at the same
time. A situation where this may occur is when the leading order term yields a
softening spring, but higher order terms are stiffening in nature. In this strange
case, hysteresis becomes observed on the left side of the peak at some drive power.
At some higher drive power, hysteresis will then be observed on the right side of
the peak as well. The shape of the calculated resonance peak is an “S” in this case.
This is illustrated in Figure 7.6.
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The doubly-clamped nanobeam is extraordinarily strong. I have found that drive
powers far beyond the critical point do not snap the beam. Instead, they usual-
ly survive to the point of melting the metal layer that carries the magnetomotive
current.

At large drives, the motion of doubly-clamped beams becomes limited at some
point. In other words, a maximum displacement becomes achieved. Higher and
higher orders of nonlinearity come in to play. That is the fifth, seventh, ninth term
and so on. causing further motion to be impossible. Whether or not the motion of
the resonator is chaotic at this point is unknown to the author. Furthermore, to the
author’s knowledge, no one has demonstrated classical chaos in a nanoresonator.
Phenomena in the very large drive regime, say 10dB above the critical drive, are
very complicated. Classical chaos may be observed.

73
Transition Dynamics of the Duffing Resonator

This section will discuss the transition dynamics of the Duffing resonator. In other
words, how does the resonator move when it undergoes a switch from state to state.
The displacement Y(t) in (7.1) can be written as

Y(t) = Uy(t)cos(R2t) + Uy(t)sin(21), (7.5)

in terms of the two quadrature amplitudes Uj,(t). For a high Q system driv-
en at frequency £ near €, the slowly-varying envelope approximation can be
used [16, 18], where the functions Uj,(t) are replaced by their slowly varying
averages, uj,(t), respectively. This type of analysis is commonly used in radio
frequency(RF) systems. Using the RF nonmenclature, uj;(t) are check comma
placement the in-phase and quadrature amplitudes of the displacement signal.

In the absence of noise, the average functions uj,(t) satisfy the equations of
motion

K
an = (22— QF) Zﬁul(uﬁJrui)
Q Qo d d B
0y, -2 Mot 2
0 0 d & M
7.6
dzuz 2 2 3 K 2 2 ( )
ds2 = (2 _QO)MZ_ZMMZ(M1+MZ)
+%Qu1_&% dul
Q Q dt dt

This can be found by inserting (7.5) into (7.1) and evaluating. All high frequency
terms are ignored, such as terms of cos(3£ t).

One can create a configuration space spanned by the state variables u; and u,. It
is interesting to study the dynamic trajectory of the oscillator in this configuration
space. Equation 7.6 gives the equation of motion for the state variables.



7.3 Transition Dynamics of the Duffing Resonator

If the time derivatives of (7.6) are set to zero, then the system must be in a stable,
unstable, or metastable state. At is turns out, the stable and metastable states are
exactly the branches of the resonance curve discussed earlier. These stable points
are called foci.

The Duffing oscillator exhibits one stable state for small drive amplitudes B,
while above a critical amplitude B, a bifurcation occurs, creating two stable basins
of attraction. One basin corresponds to larger displacement amplitudes and is sta-
ble for drive frequencies up to an upper critical frequency vy (v = @ /2x), deter-
mined by the drive amplitude B. The other stable basin has smaller displacement
amplitude and is stable for frequencies down to a lower critical frequency vy, al-
so determined by the drive amplitude. The stable attractors are found by setting
all time derivatives in (7.6) to zero and solving for u;,, yielding three equilibrium
points. Two of these equilibrium points are stable foci, and the third is a metastable
separatrix.

Figure 7.7 shows the numerically-generated flow from initial points near the sad-
dle point. If the initial point is in a given basin, it quickly relaxes to the appropriate
focus.

To date, there are many techniques for actuation and detection for NEMS de-
vices [5, 6, 8, 19, 20]. This chapter will neglect the particular choice of transduction
and assume the experimenter is given an electrical signal proportional to the mo-
tion of the NEMS device. Ultimately, this is the situation normally encountered in
practice.

With sufficient measurement bandwidth, it is possible to measure the relaxation
of the oscillator to a stable foci. Figure 7.8 shows measured relaxation for a device
identical to Figures 7.4 and 7.5. These curves are qualitatively similar to what is
shown in Figure 7.7. This reaffirms that the NEMS oscillator is well modeled as a
Duffing oscillator.

Uz

ug

Figure 7.7 Numerically-generated phase-space flow for a
drive force 9 dB above the critical point B, and drive frequen-
cy 40kHz above Q¢ /27. Flow begins near the separatrix and
evolves toward either focus.
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uz uz

Uy Uy

(@) (b)

Figure 7.8 (a) Experimental phase space mean trajectory from
focus 1 to focus 2 (8000 averages). The resonator was identical
to the one pictured in Figures 7.4 and 7.5. (b) Data for phase

space mean trajectory from focus 2 to focus 1 (8000 averages).

Uy Uy

0 200 400 0 200 400
Time (usec) Time (usec)
(@) b

Figure 7.9 (a) and (b) Experimental time traces for the two
switching transitions (8000 averages).

If only one state variable, u, is plotted as a function of time, we find the switching
curves of Figure 7.9. For a catastrophic switch of the Duffing oscillator, there is
ringing that occurs during the transition. This ringing corresponds to the oscillator
tracing out a trajectory in the configuration space. We can note that the ringing is
not like the ring-down of a linear oscillator. It does not fit to a damped cosine.
Instead, the motion is entirely nonlinear in nature and must be calculated by (7.6).

7.4
Energy for “Uphill” Type Transitions

When considering transitions between the two states, there are two STOP possible
types of motion, namely, “uphill” and “downhill” motion. The case of downhill
motion is simpler. The downhill case is the relaxation case. In this case, a parameter
such as frequency or drive amplitude is varied so the state variables can cross the
separatrix and relax to the other focus, as described in Section 7.3. The equations
of motion for downbhill type transitions are (7.6).

The case of “uphill” motion is more complicated. In this case, the oscillator starts
at a focus and is perturbed by noise forces. Because the oscillator interacts with the
environment, there is a random force that causes stochastic transitions between
these stable foci. These noise forces have a small probability to push the oscillator
out of the stable focus and into the other basin.

We now turn to a discussion of these noise-induced transitions between the sta-
ble foci. Thermally-activated escape from a potential landscape with a single basin
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Figure 7.10 Schematic showing “uphill” and “downhill” motion
of the oscillator as it switches in the configuration space. For
uphill motion, the oscillator is nudged by noise forces into a
trajectory that results in a transition.

of attraction is a thoroughly studied problem [21]. The escape rate over a barrier of
height Ep is given by I' = a(Q)vexp(—Ep/ kg T), determined predominantly by
the Arrhenius factor and less so by the Q-dependent prefactor a(Q). Our system
differs from this classic problem: Here, there is a basin of attraction about each of
the two foci found on a Poincaré map of the configuration space. Instead of a one-
dimensional potential well, there is a quasipotential, with the dynamics governed
by the noise energy at each point in the configuration space [22]. The equivalent
activation energy, Ea, for transitions between the foci, is found by integrating the
minimum available noise energy over the trajectory between the foci.

It is possible to measure the activation energy, Ea, by a histogram measurement
technique. By slowly sweeping the drive frequency and recording the precise fre-
quency, a transition occurs and a histogram of frequencies, h(v(t)), can be gener-
ated. Given the sweep rate of the frequency, one can easily calculate the transition
rate as a function of frequency. Given the noise power and the transition rate, one
can calculate the activation energy, Ea.

Transition histograms were measured by applying a drive signal to the resonator
above the critical value, preparing the resonator in one of the two basins of attrac-
tion and monitoring the switching transitions to the other basin. Histograms of
the switching probability per unit time, h(t), were measured by sweeping the drive
frequency v(t) = £2(t)/2m at a constant rate s = dv/dt, and recording the drive
frequency at which a transition occurred. This is a technique that has been ex-
tensively used for measuring switching distributions in current-biased Josephson
junctions [23].

Transitions were induced by using an external broadband white noise signal,
combined with the radiofrequency drive signal using a radio frequency coupler
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Figure 7.11 Example histograms h(v) as a function of noise

power, for transitions from focus 1to 2. The noise power was
varied from —127 dBm/Hz to —113 dBm/Hz. Increased noise
shifts and broadens the peaks.

in order to generate a signal that included both the drive signal B and the noise
signal B,,. The drive signal itself was produced by a source with very low phase
noise; with no additional noise power, transitions were still induced by this rem-
nant phase noise to which the resonator is very sensitive. The thermal noise of the
circuit and the mechanical noise associated with the finite resonator Q, were too
small to induce measurable transitions in the system. Note that the phase noise
injected into the resonator in order to drive the resonator is often much larger than
the intrinsic noise of the resonator.

In Figure 7.11, we display a set of histograms h(v(t)); higher noise powers shift
the peak switching frequency and also broaden the distribution. It should be point-
ed out that the histograms are not Gaussian peaks. Instead they have a particular
shape that is not symmetric about the center of the peak. Error bars for the points
are easily calculated by assuming simple Poisson statistics.

The transition rate I"(v) is extracted from the histogram h(t) using I'(v(t)) =
(1- fioo h(t')dt')"Lsh(t). Some of the transition rate curves are plotted in Fig-
ure 7.12. An interesting point about the transition rates is that they have very large
variability. The fastest transition rates are on the order of kHz, but the slowest tran-
sition rates can have lifetimes of thousands of years if small levels of noise drive the
resonator. Of course in practice, it is impossible to wait long enough to see such
rare transitions. However, by extrapolating Figure 7.12 for small noise power we
can find that such large timescales are possible.

Extracting the quasi-activation energy Ea(v), is done by inverting the thermal
activation expression I'(v) = I exp(—Ea(v)/ kg Teff), where the effective tempera-
ture Tegr is proportional to the noise power, and the prefactor [ is related to the
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Figure 7.12 Example transition rates I (v) as a function of
noise power, for transitions from focus 1to 2. The noise power
was varied from —127 dBm/Hz to —113 dBm/Hz. These are
calculated from the histograms in Figure 7.11.

Kramers low-dissipation form [21], I &~ vo/Q. Note that in this technique, the
histograms are only logarithmically sensitive to I, so that a precise determination
is difficult. In Figure 7.13, we display the activation energy E,(v) extracted from
the histograms, showing the expected decline in the barrier energy as the drive fre-
quency approaches the critical frequency. The distributions shown in Figure 7.12
are seen to collapse onto a single curve Ex(v). When measured, these energies re-
veal, what the author calls, a “butterfly plot”. When plotting the energies for both

10
x 10

n w
n o [+ [4)]
T T T T

Energy Barrier (Kelvin)

0.5

92.906 92.91 92.914
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Figure 7.13 Example of a “Butterfly plot”. These curves are the
quasipotential energy for a fixed drive amplitude.
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switching from focus 1 to 2 and from focus 2 to 1, we find two overlapping curves
that have the shape of a butterfly. Figure 7.13 shows an example of when the res-
onator is driven 5 dB past the critical point.

The energy scale for the butterfly plot is enormous. It can be 10° K. Therefore,
large noise powers are required to cause transitions at this energy. This is why we
find stable lifetimes of thousands of years or more for small noise levels.

A very interesting region of further research is the low noise limit where Ex
approaches zero. In this case, the quasienergy barrier is very small and the system
becomes very sensitive to remnant noise. If the system is held near the critical
point, the butterfly plot energies become small. Therefore, sensor applications are
interesting near the critical point [24].

Also, another interesting operating point is the point on the butterfly plot where
the two branches cross. At this point, the rates of transition from one to two and
from two to one are equal. Therefore, the system will generate a random telegraph
signal, switching back and forth at random intervals. Because the lifetimes of the
two states are equal, neither focus is preferred.

7.5
Energy Calculation Using a Variational Technique

We calculated the activation energies numerically. The dynamic solutions to (7.1)
without noise give the relaxation from the separatrix to one of the foci. During a
noise-induced transition, the system is excited from a basin near a focus towards
the separatrix, which it crosses and then relaxes to the other focus (see Figure 7.10).
There is an infinite number of possible trajectories that allow a transition. Given
a specific trajectory, it is possible to calculate the contribution of the noise force
using (7.1). The total energy transferred to the resonator for a particular trajectory
is found by integrating the noise power along that trajectory, thus yielding the ef-
fective quasienergy between the foci. The energy transferred is thus an action-like
quantity, and the most likely escape trajectory is that which requires the minimum
action. The action-like integral S of the system is then S = fpath B (t) dt.

The most likely path Yy(t) minimizes the integral S. Because the separatrix is
a saddle point, the extremal trajectory will most likely travel near the separatrix.
The oscillator will naturally evolve from a point near the separatrix to either focus,
without contributing to the action-like integral, as this relaxation does not require
a noise term. Only when the oscillator is evolving against the dissipative flow field,
from a focus toward the separatrix, will it contribute to the action integral.

We used a numerical minimization of the possible trajectories Y(t), using S as
a test function to approach the extremum trajectory Yy(t). Each Y(t) is split into
n test points Y;. Minimization is carried out in the n-dimensional space spanned
by the Y;. Minimum trajectories were calculated for different drive frequencies
and amplitudes, yielding the energy barrier as a function of the drive amplitude, as
shown in Figure 7.14. We find good agreement (to logarithmic accuracy) between
the measured and calculated energy barriers.
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Figure 7.14 Calculated energy curves.

When calculating the energy using this technique, it is easy for the calcula-
tion to get trapped in a local minimum in a high-dimensional space. The algo-
rithm must minimize a multi-dimensional function. Often, it is difficult to find
the true minimum. Each value of the function corresponds to a different tra-
jectory. Some trajectories contain extra loops in the configuration space. In this
case, it is very difficult for the algorithm to converge because of the local mini-
mum.

Furthermore, because of the large number of dimensions that the minimiza-
tion algorithm must search through, this algorithm takes a very long time to con-
verge. Also, there is never a guarantee that the true global minimum has been
reached.

The measurements described in Figure 7.14 were made in the small-to-moderate
noise limit, with noise energies much less than the energy barrier. At higher noise
powers, the hysteresis due to the nonlinear response can actually be quenched, by
rapid noise-induced transitions between the two foci. This quenching is demon-
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Figure 7.15 Amplitude hysteresis plots, for no noise power
(bottom), with the drive amplitude set at =59 dBm, 2 dB above
the critical point. The noise power was increased in 2 dB steps
for each succeeding frame. At the largest noise power, the hys-
teresis is quenched.
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strated in Figure 7.15: As the noise power is increased, the area of the hysteresis
loop grows visibly smaller, until, at the highest noise powers, the switching is no
longer hysteretic. In this limit, the oscillator generates random telegraph signals
as it makes transitions from one focus to the other. The spectrum of the random
telegraph signal is related to the transition rate of the oscillator.

7.6
Frequency Tuning

For magnetomotive detection, it is possible to tune the behavior of the nonlinear-
ity with an external drive current. If a direct current or slowly varying current of
large amplitude is applied across the beam, the beam will be bent by the Lorentz
force associated with the drive current. This bending changes both the natural fre-
quency and coefficient of nonlinearity for a beam. Furthermore, the frequencies of
switching will be shifted due to the drive current. In Figure 7.16, we can see this
effect. At positive dc bias, the hysteretic effect of the nonlinearity has disappeared.
The frequency shift also occurs at a small drive power. This effect allows for po-
tential circuit applications. An obvious application is to use the beam as a voltage
controlled oscillator (VCO).

positive DC current L//
c
=
2
s
T zero DC current \\—:_______
2
(2]
c
S L K
kS|
=
T T T T T T
\\—\ negative DC current
]
1 1 1 1 1 1
93.79 93.8 93.81 93.82 93.83 93.84 93.85 93.86

Frequency (MHz)

Figure 7.16 Hysteresis loops under the effect of a dc bias cur-
rent are shown. The extra Lorentz force from the dc bias current
bends the beam and shifts the nonlinear hysteresis.



7.7 Bifurcation Amplifier

If the frequency is shuttled back and forth, the oscillator will switch and then
reset. The frequency at which the switch occurs can be exactly measured. The
switch frequency depends on the dc bias current. One can then imagine a “switch
and reset amplifier” which operates on this principle. The device performs current
to frequency conversion. The bandwidth of the current measurement is related to
how fast the oscillator can be switched and reset. For the devices measured, this
bandwidth should be in the upper audio frequency range. Also, the performance
of the device depends on how much jitter exists in the switching frequency. As was
shown earlier, the jitter in the switching frequency is due to noise in the oscillator
drive signal.

7.7
Bifurcation Amplifier

We can also engineer a bifurcation amplifier. Near the critical point, the derivative of
the phase with respect to frequency becomes nearly infinite. In Figure 7.17 we can
see the large slope of the phase at the critical point. Therefore, the phase will exhibit
a large change for a small change in frequency. This can be used to amplify weak,
slowly varying signals that cause a frequency shift. Therefore, a possible use of the
Duffing nonlinearity is mass sensing at the critical point. This has recently been
discussed in detail in [24]. The result is that the mass sensitivity of such an oscillator
may be increased at the expense of detection speed. In practice, nanoresonators

180- Phase at critical drive power

160r

92.85 92.9 92.95 93
Frequency (MHz)

Figure 7.17 Phase with respect to frequency near the critical
point. The derivative becomes very large at the critical point.
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typically have extra bandwidth to trade for increased mass sensitivity, even when
real time operation is required. Therefore, operating a resonator at the critical point
may prove to be a promising technology.

7.8
Conclusion

In conclusion, we have studied the properties of the Duffing nonlinearity applied to
NEMS devices. We have studied the configuration space trajectories and the tran-
sition rates between the bistable states of a nonlinear radiofrequency mechanical
resonator. Measurements have been shown to be in good agreement with numeri-
cal simulations based on the Duffing oscillator equation of motion.

Acknowledgements
The author would like to thank his former advisor, Andrew Cleland, for his support

on this research and authorship on the PRL article that I am revisiting here. Also,
the author would like to thank Michael Roukes for his support.

References

1 Postma, H.W.Ch., Kozinsky, 1., Husain,
A., and Roukes, M.L. (2005) Dynamic
range of nanotube- and nanowire-based
electromechanical systems. Appl. Phys.
Lett., 86, 223105.

2 Cleland, A.N. and Roukes, M.L. (1996)
Fabrication of high frequency nanometer
scale mechanical resonators from bulk si
crystals. Appl. Phys. Lett., 69, 2653-2655.

3 Ekinci, K.L., Huang, X.M.H., and Roukes,
M.L. (2004) Ultrasensitive nanomechan-
ical mass detection. Appl. Phys. Lett., 84,
4469-4471.

4 Ilic, B., Czaplewski, D., Craighead, H.G.,
Neuzil, P., Campagnolo, C., and Batt, C.
(2000) Mechanical resonant immunospe-
cific biological detector. Appl. Phys. Lett.,
77, 450-452.

5 Greywall, D.S., Yurke, B., Busch, P.A.,
Pargellis, A.N., and Willett, R.A. (1994)
Evading amplifier noise in nonlinear
oscillators. Phys. Rev. Lett., 72, 2992-2995.

6 Carr, D.W., Evoy, S., Sekaric, L., Craig-
head, H.G., and Parpia, ].M. (1999) Mea-
surement of mechanical resonance and

losses in nanometer scale silicon wires.
Appl. Phys. Lett., 75, 920-922.

7 Cleland, A.N. and Roukes, M.L. (2002)
Noise processes in nanomechanical res-
onators. J. Appl. Phys., 92, 2758-2769.

8 Knobel, R.G. and Cleland, A.N. (2003)
Nanometre-scale displacement sensing
using a single electron transistor. Nature,
424, 291.

9 Armour, A.D., Blencowe, M.P., and
Schwab, K.C. (2002) Entanglement and
decoherence of a micromechanical res-
onator via coupling to a cooper-pair box.
Phys. Rev. Lett., 88, 148301.

10 Ekinci, K.L., Yang, Y.T., and Roukes, M.L.
(2004) Ultimate limits to inertial mass
sensing based upon nanoelectromechani-
cal systems. J. Appl. Phys., 95, 2682-2689.

11 Carr, S.M., Lawrence, W.E., and
Wybourne, M.N. (2001) Accessibility
of quantum effects in mesomechanical
systems. Phys. Rev. B, 64, 220101/1-4.

12 Turner, K.L., Miller, S.A., Hartwell, P.G.,
MacDonald, N.C., Strogartz, S.H., and
Adams, S.G. (1998) Five parametric res-



onances in a microelectromechanical
system. Nature, 396, 149-152.

13 Zhang, W., Baskaran, R., and Turner, K.L.
(2002) Effect of cubic nonlinearity on
auto-parametrically amplified resonant
mems mass sensor. Sens. Actuators A,
102, 139-150.

14 Soskin, S.M., Mannella, R., and Mc-
Clintock, P.V.E. (2003) Zero-dispersion
phenomena in oscillatory systems. Phys.
Rep., 373, 247-408.

15 Duffing, G. (1918) Erzwungene
Schwingungen bei verdnderlicher Eigen-
frequenz und ihre technische Bedeutung.
Friedr. Vieweg & Sohn, Braunschweig.

16 Yurke, B., Greywall, D.S., Pargellis,
AN., and Busch, P.A. (1995) Theory
of amplifier-noise evasion in an oscillator
employing a nonlinear resonator. Phys.
Rev. A, 51, 4211.

17 Nayfeh, A.H. (1979) Nonlinear oscillations.
Wiley, New York.

18 Dykman, M.I. and Krivoglaz, M.A. (1979)
Theory of fluctuational transitions be-
tween stable states of a nonlinear oscilla-
tor. Sov. Phys. JETP, 50 (1), 30.

References

19 Cleland, A.N., Aldridge, J.S., Driscoll,
D.C., and Gossard, A.C. (2002) Nanome-
chanical displacement sensing using a
quantum point contact. Appl. Phys. Lett.,
81, 1699.

20 Bargatin, I., Myers, E.B., Arlett, J.,
Gudlewski, B., and Roukes, M.L. (2005)
Sensitive detection of nanomechanical
motion using piezoresistive signal down-
mixing. Appl. Phys. Lett., 74, 133109.

21 Kramers, H.A. (1940) Brownian motion
in a field of force and the diffusion model
of chemical reactions. Physica, 7, 284.

22 Kautz, R.L. (1987) Activation energy for
thermally induced escape from a basin of
attraction. Phys. Lett. A, 125, 315.

23 Fulton, T.A. and Dunkleberger, L.N.
(1974) Lifetime of the zero-voltage state in
josephson tunnel junctions. Phys. Rev. B,
9, 4760-4768.

24 Buks, E. and Yurke, B. (2006) Mass
detection with a nonlinear resonator.
Phys. Rev. E, 74, 046619.

219






8
Nonlinear Dynamics of Nanomechanical Resonators
Ron Lifshitz and M.C. Cross

8.1
Nonlinearities in NEMS and MEMS Resonators

In the last decade we have witnessed exciting technological advances in the fabri-
cation and control of microelectromechanical and nanoelectromechanical systems
(MEMS & NEMS) [16, 19, 26, 54, 55]. Such systems are being developed for a host of
nanotechnological applications, such as highly sensitive mass [25, 34, 67], spin [56],
and charge detectors [17, 18], as well as for basic research in the mesoscopic physics
of phonons [63], and the general study of the behavior of mechanical degrees of
freedom at the interface between the quantum and the classical worlds [5, 64]. Sur-
prisingly, MEMS & NEMS have also opened up a whole new experimental window
into the study of the nonlinear dynamics of discrete systems in the form of nonlin-
ear micromechanical and nanomechanical oscillators and resonators.

The purpose of this review is to provide an introduction to the nonlinear dynam-
ics of micromechanical and nanomechanical resonators that starts from the basics,
but also touches upon some of the advanced topics that are relevant for current ex-
periments with MEMS & NEMS devices. We begin in this section with a general
motivation, explaining why nonlinearities are so often observed in NEMS & MEMS
devices. In Section 8.2 we describe the dynamics of one of the simplest nonlinear
devices, the Duffing resonator, while giving a tutorial in secular perturbation the-
ory as we calculate its response to an external drive. We continue to use the same
analytical tools in Section 8.3 to discuss the dynamics of a parametrically-excited
Duffing resonator, building up to the description of the dynamics of an array of
coupled parametrically-excited Duffing resonators in Section 8.4. We conclude in
Section 8.5 by giving an amplitude equation description for the array of coupled
Duffing resonators, allowing us to extend our analytic capabilities in predicting
and explaining the nature of its dynamics.
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8.1.1
Why Study Nonlinear NEMS and MEMS?

Interest in the nonlinear dynamics of microelectromechanical and nanoelectrome-
chanical systems (MEMS & NEMS) has grown rapidly over the last few years, driv-
en by a combination of practical needs as well as fundamental questions. Nonlinear
behavior is readily observed in micro- and nanoscale mechanical devices [1, 2, 9-
12, 19, 24, 27, 30, 33, 50, 57, 61, 62, 66, 68, 71, 72]. Consequently, there exists a
practical need to understand this behavior in order to avoid it when it is unwanted,
and exploit it efficiently when it is wanted. At the same time, advances in the fab-
rication, transduction, and detection of MEMS & NEMS resonators has opened up
an exciting new experimental window into the study of fundamental questions in
nonlinear dynamics. Typical nonlinear MEMS & NEMS resonators are character-
ized by extremely high frequencies, recently going beyond 1 GHz [15, 32, 48], and
relatively weak dissipation, with quality factors in the range of 102~10*. For such
devices the regime of physical interest is that of steady state motion, as transients
tend to disappear before they are detected. This, and the fact that weak dissipation
can be treated as a small perturbation, provide a great advantage for quantitative
theoretical study. Moreover, the ability to fabricate arrays of tens to thousands of
coupled resonators opens new possibilities in the study of nonlinear dynamics of
intermediate numbers of degrees of freedom, much larger than one can study in
macroscopic or tabletop experiments, yet much smaller than one studies when
considering nonlinear aspects of phonon dynamics in a crystal.

The collective response of coupled arrays might be useful for signal enhance-
ment and noise reduction [21, 22], as well as for sophisticated mechanical signal
processing applications. Such arrays have already exhibited interesting nonlinear
dynamics, ranging from the formation of extended patterns [8, 38], as one com-
monly observes in analogous continuous systems such as Faraday waves, to that
of intrinsically localized modes [39, 58-60]. Thus, nanomechanical resonator ar-
rays are perfect for testing dynamical theories of discrete nonlinear systems with
many degrees of freedom. At the same time, the theoretical understanding of such
systems may prove useful for future nanotechnological applications.

8.1.2
Origin of Nonlinearity in NEMS and MEMS Resonators

We are used to thinking about mechanical resonators as being simple harmonic
oscillators, acted upon by linear elastic forces that obey Hooke’s law. This is usually
a very good approximation, as most materials can sustain relatively large deforma-
tions before their intrinsic stress-strain relation breaks away from a simple linear
description. Nevertheless, one commonly encounters nonlinear dynamics in mi-
cromechanical and nanomechanical resonators long before the intrinsic nonlinear
regime is reached. Most evident are nonlinear effects that enter the equation of
motion in the form of a force that is proportional to the cube of the displacement
ax3. These turn a simple harmonic resonator with a linear restoring force into
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a so-called Duffing resonator. The two main origins of the observed nonlinear ef-
fects are illustrated below with the help of two typical examples. These are due to
the effect of external potentials that are often nonlinear, and geometric effects that
introduce nonlinearities even though the individual forces that are involved are all
linear. The Duffing nonlinearity ax? can be positive, assisting the linear restoring
force, making the resonator stiffer, and increasing its resonance frequency. It can
also be negative, working against the linear restoring force, making the resonator
softer, and decreasing its resonance frequency. The two examples we give below il-
lustrate how both of these situations can arise in realistic MEMS & NEMS devices.

Additional sources of nonlinearity may be found in experimental realizations of
MEMS and NEMS resonators due to practical reasons. These may include non-
linearities in the actuation and in the detection mechanisms that are used for in-
teracting with the resonators. There could also be nonlinearities that result from
the manner in which the resonator is clamped by its boundaries to the surround-
ing material. These all introduce external factors that may contribute to the overall
nonlinear behavior of the resonator.

Finally, nonlinearities often appear in the damping mechanisms that accompany
every physical resonator. We shall avoid going into the detailed description of the
variety of physical processes that govern the damping of a resonator. Suffice it to
say that whenever it is reasonable to expand the forces acting on a resonator up to
the cube of the displacement x3, it should correspondingly be reasonable to add
to the linear damping, which is proportional to the velocity of the resonator %, a
nonlinear damping term of the form x2x, which increases with the amplitude of
motion. Such nonlinear damping will be considered in our analysis below.

8.1.3
Nonlinearities Arising from External Potentials

As an example of the effect of an external potential, let us consider a typical situ-
ation, discussed for example by Cleland and Roukes [17, 18], and depicted in Fig-
ure 8.1, in which a harmonic oscillator is acted upon by an external electrostatic
force. This could be implemented by placing a rigid electrically charged base elec-

500nm

Figure 8.1 A 43 nanometer thick doubly-clamped platinum
nanowire with an external electrode that can be used to tune its
natural frequency as well as its nonlinear properties. Adapted
with permission from [33].
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trode near an oppositely charged NEMS or MEMS resonator. If the equilibrium
separation between the resonator and the base electrode in the absence of electric
charge is d, the deviation away from this equilibrium position is denoted by X,
the effective elastic spring constant of the resonator is K, and the charge q on the
resonator is assumed to be constant, then the potential energy of the resonator is
given by

V(X) = exro S (8.1)

2 d+ X~ ’

In SI units C = Aq?/4mey, where A is a numerical factor of order unity that takes
into account the finite dimensions of the charged resonator and base electrode.
The new equilibrium position Xj in the presence of charge can be determined by

solving the cubic equation
v _ KX + < =0 8.2
dx (d+ X)2 ®.2)

If we now expand the potential acting on the resonator in a power series in the
deviation x = X — X, from this new equilibrium, we obtain

12

Vi)~ v+ (g 2C , c c .,
() =¥ °)+E( _<d+Xo)3)x MTES TS S

1 1 1
V(X()) —+ Ekxz —+ gﬁx3 + ZO(:XZ4 .
(8.3)

This gives rise, without any additional driving or damping, to an equation of mo-
tion of the form

m% 4+ kx + x4+ ax>*=0, with f>0,a<0, (8.4)

where m is the effective mass of the resonator and k is its new effective spring con-
stant, which is softened by the electrostatic attraction to the base electrode. Note
that if 2C/(d + Xo)® > K, the electrostatic force exceeds the elastic restoring force
and the resonator is pulled onto the base electrode. 3 is a positive symmetry break-
ing quadratic elastic constant that pulls the resonator towards the base electrode
regardless of the sign of x, and « is the cubic, or Duffing, elastic constant that, ow-
ing to its negative sign, softens the effect of the linear restoring force. It should be
sufficient to stop the expansion here, unless the amplitude of the motion is much
larger than the size of the resonator, or if by some coincidence the effects of the
quadratic and cubic nonlinearities happen to cancel each other out, a situation that
will become clearer after reading Section 8.2.3.

8.1.4
Nonlinearities Due to Geometry

As an illustration of how nonlinearities can emerge from linear forces due to ge-
ometric effects, consider a doubly-clamped thin elastic beam, which is one of the
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most commonly encountered NEMS resonators. Because of the clamps at both
ends, as the beam deflects in its transverse motion it necessarily stretches. As long
as the amplitude of the transverse motion is much smaller than the width of the
beam, this effect can be neglected. But with NEMS beams it is often the case that
they are extremely thin, and are driven quite strongly, making it common for the
amplitude of vibration to exceed the width. Let us consider this effect in some
detail by starting with the Euler-Bernoulli equation, which is the commonly used
approximate equation of motion for a thin beam [43]. For a transverse displacement
X(z,t) from equilibrium, which is much smaller than the length L of the beam,
the equation is
X *X 92X

pS—= =—EI=—= 4T

at2 9z 9z2 (8:5)

where z is the coordinate along the length of the beam p is the mass density, S
is the area of the cross section of the beam, E is the Young’s modulus, [ is the
moment of inertia, and T the tension in the beam. The latter is composed of its
inherent tension T, and the additional tension AT due to bending that induces
an extension AL in the length of the beam. Inherent tension results from the fact
that in equilibrium in the doubly-clamped configuration, the actual length of the
beam may differ from its rest length, being either extended (positive T) or com-
pressed (negative Tp). The additional tension AT is given by the strain, or relative
extension of the beam A L/L, multiplied by Young’s modulus E and the area of the
beam’s cross section S. For small displacements, the total length of the beam can
be expanded as

L
L+AL—/ dz,/1+ _L+ dz(gx) . (8.6)
z

The equation of motion (8.5) then clearly becomes nonlinear

?X X ES ax\*| 92x

We can treat this equation perturbatively [49, 69]. We first consider the linear
part of the equation, which has the form of (8.5) with Tj in place of T, separate the
variables,

Xn(z,t) = X (t)Pn(2) , (8.8)

and find its spatial eigenmodes ¢ ,(z). For the eigenmodes, we use the convention
that the local maximum of the eigenmode ¢, (z) that is nearest to the center of the
beam is scaled to 1. Thus x,(t) measures the actual deflection of the beam at the
point nearest to its center that extends the furthest. Next, we assume that the beam
is vibrating predominantly in one of these eigenmodes and use this assumption to
evaluate the effective Duffing parameter a,, multiplying the x> term in the equa-
tion of motion for this mode. Corrections to this approximation will appear only at
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higher orders of x,. We multiply (8.7) by the chosen eigenmode ¢,(z) and inte-
grate over z to get, after some integration by parts, a Duffing equation of motion
for the amplitude of the nth mode x,(t),

" ’ 2
o o |EL[97dz T [¢)’dz (o) |
X pS [@2dz =~ pS [¢2dz * 2L [¢2dz n =

(8.9)

where primes denote derivatives with respect to z, and all the integrals are from
0 to L. Note that we have obtained a positive Duffing term, indicating a stiffening
nonlinearity, as opposed to the softening nonlinearity that we saw in the previous
section. Also note that the effective spring constant can be made negative by com-
pressing the equilibrium beam, thus making Ty large and negative. This may lead
to the so-called Euler instability, which is a buckling instability of the beam.

To evaluate the effective Duffing nonlinearity a,, for the nth mode, we introduce
a dimensionless parameter &, by rearranging the equation of motion (8.9) to have
the form

" X
% + 02x, |:1+and2:| =0, (8.10)

where w, is the normal frequency of the nth mode, d is the width or diameter of
the beam in the direction of the vibration, and x, is the maximum displacement
of the beam near its center. This parameter can then be evaluated regardless of the
actual dimension of the beam.
In the limit of small residual tension T, the eigenmodes are those dominated
by bending given by [43]
1
¢n(z) = — [(sink, L —sinh k, L) (cos k,z — cosh k,,z)
an
— (cos k, L —cosh k, L) (sink,z — sinh k, z)], (8.11)

where a, is the value of the function in the square brackets at its local maximum
that is closest to z = 0.5, and the wave vectors k,, are solutions of the transcenden-
tal equation cos k,, L cosh k,, L = 1. The first few values are

{ky L} ~ {4.7300, 7.8532, 10.9956, 14.1372, 17.2788, 20.4204 . ..}, (8.12)

and the remaining ones tend towards odd-integer multiples of 7t/2 as n increases.
Using these eigenfucntions, we can obtain explicit values for the dimensionless
Duffing parameters for the different modes by calculating

Sd* (1 /¢ dz)” [ ¢2dz)’ _ Sd*,

a = 8.13
an =57 ez Tl (8.13)

The first few values are

{/E’n} ~ {0.1199, 0.2448, 0.3385, 0.3706, 0.3908, 0.4068, 0.4187, ...}, (8.14)
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tending to an asymptotic value of 1/2 as n — oo. For beams with rectangular or
circular cross sections, the geometric prefactor evaluates to

Sd*> |16 Circular cross section , (8.15)
21 | 6 Rectangular cross section . '

Thus the dimensionless Duffing parameters are of order 1, and therefore the signif-
icance of the nonlinear behavior is solely determined by the ratio of the deflection
to the width of the beam.

In the limit of large equilibrium tension, the beam essentially behaves as a string
with relatively negligible resistance to bending. The eigenmodes are those of a
string,

. ni
$u(2) = sin (Tz) n=123..., (8.16)

and, if we denote the equilibrium extension of the beam as ALy, = LT,/ES, the
dimensionless Duffing parameters are exactly given by

~ /2 )2
Un = 2AL0/¢ 4LAL0 (8.17)

In the large tension limit, as in the case of a string, the dimensionless Duffing
parameters are proportional to the inverse aspect ratio of the beam d/L times the
ratio between its width and the extension from its rest length d/A L, atleast one of
which can be a very small parameter. For this reason nonlinear effects are relatively
negligible in these systems.

8.2
The Directly-Driven Damped Duffing Resonator

8.2.1
The Scaled Duffing Equation of Motion

Let us begin by considering a single nanomechanical Duffing resonator with linear

and nonlinear damping that is driven by an external sinusoidal force. We shall

start with the common situation where there is symmetry between x and —x, and

consider the changes that are introduced by adding symmetry-breaking terms later.
Such a resonator is described by the equation of motion

d*x dx PO L _,dx - .-

mﬁ + e + molx + ax’ + px’ T = Gcost, (8.18)

where m is its effective mass, k = mw} is its effective spring constant, & is the

cubic spring constant or Duffing parameter, I is the linear damping rate, and 7 is

the coefficient of nonlinear damping — damping that increases with the amplitude
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of oscillation. We follow the convention that physical parameters that are to be
immediately rescaled appear with twiddles, as the first step in dealing with such an
equation is to scale away as many unnecessary parameters as possible, leaving only
those that are physically significant. This then removes all of the twiddles. We do
so by: (1) Measuring time in units of wy! so that the dimensionless time variable
is t = wot. (2) Measuring amplitudes of motion in units of length for which a
unit-amplitude oscillation doubles the frequency of the resonator. This is achieved

by taking the dimensionless length variable to be x = % /@ /mw3. For the doubly-
clamped beam of width or diameter d, discussed in Section 8.1.4, this length is
x = X+/a,/d. (3) Dividing the equation by an overall factor of w}+/m3/a. This
yields a scaled Duffing equation of the form

¥4+ Q7 '% 4+ x + x° + nx’x = Gcos wt (8.19)

where dots denote derivatives with respect to the dimensionless time ¢, all the di-
mensionless parameters are related to the physical ones by

_ I o G [a )
1 _ — — —
Q= CoN= G=—F5y-—3 and o= , (8.20)

mayg Wy Wy

and Q is the quality factor of the resonator.

822
A Solution Using Secular Perturbation Theory

We proceed to calculate the response of the damped Duffing resonator to an ex-
ternal sinusoidal drive, as given by (8.19), by making use of secular perturbation
theory [31, 65]. We do so in the limit of a weak linear damping rate Q~!, which
we use to define a small expansion parameter, Q! = € « 1. In most actual ap-
plications, Q is at least on the order of 100, making this limit well-justified. We
also consider the limit of weak oscillations where it is justified to truncate the ex-
pansion of the force acting on the resonator at the third power of x. We do so by
requiring that the cubic force x> be a factor of € smaller than the linear force, or
equivalently, by requiring the deviation from equilibrium x to be on the order of
/€. We ensure that the external driving force has the right strength to induce such
weak oscillations by having it enter the equation at the same order as all the other
physical effects. This, in effect, requires the amplitude of the drive to be G = €*/2g.
To see why, recall that for a regular linear resonance, x is proportional to G Q. Qis
of order ¢! and we want x to be of order /€, and so G must be of order €3/2. Final-
ly, since damping is weak we expect to see a response only close to the resonance
frequency. We therefore take the driving frequency to be of the form w =1+ €.
The equation of motion (8.19) thus becomes

¥4ex+x+ x>+ npxtx =egcos(l+eQ)t. (8.21)

This is the equation we shall study using secular perturbation theory, while occa-
sionally comparing the results with the original physical equation (8.18).
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With the expectation that the motion of the resonator far from equilibrium will
be on the order of €!/2, we try a solution of the form

x(t) = - (A(T)e" + cc.) + € xi(t) + ... (8.22)
where c.c. denotes complex conjunction.

The lowest order contribution to this solution is based on the solution to the lin-
ear equation of motion of a simple harmonic oscillator (SHO) ¥ + x = 0, where
T = et is a slow time variable, allowing the complex amplitude A(T) to vary slowly
in time due to the effect of all the other terms in the equation. As we shall im-
mediately see, the slow temporal variation of A(T) also allows us to ensure that
the perturbative correction x; (t) as well as all higher-order corrections to the linear
equation do not diverge, as they do if one uses naive perturbation theory. Using the
relation

e— =¢€A, (8.23)

we calculate the time derivatives of the trial solution (8.22)

X = % (A +eA] e +cc) + 5 (t) + ... (8.24a)
oo \/g s A 2 AN it 3/2 5 8.24b
k= ([-A+2ieA + A e fec) + () + o (8.24D)
By substituting these expressions back into the equation of motion (8.21) and pick-
ing out all terms of order €3/2, we get for the first perturbative correction

1 3+4+1in

. 14 4
B4x = (—iA’ —izA— T |APA+ %e‘QT) e't—¥A3 e

(8.25)

The collection of terms proportional to €'’ on the right-hand side of (8.25), called
the secular terms, act like a force that drives the SHO on the left-hand side exactly
atits resonance frequency. The sum of all these terms must therefore vanish so that
the perturbative correction x; (t) will not diverge. This requirement is the so-called
“solvability condition”, giving us an equation for determining the slowly varying
amplitude A(T),

dA 1 .3 n g

— =—-A+iz|APA- Z|APA-i2e€T. 8.26

ar ~ A TiglArA-glArA-Te (8.26)
This general equation could be used to study many different effects [20]. Here we
use it to study the steady-state dynamics of the driven Duffing resonator.

We ignore initial transients and assume that there exists a steady-state solution
of the form

A(T) = ae®T =|a|e? e ?T . (8.27)
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With this expression for the slowly varying amplitude A(T), the solution to the
original equation of motion (8.21) becomes an oscillation at the drive frequency
w=1+€Q,

x(t) = €'?|a| cos(wt + @) + O(*?), (8-28)

where we are not interested in the actual correction x;(t) of order €3/, but rather
in finding the fixed complex amplitude a of the lowest order term. This amplitude
a can be any solution of the equation

3
[(Z|a|2—29)+i(1+%|a|2):|a=g, (8.29)

obtained by substituting the steady-state solution (8.27) into Eq. (8.26) of the secular
terms.
The magnitude and phase of the response are then given explicitly by

2

laf> = — £ — (8.302)
(22 —3lal?)” + (1 + 3nlal?)
and
1+ L1ylal?
tan ¢ = 294—’73”2 (8.30b)
—zlal

By reintroducing the original physical scales, we can obtain the physical solution to
the original equations of motion % (f) >~ %, cos(@? + ¢), where Xy = |a| /T wo/a,
and therefore

Xy = (8.31a)

and

tan¢ = (8.31D)

The scaled response functions (8.30a) are plotted in Figure 8.2 for a drive with
a scaled amplitude of g = 3, both with and without nonlinear damping. The re-
sponse without nonlinear damping is shown also in Figure 8.3 for a sequence of
increasing drive amplitudes ranging from g = 0.1, where the response is essen-
tially linear, to the value of g = 4. Note that due to our choice of a positive Duffing
nonlinearity, the resonator becomes stiffer and its frequency higher as the ampli-
tude increases. The response amplitude of the driven resonator therefore increas-
es with increasing frequency until it reaches a saddle-node bifurcation and drops
abruptly to zero. A negative Duffing parameter would produce a mirror image of
this response curve.
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Figure 8.2 Magnitude |a| (a) and phase ¢ (7 = 0.7). The thin dotted curve in (a) shows
(b) of the response of a Duffing resonator as the response without any kind of damping

a function of the frequency £ for a fixed driv- (@7 = 0and = 0in the original equa-
ing amplitude g = 3. The thin solid curves tion (8.19)). The phase in this case is 0 along
show the response without any nonlinear the whole upper-left branch and m along the
damping (7 = 0). The thick dotted curves whole lower-right branch, and so is not plot-
show the response with nonlinear damping ted in (b).
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Figure 8.3 Magnitudes |a| (a) and phases ¢ (b) of the re-
sponse of a Duffing resonator as a function of the frequen-
cy L for a sequence of increasing values of the drive ampli-
tude 0.1 < g < 4.0, without nonlinear damping (. = 0).
Solid curves indicate stable solutions of the response func-
tion (8.30a), while dashed curves indicate unstable solutions.

One sees that the magnitude of the response given by (8.30a) formally approach-
es the Lorentzian response of a linear SHO if we let the nonlinear terms in the
original equation of motion tend to zero. Their existence modifies the response
function with the appearance of the squared magnitude |a|? in the denominator
on the right-hand side of (8.30a), turning the solution into a cubic polynomial in
|a|?. As such there are either one or three real solutions for |a|?, and therefore for
|a|, as a function of either the drive amplitude g or the driving frequency Q. We
shall analyze the dependence of the magnitude of the response on frequency in
some detail, and leave it to the reader to perform such an analysis of the similar
dependence on drive amplitude.
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In order to analyze the magnitude of the response |a| as a function of driving
frequency 2, we differentiate the response function (8.30a), resulting in

[&O+7n*)lal*+ 5 (n—6RQ)|a]’ + § + Q%] d|al’
=[2|al* —2Q2]al*]dQ . (8.32)
This allows us immediately to find the condition for resonance, where the mag-
nitude of the response is at its peak, by requiring that d|a|?/d2 = 0. We find

that the resonance frequency ., depends quadratically on the peak magnitude
| @ | mayx, according to

max ’

Quax = 2lal? (8.33a)
or in terms of the original variables as

3 a 2
D = @0+ > o) 8.33b
@ ma o + 8 mao (xo)max ( )

The curve satisfying (8.33a), for which |a| = /8 /3, is plotted in Figure 8.3. It
forms a square root backbone that connects all the resonance peaks for the differ-
ent driving amplitudes, which is often seen in typical experiments with nanome-
chanical resonators. Thus, the peak of the response is pulled further toward higher
frequencies as the driving amplitude g is increased, as expected from a stiffening
nonlinearity.

When the drive amplitude g is sufficiently strong, we can use Eq. (8.32) to find
the two saddle-node bifurcation points, where the number of solutions changes
from one to three and then back from three to one. At these points d2 /d|a|> = 0,
yielding a quadratic equation in £ whose solutions are

Q5 = el £ 3,/ 33—y al* — plaP 1. (8.34)

When the two solutions are real, corresponding to the two bifurcation points, a
linear stability analysis shows that the upper and lower branches of the response
are stable solutions and the middle branch that exists for Q¢ < Q < QS\] is
unstable. When the drive amplitude g is reduced, it approaches a critical value g
where the two bifurcation points merge into an inflection point. At this point both
dQ/dla)* = 0and d>Q/(d|a|?)?> = 0, providing two equations for determining the
critical condition for the onset of bistability, or the existence of two stable solution

branches,
2= 81 o _ L 3V3+nm g2 = 2 9+ 7’ (8.35)
c 3\/_—7], c 2«/? \/_—7], c 27(\/§—7])3 !
For the case without nonlinear damping, = 0, the critical values are |a|> =

(4/3)%2 and Q. = (3/4)1/2, for which the critical drive amplitude is g. = (4/3)*/*.
For 0 < 1 < +/3, the critical driving amplitude g, that is required for having
bistability increases with 7, as shown in Figure 8.4. For 7 > +/3 the discriminant
in Eq. (8.34) is always negative, prohibiting the existence of bistability of solutions.
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Figure 8.4 Critical driving amplitude g for the onset of bista-
bility in the response of the Duffing resonator as a function
of nonlinear damping 7, as given by Eq. (8.35). Note that
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Figure 8.5 Responsivity |a|/g of the Duffing resonator without
nonlinear damping (a) and with a small amount of nonlinear
damping 7 = 0.1 (b), for different values of the driving am-
plitude g. Viewing the response in this way suggests an experi-
mental scheme by which one could determine the importance
of nonlinear damping and extract its magnitude.

Nonlinear damping acts to decrease the magnitude of the response when it is
appreciable, that is, when the drive amplitude is large. It gives rise to an effective
damping rate for oscillations with magnitude |a| that is given by 1 + 1»lal?, or,
in terms of the physical parameters, by I + %77925. When viewing the response
as it is plotted in Figure 8.3, it is difficult to distinguish between the effects of the
two forms of damping. The resonance peaks lie on the same backbone regardless of
the existence of a contribution from nonlinear damping. A more useful scheme for
seeing the effect of nonlinear damping is to plot the response amplitude scaled by
the drive |a|/g, often called the responsivity of the resonator, as shown in Figure 8.5.
Without nonlinear damping all peaks have the same height of 1. With nonlinear
damping, one clearly sees the decrease in the responsivity as the driving amplitude
is increased.

The region of bistability that lies between the two saddle-node bifurcations (8.34)
in the response of the driven Duffing resonator is the source of a number of in-
teresting dynamical features that are often observed in experiments with MEMS
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& NEMS resonators [3, 19, 28, 70]. Most obvious is the existence of hysteresis in
quasistatic sweeps of either driving frequency or driving amplitude, which is read-
ily observed in experiments. For example, if we start below resonance and sweep
the frequency upwards along one of the constant drive amplitude curves shown in
Figure 8.3, the response will gradually increase, climbing up on the curve until it
reaches the upper saddle-node bifurcation Qstl(g). It will then abruptly drop down
to the lower stable solution branch and continue toward lower response ampli-
tudes to the right of the resonance. Upon switching the direction of the quasistatic
sweep, the response amplitude will gradually increase until it reaches the lower
saddle-node bifurcation £¢(g), where it will abruptly jump up to the upper sta-
ble solution branch. From this point it will gradually follow it downwards towards
lower frequencies with diminishing response amplitude.

Another interesting aspect involves basins of attraction. If we fix the values of
the driving amplitude and frequency, the driven damped Duffing resonator will
deterministically approach one of the two possible solutions, depending on its ini-
tial conditions. One can then map the regions of the phase space of initial condi-
tions into the two so-called basins of attraction of the two possible stable solutions,
where the unstable solution lies along the separatrix, or border line between the
two basins of attraction. These basins of attraction were mapped out in a recent
experiment using a suspended platinum nanowire by Kozinsky et al. [41]. If one
additionally considers the existence of random noise, which is always the case in
real systems, then the separatrix becomes fuzzy and it is possible to observe ther-
mally activated switching of the resonator between its two possible solutions. What
is in fact observed, for example in an upward frequency scan, is that the resonator
can drop to the small amplitude solution before it actually reaches the upper saddle-
node bifurcation Qs—; (g)- Similar behavior is also observed for the lower bifurcation
point. As the noise increases, the observed size of the bistability region effectively
shrinks. This was demonstrated with a doubly-clamped nanomechanical resonator
made of aluminum nitride in a recent experiment by Aldridge and Clelend [1].
The existence of the saddle-node bifurcation has also been exploited for applica-
tions because the response of the resonator at the bifurcation point can change
dramatically if one changes the drive frequency, or any of the resonator’s physical
parameters that can alter the response curve. This idea has been used for signal
amplification [10] as well as squeezing of noise [3, 69].

Finally, much effort has been recently invested to push experiments with
nanomechanical resonators towards the quantum regime. In this context, it has
been shown that the bistability region in the response of the driven damped Duff-
ing resonator offers a novel approach for observing the transition from classical
to quantum mechanical behavior as the temperature is lowered [36, 37]. The es-
sential idea is that one can find a regime in frequency and temperature where
thermal switching between the two basins of attraction is essentially suppressed
when the dynamics is classical, whereas if the resonator has already started enter-
ing the quantum regime, quantum dynamics allow it to switch between the two
basins. Thus, an observation of switching can be used to ascertain whether or not
a Duffing resonator is behaving quantum mechanically.
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8.2.3
Addition of Other Nonlinear Terms

It is worth considering the addition of other nonlinear terms that were not includ-
ed in our original equation of motion (8.18). Without increasing the order of the
nonlinearity, we could still add quadratic symmetry breaking terms of the form x2,
xx, and x? as well as additional cubic damping terms of the form %> and xx2.
Such terms may appear naturally in actual physical situations, like the examples
discussed in Section 8.1.2. For the reader who wishes to skip to the following sec-
tion on parametrically-driven Duffing resonators, we state at the outset that the
addition of such terms does not alter the response curves that we described in the
previous section in any fundamental way. They merely conspire to renormalize the
effective values of the coefficients used in the original equation of motion. Thus,
without any particular model at hand, it is difficult to discern the existence of such
terms in the equation.

Consider an equation like (8.18), but with additional terms of the form given
above,

+ % (d—’z)2 + (d—’z)a = Gcosdf 8.36
a7 i) = : (8:36)

and then perform the same scaling as in (8.20) for the additional parameters, pro-
ducing

B 2 pwo Tog fwp
f=—"7—, u= =, p= =, v=—, {="—

wov ma vma vma a a
(8.37)

After performing the same scaling as before with the small parameter e = Q71,
this yields a scaled equation of motion with all the additional nonlinearities,

¥dex+x+Bx+uxx+px*+ x> +nxtx+vxx’+ %} = &llgeoswt .
(8.38)

The important difference between this equation and the one we solved earlier (8.21)
is that with a similar scaling of x with /€, we now have terms on the order of €. We
therefore need to modify our trial expansion to contain such terms as well, yielding

x(t) = Vexo(t, T) + exipp(t, T) + €2xy (8, T) + ..., (8.39)

with xp = 1 [A(T)€"* + c.c.] as before.
We begin by collecting all terms on the order of ¢, arriving at

X+ xp=—5 B+ AP = 5[(B—p+iu) A% +cc]. (8.40)
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This equation for the first correction xy,(t) contains no secular terms, and there-
fore can be solved immediately to give

xip(t) = =3 B+ o) AP + 5 [(B—p +iu) A% +cc]. (841)

We substitute this solution into the ansatz (8.39) and back into the equation of mo-
tion (8.38), and proceed by collecting terms on the order of €3/2. We find a number
of additional terms of this order that did not appear earlier on the right-hand side
of (8.25) for the correction x (t),

- 2/3)960961/2 —H (xokl/z + 560961/2) - 2/0560561/2 - onkg - C’kg
= BB B +p) + ¢p* + 5u” — gv] +i[gu (B +p) - 3C]}AP A
+ nonsecular terms .
(8.42)

After adding the additional secular terms, we obtain a modified equation for the
slowly varying amplitude A(T),
dA 1 3

10 4 1 1
o Cayil(1-2 C ISy Sy |ARA
A= +18( DB+ o) o0 s +3v)||

1 .
— g —u(B+p) +30)aPA—iE 0T

- —%A+i%aeff|A|2A— %neff|A|2A—i§ T (8.43)
We find that the equation is formally identical to the previous result (8.26) before
adding the extra nonlinear terms. The response curves and the discussion of the
previous section therefore still apply after taking into account all of the quadratic
and cubic nonlinear terms. All of these terms combine in a particular way, giving
rise to the two effective cubic parameters defined in (8.43). This, in fact, allows one
some flexibility in tuning the nonlinearities of a Duffing resonator in real experi-
mental situations. For example, Kozinsky et al. [40] use this flexibility to tune the
effective Duffing parameter a.¢ via an external electrostatic potential, as described
in Section 8.1.3 and shown in Figure 8.1. This affects both the quadratic parameter
f and the cubic parameter @ in the physical equation of motion (8.36). Note that
due to the different signs of the various contributions to the effective nonlinear pa-
rameters, one could actually cause the cubic terms to vanish, altering the response
in a fundamental way.

8.3
Parametric Excitation of a Damped Duffing Resonator

Parametric excitation offers an alternative approach for actuating MEMS or NEMS
resonators. Instead of applying an external force that acts directly on the resonator,
one modulates one or more of its physical parameters as a function of time, which
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in turn modulates the normal frequency of the resonator. This is what happens
on a swing when the up-and-down motion of the center of mass of the swinging
child effectively changes the length of the swing, thereby modulating its natural
frequency. The most effective way to swing is to move the center of mass up and
down twice in every period of oscillation, but one can also swing by moving up
and down at slower rates, namely once every n™ multiple of half a period, for any
integer n.

Let H be the relative amplitude by which the normal frequency is modulated, and
wp be the frequency of the modulation, often called the pump frequency. One can
show [42] that there is a sequence of tongue shaped regions in the H — wp plane
where the smallest fluctuations away from the quiescent state of the swing, or any
other parametrically-excited resonator [66], are exponentially amplified. This hap-
pens when the amplitude of the modulation H is sufficiently strong to overcome
the effect of damping, where the threshold for the nth instability tongue scales as
(Q~HY/". Above this threshold, the amplitude of the motion grows until it is sat-
urated by nonlinear effects. We shall describe the nature of these oscillations for
driving above threshold later, both for the first (n = 1) and the second (n = 2)
instability tongues, but first we shall consider the dynamics when the driving am-
plitude is just below threshold, as it also offers interesting behavior and a possi-
bility for novel applications such as parametric amplification [4, 12, 57] and noise
squeezing [57].

There are a number of actual schemes for the realization of parametric excita-
tion in MEMS & NEMS devices. The simplest and probably most commonly used
on the micron scale is to use an external electrode that can induce an external po-
tential. If the external potential is modulated in time it can change the effective
spring constant of the resonator [24, 51, 52, 66, 71, 72]. Based on our treatment of
this situation in Section 8.1.3, this method is likely to modulate all the coefficients
in the potential felt by the resonator, thus also modulating, for example, the Duff-
ing parameter «. Similarly, one may devise configurations in which an external
electrode deflects a doubly-clamped beam from its equilibrium, thereby inducing
extra tension within the beam itself that can be modulated in time, as described
in Section 8.1.4. Alternatively, one may generate motion in the clamps holding a
doubly-clamped beam by its ends, thus inducing in it a time-varying tension which
is likely to affect the other physical parameters to a lesser extent. An example of this
method is shown in Figure 8.6. These methods allow one to modulate the tension
in the beam directly and thus modulate its normal frequency. More recently, Mas-
manidis et al. [45] developed layered piezoelectric NEMS structures whose tension
can be fine tuned in doubly-clamped configurations, thus enabling fine control of
the normal frequency of the beam with a simple turn of a knob.

Only a minor change is required in our equation of the driven damped Duffing
resonator to accommodate this new situation, namely the addition of a modula-
tion of the linear spring constant. Beginning with the scaled form of the Duffing
equation (8.19), we obtain

X4+ Q"% +[1 4+ Hcos wpt]x + x° + nx’x = G cos (wpt + ¢,) , (8.44)
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Figure 8.6 A configuration that uses elec-
tromotive actuation to perform parametric
excitation of a doubly-clamped beam, the cen-
tral segment of the H-shaped device. A static
magnetic field runs normal to the plane of the
device. A metallic wire that runs along the ex-
ternal suspended segments of the H-device
carries alternating current in opposite direc-

that induce a time-varying compression of the
central segment. This modulates the tension
in the central segment, thus varying its nor-
mal frequency. This configuration was recently
used by Karabalin et al. [35] to demonstrate
parametric amplification of a signal running
along the central beam through a separate
electric circuit. Image courtesy of Michael

tions, thus applying opposite Lorentz forces Roukes.

where the scaling is the same as before, and we shall again use the damping Q!
to define the small expansion parameter €. The term proportional to H on the left
hand side is the external drive that modulates the spring constant, giving a term
that is proportional to the displacement x as well as to the strength of the drive.
This term is the parametric drive.

We first consider the largest excitation effect that occurs when the pump fre-
quency is close to twice the resonant frequency of the resonator. This is the region
in the H — wp plane that we termed the first instability tongue. We therefore take
the pump frequency to be an amount € 2p away from twice the resonant frequen-
cy, and take the drive amplitude to scale as the damping, that is, we set H = ¢h.
The term on the right hand side is a direct additive drive or signal, with amplitude
scaled as in the discussion of the Duffing equation. The frequency of the drive is
an amount & 2p away from the resonator frequency that has been scaled to 1.

The scaled equation of motion that we now treat in detail is therefore

% +ex+ (14 ehcos[(2+ €2p)t]) x + x> + nx’x

=e|glcos[(1 + ewp)t + ¢,], (8:45)

where we now use g = |g|e'?¢ to denote a complex drive amplitude.

We follow the same scheme of secular perturbation theory as in Section 8.2.2, us-
ing a trial solution in the form of (8.22) and proceeding as before. The new secular
term, appearing on the right-hand side of (8.25) and arising from the parametric
drive is

—1hA* T el (8.46)
This gives the equation for the slowly varying amplitude,

dA 1 h . 3 n g .

— 4+ A—i—A%PT i |APA+ J|APA = -2 DT, 8.47

ar TaATIpA e TiglAlaT Al 2° (8:47)
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8.3.1
Driving Below Threshold: Amplification and Noise Squeezing

We first study the amplitude of the response of a parametrically-pumped Duffing
resonator to an external direct drive g # 0. We will see that the characteristic be-
havior changes from amplification of an applied signal to oscillations at a critical
value of b = h. = 2, even in the absence of a signal. It is therefore convenient
to introduce a reduced parametric drive h = h/h. = hj2 that plays the role of
a bifurcation parameter with a critical value of 1. We begin by assuming that the
drive is small enough so that the magnitude of the response remains small and the
nonlinear terms in (8.47) can be neglected. This gives the linear equation

d_A + lA_iEA*ei.QpT — _igeiQDT )

8.48
dT 2 2 (8.48)

In general, at long times after transients have died out, the solution will take the
form

A=q T 4}/ ll@r=20)T (8.49)

where a’ and b’ are complex constants.

We first consider the degenerate case where the pump frequency is tuned such
that it is always twice the signal frequency. In this case 2p = 2Qp, and the long
time solution is

A= gelT (8.50)
with a a time independent complex amplitude. Substituting this into (8.48) gives
29Qp —i)a—ha* = —g. (8.51)

Equation (8.51) is easily solved. If we first look on resonance, £2p = 0, we find

(8.52)

4 = el |:cos(<,bg + 7/4) n isin(qbg —|—_n/4)i| gl
(1—=h) (1+h)

where we remind the reader that g = |g| e!?¢ so that ¢, measures the phase of the
signal relative to the pump. Equation (8.52) shows that on resonance and for h — 1
(or b — h. = 2), the strongest enhancement of the response occurs for a signal that
has a phase —mt/4 relative to the pump. Physically, this means that the maximum
of the signal occurs a quarter of a pump cycle after a maximum of the pump. (The
phase 3m/4 gives the same result: this corresponds to shifting the oscillations by
a complete pump period.) The enhancement diverges as h — 1, provided that the
signal amplitude g is small enough that the enhanced response remains within the
linear regime. For a fixed signal amplitude g, the response will become large as
h — 1, so that the nonlinear terms in (8.47) must be retained and the expressions
we have derived no longer hold. This situation is discussed in the next section.
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On the other hand, there is a weak suppression, by a factor of 2 as h — 1, for
a signal that has a relative phase /4 or 5mt/4. The latter pertains to the case of a
signal maximum that occurs a quarter of a pump cycle before a maximum of the
pump. A noise signal on the right-hand side of the equation of motion (8.45) would
have both phase components. This leads to the squeezing of the noisy displacement
driven by this noise, with the response at phase —nt/4 amplified and the response
at phase 7/4 quenched.

The full expression for 2p # 0 for the response amplitude is

I e he~2ig)
B 4Q2 + (1 - h?)

(8.53)

For h — 1 the response is large when Qp « 1, thatis, for frequencies much closer
to resonance than the original width of the resonator response. In these limits the
first term in the numerator may be neglected unless ¢, ~ m/4. This then gives

_ 2[gcos(pg + m/4)] .

lal ) K
402 + (1— h?)

(8.54)
This is not the same as the expression for a resonant response, since the frequency
dependence of the amplitude, not amplitude squared, is Lorentzian. However, es-
timating a quality factor from the width of the sharp peak would give an enhanced
quality factor & 1/v'1 — h?, becoming very large as h — 1. For the case g = T/4
the magnitude of the response is

4Q35 + (1 — h)?

- = o . 8.55
495 4 (1 - h?) e (5

|a¢g=”/4‘ =
This initially increases as the frequency approaches resonance, but decreases for

Qp < V1— h, approaching |g| /2 for p — 0,h — 1.
For the general or nondegenerate case of £p # 28y, it is straightforward to
repeat the calculation with the ansatz (8.49). The result is

. 2(Qp — Qp) +i
4Qp(Q2p — Qp) — 2i(2p — 22p) + 1 — e

(8.56)

Notice that this does not reduce to (8.53) for Qp = 2Qp, since we miss some of the
interference terms in the degenerate case if we base the calculation on Qp # 2Qp.
Also, of course, there is no dependence of the magnitude of the response on the
phase of the signal ¢, since for different frequencies the phase difference cannot
be defined independent of an arbitrary choice of the origin of time. If the pump
frequency is maintained fixed at twice the resonator resonance frequency, corre-
sponding to £p = 0, the expression for the amplitude of the response simplifies
to

, 2Qp —i
a = —g .
—40Q2 +4iQp +1— h?

(8.57)
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Figure 8.7 Response of the parametrically
driven resonator as the signal frequency 2p
varies for a pump frequency equal to twice the
signal frequency (a), and for the pump fre-

onator to the same signal without parametric
drive. In (a) the upper curve is for the ampli-
fied phase ¢y = —m/4, and the lower curve
for the phase ¢y = /4, giving squeezing on

resonance. In both cases the reduced pump

quency fixed at the linear resonance frequency 1
amplitude h = h/h. is 0.95.

(b), given by (8.53) and (8.57), respectively.
The dashed curve is the response of the res-

Again, there is an enhanced response for drive frequencies closer to resonance
than the width of the original resonator response. In this region 2p <« 1, so that

la’| ~ |g| (8.58)

Joo e

This is the usual Lorentzian describing a resonance with a quality factor enhanced
by (1 — h?)~", as shown in Figure 8.7(b).

For the resonance condition 2p = £2p = 0, corresponding to both a pump
frequency that is twice the resonance frequency of the device, and to a signal at this
resonant frequency, the response amplitude in the linear approximation diverges
as the pump amplitude approaches the critical value h. = 2. This is the signature
of a linear instability to self sustained oscillations in the absence of any drive. We
analyze this parametric instability in the next section.

83.2
Linear Instability

The divergence of the response as h approaches unity from below corresponding
to h — 2 suggests a linear instability for h > 2, or QH > 2 in the original units.
We can see this directly from (8.47) by setting g = 0 but still ignoring the nonlinear
terms, yielding the linear equation

da + lA = iﬁA* el

8.59
dT 2 4 (8:39)

We seek a solution of the form

A = |a| &l 7T l(2P/AT (8.60)
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Figure 8.8 The first instability tongue of the
parametrically-driven Duffing resonator, the
threshold for instability, plotted in the (2p, h)
plane. The lower, long-dashed curve shows
the threshold without any linear damping

(I' = 0), which is zero on resonance. The

nance (2p = 0)is h = 2. The solid and
short-dashed regions of the upper curve indi-
cate the so-called subcritical and supercritical
branches of the instability, respectively, as
discussed in Section 8.3.4. On the subcritical
branch (2p > 41/3) there will be hysteresis

upper curve shows the threshold with linear
damping (I" # 0). The threshold on reso-

as his varied, and on the supercritical branch
(£2p < 41/3) there will not be any hysteresis.

with a real o giving exponential growth or decay. Substituting into (8.59) gives

—14 /(h/2)2 — Q2

2

[T L e (22
¢ = " 2arcsm I

where we take the value of arcsin between 0 and /2, and the plus and minus signs

(8.61)

g =

(8.62)

in the two equations correspond directly to one another. Note that these expressions
apply for h/2 > Qp; for h/2 < p, the value of o is complex. For pumping at twice

the resonance frequency Qp = 0, one phase of oscillation ¢ = § has a reduced
damping, with 0 = —(1/2 — h/4) for h < 2, and an instability 0 = (h/4—1/2) > 0
signaling exponential growth for h > 2. The other phase of oscillation ¢ = —F has

an increased damping, with 0 = —(1/2 + h/4). The general condition for instability

is
h>2,/1+Q2,

showing an increase of the threshold for nonzero frequency detuning £2p, as shown
in Figure 8.8. The linear instability that occurs for positive o gives exponentially
growing solutions that eventually saturate due to nonlinearity.

(8.63)

8.3.3
Nonlinear Behavior Near Threshold

Nonlinear effects may also be important below the threshold of the parametric in-
stability in the presence of a periodic signal or noise. As we have seen, in the linear
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approximation the gain below threshold diverges as h — h.. This is unphysical,
and for a given signal or noise strength there is some h close enough to h. where
nonlinear saturation of the gain will become important. This will give a smooth be-
havior of the response of the driven system as h passes through k. into the unstable
regime. We first analyze the effects of nonlinearity near the threshold of the insta-
bility, and calculate the smooth behavior as h passes through h. in the presence of
an applied signal. In the following section we study the effects of nonlinearity on
the self-sustained oscillations above threshold with more generality.

We take h to be close to h., and we take the signal to be small. This introduces
a second level of “smallness”. We have already assumed that the damping and the
deviation of the pump frequency from resonance are both small. This means that
the critical parametric drive H, is also small. We now assume that | H — H.| is small
compared with H, or, equivalently in scaled units, that [k — h| is small compared
with h.. We then introduce the perturbation parameter J to implement this, that
is, we assume that

_h—h

0
he

<1. (8.64)

We now use the same type of secular perturbation theory as the method leading
to (8.47) to develop the expansion in 6. For simplicity we will develop the theory for
the most interesting case of resonant pump and signal frequencies 2p = 2p = 0.
The critical value of h is then h. = 2, and the solution to (8.47) that becomes
marginally stable at this value is

A=he™*, (8.65)

with b a real constant.
For h near h. we make the ansatz for the solution

A = 0Y2hy(7)e™* + 5*by(T) + -, (8.66)

where by is a real function of 7 = O T. The latter is a new and even slower time
scale that determines the time variation of the real amplitude by near threshold.
We must also assume that the signal amplitude is very small, that is, g = 6°/2g, in
total yielding G = (€8)%/2g. Substituting (8.66) into (8.47) and collecting terms at
0(63/?) yields

1 g dby 1 .3 n

—(by —b})=—2e"*—— + =b ~by— —b; . 8.6

QT =y e g T tigh g (867
The left-hand side of this equation is necessarily imaginary, so in order to have
a solution for b; such that the perturbation expansion is valid, the real part of
the right-hand side must be zero. This is the solvability condition for the secular
perturbation theory. This gives

dbo 18]

_ Ly s 8l
1 = 5bo— gho— 5 cos(dg +/4). (8.68)
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It is more informative to write this equation in terms of the the variables without
the ¢ scaling. Introducing the “unscaled” amplitude b = 0'/2hy and generaliz-
ing (8.65) such that

A=Dbe™* + 0, (8.69)

we can write the equation as

dlo_lh—hC 7.5 gl
T =3 bt coslgg ). (8.70)

Equation (8.70) can be used to investigate many phenomena, such as transients
above threshold, and how the amplitude of the response to a signal varies as h pass-
es through the instability threshold. The unphysical divergence of the response to
a small signal as h — h, from below is now eliminated. For example, exactly at

threshold h = h. we have

4 1/3
|b| = (; |g cos(¢g + a'c/4)|) , (8.71)

giving a finite response, but one proportional to |g|"/* rather than to |g|. The gain

|b/g| scales as |g|~*? for h = h,, and gets smaller as the signal gets larger, as
shown in Figure 8.9. Note that the physical origin of the saturation at the lowest
order of perturbation theory is nonlinear damping. Without nonlinear damping
the response amplitude (8.71) still diverges. With linear damping that is still small,
one would need to go to higher orders of perturbation theory to find a different
physical mechanism that can provide this kind of saturation. The response to noise
can also be investigated by replacing the |g| cos(¢ + m/4) drive by a noise function.
Equation (8.70) and the noisy version appear in many contexts of phase transitions
and bifurcations, and so solutions are readily found in the literature [20].

Response Gain

100

—

(@) (b)

Figure 8.9 Saturation of the response b (a) and gain |b/g| (b)
as the parametric drive h passes through the critical value hc,
for four different signal levels g. The signal levels are /7 /4
times 10722, 1073, 1073, and 1074, increasing upwards for
the response figure, and downwards for the gain figure. The
response amplitude is also measured in units of /77/4. The
phase of the signal is ¢, = —m/4.

ol p-he) /he

N

h-h.) /h
5( C)/C—o.l -0.05
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8.3.4
Nonlinear Saturation above Threshold

The linear instability leads to exponential growth of the amplitude, regardless of
the signal, and results in its saturation. In order to understand this process, we
need to return to the full nonlinear treatment of (8.47) with g = 0. Ignoring initial
transients and assuming that the nonlinear terms in the equation are sufficient to
saturate the growth of the instability, we try a steady-state solution of the form

A(T) = ael(F)T (8.72)

This amplitude a can be any solution of the equation

h
[(%|a|2—9p)+i(1+%|a|2)}a=—za*, (8.73)

obtained by substituting the steady-state solution (8.72) into the equation of the sec-
ular terms (8.47). We immediately see that having no response (a = 0) is always a
possible solution regardless of the excitation frequency Qp. Expressing a = |a e!?
and taking the magnitude squared of both sides, we obtain the intensity |a|? of the
nontrivial response as all positive roots of the equation

3 2 n 2 p?
Qp — 2al? (1 A 2) -4 8.74
(20 168) + (1+ Z1ar)" = (874
In addition to the solution |a] = 0, we have a quadratic equation for |a|?> and

therefore, at most, two additional positive solutions for |a|. This has the form of

a distorted ellipse in the (2p, |a|?) plane and a parabola in the (|a|?, h) plane. In

addition, we obtain for the relative phase of the response
i a* 1 1+ Zal?

¢ = -ln— = ——arctan ——— .
2 a 2 2lal2 — Qp

(8.75)

In Figure 8.10 we plot the response intensity |a|? of a Duffing resonator to para-
metric excitation as a function of the pump frequency Qp for a fixed scaled drive
amplitude h = 3. Solid curves indicate stable solutions, and dashed curves are
solutions that are unstable to small perturbations. Thin curves show the response
without nonlinear damping (7 = 0), which grows indefinitely with frequency Qp
and is therefore incompatible with experimental observations [8, 66, 71] as well as
the assumptions of our calculation. As we saw for the saturation below threshold,
without nonlinear damping and with linear damping being small, one would have
to go to higher orders of perturbation theory to search for a physical mechanism
that could provide saturation. For large linear damping, or small Q, one sees satu-
ration even without nonlinear damping [47]. Thick curves in Figure 8.10 show the
response with finite nonlinear damping (7 = 1). With finite » there is a maximum

value for the response |42, = 2(h — 2)/77, and a maximum frequency

h 3\* 3
Q=" +(—) 3 8.76
SN =3 p p (8.76)
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2 2h—4

‘a"max n

Qp

Figure 8.10 Response intensity |a|? as a function of the pump
frequency Qp, for fixed amplitude h = 3. Solid curves are stable
solutions; dashed curves are unstable solutions. Thin curves
show the response without nonlinear damping (7 = 0). Thick
curves show the response for finite nonlinear damping (n = 1).
Dotted lines indicate the maximal response intensity |a|2 ., and
the saddle-node frequency Qsn.

at a saddle-node bifurcation, where the stable and unstable nontrivial solutions
meet. For frequencies above sy the only solution is the trivial one, a = 0. These
values are indicated by horizontal and vertical dotted lines in Figure 8.10.

The threshold for the instability of the trivial solution is easily verified by setting
a = 0in the expression (8.74) for the nontrivial solution, or by inverting the expres-
sion (8.63) for the instability that we obtained in the previous section. As seen in
Figure 8.10, for a given h the threshold is situated at Qp = +./(h/2)? — 1. This is
the same result calculated in the previous section, where we plotted the threshold
tongue in Figure 8.8 in the (h, 2p) plane. Figure 8.10 is a horizontal cut through
that tongue at a constant drive amplitude h = 3.

Like the response of a forced Duffing resonator shown in (8.29), the response
of a parametrically excited Duffing resonator also exhibits hysteresis in quasistatic
frequency scans. If the frequency £2p begins at negative values and is increased
gradually with a fixed amplitude h, the zero response will become unstable as the
lower threshold is crossed at —y/(h/2)? — 1. After this occurs the response will
gradually increase along the thick solid curve in Figure 8.10, until 2p reaches Qgy
and the response drops abruptly to zero. If the frequency is then decreased gradu-
ally, the response will remain zero until £ reaches the upper instability threshold
++/(h/2)? — 1. The response will then jump abruptly to the thick solid curve above,
and afterwards gradually decrease to zero along this curve.

Finally, in Figure 8.11 we plot the response intensity | a|? of the Duffing resonator
as a function of drive amplitude h, for fixed frequency £2p and finite nonlinear
damping = 1. This would correspond to performing a vertical cut through the in-
stability tongue Figure 8.8. Again, solid curves indicate stable solutions and dashed
curves indicate unstable solutions. Thick curves show the response for 2p = 1, and
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la/*
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Figure 8.11 Response intensity |a|? as a function of the para-
metric drive amplitude h for fixed frequency £2p and finite non-
linear damping (7 = 1). Thick curves show the stable (solid
curves) and unstable (dashed curves) response for Qp = 1.
Thin curves show the stable solutions for Qp = #/3 and

Qp = —1, and demonstrate that hysteresis as h is varied is
expected only for Qp > 7/3.

thin curves show the response for Qp = 1/3 and 2p = —1. The intersection of
the trivial and the nontrivial solutions, which corresponds to the instability thresh-
old (8.63), occurs at h = 2+v/ Qp% + 1. For 2p < 77/3, the nontrivial solution for
|a|? grows continuously for h above threshold and is stable. This is a supercritical
bifurcation. On the other hand, for Qp > 7/3 the bifurcation is subcritical and the
nontrivial solution grows for h below threshold. This solution is unstable until the
curve of |a|? as a function of h turns at a saddle-node bifurcation at

2+ 20
hgy = ——3—t (8.77)

(8

where the solution becomes stable and |a|? is once more an increasing function
of h. For amplitudes h < hgy the only solution is the trivial one a = 0. Hysteretic
behavior is therefore expected for quasistatic scans of the drive amplitude h only if
the fixed frequency Qp > #/3, as can be inferred from Figure 8.11.

835
Parametric Excitation at the Second Instability Tongue

We wish to examine the second tongue by looking at the response above threshold
and highlighting the main changes from the first tongue. This tongue, it should
be noted, is readily accessible in experiments because the pump and the response
frequencies are the same. We start with the general equation for a parametrically-
driven Duffing resonator (8.44), but with no direct drive (g = 0), where the para-
metric excitation is performed around 1 instead of 2. Correspondingly, the scaling
of H with respect to € needs to be changed to H = h./e. The reason for this change
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is that with the H = he scaling, the order €!/2 term in x becomes identically zero.
This occurs because the parametric driving term does not contribute to the order
€312 secular term which we use to find the response. Scaling H in the appropriate
manner will introduce a nonsecular correction to x at order ¢, and this correction
will contribute to the order ¢3/2
The equation of motion then becomes

secular term and will give us the required response.

hell /i oor

5&+x=—T (e‘(H' P )—{—c.c.)x—ea'c—x}—nxzfc , (8.78)
and we try an expansion of the solution of the form

x(t) = €'P L (A(T)e" + cc.) + exip(t) + € x1 () + ... (8.79)
Substituting this expansion into the equation of motion (8.78), we obtain at order
€!/2 the linear equation as usual, and at order €

h . . .
S+ xip == (AeiT et 4 A% el T 4 ). (8.80)

As expected, there is no secular term on the right-hand side so we can immediately
solve for xy,, yielding

hi(A . 4 .
ap(t) = 7 (3 el T it _ A% 12T | c.c.) + Ofe) . (8.81)

Substituting the solution for x;,, into the expansion (8.79), and the expansion back
into the equation of motion (8.78), contributes an additional term from the para-
metric driving which has the form

2
63/2% (_? elpT Q2it + A* el T + c.c.) (ei!?pT el + c.c.)

h? (2 . .
= 63/2§ (EA + A* e'ZQPT) e'* + c.c. + nonsecular terms . (8.82)

This gives us the required contribution to the equation for the vanishing secular
terms. All other terms remain as they were in (8.47), so that the new equation for
determining A(T) becomes

dA k% (2 . 1 3 n
—— pi— [ ZA 4 AT 2T ZA—iZ|APA+ Z|APA=0. 8.83
dT+18(3 +A%e +2 18| | +8| | (8.83)

Again, ignoring initial transients and assuming that the nonlinear terms in the
equation are sufficient to saturate the growth of the instability, we try a steady-state
solution, this time of the form

A(T) = aetrT (8.84)
The solution to the equation of motion (8.78) is therefore

x(t) = € (a eI 4 cc) + Ofe), (8.85)
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where the correction xy), of order € is given in (8.81) and, as before, we are not
interested in the correction x;(t) of order €3/2, but rather in the fixed amplitude
a of the lowest order term. We substitute the steady-state solution (8.84) into the
equation of the secular terms (8.83) and obtain

3 h? h?

By taking the magnitude squared of both sides we obtain, in addition to the trivial
solution a = 0, a nontrivial response given by
2 pt

3 1.,\° n
(Z|a|2—29p—gh2)+(1+Z|a|2) - (8.87)

Figure 8.12 shows the response intensity |a|? as a function of the frequency Qp
for a fixed drive amplitude of h = 3, producing a horizontal cut through the sec-
ond instability tongue. The solution looks very similar to the response shown in
Figure 8.10 for the first instability tongue, though we should point out two im-
portant differences. The first is that the orientation of the ellipse, indicated by the
slope of the curves for = 0, is different. The slope here is 8/3, whereas for the
first instability tongue the slope is 4/3. The second is the change in the scaling of
h with €, or the inverse quality factor Q™. The lowest critical drive amplitude for
an instability at the second tongue is again on resonance (£2p = 0), and its value is
again h = 2. This now implies, however, that H./Q = 2, or that H scales as the
square root of the linear damping rate I". This is consistent with the well known
result that the minimal amplitude for the instability of the nth tongue scales as
'™ (for example, see [42], Section 3).

laf®
48

o8

) ) ‘ 1 )

Figure 8.12 Response intensity |a|? of a parametrically-driven
Duffing resonator as a function of the pump frequency £p, for
a fixed amplitude h = 3 in the second instability tongue. Solid
curves are stable solutions and dashed curves are unstable
solutions. Thin curves show the response without nonlinear
damping (7 = 0). Thick curves show the response for finite
nonlinear damping (n = 1).
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8.4
Parametric Excitation of Arrays of Coupled Duffing Resonators

The last two sections of this review describe theoretical work that was motivated
directly by the experimental work of Buks and Roukes [8]. They fabricated an ar-
ray of nonlinear micromechanical doubly-clamped gold beams, and excited them
parametrically by modulating the strength of an externally controlled electrostat-
ic coupling between neighboring beams. The Buks and Roukes experiment was
modeled by Lifshitz and Cross [44] (henceforth LC) using a set of coupled nonlin-
ear equations of motion. The latter used secular perturbation theory, as we have
described so far for a system with just a single degree of freedom, to convert these
equations of motion into a set of coupled nonlinear algebraic equations for the nor-
mal mode amplitudes of the system. This enabled them to obtain exact results for
small arrays, but only a qualitative understanding of the dynamics of large arrays.
We shall review these results in this section.

In order to obtain analytical results for large arrays, Bromberg, Cross, and Lif-
shitz [7] (henceforth BCL) studied the same system of equations, approaching it
from the continuous limit of infinitely many degrees of freedom. They obtained
a description of the slow spatiotemporal dynamics of the array of resonators in
terms of an amplitude equation. BCL showed that this amplitude equation could
predict the initial mode that develops at the onset of parametric oscillations as the
driving amplitude is gradually increased from zero, as well as a sequence of sub-
sequent transitions to other single mode oscillations. We shall review these results
in Section 8.5. Kenig, Lifshitz, and Cross [38] have extended the investigation of
the amplitude equation to more general questions such as how patterns are se-
lected when many patterns or solutions are simultaneously stable. This extension
includes other experimentally relevant questions, such as the response of the sys-
tem of coupled resonators to time dependent sweeps of the control parameters,
rather than quasistatic sweeps like the ones we have been discussing here. Kenig
et al. [39] have also studied the formation and dynamics of intrinsically-localized
modes, or solitons, in the array equations of LC. To this end, they derived a differ-
ent amplitude equation, which takes the form of a parametrically-driven damped
nonlinear Shrédinger equation, also known as a forced complex Ginzburg-Landau
equation. We shall not review these last two papers here, but encourage the reader
to pursue them independently.

8.4.1
Modeling an Array of Coupled Duffing Resonators

LC modeled the array of coupled nonlinear resonators that was studied by Buks
and Roukes using a set of coupled equations of motion (EOM) of the form
By + U+ Ul — 2O (g1 — 20y + Ghy1)
+ % (D + H cos wpt) (Wnt1—2up + Up—1)
— 307 (W1 = wn) (1 — Gn) = (i — Up1) (i — 1) =0,
(8.88)
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where u ,(t) describes the deviation of the nth resonator from its equilibrium, with
n = 1...N, and fixed boundary conditions uy = uyn41; = 0. Detailed argu-
ments for the choice of terms introduced into the equations of motion are dis-
cussed in [44]. The terms include an elastic restoring force with both linear and
cubic contributions, whose coefficients are both scaled to 1 as in our discussion of
the single degree of freedom. They also include a dc electrostatic nearest neighbor
coupling term with a small ac component responsible for the parametric excita-
tion, with coefficients D and H, respectively, and linear as well as cubic nonlinear
dissipation terms. Both dissipation terms are assumed to depend on the difference
of the displacements of nearest neighbors.

We consider here a slightly simpler and more general model for an array of
coupled resonators in order to illustrate the approach. Motivated by the geome-
try of most experimental NEMS systems, we assume a line of identical resonators
although the generalization to two or three dimensions is straightforward. The
simplest model is to take the equation of motion of each resonator to be as that
in (8.44), with the addition of a coupling term to its two neighbors. A simple choice
would be to assume that this coupling does not introduce additional dissipation,
which we describe as reactive coupling. Elastic and electrostatic coupling might be
predominantly of this type. After the usual scaling, the equations of motions would
take the form

i+ Q My + ud + (14 Hceoswpt)u, + nuii,
+ 3D(Upg1—2Up + Up—1) =0, (8.89)

where we do not take into account any direct drive for the purposes of the present
section.

The equations of motion for particular experimental implementations might
have different terms, although we expect all will have linear and nonlinear damp-
ing, linear coupling, and parametric drive. For example, to model the experimental
setup of Buks and Roukes [8], LC supposed that both linear and nonlinear dissipa-
tion terms involved the difference of neighboring displacements, that is, the terms
involving @, in our equations of motion (8.89) are replaced with terms involving
Un41 — U, in the equations of motion (8.88) used by LC. This was to describe the
physics of electric current damping, with the currents driven by the varying ca-
pacitance between neighboring resonators depending on the change in separation
and the fixed DC voltage. This effect seemed to be the dominant component of the
dissipation in the Buks and Roukes experiments. Similarly, the parametric drive
H cos wpt multiplied (4,41 — 2u, + u,—1) in the equations of LC rather than u,
here, since the voltage between adjacent resonators was the quantity modulated,
changing the electrostatic component of the spring constant.

In a more recent implementation [45], the electric current damping has been
reduced, and the parametric drive is directly applied to each resonator piezoelectri-
cally, so that the simpler form of (8.89) applies. The method of attack is the same
in any case. We will illustrate the approach on the simpler equation, and refer
the reader to LC for the more complicated model. An additional complication in
a realistic model may be that the coupling is longer range than nearest neighbor.
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For example, both electrostatic coupling and elastic coupling through the supports
would have longer range components. The general method is the same for these
additional effects, and the reader should be able to apply the approach to the model
for their particular experimental implementation.

8.4.2
Calculating the Response of an Array

We calculate the response of the array to parametric excitation, again using secular
perturbation theory. We suppose Q is large and take ¢ = Q™! as the small expan-
sion parameter. As in Section 8.3 we take H = eh, but we also take D = €d so
that the width of the frequency band of eigenmodes is also small. This is not quite
how LC treated the coupling, but we think the present approach is clearer, and it
is equivalent up to the order of the expansion in € that we require. We thank Eyal
Kenig for pointing out this simplification.
The equations of motion are now

fiy +€iby + ud + (1+ ehcos[(2+ €Qp)t]) uy + nuli,
+ 1ed(pg1—2un+uy—1) =0, n=1...N. (8.90)

We expand u ,(t) as a sum of standing wave modes with slowly varying amplitudes.
The nature of the standing wave modes will depend on the conditions at the end of
the line of resonators. In the experiments of Buks and Roukes there were N mobile
beams, with a number of identical immobilized beams at each end. These condi-
tions can be implemented in a nearest neighbor model by taking two additional
resonators, ug and uy41 and assuming

Uo = tinp1=0. (8.91)
The standing wave modes are then
mam
—_—,m
N+1
On the other hand, for a line of N resonators with free ends there is no force from

outside the line. For the nearest neighbor model this can be imposed again by
taking two additional resonators, but now with the conditions

u, =sin(ng,) with g, = =1...N. (8.92)

up=1u; and Uy = Uy41. (8.93)

The standing wave modes are now

1 . ma
un:cos[(n—z)qm] with qm:T,mzo...N—l. (8.94)

For our illustration we will take (8.91), (8.92). Thus we write

N
1 .
Un(t) = 61/25 Z (An(T)sin(ngy) e +cc) +2uldt) + ...,
m=1
n=1...N, (8.95)

with g, as in (8.92).
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We substitute the trial solution (8.95) into the EOM term by term. Up to order
€32 we have

i, =€l Zsin(nqm) ([~Anm + 2ied ] e’ +cc) + 2l () + ...,

(8.962)
€ir, = &1 Zsin(nqm) (Ame’ +cc)+..., (8.96D)
1
Eed(un_;_l —2uUpy + Uy—1)
d )
= —53/25 Xm: 2 sin’ (%") sin(ngm) (Ame® +cc)+... (8.96¢)
u = 63/2% Zsin(nqj) sin(nqy) sin(nq;)
ikl
X (A elf + ce) (Ape' +cc) (Are’ +cc)
= &2 ) Asin[n(~q; + i + )] + sinfn(q; — qi + q1)]
ikl
+sin[n(q; + g — q1)] — sin [n(q; + qx + a1)]}
x {AjAA " +3AAAT " +ec) (8.96d)

and

NUnlity = 53/23’7_2 Z {sin[n(—qj + qx + qi)] + sin[n(q; — qx + q1)]
ikl
+sin[n(q; + g — q1)] — sinfn(q; + qi + @)1}
x (Aje' +cc)(Are’ +cc) (iAef +cc).
(8.96¢)

The order €!/? terms cancel, and at order €*/? we get N equations of the form

ﬁ(,}) + u(,}) = Z (mth secular term) el + other terms, (8.97)

m

where the left-hand sides are uncoupled linear harmonic oscillators, with a fre-
quency unity. On the right-hand sides we have N secular terms which act to drive
the oscillators !, at their resonance frequencies. As we did for all the single res-
onator examples, here, too, we require that all the secular terms vanish so that
the u!}) remain finite. Thus, we obtain equations for the slowly varying amplitudes
A (T). To extract the equation for the mth amplitude A,,(T) we make use of the
orthogonality of the modes, multiplying all the terms by sin(ng,,) and summing
over n. We find that the coefficient of the mth secular term, which is required to
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vanish, is given by

.dA . . 1 .
—21d—Tm—lAm—i-stm2 (qTM)Am——hAfne'QPT
3
+”72A AATAY =0, (8.98)
Jk,l

where we have used the A function introduced by LC, defined in terms of Kroneck-
er deltas as

A(jllll;m = O—jtk+im — O—jtktl—m — O jf kL 2N+ 1)—m
+ 0 j—k+im— O j—ktl—m — O j—k+I12N+1)—m
+ 0 jtk—tm = O jdk—t—m = O j+k—I12(N+1)—m
= Ojtktlm + O j bkt L2 N+1)—m — O jbk+L2N+1)bm >  (8.99)

and have exploited the fact that it is invariant under any permutation of the indices
Jj, k, and . The function A(J.Z,ll;m, also defined by LC, is not needed for our simpli-
fied model. The A4 function ensures the conservation of lattice momentum. In this
case, momentum is conserved to within the non-uniqueness of the specification
of the normal modes due to the fact that sin(nq,,) = sin(nqyn1)+m) for any
integer k. The first Kronecker delta in each line is a condition of direct momentum
conservation, and the other two are the so-called umklapp conditions where only
lattice momentum is conserved.

As for the single resonator, we again try a steady-state solution, this time of the
form

Ap(T) = an (F)T (8.100)

so that the solutions to the EOM, after substitution of (8.100) into (8.95), become

1) =15 3 (ansintrg

m

€Qp

): + c.c.) + 0¥y, (8.101)

where all modes are oscillating at half the parametric excitation frequency.

Substituting the steady state solution (8.100) into the equations (8.98) for the
time-varying amplitudes A ,,(T), we obtain the equations for the time-independent
complex amplitudes, a,,

. h 3+1
[Qp-i—zdsm (qzm)—l]am—zafn 772 ajaca] Jklm:()'
gkl
(8.102)

Note that the first two terms on the left-hand side indicate that the linear resonance
frequency is not obtained for Qp = 0, but rather for Qp + 2d sin (q,,/2) = 0. In
terms of the unscaled parameters, this implies that the resonance frequency of the
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mth mode is w,, = 1— D sin’ (q,,/2), which is the same as the expected dispersion
relation

w?, =1— 2D sin? (%’“) (8.103)

to within a correction of O(e?).

Equation 8.102 is the main result of the calculation. We have managed to replace
N coupled differential equations (8.89) for the resonator coordinates u,(t) by N
coupled algebraic equations (8.102) for the time-independent mode amplitudes a.,.
All that remains, in order to obtain the overall collective response of the array as a
function of the parameters of the original EOM, is to solve these coupled algebraic
equations.

First, one can easily verify that for a single resonator (N = j =k =1=m = 1),
the general equation (8.102) reduces to the single resonator equation (8.73) that we
derived in Section 8.3.4 due to the fact that 44;1.1 = 4. Next, one can see that the
trivial solution, a,, = 0 for all m, always satisfies the equations, though it is not
always a stable solution, as we have seen in the case of a single resonator. Finally,
one can also verify that a single mode solution exists with a,, # O and a; = 0
for all j # m whenever, for any given m, A(V:L)mm; ; = Oforall j # m. These
single mode solutions have the same type of elliptical shape of the single resonator
solution given in (8.74). Note that generically 4 (,:,)mm;m = 3, except when umklapp
conditions are satisfied.

In general, additional solutions involving more than a single mode exist, but are
hard to obtain analytically. LC calculated these multimode solutions for the case of
two and three resonators for the model they considered by finding the roots of the
coupled algebraic equations numerically. We show some of their results to illus-
trate the type of behavior that occurs, although the precise details will be slightly
different.

8.43
The Response of Very Small Arrays and Comparison of Analytics and Numerics

In Figure 8.13 we show the solutions for the response intensity of two resonators
as a function of frequency for a particular choice of the equation parameters. Fig-
ure 8.13a shows the square of the amplitude of the antisymmetric mode a,, where-
as Figure 8.13b shows the square of the amplitude of the symmetric mode a,. Solid
curves indicate stable solutions and dashed curves indicate unstable solutions. Two
elliptical single mode solution branches, similar to the response of the single res-
onator shown in Figure 8.10 are easily identified. These branches are labeled by S,
and S,. LC give the analytical expressions for these two solution branches. In ad-
dition, there are two double mode solution branches, labeled D; and D,, involving
the simultaneous excitation of both modes. Note that the two branches of double
mode solutions intersect at a point where they switch their stability.

With two resonators there are regions in frequency where three stable solutions
can exist. If all of the stable solution branches are accessible experimentally then
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Figure 8.13 Two resonators. (a,b) Response (c) Comparison of stable solutions obtained
intensity as a function of frequency Qp for a analytically (small circles), with a numerical
particular choice of the equation parameters. integration of the equations of motion show-
(a) shows |az|? and (b) shows |a1|?. Solid ing hysteresis in the response (solid curve —
curves indicate stable solutions and dashed frequency swept up; dashed curve — frequency
curves indicate unstable solutions. The two swept down). The averaged response intensity
elliptical single mode solution branches are as defined in (8.104) is plotted. Branch labels
labeled S7 and S,. The two double mode correspond to those on the left.

solution branches are labeled Dy and D,.

the observed effects of hysteresis might be more complex than in the simple case
of a single resonator. This is demonstrated in Figure 8.13c, where the analytical
solutions are compared with a numerical integration of the differential equations
of motion (8.88) for two resonators. The response intensity plotted here is given by
the time and space averages of the square of the resonator displacements

I= % > (), (8.104)
n=1

where the angular brackets denote time average and N = 2. A solid curve shows
the response intensity for frequency swept upwards, and a dashed curve shows the
response intensity for frequency swept downwards.

Small circles show the analytical response intensity for the stable regions of the
four solution branches shown in Figure 8.13. With the analytical solution in the
background, one can easily understand the discontinuous jumps and hysteresis
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effects that are obtained in the numerical solution of the equations of motion. Note
that the S; branch is missed in the upwards frequency sweep and is only accessed
by the system in the downwards frequency sweep. One could trace the whole stable
region of the S; branch by changing the sweep direction after jumping onto the
branch. This would result in climbing all the way up to the end of the S; branch
and then falling onto the tip of the D; branch or to zero. These kinds of changes
in the direction of the sweep that occur when one jumps onto a new branch are
essential if one wants to trace out as much of the solution as possible. This holds
for both real experiments or numerical simulations.

8.4.4
Response of Large Arrays and Numerical Simulation

LC integrated the equations of motion (8.88) numerically for an array of N = 67
resonators. The results for the response intensity as a function of the unscaled
parametric drive frequency w,, as given in (8.104) are shown in Figure 8.14. These
results must be considered illustrative only, because the structure of the response
branches will vary with changes to the model, and will also depend strongly on
the chosen equation parameters. First of all, as in the case of a small number of
beams, the overall height and width of individual response branches depend on the
strength of the drive h and on the nonlinear dissipation coefficient #. Furthermore,
if the coupling strength D is increased, for example, such that the width of the
frequency response band becomes much larger than N times the width of a single
mode response, then very few, if any, multimode solutions exist.

A number of the important features of the response should be highlighted. We
concentrate on the solid curve in the figure, which is for frequency swept upwards.
First, the response intensity shows features that span a range of frequencies that is
large compared with the mode spacing, which is about 0.0006 for the parameters

«—s Sweep up
o--- Sweep down

N

Response <u 2> x 10

0
1.94 1.96 1.98 2.00 2.02

Drive Frequenzy ®,

Figure 8.14 Response intensity as a function of the driving
frequency w, for N = 67 parametrically-driven resonators
(solid curve — frequency swept up; dashed curve — frequency
swept down). The response intensity is defined in (8.104). The
response curve was obtained through numerical integration of
the equations of motion (8.88).
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used. The reason for this is that we skip over many others as we follow a particular
solution, as has been seen for the S1 branch in the two resonator case. Second,
the variation of the response with frequency shows abrupt jumps as the frequency
is raised, particularly on the high frequency side of the features. This happens as
we reach saddle-node or other types of bifurcations where we lose the stability of
the solution branch, or the branch ends altogether. Third, the response extends to
frequencies higher than the band edge for the linear modes, which would give a
response only up to w, = 2.0. This happens simply due to the positive Duffing
parameter which causes frequency pulling to the right. Note that the downwards
sweep is able to access additional stable solution branches that were missed in the
upwards sweep. There is also no response above w,, = 2.0 in this case. This is be-
cause the zero displacement state is stable for w, > 2.0, and the system will remain
in this state as the frequency is lowered unless a large enough disturbance kicks it
onto another of the solution branches. The hysteresis on reversing the frequency
sweep was not examined in any experiment, and it would be interesting to test this
prediction of LC in the future.

8.5
Amplitude Equation Description for Large Arrays

We finish this review by describing the approach used by BCL [6, 7] to obtain an-
alytical results for large arrays by approaching them from the continuous limit of
infinitely many degrees of freedom. We only summarize the main results of BCL
and encourage the reader, who by now has all the required background, to refer
to BCL [7] and to Kenig et al. [38] for details of the derivation and for thorough
discussions of the results and their experimental consequences. We note that BCL
studied the original system of (8.88), where both the parametric excitation and the
damping are introduced in terms of the difference variables u, 41 — u,. We stick
to this model here, and leave it to the reader as an exercise to generalize the BCL
derivation for the more general model equations (8.89) that we used in the previous
section.

A novel feature of the parametrically-driven instability is that the bifurcation to
standing waves switches from supercritical (continuous) to subcritical (discontinu-
ous) at a wave number at or close to the critical one, for which the required para-
metric driving force is minimum. This changes the form of the amplitude equation
that describes the onset of the parametrically-driven waves so that it no longer has
the standard “Ginzburg-Landau” form [20]. The central result of BCL is this new
scaled amplitude equation (8.112), which is governed by a single control parame-
ter and captures the slow dynamics of the coupled resonators just above the onset
of parametric oscillations, including this unusual bifurcation behavior. BCL con-
firmed the behavior numerically and made suggestions for testing it experimen-
tally. Kenig et al. [38] have extended the investigation of the amplitude equation
to include such situations as time-dependent ramps of the drive amplitude, as op-
posed to the standard quasistatic sweeps of the control parameters. Although our
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focus here is on parametrically-driven NEMS & MEMS resonators, we should em-
phasize that the amplitude equation of BCL that we describe here should also apply
to other parametrically-driven wave systems with weak nonlinear damping.

8.5.1
Amplitude Equations for Counter Propagating Waves

BCL scaled the equations of motion (8.88), as did Lifshitz and Cross [44], without
assuming a priori that the coupling D is small. Thus, the scaled equations of mo-
tion that they solved were

i, + U, +u —le( Upg1— 20y + Uy—q)
+ 3 [D + €hcoswpt)] (Wnt1— 2up + Un—1)
= 207 [(Ungr — wn) (g1 — Bbn) = (U — Un—1)*(iby — Bp—1)| = 0.
(8.105)

Note the way in which the pump frequency is specified as 2w, in the argument of
the cosine term, with an explicit factor of two (unlike what we did in Section 8.4),
and also without making any assumptions at this point regarding its deviation from
twice the resonance. We also remind the reader that this and all other frequencies
are measured in terms of the natural frequency of a single resonator, which has
been scaled to 1. The first step in treating this system of equations analytically is to
introduce a continuous displacement field u(x, t), and slow spatial and temporal
scales X = ex and T = €t. One then tries a solution in terms of a pair of counter-
propagating plane waves at half the pump frequency, which is a natural first guess
in continuous parametrically-driven systems such as Faraday waves [20]. This yields

u(x,t) = P [(A4 (X, T)e " 4 A% (X, T) %) e’ 4 c.c]
+ePull(x, 1, X, T) + ..., (8.106)

where g, and w,, are related through the dispersion relation (8.103)

q
w2 =1-2Dsin ( P) (8.107)
By substituting this ansatz (8.106) into the equations of motion (8.105) and ap-
plying a solvability condition on the terms of order ¢3/2, BCL obtained a pair of
coupled amplitude equations for the counterpropagating wave amplitudes A

a;)a\_Ti ga;; ~sin (qZP)Ai:F1%sln (%)A;

3
— (4;7 sin (qu) F 12—) (IAL]> +2/A5) Ay, (8.108)
Wp

where the upper signs (lower signs) give the equation for A4 (A_) and

d Dsi
vy = Jop _ _ Dsinlgy) (8.109)
aqp 2w,
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is the group velocity. This equation is the extension of (8.47) to many coupled res-
onators, only now the parametric drive couples amplitudes of the two counterprop-
agating waves A and A_ instead of coupling A and A*. A detailed derivation of
the amplitude equations (8.108) can be found in [6, 7]. We should note that similar
equations were previously derived for describing Faraday waves [29, 46].

By linearizing the amplitude equations (8.108) about the zero solution (A4 =
A_ = 0), we find that the linear combination of the two amplitudes that first
becomes unstable at h = h. = 2w, is B o (A —iA_). This represents the
emergence of a standing wave with a temporal phase of 1/4 relative to the drive.
However, the orthogonal linear combination of the amplitudes decays exponential-
ly and does not participate in the dynamics at onset. Thus, just above threshold a
single amplitude equation should suffice, describing this standing wave pattern.
We describe the derivation of this equation in the next section.

85.2
Reduction to a Single Amplitude Equation

Nonlinear dissipation plays an important role in the saturation of the response
to parametric excitation, as we saw in Section 8.3.4. Thus, it is natural to try to
keep a balance between the strength of this nonlinearity and the amount by which
we drive the system above threshold. Assuming that the nonlinear damping is
weak, we use it to define a second small parameter 6 = /7. This particular
definition turns out to be useful if we then scale the reduced driving amplitude
(h — h¢)/ h. linearly with J, defining a scaled reduced driving amplitude r by let-
ting (h — hc)/ he = ro. We can then treat the initial linear combination of the two
amplitudes in (8.108) that becomes unstable by introducing a second ansatz,

A 1 (X, T,E,
()= () e (L)
(X, T, &, 1)
+ 0 (]::(z)(x, T, &, r)) ' oo

where £ = 02X and v = O T. Substitution of this ansatz allows one to obtain the
correction to the solution at order 03/*

1 1 dB
(W(l)) = (_Vg_ jLii|B|ZB) (1) , (8.111)
v 2sin”(q,/2) & 2w, —i

after which a solvability condition applied to the terms of order 6°/* yields an equa-
tion for the field B(&, 7). After scaling, this takes the form

B+ — +i= — + B?
ar Pt th AT

This is the BCL amplitude equation. It is governed by a single control parameter,
the reduced drive amplitude r, and captures the slow dynamics of the coupled res-

3B #®B 2 ,0B 9B* : .
2 _ 4|B| —2|B*B—|B[*B. (8.112)

onators just above the onset of parametric oscillations. The reader is encouraged
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to consult [7] for a more detailed account of the derivation of the BCL equation.
The form of (8.112) is also applicable to the onset of parametrically driven standing
waves in continuum systems with weak nonlinear damping, and combines in a
single equation a number of effects studied previously [13, 14, 23, 29, 46, 53].

853
Single Mode Oscillations

Now that this novel amplitude equation has been derived by BCL it can be used to
study a variety of dynamical solutions, ranging from simple single mode to more
complicated nonlinear extended solutions and, after slight modifications, also for
the dynamics of localized solutions. BCL used the amplitude equation to study the
stability of single mode steady-state solutions

B = bpe ¢, (8.113)

that is, standing wave solutions that consist of a single sine wave pattern with one
of the allowed wave vectors q,,. The wave vector k gives, in some scaled units, the
difference between the wave vector g, determined by the pump frequency through
the dispersion relation, and the wave vector q,, = mx/(N+1), m = 1... N, of the
actual mode that is selected by the system.

A number of interesting results are readily evident if we simply substitute the
single mode solution (8.113) into the BCL amplitude equation (8.112). From the
linear terms in the amplitude equation we find, as expected, that for r > k? the
zero displacement solution is unstable to small perturbations of the form of (8.113).
This defines the parabolic neutral stability curve, which is shown as a dashed line
in Figure 8.15. The nonlinear gradients and the cubic term take the simple form
2(k — 1)|bg|?bg. For k < 1 these terms immediately act to saturate the growth
of the amplitude assisted by the quintic term. Standing waves therefore bifurcate
supercritically from the zero displacement state. For k > 1 the cubic terms act to
increase the growth of the amplitude, and saturation is achieved only by the quintic
term. Standing waves therefore bifurcate subcritically from the zero displacement
state. The saturated amplitude |by|, obtained by setting (8.112) to zero, is given by

In Figure 8.16 we plot |by|? as a function of the reduced driving amplitude r for
three different wave number shifts k. The solid (dashed) lines are the stable (un-
stable) solutions of (8.114). The circles were obtained by numerical integration of
the equations of motion (8.105). For each driving amplitude, the Fourier compo-
nents of the steady state solution were computed to verify that only single modes
are found, suggesting that in this regime of parameters only these states are stable.

BCL showed the power of the amplitude equation in predicting the first single
mode solution that should appear at onset. In addition it also predicts the sequence
of Eckhaus instabilities that switch to other single mode solutions as the reduced
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60

Figure 8.15 Stability boundaries of the sin-
gle mode solution of (8.112) in the rvs. k
plane. Dashed line: neutral stability boundary
below which the zero state is stable. Dotted
line: stability boundary of the single mode
solution (8.113), above which the array expe-

riences an Eckhaus instability and switches to
one of the other single mode solutions. For

k > 1, the bifurcation from zero displacement
becomes subcritical and the lower stability
boundary is the locus of saddle-node bifurca-
tions (solid line).

1.8 T T T

T T

Figure 8.16 Response of the resonator array
plotted as a function of reduced amplitude r
for three different scaled wave number shifts:
k = 0and k = —0.81, which bifurcate su-
percritically, and k = 1.55 which bifurcates
subcritically and shows clear hysteresis. Solid
and dashed lines are the positive and nega-

tive square root branches of the calculated
response in (8.114). The latter is clearly un-
stable. Open circles are numerical values ob-
tained by integration of the equations of mo-
tion (8.105), with D = 0.25, w, = 0.767445,
€ =0.01,and 7 = 0.1.
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drive amplitude r is quasistatically increased. Kenig et al. [38] used the amplitude
equation for a more general analysis of the question of pattern selection. This ques-
tion is concerned with predicting which oscillating pattern will be selected, under
particular experimental conditions, from among all of the stable steady-state solu-
tions that the array of resonators can choose from. In particular, they have consid-
ered experimental situations in which the drive amplitude r is changed abruptly or
swept at rates that are faster than typical transient times. In all cases the predictions
of the amplitude equations are confirmed with numerical simulations of the origi-
nal equations of motion (8.105). Experimental confirmation of these predictions is
still not available.

Acknowledgments

We wish to thank the students at Tel Aviv University, Yaron Bromberg and Eyal
Kenig, who have worked with us on developing and then using the amplitude equa-
tion for the treatment of large arrays of parametrically-driven Duffing resonators.
We wish to thank our experimental colleagues, Eyal Buks, Rassul Karabalin, In-
na Kozinsky, and Michael Roukes, for many fruitful interactions. We also wish to
thank Andrew Cleland, Harry Dankowicz, Oleg Kogan, Steve Shaw, and Kimberly
Turner for stimulating discussions. This work is funded by the US-Israel Binational
Science Foundation (BSF) through Grant No. 2004339, by the US National Science
Foundation (NSF) through Grant No. DMR-0314069, by the German-Israeli Foun-
dation (GIF) through Grant No. 981-185.14/2007, and by the Israeli Ministry of
Science.

References

1 Aldridge, J.S. and Cleland, A.N. (2005)
Noise-enabled precision measurements
of a duffing nanomechanical resonator.
Phys. Rev. Lett., 94, 156403.

2 Almog, R., Zaitsev, S., Shtempluck, O.,
and Buks, E. (2006) High intermod-
ulation gain in a micromechanical
duffing resonator. Appl. Phys. Lett., 88,
213509.

3 Almog, R., Zaitsev, S., Shtempluck, O.,
and Buks, E. (2007) Noise squeezing in a
nanomechanical duffing resonator. Phys.
Rev. Lett., 98, 078103.

4 Baskaran, R. and Turner, K.L. (2003)
Mechanical domain coupled mode para-
metric resonance and amplification in a
torsional mode micro electro mechanical
oscillator. J. Micromech. Microeng., 13,
701-707.

5 Blencowe, M.P. (2004) Quantum elec-
tromechanical systems. Phys. Rep., 395,
159-222.

6 Bromberg, Y. (2004) Response of non-
linear systems with many degrees of
freedom. Master’s thesis, Tel Aviv Univer-
sity.

7 Bromberg, Y., Cross, M.C., and Lifshitz,
R. (2006) Response of discrete nonlinear
systems with many degrees of freedom.
Phys. Rev. E, 73, 016214.

8 Buks, E. and Roukes, M.L. (2002) Electri-
cally tunable collective response in a cou-
pled micromechanical array. J. MEMS,
11, 802-807.

9 Buks, E. and Roukes, M.L. (2001) Metasta-
bility and the Casimir effect in microme-
chanical systems. Europhys. Lett., 54, 220.

263



References

10 Buks, E. and Yurke, B. (2006) Mass de-
tection with a nonlinear nanomechanical
resonator. Phys. Rev. E, 74, 046619.

11 Carr, D.W., Evoy, S., Sekaric, L., Craig-
head, H.G., and Parpia, ].M. (1999) Mea-
surement of mechanical resonance and
losses in nanometer scale silicon wires.
Appl. Phys. Lett., 75, 920-922.

12 Carr, D.W., Evoy, S., Sekaric, L., Craig-
head, H.G., and Parpia, ].M. (2000)
Parametric amplification in a torsion-
al microresonator. Appl. Phys. Lett., 77,
1545-1547.

13 Chen, P. (2002) Nonlinear wave dynamics
in Faraday instabilities. Phys. Rev. E, 65,
036308.

14 Chen, P. and Wu, K.-A. (2000) Subcriti-
cal bifurcations and nonlinear ballons in
Faraday waves. Phys. Rev. Lett., 85, 3813—
3816.

15 Cleland, A.N. and Geller, M.R. (2004) Su-
perconducting qubit storage and entan-
glement with nanomechanical resonators.
Phys. Rev. Lett., 93, 070501.

16 Cleland, A.N. (2003) Foundations of
Nanomechanics. Springer, Berlin.

17 Cleland, A.N. and Roukes, M.L. (1998)
A nanometer-scale mechanical electrome-
ter. Nature, 392, 160.

18 Cleland, A.N. and Roukes, M.L. (1999)
Nanoscale mechanics. In Proceedings of
the 24th International Conference on the
Physics of Semiconductors. World Scientif-
ic.

19 Craighead, H.G. (2000) Nanoelectrome-
chanical systems. Science, 290, 1532~
1535.

20 Cross, M.C. and Hohenberg, P.C. (1993)
Pattern formation outside of equillibrium.
Rev. Mod. Phys., 65, 851-1112.

21 Cross, M.C,, Rogers, J.L., Lifshitz, R., and
Zumdieck, A. (2006) Synchronization by
reactive coupling and nonlinear frequency
pulling. Phys. Rev. E, 73, 036205.

22 Cross, M.C., Zumdieck, A., Lifshitz, R.,
and Rogers, J.L. (2004) Synchronization
by nonlinear frequency pulling. Phys. Rev.
Lett., 93, 224101.

23 Deissler, R.J. and Brand, H.R. (1998)
Effect of nonlinear gradient terms on
breathing localized solutions in the quin-
tic complex Ginzburg-Landau equation.
Phys. Rev. Lett., 81, 3856-3859.

24 DeMartini, B.E., Rhoads, J.F., Turner,
K.L., Shaw, S.W., and Moehlis, J. (2007)
Linear and nonlinear tuning of paramet-
rically excited mems oscillators. J. MEMS,
16, 310-318.

25 Ekinci, K.L., Huang, X.M.H., and Roukes,
M.L. (2004) Ultrasensitive nanoelectrome-
chanical mass detection. Appl. Phys. Lett.,
84, 4469-4471.

26 Ekinci, K.L. and Roukes, M.L. (2005) Na-
noelectromechanical systems. Rev. Sci.
Instrum., 76, 061101.

27 Erbe, A., Krommer, H., Kraus, A., Blick,
R.H., Corso, G., and Richter, K. (2000)
Mechanical mixing in nonlinear nanome-
chanical resonators. Appl. Phys. Lett., 77,
3102-3104.

28 Evoy, S., Carr, D.W., Sekaric, L., Olkhovets,
A., Parpia, .M., and Craighead, H.G.
(1999) Nanofabrication and electrostatic
operation of single-crystal silicon paddle
oscillators. J. Appl. Phys., 86, 6072.

29 Ezerskil, A.B., Rabinovich, M.I., Reutov,
V.P., and Starobinets, I.M. (1986) Spa-
tiotemporal chaos in the parametric exci-
tation of capillary ripple. Zh. Eksp. Teor.
Fiz., 91, 2070-2083. [Sov. Phys. JETP 64,
1228 (1986)].

30 Feng, X.L,, He, R, Yang, P., and Roukes,
M.L. (2007) Very high frequency silicon
nanowire electromechanical resonators.
Nano Lett., 7, 1953-1959.

31 Hand, L.N. and Finch, ].D. (1998) Ana-
lytical Mechanics, chapter 10, Cambridge
Univ. Press, Cambridge.

32 Huang, X.M.H., Zorman, C.A., Mehre-
gany, M., and Roukes, M.L. (2003) Nano-
device motion at microwave frequencies.
Nature, 421, 496.

33 Husain, A., Hone, J., Postma, H.W.Ch.,
Huang, X.M.H., Drake, T., Barbic, M.,
Scherer, A., and Roukes, M.L. (2003)
Nanowire-based very-high-frequency elec-
tromechanical resonator. Appl. Phys. Lett.,
83, 1240-1242.

34 Ilic, B., Craighead, H.G., Krylov, S.,
Senaratne, W., Ober, C., and Neuzil,

P. (2004) Attogram detection using na-
noelectromechanical oscillators. J. Appl.
Phys., 95, 3694-3703.

35 Karabalin, R.B., Feng X.L., and Roukes

M.L. (2009) Parametric nanomechani-



cal amplification at very high frequency.
Nano Lett., 9, 3116-3123.

36 Katz, 1., Lifshitz, R., Retzker, A., and
Straub, R. (2008) Classical to quan-
tum transition of a driven nonlinear
nanomechanical resonator. New J. Phys.,
10, 125023.

37 Katz, 1., Retzker, A., Straub, R., and Lif-
shitz, R. (2007) Signatures for a classical
to quantum transition of a driven nonlin-
ear nanomechanical resonator. Phys. Rev.
Lett., 99, 040404.

38 Kenig, E., Lifshitz, R., and Cross, M.C.
(2007) Pattern selection in parametrically-
driven arrays of nonlinear micromechan-
ical or nanomechanical resonators. Phys.
Rev. E, 79, 026203.

39 Kenig, E., Malomed, B.A., Cross, M.C,,
and Lifshitz, R. (2009) Intrinsic localized
modes in parametrically-driven arrays of
nonlinear resonators. Phys. Rev. E, 80,
046202.

40 Kozinsky, I., Postma, H.W.Ch., Bargatin,
L., and Roukes, M.L. (2006) Tuning non-
linearity, dynamic range, and frequency
of nanomechanical resonators. Appl. Phys.
Lett., 88, 253101.

41 Kozinsky, 1., Postma, H.W.Ch., Ko-
gan, O., Husain, A., and Roukes, M.L.
(2007) Basins of attraction of a nonlin-
ear nanomechanical resonator. Phys. Rev.
Lett., 99, 207201.

42 Landau, L.D. and Lifshitz, E.M. (1976) Me-
chanics, Butterworth-Heinemann, Oxford,
3rd edition, §27.

43 Landau, L.D. and Lifshitz, E.M.

(1986) Theory of Elasticity, Butterworth-
Heinemann, Oxford, 3rd edition, §20 &
25.

44 Lifshitz, R. and Cross, M.C. (2003) Re-
sponse of parametrically driven nonlinear
coupled oscillators with application to
micromechanical and nanomechanical
resonator arrays. Phys. Rev. B, 67, 134302.

45 Masmanidis, S.C., Karabalin, R.B., 1.
De Vlaminck, Borghs, G., Freeman, M.R.,
and Roukes, M.L. (2007) Multifunctional
nanomechanical systems via tunably-
coupled piezoelectric actuation. Science,
317, 780-783.

46 Milner, S.T. (1991) Square patterns and
secondary instabilities in driven capillary
waves. J. Fluid Mech., 225, 81-100.

References

47 Moehlis, J. Private communication.

48 Peng, H.B., Chang, C.W,, Aloni, S.,
Yuzvinsky, T.D., and Zettl, A. (2006) Ul-
trahigh frequency nanotube resonators.
Phys. Rev. Lett., 97, 087203.

49 Postma, H.W.Ch., Kozinsky, I., Husain,
A., and Roukes, M.L. (2005) Dynamic
range of nanotube- and nanowire-based
electromechanical systems. Appl. Phys.
Lett., 86, 223105.

50 Reichenbach, R.B., Zalalutdinov, M.,

Aubin, K.L., Rand, R., Houston, B.H.,

Parpia, .M., and Craighead, H.G. (2005)

Third-order intermodulation in a mi-

cromechanical thermal mixer. . MEMS,

14, 1244-1252.

Rhoads, J.F., Shaw, S.W., and Turner,

K.L. (2006) The nonlinear response of

resonant microbeam systems with purely-

parametric electrostatic actuation. J. Mi-

cromech. Microeng., 16, 890-899.

52 Rhoads, J.F., Shaw, S.W., Turner, K.L.,
Moehlis, J., DeMartini, B.E., and Zhang,
W. (2006) Generalized parametric reso-
nance in electrostatically actuated micro-
electromechanical oscillators. J. Sound
Vib., 296, 797-829.

53 Riecke, H. (1990) Stable wave-number
kinks in parametrically excited standing
waves. Europhys. Lett., 11, 213-218.

54 Roukes, M.L. (2001) Nanoelectromechan-
ical systems face the future. Phys. World,
14, 25-31.

55 Roukes, M.L. (2001) Plenty of room in-
deed. Sci. Am., 285, 42—49.

56 Rugar, D., Budakian, R., Mamin, H.J., and
Chui, B.W. (2004) Single spin detection
by magnetic resonance force microscopy.
Nature, 430, 329-332.

57 Rugar, D. and Griitter, P. (1991) Me-
chanical parametric amplification and
thermomechanical noise squeezing. Phys.
Rev. Lett., 67, 699.

58 Sato, M., Hubbard, B.E., Sievers, A.].,
Ilic, B., and Craighead, H.G. (2004) Op-
tical manipulation of intrinsic localized
vibrational energy in cantilever arrays.
Europhys. Lett., 66, 318-323.

59 Sato, M., Hubbard, B.E., Sievers, A.].,
Ilic, B., Czaplewski, D.A., and Craighead,
H.G. (2003) Observation of locked in-
trinsic localized vibrational modes in a

5

put}

265



References

micromechanical oscillator array. Phys.
Rev. Lett., 90, 044102.

60 Sato, M., Hubbard, B.E., Sievers, A.].,
Ilic, B., Czaplewski, D.A., and Craighead,
H.G. (2003) Studies of intrinsic localized
vibrational modes in micromechanical
oscillator arrays. Chaos, 13, 702-715.

61 Sazonova, V., Yaish, Y., Ustiinel, H.,
Roundy, D., Arias, T.A., and McEuen,
P.L. (2004) A tunable carbon nanotube
electromechanical oscillator. Nature, 431,
284-287.

62 Scheible, D.V., Erbe, A., Blick, R.H,,
and Corso, G. (2002) Evidence of a
nanomechanical resonator being driv-
en into chaotic response via the ru-
elle-takens route. Appl. Phys. Lett., 81,
1884-18806.

63 Schwab, K.C., Henriksen, E.A., Worlock,
J.M., and Roukes, M.L. (2000) Measure-
ment of the quantum of thermal conduc-
tance. Nature, 404, 974-977.

64 Schwab, K.C. and Roukes, M.L. (2005)
Putting mechanics into quantum me-
chanics. Phys. Today, 58 (7), 36-42.

65 Strogatz, S.H. (1994) Nonlinear dynamics
and chaos, chapter 7, Addison-Wesley,
Reading MA.

66 Turner, K.L., Miller, S.A., Hartwell, P.G.,
MacDonald, N.C., Strogatz, S.H., and
Adams, S.G. (1998) Five parametric res-
onances in a microelectromechanical
system. Nature, 396, 149-152.

67 Yang, Y.T., Callegari, C., Feng, X.L., Ekinci,
K.L., and Roukes, M.L. (2006) Zeptogram-
scale nanomechanical mass sensing.
Nano Lett., 6, 583-586.

68 Yu, M.F., Wagner, G.J., Ruoff, R.S., and
Dyer, M.]. (2002) Realization of paramet-
ric resonances in a nanowire mechanical
system with nanomanipulation inside a
scanning electron microscope. Phys. Rev.
B, 66, 073406.

69 Yurke, B., Greywall, D.S., Pargellis,
AN., and Busch, P.A. (1995) Theory
of amplifier-noise evasion in an oscillator
employing a nonlinear resonator. Phys.
Rev. A, 51, 4211-4229.

70 Zaitsev, S., Almog, R., Shtempluck, O.,

and Buks, E. (2005) Nonlinear dynamics

in nanomechanical oscillators. Proceed-
ings of the 2005 International Conference
on MEMS,NANO and Smart Systems,

pp.- 387-391.

Zhang, W., Baskaran, R., and Turner,

K. (2003) Tuning the dynamic behavior

of parametric resonance in a microme-

chanical oscillator. Appl. Phys. Lett., 82,

130-132.

72 Zhang, W., Baskaran, R., and Turner, K.L.
(2002) Effect of cubic nonlinearity on
auto-parametrically amplified resonant
mems mass sensor. Sens. Actuators A,
102, 139-150.

7

]



9
Nonlinear Dynamics in Atomic Force Microscopy
and Its Control for Nanoparticle Manipulation

Kohei Yamasue and Takashi Hikihara

9.1
Introduction

Science and engineering at the nanoscale is currently one of the most consistently
advancing fields [1]. As a tool for directly accessing the nanoscale, scanning probe
microscopy (SPM) is now widely accepted [2]. In general, SPM utilizes a probe that
interacts with a local area of a sample surface. The probe is precisely located over
the area using a three dimensional nanopositioning mechanism. The probe and
its positioning technology are the fundamental basis of the SPM, which performs
many useful functions such as imaging, profiling, and manipulation of a sample
surface on the nanoscale [2, 3]. For example, high resolution imaging of sample
topography is achieved by recording this interaction as a function of lateral probe
position on the sample surface.

Among the members of the SPM family, atomic force microscopy (AFM), in-
vented by Binning et al. [4], plays a particularly important role [5, 6]. Since the
AFM detects a force interaction between a micromechanical probe and a sample
surface, AFM can image insulating samples as well as conducting and semicon-
ducting samples. In this point, AFM is often contrasted with scanning tunneling
microscopy (STM) [7], which is also a member of the SPM family. STM cannot
image insulating samples because surface imaging by the STM is based on the
detection of a tunneling current flowing between the probe and the surface. An-
other advantage is that AFM can be operated in various environments including
vacuum, air, and liquid. These advantages have opened new avenues to SPM appli-
cations in biology, polymer science, and organic electronics as well as traditional
areas of materials and surface sciences [5].

Of its various operating modes, dynamic mode AFM has been a flagship operat-
ing mode for nearly two decades. In the dynamic mode, the probe is oscillated at
or near its mechanical resonance. The interaction force is detected as a modulated
amplitude or frequency of the oscillation [8-10]. The force sensitivity is much im-
proved by using a probe with a higher quality factor. The important advantage of
the dynamic mode is that adhesion of the probe to sample surfaces is avoided by
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oscillating the probe. In addition, the mechanical damage to sample surfaces by a
lateral friction during a scan is significantly reduced in the dynamic mode as com-
pared to the traditional, previously developed contact mode. The dynamic mode
AFM has thus enabled the high resolution and non-destructive imaging of various
samples, including soft samples in liquid [11-16]. In addition, various schemes
have been devised for profiling of surface properties [17-19], manipulation of indi-
vidual atoms and molecules [20-22], and control of surface structures [23].

In this chapter, we focus on two topics related to nonlinear dynamics in dynamic
mode AFM. Both are not limited by the phenomenological analysis of nonlinear
vibrations in nonlinear systems. The first half of this chapter is devoted to nonlin-
ear probe dynamics and its control in dynamic mode AFM. The probe of dynamic
mode AFM is a vibrating micromechanical sensor that detects the force interaction
with sample surfaces. This probe-surface interaction is essentially nonlinear, and
therefore the nonlinear probe dynamics has recently been extensively studied due
to its close relation to imaging characteristics [24-28]. It has been emphasized that
the micromechanical probe exposed to an interaction can not be approximated as a
harmonic oscillator especially in the AM-AFM (Amplitude Modulation AFM), which
is a major operating mode in air and liquid [8, 9, 15, 16]. The AM-AFM, in fact,
exhibits various nonlinear phenomena including a chaotic oscillation, which non-
linear scientists have focused on for 50 years. Actually, existing and well developed
techniques for the analysis of nonlinear systems have been applied to some prob-
lems arising in the nonlinear dynamics in the AM-AFM [24-39]. Control strategies
for nonlinear systems can be also applied for improving and accelerating the sur-
face imaging. We describe the application of time-delayed feedback control, which
is a well known approach in the field of nonlinear dynamics to the stabilization of
chaotic oscillations [40]. The efficacy of time-delayed feedback control is success-
fully demonstrated for cantilever oscillation in the AM-AFM [41-43].

The second topic of this chapter is the manipulation of single atoms and
molecules, which is a current challenging topic of nanoscience. Recently, ma-
nipulation of single atoms and molecules has been experimentally achieved on
surfaces with use of the AFM in lateral as well as vertical processes [20-22]. The
lateral processes can transfer atoms and molecules parallel to the surface and ver-
tically between tip of probe and adatom on surface via vibrational excitation of the
target-substrate bond. The processes have been also studied theoretically [44—48]
and numerically [49]. The last half of this chapter is devoted to a theoretical consid-
eration of van der Waals molecular vibrational predissociation based on a T-shaped
model [50-54]. The model was introduced to describe a quantum mechanics that
governs the rates of vibrational predissociation of A-B—A triatomic molecules,
which are coupled Morse oscillators. Atoms and molecules attached on the materi-
al surface are bonded by a van der Waals potential, which is characterized by Morse
type atom-atom interaction potential. The dynamics of manipulated particles are
described by the fragmentation of the atom B from the coupling of A-A. Here, we
introduce a Hamiltonian of the triatomic molecules. The system is comprised of
coupled nonlinear oscillators. Assuming that the rotation and bending modes are
neglected, it is shown that the eigenfrequency decides the resonance and energy
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Figure 9.1 Principle of dynamic mode atomic force microscopy
with an optical lever type deflection sensor.

exchange. At high energy, the system possibly shows chaotic vibration. It gives the
probability of the classical dynamics of atoms and molecules. The fragmentation
of atoms from a surface is discussed based on the global phase structure. When
the perturbation of energy exceeds the critical value, the dynamics appears the
global behavior out of a single potential well. That is, the vibratory dissociation
can achieve the manipulation of nanoparticles. This inevitably captures the atom
dissociated from the material surface. The results show us possible manipulation
methods of nanoparticles in in situ conditions using AFM.

9.2
Operation of Dynamic Mode Atomic Force Microscopy

The operation of AFM is briefly introduced in this section. As shown in Figure 9.1,
the atomic force microscope in principle consists of several components. These
are a microfabricated cantilever that is used as a probe for detecting the interaction
force, an actuator for exciting cantilever oscillation (used in the dynamic mode),
a sensor for detecting the instantaneous deflection of the cantilever, and a three
dimensional positioning mechanism for precisely locating the probe over a sur-
face area. The cantilever has a sharp tip at its free end. The tip of the cantilever is
extremely sharp, having a typical radius of approximately 10 nm that is achieved
using microfabrication techniques. The positioning device is controlled so that the
cantilever tip is placed in close proximity to the sample surface one is going to ob-
serve. The tip then feels a force between it and the sample surface. The interaction
force is called the tip—sample interaction. The tip—sample interaction is on the order
of pico- to nanonewtons, but it is sufficient to modify the original cantilever dy-
namics via deflection or oscillation due to the small dimensions of the cantilever.
The cantilever therefore plays a role as a force sensor to detect the tiny tip-sample
interaction force. The deflection or oscillation of the cantilever is measured by the
optical lever method in the standard device configuration [55].

Assuming that the tip-sample interaction depends on the tip-sample distance,
the latter can be regulated at constant value by adjusting the height of the sample
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surface so that the cantilever dynamics are kept constant. The regulation is typical-
ly realized by a PI (proportional-integral) controller and this mechanism is often
called z-feedback. The surface topography is tracked during a raster scan of the sur-
face. The surface topography is constructed as a three dimensional image from a
recorded time series of a signal controlling the z-feedback mechanism. In the con-
tact mode, a cantilever is used without excitation and its deflection is detected for
estimating the tip-sample interaction.

The dynamic mode is an improvement introduced immediately after the inven-
tion of AFM. The cantilever in the dynamic mode is oscillated at or near its me-
chanical resonance frequency. Instead of detecting the cantilever deflection, the
shift of resonance frequency is detected in this mode, and the amount of the shift
depends on the mean tip-sample distance. The dynamic mode has two major oper-
ating modes called AM-AFM (Amplitude Modulation AFM) [8] and FM-AFM (Fre-
quency Modulation AFM) [10]. In these modes, the amplitude or frequency mod-
ulated by the tip-sample interactions are detected in order to estimate the shift
of resonance frequency. In AM-AFM, the cantilever oscillation is excited by ap-
plying an external periodic force. The cantilever in FM-AFM is self-excited using
an electronic feedback circuit. In both modes, the oscillation is measured using
a lock-in amplifier or a RMS-DC (Root-Mean-Square to Direct Current) convert-
er with bandpass filters. The force sensitivity of a cantilever is much improved
by increasing the quality factor of the cantilever. Adhesion to surface and destruc-
tion of samples are also avoided by using an oscillating cantilever. The height of
the sample surface can be precisely adjusted by a positioning device, such as tube
scanners.

9.3
Nonlinear Dynamics and Control of Cantilevers

9.3.1
Nonlinear Oscillation and Its Influence on Imaging

Initially, a cantilever subject to a tip-sample interaction was often approximated
as a harmonic oscillator. However, there has been growing interest in the nonlin-
ear dynamics of cantilevers and its influence on imaging [24-39]. In particular,
the AM-AFM or the tapping-mode AFM has been focused upon due to a strong
nonlinearity in an operating range. A great number of experimental, numerical,
and theoretical works have been performed in order to clarify the nonlinear dy-
namics of the AM-AFM. A bistable behavior occurs [56] and the resulting jumping
and hysteresis phenomena cause sudden and discontinuous transitions in imag-
ing characteristics [28]. The subharmonics and chaos of the cantilever oscillation
have also been predicted numerically and theoretically [30, 31, 34, 37], and they
have been demonstrated experimentally [32, 33, 36, 57]. It seems that the chaotic
oscillation is experimentally encountered when a soft cantilever is excited with a
large amplitude.
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Figure 9.2 Periodic and irregular oscillation of a cantilever in
AM-AFM [43]; (a) periodic, (b) irregular and non-periodic.

As an example, Figure 9.2 shows two contrasting oscillation states that have been
experimentally observed [43]. The sample was HOPG (Highly Oriented Pyrolytic
Graphite) and the imaged area was 500 nm squared. The measurement was per-
formed in air and a magnetically coated cantilever (Agilent, Type I MAC levers C,
nominal spring constant and resonance frequency: 0.6 N/m and 75 kHz, respec-
tively) was excited with a large amplitude. A similar result was reported by Hu and
Raman in Ref. [36], although they performed experiments in a nitrogen atmosphere
in order to eliminate the effect of capillary forces due to the water layer on the sur-
face. When the tip—sample distance was set such that the oscillation amplitude
was decreased by 30% compared to the free oscillation amplitude, the oscillation
remained periodic. A further decrease of the tip-sample distance, however, made
the periodic oscillation unstable and generated an irregular and nonperiodic oscil-
lation. Figure 9.2b shows an oscillation observed when the oscillation amplitude
was reduced by 80% compared to the free amplitude. The resolution of images
depends on the oscillation state. Figure 9.3 compares an image from the irregular
state (Figure 9.3D) to the periodic one (Figure 9.3a). It can be easily seen that the
resolution was decreased and the image was much noisier due to the irregular and
nonperiodic cantilever oscillations. The z-feedback did not accurately track the sur-
face topography during the raster scan of the surface. The surface of HOPG should
be flat except for the large step on the surface. However, Figure 9.3 clearly shows
the loss of the original flatness between the steps.

The above experimental results suggest that the resolution of the AM-AFM is
reduced and the operating range may be limited due to undesirable irregular and
nonperiodic oscillations. In order to overcome this limitation and extend the oper-
ating range, the application of control technology is a good candidate for improv-
ing the performance of the AM-AFM. In this context, some motivated research
groups have already proposed application of control techniques to cantilever oscil-
lation [30, 31, 58)]. The authors have also proposed the application of time-delayed
feedback control [40], which is a well-known approach that has been used for stabi-
lizing unstable periodic orbits embedded in chaotic attractors [59]. In the following
sections we provide an overview of our recent results on this topic.
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(@) (b

Figure 9.3 Comparison of images by oscillation states;
(a) periodic; (b) irregular and non-periodic.

9.3.2
Model of a Cantilever under Tip—Sample Interaction

When the first mode oscillation of a cantilever is considered, the mathematical
model of the cantilever is given by

i3] Y
S1¥ = +bu, (9.1)
dt |y —wix — Ly + f(x,y,Z) + Acos wt

Q

where x and y denote the instantaneous deflection and the velocity of the tip, re-
spectively. A and w are the amplitude and frequency of the sinusoidal excitation
force, respectively. The cantilever has a fundamental resonance frequency at wg
and its quality factor is Q. b denotes a two dimensional constant vector describing
coupling between the control input and the state variables.

Assuming the tip-sample interaction force is described by the Lennard-Jones
potential, f(x, y, Z) is expressed as [31]

2 6D 2
Dwj o0°Dwj

Sy 2) = =7 T sz

(9.2)

D denotes a constant related to the Hamaker constant, tip radius, and stiffness
of the cantilever. o denotes the diameter of each molecule organizing the tip and
the sample. The first and the second terms denote a long-range attractive force
and a short-range repulsive force, respectively. The existence of a chaotic invariant
set was proven by applying the Melnikov method to this model [30, 31]. A chaotic
cantilever oscillation was subsequently presented numerically based on the same
model [34]. It should be mentioned that there are a variety of models that describe
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the cantilever dynamics [25-32, 35, 37-39]. For example, the DMT (Dejarguin—
Muller-Toporov) theory has been employed for modeling [27, 28, 32, 35, 39]. An
impact oscillator can also be a simple model for the AM-AFM [25, 37]. The effects
of a capillary force due to a water layer on the surface also has a strong effect on
cantilever dynamics when operating the AM-AFM in air [25, 35]. A neck of water
meniscus between the tip and the sample applies a hysteretic force to a cantilever.

9.3.3
Application of Time-Delayed Feedback Control

Time-delayed feedback control was proposed by Pyragas in 1992 [40] and is now
well known for its ability to stabilize unstable periodic orbits in chaotic attrac-
tors [59]. As shown in Figure 9.4, this continuous control method is a kind of
feedback control that exploits a past state or output of a nonlinear system for neg-
ative feedback, instead of giving a external reference signal. In his seminal paper,
Pyragas showed numerically that the stability of a target unstable periodic orbit can
be exclusively changed by choosing an appropriate feedback gain K. This occurs if
the time difference 7, namely the delay time, between the two outputs is precisely
adjusted to the period of the target orbit [40]. Time-delayed feedback control is an
invasive control method in this sense and the stability is maintained by the small
perturbation ideally converging to the null signal.

The strategy of using an earlier signal has allowed us to readily implement the
control method in a real system without identifying the model and parameters of
the system. In particular, no complicated time series analysis is needed for recon-
struction of underlying dynamics. The simple control law has also enabled appli-
cations to chaotic systems operating at a high frequency [60-62]. The number of
applications has thus increased since the publication of Pyragas’s paper. This area
of investigation now includes electronic circuits [60, 61], laser systems [62], magne-
toelastic oscillators [63], chemical reactions [64], and gas charge systems [65].

As a novel application to nanosystems, the authors have proposed the stabiliza-
tion of chaotic cantilever oscillations using time-delayed feedback control [41]. As-
suming that the instantaneous velocity of cantilever oscillations are measured as
an output of the nonlinear system (9.1), the generation of the control signal u(t) is
described by [40]:

u(t) = K [y(t— 1) y(t)]. 93)
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This implementation is associated with the cantilever model (9.1) by putting b =
[0 1]" into (9.1). The delay time 7 is adjusted to the period of the excitation sig-
nal in order to stabilize an orbit with a period equal to the period of the excitation
signal. The control input then converges to the null signal if the stabilization of
a target unstable periodic orbit is completed. The target orbit is an unstable peri-
odic orbit with a period equal to the driving signal. The authors have numerically
confirmed control performance in both homoclinic and grazing regimes, and have
also presented an application to acceleration of the scanning rate [41, 42]. The in-
vasive control method is significant for dynamic mode AFM because the stabilized
orbit should depend on just the pure tip-sample interaction. This is an essential
difference from Q-control, which has created controversy concerning the effects of
feedback control on measurements [66].

9.3.4
Experimental Setup for Control of Nonlinear Cantilever Dynamics

We have numerically confirmed the possibility of the application of time-delayed
feedback control to the AM-AFM in previous studies [41, 42]. The next step is
the implementation of a controller to an actual device. This section provides an
overview of the circuit implementation of time-delayed feedback control especially
designed for cantilevers in the AM-AFM.

9.3.4.1 Circuit Implement of Time-Delayed Feedback Control

Fast feedback electronics is required to achieve time-delayed feedback control of
cantilever oscillation because a cantilever in the AM-AFM is excited at high fre-
quencies, ranging from several tens to a few hundreds kilohertz. In addition, the
delay time and feedback gain must be flexibly adjusted to appropriate values in
order to optimize control performance. In this context, digital facilities can be
effectively used for making a flexible controller to examine the control perfor-
mance.

We made a controller that is schematically illustrated in Figure 9.5 [43]. The con-
troller is composed of a digital delay line that retards the signal and a summing
amplifier that generates the error signal between the current and retarded output
signal. The digital delay line is constructed using an analog to digital (A/D) convert-
er, first-in-first-out (FIFO) memories, and a digital to analog (D/A) converter. The
signal is sequentially stored in the FIFO memories as digital data through the A/D
converter and, after a given constant time has elapsed, the digital data are restored
as an analog signal through the D/A converter. The signal is sampled at 40 MHz
and the resolution is 12 bits. A digital delay line has also been employed in chaos
control of a magnetoelastic beam [63] and a gas charge system [65], although the
required frequency is much higher in the present case. The instantaneous velocity
is estimated by an elemental differentiation circuit using an operational amplifi-
er. The error signal is amplified with the summing amplifier. The amplified error
signal, or control signal, is added to a sinusoidal signal for cantilever excitation.
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9.3.4.2 Frequency Response of Magnetic Actuators and Deflection Sensors

The numerical results were successful, showing that the time-delayed feedback
control has an ability to stabilize the chaotic oscillation of a cantilever, as shown
in [41, 42]. In reality, however, there are many factors seriously limiting the control
performance.

In our numerical experiment we assumed the ideal conditions for the charac-
teristics of actuator and sensor of the cantilever oscillation. In reality, however, the
deflection sensors and dither piezo actuators often used in AFM have their own dy-
namics. An emphasis should be placed on the frequency characteristics of the ac-
tual devices. In the current standard device configuration of dynamic mode AFM,
the most critical characteristics for cantilevers are those of the actuators. One can
observe many spurious peaks if one actuates the cantilever with a standard piezo-
electric actuator. This implies the presence of a large phase delay in the feedback
loop and therefore one has to improve the frequency characteristics before applying
the controller.

9.3.5
Experimental Demonstration of the Stabilization of Cantilever Oscillations

Our controller is implemented for a commercial AFM (SII, SPA-300/NanoNavi
Station), as shown in Figure 9.6. A small solenoid coil is placed beneath a sam-
ple stage for excitation of a magnetically coated cantilever (Agilent, Type I MAC
levers C, nominal spring constant and resonance frequency: 0.6 N/m and 75 kHz,
respectively). A home-built voltage current converter was constructed because the
magnetic force generated by the solenoid coil is proportional to the applied current.
An additional phase delay of 1t/2 therefore arises if the control input generated as a
voltage signal is directly applied to the solenoid coil. The home-built voltage-current
converter has flat frequency characteristics of amplitude and phase at sufficiently

275



276 | 9 Nonlinear Dynamics in Atomic Force Microscopy

Figure 9.6 Photograph showing a home-built deflection sensor
and the wiring for the magnetic coil beneath the sample holder.

high frequencies. A home-built deflection sensor was also employed to decrease
phase delay in the feedback loop. The implemented control system allows us to
experimentally investigate the ability of TDFC.

The features of the control method enable us to implement it without identifica-
tion of the parameters of each cantilever. Parameters such as the spring constant
are only given as nominal values and are often quite different from the true values.
No analysis on the nonlinear dynamics is needed and only the AM-AFM driving
frequency must be known in order to adjust the delay time. The feasibility of high
frequency oscillation is also an important advance of time-delayed feedback con-
trol [61]. Cantilevers in dynamic mode AFM are typically vibrated around 10 kHz
to 300 kHz. From the viewpoint of measurement, it is worth noting that no param-
eter of a cantilever is modified after control is achieved. The stabilized cantilever
oscillation under control depends purely on the tip—sample interaction force in the
steady state. This is essentially different from a control method introducing damp-
ing to the oscillation, as proposed in [30, 31]. The control method stabilizing the
intrinsic orbit of the system should thus be developed from the viewpoint of mea-
surement.

An experimental result is shown in Figure 9.7 [43]. As shown in Figure 9.7a,
an irregular and nonperiodic oscillation was observed in close proximity to the
sample surface. Figure 9.7b shows the stabilization of the oscillation achieved after
control input was activated. It was confirmed that the control input converged to
nearly zero volts. These facts suggest that an unstable periodic orbit is successfully
stabilized by adding a small perturbation to the excitation signal.

In this section, we have reviewed recent research topics on nonlinear cantilever
dynamics and their control using time-delayed feedback. The scheme of controlling
chaos was utilized for the stabilization of nonlinear dynamics into the embedded
states. The improvement of a limited control performance is currently an ongoing
work. Nevertheless, this is the first implementation of the chaos control method
to a real device, as far as we know. The stabilization of irregular and nonperiodic
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Figure 9.7 Stabilization of irregular oscillations [43]; (a) without control, (b) with control.

oscillations is effective for the z-feedback to accurately track the surface topogra-
phy, which then improves the image resolution. The stabilized periodic oscillation
retains the pure dynamics of the original system. The controlled dynamics should
be a probe for detecting the nonlinear force interaction at the nanoscale.

9.4
Manipulation of Single Atoms at Material Surfaces

In this section we go down to the dynamics of single atoms, which can be accessed
using dynamic mode AFM. The dynamics of single atoms is formalized based on
classical mechanics using the Hamiltonian. We first introduce a model of atom-

ic and molecular alignment for estimating fragmentation of atoms from surface
bonds.

9.4.1
Model of Single Atoms and Molecules

We now focus on the dynamics of single atoms and molecules attached to material
surfaces at low temperatures and vacuum conditions. As depicted in Figure 9.8,
we assume that single atoms or molecules at a surface (B) are bonding to quadri-
atoms (A). Models of molecular vibrational fragmentation have been discussed for
T-shaped structures with van der Waals potentials. At the surface, we assume a
pyramid structure of atoms at steady state. In pyramid shape bonding, the rotation
and bending modes disappear. Then the DOFs (degrees of freedom) of B are re-
stricted to the direction vertical to the plane in which the rectangle formed by A
lies. Hereafter, the system can be modeled by a T-shaped structure with diagonal
atoms A and B without rotational dynamics.

The Morse interaction potential limits the distance of the interaction to a short
range. In this region, the atoms are called Velet neighbors [67]. The distance be-
tween the atoms A is depicted as V2 Q, and the distance between B and center O
of the A-plane as ¢, which is also on the axis. The distance between A and O then
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Figure 9.8 Atomic and molecular alignment at material surfaces.
becomes Q, which is perpendicular to the g-axis. Each momentum is given by P

and p. The Hamiltonian can be written as

PZ pZ
H = o T 3 W(Q 0+ Vi(Q), (04)

where the angle between the axis of the A-plane and the vector from the center of
mass to B is restricted at the rectangle. Then we neglect the kinetics of angular
motion. Here ma and mp are the masses of A and B, respectively. m = m /2 is the
reduced mass of A and u = 2mpmg/(ma + 2myg) the reduced mass of the whole
system. The potentials are given as [53]

Vo(Q, 9) = Wo(Q) + Wo(q) ,
where
Wo(Q) = Doa (e—ZﬁOA(Q—Qo) _ ze—ﬁOA(Q—Qo)),

Wo(q) = Dog (e_zﬁ‘m(q_qo) -2 e_ﬁOB(q—qo)) )
and
Vi(Q, q) = Wi(r4) + Wi(r—),
where
Wi(ry) = Dy (e—Zﬁl(rj:—H:o) _ Ze_ﬁl(':t_rio)) )

V; is the expansion of the van der Waals potential in the Taylor series around the
equilibrium point. r4 is the distance between B and one of the atoms A. ris a
function of Q and g. The equilibrium point is given by ry. Dos, Dog, and D; depict
the dissociation energies. Boa, Bop, and 8, denote the range parameters. The shape
of the Morse potential is shown in Figure 9.9.
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Figure 9.9 Schematic Morse potential with an equilibrium point at 1.0.

Assuming 2-dimensional symmetry for the quadri-atoms A, the potential func-
tion around the single atom B possesses an axial symmetric property at steady state.
The system then seems to be equivalent to a T-shaped model. It implies that the
fragmentation is limited in the direction vertical to the plane A.

Equation 9.4 represents the model system Hamiltonian in coordinates (Q, g,
P, p). In classical dynamics, we have the relation

. J0H

Q=75

q_aH
ap ’

L om (9.5)
Q'

. 0H

P——W-

The system shown in (9.5) is linearized through a Taylor expansion around the
equilibrium point for Q and g.

9.4.2
Analysis Based on an Action-Angle Formulation [52]

Under the dissipative or excited state, the perturbed Hamiltonian is given as

H=H+¢H, (9.6)
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where ¢ is a small parameter. H; includes V;(Q, q). The zero order component of
the Hamiltonian is given by

pZ pZ
Hy=—+4+—+ W, W . 9.7
0 2m+2u+ 0o(Q) + Wo(q) 97)
We can rewrite Hj using an action([)-angle(6) form. Based on [52], the relationship
becomes
Ho = Ea(I4) + Eg(I5) - (9.8)

I and Ip are action variables that are obtained by an action integral. The potential
energy of the Morse oscillators Ex and Ep are defined as

EA(IA) = (IA + %) wpA— (IA + %)2 (UZA/4D()A — D()A ,
Eg (Is) = (I + ) wp — (Is + 1)’ @2 /4 Dog — Dog ,
where
2 172
wa = (2Doafga/m) ",
wp = (ZDOBﬁ(Z)B/‘M)l/Z .

Doa and Dgp are defined by related Morse potentials. The simple derivatives of Ex
and Eg give the zero order frequencies in each motion along Q and q. These are

Op = —wa + (21a + 1)w%/4Dos = Qa ,

. 9.9
0}3 = —wsp + (ZIB + 1)60]23/4D()B = 'QB . ( )

The energy at which the atom B is separated at infinity depends on Dyg. The exter-
nal energy input for fragmentation is due to the boundary of the trapped motion
of H. The phase structure is schematically described in Figure 9.10.

The maximum values of I and I are obtained from (9.7) [68].

1 2D
TAmax = _E + wOA ’
A
9.10
1  2Dgp ( )
Igmax = _E + . .
B
QA: 0 Dissociation B
IA IB
X
O 05

)

fH’O Energy limit of bonding

Figure 9.10 Phase portrait of the Hamiltonian.
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These are also the limits of the actions for the T-shaped structures in the Hamil-
tonian. That is, the external energy input to the system can dissociate bonding
between atoms A and B.

9.4.3
Dynamics of Single Atoms Induced by Probes

One of the important topics of nanotechnology is the manipulation of single atoms
at the material surface. We have already investigated the dynamics of single atoms,
which can dissociate from material surfaces. Here we will discuss a mathemati-
cal formulation of vibratory fragmentation of single atoms by probes based on a
perturbed Hamiltonian system.

The manipulation of single atoms has been achieved by STM [69-71] and
AFM [20-22]. The schematic structure is described in Figure 9.11.

The manipulation brings the energy exchange between an atom bonding to sur-
face and probe. The manipulation of atoms is governed by the probability of dis-
sociation of atomic bonds. However, the dynamics and probabilities are not well
understood. If the probe is rigid or consists of heavy atoms with strong bonds to
the bulk, the dynamics are simply modeled by a T-shaped configuration of atoms
and molecules at surface. Then, the vibration of the probe gives us an external
energy input to the original Hamiltonian system.

The dynamics of single atoms that are manipulated by a probe are explained
in relation to the bonds in a T-shaped structure. The nonlinear resonances under
external excitation are related to energy transfer between modes and external vi-

Probe Tip

c Foremost atom
B Target
[
A
Surface

Figure 9.11 Manipulation of single atoms by a probe.
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Perturbation
Ho «—— AH

Vibratory fragmentation B

Tip Atom

Mixed region of stochastic and ~ Manipulation

regular motion

Figure 9.12 Phase portrait of a perturbed Hamiltonian system.

brations. Moreover, the limit of resonance confronts the appearance of instability
depending on the nonlinearity. On the other hand, we know that there is a chaot-
ic region around the resonant boundary [51-53]. Under the external Hamiltonian
perturbation, A H might generate vibratory fragmentation and manipulation of
atoms as shown in Figure 9.12. Therefore, the instability of the resonance around
the boundary is strongly related to the global phase structure. When the system
becomes dissipative, the complexity is due to the intersection of stable and unsta-
ble manifolds. Bonding instabilities are also reported between atoms at material
surfaces and the foremost tips of the probes [72]. The instability causes the abrupt
jump of dynamics. This might be related to the uncertainty in the capture and
release of atoms.

In the classical treatment, the probability of fragmentation is defined by the rate
of initial conditions from which trajectories escape from the region surrounded by
a homoclinic orbit. Consider initial conditions in the space (Q;, q;, P;, p ), where
i and j show the indices of a meshed initial condition space. Their Hamiltonian
trajectories are generated by

2

P+
ﬁ + Wo(Qi) = Ea(la),

2

pj
— %% ) = Ep(Ig) .
u + Wo(q;) (Is)

(9.11)

These equations possibly show the stochastic region in initial condition space [52].
The dissipation of the coupled Morse oscillators loosens the homoclinic orbit cor-
responding to the energy limit of bonding. At the same time, homoclinic intersec-
tion and folded manifolds appear in the global phase structure. In such a case, the
probability is strongly governed by the structure in spite of the uncertainty of the
Hamiltonian system [53].

When probe forcing vibrates single atoms, the dynamics can be approximated
by (9.5) with dissipation and forcing terms. To achieve vibratory fragmentation, the
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external energy must satisfy
AEp > Ep(Ipmax) — E(Ipo) , (9.12)

where I is the initial action value. At the same time, the atom B must be captured
in the bond of the probe tip. As for the foremost atom (C) of tip, the situation co-
incides with the energy exchange between A-B and B-C in the bond A-B-C. After
the fragmentation of the bond A-B, the atom B generates the new bonding B-C. In
this process, the dissipation works for the stabilization of the dynamics. As men-
tioned above, chaotic dynamics cannot be avoided between release and capture.
The manipulation is then governed by the uncertainty of the dynamics.

9.4.4
Control of Manipulation

The certainty of manipulation is completely affected by the nonlinear dynamics
between the target atoms and the tips from the viewpoint of classical mechanics.
If the cantilever tip is apart from the material surface as in the case of dynamic
mode AFM, quantum effects seem to be small. We occasionally encounter the idea
that the uncertainty is caused by quantum mechanics and thermal dynamics in
the system. However, as dynamic mode AFM does not take place at the material
surface, we should be careful to formalize the dynamics.

In the realistic setups, the manipulation process lies in the interaction by multi
atoms around the surface and cantilever tip. The simulation show us the possibili-
ty of manipulation for several conditions and parameters. Here we show a criteria
of energy which can dissociate a single atom bonded to surface atoms. The per-
turbation to atoms through AFM can change the energy level of target atoms. The
possible control of dissociation lies in the tuning resonance conditions between
the cantilever tips and the coupling frequencies in atomic bonding. The frequency
must be low and in an acoustic mode. Then the interaction by AFM has a possibil-
ity to control the dissociation in the system. The Further research on this topic is
now underway.

9.5
Concluding Remarks

This chapter discussed two topics: (1) the nonlinear cantilever dynamics in dynam-
ic mode AFM and stabilization of chaotic vibrations for imaging exceeding non-
linear characteristics, and (2) the possibility for manipulating nanoparticles from
a material surface through AFM interaction. Both topics relate to the control of
AFM cantilevers, but the approaches are completely opposite. The top—down ap-
proach restricts the perturbation by nonlinearity between the cantilever tip and
material surface at the van der Waals force level. The bottom—up approach gives the
perturbation to the bond between atoms through AFM interaction. The top—down
approach was begun several years ago from research in nonlinear dynamics, and
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now the results have been confirmed experimentally and its effectiveness has been
demonstrated. The bottom-up theoretical discussion is still far from experimental
verification. However, the uncertainty caused by nonlinearities can be controlled
through the new well developed control methods and control system designs. We
now expect to approach the manipulation of atoms at the limit of classical mechan-
ics with greater control. This control can restrict the nonlinear uncertainty until
the appearance of quantum or thermal uncertainty in the system. These are our
current ongoing research topics.
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10
Classical Correlations and Quantum Interference
in Ballistic Conductors

Daniel Waltner and Klaus Richter

10.1
Introduction: Quantum Transport through Chaotic Conductors

Among the most important properties characterizing an electronic nanosystem is
its electrical conductance behavior. Therefore, gaining knowledge on charge trans-
port mechanisms, in particular when shrinking conductors from macroscopic
sizes down to molecular-sized wires or atomic point contacts, has been the focus of
experimental and theoretical research throughout the last decade. Such a reduction
in size and spatial dimensionality goes along with a crossover from charge flow
in the macroscopic bulk, well described by Ohm’s law, to distinct quantum effects
in the limit of microscopic or atomistic wires. Nanoconductors in the crossover
regime, often referred to as mesoscopic, frequently exhibit a coexistence of both
classical remnants of bulk features combined with signatures from wave interfer-
ence. Such quantum effects usually require low temperatures where coherence of
the electronic wave functions is retained up to micron scales. This has lead to the
observation of various quantum interference phenomena, for example, quantized
steps in the point contact conductance or the Aharonov—Bohm effect and universal
conductance fluctuations.

Nonlinear effects can enter into transport through mesoscopic or nanosystems
in two ways. First, as nonlinear -V characteristics and charge flow far from equi-
librium for large enough voltages. Second, in the limit of linear response to an
applied electric field, the intrinsic nonlinear classical dynamics of the unperturbed
conductor can govern its transport properties. In this chapter, we focus on the lat-
ter case which is particularly interesting for mesoscopic conductors because the
nonlinear charge carrier dynamics can influence both the classical and, in a more
subtle way, the quantum transport phenomena.

Initially, disordered metals with underlying diffusive charge carrier motion in
mesoscopic matter were focused on. However here, we address ballistic nano- or
mesoscopic conductors where impurity scattering is suppressed. The most promi-
nent ballistic systems are nanostructures built from high-mobility semiconduc-
tor heterostructures where electrons are confined to two-dimensional, billiard-type
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t=25

Figure 10.1 Quantum mechanical wave packet launched into

a mesoscopic cavity with the geometry of a “desymmetrized
diamond billiard”. The wave packet evolution is monitored at
times t = 1,2, 3,4, and 25, in units of the average time between
collisions with the walls of a corresponding classical particle.
(Courtesy of A. Goussev).

cavities of controllable geometry. Though, such systems are also realized as atom
optics billiards or through wave scattering as optical, microwave, or acoustic meso-
scopic resonators [1].

The quantum dynamics of a single particle in such a geometry is illustrated in
Figure 10.1 showing snapshots of a wave packet after multiples of the average clas-
sical time between bounces off the billiard walls. The quantum evolution in such a
mesoscopic geometry, with corresponding chaotic classical dynamics, is character-
ized by two main features: The rapid transition from wave packet motion roughly
following the path of a classical particle to random wave interference at larger times
and, second, the emergence of wave functions of complex morphology with wave
lengths much shorter than the system size. The latter can be used to further specify
mesoscopic matter, that is, quantum coherent systems where the smallest (quan-
tum) length scale, the de Broglie wave length or Fermi wave length A5 in electronic
conductors, is much smaller than the system size £. Therefore, 1/(kgL) is a small
parameter in terms of the Fermi momentum ky = 2m/Ag, though not fully negli-
gible as in the case of macroscopic systems.

Such ballistic mesoscopic systems are ideal tools for studying the connection
between (chaotic) classical dynamics and wave interference. Presumably, semiclas-
sical techniques provide this link in the most direct way. Modern semiclassical
theory is based on trace formulas, sums over Fourier-type components associated
with classical trajectories. Analogous to the famous Gutzwiller trace formula for the
density of states [2], corresponding expressions for quantum transport in the linear
response regime exist. There, semiclassical expressions for the conductance have
been obtained within the framework of the Landauer—Biittiker approach, relating
conductance to quantum transmission in nanostructures.

Following the early pioneering semiclassical work by Miller [3] for molecular
reactions and later by Bliimel and Smilansky [4] for quantum chaotic scattering,
major advances were made in the context of mesoscopic conductance in the early
nineties by Baranger, Jalabert and Stone [5, 6]. All these semiclassical approaches



10.2 Semiclassical Limit of the Landauer Transport Approach

were based on and limited by the so-called diagonal approximation. While most of
the features of experimental and numerical magneto-conductance profiles could be
well explained qualitatively on the level of the diagonal approximation, it was not
current conserving and thus failed to give correct quantitative predictions for the
quantum transmission. This was solved about ten years later when an approach
was devised to account for off-diagonal contributions to the semiclassical conduc-
tance [7], thereby achieving unitarity reflected in (average) current conservation,
and furthermore, agreement with existing predictions from random matrix theory
(RMT). The applicability of RMT to closed chaotic mesoscopic systems was con-
jectured after numerical simulations in [8]. Therefore, it was also expected to be
applicable to open systems.

Semiclassical ballistic transport on the level of the diagonal approximation was
reviewed in detail in [9-11]. In this chapter, we focus on the recent progress be-
yond the diagonal approximation. This serves as a model case which illustrates
how chaotic nonlinear dynamics can govern quantum properties at nanoscales.

10.2
Semiclassical Limit of the Landauer Transport Approach

The Landauer formalism [12], providing a link between the quantum transmission
and conductance, has proved to be an appropriate framework to address phase-
coherent transport through nanosystems. Consider a sample attached to two leads
of width W and W, that support, respectively, N; and N, current carrying trans-
verse modes at (Fermi-)energy Ep. For such a two-terminal setup, the conductance
reads at very low temperatures [12]

2 &2 N N
G(Er) = go o T(Fr) = gapm D D ltwm(E0)” (10.1)
m=1n=1
with Ny = Wi+/2mEg/(hmn) and an analogous relation for N,. Here, g, = 2 ac-
counts for spin degeneracy, and the t,,,(E) are transmission amplitudes between
incoming channels m and outgoing channels »n in the leads at energy E. They can
be expressed in terms of the projections of the Green function of the scattering
region onto the transverse modes ¢ ,(y’) and ¢, (y) in the two leads [13]

nlB) = =it [ & [ Aygi)omnGE v myi ). (102)

Here x and x’, respectively, denote the direction along the leads and v, v,,, the
corresponding longitudinal velocities. The integrals in (10.2) are taken over the
cross sections of the (straight) leads at the entrance and the exit.

Figure 10.2 shows the quantum transmission, numerically obtained from (10.2),
for a “graphene billiard” [14], fabricated by cutting a cavity out of a two-dimensional
graphene flake, a monoatomic layer of carbon atoms arranged in a honeycomb lat-
tice. Two major quantum features are visible: (i) distinct “ballistic conductance fluc-
tuations” as a function of energy. (ii) When subject to an additional perpendicular
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Figure 10.2 Total quantum transmission In (b), the straight solid and dashed line de-
(as a function of energy E, in (b) in units note the averaged transmission at zero mag-
of the channel number in the leads of width netic field and a magnetic field corresponding
Wy, = W, = W) for transport through a toaflux ¢ = 1.6¢¢ with the flux quantum
phase-coherent graphene-based quantum dot,  ¢o = hc/e. The difference marks the weak
see inset. The fluctuating line in (a) is the full localization correction (from [14]).

quantum transmission at zero magnetic field.

magnetic field B with magnetic flux ¢, the average transmission (straight dashed
line in Figure 10.2b) shows a small positive offset compared to the average trans-
mission for B = 0 (solid line). This reduction of the average conductance at zero
magnetic field reflects a weak localization effect [15]. Its origin is non-classical and
due to wave interference.

Here, we focus on this ballistic weak localization effect and present its semiclas-
sical derivation for conductors with classically chaotic analogue. The semiclassical
approximation enters in two steps. First, we replace G(x’,y’, x, y; E) in (10.2) by
the semiclassical Green function (in two dimensions) [2]:

G*(,r; E) = W Xl: Dy(r, 1) exp (%St 