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XVII

Preface

Nanotechnology has rapidly developed in recent years, making it possible to en-
gineer mechanical, optical and electronic devices that are the size of only a few
hundred atomic diameters. The equations of motion of such nanoscopic systems
are generically nonlinear and frequently operate in a regime where a linear approx-
imation is not justified. The comprehension of nonlinear dynamical processes in
nanosystems is a new field of research that is certainly of considerable technologi-
cal importance.

Miniaturization leads to new effects that radically change the dynamical prop-
erties. Thus, nanoscopic systems do not operate in the same way as their macro-
scopic counterparts. In particular, scaling effects, stochasticity, and quantum effects
distinguish nanosystems from macroscopic systems. Scaling the size of a physical
system changes the dominant forces, for example, macroscopic systems are fre-
quently dominated by bulk effects that are proportional to mass. In contrast, sur-
face effects such as adhesion and surface tension add new sources of nonlinearity
in small systems. Stochasticity of nanoscopic devices is caused by thermal motion
at the atomic level. Nanosystems and their environment form a high-dimensional
chaotic system by the strong nonlinearity of interatomic forces. By their nature
as averages, thermodynamic laws cannot be directly applied to systems that are so
small that the motion of single atoms is relevant. Quantum mechanics enters macro-
scopic physics via large ensemble averages, while nanoscopic devices can directly
achieve quantum states.

These effects are both an impediment and an opportunity for applications. On
one hand, devices may not work when they are simply scaled down, for example, a
miniaturized electric motor may be locked by adhesive forces and can be randomly
forced by thermal motion. On the other hand, nanosystems can perform functions
which cannot be achieved with larger devices. Current research is increasingly con-
cerned with two fundamental objectives The first is the analysis of nonlinear dynam-
ical effects in nanosystems. As it turns out, nonlinear effects cannot be suppressed
in many nanoscopic applications, and indeed, they offer new opportunities in en-
gineering. Control of nonlinear nanosystems is therefore the fundamental task for
applications.

This book introduces the crucial fields of nonlinear dynamics of nanosystems.
The topics cover a wide range of current research in this field. It includes 15 re-
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XVIII Preface

views organized in the five parts: Fluctuations, Surface effects, Nanoelectromechanics,
Nanoelectronics, and Optic-electronic coupling.

Part 1: Fluctuations

The chapters by Gaspard and by Evans, Williams, and Searles survey the extreme-
ly important recent generalizations of the second law of thermodynamics to a
group of theorems that are significant for such small systems. Gaspard treats
the statistical thermodynamics of nonequilibrium nanosystems with mechanical,
mechanochemical, and chemical applications. Evans, Williams and Searles present
the fluctuation theorem, the nonequilibrium work relation and the dissipation the-
orem. Regarding applications, randomness seems to impede the directional mo-
tion of nanosystems. The chapter by Grifoni introduces the theoretical framework
of Brownian motors, that is, engines that make use of thermal noise and quantum
tunneling in order to achieve directed motion.

Part 2: Surface Effects

Surface effects are fundamentally important in nanoscopic systems. Mecke, Falk
and Rauscher show that the effect of stochasticity is particularly important for
interfaces and films in contrast to bulk fluid mechanics in hydrodynamics. They
discuss the new phenomena in films at the nanometer scale resulting from ther-
mal fluctuations. Surfaces of solids show a rich dynamic behavior. Krug investi-
gates the intrinsic nonlinear dynamics of surface steps, and in particular of single
layer islands under external forces. Casimir and van der Waals forces are funda-
mentally important quantum mechanical surface effects in small systems, as Emig
shows.

Part 3: Nanoelectromechanics

Oscillating micro- and nanoscopic beams are exploited in atomic force spec-
troscopy. Nanomechanical oscillators such as miniaturized cantilevers or carbon
nanotubes can easily be excited into a strongly nonlinear regime with an amplitude-
dependent frequency. As the chapters by Aldridge and by Lifshitz and Cross show,
nanoelectromechanical systems are experimental realizations of the Duffing os-
cillator. The frequency of cantilever oscillations increases for a decreasing system
size. Therefore, in the near future mechanical oscillators may be manufactured
for which energy quantization is relevant. The control of the nonlinear dynamics
of nanomechanical devices is a crucial task for future applications of force mi-
croscopy, as Yamasue and Hikihara show. In particular, this implies the possibility
of catching and releasing single atoms from a surface.



Preface XIX

Part 4: Nanoelectronics

Richter and Waltner study the fundamental connection of classical chaotic dynam-
ics of charge carriers with quantum wave interference and hence, discuss the tran-
sition of electronic transport from micro- to nanoscales. Kaiser and Kohler give a
detailed investigation of the emergence of nonlinearity in electric conductivity, giv-
ing a quantum mechanical analysis of the Coulomb blockade. Schöll investigates
nonlinearities in the conductance and the resulting patterns. Time delayed feed-
back is demonstrated to be a powerful tool for the control of these structures.

Part 5: Optic-Electronic Coupling

Optic-electronic coupling is an important method of controlling electronic devices.
Padurariu, Amin and Kleinekathöfer analyze the electron flux through molecu-
lar junctions and quantum dots. Their means of controlling the dynamics at the
nanoscale is the use of ultra-short laser pulses. Bauer, Bayer, Wiemann and Aeschli-
mann employ localized surface plasmons as a tool to probe nanoscopic devices.
Resonance of plasma oscillations gives information about the size and shape of the
device or particle. The interaction of optical waves and complex photonic lattices is
discussed by Terhalle, Rose, Göries, Imbrock and Denz.

This book reflects an ongoing interdisciplinary discussion initiated by a Volks-
wagen-Symposium on the same topic that was held in Chemnitz in 2006. The edi-
tors thank the Volkswagen Foundation for financial support.

Chemnitz and Kiel, December 2009 Günter Radons
Benno Rumpf

Heinz Georg Schuster





Part I Fluctuations





1

1
Nonequilibrium Nanosystems
Pierre Gaspard

1.1
Introduction

The nanometer is the length scale just above that of atoms. Accordingly, the
nanoscale is the basis of higher order structures made of atoms: molecules, macro-
molecules, polymers, fullerenes and nanotubes, atomic or molecular clusters,
supramolecular assemblies, molecular machines, and even viruses, organelles or
cells in the organic world, and gases, liquids, or solids in the inorganic world. It
should be emphasized that the importance of these atomic systems lies not only in
their 3D spatial structure, but also in the 4D spatiotemporal paths they can execute,
as is the case for catalysts or molecular motors.

In principle, their motions are ruled by Newton’s equations based on molecular
forces which typically have nonlinear dependences on the interatomic distances.
A key feature of atomic motions is their randomness that results from the inces-
sant collisions among the atoms or molecules composing the nanosystem. This
randomness manifests itself in the thermal and molecular fluctuations affecting,
to some extent, every observable at the nanoscale. Accordingly, nanosystems are
often described in terms of stochastic processes, as is the case for the Brownian
motion of micrometric particles suspended in a liquid. In this example, the forces
between the Brownian particle and the molecules of the surrounding liquid are ran-
dom on long time scales, the heavy Brownian particle being much slower than the
light molecules of the liquid. Accordingly, the Newtonian equation for the Brow-
nian particle contains a Langevin fluctuating force because of the interaction with
its surroundings. Since Brownian motion is stochastic, its description is based on
a probability distribution which obeys a time-evolution equation called the master
equation. As already pointed out by Einstein [1], Brownian particles are examples
of mesoscopic systems which are larger than the molecules obeying microscopic
Newtonian dynamics, but smaller than the macroscopic systems where the molec-
ular fluctuations are so small with respect to their size that a deterministic descrip-
tion should be considered. In this regard, the stochastic description developed for
Brownian motion is expected to apply at the nanoscale as well. A stochastic ap-
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2 1 Nonequilibrium Nanosystems

proach is valid if one or more degrees of freedom of the nanosystem is intrinsically
weighted heavier than the others. This results in a separation of time scales in the
system that occurs between the slow degrees of freedom and the others responsible
for the fast thermal fluctuations.

Because of the interaction between the slow and fast degrees of freedom, energy
is exchanged. The asymmetry of the coupling between a few slow and many fast
degrees of freedom leads to an energy flux from the former to the latter, which
is the phenomenon of energy dissipation. Dissipation happens, for instance, if an
excess of energy is initially deposited on the slow degrees of freedom and progres-
sively dissipated over the fast degrees of freedom during a relaxation which is de-
termined by the interaction. If the subsystem is interacting with the many degrees
of freedom of a thermal bath at a given temperature, its probability distribution
undergoes a relaxation towards the equilibrium Boltzmann–Maxwell distribution
at the temperature of the bath. During this relaxation, the subsystem is transiently
out of equilibrium, though ultimately reaches thermal equilibrium after enough
time. These relaxation processes occur in isolated nanosystems such as atomic
or molecular clusters where the slow degrees of freedom are associated with the
spherical or nonspherical shape of the cluster, and the fast degrees of freedom de-
scribe the motion of the individual atoms relative to the global shape. Statistical
ensembles of clusters can be described in terms of probability distribution for all
of the internal degrees of freedom of the cluster, allowing several possible distribu-
tions for the total energy depending on the experimental technique producing the
beam of clusters [2]. Such nanosystems remain out of equilibrium during some
relaxation time, though finally reach the thermodynamic equilibrium state after
a long enough time [3]. Strictly speaking, the concepts of equilibrium state or re-
laxation times are associated with the probability distribution and its time evolu-
tion. The probability distribution describes a statistical ensemble of copies of the
nanosystem, each launched from different initial conditions statistically distributed
according to the initial probability density. Consequently, the concepts of equilibri-
um states or relaxation times do not apply to individual nanosystems, but instead
ensembles composed of infinitely many copies of the nanosystem with statistically
distributed degrees of freedom.

In addition to the aforementioned nanosystems which relax towards an equilib-
rium state, nanosystems exist which are in contact with at least two heat or parti-
cle reservoirs at different temperatures or chemical potentials. These nanosystems
present the remarkable feature of reaching a nonequilibrium steady state after some
transient behavior. Contrary to the previous cases, such nanosystems sustain cur-
rents or fluxes of heat or particles and remain out of equilibrium due to a supply of
energy from the external reservoirs. Although the instantaneous currents fluctuate
in time, they are described by a probability distribution which remains stationary in
the nonequilibrium steady state. The mean values of the fluctuating currents are
not vanishing and controlled by the differences of temperatures or chemical po-
tentials between the external reservoirs. These mean currents are sustained at the
expense of energy dissipation. Therefore, such nonequilibrium nanosystems are
characterized by a positive entropy production according to the second law of ther-
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modynamics. In contrast, the entropy production vanishes in the equilibrium sta-
tionary state reached by nanosystems in contact with a single heat or particle reser-
voir. Examples of nonequilibrium nanosystems include the electronic circuits con-
sidered in semiconductor or molecular electronics, the chemical nanoreactors in
heterogeneous catalysis, or the molecular motors in biology. These examples show
the variety of nonequilibrium nanosystems and their importance for nanoscience
and nanotechnology.

Further nonequilibrium nanosystems are those which are driven by a time-
dependent external force. Examples of such nanosystems are macromolecules
such as RNA undergoing repeated unfolding and folding processes by optical
tweezers [4] or nanosystems with electric charges driven by electromagnetic fields.
In these cases as well, the energy supplied by the external forces is dissipated
during the process, leading to thermodynamic entropy production.

The nonequilibrium nanosystems are also of fundamental importance in biol-
ogy [5]. Indeed, one of the key features of biological systems is their metabolism,
meaning that biological systems are functioning out of equilibrium as open ther-
modynamic systems with an internal dissipation of the chemical energy from the
nutrients supplied by the environment. The thermodynamic aspects of metabolism
are traditionally envisaged at the macroscale. However, the biological systems
are hierarchically structured from the nanoscale up to the macroscale. Indeed,
molecules, such as lipids, form cellular membranes while copolymers, such as
proteins, RNA, and DNA, combine into supramolecular assemblies functioning
as machines: polymerases, ribosomes, flagellar motors, linear motors for cargo
transport or muscle contraction. Many of these molecular structures exist only
because of their ability to perform a specific motion powered by some energy
source as provided by transmembrane pH differences or the hydrolysis of adeno-
sine triphosphate (ATP). In this regard, energy transduction plays a fundamental
role at the molecular level in all the biochemical processes of metabolism [6]. The
directionality so essential to biological functions is acquired at the nanoscale when
the molecular structures are driven out of equilibrium by metabolism. In this re-
spect, the time scale over which a correlated motion can be maintained in some
3D molecular structure is here an essential property characterizing a biological
function [7–10]. Thus, the nonequilibrium nanosystems find their importance
not only for technological applications, but also for our fundamental understand-
ing of biological systems from the viewpoint of the physico-chemical laws of
nature.

The purpose of the present contribution is to give an overview of nonequilibrium
nanosystems and to outline their statistical thermodynamics.

In Section 1.2, the statistical thermodynamics of nanosystems is presented start-
ing from the problem of their multi-scale description with, on the one hand, New-
ton’s equations ruling the microscopic dynamics of their constituent atoms over the
scales of picometers and femtoseconds and, on the other hand, stochastic process-
es describing the motion of some of their degrees of freedom on the spatial scales
of nanometers or larger and over the time scales of picoseconds or longer. Recent
advances in statistical thermodynamics are reviewed, such as the fluctuation theo-
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rems that are large-deviation relations for the fluctuations of nonequilibrium work,
currents, or other quantities [11–27], as well as a new relationship established be-
tween the thermodynamic entropy production and the breaking of time reversal
in the property of temporal disorder [28–31]. The latter is at the basis of a new
understanding of information processing at the molecular level [32, 33].

Section 1.3 is devoted to mechanical nanosystems and, in particular, the study
of friction in double-walled carbon nanotubes. This is an example of an isolated
nanosystem evolving towards an equilibrium stationary state because it is not pow-
ered by a continuous energy supply.

In Section 1.4, the case of mechanochemical nanosystems is considered. These
nanosystems – such as the F1-ATPase nanomotor – are continuously powered by
chemical energy and can thus be driven into nonequilibrium stationary states. Due
to their large molecular architecture, the mechanics of these molecular motors can
be tightly coupled to their chemistry, allowing sustained rotary or linear motions
under nonequilibrium conditions.

Section 1.5 touches on the existence of chemical nanosystems such as chemical
clocks in far-from-equilibrium oscillatory regimes. In such systems, the direction-
ality is maintained in a noisy limit cycle of the populations of small molecules
involved in a network of coupled chemical reactions.

Conclusions and perspectives are drawn in Section 1.6.

1.2
Statistical Thermodynamics of Nonequilibrium Nanosystems

1.2.1
From Newton’s Equations to Stochastic Processes

The same nanosystem may be described in several different ways depending upon
the spatial and temporal scales at which its motion is observed.

At room temperature, the dynamics of atoms can be supposed to be classical
in many circumstances. Under these conditions, the microscopic dynamics are
ruled by Newton’s equations for all the atoms of masses fmagN

aD1 and positions
fr agN

aD1 composing the system. These atoms are coupled by interatomic forces
F (ra � r b) D �r U(ra � r b), deriving from the Born–Oppenheimer potential energy
U(r a � r b) of the interaction between the atoms in the electronic quantum state
of the molecular system. Besides, an external force can be applied to the system,
F ext(r a) D �rUext(ra). The sum over all the forces acting on the atom is thus equal
to its acceleration multiplied by its mass

ma
d2r a

dt2
D Fext(ra ) C

X
b(¤a)

F (r a � r b) , (1.1)

where a, b D 1, 2, . . . , N are the labels of all the atoms composing not only the
nanosystem, but also the reservoirs which are in contact with it if the latter is not
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isolated. Equivalently, Hamilton’s equations8̂̂̂<̂
ˆ̂:

dra

dt
D C @H

@p a

dp a

dt
D � @H

@ra

(1.2)

govern the time evolution of the positions fr agN
aD1 and momenta fp a D

madra/dtgN
aD1 of all the atoms in the system. This formulation is expressed in

terms of the Hamiltonian function which represents the total energy of the whole
system

H D
X

1�a�N

�
p 2

a

2ma
C Uext(ra )

�
C

X
1�a<b�N

U(r a � r b) . (1.3)

The Hamiltonian dynamics are deterministic in the sense that, according to
Cauchy’s theorem, a unique trajectory is issued from initial conditions taken as
a point in the phase space of the positions and momenta

Γ D (r1, r2, . . . , r N , p1, p2, . . . , p N ) . (1.4)

Therefore, the time evolution of a time-independent system is given by a flow, for
example, a one-parameter continuous group defined in the phase space:

Γ (t) D Φ t �Γ (0)
�

. (1.5)

Moreover, the Hamiltonian system (1.3) is symmetric under the time reversal de-
fined by the operation

Θ (r1, r2, . . . , rN , p1, p 2, . . . , p N ) D (r1, r2, . . . , r N , �p1, �p2, . . . , �p N )

(1.6)

because the Hamiltonian (1.3) is an even function of the momenta. Accordingly,
the time reversal of every solution of Hamilton’s equations (1.2) is also a solution, a
property called microreversibility. It is fundamental to notice that microreversibility
does not necessarily imply the coincidence of a trajectory with its time reversal so
that the selection of initial conditions can break the time reversal symmetry of the
actual history followed by the system [34–37].

Since the phase space is a continuum, the real numbers (1.4) defining the ini-
tial conditions are practically known by their few first digits so that the effective
knowledge of the initial conditions is always limited. Therefore, an error always
affects the preparation of initial conditions launching a trajectory. This inherent
limitation of the knowledge of initial conditions taking their values in a continuum
justifies the introduction of a probability distribution for the initial positions and
momenta compatible with the precision with which they are prepared, p0(Γ ). This
probability distribution evolves in time according to the Liouville equation

@t p D fH, pgPoisson � OLp , (1.7)
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where the Poisson bracket with the Hamiltonian defines the Liouvillian operator OL.
According to Liouville’s theorem, the probability density at time t is given in terms
of the initial probability density by

p (Γ , t) D p0
�
Φ �t (Γ )

�
, (1.8)

which defines the so-called Perron–Frobenius operator [38]. If the total system is
isolated, the probability distribution may converge in the weak sense towards a sta-
tionary probability distribution defining an invariant probability measure, which
should correspond to the thermodynamic equilibrium state, peq(Γ ). The condi-
tion for this weak convergence is the property of mixing [39, 40]. We notice that
nonequilibrium states can also be defined as conditionally invariant measures by
suitably renormalizing the transient probability distribution evolving in time un-
der given nonequilibrium constraints [38]. In this way, conditionally invariant mea-
sures have been constructed in the escape-rate theory or in the hydrodynamic-mode
theory [38].

The determinism of Hamiltonian systems does not preclude the possibility of dy-
namical randomness, for example, temporal disorder in the long-time evolution of
such systems. This dynamical randomness finds its origin in the sensitivity to ini-
tial conditions. We notice that this property manifests itself in the so-called chaotic
systems, but does not appear in integrable systems having as many constants of
motion as degrees of freedom. The sensitivity to initial conditions is characterized
by the positivity of at least one Lyapunov exponent [41]. These latter quantities are
the rates of exponential separation

λ i D lim
t!1

1
t

ln
kδΓ i (t)k
kδΓ i (0)k (1.9)

between a reference trajectory (1.5) and perturbed trajectories issued from in-
finitesimally close initial conditions Γ (0) C δΓ i (0) taken in any possible direction i
in the 6N -dimensional phase space (1.4). In molecular dynamics, typical Lyapunov
exponents are of the order of the inverse of the intercollisional time which cor-
responds to the time scale of the thermal fluctuations [42–45]. The dynamical
instability characterized by positive Lyapunov exponents implies that trajectories
issued from nearby initial conditions may have very different histories which are
thus unpredictable beyond the time scale given by the inverse of the maximal
Lyapunov exponent. Over time scales longer than this Lyapunov horizon of pre-
dictability, the trajectory appears random, listing in time the digits of the real
numbers defining its initial conditions. Therefore, dynamical randomness can be
characterized as temporal disorder in terms of the so-called Kolmogorov–Sinai
entropy per unit time which is equal to the sum of positive Lyapunov exponents
according to Pesin’s theorem [41]

hKS D
X
λ i>0

λ i . (1.10)

This property of temporal disorder manifests itself in the stochasticity of the ran-
dom processes describing the slow degrees of freedom of the system where it is
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characterized by the (ε, τ)-entropy per unit time [46]. Accordingly, the motion of
atoms in condensed phases at room temperature is highly random as observed by
their thermal and molecular fluctuations.

Methods have been developed in chaos theory to construct solutions of Liou-
ville’s equation, in particular, conditionally invariant measures, by using the Lya-
punov exponents associated with each trajectory, as it is the case in the periodic-
orbit theory [38, 47]. The idea is that the larger the positive Lyapunov exponents of
a trajectory, the higher its instability and the lower its probability weight. Methods
based on this idea allow us to construct exact solutions of Liouville’s equation on
fine scales in the phase space of the system. In this regard, the methods of chaos
theory fundamentally justify the existence of relaxation times which are intrinsic
to the dynamics.

In many systems, these relaxation times can be obtained with excellent approx-
imations thanks to the coarse-grained descriptions established by the pioneer-
ing work of Boltzmann [48], Einstein [1], Langevin [49], Fokker [50], Planck [51],
Pauli [52], and others. Such coarser descriptions focus on a few relevant observ-
ables among all the degrees of freedom of the total system. Examples are given
by the indicator functions of subsets ω taken inside the phase space: Iω(Γ ) D 1
if Γ 2 ω and zero otherwise. The probability that the system visits this subset at
the time t is given by the mean value of this observable taken over the phase-space
probability distribution (1.8) at the time

P(ω, t) �
Z

Iω(Γ )p (Γ , t)dΓ . (1.11)

If these probabilities evolve slower than the other observables, the memory of the
fast degrees of freedom may be lost over the time scale of variation of these proba-
bilities, which may justify that their time evolution is ruled by a Markovian master
equation such as

dP(ω, t)
dt

D
X
�,ω0

�
P(ω0, t)WC�(ω0jω) � P(ω, t)W��(ωjω0)

�
, (1.12)

where W�(ω0jω) is the rate of the transition ω0
�!ω induced by some elementary

mechanism � [53–56]. The relaxation times of the stochastic process ruled by this
master equation can be obtained in terms of the eigenvalues of this equation. It
is interesting to note that stochastic processes have a dual description either in
terms of the probabilities ruled by the master equation or in terms of individual
random realizations of the time evolution as simulated, for instance, by Gillespie’s
algorithm [57, 58]. Such random realizations are paths in the space of the coarse-
grained states fωg

ω D ω0
�1�!ω1

�2�!ω2
�3�! � � � �n�!ωn , (1.13)

with random jumps ω j �1
� j!ω j between dwelling time intervals t j < t < t j C1,

during which the system stays in the state ω j . By construction, such a random path
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should be statistically equivalent to the path that would be obtained from the de-
terministic trajectory starting from some compatible initial conditions: ω

�
Γ (t)

� D
ω
˚

Φ t �Γ (0)
��

.
In the case of Brownian motion in an external force field Fext(r), random paths

can be simulated by integrating Langevin’s equation

m
d2r
dt2 D Fext(r) � �

dr
dt

C FL(t) , (1.14)

which is a Newtonian equation where the friction force F frict D ��dr/dt and
the associated fluctuating Langevin force FL(t) represent the contributions of the
forces between the Brownian particle and the molecules of the surrounding flu-
id [59]. The Langevin forces can be modeled as Gaussian white noises

hFL,i (t)i D 0 (1.15)

hFL,i (t)FL, j (t0)i D 2� kB T δ(t � t0)δ i j , (1.16)

where i, j D x , y , z denote the Cartesian components of the force, � the friction
coefficient, T the temperature of the surrounding fluid, and kB D 1.38 � 10�23 J/K
Boltzmann’s constant. The Langevin equation (1.14) is a stochastic differential
equation. Its solutions r(t) mimic the motion of the Brownian particle as given by
typical solutions of Hamilton’s equations (1.2), r(t) D r1

�
Γ (t)

� D r1
˚

Φ t �Γ (0)
��

,
supposing that the Brownian particle has the label a D 1 among the N particles of
the system.

In the stochastic model by Langevin, the time correlation functions of the fluctu-
ating force coming from the fluid are delta-correlated, meaning that the time over
which the correlation functions decay to zero is much shorter than the time scale
of the described process. This correlation time is of the order of the intercollision-
al time of the Brownian particle with surrounding molecules. We should notice
that the friction coefficient can generally be calculated in terms of the integral of
the time correlation function of the fluctuating force according to the Kirkwood
formula [60]

� D 1
2kBT

Z CT

�T
hFL,i (t)FL,i (0)i dt , (1.17)

where T is a time scale longer than the correlation time but shorter than the time
over which the conservation of the total linear momentum of the total system might
manifest itself. If the system is infinite, the limit T ! 1 may be taken. The Kirk-
wood formula for the friction coefficient has been extended to the famous Green–
Kubo formulas for the coefficients of transport properties such as the viscosities,
the conductivities, as well as the diffusivities [61–63].

The master equation corresponding to the Langevin equation (1.14) is the
Fokker–Planck equation

@P
@t

C v � @P
@r

C F ext

m
� @P

@v
D �

m
@

@v
� (vP) C � kBT

m2

@2P
@v2

, (1.18)
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where P denotes the probability density in order to find the Brownian particle with
the position r and the velocity v at the time t [59]. This probability density corre-
sponds in principle to the probability distribution obeying Liouville’s equation (1.7)
according to

P(r, v , t) �
Z

δ (r � r1) δ
�
v � p 1/m

�
p (Γ , t) dΓ . (1.19)

In this regard, the delta distributions play a similar role as the indicator function
in (1.11).

In the case where the external force is time independent and derives from a
potential Fext(r) D �r Uext(r), the solution of the Fokker–Planck equation under-
goes a relaxation towards an asymptotic equilibrium state given by the Boltzmann–
Maxwell distribution

lim
t!1

P(r, v , t) D Peq(r , v) � N exp
�
� mv2

2kB T
� Uext(r)

kB T

�
(1.20)

with a normalization constant N such that
R
Peq(r , v ) drdv D 1.

In contrast, if the external force is time dependent, the system remains out of
equilibrium. If the Brownian particle is dragged by an optical trap moving at the
velocity u, the external potential is given by Uext D (�/2)(r�ut)2 and the probability
density can reach a nonequilibrium stationary solution in the frame of the optical
trap. In this nonequilibrium state, the energy supplied by the optical trap is dissi-
pated by the friction of the Brownian particle on the surrounding fluid, leading to
a positive thermodynamic entropy production.

Brownian motion is the paradigm of physico-chemical stochastic processes. This
paradigm can be extended down to the nanoscale and applied to mechanical sys-
tems such as multiwalled carbon nanotubes as well as to molecular motors where
mechanics is coupled to chemistry. Multiwalled carbon nanotubes have slow and
fast degrees of freedom and thus qualify for a description in terms of stochastic
processes (see Section 1.3). In molecular motors, the stochastic process is a com-
bination of diffusive mechanical motions interrupted by random jumps between
discrete chemical states due to reactive events. Such diffusion-reaction stochastic
processes are governed by coupled Fokker–Planck equations (see Section 1.4).

The paradigm also extends to mesoscopic chemical systems where reactions
transform populations of molecules. In mesoscopic chemical systems, such as
nanoreactors or nanoelectrodes, the numbers of molecules are random variables
jumping at each reactive event. Therefore, the molecular numbers obey a stochas-
tic process compatible with the mass-action law of chemical kinetics [53–56]. At the
macroscale, the molecular fluctuations disappear and the chemical concentrations
follow deterministic differential equations of chemical kinetics. At the mesoscale,
chemical systems can be described as continuous-time jump processes ruled by a
master equation for the probability P(fNig, t) of finding Ni molecules of species
i D 1, 2, . . . , c in the system, or as diffusive processes ruled by a Fokker–Planck
equation for the probability density P(fxig, t) defined in the space of chemical con-



10 1 Nonequilibrium Nanosystems

centrations xi D Ni/N where N D Pc
iD1 Ni is the total number of molecules in

the system (see Section 1.5).
Master equations have also been deduced for quantum systems at the nano-

scale [64].

1.2.2
Entropy and the Second Law of Thermodynamics

Since its historical origin in the pioneering work by Sadi Carnot on the efficiency
of steam engines, the concept of entropy is associated with the idea of partitioning
the system into microscopic degrees of freedom having their own dynamics and
macroscopic ones which can be manipulated at will. In a steam engine, the former
are the degrees of freedom of the water molecules and the latter the piston and
the valves of the engine. In this regard, the thermodynamic entropy appears as
a property of the system of microscopic degrees of freedom with respect to their
manipulation by a coarser device which is external to the described system. A priori,
the thermodynamic entropy is thus a property of the system with respect to a coarse
graining superimposed by some external apparatus.

Accordingly, the concept of entropy applies to nanosystems described in terms of
the probabilities (1.11) to visit some coarse-grained states ω. The thermodynamic
entropy associated at time t can be defined as

S(t) D
X
ω

S(ω)P(ω, t) � kB

X
ω

P(ω, t) ln P(ω, t) . (1.21)

The first term is the mean contribution of the entropy S(ω) due to the statistical
distribution of all the degrees of freedom which are not specified by the coarse-
grained state ω [20]. For instance, if the coarse-grained state ω only specifies the
numbers of the molecules of the different chemical species, S(ω) is the entropy of
the statistical distribution of the positions and momenta of the particles enumer-
ated by ω. The second term characterizes the disorder in statistical distribution
P(ω, t) over the different coarse-grained states fωg.

Since the probability distribution fP(ω, t)g evolves in time according to the mas-
ter equation (1.12), the entropy (1.21) varies accordingly. It is well known that the
time variation of the entropy can be decomposed as [65, 66]

dS
dt

D de S
dt

C diS
dt

(1.22)

into the entropy flow or entropy exchange between the system and its environment
and the entropy production which is internal to the system. The entropy flow is
given by

deS
dt

D
X

�,ω,ω0

�
P(ω0, t)WC�(ω0jω) � P(ω, t)W��(ωjω0)

�
�
�

S(ω) � kB

2
ln

WC�(ω0jω)
W��(ωjω0)

�
,

(1.23)
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which can be either positive or negative. On the other hand, the entropy production

diS
dt

D kB

2

X
�,ω,ω0

�
P(ω0, t)WC�(ω0jω) � P(ω, t)W��(ωjω0)

�
� ln

P(ω0, t)WC�(ω0jω)
P(ω, t)W��(ωjω0)

� 0

(1.24)

is always nonnegative, in agreement with the second law of thermodynamics [65,
66]. In a system without external nonequilibrium constraint, the probability dis-
tribution P(ω, t) undergoes a relaxation towards the equilibrium state Peq(ω) for
which the entropy production vanishes because of the detailed balancing condi-
tions

Peq(ω0)WC�(ω0jω) D Peq(ω)W��(ωjω0) , (1.25)

which should hold for all the possible transitions ω0
�!ω [67, 68]. During relax-

ation, the system is transiently out of equilibrium so that the entropy production is
positive. The entropy production vanishes asymptotically as the time goes to infin-
ity and the thermodynamic equilibrium is reached.

If external nonequilibrium constraints are imposed on the system, the re-
laxation proceeds towards a nonequilibrium steady state, (d/dt)Pneq(ω) D 0,
in which the detailed balancing conditions (1.25) do not hold and the entropy
production remains positive. Therefore, the thermodynamic entropy produc-
tion allows us to distinguish between nonequilibrium and equilibrium steady
states among all the stationary solutions of the master equation (1.12) such that
(d/dt)Pst(ω) D 0.

1.2.3
Identifying the Nonequilibrium Constraints and the Currents with Graph Analysis

The nonequilibrium constraints are the control parameters driving the nanosystem
out of equilibrium. These control parameters are the differences of temperatures
or chemical potentials between the heat or particle reservoirs in contact with the
nanosystem. In the case of chemical reactions, the difference of chemical potentials
is taken between the reactants and the products of each reaction and are controlled
by chemical concentrations. These control parameters are hidden in the transition
rates W�(ω0jω) of the stochastic process and it is of great important to identify
them.

A systematic method is provided with graph theory, as developed by Hill and
Schnakenberg [6, 65]. A graph is associated with the stochastic process as follows.
Each state ω of the system defines a vertex or node of the graph while each allowed

transition ω
C�•
��

ω0 corresponds to an edge. In this respect, two states can be con-

nected by several edges if several elementary processes � allow transitions between
them.
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An orientation is assigned to each edge of the graph G. The directed edges are
thus defined by

e � ω
�! ω0 . (1.26)

Let F be a directed subgraph of G. The orientation of the subgraph F with respect
to its edges feg is described by introducing the quantity

ςe(F ) �

8̂̂<̂
:̂

C1 if e and F are parallel

�1 if e and F are antiparallel

0 if e is not in F

(1.27)

where e and F are said to be parallel (respectively antiparallel) if F contains the
edge e in its reference (respectively opposite) orientation.

In order to identify all the cycles of a graph, a concept of maximal tree is intro-
duced [65]. Every maximal tree T(G ) of the graph G should satisfy the following
properties:

1. T(G ) is a covering subgraph of G, that is, T(G ) contains all the vertices of
G and all the edges of T(G ) are edges of G;

2. T(G ) is connected;
3. T(G ) contains no cycle (i.e., no cyclic sequence of edges).

The edges l of the graph G which do not belong to the maximal tree T(G ) are called
the chords of T(G ). If we add a chord l to T(G ), the resulting subgraph T(G ) C l
contains exactly one cycle Cl , which is obtained from T(G ) C l by removing all the
edges which are not part of the cycle. The orientation is taken such that ς l (Cl ) D 1,
that is, the cycles are oriented as the chords l. A maximal tree T(G ) together with its
associated fundamental set of cycles fC1, C2, . . . , Cl , . . .g provides a decomposition
of the graph G.
We notice that a given graph G has several maximal trees T(G ) and that all the max-
imal trees of a graph can be obtained by linear combinations of a given maximal
tree T(G ) with its associated cycles, as described in [65].

A remarkable property is that the ratio of the products of the transition rates
W�(ω0jω) along the two possible directions of any cycle Cl of the graph is indepen-
dent of the states composing the cycle and will thus only depend on the external
nonequilibrium constraints imposed to the system [65]. Thanks to this property,
the thermodynamic forces, also called the affinities [69, 70], can be introduced ac-
cording to [65]

Y
e2Cl

WC�(ωjω0)
W��(ω0jω)

D exp A(Cl) , (1.28)

where e 2 Cl denotes the edges (1.26) in the cycle Cl . In the equilibrium state, the
affinities vanish and we recover the conditions of detailed balancing between every
forward and backward transition. An important observation is that many of these
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affinities are equal, A(Cl) D A α for all Cl 2 α, which defines the macroscopic
affinities A α imposed by the external reservoirs.

The instantaneous current on the chord l is defined by [22]

j l(t) �
C1X

nD�1

ς l (en)δ(t � tn) , (1.29)

where tn is the time of the random transition en during a path of the stochastic
process. The convention is used that j l is oriented as the graph G since ς l (en) is
equal to (�)1 if the transition en is (anti)parallel to the chord l. The current (1.29) is
a fluctuating random variable. The different microscopic currents corresponding
to a given macroscopic process α can now be regrouped as [22]

jα(t) �
X
l2α

j l(t) D
X
l2α

C1X
nD�1

ς l (en)δ(t � tn) . (1.30)

Examples of nonequilibrium stochastic processes described by the Markovian
master equation (1.12) and their graph analysis are provided in the following sec-
tions.

1.2.4
Fluctuation Theorem for the Currents

In the previous framework, a fundamental result can be obtained for the full
counting statistics of the fluctuating currents (1.30) which are flowing across the
nanosystem in some nonequilibrium steady state. The generating function of all
the statistical cumulants of the fluctuating currents is defined as

Q(λ, A) � lim
t!1

� 1
t

ln
	
exp

�
�λ �

Z t

0
dt0 j (t0)

�

(1.31)

with λ D fλαg, A D fA αg, and j (t) D f jα(t)g. We notice that the generating
function depends on the affinities because the statistical average h�i is carried out
in the steady state corresponding to the values A of the affinities. The mean value
of a current is given by differentiating the generating function with respect to the
parameter λα and afterward setting all these parameters to zero:

Jα(A) � @Q
@λα

ˇ̌̌
λD0

D lim
t!1

1
t

Z t

0
h jα(t0)i dt0 . (1.32)

The diffusivities or second cumulants of the fluctuating currents can be defined as

Dα
(A) � � 1
2

@2Q
@λα@λ


ˇ̌̌
λD0

D 1
2

Z C1

�1

˝�
jα(t) � h jαi� � j 
(0) � h j 
i�˛ dt .

(1.33)
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Higher-order statistical cumulants can be defined similarly such as the third and
fourth cumulants

Cα
γ(A) � @3Q
@λα@λ
@λγ

ˇ̌̌
λD0

(1.34)

Bα
γδ(A) � � 1
2

@4Q
@λα@λ
@λγ@λδ

ˇ̌̌
λD0

(1.35)

which all characterize the full counting statistics of the coupled fluctuating currents
f jα(t)g.

We have the fluctuation theorem for the currents:

Theorem 1.1: Fluctuation Theorem for Currents

The generating function (1.31) obeys the symmetry relation

Q(λ, A) D Q(A � λ, A) . (1.36)

This theorem has been proved in the framework of graph theory [21–23] and can
also be proved for open quantum systems as a consequence of microreversibili-
ty [26, 27].

The Legendre transform of the generating function (1.31)

H(� , A) D Maxλ
�
Q(λ, A) � λ � �

�
(1.37)

is the decay rate of the probability that the fluctuating currents averaged over the
finite time interval t have their values in the range (� , � C d� ), yielding

H(� , A) � lim
t!1

� 1
t

ln P
�

1
t

Z t

0
j (t0) dt0 ' �

�
, (1.38)

where P denotes the probability distribution of the nonequilibrium steady state
corresponding to the affinities A. In terms of these decay rates, the fluctuation
theorem (1.36) can be written as

H(�� , A) � H(� , A) D A � � , (1.39)

which means that the ratio of the probabilities that the fluctuating currents take
oppositive values behaves exponentially in time with a rate equal to the affinities A
multiplied by the supposed values � for the currents:

P
h

1
t

R t
0 j (t0) dt0 ' C�

i
P
h

1
t

R t
0 j (t0) dt0 ' ��

i ' exp (A � � t) for t ! 1 . (1.40)

If the fluctuating currents take their mean values (1.32), � D J , the decay rate
vanishes by the law of large numbers, H( J , A) D 0, so that (1.40) shows that the
probability of the opposite values � J decays at a rate equal to

1
kB

diS
dt

D A � J � 0 , (1.41)
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which is the well-known expression of the entropy production in nonequilibrium
thermodynamics [70]. This relation shows that the fluctuation theorem provides an
extension of the second law of thermodynamics to small systems. At equilibrium,
the affinities vanish with the currents and the thermodynamic entropy production,
as expected. When not at equilibrium, the fluctuation theorem (1.40) shows that an
asymmetry appears between the probabilities of opposite fluctuations: the farther
from equilibrium, the lower the probability of reversed fluctuations. Since the ratio
of probabilities depends exponentially on the time and the affinities, the reversed
fluctuations rapidly become negligible as the system is driven far from equilibrium.
Ultimately, the probability of the reversed fluctuations vanishes in fully irreversible
regimes where the entropy production is infinite.

1.2.5
Consequences for Linear and Nonlinear Response Coefficients

Typically, the currents flowing across the nanosystem have a nonlinear dependence
on the affinities. It is only if the nonequilibrium constraints are weak and the sys-
tem remains close to equilibrium that the currents may have a linear dependence
on the affinities. This is the case for transport properties such as heat conduc-
tivity, viscosity, or diffusion in macroscopic fluids. However, nonlinearities tend
to manifest themselves in nanosystems because of their inherent heterogeneities.
These nonlinearities are well known in chemical reactions which are completed af-
ter the breaking of chemical bonds over subnanometric distances [54, 70]. Accord-
ingly, we should expect that nanosystems might present highly nonlinear proper-
ties.

The affinities are the thermodynamic forces driving the system out of equilibri-
um. In this regard, they represent the control parameters probing the responses
of the system to external perturbations. If the perturbations are weak, the system
remains in the linear regime around its state of thermodynamic equilibrium. If the
perturbations are stronger, the effects of the nonlinear responses become observ-
able. Therefore, the response properties of the system with respect to the nonequi-
librium constraints can be defined by expanding the currents in powers of the
affinities as

Jα D
X



Lα,
A 
C 1
2

X

,γ

Mα,
γA 
A γC 1
6

X

,γ ,δ

Nα,
γδA 
A γA δC� � � (1.42)

The linear response of the currents Jα with respect to a small perturbation in the
affinities A 
 is characterized by the Onsager coefficients Lα,
 and the nonlinear
response by the higher-order coefficients Mα,
γ , Nα,
γδ, . . .

Since the currents can be deduced from the generating function (1.31) accord-
ing to (1.32), any symmetry of the generating function will imply special relations
among the linear and nonlinear response coefficients in the expansion (1.42). This
is the case for the symmetry relation given by the fluctuation theorem (1.36). In-
deed, the response coefficients can be found by differentiating the relation (1.36)
with respect to the parameters λ and the affinities A.
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The linear response coefficients Lα,
 are given by differentiating twice the gener-
ating function with respect to λα and A 
 . By using the fluctuation theorem (1.36),
the linear response coefficients can be shown to be equal to the diffusivities (1.33)
taken at equilibrium, Lα,
 D Dα
(0). We notice that this is the content of the
fluctuation-dissipation theorem and the Green–Kubo formulas [61–63]. Since the
diffusivities are symmetric under the exchange of the indices α and 
, we recover
Onsager’s reciprocity relations [71]

Lα,
 D L 
,α . (1.43)

The remarkable result is that this method can proceed to higher orders, leading
to new relations between the nonlinear response coefficients and quantities charac-
terizing the nonequilibrium fluctuations of the currents [21, 72]. The second-order
response coefficients can be related to the diffusivities according to

Mα,
γ D
�

@Dα


@A γ
C @Dαγ

@A 


�
AD0

. (1.44)

Similarly, the third-order response coefficients turn out to be related to the fourth
and second cumulants by

Nα,
γδ D
�

@2Dα


@A γ@A δ
C @2 Dαγ

@A 
@A δ
C @2 Dαδ

@A 
@A γ
� 1

2
Bα
γδ

�
AD0

, (1.45)

while the third and fourth cumulants are linked by

Bα
γδ(0) D
�

@Cα
γ

@A δ

�
AD0

. (1.46)

Such relations exist at arbitrary orders as consequences of the fluctuation theo-
rem [72]. Similar relations can be deduced in the presence of an external magnetic
field [26]. They characterize the nonlinear response properties of nonequilibrium
nanosystems.

1.2.6
Temporal Disorder

At the nanoscale, the currents are fluctuating either at equilibrium or out of equi-
librium. These fluctuations are the manifestation of dynamical randomness due to
the incessant collisions among the particles composing the system. This dynam-
ical randomness can be characterized as a property of disorder in the successive
pictures of the system in movies of the stochastic process. The time series of the
fluctuating currents can be analyzed and its temporal disorder characterized by an
entropy per unit time. Such a quantity is defined as an (ε, τ)-entropy per unit time
for the fluctuating signal sampled with a resolution ε and a sampling time τ [46]. In
deterministic dynamical systems, the (ε, τ)-entropy per unit time would converge
to the Kolmogorov–Sinai entropy per unit time in the limit where ε goes to zero.
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Such dynamical entropies are the decay rates of the probabilities

P(ω) D P(ω0ω1ω2 . . . ωn�1) (1.47)

that the system follows given paths or histories ω D ω0ω1ω2 . . . ωn�1 where the
symbols ω j are the coarse-grained states observed with the resolution ε at the
successive times t D j τ with j D 0, 1, 2, . . . , n � 1. In (1.47), P denotes the sta-
tionary probability distribution of the process. Because of the temporal disorder,
the probability of a typical path is known to decay exponentially at a rate defining
the (ε, τ)-entropy per unit time [46]

h(ε, τ) � lim
n!1

� 1
nτ

X
ω

P(ω) ln P(ω) . (1.48)

In nonequilibrium steady states, we expect that the time-reversal symmetry is
broken at the level of the invariant probability distribution so that a path ω D
ω0ω1ω2 . . . ωn�1 and its time reversal ωR D ωn�1 . . . ω2ω1ω0 should have differ-
ent probabilities [34–38]

out of equilibrium: P(ω) ¤ P(ωR) . (1.49)

Accordingly, the probability of a time-reversed path should decay at a rate which
is different from the entropy per unit time (1.48). This observation motivates the
introduction of the time-reversed (ε, τ)-entropy per unit time [28]

hR(ε, τ) � lim
n!1

� 1
nτ

X
ω

P(ω) ln P(ωR) , (1.50)

where the average is still carried out with the path probabilities themselves. If
the average was performed with the time-reversed path probabilities in (1.50), we
would recover the quantity (1.48) because the sum over the paths ω is equivalent to
the sum over their reversals ωR. In this regard, the time-reversed entropy per unit
time characterizes the temporal disorder of the time-reversed paths among the set
of the typical paths of the forward process.

The remarkable result is that the difference between the time-reserved and the
standard entropies per unit time is equal to the thermodynamic entropy production

1
kB

di S
dt

D lim
ε,τ!0

�
hR(ε, τ) � h(ε, τ)

� � 0 , (1.51)

as can be shown for several classes of nonequilibrium stochastic processes as well
as in other frameworks [28, 36]. Furthermore, this fundamental connection has
been verified experimentally for driven Brownian motion and R C electric circuits,
providing evidence for the breaking of time-reversal symmetry in nonequilibrium
fluctuations down to the nanoscale [30, 31].

The difference of entropies, hR � h, is always nonnegative in agreement with the
second law of thermodynamics. At equilibrium, both entropies are equal. There-
fore, the equilibrium temporal disorder looks the same for the typical paths and
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their time reversals, which is an expression of the principle of detailed balancing.
In contrast, the time-reversed entropy per unit time is larger than the standard one
if the system is driven out of equilibrium because the nonequilibrium constraints
perform a selection of typical paths, whereupon the time-reversal symmetry is bro-
ken. The probabilities of the time-reversed paths decay faster than for the corre-
sponding typical paths so that the time-reversed paths appear more random in this
regard. We have the theorem of nonequilibrium temporal ordering:

Theorem 1.2: Theorem of Nonequilibrium Temporal Ordering

In nonequilibrium steady states, the typical paths are more ordered in time than
their time reversals in the sense that their temporal disorder characterized by h
is smaller than the temporal disorder of the corresponding time-reversed paths
characterized by hR [29].

This theorem mathematically expresses the fact that nonequilibrium systems
manifest a directionality. For instance, the mean current flowing across a resis-
tance goes downhill in the chemical potential landscape in spite of its upward or
downward fluctuations. The farther away from equilibrium, the more regular the
flow will look. In the limit of ballistic transport, the current is perfectly regular.
This result applies to nonequilibrium nanosystems, showing the potentialities of
evolving out of equilibrium to generate or process information at the nanoscale.
In particular, Landauer’s principle according to which the erasure of information
generates thermodynamic entropy production can be deduced from the relation-
ship (1.51) [73]. The consequences of these results for nanosystems will be dis-
cussed below.

1.2.7
Nanosystems Driven by Time-Dependent Forces

Fundamental results have also been obtained for systems driven by some time-
dependent control parameter λ(t) [11, 12]. Let us suppose that the dynamics are
described by the Hamiltonian function H(Γ , λ). The work performed on the sys-
tem while the control parameter varies from λA to λB is given by

W � H(ΓB , λB ) � H(ΓA, λA) (1.52)

if ΓA is the initial condition of the trajectory followed by the system. Therefore, the
work is a random variable depending on the probability distribution of the initial
conditions. Following Jarzynski [11], this initial probability distribution is taken as
the canonical ensemble

pA(ΓA) D 1
ZA

e�
H(ΓA ,λA) (1.53)

with the inverse temperature 
 D (kB T )�1. The free energy of the system in this
initial canonical state is equal to FA D �kBT ln ZA. The probability density of
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the work performed on the system driven by the forward protocol while the control
parameter λ(t) varies as λA ! λB is defined by

pF(W ) � ˝
δ
�
W � (HB � HA)

�˛
A (1.54)

with HA D H(ΓA, λA) and HB D H(ΓB , λB ).

A reversed protocol can be similarly defined by the reversed driving λB ! λA with
λ(T � t) from the other initial state

pB(ΓB ) D 1
ZB

e�
H(ΓB ,λB ) (1.55)

at the same inverse temperature as in the canonical distribution (1.53). The work
performed on the system submitted to this reversed protocol has the following prob-
ability distribution:

pR(W ) � ˝
δ
�
W � (HA � HB )

�˛
B . (1.56)

In this framework, the following fluctuation theorem of Crooks can be proved
on the basis of Hamiltonian dynamics by using the Liouville theorem and microre-
versibility [35]:

Theorem 1.3: Crook’s Fluctuation Theorem

The probability densities of the work W performed on the system during the for-
ward and reversed protocols have the universal ratio

pF(W )
pR(�W )

D e
(W �ΔF ) (1.57)

which only depends on the inverse temperature 
, the work W itself, and the free
energy difference ΔF D FB � FA between the thermodynamic equilibria at λB

and λA [12].

This result has been verified in experiments on the unfolding of single RNA
molecules [4].

A similar relation as (1.57) holds if the work is measured on n successive inter-
mediate times tA D t0 < t1 < t2 < � � � < tn�1 < tn D tB . The multivariate
probability density that the work takes given successive values is defined for the
forward protocol as

pF(W1, W2, . . . , Wn) �
*

nY
j D1

δ
�
W j � (H j � H j �1)

�+
A

(1.58)

and for the reversed protocol as

pR(W1, W2, . . . , Wn) �
*

nY
j D1

δ
�
W j � (H j �1 � H j )

�+
B

(1.59)
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with H j D H
�
Γ (t j ), λ(t j )

�
. For these protocols, the fluctuation theorem reads

pF(W1, W2, . . . , Wn)
pR(�W1, �W2, . . . , �Wn)

D e
(W1CW2C���CWn�ΔF ) . (1.60)

A consequence of Crooks’ fluctuation theorem (1.57) is

Theorem 1.4: Jarzynski’s Nonequilibrium Work Theorem

The free energy difference ΔF D FB � FA between the thermodynamic equilibria
at λB and λA can be evaluated in terms of the nonequilibrium work W byD

e�
W
E

D e�
ΔF , (1.61)

where h�i denotes the statistical average over an ensemble of random realizations
of the forward protocol [11].

This theorem allows the measurement of free energy landscapes with single-
molecule force spectroscopy [74]. Extensions to quantum systems have also been
obtained [26, 27, 75, 76]. Moreover, Jarzynski’s theorem implies Clausius’ thermo-
dynamic inequality:

hW i � ΔF . (1.62)

More recently, Kawai, Parrondo and Van den Broeck have shown [77] that the aver-
age value of the nonequilibrium work can be expressed as

hW i D ΔF C kB T
Z

dΓ pF(Γ , t) ln
pF(Γ , t)

pR(Θ Γ , t)
(1.63)

in terms of the phase-space probability distributions of the positions and momenta
of the particles at some intermediate time t during the aforementioned protocol.
We notice that the equality (1.63) of statistical mechanics completes Clausius’ ther-
modynamic inequality (1.62).

The difference between the work W performed on the system and the free energy
ΔF gained by the system is the work dissipated in the process: Wdiss � W � ΔF .
In this regard, Clausius’ inequality (1.62) means that the average dissipated work is
always nonnegative, hWdissi � 0, which is a statement of the second law of thermo-
dynamics. The last term of (1.63) thus provides an exact expression for the work
dissipated in the process. If the time-dependent driving is such that a coupling
is switched-on between the nanosystem and reservoirs at different temperatures
or chemical potentials over a long enough time interval T for reaching a steady
state, (1.63) can be used to obtain the entropy production in nonequilibrium steady
states. The driving can be chosen to be time-reversal symmetric, λ(t) D λ(T � t), in
order for the forward and reversed protocols to be identical. In such circumstances,
the thermodynamic entropy production is given by

diS
dt

D 1
T

lim
T !1

1
T

hWdissi � 0 . (1.64)
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On the other hand, the phase-space integral in (1.63) can be partitioned into the
cells Cω0ω1...ωn�1 D Cω0 \ Φ �τCω1 \ � � � \ Φ �(n�1)τCωn�1 obtained by sam-
pling the dynamics at the successive times t D j τ with j D 0, 1, 2, . . . , n � 1.
If these phase-space cells are supposed of volume ΔΓ , the probability densities
in (1.63) give approximations for the stationary probabilities P(ω) ' pF(Γ , t)ΔΓ
and P(ωR) ' pR(Θ Γ , t)ΔΓ of the paths ω and their reversals ωR. In this way,
the thermodynamic entropy production can be expressed as a relative entropy be-
tween path probabilities [78] and the relationship (1.51) is recovered, confirming
that the thermodynamic entropy production finds its origin in the breaking of the
time-reversal symmetry at the level of the probability distribution describing the
nonequilibrium steady state.

In the following section, selected studies of nonequilibrium nanosystems will be
reviewed.

1.3
Mechanical Nanosystems

The mechanical systems considered in this section are Hamiltonian systems which
conserve their total energy in the absence of external driving force.

1.3.1
Friction in Double-Walled Carbon Nanotubes

Carbon nanotubes have remarkable properties which have been systematically in-
vestigated since their discovery in 1991 [79]. They appear in the form of nested
coaxial tubes called multiwalled carbon nanotubes (MWCNT), which can move rel-
ative to one another, presenting the possibility of fabricating mechanical devices at
the nanoscale. The relative sliding motion of nested carbon nanotubes was demon-
strated in the experiment of Cumings and Zettl [80]. More recently, Fennimore
et al. [81] and Bourbon et al. [82] used multiwalled carbon nanotubes as the shaft of
rotary motors or actuators. In multiwalled carbon nanotubes, the different coaxial
tubes interact with each other by the same van der Waals interactions as between
graphene sheets in graphite. Whether the relative motion of nested nanotubes is
translational or rotational, the mutual interaction between the nanotubes is the
cause of friction and energy dissipation. This friction is a fundamental preoccu-
pation in nanotribology, which requires the use of nonequilibrium statistical me-
chanics at the nanoscale, as explained below.

We now turn towards double-walled carbon nanotubes (DWCNT) [83–86]. Car-
bon nanotubes can have different geometries depending on the way the graphene
sheet is rolled onto itself in order to form the nanotube. The different geometries
are specified by the integers (n, m) with 0 � jmj � n, which define the chiral vec-
tor na1 C ma2 giving the equator of the nanotube in terms of the lattice vectors a1

and a2 of the hexagonal lattice of graphene. The diameter of the nanotube can be
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Figure 1.1 (a) The armchair–armchair DWCNT
(4,4)@(9,9) with respectively N1 D 400 and N2 D 900 car-
bon atoms. (b) The zigzag-armchair DWCNT (7,0)@(9,9) with
N1 D 406 and N2 D 900. Both DWCNTs have outer diameter
13.2 Å and length 61.5 Å [84].

evaluated by

d D a
π

p
n2 C m2 C nm (1.65)

with a ' 2.5 Å [87]. The so-called armchair nanotubes correspond to the inte-
gers (n, n), the zigzag ones to (n, 0), and the chiral nanotubes to (n, m) with
n ¤ m [87]. Double-walled carbon nanotubes are denoted as (n1, m1)@(n2, m2)
(see two examples in Figure 1.1).

The carbon atoms within the inner or outer nanotube interact by Tersoff–
Brenner potentials, V (1)

TB or V (2)
TB respectively [88]. The intertube potential is com-

monly modeled by the 6–12 Lennard-Jones potential

VLJ(r) D 4�

� σ
r

�12
�
 σ

r

�6
�

(1.66)

with � D 2.964 meV and σ D 3.407 Å, which was successfully used to study C60

solids [89] and the sliding of nanotubes on a graphite surface [90]. Accordingly, the
total Hamiltonian describing a DWCNT can be written as

H D T (1) C T (2) C V (1)
TB C V (2)

TB C
N1X

iD1

N2X
j D1

VLJ

���r(1)
i � r (2)

j

���� , (1.67)

where T (1) and T (2) are respectively the kinetic energies of the inner and outer
nanotubes. The positions and momenta of the carbon atoms of both nanotubes are

denoted by
n

r (a)
i

oNa

iD1
and

n
p (a)

i

oNa

iD1
with a D 1 (resp. a D 2) for the inner (resp.

outer) tube. The kinetic energies are given by T (a) D PNa
iD1


p (a)

i

�2
/(2m), where

m D 12 amu is the mass of a carbon atom.
The molecular dynamics of the DWCNT system can be simulated by Hamilton’s

equations (1.2). The molecular dynamics conserves the total energy E D H , the
total linear momentum, as well as the total angular momentum. The phase-space
volumes are preserved according to Liouville’s theorem. The molecular dynamics
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are carried out with a velocity Verlet algorithm with a time step of 2 fs. The total
energy corresponds to a room temperature of about T D 300 K.

Within each nanotube, the carbon atoms undergo thermal fluctuations around
their equilibrium position. Moreover, large amplitude motions are possible be-
tween the two nanotubes which interact with each other by an attractive van der
Waals potential and constitute a mechanical oscillator if they form an isolated sys-
tem. Molecular dynamic simulations reveal three different time scales characteris-
tic of these motions [83, 84]:

� The time scale of the vibration of the carbon atoms around their equilibrium
position is determined by the inverse of the Debye frequency of graphene:
tC ' 50 fs.

� The translational relative motion of the two nanotubes presents inertial os-
cillations with a period of about tP ' 10 ps if the inner nanotube is initially
extracted from the outer nanotube by a fraction of their common length.

� The relative sliding motion of the two nanotubes is damped by the dissi-
pation of the energy contained in the relative motion. This dissipation is
caused by dynamic friction between the nanotubes, resulting into a rise in
temperature. The relaxation time of the inertial oscillations is of the order
of tR ' 1000 ps.

We notice that these time scales are separated from each other by several orders of
magnitudes: tC 	 tP 	 tR.

The sliding motion of the nanotubes can be translational or rotational. Although
both types of motion can manifest themselves during a single simulation, their
friction properties can be separately investigated.

1.3.1.1 Translational Friction
The translational sliding motion of two nanotubes concerns the relative position r
and velocity v D Pr between the nanotubes. The relative position can be defined
as [84]

r(t) � ek(t) � �R (2)(t) � R (1)(t)
�

(1.68)

in terms of the centers of mass R (1) and R (2) of both nanotubes. The unit vector ek

points in the direction of the axis of the DWCNT and can be obtained by diagonal-
izing the inertia tensor of the total system and selecting the eigenvector associated
with its smallest eigenvalue. This eigenvector slightly fluctuates around its initial
orientation during the time evolution, which justifies its use in order to define the
relative position by (1.68).

The relative position of the nanotubes admits a reduced description in terms of
a Newtonian equation of Langevin type:

μ
d2r
dt2 D � dVLJ(r)

dr
C Ffrict C Ffluct(t) (1.69)

where μ D m
�
N�1

1 C N�1
2

��1 is the relative mass of the DWCNT system. The
force in the right-hand side of (1.69) has three contributions.
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Figure 1.2 Plot of the total Lennard-Jones potential VLJ versus
the distance r between the centers of mass of the nanotubes
for (a) the armchair–armchair (4,4)@(9,9) and (b) the zigzag-
armchair (7,0)@(9,9) DWCNTs [84]. The insets show that the
force decreases with the temperature because of dilation.

The first contribution is the force of the V-shaped potential

V(r) D F
p

r2 C `2 � C ' F jrj � C (1.70)

due to the van der Waals interaction between the two nanotubes (see Figure 1.2).
This potential is obtained by averaging the interaction at a fixed relative position r
between the nanotubes. We notice the absence of corrugation because of the aver-
aging. The V shape finds its origin in the proportionality of the interaction potential
with the number of van der Waals bonds between the nanotubes. The potential is
parabolic around its minimum because of thermal fluctuations around the config-
urations with the maximum number of bonds. If the energy of the relative motion
is not too high, the potential forms a well in which the motion presents oscillations
which would persist if dissipation could be neglected [91]. This inertial oscillator is
anharmonic with a period of about tP ' 10 ps.

The second contribution to the total force in (1.69) is the dynamic friction force:

Ffrict D ��
dr
dt

C O
�

dr
dt

�2

(1.71)

with the friction coefficient � given by Kirkwood formula (1.17). The force–force
correlation function decreases to zero over the time scale of vibration of the car-
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Figure 1.3 Friction coefficient calculated by the Kirkwood for-
mula (1.17) versus the relative position r between the nano-
tubes for (a) the armchair–armchair (4,4)@(9,9) and (b) the
zigzag-armchair (7,0)@(9,9) DWCNTs [84].

bon atoms around their equilibrium position in graphene [83]. This time scale
is determined by the inverse of the Debye frequency ωD of graphene, that is,
tC ' 2π/ωD ' 50 fs. According to the Kirkwood formula (1.17), the friction co-
efficient can be estimated to be � ' tCΔF 2/(2kB T ) D πΔF 2/(ωD kBT ) where
ΔF is the standard deviation of the fluctuating intertube force. The latter increases
with the temperature T approximately as ΔF 
 T so that the friction coefficient
also increases as � 
 T [83].

The force–force correlation function should be evaluated by fixing the relative
position r between the nanotubes. This is carried out by constrained molecular dy-
namic simulations [83, 84]. The constraint is enforced by modifying the force on all
of the atoms of each nanotube according to F (a)

i ! F (a)
i � (1/Na )

PNa
j D1 F (a)

j . This
modification has the required effect of canceling the acceleration of the centers of
mass of each nanotube, while conserving the total energy E. This method gives the
dependence of the friction coefficient on position as seen in Figure 1.3. There we
observe that the friction coefficient has a slow dependence on position, justifying
that the friction coefficient is taken to be a constant in (1.71) at the approximate
value � ' 6 amu/ps for the present case [84]. We notice that the friction coeffi-
cient also depends on properties affecting the intertube interaction, such as the
distance between the nanotubes, the ends of the nanotubes, deformations, defects,
or possible impurities composed of atomic species other than carbon.

Although the dynamic friction force is proportional to the velocity at moderate
sliding velocities, nonlinear dependences on the sliding velocity become important
at larger velocities. These nonlinear effects appear in the form of resonances at spe-
cific values of the sliding velocity where dynamic friction is enhanced because of
the excitation of radial breathing modes of the outer nanotube. This phenomenon
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was first observed in the oscillatory system described above [84], as well as in oth-
er systems where a finite inner nanotube moves at given sliding velocity inside
an infinitely long outer nanotube [92]. This latter configuration allows a precise
determination of the resonant velocities. If the nanotubes move at the relative ve-
locity v, the spatial period a D 2.5 Å of the corrugation of the intertube potential
results in the periodic driving at the washboard frequency ωwb D 2πv/a. Thus,
resonances are possible when the washboard frequency ωwb coincides with some
vibration frequency. The vibration modes of the nanotubes and, in particular, of
the outer tube form a spectrum of dispersion relations ω D ω i (k) characterizing
the acoustic and optical phonons of each nanotube. Phonons of type i and wave
number k are excited if the resonance condition ωwb D ω i (k) is satisfied together
with a further condition selecting the resonant values of the sliding velocity. This
further condition can be shown to be given by the equality of the sliding velocity
with the group velocity of the excited phonons: v D dω i (k)/dk [92]. More recent-
ly, a related phenomenon of chiral symmetry breaking has been discovered in the
sliding dynamics of DWCNTs made of perfectly left–right symmetric and nonchi-
ral nanotubes [93]. These phenomena of dynamic friction enhancement find their
origin in the nonlinear dynamics of DWCNTs.

We notice that the DWCNT system is a weakly under-damped oscillator [83–
85]. Therefore, molecular dynamics simulations show many oscillations which are
slowly damped because the friction coefficient is relatively small. Figure 1.4 depicts
the amplitudes R(t) of the successive oscillations during the relaxation. The results
of molecular dynamics are compared with the prediction of the model (1.69) that
these amplitudes are exponentially damped as R(t) D R(0) exp(�ΓR t) with the
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Figure 1.4 Evolution of the amplitude of the damped oscilla-
tions for (a) the armchair–armchair (4,4)@(9,9) and (b) the
zigzag-armchair (7,0)@(9,9) DWCNTs [84]. The numerical re-
sults of molecular dynamics (solid lines) are compared with the
theoretical expectation of the model (1.69) (dashed lines).
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damping rate ΓR D 2�/(3μ). The damping of the oscillations means that the ener-
gy of the one-dimensional sliding motion of the two nanotubes is dissipated in the
many vibrational degrees of freedom of each nanotubes, which indeed undergo a
rise in temperature from 300 K at the beginning of the simulation up to 338 K after
relaxation.

The third contribution to the total force in (1.69) is the fluctuating Langevin
force which is present as a corollary of dynamic friction force by the fluctuation-
dissipation theorem. Accordingly, the Langevin force is taken as a Gaussian white
noise satisfying

hFfluct(t)i D 0 (1.72)

hFfluct(t)Ffluct(t0)i D 2� kB T δ(t � t0) (1.73)

for jt�t0j � tC, in consistency with the Kirkwood formula (1.17). As a consequence
of the smallness of friction, the fluctuating force is also small and plays a significant
role only after the large amplitude oscillations have been damped and no longer
overwhelm thermal fluctuations in the relative motion between the nanotubes. The
Langevin fluctuating force thus describes a state of thermodynamic equilibrium in
the sliding motion. For the total system, this equilibrium state is microcanonical at
the energy of the initial conditions of each molecular dynamics simulation. Since
the total system has many degrees of freedom, f D 3(N1 C N2) ' 3900, the equi-
librium statistical distribution of each degree of freedom is practically canonical
at the temperature corresponding to the initial total energy. The equilibrium fluc-
tuations of the relative position between the nanotubes remain very small, on the
order of a fraction of a nanometer as seen in Figure 1.5.
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Figure 1.5 Equilibrium fluctuating oscillations of the rela-
tive position between the nanotube mass centers for (a) the
armchair–armchair (4,4)@(9,9) and (b) the zigzag-armchair
(7,0)@(9,9) DWCNTs [84].
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As explained in Section 1.2.1, the stochastic process described by the Langevin
equation (1.69) admits an equivalent description in terms of a Fokker–Planck equa-
tion such as (1.18) for the probability density of the relative position and velocity
between the two nanotubes:

P(r, v , t) �
Z

δ
�
r � r(Γ )

�
δ
�
v � v (Γ )

�
p (Γ , t) dΓ . (1.74)

This Fokker–Planck equation describes, in particular, the relaxation towards a state
of equilibrium such as (1.20) [84]. This relaxation is characteristic of isolated sys-
tems with a few slow degrees of freedom coupled to baths of many fast degrees
of freedom. The Poincaré recurrences back close to initial conditions are extreme-
ly long in an individual system, but they never occur in the statistical ensemble
composed of infinitely many copies of the system described by the probability dis-
tribution p (Γ , t), if the dynamics has the ergodic property of mixing. Molecular
dynamics shows that this property is practically fulfilled at a temperature of 300 K.

1.3.1.2 Rotational Friction
Besides translational sliding motion, the two nanotubes may rotate relative to one
another (see Figure 1.6a). A friction property can be associated with this rotatio-
nal motion [85], which is of importance in shafts of nanomachinery made of
MWCNTs [81, 82]. For an isolated DWCNT, the total angular momentum is con-
served. For sufficiently long DWCNTs, the inner and outer nanotubes essentially
rotate around a common axis with their respective angular velocities fω1, ω2g and
angular momenta fL1, L2g. Under these circumstances, the rotational motion can
be supposed to be one-dimensional and ruled by the coupled equations8̂̂<̂

:̂
dL1

dt
D I1

dω1

dt
D N1

dL2

dt
D I2

dω2

dt
D N2 D �N1

(1.75)

where Ia denote the moments of inertia around the common axis and Na the
torques acting on each nanotube. These torques are opposite by the conservation
of the total angular momentum L1 C L2. The moment of inertia of a nanotube of
radius Ra and length l is given by Ia D 2πσ l R3

a in terms of the surface mass den-
sity σ D 4m/(3

p
3a2

CC) ' 4.55 amu/Å2 where m D 12 amu is the atomic mass of
carbon and aCC D 1.42 Å the carbon–carbon bond length in the hexagonal lattice
of graphene.

When the relative angular velocity and the angular velocity of the center of inertia
are written as

ω � ω1 � ω2 (1.76)

Ω � I1ω1 C I2ω2

I1 C I2
(1.77)
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Figure 1.6 (a) Coaxial view of a DWCNT
showing that the outer nanotube can rotate
around the inner nanotube as in the shaft of a
rotary motor [83]. (b) Schematic picture of the
rotary motor built in Berkeley [81]. The metal
plate rotor R has a size of about 300 nm.

It rotates around a shaft made of a MWCNT
attached to its anchor pads (A1, A2). The
rotor is driven by an oscillating electric field
between the electrodes E1, E2 and E3 (adapted
from [81]).

the equations (1.75) become8̂̂<̂
:̂

I
dω
dt

D N1

dΩ
dt

D 0

(1.78)

with the relative moment of inertia I � (I �1
1 C I �1

2 )�1.
The torque N1 D �N2 between the nanotubes is determined by the intertube

van der Waals interaction. Since the rotation of one nanotube with respect to the
other does not change the number of van der Waals bonds, the average potential is
essentially flat with negligible corrugation as it is the case for translational motion.
However, a dynamic friction torque proportional to the angular velocity and the cor-
responding Langevin fluctuating torque should be taken into account, as in (1.69).
Accordingly, the relative sliding rotation between the two nanotubes is described
by the Langevin equation

I
dω
dt

D ��ω C Nfluct(t) , (1.79)

where � is the rotational friction coefficient and Nfluct(t) is the Gaussian white noise

hNfluct(t)i D 0 (1.80)

hNfluct(t)Nfluct(t0)i D 2�kBT δ(t � t0) (1.81)

for jt � t0j � tC [85].
This stochastic model accurately describes the molecular dynamics simula-

tions [85]. If the relative angular velocity has a non-vanishing initial value, the
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sliding rotation is damped exponentially with the relaxation time τ D I/� until an
equilibrium state is reached where the angle between the nanotubes undergoes a
random walk of diffusion coefficient D D kBT/�. The relaxation time is observed
to behave as τ D τ1 l/(l C l0) in terms of the length l of the DWCNT and a
constant l0 of the order of the nanometer [85]. Hence, the relaxation time becomes
independent of the length if the DWCNT is long enough. On the other hand, the
relative moment of inertia is proportional to the length I D 2πσ l(R�3

1 C R�3
2 )�1

so that the friction coefficient is also proportional to the length of the DWCNT. This
dependence has been shown to be consistent with the proportionality between the
friction force and the intertube contact area [85]. Additionally, the rotational friction
coefficient is observed to increase with temperature as � 
 T ν with the exponent
ν D 1.53˙0.04 [85]. As for translational sliding motion, the isolated DWCNT is an
undriven nonequilibrium system reaching a state of equilibrium after relaxation
since friction dissipates kinetic rotational energy.

The rotational friction is the cause of energy dissipation in rotary motors using
a DWCNT or MWCNT shaft (see Figure 1.6b). Such nanomotors have been fabri-
cated by attaching a metal rotor plate to a single MWCNT suspended between two
anchor pads, as carried out by a group at Berkeley [81]. The motor is controlled
by voltages between the rotor plate and three surrounding electrodes. All of these
components are integrated on a silicon chip, forming an electromechanical system
with a rotor of about 300 nm and an angular frequency of several Hertz. The fab-
rication of a similar system has been carried out by a collaboration between Paris
and Lausanne [82]. Such nanoelectromechanical devices are driven nonequilibrium
nanosystems where energy dissipation due to rotational friction is compensated by
the electric energy supply.

1.3.2
Electromagnetic Heating of Microplasmas

1.3.2.1 The Undriven System and Its Hamiltonian
Microplasmas are small mechanical systems composed of atomic ions moving in
a Penning trap [94–96]. Their spatial extension is in the range of micrometers [95].
These systems can be considered as isolated Hamiltonian systems in which energy
is conserved, as long as the system is not subjected to a time-dependent driving. As
for isolated DWCNTs, these systems undergo a relaxation towards a microcanon-
ical equilibrium state if their initial conditions correspond to a given total energy.
Remarkable crystalline-like configurations of the ions have been observed at low
mean kinetic energy [94, 95]. These ordered configurations melt as their kinetic
energy is increased (see Figure 1.7). The dynamics are known to be chaotic with a
spectrum of positive Lyapunov exponents [97].

In a frame rotating at the Larmor frequency associated with the magnetic field
of the Penning trap, the Hamiltonian of the microplasma is given by

H0 D
X

a

�
1
2

p2
a C

�
1
8

� γ 2

4

� �
x2

a C y 2
a

�C γ 2

2
z2

a

�
C
X
a<b

1
rab

, (1.82)
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Figure 1.7 Simulation of Hamiltonian trajectories of five atomic
ions in an oblate Penning trap with γ D 0.7. The total angular
momentum in the z-direction is vanishing. The total energy
(1.82) is (a) E D 1.6, (b) E D 1.7, and (c) E D 2.

in terms of the momenta p a D (px a, p y a, pz a) and the distances rab Dp
(xa � xb)2 C (ya � yb)2 C (za � zb)2 between the ions (a, b D 1, 2, . . . , N ).

The parameter γ controls the geometry of the trap. The trap is elongated or
prolate if 0 < jγ j < (1/

p
6), spherical if jγ j D (1/

p
6), and flat or oblate if

(1/
p

6) < jγ j < (1/
p

2).

1.3.2.2 The Driven System and the Fluctuation Theorem
The microplasma can be heated if it interacts with an electromagnetic wave. In this
case, the Hamiltonian becomes time dependent:

H D H0 � A
NX

aD1

za sin ω t (1.83)

and Crooks fluctuation theorem (1.57) applies. In order for the forward and reverse
protocols to be identical, the driving is considered over a time interval with an
odd number of half periods, for example, T D 3π/ω. In this case, the Hamiltoni-
an (1.83) is the same at the beginning and the end of the driving so that the forward
and reversed protocols have the same probability distribution of nonequilibrium
work, pF D pR � p , and the difference of free energy is vanishing, ΔF D 0. In
this case, Crooks fluctuation theorem (1.57) can be expressed asZ W

�1
p (W 0) dW 0 D

Z W

�1
e
W 0

p (�W 0) dW 0 . (1.84)

The numerical verification of this result is shown in Figure 1.8 for a heated mi-
croplasma of five ions. The effect of heating is seen by the shift of the cumulative
functions away from the mid-point at W D 0.

We notice that the quantum versions of the fluctuation theorem can also be ap-
plied to atoms, molecules, or ions trapped in quantum states, which might be of
great interest for the control of quantum information devices and other ultracold
systems.
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Figure 1.8 Numerical verification of Crooks
fluctuation theorem for a microplasma of five
atomic ions in an oblate Penning trap with
γ D 0.7 and heated by the time-dependent
external field shown in inset over the time in-
terval T D 3π/ω D 5. The verification of the
Crooks fluctuation theorem is the coincidence
of the cumulative functions in the left-hand

side (filled squares) and right-hand side (filled
circles) of (1.84). The initial distribution is
canonical with temperature T D 1. The final
distribution is no longer canonical. The cu-
mulative function of the negative values of the
work (open circles) is shifted with respect to
the others because of heating.

1.4
Mechanochemical Nanosystems

1.4.1
F1-ATPase Motor

F1-ATPase is the hydrophilic part of the FoF1-ATPase also known as ATP synthase,
which is an adenosine triphosphate (ATP) producing protein common to most liv-
ing organisms [5]. In vivo, the two parts of ATP synthase, Fo and F1, are attached to
each other and mechanically coupled by the central γ -subunit. The Fo part is em-
bedded in the inner membrane of mitochondria and is rotating as a turbine when
a proton current flows across the membrane. This turbine drives the rotation of the
γ -subunit inside the hydrophylic F1 part. The latter is composed of three α- and
three 
-subunits spatially alternated as a hexamer (α
)3 and forming a barrel for
the rotation of the shaft made of the γ -subunit [98, 99]. Upon rotation, the γ -shaft
induces conformational changes in the hexamer, leading to the synthesis of ATP in
catalytic sites located in each 
-subunit.

In their experimental work [100, 101], Kinosita and coworkers have succeeded in
building a nanomotor by separating the F1 part and attaching an actin filament or
a colloidal bead to its γ -shaft (see Figure 1.9). In vitro, ATP hydrolysis drives the
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40 nm bead

F1 ADP + Pi

ATP

Figure 1.9 Schematic representation of the F1-ATPase fixed on a
surface and with a bead attached to its γ -shaft [101].

rotation of this nanomotor, transforming chemical free energy from ATP into the
mechanical motion of the γ -shaft. This motion proceeds in steps of 120ı, revealing
the three-fold symmetry of F1-ATPase [98–100]. The diameter of the F1-ATPase is
10 nm, which makes it one of the smallest motors in nature, with a power of only
about 10�18 W.

The rotation of this nanomotor is powered by the chemical energy supplied by
the hydrolysis of adenosine triphosphate (ATP) into adenosine diphosphate (ADP)
and inorganic phosphate (Pi):

ATP • ADP C Pi . (1.85)

The thermodynamic force or affinity of this reaction is given by the difference of
chemical potential Δμ between the three species:

Δμ D μATP � μADP � μPi D Δμ0 C kBT ln
[ATP]

[ADP][Pi]
, (1.86)

where the concentrations are counted in mole per liter (M), T is the temperature,
and kB the Boltzmann’s constant. The Gibbs free energy of ATP hydrolysis takes
the value ΔG0 D �Δμ0 D �30.5 kJ/mol D �7.3 kcal/mol D �50 pN nm at the
temperature of 23 ıC, the external pressure of 1 atm, and pH 7 [102]. We notice that
ATP hydrolysis provides a significant amount of free energy of Δμ0 D �ΔG0 D
12.2kB T above the thermal energy kB T D 4.1 pN nm. At equilibrium, where the
chemical potential difference (1.86) vanishes, the concentrations of ATP, ADP, and
Pi satisfy

[ATP]
[ADP][Pi]

ˇ̌̌̌
ˇ
eq

D exp
ΔG0

kB T
' 4.9 � 10�6 M�1 , (1.87)

showing that ATP tends to hydrolyze into its products. The motor is in a nonequi-
librium state if the concentrations do not satisfy (1.87), whereupon its self-
sustained rotation becomes possible thanks to the chemical free energy (1.86)
supplied by the reaction.

The motor is functioning along a cycle based on the following kinetic scheme.
As reported [101], the first substep, the 90ı rotation of the γ -shaft, is induced by
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the binding of ATP to an empty catalytic site. The second substep, the 30ı rota-
tion of the γ -shaft, is induced by the release of ADP and Pi. The process can be
summarized by the following chemical scheme

ATP C [;, γ (θ )]„ ƒ‚ …
state 1

WC1•
W�1

[ATP‡, γ (θ C 90ı)]„ ƒ‚ …
state 2

WC2•
W�2

[;, γ (θ C 120ı)]„ ƒ‚ …
state 1

CADP C Pi .

(1.88)

In state 1, ATP can bind to an empty 
-catalytic site ; of F1 with the γ -shaft at
angular position θ . The binding of ATP fills this catalytic site and induces the 90ı

rotation of the γ -shaft from γ (θ ) to γ (θ C 90ı). ATP‡ stands for any transition
state of ATP between the initial triphosphate molecule to the products of hydrolysis
ADP and Pi before the evacuation of the 
-catalytic site. State 2 is thus denoted by
[ATP‡, γ (θ C 90ı)]. If the F1-ATPase proceeds to hydrolysis, the products ADP and
Pi are released together, which induces the secondary 30ı rotation and empties a

-subunit.

The nanomotor can be subjected to an external torque, for instance, coming from
the proton turbine Fo. In a nonequilibrium steady state, the nanomotor has the
mean rotation rate

V � 1
2π

	
dθ
dt



(1.89)

in revolution per second and the mean ATP consumption rate

R �
	

dNATP

dt



D �

	
dNADP

dt



D �

	
dNPi

dt



. (1.90)

In this steady state, the thermodynamic entropy production is given by

diS
dt

D 2πτ
T

V C Δμ
T

R � 0 (1.91)

in terms of the so-called thermodynamics forces or affinities, 2πτ/T and Δμ/T ,
and the corresponding fluxes or currents, V and R [103]. The two terms in the
entropy production correspond to the possibility of the coupling between the me-
chanical motion and the chemical reaction. It is thanks to this mechanochemical
coupling that ATP is synthesized in vivo from the torque induced by the proton
turbine Fo and the rotation of the nanomotor F1 is powered in vitro by ATP hydrol-
ysis. We notice that the mechanochemical coupling can be tight or loose depending
on the regime of functioning of the nanomotor [104]. In order to further investi-
gate the properties of the nanomotor, stochastic models have been proposed [105–
108].

The modeling can be carried out at different levels of coarse graining. The finest
level is certainly obtained by molecular dynamics following the phase-space tra-
jectories of all the atoms of the motor and its environment with ATP, ADP and
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Pi molecules in water. A stochastic description is obtained by considering the re-
active events of the kinetic scheme (1.88) as random events happening upon the
random arrival and exit of ATP, ADP or Pi molecules into or out of the catalytic
sites of the nanomotor. These reactive events correspond to transitions between
the different chemical states of the motor. Since the three catalytic sites can be
either occupied or unoccupied, there is a minimum of six states for the motor,
which corresponds to the two states of (1.88) for a single catalytic site. On the oth-
er hand, the γ -shaft takes an angle θ with respect to the barrel. In each chemical
state, this angle moves in a free-energy potential. Since the motor is nanomet-
ric, this motion is affected by the thermal fluctuations and is thus similar to a
rotational Brownian motion driven by the torque induced by the conformation-
al changes of the barrel. This suggests a continuous-state description in terms
of Fokker–Planck equations for the Brownian motion of the angle θ in a free-
energy potential corresponding to each chemical state of the motor. These Fokker–
Planck equations should be coupled together by the transitions due to the chemi-
cal reactions [105, 106]. If the motor has six chemical states, the continuous-state
model is thus defined by six diffusion-reaction type, coupled Fokker–Planck equa-
tions [107].

However, if the free-energy potentials present important wells and the time in-
tervals to reach these wells are short compared to the dwell times, the angle θ
can be supposed to jump between discrete values corresponding to the minima
of the potential wells, neglecting the thermal fluctuations of the angle θ around
these minima. Under these circumstances, a discrete-state description is appropri-
ate, which further simplifies the modeling [108]. Nevertheless, this simplification
carries an assumption of tight coupling between the mechanics and the chemistry
of the motor. Indeed, a discrete-state model in which the different angles of the
shaft uniquely correspond to the different chemical states of the motor supposes a
tight coupling. This is not the case in the continuous-state description where the
angle can take several possible values notwithstanding the chemical state. Accord-
ingly, the comparison between both descriptions is necessary in order to determine
the regimes of loose or tight coupling [104]. This interesting distinction is impor-
tant because the chemical and mechanical efficiencies depend on the quality of the
mechanochemical coupling.

1.4.2
Continuous-State Description

In the continuous-state model [107], the system is found at a given time t in one
out of six chemical states σ D 1, 2, . . . , 6 and the γ -shaft at an angle 0 � θ < 2π.
There are six chemical states because the three 
-subunits can be either empty or
occupied by a molecule of ATP or by the products ADP and Pi of hydrolysis. Con-
sequently, the system is described by six probability densities pσ(θ , t), normalized
according to

P6
σD1

R 2π
0 pσ(θ , t) dθ D 1. The time evolution of the probability den-

sities is ruled by a set of six Fokker–Planck equations coupled together by the terms
describing the random jumps between the chemical states σ due to the chemical
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reactions of ATP binding and of the release of the products ADP and Pi with their
corresponding reversed reactions [107]:

@t pσ(θ , t) C @θ Jσ(θ , t)

D
X

�D1,2

X
σ0(¤σ)

�
pσ0 (θ , t)w�,σ0!σ(θ ) � pσ(θ , t)w��,σ!σ0 (θ )

�
, (1.92)

where the probability current densities are given by

Jσ(θ , t) D �D@θ pσ(θ , t) C 1
�
��@θUσ(θ ) C τ

�
pσ(θ , t) . (1.93)

The diffusion coefficient D is expressed in terms of the friction coefficient � accord-
ing to Einstein’s relation D D kBT/� . The friction coefficient � can be evaluated
for a bead of radius r attached off-axis at a distance x D r sin α from the rotation
axis according to

� D 2πη r3 �4 C 3 sin2 α
�

, (1.94)

with the water viscosity η D 10�9 pN s nm�2 and α D π/6 [102, 107].
When the motor is in the chemical state σ, the γ -shaft is subjected to the external

torque τ and the internal torque �@θUσ due to the free-energy potential Uσ(θ ) of
the motor with its γ -shaft at the angle θ . Applying an external torque to the motor
has the effect of tilting the potentials into Uσ(θ ) � τθ , which eases the rotation
or makes it harder, depending on the sign of τ. These free-energy potentials have
been fitted to experimental data and are depicted in Figure 1.10 together with the
potentials associated with the transition states of the reactions. We notice that these
potentials generate power strokes if their variations are large with respect to the
thermal energy kB T , which is the case here, except at the bottom of the potential
wells where thermal fluctuations dominate.

The transition rates w�,σ0!σ(θ ) of the reactions are given by [107]

wC(θ ) D k0[ATP] exp
˚�


�
U‡(θ ) � U(θ ) � G0

ATP

��
(1.95)

w�(θ ) D k0 exp
˚�


�
U‡(θ ) � QU(θ )

��
(1.96)

QwC(θ ) D Qk0 exp
�
�


�
QU‡(θ ) � QU

�
θ C 2π

3

���
(1.97)

Qw�(θ ) D Qk0[ADP][Pi] exp
˚�


� QU‡(θ ) � U(θ ) � G0
ADP � G0

Pi

��
(1.98)

in terms of the concentrations of ATP, ADP, and Pi molecules in the solution sur-
rounding the nanomotor and the free-energy potentials U(θ ) and QU(θ ) for the
wells and the potentials U‡(θ ) and QU‡(θ ) for the transition states. Equations 1.95–
1.98 represent, respectively, the transition rates of binding and unbinding of ATP,
and of unbinding and binding of ADP and Pi to the first 
-subunit. The other tran-
sitions rates are obtained by 120ı rotations of the rates (1.95)–(1.98) in order to
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Figure 1.10 The potentials of the chemi-
cal states Uσ(θ ) and of the transition states
U‡
σ (θ ) with a schematic representation of

the transitions between them during the
motor cycle [107]. Because of the three-
fold symmetry of the F1 motor, the differ-
ent potentials are given by U1(θ ) D U(θ ),

U3(θ ) D U(θ �2π/3), U5(θ ) D U(θ �4π/3),
U2(θ ) D QU(θ ), U4(θ ) D QU(θ � 2π/3), and
U6(θ ) D QU(θ � 4π/3) in terms of only the
two potentials U(θ ) and QU(θ ) correspond-
ing to the empty and occupied catalytic sites.
A similar symmetry reduction holds for the
transition states.

reproduce the threefold symmetry of F1-ATPase. We notice that the system has a
threefold rotational symmetry but no reflection symmetry, which is attributed to
the chirality of the supramolecular architecture of the F1 molecular motor and is
essential for its unidirectional rotation in the presence of its chemical fuel.

The stochastic process ruled by the Fokker–Planck equations (1.92) can be simu-
lated by Gillespie’s algorithm [57, 58], which provides realistic random trajectories
as shown in Figure 1.11. The rotation proceeds by rapid jumps due to the pow-
er strokes generated after each reactive event by the free-energy potentials of Fig-
ure 1.10. Between two successive jumps, the angle undergoes thermal fluctuations
around the minima of the potential wells of Figure 1.10. In this respect, the shaft
performs a random motion with a mean rotation rate fixed by the chemical con-
centrations of ATP, ADP, and Pi. For vanishing concentrations of the products of
ATP hydrolysis, the mean rotation rate depends on ATP concentration in a way
characteristic of typical Michaelis–Menten kinetics:

V ' Vmax[ATP]
[ATP] C KM

, (1.99)

with the constant KM ' 16 μM, as depicted in Figure 1.12. At low ATP concen-
tration, the rotation rate increases with ATP concentration. However, the rate satu-
rates at the maximum value Vmax ' 130 rev/s at high ATP concentration where the
speed of the motor is limited by the time scale of the release of the products, ADP
and Pi.

In order to determine the regimes of loose and tight couplings between the
chemistry and the mechanics of the F1 motor, both the rotation rate V and the



38 1 Nonequilibrium Nanosystems

0

1

2

3

4

5

6

7

8

0 0.02 0.04 0.06 0.08 0.1

ro
ta

ti
on

 (
re

v)

time   (s)

d = 40 nm [ATP] = 2 mM

[ATP] = 20 μM

[ATP] = 2 μM

Figure 1.11 Stochastic trajectories of the rotation of the γ -shaft
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Figure 1.12 Mean rotation rate of the γ -shaft of the F1 motor
in revolutions per second, versus ATP concentration in mole
per liter for [ADP][Pi] D 0 [107]. The diameter of the bead is
d D 40 nm. The temperature is of 23 ıC. The external torque is
zero. The circles are the experimental data [101]. The solid line
is the result of the present model.

ATP consumption rate R have been simulated with the continuous-angle mod-
el (1.92) for different values of the external torque τ and chemical potential dif-
ference Δμ, which are the corresponding affinities. Figure 1.13 depicts the plane
(τ, Δμ) with the curves where either the rotation stops, V D 0, or the ATP con-
sumption rate vanishes, R D 0. The value of the external torque where the rotation
stops is called the stalling torque. The two curves V D 0 and R D 0 intersect at
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Figure 1.13 Chemical potential difference
Δμ in units of kB T ln 10 versus the external
torque τ for the situations where the rota-
tion rate V (circles) and the ATP consump-
tion rate R (squares) vanish in the contin-
uous model (1.92) [108]. The straight line
Δμ D �2πτ/3 where the chemomechani-
cal affinity (1.101) vanishes, A D 0, is drawn
for comparison. The concentrations are fixed
according to [ATP] D 4.9 � 100.8a�11 M
and [ADP][Pi] D 10�0.2a�5 M, in terms

of the quantity a D Δμ/(kB T ln 10). The
bead attached to the γ -shaft has the diameter
d D 2r D 80 nm and the temperature is of
23 ıC. The torque where V D 0 is called the
stall torque. Curves V D 0 and R D 0 are
difficult to determine close to the thermody-
namic equilibrium point (τ D 0, Δμ D 0)
because both the rotation rate V and the ATP
consumption rate R are very small in this re-
gion, which explains the absence of dots close
to the origin.

the origin (τ D 0, Δμ D 0), which is the thermodynamic equilibrium point. We
notice that the curve V D 0 is above the curve R D 0 in the plane of the chemical
potential difference Δμ versus the torque, as it should be in order to satisfy the
second law of thermodynamics (1.91).

We observe that the two curves V D 0 and R D 0 are very close to each other if
the external torque is larger than about �30 pN nm. In this regime, the following
condition is satisfied:

tight coupling: V D 1
3

R (1.100)

for which one revolution is driven by the hydrolysis of three ATP molecules. In the
tight-coupling regime, there remains a single independent current and its associ-
ated affinity defined as [108]

A � 2π
3

τ
kB T„ ƒ‚ …

mechanics

C Δμ
kB T„ƒ‚…

chemistry

. (1.101)
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Consequently, the thermodynamic entropy production (1.91) becomes

tight coupling:
1
kB

diS
dt

D AR � 0 , (1.102)

which vanishes under the condition Δμ D �2πτ/3, as observed in Figure 1.13 for
�30 pN nm < τ < 0.

Beyond this regime, the free-energy potentials Uσ(θ ) � τθ are so tilted by the ex-
ternal torque τ that the rotation can proceed independent of the reaction, and thus
the coupling becomes loose [107]. Therefore, we recover two independent currents
and affinities in the loose-coupling regime.

Chemical and mechanical efficiencies can be introduced for such molecular mo-
tors [103]. In the regime of ATP synthesis under a negative external torque, the ATP
consumption rate as well as the rotation rate are negative, R < 0 and V < 0. In this
regime, a chemical efficiency can be defined as the ratio of the free energy stored
in the synthesized ATP over the mechanical power due to the external torque [103]

ηc � � ΔμR
2πτV

, (1.103)

such that 0 � ηc � 1. In the regime where the rotation is powered by ATP, a
mechanical efficiency can be defined as the inverse of the chemical efficiency [103]

ηm � � 2πτV
ΔμR

. (1.104)
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Figure 1.14 Chemical efficiency (1.103)
and mechanical efficiency (1.104) versus
the external torque τ in the continuous-
state model (respectively circles and
squares joined by a solid line) and com-
pared with the prediction (1.105) of tight
coupling (dashed lines) [108]. The verti-
cal solid line indicates the stalling torque

at τ D τstall D �27.0 pN nm. The con-
centrations are [ATP] D 4.9 � 10�7 M,
[ADP] D 10�4 M, and [Pi] D 10�3 M. The di-
ameter of the bead is d D 2r D 160 nm with
a temperature of 23 ıC. The predictions of
tight coupling (dashed lines) are respectively
ηc D τstall/τ for τ < τstall , and ηm D τ/τstall
for τstall < τ < 0, with τstall D �27.0 pN nm.
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The mechanical efficiency satisfies 0 � ηm � 1 in the regime where the external
torque is negative, while both the rotation rate and the ATP consumption rates
are positive, V > 0 and R > 0. Both efficiencies are depicted in Figure 1.14 and
compared with the values

tight coupling: ηc D 1
ηm

D � 3Δμ
2πτ

(1.105)

expected from the tight-coupling conditions (1.100). This plot confirms that the
nanomotor is functioning above the stalling torque in the tight-coupling regime
and below in a loose-coupling regime. The efficiencies can nearly reach unit values
around the stalling torque where the rotational motion of the motor is very slow
and nearly adiabatic.

1.4.3
Discrete-State Description

In the tight-coupling regime, the rotation of the shaft is directly driven by each
reactive event, which justifies the modeling of the stochastic process by a master
equation for the probabilities in order to find the motor in each one of its different
chemical states [108]

dPσ(t)
dt

D
X
�,σ0

�
Pσ0 (t)WC�(σ0jσ) � Pσ(t)W��(σjσ0)

�
, (1.106)

with a sum over the reactions � and the chemical states σ0 before the transition

σ0
��!σ or after the reverse transition σ

���!σ0. The master equation conserves the
total probability

P
σ Pσ(t) D 1 for all times t.

The discrete-state model (1.106) can, in principle, be obtained by coarse grain-
ing the continuous-state model (1.92). Since the discrete states correspond to the
angular intervals θσ < θ < θσ C 2π/3 where the γ -shaft spends most of its time
while in the chemical state σ, the probabilities ruled by the master equation (1.106)
are related to the probability densities of the continuous-state description (1.92) ac-
cording to

Pσ(t) D
Z θσC2π/3

θσ
pσ(θ , t) dθ . (1.107)

In general, this method would lead to a non-Markovian master equation. In the
case where there is a net separation of time scales between the dwell times and
the jump times, the non-Markovian effects may be negligible and a description in
terms of a Markovian equation such as the master equation (1.106) may be ob-
tained. This is the situation we now consider.

The quantities W�(σ0jσ) are the transition rates per unit time from the state σ0

to the state σ due to the reaction �. According to the mass-action law of chemical
kinetics, the reaction rates W� in (1.88) depend on the molecular concentrations in
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the solution surrounding the motor as follows [108]

WC1 D kC1[ATP] (1.108)

W�1 D k�1 (1.109)

WC2 D kC2 (1.110)

W�2 D k�2[ADP][Pi] (1.111)

where the quantities k� (� D ˙1, ˙2) are the constants of the forward and back-
ward reactions of binding and unbinding of ATP or ADP with Pi while [ATP],
[ADP], and [Pi] represent the concentrations of these species. kC1 is the constant of
ATP binding, k�1 the ATP unbinding constant, kC2 the constant of ATP synthesis,
and k�2 the constant of product release. These constants can be fit to data from
experiments or numerical simulations of the continuous-state model. In the latter
case, we notice that the reaction constants are effective constants which depend on
the external torque and are not identical with those entering the definition of the
continuous-state model [108].

An advantage of the discrete-state model is that its solutions can be obtained
analytically [108]. In a stationary state, the mean rotation and ATP consumption
rates are given by [108]

V D Vmax
�
[ATP] � Keq[ADP][Pi]

�
[ATP] C KM C KP[ADP][Pi]

D 1
3

R (1.112)

in terms of the constants

Vmax � 1
3

kC2 (1.113)

KM � k�1 C kC2

kC1
(1.114)

KP � k�2

kC1
(1.115)

Keq � k�1k�2

kC1kC2
D exp

1
kB T

�
ΔG0 � 2π

3
τ
�

' 4.9 � 10�6 M�1 exp
�

� 2π
3

τ
kB T

�
.

(1.116)

We recover the Michaelis–Menten kinetics (1.99) for vanishing concentrations of
ADP or Pi. An important observation is that the mean rotation and ATP consump-
tion rates, which are the nonequilibrium fluxes of the nanomotor, both have a high-
ly nonlinear dependence on the thermodynamic force or affinity (1.101) driving the
motor out of equilibrium. This mechanochemical affinity allows us to express the
ATP concentration as

[ATP] D Keq[ADP][Pi] eA . (1.117)
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The state of thermodynamic equilibrium thus corresponds to the vanishing of the
affinity (1.101), as it should. Substituting (1.117) into (1.112), we obtain the follow-
ing expression for the mean rotation rate [108]

V D Vmax
�
eA � 1

�
eA � 1 C 3Vmax

L

, (1.118)

where the coefficient L depends on the concentrations of ADP and Pi as well as the
constants (1.113)–(1.116) and controls the linear response of the molecular motor
because

V '
(

1
3 LA for A 	 1

Vmax for A � 1 .
(1.119)

The analytic form (1.118) shows that the rotation rate depends on the thermody-
namic force A in a highly nonlinear way, in contrast to what is often supposed.
The nonlinear dependence is very important as observed in Figure 1.15. The linear
regime extends around the thermodynamic equilibrium point at Δμ D 0 where the
function V(A) is essentially flat because the linear-response coefficient assumes the
very small value L ' 10�5 s�1. Since the affinity is about A ' 21.4 under the phys-
iological conditions [ATP] ' 10�3 M, [ADP] ' 10�4 M, and [Pi] ' 10�3 M [102],
the rotation rate would take the extremely low value V ' LA/3 ' 6.5 rev/day if
the motor was functioning in the linear regime. Remarkably, the nonlinear depen-
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Figure 1.15 Mean rotation rate versus the
affinity (1.101) for a zero external torque,
in which case the affinity is equal to the
chemical potential difference Δμ in units
of the thermal energy kB T [108]. The ther-
modynamic equilibrium corresponds to
Δμ D 0. The ATP concentration is given in
terms of the chemical potential difference by

[ATP] D [ADP][Pi] exp[(Δμ � Δμ0)/(kB T )] '
4.9 � 10�6 M�1[ADP][Pi] exp[Δμ/(kB T )] since
Δμ0 D �ΔG0 D 50 pN nm. The results of
the discrete model (solid lines) are compared
with the continuous model (dots) for three
different values of [ADP][Pi]. The diameter of
the bead is d D 2r D 40 nm with a tempera-
ture of 23 ıC.
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dence of (1.118) on the affinity A allows the rotation rate to reach the maximum
value Vmax ' 130 rev/s under physiological conditions.

The fluctuation theorem can be verified from the statistics of the random forward
and backward substeps undergone by the γ -shaft of the F1 motor, a full revolution
corresponding to six substeps [111]. The graph associated with the stochastic pro-
cess has six vertices simply connected as the edges of a hexagon. Therefore, there
is a single independent current or flux because of the tight coupling between the
mechanical rotation and the chemistry. According to (1.40), we should thus expect
the following fluctuation relation

P(St D Cs)
P(St D �s)

D eAs/2 (1.120)

for the probability P(St D s) that the nanomotor performs s D St substeps over
the time interval t. The quantity A is the affinity (1.101) for a zero external torque
τ D 0.

Figure 1.16 shows that the fluctuation relation (1.120) is indeed satisfied [111].
As seen in Figure 1.16, the probability distribution of the displacements takes a
specific form where the odd displacements are almost never occurring. Indeed, for
the values of the chemical concentrations considered in Figure 1.16, the probability
to be on odd sites is about four orders of magnitude lower than the probability to
be on even sites. Therefore, the system almost never stays on an odd site and im-
mediately jumps to the next or previous site. We notice that the backward substeps
of the motor are possible here because the concentrations are close to chemical
equilibrium. Under physiological conditions, the motor is already far enough from
equilibrium that the backward rotations become very improbable.
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Figure 1.16 Probability P(St D s) (open circles) that the F1
motor performs s D St substeps during the time interval t D
104 s compared with the expression P(St D �s) esA/2 (crosses)
expected from the fluctuation theorem for [ATP] D 6 � 10�8 M
and [ADP][Pi] D 10�2 M2 [111].
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The theorem 1.2 of nonequilibrium temporal ordering also applies to the molec-
ular motor, showing that their motion is more ordered out of equilibrium than at
equilibrium. If the motion of the shaft of the F1 rotary motor was recorded with the
integers ω 2 f1, 2, 3g corresponding to the three main steps, a stochastic trajectory
as depicted in Figure 1.11 would correspond to a path . . . ωn�1ωnωnC1 . . . At equi-
librium where the principle of detailed balancing holds, the forward and backward
motions are equiprobable and a typical path . . . 212132131223132. . . would contain
short sequences as well as their time reversals, for instance 132 and 231. In con-
trast, the time reversals of typical sequences are less probable out of equilibrium
by the theorem of nonequilibrium temporal ordering. This remarkable property
leads to the emergence of directionality in the rotation of the shaft as observed
in Figure 1.11 where the paths are now restricted to . . . 123123123123123. . . For
this nonequilibrium trajectory, the probability of the time reversal 321 of the ob-
served short sequence 123 is essentially vanishing. In the regime of Figure 1.11, the
time-reversed temporal disorder (1.50) is thus very large while the temporal disor-
der (1.48) is very small. According to (1.51), the thermodynamic entropy production
is thus large and positive, confirming that the motor is functioning away from equi-
librium. This example shows that the directionality of the motion of molecular ma-
chines finds its origin in the nonequilibrium driving of these systems. The theorem
of nonequilibrium temporal ordering is thus establishing a fundamental relation-
ship between the second law of thermodynamics and the dynamical order that is
observed, in particular, in biology. Indeed, the metabolism of biological systems is
functioning out of equilibrium thanks to the energy supplied by the environment.
This nonequilibrium driving allows the directionality of the various internal ma-
chines. This directionality means that the motion is dynamically ordered, a concept
often intuitively quoted in biology. Remarkably, this dynamical order finds its fun-
damental understanding with the theorem of nonequilibrium temporal ordering.

In conclusion, the highly nonlinear dependence of the mean rotation rate of
the γ -shaft (1.118) on the chemomechanical affinity (1.101) shows that, typically,
the F1 motor does not function in the linear-response regime defined by Onsager’s
linear-response coefficients, but instead runs in a nonlinear-response regime which
is more the feature of far-from-equilibrium systems than of close-to-equilibrium
ones. This remarkable property is attributed to the molecular architecture of the
F1 motor at the nanoscale, which allows for tight coupling between the mechanical
motion and the chemical reactions powering the motor.

1.5
Chemical Nanosystems

Besides the aforementioned mechanical and mechanochemical nanosystems,
there also exist chemical systems where populations of molecules evolve in time by
reactions. These reactions can take place in a small recipient playing the role of a
reactor, such as catalytic or electrochemical reactions at the surface of a nanoparti-
cle or nanoelectrode. Other examples concern the biochemical reactions occurring
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in the nucleus or the cytosol of biological cells. Such reactions may form networks,
as in the case for the metabolic networks or the genetic regulatory networks in-
side cells. Since the number of molecules is limited in such small systems, their
time evolution is stochastic. These numbers are jumping at the random times
corresponding to the random reactive events. This stochastic process is ruled by
a chemical master equation for the probability that the system contains certain
numbers of molecules of the species involved in the reactions. Such systems are
out of equilibrium as long as the concentrations of these species have not reached
their equilibrium ratios. The systems can be maintained out of equilibrium if the
reactants are continuously supplied to the reactor from some reservoirs and the
products are evacuated. This is the case for heterogeneous catalytic reactions on a
solid surface in contact with a mixture of gases at fixed partial pressures. Since the
reactions only happen at the surface thanks to its catalytic properties, the gaseous
mixture acts as a reservoir containing large amounts of reactants. The reactions
proceed out of equilibrium if the ratios of partial pressures do not take their equilib-
rium values. Since the numbers of molecules at the surface are small with respect
to the numbers in the gaseous mixture, the nonequilibrium constraints can be
maintained for arbitrarily long time intervals. Such nonequilibrium conditions are
also satisfied if the reactants and products are supplied in larger quantities than
the intermediate species. The ultimate situation is a reactive process taking place
on a single molecule such as a molecular motor or a copolymer in the process-
es of DNA replication or protein synthesis. The importance of stochasticity has
been emphasized in the context of genetic regulatory networks inside the cellular
nucleus where the number of DNA molecules is necessarily limited [112, 113].

1.5.1
Chemical Transistor

An example of purely chemical systems is provided by the “chemical transistor”
defined by the network of the following three chemical reactions:

R1
kC1•
k�1

X , R2
kC2•
k�2

X , R3
kC3•
k�3

X , (1.121)

in which the molecules of the species X can be produced from three different re-
actant or product species coming from different reservoirs. The parameters k� are
the reaction constants. The number X of molecules of the intermediate species X is
a random variable that is incremented by one every time a molecule coming from
a reservoir is converted into X and decreased by one if a reversed reaction occurs.

For this stochastic process, the probability P(X , t) that the system contains
X molecules at time t is ruled by the master equation [20, 21, 53, 54, 109, 110]

d
dt

P(X , t) D
X

�

�
P(X � ν� , t)WC�(X � ν�jX ) � P(X , t)W��(X jX � ν�)

�
,

(1.122)
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where ν� denote the stoichiometric coefficients of the reactions � D ˙1, ˙2, ˙3.
The transition rates are given by

WC�(X jX C 1) D kC�hR�i νC� D C1 (1.123)

W��(X jX � 1) D k�� X ν�� D �1 (1.124)

with � D 1, 2, 3 [114]. The concentrations of the species in the reservoir determine
the mean numbers hR�i D Ω [R�] where Ω is the volume of the reservoir.

The concentration of the species X is defined in terms of the mean number of
molecules as

[X] D hX i
Ω

D 1
Ω

1X
X D0

X P(X , t) . (1.125)

This concentration evolves in time according to the following rate equation of
macroscopic chemical kinetics:

d[X]
dt

D
X

�

kC�[R�] �
X

�

k�� [X] . (1.126)

We notice that the macroscopic kinetic equation is exactly recovered because the
chemical reaction network (1.121) is linear in the sense that the transition rates
(1.123)–(1.124) are at most linear in X. For such linear reactions, the stationary
solution of the master equation is given by the Poisson probability distribution:

Pst(X ) D e�hX i hX iX

X !
(1.127)

with the mean value

hX i D
P

� kC�hR�iP
� k��

. (1.128)

The graph associated with the stochastic process has an infinite number of ver-
tices for X D 0, 1, 2, . . . Each pair (X , X C 1) of vertices is connected by three
non-directed edges, one for each of the three reactions (1.121). Figure 1.17 depicts
the associated graph as well as alternative choices of maximal tree together with ex-
amples of possible chords defining cycles. Every time a transition occurs on one of
these chords, the corresponding current (1.30) presents a delta peak. The analogy
of this reaction network with a transistor is made by associating the three reser-
voirs with the source, the drain, and the gate of the transistor. Therefore, two in-
dependent affinities that control two independent currents can be defined in such
systems.

By using the cycle which starts from the state X, goes to the state X C 1 by the
chord � D α, and returns to the state X by the edge � D �3, the corresponding
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Figure 1.17 (a) Graph G associated with
the reaction network (1.121) of the “chem-
ical transistor” [21]. (b) Maximal tree T(G)
obtained after removing all the edges cor-
responding to the reactions � D 1 and
� D 2. (c) Subgraph T(G) C l composed
of the maximal tree T(G) and the chord

l D X
�D1! X C1, forming a cycle contributing

to the current j1 of affinity A1. (d) Subgraph
T(G) C l composed of the maximal tree T(G)

and the chord l D X
�D2! X C 1, form-

ing a cycle contributing to the current j2 of
affinity A2. (e) Alternative maximal tree T 0(G)
obtained after removing all the edges corre-
sponding to the reactions � D 2 and � D 3.

macroscopic affinity is defined by (1.28) as

A α � ln
WCα(X jX C 1)W�3(X C 1jX )
W�α(X C 1jX )WC3(X jX C 1)

D ln
k�3kCαhRαi
k�αkC3hR3i (1.129)

for α D 1 or 2, as shown respectively in Figure 1.17c or 1.17d. Therefore, there are
only two independent affinities in this chemical reaction network. These affinities
only depend on the concentrations of the external reservoirs. The state of thermo-
dynamic equilibrium is reached if both affinities vanish, that is, if the following
detailed balancing conditions are satisfied:

kC�

k��

hR�i D hX ieq with � D 1, 2, 3 . (1.130)

These conditions fix the concentrations of two reservoirs in terms of the third reser-
voir R3. The equilibrium states thus depend on the third concentration [R3] D
hR3i/Ω and form a hyperplane of codimension-one in the three-dimensional space
of the concentrations. The distance with respect to this equilibrium hyperplane is
controlled by the two affinities (1.129).
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The independent random fluxes or currents corresponding to the two affini-
ties (1.129) can be defined by (1.30). The generating function of the statistical cu-
mulants of these currents can be precisely calculated and is given by [114]

Q(λ1, λ2) D kC3hR3i
k�3

"
k�1 eA1 C k�2 eA2 C k�3

� k�1 eλ1 C k�2 eλ2 C k�3

k�1 C k�2 C k�3


k�1 eA1�λ1 C k�2 eA2�λ2 C k�3

�#
,

(1.131)

which satisfies the fluctuation theorem (1.36)

Q(λ1, λ2) D Q(A 1 � λ1, A 2 � λ2) (1.132)

in terms of the macroscopic affinities (1.129). The independent macroscopic flux-
es (1.32) are given by [21]

J1 D k�1 kC3hR3i
k�1 C k�2 C k�3

�
eA1 � 1 C k�2

k�3

�
eA1 � eA2

��
(1.133)

J2 D k�2 kC3hR3i
k�1 C k�2 C k�3

�
eA2 � 1 C k�1

k�3

�
eA2 � eA1

��
, (1.134)

which can be expanded in powers of the affinities according to (1.42). The Onsager
reciprocity relations (1.43) can be verified as well as their generalizations (1.44)
and (1.45) relating the higher-order response coefficients to the cumulants (1.33)–
(1.35) [114]. The macroscopic expression of the thermodynamic entropy produc-
tion (1.41) is thus recovered. In this reaction network, the fluxes have a strong
nonlinear dependence on the thermodynamic forces or affinities, A 1 and A 2, in
spite of their linear dependence on the concentrations.

This is also the case for the chemical diode which is the special case where the
second reservoir is decoupled from the system by setting k˙2 D 0. There remains
a single flux between the first and the third reservoir which is given by [21]

J1 D k�1kC3hR3i
k�1 C k�3

�
eA1 � 1

�
. (1.135)

The flux can become arbitrarily large for positive values of the affinity, but saturates
for negative values. This is the behavior of an electric diode or rectifier.

We notice that the nonlinear dependences of the fluxes on the affinities have
the same origin as those found in (1.118) and Figure 1.15 for mechanochemical
systems.
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1.5.2
Chemical Multistability

An example of a bistable chemical system is given by Schlögl’s trimolecular reac-
tion network [115, 116]

A
k1•

k�1

X (1.136)

3X
k2•

k�2

2X C B . (1.137)

On mesoscopic scales, the reaction is described as a stochastic process ruled by the
master equation (1.122) with the transition rates:

WC1(X jX C 1) D kC1[A]Ω νC1 D C1 (1.138)

W�1(X jX � 1) D k�1 X ν�1 D �1 (1.139)

WC2(X jX � 1) D kC2 X
X � 1
Ω

X � 2
Ω

νC2 D �1 (1.140)

W�2(X jX C 1) D k�2[B]X
X � 1
Ω

ν�2 D C1 . (1.141)

The macroscopic kinetic equation for the concentration (1.125) of the intermedi-
ate species X is given by

d
dt

[X] D kC1[A] � k�1[X] � kC2[X]3 C k�2[B][X]2 , (1.142)

which is obtained from the master equation by neglecting the effects of fluctua-
tions at O(1/Ω ) in the limit Ω ! 1 [20]. This kinetic equation is nonlinear in the
concentration, which leads to a phenomenon of bistability far from thermodynam-
ic equilibrium as observed in Figure 1.18a. Figure 1.18b depicts the entropy pro-
duction, showing that the regime of bistability exists far from the thermodynamic
equilibrium state where the entropy production vanishes. Bistability is a particular
case of multistability, which plays an important role in many nonlinear dissipative
systems, especially in genetic regulatory networks controlling cell differentiation
and its maintenance [54].

A stochastic trajectory simulated by Gillespie’s algorithm [57, 58] is depicted in
Figure 1.18c in the regime of bistability. Because of the fluctuations, the concentra-
tion does not remain forever in one of the two macroscopic steady states but ran-
domly jumps between the upper and lower states. In this nonequilibrium regime,
the stationary probability distribution is not Poissonian [20]. As suggested by the
reaction network (1.136) and (1.137), a current is flowing between the reservoirs
of molecules A and B. The graph associated with the stochastic process is shown
in Figure 1.19 confirming the existence of a single independent current associated
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Figure 1.18 Schlögl trimolecular model
(1.136)–(1.137) with the control parameters
kC1[A] D 0.5, k�1 D 3, and kC2 D k�2 D 1:
(a) Bifurcation diagram of the concentration
[X], obtained from the macroscopic equa-
tion (1.142) (dashed lines) and the stochastic
description for Ω D 10 (solid line). (b) En-
tropy production versus the control concen-
tration [B] given by the macroscopic theory
(dashed lines) and by the stochastic descrip-
tion for Ω D 10 (solid line). The thermody-
namic equilibrium is located at [B]eq D 1

6 .

(c) Stochastic time evolution of the number X
of molecules of the intermediate species X,
simulated by Gillespie’s algorithm for [B] D 4
and Ω D 10. (d) Stochastic time evolution
of the quantity Z(t) for the trajectory (c) for
[B] D 4 and Ω D 10. The increase of Z(t)
fluctuates between the entropy production
rate of the lower (long-dashed line) and upper
(dashed line) macroscopic stationary concen-
trations, in correlation with the jumps seen in
(c). (Adapted from [20]).
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Figure 1.19 Graph associated with the stochastic process of Schlögl’s trimolecular model.

with the affinity

A � ln
WC1(X jX C 1)WC2(X C 1jX )
W�1(X C 1jX )W�2(X jX C 1)

D ln
kC1 kC2[A]
k�1 k�2[B]

. (1.143)

The generating function (1.31) of the unique current j (t) obeys the fluctuation
theorem Q(λ) D Q(A � λ).
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An alternative fluctuating quantity has been defined by Lebowitz and Spohn [18]
as the following ratio

Z(t) � ln
WC�1 (X0jX1)WC�2 (X1jX2) � � � WC�n (Xn�1jXn)
W��1 (X1jX0)W��2 (X2jX1) � � � W��n (XnjXn�1)

. (1.144)

Over long time intervals, this quantity is proportional to the fluctuating current,
Z(t) ' A

R t
0 dt0 j (t0). Accordingly, its statistical average in a stationary state gives

the entropy production

1
kB

diS
dt

D lim
t!1

1
t
hZ(t)i D A J � 0 . (1.145)

The generating function of the statistical cumulants of the quantity (1.144) is de-
fined as

q(η) � lim
t!1

� 1
t

lnhe�ηZ(t )i (1.146)

and obeys the fluctuation theorem

q(η) D q(1 � η) . (1.147)

The behavior of the quantity (1.144) in the bistable regime is shown in Fig-
ure 1.18d for the same stochastic trajectory as in Figure 1.18c. Since the entropy
production rate is larger in the upper state than in the lower, the quantity (1.144)
increases faster during the time intervals when the system is in the upper state.
The generating function of this quantity can be calculated numerically and is de-
picted in Figure 1.20 for different values of the reservoir concentration [B] from the
monostable to the bistable regime. In all cases, the generating function is symmet-
ric around η D 1/2, as predicted by the fluctuation theorem (1.147), which is thus
verified in this far-from-equilibrium bistable chemical system.
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Figure 1.20 Generating function (1.146) of the fluctuating
quantity Z(t) versus η in the Schlögl model (1.136)–(1.137) for
kC1[A] D 0.5, k�1 D 3, kC2 D k�2 D 1, [B] D 1, 2, . . . , 6,
and Ω D 10. We notice that q(η) D 0 at the equilibrium
[B]eq D 1/6 (Adapted from [20]).
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We point out that the verification of the fluctuation theorem requires the coex-
istence of direct and reversed reactions in the network (1.136)–(1.137). If the rate
constants k� of some reactions were vanishing, the quantity (1.144) could not be
defined and the thermodynamic entropy production (1.145) would be infinite. In
this case, the reaction network is said to be fully irreversible.

1.5.3
Chemical Clocks

If the chemical reaction network involves two intermediate species X and Y, a self-
sustained cyclic process becomes possible if the system is maintained far from
equilibrium [70]. In such regimes, the chemical concentrations oscillate in time
along a so-called limit cycle which is a periodic solution of the macroscopic kinet-
ic equations [54]. Such rhythmic phenomena have been called chemical clocks [54]
and observed not only in the famous Belousov-Zhabotinsky chemical reaction [117,
118], but also in biochemical reactions and in the regulatory networks at the basis
of circadian rhythms [119]. On mesoscopic scales, the oscillations are affected by
molecular fluctuations and the limit cycle is noisy. The description of such stochas-
tic processes can be carried out in terms of the chemical master equation (1.122)
now extended to the time evolution of the multivariate probability in order to find
the system with given numbers of the different molecular species [54].

A model of oscillatory chemical reactions is provided by the so-called Brusselator
model, which is defined by the following reaction network [120]:

A
kC1•
k�1

X (1.148)

B C X
kC2•
k�2

Y C C (1.149)

2X C Y
kC3•
k�3

3X (1.150)

involving two intermediate species X and Y. The species A, B, and C are supposed
to enter the system with the constant concentrations [A], [B], and [C]. We notice
that the trimolecular reaction network (1.148)–(1.150) can be conceived as the re-
duction of a larger bimolecular reaction network [121]. Because of the autocatalytic
reaction (1.150), the macroscopic kinetic equations are nonlinear and this nonlin-
earity is at the origin of the oscillations. These oscillations persist in the fully ir-
reversible Brusselator where the constants of the reversed reactions are vanishing,
k�1 D k�2 D k�3 D 0, and the thermodynamic entropy production is infinite.
In order to keep the entropy production finite, all of the reaction constants should
take non-vanishing values, which is herein supposed.

At the mesoscopic level, the random reactive events are described as a birth-
and-death stochastic process for the numbers, X(t) and Y(t), of molecules of the
intermediate species. This stochastic process is ruled by a Markovian master equa-
tion for the probability P(X , Y, t) that the system contains the numbers X and Y of
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molecules at time t [20, 21, 53, 54, 109, 110]. For the Brusselator, the transitions
rates of the master equation are given by [122]

WC1(X , Y jX C 1, Y ) D kC1 [A] Ω (1.151)

W�1(X , Y jX � 1, Y ) D k�1 X (1.152)

WC2(X , Y jX � 1, Y C 1) D kC2 [B] X (1.153)

W�2(X , Y jX C 1, Y � 1) D k�2 [C] Y (1.154)

WC3(X , Y jX C 1, Y � 1) D kC3
X(X � 1)Y

Ω 2
(1.155)

W�3(X , Y jX � 1, Y C 1) D k�3
X(X � 1)(X � 2)

Ω 2
, (1.156)

where Ω is the extensivity parameter characterizing the volume of the system.
Figure 1.21 shows examples of stochastic trajectories numerically simulated

by Gillespie’s algorithm [57, 58] for different values of the extensivity parameter
Ω [122]. The reaction constants and the reservoir concentrations correspond to
the same regime of oscillations. Since the numbers of molecules in the system is
proportional to the extensivity parameter Ω , the size of the system increases with
the parameter Ω . In the small system of Figure 1.21a, the molecular fluctuations
are so important that regular oscillations are not visible. Indeed, the time autocor-
relation function depicted in the third column rapidly decays to zero before the
completion of a single cycle. Regular oscillations emerge if the system contains
a few hundred molecules at larger values of Ω , as seen in Figure 1.21b. In this
case, the time autocorrelation function presents several oscillations before decay-
ing to zero. The oscillations become more regular as the size further increases in
Figure 1.21c and d. For any finite size, the time autocorrelation function presents
exponentially damped oscillations

CX X (t) D hX(t)X(0)i
hX i2 � 1 
 e�γ t cos(ω t C φ) (1.157)

with a correlation time proportional to the extensivity parameter γ�1 
 Ω . The
constant of proportionality can be calculated by the Hamilton–Jacobi method in
the weak-noise limit [123] and determines how the nonlinearities of the reaction
network controls the robustness of the oscillations with respect to the molecular
fluctuations.

Remarkably, the fluctuation theorem (1.147) is satisfied in the far-from-equili-
brium oscillatory regime for both the quantity (1.144) and the fluctuating currents
between the reservoirs [122]. In particular, the generating function of the quanti-
ty (1.144) is symmetric for a reflection around η D 1/2, as verified in Figure 1.22.
For [B] D 7, the system evolves in the oscillatory regime of Figure 1.21.

We notice the analogy between the cyclic processes of molecular motors and
chemical clocks. Both types of cyclic processes can be self-sustained if the system
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Figure 1.21 Simulation by Gillespie’s algo-
rithm of the oscillatory regime for the re-
versible Brusselator (1.148)–(1.150). The
values of the concentrations are [B] D 7,
[A] D [C] D 1, and the reaction con-
stants kC1 D 0.5, kC2 D kC3 D 1,
k�1 D k�2 D k�3 D 0.25. From (a) to
(b), the extensivity parameter takes the values:

(a) Ω D 10, (b) Ω D 100, (c) Ω D 1000,
and (d) Ω D 10 000. The first column de-
picts the phase portrait in the plane of the
numbers X and Y of molecules. The second
column shows the number X as a function of
time. The third one depicts the autocorrela-
tion function (1.157) of the number X, which
is normalized to unity. (Adapted from [122]).

is driven out of equilibrium with appropriate thermodynamic forces or affinities.
What is most remarkable is that such nonequilibrium systems are functioning in
regimes of rotations or oscillations, although there is no time-dependent external
driving. The temporal periodicity is an intrinsic feature to the system. Both types
of systems have important differences. The functionality of molecular motors finds
its origin in their molecular architecture with proteins playing the roles of shaft and



56 1 Nonequilibrium Nanosystems

0 0.25 0.5 0.75 1
0

1

2

3

4

5

6

η

q(
η)

[B]= 0.5
[B]= 4
[B]= 7

Figure 1.22 The generating function (1.146)
numerically obtained for the Brusselator.
The extensivity parameter takes the value
Ω D 15 while the control parameter
takes the values [B] D 0.5, 4, 7. The re-
action constants and the other concentra-
tions are fixed at the values kC1 D 0.5,
kC2 D kC3 D 1, k�1 D k�2 D k�3 D 0.25,
and [A] D [C] D 1. For these parame-

ter values, the equilibrium state is found at
[B]eq D 0.0625, the steady state is a stable
node for 0 < [B] < 4.030 24 and a stable focus
for 4.030 24 < [B] < 6.366 67. The Hopf bi-
furcation happens at the critical concentration
[B]Hopf D 6.366 67. Below this critical value,
the steady state is an attractor. Above critical-
ity for 6.366 67 < [B], the attractor is the limit
cycle of Figure 1.21. (Adapted from [122]).

barrel in the F1 motor, for instance. On the other hand, chemical clocks are func-
tioning by the time evolution of molecular populations. One must speculate as to
which is most efficient in generating regular oscillations. The results above show
that populations with several hundreds or thousands of molecules are required for
chemical clocks to emerge from the molecular fluctuations [123]. These sizes are
not significantly different from the numbers of atoms composing molecular mo-
tors, although the molecular architecture tends to confer to the latter well-defined
shapes of their own [7–10].

1.5.4
Chemical Clocks Observed in Field Emission Microscopy

Nanometric chemical clocks have been experimentally observed thanks to field
emission microscopy [124–129]. The principle of this microscopy is the magnifi-
cation provided by an electric field extending from the nanometric tip of a metallic
needle to a fluorescent screen [130].

Under a negative voltage, electrons are emitted by the needle and move along
the lines of the electric field, arriving at the fluorescent screen at the points corre-
sponding to the emission points at the surface of the needle tip. As a consequence,
an image of the surface of the needle is projected on the screen with a magnifica-
tion factor equal to the ratio of the curvature radii of the screen and the needle tip.
This method is called field electron microscopy (FEM).
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An alternative method is field ion microscopy (FIM). In this case, the needle is
subjected to a positive voltage and the vacuum chamber is filled with a gas such as
neon. When the neutral neon atoms collide with the surface of the needle, they are
ionized and the resulting positive ion is projected to the screen along the line of
electric field corresponding to the locus of ionization. The image seen on the flu-
orescent screen is the magnification of the surface of the needle. Since the needle
is crystalline, its surface presents terraces and steps. The electric field is higher at
the steps where the ionization rate is enhanced and, therefore, appear more clearly
on the screen. Invented by Erwin Müller in the fifties, this was the first microscopy
method that achieved atomic resolution [131].

In the nineties, chemical clocks were first observed in FEM [124, 125] and later in
FIM with a higher (close to atomic) resolution [126, 127]. An example is provided
by the reaction of catalytic water formation from hydrogen and oxygen on rhodi-
um [128, 129]. The electric field at the tip of the rhodium needle is about 12 V/nm.
The rhodium field emitter tip is exposed to a gaseous mixture of hydrogen and
oxygen at fixed partial pressures. The radius of curvature of the tip is of the order
of 10 nm. Since the reaction is concentrated at the tip because of the enhance-
ment of the partial pressures by high electric fields, the field emitter tip constitutes
a nanoreactor. Regular oscillations with a period of 30–40 seconds are observed
around the partial pressures PH2 D 2 � 10�3 Pa, PO2 D 2 � 10�3 Pa, PH2O D 0, and
temperature T D 550 K. These oscillations are self-sustained because the partial
pressures of hydrogen, oxygen, and water are not in their chemical equilibrium
ratios and the system is driven far from equilibrium.

The oscillations can be explained by the following reaction network [132]

adsorption-desorption of hydrogen:

H2 (gas) C 2;(ad)
kaH•
kdH

2H (ad) (1.158)

diffusion of hydrogen:

H (ad) C ;(ad)
kdiff• ;(ad) C H (ad) (1.159)

adsorption-desorption of oxygen precursor:

O2 (gas) C surface
Qka•
Qkd

O2 (pre) C surface (1.160)

dissociation of molecular oxygen and recombination:

O2 (pre) C 2;(ad)
ka•
kd

2O (ad) (1.161)

oxidation and reduction of rhodium:

O (ad) C ;(sub)
kox•
kred

;(ad) C O (sub) (1.162)

reaction of water formation:

2H (ad) C O (ad)
kr! 3;(ad) C H2O (gas) (1.163)
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Both hydrogen and oxygen diatomic molecules undergo a dissociative adsorption
on the rhodium surface. The hydrogen atoms are highly mobile on rhodium. On
the other hand, the oxygen atoms are strongly bounded to the surface and some
of them move below the surface, forming a surface rhodium oxide layer with the
stoichiometry of RhO2. This surface oxide modifies the rate of adsorption of oxygen
on the surface, which is the feedback mechanism at the origin of the oscillations.
Water is formed from the combination of hydrogen and oxygen atoms and desorbs
from the surface. Most of the water molecules leave the surface in a neutral form,
but a fraction is ionized and contributes to the imaging of the surface by FIM.

Remarkable oscillatory patterns are observed in FIM [128, 129, 132]. These pat-
terns have a length scale of tens of nanometers, which is much smaller than the
typical length scales of ten to hundred micrometers for the patterns of reaction-
diffusion processes in heterogeneous catalysis [133, 134]. The nanopatterns of the
reactions observed in FIM can be explained in terms of the structural anisotropy of
the crystalline tip, which results in different catalytic powers for the various exposed
nanofacets [132]. Indeed, the activation energy E ‡

x and the prefactor k0
x of each rate

coefficient depend on the crystalline orientation of the nanofacet where the reac-
tion occurs. Each crystalline nanofacet is characterized by its Miller indices (h, k, l)
or, equivalently, by the unit vector n perpendicular to the corresponding crystalline
plane n D (h, k, l)/

p
h2 C k2 C l2 (see Figure 1.23). Moreover, the activation ener-

gy and the prefactor also depend on the magnitude F of the electric field normal
to the metallic surface. If the tip is supposed to have the geometry of a paraboloid
with a radius of curvature R at its apex, the electric field is known [130, 135] to vary

(001)

(101)
(011)

(111)

θ

φ

n = (h,k,l)

h2+k2+l2

nanofacet (hkl)

¥

Figure 1.23 Ball model of the field
emitter tip with the unit vector n D
(sin θ cos φ, sin θ sin φ, cos θ ) perpendic-
ular to the nanofacet of Miller indices (h, k, l)
of an underlying FCC crystal. All the balls in-
side a paraboloid are retained in this model of

the field emitter. We notice that the mean elec-
tric field points in the same direction F D F n
because the electric field is always perpendic-
ular to the surface of a conductor such as the
field emitter tip. The (001) nanofacet is at the
tip’s apex. (Adapted from [132]).
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Figure 1.24 Series of FIM micrographs cov-
ering the complete oscillatory cycle as well as
the corresponding time evolution of the sub-
surface oxygen distribution on a logarithmic
scale as obtained within a kinetic model of
the field emitter tip. Starting from a surface in
the quasi-metallic state (a) and (d), an oxide
layer invades the topmost plane and grows
along the f011g facets, forming a nanomet-
ric cross-like structure (b) and (e). The oxide
front finally spreads to the whole visible sur-
face area (c) and (f). The temperature, electric

field and partial pressures of oxygen in panels
(a), (b) and (c) are T D 550 K, F0 D 12 V/nm,
PO2 D 2 � 10�3 Pa, respectively. On the oth-
er hand, the hydrogen pressure in panels (c),
(d) and (e) is PH2 D 2 � 10�3 Pa in the FIM
experiments and 4 � 10�3 Pa in the kinetic
model (1.158)–(1.163). For the subsurface site
occupation, the white areas indicate a high
site occupation value while the dark areas in-
dicate a low site occupation value. (Adapted
from [132]).

as

F D F0p
1 C (r/R)2

, (1.164)

where r is the radial distance with respect to the symmetry axis of the paraboloid
and F0 is the magnitude of the electric field at the apex of the tip. According to
Arrhenius’ law, the rate coefficient of each reaction can thus be written as

kx D k0
x (n, F ) exp

"
� E ‡

x (n, F )
kBT

#
, (1.165)

giving the spatial dependence describing the anisotropy of the crystalline tip,
which is necessary to explain the nanopatterns observed in the experiment (see
Figure 1.24) [132].

In spite of the nanometric size of the chemical clocks, the oscillations are regular.
The reason is that the system contains several thousands of adsorbed atoms, which
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is above the minimum number of a few hundred required for regular oscillations
to emerge [123]. Consequently, chemical clocks can exist at the nanoscale.

1.5.5
Single-Copolymer Processes

The theorem 1.2 of nonequilibrium temporal ordering shows that dynamical or-
der may appear in temporal sequences of events if the system is driven away from
equilibrium. If the system had the ability to record the temporal sequence on a
spatial support, the dynamical order would result into spatial order. The idea of
coupling the dynamical order predicted by (1.51) with a spatial support of informa-
tion has been developed in [32] to explain the possibility of information generation
or information processing in nonequilibrium systems such as biosystems. Indeed,
the theorem of nonequilibrium temporal ordering suggests that a nonequilibrium
system can process information thanks to the directionality of its movements.

At the nanoscale, a natural spatial support of information is provided by random
copolymers where information can be coded in the covalent bonds between the
different monomers composing the copolymer chain. This is the idea of the ape-
riodic crystal that Erwin Schrödinger proposed in his well-known book, published
in 1944, What is Life? [136]. As discovered in 1953 by Watson and Crick [137], the
copolymer that codes genetic information is DNA. In DNA coding, a pair of nu-
cleotides composed of about 64 atoms codes for two bits of information at the
nanometer scale. DNA is but one among various types of copolymers in chemical
and biological systems. Such copolymers are synthesized either with or without a
template (see Figure 1.25). Styrene-butadiene is an example of a random copoly-
mer grown without a template. Examples of copolymerizations with a template
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Figure 1.25 Schematic representations of
(a) a copolymerization process without a tem-
plate, (b) a copolymerization process with a
template. The circles depict the monomers
and the square predicts the catalyst of poly-
merization (adapted from [32]). (c) Schematic

space-time plot of the growth process of a
random copolymer composed of monomers
A and B. The spatial sequence of monomers
in the grown copolymer is directly determined
by the temporal sequence of random attach-
ments of A or B monomers at each time step.
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are provided by the processes of DNA replication, DNA-mRNA transcription, and
mRNA-protein translation [5].

Copolymerization necessarily proceeds away from equilibrium so that the
growth of copolymers is controlled by the nonequilibrium conditions fixed, in
particular by the chemical concentrations of the monomers in the solution sur-
rounding the growing copolymer. Since copolymers are of nanometer dimensions,
copolymerization processes are affected by the molecular fluctuations and should
be described as stochastic processes. At equilibrium, the principle of detailed bal-
ancing prevents the ordering of temporal events and the possibility to generate
or transmit information. Out of equilibrium, the ordering of temporal events
becomes possible thanks to energy supply. Under this condition, the molecular
motions acquire a directionality, allowing information generation or transmission
(see Figure 1.25c).

1.5.5.1 Copolymerization without a Template
The stochastic growth of a single copolymer ω D m1m2m3 � � � ml composed of
monomers mi 2 f1, 2, . . . , Mg can be described in terms of a master equation for
the probability P(ω, t) in order to find the copolymer ω at time t [32, 33]

dP(ω, t)
dt

D
X
ω0

�
P(ω0, t)W(ω0jω) � P(ω, t)W(ωjω0)

�
, (1.166)

where W(ωjω0) is the rate of the transition ω D m1m2m3 � � � ml!ω0 D m1m2m3

� � � ml 0 . During this transition, the length of the copolymer may change as l ! l 0 D
l ˙ 1 because of the attachment or detachment of a monomer. For many processes
at fixed pressure and temperature T, the ratio of forward to backward transition
rates can be expressed as [6]

W(ωjω0)
W(ω0jω)

D exp
G(ω) � G(ω0)

kBT
(1.167)

in terms of the free enthalpy G(ω) of a single copolymer chain ω surrounded
by the solution. This Gibbs free energy is related to the enthalpy H(ω) and the
entropy S(ω) of the copolymer ω in its environment at the temperature T by

G(ω) D H(ω) � T S(ω) . (1.168)

Since the system is described by the statistical distribution P(ω, t) giving the prob-
ability in order to find the particular copolymer ω at time t, the overall entropy
of the system is given by (1.21) and varies in time according to (1.22) because of
the exchange of entropy (1.23) between the copolymer and its surrounding and the
entropy production (1.24).

The growth may proceed in a regime described by the stationary statistical dis-
tribution μ l(ω) giving the composition of the copolymer chain ω, provided that its
length is equal to l [138, 139]. This distribution is normalized as

P
ω μ l(ω) D 1. In

the regime of stationary growth, the probability distribution of the system becomes

P(ω, t) D p (l, t)μ l(ω) , (1.169)
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where the time dependence is included in the statistical distribution p (l, t) of the
lengths l of the chains. The mean length of the chains is defined by hlit D P

l l �
p (l, t) and the mean growth velocity

v D dhlit

dt
(1.170)

is supposed to be constant. Since the statistical composition of the copolymer is
stationary, it is characterized by the mean entropy, enthalpy and free enthalpy per
monomer defined as

s � lim
l!1

1
l

X
ω

μ l (ω)S(ω) (1.171)

h � lim
l!1

1
l

X
ω

μ l(ω)H(ω) (1.172)

g � lim
l!1

1
l

X
ω

μ l (ω)G(ω) D h � Ts . (1.173)

By substituting (1.169) in (1.21), the entropy of the system can be shown to have
a dominant linear dependence on the mean chain length over long time intervals
and its time derivative can be written as [32]

dS
dt

D v
�
s C D(polymer)

�
(1.174)

in terms of the mean entropy per monomer s and the spatial disorder per monomer
defined by the Shannon entropy per monomer [140–142]

D(polymer) D lim
l!1

� 1
l

X
ω

μ l(ω) ln μ l(ω) . (1.175)

On the other hand, the entropy exchange (1.23) can be expressed in terms of the
enthalpy per monomer as

de S
dt

D v
h
T

(1.176)

so that the thermodynamic entropy production is given by

diS
dt

D v A � 0 (1.177)

in terms of the affinity per monomer

A � � g
T

C D(polymer) D ε C D(polymer) , (1.178)

where ε D �g/T is the driving force of the copolymer growth [32]. This driv-
ing force is positive if the Gibbs free energy decreases as the copolymer grows, in
which case the growth is driven by energetic effect. If the copolymer is random, its
spatial disorder is positive so that the driving force can take negative values down
to its equilibrium value εeq D �D(polymer) where the affinity (1.178) is vanish-
ing. Consequently, a random copolymer can grow by entropic effects in an adverse
free-energy landscape [32, 143].
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1.5.5.2 Copolymerization with a Template
Similar considerations apply to the case of copolymerization processes taking place
with a template given, for instance, by another copolymer [32]. The latter is char-
acterized by the statistical distribution ν l (α) of the sequences α of length l, which
is normalized as

P
α ν l (α) D 1. The growing copolymer ω now acquires a com-

position which depends on the template α. In the stationary regime, the statistical
distribution of the system can be written as

P(ω, t) D p (l, t)μ l(ωjα) , (1.179)

where μ l(ωjα) gives the conditional probability of the copy ω given the composi-
tion α of the template over the length l of the copy [32]. The joint probability to find
the copy ω and the template α is defined as

μ l(ω, α) � ν l (α)μ l(ωjα) , (1.180)

and the probability of the copy ω for all the possible templates α is given by

μ l(ω) �
X
α

ν l (α)μ l(ωjα) D
X
α

μ l(ω, α) . (1.181)

The Shannon conditional disorder of the copy grown on a given template is de-
fined as [140–142]

D(polymerjtemplate) D lim
l!1

� 1
l

X
α,ω

ν l (α)μ l(ωjα) ln μ l(ωjα) , (1.182)

while the Shannon disorder of all the possible copies is still defined by (1.175) with
the probability distribution (1.181). The mutual information per monomer between
the copy and the template is thus defined as [142]

I(polymer, template) � D(polymer) � D(polymerjtemplate)

D lim
l!1

1
l

X
α,ω

μ l(ω, α) ln
μ l (ω, α)
ν l (α)μ l(ω)

. (1.183)

The mutual information is always nonnegative and bounded as

0 � I(polymer, template) � Min fD(polymer), D(template)g . (1.184)

Following a similar reasoning, as in the case without a template, thermodynamic
entropy production can be written as (1.177) with the affinity per monomer given
by

A � ε C D(polymerjtemplate) D ε C D(polymer) � I(polymer, template)

(1.185)

with the driving force ε D �g/T [32]. This fundamental result shows that positive
mutual information becomes possible away from equilibrium where the thermo-
dynamic entropy production and the affinity are positive: The larger the mutual
information, the better the transmission of information between the template and
the copy. This phenomenon can be illustrated for the case of DNA replication [32].
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1.5.5.3 DNA Replication
In vivo, DNA replication is a nonequilibrium process which has a free energy cost
of two ATP molecules for the attachment of one nucleotide [5]. DNA replication
is performed by a whole machinery which separates the two strands of DNA and
catalyzes the growth of two new strands by DNA polymerases. Moreover, an exonu-
clease performs proofreading for the correction of possible errors [144, 145].

The influence of the nonequilibrium constraints has been studied in the case of
the DNA polymerase Pol γ , which replicates the human mitochondrial DNA [32].
The human mitochondrial DNA is 16.5 kb long and can be obtained from Gen-
Bank [146]. Forward kinetic constants kCmn for the incorporation of both correct
and incorrect nucleotides are available [147]. The reversed kinetic constants are
taken as k�mn D kCmn e�ε in terms of the driving force ε, which is the control pa-
rameter of the nonequilibrium constraints. The thermodynamic equilibrium cor-
responds to the value εeq D � ln 4. The replication process has been simulated by
Gillespie’s algorithm [57, 58].

Figure 1.26a depicts the mean velocity of replication in nucleotide per second as
a function of the driving force. The velocity vanishes at equilibrium and increas-
es towards a maximum value of about 34 nucleotides per second for a large and
positive driving force. On the other hand, the percentage of errors in the repli-
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Figure 1.26 Replication process of human mitochondrial DNA
by polymerase Pol γ : (a) Velocity versus the driving force ε.
(b) Percentage of DNA replication errors versus the driving
force ε. (c) Affinity per copied nucleotide versus the driving
force ε. (d) Mutual information between the copied DNA strand
and the original strand serving as template, versus the driving
force ε. (Adapted from [32]).
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cation process takes the large value of 75% at equilibrium and drops by several
orders of magnitude away from equilibrium (see Figure 1.26b). The percentage of
replication errors does not vanish far from equilibrium and constitutes a source of
genetic mutations. Accordingly, the analysis shows that the thermal and molecular
fluctuations cause replication errors and, thus, mutations.

Since the growth velocity is positive, the thermodynamic entropy production per
copied nucleotide is given by the affinity (1.178) depicted in Figure 1.26c. The lo-
cal minimum around ε ' 0.015 marks the transition between the regime driven
by entropic effect and the one driven by energy effect. On the other hand, Fig-
ure 1.26d shows the mutual information per nucleotide (1.183) between the copy
and the template. This mutual information vanishes at equilibrium and reaches a
plateau at the maximum value Imax ' 1.337 nats far from equilibrium. Therefore,
the transmission of information between the template and the copy is not possible
at equilibrium, but requires the process to be pushed far enough from equilib-
rium for replication to be accurate. The fidelity of replication is characterized by
the percentage of errors or by the mutual information between the copy and the
template [32].

If the copolymerization process was running too close to the thermodynamic
equilibrium, the mutations would be too frequent to allow replication and self-
reproduction. Therefore, the self-reproduction of biological systems is closely con-
nected to their metabolism, that is, to their nonequilibrium nature. This connec-
tion finds its origin in the aforementioned phenomenon of nonequilibrium tem-
poral ordering. It is remarkable that the ingredients of Darwinian evolution are so
closely related to the basic physico-chemical laws of nonequilibrium nanosystems.
The experimental study of copolymerization processes under tunable nonequilib-
rium conditions awaits the development of new single-molecule techniques such
as nanopore sequencing [33, 148, 149].

1.6
Conclusions and Perspectives

Many nanosystems play an important role because they function out of equilib-
rium. The nonequilibrium constraints allow useful motions to be sustained in
nanosystems as it is the case for molecular motors, electronic nanosystems, or
catalytic nanodevices.

Although nanosystems are affected by thermal and molecular fluctuations,
thermodynamic considerations continue to apply, thanks to recent advances in
nonequilibrium statistical thermodynamics, which have led to the discovery of
new fundamental relationships valid not only close to, but also far from equilibri-
um.

Nanosystems may be isolated or in contact with one or several reservoirs. Be-
cause of their intermediate size between the atoms and the macroscopic objects,
their study requires the connection between different levels of description. Their
microscopic dynamics are ruled by Newtonian or Hamiltonian equations for the
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motions of all the atoms. Often, a few degrees of freedom are relevant to the specif-
ic property of interest in a nanosystem. These few degrees of freedom are typically
slower than the other ones, which results into a separation of time scales justifying
a description in terms of stochastic processes, as explained in Section 1.2. Different
stochastic processes can be envisaged depending on the level of coarse graining of
the relevant quantities. These quantities may be the work performed on a nanosys-
tem by some external force or the currents flowing across the nanosystem. At the
nanoscale, these quantities are fluctuating in time so that their recording over some
time interval generates random temporal sequences called paths or histories. Each
path has a certain probability to occur in a long time series, which defines the prob-
ability distribution characterizing the stochastic process. If the stochastic process
is stationary, the probability distribution is invariant under time evolution. This
is the case at thermodynamic equilibrium where the microcanonical, canonical or
grand-canonical probability distributions describe the statistical averages as well
as the fluctuations of the relevant quantities. This concept of invariant probability
distribution has the subtle feature of remaining a stationary solution of Liouville
equation of time evolution while describing individual systems which are highly
dynamical with incessant temporal fluctuations. The conceptual advantage of prob-
ability distribution introduces two levels of descriptions: (1) the single-system level
which is dynamical and (2) the statistical-ensemble level in terms of a probabili-
ty distribution which can remain stationary and thus invariant in time. Since the
aforementioned equilibrium distributions are functions of the Hamiltonian, they
are symmetric under time reversal if the Hamiltonian is.

Now, the concept of stationary probability distribution extends to nonequilibri-
um nanosystems in which heat or particle currents are flowing across the system
between reservoirs at different temperatures or chemical potentials. Herein, the
quantities of interest may fluctuate and be highly dynamical at the single-system
level and, yet, be described by a stationary probability distribution for the possible
random paths or histories followed by the system. The bonus provided by the prob-
abilistic description is that nonequilibrium states such as chemical clocks, which
are considered as being time-dependent at the macroscale, can nevertheless be de-
scribed by a stationary probability distribution at the mesoscale in the presence of
fluctuations. Indeed, the stationary probability distribution of the paths may lead
to time correlation functions which present (damped) oscillations as illustrated in
Figure 1.21. Thus, there is no incompatibility to describe a system with non-trivial
time evolutions in terms of a stationary probability distribution.

Typically, the mean currents are non-vanishing in such nonequilibrium steady
states as they flow from one reservoir to another in a well-defined direction. Al-
though currents flowing in the opposite direction are possible, both nonequilib-
rium steady states are physically distinct. At the level of the stationary probability
distribution, the paths in the direction of the mean currents are more probable than
their time reversals. This fundamental remark shows that the stationary probabili-
ty distributions of nonequilibrium steady states break the time-reversal symmetry.
This symmetry breaking happens at the statistical level of description and, there-
fore, is perfectly compatible with microreversibility. The latter property only states
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that if Newton’s or Liouville’s equations admit a solution, they also admit its time
reversal as a solution. However, microreversibility does not mean that the solution
and its time reversal should coincide. In the case where they are physically distinct,
which most often occurs, the selection of one out of the pair is breaking the time-
reversal symmetry. This phenomenon is well known in condensed-matter physics
as spontaneous symmetry breaking. Nevertheless, this concept has not been con-
sidered until very recently for the time-reversal symmetry in nonequilibrium sta-
tistical mechanics [34–38].

Remarkably, the relationship (1.51) shows that the thermodynamic entropy pro-
duction is an order parameter for the breaking of the time-reversal symmetry in
nonequilibrium steady states. Indeed, (1.51) gives the entropy production as the
difference between the temporal disorders of the time-reversed and forward paths.
At equilibrium, the forward and reversed temporal disorders are equal because
of the principle of detailed balancing. Out of equilibrium, the time reversals are
less probable than the typical paths so that the time-reversed temporal disorder be-
comes larger than the forward one, which results into a positive thermodynamic
entropy production. Accordingly, a directionality manifests itself away from equilib-
rium, which is expressed by the theorem 1.2 of nonequilibrium temporal ordering.
Most remarkably, the breaking of time-reversal symmetry has been experimentally
verified down to the nanoscale [30, 31]. In this way, the property of irreversibili-
ty that was previously envisaged for macrosystems containing about 1023 atoms
is nowadays considered in small systems containing a few hundred or thousand
atoms.

The time-reversal symmetry breaking of the stationary probability distribution
concerns all of the large-deviation properties of nonequilibrium nanosystems, as
reported in Section 1.2. Amazingly, these properties obey universal relationships
which are the consequence of microreversibility. Such relationships have been dis-
covered in different types of dynamical systems and stochastic processes, and are
commonly called fluctuation theorems [11–27]. Recently, a fluctuation theorem has
been proved for all the independent currents flowing across a nonequilibrium sys-
tem thanks to graph theory [21–23]. This theory allows one to identify the ther-
modynamic forces, also called the affinities [69, 70], as well as the corresponding
random currents by using the cycles of the graph associated with the stochastic
process. To some extent, these cycles play a similar role as the periodic orbits in
dynamical systems theory [38, 47]. Once the affinities are identified in a stochas-
tic process, the symmetry (1.36) can be proved for the generating function of the
statistical cumulants of the fluctuating currents, which is the content of the fluctu-
ation theorem. This generating function provides us with the full counting statis-
tics of the particles flowing across a nonequilibrium system such as an electronic,
photonic, or chemical nanodevices [24–27]. Moreover, the symmetry of the fluctu-
ation theorem for the currents allows us to deduce not only the Onsager–Casimir
reciprocity relations for the linear response coefficients, but also the generaliza-
tions (1.44)–(1.46) of these relations to the nonlinear response coefficients [72].
These generalizations relate the nonlinear response coefficients to the statistical
cumulants (1.33)–(1.35) characterizing the fluctuations. The fluctuation theorem
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for currents has also been proved for open quantum systems and apply to boson
and fermion transport through mesoscopic junctions in electronic, photonic, or
ultracold-atom devices [26, 27].

Additionally, fluctuation theorems have been obtained for Hamiltonian systems
driven by time-dependent forces within Jarzynski’s framework [11, 12]. The work
performed on the system is a random variable similar to the number of particles ex-
changed between reservoirs and their fluctuations also obey a symmetry relation.
In this way, the equilibrium free energy of conformation changes can be experi-
mentally measured by folding and unfolding biomolecules [4]. These new funda-
mental results present promising perspectives in our understanding of nonequi-
librium nanosystems, as revealed by the case studies presented in this review.

The mechanical nanosystems considered in Section 1.3 are Hamiltonian and
isolated, and possibly driven by external time-dependent forces.

The double-walled carbon nanotubes (DWCNT) can slide relative to one anoth-
er in a telescopic motion [83–86]. Systems containing about 1300 atoms can be
studied by molecular dynamics simulations, showing that the energy of the sliding
motion is dissipated among the vibrational degrees of freedom of each nanotube.
This dissipation is caused by the friction coming from the van der Waals interaction
between the nanotubes. The methods of Brownian motion theory extends from the
micrometer down to the nanometer. Accordingly, the translational and rotational
sliding motions are described by Langevin stochastic models with dynamic friction
coefficients given by the Kirkwood formula of nonequilibrium statistical mechan-
ics [60]. If the DWCNT system is isolated, it undergoes a relaxation towards a mi-
crocanonical equilibrium state with fluctuations in the sliding motions described
by Langevin equations. However, the internal rotation between the two nanotubes
can be driven by external forces as is the case in nanomechanical devices using
DWCNTs for the shaft of rotary motors. In such devices, the energy continuously
supplied by the external driving is dissipated by the property of rotational friction
described in Section 1.3.

The other example presented in Section 1.3 is the heating of a microplasma by
electromagnetic waves. This is a time-dependent Hamiltonian system to which
Crooks fluctuation theorem applies for the work performed by the time-dependent
electric force on the microplasma. This work represents the energy supplied to the
system and is a random variable depending on the initial conditions. Heating corre-
sponds to a positive value of the work and cooling to a negative value. As described
by the fluctuation theorem, the work is statistically distributed around a positive
most probable value, which corresponds to the heating of the system.

Section 1.4 presents the F1-ATPase motor, which is an example of a nanosys-
tem powered by a continuous supply of chemical energy [100, 101, 105, 106]. Both
the shaft and the barrel of this nanomotor are composed of proteins. The barrel
is a hexamer of proteins, three of which can bind adesonine triphosphate (ATP).
ATP hydrolysis is the source of energy allowing the active rotation of the shaft in
a mean unidirectional motion. The ATP molecules are coming from the aqueous
solution surrounding the protein and they bind in the catalytic sites of the mo-
tor at random arrival times. These arrival times form a stationary random process
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for constant values of ATP concentration. In this regard, the nanomotor does not
need an external cyclic driving, but has its own autonomous cycle as a car engine
at constant gas supply. In the F1 nanomotor, ATP hydrolysis is catalyzed by the
conformational change of the protein, inducing the rotation of the shaft by a mech-
anism similar to a camshaft [102]. In this way, the chemical energy is transformed
into mechanical motion at the expense of some dissipation which necessarily re-
duces the efficiency of energy transduction. This process can be investigated in
detail thanks to continuous-state or discrete-state stochastic models [107, 108]. The
regimes of tight or loose coupling between the chemistry and the mechanics of the
motor can be identified. Although the chemical reaction and the mechanical rota-
tion constitute a priori two independent dissipative processes leading to entropy
production, they combine in the tight-coupling regime in such a way that a single
independent dissipative process remains. In this tight-coupling regime, the me-
chanical efficiency can reach its maximum possible value (1.105). Remarkably, the
rotation rate of the nanomotor has a highly nonlinear dependence on the thermo-
dynamic force or affinity driving the system out of equilibrium, contrary to what is
usually supposed. This nonlinear dependence allows the rotation to be much faster
than would be the case if the nanomotor was functioning in the regime of linear
response, whereupon a rotation rate of 130 rev/sec can be obtained under physi-
ological conditions [100, 101]. Consequently, the rotation rate drops to extremely
slow rates close to the equilibrium state and random backward rotations are very
rare, although the fluctuation theorem remains valid [111]. As discussed at the end
of Section 1.4, the directionality of the rotation is directly related to the fact that the
motor is functioning out of equilibrium, which can be understood as the conse-
quence of the theorem of nonequilibrium temporal ordering [29].

Further examples of nonequilibrium nanosystems evolving along an autonomous
cycle are provided by the nanometric chemical clocks described in Section 1.5. In
these systems, the time evolution concerns the populations composed of many
identical molecules of small size, instead of the motion of mechanical pieces
formed by large rigid molecules as carbon nanotubes or proteins. If the molecu-
lar architecture is instrumental to the mechanical rotation of molecular motors,
it plays a secondary role in chemical clocks where the chemical concentrations
of some intermediate species undergo oscillations. At the macroscale, these con-
centrations obey kinetic ordinary differential equations established by the laws of
chemical kinetics [54, 70]. These equations are nonlinear if the reaction network
contains autocatalytic steps. Far from equilibrium, their solutions may undergo
bifurcations leading to bistability, limit cycles, or even chaotic attractors. At the
nanoscale, the populations contain hundred or thousand molecules so that the
reactive events induce random jumps in the concentrations, whereupon their time
evolution is stochastic. Such stochastic processes can be driven out of equilibrium
if the reactants and the products are supplied in proportions different from their
chemical equilibrium values, in which case a source of chemical free energy main-
tains the matter fluxes from the reactants to the products. These fluxes are similar
to the currents across an electronic circuit and obey a fluctuation theorem which is
remarkably valid far from equilibrium, as shown in Section 1.5 for bistability in the
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Schlögl trimolecular model [20] and for oscillations in the Brusselator model [122].
As illustrated with the chemical transistor, the fluctuation theorem allows us to
recover the Onsager reciprocity relations for the linear response coefficients and
to verify their generalizations to the nonlinear response coefficients [21, 72, 114].
The discovery of these new relations in the nonlinear response regime constitutes
one of the most important advances in nonequilibrium statistical thermodynamics
since Onsager’s paper published in 1931 [71].

Field emission microscopy reveals the existence of nanometric chemical
clocks [132]. These nonequilibrium nanosystems are the stage of catalytic reac-
tions on metallic surface at the field emitter tip. By the localization of a high
electric field, the tip constitutes a nanoreactor of a few dozen nanometers where
patterns are observed in the coverage of the surface by adsorbed species. In some
regimes, these nanopatterns may oscillate as it is the case in the reaction of water
formation from hydrogen and oxygen on rhodium [132]. In spite of the nanometric
size of the tip, several thousand atoms are adsorbed on the surface so that the
system is large enough to sustain correlated oscillations and behave as a chemical
clock [123]. The observed nanopatterns can be understood in terms of the spa-
tial dependence of the reaction coefficients on the orientation of each nanofacet
composing the tip with respect to the underlying metallic crystal [132].

Further nonequilibrium nanosystems where chemical reactions play a funda-
mental role are those composed of a single copolymer which is growing by the
attachment of monomers coming from the surrounding solution [32, 33]. In this
case, the process is stochastic since the single copolymer is of nanometric size
and the reactive events occur at random with either attachment or detachment
of monomers. These copolymerization processes can take place freely or with a
template. The latter case is fundamental for biology since DNA replication, DNA-
mRNA transcription, and mRNA-protein translation are examples of copolymer-
ization processes. They are powered by a chemical energy supply and, therefore,
proceed in nonequilibrium regimes. For instance, DNA replication requires two
ATP for the attachment of each nucleotide [5]. In this regard, the self-reproduction
closely depends on metabolism. This close connection can be further established
by considering the nonequilibrium statistical thermodynamics of such copolymer-
ization processes. In this way, the thermodynamic entropy of a single copolymer
can be shown to depend on the Shannon disorder in the sequence of monomers
composing the copolymer [32]. This spatial disorder contributes to the thermo-
dynamic entropy production of copolymerization. Accordingly, the growth of the
copolymer can be driven by the entropic effect of this spatial disorder besides the
energetic effect due to the Gibbs free energy of monomer attachment. In the case
of copolymerization with a template, the thermodynamic entropy production also
depends on the mutual Shannon information between the template and the copy,
which shows that nonequilibrium thermodynamics plays a fundamental role in the
control of information processing at the molecular level [32, 33].

These new results pave the way for the statistical thermodynamics of nonequi-
librium nanosystems. They introduce new perspectives in our understanding of
the motions and processes that nanosystems can perform. The thermodynamic
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forces or affinities driving the fluxes and currents can be identified and related
to thermodynamic quantities such as energy and entropy, allowing us to study
energy dissipation in nanosystems and their efficiency. Moreover, a new light is
shed on the possible bridges between biology and the physico-chemical laws. In-
deed, biological systems present structures on all scales from the macroscale down
to the nanoscale. The hierarchical organization of living systems often appears in
contrast with textbook physico-chemical systems which are typically homogeneous
such as gases, liquids, and other continuous media. Therefore, the investigation of
nonequilibrium biological processes at the nanoscale is very new. In particular, the
new advances provide conceptual methods to study the metabolism of biological
systems at the molecular level and to shift from 3D to 4D molecular biology.

The new results also concern the dynamical aspects of information and estab-
lish the possibility of temporal ordering in nonequilibrium nanosystems. Indeed,
recent results suggest that the dynamical order characteristic of biological systems
can be understood on the basis of the second law of thermodynamics thanks to
the appreciation of the importance of path probabilities and the breaking of time-
reversal symmetry in the statistical description of nonequilibrium processes.
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2
Thermodynamics of Small Systems
Denis J. Evans, Stephen R. Williams, and Debra J. Searles

2.1
Introduction

Thermodynamics is the study of the flow and transformation of heat into work.
Until recently, our understanding of thermodynamics was largely confined to equi-
librium states. Linear irreversible thermodynamics is a simple extension of the
nineteenth century concepts of equilibrium thermodynamics to systems that are
sufficiently close to equilibrium, that intensive thermodynamic variables can be ap-
proximated by the same functions of local state variables as would be the case if the
entire system was in complete thermodynamic equilibrium. Classical thermody-
namics was limited in application to large systems where intensive thermodynam-
ic functions do not change their values if the system size is increased. This is often
referred to as the “thermodynamic limit”.

In spite of these restrictions, thermodynamics is arguably the most widely appli-
cable theory in physics. Its First and Second Laws are probably held with greater
conviction that any other statements in physics.

In the last fifteen years, three new theorems have been proven that revolution-
ize our understanding of thermodynamics. Firstly, these new theorems remove the
need to take the thermodynamic limit. This allows the application of thermody-
namic concepts to finite, and even “nano” systems. Secondly, these new theorems
can be applied to systems that are arbitrarily far from equilibrium. Thirdly, and
for the first time, these theorems explain how macroscopic irreversibility appears
naturally in systems that obey time reversible microscopic dynamics. Resolution of
the Loschmidt (Irreversibility) Paradox had defied our best efforts for more than
100 years. These theorems remove the need for the Second Law of thermodynam-
ics. That “law” now becomes a limiting (thermodynamic limit) consequence of the
laws of mechanics and the Axiom of Causality: that an event A, can only influence
event B, if A occurred prior to B.

Historically, the first of these theorems, the Fluctuation Theorem (FT), general-
izes the Second Law of Thermodynamics so that it applies to small systems, includ-
ing those that evolve far from equilibrium. It refers to a precisely defined mathe-
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matical function, namely, the dissipation function, and gives a precise statement
of the probability ratio that time-averaged values of this function take on opposite
values. In systems close to equilibrium, this dissipation function is what linear
irreversible thermodynamics terms the rate of spontaneous entropy production.

Typically, the second theorem, the Nonequilibrium Work Relation (WR), provides
a method of predicting equilibrium free energy differences from experimental infor-
mation taken from nonequilibrium path integrals of “work” functions. These “work”
functions turn out to be the sum of the equilibrium free energy difference and the
time integrated dissipation function for the path.

The third of these theorems, the Dissipation Theorem, shows how the linear and
the nonlinear nonequilibrium response of systems are related to temporal corre-
lations in the dissipation function. The nonlinear response theory, known as the
Transient Time Correlation Function formalism, is just a special case of the Dis-
sipation Theorem, as is the more well known Green–Kubo linear response theory
and the Fluctuation Dissipation Theorem. Each of these theorems refers to the dis-
sipation function in some way. Thus, it is clear that the dissipation function is the
central function in nonequilibrium statistical mechanics and thermodynamics.

Each of these theorems is at odds with a traditional understanding of nineteenth
century thermodynamics. Indeed, conventional thermodynamics would have been
better named thermostatics rather than thermodynamics. Furthermore, these the-
orems are essential for the application of thermodynamic concepts to nanotech-
nology systems which are currently of interest to biologists, physical scientists and
engineers.

2.2
Thermostated Dynamical Systems

Consider a classical system of N interacting particles in a volume V. The microscop-
ic state of the system is represented by a phase space vector of the coordinates and
momenta of all the particles, in phase space – (q1, . . . qN , p1, . . . p N ) � (q, p ) � Γ
where q i , p i are the position and momentum of particle i, and the internal ener-
gy is given by H0(Γ ) D PN

iD1 p 2
i /(2m) C Φ (q) where Φ (q) is the interparticle

potential energy. Initially (at t D 0), the microstates of the system are distributed
according to a normalized probability distribution function f (Γ , 0). While the re-
sults in this review are generally applicable, in order to demonstrate its application
to realistic systems, we separate the N particle system into a system of interest and
a wall region containing NW particles. We assume that the wall region contains
many more particles than the system of interest, NW � (N � NW ), and write the
equations of motion for the composite N-particle system as,

Pq i D p i

m
C Ci (Γ ) � F e

Pp i D F i (q) C Di (Γ ) � Fe � Siα(Γ )p i , (2.1)
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where Fe is the dissipative external field that couples to the system via the phase
functions Ci (Γ ) and Di (Γ ), F i (q) D �@Φ (q)/@q i is the interatomic force on par-
ticle i, and the last term �Siα(Γ )p i is a deterministic time reversible thermostat
used to add or remove heat from the particles in a reservoir region [1–4]. The values
of Ci (Γ ) and Di (Γ ) can be set so that particles in the walls do not interact with the
dissipative field. The thermostat employs a switch, Si , which controls how many
and which particles are thermostated, Si D 0; 1 � i � (N � Ntherm), and Si D 1;
(N � Ntherm C 1) � i � N where Ntherm � Nw, and Ntherm D PN

iD1 Si .
The thermostat multiplier can be chosen in a number of ways, such as using

Gauss’ Principle of Least Constraint, to fix some thermodynamic constraint (e.g.,
temperature or energy), or using a Nosé–Hoover thermostat where an equation
of motion is introduced for α [1–4]. Thus, although the equations of motion for
the particles in the thermostating region are modified by the thermostating term,
the equations of motion for the particles in the system of interest are quite nat-
ural. This construction has been applied in various studies (see, e.g., [5–8]). Of
course, if Si D 1 for all i, we obtain a homogeneously thermostated system that
has been studied in detail [3]. We assume that in the absence of the thermostat-
ing terms, the adiabatic equations of motion preserve the phase space volume,
(@/@Γ ) � PΓ ad D 0. This is a condition known as the adiabatic incompressibility of
phase space, or AI Γ [3]. All Hamiltonian systems satisfy this condition. It is worth
pointing out that for constant F e , and appropriate choices of Ci (Γ ) and Di (Γ ), (2.1)
is time reversible and heat can be either absorbed or given out by the thermo-
stat.

One should not confuse a real thermostat composed of a very large (in princi-
ple, infinite) number of particles with the purely mathematical, albeit convenient,
term α. In writing (2.1), it is assumed that the reservoir momenta p i are peculiar
(i.e., measured relative to the local streaming velocity of the fluid or wall). When a
Gaussian thermostat is used, the thermostat multiplier is chosen to fix the peculiar
kinetic energy of the thermostated wall particles

Ktherm �
NX

iD1

Si
p i � p i

2mi
D (dCNtherm � 1)kB Ttherm/2 . (2.2)

The quantity Ttherm defined by this relation is called the kinetic temperature of the
wall, kB is Boltzmann’s constant and dC is the Cartesian dimension of the system.
It is assumed that NW , Ntherm � (N � Ntherm) � (N � NW ). This means that
the entire wall region can be assumed to be arbitrarily close to equilibrium at the
thermodynamic temperature, therefore, TW D @EW /@SW .

Under adiabatic conditions (i.e., in the absence of the thermostating term) we
have assumed that the phase space is incompressible. Introduction of the thermo-
stating results in phase space compression with a rate given by Λ D (@/@Γ )� PΓ . This
leads to a change in the energy due to the thermostating term. For dynamics de-
scribed by (2.1) and thermostated by a Gaussian thermostat, PH therm

0 (Γ ) D PQ(Γ ) D
�2Kthermα(Γ ) D �(dCNtherm � 1)kB Tthermα(Γ ) and Λ(Γ ) D �dCNthermα(Γ ) C
O(1). Therefore, the connection between the phase space compression factor and
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the heat exchange is given by

Λ(Γ ) D 
 PQ(Γ ) C O(1) , (2.3)

where 
 D 1/(kB Ttherm). When a Nosé–Hoover thermostat is employed, a similar
analysis yields Λ(Γ ) D 
 PQ(Γ ) [3, 9].

One might object that our analysis is compromised by our use of artificial (time
reversible) thermostats. However, the artificial thermostat region can be made arbi-
trarily remote from the system of interest by ensuring that the particles with Si D 1
are far from the system of interest [5, 6, 10]. If this is the case, the system cannot
‘know’ the precise details of how heat was removed at such a remote distance. This
means that the results obtained for the system using our simple mathematical ther-
mostat must be the same as those we would infer for the same system surrounded
(at a distance) by a real physical thermostat (e.g., with a huge heat capacity). We
introduce the thermostat to simplify the bookkeeping of tracking changes to the
phase space volume in open systems that exchange heat with their surroundings.
In open Hamiltonian systems, phase space volumes are not preserved. This math-
ematical thermostat may be unnatural, however, in the final analysis it is a very
convenient, but physically irrelevant device [6].

In [6], a mathematical proof is given showing that when the thermostating region
has a significantly larger number of degrees of freedom than the unthermostated
system of interest, the Fluctuation Theorem is independent of the mathematical
details of how the thermostating is accomplished. The proof is for an infinite family
of so-called μ-thermostats.

The exact equation of motion for the N-particle distribution function is the time-
reversible Liouville equation [3]

@ f (Γ , t)
@t

D � @

@Γ
� [ PΓ f (Γ , t)] � �iL(Γ ) f (Γ , t) , (2.4)

where iL(Γ ) is the distribution function (or f �) Liouvillian and appears in the
propagator for the phase space distribution function ( f (Γ , t) D exp[�iL(Γ )t]
f (Γ , 0)). The Liouville equation can also be written in Lagrangian form [11],

d f (Γ , t)
dt

D � f (Γ , t)
d

dΓ
� PΓ � �Λ(Γ ) f (Γ , t) . (2.5)

The presence of the thermostat is reflected in the phase space expansion factor,
Λ(Γ ) � @/@Γ � PΓ , which is Λ(Γ ) D �dCNthermα to first order in Ntherm, assuming
AI Γ . The equation of motion for an arbitrary phase function B(Γ ), is [11],

PB(Γ ) D PΓ � dB
dΓ

� iL(Γ )B(Γ ) , (2.6)

where iL(Γ ) is the phase variable (or p-) Liouvillian and appears in the propagator
for phase variables (B(Γ (t)) D exp[�iL(Γ )t]B(Γ (0))). The difference between the
f-Liouvillian and the p-Liouvillian is iL(Γ ) � iL(Γ ) D Λ(Γ ). The time-reversibility
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condition implies that there exists a time-reversal mapping, MT such that Γ D
MT exp(iLt)MT exp(iLt)Γ . Typically, MT(q, p ) D (q, �p ).

The solution of (2.5) gives the phase space density at a phase point after evolution
for a period t:

f (Γ (t), t) D exp
�
�
Z t

0
dsΛ(Γ (s))

�
f (Γ (0), 0) . (2.7)

If one considers an infinitesimal co-moving phase volume, δΓ , centered on Γ , for
which the number of ensemble members is conserved, then (2.7) can be used to
determine the time evolution of the phase volume:

δΓ (t)
δΓ (0)

D f (Γ (0), 0)
f (Γ (t), t)

D exp
�Z t

0
dsΛ(Γ (s))

�
. (2.8)

2.3
The Transient Fluctuation Theorem

The first proof of any fluctuation theorem was for a special case of what is now
known as the Evans–Searles Transient Fluctuation Theorem (ESFT). Here, we give
a very general proof. Consider the response of a system initially in some known
but arbitrary distribution,

f (Γ 0, 0) D exp[�F(Γ 0)]R
dΓ 0 exp[�F(Γ 0)]

, (2.9)

where F(Γ 0) is some arbitrary single-valued real function for which f (Γ 0, 0) D
f (M T Γ 0, 0). Γ 0 is the extended phase space vector which includes the phase space

vector Γ and may include additional dynamical variables such as the volume or
those associated with the thermostat. In the following, we drop the prime in cases
where the treatment is not altered and note where consideration of an extended
phase space is important.

Consider any system whose dynamics is described by deterministic, time-
reversible equations of motion. The equations of motion may have an applied
dissipative field as in (1), or the field may be zero. If the field is zero, then in order
to see anything interesting, the initial distribution should not be preserved by the
equations of motion (if it is preserved, then the ESFT is completely trivial). On the
other hand, if a dissipative field is applied, then it is often useful to consider the
case where the initial distribution is the equilibrium distribution for the field free
dynamics.

We assume the unthermostated equations of motion satisfy the AI Γ condition.
A thermostat may be added as in (2.1), but again, this is not absolutely essential.
However, the equations of motion must be time-reversal symmetric.
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The dissipation function, Ω (Γ ), is defined as [12, 13]:Z t

0
dsΩ (Γ (s)) � ln

p (Γ (0), δΓ )
p (Γ�(0), δΓ�)

D ln
�

f (Γ (0), 0)
f (Γ (t), 0)

�
�
Z t

0
Λ(Γ (s)) ds

� NΩt t (2.10)

where Γ �(0) � M TΓ (t) is the time-reversal mapped image of Γ (t) (the end-
point of the trajectory starting at Γ (0)), as shown in Figure 1, and p (Γ (0), δΓ ) D
f (Γ (0), 0)δΓ is the probability of observing ensemble members inside the in-

finitesimal phase volume δΓ , centered on the phase vector Γ (0), according to the
initial equilibrium distribution function, f (Γ (0), 0)1).

In order for the dissipation function to be well-defined, for any f (Γ (0), 0) ¤ 0,
then f (Γ (t), 0) ¤ 0, and vice versa. This is known as the ergodic consistency con-
dition for the dissipation function [12]. There are systems that fail to satisfy this
condition. For example, if we let the initial distribution be microcanonical and fur-
ther assume that the dynamics do not preserve the energy (there may be no ther-
mostat or the thermostat may fix the kinetic temperature or so), then the ergodic
consistency obviously breaks down.

The ESFT [11, 12, 14] states that under the conditions given above, the dissipation
function satisfies the following time-reversal symmetry:

p ( NΩt D A)

p ( NΩt D �A)
D exp[At] , (2.11)

where the notation p ( NΩt D A) gives the probability that the time-averaged dissipa-
tion function takes on a value A˙δA. Once the concepts, dynamics and definitions
have been given, the proof of the ESFT is trivial. The probability, p ( NΩt D A), is giv-
en by the integral of the phase space density over the set of all initial phase points
that have a specified value (within the small tolerance) for the time-average of the
dissipation function: p ( NΩt D A, dA) D R

NΩt (Γ )DA dΓ f (Γ , 0). Next, we compute the
probability ratio required in (2.11),

p ( NΩt D A)

p ( NΩt D �A)
D

R
NΩt (Γ (0))DA dΓ (0) f (Γ (0), 0)R

NΩt (Γ�(0))D�A dΓ�(0) f (Γ�(0), 0)

1) The time-integral of the dissipation
function can therefore be considered to
be the difference in surprise of observing
trajectories and their time-reverse, according
to the initial distribution function, and its

ensemble of average is the relative
entropy, or Kullback–Leibler divergence. This
has recently been discussed for an adiabatic
system [111].
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D
R

NΩt (Γ (0))DA dΓ (0) f (Γ (0), 0)R
NΩt (Γ (0))DA dΓ (t) f (Γ (t), 0)

D
R

NΩt (Γ (0))DA dΓ (0) f (Γ (0), 0)R
NΩt (Γ (0))DA dΓ (0) exp[Λ t (Γ (0))] f (Γ (t), 0)

D
R

NΩt (Γ (0))DA dΓ (0) f (Γ (0), 0)R
NΩt (Γ (0))DA dΓ (0) exp[�Ωt (Γ (0))] f (Γ (0), 0)

D exp[At] , (2.12)

where we apply the fact that Γ�(0) � MTΓ (t) is the time-reversal mapped im-
age of Γ (t). For time-reversible dynamics, if NΩt (Γ (0)) D A, then NΩt (Γ�(0)) D
�A (see Figure 2.1). The third equality is obtained using (2.8), and the final
equality using (2.10). We note that in order for this ratio to be well defined,R

NΩt (Γ�(0))D�A dΓ�(0) f (Γ �(0), 0) must be nonzero. That is, the time-reversal map-

ping of the end-points of the trajectory that meet the condition NΩt (Γ�(0)) D �A,
must be observable according to the equilibrium phase space density. This is the er-
godic consistency condition for the fluctuation theorem, and is a weaker condition
than the ergodic consistency condition mentioned above. An equivalent relation

timet0

p

q

MT

(0) (t)

(0)
(t)

f1( ,0) f1( ,t)

.

..

. MT

t = A

t = A

Figure 2.1 Schematic diagram showing the construction re-
quired to derive the transient ESFT. Two trajectories that are re-
lated by time-reversal mappings are shown as dotted lines, and
the time evolution of a small phase volume centered on these
trajectories is also shown. The dashed line indicates points re-
lated by time-reversal mappings (MT).
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to (2.12) is given for the time-integral of the dissipation function:

p (Ωt D A)
p (Ωt D �A)

D exp[A] . (2.13)

The existence of the dissipation function (2.10) requires that the initial distribu-
tion is normalizable, that ergodic consistency holds and that the initial distribution
is invariant under the time-reversal map. This assumption was used in going from
line 1 to line 2 in (2.12). By definition, all equilibrium distributions satisfy this
requirement.

The instantaneous dissipation function can be determined by the differentiation
of (2.10) as

Ω (Γ ) D � @

@Γ
� PΓ (Γ ) �

PΓ (Γ )
f (Γ , 0)

� @

@Γ
f (Γ , 0)

D � @

@Γ
� PΓ (Γ ) � PΓ (Γ ) � @

@Γ
ln f (Γ , 0) (2.14)

and, therefore, Ω (Γ ) f (Γ , 0) D � @
@Γ �
 PΓ (Γ ) f (Γ , 0)

�
, the divergence of PΓ (Γ ) f (Γ , 0)

(i.e., the dissipation function weighted by the initial distribution is the weighted
divergence of the phase space flow field).

The ESFT has generated much interest, as it shows how irreversibility emerges
from the deterministic, reversible equations of motion2), and is arbitrarily valid far
from equilibrium. It provides a generalized form of the Second Law of Thermo-
dynamics that can be applied to small systems observed for short periods of time.
It also resolves the longstanding Loschmidt Paradox. The ESFT has been verified
experimentally [15–22] (See Section 2.9).

The form of the above equation applies to any valid ensemble/dynamics combi-
nation, provided the distribution function is invariant with respect to time-reversal.
However, the precise expression for NΩt given in (2.10) is dependent on both the ini-
tial distribution and the dynamics. This result is extremely general. The ESFT is
so general because its proof requires so few assumptions: the ergodic consistency
and time reversibility of the dynamics.

2.4
Thermodynamic Interpretation of the Dissipation Function

Although the definition of the dissipation function in (2.10) seems quite abstract,
the dissipation function always takes on a physically significant form, which for
systems close to equilibrium has average values which are equal to the spontaneous
entropy production one meets in linear irreversible thermodynamics. Consider the

2) By time-reversible equations of
motion, we mean that there exists a
time reversal mapping MT such that
Γ D MT exp(iLt)MT exp(iLt)Γ .



2.4 Thermodynamic Interpretation of the Dissipation Function 83

special case where the kinetic energy Ktherm(Γ ) of the thermostated particles is fixed
and the initial distribution is isokinetic for the thermostating region, but canonical
elsewhere. The distribution function is then

f (Γ , 0) � f K (Γ , 0)

D δ(2Ktherm � (dCNtherm � 1)kB Ttherm) exp[�
H0(Γ )]R
dΓ δ(2Ktherm � (dCNtherm � 1)kB Ttherm) exp[�
H0(Γ )]

,

(2.15)

where H0(Γ ) is the internal energy of the entire system, and we recall 
 D
1/(kB Ttherm). In this case, it is evident [9, 12] that the dissipation function is related
to the generalized entropy production Σ (Γ ),

Ω (Γ ) � Σ (Γ ) D �
 J(Γ )V � F e . (2.16)

Here, V is the volume of the system of interest and J (Γ ) is the dissipative flux in
the system of interest,

� J(Γ )V � F e �
N�NWX

iD1

h p i

m
� Di � F i � Ci

i
� F e

D dH0

dt

ˇ̌̌̌tot

� dH0

dt

ˇ̌̌̌therm

D dH0

dt

ˇ̌̌̌ad

, (2.17)

where we have assumed that the field only acts directly on the particles in the sys-
tem of interest. The dissipative flux is thus the work performed on the system by
the dissipative field. It is the “work” because it is the total change in the energy
minus the change due to the thermostat.

Although we assumed a special dynamics where the kinetic energy of the ther-
mostated particles is fixed, the form of (2.16) must be true for other “thermostated”
dynamics (e.g., Nosé–Hoover or constant energy etc., see Appendix 1 of [9]). Fur-
thermore, if the reservoir region does not directly interact with the field and Ntherm

is large, and much larger than the number of degrees of freedom in the system
of interest, the form of (2.16) is generally true (e.g., for thermostats where higher
order moments of the momenta are constrained, stochastic thermostats etc.) [6].
The dissipative flux, volume and field are properties of the system of interest and
the only relevant property taken from the thermostated region is its temperature.

One might think that (2.16) is at odds with conventional linear irreversible ther-
modynamics in which it might be expected that the entropy production would be
given by (2.16), except that the temperature appearing there would be the local ther-
modynamic equilibrium temperature rather than, as in (2.16), the equilibrium wall
temperature. Close to equilibrium, the difference between these two temperatures
is O(F2

e ). This further implies that the difference between the dissipation function
and the entropy production conjectured for irreversible thermodynamics is in fact
O(F4

e ). This goes beyond the domain of applicability of linear irreversible thermo-
dynamics which is at most a O(F2

e ) theory. Thus, to the order that linear irreversible
thermodynamics can be trusted (i.e., O(F2

e )) close to equilibrium, the dissipation
function is equal to the spontaneous entropy production.
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2.5
The Dissipation Theorem

We now derive the Dissipation Theorem, which shows that, as well as being the
subject of the ESFT, the dissipation function is the central argument of both lin-
ear response theory (i.e., Green–Kubo theory) and nonlinear response theory. This
theorem was first derived in 2008 [23, 24].

Taking the solution of the Lagrangian form of the Liouville equation (i.e.,

f (Γ (t), t) D exp
h
� R t

0 dsΛ(Γ (s))
i

f (Γ (0), 0) as given in (2.7)), we can substi-

tute for f (Γ (0), 0) using the definition of the time-integrated dissipation function
(2.10), thus obtaining

f (Γ (t), t) D exp
�
�
Z t

0
Λ(Γ (s))

�
f (Γ (t), 0)

� exp
�Z t

0
dsΩ (Γ (s)) C

Z t

0
dsΛ(Γ (s))

�
D f (Γ (t), 0) exp

�Z t

0
dsΩ (Γ (s))

�
. (2.18)

This is valid for any Γ (t), therefore we select Γ (t) D Γ� and note that this implies
Γ (s) D Γ�(s � t). Then,

f (Γ�, t) D f (Γ �, 0) exp
�Z t

0
dsΩ (Γ�(s � t))

�

D f (Γ �, 0) exp
�
�
Z �t

0
ds0Ω (Γ�(s0))

�
, (2.19)

where the second equality is obtained by introducing s0 D s � t. Replacing the
dummy variables gives

f (Γ , t) D f (Γ , 0) exp
�
�
Z �t

0
dsΩ (Γ (s))

�
. (2.20)

This result shows that the propagator for the N-particle distribution function,
exp

��iL(Γ )t
�
, has a very simple relation to exponential time integrals of the

dissipation function. As shown below, in the case of isokinetic nonequilibrium
dynamics, this equation reduces to (7.2.17) of [23]3). In the case of adiabatic (i.e.,
unthermostated) dynamics for an ensemble that is initially a canonical ensemble,
the result is equivalent to (7.2.8) of [23], which is the distribution function derived
by Yamada and Kawasaki in 1967 [25]. However, (2.20) is much more general and,
like the ESFT, can be applied to any initial ensemble and any time-reversible, and
possibly thermostated dynamics that satisfies AI Γ .

3) Note that an alternative derivation of (20),
that more closely resembles the approach
used in [3], is given in [23, 24].
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From (2.20), we can calculate nonequilibrium ensemble averages in the Schrö-
dinger representation

hB(t)iF e , f (Γ ,0) D
	
B(0) exp

�
�
Z �t

0
dsΩ (Γ (s))

�

F e , f (Γ ,0)

(2.21)

and by differentiating and integrating (2.21) with respect to time, we can write the
averages in the Heisenberg representation as

hB(t)iFe , f (Γ ,0) D hB(0)i f (Γ ,0) C
Z t

0
ds hΩ (0)B(s)iFe , f (Γ ,0) . (2.22)

On both sides of (2.20)–(2.22), the time evolution is governed by the field-
dependent thermostated equations of motion (2.1). The derivation of (2.21) and
(2.22) from the definition of the dissipation function (2.10), is called the Dissipation
Theorem. This Theorem is extremely general and allows the determination of the
ensemble average of an arbitrary phase variable under very general conditions. Like
the ESFT, it is valid arbitrarily far from equilibrium. Equations (2.20) and (2.21) can
be obtained for time-dependent fields by including the explicit time-dependence
of Ω , but (2.22) cannot [26]. As in the derivation of the ESFT, the only unphysical
terms in the derivation are the thermostating terms within the wall region. How-
ever, because these thermostating particles can be moved arbitrarily far from the
system of interest, the precise mathematical details of the thermostat are unim-
portant. Since the number of degrees of freedom in the reservoir is assumed to
be much larger than that of the system of interest, the reservoir can always be
assumed to be in thermodynamic equilibrium. Therefore, there is no difficulty in
defining the thermodynamic temperature of the walls. This is in marked contrast
with the system of interest, which may be very far from equilibrium where the
thermodynamic temperature cannot be defined.

For the special case of isokinetic dynamics where the kinetic energy Ktherm(Γ ) of
the thermostated particles is fixed and if the initial distribution is isokinetic (2.15),
(2.22) can be written as the Transient Time Correlation function expression [23] for
the thermostated nonlinear response of the phase variable B to the dissipative field
Fe:

hB(t)iFe , f K (Γ ,0) D hB(0)i f K (Γ ,0) � 
V
Z t

0
ds h J(0)B(s)iFe , f K (Γ ,0) � Fe . (2.23)

In the weak field limit, this reduces to the well known Green–Kubo expression [23]
for the linear response

lim
Fe!0

hB(t)iFe , f K (Γ ,0) D hB(0)i f K (Γ ,0) � 
V
Z t

0
ds h J (0)B(s)iFeD0, f K (Γ ,0) � F e ,

(2.24)

where the right-hand side is given by the integral of an equilibrium (i.e., F e D 0)
time correlation function. The Transient Time Correlation Function (TTCF) in
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(2.23) has been used frequently to compute the nonlinear transport behavior of
systems over extremely wide values of the applied field [27–33]. For small fields,
the values of field-dependent properties of the system are often swamped by noise
from naturally occurring fluctuations making direct calculation of the left-hand
side of (2.23) or (2.24) problematic. This is particularly relevant regarding the cal-
culation of the transport coefficient which can be obtained from the ratio of the
flux to the field. The TTCF can be applied at any field strength, even zero, where it
reduces to the Green–Kubo expression for the linear response. Equation 2.24 has
the form of a susceptibility equation and, because the correlation function is the
equilibrium one, this equation is valid for time dependent fields.

It is interesting to compare a number of different relationships between the dis-
tribution function, the dissipation function and the phase space expansion factor.
The first such relations are (2.7) and (2.18) above. We note that although the time
argument in (2.20) is negative, the dynamics must still be governed by the field
dependent, thermostated equations of motion (2.1). By rewriting (2.10), we have

f (Γ (t), 0) D exp
�
�
Z t

0
dsΩ (Γ (s)) C Λ(Γ (s))

�
f (Γ (0), 0) . (2.25)

In a nonequilibrium steady state (SS), hΩ (t)iss D � hΛ(t)iss. We also note that
if the initial ensemble is microcanonical (has a uniform density) and the dynam-
ics are such that the total energy (system of interest plus walls and thermostat) is
constant, then Ω (t) D �Λ(t), 8t.

Rather obviously, the results of the Dissipation Theorem (2.22) can also be used
to obtain a Fluctuation Dissipation Theorem as described in [34] by considering the
case where the phase function B(Γ ) D J(Γ ). Furthermore, following [34], we find
that when the equilibrium dissipative flux autocorrelation function is δ-correlated,
h J(t1) J(t2)iFeD0 D h J(t1) J(t2)δ(t2 � t1)iFeD0, and we obtain the fluctuation dissi-
pation relation, and lim

F e!0
h J (t)iF e

D � 1
3 
V h J(0) � J (0)]iF eD0 � F e .

2.6
Nonequilibrium Work Relations

Traditionally, free energy differences between two equilibrium states have been de-
termined by methods based on measuring the work performed along a quasistatic
(equilibrium, reversible) pathway between the two states, or by considering the ra-
tio of the partition functions. The Jarzynski Equality (JE) [35, 36] and the Crooks
Fluctuation Theorem (CFT) [37, 38] provide alternative approaches whereby the
work is measured along an ensemble of nonequilibrium pathways.

The JE and CFT were originally developed for determining the difference in free
energy of canonical equilibrium states at the same temperature; however more
recently, they have been extended to other systems [10, 39–46]. Here, we present
a very general formalism [40] for obtaining the nonequilibrium free energy theo-
rems that can be applied in all these cases. We then show how it leads the usual
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canonical JE and CFT under appropriate conditions (see (2.34) and (2.35) below).
In Section 2.7, the general approach will be employed in order to consider the case
of the physical problem of a varying temperature.

We consider two closed N-particle systems: 1 and 2. These systems may have
the same or different Hamiltonians, temperatures or volumes; it does not matter.
They may have the same or different temperatures or volumes which are again,
irrelevant. In addition, the type of ensemble does not matter, whether microcanon-
ical, canonical, isothermal, or isobaric and so on. A protocol and the corresponding
time-dependent dynamics are then defined that will transform system 1 to sys-
tem 2. The systems are distinguished by introducing a parameter, λ, which takes
on a value λ1 in system 1, and λ2 in system 2. The transformation is also param-
eterized through λ(t) with λ(0) D λ1 and λ(τ) D λ2. We define a generalized di-
mensionless “work”, Δ X τ(Γ ), for a trajectory of duration τ, under these dynamics
as in [40],

exp[Δ X τ(Γ )] D p1(Γ (0), δΓ (0))Z(λ1)
p2(Γ (τ), δΓ (τ))Z(λ2)

D f1(Γ (0), 0)δΓ (0)Z(λ1)
f2(Γ (τ), 0)δΓ (τ)Z(λ2)

(2.26)

where Z(λ i ) is the partition function for the system with system i. If the sys-
tem is canonically distributed, then Z(λ i) is related to the Helmholtz free energy,
A(λ i) D �kBT ln(Z(λ i)). For other ensembles, the partition functions are well
known. p i(Γ , δΓ ) D f i (Γ )δΓ is the probability of observing the infinitesimal
phase volume δΓ , centered on the phase vector Γ , according to the initial equi-
librium distribution function, f i . In order for Δ X τ to be well defined, for any
f1(Γ (0), 0) ¤ 0, then f2(Γ (τ), 0) ¤ 0, and vice versa. This is known as the ergodic

consistency for generalized work [47].
Although the physical significance of the variable X might seem obscure at this

point, we will show that for particular choices of dynamics and ensemble, it is
related to important physical properties. We identify @Γ (τ)/@Γ (0) as the Jacobian
matrix and note that����@Γ (τ)

@Γ (0)

���� D δΓ (τ)
δΓ (0)

. (2.27)

Since the distribution function is normalized and by means of (2.27), it is obvious
that

hexp[�Δ X τ(Γ )]i1 D
Z

dΓ (0) f (Γ (0), 0)
f2(Γ (τ), 0)δΓ (τ)Z(λ2)
f1(Γ (0), 0)δΓ (0)Z(λ1)

D Z(λ2)
Z(λ1)

(2.28)

where the brackets h. . .i1 denote an equilibrium ensemble average over the initial
distribution.

This relationship, called a generalized Jarzynski Equality, is widely applica-
ble [40, 47]. It relates the ensemble average of the exponential of a nonequilibrium
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path integral to equilibrium thermodynamic free energy differences. The validity
of (2.28) requires that there is an integrable region in the phase space of the final
equilibrium distribution for which f2(Γ (τ), 0) ¤ 0, that is,

R
dΓ (τ) f2(Γ (τ), 0)

¤ 0. We call this the ergodic consistency condition for the generalized JE. The
relationship is very general and even applies to stochastic dynamics (see [40]).
The paths do not need to be quasistatic paths as in traditional thermodynamics.
Additionally, other nonequilibrium (even dissipative) processes can be carried out
during the period 0 < t < τ, as is the case with the CFT and JE [48, 49].

The CFT considers the probability, p f (Δ X τ D B), of observing values of Δ X τ D
B ˙ dB for forward trajectories starting from the initial equilibrium distribution
f1(Γ , 0), and the probability pr(Δ X τ D �B) of observing Δ X τ D �B ˙ dB for

reverse trajectories, though starting from the equilibrium given by f2(Γ , 0), as in
Figure 2.2. Proof of the generalized CFT closely resembles the proof of the ESFT
(2.12):

p f (Δ X τ D B)
pr(Δ X τ D �B)

D

R
Δ Xτ (Γ (0))DB

dΓ (0) f1(Γ (0), 0)R
Δ Xτ(Γ�(0))D�B

dΓ�(0) f2(Γ�(0), 0)

D

R
Δ Xτ (Γ (0))DB

dΓ (0) f1(Γ (0), 0)R
Δ Xτ(Γ (0))DB

dΓ (τ) f2(Γ (τ), 0)

D

R
Δ Xτ (Γ (0))DB

dΓ (0) f (Γ (0), 0)R
Δ Xτ(Γ (0))DB

dΓ (0) exp[�Δ X τ(Γ )] f1(Γ (0), 0)Z(λ1)/Z(λ2)

D exp[B ]
Z(λ2)
Z(λ1)

.

(2.29)

Here, we use the fact that Γ �(0) � MTΓ (τ), and for time-reversible dynamics, if
Δ X τ(Γ (0)) D B , then Δ X τ(Γ�(0)) D �B , as shown in Figure 2.2.

The derivation of the JE, as shown in (2.28), is trivial once the definitions have
been made. However, a more instructive approach is to obtain it by integration of
the CFT, (2.29):

hexp[�Δ X τ ]i D
Z 1

�1

dB p f (Δ X τ D B) exp(�B)

D
Z 1

�1
dB pr(Δ X τ D �B)

Z(λ2)
Z(λ1)

D Z(λ2)
Z(λ1)

. (2.30)

From the first line of (2.30), it is clear that trajectories for which the value of Δ X τ

is negative have a contribution to the ensemble average that is exponentially en-
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Figure 2.2 Schematic diagram showing the
construction required to derive the Crooks
fluctuation relation. Two trajectories related
by time-reversal mappings are shown as dot-
ted lines, and sampled from different initial
distributions. The time evolution of a small
phase volume centered on these trajectories is

also shown. The dashed line indicates points
related by time-reversal mappings (MT). It is
assumed that the time-evolution of λ for the
trajectories sampled from f1 is λ1 ! λ2, and
it is reversed for the trajectories that start in
f2 (i.e., λ2 ! λ1).

hanced. Therefore, in order to obtain numerical convergence of the ensemble av-
erage, it is important that these trajectories are well sampled. Many recent studies
have addressed this issue and have developed algorithms in order to improve con-
vergence [50–62]. If the averaging process is not sufficiently exhaustive for these
possibly extremely rare events to be observed, (2.29) and (2.30) will yield incorrect
results. This observation has an immediate impact on the calculation of free ener-
gy differences in the thermodynamic limit. This difference must be calculated in
finite systems for a series of system sizes and then extrapolation must be employed
in order to obtain the thermodynamic limit. If you apply the CFT or JE to extremely
large systems, one will never observe the required fluctuations and incorrect esti-
mates will be inferred.

We now show that these general results lead to the usual canonical forms of
the JE and CFT. The relevant distribution function is the canonical distribution
function,

f (Γ , 0) D exp
��
H0(Γ )

�
Z

. (2.31)

The thermodynamic potential is the Helmholtz free energy, A, which is related to
the phase space integral of the negative exponential of the Hamiltonian H0(Γ ) of
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the system4),

A(λ) D �kBT ln Z(λ)

D �kBT ln
�Z

dΓ exp(�
H0(Γ , λ))
�

. (2.32)

In order to transform from the initial equilibrium state, with λ D λ1 D λ(0),
to the final equilibrium state with λ D λ2 D λ(τ), the functional form of the sys-
tem’s Hamiltonian may vary parametrically over the period 0 < t < τ. For example,

H0(Γ , λ(t)) D
NP

iD1
p 2

i /(2m)CΦ (q, λ(t)) where Φ (q, λ(t)) is the interparticle poten-

tial. For t > τ, the Hamiltonian’s parametric dependence is fixed at H0(Γ , λ(τ)).
Over the times 0 < t < τ, the ensemble is driven away from equilibrium, and
if the transformation is halted at t D τ, the system will eventually relax to a new
equilibrium state.

Using (2.26), the generalized “work” becomes:

Δ Xτ D 

�

H0(Γ (τ), λ(τ)) � H0(Γ (0), λ(0)) C ln
�
δΓ (0)
δΓ (τ)

��
D 
(H0(Γ (τ), λ(τ)) � H0(Γ (0), λ(0)) �

Z τ

0
dsΛ(Γ (s)))

D 
(H0(Γ (τ), λ(τ))) � H0(Γ (0), λ(0) � ΔQ τ)

D 
ΔWτ . (2.33)

The final equality is obtained from the First Law of Thermodynamics, and the equa-
tions of motion must satisfy AI Γ . We note that if t D τ at the end of the protocol,
then the system is not in equilibrium and it does not matter. Any subsequent relax-
ation processes will have no effect on ΔW . Furthermore, at the end of the proto-
col, the system cannot “know” how long the final relaxation process will take [47].
Analogous statements apply for Δ X in general, and stem from the fact that Δ X is
defined in terms of the ratio of the partition functions of the two equilibrium states
regardless of the relaxation that takes place after the protocol has ceased (t > τ).

For a system where the phase space is extended due to the introduction of ad-
ditional dynamical variables such as the volume or those associated with the ther-
mostat (such as in the case of Nosé–Hoover dynamics [63], as detailed below), the
work becomes ΔWτ D HE(Γ 0(τ), λ(τ)) � HE(Γ 0(0), λ(0)) � ΔQ τ, where HE is the
Hamiltonian of the extended system [46].

Using (2.29) and (2.33), the CFT is given as

pF(ΔWτ D B)
pR(ΔWτ D �B)

D exp[
B ]
Z2

Z1
D exp[�
(ΔA � B)] (2.34)

4) We assume that the system’s center of mass
motion is zero.
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where ΔA D A(λτ) � A(λ0), and using (2.28), the JE is

hexp(�
ΔWτ)i D Z2

Z1
D exp(�
ΔA) . (2.35)

The same results are obtained for the canonical distribution when the dynamics
are thermostated by a Gaussian thermostat [64], a Nosé–Hoover thermostat [46], or
the dynamics are adiabatic (i.e., unthermostated). For other ensembles and trans-
formations, (2.28) does not necessarily refer to a work (e.g., see [39, 40, 43]).

2.7
Nonequilibrium Work Relations for Thermal Processes

To obtain experimentally applicable forms of these theorems which are valid arbi-
trarily far from equilibrium, it is necessary to introduce a thermal reservoir that
is large and remote enough from the system of interest to effectively remain in
equilibrium. As in Section 2.2, we surround the system of interest with a large
synthetic thermostating region. We wish to consider a realistic model of a system
that is driven away from equilibrium by a reservoir whose temperature is changing
(e.g., see [43]). For this case, the simple parametric change in Hamiltonian or exter-
nal field, usually employed in the derivation of the JE or the CFT, is not applicable
and care is needed in developing the physical assumptions, as in [43, 65].

Here, we address the issue by considering a system of interest containing some
very slowly relaxing constituents, such as soft matter or pitch [66], in contact with
a rapidly relaxing reservoir. The reservoir may be formed from a copper block or
another highly thermally conductive material. Changing the temperature of the
reservoir (e.g., with a thermostatically controlled heat exchanger) then drives the
system of interest out of equilibrium. The change in temperature is slow enough
that the reservoir may be treated to high accuracy, as in undergoing a quasistatic
temperature change. The slowly relaxing system of interest is far from equilibrium.
We have developed generalized versions of the CFT and the JE applied to this sys-
tem. Importantly, the quantities that appear in the theory are physically measurable
variables.

Since we choose the thermostat to be large and remote, details of how it is imple-
mented will not affect the way the system behaves. For convenience, from a theo-
retical perspective, we choose the Nosé–Hoover thermostating mechanism and the
equations (based on (2.1)), including that of the thermostat multiplier, are thus:

Pq i D p i

m
Pp i D F i (q) � Siα(Γ )p i

Pα D
 PN

iD1 Si p i � p i/m
dNthermkB T(t)

� 1

!
1
τ2
α

, (2.36)

where τα is the Nosé–Hoover time constant. The value of T(t) is the target
temperature of the thermostat. The extended, time-dependent internal energy
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is HE (Γ , α, t) D H0(Γ )C d
2 NthermkB T(t)α2τ2

α and the extended phase space of the
system is Γ 0 D (Γ , α). The Liouville equation states: d f /dt D �Λ f , [3] and us-

ing (2.36) it is easy to show that kBTΛ D kB T


@
@Γ � PΓ C @

@α Pα
�

D �dNthermkBTα

� PQ, where PQ is the rate of increase in HE at constant T due to the thermostating
alone. The equilibrium distribution function for this system is then easily shown
to be

feq(Γ , T, α) D τα
p

dNtherm/(2π)
Z(T )

exp(�
HE(Γ , T, α)) , (2.37)

where Z(T ) is given in (2.32). In this case, the parameter that is varied in time is
the temperature of the wall, λ(t) � T(t).

We now consider applying the generalized JE, (2.28) when a thermal rather than
a mechanical process occurs. Consider a thermostated system of N particles whose
target temperature is changed from T1 to T2 over a period 0 < t < τ. We do not
change the Hamiltonian during this process. For simplicity, we consider a canon-
ical ensemble for the two equilibrium states (2.37), and use the equations of mo-
tion (2.36). The temperature dependence of the reservoir is achieved by making the
Nosé–Hoover target temperature T(t) in (2.36) a time dependent variable.

The change in temperature is slow enough that the reservoir may be treated as
changing quasi-statically at the target temperature T(t), while the slowly relaxing
system of interest is driven out of equilibrium: that is, it changes irreversibly. How-
ever, if one is only interested in the synthetic dynamics, this restriction may be lift-
ed and the temperature can be changed at an arbitrary rate. Either way, the system
of interest will approach the temperature T2 in the limit t/τ ! 1. We use (2.26)
with f 1 and f2 given by (2.37) at the two different temperatures to obtain

Δ X τ(Γ 0I 0, τ) D 
2HE(Γ 0(τ)) � 
1HE(Γ 0(0)) �
Z τ

0
dt
(t) PQ(Γ 0(t)) , (2.38)

where 
(t) D 1/(kB T(t)) is the inverse, time-dependent target temperature. Now,
if we take the derivative of the extended Hamiltonian while the temperature is
changing, but with no other external agent acting on the system, by using (2.36) we
obtain

d
dt

HE(Γ 0(t)) D PQ(Γ 0(t)) C d
2

NthermkB PT (t)α2(t)τ2
α . (2.39)

We then obtain

d
dt

[
(t)HE(Γ 0(t))] D �
(t)

"
H0(Γ (t))

PT (t)
T(t)

� PQ(Γ 0(t))

#
, (2.40)

and combining these, the generalized “power” for a change in the target tempera-
ture with time is

PX (Γ (t)) D P
(t)H0(Γ (t)) . (2.41)
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Note that (2.41) only depends upon Γ and not the thermostat multiplier α. Equa-
tion 2.28 then becomes	

exp
�

�
Z τ

0
dt P
(t)H0(Γ (t))

�

1

D Z (2)

Z (1) D exp[�
2A 2 C 
1A 1] . (2.42)

One can see that this equation is consistent with thermodynamics because in the
quasistatic limit, equilibrium thermodynamics yields the relation

P
(t) hH0ieq D PT d
dT

[
(t)A(t)] . (2.43)

The Hamiltonian of the total system may be split in parts representing the sys-
tem of interest, Hsi, the reservoir Hr and the interaction between the reservoir
particles and the system of interest particles Hsir, yielding, in rather obvious no-
tation, H0 D Hsi(Γsi) C Hr(Γr) C Hsir(Γ ). Now, by construction, we have set up
our system such that the changes to hHri and hHsiri are quasistatic. This allows
us to take the contributions of these parts of the Hamiltonian through the average
appearing in (2.42),	

exp
�

�
Z τ

0
dt P
(t)Hsi(Γsi(t))

�

1

� exp
�

�
Z τ

0
dt P
(t) hHr C HsiriT(t ),eq

�
D exp[�
2A 2 C 
1A 1]

(2.44)
and obtain,	

exp
�

�
Z τ

0
ds P
(t)Hsi(Γsi(t))

�

1

D exp[�
2A si,2 C 
1A si,1] , (2.45)

where 
 and T are given by the temperature of the reservoir, andZ τ

0
ds P
(t) hHsi(Γsi(t))ieq D 
2A si,2 � 
1A si,1 . (2.46)

For temperature changes at finite rates, the thermodynamic temperature of the
system of interest can not be defined and the kinetic temperature of the system
of interest may not be equal to the temperature of the thermal reservoir. Nonethe-
less, (2.45) can still be used to compute changes in the free energy of the system
of interest, as specified by (2.46), because the reservoir is being changed approxi-
mately quasistatically.

From the above, one observes that the function appearing in the quasistatic ther-
modynamic path integral (2.46) is the same as that which appears in the nonequi-
librium free energy relation. One could conjecture that any correct microscopic
expression for the thermodynamic path integral derived using classical statistical
thermodynamics would yield a correct Nonequilibrium Free Energy Relation for
some protocol. All that is required is sufficient ingenuity to design a protocol con-
sistent with the microscopic expression for the generalized work. To be absolutely
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sure that your microscopic expression and protocol are consistent, one should sim-
ply check that when substituted into (2.28), that the protocol generates the required
generalized “work”. However, if the Nonequilibrium Free Energy Relation is to be
used beyond the synthetically thermostated dynamics, care is required. It must be
ensured that the system is controlled by a thermal reservoir which remains in equi-
librium.

If one constructs an algorithm (2.36) in order to accomplish some thermal trans-
formation (N1, V1, T1) ! (N1, V1, T2), then (2.28) gives a precise microscopic form
for the generalized “work” appearing in the classical thermodynamic path integral
for the free energy change. Although the quasistatic path integral expression is
unique, the nonequilibrium expression is certainly not. This is because there are
infinitely many protocols that accomplish the required change. Nonetheless, each
of these expressions gives identical values for the free energy difference.

2.8
Corollaries of the Fluctuation Theorem and Nonequilibrium Work Relations

In this section, we describe some of the results that can be derived using the fluc-
tuation theorem and nonequilibrium work relations, and provide references for
further details.

2.8.1
Generalized Fluctuation Theorem

For an arbitrary phase function φ(Γ ), one can derive an equality for the conjugate
probability ratio [12, 67]:

p [ Nφ t D B ]
p [ Nφ t D �B ]

D hexp[�Ωt ]i�1
Nφ t DB . (2.47)

In this equation, h. . .i Nφ t DB denotes an average over those ensemble members for
which Nφ t D B . A derivation can be found in references [12, 67].

2.8.2
Integrated Fluctuation Theorem

In experimental tests of the Fluctuation Theorem, it is almost always easier to test
the Integrated Fluctuation Theorem (IFT), rather than the distinct Fluctuation The-
orem [5, 15]. The IFT simply asks what the ratio between positive and negative
time-averaged values of the dissipation function is. The IFT states that

p [Ωt > 0]
p [Ωt < 0]

D hexp[�Ωt ]iΩt<0 D hexp[�Ωt ]i�1
Ωt >0 . (2.48)
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This can be obtained by integration of (2.13),

p (Ωt > 0)
p (Ωt < 0)

D
RC1

0 dB p (Ωt D B)R 0
�1 dB p (Ωt D B)

D
RC1

0 dB p (Ωt D B)RC1
0 dB p (Ωt D �B)

D
RC1

0 dB p (Ωt D B)RC1
0 dB p (Ωt D B) exp[�B ]

D hexp[�Ωt ]i�1
Ωt>0 . (2.49)

2.8.3
Second Law Inequality

Linear irreversible thermodynamics asserts that the instantaneous local sponta-
neous entropy production must always be nonnegative. However, for a viscoelastic
fluid, this is not always the case. Given the fundamental status of the Second Law,
this presents a problem. The derivation of the Second Law Inequality (SLI) from
the FT provides new insight into this problem. The SLI shows that time averages
(rather than instantaneous values) of the entropy production are nonnegative. This
Second Law Inequality is valid for the appropriately time-averaged entropy pro-
duction, though the instantaneous entropy production may be negative for various
ranges of times.

The Second Law Inequality states that [68]

hΩti � 1 , (2.50)

and is obtained by integration of (2.13)

hΩti D
Z C1

�1

dB p (Ωt D B)B

D
Z C1

0
dB p (Ωt D B)B C

Z 0

�1

dB p (Ωt D B)B

D
Z C1

0
dB p (Ωt D B)B �

Z C1

0
dB p (Ωt D �B)B

D
Z C1

0
dB p (Ωt D B)B(1 � exp[�B ]) � 0 . (2.51)

We note that the Second Law Inequality is a macroscopic consequence of the Fluc-
tuation Theorem. All previously derived consequences of ESFT and JE were mi-
croscopic in nature. This finding should have important consequences in widely
varied applications such as atmospheric physics and aerodynamics.
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If one applies the Second Law Inequality to the case of periodic time dependent
fields, then ergodic consistency limits its application to a discrete set of times that
are multiples of the period or in some cases, the half period. However, one can
also derive the Second Law Equality from the Crooks Fluctuation theorem for the
case where there is no change in the free energy ΔA D 0 (e.g., straining a liquid)
and consequently, there is no distinction between forward and reverse processes.
Because the ergodic consistency condition is much weaker for CFT, this more gen-
eral form of the Second Law Inequality applies for all integration times and for
arbitrary waveforms (i.e., periodic waveforms are not required).

The Second Law Inequality derived from CFT resolves a long-standing paradox
in linear irreversible thermodynamics [69]. In this theory, it is frequently stated
that the entropy production rate is nonnegative. This statement is manifestly false,
as any casual analysis of electric circuits in which time dependent voltages cause
currents to flow in circuits with a complex impedance shows. Similar systems in-
clude viscoelastic fluids. In these systems, there is a phase lag between the applied
field and the induced flux which guarantees that for short intervals of time, the
product of the force and the flux will be negative. The ensemble-averaged entropy
production can be negative. However, the Second Law Inequality must always be
satisfied.

2.8.4
Nonequilibrium Partition Identity

This identity (also referred to as the Kawasaki identity, Kawasaki normalisation fac-
tor, Kawasaki function, or integral fluctuation theorem) was first derived for Hamil-
tonian systems by Yamada and Kawasaki in 1967, and for thermostated dynamical
systems by Morriss and Evans in 1984 [11, 70, 71]. The Nonequilibrium Partition
Identity (NPI) is stated as:

hexp[�Ωt ]i D 1 . (2.52)

A very simple proof can be obtained using the ESFT given in (2.13):

hexp[�Ωt ]i D
Z C1

�1

dB p (Ωt D B) exp[�B ]

D
Z C1

�1

dB p (Ωt D �B) D 1 . (2.53)

It is quite extraordinary that although the Second Law Inequality says the ex-
ponent of the NPI is negative on average, the rare instances when the dissipation
function has a negative time average occur with such frequency that their exponen-
tially enhanced effect insures the average of the exponential is always unity.

If one applies the Jarzynski Equality to a situation where the free energy differ-
ence of the two states is zero, one derives (2.53). Although the ESFT, JE and CFT
each imply the NPI, the converse is not true [71].
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2.8.5
The Steady State Fluctuation Theorem

In many nonequilibrium systems, if the system starts at equilibrium but is driv-
en away from equilibrium by a dissipative field and is thermostated in some way,
then after the relaxation of initial transients, the system relaxes to a nonequilibrium
steady state. Nonequilibrium steady states are curious states. All macroscopic ther-
mophysical properties are time independent. There is a balance between the work
done on the system by the dissipative field and the energy dissipated to the ther-
mostat. Not all thermostated nonequilibrium systems relax to steady states. Some
evolve into periodic or quasi-periodic nonequilibrium systems, others suffer from
thermal run-away (explosions) because the thermostated process cannot dissipate
sufficient heat, while other systems become turbulent. Other systems evolve into
multiple steady states with different macroscopic properties depending on the ini-
tial conditions. In what follows, we assume we are dealing with systems that evolve
into a unique steady state. The necessary and sufficient conditions for a thermostat-
ed nonequilibrium system to evolve into a unique nonequilibrium steady state are
unknown.

Deterministic nonequilibrium steady states display many fascinating properties.
The steady state distribution function collapses onto a strange attractor of lower
dimension than the phase space in which it is embedded. Indeed, the dimensional
reduction can be used to compute the entropy production and the associated trans-
port coefficients [72]. The fine-grained Gibbs entropy of deterministic steady state
systems diverges towards negative infinity. An extensive literature is devoted to this
subject [4, 73].

The transient fluctuation theorem (2.12) applies to systems where the trajectories
are sampled from a known initial (t D 0) distribution function. It is exact, applies
at all times, and averages of the dissipation function are taken from the start of
each trajectory (t D 0) for a period of time, t. The same is true for the generalized
ESFT form (2.47).

However, these transient fluctuation theorems can be extended so that the time
averaging is carried out for a duration, t, but starting at a time t0 (see Figure 2.3). As
t0 increases, the statistics of these delayed averages approach those of a nonequi-
librium steady state. For a given t, t0 the (exact) transient fluctuation theorem gives
the following result [9, 13]:

p [ NΩt0,t0Ct D B ]

p [ NΩt0,t0Ct D �B ]
D exp[tB ] C hexp[�Ω0,t0Ω,t0,2 t0Ct ]i�1

NΩt0,t0Ct DB (2.54)

where we use the notation NΩt1,t2 D 1
t2�t1

R t2
t1
Ω (s) ds D 1

t2�t1
Ωt1,t2 . If fluctuations

in the dissipation function had no serial correlations, the second term on the right
hand side of (2.54) would be unity and, hence, would become insignificant in the
limit t ! 1.
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Figure 2.3 Schematic diagram showing the
construction required to derive the steady
state ESFT. Two trajectories that are related
by time-reversal mappings are shown as dot-
ted lines, and the time evolution of a small
phase volume centered on these trajectories

is also shown. The trajectory segments over
which the dissipation function is averaged are
considered, and are considered in the steady
state fluctuation relation start at t0 and end at
t0 C t. The dashed line indicates points related
by time-reversal mappings (MT).

For an arbitrary phase function φ we have:

p [ Nφ t0,t0Ct D B ]
p [ Nφ t0,t0Ct D �B ]

D hexp[�Ω0,2 t0Ct ]i�1
Nφ t0,t0Ct DB . (2.55)

If a steady state exists, and we choose t0 to be much larger than the Maxwell time
so that the system has reached a steady state, these expressions will apply to the
statistics of steady state trajectories sampled from an initial distribution. In the
case of large t0, the second term on the right hand side of (2.54) might be expected
to be bounded with respect to t. In that case, we can write [9]

lim
t!1

1
t

ln

"
p [ NΩt0,t0Ct D B ]

p [ NΩt0,t0Ct D �B ]

#
D B (2.56)

and

lim
t!1

1
t

ln
�

p [ Nφ t0,t0Ct D B ]
p [ Nφ t0,t0Ct D �B ]

�
D 1

t
ln hexp[�Ωt0,t0Ct ]i�1

Nφ t0,t0Ct DB . (2.57)

We note that these equations do not explicitly refer to the behavior of properties
of the system before t0, and therefore only refer to the steady state portion of the
dynamics. They will be independent of t0 if it is much larger than the Maxwell
time. Furthermore, the statistics of the phase variables Ω and φ will be the same
as that of trajectories selected from points along a single steady state trajectory,
provided there is only one steady state. Therefore, under these conditions, we can
drop the reference to t0, and write the steady state relations that will apply to both
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a set of trajectory segments generated from an initial ensemble or from a single
steady state trajectory

lim
t!1

1
t

ln

"
p [ NΩt D B ]

p [ NΩt D �B ]

#
D B (2.58)

and

lim
t!1

1
t

ln
�

p [ Nφ t D B ]
p [ Nφ t D �B ]

�
D 1

t
ln hexp[�Ωt ]i�1

Nφ t DB . (2.59)

We call (2.58) the steady state ESFT and (2.59) the generalized ESFT.
We emphasize that there are a number of conditions required to obtain (2.56)–

(2.59) that are not required for the transient relations or (2.54), (2.55) (for a full de-
scription see [9]). A steady state must exist which implies that the correlation time
is finite and the system must be chaotic; and if the phase function is singular, then
it must be integrable. For the relation to apply to samples from a single trajecto-
ry, only one steady state must exist. Furthermore, they will not apply at all times,
only asymptotically in the limit of long t. However, they do apply at arbitrary field
strengths [74].

An alternative way of obtaining (2.56) and (2.57) is to assume that the average
from time 0 to t0 C t will approach that of t0 to t0 C t when t0 is fixed and t is made
large [12]. Therefore, the statistics of these sets will be indistinguishable. Then,
from (2.12) we can directly obtain (2.58) in this limit. The assumptions stated above
are still required.

Using the steady state fluctuation relations, the Einstein and Green–Kubo rela-
tions can be derived for systems close to equilibrium (see Section 2.5).

We note here that another type of Steady State Fluctuation Relation has been de-
veloped by Gallavotti, Cohen and co-workers [75–77]. It has been proven for Anosov
systems [78], but is anticipated to apply to a wider range of systems and can be writ-
ten as

lim
t!1

1
t

ln

"
p [ NΛ t D B ]

p [ NΛ t D �B ]

#
D B for jBj � B� , (2.60)

where Λ is the phase space expansion rate, and B� is some constant5). For isoener-
getic systems Λ � Ω , and therefore, the relations (2.60) and (2.58) become identi-
cal, implying for this circumstance that B� D 1.

Application of the Gallavotti–Cohen Fluctuation Theorem (GCFT) to systems
that are not isoenergetic has recently been discussed [77, 79], and it has been found
that there are serious limitations to its utility. For instance, for many common sys-
tems the value of B� D O(F 2

e ) ! 0 as Fe ! 0, and it must be modified if the phase

5) The existence of the bound to the range of
fluctuations in phase space compression [78]
was not mentioned in the original
Gallavotti–Cohen papers [75, 76]. This has
caused confusion in the literature.



100 2 Thermodynamics of Small Systems

space contraction is not bounded. Perhaps even more difficult is the fact that for
these systems the time required for convergence of the GCFT diverges as O(F�2

e ).
Since much of the interest in fluctuation theorems arises from the fact that they
are exact arbitrarily far from equilibrium, the bound on the range of fluctuations
means that the GCFT is of limited use in large deviation theory.

2.8.6
Minimum Average Work Principle

From the Jarzynski Equality, it is easy to compute a bound on the work for a ther-
modynamic process [36]:

exp[�
ΔA] D hexp[�
ΔW ]i
D exp[�
 hΔW i] hexp[�
ΔW C 
 hΔW i]i
� exp[�
 hΔW i] h1 � 
ΔW C 
 hΔW ii
� exp[�
 hΔW i] (2.61)

In deriving this results, we have used the fact that ex � 1 C x , 8x . The above
equation implies that the ensemble average thermodynamic work is never less than
the free energy difference:

hΔW i � ΔA . (2.62)

This is called the Minimum Work Principle (MWP). Naturally, if one considers the
purely dissipative work, namely, ΔW � ΔA, the Second Law Identity (2.50) for this
quantity is consistent with MWP (2.62).

If one studies a cyclic process, the total change in free energy around the cycle
is zero. Application of the MWP implies that the ensemble-averaged work for the
cyclic process is nonnegative.

2.9
Experiments

Until quite recently, these theorems were explored theoretically and numerically
using computer simulation. Numerical results can provide insight into practical
issues associated with application of the theorems such as the degree of sampling
required. In cases where fluctuation theorems have been obtained for a coarse-
grained or stochastic models of a system [22, 80], or there is uncertainty in the
initial distribution [47], numerical calculation provides information on the validity
of the models. It is only in the last few years that the practicality of these theorems,
applied to the small dynamical systems, has been experimentally explored. It is im-
portant to note that experimentation is in no way a “proof” of the theorems. Instead,
experiments verify that the conditions (e.g., ergodic consistency, time reversibility,
synthetic thermostats at a distance) required for satisfaction of the theorem are ac-
tually present under experimental conditions. If this is so, we can then conclude
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that the mathematical theorem is actually relevant to natural systems. Experiments
also give us information that may be presently theoretically unknown. An example
of this is the information provided by experiments (both laboratory and computer)
regarding B� in the GCFT. At the time of the experiments, almost nothing was
known about B�. The scaling properties for B� were only discovered theoretically
after the experiments had indicated the information.

Here, we briefly mention some of the experiments that have been carried out and
refer the reader to recent reviews including discussions on experiments [49, 81–84],
and a literature review by Searles and Evans on recent experiments [85].

The first conclusive experimental tests of the fluctuation relations were on a col-
loidal particle in water held by an optical trap [15, 16]. The trap was either translat-
ed by movement of the optical trap relative to the system, or used to ‘capture’ the
particle by increasing the strength of the optical trap [16]. Carberry et al. [71] later
experimentally demonstrated the NPI using this approach, and Wang et al. [86, 87]
verified the steady state version of the ESFT. In early studies, the particle was in
a viscous fluid and therefore the equations of motion of the particle were well
approximated by a white noise stochastic Langevin equation. In 2007, a capture
experiment was carried out in a viscoelastic solvent where this approximation no
longer applies [22]. It was shown that despite this, the experiments validated the
ESFT, and therefore could not be considered to be just a special property of Brow-
nian dynamics. Blickle et al. [88] verified the fluctuation relation for the work (or
dissipation function) for a system where the trap potential was not harmonic.

Narayan and Dhar [89] demonstrated the importance of choosing the correct ex-
pression for the entropy production (see discussion in Section 2.5) by demonstrat-
ing that an FT for heat (corresponding to the GCFT, (2.60)) is not obeyed in their ex-
perimental studies, whereas the FT for work (corresponding to the ESFT, (2.11)) is.

Garnier and Ciliberto [90] have studied fluctuations in the power injected to an
electrical dipole that is subject to a current and verified the steady state FT (2.58)
and a heat fluctuation relation as predicted by van Zon et al. [91–93]. This group
has more recently studied stochastic nonequilibrium steady states, verifying FTs
that are valid at all times [94].

Douarche et al. [95] verified the transient ESFT and steady state ESFT for a har-
monic oscillator (a brass pendulum in a water-glycerol solution that is driven out
of equilibrium by an applied torque). They also developed a steady state relation for
a system with a sinusoidal forcing and showed that the convergence time for the
steady state relation was considerably longer in this case.

Other systems used for verification of the ESFT have included a diamond with
a single defect periodically excited by a laser [21, 96], an electric circuit [97] and
particles undergoing diffusion [98].

The first tests of the JE and CFR were by Liphardt et al. [19], who used optical
tweezers to extend a DNA-RNA hybrid chain, measuring the work required as the
extension proceeded. As well as demonstrating the ability of observing fluctuations
that would allow the JE and CFR to be applied, it led to the use of the JE as an
experimental tool for studying protein folding and for generating free energy land-
scapes.
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More recently, Collin et al. [18] carried out an experiment using the CFR to deter-
mine the difference in free energies of an RNA molecule and a mutant that differs
by one base pair. The CFR was shown to be useful far from equilibrium where
insufficient sampling hampers convergence of the JE.

Hummer and Szabo [99] demonstrated that in single molecule stretching experi-
ments, the JE provides an expression for the work at different times, whereas from
an experimental point of view, it is of more interest to know the free energy differ-
ence between states at different extensions of the molecule. They show how this
can be obtained and apply it in experiments.

Douarche et al. [100] have verified the CFR and JE for fluctuations in the work
of a mechanical oscillator that is in contact with a reservoir and driven by a large
external field.

In the future, it will be interesting to see how the relationships can be bene-
ficially used in experimental studies or interpretation of experimental results. In
this vein, Noy has used [101] the JE to benefit in interpretation of experimental re-
sults of chemical force microscopy where the probes of atomic force microscopy
are functionalized.

2.10
Conclusion

At first sight, the definitions of the dissipation function and of the generalized work
function may seem a little obscure. However, we can give a more physical expla-
nation of why they take the form they do. If you look at the dissipation function
defined in (2.10), you can see that on the second line of (2.10) we have two terms.
Consider the first term. That term will be zero for microcanonical ensembles and
it will be a difference in energies or enthalpies for canonical or isothermal isobaric
ensembles.

Now, look at the second term. The integral of the phase space compression fac-
tor is just related to the energy lost to the thermostat (which would be zero for
unthermostated dynamics). Thus, the sum of the two terms on the right hand side
of (2.10) reduces to either the heat loss in the microcanonical case or a generalized
dissipative work (energy or enthalpy) for the other ensembles.

For the microcanonical ensemble and constant energy dynamics, (the dynamics
required to satisfy the ergodic consistency condition), the heat loss and the dissi-
pated work are exactly equal, so the dissipation function can be clearly interpreted
as the dissipated work6).

The same form of analysis can be carried out on the generalized work defined
in (2.26), however in this case, the probabilities are determined with respect to dif-
ferent ensembles. Because the distribution functions, free energies and associated
partition functions may be different for the two states, the only way we can ob-

6) If the initial distribution is microcanonical,
adiabatic dynamics cannot be used because
this would violate ergodic consistency.
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tain a generalized work is to multiply the distribution functions by their respective
partition functions, precisely as in (2.26). In the case of canonical dynamics, this
then leads to an expression based on the difference in the internal energies and
the energy lost to the thermostat. There is a second difference between general-
ized work and the dissipation function. Because the two equilibrium states may
have different free energies, the resulting generalized work is not purely dissipa-
tive. This observation leads to a rather simple derivation of the generalized Jarzyn-
ski Equality (2.28). We decompose the generalized work into its purely dissipa-
tive component and its reversible component: Δ Xτ � Δ Xrev,τ C Δ Xdiss,τ where
exp(�Δ Xrev,τ) D Z(λ2)/Z(λ1), we immediately see from the NPI that

hexp(�Δ Xτ)i D Z(λ2)
Z(λ1)

hexp(�Δ Xdiss,τi D Z(λ2)
Z(λ1)

. (2.63)

This most simple and general derivation of the generalized JE, (also given by (2.28))
shows what is required for the Equality to work in practice. One needs to see the
anti-trajectories that correspond to the most probable trajectories in order for the
generalized JE to yield reliable averages in practice. These trajectories are required
for the Nonequilibrium Partition Identity to be unity. The derivation also points
out the intimate relationship between the Nonequilibrium Work Relations and the
Fluctuation Theorem.

Using the approach applied in Section 2.5, Williams and Evans have rederived
an exact expression for the time dependent nonlinear response [26]:

f (Γ , t) D f (Γ , 0) exp
�
�


Z t

0
ds J(Γ (�s)V F e(t � s)

�
. (2.64)

For the case of time independent fields, this equation is consistent with the dis-
sipation Theorem (2.20). This equation was previously derived [102] by assum-
ing that the nonequilibrium fine-grained Gibbs entropy, S(t) D �kB

R
dΓ f (Γ , t)

ln[ f (Γ , t)], is a minimum, subject to the constraints that the distribution is normal-
ized, that the average energy is fixed and that the average dissipative flux is fixed at
any time and also is a continuous function of time. This result is now confirmed
without assumptions regarding the entropy or the free energy.

Recently, there has been some interest in what has become known as the Maxi-
mum Entropy Production (MEP) approach [103, 104] to nonlinear dynamical sys-
tems. This approach asserts that nonequilibrium systems arrange themselves in a
way that maximizes the rate at which entropy is produced, subject to a set of con-
straints. As Hoover pointed out in 1986 [105], the problem with these theories is
that there is no objective way to comprehensively list the set of such constraints.
Combining (2.64) with the work reported in [102] shows that the nonequilibri-
um distribution function for a dissipative system does indeed minimize the fine-
grained entropy of the nonequilibrium system. Subject to the constraints placed on
the system (the distribution is normalized, the initial average energy is fixed, and
the average dissipative flux is constrained at all times and is a continuous function
of time) the exact distribution function (2.64) minimizes the Gibbs entropy for all
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times, including the transient behavior of the system. This is in spite of the fact that
for a thermostated deterministic steady state, the entropy diverges towards negative
infinity as time increases [73]. This is a consequence of the fact that the steady state
distribution (which is only approached and never actually reached) is a strange at-
tractor of lower dimension than the ostensible dimension of phase space [4, 72].
It can be seen in [102] that at any finite time, assuming that the entropy to be a
minimum (subject to the correct constraints of course), results in the same ex-
pression, (2.64), which is rigorously derived in [26]. In the steady state, the average
rate of change of the entropy is constant. Thus, the rate of decrease of the Gibbs
entropy is maximal. However, the approach in [102] is far more complex than the
MEP approximations. The MEP only employs sets of Lagrange multipliers for the
corresponding sets of constraints. In order to achieve temporal continuity in the av-
erage dissipative flux, [102] employs a Lagrange multiplier functional (i.e., the set
of constraints becomes infinite). This functional becomes a memory function that
determines what happens in the future by what has happened in the past, ensuring
that the dissipative flux is a continuous function of time.

If we take the logarithm of (2.64) and assume the initial ensemble is canonical,
we see that

ln[ f (Γ , t)] D 
A(t D 0) � 
H0(Γ ) � 

Z t

0
ds J(Γ (�s))V F e(t � s)] . (2.65)

Since the logarithm is a monotonic increasing function of its argument, we see
that the probability of observing a phase Γ at time t is increased if the dissipation
integrated along the phase space trajectory that terminates at Γ at time t, is large
and positive. What is important here is that the probability is influenced by the path
integral and not just the instantaneous value. As we have seen in time dependent
systems (e.g., viscoelastic systems), the instantaneous entropy production is not al-
ways positive. However, the Second Law Inequality [69] guarantees that the average
time integral is positive and, in the long time limit, subject to the constraints, is
actually maximal.

We also see that the probability is increased if the value of the Hamiltonian at the
current phase point, namely, H0(Γ ), is also low. In the long time limit, we expect
that the integrated dissipation will dominate over the Hamiltonian term. This is
probably why MEP provides a reasonable approximation at long times in some
circumstances [103]. We note, as always, that the reciprocal temperature 
 is not
directly related to the temperature of the system of interest (this temperature may
not be well defined far from equilibrium), but rather to that of the large, effectively
equilibrium, heat bath to which the heat eventually dissipates.

The FT is a rigorous analytical result from which the SLI and then the Second
Law of Thermodynamics can be directly proven, despite the fact that the under-
lying equations of motion are microscopically reversible. It therefore explains the
Loschmidt Paradox, which remained a paradox until the FT was obtained in the
early 1990s (i.e., for about 100 years).

On page 33 of the Landau and Lifshitz’s textbook [106], they state, “The question
of the physical foundations of the law of monotonic increase of entropy thus re-
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mains open: it may be of cosmological origin and related to the general problem of
initial conditions in cosmology . . . the violation of symmetry under time reversal
in some weak interactions between elementary particles may play some part . . . in
all closed systems which occur in Nature, the entropy never decreases. . . ” (for a
discussion on the cosmological approach see Chapter 7 of [107]). It is interesting
that in 1980, Landau and Lifshitz still talked of the monotonic increase of entropy as
though the Second Law was absolute rather than statistical. This same mistake was
made by Einstein in 1903 when he believed he had given a proof of the Second Law.
His proof does lead to a monotonic increase in entropy, but the proof rested on an
erroneous assumption, namely, that more probable distributions always follow less
probable ones!

Another quite frequent “explanation” of the origin of the Second Law is that the
Second Law is satisfied in our region of the Universe because we as complex bio-
logical organisms are here to observe this part of the Universe. This is the anthro-
pomorphic theory of the Second Law.

These views are each quite different from those of J. C. Maxwell, who wrote in
1878 ([108], p. 280), “Hence, the Second Law of thermodynamics is continually
being violated, and that to a considerable extent, in any sufficiently small group
of molecules belonging to a real body. As the number of molecules in the group is
increased, the deviations from the mean of the whole become smaller and less fre-
quent; and when the number is increased till the group includes a sensible portion
of the body, the probability of a measurable variation from the mean occurring in a
finite number of years becomes so small that it may be regarded as practically an im-
possibility”. Thus, it is quite clear that Maxwell would be completely unsurprised
by the Fluctuation Theorem. He understood that the Second Law is not absolute
and that it is “continually being violated” in small systems for short times.

If all the laws of mechanics and quantum mechanics are time-reversal symmet-
ric, then clearly, you cannot prove an asymmetric result like the Fluctuation Theo-
rem. In the first proof given by Evans and Searles in 1994 [14], this time symmetry
was indeed broken, though it was broken in such a natural way that many people
who have analyzed these proofs fail to see where the time-reversal symmetry is
broken. The assumption made was that processes are causal [109].

Once again, Landau and Lifshitz are quoted [106] (p. 32), “In quantum mechanics
. . . The fundamental equation is itself symmetrical under time reversal . . . How-
ever, despite this symmetry, quantum mechanics does involve an important non-
equivalence of the two directions of time . . . the probability of any particular result
of process B is determined by the result of process A, can only be valid if process A
occurred earlier than process B.”

This is the Axiom of Causality. It is used frequently in quantum mechanics and
(unrecognized by Landau and Lifshitz), it is also required in classical mechanics. In
the proof of the ESFT and the CFT, the probabilities of observing particular values
of time integrals of the dissipation function or of the generalized work are com-
puted from the probabilities of observing the initial states from which those sets
of trajectories began, f (Γ , 0)dΓ . We never used the probabilities of the endpoints;
indeed, had we done so we would have proved the anti-Fluctuation Theorem and
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an anti-Second Law [109]. The Axiom of Causality is so natural that people fail to
observe that they have indeed made this assumption. Landau and Lifshitz failed
to notice that it is constantly used in classical mechanics. This is evidenced by the
simple fact that Laplace transforms are only defined by (0, 1) time integrals rather
than (�1, 1) time integrals as for spatial Fourier transforms. Consequently, this
leads to memory functions rather than anti-memory functions. For an extensive
discussion of causality and thermodynamics, see [109].

The Mori–Zwanzig theory of thermal transport processes involves an exact ma-
nipulation of propagators and leads to exact expressions for linear transport coef-
ficients at zero wave-vector. It is not completely clear what the sign of these ex-
pressions is (there is no Second Law Inequality), but it is clear that time-reversal
symmetry has been broken because these expressions are odd under time-reversal
symmetry. Time reversal symmetry was broken within the Mori–Zwanzig formal-
ism by invoking the Axiom of Causality and employing memory functions rather
than anti-memory functions. Another instance of the application of the Axiom of
Causality is provided by the classical theory of electromagnetism where one finds
both “advanced” and “retarded” vector potentials as solutions of Maxwell’s time
symmetric field equations [110]. Ignoring the “advanced” potentials is just another
example of the application of the Axiom of Causality. This Axiom is so natural that
most physicists don’t even recognize instances of its application.

If one is prepared to accept the Axiom of Causality without proof, then the Fluctu-
ation Theorem and the Second Law are inescapable. In fact, the Second Law ceases
to be a “Law” and becomes, instead, the limiting case (N ! 1) of a very generally
applicable theorem.
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3
Quantum Dissipative Ratchets
Milena Grifoni

3.1
Introduction to Microscopic Ratchets

This contribution is dedicated to quantum dissipative ratchets, which are a special
class of nano- or mesoscopic engines that employ asymmetric devices (ratchets)
to direct particle motion in one specified direction (for reviews see [1–4]). After a
brief introduction about the state of the art in the fields of theoretical and exper-
imental investigation of quantum ratchet systems, I will discuss some concrete
examples, placing more emphasis on the underlying physical principles and ob-
servable phenomena than on the mathematical treatment. The reader interested in
the mathematical details can consult the scientific articles cited in this manuscript.

In macroscopic objects, an example of the ratchet principle is demonstrated in
windmills. The issue of whether random microscopic fluctuations, such as those
due to thermal motion, can act as a random energy source that can cause particles
to flow in a single direction, however, is much subtler. In particular, Richard Feyn-
man showed that no work can be extracted from a microscopic ratchet acting at
thermal equilibrium, in agreement with the second law of thermodynamics (for a
detailed discussion see [2, 5]). The second law of thermodynamics places clear con-
straints upon the attainable efficiencies of heat engines, devices which use energy
in the form of heat to do work. Typically, the engine extracts energy in the form of
heat from a hot reservoir and uses part of it to do work, with the remaining ener-
gy given to a colder reservoir. In this context, the second law says that one cannot
create a heat engine that extracts heat and converts it all to useful work. In partic-
ular, the maximal or Carnot efficiency is determined by the temperature difference
between the two reservoirs. If the reservoirs are at the same temperature, no work
can be extracted. In other words, a global out of thermal equilibrium situation has to
be maintained in order to extract work.

Following Feynman’s ideas several quantum ratchet devices, that is, periodic
structures with broken spatial symmetry, have been investigated over the last sev-
eral years. As a minimal model, one considers a quantum particle moving in a
ratchet potential that simultaneously interacts with one or more equilibrium reser-
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voirs and is subject to unbiased forces. The latter insure that the whole system
is driven out of equilibrium. From the theoretical point of view one distinguish-
es between dissipative ratchets [6–14] where the tunneling particle continuously
interacts with the bath as it moves along the periodic structure, and coherent ratch-
ets [15–17] in which the dissipation originates from the coupling between a ballistic
device and fermionic reservoirs. In dissipative ratchets, the interplay of dissipative
tunneling [18] with unbiased driving enriches the quantum ratchet effect with fea-
tures absent in its classical counterpart, such as temperature-dependent current
reversals [6].

After the pioneering semi-classical work [6], further progress towards a full quan-
tum description was made in [9], in which the role of the band structure in ratchet
potentials sustaining only a few bands below the barrier was investigated. Such a
situation does not have a classical counterpart because of the different conditions
for the classical case. In the latter, many bands contribute to transport in such a
way that the band structure of the asymmetric periodic potential should be of no
importance. The classical situation is achieved if the temperature is large enough
that particles can be easily excited across the barrier separating two nearby energy
wells.

In [9] it was established that a ratchet state of particle transport can only be
achieved when at least the two lowest Bloch bands contribute to transport. On the
other hand, at least two harmonics of the potential should enter the dynamical
equations in order to obtain the ratchet effect in systems with weak periodic poten-
tials [11, 12]. Interestingly, in [11, 12] an expression for the ratchet current valid for
weak dissipation was found upon generalization of a duality relation put forward
in [19] for a cosine potential. The relation was generalized to an arbitrary ratchet
potential and a time-dependent driving.

The growing interest in spintronics, the field which exploits the spin degrees
of freedom for new applications in magneto-electronic devices, has stimulated the
first proposal for the realization of a dissipative spin ratchet [13, 14]. Such a device
exploits the spin-orbit interaction present in semiconductor heterostructures, in-
cluding dissipation and spatial asymmetry, in order to create a device where a net
spin current is produced while no net charge current occurs.

As mentioned above, the ratchet effect has also been discussed in quantum trans-
port across ballistic quantum wires. Here rectification is a result of the dissipative
coupling of the wire to fermionic baths. Coherent charge ratchets based on molec-
ular wires with an asymmetric level structure of the orbital energies were proposed
in [15]. The spin ratchet effect in coherent quantum wires with Rashba spin-orbit
interaction was first investigated in [16]. The Zeeman ratchet effect which occurs in
the presence of a non-uniform static magnetic field was studied in [17] for coherent
quantum wires formed in a two-dimensional electron gas (2DEG).

Despite the increasing number of theoretical works on the subject, quantum
ratchet systems have been realized in only a few experiments [20, 21]. In [20] the
experimental realization of a coherent quantum ratchet has been demonstrated for
electrons moving in nanopatterned asymmetric semiconductor heterostructures.
In the experiment an alternating bias voltage is applied. A net current is generated
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despite the fact that the time-averaged electric field is zero. A current reversal was
detected by sweeping the temperature while keeping all the other parameters fixed,
including potential shape and bias voltage. This was interpreted as a crossover from
the classical to the quantum tunneling regime in accordance with the prediction
in [6]. In [21] the ratchet effect in the deep quantum realm has been reported in
which only a few energy bands below the potential barrier contribute to transport.
In the experiment of Majer et al., the tunneling particles are topological excitations
present in superconducting Josephson junction arrays and are termed vortices.

3.2
The Feynman Ratchet

The Feynman ratchet is illustrated in Figure 3.1 and consists of an axle with a
sawtoothed wheel or ratchet at one end and a paddle at the other.

The whole device is surrounded by a gas of molecules in thermal equilibrium
at some temperature T. The gas of molecules hitting the paddle cause it to turn,
but the question of which direction arises. In a ratchet-pawl system, motion in one
direction is allowed by the ratchet and motion in the opposite direction is prevent-
ed by a pawl such that a small load can be lifted. This, however, would violate the
second law of thermodynamics. Feynman demonstrated that as the pawl will be of
a size comparable to the paddle, it will also undergo similar thermal fluctuations.
In particular, thermal noise causes the pawl to release so that the ratchet can move
“backwards”. As shown by Feynman, forward and backward motion compensate on
average and no net work is produced. No contradiction with the second principle
occurs if the ratchet-pawl system is operated out of equilibrium which, for exam-
ple, would be the case if the ratchet and paddle would be in contact with thermal
reservoirs at different temperatures.

Figure 3.1 Feynman ratchet and pawl system. In thermal equilibrium no load can be lifted.
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T

ΔU

Figure 3.2 One-dimensional schematization of a Feynman
ratchet. A particle (dot) which sits in one of the minima of the
periodic ratchet potential can with equal probability be thermally
activated over the left or right barrier (upper arrow processes).
Hence, no preferred direction of motion exists (as indicated
by the equal length of the lower arrows).

Feynman’s analysis is schematized in Figure 3.2 which shows a particle (spot) in
a one dimensional asymmetric potential in the presence of equilibrium noise at a
temperature T. According to the laws of classical statistical mechanics, an energy
barrier can be overcome only if a particle acquires enough energy, for example by
thermal activation (upper arrows). For large enough barriers, the probabilities per
unit time ΓL/R that the particle has to overcome the barrier to the left or to the right,
respectively, are equal. The probabilities depend exponentially on the height ΔU
of the barrier to be overcome and on the magnitude of the thermal fluctuations
(ΓL/R � exp(�ΔU/ kBT )). This implies that the larger the temperature/barrier ra-
tio, the larger the escape probability. Hence, no preferred direction of motion exists
and the ratchet current, being the difference between the probabilities to overcome
the barrier to the left and to the right (indicated by the lower arrows pointing to-
wards the left and right, respectively), is zero. This brings us to the general state-
ment that in order for a Brownian motor to produce useful work, the system has to
be driven permanently out of equilibrium.

3.3
Tunneling Ratchets: Temperature Driven Current Reversal

In the remainder of this article we focus on rocked ratchets, where the temperature
and the asymmetric potential stay constant in time but the system is subjected to
an external time dependent driving force that disrupts thermal equilibrium. The
external driving force is chosen to be unbiased, for example with zero time aver-
age for any of its odd moments such that it does not induce any additional asym-
metry. Moreover, we shall consider the regime of low enough temperatures such
that quantum tunneling provides an alternative mechanism to thermal activation
to overcome energy barriers and obtain directed motion. In Figure 3.3 the case is
shown in which the force can assume two opposite values. As we shall discuss be-
low, a classical particle will preferably move towards the right rather than to the left
due to the different potential slopes (a). The situation, however, may be reversed
for a quantum particle (b).

In a seminal work, Reimann et al. [6] predicted a current inversion with decreas-
ing temperatures in rocked quantum ratchets due to a transition to a tunneling
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(a) (b)

Figure 3.3 Current reversal in a rocked ratchet. Depending
on the temperature, thermal activation over the barrier (upper
arrows) or tunneling through the barrier (gray arrows) are the
dominant escape mechanisms. For classical particles the net
motion, as determined by the lower arrows, is towards the right
(a), while for quantum particles is towards the left (b).

dominated regime. As explained in Figure 3.3, the occurrence of a current rever-
sal as the temperature is decreased can be understood as follows. Consider first
a classical particle in a periodic potential (a). Classically, a potential barrier can
be overcome only if a particle acquires enough energy to jump over the barrier,
for example by thermal fluctuations. If ΔUL/R is the energy barrier seen by the
particle on its left/right side and T is the temperature, the probability per unit
time ΓL/R to overcome the barrier to the left/right is given by the Arrhenius rate
ΓL/R � exp(�ΔUL/R/ kB T ) for large enough barriers, where kB is the Boltzmann
constant. In the tilted potential shown in the top (bottom) panel of Figure 3.3a,
the potential barrier to the right (left) is less than that to the left (right). By sum-
ming the contributions from the two tilting situations (lower arrows), a net ratchet
current to the right is expected.

In the quantum case, however, a finite probability occurs to go from one well to
the other via quantum tunneling, even if the energy of the particle is much less
than the potential height. This phenomenon can also occur at zero temperature as
it relies only on the wave nature of quantum particles. For a quantum particle mov-
ing against a potential hill, the wave function describing the particle can extend to
the other part of the hill. In particular, it turns out that the tunneling probability
exponentially depends not only on the barrier height, but also on the distance to
be traveled through the potential barrier. For the potential shown in Figure 3.3b,
tunneling in the tilted potential favors a net motion towards the left. Due to the
fact that the Arrhenius rate becomes exponentially smaller as the temperature is
lowered, a transition temperature is expected below which tunneling through the
barrier dominates over thermal activation above the barrier, and hence a current
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reversal is expected. This prediction was verified few years later in the first exper-
imental demonstration by Linke et al. [20] of the quantum ratchet effect in rocked
asymmetric semiconductor heterostructures.

3.4
Rocked Ratchets in the Deep Quantum Regime

One of the fundamental predictions of quantum mechanics for particles moving
in a periodic potential is that only discrete sets of energies forming “energy bands”
are allowed.

Significantly, in the temperature and driving regime in which the dynamics is
effectively restricted to the lowest band of the periodic potential, no current rectifi-
cation occurs as shown in [9]. In fact, a reduction to the lowest band of the ratchet
potential retains only information about the periodicity of the original Hamiltoni-
an, but not about its reflection properties. At least two bands should contribute in
order to take into account the vibrational motion within the well and thus the asym-
metry of the ratchet potential leading to the ratchet effect. Quantitative calculations
of ratchet currents in the limit in which only the three lowest bands contribute
to the dynamics have been performed in [9]. In this limit, a tight-binding model
with tight binding parameters related to the intraband and interband energies was
derived and solved in the limit of moderate to strong dissipation.

To date only one experimental realization of the ratchet effect in the deep quan-
tum realm has been reported, with only a few energy bands below the potential
barrier contributing to transport [21]. In the experiment of Majer et al., the tun-
neling particles are topological excitations present in superconducting Josephson
junction arrays named vortices (Figure 3.4).

Figure 3.4 Ratchet potentials for vortices. Top: Schematic lay-
out of the devices, with one cross denoting a Josephson junc-
tion. The device I serves as a reference and yields a symmetric
periodic potential for the vortices. Bottom: Calculation of the
potential seen by the vortices for the regular sample I and the
samples II, III [21].
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The upper part of Figure 3.4 shows a schematic layout where the Josephson junc-
tions are represented by crosses. Cells are areas enclosed by four junctions.

The peculiarity of the device is that junctions of three different sizes, large,
medium, and small, are periodically repeated along the length of the quasi-one-
dimensional array. Applying a magnetic field perpendicular to the array induces
vortices in the system. Vortices have lower energy in cells with larger area and
smaller junctions. Hence, by properly choosing junction sizes and cell areas, dif-
ferent energy potentials felt by the vortices can be designed. In the lower part of
Figure 3.4 three different quasi-one-dimensional Josephson junction arrays and the
corresponding potentials felt by a single vortex are shown in units of the Joseph-
son energy EJ with EJ/ kB D 5 K and at temperatures of T D 12 mK. In partic-
ular, the device denoted sample III yields the most asymmetric ratchet potential.
Sample I yields a regular periodic potential, and serves to check that accidental
asymmetries in the measured voltage current characteristics are not present. Final-
ly, sample II also gives rise to a ratchet profile, but with only one band below the
barrier.

If a current is applied vertically and homogeneously along the length of the array,
the vortices start to move. Such motion can be detected as a voltage drop across the
array as shown in the bottom panels of Figure 3.4 and in Figure 3.5. As expect-
ed, samples I and II do not exhibit ratchet behavior, while sample III shows clear
rectification. The power law dependence V / I δ with δ > 1 of the voltage on the
applied current is noteworthy. This is a quantum effect, as classical dynamics and a
zero temperature Ohm’s law (δ D 1) is expected above the critical current. Indeed,
such a power law behavior characterizes the incoherent dynamics at low temper-
atures and large biases of tunneling particles in Ohmic environments [18]. How-
ever, a quantitative explanation of such behavior was not possible in [21], where it
is suggested that a realistic description of the experiment might require the aban-

Figure 3.5 Experimental demonstration of the quantum ratchet
effect in superconducting Josephson junctions arrays. The
ratchet effect is observed in sample III where V(I ) ¤ �V(�I ).
Astonishingly, sample I and II exhibit identical behavior and no
rectification [21].
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donment of a noninteracting vortex picture and a full accounting of vortex–vortex
interaction.

3.5
Rocked Shallow Ratchets

A striking feature of the experiment shown in Figure 3.5 is that despite the fact
that samples I and II have seemingly different shapes, the resulting V � I curves
are the same. The qualitative understanding of this feature lies in the theoretical
investigations carried out in [11, 12]. A first observation is that a ratchet potential
can, in general, always be expanded in a Fourier series because it is periodic in
space, for example V(q) D V0 C P

n Vn cos(2nq/L � n) for the one dimensional
case, where L is the periodicity length. For the two ratchets reported in [21], only
the first three harmonics were relevant. Moreover, the second harmonic was es-
sentially absent in the less asymmetric sample. In the theory developed in [11, 12],
it is shown that for the case in which an expansion of the tunneling current in
the amplitudes of the potential’s harmonics is rapidly converging, the terms that
dominate the ratchet current are those linear in the second harmonic. While these
contributions are present for the potential characterizing sample III, they vanish
for the potential characterizing sample II. Thus, sample II behaves in a similar
fashion as the symmetric sample I at low temperatures. Indeed, a deeper look at
the potentials in Figure 3.4 shows that while the potential in sample III possesses
narrow bands below the barrier, this is not the case for the shallow potentials in
samples I and II, which support no bands and one band below the barrier, respec-
tively.

In [11, 12] a duality transformation was used to map quantum Brownian motion
in a tight-binding description, with Ohmic damping characterized by a viscosity co-
efficient η. In this description weak dissipation in the original model corresponds
to strong dissipation in the tight-binding model and vice versa. Moreover, the
periodicity of the tight-binding model depends on the viscosity coefficient η and
the tight-binding matrix elements are proportional to the Fourier coefficients Vn .
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Figure 3.6 Dual relation between a dissipative ratchet system
and a tight-binding (TB) model sketched for a two-harmonics
ratchet potential (thick curve). Each harmonic (thin curves) gen-
erates couplings to different neighbors in the TB system. The
periodicity QL of the TB model is determined by the viscosity η in
the original model [11, 12].
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By means of the duality relation, various quantities such as the mobility or the
ratchet current can be calculated as a correction to the dynamics in the absence
of the periodic potential. Due to the Eherenfest theorem, in the absence of the
potential the classical and quantum expectation values are the same, such that
in the limit of vanishing potential the duality relation yields the correct classical
limit. The quantum corrections due to the presence of the ratchet potential can
be calculated, for example, as a series expansion in the Fourier amplitudes Vn .
For shallow potentials, that is, small amplitudes, a truncation of the series yields a
good approximation to the ratchet current.

3.6
Spin Ratchets

During the last decade the new research field of spintronics has emerged, in which
one makes use of the spin degree of freedom of a particle for transport and storage
of information. One essential difference between spin and charge is that a particle
can have more than one spin state, while it has only one charge state. In the con-
text of transport, it is significant that the spin state of a particle can depend on the
transport conditions, as it happens, for example, in systems with spin-orbit interac-
tion. This fact has stimulated research on spintronics devices made up of nonmag-
netic materials but still exploiting the spin-orbit interaction. Among the various
different spin-orbit mechanisms, the Rashba spin-orbit interaction (RSOI) plays a
distinguished role because the spin-orbit coupling strength can be controlled by an
external electric field.

The possibility to transfer the spin separately from charge plays an important
role. This can be implemented by so-called pure spin currents that are not accom-
panied by charge currents. In a recent seminal work, Smirnov et al. [13] have ad-
dressed the challenging question of how to make use of the Rashba spin-orbit inter-
action and ratchet geometry to generate pure spin currents in dissipative quasi-one-
dimensional systems. In periodic quasi-one-dimensional systems with a periodic
potential along the longitudinal direction, the RSOI removes the spin degenera-
cy of the one dimensional Bloch bands and couples different transverse branches.
When only a few M transverse modes are relevant, each Bloch band splits into 2M
sub-bands which may carry different spin [22]. Following [9], the authors restricted
their attention to the lowest Bloch band in order to block the generation of charge
currents and investigate the possibility of pure spin current generation. The Rash-
ba Hamiltonian is not invariant under reflection of a transport direction. Thus the
Rashba Hamiltonian itself already has a built in spatial asymmetry. In coherent
quantum wires this asymmetry turns out to be sufficient to generate pure spin
currents [16]. As shown in [13], however, this is no longer the case for dissipative
wires. Despite the intrinsic Rashba asymmetry, the system must additionally lack
the spatial inversion symmetry and its orbital degrees of freedom must be coupled
in order to generate pure spin currents.
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4
Dynamics of Nanoscopic Capillary Waves
Klaus Mecke, Kerstin Falk, and Markus Rauscher

With the advent of nanofluidics in the last several years it has become evident that
thermal noise may play an important role in all hydrodynamic processes occurring
at free interfaces on small scales. Although in bulk fluids hydrodynamic Navier–
Stokes equations are proven to be valid down to the nanometer scale, in free inter-
face flow stochastic forces induced by molecular motion can significantly alter the
behavior even on a micrometer scale. Moseler and Landman, for instance, found
that the deterministic lubrication approximation for axial-symmetric free boundary
flow is not applicable for the description of nanoscopic cylindrical jets [1]. The lack
of thermally triggered fluctuations in the classical hydrodynamic continuum mod-
eling was identified as the most likely source for deviations of Navier–Stokes solu-
tions from molecular dynamics simulations. They derived a stochastic differential
equation that includes thermal noise, whose influence on the dynamics increases
as the radius of the nanojet becomes smaller, leading finally to the emergence of
symmetric double cone neck shapes during the breakup, instead of a long thread
solution as expected in the absence of noise. In [2], path integral methods were
applied to confirm that thermal noise indeed induces qualitative changes in the
breakup of a liquid nanometer jet. Thermal fluctuations speed up the dynamics
and make surface tension an irrelevant force for the breakup. Very recently, the im-
portance of thermal noise for drop formation was observed in a colloidal dispersion
with an ultra-low surface tension [3].

The hydrodynamics of liquid interfaces are particularly poorly understood on
microscopic length scales where the standard capillary wave theory [4, 5] is not
applicable. In contrast to solid surfaces, relevant experimental information is ab-
sent on the nanometer scale even for the simplest liquid–vapor interfaces. Recent
developments in grazing incidence X-ray scattering experiments has removed this
uncomfortable situation for the equilibrium structure, but has yet to do so for the
dynamics. The theoretical results and X-ray experiments reported in the last sev-
eral years in [6–8] give the first complete determination of the structure and the
equilibrium fluctuations of a liquid–vapor interface, and represent a significant
improvement in the understanding of fluid interfaces on a molecular level. In par-
ticular, it has been demonstrated that the dominant effect below a few nanometers
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is a large decrease of the surface energy due to dispersion forces. This calls for a
reexamination of all small scale interfacial processes. For such a reexamination,
the hydrodynamics of capillary waves have to be studied on length scales compa-
rable to the range of molecular interactions. If the wavelengths of undulations are
below 50 nm, one expects new phenomena due to direct non-local interactions of
molecules which cannot be described by local hydrodynamics. The final theoretical
goal would be a derivation of the time dependence of capillary waves on nanometer
length scales and, in particular, the dependence of dispersion relations and damp-
ing factors on molecular interactions. Experimentally, the dynamics of capillary
waves may be measured on liquid–vapor interfaces by X-ray photon correlation
spectroscopy and scattering techniques.

4.1
Stochastic Hydrodynamics

The effect of thermal noise has already been introduced phenomenologically into
hydrodynamics by Landau and Lifšic [9] and further discussed by Fox and Uhlen-
beck [10, 11]. A microscopic justification for the noisy hydrodynamical equations
has been provided by showing that the form proposed can be derived from the
deterministic Boltzmann equation by a long wave approximation [12]. The noisy
hydrodynamical equations have been discussed, for example, in the context of tur-
bulence in randomly stirred fluids [13, 14] as well as for the onset of instabilities in
Rayleigh–Bénard convection [15] and Taylor–Couette flow [16]. Introductions can
be found in [9, 17, 18].

4.1.1
Stochastic Interfaces

We consider an incompressible Newtonian liquid with a free fluid boundary as
sketched in Figure 4.1. We assume that the liquid–vapor interface can be param-
eterized by a single-valued function h( ER, t) of the lateral coordinates ER D (x , y ),
which defines the plane of the averaged position hhi D 0 of the interface. For later
use we introduce the surface normal vector

En D 1p
1 C (rh)2

��rh
1

�

and also the tangent vectors Et D (1, rh)/
p

1 C (rh)2 and Et0 D En � Et to the surface.
To the lowest order of the interface position, the mean curvature reads

H( ER, t) D 1
2

(�1 C �2) D 1
2

Δh( ER, t) .
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R(     )p,tv  R(     ) =   (       )z   h  x,y,t,t

λ
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h0

x

Figure 4.1 A fluid surface is parameterized by the single-valued
function h( ER , t) of the lateral coordinates ER . The flow is charac-
terized by the flow velocity Ev D (vx , vy , vz ) and the pressure p.
Capillary waves of wave vector Eq D 2π

λ are thermally excited
which leads to moving boundary for the fluid.

The incompressibility condition and momentum conservation within the fluid
are given by the stochastic Navier–Stokes equations [9]

r � Ev D 0 (4.1)

�

�
@Ev
@t

C (Ev � r)Ev
�

D η Er2 Ev � Er(p C Vext) C Er � S . (4.2)

By Ev and p, we denote velocity and pressure fields, respectively. An external poten-
tial Vext(Er) may be given by gravity, Vext D �gz, or a substrate potential Vext(z) 

�A/z6 due to dispersion forces. The mass density � is constant within the flu-
id and η is the shear viscosity (kinematic viscosity ν D η/�). The random stress
fluctuations S represent the effect of molecular motion. S is symmetric, has zero
mean

hSi D 0

and the correlator is given as˝
Si j (Er , t)Sl m(Er 0, t0)

˛ D 2ηkBT δ(Er � Er 0)δ(t � t0)(δ i lδ j m C δ i mδ j l ) (4.3)

with the thermal energy kBT . S is spatially uncorrelated, and therefore the diver-
gence of S in (4.2) poses mathematical questions we do not want to enter into at
this point. From a physical point of view, hydrodynamical equations are only valid
at a scale large compared to the molecular scale. Therefore, δ(Er � Er 0) in (4.3) might
be replaced by a correlation function of small but finite width. In order to show
that equilibria are characterized by Gaussian velocity distributions as required by
thermodynamics, we need spatially uncorrelated noise. For this reason, we keep
the notation commonly used in physical literature.

We assume that at the free surface z D h(x , t) the normal and tangential stresses
are balanced, so that the boundary condition reads

(σ � σ0 C S) � En D 2γH En (4.4)

with the surface tension coefficient γ and the stress tensor for an incompressible
fluid

σ i j D η(@i v j C @ j vi ) � p δ i j .
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In the vapor phase one finds σ0 D �p 0δ i j . Finally, assuming that the fluid is non-
volatile, the component of the flow velocity normal to the surface is identical to the
surface normal velocity and we get the kinematic condition

En � Eez
@h
@t

D En � Ev , (4.5)

that is,

@h
@t

D vz � vx
@h
@x

� vy
@h
@y

at z D h

D �r � Ej , (4.6)

with the total flow current in the film at position ER D (x , y )

Ej ( ER , t) D
Z h( ER,t )

�L
vx ,y ( ER, z, t) dz , (4.7)

where �L denotes the bottom of our container. It is often convenient to use the
Fourier transformation of a quantity a(Er, z, t) parallel to the interface, for instance

Qa(Eq, z, ω) WD
Z

R2

d2 ER
Z
R

dt a( ER, z, t) e�i(Eq� ERCω t ) , (4.8)

to define the surface modes

Qh(Eq, ω) WD
Z

R2

d2 ER
Z
R

dt h( ER, t) e�i(Eq� ERCω t ) .

Before we study capillary waves on a liquid interface, it is instructive to derive the
dispersion relation and damping of acoustic waves in the bulk of a compressible
liquid.

4.1.2
Acoustic Waves

Assuming that the liquid in equilibrium is at rest with Ev0 D 0, ρ0 D const., and
p0 D const., the thermal noise causes a velocity profile δ Ev( ER, t) � Ev and fluctu-
ations in density δρ( ER, t) � δρ and pressure δ p ( ER, t) � δ p . On may use the
thermodynamic relation

δρ D 1
c2
δ p

with the adiabatic sound velocity c, so that the linearized compressible Navier–
Stokes equation and continuity equation,

ρ0@t Ev D �rδ p C ηΔ Ev C

� C η

3

�
r �r � Ev�C r � S

@tδρ D �ρ0r � Ev (4.9)
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can be written as�
@2

t � 4
3
ν@tΔ � c2Δ

�
δ p D �c2r � (r � S) , (4.10)

with the second viscosity � is set to zero. After Fourier transformation this is writ-
ten as �

ω2 � 4
3
ν iωk2 � c2k2

�
δ Qp( Ek, ω) D �c2 Ek �

 Ek � QS( Ek, ω)
�

. (4.11)

Non-trivial solutions for the averaged pressure hδ Qpi ¤ 0 are only possible if

0 D ω2 � iω
4
3
νk2 � c2k2 (4.12)

because
˝
Si j
˛ D 0. From this we can determine the dispersion relation ω D ck for

acoustic waves in an ideal liquid as well as the damping coefficient 2
3 νk2. In the

following we assume an incompressible fluid for convenience.

4.1.3
Capillary Waves

For an ideal liquid with vanishing viscosity η in a gravitational field, one may as-
sume a constant density ρ0 and introduce a potential ' so that the velocity is giv-
en by the gradient Ev D r'. Incompressibility of the fluid leads to the equation
Δ' D 0. Ignoring the stochastic stress tensor and linearizing Euler’s equation,
that is, the inviscid Navier–Stokes equation, one finds for the pressure

p D �ρ0@t' � ρ0gz (4.13)

with the boundary condition

p jzD0 D �γΔx y h . (4.14)

Using the pressure �ρ0@t'�ρ0gh at the free surface h and the kinematic boundary
condition @t h D @z' one obtains

@2
t ' C

�
g � γ

ρ0
Δx y

�
@z'

ˇ̌̌̌
zD0

D 0 (4.15)

and after Fourier transformation

'( ER, t) D '0Re
n
ei(Ek� ERCω t )

o
(4.16)

one obtains the dispersion relation

k2
x C k2

y C k2
z D 0

ω2 �
�

g C γ
ρ0


k2

x C k2
y

��
i kz D 0 (4.17)
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Table 4.1 Density ρ, surface tension γ , adiabatic sound velocity
c, kinematic viscosity ν, capillary length lc (4.19) and λ0 for
water, ethanol, glycerol and mercury at 20ıC [19].

ρ
h

g
cm3

i
γ

�
10�3 N

m

�
c

�
103 m

s

�
ν

h
cm2

s

i
lc [cm] λ0 [nm]

Water 1.00 72.8 1.48 0.01 0.27 0.21

Ethanol 0.79 22.6 1.16 0.015 0.17 0.14

Glycerol 1.26 63.4 1.90 11.8 0.23 0.09
Mercury 13.5 476 1.45 0.0012 0.19 0.10

with the parallel wave vector Eq WD (kx , ky ) and the perpendicular decay length
kz D ˙i q. Thus, one finds waves with wavelengths λ D 2π

q and frequency

ω2
0(q) D gq C γ q3

ρ0
. (4.18)

The waves within the liquid are exponentially damped at a distance z from the free
surface. The capillary length

lc WD
r

γ
gρ0

(4.19)

separates gravitational waves with λ > lc from capillary waves with wavelengths
λ < lc. In the following, we are interested in nanoscopic wavelengths for which
the gravitational term can be neglected. Comparing the dispersion relation for cap-
illary waves with acoustic modes ω D cq, one finds a crossover at a characteristic
frequency and wave vector

q0 D �c2

γ

ω0 D q0c D �c3

γ
. (4.20)

Resulting values are in the range λ0 D 2π
q0

� 0.2 nm given the typical fluid param-
eters in Table 4.1. At these small length scales one cannot neglect the damping due
to viscous forces. Without derivation we mention that for wavelength

q > qmax D 1.69
γ�

η2

capillary waves are overdamped [19].

4.1.4
Linearized Stochastic Hydrodynamics

We now want to study an alternative approach to capillary waves which is based on
solving the stochastic Navier–Stokes equation (4.2). It is convenient to introduce
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the perpendicular vz and parallel velocities Evjj WD (vx , vy ). Decomposing the tensor
S accordingly yields

S D
 

Sjj
ESjjz

ES T
jjz Sz z

!
with Sjj WD

�
Sx x Sx y

Sy x Sy y

�
and ESjjz WD

�
Sx z

Sy z

�
D
�

Sz x

Sz y

�
. (4.21)

Linearizing leads to


@2

z � q2
p?

�
δ Qp (z) D @2

z
QSz z(z) C 2i@z Eq � QESjjz (z) � Eq � (Eq � QSjj(z))

1 C iω 4ν
3c2

η
�
@2

z � q2
v?

� Qvz (z) D @z Qp (z) � @z QSz z(z) � iEq � QESjjz (z)

η
�
@2

z � q2
v?

�
iEq � QEvjj(z) D �q2 Qp (z) � i@z Eq � QESjjz (z) C Eq � (Eq � QSjj(z))

(4.22)

with

q2
v?(q, ω) D q2 C iω

ν

q2
p?(q, ω) D q2 � ω2

c2 C iω 4
3 ν

. (4.23)

The solution has to fulfill the continuity equation

iω
c2�0

δ Qp(z) C iEq � QEvjj(z) C @z Qvz (z) D 0 (4.24)

and the Fourier transformed linearized boundary conditions

0 D η(@z
QEvjj(z) C i Eq Qvz ) C QESjjz

ˇ̌̌
zD0

�γ Eq2 Qh D � Qp C 2η@z Qvz C QSz z
ˇ̌

zD0

iω Qh D Qvz jzD0 (4.25)

which determines the velocities Qvz (z) and QEvjj(z), the pressure Qp (z), and the inter-
face position Qh. For an ideal liquid with η D 0 one finds

iω� Qvz (z) C @z Qp (z) D @z QSz z(z) C iEq � QESjjz (z)

ω�Eq � QEvjj(z) C q2 Qp (z) D �i@z Eq � QESjjz (z) C Eq � (Eq � QSjj(z))

0 D iEq � QEvjj(z) C @z Qvz (z) (4.26)

with the boundary conditions

0 D QESjjz

ˇ̌̌
zD0

�γ Eq2 Qh D � Qp C QSz z
ˇ̌

zD0

iω Qh D Qvz jzD0 . (4.27)
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Figure 4.2 Nanostructure and dynamics
of capillary waves: the sketch of dispersion
relations demonstrates the possible transi-
tion between acoustic modes and capillary
waves. Due intermolecular interaction poten-
tial V(r) the surface tension γ(q) depends
on the wave vector leading to a dispersion

relation ω2 � q3γ(q); assuming that an ex-
tension from hydrodynamics to smaller time
and length scales is provided by γ(q). Does
one find a similar signature of the microscopic
forces �V 0(r) on dynamical properties of cap-
illary waves, for instance, on damping factors
or viscosities?

Finally, one obtains the interface dynamics

�0

q2

�
ω2 �

q
q2 � ω2/c2 γ

�0
q2
�

Qh(Eq, ω)

D
0Z

�1

eq p? z

 
q2

p?

q2
QSz z(z) � 2i

q p?

q
Eeq � QESjjz (z) � Eeq � �Eeq � QSjj(z)

�!
dz

C q p?

q

0Z
�1

eqv? z2iEeq � QESjjz (z) dz , (4.28)

which reduces to D(q, ω)
D Qh(Eq, ω)

E
D 0 for the average position with the dispersion

term

D(q, ω) WD ω2 �
q

q2 � ω2/c2 γ
�0

q2 . (4.29)

For q ! 0 one recovers the dispersion relation of (4.18) for an ideal incompressible
fluid. In contrast to the previous results, the coupling of acoustic and capillary
waves avoids a crossover of the dispersion relations but does lead to a crossover
of capillary waves to acoustic waves for q ! 1. For a more detailed analysis one
has to take into account the viscosity of a compressible fluid which is done in [19].

Next we want to focus on another important problem in the dynamics of
nanoscopic capillary waves: on these small length scales one can no longer ne-
glect the molecular interaction potentials. Recent X-ray scattering measurements
of the static structure function showed significant deviations of the surface tension
from its macroscopic value due to molecular interactions [7, 8]. From the stochastic
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hydrodynamics one obtains the dynamic structure function

QS (Eq, ω) WD
Z

R2
dEq0

Z
R

dω0
D Qh(Eq, ω) Qh�(Eq0, ω0)

E
D 2kB T

ωρ0
Im

�
q p?

D (q, ω)

�
(4.30)

and the static structure function by

QC (Eq) D
Z

R2

dEq0

(2π)2

D Qh(Eq, t) Qh�(Eq0, t)
E

D
Z 1

�1

dω
2π

QS (Eq, ω) , (4.31)

which is proportional to the cross section dσ
dΩ of scattered X-rays with the differ-

ence Eq of in- and outcoming wavefronts. In the following section this relation is
used to determine the surface energy γ experimentally.

4.2
Surface Tension at Nanometer Length Scales:
Effect of Long Range Forces and Bending Energies

Liquid interfaces are of fundamental importance in many areas of science and tech-
nology and have been the subject of continuous attention since van der Waals [20].
It is only in recent years, however, that a continuous effort in theory [6], experimen-
tal methods [7], and numerical simulations [21, 22] has given us a more complete
picture of their microscopic structures.

In the approach initiated by van der Waals [20, 23], the liquid–vapor interface was
described as a region of smooth transition (intrinsic profile) from the density of the
liquid to that of the gas over approximately the bulk correlation length � . Converse-
ly, the 1965 capillary-wave model of Buff, Lovett, and Stillinger [24] describes a wan-
dering, step-like interface whose structure is determined by the height correlation
spectrum (see (4.31))

QC (Eq) D hh(Eq)h(�Eq)i / kB T
γ Eq2 ,

where 2π/q is the wavelength of the capillary excitation, in good agreement with
experiments [25, 26]. This description is necessarily expected to fail at small length
scales, at least for wavelengths λ D 2π/q � � [27]. Since the interfacial structure
is determined by the surface energy associated with the deformation modes, the
problem of the small scale structure can be addressed by considering corrections
to the surface energy through an effective Hamiltonian or wave vector-dependent
surface energy γ (q). Following Helfrich [28], the surface free energy can be ex-
panded in powers of the mean curvature H and of the Gaussian curvature. Fourier
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transforming and applying the theorem of equipartition of energy, one obtains

γ (q) D γ C � q2 , (4.32)

where γ � γ (q D 0) is the macroscopic surface tension and � is the bending rigid-
ity constant. A large reduction in the surface energy was predicted with increasing
wavevectors in a density functional theory [6], which was in strong contradiction to
an expected positive bending rigidity. The results could, however, be successfully
measured for water and other liquids using X-ray scattering [7, 8]. Thus, the ana-
lytic expansion in (4.32) cannot be performed in the presence of long range forces,
but the surface tension should reach its macroscopic value from below as 
 q2 ln q
in the limit q ! 0.

The density functional theory is constructed by describing the liquid using the
Carnahan–Starling equation of state and long range interactions with a potential

V(r) D � w0r6
0

(r2 C r2
0 )3

.

An effective interfacial Hamiltonian is constructed as the difference between the
grand potential minimized with the constraint of a given density on a given de-
formed surface, and that for the flat interface. This leads to a momentum depen-
dent surface tension:

γ (q) D 4
Qh(0) � Qh(q)

q2 C 2
� Q�H(q) � Q�H(0)

�
C � q2 � Q�HH(q)q2 C O

�
q4� . (4.33)

The density distribution at the fluctuating interface is different from the flat in-
trinsic density profile because there is a displacement of the average interface po-
sition due to capillary waves, and also because curvature induces density changes
in the intrinsic profile. The first term in (4.33) gives the contribution of long range
forces due to interface displacement, neglecting the distortion in the intrinsic pro-
file, and the other terms are bending terms, either local (� q2 as in (4.32)), or non-
local ( Q�HH(q)q2 and Q�H due to long range interactions). For convenience one may
use a product approximation [6], which is valid for very short ranged intermolec-
ular potentials with r0 	 � , but remains accurate to approximately 10% even for
� � r0 [6]. Within this approximation,

Qh(q) D γ
2r2

0
(1 C qr0) e�qr0 ,

Q�H(q) D γ
2

CH
� 2

r2
0

(1 C qr0)e�qr0 ,

Q�HH(q) D 0.74γC2
H
� 4

r2
0

(1 C qr0)e�qr0 ,

� D 0.74γC2
H�

2
�

1
2

C � 2

r2
0

�
. (4.34)
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Figure 4.3 The wavevector dependent surface energy γ(q) of
water normalized to the macroscopic surface tension γ0 [7, 8].
The line is the analytical result of the density functional theory
described in [6] and given by (4.33) and (4.34).

CH is the “susceptibility” of the density profile to curvature (see [6]), with the cur-
vature corrections to the profile being proportional to CH. Landau theory gives
CH D 0.25, which yields a good description of the experimental data (see Fig-
ure 4.3) when used in (4.33).

Although the equilibrium properties of capillary waves seem to be well un-
derstood, there has been little work done on their dynamical properties at the
nanometer scale. What is the molecular nature of the flow field close to the fluctu-
ating interface? Do capillary waves in the liquid–vapor interface play a significant
role for the fluid flow in open nanochannels? As far as we know, these questions
are as yet unanswered and unexplored. The Navier–Stokes equations correctly de-
scribe the dynamics of Newtonian liquids in all cases where the time and spatial
scales on which the dynamics are investigated are well separated from the scales of
the microscopic dynamics of the molecules. In such cases the conservation laws for
mass, energy, and translational momentum, together with appropriate boundary
conditions, completely determine the dynamics of the fluids [9]. This is not the case
for capillary waves with wavelengths below 50 nm, where features of the molec-
ular dynamics become relevant for the spatiotemporal description of the fluid
dynamics.

Extensive measurements of dynamic properties of interfaces such as the spec-
trum of surface waves have been undertaken with dynamic light scattering [25, 29].
Lateral length scales below 100 µm are unattainable, however, because an unam-
biguous distinction between surface scattering and scattering from the bulk liq-
uid underneath becomes impossible. The use of X-ray photon correlation spec-
troscopy [30] allows improvement of the lateral resolution by two decades, but the
surface physics at wavelengths of about 1 µm is nevertheless still dominated by
classical capillary waves. Consequently, the spectrum of the surface ripples can be
described by a linear response analysis of the equations of hydrodynamics (see pre-
vious section and [31]). Thus, the theoretical analysis is unambiguous for these
wavelengths that are much larger than intermolecular spacing.
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Further progress in experimental techniques, especially with high brilliance
sources for synchrotron radiation, opens up the possibility to study the dynamics
of surfaces at wavelengths close to intermolecular distances [32–37]. For these
length scales the hydrodynamic limit, which is always the long wavelength limit
of the dynamics of a statistical system, will certainly break down, and another
description is called for. The main theoretical challenge here lies not so much
in exhaustive simulations of the dynamical behavior of interfaces, but rather in
identifying the relevant dynamical variables which describe the fluctuations of
the surface. Nevertheless, it is indispensable to judge the viability of a theoretical
model by careful comparison to molecular dynamics data and, hopefully in a few
years, to new experiments.

In the following section a first example is presented in which thermal fluctua-
tions and capillary waves play an important role for the nonlinear dynamics of thin
liquid films.

4.3
Thermal Noise Influences Fluid Flow in Nanoscopic Films

Thin liquid films are ubiquitous in nature and the understanding of their dynam-
ical behavior is important for many technological applications. The fabrication of
electronic chips now requires thicknesses of insulating layers or photoresists on
the order of a few nanometers. Reliable predictions of the dynamics of ultra-thin
films play an important role in guaranteeing stability during production and use
of such devices. In bulk fluids, hydrodynamic Navier–Stokes equations are proven
to be valid down to the nanometer scale. Until recently thin film flow has been
studied solely by deterministic equations [38], although thermal noise plays an
increasingly important role the smaller the system size becomes, and may play
an important role in thin liquid films with thicknesses of a few nanometers. For
instance, in [39, 40] a stochastic version of the thin film equation was derived
based on the lubrication approximation for stochastic hydrodynamic equations.
To a linear approximation, this treatment predicted that the spectrum of capillary
waves changes from an exponential decay to a power law for large wave vectors
due to thermal fluctuations. Consequently, the time evolution of the film thick-
ness h(Er, t), that is of the film roughness σ2(t) D hh2i, and also of the typical
wavelengths of the maximum of the power spectrum are found to change quali-
tatively. Whereas the deterministic equation predicts a constant wavelength in the
linear regime, the stochastically evolving structures coarsen in time and σ2(t) is
expected to increase much faster due to thermal noise. These consequences of the
stochastic nature of the thin film dynamics are robust. The failure of the deter-
ministic hydrodynamic description due to thermal fluctuations is already expect-
ed for small noise amplitudes in thin liquid films and for a large class of sub-
strate interactions. Recent numerical studies of thin film evolution also indicate
that thermal noise might influence characteristic time scales of the dewetting pro-
cess [40].
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Figure 4.4 A 3.9 nm polystyrene film beads off an oxidized
Si wafer [41]: temporal series of experimental scanning force
microscopy of the dewetting process (top) can be simulated
by the Navier–Stokes equation in lubrication approximation,
(4.37), with identical system parameters. The temporal evolu-
tion of the dewetting morphology can be modeled quantitatively
by stochastic Navier–Stokes equation (4.35).

In [42] these predictions of noisy hydrodynamics have been confirmed experi-
mentally by AFM measurements of the dewetting of thin polymer films [41]. The
experimental system consists of a polystyrene film with a molecular weight of
2 kg/mol (PS(2k)) prepared on a silicon substrate with a 191 nm thick amorphous
oxide layer on top. The film thickness is chosen to be 3 to 4 nm so that the system
is unstable in the spinodal regime. Heating the sample above Tg leads to capil-
lary waves at the PS surface. The amplitudes of the waves increase exponentially
with time, finally reaching the order of the film thickness and causing holes that
grow in the further stages of dewetting. The whole process of spinodal dewetting
is scanned in situ by SPM (Figure 4.4). This process involves the emergence and
amplification of capillary waves, the appearance, growth, and coalescence of holes,
and finally the formation of droplets.

4.3.1
Dynamics of the Film Thickness

The film can be described as an incompressible Newtonian liquid with a constant
mass density � on an infinite flat solid substrate, that is by the Navier–Stokes equa-
tion (4.2)

�

�
@Ev
@t

C (Ev � r)Ev
�

D η Er2 Ev � Er(p � Π ) C Er � S , (4.35)
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but with an additional disjoining pressure

Π (h) D �@Φ (h)
@h

(4.36)

which is given by the effective interface potential (see (4.2))

Φ (h) D � A
12πh2

and determines the dewetting properties of a substrate. Thus, the Hamaker con-
stant A determines the disjoining pressure in (4.35) if we neglect the short ranged
part of the potential. We also assume that there is no slip between the fluid and the
substrate and that at the free surface z D h(Er, t) the normal and tangential stresses
are balanced in the polymer film.

For a smooth thin film, where the ratio of the characteristic film height h0 is
much smaller than the length scale over which the film thickness varies laterally,
one can find an approximate solution for the free boundary flow. This approach is
well described in [38–40], so that we give here only the resulting nonlinear Langevin
equation

η
@h
@t

D Er �
(

h3

3
Er
h
Φ 0(h) � γ Er2h

i
C
r

2kB T η
3

h3 EN (t)

)
(4.37)

for the film thickness h(Er , t), with a single multiplicative conserved noise vector
EN (Er , t) obeying

D EN (Er , t)
E

D 0 and the correlator

˝
Ni (Er, t)N j (Er 0, t0)

˛ D δ i j δ(Er � Er 0)δ(t � t0) .

The polystyrene (PS) film of thickness h0 � 4 nm on silicon dioxide is linearly un-
stable and the characteristic lateral length scale is given by the dispersive capillary
length

2π
q0

D
s

�32π2γ
Π 0(h0)

D 4h2
0

q
π3γ/A .

With the Hamaker constant A � 2 � 10�20 N m and the surface tension coefficient
γ � 3 � 10�2 N/m, we see that 2π

q0
� 400 nm. The viscosity is η � 1200 N s/m2.

In the deterministic part of (4.37) there are two terms which can drive the flow, the
disjoining pressure and the surface tension. The flow associated with each part is
of the order of h0U with two characteristic velocities, namely

UΠ D A
6πh0η

q0

2π
� 0.6 nm/s

Uγ D h3
0γ

3η

 q0

2π

�3 � 8 � 10�3 nm/s . (4.38)
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Taking the larger of the two velocities, the dimensionless noise amplitude is

QT D kB T h0

ηUΠ

 q0

2π

�3 D 3kB T
8π2h2

0γ
.

This result is, in fact, independent of the form of the disjoining pressure and al-
so holds if the short ranged part is included. The experiments were performed at
53 ıC which leads to the dimensionless amplitude QT � 4 � 10�4 of the noise. The
noise induced current is therefore about two orders of magnitude smaller than the
current induced by the disjoining pressure.

4.3.2
Comparison with Experiments

Quantitative information about the dewetting process can be obtained by measur-
ing the variance σ2(t) D hδh(Er, t) δh(Er, t)i of the film height h(Er, t), and the vari-
ance k2(t) D h( Erh(Er, t))2i/(2πσ2(t)) of the local slope of the film height, which
gives information about the preferred wave vector within the surface. Here, the
brackets represent an integration over all positions Er of the image. We analyze on-
ly the early stage of spinodal dewetting where capillary waves are amplified until
the first holes appear (up to about 1000 s). During the intermediate stage when
holes emerge and grow, typically between 1000 s and 4000 s, as well as during the
late stage of dewetting after 4000 s when the coalescence of holes and forming of
droplets take place, we analyze the prepared film only around the initial height h0

and ignore the emerging holes (details of the technique are given in [43]). Thus,
we restrict the integral h�i on regions without holes. The results for σ2 and k2 are
shown in Figure 4.5.
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Figure 4.5 Comparison of (a) the roughness
σ2(t) and (b) the variance k2(t) of the local
slope as functions of time for the SPM experi-
ment shown in Figure 4.4 (boxes) and for the
deterministic simulations (T D 0) present-
ed in [41] (circles). σ2(t) and k2(t) are fitted
with (4.42) and (4.43). While the experimen-

tal σ2(t) can be fitted with the deterministic
theory by adjusting the initial roughness σ2

0
and the characteristic time scale t0 (T D 0,
dashed line), this is not possible for the ex-
perimental k2(t). The deterministic k2(t)
is always constant in time during the linear
regime – independent of σ2

0 and t0.
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Since the noise induced current is smaller than the current induced by the dis-
joining pressure, let us first neglect the thermal noise and solve (4.37) numeri-
cally with T D 0 and random initial conditions. This was done previously in [41]
and shows excellent agreement in the spatial structure. However, the time scales
and the time dependence of σ2(t) and k2(t) do not match at all, as can be seen
in Figure 4.5. The discrepancy is assumed to be caused by thermal noise in the
experimental system, which was thus far neglected in the simulations. However,
the preliminary numerical results for (4.37) at finite temperature T 6D 0 presented
in [40] indicates that the influence of thermal fluctuations on the dewetting dy-
namics may fix the discrepancy in the early stages of dewetting, where the effect of
noise is largest. In this case noise can accelerate the initial dynamics of thin poly-
mer films by at least a factor five, if realistic values are chosen for surface tension,
substrate potential and viscosity [40].

4.3.3
Linearized Stochastic Thin Film Equation

We can study these early stages of dewetting further in a linear approximation
of (4.37). In the beginning of the dewetting process, the deviations δh(Er, t) D
h(Er, t) � h0 from the initial film height h0 are small. By expanding (4.37) to the
first order of δh and EN , assuming that the noise amplitude is small as well, and
applying a Fourier transformation δh(Er, t) D R d2 q

(2π)2
Qδh(Eq, t) eiEq�Er , we obtain the

linear stochastic equation

@ Qδh(Eq, t)
@t

D ω(q) Qδh(Eq, t) C i

s
2kBT h3

0

3η
Eq � QEN (Eq, t) . (4.39)

The dispersion relation

ω(q) D
h
1 � �

q2/q2
0 � 1

�2
i

/ t0 (4.40)

has a maximum at the wave vector

q2
0 D �Φ 00(h0)

2γ

with Φ 00(h0) < 0 and a characteristic time

t0 D 3η
γ h3

0q4
0

.

Note that the multiplicative noise in (4.37) becomes additive in the linear approxi-
mation in (4.39). Then the spectrum of the height readsD Qδh(Eq, t) Qδh(Eq0, t)

E
D (2π)2δ(Eq C Eq0) QC(jEqjI t)
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Figure 4.6 Power spectrum of a spinodally dewetting film with
(solid line) and without noise (dashed line, for T D γ q4

0 c0)
for two different times t D 0.1t0 and t D 2.0t0, cf. (4.41). The
initial spectrum at t D 0 is QC(qI 0, 0) D c0. The inset shows the
dispersion relation ω(q).

with the static structure function (see (4.31))

QC (qI t) D QC0(q) e2ω(q)t C kBT h3
0

3η
q2

ω(q)

�
e2ω(q)t � 1

�
(4.41)

and the initial power spectrum

QC0(q) D
	ˇ̌̌ Qδh(Eq, 0)

ˇ̌̌2

at t D 0 .

The time evolution of the power spectrum with and without noise for a white ini-
tial spectrum QC (qI 0, 0) D c0 is shown in Figure 4.6. Note that in the case of a
spinodally unstable film (Φ 00(h0) < 0) the dispersion relation ω(q) is negative for
q >

p
2 q0 (see inset in Figure 4.6). Thus, for t ! 1 one finds exponentially

decaying height–height correlations

QC (qI t) ! QC0(q) e�2jω(q)jt

for the deterministic dynamics (T D 0) but we recover the the algebraic capillary
wave spectrum

QC (qI t) ! kBT h3
0

3η
q2

jω(q)j ! kBT
γ q2

for any finite temperature T. Note that the maximum of the deterministic spectrum
stays at q0 for all times, but the maximum of the stochastic spectrum approaches
q0 from above as t ! 1. This noise generated coarsening process can last until
nonlinearities become important, effectively masking the typical feature of the lin-
ear deterministic regime, namely that the maximum of the power spectrum stays
at a fixed wave number.

At this point we note that the spectrum necessarily has a microscopic cutoff
qmax D 2π/r0 � q0 at the scale r0 of the fluid particles. For simplicity we as-
sume (4.41) holds up to this point and QC (qI t) D 0 for q > qmax. In order to
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illustrate further the spatial features of the dynamics, we calculate the roughness
of the film

σ2(t) D
Z

d2q
(2π)2

QC (qI t)

D σ2
TD0(t) C kB T

4πγ

q2
max
q2
0

�1Z
�1

dθ
1 � e�2 t

t0
(θ 2�1)

θ � 1
(4.42)

with the deterministic evolution

σ2
TD0(t) D σ2

0

r
π t0

8t
e2 t

t0 erf

 s
2t
t0

!

of the roughness, the initial roughness σ2(0) D σ2
0, and the initial spectrum

QC0(q) D 2π
q2

0
σ2

0 for q <
p

2 q0 and QC0(q) D 0 for q >
p

2 q0. Due to a rapid increase

of thermal fluctuations on an atomistic time scale tm, the initial spectrum is irrel-
evant for the film evolution on the characteristic time scale t0. For large t we can
calculate the ratio σ2(t)/σ2

TD0(t) ! 1 C � C O(t�1) with � D kB T
2 π γ σ2

0
> 0. Note

that � is given by the ratio of the thermal (capillary) roughness T/γ to the initial
roughness σ2

0. It is this ratio which determines the importance of thermal fluctu-
ations for the dynamics of the film. One may argue that the initial roughness is
due to thermally equilibrated capillary waves before the dewetting process starts, so
that one may expect � to be of order unity. A numerical integration of (4.42) shown
in Figure 4.7a illustrates that thermal noise is most important in the beginning of
the process. One finds a fast linear increase σ2(t)/σ2

TD0(t) D 1 C �
2 t/ tm C O(t2)

of the thermal roughness with the characteristic (microscopic) time tm D q4
0

q4
max

t0

due to a rapid build up of a thermal spectrum for q >
p

2q0, followed by a
slower increase for tm < t and up to t0 due to the linear dewetting process.
However, for times t � t0 thermal fluctuations become less important com-
pared to the exponential increase of the unstable mode q0 and one reaches a
‘quasi’-deterministic behavior σ2

TD0(t), but with a renormalized initial roughness
σ2

0 C kB T
2πγ .

For the variance of the local slope

2πσ2(t)k2(t) D
	h Erδh(Er, t)

i2



D
Z

d2qq2

(2π)2
QC (qI t)

which is a measure for the characteristic wavelength of fluctuations, we find

k2(t)
k2

0
D 1 C kB T

4πγσ2(t)

q2
max
q2
0

�1Z
�1

dθ θ
1 � e� 2 t

t0
(θ 2�1)

θ � 1
, (4.43)
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Figure 4.7 Variance k2 of the local slope in the experiment
(boxes) and the deterministic simulation (circles) plotted
versus the roughness σ2. Due to thermal noise one finds
k2(t)/ k2 (1) � 1 � 1/σ2(t) for any noise amplitude T as long
as the characteristic wavelength 2π/q0 is much larger than the
molecular cutoff 2π/qmax. In contrast, simulations for T D 0
are consistent with a constant k2.

with the initial and final value k2(0) D k2(1) D q2
0

2π . Note that for the deterministic

dynamics k2
TD0(t) D q2

0
2π is constant in time for the chosen initial spectrum, and

that the position of the maximum in the structure function QC (q, t) does not change
during the dewetting process. In contrast, in the stochastic dynamics thermal noise
induces a time dependence of k2(t) that starts at the deterministic value at t D 0
and increases linearly in time until it reaches a maximum at t � tm, before ap-
proaching the deterministic value k2(t)/ k2(1) ! 1C �

1C�
t0
4 t CO(t�2) from above

for t � t0. If the microscopic cutoff qmax is much larger than q0, one obtains
an intermediate time regime tm < t up to t � t0, where the integral in (4.43) is
approximately constant. One then gets

k2(t) � k2(1) C kB T
2γ r2

0

1
σ2(t)

(4.44)

for intermediate times up to t � t0, independent of the initial conditions. Thus,
thermal noise generates coarsening even in the linear regime for which the de-
terministic linear dynamics predicts a fixed characteristic wave vector k2(t) D
k2(1) D q2

0
2π . The second term in (4.44) can easily be derived by calculating the

variance of the local slope	h Erδh(Er, t)
i2



eq
D
Z

d2qq2

(2π)2
QCeq(q) D kBT

4πγ
q2

max ,
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with the equilibrium capillary wave spectrum QCeq(q) D kBT
γ q2 . Thus, the variance

2πσ2(t)k2(t) D
	h Erδh(Er, t)

i2



D q2
0σ

2(t) C
	h Erδh(Er, t)

i2



eq

consists of two terms: the equilibrium contribution due to thermal noise and
the growing peak at q0 due to the dewetting process

R
d2q Eq2 QC0(q) e2ω(q)t !

Eq2
0

R
d2q QC0(q) e2ω(q)t , which is independent of the initial spectrum and proportion-

al to σ2(t) in the limit t � t0.
For a glass-forming liquid such as polystyrene, one may argue that the equilibri-

um variance
	h Erδh(Er, t)

i2



eq
D 2πα(T � Tg) is proportional to the temperature

difference T � Tg in the vicinity of the glass transition at Tg, so that (4.44) actually
reads k2(t) � k2(1) C α(T � Tg)/σ2(t).

A separation of length scales qmax � q0 also leads to a separation of time scales

tm D q4
0

q4
max

t0 	 t0, so that the algebraic decrease of k2(t) with σ2(t) is visible before
the exponentially growing peak in the structure function causes a crossover to an
algebraic behavior in time k2(t)/ k2

0 � 1 
 1/ t for t > t0. We expect the linear
approximation in (4.39) to hold at least for the fast initial (t < tm) formation of the
thermal spectrum for q > q0, as well as for the noise dominated spinodal dewetting
process up to t � t0.

Finally, one can conclude that the noise term in the structure function QC (qI t) is
relevant for any value of the noise amplitude T, as long as the dispersion relation
ω(q) becomes negative for large wave vectors qmax > q >

p
2q0. For realistic values

of surface tension and substrate potentials one finds 2π/q0 � 0.1 . . . 1 μm, which
is much larger than the size of molecules and provides an upper cutoff qmax for
allowed wave vectors. Thus, the time evolution of σ2(t) and k2(t) given by (4.42)
and (4.43), respectively, are always dominated by the thermal noise term for times
t < t0 up to the characteristic time t0 of the fastest growing mode q0.

During the dewetting process of liquid films of nanometer thickness, the inter-
play of substrate potentials and thermal noise may result in qualitatively different
lateral behavior on scales up to microns. In particular, for the further development
of efficient tools to be used in the design of microfluidic devices or electronic com-
ponents whose function relies on thin film properties, it is essential to gain a quan-
titative understanding of thermal fluctuations in thin film flow and its interplay
with molecular interactions. In the course of miniaturization of microfluidic de-
vices, a fully quantitative description of Newtonian liquids at surfaces is essential
and requires quantitative stochastic modeling of ultrathin film dynamics as well as
mathematically well controlled numerical schemes.
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5
Nonlinear Dynamics of Surface Steps
Joachim Krug

5.1
Introduction

Surface steps are key elements in the dynamics of a crystal surface below its ther-
modynamic roughening transition because they constitute long-lived structural de-
fects that are nevertheless highly mobile and prone to strong fluctuations [1]. The
description of surface morphology evolution in terms of the thermodynamics and
kinetics of steps goes back at least half a century [2]. During the past few decades,
the subject has experienced a significant revival due to the availability of imaging
methods such as scanning tunneling microscopy that allow for a direct visualiza-
tion of step conformation and step motion on the nanoscale (see [3–7] for recent
reviews). In this chapter I will focus specifically on cases where steps have been
found to display complex dynamic behavior, such as oscillatory shape evolution un-
der constant driving.

The examples to be discussed below can be naturally organized according to
the underlying topology of the step configurations: I first consider driven single
layer islands (closed step loops), and then vicinal surfaces (arrays of parallel steps).
A certain familiarity with the basic thermodynamics and kinetics of crystal surfaces
is assumed. For an elementary introduction the reader may consult [8].

5.2
Electromigration-Driven Islands and Voids

Electromigration is the directed transport of matter in a current carrying material,
which is primarily caused by the scattering of conduction electrons off defects such
as interstitials or atoms adsorbed on the surface. The latter are henceforth referred
to as adatoms (Figure 5.1). Much of the work on electromigration has been moti-
vated by its importance as a damage mechanism limiting the lifetime of integrated
circuits [9]. Because electromigration forces are small compared to the typical en-
ergy barriers involved in the thermal diffusion of atoms, the direct observation of
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−e

F

Figure 5.1 Schematic of the microscopic origin of the electro-
migration force: conduction electrons scattering off an adatom
give rise to a transfer of momentum in the direction of the cur-
rent flow.

electromigration effects in real time on atomistic length scales is difficult (see [10]
for recent progress in this direction). In this chapter the electromigration force will
be used as a conceptually simple way of driving a system of surface steps out of
equilibrium, giving rise to surprisingly complex dynamical behavior.

5.2.1
Electromigration of Single Layer Islands

Two-dimensional single layer islands are the simplest nanoscale structures that
appear on a surface during the early stages of thin film growth, when the amount
of deposited material is a small fraction of a monolayer [5]. Because of their
small size, such islands already display considerable shape fluctuations in ther-
mal equilibrium that may cause diffusive motion of the island as a whole [4]. The
electromigration-induced drift of single layer islands on the Si(111) surface was
observed experimentally by Métois and collaborators in 1999 [11]. In the following,
I summarize recent theoretical work on this problem that is based on a continuum
formulation due to Pierre-Louis and Einstein [12].

I focus here on the simplest case in which the motion of atoms is restricted to the
boundary of the islands, such that the island area is conserved.7) The local normal
velocity vn of the island boundary then satisfies a continuity equation,

vn D � @

@s
j D @

@s
σ
�

@

@s
( Qγ�) � Ft

�
, (5.1)

where s denotes the arc length measured along the island contour. The mass cur-
rent j along the island boundary is proportional to the step edge mobility σ, and
it is driven by capillary forces and the component Ft of the electromigration force
tangential to the boundary. The capillary force, in turn, is given by the tangential
gradient of the edge chemical potential, which is the product of the edge stiffness Qγ
and the edge curvature �. The stiffness Qγ is derived from the edge free energy per
unit length γ according to Qγ D γ C γ 00, where primes denote derivatives with re-
spect to the orientation angle of the edge. In the absence of external forces (Ft D 0),
(5.1) guarantees the relaxation of the island to its equilibrium shape characterized
by Qγ� D const. [5]. Throughout this section the electromigration force is assumed

7) A nonconserved situation where the step
exchanges atoms with the terrace is treated
below in Section 5.2.4.
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to be constant in magnitude and direction. This implies that

Ft D F0 cos θ , (5.2)

where θ denotes the angle between the boundary and the direction of the force.
In the absence of crystalline anisotropy the material parameters σ and Qγ in (5.1)

are constants and it is straightforward to check that (5.1), (5.2) are solved by a cir-
cle of arbitrary radius R moving at constant speed V D σF0/R [13]. Linear sta-
bility analysis of the circular solution shows that it becomes unstable at a critical
radius [14]

Rc � 3.26lE , (5.3)

where the characteristic length scale obtained by nondimensionalizing (5.1) reads

lE D p Qγ/F0 . (5.4)

Beyond the linear instability of the circular solution one finds a family of stationary
shapes that are elongated in the direction of the force and become increasingly
sensitive to breakup with increasing size [15, 16].

The effect of crystalline anisotropy in the mobility σ was explored, mostly nu-
merically, in [15, 17]. Using the expression [18]

σ(θ ) D σ0[1 C S cos2(nθ )] , (5.5)

where 2n denotes the number of symmetry axes, a surprisingly rich phase diagram
of migration modes was obtained in the plane spanned by the anisotropy strength
S and the dimensionless island radius R0 D R/ lE for the case of sixfold anisotropy
(n D 3) (Figure 5.2). In these calculations the force was oriented along a direction
of maximal mobility.

For small R0 the dynamics is dominated by capillarity and the island shape is
close to the equilibrium shape. The island moves at constant speed in the direc-
tion of the applied force (ss = straight stationary motion). With increasing size a
bifurcation to a regime of oblique stationary (os) motion occurs, in which the sym-
metry with respect to the force direction is spontaneously broken. A suitable order
parameter for this bifurcation is the angle between the direction of force and the
direction of motion (Figure 5.3). Increasing the radius further, another bifurcation
occurs to a phase in which the obliquely moving island displays periodic shape os-
cillations (the oo phase). At smaller values of S the island performs an oscillatory
zig-zag motion that is, on average, directed along the applied force (Figure 5.4).

A clear signature of the transition from stationary oblique to oscillatory behavior
shows up in the angle of island migration (Figure 5.3). In addition, it is observed
that the period τ of the shape oscillation diverges as the critical radius Roo

0 of the
transition is approached from above (Figure 5.5). Although the data show some
dependence on the number of discretization points, a power law fit indicates that
the period diverges as

τ 
 (R0 � Roo
0 )�2.5 . (5.6)
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Figure 5.2 Numerically generated phase
diagram of island migration modes as a func-
tion of the anisotropy strength S, as defined
in (5.5), and the dimensionless island radius
R0 D R/ lE . In the regions denoted by zz
and oo the island shape oscillates periodi-
cally, while in the co region the behavior is

irregular, possibly chaotic. The cross on the
R0-axis indicates the bifurcation from circular
to elongated shapes in the isotropic case at
the critical radius (5.3). The phase diagram is
based on a grid of resolution 0.5 � 0.5 in the
S–R0-plane.
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Figure 5.3 Angle enclosed by the direction of island motion
and the direction of the applied force as a function of the scaled
island radius for S D 2. The transitions between the different
phases in Figure 5.2 are manifest as slope discontinuities in
this graph.

Increasing the island size further, the oscillations become increasingly irregular.
This is illustrated in Figure 5.6 by the time series of the island perimeter. The up-
permost curve in the figure displays large scale fluctuations that can be traced back
to reversals of the direction of island motion that occur at irregular intervals [17].
The Fourier spectrum of such a time series is broad and shows clear signatures of
period doubling (Figure 5.7).
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Figure 5.4 Oscillatory island motion in the zig-zag phase of the
phase diagram. Parameters are R0 D 3.5, S D 0.5 for (a) and
R0 D 3.5, S D 1 for (b). All lengths are measured in units of lE.
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Figure 5.5 Period τ of the shape oscillation near the transi-
tion from the oo to the os phase. Different curves show results
obtained for different numbers N of discretization points in
the numerical solution, with N increasing from right to left
(from [16]).

5.2.2
Continuum vs. Discrete Modeling

In the preceding section it was seen that electromigration-driven islands display
a number of features that are consistent with the behavior of a low-dimensional,
nonlinear dynamical system. This is remarkable since physically such an island
consists of a large number of atoms that move stochastically under the influence
of thermal fluctuations and a very small systematic force.

In order to determine whether the phenomena predicted on the basis of the
deterministic continuum model given in (5.1) also persist under experimentally
realistic conditions, extensive kinetic Monte Carlo (KMC) simulations were carried
out using a lattice model that has been shown to provide an accurate representation
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Figure 5.6 Time series of the island perimeter, measured in
units of lE. From (c) to (a), parameters are S D 2, R0 D 5;
S D 5, R0 D 5; and S D 5, R0 D 6.5. Time is measured in
units of tE D l4E/(σ0 Qγ).
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Figure 5.7 Fourier spectrum of the island perimeter time series
for S D 3 and R0 D 6, plotted as a function of the period
τ D 2π/ω (from [16]).

of metal surfaces8) such as Cu(100) [19]. In a suitably chosen range of parameters, a
regime of oscillatory motion could be identified which shows dynamic behavior in
good, essentially quantitative agreement with the continuum model (Figure 5.8).

8) See [5, 7] for an overview of similar models,
and [12, 20] for earlier KMC simulations of
island electromigration.



5.2 Electromigration-Driven Islands and Voids 149

2 8100 3000 100
0

100

200

300

400
(a) (b) (c)

Figure 5.8 Comparison of island shape evolution obtained
from KMC simulations (a and b) and numerical solution of the
continuum model (c). The simulated islands consist of 1000
atoms in (a) and 4000 atoms in (b). (a) and (c) correspond to a
temperature of T D 700 K, while in (b) T D 500 K. In (a) and
(b) lengths are measured in units of the lattice constant, in (c)
in units of lE.

For the comparison to KMC simulations, realistic expressions for the step edge
mobility σ and the stiffness Qγ in (5.1) were derived and implemented. Both of these
quantities display a fourfold anisotropy on the fcc(100) surface. A rough exploration
of the full phase diagram conducted within the continuum model is depicted in
Figure 5.9. Since the physical parameter controlling the anisotropy is the temper-
ature T, with lower temperatures corresponding to more pronounced anisotropy,
the temperature axis in Figure 5.9 replaces the anisotropy axis in Figure 5.2. The
regions displaying oscillatory behavior without leading to island breakup are much

Figure 5.9 Phase diagram of island migra-
tion modes obtained by numerical solution of
the continuum equations for a mobility and
stiffness of fourfold crystalline anisotropy. The
temperature is measured in Kelvin and the
anisotropy increases with decreasing tem-
perature. Temperature was varied in steps of

100 K. Each rectangle corresponds to a single
value of R0 and T, which is located in the
center of the rectangle. The cases T D 500 K
and T D 700 K, which correspond to the KMC
simulations, were explored with higher resolu-
tion. The abbreviations used for the different
phases are explained in Figure 5.2 (from [16]).
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more limited than in the case of sixfold anisotropy. In particular, at T D 500 K no
oscillatory regime was found in the continuum model, despite the fact that oscil-
lations are seen in the KMC simulations at this temperature (Figure 5.8b). This is
one of the indications of a breakdown of the continuum description at low temper-
atures which were reported in [19].

5.2.3
Nonlocal Shape Evolution: Two-Dimensional Voids

Formally, the island electromigration problem described in the preceding sections
is largely equivalent to the problem of electromigration of cylindrical voids in a thin
metallic film. The formation, migration, and shape evolution of such voids plays
an important part in the failure of metallic interconnects in integrated electronic
circuits [9]. In this context, the size scale of interest is usually in the range of mi-
crometers rather than nanometers, but on the level of the continuum description
on which (5.1) is based this difference is immaterial.

A more relevant distinction is illustrated in Figure 5.10. In the case of an is-
land on top of a thick metallic substrate, the disturbance of the electric current
distribution in the bulk due to the presence of the island can be neglected, and
correspondingly the force Ft in (5.1) can be approximated by the simple constant
expression in (5.2). On the other hand, in the presence of an insulating void in a
current-carrying film, the current is obviously forced to flow around the void. As a
consequence the current distribution and, hence, the distribution of electromigra-
tion forces is strongly dependent on the void shape itself, and the shape evolution
becomes a non-local moving boundary value problem for the electric potential [18].
It is possible to interpolate between the two cases depicted in Figure 5.10 by con-
sidering a conducting void and varying the conductivity ratio between the interior
and the exterior regions [14].

Oscillatory shape evolution of two-dimensional voids was first observed numer-
ically by Gungor and Maroudas [21]. They considered edge voids located at the
boundary of a two-dimensional conducting strip. In the presence of crystalline

(a) (b)

Figure 5.10 Comparison between the electromigration problem
for islands (a) and voids (b). Arrows indicate the flow of the
electric current. The shape evolution problem in (a) is local,
whereas in (b) has to solve a nonlocal moving boundary value
problem.
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anisotropy in the mobility of adatoms along the inner void surface, a transition
from stationary to oscillatory behavior occurs with increasing electromigration
force or void area. Subsequent detailed analysis has shown that this transition has
the character of a Hopf bifurcation [22]. The experimental signature of oscillatory
void evolution is rapid oscillations in the resistance of the conductor, which have
indeed been reported in the literature [23].

5.2.4
Nonlocal Shape Evolution: Vacancy Islands with Terrace Diffusion

The exchange of atoms between the step and the surrounding terraces is another
source of nonlocality in the motion of the steps, as it necessitates the solution of
a moving boundary value problem for the concentration of adatoms on the ter-
races [2, 8]. A particular case in this class of problems is the interior model for
the electromigration of vacancy islands introduced in [12], and studied in detail
in [16, 24].

As illustrated in Figure 5.11, one considers a vacancy island (i.e., a surface region
which is one atomic height lower than the surrounding terrace) bounded by an
ascending step. Atoms can detach from the step and diffuse across the island, but
an energy barrier prevents atoms from entering the island from the exterior terrace.
This leads to a moving boundary value problem in the bounded interior domain
where the adatom concentration �(r , t) satisfies the drift-diffusion equation

@�

@t
D Dr2� � D

kBT
F � r� (5.7)

with appropriate boundary conditions at the step edge (see [8] for a general dis-
cussion). If the exchange of atoms with the step edge is rapid, such that thermal
equilibrium is maintained at the boundary at all times, a circular stationary solu-
tion drifting at constant speed against the force direction can be found [12].

From the perspective of nonlinear dynamics, an intriguing feature of this prob-
lem is that the circular solution is linearly stable, although numerical simulation
of the fully nonlinear evolution shows that the circle develops an instability under
finite perturbations that eventually leads to the pinching off of a small island [24].

F
V

Figure 5.11 Sketch of a vacancy island migrating by internal
terrace diffusion. The drift force leads to a net transport of ma-
terial from the left to the right, which implies island migration
in the opposite direction.
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The critical perturbation strength needed to trigger the instability decreases as the
dimensionless island size, defined in this case by

R0 D R
�

, � D kB T
jF j (5.8)

is increased by increasing either the force or the island size. A similar scenario
combining linear stability with nonlinear instability was previously found in the
problem of two-dimensional void migration [18, 25] as well as in the dynamics of
ionization fronts [26, 27].

The effects of crystalline anisotropy in this problem have not been explored thus
far. However, in view of the results described in the preceding subsections, it seems
likely that oscillatory and other modes of complex shape evolution may arise in this
case as well.

5.3
Step Bunching on Vicinal Surfaces

A vicinal surface is obtained by cutting a crystal at a small angle relative to a high
symmetry orientation, such that a staircase of well separated atomic height steps
forms. When such an array of steps is set into motion by growing or sublimating
the crystal or by applying an electromigration force on the adatoms, a variety of
patterns emerges.

Quite generally, the pattern formation process can be understood as a compe-
tition between the destabilizing effects of the external forces and thermodynamic
forces arising from the step free energy and repulsive step–step interactions, which
act to restore the equilibrium state of straight, equidistant steps. The resulting in-
stability scenarios have been studied extensively on the level of linear stability anal-
ysis, (e.g. [28]). The two basic modes of instability are illustrated in Figure 5.12. In
step bunching the individual steps remain straight but the initially homogeneous
step train breaks up into regions of high step density (bunches) separated by wide
terraces. By contrast, in step meandering the individual steps become wavy; often
the repulsive interactions between the steps then force the different steps to mean-
der in phase, such that an overall periodic surface corrugation perpendicular to the

bunching
meandering

Figure 5.12 Schematic of the two main morphological instabilities of a vicinal surface.
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Figure 5.13 Sketch of a one-dimensional step train. Under
sublimation, ascending steps move to the right.

direction of vicinality results. In some cases step bunching and step meandering
have been observed to coexist [29, 30].

In the following some recent results on the nonlinear evolution of step bunches
will be summarized, focusing again on instances of complex temporal behavior of
the step configurations. For a discussion of the nonlinear dynamics of meandering
steps we refer to [31].

When step bunching is the dominant instability, the steps, to a first approx-
imation, can be assumed to be straight, and the problem reduces to the one-
dimensional motion and interaction of point-like steps. Figure 5.13 illustrates the
situation for the case of sublimation, where ascending steps move (on average) to
the right. The equations of motion for the steps can be obtained from the solution
of a one-dimensional moving boundary value problem for the adatom concentra-
tion on the terraces. This procedure has been reviewed in detail elsewhere [8]. Here
we start the discussion directly from the nonlinear equations of motion, regarded
as a physically motivated many-dimensional dynamical system.

5.3.1
Stability of Step Trains

As a first orientation, suppose the velocity Pxi of the ith step is the sum of contribu-
tions fC and f�, which are functions of the length of the leading terrace (in front
of the step) and the trailing terrace (behind the step), respectively, such that

dxi

dt
D fC(xiC1 � xi ) C f�(xi � xi�1) (5.9)

for the N steps i D 1, . . . , N , and periodic boundary conditions are employed. Then
a uniform step train of equally spaced steps

x (0)
i D i l C v t (5.10)

is always a solution, with l denoting the step spacing and v D fC(l)C f�(l) the step
speed. A straightforward linear stability analysis of (5.9) reveals that the solution
given in (5.10) is stable if

d
dx

[ fC(x ) � f�(x )]jxDl > 0 , (5.11)

and step bunching occurs when this condition is violated.
There are obviously different ways in which such an instability can be realized.

One possibility is that both contributions on the right hand side of (5.9) are in-
creasing functions of the terrace size, but the contribution from the trailing ter-
race is larger, that is the step motion is primarily driven from behind. This is
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the scenario first described by Schwoebel and Shipsey [32, 33], who pointed out
that the preferential attachment/detachment of adatoms from/to the lower terrace
bordering a step leads to step bunching during sublimation. The mechanism for
electromigration-induced step bunching first described by Stoyanov [34] is of a sim-
ilar nature. We will return to this case in the following sections.

A different scenario was investigated by Kandel and Weeks [35, 36], who consid-
ered a class of one-sided models with f� � 0 and a nonmonotonic function fC of
the form

fC(x ) D cx (x0 � x ) . (5.12)

This work was motivated by the physics of impurity-induced step bunching dur-
ing growth, where steps are slowed down by impurities that accumulate on the
terraces [37, 38]. Larger terraces have been exposed to the impurity flux for longer
times, which leads to a decrease of the step speed and ultimately to its vanishing
when x D x0. The equidistant step train is stable for l < x0/2 and unstable for
l > x0/2. Perturbing a single step in an unstable equidistant step train leads to a
disturbance wave which travels backwards because of the one-sided nature of the
dynamics, leaving behind a frozen configuration of step bunches separated by ter-
races of size x0. Varying the initial step spacing, one finds a sequence of spatial
bunching patterns which can be periodic, intermittent, or chaotic9).

5.3.2
Strongly and Weakly Conserved Step Dynamics

An important global characteristic of the step dynamics is the overall sublimation
or growth rate of the crystal, which is given by

R D 1
N

X
i

dxi

dt
. (5.13)

We distinguish between strongly conserved step dynamics in which R D 0, and
weakly conserved dynamics where R is nonzero but independent of the step config-
uration10). The latter case is realized during growth at relatively low temperature,
where desorption of adatoms can be neglected and therefore the growth rate is
completely determined by the external deposition flux [41].

A generic model that incorporates the strongly and weakly conserved situation is
given by

dxi

dt
D γC � (xiC1 � xi ) C γ� � (xi � xi�1) C U � (2 f i � f iC1 � f i�1) (5.14)

with

f i D l3

(xi � xi�1)3 � l3

(xiC1 � xi )3 . (5.15)

9) A similar scenario has been found in a model
for sand ripple formation in an oscillatory
flow [39].

10) In [40], only the strongly conserved case is
referred to as “conserved”. The reason for our
choice of nomenclature will become clear
below in Section 5.3.6.
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These equations were first written down by Liu and Weeks [42] as a model for
electromigration-induced step bunching in the presence of sublimation11). In con-
trast to (5.9), here γ˙ and U are constant coefficients multiplying the terms in
parenthesis. Comparison with (5.9) shows that f˙ are linear functions with slopes
γ˙, such that the stability condition reads γC > γ�. In addition to the linear
terms depending on the nearest neighbor step positions, (5.14) contains nonlinear
next-nearest neighbor contributions arising from repulsive thermodynamic step–
step interactions of entropic and elastic origin [3, 8] that drive the relaxation of the
step train to its equidistant or equilibrium shape.

The sublimation rate for the model given in (5.14) is R D (γC C γ�)l , hence
for strongly conserved dynamics one has to set γC D �γ�. This case is realized
in electromigration-induced step bunching without growth or sublimation [43]. In
the following we will focus on the weakly conserved case where R > 0. It is then
convenient to normalize the time scale such that γC C γ� D 1, and to introduce
the asymmetry parameter b through [44]

γC D 1 � b
2

, γ� D 1 C b
2

, (5.16)

such that step bunching occurs for b > 0. Together (5.14), (5.15), (5.16) define a two
parameter family of nonlinear many body problems which have been investigated
in detail in [44–46]. In the following two sections some pertinent results of this
study will be summarized.

5.3.3
Continuum Limit, Traveling Waves and Scaling Laws

The analysis of the nonlinear dynamics of step bunches is greatly simplified if
it is possible to perform a continuum limit of the problem, thus passing from
the discrete dynamical system of (5.14) to a partial differential equation [8, 47].
Coarse graining the discrete equations of motion given in (5.14), one arrives first
at a “Lagrangian” continuum description for the step positions xi or the terrace
sizes l i D xiC1 � xi . This is accomplished by converting the layer index i into a
continuous surface height h D i h0, where h0 denotes the height of an elementary
step [43, 48]. In a second step this is transformed into an “Eulerian” evolution
equation for the surface height profile h(x , t) or, equivalently, the step density m D
@h/@x , which reads, for the model of (5.14), [44, 45]

@h
@t

C @

@x

�
� b

2m
� 1

6m3

@m
@x

C 3U
2m

@2(m2)
@x2

�
C 1 D 0 . (5.17)

To unburden the notation, we have normalized vertical and horizontal lengths by
setting h0 D l D 1. In the weakly conserved case the evolution law has the form

11) We will see below in Section 5.3.6 that the
weakly conserved form of (5.14) is, in fact,
not really appropriate in the presence of
sublimation.
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Figure 5.14 Sketch of a moving step bunch.

of a continuity equation, with the corresponding current given by the terms inside
the square brackets.

The solution h(x , t) D x/ l � t of (5.17) is linearly unstable for b > 0. The physi-
cally relevant nonlinear solutions take the form of a generalized traveling wave

h(x , t) D f (x � V t) � Ω t , (5.18)

as illustrated in Figure 5.14. The conserved nature of (5.17) implies the sum rule

Ω C V D 1 , (5.19)

but the individual values of the vertical and horizontal speed are not fixed by the
ansatz12). An analysis of periodic solutions of the discrete equations of motion
shows that, under rather general conditions,

V 
 1/N . (5.20)

Since the mean velocity of a single step is unity in the present units, this implies
that bunches move more slowly than steps. Similar to cars in a traffic jam, steps
join the bunch from behind, move slowly through the bunch, and accelerate into
the outflow region which separates one bunch from the next13).

Inserting (5.18) into (5.17) one arrives at a third order nonlinear ODE, which
can, to a large extent, be handled analytically [44]. A key result are scaling laws [50]
for the shape of stationary bunches. As illustrated in Figure 5.15, the shape can
be characterized by the bunch width W and the bunch spacing L, both of which
are functions of the number N of steps in the bunch. The global constraint on the
average slope of the surface implies that L 
 N , but the bunch width typically
scales with a sublinear power of N, which implies that bunches become steeper as
more steps are added. Related quantities of interest are the minimal terrace size
lmin in the bunch and the size l1 of the first terrace in the bunch. On the basis of

12) For the relation of this problem to the
standard velocity selection problem for
traveling waves moving into unstable states,
see [49].

13) Note, however, that traffic jams generally
move in the direction opposite to the traffic
flow [52, 53].
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Figure 5.15 Quantities characterizing the shape of a step bunch.

the continuum model of (5.17) one finds that, asymptotically for large N [44],

W � 4.1(U N/b)1/3 , lmin � 2.4(U/bN 2)1/3 , l1 � (2U/bN )1/3 , (5.21)

in good agreement with numerical simulations of the discrete model [45]. Note
that W 
 N lmin, as one would expect, but l1 � lmin. An experimental study of
the shapes of electromigration-induced step bunches on Si(111) is consistent with
lmin 
 N�2/3 [51].

5.3.4
A Dynamic Phase Transition

As with any hydrodynamic description, the validity of the continuum limit passing
from (5.14) to (5.17) is restricted to step configurations in which the step density is
slowly varying on the scale of the mean step spacing. To check the consistency of
this assumption, we consider the outflow region of the bunch, where the spacing
between steps leaving the bunch becomes large and hence the nonlinear interac-
tion terms on the right hand side of (5.14) can be neglected. We are thus left with
the linear system

dxi

dt
D 1 � b

2
(xiC1 � xi ) C 1 C b

2
(xi � xi�1) , (5.22)

which can be solved by the exponential traveling wave ansatz

l i � xiC1 � xi D A eQ(iCΩ t ) . (5.23)

Inserting (5.23) into (5.22) yields the relation

b D sinh Q � ΩQ
cosh Q � 1

� sinh Q � Q
cosh Q � 1

, (5.24)

where we have used the fact that Ω ! 1 for large bunches according to (5.19)
and (5.20).

The step spacing is slowly varying when Q 	 1, which according to (5.24) re-
quires b 	 1. More strikingly, (5.24) has no solution when b > 1. At b D 1 the
bunch undergoes a dynamic phase transition which is reflected, among other things,
in the number of “crossing” steps between bunches. For b < 1 this number grows
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with N as ln N , whereas for b > 1 at most a single step can reside between two
bunches at one time [46].

The physical origin of this change of behavior can be traced back to the evolution
equations (5.22). For a step about to leave the bunch, the leading terrace is much
larger than the trailing terrace and xiC1 � xi � xi � xi�1, such that the right hand
side of (5.22) is dominated by the first term, which is negative for b > 1. The linear
term thus pushes the step back into the bunch, and it can escape only thanks to the
repulsive, nonlinear step–step interaction. Since the bunches become steeper with
increasing size, the ability of a bunch to eject crossing steps also depends on the
number of steps N that it contains.

The result of this interplay between linear and nonlinear effects is the phase
diagram in the U–N-plane depicted in Figure 5.16. At moderate values of U it pre-
dicts a qualitative change in the behavior of bunches with increasing N. For small
bunches the emission of steps ceases completely, such that all steps constituting
the bunch move at the speed of the whole bunch and V D 1 in our units. Larg-
er bunches emit one step at a time. Figure 5.17 shows the transition between the
two regimes in a time-dependent situation. The initial condition consists of 4 small
bunches of 16 steps each. These bunches initially merge in a hierarchical fashion
without exchanging steps. This behavior is characteristic of strongly conserved step
dynamics [40, 43], which in our units corresponds to b ! 1. After the last merger,
the bunch enters the region in the phase diagram of Figure 5.16 where step emis-
sion is possible, and, correspondingly, the overall bunch motion slows down. It can
also be seen that the emission of steps is accompanied by a periodic “breathing” of
the entire bunch [46].

A rough estimate of experimental parameters indicates that both regimes b < 1
and b > 1 can be accessed in experiments on electromigration-induced step bunch-
ing of the Si(111) surface by varying the temperature [44]. The identification of the
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Figure 5.16 Phase diagram for the behavior of step bunches
at b D 11. The line is the linear stability limit, below which
the equidistant step train is stable (full circles). In the linearly
unstable regime above this line, bunches either eject no steps
(open squares) or they eject one step at a time (crosses).
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Figure 5.17 Trajectories of 64 step evolving under the weakly
conserved dynamics (5.14) with b D 20 and U D 12. Step
positions are shown in a frame moving with the mean step
velocity. Initially, the trajectories are horizontal because the
entire bunch moves at the mean step speed.

predicted phase transition is, however, not straightforward because real steps can
bend [54], thus invalidating the one-dimensional approximation used throughout
this section.

5.3.5
Coarsening

The time evolution depicted in Figure 5.17 is an example of coarsening, a term that
is generally used to describe the unlimited increase of bunch size with time. In
many cases coarsening proceeds according to a power law,

L 
 N 
 t n , (5.25)

defining the coarsening exponent n. Despite recent progress in the theory of coars-
ening dynamics for one-dimensional fronts [55], a quantitative analysis of coarsen-
ing dynamics based on nonlinear continuum equations such as (5.17) seems still
out of reach. Nevertheless, heuristic arguments (to be explained below) in com-
bination with numerical [40, 42] and experimental [56] evidence indicate that the
coarsening exponent is

n D 1
2

(5.26)

under a wide range of conditions, as far as the weakly conserved system of (5.14) is
concerned, including its strongly conserved limit. In particular, the value of n does
not seem to be affected by the phase transition at b D 1 [57].

The first heuristic argument goes back to Chernov [58], and it is based on the
relation given in (5.20) for the bunch velocity. The key assumption is that V is the
only velocity scale in the problem, such that the velocity difference between two
bunches of similar size 
 N is also of order ΔV 
 1/N . The time required for two
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bunches to merge is then of order L/ΔV 
 N 2, and (5.26) follows. A weakness of
this argument is that it assumes coarsening to proceed by the merging of bunches,
which does not need to be true when bunches can exchange steps.

The second argument, due to Liu and Weeks [42], is based on the generally con-
served form of the continuum equation for the height profile h(x , t), which reads

@h
@t

C @ j
@x

D 0 (5.27)

in a frame where the constant rate of sublimation has been subtracted. Without
further specifying the current j, Liu and Weeks assume the existence of a single
lateral length scale 
 t n , such that both the height profile and the current take on
scaling forms

h(x , t) D t n H(x/ t n) , j (x , t) D J(x/ t n) . (5.28)

Inserting (5.28) into (5.27) enforces the scaling in (5.26). Similar scaling arguments
have been advanced by Pimpinelli and coworkers [50].

Like the argument of Chernov, the ansatz of (5.28) is problematic because the
bunch spacing is not the only length scale in the system [31, 45]. For example, the
bunch width W defines a second time-dependent scale which cannot obviously be
ignored. An explicit counterexample where the existence of an additional length
scale leads to coarsening exponents that differ from (5.26) was presented in [49].

5.3.6
Nonconserved Dynamics

In the presence of sublimation the rate of volume change given in (5.13) couples
to the step configuration, and therefore the weakly conserved form of the discrete
(5.14) and continuous (5.17) evolution equations is no longer appropriate [28]. The
minimal modification of (5.14) which takes account of this fact reads [59]

dxi

dt
D (1 C g f i )

�
1 C b

2
(xi � xi�1) C 1 � b

2
(xiC1 � xi )

�
C U(2 f i � f iC1 � f i�1) , (5.29)

where the new dimensionless parameter g is proportional to the strength of the
repulsive step–step interactions. On the linearized level the introduction of the new
term shifts the instability condition, which now reads [48, 59]

b > 6g . (5.30)

The nonlinear consequences of the new term are quite dramatic. Numerical simu-
lations of (5.29) [60] as well as of a more complicated nonconserved model [40] show
that the coarsening of step bunches is arrested when the bunches have reached a
certain size. Correspondingly, a large initial step bunch evolving under the dynam-
ics of (5.29) breaks up into smaller bunches, as illustrated in Figure 5.18.
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Figure 5.18 Surface profiles generated with the nonconserved
discrete model of (5.29) with parameters b D 0.7 and U D g D
0.05. The initial condition is a single large bunch, which first
relaxes into a quasi-stationary configuration and then breaks up
into smaller bunches after 4000 time steps. Height profiles at
different times have been shifted in the horizontal direction.

The absence of asymptotic coarsening in the nonconserved case is consistent
with analyses in which weakly nonlinear continuum equations, in the sense of [61],
are derived from the discrete step dynamics close to the instability threshold, that
is for 1 � 6g/b 	 1 [62, 63]. These equations typically display spatiotemporal chaos
or structure formation at a fixed length scale, but no coarsening [31]. However, for
strongly nonlinear continuum equations similar to (5.17) that are expected to apply
when b � g, such results are so far not available.

5.3.7
Beyond the Quasistatic Approximation

With few exceptions [64–66], most theoretical studies of step dynamics work in
the quasistatic approximation, which implies that the dynamics of the diffusing
adatoms on the terraces separating the steps are assumed to be much faster than
the step motion. As a consequence, a step reacts instantaneously to the motion of
its neighbors, which mathematically leads to coupled first order equations for the
step positions such as those of (5.14).

A simple and conceptually appealing way of explicitly including the time scale
of adatom dynamics was recently proposed by Ranguelov and Stoyanov, who de-
rived and studied a coupled system of two sets of evolution equations, one for the
terrace widths l i D xiC1 � xi and one for the suitably parametrized adatom con-
centration profile on the terraces. Remarkably, in this setting the equidistant step
train may undergo an instability into a new dynamic phase characterized by step
compression waves [67], even if it would be completely stable in the quasistatic
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limit. The instability is caused solely by the time delay that is introduced into the
interaction between steps by the finite time scale of the adatom dynamics, sim-
ilar to the instabilities induced in follow the leader models of highway traffic by
the finite reaction time of drivers [52, 53]. In the presence of electromigration and
sublimation, the non-quasistatic model reproduces the main features of the phase
transition described above in Section 5.3.4 [68].

5.4
Conclusions

The fact that the evolution of nanostructures is intrinsically noisy is by now widely
appreciated [1]. In contrast, the role of deterministic nonlinear dynamics, in the
sense of dynamical systems theory, as a source of complex behavior is largely unex-
plored in this context. Here I have presented the results of two case studies in which
concepts from nonlinear dynamics appear naturally in the analysis of the evolution
of surface nanostructures. In both cases surface steps constitute the relevant de-
grees of freedom which, despite satisfying simple equations of motion, can display
a wide range of dynamic phenomena. Many other systems not discussed here fit
into the same framework. An example of current interest is the thermal decay of
nanoscale mounds, either through the periodic collapse of the top island [69] or
through the jerky rotation of a spiral step emanating from a screw dislocation [70].
Hopefully it has become clear that much, perhaps most, of the work in this field
remains to be done.
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6
Casimir Forces and Geometry in Nanosystems
Thorsten Emig

Casimir interactions, predicted in 1948 [14, 15] between atoms and macroscop-
ic surfaces, and probed in a series of high precision experiments over the past
decade [8, 46, 50], are particularly important at micrometer to nanometer length
scales due to their strong power-law increase at short separations between parti-
cles. Therefore, in constructing and operating devices at these length scales, it is
important to have an accurate understanding of the material, shape and geometry
dependence of these forces. In particular, the observation of Casimir forces in de-
vices on submicron scales has currently generated a great deal of interest regarding
the exploration of the role of these forces for the development and optimization of
micro- and nanoelectromechanical systems [9, 16, 17]. These systems can serve as
on-chip fully integrated sensors and actuators with a growing number of applica-
tions. It was pointed out that Casimir forces can make an important contribution to
the principal cause of malfunctions of these devices in form of stiction that results
in permanent adhesion of nearby surface elements [10]. This initiated interest in
repulsive Casimir forces by modifying material properties as well as the geometry
of the interacting components [11, 43, 52].

The study of fluctuation induced forces has a long history. When these forces
result from fluctuations of charges and currents inside particles or macroscop-
ic objects, they are usually summarized under the general term, van der Waals
forces [55]. This interaction appears at the atomic scale in the guise of Keesom,
Debye, London, and Casimir–Polder forces. An important property of all these in-
teractions is their non-additivity. The total interaction of macroscopic objects is gen-
erally not given by the sum of the interactions between all pairs of particles forming
the objects. This inherent many-body character of the force leads to interesting and
often unexpected behaviors, but makes studying these forces a difficult problem.
Commonly used approximations as pairwise additivity assumptions become un-
reliable for systems of condensed atoms. The collective interaction of condensed
macroscopic systems is better formulated in terms of their dielectric properties.
Such a formulation was established by Lifshitz for two parallel and planar, infinitely
extended dielectric surfaces [47], extending Casimir’s original work for perfect met-
als. In practice, one encounters objects of finite size with curved surfaces and/or
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Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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edges, like structured surfaces, spheres or cylinders. Also, in small-scale devices,
often more than two objects are at close separation and one would like to know the
collective effects resulting from non-additivity. In this chapter, we shall encounter
a selection of examples for the interesting behavior of fluctuation forces that result
from shape and material properties that have been obtained from a recently devel-
oped method that makes it possible to compute van der Waals–Casimir interactions
for arbitrary compact objects based on their scattering properties for electromag-
netic waves [30, 32, 33, 42].

6.1
Casimir Effect

The Casimir effect is the attraction between two uncharged, parallel and perfectly
conducting plates [14]. For this simple geometry, the interaction can be obtained
directly from the plate induced change of the energies of the quantum mechani-
cal harmonics oscillators associated with the normal modes of the electromagnet-
ic field. The derivation given here closely follows the one originally presented by
Casimir. Consider two parallel and planar surfaces of size L � L and separation d.
We assume that the system is at zero temperature so that the interaction is given
by the ground state energies of harmonic oscillators. When we are interested in the
pressure (force per plate area L2) between large plates with L � d, we can ignore
edge effects 
 L and allow for a continuum of wave vectors parallel to the plates.
For a perfect conductor, the tangential electric field has to vanish at the surface and
the normal modes correspond to the allowed wave vectors k D (kk, π n/d) where kk

is the two-dimensional wave vector parallel to the plates. The linear dispersion of

photons yields the eigenfrequencies ωnkk
D c

q
k2

k
C (π n/d)2 so that the ground

state energy becomes

E D „
2

1X
nD0

0 �
L

2π

�2 Z
d2kk2ωnkk

, (6.1)

where we have included a factor of 2 since for each mode with n ¤ 0, two po-
larizations exist. The primed summation assigns a weight of 1/2 to the term for
n D 0. Obviously, the expression of (6.1) is divergent. This is a consequence
of the assumption that the surfaces behave as a perfect conductor for arbitrarily
high frequencies. In practice, as pointed out by Casimir, for very high frequencies
(X-rays, e.g.) the plates are hardly an obstacle for electromagnetic waves and there-
fore the ground state energy of these modes will not be changed by the presence of
the plates. We implement this observation by introducing a cut-off function �(z)
that is regular at z D 0 with �(0) D 1 and vanishes, along with all its derivatives,

for z ! 1 sufficiently fast. After a change of variables, ω D c
q

k2
k

C (π n/d)2
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with c2kkdkk D ωdω, we obtain the finite expression for the energy

E D „L2

2πc2

1X
nD0

0

f (n) with f (n) D
Z 1

π nc/d
ω2�(ω/ωc) dω , (6.2)

where ωc is a cut-off frequency. As mentioned before, we are interested in the
change of the energy due to the presence of the plates. Let us imagine that we in-
crease the separation d between the plates to infinity, thus creating empty space.
When we subtract the energy of the latter configuration from the total energy
of (6.2), we obtain the change in energy that is the relevant interaction potential
between the plates. When the separation d tends to infinity, the sum in (6.2) can be
replaced by an integral, yielding after the substitution Ω D π nc/d the energy

E1 D „
2π2c3

L2d
Z 1

0
dΩ Qf (Ω ) with Qf (Ω ) D

Z 1

Ω
ω2�(ω/ωc) dω .

(6.3)

As expected, the energy E1 is proportional to the volume L2d of empty space and
to a cut-off dependent factor that is given by the integrals of (6.3). This factor de-
scribes the self-energy of the bounding surfaces. It is infinite for perfect conductors
which correspond to ωc ! 1. For a non-ideal conductor or any other material, this
factor is finite but depends on material properties like the plasma wavelength for a
metal. Now, we compute the change in energy when the plates are moved in from
infinity,

ΔE D E � E1 D „L2

2πc2

"
1X

nD0

0

f (n) �
Z 1

0
dn f (n)

#
. (6.4)

The difference between the sum and the integral is given by the Euler–Maclaurin
formula

P10

nD0 f (n)�R1
0 dn f (n) D � 1

12 f 0(0)C 1
6! f 000(0)CO( f v (0)). This series of

derivatives of odd order can be truncated in the limit of perfect conductors ωc ! 1
since f 0(0) D 0, f 000(0) D �2(πc/d)3 and f (ν)(0) 
 (c/d)3(c/dωc)ν�3. The Casimir
potential hence becomes

ΔE D � π2

720
„c
d3 L2 C O(ω�2

c ) , (6.5)

and the pressure for perfect metal plates is

F
L2 D � π2

240
„c
d4 . (6.6)

The interesting fact is that the amplitude of the interaction is universal, that is,
independent of the cut-off that can be viewed as a simplified description of a real
metal. This implies that for any pair of surfaces with metallic response in the limit
of small frequencies ω ! 0, the interaction at asymptotically large separations is
described by the potential of (6.5). At a separation of d D 100 nm, (6.6) yields a
pressure of 1.28 � 10�4 atm or 13.00 Pa.
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6.2
Dependence on Shape and Geometry

Casimir interactions result from a modification of the fluctuation spectrum of the
electromagnetic field due to boundaries or coupling to matter. This suggest that
these interactions strongly depend on the shape of the interacting objects and
geometry, that is, relative position and orientation. The most commonly encoun-
tered geometry is a sphere-plate setup that was used in the first high-precision
tests of the Casimir effect [46, 50]. Since then, this geometry has been successfully
used in most of the experimental studies of Casimir forces between metallic sur-
faces [17, 19–21, 25, 27, 51, 60]. In order to keep the deviations from two parallel
plates sufficiently small, a sphere with a radius much larger than the surface dis-
tance has been used. The effect of curvature has been accounted for by the “prox-
imity force approximation” (PFA) [55]. This scheme is assumed to describe the
interaction for sufficiently small ratios of radius of curvature to distance. However,
this an uncontrolled assumption since PFA becomes exact only for infinitesimal
separations, and corrections to PFA are generally unknown.

At the other extreme, the interaction between a planar surface and an object
that is either very small or at an asymptotically large distance is governed by the
Casimir–Polder potential that was derived for the case of an atom and a perfectly
conducting plane [15]. There have been attempts to go beyond the two extreme
limits of asymptotically large and small separations by measuring the Casimir force
between a sphere and a plane over a larger range of ratios of sphere radius to
distance [44].

Until very recently, no practical tools were available to compute the electromag-
netic Casimir interaction between objects of arbitrary shape at all distances, includ-
ing the important sphere-plate geometry. Progress in understanding the geometry
dependence of fluctuation forces was hampered by the lack of methods that are
applicable over a wide range of separations. Unlike the case of parallel plates, the
eigenvalues of the Helmholtz equation in more complicated geometries are gen-
erally unknown, and a summation over normal modes, as in the original Casimir
calculation of Section 6.1, is not practical. Conceptually, the effects of geometry and
shape are difficult to study due to the non-additivity of fluctuation forces.

For decades, there has been considerable interest in the theory of Casimir forces
between objects with curved surfaces. Two types of approaches have been pursued.
Attempts to compute the force explicitly in particular geometries and efforts to
develop a general framework which yields the interaction in terms of character-
istics of the objects, such as polarizability or curvature. Within the second type
of approach, Balian and Duplantier studied the electromagnetic Casimir interac-
tion between compact and perfect metallic shapes in terms of a multiple reflection
expansion and also derived explicit results to leading order at asymptotically large
separations [4, 5]. For parallel and partially transmitting plates, a connection to scat-
tering theory has been established which yields the Casimir interaction of the plates
as a determinant of a diagonal matrix of reflection amplitudes [40]. For nonplanar,
deformed plates, a general representation of the Casimir energy as a functional
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determinant of a matrix that describes reflections at the surfaces and free propaga-
tion between them has been developed in [31]. Later, an equivalent representation
has been applied to perturbative computations in the case of rough and corrugated
plates with finite conductivity [45, 53, 54].

Functional determinant formulas have been used also for open geometries that
do not fall into the class of parallel plates with deformations. For the Casimir in-
teraction between planar plates and cylinders, a partial wave expansion of the func-
tional determinant has been employed [6, 36]. More recently, a new method based
on a multipole expansion of fluctuating currents inside the objects has been de-
veloped [30, 32, 33]. This method allows for accurate and efficient calculations of
Casimir forces and torques between compact objects of arbitrary shape and materi-
al composition in terms of the scattering matrices of the individual objects. A sim-
ilar scattering approach has been developed in [42].

In this section, three examples for the strong geometry dependence of Casimir
forces will be made explicit. First, an overview on forces between deformed and struc-
tured surfaces will be given. The interactions are obtained from both a perturbative
and numerical evaluation of a functional determinant representation of Casimir
interactions between ideal metal surfaces. As a second example, we describe the
effects that occur in the interaction of one-dimensional structures as cylinders and
wires and related non-additivity phenomena for more than two objects. Finally, as
an example for the interaction between compact objects, the Casimir force between
metallic spheres is presented for the full range of separations, covering the crossover
from the asymptotic Casimir–Polder law to proximity approximations. The analysis
of the last two examples is based on a scattering approach.

6.2.1
Deformed Surfaces

The dependence of the Casimir force on shape and material properties offers the
opportunity to manipulate this interaction in a controlled way, for example, by im-
printing patterns on the interacting surfaces. It has been shown that a promising
route to this end is via modifications of the parallel plate geometry [34, 35, 38].
The corrections due to deformations, such as sinusoidal corrugations, of the
metal plates can be significant. In searching for non-trivial shape dependences,
Roy and Mohideen [61] measured the force between a sphere with large radius
and a sinusoidally corrugated plate with amplitude a � 60 nm and wavelength
λ � 1.1 μm. Over the range of separations H � 0.1–0.9 μm, the observed force
showed clear deviations from the dependence expected on the basis of decom-
posing the Casimir force to a sum of pairwise contributions (in effect, an average
over the variations in separations). Motivated by this experiment, the effect of
corrugations on the Casimir force between surfaces has been studied without
using pairwise additivity approximations. The analysis is based on a path inte-
gral quantization of the fluctuating field with appropriate boundary conditions
which leads to a functional determinant representation of the Casimir energy [38]
which can be evaluated perturbatively for a small deformation amplitude [34, 35]
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Figure 6.1 Configuration of a flat and a corrugated plate at mean separation H.

or numerically for general amplitudes [12, 13, 28]. In recent experiments [18]
the Casimir force between a gold sphere and a silicon surface with an array of
nanoscale, rectangular corrugations has been measured and the results were
found to be consistent with the theory based on a numerical evaluation of func-
tional determinants for ideal metals (see below). Qualitative agreement can be
expected only when material properties are taken into account in addition to
shape.

While we will be interested in the interaction between flat and corrugated sur-
faces as depicted in Figures 6.1 and 6.4, we must first consider the two surfaces
with arbitrary uniaxial deformations without overhangs so that their profiles can
be described by height functions hα(y1) (α D 1, 2 for the two surfaces), withR

dy1hα(y1) D 0. It is further assumed that the surfaces are perfectly conducting
and infinitely extended along the plane spanned by yk D (y1, y2). As explained be-
fore, for two planar plates, the Casimir energy at zero temperature corresponds to
the difference of the ground state energies of the quantized electromagnetic field
for plates at distance H and at H ! 1, respectively. To obtain this energy, we
employ a path integral quantization method. For general, non-uniaxial deforma-
tions or objects of more general shape, it is necessary to consider the action for
the electromagnetic field since the two polarizations (TM for transverse magnetic
waves and TE for transverse electric waves) are coupled. However, for the uniaxi-
al deformations under consideration here, we can develop a simpler quantization
scheme, by a similar reasoning also used in the context of waveguides with con-
stant cross-sectional shape [34]. In this case, the two polarizations are independent
modes which do not couple under scattering between the surfaces. For TM waves,
all field components are then fully specified by a scalar field corresponding to the
electric field along the invariant direction,

ΦTM(t, y1, y2, z) D E2(t, y1, y2, z) , (6.7)

with the Dirichlet boundary condition ΦTMjSα D 0 on each surface Sα . The TE
waves are analogously described by the scalar field

ΦTE(t, y1, y2, z) D B2(t, y1, y2, z) , (6.8)

with the Neumann boundary condition @nΦTEjSα D 0, where @n is the normal
derivative of the surface Sα pointing into the space between the two plates. After a
Wick rotation to the imaginary time variable X 0 D i c t, both fields ΦTM and ΦTE
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can be quantized using the Euclidean action

SfΦ g D 1
2

Z
d4 X(rΦ )2 . (6.9)

In order to obtain the change in the ground state energy that is associated with
the presence of the plates, we now consider the partition functions ZD and ZN for
the scalar field Euclidean action both with Dirichlet (D) and Neumann (N) bound-
ary conditions at the surfaces. We implement the boundary conditions on the sur-
faces Sα using delta functions, which leads to the partition functions

ZD D 1
Z0

Z
DΦ

2Y
αD1

Y
Xα

δ[Φ (Xα)] exp(�SfΦ g/„) , (6.10)

ZN D 1
Z0

Z
DΦ

2Y
αD1

Y
Xα

δ[@nΦ (Xα)] exp(�SfΦ g/„) , (6.11)

where Z0 is the partition function of the space without plates. Here, X1(y) D
[y, h1(y1)] and X2(y) D [y, H C h2(y1)], where y D (y0, y1, y2) D (y0, yk), and
y0 D i c t, is a parametrization of the plates in 4-D Euclidean space. The Casimir
energy E per unit area (at zero temperature) that results from moving the plates in
from infinity is obtained from the partition function as

E (H ) D E(H ) � lim
H!1

E(H ) , (6.12)

with

E(H ) D � „c
AL

[lnZD C lnZN] , (6.13)

where A is the surface area of the plates and the limit where the overall Euclidean
length in time direction, L, tends to infinity is implicitly assumed. The partition
functions can be expressed as functional determinants, using auxiliary fields (for
details see [35]),

lnZD D � 1
2

ln det MD , lnZN D � 1
2

ln det MN . (6.14)

The kernels MD and MN are given by

[MD]α
(y, y0) D [gα (y1)]1/4G [Xα(y) � X
(y0)][g
(y 0
1)]1/4 , (6.15)

[MN]α
(y, y0) D [gα (y1)]1/4@nα (y1)@n
 (y 0
1) G [Xα(y) � X
(y0)]

� [g
(y 0
1)]1/4 , (6.16)

where gα(y1) D 1 C [h0
α(y1)]2 is the determinant of the induced metric, and

nα(y1) D (�1)α g�1/2
α (y1)[h0

α(y1), 0, �1] is the normal vector to the surface Sα ,
while

G(x) D 1
4π2

1
x2

(6.17)
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is the free Euclidean space Green’s function with x D (y, z). Equations 6.12 to (6.17)
constitute the functional determinant representation of the Casimir interaction.
This representation is exact. To proceed, the determinant has to be evaluated either
by perturbation theory in the deformation amplitude or numerically for a specific
shape of the surface profiles. First, we present the perturbative approach.

For both boundary conditions (X = D, N), we divide by the partition func-
tion ZX,1 for H ! 1 and expand ln(ZX/ZX,1) in a series ln(ZX/ZX,1)j0 C
ln(ZX/ZX,1)j1 C ln(ZX/ZX,1)j2 C � � � , where the subscript indicates the corre-
sponding order in hα . The lowest order result is

ln(ZX/ZX,1)j0 D AL
H3

π2

1440
(6.18)

for both types of modes, corresponding to two flat plates, as in (6.5). The first order
result ln(ZX/ZX,1)j1 vanishes since we assume, without loss of generality, that the
mean deformations are zero,

R
dy1hα(y1) D 0. The second order contribution is

given by

ln(ZX/ZX,1)j2 D π2

240
1

H5

Z
d3 y

˚
[h1(y1)]2 C [h2(y1)]2

�
� 1

2

Z
d3 y

Z
d3 y 0KX(y � y0)

�
1
2

[h1(y1) � h1(y 0
1)]2 C 1

2
[h2(y1) � h2(y 0

1)]2
�

� 1
2

Z
d3 y

Z
d3 y 0QX(y � y0)[h1(y1)h2(y 0

1) C h2(y1)h1(y 0
1)] .

(6.19)

The terms in the first row are local contributions which are identical for TM and
TE modes. They also follow from a pairwise summation approximation (PWS) that
sums a “renormalized” Casimir–Polder potential over the volumes of the interact-
ing bodies [35]. The remaining terms are nonlocal and cannot be obtained in ap-
proximative schemes. For Dirichlet boundary conditions, the kernels depend only
on jy � y0j and are given by

KD(y ) D � 1
2π4 y 8

C π2

128
1

H6 y 2

cosh2(s)

sinh6(s)
, (6.20)

QD(y ) D π2

128
1

H6 y 2

sinh2(s)

cosh6(s)
, (6.21)

where s D πy/(2H ). The kernels for Neumann boundary conditions assume a
more complicated form since the normal derivative breaks the equivalence of space
and time directions. Hence, they depend separately on jy0 � y 0

0j and jyk �y0
k
j. Their

explicit form can be found in [35]. The results obtained thus far apply to general
uniaxial deformations of both surfaces.

Now, we apply these results to the important case of corrugated plates. We begin
with the geometry depicted in Figure 6.1 which is parametrized by

h1(y1) D a cos(2πy1/λ) , and h2(y1) D 0 . (6.22)
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For this profile, the computation of the partition function to second order in a
reduces to the Fourier transforming of the kernels with respect to y1. The corre-
sponding expression for E in (6.12) can be written as

E D E0 C Ecf , (6.23)

where E0 is the energy per unit area of two flat plates [see (6.5)] and

Ecf D �„ca2

H5

�
GTM

�
H
λ

�
C GTE

�
H
λ

��
C O(a3) , (6.24)

where the index cf of Ecf stands for corrugated-flat geometry. The functions that
describe the λ-dependence in this expression can be computed exactly [35]. They
can be expressed in terms of the polylogarithm function Lin(z) D P1

νD1 z ν/νn ,
leading to

GTM(x ) D π3x
480

� π2x4

30
ln(1 � u) C π

1920x
Li2(1 � u) C πx3

24
Li2(u)

C x2

24
Li3(u) C x

32π
Li4(u) C 1

64π2
Li5(u)

C 1
256π3 x

�
Li6(u) � π6

945

�
(6.25)

GTE(x ) D π3x
1440

� π2x4

30
ln(1 � u) C π

1920x
Li2(1 � u)

� πx
48

�
1 C 2x2� Li2(u) C

�
x2

48
� 1

64

�
Li3(u) C C 5x

64π
Li4(u)

C 7
128π2

Li5(u) C 1
256π3 x

�
7
2

Li6(u) � π2Li4(u) C π6

135

�
(6.26)

with u � exp(�4πx ). Figure 6.2 separately displays the contributions from GTM

and GTE to the corrugation induced correction Ecf to the Casimir energy. While
GTM(H/λ) is a monotonically increasing function of H/λ, GTE(H/λ) displays a
minimum for H/λ � 0.3.

Examining the limiting behaviors of (6.24) is instructive. In the limit λ � H ,
the functions GTM and GTE approach constant values, and the total Casimir energy
takes the λ-independent form

E D � „c
H3

π2

720

�
1 C 3

a2

H2

�
C O(a3) . (6.27)

Note that only in this case, both wave types provide the same contribution to the
total energy and the result agrees with the pairwise summation approximation (see
Figure 6.2). In the opposite limit of λ 	 H , both GTM and GTE grow linearly in
H/λ. Therefore, in this limit the correction to the Casimir energy decays according
to a slower power law in H, as

E D � „c
H3

π2

720

�
1 C 2π

a2

λH

�
C O(a3) , (6.28)
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Figure 6.2 Rescaled correction Ecf to the Casimir energy due to
the corrugation as given by (6.24) (upper curve). The lower
curves show the separate contributions from TM and TE
modes. The rescaling of Ecf is chosen such that the correspond-
ing prediction of the pairwise summation (PWS) approxima-
tion [corresponding to the local terms of (6.19)] is a constant
(dashed lines).

with an amplitude proportional to 1/λ. Note that this behavior is completely missed
by the pairwise summation approach which always yields a λ independent Casimir
energy in the presence of modulations on one plate [35]. As we will discuss be-
low, in the context of the numerical approach, the apparent divergence for λ ! 0
in (6.28) is an artifact of the perturbative expansion which assumes that the ampli-
tude a is the smallest length scale.

Next we turn to a numerical approach for computing the functional determi-
nants of (6.14). Such an approach has been developed for periodic surface profiles
in [12, 28]. In this approach, it is convenient to directly compute the Casimir force
F D �@HE per unit area which is the sum of TM and TE contributions, F D
FTM C FTE that according to (6.14), are given by (for X = D, N)

FX D � „c
2AL

Tr
�
M�1

X @H MX
�

. (6.29)

The right-hand side of this expression is always finite, and no divergences due to
self-energies have to be subtracted. The trace in (6.29) can be efficiently comput-
ed by Fourier transforming M with respect to y, y0. The transformed operator can
then be transformed to block-diagonal form by making use of the periodicity of
the surface profile along the y1 direction. In this representation, the blocks can be
numbered by the wave vector q1 2 [0, 2π/λ) along the y1 direction. A block matrix
with label q1 couples only waves whose momenta differ from the Bloch momen-
tum q1 by integer multiples of 2π/λ. The integers multiplying 2π/λ number the
matrix elements within a block matrix. Hence, the problem of computing the to-
tal trace has been simplified to the computation of the trace of each block matrix



6.2 Dependence on Shape and Geometry 175

with label q1. Finally, integration over q1 from 0 to 2π/λ and over the unrestrict-
ed momenta q0, q2 (along the time direction and invariant spatial direction of the
surfaces, respectively) yields the force of (6.29). For the particular choice of a rect-
angular corrugation (see Figure 6.5a), analytic expressions for all matrix elements
of M can be obtained. For details of the implementation of the numerical approach
and expressions for the matrix elements see [12].

In comparison to the profile of Figure 6.1, we consider the corresponding situa-
tion of a flat plate and a plate with a rectangular corrugation profile parametrized
by

h1(y1) D
(

Ca for jy1j < λ/4

�a for λ/4 < jy1j < λ/2
, (6.30)

and continuation by periodicity h1(y1) D h1(y1 C nλ) for any integer n. The nu-
merical results for the total Casimir force between the two plates is shown in Fig-
ure 6.3 for different corrugation wavelengths λ. For all λ, the forces at a fixed sep-
aration H are bounded between a minimal force F1 and a maximal force F0. For
small λ/a, the upper bound F0 is approached, whereas for asymptotically large
λ/a, the force converges towards the lower bound F1. Analytic expressions can
be derived for these bounds. For large λ, the corrugated surface is composed of
large flat segments with a low density of edges. At sufficiently small surface sepa-
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Figure 6.3 Total Casimir force as a function of the mean plate
separation H. The relative change of the force compared to the
total Casimir force Fflat between two flat plates is shown. The
two bold curves enclosing the numerical data are the analytical
results F0 for λ ! 0 (upper curve) and F1 for λ ! 1 (lower
curve), see text.
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rations H 	 λ, the main contribution to the force comes from wavelengths which
are much smaller than the scale λ of the surface structure. Thus, in the dominant
range of modes, diffraction can be neglected and a simple proximity force approx-
imation [55] should be applicable. Such an approximation assumes that the total
force can be calculated as the sum of local forces between opposite flat and parallel
small surface elements at their local distance H � h1(y1). No distinction is made
between TM and TE modes. This procedure is rather simple for the rectangular
corrugation considered here since the surface has no curvature (except for edges).
There are only two different distances H Ca, H � a which each contribute one-half
across the entire surface area, leading for λ ! 1 to the proximity approximation
for the force,

F1/A D � π2„c
240

1
2

�
1

(H � a)4 C 1
(H C a)4

�
. (6.31)

In the limit λ ! 0, the important fluctuations should not get into the narrow
valleys of the corrugated plate. Even for small but finite λ, this picture should be
a good, though approximate, description since it still effects the wavelengths of
order H which give the main contribution to the force. Thus, one can expect that
the plates feel a force which is equal to the force between two flat plates at the
reduced distance H � a. Fortunately, this expectation can be checked by an explicit
calculation since the leading part of determinant of MX in the limit λ ! 0 can
be computed. Indeed, this computation confirms the expectation, leading to the
Casimir force per surface area [12]

F0/A D � π2

240
1

(H � jaj)4 (6.32)

with equal contributions from TM and TE modes. Notice that this result is not
analytic in a/H and is exact in the limit λ ! 0. As we have seen before, per-
turbation theory for smoothly deformed surfaces always yields corrections to the
interaction of order a2. However, for small a/H , the result of (6.32) has the expan-
sion

F0/A D � π2

240
1

H4

�
1 C 4

jaj
H

C O
� a

H

�2
��

(6.33)

which indicates that perturbation theory is not applicable if λ 	 a. This implies
that the apparent divergent behavior for λ ! 0 in (6.28) actually disappears for
λ ' a.

6.2.2
Lateral Forces

As a natural generalization of the geometry of the previous section, we study the
Casimir interaction between two sinusoidally corrugated plates. For direct corre-
spondence to experiments for this type of configuration [22], we consider the spe-
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cific profiles

h1(y1) D a cos(2πy1/λ) , and h2(y1) D a cos (2π(y1 C b)/λ) , (6.34)

which are shifted relative to each other by the length b (see Figure 6.4). When these
profiles are substituted into the general expression for the second order term of the
partition function of (6.19), one finds for the Casimir energy

E D E0 C 2Ecf C Ecc , (6.35)

with Ecf given in (6.24), and where the corrugation–corrugation interaction energy
Ecc can be calculated in terms of the kernels QX(y) in (6.19). Besides oscillating
contributions to the normal Casimir force from Ecc(b), a lateral force

Flat D �@Ecc

@b
(6.36)

is induced by the corrugation–corrugation interaction. This lateral force is better
suited for experimental tests of the influence of deformations since there is no
need for subtracting a larger baseline force (the contribution of flat plates) as in
the case of the normal force. The lateral force can be also employed as a actuation
mechanism in mechanical oscillators as we will see in Section 6.4. In analogy to
the previous section, the corrugation–corrugation interaction can be expressed as

Ecc D „ca2

H5 cos
�

2πb
λ

��
JTM

�
H
λ

�
C JTE

�
H
λ

��
C O(a3) (6.37)

with
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(6.38)

JTE(x ) D π2

120

�
16x4 � 1

�
arctanh(

p
u) C p

u
�
� π

12

�
x3 C x

2
C 1

80x

�
�Φ (u, 2, 1

2 ) C 1
24

�
x2 � 3

4

�
Φ (u, 3, 1

2 ) C 5
32π

�
x � 1

20x

�
�Φ (u, 4, 1

2 ) C 7
64π2

Φ (u, 5, 1
2 ) C 7

256π3 x
Φ (u, 6, 1

2 )
�

,

(6.39)

where u � exp(�4πx ) and Φ (z, s, a) D P1
kD0 z k /(a C k)s is the Lerch transcen-

dent. In the limit of large corrugation length, H/λ ! 0, this result agrees to lowest
order with a pairwise summation approximation where JTM(0) C JTE(0) D π2/120.
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Figure 6.4 Geometry used for calculating the lateral Casimir
force between two corrugated plates with lateral shift b. The
equilibrium position is at b D λ/2.
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Figure 6.5 (a) Geometry consisting of two
parallel plates with laterally shifted uniaxial
rectangular corrugations. (b) Lateral force Flat
(in units of normal force F0 between flat sur-
faces) at b D λ/4 for the geometry shown in
(a) as a function of the gap δ (solid curves).

The proximity force (PFA, dash-dotted curves)
and pairwise summation (PWS, dashed
curves) approximations, and the perturba-
tive result Fpt that follows from a calculation
for sinusoidal profiles (dotted curves) are also
plotted.

At the other extreme of λ 	 H , JTM(x ) C JTE(x ) decays exponentially fast. This
decay distinguishes the lateral force from the normal force. In particular, for large
x D H/λ, we arrive at the leading order

JTM(x ) C JTE(x ) D 4π2

15

�
x4 C O(x2)

�
e�2πx . (6.40)

Since JTM(x ) C JTE(x ) is positive for all values of x, the equilibrium position of
two modulated surfaces is predicted at b D λ/2. This corresponds to aligning the
maxima and minima of the two corrugations (see Figure 6.4).

The numerical approach for computing the functional determinant in the case
of periodic surfaces can be also applied to the lateral force [13]. Once again, we
consider a rectangular corrugation, though now, on both surfaces with a lateral shift
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Figure 6.6 Shape dependence of Flat on the lateral surface shift
b at fixed distance H D 10a for different corrugation lengths.
The dashed and the dotted curves represent the PWS and the
full perturbative result for sinusoidal profiles with arbitrary H/λ,
respectively.

of b, as in Figure 6.5. The numerical results for the lateral force in this geometry
are summarized in Figures 6.5 and 6.6. Figure 6.5 shows the numerical result for
the lateral force for a shift b D λ/4 and different values of λ/a over more than four
orders of magnitude for the gap δ D H �2a, together with two approximate results
(PFA and PWS) and the perturbative result for sinusoidal profiles for λ 	 H . An
exponential decay of the force as predicted by perturbation theory can be clearly
observed.

The PFA yields a lateral force per unit area Flat,PFA D [2E0(H ) � E0(H � 2a) �
E0(H C 2a)]/λ for 0 < b < λ/2 where E0 has the same meaning as before. Flat,PFA

changes sign at b D λ/2 discontinuously which is an artifact of this approximation.
The pairwise summation (PWS) of Casimir–Polder potentials is strictly justified
for rarefied media only but it is often also applied to metals, using the two-body
potential U(r) D �(π/24)„c/r7 with the amplitude chosen such as to reproduce
the correct result for flat ideal metal plates [7]. It yields a lateral force Flat,PWS D
� @

@b

R
Vl

d3x
R

Vr
d3x0U(jx � x0j) with Vl and Vr denoting the semi-infinite regions to

the left and right of the two surfaces in Figure 6.5a, respectively. Flat,PWS can be
obtained by numerical integration. For small gaps δ, both approximations agree
and match the exact numerical results. Beyond δ & λ/20 the PFA starts to fail
since it does not capture the exponential decay of Flat for increasing δ. The PWS
approach has a slightly larger validity range and reproduces the exponential decay.
However it deviates by at least one order of magnitude from Flat for δ & 2.5λ.

Although the perturbative result of (6.37) applies to sinusoidal surfaces, it is in-
structive to compare it to the numerical results for the rectangular profiles. Since
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the lateral force decays exponentially, Flat 
 e�2πH/λ, with the characteristic scale
set by the modulation wavelength of the profile, the force at large H should be
determined by the lowest harmonic of the periodic surface profile. This implies a
universal lateral force for large H � λ that is independent of the precise form of
the surface corrugation. This universal force is the force between two sinusoidal
surfaces where the amplitude follows from the projection of an arbitrary periodic
profile of wavelength λ onto a sinusoidal profile with the same wavelength. The
latter force follows from (6.37) and in the limit λ 	 H is given by

Fpt D 8π3„c
15

a2
0A

λ5H
sin

�
2π
λ

b
�

e�2πH/λ , (6.41)

where we assumed an amplitude a0 for the sinusoidal profiles. For the rectangular
corrugation of Figure 6.5, the lowest harmonic has the amplitude a0 D 4a/π.
When we compare Fpt and the numerical results of Figure 6.5b, we find excellent
agreement for distances δ & λ.

The universal behavior of the lateral force is also clearly demonstrated by the
dependence of the lateral force on the surface shift b. Corresponding numerical
results together with PWS approximations and the force that follows from the full
perturbative result of (6.37) for sinusoidal surfaces with arbitrary H/λ are shown
in Figure 6.6 for fixed H D 10a and varying λ/a. With decreasing λ, three regimes
can be identified. For λ � H , the force profile nearly resembles the rectangular
shape of the surfaces, and the PWS approximation yields consistent results. For
smaller λ, yet larger than H, the force profile becomes asymmetric with respect
to b D λ/4 and more peaked, signaling the crossover to the universal regime for
λ . H where the force profile becomes sinusoidal. In the latter case, for slightly
small λ/a � 10, the numerical results for Flat agree with the perturbative result
for sinusoidal surfaces with arbitrary H/λ. We note that the PWS approach fails to
predict the asymmetry of the force profile, and the PFA even predicts no variation
with b for 0 < b < λ/2. To observe this universal behavior of the lateral force exper-
imentally, one should consider surfaces with very small corrugation wavelengths in
the range of nanometers so that the exponential decay does not diminish the force
for H � λ too strongly.

6.2.3
Cylinders

In this section, we give examples for two central aspects of fluctuation forces:
Effects resulting from the nonadditivity and the particular properties of systems
with a codimension of two, which plays a special role as we will see below. These
problems are considered in the context of interactions between cylinders and side-
walls. It has been demonstrated that Casimir forces in these geometries have only
a weak logarithmic dependence on the cylinder radius [36] and can be nonmono-
tonic [56, 57, 59], consequences of codimension and nonaddivity. These forces be-
tween quasi-one-dimensional structures could be probed in mechanical oscillators
that are composed of nanowires or carbon nanotubes. Exact results for the inter-
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action can be obtained by employing a recently developed scattering approach for
Casimir forces [30, 32]. This approach is based on the concept that electromagnetic
Casimir interactions result from fluctuating currents inside the bodies. It is possi-
ble to formulate an effective action for the multipole moments Qα,X of the currents
inside the bodies where α labels the bodies and X is a multi-index that numbers
polarizations (electric and magnetic multipoles) and the elements of the basis for
the multipole expansion, for example, cylindrical waves. The effective action can
then be written as the quadratic form

S D
X
α,α0

X
X ,X 0

Q�
α,X Mαα0,X X 0 Qα0,X 0 , (6.42)

with the matrix kernel

Mαα0,X X 0 D �
˚�

(Tα)�1�
X X 0 δαα0 � Uαα0,X X 0 (1 � δαα0)

�
, (6.43)

where � is the Wick-rotated frequency, ω D ic�, the matrix Tα is the so-called T-
matrix of object α that relates incoming and scattered waves and Uαα0 is a “trans-
lation” matrix that relates the incoming wave at object α to the outgoing wave at
object α0. The T-matrix is related to the scattering matrix of the object, Sα , by the
relation Tα D (Sα � 1)/2. Analytic results for all elements of the scattering matrix
are available for symmetric shapes such as cylinders and spheres. The Sα matrix
contains all information about shape and material composition of the object that is
relevant to the Casimir interaction. The translation matrices Uαα0 are independent
of the properties of the interacting bodies and depend only on the relative position
(separation vector) of the objects α and α0, and the properties of the fluctuating
field. For the electromagnetic field, the translation matrices are known in many
bases, for example, for cylindrical and spherical waves [30]. To obtain the Casimir
energy, the multipole fluctuations are integrated out, leading to the determinant
of the infinite dimensional matrix M. Integration over all frequencies � yields the
interaction energy

E D „c
2π

Z 1

0
d� ln

det M

det M1
, (6.44)

where the division by the determinant of the matrix M1 accounts for the subtrac-
tion of the residual energy of the configuration where the separations between all
objects tend to infinity. Since the translation matrices decay to zero with increas-
ing separation, the matrix M1 is given by (6.43) with the Uαα0 set to zero. In the
special case of two objects, the energy can be simplified to [32]

E2 D „c
2π

Z 1

0
d� ln det(1 � N) , (6.45)

where N D T1U12T2U21.
First, the scattering approach is applied to two parallel, infinitely long, perfectly

conducting cylinders of equal radius R and center-to-center separation d, see Fig-
ure 6.7. For this geometry, it is most convenient to use cylindrical vector waves
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Figure 6.7 Casimir energy for two cylinders
of equal radius R as a function of surface-to-
surface distance d � 2R (normalized by the
radius). The energy is divided by the PFA es-

timate E cyl–cyl
PFA D � π3

1920 „cL
p

R/(d � 2R)5

for the energy which is applicable in the limit
d ! 2R only. The solid curves show numer-

ical results; the dashed lines represent the
asymptotic results of (6.53). The inverse log-
arithmic correction to the leading order result
for TM modes cause very slow convergence.
For the parameter range shown here, it was
sufficient to consider m D 40 partial waves in
order to obtain convergence.

for the multipole expansion. This basis consists of the vector fields Mi(o)
kz m (x) D

1
q r � Vi(o)(x) for magnetic (M) multipoles and Ni(o)

kz m(x) D c
qωr � r � Vi(o)(x) for

electric (E) multipoles where q D p
(ω/c)2 � k2

z and incoming (i) and outgoing
(o) waves differ in the definition of the vector fields Vi(x) D Oz Jm(qr) eimφ eikz z ,
Vo(x) D OzH (1)

m (qr) eimφ eikz z . Here, (r, φ, z) denote cylindrical coordinates and Jm ,
H (1)

m are Bessel and Hankel functions of the first kind. In this basis, the matri-
ces of (6.43) assume a simple form where the multi-index X now represent the
polarization (M or E), the wave vector kz along the cylinder axis and the partial
wave index m. The T-matrix is diagonal in polarizations kz and m, with diagonal
elements

TMkz m D (�1)m π
2i

I 0
m(qR)

K 0
m(qR)

(6.46)

TEkz m D (�1)m π
2i

Im(qR)
Km(qR)

, (6.47)

where we have applied a Wick rotation ω D ic� which leads to modified Bessel
functions of the first (In) and second (Kn) kind. The translation matrices are diag-
onal in polarization and kz , and the elements are identical for both polarizations,

U12,Mkz nm D U12,Ekz nm D 2
iπ

(�i)m�nKm�n(p d) (6.48)

U21,Mkz nm D U21,Ekz nm D 2
iπ

im�n Km�n(p d) (6.49)

with p D p
�2 C k2

z . Due to the decoupling of electric and magnetic multi-
poles, corresponding to transverse magnetic (TM) and transverse electric (TE)
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field modes, respectively, the Casimir energy of (6.45) has two independent contri-
butions, E2 D ETM C ETE, with

ETM(TE) D „cL
4π

Z 1

0
p dp ln det(1 � NTM(TE)) , (6.50)

where L (! 1) is the cylinder length and the determinant only runs over the
partial wave indices m, m0 of the matrix elements

NTE,mm0 D im0�m
X

n

I 0
m(p R)

K 0
m(p R)

KnCm(p d)
I 0

n(p R)
K 0

n(p R)
Km0Cn(p d) (6.51)

NTM,mm0 D im0�m
X

n

Im(p R)
Km(p R)

KnCm(p d)
In(p R)
Kn(p R)

Km0Cn(p d) . (6.52)

This result for the energy can be also obtained from a scalar field theory where TM
(TE) modes correspond to Dirichlet (Neumann) boundary conditions [36, 56].

At large separations d � R , only matrix elements with m D m0 D 0 for TM
modes and m D m0 D 0, ˙1 for TE modes contribute to the energy. When the
determinant in (6.50) is restricted to these elements, we find for the interaction of
two cylinders for large d/R to leading order

ETM D �„cL
1

8π
1

d2 ln2(d/R)

�
1 � 2

ln(d/R)
C � � �

�
,

ETE D �„cL
7

5π
R4

d6
. (6.53)

The asymptotic interaction is dominated by the contribution from TM modes that
only vanishes for R ! 0 logarithmically.

For arbitrary separations, higher order partial waves have to be considered. The
number of partial waves has to be increased with decreasing separation. A numer-
ical evaluation of the determinant and integration has revealed an exponentially
fast convergence of the energy in the truncation order for the partial waves, leading
to the results shown in Figure 6.7 [56]. It should be noted that the minimum in
the curve for the total electromagnetic energy results from the scaling by the PFA
estimate of the energy. The total energy is monotonic and the force attractive at all
separations.

The interaction between cylinders is very distinct from the Casimir or van der
Waals interaction which is reported in literature [55]. Usually, the interaction is
proportional to the volumes of the interacting objects, that is, for two spheres of ra-
dius R where the Casimir energy 
 R6/d7. This scaling with volumes also follows
from a pairwise summation of two-body forces. However, from the interaction of
two parallel plates, one knows that the interaction can scale also with the surface
area. These two examples would suggest for two parallel cylinders of length L an in-
teraction energy 
 LR4/d6 or 
 LR2/d4. However, the actual results of (6.53) has
a much weaker, only logarithmic dependence on the radius. It is interesting to look
at the variation of the decay exponent of d for the Casimir energy as a function of
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the codimension of the object. The exponent is (�3, �2 C �, �7) for codimensions
1 (plates), 2 (cylinders), 3 (spheres), respectively, and hence not monotonic. For a
codimension of two, the Casimir interaction is typically long-ranged. The physical
reason for the unexpected scaling of the cylinder interaction is explained by con-
sidering spontaneous charge fluctuations. On a sphere, the positive and negative
charges can be separated at most by distances of order R 	 d. The retarded van
der Waals interactions between the dipoles on the spheres lead to the Casimir–
Polder interaction [15]. In the cylinder, fluctuations of charge along the axis of the
cylinder can create arbitrarily large positively (or negatively) charged regions. The
retarded interaction of these charges (not dipoles) gives the dominant term of the
Casimir force. This interpretation is consistent with the difference between the two
types of polarizations since for TE modes such charge modulations cannot occur
due to the absence of an electric field along the cylinder axis, as illustrated (6.53)
and Figure 6.7.

As a second example, the effect of sidewalls on the interaction of two cylinders
is considered. The geometry consisting of either one or two plates at a separa-
tion H from the two cylinders is shown in Figure 6.8. For this type of geometry,
the mean stress tensor has been computed numerically and it has been observed
that the force between two one-dimensional structures changes nonmonotonically
when H is increased [57, 59]. This many-body effect can be studied by the scat-
tering approach. Instead of studying the interaction of the cylinders and plates via
their T-matrices directly, it is more convenient to employ the method of images
to describe the effect of the sidewalls [30, 56]. For perfectly conducting sidewalls,
their effect on the electromagnetic field can be taken into account by replacing the
free space Green’s function by a half-space or slab Green’s function. This results
in an expression for the Casimir energy similar to (6.44) that depends only on the

Figure 6.8 Casimir force between two cylin-
ders parallel to one plate or sandwiched
between two plates vs. the ratio of sidewall
separation to cylinder radius (H � R)/R, at
fixed distance d D 4R between the cylin-
ders, normalized by the total PFA force per

unit length between two isolated cylinders,
FPFA D � 5

2 („cπ3/1920)
p

R/(d � 2R)7. The
solid lines refer to the case with one plate,
while dashed lines depict the results for two
plates. The individual TE and TM contribu-
tions to the force are also shown.
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T-matrices of the two cylinders and translation matrices that connect the original
cylinders and their mirror images. The expression of the energy can be computed
again numerically by truncating the partial wave expansion at a sufficiently high
order. The resulting Casimir force between two cylinders with one or two sidewalls
as a function of the sidewall separation H is shown in Figure 6.8. Two interesting
features can be observed. First, the attractive total force varies nonmonotonically
with H: Decreasing for small H and then increasing towards the asymptotic limit
between two isolated cylinders for large H, as in (6.53). The extremum for the one-
sidewall case occurs at H � R � 0.27R , and at H � R � 0.46R for the two-sidewall
case. Second, the total force between the cylinders for the two-sidewall case in the
proximity limit H ! R is larger than for H/R ! 1. As one might expect, the
H-dependence for one sidewall is weaker than for two sidewalls, and the effects
of the two sidewalls are not additive. Not only is the difference from the H ! 1
force not doubled for two sidewalls compared to one, but the two curves actually
intersect.

A simple generic argument for the nonmonotonic sidewall effect has been given
in [57]. It arises from a competition between the force from TE and TM polariza-
tions as demonstrated by the results in Figure 6.8. An intuitive perspective for the
qualitatively different behavior of the TE and TM force as a function of the sidewall
distance is obtained from the method of images. For the TM polarization (corre-
sponding to Dirichlet boundary conditions in a scalar field theory), the Green’s
function is obtained by subtracting the contribution from the image so that the
image sources have opposite signs. Any configuration of fluctuating TM charges
on one cylinder is thus screened by images, more so as H is decreased, reducing
the force on the fluctuating charges of the second cylinder. This is similar to the
effect of a nearby grounded plate on the force between two opposite electrostatic
charges. Since the reduction in force is present for every charge configuration, it is
also there for the average over all configurations.

By contrast, the TE polarization (corresponding to Neumann boundary condi-
tions in a scalar field theory) requires image sources of the same sign. The total
force between fluctuating sources on the cylinders is now larger and increases as
the plate separation H is reduced. Note, however, that while for each fluctuating
source configuration, the effect of images is additive, this is not the case for the
average over all configurations. More precisely, the effect of an image source on
the Green’s function is not additive because of feedback effects: the image currents
change the surface current distribution, which changes the image, and so forth.
For example, the net effect of the plate on the Casimir TE force is not to double
the force as H ! R . The increase is in fact larger than two due to the correlated
fluctuations.

A similar but weaker nonmonotonic dependence on H of the force between the
cylinders is also observed for separations d that are different from the particu-
lar choice in Figure 6.8. Also, the force between the cylinders and the sidewalls is
not monotonic in d but the nonmonotonicity is then smaller since the effect of a
cylinder on the force between two bodies is smaller than the effect of an infinite
plate.
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6.2.4
Spheres

Thus far, geometries with a direction of translational invariance have been consid-
ered. In the limit of ideal metal surfaces, this invariance leads to a decoupling of
the two polarizations of the electromagnetic field. Any geometry of experimental
interest will obviously lack this symmetry beyond some length scale. Hence, it is
important to study geometries without this symmetry. Compact objects of arbitrary
shape obviously do not have an invariant direction. Therefore, the two polarizations
are coupled and the matrices in (6.43) assume a more complicated form. A natural
choice for a basis are now vector spherical waves for which the translation matrices
Uαα0,X X 0 carry an index X D (E or M, l, m) which represents polarization E or M
and the order l � 1, m D �l, . . . , l of the spherical waves. In contrast to the cylin-
drical matrices of (6.48), the translation matrix couples E and M polarization and
all matrix elements are explicitly known [30].

Here we focus on the simplest case of two compact objects: two perfect metal
spheres of equal radius R and center-to-center separation d, see Figure 6.9. The
T-matrix of a dielectric sphere is known from the Mie theory for scattering of elec-
tromagnetic waves from spherical particles. Due to spherical symmetry, the E and
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Figure 6.9 Casimir energy of two metal spheres, divided by
the PFA estimate EPFA D �(π3/1440)„cR/(d � 2R)2, which
only holds in the limit R/d ! 1/2. The label l denotes the
multipole order of truncation. The curves l D 1 are obtained
by extrapolation. The Casimir–Polder curve is the leading term
of (6.56). Inset: Convergence with the truncation order l for
partial waves at short separations.
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M polarizations for all l, m are decoupled so that the T-matrix is diagonal and the
coupling of polarizations only occurs through the translation matrices. After a Wick
rotation to imaginary frequency ω D ic�, the matrix elements assume, in the per-
fect metal limit, the form

TMM l m l 0m0 D (�1)l π
2

IlC 1
2
(�R)

KlC 1
2
(�R)

δ l l 0δmm0 (6.54)

TEE l m l 0m0 D (�1)l π
2

IlC 1
2
(�R) C 2�R I 0

lC 1
2
(�R)

KlC 1
2
(�R) C 2�R K 0

lC 1
2
(�R)

δ l l 0δmm0 . (6.55)

Substitution of these matrix elements together with those of Uαα0 from [30]
in (6.45) yields the Casimir energy of two spheres. For asymptotically large d,
the energy has only contributions from l D l 0 D 1 (dipoles) and one obtains
the Casimir–Polder interaction between two polarizable particles [15] where the
electric and magnetic dipole polarizabilities of a perfect metal sphere are given by
αE D R3 and αM D �R3/2. This result can be extended to smaller separations by
including higher order multipoles with l > 1 that generate higher powers of R/d.
One obtains the asymptotic series [32]

E2 D �„c
π

R6

d7

1X
nD0

cn

�
R
d

�n

, (6.56)

where the first eight coefficients are c0 D 143/16, c1 D 0, c2 D 7947/160, c3 D
2065/32, c4 D 27 705 347/100 800, c5 D �55 251/64, c6 D 1 373 212 550 401/
144 506 880, c7 D �7 583 389/320. The energy at all separations can be obtained
by truncating the matrix N defined below (6.45) at a finite multipole order l, and by
numerically computing the determinant and the integral. The result is shown in
Figure 6.9. It provides the force for all separations between the Casimir–Polder lim-
it for d � R, and the PFA result for R/d ! 1/2. At a surface-to-surface distance
4R/3 (R/d D 0.3), the PFA overestimates the energy by a factor of ten. Including
up to l D 32 partial wave orders and extrapolating based on an exponential conver-
gence in l, the Casimir energy has been determined down to R/d D 0.49 [32]. The
interaction between a sphere and a plate has been obtained recently and deviations
from the PFA have been quantified [30].

6.3
Dependence on Material Properties

In previous sections, we have considered perfectly conducting bodies. For real met-
als with finite, frequency dependent conductivity or more general dielectric media,
Casimir interactions are modified. This is a natural consequence of the fact that
dipole and higher multipole polarizabilities depend on the material properties of a
body. Thus, the induced fluctuating currents depend not only on shape, but also on
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material composition. Therefore, for practical applications and experimental tests,
it is important to understand the collective effects of shape and material on Casimir
interactions. A macroscopic theory that fully accounts for the material dependence
of the interaction between two planar surfaces was established by Lifshitz [47] in
1956. Until recently, only approximations limited to short separations between bod-
ies or sufficiently diluted media have been available for studying the interaction of
dielectric media of arbitrary shapes. The scattering approach described in the pre-
vious section has paved the way for studying the material and shape dependence
of Casimir forces beyond the case of planar surfaces and without the common ap-
proximations in detail. We first provide a simple derivation of the Lifshitz result
for two surfaces within the scattering approach. Then, we focus on an example
that is of particular interest to the behavior of nanoparticles as they appear, that is,
in suspensions where correlations between material and shape effects are impor-
tant.

6.3.1
Lifshitz Formula

Consider two material half-spaces that are bounded by planar, parallel surfaces with
a vacuum gap of width d between them. The material in the two halfspaces can be
different and is characterized by the dielectric functions �α(ω) and magnetic per-
meabilities μα(ω) where α D 1, 2 numbers the halfspaces. A compact derivation
of the Casimir–Lifshitz interaction between the two surfaces follows from the scat-
tering formula of (6.44). The T-matrix of a planar dielectric surface is given by the
Fresnel coefficients which are usually expressed in a planar wave basis. When we
define the two polarizations relative to the surface normal vector, the T-matrix is
diagonal in polarization and parallel to the surface in the wave vector kk. The diag-
onal matrix elements are

Tα,M kk
D μα(ic�)p � pα

μα(ic�)p C pα
,

Tα,E kk
D �α(ic�)p � pα

�α(ic�)p C pα
, (6.57)

where p D
q

�2 C k2
k and pα D

q
�α(ic�)μα(ic�)�2 C k2

k. The translation ma-

trices for translations perpendicular to the surfaces by a distance d are also diag-
onal in kk in the planar wave basis and the diagonal elements have the simple
form

Uαα0,M kk
D Uαα0,E kk

D e�p d (6.58)

for α ¤ α0 D 1, 2, that is, they do not couple E and M polarizations and are iden-
tical for the two polarizations. The determinant of (6.44) leads to a product over all
kk which becomes an integral after taking the logarithm. The resulting Casimir–
Lifshitz energy has two separate contributions form M and E polarizations (TE and
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TM modes, respectively),

E D „cA
4π2

Z 1

0
d�

Z 1

0
kk dkk ln

��
1 � �1(ic�)p � p1

�1(ic�)p C p1

�2(ic�)p � p2

�2(ic�)p C p2
e�2p d

�

�
�

1 � μ1(ic�)p � p1

μ1(ic�)p C p1

μ2(ic�)p � p2

μ2(ic�)p C p2
e�2p d

��
,

(6.59)

where A is the surface area. This result generalizes the Casimir interaction between
two perfect metal plates of (6.5) to dielectric materials.

6.3.2
Nanoparticles: Quantum Size Effects

The Lifshitz formula of (6.59), while derived for infinitely extended planar surfaces,
is also commonly applied to curved surfaces of particles of finite size within a prox-
imity approximation. This leads to predictions for the interaction that are limited
to particles that a very large compared to their separations. To be able to study the
interaction of particles of arbitrary sizes and separations, a theory is needed that is
a generalization of the Lifshitz formula to bodies of arbitrary shape. Such a general
theory provides the scattering formula of (6.44). The challenges in applying this for-
mula consist in the computation of the T-matrix for bodies with general dielectric
functions and in the proper modeling of the dielectric response of the bodies. The
latter is especially important for nanoparticles for which bulk optical properties are
modified by finite-size effects.

Some characteristic effects of the Casimir interaction between nanoparticles will
be discussed in this section by studying two spheres with finite conductivity in
the limit where their radius R is much smaller than their separation d. We as-
sume further that R is large compared to the inverse Fermi wave vector π/ kF of
the metal. Since typically π/ kF is of the order of a few Angstrom, this assump-
tion is reasonable even for nanoparticles. To employ (6.44), we need the T-matrix
of a sphere with general dielectric function �(ω) which generalizes the matrix
of (6.54), (6.55). All elements of this matrix are known explicitly, see, for exam-
ple, [32]. Relevant to the interaction for d � R are the dipole matrix elements
(l D l 0 D 1) at low frequencies �. In order to proceed, we need information about
the dielectric function on the imaginary frequency axis ω D ic� for small �. The-
ories for the optical properties of small metallic particles [62] suggest a Drude-like
response

�(ic�) D 1 C 4π
σ(ic�)

c�
, (6.60)

where σ(ic�) is the conductivity which approaches for � ! 0 the dc conductivity

σdc. For bulk metals, σdc D ω2
p τ/4π where ω p D

q
4e2k3

F /3π me is the plasma
frequency with electron charge e and electron mass me, and τ is the relaxation
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time. With decreasing dimension of the particle, σdc(R) is reduced compared to its
bulk value due to finite size effects and hence becomes a function of R [62].

In the low frequency limit, with �(ic�) of (6.60), the T-matrix elements for mag-
netic and electric dipole scattering (l D l 0 D 1) are diagonal in m and have the
series expansion

TMM 1m1m D � 4π
45

Rσdc(R)
c

(�R)4 C � � � (6.61)

TEE 1m1m D 2
3

(�R)3 � 1
2π

c
Rσdc(R)

(�R)4 C � � � . (6.62)

To leading order 
 �3, the electric dipole matrix elements are identical to those of
a perfectly conducting sphere and finite conductivity only modifies higher orders.
In the magnetic dipole matrix elements, however, the leading term �(�R)3/3 of the
perfect conductor result of (6.54) is absent. This is consistent with the observation
that the magnetic dipole polarizability is reduced by a factor 
 (�R)2[�(ic�)�1] and
�(ic�) � 1 
 ��1 due to (6.60).

When the matrix elements of (6.61), (6.62) together with the translation matrices
Uαα0 in spherical coordinates are substituted into (6.45), an expansion for large
distance d yields the Casimir energy of two spheres

E
„c

D � 23
4π

R6

d7 �
�

Rσdc(R)
c

� 45
4π2

c
Rσd c(R)

�
R7

d8 C � � � . (6.63)

The leading term is material independent but different from that of the perfect
metal sphere interaction of (6.56) since only the electric polarization contributes to
it. At next order, the first and second terms in the parentheses come from magnetic
and electric dipole fluctuations, respectively. Notice that the term 
 1/d8 is absent
in the interaction between perfectly conducting spheres, see (6.56). The limit of
perfect conductivity, σdc ! 1, cannot be taken in (6.63) since this limit does not
commute with the low � or large d expansion.

In order to estimate the effect of finite conductivity and its dependence on the
size of the nanoparticle, we have to employ a theory that can describe the evolution
of σdc(R) with the particle size. A theory for the dielectric function of a cubical
metallic particle of dimensions R � π/ kF has been developed within the random
phase approximation in the limit of low frequencies 	 c/R [62]. In this theory,
it is further assumed that the discreteness of the electronic energy levels, and not
the inhomogeneity of the charge distribution, is important. This implies that the
particle responds only at the wave vector of the incident field which is a rather
common approximation for small particles. From an electron number-conserving
relaxation time approximation, the complex dielectric function is obtained which
yields the size-dependent dc conductivity for a cubic particle of volume a3 [62]. It
has been shown that the detailed shape of the particle barely matters, and we can
set a D (4π/3)1/3 R which defines the volume equivalent sphere radius R. This
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yields the estimate

σdc(R) D σdc(1)

241 � 3πkF a C π2

4(kF a)2
� 48π

(kF a)3Γ 2

� Re
kFa/πX
mD1

m2((kF a/π)2 � m2) �
(

�zm tan zm m even

Czm cot zm m odd

35 (6.64)

with

zm D π m
2

r
1 � iΓ

m2 , (6.65)

where σdc(1) D ω2
p τ/4π is the bulk Drude dc conductivity and Γ D („/τ�F)

(kFa/π)2 is a linewidth with Fermi energy �F. The factor in square parentheses
multiplying σdc(1) describes quantum size effects and leads to a substantial re-
duction of the dc conductivity for nanoscale particles. While the above expression

Figure 6.10 Dimensionless dc conductivity Oσdc(R) in units
of e2/2„a0 (with Bohr radius a0) for a Aluminum sphere with
�F D 11.63 eV, π/ kF D 1.8 Å and τ D 0.8 � 10�14 sec as
function of the radius R, measured in units of π/ kF, see (6.64).
The corresponding ratio Rσdc(R)/c that determines the Casimir
interaction of (6.63) is also shown. The bulk dc conductivity
Oσdc(1) D 17.66 is indicated by a dashed line.
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is applicable for π/ kF 	 a, it suggests that for π/ kF ' a, the particle ceases to
conduct, which is consistent with a metal-insulator transition due to the localiza-
tion of electrons for particles with a size of the order of the mean free path. It
is instructive to consider the size dependence of σdc(R) and of the Casimir inter-
action for a particular choice of material. Following [62], we focus on small Alu-
minum spheres with �F D 11.63 eV and τ D 0.8 � 10�14 s. These parameters cor-
respond to π/ kF D 1.8 Å and a plasma wavelength λp D 79 nm. It is useful to
introduce the dimensionless conductivity Oσdc(R), which is measured in units of
e2/2„a0 with Bohr radius a0, so that the important quantity of (6.63) can be writ-
ten as Rσdc(R)/c D (α/2)(R/a0) Oσdc(R) where α is the fine-structure constant. The
results following from (6.64) are shown in Figure 6.10. For example, for a sphere
of radius R D 10 nm, the dc conductivity is reduced by a factor � 0.15 compared
to the bulk Drude value. If the radius of the sphere is equal to the plasma wave-
length λp, the reduction factor � 0.8. These results show that shape and material
properties are important for the Casimir interaction between nanoparticles. Po-
tential applications include the interaction between dilute suspensions of metallic
nanoparticles.

6.4
Casimir Force Driven Nanosystems

We have seen that Casimir forces increase strongly with decreasing distance and
hence it can be expected that they are important in devices that are composed of
moving elements at short separations. Indeed, a common phenomena seen in
nanomechanical devices is stiction due to attractive van der Waals and Casimir
forces. This effect imposes a minimum separation between objects in order to pre-
vent them from sticking together. However, one can also make good use of Casimir
interactions in nanodevices by employing them to actuate components of small
devices without contact [1, 2, 29]. In [29], it has been demonstrated that this can
be achieved by coupling two periodically structured parallel surfaces by the zero-
point fluctuations of the electromagnetic field between them. We will consider this
effect as an example for Casimir force induced nonlinear dynamics, providing a
direct application of the results obtained in Section 6.2.2. We have seen that the
broken translation symmetry parallel to the surfaces results in a sideways force
which has been predicted theoretically [34, 35] and observed experimentally be-
tween static surfaces [21]. If at least one of the surfaces is structured asymmetri-
cally, there is an additional breaking of reflection symmetry and the surfaces can
in principle be set into relative lateral motion in the direction of broken symme-
try. The energy for this transport has to be pumped into the system by external
driving. This can be realized by setting the surfaces into relative oscillatory motion
so that their normal distance is an unbiased periodic function of time. Since the
sideways Casimir force decays exponentially with the normal distance (see 6.41),
the surfaces experience an asymmetric periodic potential that strongly varies in
time.
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This scenario resembles so-called ratchet systems [58] that have been studied
extensively during the last decade in the context of Brownian particles [41], molec-
ular motors [3] and vortex physics in superconductors [24], to name a few recent
examples. Most of the works on ratchets consider an external time-dependent driv-
ing force acting on overdamped degrees of freedom to rectify thermal noise. For
nanosystems, however, it has been pointed out that inertia terms due to finite mass
should not be neglected and, actually, can help the ratchets to perform more ef-
ficiently than their overdamped companions [48]. Finite inertia typically induces
deterministic chaos in Langevin dynamics. This chaos has been shown to be capa-
ble of mimicking the role of noise, and hence to generate directed transport in the
absence of external noise [49]. Here, we use this effect in the different context of
so-called pulsating (or effectively on–off) ratchets where the strengths of the peri-
odic potential varies in time [58]. We consider weak thermal noise only to test for
stability of the inertia induced transport, not as the source of driving14).

It has been demonstrated that the system described above indeed allows for di-
rected relative motion of the surfaces due to chaotic dynamics caused by the lateral
Casimir force [29]. The transport velocity is stable across sizeable intervals of the
amplitude and frequency of surface distance oscillations and damping. The veloci-
ty scales linear with frequency across these intervals and is almost constant below
a critical mean distance beyond which, it drops sharply. The system exhibits mul-
tiple current reversals as function of the oscillation amplitude, mean distance and
damping. This “Casimir ratchet” allows contact-less transmission of motion which
is important since traditional lubrication is not applicable in nanodevices. This ac-
tuation mechanism should be compared to other actuation schemes as magneto-
motive or capacitive (electrostatic) force transmission. The Casimir effect induced
actuation has the advantage of working also for insulators and does not require any
electrical contacts and/or external fields. Other applications of zero-point fluctua-
tion induced (van der Waals) interactions to nanodevices have already been exper-
imentally realized in order to construct ultra-low friction bearings from multi-wall
carbon nanotubes [23].

In the following, we consider two (on average) parallel metallic surfaces with
periodic, uni-axial corrugations (along the y1-axis) that have distance H, see inset
(a) of Figure 6.11. To begin with, we assume that both surfaces are at rest with a
relative lateral displacement b. Then the surface profiles can be parametrized as

h1(y1) D a
1X

nD1

cne2π in y1/λ1 C c.c. , (6.66)

h2(y1) D a
1X

nD1

dne2π in(y1�b)/λ2 C c.c. , (6.67)

where a is the corrugation amplitude, λ1, λ2 are the corrugation wave lengths, and
cn , dn are Fourier coefficients.

14) In the absence of inertia, finite thermal noise
is necessary for on–off ratchets to generate
directed motion.
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(a)                                     (b)

Figure 6.11 The lateral Casimir force acting between the two
surfaces as function of the shift Ob at time s D 0 and half period
s D π/ω (drawn to a larger scale by a factor 103) for parame-
ters η D 0.65, H0 D 0.1λ. Insets: (a) Surface profiles at their
equilibrium position at Ob D 0.182 (b) Periodic variation of the
maximum force at Ob D 0 with time.

The dependence of the Casimir energy E on H and b causes macroscopic forces
on the surfaces. For a varying separation H, this is the normal Casimir attraction
between metallic surfaces modified by the corrugations. Below, we will assume
H D H(t) to be a time-dependent distance that is kept at a fixed oscillation by
an additional external force from clamping to an oscillator. In such a setup, the
surfaces can react freely only to the lateral force component Flat(b, H ) D �@E/@b.
The results of Section 6.2.2 are readily extended to periodic profiles of arbitrary
shapes as described by (6.66). The corrugation lengths have to be commensurate,
λ1/λ2 D p/q with integers p, q in order to produce a finite lateral force per surface
area. For the purpose of this example, it is sufficient to consider the case p D 1.
Generalizing the result of (6.37), the lateral (b-dependent) part of the Casimir ener-
gy per surface area can then be written as

E (b) D 2„ca2

H5

1X
nD1


cn d�nq e�2π inb/λ1 C c.c.

�
J
�

n
H
λ1

�
(6.68)

to order a2. The exact form of the function J(x ) D JTM(x ) C JTE(x ) is given
by (6.38), (6.39). For the present purpose, it is sufficient to use the simplified ex-
pression

J(x ) ' π2

120

�
1 C 2πx C γ x2 C 32x4� e�2πx (6.69)
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with γ D 12.4133, which is exact for both asymptotically large and small x and
approximates the exact results with sufficient accuracy for all x (The maximal de-
viation from the exact result is � ˙0.5% around x D 0.5). The Casimir potential
of (6.68) has two interesting properties which are useful to the construction of a
ratchet. First, it decays exponentially with H, and thus can be essentially switched
on and off periodically in time by oscillating H. Second, the potential is not only
periodic in b, but acquires asymmetry from the surface profiles at small H 	 λ
and an universal symmetric shape for H � λ since the effect of higher harmonics
of the surface profile is exponentially diminished, as discussed in Section 6.2.2.

The relative surface displacement b(t) can be considered as a classical degree of
freedom with inertia. Its equation of motion is described by Langevin dynamics of
the form

� Rb C γ� Pb D Flat[b, H(t)] Cp
2γ�T � (t) , (6.70)

where � is the mass per surface area, γ the friction coefficient, T the intensity (di-
vided by surface area) of the Gaussian noise � (t) with zero mean and correlations
h� (t)� (t0)i D δ(t � t0) so that the Einstein relation is obeyed. This stochastic term
describes ambient noise due to effects of temperature and pressure. (Additional
contributions from thermally excited photons to the Casimir force can be neglect-
ed at surface distances well below the thermal wavelength „c/(2T ).) The system
is driven by rigid oscillations of one surface so that the distance H(t) D H0g(t)
oscillates about the mean distance H0 with g(t) D 1 � η cos(Ω t). For simplicity,
we now consider equal corrugation lengths λ1 D λ2 � λ. We define the following
dimensionless variables: Ob D b/λ, s D t/τ for lateral lengths and time with the

typical time scale τ D (λ/a)
q

�H5
0 /„c resulting from a balance between inertia

and Casimir force. Therefore, velocities will be measured in units of v0 D λ/τ.
There are five dimensionless parameters which can be varied independently for
fixed surface profiles: the damping Oγ D τγ , the angular frequency ω D τΩ ,
the driving amplitude η, the scaled mean distance H0/λ and the noise intensity
OT D (T/„c)(H5

0 /a2). The dimensionless equation of motion for Ob(s) reads

ROb C Oγ POb D OFlat[ Ob, Og(s)] C
q

2 Oγ OT O� (s) (6.71)

with the Casimir force

OFlat( Ob, Og) D 4π
Og5

1X
nD1

f n cos(2π n Ob) J
�

n Og H0

λ

�
, (6.72)

where we have chosen surface profiles with cn D i
p

f n/(2n), dn D p
f n/(2n) with

real coefficients f n in (6.66), and Og(s) D 1 � η cos(ωs).
Directed transport is possible in certain parameter ranges, even in the determin-

istic case where noise is absent. However, to probe the robustness of transport,
we primarily consider the limit of weak noise by choosing OT D 10�3. In fact, it
has been shown for underdamped ratchets with time-independent potentials and
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periodic driving that even an infinitesimal amount of noise can change the rec-
tification from chaotic to stable [48]. To look for similar generic behavior of the
pulsating ratchet, we consider a specific geometry consisting of a symmetric and a
sawtooth-like surface profile corresponding to three harmonics with f1 D 0.0492,
f2 D 0.0241, f3 D 0.0059 and f n D 0 for n > 3. Inset (a) of Figure 6.11 shows

these profiles in their stable position with Ob D 0.182 that minimizes the Casimir
energy. The resulting spatial variation of the Casimir force with Ob is plotted in
Figure 6.11 for minimal (s D 0) and maximal (s D π/ω) surface distance with
parameters H0/λ D 0.1, η D 0.65. It can be clearly seen that the asymmetry is
reduced at a larger distance where the variation of the force becomes more sinu-
soidal. Inset (b) shows the on–off-like time-dependence of the force amplitude at
Ob D 0 due to the oscillating surface distance.

The nonlinear equation of motion of (6.71) has to be solved numerically. The
trajectory Ob(s) was obtained from a second order Runge–Kutta algorithm. For initial

conditions, an equidistant distribution over the interval [�1, 1] for Ob(0) and POb(0) D 0
is used. For each set of parameters, 200 different trajectories are calculated from
varying initial conditions and noise, each evolving over 4�103 periods 2π/ω so that
transients have decayed. The average velocity hhvii involves two different averages

of POb(s): The first average is over initial conditions and noise for every time step,
then the averaged trajectory is averaged over all discrete times of the numerical
solution. For an efficient directed transport, it is not sufficient to have only a finite
average hhvii. To exclude trajectories with a high number of velocity reversals, the
fluctuations about the average velocity must be small, that is, the variance σ2 D
hhv2ii � hhvii2 must be smaller than hhvii2.

Naively, one can expect directed motion of the surface profile h2(y1) into the

positive y1-direction ( POb < 0) since the Casimir force in Figure 6.11 is asymmetric
with negative values lasting for a longer time than positive ones. However, the
actual behavior is more complicated due to chaotic dynamics. Figure 6.12 shows
the dependence of the average velocity and its standard deviation σ on the driving
amplitude η and frequency ω for H0 D 0.1λ, Oγ D 0.9. For a fixed frequency,
there is an optimal interval of driving amplitudes across which the average velocity
is almost constant with hhvii ' �ω/(2π). Small deviations from the latter value
result from noise, as has been checked by studying the dynamics at OT D 0. At
higher driving amplitudes, a second narrower interval with maximal hhvii is ob-
served which is more strongly reduced and smeared out from its deterministic
value �2�ω/(2π) by noise. At the plateaus of constant velocity, the standard devia-
tion σ is substantially reduced, rendering transport efficient. Outside the plateaus,
velocity reversals occur and σ increases linearly with η. For fixed amplitude η, the
average velocity is stable at the value �ω/(2π) over a sizeable frequency range (see
inset of Figure 6.12).

In order to understand the observed behavior it is instructive to analyze the dy-
namics in the three-dimensional extended phase space. Attractors of the long-time
dynamics can be identified from Poincaré sections using the period 2π/ω of the
surface oscillation as stroboscopic time. To obtain a compact section, the trajecto-
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Figure 6.12 Mean hhvii and standard deviation σ of the (neg-
ative) velocity as function of the driving amplitude η for the
frequencies ω D 5.0 and ω D 4.72 (for the latter, only the sta-
ble plateau is shown). The parameters are H0 D 0.1λ, Oγ D 0.9,
OT D 10�3. Inset: Dependence of the same quantities on fre-
quency for fixed η D 0.65. Straight dashed lines correspond in
both graphs to the velocity ω/(2π).

ry is folded periodically in y1 on one period of the Casimir potential. From these
sections, we can distinguish between periodic and chaotic orbits. As a start, we
consider the deterministic limit with OT D 0. The plateaus around η D 0.65 and
η D 0.7 both result from periodic orbits of period one, corresponding to a single
point in the Poincaré section. On the right (downward) edges of the first plateaus,
we observe period doubling, that is, a periodic attractor with period two. Upon a
further increase of η, chaotic orbits dominate the motion. Therefore, the system
exhibits a period-doubling route to chaos with enhanced velocity fluctuations. The
findings also basically apply to weak noise ( OT D 10�3), but the sharp points of the
periodic attractors in the Poincaré sections are smeared out, leading to a decreased
hhvii. The transition from chaotic to periodic dynamics at the beginning of the ris-
ing edge of the plateaus is accompanied by a velocity reversal. This is consistent
with the observation for non-pulsating potentials that velocity reversals are due to
a bifurcation from chaotic to periodic dynamics [49].

The amplitude of the Casimir potential can be tuned by varying the mean dis-
tance H0. From Figure 6.13a, we see that the dynamics show a sharp transition
at a critical H0/λ from efficient transport with large hhvii and small σ to chaotic
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(a) (b)

Figure 6.13 Mean hhvii and standard deviation σ of the (neg-
ative) velocity as a function of (a) the mean plate distance H0
for Oγ D 0.9 and (b) damping Oγ for H0 D 0.1λ. The other
parameters are η D 0.65, ω D 5.0, OT D 10�3.

dynamics with vanishing velocity. The transition is accompanied by a velocity re-
versal and peaked velocity fluctuations. Interestingly, below the transition hhvii is
almost constant independently of H0/λ. The observed transport behavior is also
stable against a change of effective damping Oγ , as shown in Figure 6.13b. Whereas
fluctuations increase with decreasing Oγ , there is a stable plateau of constant aver-
age velocity across which fluctuations are diminished. In the deterministic limit,
additional plateaus with inverted and doubled average velocity are observed by vary-
ing Oγ and η. Remnants of a second plateau around Oγ D 1.9, washed out by noise,
can be seen in Figure 6.13b.

It is interesting to estimate typical velocities v0 D λ/τ. With the typical lengths
H0 D 0.1 µm, a D 10 nm realized in recent Casimir force measurements [21] and
an area mass density of � D 10 g/m2 for silicon plates with a thickness of a few

microns, one obtains v0 D
q

„ca2/�H5
0 � 5.5 mm/s. The actual average velocity

v0ω/2π is of the same order for the frequencies studied above. For λ D 1 μm, the
time scale is τ D λ/v0 � 10�4 s, leading to driving frequencies and damping rates
in the kHz range for the parameters considered here.

The results show that Casimir interactions can offer novel contact-less transla-
tional actuation schemes for nanomechanical systems. Similar ratchet-like effects
are expected between objects of different shapes as, for example, periodically struc-
tured cylinders inducing rotational motion. The use of fluctuation forces also ap-
pear promising to move nano-sized objects immersed in a liquid where electro-
static actuation is not possible. Another application is the separation and detection
of particles of differing mass adsorbed to the surfaces. For surfaces oscillating at
very high frequencies, additional interesting phenomena related to the dynamical
Casimir effect occur [37], leading to the emission of photons that could contribute
to ratchet-like effects as well.
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6.5
Conclusion

Recently, there has been much interest in applying Casimir interactions to the de-
sign of nanomechanical devices [9–11, 16, 17]. In such devices as sensors and ac-
tuators, attractive Casimir forces can strongly influence their function due to un-
wanted stiction between small elements at nanoscale separations. However, one
can also utilize Casimir interactions in actuators where they can lead to interesting
nonlinear dynamics. Recently, repulsive Casimir forces between bodies in a liquid,
predicted some decades ago by Lifshitz, Dzyaloshinskii and Pitaevskii for planar
surfaces [26], have also been measured between a sphere and a plane [52], suggest-
ing a way to suppress stiction. Thus, it is important to understand the dependence
of Casimir forces on shape and material properties beyond common approxima-
tions that only apply to weakly curved surfaces. This conclusion is corroborated by
the relevance of Casimir interactions to a plethora of phenomena such as wetting,
adhesion, friction, and quantum scattering of atoms from surfaces. In this chap-
ter, some characteristic effects of shape and material on Casimir interactions have
been presented using the examples of geometries that are typical to nanosystems.
Most of the presented results could only be obtained recently by newly developed
theoretical tools that have been described here. The important study of correlations
between shape and material effects and the additional implications of interacting
fields in Casimir effects due to critical fluctuations [39] are largely unexplored. It is
expected that the recent progress on the experimental and theoretical side will un-
veil novel phenomena and provide a better understanding of fluctuation induced
interactions with interesting implications for nanosystems.
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7
The Duffing Oscillator for Nanoelectromechanical Systems
Sequoyah Aldridge

This chapter will explore the Duffing nonlinearity in the context of nanoelectrome-
chanical systems (NEMS). As it turns out, nanoresonators are simple experimental
devices for studying this nonlinearity. Both NEMS and MEMS devices will show
nonlinear phenomena. These phenomena include the Duffing instability and
parametric amplification. The consequences of the Duffing nonlinearity in NEMS
devices has not been thoroughly explored to date. As resonators shrink to the
nanoscale, the onset of nonlinearity becomes more and more relevant because
the dynamic range of the oscillator, defined as the ratio of the kinetic energy at
the critical amplitude divided by the thermomechanical energy, scales linearly
with dimension [1]. Nanomechanical resonators have recently been the subject of
much attention due to the ability to make very high frequency, high quality factor
resonators with applications in weak force and small mass detection, frequency
stabilization, and possibly quantum computation [2–14].

7.1
Basics of the Duffing Oscillator

A mechanical oscillator with a nonlinear restoring force was first studied by Duff-
ing in 1918 [15]. The equation of motion for the Duffing equation, for a natural
resonance frequency Ω0 and quality factor Q, driven at frequency Ω , has the form

M
d2Y
dt2

C M
Ω0

Q
dY
dt

C MΩ 2
0 Y C K Y 3 D B cos(Ω t) C Bnoise(t) , (7.1)

where Y denotes the displacement amplitude, M denotes the mass of the resonator,
B the amplitude of the external driving force, and Bnoise(t) the stochastic forcing
function due to thermal and external noise [7, 16, 17].

This equation assumes that the beam oscillates in the mode with natural fre-
quency Ω0, that the displacement amplitude Y(t) is the only relevant degree of
freedom, and that the equation of motion includes only the third-order nonlin-
earity, with strength K. The second-order nonlinearity can be ignored for now be-
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cause a second-order nonlinearity only mixes signals to dc and to twice the driving
frequency. Only odd orders of nonlinearity can mix signals back to the operating
frequency band. We will also disregard fifth order and higher odd terms at the
moment.

The parameter K determines the strength of the nonlinearity. Deviations from
a linear spring can be either softening or stiffening. Positive K yields a stiffening
spring; Negative K yields a softening spring.

The basic principle of the Duffing nonlinearity is the following: For the simple
harmonic oscillator with no nonlinearity, the resonance curve is a Lorentzian. The
root mean square amplitude of motion of the resonator follows (7.2)

Yrms D B/Mp
2(Ω 2

0 /Q2 C (Ω � Ω 2
0 )2)1/2

. (7.2)

However, for a stiffening nonlinearity, as the amplitude is increased, the reso-
nant frequency must increase. This nonlinear detuning of the resonator distorts
the shape of the resonance curve. The peak of the curve is pulled in one direction
until, ultimately, the curve will have three values for a given frequency. A good ref-
erence that describes how to calculate the new shape of the resonance curve for the
Duffing resonator is [16]. Figure 7.1 shows the calculated resonance curve after it
has been distorted by the Duffing nonlinearity. When there are three possible val-
ues for amplitude at a given frequency, two values are stable and one is metastable.
The large amplitude and small amplitude branch are stable, whereas the branch in
between is metastable.

Because the resonance curve is multi-valued, hysteresis can occur. Figure 7.2
shows the hysteresis curve of a nanobeam resonator. The amplitude is normalized
to the peak maximum expected for the calculated curve. If the frequency of the drive
is swept from the left to the right in Figure 7.2, the motion will remain stable in the
upper branch of the loop. If the frequency is swept high enough, the amplitude will
catastrophically drop to the lower amplitude. On the other hand, if the frequency
is swept from right to left, the motion will remain stable in the lower branch of
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Figure 7.1 This figure shows the amplitude as a function of
frequency calculated for a Duffing resonator 7 dB past the crit-
ical point. The peak amplitude is normalized to one. At this
drive level, three values of amplitude can exist for one value of
frequency.
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Figure 7.2 This figure shows the amplitude as a function of
frequency for a Duffing resonator 7 dB past the critical point.
The amplitude is normalized to calculated peak maximum.
Hysteresis is observed where three values of amplitude can
exist for one frequency.

the loop. If the frequency is swept low enough, the amplitude will catastrophically
switch to the upper branch.

Because of the hysteresis, one bit of information can be stored. We can assign
the large amplitude state as the one state and the small amplitude state as the
zero state. To load the bit into the one state, the frequency must be swept from
left to right and then held constant on the upper branch. To load the bit into the
zero state, the frequency must be swept from right to left and held constant on the
lower branch. Later in the chapter, I will discuss the lifetime of this data bit for a
nanoresonator.

For a stiffening nonlinearity, the resonance curve will be pulled upward in fre-
quency. However, it is possible to fabricate devices with a softening nonlinearity. In
this case, the nonlinearity coefficient K becomes negative. At large amplitudes, for
a softening nonlinearity, the peak of the resonance curve is pulled toward negative
frequency.

7.2
NEMS Resonators and Their Nonlinear Properties

Using advanced processing techniques, mechanical resonators have been scaled
down to sub-micron dimensions. At this size scale, there are three common ge-
ometries. They are the doubly-clamped beam, the nanocantilever, and the torsional
resonator. These are shown in Figure 7.3.

It is interesting to consider the effect of the geometry of the nanodevice on the
nonlinear coefficient. For the doubly-clamped beam system, at large amplitudes,
the beam must stretch in order to move. This extra stretching effect causes a stiff-
ening nonlinearity. Therefore, conceptually, a doubly-clamped beam will have a
positive value of K.

For the cantilever system, we find a different result. An to consider when think-
ing about the cantilever system is the simple pendulum. It is easy to show that the
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Figure 7.3 This figure shows three typical geometries for nano-
devices. They are the doubly-clamped beam, the cantilever, and
the torsional resonator.

Figure 7.4 This figure shows a suspended nanowire made
from aluminum nitride. The top surface has been covered with
titanium then gold. The wire is three microns long.

equation of motion for a driven simple pendulum follows (7.3):

M l
d2Θ
dt2 C M g sin Θ D B cos(Ω t) . (7.3)

Here, Θ is the angle the pendulum deviates from vertical. Taylor expanding for
small Θ gives

M l
d2Θ
dt2 C M g(Θ � Θ3/6 C � � � ) D B cos(Ω t) . (7.4)

We find that in this case, the nonlinearity coefficient is in fact negative, leading
to a softening spring. As the pendulum swings to large amplitudes, it gains height.
This increase in height requires potential energy and saps kinetic energy of the
motion. Therefore, the vibrational frequency of the pendulum is decreased at large
amplitudes.
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Figure 7.5 This figure shows a suspended nanowire viewed from the side.

Figure 7.6 This figure illustrates the calculated curve of a res-
onator that will show dual hysteresis. The hysteretic regions
are bounded by the vertical lines.

Similarly, the tip of a cantilever will begin to have motion that is not precisely in
and out of plane at large amplitudes. This motion requires extra energy, and causes
a frequency downshift. Therefore, cantilevers can have a negative value of K.

A third effect that determines the sign of the nonlinearity is the material non-
linearity. Materials become either stiffer of softer for large strains. At some large
deflection, the NEMS device will become affected by the material nonlinearity.

Finally, nanodevices have very large built-in strains. For example, a doubly-
clamped beam may have a very large compressional strain in its rest state. The
amount of strain will vary to a large degree from device to device. This can lead to
a positive or negative nonlinearity coefficient K.

It may be possible to tune the material nonlinearity of a cantilever against the
natural softening nonlinearity. Both terms may cancel each other. This would lead
to a cantilever with higher linearity and therefore larger dynamic range.

Because a cantilever is free to move at one end, it generally has a higher dynamic
range than a doubly-clamped beam. Therefore, a doubly-clamped beam will gener-
ally have a higher value of K relative to a cantilever.

I have observed nanodevices that are both softening and stiffening at the same
time. A situation where this may occur is when the leading order term yields a
softening spring, but higher order terms are stiffening in nature. In this strange
case, hysteresis becomes observed on the left side of the peak at some drive power.
At some higher drive power, hysteresis will then be observed on the right side of
the peak as well. The shape of the calculated resonance peak is an “S” in this case.
This is illustrated in Figure 7.6.
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The doubly-clamped nanobeam is extraordinarily strong. I have found that drive
powers far beyond the critical point do not snap the beam. Instead, they usual-
ly survive to the point of melting the metal layer that carries the magnetomotive
current.

At large drives, the motion of doubly-clamped beams becomes limited at some
point. In other words, a maximum displacement becomes achieved. Higher and
higher orders of nonlinearity come in to play. That is the fifth, seventh, ninth term
and so on. causing further motion to be impossible. Whether or not the motion of
the resonator is chaotic at this point is unknown to the author. Furthermore, to the
author’s knowledge, no one has demonstrated classical chaos in a nanoresonator.
Phenomena in the very large drive regime, say 10 dB above the critical drive, are
very complicated. Classical chaos may be observed.

7.3
Transition Dynamics of the Duffing Resonator

This section will discuss the transition dynamics of the Duffing resonator. In other
words, how does the resonator move when it undergoes a switch from state to state.

The displacement Y(t) in (7.1) can be written as

Y(t) D U1(t) cos(Ω t) C U2(t) sin(Ω t) , (7.5)

in terms of the two quadrature amplitudes U1,2(t). For a high Q system driv-
en at frequency Ω near Ω0, the slowly-varying envelope approximation can be
used [16, 18], where the functions U1,2(t) are replaced by their slowly varying
averages, u1,2(t), respectively. This type of analysis is commonly used in radio
frequency(RF) systems. Using the RF nonmenclature, u1,2(t) are check comma
placement the in-phase and quadrature amplitudes of the displacement signal.

In the absence of noise, the average functions u1,2(t) satisfy the equations of
motion

d2u1

dt2
D �

Ω 2 � Ω 2
0

�
u1 � 3

4
K
M

u1
�
u2

1 C u2
2

�
�Ω0

Q
Ω u2 � Ω0

Q
du1

dt
� 2Ω

du2

dt
C B

M
,

d2u2

dt2 D �
Ω 2 � Ω 2

0

�
u2 � 3

4
K
M

u2
�
u2

1 C u2
2

�
CΩ0

Q
Ω u1 � Ω0

Q
du2

dt
C 2Ω

du1

dt
.

9>>>>>>>>>>>>=>>>>>>>>>>>>;
(7.6)

This can be found by inserting (7.5) into (7.1) and evaluating. All high frequency
terms are ignored, such as terms of cos(3Ω t).

One can create a configuration space spanned by the state variables u1 and u2. It
is interesting to study the dynamic trajectory of the oscillator in this configuration
space. Equation 7.6 gives the equation of motion for the state variables.
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If the time derivatives of (7.6) are set to zero, then the system must be in a stable,
unstable, or metastable state. At is turns out, the stable and metastable states are
exactly the branches of the resonance curve discussed earlier. These stable points
are called foci.

The Duffing oscillator exhibits one stable state for small drive amplitudes B,
while above a critical amplitude Bc a bifurcation occurs, creating two stable basins
of attraction. One basin corresponds to larger displacement amplitudes and is sta-
ble for drive frequencies up to an upper critical frequency νU (ν D Ω /2π), deter-
mined by the drive amplitude B. The other stable basin has smaller displacement
amplitude and is stable for frequencies down to a lower critical frequency νL, al-
so determined by the drive amplitude. The stable attractors are found by setting
all time derivatives in (7.6) to zero and solving for u1,2, yielding three equilibrium
points. Two of these equilibrium points are stable foci, and the third is a metastable
separatrix.

Figure 7.7 shows the numerically-generated flow from initial points near the sad-
dle point. If the initial point is in a given basin, it quickly relaxes to the appropriate
focus.

To date, there are many techniques for actuation and detection for NEMS de-
vices [5, 6, 8, 19, 20]. This chapter will neglect the particular choice of transduction
and assume the experimenter is given an electrical signal proportional to the mo-
tion of the NEMS device. Ultimately, this is the situation normally encountered in
practice.

With sufficient measurement bandwidth, it is possible to measure the relaxation
of the oscillator to a stable foci. Figure 7.8 shows measured relaxation for a device
identical to Figures 7.4 and 7.5. These curves are qualitatively similar to what is
shown in Figure 7.7. This reaffirms that the NEMS oscillator is well modeled as a
Duffing oscillator.

u1

u2

Figure 7.7 Numerically-generated phase-space flow for a
drive force 9 dB above the critical point Bc, and drive frequen-
cy 40 kHz above Ω0/2π. Flow begins near the separatrix and
evolves toward either focus.
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(a) (b)

u1

u2 u2

u1

Figure 7.8 (a) Experimental phase space mean trajectory from
focus 1 to focus 2 (8000 averages). The resonator was identical
to the one pictured in Figures 7.4 and 7.5. (b) Data for phase
space mean trajectory from focus 2 to focus 1 (8000 averages).
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Figure 7.9 (a) and (b) Experimental time traces for the two
switching transitions (8000 averages).

If only one state variable, u, is plotted as a function of time, we find the switching
curves of Figure 7.9. For a catastrophic switch of the Duffing oscillator, there is
ringing that occurs during the transition. This ringing corresponds to the oscillator
tracing out a trajectory in the configuration space. We can note that the ringing is
not like the ring-down of a linear oscillator. It does not fit to a damped cosine.
Instead, the motion is entirely nonlinear in nature and must be calculated by (7.6).

7.4
Energy for “Uphill” Type Transitions

When considering transitions between the two states, there are two STOP possible
types of motion, namely, “uphill” and “downhill” motion. The case of downhill
motion is simpler. The downhill case is the relaxation case. In this case, a parameter
such as frequency or drive amplitude is varied so the state variables can cross the
separatrix and relax to the other focus, as described in Section 7.3. The equations
of motion for downhill type transitions are (7.6).

The case of “uphill” motion is more complicated. In this case, the oscillator starts
at a focus and is perturbed by noise forces. Because the oscillator interacts with the
environment, there is a random force that causes stochastic transitions between
these stable foci. These noise forces have a small probability to push the oscillator
out of the stable focus and into the other basin.

We now turn to a discussion of these noise-induced transitions between the sta-
ble foci. Thermally-activated escape from a potential landscape with a single basin
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Separatrix

Focus

Focus

“Uphill” or noise 
induced motion

“Downhill”  or 
relaxation type
      motion

Figure 7.10 Schematic showing “uphill” and “downhill” motion
of the oscillator as it switches in the configuration space. For
uphill motion, the oscillator is nudged by noise forces into a
trajectory that results in a transition.

of attraction is a thoroughly studied problem [21]. The escape rate over a barrier of
height EB is given by Γ D a(Q)ν0 exp(�EB/ kBT ), determined predominantly by
the Arrhenius factor and less so by the Q-dependent prefactor a(Q). Our system
differs from this classic problem: Here, there is a basin of attraction about each of
the two foci found on a Poincaré map of the configuration space. Instead of a one-
dimensional potential well, there is a quasipotential, with the dynamics governed
by the noise energy at each point in the configuration space [22]. The equivalent
activation energy, EA, for transitions between the foci, is found by integrating the
minimum available noise energy over the trajectory between the foci.

It is possible to measure the activation energy, EA, by a histogram measurement
technique. By slowly sweeping the drive frequency and recording the precise fre-
quency, a transition occurs and a histogram of frequencies, h(ν(t)), can be gener-
ated. Given the sweep rate of the frequency, one can easily calculate the transition
rate as a function of frequency. Given the noise power and the transition rate, one
can calculate the activation energy, EA.

Transition histograms were measured by applying a drive signal to the resonator
above the critical value, preparing the resonator in one of the two basins of attrac-
tion and monitoring the switching transitions to the other basin. Histograms of
the switching probability per unit time, h(t), were measured by sweeping the drive
frequency ν(t) D Ω (t)/2π at a constant rate s D dν/dt, and recording the drive
frequency at which a transition occurred. This is a technique that has been ex-
tensively used for measuring switching distributions in current-biased Josephson
junctions [23].

Transitions were induced by using an external broadband white noise signal,
combined with the radiofrequency drive signal using a radio frequency coupler
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Figure 7.11 Example histograms h(ν) as a function of noise
power, for transitions from focus 1 to 2. The noise power was
varied from �127 dBm/Hz to �113 dBm/Hz. Increased noise
shifts and broadens the peaks.

in order to generate a signal that included both the drive signal B and the noise
signal Bn . The drive signal itself was produced by a source with very low phase
noise; with no additional noise power, transitions were still induced by this rem-
nant phase noise to which the resonator is very sensitive. The thermal noise of the
circuit and the mechanical noise associated with the finite resonator Q, were too
small to induce measurable transitions in the system. Note that the phase noise
injected into the resonator in order to drive the resonator is often much larger than
the intrinsic noise of the resonator.

In Figure 7.11, we display a set of histograms h(ν(t)); higher noise powers shift
the peak switching frequency and also broaden the distribution. It should be point-
ed out that the histograms are not Gaussian peaks. Instead they have a particular
shape that is not symmetric about the center of the peak. Error bars for the points
are easily calculated by assuming simple Poisson statistics.

The transition rate Γ (ν) is extracted from the histogram h(t) using Γ (ν(t)) D
(1 � R t

�1 h(t0) dt0)�1 sh(t). Some of the transition rate curves are plotted in Fig-
ure 7.12. An interesting point about the transition rates is that they have very large
variability. The fastest transition rates are on the order of kHz, but the slowest tran-
sition rates can have lifetimes of thousands of years if small levels of noise drive the
resonator. Of course in practice, it is impossible to wait long enough to see such
rare transitions. However, by extrapolating Figure 7.12 for small noise power we
can find that such large timescales are possible.

Extracting the quasi-activation energy EA(ν), is done by inverting the thermal
activation expression Γ (ν) � Γ0 exp(�EA(ν)/ kBTeff), where the effective tempera-
ture Teff is proportional to the noise power, and the prefactor Γ0 is related to the
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Figure 7.12 Example transition rates Γ (ν) as a function of
noise power, for transitions from focus 1 to 2. The noise power
was varied from �127 dBm/Hz to �113 dBm/Hz. These are
calculated from the histograms in Figure 7.11.

Kramers low-dissipation form [21], Γ0 � ν0/Q. Note that in this technique, the
histograms are only logarithmically sensitive to Γ0, so that a precise determination
is difficult. In Figure 7.13, we display the activation energy EA(ν) extracted from
the histograms, showing the expected decline in the barrier energy as the drive fre-
quency approaches the critical frequency. The distributions shown in Figure 7.12
are seen to collapse onto a single curve EA(ν). When measured, these energies re-
veal, what the author calls, a “butterfly plot”. When plotting the energies for both

Figure 7.13 Example of a “Butterfly plot”. These curves are the
quasipotential energy for a fixed drive amplitude.
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switching from focus 1 to 2 and from focus 2 to 1, we find two overlapping curves
that have the shape of a butterfly. Figure 7.13 shows an example of when the res-
onator is driven 5 dB past the critical point.

The energy scale for the butterfly plot is enormous. It can be 1010 K. Therefore,
large noise powers are required to cause transitions at this energy. This is why we
find stable lifetimes of thousands of years or more for small noise levels.

A very interesting region of further research is the low noise limit where EA

approaches zero. In this case, the quasienergy barrier is very small and the system
becomes very sensitive to remnant noise. If the system is held near the critical
point, the butterfly plot energies become small. Therefore, sensor applications are
interesting near the critical point [24].

Also, another interesting operating point is the point on the butterfly plot where
the two branches cross. At this point, the rates of transition from one to two and
from two to one are equal. Therefore, the system will generate a random telegraph
signal, switching back and forth at random intervals. Because the lifetimes of the
two states are equal, neither focus is preferred.

7.5
Energy Calculation Using a Variational Technique

We calculated the activation energies numerically. The dynamic solutions to (7.1)
without noise give the relaxation from the separatrix to one of the foci. During a
noise-induced transition, the system is excited from a basin near a focus towards
the separatrix, which it crosses and then relaxes to the other focus (see Figure 7.10).
There is an infinite number of possible trajectories that allow a transition. Given
a specific trajectory, it is possible to calculate the contribution of the noise force
using (7.1). The total energy transferred to the resonator for a particular trajectory
is found by integrating the noise power along that trajectory, thus yielding the ef-
fective quasienergy between the foci. The energy transferred is thus an action-like
quantity, and the most likely escape trajectory is that which requires the minimum
action. The action-like integral S of the system is then S D R

path B2
n(t) dt.

The most likely path Y0(t) minimizes the integral S. Because the separatrix is
a saddle point, the extremal trajectory will most likely travel near the separatrix.
The oscillator will naturally evolve from a point near the separatrix to either focus,
without contributing to the action-like integral, as this relaxation does not require
a noise term. Only when the oscillator is evolving against the dissipative flow field,
from a focus toward the separatrix, will it contribute to the action integral.

We used a numerical minimization of the possible trajectories Y(t), using S as
a test function to approach the extremum trajectory Y0(t). Each Y(t) is split into
n test points Yi . Minimization is carried out in the n-dimensional space spanned
by the Yi . Minimum trajectories were calculated for different drive frequencies
and amplitudes, yielding the energy barrier as a function of the drive amplitude, as
shown in Figure 7.14. We find good agreement (to logarithmic accuracy) between
the measured and calculated energy barriers.
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Figure 7.14 Calculated energy curves.

When calculating the energy using this technique, it is easy for the calcula-
tion to get trapped in a local minimum in a high-dimensional space. The algo-
rithm must minimize a multi-dimensional function. Often, it is difficult to find
the true minimum. Each value of the function corresponds to a different tra-
jectory. Some trajectories contain extra loops in the configuration space. In this
case, it is very difficult for the algorithm to converge because of the local mini-
mum.

Furthermore, because of the large number of dimensions that the minimiza-
tion algorithm must search through, this algorithm takes a very long time to con-
verge. Also, there is never a guarantee that the true global minimum has been
reached.

The measurements described in Figure 7.14 were made in the small-to-moderate
noise limit, with noise energies much less than the energy barrier. At higher noise
powers, the hysteresis due to the nonlinear response can actually be quenched, by
rapid noise-induced transitions between the two foci. This quenching is demon-

Figure 7.15 Amplitude hysteresis plots, for no noise power
(bottom), with the drive amplitude set at �59 dBm, 2 dB above
the critical point. The noise power was increased in 2 dB steps
for each succeeding frame. At the largest noise power, the hys-
teresis is quenched.
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strated in Figure 7.15: As the noise power is increased, the area of the hysteresis
loop grows visibly smaller, until, at the highest noise powers, the switching is no
longer hysteretic. In this limit, the oscillator generates random telegraph signals
as it makes transitions from one focus to the other. The spectrum of the random
telegraph signal is related to the transition rate of the oscillator.

7.6
Frequency Tuning

For magnetomotive detection, it is possible to tune the behavior of the nonlinear-
ity with an external drive current. If a direct current or slowly varying current of
large amplitude is applied across the beam, the beam will be bent by the Lorentz
force associated with the drive current. This bending changes both the natural fre-
quency and coefficient of nonlinearity for a beam. Furthermore, the frequencies of
switching will be shifted due to the drive current. In Figure 7.16, we can see this
effect. At positive dc bias, the hysteretic effect of the nonlinearity has disappeared.
The frequency shift also occurs at a small drive power. This effect allows for po-
tential circuit applications. An obvious application is to use the beam as a voltage
controlled oscillator (VCO).
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Figure 7.16 Hysteresis loops under the effect of a dc bias cur-
rent are shown. The extra Lorentz force from the dc bias current
bends the beam and shifts the nonlinear hysteresis.
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If the frequency is shuttled back and forth, the oscillator will switch and then
reset. The frequency at which the switch occurs can be exactly measured. The
switch frequency depends on the dc bias current. One can then imagine a “switch
and reset amplifier” which operates on this principle. The device performs current
to frequency conversion. The bandwidth of the current measurement is related to
how fast the oscillator can be switched and reset. For the devices measured, this
bandwidth should be in the upper audio frequency range. Also, the performance
of the device depends on how much jitter exists in the switching frequency. As was
shown earlier, the jitter in the switching frequency is due to noise in the oscillator
drive signal.

7.7
Bifurcation Amplifier

We can also engineer a bifurcation amplifier. Near the critical point, the derivative of
the phase with respect to frequency becomes nearly infinite. In Figure 7.17 we can
see the large slope of the phase at the critical point. Therefore, the phase will exhibit
a large change for a small change in frequency. This can be used to amplify weak,
slowly varying signals that cause a frequency shift. Therefore, a possible use of the
Duffing nonlinearity is mass sensing at the critical point. This has recently been
discussed in detail in [24]. The result is that the mass sensitivity of such an oscillator
may be increased at the expense of detection speed. In practice, nanoresonators
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Figure 7.17 Phase with respect to frequency near the critical
point. The derivative becomes very large at the critical point.
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typically have extra bandwidth to trade for increased mass sensitivity, even when
real time operation is required. Therefore, operating a resonator at the critical point
may prove to be a promising technology.

7.8
Conclusion

In conclusion, we have studied the properties of the Duffing nonlinearity applied to
NEMS devices. We have studied the configuration space trajectories and the tran-
sition rates between the bistable states of a nonlinear radiofrequency mechanical
resonator. Measurements have been shown to be in good agreement with numeri-
cal simulations based on the Duffing oscillator equation of motion.
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8
Nonlinear Dynamics of Nanomechanical Resonators
Ron Lifshitz and M.C. Cross

8.1
Nonlinearities in NEMS and MEMS Resonators

In the last decade we have witnessed exciting technological advances in the fabri-
cation and control of microelectromechanical and nanoelectromechanical systems
(MEMS & NEMS) [16, 19, 26, 54, 55]. Such systems are being developed for a host of
nanotechnological applications, such as highly sensitive mass [25, 34, 67], spin [56],
and charge detectors [17, 18], as well as for basic research in the mesoscopic physics
of phonons [63], and the general study of the behavior of mechanical degrees of
freedom at the interface between the quantum and the classical worlds [5, 64]. Sur-
prisingly, MEMS & NEMS have also opened up a whole new experimental window
into the study of the nonlinear dynamics of discrete systems in the form of nonlin-
ear micromechanical and nanomechanical oscillators and resonators.

The purpose of this review is to provide an introduction to the nonlinear dynam-
ics of micromechanical and nanomechanical resonators that starts from the basics,
but also touches upon some of the advanced topics that are relevant for current ex-
periments with MEMS & NEMS devices. We begin in this section with a general
motivation, explaining why nonlinearities are so often observed in NEMS & MEMS
devices. In Section 8.2 we describe the dynamics of one of the simplest nonlinear
devices, the Duffing resonator, while giving a tutorial in secular perturbation the-
ory as we calculate its response to an external drive. We continue to use the same
analytical tools in Section 8.3 to discuss the dynamics of a parametrically-excited
Duffing resonator, building up to the description of the dynamics of an array of
coupled parametrically-excited Duffing resonators in Section 8.4. We conclude in
Section 8.5 by giving an amplitude equation description for the array of coupled
Duffing resonators, allowing us to extend our analytic capabilities in predicting
and explaining the nature of its dynamics.

Nonlinear Dynamics of Nanosystems. Edited by Günter Radons, Benno Rumpf, and Heinz Georg Schuster
Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 978-3-527-40791-0
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8.1.1
Why Study Nonlinear NEMS and MEMS?

Interest in the nonlinear dynamics of microelectromechanical and nanoelectrome-
chanical systems (MEMS & NEMS) has grown rapidly over the last few years, driv-
en by a combination of practical needs as well as fundamental questions. Nonlinear
behavior is readily observed in micro- and nanoscale mechanical devices [1, 2, 9–
12, 19, 24, 27, 30, 33, 50, 57, 61, 62, 66, 68, 71, 72]. Consequently, there exists a
practical need to understand this behavior in order to avoid it when it is unwanted,
and exploit it efficiently when it is wanted. At the same time, advances in the fab-
rication, transduction, and detection of MEMS & NEMS resonators has opened up
an exciting new experimental window into the study of fundamental questions in
nonlinear dynamics. Typical nonlinear MEMS & NEMS resonators are character-
ized by extremely high frequencies, recently going beyond 1 GHz [15, 32, 48], and
relatively weak dissipation, with quality factors in the range of 102–104. For such
devices the regime of physical interest is that of steady state motion, as transients
tend to disappear before they are detected. This, and the fact that weak dissipation
can be treated as a small perturbation, provide a great advantage for quantitative
theoretical study. Moreover, the ability to fabricate arrays of tens to thousands of
coupled resonators opens new possibilities in the study of nonlinear dynamics of
intermediate numbers of degrees of freedom, much larger than one can study in
macroscopic or tabletop experiments, yet much smaller than one studies when
considering nonlinear aspects of phonon dynamics in a crystal.

The collective response of coupled arrays might be useful for signal enhance-
ment and noise reduction [21, 22], as well as for sophisticated mechanical signal
processing applications. Such arrays have already exhibited interesting nonlinear
dynamics, ranging from the formation of extended patterns [8, 38], as one com-
monly observes in analogous continuous systems such as Faraday waves, to that
of intrinsically localized modes [39, 58–60]. Thus, nanomechanical resonator ar-
rays are perfect for testing dynamical theories of discrete nonlinear systems with
many degrees of freedom. At the same time, the theoretical understanding of such
systems may prove useful for future nanotechnological applications.

8.1.2
Origin of Nonlinearity in NEMS and MEMS Resonators

We are used to thinking about mechanical resonators as being simple harmonic
oscillators, acted upon by linear elastic forces that obey Hooke’s law. This is usually
a very good approximation, as most materials can sustain relatively large deforma-
tions before their intrinsic stress-strain relation breaks away from a simple linear
description. Nevertheless, one commonly encounters nonlinear dynamics in mi-
cromechanical and nanomechanical resonators long before the intrinsic nonlinear
regime is reached. Most evident are nonlinear effects that enter the equation of
motion in the form of a force that is proportional to the cube of the displacement
αx3. These turn a simple harmonic resonator with a linear restoring force into
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a so-called Duffing resonator. The two main origins of the observed nonlinear ef-
fects are illustrated below with the help of two typical examples. These are due to
the effect of external potentials that are often nonlinear, and geometric effects that
introduce nonlinearities even though the individual forces that are involved are all
linear. The Duffing nonlinearity αx3 can be positive, assisting the linear restoring
force, making the resonator stiffer, and increasing its resonance frequency. It can
also be negative, working against the linear restoring force, making the resonator
softer, and decreasing its resonance frequency. The two examples we give below il-
lustrate how both of these situations can arise in realistic MEMS & NEMS devices.

Additional sources of nonlinearity may be found in experimental realizations of
MEMS and NEMS resonators due to practical reasons. These may include non-
linearities in the actuation and in the detection mechanisms that are used for in-
teracting with the resonators. There could also be nonlinearities that result from
the manner in which the resonator is clamped by its boundaries to the surround-
ing material. These all introduce external factors that may contribute to the overall
nonlinear behavior of the resonator.

Finally, nonlinearities often appear in the damping mechanisms that accompany
every physical resonator. We shall avoid going into the detailed description of the
variety of physical processes that govern the damping of a resonator. Suffice it to
say that whenever it is reasonable to expand the forces acting on a resonator up to
the cube of the displacement x3, it should correspondingly be reasonable to add
to the linear damping, which is proportional to the velocity of the resonator Px , a
nonlinear damping term of the form x2 Px , which increases with the amplitude of
motion. Such nonlinear damping will be considered in our analysis below.

8.1.3
Nonlinearities Arising from External Potentials

As an example of the effect of an external potential, let us consider a typical situ-
ation, discussed for example by Cleland and Roukes [17, 18], and depicted in Fig-
ure 8.1, in which a harmonic oscillator is acted upon by an external electrostatic
force. This could be implemented by placing a rigid electrically charged base elec-

Figure 8.1 A 43 nanometer thick doubly-clamped platinum
nanowire with an external electrode that can be used to tune its
natural frequency as well as its nonlinear properties. Adapted
with permission from [33].
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trode near an oppositely charged NEMS or MEMS resonator. If the equilibrium
separation between the resonator and the base electrode in the absence of electric
charge is d, the deviation away from this equilibrium position is denoted by X,
the effective elastic spring constant of the resonator is K, and the charge q on the
resonator is assumed to be constant, then the potential energy of the resonator is
given by

V(X ) D 1
2

K X 2 � C
d C X

. (8.1)

In SI units C D Aq2/4π�0, where A is a numerical factor of order unity that takes
into account the finite dimensions of the charged resonator and base electrode.
The new equilibrium position X0 in the presence of charge can be determined by
solving the cubic equation

dV
dX

D K X C C
(d C X )2 D 0 . (8.2)

If we now expand the potential acting on the resonator in a power series in the
deviation x D X � X0 from this new equilibrium, we obtain

V(x ) ' V(X0) C 1
2

�
K � 2C

(d C X0)3

�
x2 C C

(d C X0)4
x3 � C

(d C X0)5
x4

D V(X0) C 1
2

kx2 C 1
3

x3 C 1

4
αx4 .

(8.3)

This gives rise, without any additional driving or damping, to an equation of mo-
tion of the form

m Rx C kx C 
x2 C αx3 D 0 , with 
 > 0, α < 0 , (8.4)

where m is the effective mass of the resonator and k is its new effective spring con-
stant, which is softened by the electrostatic attraction to the base electrode. Note
that if 2C/(d C X0)3 > K , the electrostatic force exceeds the elastic restoring force
and the resonator is pulled onto the base electrode. 
 is a positive symmetry break-
ing quadratic elastic constant that pulls the resonator towards the base electrode
regardless of the sign of x, and α is the cubic, or Duffing, elastic constant that, ow-
ing to its negative sign, softens the effect of the linear restoring force. It should be
sufficient to stop the expansion here, unless the amplitude of the motion is much
larger than the size of the resonator, or if by some coincidence the effects of the
quadratic and cubic nonlinearities happen to cancel each other out, a situation that
will become clearer after reading Section 8.2.3.

8.1.4
Nonlinearities Due to Geometry

As an illustration of how nonlinearities can emerge from linear forces due to ge-
ometric effects, consider a doubly-clamped thin elastic beam, which is one of the
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most commonly encountered NEMS resonators. Because of the clamps at both
ends, as the beam deflects in its transverse motion it necessarily stretches. As long
as the amplitude of the transverse motion is much smaller than the width of the
beam, this effect can be neglected. But with NEMS beams it is often the case that
they are extremely thin, and are driven quite strongly, making it common for the
amplitude of vibration to exceed the width. Let us consider this effect in some
detail by starting with the Euler-Bernoulli equation, which is the commonly used
approximate equation of motion for a thin beam [43]. For a transverse displacement
X(z, t) from equilibrium, which is much smaller than the length L of the beam,
the equation is

�S
@2 X
@t2 D �E I

@4 X
@z4 C T

@2 X
@z2 , (8.5)

where z is the coordinate along the length of the beam � is the mass density, S
is the area of the cross section of the beam, E is the Young’s modulus, I is the
moment of inertia, and T the tension in the beam. The latter is composed of its
inherent tension T0 and the additional tension ΔT due to bending that induces
an extension ΔL in the length of the beam. Inherent tension results from the fact
that in equilibrium in the doubly-clamped configuration, the actual length of the
beam may differ from its rest length, being either extended (positive T0) or com-
pressed (negative T0). The additional tension ΔT is given by the strain, or relative
extension of the beam ΔL/L, multiplied by Young’s modulus E and the area of the
beam’s cross section S. For small displacements, the total length of the beam can
be expanded as

L C ΔL D
Z L

0
dz

s
1 C

�
@X
@z

�2

' L C 1
2

Z L

0
dz
�

@X
@z

�2

. (8.6)

The equation of motion (8.5) then clearly becomes nonlinear

�S
@2 X
@t2 D �E I

@4 X
@z4 C

"
T0 C E S

2L

Z L

0
dz
�

@X
@z

�2
#

@2 X
@z2 . (8.7)

We can treat this equation perturbatively [49, 69]. We first consider the linear
part of the equation, which has the form of (8.5) with T0 in place of T, separate the
variables,

Xn(z, t) D xn(t)φn(z) , (8.8)

and find its spatial eigenmodes φn(z). For the eigenmodes, we use the convention
that the local maximum of the eigenmode φn(z) that is nearest to the center of the
beam is scaled to 1. Thus xn(t) measures the actual deflection of the beam at the
point nearest to its center that extends the furthest. Next, we assume that the beam
is vibrating predominantly in one of these eigenmodes and use this assumption to
evaluate the effective Duffing parameter αn , multiplying the x3

n term in the equa-
tion of motion for this mode. Corrections to this approximation will appear only at
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higher orders of xn . We multiply (8.7) by the chosen eigenmode φn(z) and inte-
grate over z to get, after some integration by parts, a Duffing equation of motion
for the amplitude of the nth mode xn(t),

Rxn C
"

E I
�S

R
φ00

n
2dzR

φ2
n dz

C T0

�S

R
φ0

n
2dzR

φ2
n dz

#
xn C

264 E
2�L

R
φ0

n
2dz

�2

R
φ2

n dz

375 x3
n D 0 ,

(8.9)

where primes denote derivatives with respect to z, and all the integrals are from
0 to L. Note that we have obtained a positive Duffing term, indicating a stiffening
nonlinearity, as opposed to the softening nonlinearity that we saw in the previous
section. Also note that the effective spring constant can be made negative by com-
pressing the equilibrium beam, thus making T0 large and negative. This may lead
to the so-called Euler instability, which is a buckling instability of the beam.

To evaluate the effective Duffing nonlinearity αn for the nth mode, we introduce
a dimensionless parameter Oαn by rearranging the equation of motion (8.9) to have
the form

Rxn C ω2
n xn

�
1 C Oαn

x2
n

d2

�
D 0 , (8.10)

where ωn is the normal frequency of the nth mode, d is the width or diameter of
the beam in the direction of the vibration, and xn is the maximum displacement
of the beam near its center. This parameter can then be evaluated regardless of the
actual dimension of the beam.

In the limit of small residual tension T0, the eigenmodes are those dominated
by bending given by [43]

φn(z) D 1
an

[(sin kn L � sinh kn L) (cos kn z � cosh kn z)

� (cos kn L � cosh kn L) (sin kn z � sinh kn z)] , (8.11)

where an is the value of the function in the square brackets at its local maximum
that is closest to z D 0.5, and the wave vectors kn are solutions of the transcenden-
tal equation cos kn L cosh kn L D 1. The first few values are

fkn Lg ' f4.7300, 7.8532, 10.9956, 14.1372, 17.2788, 20.4204 . . .g , (8.12)

and the remaining ones tend towards odd-integer multiples of π/2 as n increases.
Using these eigenfucntions, we can obtain explicit values for the dimensionless
Duffing parameters for the different modes by calculating

Oαn D S d2

2I

� 1
L

R
φ02

n dz
�2

1
L

R
φ00

n
2 dz

� S d2

2I
O
n . (8.13)

The first few values aren O
n

o
' f0.1199, 0.2448, 0.3385, 0.3706, 0.3908, 0.4068, 0.4187, . . .g , (8.14)
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tending to an asymptotic value of 1/2 as n ! 1. For beams with rectangular or
circular cross sections, the geometric prefactor evaluates to

S d2

2I
D
(

16 Circular cross section ,

6 Rectangular cross section .
(8.15)

Thus the dimensionless Duffing parameters are of order 1, and therefore the signif-
icance of the nonlinear behavior is solely determined by the ratio of the deflection
to the width of the beam.

In the limit of large equilibrium tension, the beam essentially behaves as a string
with relatively negligible resistance to bending. The eigenmodes are those of a
string,

φn(z) D sin
 nπ

L
z
�

, n D 1, 2, 3 . . . , (8.16)

and, if we denote the equilibrium extension of the beam as ΔL0 D LT0/E S , the
dimensionless Duffing parameters are exactly given by

Oαn D d2

2ΔL0

Z
φ0

n
2 dz D (nπd)2

4LΔL0
. (8.17)

In the large tension limit, as in the case of a string, the dimensionless Duffing
parameters are proportional to the inverse aspect ratio of the beam d/L times the
ratio between its width and the extension from its rest length d/ΔL0, at least one of
which can be a very small parameter. For this reason nonlinear effects are relatively
negligible in these systems.

8.2
The Directly-Driven Damped Duffing Resonator

8.2.1
The Scaled Duffing Equation of Motion

Let us begin by considering a single nanomechanical Duffing resonator with linear
and nonlinear damping that is driven by an external sinusoidal force. We shall
start with the common situation where there is symmetry between x and �x, and
consider the changes that are introduced by adding symmetry-breaking terms later.
Such a resonator is described by the equation of motion

m
d2 Qx
d Qt2

C Γ
d Qx
d Qt C mω2

0 Qx C Qα Qx3 C Qη Qx2 d Qx
d Qt D QG cos Qω Qt , (8.18)

where m is its effective mass, k D mω2
0 is its effective spring constant, Qα is the

cubic spring constant or Duffing parameter, Γ is the linear damping rate, and Qη is
the coefficient of nonlinear damping – damping that increases with the amplitude
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of oscillation. We follow the convention that physical parameters that are to be
immediately rescaled appear with twiddles, as the first step in dealing with such an
equation is to scale away as many unnecessary parameters as possible, leaving only
those that are physically significant. This then removes all of the twiddles. We do
so by: (1) Measuring time in units of ω�1

0 so that the dimensionless time variable
is t D ω0 Qt. (2) Measuring amplitudes of motion in units of length for which a
unit-amplitude oscillation doubles the frequency of the resonator. This is achieved

by taking the dimensionless length variable to be x D Qx
q

Qα/mω2
0. For the doubly-

clamped beam of width or diameter d, discussed in Section 8.1.4, this length is
x D Qxp Oαn/d. (3) Dividing the equation by an overall factor of ω3

0

p
m3/ Qα. This

yields a scaled Duffing equation of the form

Rx C Q�1 Px C x C x3 C ηx2 Px D G cos ω t , (8.19)

where dots denote derivatives with respect to the dimensionless time t, all the di-
mensionless parameters are related to the physical ones by

Q�1 D Γ
mω0

, η D Qηω0

Qα , G D
QG
ω3

0

r Qα
m3 , and ω D Qω

ω0
, (8.20)

and Q is the quality factor of the resonator.

8.2.2
A Solution Using Secular Perturbation Theory

We proceed to calculate the response of the damped Duffing resonator to an ex-
ternal sinusoidal drive, as given by (8.19), by making use of secular perturbation
theory [31, 65]. We do so in the limit of a weak linear damping rate Q�1, which
we use to define a small expansion parameter, Q�1 � � 	 1. In most actual ap-
plications, Q is at least on the order of 100, making this limit well-justified. We
also consider the limit of weak oscillations where it is justified to truncate the ex-
pansion of the force acting on the resonator at the third power of x. We do so by
requiring that the cubic force x3 be a factor of � smaller than the linear force, or
equivalently, by requiring the deviation from equilibrium x to be on the order ofp

�. We ensure that the external driving force has the right strength to induce such
weak oscillations by having it enter the equation at the same order as all the other
physical effects. This, in effect, requires the amplitude of the drive to be G D �3/2g.
To see why, recall that for a regular linear resonance, x is proportional to G Q. Q is
of order ��1 and we want x to be of order

p
�, and so G must be of order �3/2. Final-

ly, since damping is weak we expect to see a response only close to the resonance
frequency. We therefore take the driving frequency to be of the form ω D 1 C �Ω .
The equation of motion (8.19) thus becomes

Rx C � Px C x C x3 C ηx2 Px D �3/2g cos(1 C �Ω )t . (8.21)

This is the equation we shall study using secular perturbation theory, while occa-
sionally comparing the results with the original physical equation (8.18).
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With the expectation that the motion of the resonator far from equilibrium will
be on the order of �1/2, we try a solution of the form

x (t) D
p

�

2

�
A(T ) eit C c.c.

�C �3/2x1(t) C . . . (8.22)

where c.c. denotes complex conjunction.
The lowest order contribution to this solution is based on the solution to the lin-

ear equation of motion of a simple harmonic oscillator (SHO) Rx C x D 0, where
T D � t is a slow time variable, allowing the complex amplitude A(T ) to vary slowly
in time due to the effect of all the other terms in the equation. As we shall im-
mediately see, the slow temporal variation of A(T ) also allows us to ensure that
the perturbative correction x1(t) as well as all higher-order corrections to the linear
equation do not diverge, as they do if one uses naive perturbation theory. Using the
relation

PA D dA
dt

D �
dA
dT

� �A0 , (8.23)

we calculate the time derivatives of the trial solution (8.22)

Px D
p

�

2

��
iA C �A0

�
eit C c.c.

�C �3/2 Px1(t) C . . . (8.24a)

Rx D
p

�

2

���A C 2 i�A0 C �2A00
�

eit C c.c.
�C �3/2 Rx1(t) C . . . (8.24b)

By substituting these expressions back into the equation of motion (8.21) and pick-
ing out all terms of order �3/2, we get for the first perturbative correction

Rx1 Cx1 D
�

�iA0 � i
1
2

A � 3 C iη
8

jAj2A C g
2

eiΩ T
�

eit � 1 C iη
8

A3 e3it Cc.c.

(8.25)

The collection of terms proportional to eit on the right-hand side of (8.25), called
the secular terms, act like a force that drives the SHO on the left-hand side exactly
at its resonance frequency. The sum of all these terms must therefore vanish so that
the perturbative correction x1(t) will not diverge. This requirement is the so-called
“solvability condition”, giving us an equation for determining the slowly varying
amplitude A(T ),

dA
dT

D � 1
2

A C i
3
8

jAj2A � η
8

jAj2A � i
g
2

eiΩ T . (8.26)

This general equation could be used to study many different effects [20]. Here we
use it to study the steady-state dynamics of the driven Duffing resonator.

We ignore initial transients and assume that there exists a steady-state solution
of the form

A(T ) D a eiΩ T � jaj eiφ eiΩ T . (8.27)
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With this expression for the slowly varying amplitude A(T ), the solution to the
original equation of motion (8.21) becomes an oscillation at the drive frequency
ω D 1 C �Ω ,

x (t) D �1/2jaj cos(ω t C φ) C O(�3/2) , (8.28)

where we are not interested in the actual correction x1(t) of order �3/2, but rather
in finding the fixed complex amplitude a of the lowest order term. This amplitude
a can be any solution of the equation��

3
4

jaj2 � 2Ω
�

C i


1 C η
4

jaj2
��

a D g , (8.29)

obtained by substituting the steady-state solution (8.27) into Eq. (8.26) of the secular
terms.

The magnitude and phase of the response are then given explicitly by

jaj2 D g2�
2Ω � 3

4 jaj2�2 C �
1 C 1

4 ηjaj2�2 (8.30a)

and

tan φ D 1 C 1
4 ηjaj2

2Ω � 3
4 jaj2 . (8.30b)

By reintroducing the original physical scales, we can obtain the physical solution to
the original equations of motion Qx ( Qt) ' Qx0 cos( Qω Qt C φ), where Qx0 D jajpΓω0/ Qα,
and therefore

Qx2
0 D


QG

2mω2
0

�2


Qω�ω0
ω0

� 3
8

Qα
mω2

0
Qx2

0

�2 C


1
2 Q�1 C 1

8
Qη

mω0
Qx2

0

�2 (8.31a)

and

tan φ D
Γ
2 C Qη

8 Qx2
0

m Qω � mω0 � 3 Qα
8ω0

Qx2
0

. (8.31b)

The scaled response functions (8.30a) are plotted in Figure 8.2 for a drive with
a scaled amplitude of g D 3, both with and without nonlinear damping. The re-
sponse without nonlinear damping is shown also in Figure 8.3 for a sequence of
increasing drive amplitudes ranging from g D 0.1, where the response is essen-
tially linear, to the value of g D 4. Note that due to our choice of a positive Duffing
nonlinearity, the resonator becomes stiffer and its frequency higher as the ampli-
tude increases. The response amplitude of the driven resonator therefore increas-
es with increasing frequency until it reaches a saddle-node bifurcation and drops
abruptly to zero. A negative Duffing parameter would produce a mirror image of
this response curve.
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Figure 8.2 Magnitude jaj (a) and phase φ
(b) of the response of a Duffing resonator as
a function of the frequency Ω for a fixed driv-
ing amplitude g D 3. The thin solid curves
show the response without any nonlinear
damping (η D 0). The thick dotted curves
show the response with nonlinear damping

(η D 0.1). The thin dotted curve in (a) shows
the response without any kind of damping
(Q�1 D 0 and η D 0 in the original equa-
tion (8.19)). The phase in this case is 0 along
the whole upper-left branch and π along the
whole lower-right branch, and so is not plot-
ted in (b).
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Figure 8.3 Magnitudes jaj (a) and phases φ (b) of the re-
sponse of a Duffing resonator as a function of the frequen-
cy Ω for a sequence of increasing values of the drive ampli-
tude 0.1 � g � 4.0, without nonlinear damping (η D 0).
Solid curves indicate stable solutions of the response func-
tion (8.30a), while dashed curves indicate unstable solutions.

One sees that the magnitude of the response given by (8.30a) formally approach-
es the Lorentzian response of a linear SHO if we let the nonlinear terms in the
original equation of motion tend to zero. Their existence modifies the response
function with the appearance of the squared magnitude jaj2 in the denominator
on the right-hand side of (8.30a), turning the solution into a cubic polynomial in
jaj2. As such there are either one or three real solutions for jaj2, and therefore for
jaj, as a function of either the drive amplitude g or the driving frequency Ω . We
shall analyze the dependence of the magnitude of the response on frequency in
some detail, and leave it to the reader to perform such an analysis of the similar
dependence on drive amplitude.
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In order to analyze the magnitude of the response jaj as a function of driving
frequency Ω , we differentiate the response function (8.30a), resulting in� 3

64

�
9 C η2� jaj4 C 1

4 (η � 6Ω ) jaj2 C 1
4 C Ω 2� djaj2

D � 3
4 jaj4 � 2Ω jaj2� dΩ . (8.32)

This allows us immediately to find the condition for resonance, where the mag-
nitude of the response is at its peak, by requiring that djaj2/dΩ D 0. We find
that the resonance frequency Ωmax depends quadratically on the peak magnitude
jajmax, according to

Ωmax D 3
8 jaj2max , (8.33a)

or in terms of the original variables as

Qωmax D ω0 C 3
8

α
mω0

( Qx0)2
max . (8.33b)

The curve satisfying (8.33a), for which jaj D p
8Ω /3, is plotted in Figure 8.3. It

forms a square root backbone that connects all the resonance peaks for the differ-
ent driving amplitudes, which is often seen in typical experiments with nanome-
chanical resonators. Thus, the peak of the response is pulled further toward higher
frequencies as the driving amplitude g is increased, as expected from a stiffening
nonlinearity.

When the drive amplitude g is sufficiently strong, we can use Eq. (8.32) to find
the two saddle-node bifurcation points, where the number of solutions changes
from one to three and then back from three to one. At these points dΩ /djaj2 D 0,
yielding a quadratic equation in Ω whose solutions are

Ω˙
SN D 3

4 jaj2 ˙ 1
2

q
3

16 (3 � η2) jaj4 � ηjaj2 � 1 . (8.34)

When the two solutions are real, corresponding to the two bifurcation points, a
linear stability analysis shows that the upper and lower branches of the response
are stable solutions and the middle branch that exists for Ω�

SN < Ω < ΩC
SN is

unstable. When the drive amplitude g is reduced, it approaches a critical value gc

where the two bifurcation points merge into an inflection point. At this point both
dΩ /djaj2 D 0 and d2Ω /(djaj2)2 D 0, providing two equations for determining the
critical condition for the onset of bistability, or the existence of two stable solution
branches,

jaj2c D 8
3

1p
3 � η

, Ωc D 1

2
p

3

3
p

3 C ηp
3 � η

, gc
2 D 32

27
9 C η2�p
3 � η

�3 . (8.35)

For the case without nonlinear damping, η D 0, the critical values are jaj2c D
(4/3)3/2 and Ωc D (3/4)1/2, for which the critical drive amplitude is gc D (4/3)5/4.
For 0 < η <

p
3, the critical driving amplitude gc that is required for having

bistability increases with η, as shown in Figure 8.4. For η >
p

3 the discriminant
in Eq. (8.34) is always negative, prohibiting the existence of bistability of solutions.
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Figure 8.4 Critical driving amplitude gc for the onset of bista-
bility in the response of the Duffing resonator as a function
of nonlinear damping η, as given by Eq. (8.35). Note that
gc ! (4/3)5/4 ' 1.43 as η ! 0.
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Figure 8.5 Responsivity jaj/g of the Duffing resonator without
nonlinear damping (a) and with a small amount of nonlinear
damping η D 0.1 (b), for different values of the driving am-
plitude g. Viewing the response in this way suggests an experi-
mental scheme by which one could determine the importance
of nonlinear damping and extract its magnitude.

Nonlinear damping acts to decrease the magnitude of the response when it is
appreciable, that is, when the drive amplitude is large. It gives rise to an effective
damping rate for oscillations with magnitude jaj that is given by 1 C 1

4 ηjaj2, or,
in terms of the physical parameters, by Γ C 1

4 Qη Qx2
0 . When viewing the response

as it is plotted in Figure 8.3, it is difficult to distinguish between the effects of the
two forms of damping. The resonance peaks lie on the same backbone regardless of
the existence of a contribution from nonlinear damping. A more useful scheme for
seeing the effect of nonlinear damping is to plot the response amplitude scaled by
the drive jaj/g, often called the responsivity of the resonator, as shown in Figure 8.5.
Without nonlinear damping all peaks have the same height of 1. With nonlinear
damping, one clearly sees the decrease in the responsivity as the driving amplitude
is increased.

The region of bistability that lies between the two saddle-node bifurcations (8.34)
in the response of the driven Duffing resonator is the source of a number of in-
teresting dynamical features that are often observed in experiments with MEMS



234 8 Nonlinear Dynamics of Nanomechanical Resonators

& NEMS resonators [3, 19, 28, 70]. Most obvious is the existence of hysteresis in
quasistatic sweeps of either driving frequency or driving amplitude, which is read-
ily observed in experiments. For example, if we start below resonance and sweep
the frequency upwards along one of the constant drive amplitude curves shown in
Figure 8.3, the response will gradually increase, climbing up on the curve until it
reaches the upper saddle-node bifurcation ΩC

SN(g). It will then abruptly drop down
to the lower stable solution branch and continue toward lower response ampli-
tudes to the right of the resonance. Upon switching the direction of the quasistatic
sweep, the response amplitude will gradually increase until it reaches the lower
saddle-node bifurcation Ω�

SN(g), where it will abruptly jump up to the upper sta-
ble solution branch. From this point it will gradually follow it downwards towards
lower frequencies with diminishing response amplitude.

Another interesting aspect involves basins of attraction. If we fix the values of
the driving amplitude and frequency, the driven damped Duffing resonator will
deterministically approach one of the two possible solutions, depending on its ini-
tial conditions. One can then map the regions of the phase space of initial condi-
tions into the two so-called basins of attraction of the two possible stable solutions,
where the unstable solution lies along the separatrix, or border line between the
two basins of attraction. These basins of attraction were mapped out in a recent
experiment using a suspended platinum nanowire by Kozinsky et al. [41]. If one
additionally considers the existence of random noise, which is always the case in
real systems, then the separatrix becomes fuzzy and it is possible to observe ther-
mally activated switching of the resonator between its two possible solutions. What
is in fact observed, for example in an upward frequency scan, is that the resonator
can drop to the small amplitude solution before it actually reaches the upper saddle-
node bifurcation ΩC

SN(g). Similar behavior is also observed for the lower bifurcation
point. As the noise increases, the observed size of the bistability region effectively
shrinks. This was demonstrated with a doubly-clamped nanomechanical resonator
made of aluminum nitride in a recent experiment by Aldridge and Clelend [1].
The existence of the saddle-node bifurcation has also been exploited for applica-
tions because the response of the resonator at the bifurcation point can change
dramatically if one changes the drive frequency, or any of the resonator’s physical
parameters that can alter the response curve. This idea has been used for signal
amplification [10] as well as squeezing of noise [3, 69].

Finally, much effort has been recently invested to push experiments with
nanomechanical resonators towards the quantum regime. In this context, it has
been shown that the bistability region in the response of the driven damped Duff-
ing resonator offers a novel approach for observing the transition from classical
to quantum mechanical behavior as the temperature is lowered [36, 37]. The es-
sential idea is that one can find a regime in frequency and temperature where
thermal switching between the two basins of attraction is essentially suppressed
when the dynamics is classical, whereas if the resonator has already started enter-
ing the quantum regime, quantum dynamics allow it to switch between the two
basins. Thus, an observation of switching can be used to ascertain whether or not
a Duffing resonator is behaving quantum mechanically.
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8.2.3
Addition of Other Nonlinear Terms

It is worth considering the addition of other nonlinear terms that were not includ-
ed in our original equation of motion (8.18). Without increasing the order of the
nonlinearity, we could still add quadratic symmetry breaking terms of the form x2,
x Px , and Px2 as well as additional cubic damping terms of the form Px3 and x Px2.
Such terms may appear naturally in actual physical situations, like the examples
discussed in Section 8.1.2. For the reader who wishes to skip to the following sec-
tion on parametrically-driven Duffing resonators, we state at the outset that the
addition of such terms does not alter the response curves that we described in the
previous section in any fundamental way. They merely conspire to renormalize the
effective values of the coefficients used in the original equation of motion. Thus,
without any particular model at hand, it is difficult to discern the existence of such
terms in the equation.

Consider an equation like (8.18), but with additional terms of the form given
above,

m
d2 Qx
d Qt2

C Γ
d Qx
d Qt C mω2

0 Qx C Q
 Qx2 C Qμ Qx d Qx
d Qt C Q�

�
d Qx
d Qt
�2

C Qα Qx3 C Qη Qx2 d Qx
dQt

C Qν Qx
�

d Qx
d Qt
�2

C Q�
�

d Qx
d Qt
�3

D QG cos Qω Qt , (8.36)

and then perform the same scaling as in (8.20) for the additional parameters, pro-
ducing


 D
Q


ω0
p

m Qα , μ D Qμp
m Qα , � D Q�ω0p

m Qα , ν D Qνω2
0

Qα , � D
Q�ω3

0

Qα .

(8.37)

After performing the same scaling as before with the small parameter � D Q�1,
this yields a scaled equation of motion with all the additional nonlinearities,

Rx C� Px C x C
x2 Cμx Px C� Px2 C x3 Cηx2 Px C νx Px2 C � Px3 D �3/2g cos ω t .

(8.38)

The important difference between this equation and the one we solved earlier (8.21)
is that with a similar scaling of x with

p
�, we now have terms on the order of �. We

therefore need to modify our trial expansion to contain such terms as well, yielding

x (t) D p
�x0(t, T ) C �x1/2(t, T ) C �3/2x1(t, T ) C . . . , (8.39)

with x0 D 1
2

�
A(T ) eit C c.c.

�
as before.

We begin by collecting all terms on the order of �, arriving at

Rx1/2 C x1/2 D � 1
2 (
 C �) jAj2 � 1

4

�
(
 � � C iμ) A2 e2it C c.c.

�
. (8.40)
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This equation for the first correction x1/2(t) contains no secular terms, and there-
fore can be solved immediately to give

x1/2(t) D � 1
2 (
 C �) jAj2 C 1

12

�
(
 � � C iμ) A2 e2it C c.c.

�
. (8.41)

We substitute this solution into the ansatz (8.39) and back into the equation of mo-
tion (8.38), and proceed by collecting terms on the order of �3/2. We find a number
of additional terms of this order that did not appear earlier on the right-hand side
of (8.25) for the correction x1(t),

� 2
x0x1/2 � μ
�
x0 Px1/2 C Px0 x1/2

� � 2� Px0 Px1/2 � νx0 Px2
0 � � Px3

0

D ˚� 5
12 
 (
 C �) C 1

6 �2 C 1
24 μ

2 � 1
8 ν
�C i

� 1
8 μ (
 C �) � 3

8 �
��jAj2A eit

C nonsecular terms .

(8.42)

After adding the additional secular terms, we obtain a modified equation for the
slowly varying amplitude A(T ),

dA
dT

D � 1
2

A C i
3
8

�
1 � 10

9

 (
 C �) � 4

9
�2 � 1

9
μ2 C 1

3
ν
�

jAj2A

� 1
8

(η � μ (
 C �) C 3� ) jAj2A � i
g
2

eiΩ T

� � 1
2

A C i
3
8
αeffjAj2A � 1

8
ηeffjAj2A � i

g
2

eiΩ T . (8.43)

We find that the equation is formally identical to the previous result (8.26) before
adding the extra nonlinear terms. The response curves and the discussion of the
previous section therefore still apply after taking into account all of the quadratic
and cubic nonlinear terms. All of these terms combine in a particular way, giving
rise to the two effective cubic parameters defined in (8.43). This, in fact, allows one
some flexibility in tuning the nonlinearities of a Duffing resonator in real experi-
mental situations. For example, Kozinsky et al. [40] use this flexibility to tune the
effective Duffing parameter αeff via an external electrostatic potential, as described
in Section 8.1.3 and shown in Figure 8.1. This affects both the quadratic parameter
Q
 and the cubic parameter Qα in the physical equation of motion (8.36). Note that
due to the different signs of the various contributions to the effective nonlinear pa-
rameters, one could actually cause the cubic terms to vanish, altering the response
in a fundamental way.

8.3
Parametric Excitation of a Damped Duffing Resonator

Parametric excitation offers an alternative approach for actuating MEMS or NEMS
resonators. Instead of applying an external force that acts directly on the resonator,
one modulates one or more of its physical parameters as a function of time, which
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in turn modulates the normal frequency of the resonator. This is what happens
on a swing when the up-and-down motion of the center of mass of the swinging
child effectively changes the length of the swing, thereby modulating its natural
frequency. The most effective way to swing is to move the center of mass up and
down twice in every period of oscillation, but one can also swing by moving up
and down at slower rates, namely once every nth multiple of half a period, for any
integer n.

Let H be the relative amplitude by which the normal frequency is modulated, and
ωP be the frequency of the modulation, often called the pump frequency. One can
show [42] that there is a sequence of tongue shaped regions in the H � ωP plane
where the smallest fluctuations away from the quiescent state of the swing, or any
other parametrically-excited resonator [66], are exponentially amplified. This hap-
pens when the amplitude of the modulation H is sufficiently strong to overcome
the effect of damping, where the threshold for the nth instability tongue scales as
(Q�1)1/n . Above this threshold, the amplitude of the motion grows until it is sat-
urated by nonlinear effects. We shall describe the nature of these oscillations for
driving above threshold later, both for the first (n D 1) and the second (n D 2)
instability tongues, but first we shall consider the dynamics when the driving am-
plitude is just below threshold, as it also offers interesting behavior and a possi-
bility for novel applications such as parametric amplification [4, 12, 57] and noise
squeezing [57].

There are a number of actual schemes for the realization of parametric excita-
tion in MEMS & NEMS devices. The simplest and probably most commonly used
on the micron scale is to use an external electrode that can induce an external po-
tential. If the external potential is modulated in time it can change the effective
spring constant of the resonator [24, 51, 52, 66, 71, 72]. Based on our treatment of
this situation in Section 8.1.3, this method is likely to modulate all the coefficients
in the potential felt by the resonator, thus also modulating, for example, the Duff-
ing parameter α. Similarly, one may devise configurations in which an external
electrode deflects a doubly-clamped beam from its equilibrium, thereby inducing
extra tension within the beam itself that can be modulated in time, as described
in Section 8.1.4. Alternatively, one may generate motion in the clamps holding a
doubly-clamped beam by its ends, thus inducing in it a time-varying tension which
is likely to affect the other physical parameters to a lesser extent. An example of this
method is shown in Figure 8.6. These methods allow one to modulate the tension
in the beam directly and thus modulate its normal frequency. More recently, Mas-
manidis et al. [45] developed layered piezoelectric NEMS structures whose tension
can be fine tuned in doubly-clamped configurations, thus enabling fine control of
the normal frequency of the beam with a simple turn of a knob.

Only a minor change is required in our equation of the driven damped Duffing
resonator to accommodate this new situation, namely the addition of a modula-
tion of the linear spring constant. Beginning with the scaled form of the Duffing
equation (8.19), we obtain

Rx C Q�1 Px C [1 C H cos ωP t] x C x3 C ηx2 Px D G cos
�
ωD t C φ g

�
, (8.44)
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Figure 8.6 A configuration that uses elec-
tromotive actuation to perform parametric
excitation of a doubly-clamped beam, the cen-
tral segment of the H-shaped device. A static
magnetic field runs normal to the plane of the
device. A metallic wire that runs along the ex-
ternal suspended segments of the H-device
carries alternating current in opposite direc-
tions, thus applying opposite Lorentz forces

that induce a time-varying compression of the
central segment. This modulates the tension
in the central segment, thus varying its nor-
mal frequency. This configuration was recently
used by Karabalin et al. [35] to demonstrate
parametric amplification of a signal running
along the central beam through a separate
electric circuit. Image courtesy of Michael
Roukes.

where the scaling is the same as before, and we shall again use the damping Q�1

to define the small expansion parameter �. The term proportional to H on the left
hand side is the external drive that modulates the spring constant, giving a term
that is proportional to the displacement x as well as to the strength of the drive.
This term is the parametric drive.

We first consider the largest excitation effect that occurs when the pump fre-
quency is close to twice the resonant frequency of the resonator. This is the region
in the H � ωP plane that we termed the first instability tongue. We therefore take
the pump frequency to be an amount �ΩP away from twice the resonant frequen-
cy, and take the drive amplitude to scale as the damping, that is, we set H D �h.
The term on the right hand side is a direct additive drive or signal, with amplitude
scaled as in the discussion of the Duffing equation. The frequency of the drive is
an amount εΩD away from the resonator frequency that has been scaled to 1.

The scaled equation of motion that we now treat in detail is therefore

Rx C � Px C (1 C �h cos [(2 C �ΩP) t]) x C x3 C ηx2 Px
D �3/2jgj cos

�
(1 C �ωD ) t C φg

�
, (8.45)

where we now use g D jgje iφg to denote a complex drive amplitude.
We follow the same scheme of secular perturbation theory as in Section 8.2.2, us-

ing a trial solution in the form of (8.22) and proceeding as before. The new secular
term, appearing on the right-hand side of (8.25) and arising from the parametric
drive is

� 1
4 hA� eiΩP T eit . (8.46)

This gives the equation for the slowly varying amplitude,

dA
dT

C 1
2

A � i
h
4

A� eiΩP T � i
3
8

jAj2A C η
8

jAj2A D �i
g
2

eiΩD T . (8.47)
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8.3.1
Driving Below Threshold: Amplification and Noise Squeezing

We first study the amplitude of the response of a parametrically-pumped Duffing
resonator to an external direct drive g ¤ 0. We will see that the characteristic be-
havior changes from amplification of an applied signal to oscillations at a critical
value of h D hc D 2, even in the absence of a signal. It is therefore convenient
to introduce a reduced parametric drive Nh D h/ hc D h/2 that plays the role of
a bifurcation parameter with a critical value of 1. We begin by assuming that the
drive is small enough so that the magnitude of the response remains small and the
nonlinear terms in (8.47) can be neglected. This gives the linear equation

dA
dT

C 1
2

A � i
Nh
2

A� eiΩP T D �i
g
2

eiΩD T . (8.48)

In general, at long times after transients have died out, the solution will take the
form

A D a0 eiΩD T C b0 ei(ΩP�ΩD)T , (8.49)

where a0 and b0 are complex constants.
We first consider the degenerate case where the pump frequency is tuned such

that it is always twice the signal frequency. In this case ΩP D 2ΩD, and the long
time solution is

A D a eiΩD T (8.50)

with a a time independent complex amplitude. Substituting this into (8.48) gives

(2ΩD � i)a � Nha� D �g . (8.51)

Equation (8.51) is easily solved. If we first look on resonance, ΩD D 0, we find

a D eiπ/4

"
cos(φg C π/4)

(1 � Nh)
C i

sin(φg C π/4)

(1 C Nh)

#
jgj , (8.52)

where we remind the reader that g D jgj eiφg so that φg measures the phase of the
signal relative to the pump. Equation (8.52) shows that on resonance and for Nh ! 1
(or h ! hc D 2), the strongest enhancement of the response occurs for a signal that
has a phase �π/4 relative to the pump. Physically, this means that the maximum
of the signal occurs a quarter of a pump cycle after a maximum of the pump. (The
phase 3π/4 gives the same result: this corresponds to shifting the oscillations by
a complete pump period.) The enhancement diverges as Nh ! 1, provided that the
signal amplitude g is small enough that the enhanced response remains within the
linear regime. For a fixed signal amplitude g, the response will become large as
Nh ! 1, so that the nonlinear terms in (8.47) must be retained and the expressions
we have derived no longer hold. This situation is discussed in the next section.
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On the other hand, there is a weak suppression, by a factor of 2 as Nh ! 1, for
a signal that has a relative phase π/4 or 5π/4. The latter pertains to the case of a
signal maximum that occurs a quarter of a pump cycle before a maximum of the
pump. A noise signal on the right-hand side of the equation of motion (8.45) would
have both phase components. This leads to the squeezing of the noisy displacement
driven by this noise, with the response at phase �π/4 amplified and the response
at phase π/4 quenched.

The full expression for ΩD ¤ 0 for the response amplitude is

a D �
"

2ΩD C (i C Nh e�2 iφg )

4Ω 2
D C (1 � Nh2)

#
g . (8.53)

For Nh ! 1 the response is large when ΩD 	 1, that is, for frequencies much closer
to resonance than the original width of the resonator response. In these limits the
first term in the numerator may be neglected unless φg ' π/4. This then gives

jaj D 2
ˇ̌
g cos(φg C π/4)

ˇ̌
4Ω 2

D C (1 � Nh2)
. (8.54)

This is not the same as the expression for a resonant response, since the frequency
dependence of the amplitude, not amplitude squared, is Lorentzian. However, es-
timating a quality factor from the width of the sharp peak would give an enhanced

quality factor / 1/
p

1 � Nh2, becoming very large as Nh ! 1. For the case φg D π/4
the magnitude of the response is

ˇ̌
aφgDπ/4

ˇ̌ D
q

4Ω 2
D C (1 � Nh)2

4Ω 2
D C (1 � Nh2)

jNgj . (8.55)

This initially increases as the frequency approaches resonance, but decreases for

ΩD .
p

1 � Nh, approaching jgj /2 for ΩD ! 0, Nh ! 1.
For the general or nondegenerate case of ΩP ¤ 2ΩD, it is straightforward to

repeat the calculation with the ansatz (8.49). The result is

a0 D � 2(ΩP � ΩD) C i

4ΩD(ΩP � ΩD) � 2i(ΩP � 2ΩD) C 1 � Nh2
g . (8.56)

Notice that this does not reduce to (8.53) for ΩP D 2ΩD, since we miss some of the
interference terms in the degenerate case if we base the calculation on ΩP ¤ 2ΩD.
Also, of course, there is no dependence of the magnitude of the response on the
phase of the signal φg, since for different frequencies the phase difference cannot
be defined independent of an arbitrary choice of the origin of time. If the pump
frequency is maintained fixed at twice the resonator resonance frequency, corre-
sponding to ΩP D 0, the expression for the amplitude of the response simplifies
to

a0 D 2ΩD � i

�4Ω 2
D C 4 iΩD C 1 � Nh2

g . (8.57)
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Figure 8.7 Response of the parametrically
driven resonator as the signal frequency ΩD
varies for a pump frequency equal to twice the
signal frequency (a), and for the pump fre-
quency fixed at the linear resonance frequency
(b), given by (8.53) and (8.57), respectively.
The dashed curve is the response of the res-

onator to the same signal without parametric
drive. In (a) the upper curve is for the ampli-
fied phase φg D �π/4, and the lower curve
for the phase φg D π/4, giving squeezing on
resonance. In both cases the reduced pump
amplitude Nh D h/ hc is 0.95.

Again, there is an enhanced response for drive frequencies closer to resonance
than the width of the original resonator response. In this region ΩD 	 1, so that

ˇ̌
a0
ˇ̌ ' jgj 1q

(4ΩD)2 C (1 � Nh2)2
. (8.58)

This is the usual Lorentzian describing a resonance with a quality factor enhanced
by (1 � Nh2)�1, as shown in Figure 8.7(b).

For the resonance condition ΩD D ΩP D 0, corresponding to both a pump
frequency that is twice the resonance frequency of the device, and to a signal at this
resonant frequency, the response amplitude in the linear approximation diverges
as the pump amplitude approaches the critical value hc D 2. This is the signature
of a linear instability to self sustained oscillations in the absence of any drive. We
analyze this parametric instability in the next section.

8.3.2
Linear Instability

The divergence of the response as Nh approaches unity from below corresponding
to h ! 2 suggests a linear instability for h > 2, or QH > 2 in the original units.
We can see this directly from (8.47) by setting g D 0 but still ignoring the nonlinear
terms, yielding the linear equation

dA
dT

C 1
2

A D i
h
4

A� eiΩP T . (8.59)

We seek a solution of the form

A D jaj eiφ eσT ei(ΩP/2)T (8.60)
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/

Figure 8.8 The first instability tongue of the
parametrically-driven Duffing resonator, the
threshold for instability, plotted in the (ΩP, h)
plane. The lower, long-dashed curve shows
the threshold without any linear damping
(Γ D 0), which is zero on resonance. The
upper curve shows the threshold with linear
damping (Γ ¤ 0). The threshold on reso-

nance (ΩP D 0) is h D 2. The solid and
short-dashed regions of the upper curve indi-
cate the so-called subcritical and supercritical
branches of the instability, respectively, as
discussed in Section 8.3.4. On the subcritical
branch (ΩP > 4η/3) there will be hysteresis
as h is varied, and on the supercritical branch
(ΩP < 4η/3) there will not be any hysteresis.

with a real σ giving exponential growth or decay. Substituting into (8.59) gives

σ D
�1 ˙

q
(h/2)2 � Ω 2

P

2
, (8.61)

φ D ˙
�

π
4

� 1
2

arcsin
�

2ΩP

h

��
(8.62)

where we take the value of arcsin between 0 and π/2, and the plus and minus signs
in the two equations correspond directly to one another. Note that these expressions
apply for h/2 > ΩP; for h/2 < ΩP, the value of σ is complex. For pumping at twice
the resonance frequency ΩP D 0, one phase of oscillation φ D π

4 has a reduced
damping, with σ D �(1/2 � h/4) for h < 2, and an instability σ D (h/4 � 1/2) > 0
signaling exponential growth for h > 2. The other phase of oscillation φ D � π

4 has
an increased damping, with σ D �(1/2 C h/4). The general condition for instability
is

h > 2
q

1 C Ω 2
P , (8.63)

showing an increase of the threshold for nonzero frequency detuning ΩP, as shown
in Figure 8.8. The linear instability that occurs for positive σ gives exponentially
growing solutions that eventually saturate due to nonlinearity.

8.3.3
Nonlinear Behavior Near Threshold

Nonlinear effects may also be important below the threshold of the parametric in-
stability in the presence of a periodic signal or noise. As we have seen, in the linear
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approximation the gain below threshold diverges as h ! hc. This is unphysical,
and for a given signal or noise strength there is some h close enough to hc where
nonlinear saturation of the gain will become important. This will give a smooth be-
havior of the response of the driven system as h passes through hc into the unstable
regime. We first analyze the effects of nonlinearity near the threshold of the insta-
bility, and calculate the smooth behavior as h passes through hc in the presence of
an applied signal. In the following section we study the effects of nonlinearity on
the self-sustained oscillations above threshold with more generality.

We take h to be close to hc, and we take the signal to be small. This introduces
a second level of “smallness”. We have already assumed that the damping and the
deviation of the pump frequency from resonance are both small. This means that
the critical parametric drive Hc is also small. We now assume that jH �Hcj is small
compared with Hc, or, equivalently in scaled units, that jh � hcj is small compared
with hc. We then introduce the perturbation parameter δ to implement this, that
is, we assume that

δ D h � hc

hc
	 1 . (8.64)

We now use the same type of secular perturbation theory as the method leading
to (8.47) to develop the expansion in δ. For simplicity we will develop the theory for
the most interesting case of resonant pump and signal frequencies ΩP D ΩD D 0.
The critical value of h is then hc D 2, and the solution to (8.47) that becomes
marginally stable at this value is

A D b eiπ/4 , (8.65)

with b a real constant.
For h near hc we make the ansatz for the solution

A D δ1/2b0(τ) eiπ/4 C δ3/2b1(τ) C � � � , (8.66)

where b0 is a real function of τ D δT . The latter is a new and even slower time
scale that determines the time variation of the real amplitude b0 near threshold.
We must also assume that the signal amplitude is very small, that is, g D δ3/2 Og, in
total yielding G D (�δ)3/2 Og. Substituting (8.66) into (8.47) and collecting terms at
O(δ3/2) yields

1
2

(b1 � b�
1 ) D � Og

2
eiπ/4 � db0

dτ
C 1

2
b0 C i

3
8

b3
0 � η

8
b3

0 . (8.67)

The left-hand side of this equation is necessarily imaginary, so in order to have
a solution for b1 such that the perturbation expansion is valid, the real part of
the right-hand side must be zero. This is the solvability condition for the secular
perturbation theory. This gives

db0

dτ
D 1

2
b0 � η

8
b3

0 � j Ogj
2

cos(φg C π/4) . (8.68)
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It is more informative to write this equation in terms of the the variables without
the δ scaling. Introducing the “unscaled” amplitude b D δ1/2b0 and generaliz-
ing (8.65) such that

A D b eiπ/4 C O(δ3/2) , (8.69)

we can write the equation as

db
dT

D 1
2

h � hc

hc
b � η

8
b3 � jgj

2
cos(φg C π/4) . (8.70)

Equation (8.70) can be used to investigate many phenomena, such as transients
above threshold, and how the amplitude of the response to a signal varies as h pass-
es through the instability threshold. The unphysical divergence of the response to
a small signal as h ! hc from below is now eliminated. For example, exactly at
threshold h D hc we have

jbj D
�

4
η

ˇ̌
g cos(φg C π/4)

ˇ̌�1/3

, (8.71)

giving a finite response, but one proportional to jgj1/3 rather than to jgj. The gain
jb/gj scales as jgj�2/3 for h D hc, and gets smaller as the signal gets larger, as
shown in Figure 8.9. Note that the physical origin of the saturation at the lowest
order of perturbation theory is nonlinear damping. Without nonlinear damping
the response amplitude (8.71) still diverges. With linear damping that is still small,
one would need to go to higher orders of perturbation theory to find a different
physical mechanism that can provide this kind of saturation. The response to noise
can also be investigated by replacing the jgj cos(φg Cπ/4) drive by a noise function.
Equation (8.70) and the noisy version appear in many contexts of phase transitions
and bifurcations, and so solutions are readily found in the literature [20].
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Figure 8.9 Saturation of the response b (a) and gain
ˇ̌
b/g

ˇ̌
(b)

as the parametric drive h passes through the critical value hc,
for four different signal levels g. The signal levels are

p
η/4

times 10�2.5, 10�3, 10�3.5, and 10�4, increasing upwards for
the response figure, and downwards for the gain figure. The
response amplitude is also measured in units of

p
η/4. The

phase of the signal is φg D �π/4.
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8.3.4
Nonlinear Saturation above Threshold

The linear instability leads to exponential growth of the amplitude, regardless of
the signal, and results in its saturation. In order to understand this process, we
need to return to the full nonlinear treatment of (8.47) with g D 0. Ignoring initial
transients and assuming that the nonlinear terms in the equation are sufficient to
saturate the growth of the instability, we try a steady-state solution of the form

A(T ) D aei

ΩP
2

�
T . (8.72)

This amplitude a can be any solution of the equation��
3
4

jaj2 � ΩP

�
C i


1 C η

4
jaj2

��
a D � h

2
a� , (8.73)

obtained by substituting the steady-state solution (8.72) into the equation of the sec-
ular terms (8.47). We immediately see that having no response (a D 0) is always a
possible solution regardless of the excitation frequency ΩP. Expressing a D jaj eiφ

and taking the magnitude squared of both sides, we obtain the intensity jaj2 of the
nontrivial response as all positive roots of the equation�

ΩP � 3
4

jaj2
�2

C


1 C η
4

jaj2
�2 D h2

4
. (8.74)

In addition to the solution jaj D 0, we have a quadratic equation for jaj2 and
therefore, at most, two additional positive solutions for jaj. This has the form of
a distorted ellipse in the (ΩP, jaj2) plane and a parabola in the (jaj2, h) plane. In
addition, we obtain for the relative phase of the response

φ D i
2

ln
a�

a
D � 1

2
arctan

1 C η
4 jaj2

3
4 jaj2 � ΩP

. (8.75)

In Figure 8.10 we plot the response intensity jaj2 of a Duffing resonator to para-
metric excitation as a function of the pump frequency ΩP for a fixed scaled drive
amplitude h D 3. Solid curves indicate stable solutions, and dashed curves are
solutions that are unstable to small perturbations. Thin curves show the response
without nonlinear damping (η D 0), which grows indefinitely with frequency ΩP

and is therefore incompatible with experimental observations [8, 66, 71] as well as
the assumptions of our calculation. As we saw for the saturation below threshold,
without nonlinear damping and with linear damping being small, one would have
to go to higher orders of perturbation theory to search for a physical mechanism
that could provide saturation. For large linear damping, or small Q, one sees satu-
ration even without nonlinear damping [47]. Thick curves in Figure 8.10 show the
response with finite nonlinear damping (η D 1). With finite η there is a maximum
value for the response jaj2max D 2(h � 2)/η, and a maximum frequency

ΩSN D h
2

s
1 C

�
3
η

�2

� 3
η

, (8.76)
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Figure 8.10 Response intensity jaj2 as a function of the pump
frequency ΩP, for fixed amplitude h D 3. Solid curves are stable
solutions; dashed curves are unstable solutions. Thin curves
show the response without nonlinear damping (η D 0). Thick
curves show the response for finite nonlinear damping (η D 1).
Dotted lines indicate the maximal response intensity jaj2max and
the saddle-node frequency ΩSN.

at a saddle-node bifurcation, where the stable and unstable nontrivial solutions
meet. For frequencies above ΩSN the only solution is the trivial one, a D 0. These
values are indicated by horizontal and vertical dotted lines in Figure 8.10.

The threshold for the instability of the trivial solution is easily verified by setting
a D 0 in the expression (8.74) for the nontrivial solution, or by inverting the expres-
sion (8.63) for the instability that we obtained in the previous section. As seen in
Figure 8.10, for a given h the threshold is situated at ΩP D ˙p(h/2)2 � 1. This is
the same result calculated in the previous section, where we plotted the threshold
tongue in Figure 8.8 in the (h, ΩP) plane. Figure 8.10 is a horizontal cut through
that tongue at a constant drive amplitude h D 3.

Like the response of a forced Duffing resonator shown in (8.29), the response
of a parametrically excited Duffing resonator also exhibits hysteresis in quasistatic
frequency scans. If the frequency ΩP begins at negative values and is increased
gradually with a fixed amplitude h, the zero response will become unstable as the
lower threshold is crossed at �p(h/2)2 � 1. After this occurs the response will
gradually increase along the thick solid curve in Figure 8.10, until ΩP reaches ΩSN

and the response drops abruptly to zero. If the frequency is then decreased gradu-
ally, the response will remain zero until ΩP reaches the upper instability threshold
Cp(h/2)2 � 1. The response will then jump abruptly to the thick solid curve above,
and afterwards gradually decrease to zero along this curve.

Finally, in Figure 8.11 we plot the response intensity jaj2 of the Duffing resonator
as a function of drive amplitude h, for fixed frequency ΩP and finite nonlinear
damping η D 1. This would correspond to performing a vertical cut through the in-
stability tongue Figure 8.8. Again, solid curves indicate stable solutions and dashed
curves indicate unstable solutions. Thick curves show the response for ΩP D 1, and
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Figure 8.11 Response intensity jaj2 as a function of the para-
metric drive amplitude h for fixed frequency ΩP and finite non-
linear damping (η D 1). Thick curves show the stable (solid
curves) and unstable (dashed curves) response for ΩP D 1.
Thin curves show the stable solutions for ΩP D η/3 and
ΩP D �1, and demonstrate that hysteresis as h is varied is
expected only for ΩP > η/3.

thin curves show the response for ΩP D η/3 and ΩP D �1. The intersection of
the trivial and the nontrivial solutions, which corresponds to the instability thresh-
old (8.63), occurs at h D 2

p
ΩP

2 C 1. For ΩP < η/3, the nontrivial solution for
jaj2 grows continuously for h above threshold and is stable. This is a supercritical
bifurcation. On the other hand, for ΩP > η/3 the bifurcation is subcritical and the
nontrivial solution grows for h below threshold. This solution is unstable until the
curve of jaj2 as a function of h turns at a saddle-node bifurcation at

hSN D 2 C 2η
3 ΩPq

1 C � η
3

�2
, (8.77)

where the solution becomes stable and jaj2 is once more an increasing function
of h. For amplitudes h < hSN the only solution is the trivial one a D 0. Hysteretic
behavior is therefore expected for quasistatic scans of the drive amplitude h only if
the fixed frequency ΩP > η/3, as can be inferred from Figure 8.11.

8.3.5
Parametric Excitation at the Second Instability Tongue

We wish to examine the second tongue by looking at the response above threshold
and highlighting the main changes from the first tongue. This tongue, it should
be noted, is readily accessible in experiments because the pump and the response
frequencies are the same. We start with the general equation for a parametrically-
driven Duffing resonator (8.44), but with no direct drive (g D 0), where the para-
metric excitation is performed around 1 instead of 2. Correspondingly, the scaling
of H with respect to � needs to be changed to H D h

p
�. The reason for this change
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is that with the H D h� scaling, the order �1/2 term in x becomes identically zero.
This occurs because the parametric driving term does not contribute to the order
�3/2 secular term which we use to find the response. Scaling H in the appropriate
manner will introduce a nonsecular correction to x at order �, and this correction
will contribute to the order �3/2 secular term and will give us the required response.
The equation of motion then becomes

Rx C x D � h�1/2

2


ei(tCΩPT ) C c.c.

�
x � � Px � x3 � ηx2 Px , (8.78)

and we try an expansion of the solution of the form

x (t) D �1/2 1
2

�
A(T ) eit C c.c.

�C �x1/2(t) C �3/2x1(t) C . . . (8.79)

Substituting this expansion into the equation of motion (8.78), we obtain at order
�1/2 the linear equation as usual, and at order �

Rx1/2 C x1/2 D � h
4

�
A eiΩP T e2it C A� eiΩP T C c.c.

�
. (8.80)

As expected, there is no secular term on the right-hand side so we can immediately
solve for x1/2, yielding

x1/2(t) D h
4

�
A
3

eiΩP T e2 it � A� eiΩP T C c.c.
�

C O(�) . (8.81)

Substituting the solution for x1/2 into the expansion (8.79), and the expansion back
into the equation of motion (8.78), contributes an additional term from the para-
metric driving which has the form

�3/2 h2

8

�
� A

3
eiΩP T e2 it C A� eiΩP T C c.c.

��
eiΩP T eit C c.c.

�
D �3/2 h2

8

�
2
3

A C A� ei2ΩP T
�

eit C c.c. C nonsecular terms . (8.82)

This gives us the required contribution to the equation for the vanishing secular
terms. All other terms remain as they were in (8.47), so that the new equation for
determining A(T ) becomes

dA
dT

C i
h2

8

�
2
3

A C A� ei2ΩP T
�

C 1
2

A � i
3
8

jAj2A C η
8

jAj2A D 0 . (8.83)

Again, ignoring initial transients and assuming that the nonlinear terms in the
equation are sufficient to saturate the growth of the instability, we try a steady-state
solution, this time of the form

A(T ) D a eiΩP T . (8.84)

The solution to the equation of motion (8.78) is therefore

x (t) D �1/2(a ei(1C�ΩP)t C c.c.) C O(�) , (8.85)
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where the correction x1/2 of order � is given in (8.81) and, as before, we are not
interested in the correction x1(t) of order �3/2, but rather in the fixed amplitude
a of the lowest order term. We substitute the steady-state solution (8.84) into the
equation of the secular terms (8.83) and obtain��

3
4

jaj2 � 2ΩP � h2

6

�
C i


1 C η

4
jaj2

��
a D h2

4
a� . (8.86)

By taking the magnitude squared of both sides we obtain, in addition to the trivial
solution a D 0, a nontrivial response given by�

3
4

jaj2 � 2ΩP � 1
6

h2
�2

C


1 C η
4

jaj2
�2 D h4

16
. (8.87)

Figure 8.12 shows the response intensity jaj2 as a function of the frequency ΩP

for a fixed drive amplitude of h D 3, producing a horizontal cut through the sec-
ond instability tongue. The solution looks very similar to the response shown in
Figure 8.10 for the first instability tongue, though we should point out two im-
portant differences. The first is that the orientation of the ellipse, indicated by the
slope of the curves for η D 0, is different. The slope here is 8/3, whereas for the
first instability tongue the slope is 4/3. The second is the change in the scaling of
h with �, or the inverse quality factor Q�1. The lowest critical drive amplitude for
an instability at the second tongue is again on resonance (ΩP D 0), and its value is
again h D 2. This now implies, however, that H

p
Q D 2, or that H scales as the

square root of the linear damping rate Γ . This is consistent with the well known
result that the minimal amplitude for the instability of the nth tongue scales as
Γ 1/n (for example, see [42], Section 3).
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Figure 8.12 Response intensity jaj2 of a parametrically-driven
Duffing resonator as a function of the pump frequency ΩP, for
a fixed amplitude h D 3 in the second instability tongue. Solid
curves are stable solutions and dashed curves are unstable
solutions. Thin curves show the response without nonlinear
damping (η D 0). Thick curves show the response for finite
nonlinear damping (η D 1).
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8.4
Parametric Excitation of Arrays of Coupled Duffing Resonators

The last two sections of this review describe theoretical work that was motivated
directly by the experimental work of Buks and Roukes [8]. They fabricated an ar-
ray of nonlinear micromechanical doubly-clamped gold beams, and excited them
parametrically by modulating the strength of an externally controlled electrostat-
ic coupling between neighboring beams. The Buks and Roukes experiment was
modeled by Lifshitz and Cross [44] (henceforth LC) using a set of coupled nonlin-
ear equations of motion. The latter used secular perturbation theory, as we have
described so far for a system with just a single degree of freedom, to convert these
equations of motion into a set of coupled nonlinear algebraic equations for the nor-
mal mode amplitudes of the system. This enabled them to obtain exact results for
small arrays, but only a qualitative understanding of the dynamics of large arrays.
We shall review these results in this section.

In order to obtain analytical results for large arrays, Bromberg, Cross, and Lif-
shitz [7] (henceforth BCL) studied the same system of equations, approaching it
from the continuous limit of infinitely many degrees of freedom. They obtained
a description of the slow spatiotemporal dynamics of the array of resonators in
terms of an amplitude equation. BCL showed that this amplitude equation could
predict the initial mode that develops at the onset of parametric oscillations as the
driving amplitude is gradually increased from zero, as well as a sequence of sub-
sequent transitions to other single mode oscillations. We shall review these results
in Section 8.5. Kenig, Lifshitz, and Cross [38] have extended the investigation of
the amplitude equation to more general questions such as how patterns are se-
lected when many patterns or solutions are simultaneously stable. This extension
includes other experimentally relevant questions, such as the response of the sys-
tem of coupled resonators to time dependent sweeps of the control parameters,
rather than quasistatic sweeps like the ones we have been discussing here. Kenig
et al. [39] have also studied the formation and dynamics of intrinsically-localized
modes, or solitons, in the array equations of LC. To this end, they derived a differ-
ent amplitude equation, which takes the form of a parametrically-driven damped
nonlinear Shrödinger equation, also known as a forced complex Ginzburg-Landau
equation. We shall not review these last two papers here, but encourage the reader
to pursue them independently.

8.4.1
Modeling an Array of Coupled Duffing Resonators

LC modeled the array of coupled nonlinear resonators that was studied by Buks
and Roukes using a set of coupled equations of motion (EOM) of the form

Ru n C u n C u3
n � 1

2 Q�1( Pu nC1 � 2 Pu n C Pu n�1)

C 1
2

�
D C H cos ωp t

�
(u nC1 � 2u n C u n�1)

� 1
2 η
�
(u nC1 � u n)2( Pu nC1 � Pu n) � (u n � u n�1)2( Pu n � Pu n�1)

� D 0 ,

(8.88)
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where u n(t) describes the deviation of the nth resonator from its equilibrium, with
n D 1 . . . N , and fixed boundary conditions u0 D u NC1 D 0. Detailed argu-
ments for the choice of terms introduced into the equations of motion are dis-
cussed in [44]. The terms include an elastic restoring force with both linear and
cubic contributions, whose coefficients are both scaled to 1 as in our discussion of
the single degree of freedom. They also include a dc electrostatic nearest neighbor
coupling term with a small ac component responsible for the parametric excita-
tion, with coefficients D and H, respectively, and linear as well as cubic nonlinear
dissipation terms. Both dissipation terms are assumed to depend on the difference
of the displacements of nearest neighbors.

We consider here a slightly simpler and more general model for an array of
coupled resonators in order to illustrate the approach. Motivated by the geome-
try of most experimental NEMS systems, we assume a line of identical resonators
although the generalization to two or three dimensions is straightforward. The
simplest model is to take the equation of motion of each resonator to be as that
in (8.44), with the addition of a coupling term to its two neighbors. A simple choice
would be to assume that this coupling does not introduce additional dissipation,
which we describe as reactive coupling. Elastic and electrostatic coupling might be
predominantly of this type. After the usual scaling, the equations of motions would
take the form

Ru n C Q�1 Pu n C u3
n C (1 C H cos ωP t)u n C ηu2

n Pu n

C 1
2 D(u nC1 � 2u n C u n�1) D 0 , (8.89)

where we do not take into account any direct drive for the purposes of the present
section.

The equations of motion for particular experimental implementations might
have different terms, although we expect all will have linear and nonlinear damp-
ing, linear coupling, and parametric drive. For example, to model the experimental
setup of Buks and Roukes [8], LC supposed that both linear and nonlinear dissipa-
tion terms involved the difference of neighboring displacements, that is, the terms
involving Pu n in our equations of motion (8.89) are replaced with terms involving
u nC1 � u n in the equations of motion (8.88) used by LC. This was to describe the
physics of electric current damping, with the currents driven by the varying ca-
pacitance between neighboring resonators depending on the change in separation
and the fixed DC voltage. This effect seemed to be the dominant component of the
dissipation in the Buks and Roukes experiments. Similarly, the parametric drive
H cos ωP t multiplied (u nC1 � 2u n C u n�1) in the equations of LC rather than u n

here, since the voltage between adjacent resonators was the quantity modulated,
changing the electrostatic component of the spring constant.

In a more recent implementation [45], the electric current damping has been
reduced, and the parametric drive is directly applied to each resonator piezoelectri-
cally, so that the simpler form of (8.89) applies. The method of attack is the same
in any case. We will illustrate the approach on the simpler equation, and refer
the reader to LC for the more complicated model. An additional complication in
a realistic model may be that the coupling is longer range than nearest neighbor.
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For example, both electrostatic coupling and elastic coupling through the supports
would have longer range components. The general method is the same for these
additional effects, and the reader should be able to apply the approach to the model
for their particular experimental implementation.

8.4.2
Calculating the Response of an Array

We calculate the response of the array to parametric excitation, again using secular
perturbation theory. We suppose Q is large and take � D Q�1 as the small expan-
sion parameter. As in Section 8.3 we take H D �h, but we also take D D �d so
that the width of the frequency band of eigenmodes is also small. This is not quite
how LC treated the coupling, but we think the present approach is clearer, and it
is equivalent up to the order of the expansion in � that we require. We thank Eyal
Kenig for pointing out this simplification.

The equations of motion are now

Ru n C � Pu n C u3
n C �

1 C �h cos
�
(2 C �ΩP)t

��
u n C ηu2

n Pu n

C 1
2 �d(u nC1 � 2u n C u n�1) D 0 , n D 1 . . . N . (8.90)

We expand u n(t) as a sum of standing wave modes with slowly varying amplitudes.
The nature of the standing wave modes will depend on the conditions at the end of
the line of resonators. In the experiments of Buks and Roukes there were N mobile
beams, with a number of identical immobilized beams at each end. These condi-
tions can be implemented in a nearest neighbor model by taking two additional
resonators, u0 and u NC1 and assuming

u0 D u NC1 D 0 . (8.91)

The standing wave modes are then

u n D sin(nqm) with qm D mπ
N C 1

, m D 1 . . . N . (8.92)

On the other hand, for a line of N resonators with free ends there is no force from
outside the line. For the nearest neighbor model this can be imposed again by
taking two additional resonators, but now with the conditions

u0 D u1 and u N D u NC1 . (8.93)

The standing wave modes are now

u n D cos
��

n � 1
2

�
qm

�
with qm D mπ

N
, m D 0 . . . N � 1 . (8.94)

For our illustration we will take (8.91), (8.92). Thus we write

u n(t) D �1/2 1
2

NX
mD1

�
A m(T ) sin(nqm) eit C c.c.

�C �3/2u(1)
n (t) C . . . ,

n D 1 . . . N , (8.95)

with qm as in (8.92).
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We substitute the trial solution (8.95) into the EOM term by term. Up to order
�3/2 we have

Ru n D �1/2 1
2

X
m

sin(nqm)
���A m C 2 i�A0

m

�
eit C c.c.

�C �3/2 Ru(1)
n (t) C . . . ,

(8.96a)

� Pu n D �3/2 1
2

X
m

sin(nqm)
�
iA m eit C c.c.

�C . . . , (8.96b)

1
2

�d(u nC1 � 2u n C u n�1)

D ��3/2 d
2

X
m

2 sin2
 qm

2

�
sin(nqm)

�
A m eit C c.c.

�C . . . (8.96c)

u3
n D �3/2 1

8

X
j,k ,l

sin(nq j ) sin(nqk ) sin(nql)

� �A j eit C c.c.
� �

A k eit C c.c.
� �

A l eit C c.c.
�

D �3/2 1
32

X
j,k ,l

˚
sin[n(�q j C qk C q l)] C sin[n(q j � qk C q l)]

C sin
�
n(q j C qk � q l)

� � sin
�
n(q j C qk C q l )

��
� ˚A j A k A l e3 it C 3A j A k A�

l eit C c.c.
�

, (8.96d)

and

ηu n
2 Pu n D �3/2 η

32

X
j,k ,l

˚
sin[n(�q j C qk C q l)] C sin[n(q j � qk C q l)]

C sin[n(q j C qk � q l)] � sin[n(q j C qk C q l)]
�

� �A j eit C c.c.
� �

A k eit C c.c.
� �

iA l eit C c.c.
�

.

(8.96e)

The order �1/2 terms cancel, and at order �3/2 we get N equations of the form

Ru(1)
n C u(1)

n D
X

m

(mth secular term) eit C other terms , (8.97)

where the left-hand sides are uncoupled linear harmonic oscillators, with a fre-
quency unity. On the right-hand sides we have N secular terms which act to drive
the oscillators u(1)

n at their resonance frequencies. As we did for all the single res-
onator examples, here, too, we require that all the secular terms vanish so that
the u(1)

n remain finite. Thus, we obtain equations for the slowly varying amplitudes
A m(T ). To extract the equation for the mth amplitude A m(T ) we make use of the
orthogonality of the modes, multiplying all the terms by sin(nqm) and summing
over n. We find that the coefficient of the mth secular term, which is required to
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vanish, is given by

�2 i
dA m

dT
� iA mC2d sin2

 qm

2

�
A m � 1

2
hA�

m eiΩP T

� 3 C iη
16

X
j,k ,l

A j A k A�
l Δ

(1)
j k lIm D 0 , (8.98)

where we have used the Δ function introduced by LC, defined in terms of Kroneck-
er deltas as

Δ(1)
j k lIm D δ� j CkCl,m � δ� j CkCl,�m � δ� j CkCl,2(NC1)�m

C δ j �kCl,m � δ j �kCl,�m � δ j �kCl,2(NC1)�m

C δ j Ck�l,m � δ j Ck�l,�m � δ j Ck�l,2(NC1)�m

� δ j CkCl,m C δ j CkCl,2(NC1)�m � δ j CkCl,2(NC1)Cm , (8.99)

and have exploited the fact that it is invariant under any permutation of the indices
j, k, and l. The function Δ(2)

j k lIm, also defined by LC, is not needed for our simpli-
fied model. The Δ function ensures the conservation of lattice momentum. In this
case, momentum is conserved to within the non-uniqueness of the specification
of the normal modes due to the fact that sin(nqm) D sin(nq2k(NC1)˙m) for any
integer k. The first Kronecker delta in each line is a condition of direct momentum
conservation, and the other two are the so-called umklapp conditions where only
lattice momentum is conserved.

As for the single resonator, we again try a steady-state solution, this time of the
form

A m(T ) D am ei

ΩP
2

�
T , (8.100)

so that the solutions to the EOM, after substitution of (8.100) into (8.95), become

u n(t) D �1/2 1
2

X
m

�
am sin(nqm) ei


1C

�ΩP
2

�
t C c.c.

�
C O(�3/2) , (8.101)

where all modes are oscillating at half the parametric excitation frequency.
Substituting the steady state solution (8.100) into the equations (8.98) for the

time-varying amplitudes A m(T ), we obtain the equations for the time-independent
complex amplitudes, am

h
ΩP C 2d sin2

 qm

2

�
� i
i

am � h
2

a�
m � 3 C iη

16

X
j,k ,l

a j ak a�
l Δ

(1)
j k lIm D 0 .

(8.102)

Note that the first two terms on the left-hand side indicate that the linear resonance
frequency is not obtained for ΩP D 0, but rather for ΩP C 2d sin2 (qm/2) D 0. In
terms of the unscaled parameters, this implies that the resonance frequency of the
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mth mode is ωm D 1� D sin2 (qm/2), which is the same as the expected dispersion
relation

ω2
m D 1 � 2D sin2

 qm

2

�
(8.103)

to within a correction of O(�2).
Equation 8.102 is the main result of the calculation. We have managed to replace

N coupled differential equations (8.89) for the resonator coordinates u n(t) by N
coupled algebraic equations (8.102) for the time-independent mode amplitudes am .
All that remains, in order to obtain the overall collective response of the array as a
function of the parameters of the original EOM, is to solve these coupled algebraic
equations.

First, one can easily verify that for a single resonator (N D j D k D l D m D 1),
the general equation (8.102) reduces to the single resonator equation (8.73) that we
derived in Section 8.3.4 due to the fact that Δ111I1 D 4. Next, one can see that the
trivial solution, am D 0 for all m, always satisfies the equations, though it is not
always a stable solution, as we have seen in the case of a single resonator. Finally,
one can also verify that a single mode solution exists with am ¤ 0 and a j D 0
for all j ¤ m whenever, for any given m, Δ(1)

mmmI j D 0 for all j ¤ m. These
single mode solutions have the same type of elliptical shape of the single resonator
solution given in (8.74). Note that generically Δ(1)

mmmIm D 3, except when umklapp
conditions are satisfied.

In general, additional solutions involving more than a single mode exist, but are
hard to obtain analytically. LC calculated these multimode solutions for the case of
two and three resonators for the model they considered by finding the roots of the
coupled algebraic equations numerically. We show some of their results to illus-
trate the type of behavior that occurs, although the precise details will be slightly
different.

8.4.3
The Response of Very Small Arrays and Comparison of Analytics and Numerics

In Figure 8.13 we show the solutions for the response intensity of two resonators
as a function of frequency for a particular choice of the equation parameters. Fig-
ure 8.13a shows the square of the amplitude of the antisymmetric mode a2, where-
as Figure 8.13b shows the square of the amplitude of the symmetric mode a1. Solid
curves indicate stable solutions and dashed curves indicate unstable solutions. Two
elliptical single mode solution branches, similar to the response of the single res-
onator shown in Figure 8.10 are easily identified. These branches are labeled by S1

and S2. LC give the analytical expressions for these two solution branches. In ad-
dition, there are two double mode solution branches, labeled D1 and D2, involving
the simultaneous excitation of both modes. Note that the two branches of double
mode solutions intersect at a point where they switch their stability.

With two resonators there are regions in frequency where three stable solutions
can exist. If all of the stable solution branches are accessible experimentally then
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Figure 8.13 Two resonators. (a,b) Response
intensity as a function of frequency ΩP for a
particular choice of the equation parameters.
(a) shows ja2j2 and (b) shows ja1j2. Solid
curves indicate stable solutions and dashed
curves indicate unstable solutions. The two
elliptical single mode solution branches are
labeled S1 and S2. The two double mode
solution branches are labeled D1 and D2.

(c) Comparison of stable solutions obtained
analytically (small circles), with a numerical
integration of the equations of motion show-
ing hysteresis in the response (solid curve –
frequency swept up; dashed curve – frequency
swept down). The averaged response intensity
as defined in (8.104) is plotted. Branch labels
correspond to those on the left.

the observed effects of hysteresis might be more complex than in the simple case
of a single resonator. This is demonstrated in Figure 8.13c, where the analytical
solutions are compared with a numerical integration of the differential equations
of motion (8.88) for two resonators. The response intensity plotted here is given by
the time and space averages of the square of the resonator displacements

I D 1
N

NX
nD1

˝
u2

n

˛
, (8.104)

where the angular brackets denote time average and N D 2. A solid curve shows
the response intensity for frequency swept upwards, and a dashed curve shows the
response intensity for frequency swept downwards.

Small circles show the analytical response intensity for the stable regions of the
four solution branches shown in Figure 8.13. With the analytical solution in the
background, one can easily understand the discontinuous jumps and hysteresis
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effects that are obtained in the numerical solution of the equations of motion. Note
that the S1 branch is missed in the upwards frequency sweep and is only accessed
by the system in the downwards frequency sweep. One could trace the whole stable
region of the S1 branch by changing the sweep direction after jumping onto the
branch. This would result in climbing all the way up to the end of the S1 branch
and then falling onto the tip of the D1 branch or to zero. These kinds of changes
in the direction of the sweep that occur when one jumps onto a new branch are
essential if one wants to trace out as much of the solution as possible. This holds
for both real experiments or numerical simulations.

8.4.4
Response of Large Arrays and Numerical Simulation

LC integrated the equations of motion (8.88) numerically for an array of N D 67
resonators. The results for the response intensity as a function of the unscaled
parametric drive frequency ωp as given in (8.104) are shown in Figure 8.14. These
results must be considered illustrative only, because the structure of the response
branches will vary with changes to the model, and will also depend strongly on
the chosen equation parameters. First of all, as in the case of a small number of
beams, the overall height and width of individual response branches depend on the
strength of the drive h and on the nonlinear dissipation coefficient η. Furthermore,
if the coupling strength D is increased, for example, such that the width of the
frequency response band becomes much larger than N times the width of a single
mode response, then very few, if any, multimode solutions exist.

A number of the important features of the response should be highlighted. We
concentrate on the solid curve in the figure, which is for frequency swept upwards.
First, the response intensity shows features that span a range of frequencies that is
large compared with the mode spacing, which is about 0.0006 for the parameters
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Figure 8.14 Response intensity as a function of the driving
frequency ωp for N D 67 parametrically-driven resonators
(solid curve – frequency swept up; dashed curve – frequency
swept down). The response intensity is defined in (8.104). The
response curve was obtained through numerical integration of
the equations of motion (8.88).
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used. The reason for this is that we skip over many others as we follow a particular
solution, as has been seen for the S1 branch in the two resonator case. Second,
the variation of the response with frequency shows abrupt jumps as the frequency
is raised, particularly on the high frequency side of the features. This happens as
we reach saddle-node or other types of bifurcations where we lose the stability of
the solution branch, or the branch ends altogether. Third, the response extends to
frequencies higher than the band edge for the linear modes, which would give a
response only up to ωp D 2.0. This happens simply due to the positive Duffing
parameter which causes frequency pulling to the right. Note that the downwards
sweep is able to access additional stable solution branches that were missed in the
upwards sweep. There is also no response above ωp D 2.0 in this case. This is be-
cause the zero displacement state is stable for ωp > 2.0, and the system will remain
in this state as the frequency is lowered unless a large enough disturbance kicks it
onto another of the solution branches. The hysteresis on reversing the frequency
sweep was not examined in any experiment, and it would be interesting to test this
prediction of LC in the future.

8.5
Amplitude Equation Description for Large Arrays

We finish this review by describing the approach used by BCL [6, 7] to obtain an-
alytical results for large arrays by approaching them from the continuous limit of
infinitely many degrees of freedom. We only summarize the main results of BCL
and encourage the reader, who by now has all the required background, to refer
to BCL [7] and to Kenig et al. [38] for details of the derivation and for thorough
discussions of the results and their experimental consequences. We note that BCL
studied the original system of (8.88), where both the parametric excitation and the
damping are introduced in terms of the difference variables u nC1 � u n . We stick
to this model here, and leave it to the reader as an exercise to generalize the BCL
derivation for the more general model equations (8.89) that we used in the previous
section.

A novel feature of the parametrically-driven instability is that the bifurcation to
standing waves switches from supercritical (continuous) to subcritical (discontinu-
ous) at a wave number at or close to the critical one, for which the required para-
metric driving force is minimum. This changes the form of the amplitude equation
that describes the onset of the parametrically-driven waves so that it no longer has
the standard “Ginzburg–Landau” form [20]. The central result of BCL is this new
scaled amplitude equation (8.112), which is governed by a single control parame-
ter and captures the slow dynamics of the coupled resonators just above the onset
of parametric oscillations, including this unusual bifurcation behavior. BCL con-
firmed the behavior numerically and made suggestions for testing it experimen-
tally. Kenig et al. [38] have extended the investigation of the amplitude equation
to include such situations as time-dependent ramps of the drive amplitude, as op-
posed to the standard quasistatic sweeps of the control parameters. Although our
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focus here is on parametrically-driven NEMS & MEMS resonators, we should em-
phasize that the amplitude equation of BCL that we describe here should also apply
to other parametrically-driven wave systems with weak nonlinear damping.

8.5.1
Amplitude Equations for Counter Propagating Waves

BCL scaled the equations of motion (8.88), as did Lifshitz and Cross [44], without
assuming a priori that the coupling D is small. Thus, the scaled equations of mo-
tion that they solved were

Ru n C u n C u3
n � 1

2 �( Pu nC1 � 2 Pu n C Pu n�1)

C 1
2

�
D C �h cos(2ω p t)

�
(u nC1 � 2u n C u n�1)

� 1
2 η
�
(u nC1 � u n)2( Pu nC1 � Pu n) � (u n � u n�1)2( Pu n � Pu n�1)

� D 0 .

(8.105)

Note the way in which the pump frequency is specified as 2ωp in the argument of
the cosine term, with an explicit factor of two (unlike what we did in Section 8.4),
and also without making any assumptions at this point regarding its deviation from
twice the resonance. We also remind the reader that this and all other frequencies
are measured in terms of the natural frequency of a single resonator, which has
been scaled to 1. The first step in treating this system of equations analytically is to
introduce a continuous displacement field u(x , t), and slow spatial and temporal
scales X D �x and T D � t. One then tries a solution in terms of a pair of counter-
propagating plane waves at half the pump frequency, which is a natural first guess
in continuous parametrically-driven systems such as Faraday waves [20]. This yields

u(x , t) D �1/2 ��AC(X , T ) e�iqp x C A�
�(X , T ) eiqp x � eiωp t C c.c.

�
C �3/2u(1)(x , t, X , T ) C . . . , (8.106)

where qp and ωp are related through the dispersion relation (8.103)

ω2
p D 1 � 2D sin2

 qp

2

�
. (8.107)

By substituting this ansatz (8.106) into the equations of motion (8.105) and ap-
plying a solvability condition on the terms of order �3/2, BCL obtained a pair of
coupled amplitude equations for the counterpropagating wave amplitudes A ˙

@A˙

@T
˙ vg

@A˙

@X
D � sin2

 qp

2

�
A˙  i

h
2ω p

sin2
 qp

2

�
A�

�
�

4η sin4
 qp

2

�
 i

3
2ωp

��jA˙j2 C 2jA�j2� A˙ , (8.108)

where the upper signs (lower signs) give the equation for AC (A�) and

vg D @ωp

@qp
D � D sin(qp)

2ωp
(8.109)
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is the group velocity. This equation is the extension of (8.47) to many coupled res-
onators, only now the parametric drive couples amplitudes of the two counterprop-
agating waves AC and A� instead of coupling A and A�. A detailed derivation of
the amplitude equations (8.108) can be found in [6, 7]. We should note that similar
equations were previously derived for describing Faraday waves [29, 46].

By linearizing the amplitude equations (8.108) about the zero solution (AC D
A� D 0), we find that the linear combination of the two amplitudes that first
becomes unstable at h D hc � 2ωp is B / (AC � iA�). This represents the
emergence of a standing wave with a temporal phase of π/4 relative to the drive.
However, the orthogonal linear combination of the amplitudes decays exponential-
ly and does not participate in the dynamics at onset. Thus, just above threshold a
single amplitude equation should suffice, describing this standing wave pattern.
We describe the derivation of this equation in the next section.

8.5.2
Reduction to a Single Amplitude Equation

Nonlinear dissipation plays an important role in the saturation of the response
to parametric excitation, as we saw in Section 8.3.4. Thus, it is natural to try to
keep a balance between the strength of this nonlinearity and the amount by which
we drive the system above threshold. Assuming that the nonlinear damping is
weak, we use it to define a second small parameter δ D p

η. This particular
definition turns out to be useful if we then scale the reduced driving amplitude
(h � hc)/ hc linearly with δ, defining a scaled reduced driving amplitude r by let-
ting (h � hc)/ hc � rδ. We can then treat the initial linear combination of the two
amplitudes in (8.108) that becomes unstable by introducing a second ansatz,�

AC

A�

�
D δ1/4

�
1
i

�
B(� , τ) C δ3/4

�
w (1)(X , T, � , τ)
v (1)(X , T, � , τ)

�
C δ5/4

�
w (2)(X , T, � , τ)
v (2)(X , T, � , τ)

�
, (8.110)

where � D δ1/2 X and τ D δT . Substitution of this ansatz allows one to obtain the
correction to the solution at order δ3/4�

w (1)

v (1)

�
D 1

2 sin2(q p /2)

�
�vg

@B
@�

C i
9

2ω p
jBj2B

��
1
�i

�
, (8.111)

after which a solvability condition applied to the terms of order δ5/4 yields an equa-
tion for the field B(� , τ). After scaling, this takes the form

@B
@τ

D r B C @2B
@� 2 C i

2
3

�
4jBj2 @B

@�
C B2 @B�

@�

�
� 2jBj2B � jBj4B . (8.112)

This is the BCL amplitude equation. It is governed by a single control parameter,
the reduced drive amplitude r, and captures the slow dynamics of the coupled res-
onators just above the onset of parametric oscillations. The reader is encouraged
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to consult [7] for a more detailed account of the derivation of the BCL equation.
The form of (8.112) is also applicable to the onset of parametrically driven standing
waves in continuum systems with weak nonlinear damping, and combines in a
single equation a number of effects studied previously [13, 14, 23, 29, 46, 53].

8.5.3
Single Mode Oscillations

Now that this novel amplitude equation has been derived by BCL it can be used to
study a variety of dynamical solutions, ranging from simple single mode to more
complicated nonlinear extended solutions and, after slight modifications, also for
the dynamics of localized solutions. BCL used the amplitude equation to study the
stability of single mode steady-state solutions

B D bk e�ik � , (8.113)

that is, standing wave solutions that consist of a single sine wave pattern with one
of the allowed wave vectors qm . The wave vector k gives, in some scaled units, the
difference between the wave vector qp determined by the pump frequency through
the dispersion relation, and the wave vector qm D mπ/(N C 1), m D 1 . . . N , of the
actual mode that is selected by the system.

A number of interesting results are readily evident if we simply substitute the
single mode solution (8.113) into the BCL amplitude equation (8.112). From the
linear terms in the amplitude equation we find, as expected, that for r > k2 the
zero displacement solution is unstable to small perturbations of the form of (8.113).
This defines the parabolic neutral stability curve, which is shown as a dashed line
in Figure 8.15. The nonlinear gradients and the cubic term take the simple form
2(k � 1)jbk j2bk . For k < 1 these terms immediately act to saturate the growth
of the amplitude assisted by the quintic term. Standing waves therefore bifurcate
supercritically from the zero displacement state. For k > 1 the cubic terms act to
increase the growth of the amplitude, and saturation is achieved only by the quintic
term. Standing waves therefore bifurcate subcritically from the zero displacement
state. The saturated amplitude jbk j, obtained by setting (8.112) to zero, is given by

jbk j2 D (k � 1) ˙
q

(k � 1)2 C (r � k2) � 0 . (8.114)

In Figure 8.16 we plot jbk j2 as a function of the reduced driving amplitude r for
three different wave number shifts k. The solid (dashed) lines are the stable (un-
stable) solutions of (8.114). The circles were obtained by numerical integration of
the equations of motion (8.105). For each driving amplitude, the Fourier compo-
nents of the steady state solution were computed to verify that only single modes
are found, suggesting that in this regime of parameters only these states are stable.

BCL showed the power of the amplitude equation in predicting the first single
mode solution that should appear at onset. In addition it also predicts the sequence
of Eckhaus instabilities that switch to other single mode solutions as the reduced
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drive amplitude r is quasistatically increased. Kenig et al. [38] used the amplitude
equation for a more general analysis of the question of pattern selection. This ques-
tion is concerned with predicting which oscillating pattern will be selected, under
particular experimental conditions, from among all of the stable steady-state solu-
tions that the array of resonators can choose from. In particular, they have consid-
ered experimental situations in which the drive amplitude r is changed abruptly or
swept at rates that are faster than typical transient times. In all cases the predictions
of the amplitude equations are confirmed with numerical simulations of the origi-
nal equations of motion (8.105). Experimental confirmation of these predictions is
still not available.
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9
Nonlinear Dynamics in Atomic Force Microscopy
and Its Control for Nanoparticle Manipulation
Kohei Yamasue and Takashi Hikihara

9.1
Introduction

Science and engineering at the nanoscale is currently one of the most consistently
advancing fields [1]. As a tool for directly accessing the nanoscale, scanning probe
microscopy (SPM) is now widely accepted [2]. In general, SPM utilizes a probe that
interacts with a local area of a sample surface. The probe is precisely located over
the area using a three dimensional nanopositioning mechanism. The probe and
its positioning technology are the fundamental basis of the SPM, which performs
many useful functions such as imaging, profiling, and manipulation of a sample
surface on the nanoscale [2, 3]. For example, high resolution imaging of sample
topography is achieved by recording this interaction as a function of lateral probe
position on the sample surface.

Among the members of the SPM family, atomic force microscopy (AFM), in-
vented by Binning et al. [4], plays a particularly important role [5, 6]. Since the
AFM detects a force interaction between a micromechanical probe and a sample
surface, AFM can image insulating samples as well as conducting and semicon-
ducting samples. In this point, AFM is often contrasted with scanning tunneling
microscopy (STM) [7], which is also a member of the SPM family. STM cannot
image insulating samples because surface imaging by the STM is based on the
detection of a tunneling current flowing between the probe and the surface. An-
other advantage is that AFM can be operated in various environments including
vacuum, air, and liquid. These advantages have opened new avenues to SPM appli-
cations in biology, polymer science, and organic electronics as well as traditional
areas of materials and surface sciences [5].

Of its various operating modes, dynamic mode AFM has been a flagship operat-
ing mode for nearly two decades. In the dynamic mode, the probe is oscillated at
or near its mechanical resonance. The interaction force is detected as a modulated
amplitude or frequency of the oscillation [8–10]. The force sensitivity is much im-
proved by using a probe with a higher quality factor. The important advantage of
the dynamic mode is that adhesion of the probe to sample surfaces is avoided by
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oscillating the probe. In addition, the mechanical damage to sample surfaces by a
lateral friction during a scan is significantly reduced in the dynamic mode as com-
pared to the traditional, previously developed contact mode. The dynamic mode
AFM has thus enabled the high resolution and non-destructive imaging of various
samples, including soft samples in liquid [11–16]. In addition, various schemes
have been devised for profiling of surface properties [17–19], manipulation of indi-
vidual atoms and molecules [20–22], and control of surface structures [23].

In this chapter, we focus on two topics related to nonlinear dynamics in dynamic
mode AFM. Both are not limited by the phenomenological analysis of nonlinear
vibrations in nonlinear systems. The first half of this chapter is devoted to nonlin-
ear probe dynamics and its control in dynamic mode AFM. The probe of dynamic
mode AFM is a vibrating micromechanical sensor that detects the force interaction
with sample surfaces. This probe-surface interaction is essentially nonlinear, and
therefore the nonlinear probe dynamics has recently been extensively studied due
to its close relation to imaging characteristics [24–28]. It has been emphasized that
the micromechanical probe exposed to an interaction can not be approximated as a
harmonic oscillator especially in the AM-AFM (Amplitude Modulation AFM), which
is a major operating mode in air and liquid [8, 9, 15, 16]. The AM-AFM, in fact,
exhibits various nonlinear phenomena including a chaotic oscillation, which non-
linear scientists have focused on for 50 years. Actually, existing and well developed
techniques for the analysis of nonlinear systems have been applied to some prob-
lems arising in the nonlinear dynamics in the AM-AFM [24–39]. Control strategies
for nonlinear systems can be also applied for improving and accelerating the sur-
face imaging. We describe the application of time-delayed feedback control, which
is a well known approach in the field of nonlinear dynamics to the stabilization of
chaotic oscillations [40]. The efficacy of time-delayed feedback control is success-
fully demonstrated for cantilever oscillation in the AM-AFM [41–43].

The second topic of this chapter is the manipulation of single atoms and
molecules, which is a current challenging topic of nanoscience. Recently, ma-
nipulation of single atoms and molecules has been experimentally achieved on
surfaces with use of the AFM in lateral as well as vertical processes [20–22]. The
lateral processes can transfer atoms and molecules parallel to the surface and ver-
tically between tip of probe and adatom on surface via vibrational excitation of the
target-substrate bond. The processes have been also studied theoretically [44–48]
and numerically [49]. The last half of this chapter is devoted to a theoretical consid-
eration of van der Waals molecular vibrational predissociation based on a T-shaped
model [50–54]. The model was introduced to describe a quantum mechanics that
governs the rates of vibrational predissociation of A–B–A triatomic molecules,
which are coupled Morse oscillators. Atoms and molecules attached on the materi-
al surface are bonded by a van der Waals potential, which is characterized by Morse
type atom–atom interaction potential. The dynamics of manipulated particles are
described by the fragmentation of the atom B from the coupling of A–A. Here, we
introduce a Hamiltonian of the triatomic molecules. The system is comprised of
coupled nonlinear oscillators. Assuming that the rotation and bending modes are
neglected, it is shown that the eigenfrequency decides the resonance and energy
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Figure 9.1 Principle of dynamic mode atomic force microscopy
with an optical lever type deflection sensor.

exchange. At high energy, the system possibly shows chaotic vibration. It gives the
probability of the classical dynamics of atoms and molecules. The fragmentation
of atoms from a surface is discussed based on the global phase structure. When
the perturbation of energy exceeds the critical value, the dynamics appears the
global behavior out of a single potential well. That is, the vibratory dissociation
can achieve the manipulation of nanoparticles. This inevitably captures the atom
dissociated from the material surface. The results show us possible manipulation
methods of nanoparticles in in situ conditions using AFM.

9.2
Operation of Dynamic Mode Atomic Force Microscopy

The operation of AFM is briefly introduced in this section. As shown in Figure 9.1,
the atomic force microscope in principle consists of several components. These
are a microfabricated cantilever that is used as a probe for detecting the interaction
force, an actuator for exciting cantilever oscillation (used in the dynamic mode),
a sensor for detecting the instantaneous deflection of the cantilever, and a three
dimensional positioning mechanism for precisely locating the probe over a sur-
face area. The cantilever has a sharp tip at its free end. The tip of the cantilever is
extremely sharp, having a typical radius of approximately 10 nm that is achieved
using microfabrication techniques. The positioning device is controlled so that the
cantilever tip is placed in close proximity to the sample surface one is going to ob-
serve. The tip then feels a force between it and the sample surface. The interaction
force is called the tip–sample interaction. The tip–sample interaction is on the order
of pico- to nanonewtons, but it is sufficient to modify the original cantilever dy-
namics via deflection or oscillation due to the small dimensions of the cantilever.
The cantilever therefore plays a role as a force sensor to detect the tiny tip–sample
interaction force. The deflection or oscillation of the cantilever is measured by the
optical lever method in the standard device configuration [55].

Assuming that the tip–sample interaction depends on the tip–sample distance,
the latter can be regulated at constant value by adjusting the height of the sample
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surface so that the cantilever dynamics are kept constant. The regulation is typical-
ly realized by a PI (proportional-integral) controller and this mechanism is often
called z-feedback. The surface topography is tracked during a raster scan of the sur-
face. The surface topography is constructed as a three dimensional image from a
recorded time series of a signal controlling the z-feedback mechanism. In the con-
tact mode, a cantilever is used without excitation and its deflection is detected for
estimating the tip–sample interaction.

The dynamic mode is an improvement introduced immediately after the inven-
tion of AFM. The cantilever in the dynamic mode is oscillated at or near its me-
chanical resonance frequency. Instead of detecting the cantilever deflection, the
shift of resonance frequency is detected in this mode, and the amount of the shift
depends on the mean tip–sample distance. The dynamic mode has two major oper-
ating modes called AM-AFM (Amplitude Modulation AFM) [8] and FM-AFM (Fre-
quency Modulation AFM) [10]. In these modes, the amplitude or frequency mod-
ulated by the tip–sample interactions are detected in order to estimate the shift
of resonance frequency. In AM-AFM, the cantilever oscillation is excited by ap-
plying an external periodic force. The cantilever in FM-AFM is self-excited using
an electronic feedback circuit. In both modes, the oscillation is measured using
a lock-in amplifier or a RMS-DC (Root-Mean-Square to Direct Current) convert-
er with bandpass filters. The force sensitivity of a cantilever is much improved
by increasing the quality factor of the cantilever. Adhesion to surface and destruc-
tion of samples are also avoided by using an oscillating cantilever. The height of
the sample surface can be precisely adjusted by a positioning device, such as tube
scanners.

9.3
Nonlinear Dynamics and Control of Cantilevers

9.3.1
Nonlinear Oscillation and Its Influence on Imaging

Initially, a cantilever subject to a tip–sample interaction was often approximated
as a harmonic oscillator. However, there has been growing interest in the nonlin-
ear dynamics of cantilevers and its influence on imaging [24–39]. In particular,
the AM-AFM or the tapping-mode AFM has been focused upon due to a strong
nonlinearity in an operating range. A great number of experimental, numerical,
and theoretical works have been performed in order to clarify the nonlinear dy-
namics of the AM-AFM. A bistable behavior occurs [56] and the resulting jumping
and hysteresis phenomena cause sudden and discontinuous transitions in imag-
ing characteristics [28]. The subharmonics and chaos of the cantilever oscillation
have also been predicted numerically and theoretically [30, 31, 34, 37], and they
have been demonstrated experimentally [32, 33, 36, 57]. It seems that the chaotic
oscillation is experimentally encountered when a soft cantilever is excited with a
large amplitude.
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Figure 9.2 Periodic and irregular oscillation of a cantilever in
AM-AFM [43]; (a) periodic, (b) irregular and non-periodic.

As an example, Figure 9.2 shows two contrasting oscillation states that have been
experimentally observed [43]. The sample was HOPG (Highly Oriented Pyrolytic
Graphite) and the imaged area was 500 nm squared. The measurement was per-
formed in air and a magnetically coated cantilever (Agilent, Type I MAC levers C,
nominal spring constant and resonance frequency: 0.6 N/m and 75 kHz, respec-
tively) was excited with a large amplitude. A similar result was reported by Hu and
Raman in Ref. [36], although they performed experiments in a nitrogen atmosphere
in order to eliminate the effect of capillary forces due to the water layer on the sur-
face. When the tip–sample distance was set such that the oscillation amplitude
was decreased by 30% compared to the free oscillation amplitude, the oscillation
remained periodic. A further decrease of the tip–sample distance, however, made
the periodic oscillation unstable and generated an irregular and nonperiodic oscil-
lation. Figure 9.2b shows an oscillation observed when the oscillation amplitude
was reduced by 80% compared to the free amplitude. The resolution of images
depends on the oscillation state. Figure 9.3 compares an image from the irregular
state (Figure 9.3b) to the periodic one (Figure 9.3a). It can be easily seen that the
resolution was decreased and the image was much noisier due to the irregular and
nonperiodic cantilever oscillations. The z-feedback did not accurately track the sur-
face topography during the raster scan of the surface. The surface of HOPG should
be flat except for the large step on the surface. However, Figure 9.3 clearly shows
the loss of the original flatness between the steps.

The above experimental results suggest that the resolution of the AM-AFM is
reduced and the operating range may be limited due to undesirable irregular and
nonperiodic oscillations. In order to overcome this limitation and extend the oper-
ating range, the application of control technology is a good candidate for improv-
ing the performance of the AM-AFM. In this context, some motivated research
groups have already proposed application of control techniques to cantilever oscil-
lation [30, 31, 58]. The authors have also proposed the application of time-delayed
feedback control [40], which is a well-known approach that has been used for stabi-
lizing unstable periodic orbits embedded in chaotic attractors [59]. In the following
sections we provide an overview of our recent results on this topic.
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Figure 9.3 Comparison of images by oscillation states;
(a) periodic; (b) irregular and non-periodic.

9.3.2
Model of a Cantilever under Tip–Sample Interaction

When the first mode oscillation of a cantilever is considered, the mathematical
model of the cantilever is given by

d
dt

�
x
y

�
D
24 y

�ω2
0x � ω0

Q y C f (x , y , Z ) C A cos ω t

35C bu , (9.1)

where x and y denote the instantaneous deflection and the velocity of the tip, re-
spectively. A and ω are the amplitude and frequency of the sinusoidal excitation
force, respectively. The cantilever has a fundamental resonance frequency at ω0

and its quality factor is Q. b denotes a two dimensional constant vector describing
coupling between the control input and the state variables.

Assuming the tip–sample interaction force is described by the Lennard-Jones
potential, f (x , y , Z ) is expressed as [31]

f (x , y , Z ) D � Dω2
0

(Z C x )2 C σ6Dω2
0

30(Z C x )8 . (9.2)

D denotes a constant related to the Hamaker constant, tip radius, and stiffness
of the cantilever. σ denotes the diameter of each molecule organizing the tip and
the sample. The first and the second terms denote a long-range attractive force
and a short-range repulsive force, respectively. The existence of a chaotic invariant
set was proven by applying the Melnikov method to this model [30, 31]. A chaotic
cantilever oscillation was subsequently presented numerically based on the same
model [34]. It should be mentioned that there are a variety of models that describe
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Figure 9.4 Block diagram of time-delayed feedback controlled system.

the cantilever dynamics [25–32, 35, 37–39]. For example, the DMT (Dejarguin–
Muller–Toporov) theory has been employed for modeling [27, 28, 32, 35, 39]. An
impact oscillator can also be a simple model for the AM-AFM [25, 37]. The effects
of a capillary force due to a water layer on the surface also has a strong effect on
cantilever dynamics when operating the AM-AFM in air [25, 35]. A neck of water
meniscus between the tip and the sample applies a hysteretic force to a cantilever.

9.3.3
Application of Time-Delayed Feedback Control

Time-delayed feedback control was proposed by Pyragas in 1992 [40] and is now
well known for its ability to stabilize unstable periodic orbits in chaotic attrac-
tors [59]. As shown in Figure 9.4, this continuous control method is a kind of
feedback control that exploits a past state or output of a nonlinear system for neg-
ative feedback, instead of giving a external reference signal. In his seminal paper,
Pyragas showed numerically that the stability of a target unstable periodic orbit can
be exclusively changed by choosing an appropriate feedback gain K. This occurs if
the time difference τ, namely the delay time, between the two outputs is precisely
adjusted to the period of the target orbit [40]. Time-delayed feedback control is an
invasive control method in this sense and the stability is maintained by the small
perturbation ideally converging to the null signal.

The strategy of using an earlier signal has allowed us to readily implement the
control method in a real system without identifying the model and parameters of
the system. In particular, no complicated time series analysis is needed for recon-
struction of underlying dynamics. The simple control law has also enabled appli-
cations to chaotic systems operating at a high frequency [60–62]. The number of
applications has thus increased since the publication of Pyragas’s paper. This area
of investigation now includes electronic circuits [60, 61], laser systems [62], magne-
toelastic oscillators [63], chemical reactions [64], and gas charge systems [65].

As a novel application to nanosystems, the authors have proposed the stabiliza-
tion of chaotic cantilever oscillations using time-delayed feedback control [41]. As-
suming that the instantaneous velocity of cantilever oscillations are measured as
an output of the nonlinear system (9.1), the generation of the control signal u(t) is
described by [40]:

u(t) D K
�
y (t � τ) � y (t)

�
. (9.3)



274 9 Nonlinear Dynamics in Atomic Force Microscopy

This implementation is associated with the cantilever model (9.1) by putting b D
[0 1]T into (9.1). The delay time τ is adjusted to the period of the excitation sig-
nal in order to stabilize an orbit with a period equal to the period of the excitation
signal. The control input then converges to the null signal if the stabilization of
a target unstable periodic orbit is completed. The target orbit is an unstable peri-
odic orbit with a period equal to the driving signal. The authors have numerically
confirmed control performance in both homoclinic and grazing regimes, and have
also presented an application to acceleration of the scanning rate [41, 42]. The in-
vasive control method is significant for dynamic mode AFM because the stabilized
orbit should depend on just the pure tip–sample interaction. This is an essential
difference from Q-control, which has created controversy concerning the effects of
feedback control on measurements [66].

9.3.4
Experimental Setup for Control of Nonlinear Cantilever Dynamics

We have numerically confirmed the possibility of the application of time-delayed
feedback control to the AM-AFM in previous studies [41, 42]. The next step is
the implementation of a controller to an actual device. This section provides an
overview of the circuit implementation of time-delayed feedback control especially
designed for cantilevers in the AM-AFM.

9.3.4.1 Circuit Implement of Time-Delayed Feedback Control
Fast feedback electronics is required to achieve time-delayed feedback control of
cantilever oscillation because a cantilever in the AM-AFM is excited at high fre-
quencies, ranging from several tens to a few hundreds kilohertz. In addition, the
delay time and feedback gain must be flexibly adjusted to appropriate values in
order to optimize control performance. In this context, digital facilities can be
effectively used for making a flexible controller to examine the control perfor-
mance.

We made a controller that is schematically illustrated in Figure 9.5 [43]. The con-
troller is composed of a digital delay line that retards the signal and a summing
amplifier that generates the error signal between the current and retarded output
signal. The digital delay line is constructed using an analog to digital (A/D) convert-
er, first-in-first-out (FIFO) memories, and a digital to analog (D/A) converter. The
signal is sequentially stored in the FIFO memories as digital data through the A/D
converter and, after a given constant time has elapsed, the digital data are restored
as an analog signal through the D/A converter. The signal is sampled at 40 MHz
and the resolution is 12 bits. A digital delay line has also been employed in chaos
control of a magnetoelastic beam [63] and a gas charge system [65], although the
required frequency is much higher in the present case. The instantaneous velocity
is estimated by an elemental differentiation circuit using an operational amplifi-
er. The error signal is amplified with the summing amplifier. The amplified error
signal, or control signal, is added to a sinusoidal signal for cantilever excitation.
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Figure 9.5 System configuration for AM-AFM equipped with time-delayed feedback control [43].

9.3.4.2 Frequency Response of Magnetic Actuators and Deflection Sensors
The numerical results were successful, showing that the time-delayed feedback
control has an ability to stabilize the chaotic oscillation of a cantilever, as shown
in [41, 42]. In reality, however, there are many factors seriously limiting the control
performance.

In our numerical experiment we assumed the ideal conditions for the charac-
teristics of actuator and sensor of the cantilever oscillation. In reality, however, the
deflection sensors and dither piezo actuators often used in AFM have their own dy-
namics. An emphasis should be placed on the frequency characteristics of the ac-
tual devices. In the current standard device configuration of dynamic mode AFM,
the most critical characteristics for cantilevers are those of the actuators. One can
observe many spurious peaks if one actuates the cantilever with a standard piezo-
electric actuator. This implies the presence of a large phase delay in the feedback
loop and therefore one has to improve the frequency characteristics before applying
the controller.

9.3.5
Experimental Demonstration of the Stabilization of Cantilever Oscillations

Our controller is implemented for a commercial AFM (SII, SPA-300/NanoNavi
Station), as shown in Figure 9.6. A small solenoid coil is placed beneath a sam-
ple stage for excitation of a magnetically coated cantilever (Agilent, Type I MAC
levers C, nominal spring constant and resonance frequency: 0.6 N/m and 75 kHz,
respectively). A home-built voltage current converter was constructed because the
magnetic force generated by the solenoid coil is proportional to the applied current.
An additional phase delay of π/2 therefore arises if the control input generated as a
voltage signal is directly applied to the solenoid coil. The home-built voltage-current
converter has flat frequency characteristics of amplitude and phase at sufficiently
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Figure 9.6 Photograph showing a home-built deflection sensor
and the wiring for the magnetic coil beneath the sample holder.

high frequencies. A home-built deflection sensor was also employed to decrease
phase delay in the feedback loop. The implemented control system allows us to
experimentally investigate the ability of TDFC.

The features of the control method enable us to implement it without identifica-
tion of the parameters of each cantilever. Parameters such as the spring constant
are only given as nominal values and are often quite different from the true values.
No analysis on the nonlinear dynamics is needed and only the AM-AFM driving
frequency must be known in order to adjust the delay time. The feasibility of high
frequency oscillation is also an important advance of time-delayed feedback con-
trol [61]. Cantilevers in dynamic mode AFM are typically vibrated around 10 kHz
to 300 kHz. From the viewpoint of measurement, it is worth noting that no param-
eter of a cantilever is modified after control is achieved. The stabilized cantilever
oscillation under control depends purely on the tip–sample interaction force in the
steady state. This is essentially different from a control method introducing damp-
ing to the oscillation, as proposed in [30, 31]. The control method stabilizing the
intrinsic orbit of the system should thus be developed from the viewpoint of mea-
surement.

An experimental result is shown in Figure 9.7 [43]. As shown in Figure 9.7a,
an irregular and nonperiodic oscillation was observed in close proximity to the
sample surface. Figure 9.7b shows the stabilization of the oscillation achieved after
control input was activated. It was confirmed that the control input converged to
nearly zero volts. These facts suggest that an unstable periodic orbit is successfully
stabilized by adding a small perturbation to the excitation signal.

In this section, we have reviewed recent research topics on nonlinear cantilever
dynamics and their control using time-delayed feedback. The scheme of controlling
chaos was utilized for the stabilization of nonlinear dynamics into the embedded
states. The improvement of a limited control performance is currently an ongoing
work. Nevertheless, this is the first implementation of the chaos control method
to a real device, as far as we know. The stabilization of irregular and nonperiodic
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Figure 9.7 Stabilization of irregular oscillations [43]; (a) without control, (b) with control.

oscillations is effective for the z-feedback to accurately track the surface topogra-
phy, which then improves the image resolution. The stabilized periodic oscillation
retains the pure dynamics of the original system. The controlled dynamics should
be a probe for detecting the nonlinear force interaction at the nanoscale.

9.4
Manipulation of Single Atoms at Material Surfaces

In this section we go down to the dynamics of single atoms, which can be accessed
using dynamic mode AFM. The dynamics of single atoms is formalized based on
classical mechanics using the Hamiltonian. We first introduce a model of atom-
ic and molecular alignment for estimating fragmentation of atoms from surface
bonds.

9.4.1
Model of Single Atoms and Molecules

We now focus on the dynamics of single atoms and molecules attached to material
surfaces at low temperatures and vacuum conditions. As depicted in Figure 9.8,
we assume that single atoms or molecules at a surface (B) are bonding to quadri-
atoms (A). Models of molecular vibrational fragmentation have been discussed for
T-shaped structures with van der Waals potentials. At the surface, we assume a
pyramid structure of atoms at steady state. In pyramid shape bonding, the rotation
and bending modes disappear. Then the DOFs (degrees of freedom) of B are re-
stricted to the direction vertical to the plane in which the rectangle formed by A
lies. Hereafter, the system can be modeled by a T-shaped structure with diagonal
atoms A and B without rotational dynamics.

The Morse interaction potential limits the distance of the interaction to a short
range. In this region, the atoms are called Velet neighbors [67]. The distance be-
tween the atoms A is depicted as

p
2Q, and the distance between B and center O

of the A-plane as q, which is also on the axis. The distance between A and O then



278 9 Nonlinear Dynamics in Atomic Force Microscopy

Q

q
A

A

A

A

B

Velet neighbor

B

A

r r
q

QO
O

Figure 9.8 Atomic and molecular alignment at material surfaces.

becomes Q, which is perpendicular to the q-axis. Each momentum is given by P
and p. The Hamiltonian can be written as

H D P2

2m
C p 2

2μ
C V0(Q, q) C V1(Q, q) , (9.4)

where the angle between the axis of the A-plane and the vector from the center of
mass to B is restricted at the rectangle. Then we neglect the kinetics of angular
motion. Here mA and mB are the masses of A and B, respectively. m D mA/2 is the
reduced mass of A and μ D 2mA mB/(mA C 2mB) the reduced mass of the whole
system. The potentials are given as [53]

V0(Q, q) D W0(Q) C W0(q) ,

where

W0(Q) D D0A


e�2
0A(Q�Q0) � 2 e�
0A(Q�Q0)

�
,

W0(q) D D0B


e�2
0B(q�q0) � 2 e�
0B(q�q0)

�
,

and

V1(Q, q) D W1(rC) C W1(r�) ,

where

W1(r˙) D D1


e�2
1(r˙�r˙0) � 2 e�
1(r˙�r˙0)

�
.

V1 is the expansion of the van der Waals potential in the Taylor series around the
equilibrium point. r˙ is the distance between B and one of the atoms A. r is a
function of Q and q. The equilibrium point is given by r0. D0A, D0B, and D1 depict
the dissociation energies. 
0A, 
0B, and 
1 denote the range parameters. The shape
of the Morse potential is shown in Figure 9.9.
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Figure 9.9 Schematic Morse potential with an equilibrium point at 1.0.

Assuming 2-dimensional symmetry for the quadri-atoms A, the potential func-
tion around the single atom B possesses an axial symmetric property at steady state.
The system then seems to be equivalent to a T-shaped model. It implies that the
fragmentation is limited in the direction vertical to the plane A.

Equation 9.4 represents the model system Hamiltonian in coordinates (Q, q,
P, p ). In classical dynamics, we have the relation8̂̂̂̂

ˆ̂̂̂̂̂̂
<̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂:

PQ D @H
@P

,

Pq D @H
@p

,

PP D �@H
@Q

,

Pp D �@H
@q

.

(9.5)

The system shown in (9.5) is linearized through a Taylor expansion around the
equilibrium point for Q and q.

9.4.2
Analysis Based on an Action-Angle Formulation [52]

Under the dissipative or excited state, the perturbed Hamiltonian is given as

H D H0 C εH1 , (9.6)



280 9 Nonlinear Dynamics in Atomic Force Microscopy

where ε is a small parameter. H1 includes V1(Q, q). The zero order component of
the Hamiltonian is given by

H0 D P2

2m
C p 2

2μ
C W0(Q) C W0(q) . (9.7)

We can rewrite H0 using an action(I)-angle(θ ) form. Based on [52], the relationship
becomes

H0 D EA(IA) C EB(IB) . (9.8)

IA and IB are action variables that are obtained by an action integral. The potential
energy of the Morse oscillators EA and EB are defined as(

EA(IA) D �
IA C 1

2

�
ωA � �

IA C 1
2

�2 ω2
A/4D0A � D0A ,

EB
�
IB) D (IB C 1

2

�
ωB � �

IB C 1
2

�2 ω2
B/4D0B � D0B ,

where

ωA D �
2D0A
2

0A/m
�1/2

,

ωB D �
2D0B
2

0B/μ
�1/2

.

D0A and D0B are defined by related Morse potentials. The simple derivatives of EA

and EB give the zero order frequencies in each motion along Q and q. These are( PθA D �ωA C (2IA C 1)ω2
A/4D0A D ΩA ,

PθB D �ωB C (2IB C 1)ω2
B/4D0B D ΩB .

(9.9)

The energy at which the atom B is separated at infinity depends on D0B. The exter-
nal energy input for fragmentation is due to the boundary of the trapped motion
of H. The phase structure is schematically described in Figure 9.10.

The maximum values of IA and IB are obtained from (9.7) [68].8̂̂<̂
:̂

IA max D � 1
2

C 2D0A

ωA
,

IB max D � 1
2

C 2D0B

ωB
.

(9.10)

Energy limit of bondingH
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Figure 9.10 Phase portrait of the Hamiltonian.



9.4 Manipulation of Single Atoms at Material Surfaces 281

These are also the limits of the actions for the T-shaped structures in the Hamil-
tonian. That is, the external energy input to the system can dissociate bonding
between atoms A and B.

9.4.3
Dynamics of Single Atoms Induced by Probes

One of the important topics of nanotechnology is the manipulation of single atoms
at the material surface. We have already investigated the dynamics of single atoms,
which can dissociate from material surfaces. Here we will discuss a mathemati-
cal formulation of vibratory fragmentation of single atoms by probes based on a
perturbed Hamiltonian system.

The manipulation of single atoms has been achieved by STM [69–71] and
AFM [20–22]. The schematic structure is described in Figure 9.11.

The manipulation brings the energy exchange between an atom bonding to sur-
face and probe. The manipulation of atoms is governed by the probability of dis-
sociation of atomic bonds. However, the dynamics and probabilities are not well
understood. If the probe is rigid or consists of heavy atoms with strong bonds to
the bulk, the dynamics are simply modeled by a T-shaped configuration of atoms
and molecules at surface. Then, the vibration of the probe gives us an external
energy input to the original Hamiltonian system.

The dynamics of single atoms that are manipulated by a probe are explained
in relation to the bonds in a T-shaped structure. The nonlinear resonances under
external excitation are related to energy transfer between modes and external vi-

Surface

Target

Probe Tip

Foremost atom

A

B

C

Figure 9.11 Manipulation of single atoms by a probe.
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Figure 9.12 Phase portrait of a perturbed Hamiltonian system.

brations. Moreover, the limit of resonance confronts the appearance of instability
depending on the nonlinearity. On the other hand, we know that there is a chaot-
ic region around the resonant boundary [51–53]. Under the external Hamiltonian
perturbation, ΔH might generate vibratory fragmentation and manipulation of
atoms as shown in Figure 9.12. Therefore, the instability of the resonance around
the boundary is strongly related to the global phase structure. When the system
becomes dissipative, the complexity is due to the intersection of stable and unsta-
ble manifolds. Bonding instabilities are also reported between atoms at material
surfaces and the foremost tips of the probes [72]. The instability causes the abrupt
jump of dynamics. This might be related to the uncertainty in the capture and
release of atoms.

In the classical treatment, the probability of fragmentation is defined by the rate
of initial conditions from which trajectories escape from the region surrounded by
a homoclinic orbit. Consider initial conditions in the space (Q i , q j , Pi , p j ), where
i and j show the indices of a meshed initial condition space. Their Hamiltonian
trajectories are generated by8̂̂̂<̂

ˆ̂:
P2

i

2m
C W0(Q i) D EA(IA) ,

p 2
j

2μ
C W0(q j ) D EB(IB) .

(9.11)

These equations possibly show the stochastic region in initial condition space [52].
The dissipation of the coupled Morse oscillators loosens the homoclinic orbit cor-
responding to the energy limit of bonding. At the same time, homoclinic intersec-
tion and folded manifolds appear in the global phase structure. In such a case, the
probability is strongly governed by the structure in spite of the uncertainty of the
Hamiltonian system [53].

When probe forcing vibrates single atoms, the dynamics can be approximated
by (9.5) with dissipation and forcing terms. To achieve vibratory fragmentation, the
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external energy must satisfy

ΔEB � EB(IBmax) � EB(IB0) , (9.12)

where IB0 is the initial action value. At the same time, the atom B must be captured
in the bond of the probe tip. As for the foremost atom (C) of tip, the situation co-
incides with the energy exchange between A–B and B–C in the bond A–B–C. After
the fragmentation of the bond A–B, the atom B generates the new bonding B–C. In
this process, the dissipation works for the stabilization of the dynamics. As men-
tioned above, chaotic dynamics cannot be avoided between release and capture.
The manipulation is then governed by the uncertainty of the dynamics.

9.4.4
Control of Manipulation

The certainty of manipulation is completely affected by the nonlinear dynamics
between the target atoms and the tips from the viewpoint of classical mechanics.
If the cantilever tip is apart from the material surface as in the case of dynamic
mode AFM, quantum effects seem to be small. We occasionally encounter the idea
that the uncertainty is caused by quantum mechanics and thermal dynamics in
the system. However, as dynamic mode AFM does not take place at the material
surface, we should be careful to formalize the dynamics.

In the realistic setups, the manipulation process lies in the interaction by multi
atoms around the surface and cantilever tip. The simulation show us the possibili-
ty of manipulation for several conditions and parameters. Here we show a criteria
of energy which can dissociate a single atom bonded to surface atoms. The per-
turbation to atoms through AFM can change the energy level of target atoms. The
possible control of dissociation lies in the tuning resonance conditions between
the cantilever tips and the coupling frequencies in atomic bonding. The frequency
must be low and in an acoustic mode. Then the interaction by AFM has a possibil-
ity to control the dissociation in the system. The Further research on this topic is
now underway.

9.5
Concluding Remarks

This chapter discussed two topics: (1) the nonlinear cantilever dynamics in dynam-
ic mode AFM and stabilization of chaotic vibrations for imaging exceeding non-
linear characteristics, and (2) the possibility for manipulating nanoparticles from
a material surface through AFM interaction. Both topics relate to the control of
AFM cantilevers, but the approaches are completely opposite. The top–down ap-
proach restricts the perturbation by nonlinearity between the cantilever tip and
material surface at the van der Waals force level. The bottom–up approach gives the
perturbation to the bond between atoms through AFM interaction. The top–down
approach was begun several years ago from research in nonlinear dynamics, and
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now the results have been confirmed experimentally and its effectiveness has been
demonstrated. The bottom–up theoretical discussion is still far from experimental
verification. However, the uncertainty caused by nonlinearities can be controlled
through the new well developed control methods and control system designs. We
now expect to approach the manipulation of atoms at the limit of classical mechan-
ics with greater control. This control can restrict the nonlinear uncertainty until
the appearance of quantum or thermal uncertainty in the system. These are our
current ongoing research topics.
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10
Classical Correlations and Quantum Interference
in Ballistic Conductors
Daniel Waltner and Klaus Richter

10.1
Introduction: Quantum Transport through Chaotic Conductors

Among the most important properties characterizing an electronic nanosystem is
its electrical conductance behavior. Therefore, gaining knowledge on charge trans-
port mechanisms, in particular when shrinking conductors from macroscopic
sizes down to molecular-sized wires or atomic point contacts, has been the focus of
experimental and theoretical research throughout the last decade. Such a reduction
in size and spatial dimensionality goes along with a crossover from charge flow
in the macroscopic bulk, well described by Ohm’s law, to distinct quantum effects
in the limit of microscopic or atomistic wires. Nanoconductors in the crossover
regime, often referred to as mesoscopic, frequently exhibit a coexistence of both
classical remnants of bulk features combined with signatures from wave interfer-
ence. Such quantum effects usually require low temperatures where coherence of
the electronic wave functions is retained up to micron scales. This has lead to the
observation of various quantum interference phenomena, for example, quantized
steps in the point contact conductance or the Aharonov–Bohm effect and universal
conductance fluctuations.

Nonlinear effects can enter into transport through mesoscopic or nanosystems
in two ways. First, as nonlinear I–V characteristics and charge flow far from equi-
librium for large enough voltages. Second, in the limit of linear response to an
applied electric field, the intrinsic nonlinear classical dynamics of the unperturbed
conductor can govern its transport properties. In this chapter, we focus on the lat-
ter case which is particularly interesting for mesoscopic conductors because the
nonlinear charge carrier dynamics can influence both the classical and, in a more
subtle way, the quantum transport phenomena.

Initially, disordered metals with underlying diffusive charge carrier motion in
mesoscopic matter were focused on. However here, we address ballistic nano- or
mesoscopic conductors where impurity scattering is suppressed. The most promi-
nent ballistic systems are nanostructures built from high-mobility semiconduc-
tor heterostructures where electrons are confined to two-dimensional, billiard-type

Nonlinear Dynamics of Nanosystems. Edited by Günter Radons, Benno Rumpf, and Heinz Georg Schuster
Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 978-3-527-40791-0



288 10 Classical Correlations and Quantum Interference in Ballistic Conductors

t = 0 t = 1 t = 2

t = 3 t = 4 t = 25

Figure 10.1 Quantum mechanical wave packet launched into
a mesoscopic cavity with the geometry of a “desymmetrized
diamond billiard”. The wave packet evolution is monitored at
times t D 1, 2, 3, 4, and 25, in units of the average time between
collisions with the walls of a corresponding classical particle.
(Courtesy of A. Goussev).

cavities of controllable geometry. Though, such systems are also realized as atom
optics billiards or through wave scattering as optical, microwave, or acoustic meso-
scopic resonators [1].

The quantum dynamics of a single particle in such a geometry is illustrated in
Figure 10.1 showing snapshots of a wave packet after multiples of the average clas-
sical time between bounces off the billiard walls. The quantum evolution in such a
mesoscopic geometry, with corresponding chaotic classical dynamics, is character-
ized by two main features: The rapid transition from wave packet motion roughly
following the path of a classical particle to random wave interference at larger times
and, second, the emergence of wave functions of complex morphology with wave
lengths much shorter than the system size. The latter can be used to further specify
mesoscopic matter, that is, quantum coherent systems where the smallest (quan-
tum) length scale, the de Broglie wave length or Fermi wave length λF in electronic
conductors, is much smaller than the system size L. Therefore, 1/(kFL) is a small
parameter in terms of the Fermi momentum kF D 2π/λF, though not fully negli-
gible as in the case of macroscopic systems.

Such ballistic mesoscopic systems are ideal tools for studying the connection
between (chaotic) classical dynamics and wave interference. Presumably, semiclas-
sical techniques provide this link in the most direct way. Modern semiclassical
theory is based on trace formulas, sums over Fourier-type components associated
with classical trajectories. Analogous to the famous Gutzwiller trace formula for the
density of states [2], corresponding expressions for quantum transport in the linear
response regime exist. There, semiclassical expressions for the conductance have
been obtained within the framework of the Landauer–Büttiker approach, relating
conductance to quantum transmission in nanostructures.

Following the early pioneering semiclassical work by Miller [3] for molecular
reactions and later by Blümel and Smilansky [4] for quantum chaotic scattering,
major advances were made in the context of mesoscopic conductance in the early
nineties by Baranger, Jalabert and Stone [5, 6]. All these semiclassical approaches
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were based on and limited by the so-called diagonal approximation. While most of
the features of experimental and numerical magneto-conductance profiles could be
well explained qualitatively on the level of the diagonal approximation, it was not
current conserving and thus failed to give correct quantitative predictions for the
quantum transmission. This was solved about ten years later when an approach
was devised to account for off-diagonal contributions to the semiclassical conduc-
tance [7], thereby achieving unitarity reflected in (average) current conservation,
and furthermore, agreement with existing predictions from random matrix theory
(RMT). The applicability of RMT to closed chaotic mesoscopic systems was con-
jectured after numerical simulations in [8]. Therefore, it was also expected to be
applicable to open systems.

Semiclassical ballistic transport on the level of the diagonal approximation was
reviewed in detail in [9–11]. In this chapter, we focus on the recent progress be-
yond the diagonal approximation. This serves as a model case which illustrates
how chaotic nonlinear dynamics can govern quantum properties at nanoscales.

10.2
Semiclassical Limit of the Landauer Transport Approach

The Landauer formalism [12], providing a link between the quantum transmission
and conductance, has proved to be an appropriate framework to address phase-
coherent transport through nanosystems. Consider a sample attached to two leads
of width W1 and W2 that support, respectively, N1 and N2 current carrying trans-
verse modes at (Fermi-)energy EF. For such a two-terminal setup, the conductance
reads at very low temperatures [12]

G(EF) D gs
e2

h
T(EF) D gs

e2

h

N1X
mD1

N2X
nD1

jtnm(EF)j2 , (10.1)

with N1 D W1
p

2mEF/(„π) and an analogous relation for N2. Here, gs D 2 ac-
counts for spin degeneracy, and the tnm(E ) are transmission amplitudes between
incoming channels m and outgoing channels n in the leads at energy E. They can
be expressed in terms of the projections of the Green function of the scattering
region onto the transverse modes φn(y 0) and φm (y ) in the two leads [13]

tnm(E ) D �i„(vn vm)1/2
Z

dy 0

Z
dyφ�

n (y 0)φm(y )G(x 0, y 0, x , y I E ) . (10.2)

Here x and x 0, respectively, denote the direction along the leads and vn , vm , the
corresponding longitudinal velocities. The integrals in (10.2) are taken over the
cross sections of the (straight) leads at the entrance and the exit.

Figure 10.2 shows the quantum transmission, numerically obtained from (10.2),
for a “graphene billiard” [14], fabricated by cutting a cavity out of a two-dimensional
graphene flake, a monoatomic layer of carbon atoms arranged in a honeycomb lat-
tice. Two major quantum features are visible: (i) distinct “ballistic conductance fluc-
tuations” as a function of energy. (ii) When subject to an additional perpendicular
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Figure 10.2 Total quantum transmission
(as a function of energy EF, in (b) in units
of the channel number in the leads of width
W1 D W2 D W ) for transport through a
phase-coherent graphene-based quantum dot,
see inset. The fluctuating line in (a) is the full
quantum transmission at zero magnetic field.

In (b), the straight solid and dashed line de-
note the averaged transmission at zero mag-
netic field and a magnetic field corresponding
to a flux φ D 1.6φ0 with the flux quantum
φ0 D hc/e. The difference marks the weak
localization correction (from [14]).

magnetic field B with magnetic flux φ, the average transmission (straight dashed
line in Figure 10.2b) shows a small positive offset compared to the average trans-
mission for B D 0 (solid line). This reduction of the average conductance at zero
magnetic field reflects a weak localization effect [15]. Its origin is non-classical and
due to wave interference.

Here, we focus on this ballistic weak localization effect and present its semiclas-
sical derivation for conductors with classically chaotic analogue. The semiclassical
approximation enters in two steps. First, we replace G(x 0, y 0, x , y I E ) in (10.2) by
the semiclassical Green function (in two dimensions) [2]:

G sc(r0, rI E ) D 1
i„(2 iπ„)1/2

X
t

Dt (r0, r) exp
�

i
„ St � iη t

π
2

�
. (10.3)

It is given as a sum over contributions from all classical trajectories t connecting
the two fixed points r and r0 at energy E. In (10.3),

St (r0, rI E ) D
Z
Ct

Ep � dEq (10.4)

is the classical action along a path Ct between r and r0 and governs the accumulated
phase.

Second, we evaluate the projection integrals in (10.2) for isolated trajectories
within the stationary-phase approximation. For leads with hard-wall boundaries,
the mode wave functions are sinusoidal, φm(y ) D p

2/ W1 sin(mπy/ W1). Hence,
the stationary-phase condition for the y integral requires [9]�

@S
@y

�
y 0

D �p y � � m„π
W1

, (10.5)

with m D ˙m. The stationary-phase solution of the y 0 integral yields a correspond-
ing “quantization” condition for the transverse momentum p y 0 . Thus, only those
paths which enter into the cavity at (x , y ) with a fixed angle sin θ D ˙mπ/ k W1

and exit the cavity at (x 0, y 0) with angle sin θ 0 D ˙nπ/ k W2 contribute to tnm(E )
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with k D p
2mE/„. There is an intuitive explanation: the trajectories are those

whose transverse wave vectors on entrance and exit match the wave vectors of the
modes in the leads. One then obtains for the semiclassical transmission ampli-
tudes

tnm(k) D �
p

2π i„
2
p

W1 W2

X
t (n,m)

sgn(n)sgn(m)
p

A t exp
�

i
„

QSt (n, mI k) � i
π
2

Qμ t

�
.

(10.6)

Here, the reduced actions are

QSt (n, mI k) D St (k) C „k y sin θ � „k y 0 sin θ 0 , (10.7)

which can be considered as Legendre transforms of the original action functional.
The phases Qμ t contain both the usual Morse indices and additional phases aris-
ing from the y , y 0 integrations. The prefactors are A t D j (@y/@θ 0)θ j/ („k jcos θ 0j).
The resulting semiclassical expression for the transmission and thereby the con-
ductance (see (10.1)) in chaotic cavities involves contributions from pairs of trajec-
tories t, t0. It reads [5, 6, 9]

T(k) D
N1X

mD1

N2X
nD1

jtnm(k)j2 D π„
2W1 W2

N1X
mD1

N2X
nD1

X
t,t 0

F t,t 0

n,m(k) (10.8)

with

F t,t 0

n,m(k) �
p

A tA t 0 exp
�

i
„
� QSt � QSt 0

� � iμ t,t 0
π
2

�
, (10.9)

where the phase μ t,t 0 accounts for the differences of the phases Qμ t and the sign
factors in (10.6).

In the next two sections, we show how one can calculate quantum corrections
to the transmission beyond the diagonal approximation with purely semiclassical
methods. The results obtained for chaotic conductors are consistent with RMT-
predictions.

10.3
Quantum Transmission: Configuration Space Approach

In evaluating the off-diagonal (interference) contributions to the quantum trans-
mission, we present two approaches. The first approach is based on the analysis of
off-diagonal pairs of trajectories and their self-intersections in configuration space.
This approach is more illustrative, though less general than the second phase space
approach outlined in Section 10.4.

We start from the semiclassical expression for jtnm(k)j2 obtained by squaring the
semiclassical transmission amplitudes (10.6), see also (10.8) and (10.9):

jtnm(k)j2 D π„
2W1 W2

X
t,t 0

p
A tA t 0 exp

�
i
„
� QSt � QSt 0

� � iμ t,t 0
π
2

�
. (10.10)
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Due to the action difference of the trajectories t and t0 in the exponential in (10.10),
this expression is a rapidly oscillating function of k or the energy in the semiclas-
sical limit of large ratios (St � St 0 )/„. In the following, we wish to identify those
contributions to (10.10) which survive an average over a classically small, but quan-
tum mechanically large k-window Δ k. Such contributions must come from very
similar trajectories. Afterwards, we wish to evaluate their contributions to jtnm(k)j2
using basic principles of chaotic dynamics. For our calculation, we will need hyper-
bolicity and ergodicity. Hyperbolicity implies the possible exponential separation
of neighboring trajectories for long times with the distance growing proportional
to eλT , with the Lyapunov exponent λ and the time T of the trajectory. The second
principle, ergodicity, means the equidistribution of long trajectories on the energy
surface at the energy E of the trajectory.

After calculating the diagonal contribution in the first subsection, we will deter-
mine the simplest nondiagonal contribution. The behavior of the latter as a func-
tion of a magnetic field and a finite Ehrenfest time is then studied in the third and
fourth subsection, respectively.

10.3.1
Diagonal Contribution

The first “diagonal” (D) contribution to (10.10) originates from identical trajectories
t D t0, meaning St D St 0 . It gives

jtnm(k)j2D D π„
2W1 W2

X
t

A t . (10.11)

The remaining sum over classical trajectories in (10.11) can be calculated using a
classical sum rule [7] that can be derived using ergodicity, see for example [16]. It
yields

X
t

A t D 4W1 W2

Σ (E )

Z 1

0
dT �(T ) , (10.12)

where Σ (E ) denotes the phase space volume of the system at energy E, and �(T )
is the classical probability to find a particle still inside an open system after a
time T. For longer times, the latter decays for a chaotic system exponentially �(T ) 

e�T/τD , with the dwell time τD D Σ (E)

2π„(N1CN2) . This exponential decay can be easily
understood based on the equidistribution of trajectories: the number ΔN of par-
ticles leaving the system during ΔT is given by the overall number of particles N
times the ratio of the phase space volume from which the particles leave during ΔT
and the whole phase space volume of the system. The differential equation for N,
obtained in the case of infinitesimal ΔT , obviously has an exponential solution.

By inserting (10.12) into (10.11), we obtain

jtnm(k)j2D D 1
N1 C N2

. (10.13)
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Its derivation required ergodicity valid only for long trajectories. We will assume
that the classical dwell time is large enough in order to have a statistically relevant
number of long trajectories left after time t. The result in (10.13) allows for a very
simple interpretation. It is just the probability of reaching one of the N1 C N2

channels if it is equally likely to reach each of the channels.

10.3.2
Nondiagonal Contribution

In the following, we will calculate the contributions from pairs of different trajec-
tories, however, with similar actions. For a long time, it was not clear how these
orbits could look like. There are many orbit pairs in a chaotic system having ac-
cidentally equal or nearly equal actions. However, in order to describe universal
features of a chaotic system after energy averaging, one has to find orbits that are
correlated in a systematic way. These orbits were first identified and analyzed in
2000 in the context of spectral statistics [17, 18]. There, periodic orbits were stud-
ied to compute correlations between energy eigenvalues of quantum systems with
a classically chaotic counterpart. Based on open, lead-connecting trajectories, this
approach was generalized to the conductance we study here in [7]. Still, the under-
lying mechanism of forming pairs of classically correlated orbits is the same both
cases.

In Figure 10.3, we show an example representative of such a correlated (peri-
odic) orbit pair in the chaotic hyperbola billiard. The two partner orbits are topo-
logically the same up to the region marked by the circle where one orbit exhibits
a self-crossing (Figure 10.3a), while the other exhibits an ‘avoided’ crossing (Fig-
ure 10.3b). Usually, such trajectory pairs are drawn schematically, as shown in Fig-
ure 10.4.

One considers very long orbits with self-crossings characterized by crossing an-
gles � 	 π. In [17, 18], it was shown that for each orbit, a partner orbit starting and

(a) (b)

Figure 10.3 Pair of two periodic orbits in the hyperbola billiard
essentially differing from each other in the region marked by the
circle, where the left orbit (a) exhibits a self-crossing while the
right partner orbit (b) shows an “avoided crossing”. (Courtesy
of M. Sieber).
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Figure 10.4 Schematic drawing of a pair of orbits yielding the
first nondiagonal contribution to the transmission considered
in [7]. One of the orbits crosses itself under an angle �, the other

one possesses an “avoided crossing”. Except for the crossing
region, both orbits are almost identical.

ending (exponentially) close to the first one exists. It follows the first orbit until the
crossing, avoids it, then traverses the loop in a reversed direction and avoids the
crossing again.

In order to quantify the contribution of these trajectory pairs to (10.10), we need
two inputs: an expression for the action difference and for the density quantifying
how often an orbit of time T exhibits a self-intersection, and both quantities ex-
pressed as a function of the parameter �. The formula for the action difference ΔS
can be derived by linearizing the dynamics of the orbit without crossing around the
reference orbit with crossing. This yields, in the limit � 	 π, [17, 18],

ΔS D p 2�2

2mλ
. (10.14)

At this point, we can justify our assumption of small crossing angles �. In the
limit „ ! 0, we expect important contributions to (10.10) only from orbit pairs
with small action differences, that is, small crossing angles, as seen in (10.14).

Before deriving the number of self-crossings, P (�, T ) d�, in the range between
� and � C d� of an orbit of time T, we give rough arguments how this expression
depends on � and T for trajectories in billiards. There, each orbit is composed of
a chain of N chords connecting the reflection points. Following an orbit, the first
two chords cannot intersect, the third chord can cross with up to one, the fourth
chord with up to two segments, and so on. Hence, the overall number of self-
crossings will be proportional to

PN
nD3(n � 2) / N 2, to leading order in N, that is,

proportional to T 2.
The crossing angle dependence of P (�, T ) can be estimated for small � as fol-

lows. Given a trajectory chord of length L, a second chord, tilted by an angle � with
respect to the first one, will cross it inside the billiard (with area of order L2) on-
ly if the distance between the reflection points of the two chords at the boundary
is smaller than L sin �. The triangle formed in the latter case includes a fraction
sin � of the entire billiard size. From this rough estimation, we expect P (�, T ) /
T 2 sin �.
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More rigorously, the quantity P (�, T ) d�, can be expressed for an arbitrary orbit γ
as [17, 18]

P (�, T ) d� D
*Z T�Tmin(�)

Tmin(�)
dtl

Z T�t l�Tmin(�)/2

Tmin(�)/2
dts j J j δ (x (ts ) � x (ts C tl ))

� δ (� � α (ts , ts C tl ))

+
d� (10.15)

with the average h. . .i taken over different initial conditions (x0, p0). The time of
the closed loop of the trajectory is denoted by tl and the time before the loop by ts .
α (ts , ts C tl ) denotes the absolute value of the angle between the velocities v (ts )
and v (ts C tl ). j J j is the Jacobian for the transformation from the argument of the
first delta function to tl and ts , ensuring that P (�, T ) d� yields a 1 for each crossing
of γ . With the absolute value of the velocity, v, it can be expressed as

j J j D jv (ts) � v (ts C tl )j D v2 sin α (ts , ts C tl ) . (10.16)

Starting from the formal expression (10.15), the derivation [17, 18] of the formu-
la for P (�, T ) for a chaotic system is instructive. It shows how information can
be extracted from the basic principles of chaotic dynamics beyond the diagonal
approximation, and so we will present it here in detail. Hyperbolicity will yield a
justification for the minimal time Tmin(�), already introduced in (10.15); we will
come back to that point later after.

To proceed, we interchange the phase space integral of the average with the time
integrals, substitute (x (ts) , p (ts)) 7�! (x0, p0) in (10.15) and obtain

P (�, T ) D 2m
Z T�Tmin(�)

Tmin(�)
dtl v2 sin �pE (�, tl ) (T � tl � Tmin(�)) , (10.17)

with the averaged classical return probability density

pE (�, tl ) D 1
2m

hδ (x0 � x (tl )) δ (� � j] (v0, v (tl ))j)i . (10.18)

This yields the probability density that a particle possessing the energy E returns
after the time tl to its starting point with the angle j] (v0, v (tl ))j D �. For long
times, this can be replaced by 1/Σ (E ), assuming ergodicity. Then, we obtain

P (�, T ) D 2m
Z T�Tmin(�)

Tmin(�)
dtl v2 sin �

1
Σ (E )

(T � tl � Tmin(�))

D mv2

Σ (E )
sin � (T � 2Tmin (�))2 . (10.19)

Now, we return to our assumption of hyperbolicity and explain the cutoff time
Tmin(�), introduced in the equations above. To this end, we consider two classical
paths leaving their crossing with a small angle �. The initial deviation of their ve-
locities is δvi D �v . In order to form a closed loop, the deviation of the velocities
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δv f , when both paths have traversed half of the closed loop, has to be given by
δv f D cv with c of the order unity. Then, for the minimal time Tmin (�) to form a
closed loop, due to the exponential divergence of neighboring orbits, we reach

c D � e(λTmin(�))/2 , (10.20)

implying

Tmin(�) D 2
λ

ln
 c

�

�
. (10.21)

An argument similar to the one used here for the closed loop can also be applied
to the other two parts of the trajectory, leaving the crossing with an angle � towards
the opening of the conductor. Suppose ts has a length between 0 and Tmin(�)/2,
then both parts have to be so close together that they must leave both through the
same lead. As we are interested in the transmission, we also have to exclude that
case15). A similar argument holds for the case where the last part of the orbit has a
length between 0 and Tmin(�)/2. In this case, the orbit has to come very close to the
opening before the crossing and leave before it could have crossed. Accounting for
all these restrictions yields the integration limits in (10.15).

Now, we are prepared to calculate the contribution of the considered trajectory
pairs to the transmission. Therefore, we keep one sum over trajectories in (10.10).
This sum will be performed using the same classical sum rule as in diagonal ap-
proximation. We can replace the other by a sum over all the partner trajectories of
one trajectory, which can be calculated using P(�, T ). There is, however, one sub-
tlety concerning the survival probability �(T ) in the sum rule. Once again, if the
crossing happens near the opening, both parts of the orbit act in a correlated way;
�(T ) is changed in the case of the trajectory pairs considered here for a similar
reason. Since we know that the two parts of the orbit leaving the crossing on each
side are very close to each other, the orbit can either leave the cavity during the
first stretch, that is, during the first time it traverses the crossing region, or it can-
not leave at any point. This implies that we have to change the survival probability
from �(T ) to �(T � Tmin(�))16). Then, we arrive at the loop (L) contribution

jtnm(k)j2L D π„
2W1 W2

X
t

X
P

A t2 Re exp
�

i
p 2�2

P

2mλ„
�

D 4π„
Σ (E )

Z π

0
d�

Z 1

2Tmin(�)
dT e�(T�Tmin(�))/τD P (�, T ) cos

�
p 2�2

2mλ„
�

D 8π„mv2τ3
D

Σ (E )2

Z π

0
d� e�Tmin(�)/τD sin � cos

�
p 2�2

2mλ„
�

(10.22)

15) If we would calculate the reflection instead
of the transmission, the effect of short legs,
referred to as coherent backscattering, must
be taken into account.

16) This effect together with the requirement
of a finite length of the orbit parts leaving

towards the opening was originally not taken
into account in [7]. In this calculation, the
contributions from these two effects cancel
each other. They will only be important when
considering more complicated diagrams as
in the next section.



10.3 Quantum Transmission: Configuration Space Approach 297

with the sum over the partner trajectories P in the first line. As the important
contributions require very small action differences, that is, very similar trajectories,
and as the prefactor A t is not as sensitive as the actions to small changes of the
trajectories, we can neglect differences between t and t0 in the prefactor. In the
second line, we applied the classical sum rule with the modification explained prior
to (10.22) and used P (�, T ) to evaluate the sum over P. After performing the simple
time integral in the third line, we can do the �-integration, as for example in [19],
by taking into account that the important contributions come from very small �,
yielding

jtnm(k)j2L D 8π„mv2τ3
D

Σ (E )2

Z π

0
d�(�/c)

2
λτD sin � cos

�
p 2�2

2mλ„
�

D 8π„mv2τ3
D

Σ (E )2

Z
dz

mλ„
p 2

�
1
c

� 2
λτD

� �
2mλ„z

p 2

� 1
λτD

cos z

D � 8π„mv2τ2
D

Σ (E )2

Z
dz

m„
p 2

�
1
c

� 2
λτD

� �
2mλ„z

p 2

� 1
λτD sin z

z
.

(10.23)

In the first line, we rewrote e�Tmin(�)/τD as (�/c)
2

λτD , and in the second line, we ap-
proximated sin � � � and substituted z D p 2�2/ (2mλ„). Then, we perform a
partial integration with respect to z, neglecting rapidly oscillating terms that are
canceled by the k-average, introduced after (10.10). Eventually, we perform the
z-integral by pushing the upper limit to infinity, that is, „ ! 0 and taking into
account our assumption of large dwell times, that is, λτD ! 1. Additionally, we

assume
�
2mλ„/p 2

� 1
λτD � 1; we will return to the last point soon.

Finally, we arrive at the leading nondiagonal contribution to the quantum trans-
mission [7],

jtnm(k)j2L D � 1
(N1 C N2)2 . (10.24)

10.3.3
Magnetic Field Dependence of the Nondiagonal Contribution

Until now, we assumed time reversal symmetry. If this symmetry is destroyed, for
example, by applying a strong magnetic field, the latter contribution will vanish
because the closed loop has to be traversed in different directions by the trajectory
and its partner. Here, we study the transition region between zero and the finite
magnetic field. In particular, we assume a homogeneous magnetic field Bz per-
pendicular to the sample that is assumed weak enough not to change the classical
trajectories, but only the actions in the exponents. Since the closed loop is traversed
in different directions by the two trajectories, we obtain an additional phase differ-
ence (4πABz/φ0) between the two trajectories with the enclosed area A of the loop
and the flux quantum φ0 D (hc/e). Additionally, we need the distribution of en-
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closed areas for a trajectory with a closed loop of time T in chaotic systems, given
by

P (A, T ) D 1p
2πT 


exp
�

� A2

2T 


�
(10.25)

with a system specific parameter 
. A derivation of this formula can be found, for
example, in [20]. Incorporating the phase difference and the area distribution in a
modified P(�, T ) yields

PB (�, T ) D 2mv2

Σ (E )
sin �

Z T�Tmin(�)

Tmin(�)
dtl (T � tl � Tmin (�))

�
Z 1

�1

dAP (A, tl � Tmin (�)) cos
4πABz

Φ0

D 2mv2

Σ (E )
sin �

Z T�Tmin(�)

Tmin(�)
dtl (T � tl � Tmin (�)) e�(t l�Tmin(�))/ tB

(10.26)

with tB D φ2
0

8π2
B2
z
. In the first line, we employed that paths leaving the crossing

to form a closed loop enclose a negligible flux as long as they are correlated; for a
more detailed analysis see Appendix D of [21]. Performing the T- and �-integrals
similar to the case without magnetic field yields [7]

jtnm(k, Bz)j2L D � 1
(N1 C N2)2

1
1 C τD/ tB

. (10.27)

We obtain an inverted Lorentzian with minimum at zero magnetic field, implying
that the transmission through our sample increases with increasing magnetic field.
This weak localization phenomenon, a precursor of strong localization, is visible as
the reduction of the average quantum transmission in Figure 10.2.

10.3.4
Ehrenfest Time Dependence of the Nondiagonal Contribution

This semiclassical approach can also be applied in order to calculate the Ehrenfest
time dependence of the transmission. The Ehrenfest time τE � (1/λ) ln (E/(λ„)),
more generally a time proportional to ln „ [22], is the time a wave packet needs to
reach a size such that it can no longer be described by a single classical particle.
Therefore, the Ehrenfest time separates the evolution of wave packets, essential-
ly following the classical dynamics (for example, up to a few bounces of the wave
packet in Figure 10.1) from longer time scales dominated by wave interference
(last panel in Figure 10.1). Based on field theoretical methods, Aleiner and Larkin
showed that a minimal time is required for quantum effects in the transmission
to appear, the Ehrenfest time [23]. We will now apply our semiclassical methods to
determine the Ehrenfest time dependence of the transmission following the pio-
neering work [24] that has later been extended to the reflection [21, 25, 26], includ-
ing a distinction between different Ehrenfest times. To this end, we directly start
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from (10.22). However, we have to be careful when evaluating the �-integral. In our

former calculation, we assumed e�τE/τD D (λ„/E )
1

λτD � 1, requiring τE 	 τD.
However, by lifting this strong restriction for τD, but still keeping it large enough
to fulfill our assumption of chaotic dynamics, we obtain

jtnm(k, τE)j2L D � 1
(N1 C N2)2 e�τE/τD , (10.28)

that is, an exponential suppression of the nondiagonal contribution due to the
Ehrenfest time. This dependence has been confirmed in numerical simulations
for quantum maps.

Following our introduction of semiclassical methods for the evaluation of nondi-
agonal contributions in configuration space, we will now turn to the generalization
to phase space. This also provides an elegant way to compute higher-order correc-
tions to the leading weak localization contribution presented above.

10.4
Quantum Transmission: Phase Space Approach

The above configuration space treatment, based on self-crossings, is restricted to
systems with two degrees of freedom. More generally, for higher-dimensional dy-
namical systems, one cannot assume to find a one-to-one correspondence between
partner orbits and crossings of an orbit [27, 28]. In order to overcome these dif-
ficulties, a phase space approach was developed for calculating the spectral form
factor in spectral statistics in [27–29] involving periodic orbits. The next challenge
was the generalization of this theory to trajectory pairs differing from one other at
several places, solved again first for the spectral form factor [30] and generalized to
the transport situation considered here in [31, 32], which serves as the basis of the
following discussion.

In this section, we first explain the phase space approach and use it afterwards in
the way developed in [30, 31] for the calculation of the quantum transmission also
involving higher-order semiclassical diagrams.

10.4.1
Phase Space Approach

Contrary to the last section, we must initially replace the role of the reference orbit.
Whereas before, we used the crossing orbit as a reference and then calculated the
action difference and the crossing angle distribution in terms of the crossing angle
�, we now consider the orbit without the crossing that is close to itself in the region
where the partner orbit crossed itself in the last section. Inside the region, where
the orbit is close to itself – we will refer to it as encounter region and to the parts
of the orbit inside as encounter stretches that are connected by so called links –
we place a so called Poincaré surface of section P with its origin at Qx D (x, p). The
section consists of all points Qx Cδ Qy D (x C δx, p C δp) in the same energy shell as
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the reference point with the δx perpendicular to the momentum p of the trajectory.
For the two-dimensional systems considered here, P is a two-dimensional surface
where every vector δ Qy can be expressed in terms of the stable direction es ( Qx ) and
the unstable one eu ( Qx ) [33]

δ Qy D ses ( Qx ) C ueu ( Qx ) . (10.29)

The stable and unstable expressions refer to the following. We consider two orbits,
one starting at Qx and the other one at Qx C δ Qy0, then the difference between the
stable coordinates will decrease exponentially for positive times and exponentially
increase for negative time in the limit of long time T, unstable coordinates have
opposite behavior. The functional form of the exponentials can be determined as
eλT and e�λT . Now, we can come back to the trajectory with the encounter region
where we have put our Poincaré surface of section. The trajectory considered in the
last section will pierce through the Poincaré section twice: we will consider one of
the points as the origin of the section and the other piercing will take place at the
distance (s, u). The coordinates of the piercing points of the partner trajectory are
determined in the following way. The unstable coordinate of the partner trajectory
has to be the same as the one of that part of the first trajectory that the second
will follow for positive times. The stable coordinate is determined by the same
requirement for negative times.

After this introduction into the determination of the (s, u)-coordinates, we are
now ready to treat trajectory pairs that differ in encounters of arbitrary complexi-
ty. Following [30, 31] and using the notation introduced there we will allow the two
trajectories to differ in several encounters involving an arbitrary number of stretch-
es. In order to organize this structure, we introduce a vector Ev D (v2, v3, . . .) with
the component vl determining the number of encounters with l stretches involved.
The overall number of encounters during an orbit will be denoted by V D P1

lD2 vl ,
the overall number of encounter stretches by L D P1

lD2 l vl . In an encounter of l
stretches, we will get l � 1 (s, u)-coordinates.

Now, we can proceed by replacing the former expressions for the minimal loop
time, the action difference and the crossing angle distribution depending on the
former small parameter � by the corresponding expressions depending on the new
small parameters (s, u).

We start with the minimal loop time, also known as the duration of the en-
counter. Shifting the Poincaré surface of section through our encounter, the stable
components will asymptotically decrease and the unstable ones will increase for
increasing time. We then claim that both components have to be smaller than a
classical constant c. Its exact value will again, as in the last section, be unimportant
for our final results. We finally obtain the encounter duration tenc as the sum of
the times tu, that the trajectory needs from P till the point where the first unstable
component reaches c, and the time ts, that the trajectory needs from P till the point
where the last stable component falls below c. Thus, we get

tenc D ts C tu D 1
λ

ln
c2

maxi fjs i jg max j
˚ˇ̌

u j
ˇ̌� . (10.30)
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Now, we address the action difference between the two trajectories. By expressing
the actions of the paired trajectories as the line integral of the momentum along
the trajectory, we can expand [27, 28] one action around the other and express the
result in terms of the (s, u)-coordinates. For an l-encounter, this yields17)

ΔS D
l�1X
j D1

s j u j . (10.31)

The action difference of a trajectory pair is then obtained by adding the differences
resulting from all encounters.

Finally we come to the crossing angle distribution that will be replaced by
a weight function for the stable and unstable coordinates for a trajectory of
time T. We first notice that the uniformity of the trajectory distribution implies, in
terms of our coordinates in P , that a trajectory pierces through the section with
the coordinates (u, u C du) and (s, s C ds) within the time interval (t, t C dt)
with the probability 1/Σ (E )dsdudt. In general, we obtain for an l-encounter
(1/Σ (E ))l�1 ds l�1dul�1dt l�1. By integrating the product of the latter quantities
for all encounters over all possible durations of the L � V intra-encounter links in a
way that their durations are positive, yields our weight function for a fixed position
of P . To take into account all possible positions of P , we also integrate over all
possible positions, where it can be placed and divide by tenc to avoid overcounting
of equivalent positions. By taking all link times positive, we obtain for the weight
function for an orbit of time T

wT (s, u) D 1

(Σ (E ))L�V QV
αD1 tαenc

�
Z 1

0
dt1 . . . dtLΘ

 
T �

VX
αD1

lα tαenc �
LX

αD1

tα

!

D


T �PV
αD1 lα tαenc

�L

L! (Σ (E ))L�V QV
αD1 tαenc

. (10.32)

One additional problem arises when treating trajectory pairs differing not only in
one 2-encounter, as in the last section. One can construct for one Ev different trajec-
tory pairs, varying for example in the relative orientation, in which the encounter
stretches are traversed. We will count this number by a function N

�Ev� and briefly
describe later how it can be calculated.

10.4.2
Calculation of the Full Transmission

After the introduction into the phase space approach, we are now ready to calculate
the transmission. Taking the weight function, the action difference and the number

17) Strictly speaking [30], the (s, u) coordinates
used here and in the following calculation
are for encounters involving more than two

stretches not the same as the described
before, but related to them via a linear and
volume preserving transformation.
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of structures, we can transform the nondiagonal (ND) part of (10.10) into

jtnm(k)j2ND D π„
2W1 W2

X
t

X
Ev

A t N
�Ev�

�
	Z c

�c
. . .
Z c

�c
dL�V u dL�V s exp

�
i
„ ΔS

�
wT (s, u)



Δ k

(10.33)

with the average over a small k-window denoted by h. . .iΔ k . By inserting the formu-
las for the action difference, the weight function and using the classical sum rule
with the modification of the survival probability, discussed in the last section, we
can then transform the integral with respect to the length of the trajectory into one
over the last link and obtain

jtnm(k)j2ND D 2π„
Σ (E )

X
Ev

N
�Ev�  LC1Y

iD1

Z 1

0
dti exp

�
� ti

τD

�!

�
	Z c

�c
. . .
Z c

�c

dL�V u dL�V s
(Σ (E ))L�V

�
VY

αD1

exp

� tαenc

τD
C i

„

Plα�1
j D1 sα j uα j

�
tαenc

+
Δ k

D 1
N1 C N2

1X
nD1

�
1

N1 C N2

�n L�V DnX
Ev

(�1)V N
�Ev� (10.34)

with the L C 1 link times ti . The (s, u)-integrals are calculated using the rule [30],
that after expanding the exponential etenc/τD into a Taylor series, only the tenc-
independent term contributes and yields in leading order in „	

1
Σ (E )

Z c

�c

Z c

�c
dsdu exp

�
isu
„
�


Δ k

 1

TH
(10.35)

with the so called Heisenberg time TH D Σ (E )/(2π„). For the sum with respect to
Ev , one can derive recursion relations, yielding [30]

L�VDnX
Ev

(�1)V N
�Ev� D

�
1 � 2




�n

(10.36)

with 
 D 1 and 
 D 2 for the case with and without time reversal symmetry,
respectively. Relations of this kind are derived by describing our trajectories by per-
mutations expressing the connections inside and between encounters and consid-
ering the effect of shrinking one link in an arbitrarily complicated structure to zero.

We then obtain for T(EF), given in (10.1), in the case with time reversal symme-
try [31, 32]

T(EF)
D1 � N1N2

N1 C N2
C N1N2

N1 C N2

1X
nD1

� �1
N1 C N2

�n

D N1N2

N1 C N2 C 1

(10.37)
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and in the case without time reversal symmetry

T(EF)
D2 � N1N2

N1 C N2
, (10.38)

which agrees with the diagonal contribution already obtained in the previous sec-
tion. Both results are in agreement with RMT predictions [34].

10.5
Semiclassical Research Paths: Present and Future

In the above sections, we outlined the recently developed semiclassical techniques
for treating off-diagonal contributions for a paradigmatic example of coherent
transport, weak localization. Nonlinear (hyperbolic) dynamics, as a prerequisite
for the formation of correlated orbit pairs together with classical ergodicity, are
at the core of the universality in the interference contribution to the ballistic con-
ductance. Recently, this semiclassical approach to quantum transport has been
extended along various paths, thereby gaining a more and more closed semiclassi-
cal framework of mesoscopic quantum effects.

In the presence of spin-orbit interaction, spin relaxation in confined ballistic sys-
tems and weak antilocalization, the enhancement of the conductance for systems
obeying time-reversal symmetry (i.e. at zero magnetic field), has been semiclassi-
cally predicted [35] and generalized to other types of spin-orbit interaction [36] and
higher-order contributions [37].

Ballistic conductance fluctuations, the analogue of the universal conductance
fluctuations in the diffusive case, require the computation of semiclassical dia-
grams involving four trajectories. Again, RMT predictions could be confirmed [26].
Accordingly, RMT predictions for shot noise in Landauer transport agree with re-
cent semiclassical results [38, 39]. This could also be shown for higher moments
of the conductance in [40]. Even strong localization effects (in certain systems, i.e.
chains of chaotic cavities) could be derived by making use of semiclassical loop-
contributions [41].

Finally, beyond RMT, Ehrenfest time effects on transport properties have recently
been in the spotlight. As a result, ballistic conductance fluctuations turn out to be,
to leading order, τE-independent [25], contrary to weak localization which is sup-
pressed with e�τE/τD [24], as we have shown. Recently these results were extended
to the ac-conductance in [42] and to a semiclassical calculation of the Andreev gap
in [43].

In addition to universal spectral statistics of closed systems and transport
through open systems, the semiclassical techniques have been recently gener-
alized to decay and photo fragmentation of complex systems [44, 45].

To summarize, by now a newly developed semiclassical machinery to compute
systematically quantum coherence effects for quantities being composed of prod-
ucts of Green functions surely exists. This opens up various possible future re-
search directions. With respect to system classes, mesoscopic transport theory has
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been predominantly focused on electron transport, leaving the conductance of bal-
listic hole systems aside, which experimentally plays an important role and for
which a semiclassical theory remains to be developed. The situation is similar for a
novel class of ballistic conductors: graphene based nanostructures, see Figure 10.2.
More generally, a proper treatment of interaction effects in mesoscopic physics
would probably represent the major challenge to future semiclassical theory.

To conclude, at mesoscopic scales where linear quantum evolution meets non-
linear classical dynamics, interesting phenomena will surely emerge in view of
increasingly controllable future experiments.
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11
Nonlinear Response of Driven Mesoscopic Conductors
Franz J. Kaiser and Sigmund Kohler

11.1
Introduction

Time-dependent systems represent a frequently studied class of models in the field
of nonlinear dynamics. Of foremost interest is the interplay of an external time-
dependent ac driving force with the nonlinearities of the system, which generally
leads to frequency mixing and is visible in the dc response of the system. Tight-
binding models are systems with intrinsic nonlinearities and when coupled to
electron reservoirs describe mesoscopic conductors, such as coherently coupled
quantum dots [1–4] and molecular wires [5–8]. In experiments, the physical real-
ization of time-dependent fields acting on these systems range from oscillating gate
voltages to microwaves and infrared lasers. Excitations with relatively small ampli-
tudes can already induce electron excitations that lead to an enhanced transport
via photon-assisted tunneling [3, 9–14]. This phenomenon is typically associated
with reduced shot noise and can be described as the linear response of the conduc-
tor [14, 15].

When increasing the driving strength such that one leaves the linear regime, two
interesting effects have been predicted. First, in spatially asymmetric systems, the
nonlinear response of the conductor can comprise pump currents, that is, dc cur-
rents even in the absence of any net source-drain voltage [16–24]. In the presence
of static magnetic fields, the pump mechanism may favor electrons with a particu-
lar spin, so that one observes spin pumping [25–29] and spin filtering [30]. In the
non-adiabatic regime, it is possible to tune the pump into regimes with clearly sub-
Poissonian noise characteristics [31, 32]. A second phenomenon in driven conduc-
tors that is, in a sense, opposite to pumping is current suppression by proper time-
dependent fields even in the presence of an applied source-drain voltage [33, 34].
At the same time, the zero frequency noise may be suppressed as well [35–37].

When the electron–electron interaction sets the dominating energy scale of the
problem, the transport through quantum dots is governed by resonant tunneling.
Then, for a given source-drain and gate voltage, only dot states with particular elec-
tron numbers play a role, while others suffer from Coulomb blockade [38]. Con-

Nonlinear Dynamics of Nanosystems. Edited by Günter Radons, Benno Rumpf, and Heinz Georg Schuster
Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 978-3-527-40791-0



308 11 Nonlinear Response of Driven Mesoscopic Conductors

sequently, the current-voltage characteristics show a step-like behavior, and the
current as a function of both a bias and a gate voltage exhibits the characteristic
Coulomb diamond structure. The main aim of the present work is to study how
Coulomb blockade and time-dependent fields influence transport.

A proper theoretical tool for the description of transport in the Coulomb block-
ade regime is provided by master equations for the reduced density operator of
the wire [39–42]. For time-dependent conductors, this enables a rather efficient
treatment of transport problems after decomposing the wire density operator into
a Floquet basis. Then it is possible to study the response of relatively large driv-
en conductors [14], and to also include electron–electron interactions [43, 44] and
electron-phonon interactions [45]. We nevertheless restrict ourselves to two-level
systems here because their behavior is sufficiently elementary for a qualitative un-
derstanding. For the computation of current fluctuations, one can employ a gen-
eralized master equation that resolves the number of the transported electrons.
This degree of freedom is traced out after introducing a counting variable [46].
For various static transport problems, this approach has been followed by sever-
al groups [47–53]. A Floquet master equation approach for the description of shot
noise in driven conductors has recently been developed [54].

In Section 11.2 a model for the description of quantum transport and the central
quantities of interest are introduced. We then review in Section 11.3 the Floquet
master equation approach derived in [54]. In Section 11.4, we investigate a double
quantum dot in the Coulomb blockade regime under the influence of ac driving
with this formalism.

11.2
Wire-Lead Model and Current Noise

A frequently used model for nanoscale conductors such as molecular wires or cou-
pled quantum dots is sketched in Figure 11.1. It is described by the time-dependent
Hamiltonian

H(t) D Hwire(t) C Hleads C Hcontacts , (11.1)

where the different terms correspond to the central conductor (“wire”), electron
reservoirs (“leads”), and the wire-lead couplings (“contacts”), respectively. We focus
on the regime of coherent quantum transport where the main physics at work oc-
curs on the wire itself. In doing so, we neglect other possible influences originating
from driving-induced hot electrons in the leads and dissipation on the wire. Then,
the wire Hamiltonian reads, in a tight-binding approximation with N orbitals jni,

Hwire(t) D
X

n,n0 ,s,s0

Hnn0 (t)c†
ns cn0 s0 C Hinteraction . (11.2)

For a molecular wire, this constitutes the Hückel description where each site corre-
sponds to one atom. The fermion operators cns, c†

ns annihilate and create, respec-
tively, an electron with spin s D ", # in the orbital jni. The influence of an applied
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Figure 11.1 Level structure of a double quantum dot with
N D 2 orbitals. The terminating sites are coupled to leads
with chemical potentials μL and μR D μL C eV , respectively.

ac field or an oscillating gate voltage with frequency Ω D 2π/T results in a peri-
odic time dependence of the wire Hamiltonian, namely Hnn0 (t C T ) D Hnn0 (t).

For the interaction Hamiltonian, we assume a capacitor model, so that

Hinteraction D U
2

Nwire(Nwire � 1) , (11.3)

where Nwire D P
ns c†

ns cns describes the number of electrons on the wire. Below
we focus on the limit of strong interaction, U ! 1, which finally means that the
Coulomb repulsion is so strong that only states with zero or one excess electron
play a role.

The leads are modeled by ideal electron gases,

Hleads D
X
q,s

�q


c†

Lqs cLqs C c†
Rqs cRqs

�
, (11.4)

where c†
Lq


c†

Rq

�
creates an electron in the state jLqi (jRqi) in the left (right) lead.

The wire-lead tunneling Hamiltonian

Hcontacts D
X
q,s


VLqs c†

Lqs c1s C VRqs c
†
Rqs cN s

�
C h.c. (11.5)

establishes the contact between the sites j1i, jNi, and the respective lead. This
tunneling coupling is described by the spectral density

Γ`(�) D 2π
X

q

jV`qj2δ(� � �q) (11.6)

of lead ` D L, R. In the following, we restrict ourselves to the wide band limit in
which the spectral density is assumed to be energy independent, Γ`(�) ! Γ`.

To fully specify the dynamics, we choose as an initial condition for the left/right
lead a grand canonical electron ensemble at temperature T and electrochemical
potential μL/R. Thus, the initial density matrix reads

�0 / e�(Hleads�μL NL�μR NR)/ kBT , (11.7)
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where N` D P
qs c†

`qs c`qs is the number of electrons in lead ` and kB T denotes the
Boltzmann constant times temperature. An applied voltage V maps to a chemical
potential difference μR � μL D eV with �e being the electron charge. Then, at
initial time t0, the only nontrivial expectation values of the wire operators read
hc†

`0 q0 s0 c`qsi D f`(�q)δ``0δ qq0δ s s0 , where f`(�) D (1 C exp[(� � μ`)/ kBT ])�1 denotes
the Fermi function.

11.2.1
Charge, Current, and Current Fluctuations

To avoid the explicit appearance of commutators in the definition of correlation
functions, we perform the derivation of the central transport quantities in the
Heisenberg picture. As a starting point we choose the operator

Q`(t) D eN`(t) � eN`(t0) , (11.8)

which describes the charge accumulated in lead ` with respect to the initial state.
Due to total charge conservation, Q` equals the net charge transmitted across the
contact `, and its time derivative defines the corresponding current

I`(t) D d
dt

Q`(t) . (11.9)

The current noise is described by the symmetrized correlation function

S`(t, t0) D 1
2

˝
[Δ I`(t), Δ I`(t0)]C

˛
(11.10)

of the current fluctuation operator Δ I`(t) D I`(t) � hI`(t)i, where the anticommu-
tator [A, B ]C D AB C B A ensures hermiticity. At long times, S`(t, t0) D S`(t C
T , t0 C T ) shares the time periodicity of the driving [55]. Therefore, it is possible to
characterize the noise level by the zero frequency component of S`(t, t�τ) averaged
over the driving period,

NS` D 1
T

Z T

0
dt
Z 1

�1
dτS`(t, t � τ) . (11.11)

Moreover, for two-terminal devices NS` is independent of the contact `, that is, NSL D
NSR � NS .

The evaluation of the zero frequency noise NS directly from the definition given
in (11.11) can be tedious due to the explicit appearance of both t and t � τ. This
inconvenience can be circumvented by employing the relation

d
dt

�hQ2
`(t)i � hQ`(t)i2� D 2

Z 1

0
dτS`(t, t � τ) , (11.12)

which follows from the integral representation of (11.8) and (11.9), Q`(t) DR t
t0

dt0 I`(t0), in the limit t0 ! �1. By averaging (11.12) over the driving peri-
od and using S(t, t � τ) D S(t � τ, t), we obtain

NS D
	

d
dt

hΔQ2
`(t)i



t

, (11.13)
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where ΔQ` D Q` � hQ`i denotes the charge fluctuation operator and h. . .it the
time average. The fact that the time average can be evaluated from the limit NS D
limt0!�1hΔQ2

`(t)i/(t � t0) > 0 allows the interpretation of the zero frequency
noise as the “charge diffusion coefficient”. As a dimensionless measure for the
relative noise strength, we employ the Fano factor [56]

F D
NS

ej NI j , (11.14)

which can provide information about the nature of the transport mechanism [57,
58]. Here, NI denotes the time average of the current expectation value hI`(t)i. His-
torically, the zero frequency noise (11.11) contains a factor of 2, that is, NS 0 D 2 NS ,
resulting from a different definition of the Fourier transform. In this case the Fano
factor is defined as F D NS 0/2ej NI j.

11.2.2
Full Counting Statistics

A more complete picture of the current fluctuations beyond second order correla-
tions is provided by the full counting statistics. It is determined by the moment
generating function

φ(�, t) D hei�NLit , (11.15)

and allows the direct computation of the kth moment of the charge in the left lead
via the relationD

Qk
L(t)

E
D ek @k

@(i�)k
φ(�, t)

ˇ̌̌
�D0

. (11.16)

Subtracting from the moments the trivial contributions that depend on a shift of
the initial values, one obtains the cumulants. They are defined and generated via
the cumulant generating function ln φ(�, t) which replaces φ in (11.16) [59], so
that the kth cumulant reads

Ck D ek @k

@(i�)k
ln φ(�, t)

ˇ̌̌
�D0

. (11.17)

In a continuum limit for the leads, both the moments and the cumulants di-
verge as a function of time, and one focuses on the rates at which these quantities
change in the long time limit. This establishes the relations between the first two
cumulants and I(t) and S(t), namely

I(t) D �i e
@

@�
PC (�, t)

ˇ̌̌
�D0

, (11.18)

S(t) D �e2 @2

@�2
PC(�, t)

ˇ̌̌
�D0

. (11.19)
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For driven systems, these quantities are time-dependent even in the asymptotic
limit and thus, we characterize the transport by the corresponding averages over
one driving period. Then expressions (11.18) and (11.19) become identical to the
previously defined time averages NI and NS , respectively. Herein we restrict ourselves
to the computation of the first and the second cumulant, despite the fact that higher
order cumulants can also be measured [60, 61].

11.3
Master Equation Approach

In the presence of electron–electron interactions, an exact treatment of the electron
transport within a scattering theory is no longer possible, and a master equation
formalism can be an appropriate tool for the computation of currents [12, 14, 39,
44, 45]. Recently, master equations have been established for the computation of
current noise of various static conductors as well [46–53]. In the following, we de-
velop such an approach for the case of periodically time-dependent conductors.

11.3.1
Perturbation Theory and Reduced Density Operator

We start our derivation of a master equation formalism from the Liouville–von
Neumann equation i„ PR(t) D [H(t),R(t)] for the total density operator R(t). By
standard techniques we obtain the exact equation of motion

d
dt
eR(t) D � i

„
�eH contacts(t),R(0)

�
� 1

„2

Z 1

0
dτ
�
Hcontacts,

�eH contacts(t � τ, t),R(t)
��

, (11.20)

where the tilde denotes the interaction picture with respect to the lead and the wire
Hamiltonian, QX (t, t0) D U†

0 (t, t0)X U0(t, t0), and U0 is the propagator without the
coupling. Below we will employ Floquet theory in order to obtain explicit expres-
sions for these operators.

As already discussed above, the moment generating function φ(�) D hexp(i�NL)i
contains the full information about the counting statistics. For its explicit compu-
tation, we define in the Hilbert space of the wire the operator

F(�, t) D trleads
˚
ei�NLR(t)

�
, (11.21)

whose limit � ! 0 is obviously the reduced density operator of the wire, F(0, t) D
�(t). After tracing out the wire degrees of freedom, F becomes the moment gen-
erating function φ(�) D trwireF . It will prove convenient to decompose F into a
Taylor series,

F D � C
1X

kD1

(i�)k

k!
Fk , (11.22)



11.3 Master Equation Approach 313

where the coefficients Fk D trleads
�
N k

L R
�

provide direct access to the moments˝
N k

L

˛ D trwireFk .
Our strategy is now to derive an equation of motion for the coefficients Fk from

the master equation for the full density operator (11.20). For that purpose, we trans-
form the master equation for QR back to the Schrödinger picture and multiply it
from the left by the operator exp(i�NL). By tracing out the lead degrees of freedom
and using the commutation relations [NL, V ] D V and [NL, V †] D �V †, where
V D P

q,s VLqs c
†
Lqs c1s we obtain

d
dt

F(�, t) D fL C (ei� � 1)JC C (e�i� � 1)J�gF(�, t) . (11.23)

In order to achieve this compact notation, we have defined the superoperators
J˙ and the time-dependent Liouville operator

L(t)X D � i
„ [Hwire(t), X ]

C ΓL

2π

Z 1

0
dτ
Z

d�
h
ei�τ


�c1 Qc†

1 X fL(�) C Qc†
1 X c1 fL(�)

�X Qc†
1 c1

NfL(�) C c1 X Qc†
1

NfL(�)
�

Ce�i�τ

�X Qc1c†

1 fL(�) C c†
1 X Qc1 fL(�)

�c†
1 Qc1 X NfL(�) C Qc1 X c†

1
NfL(�)

�i
C same terms with the replacement 1, L ! N, R , (11.24)

which also determines the time evolution of the reduced density operator, P� D
L(t)�. The tilde denotes the interaction picture operator Qc D Qc(t, t � τ) and f` the
Fermi function of lead `, while Nf` D 1 � f`. The current operators

JC(t)X D ΓL

2π

Z 1

0
dτ
Z

d�


ei�τ Qc†
1 X c1 C e�i�τ c†

1 X Qc1

�
fL(�) , (11.25)

J�(t)X D ΓL

2π

Z 1

0
dτ
Z

d�


ei�τ c1 X Qc†
1 C e�i�τ Qc1 X c†

1

� NfL(�) , (11.26)

describe the tunneling of an electron from the left lead to the wire and the opposite
process, respectively. Note that these superoperators still contain a nontrivial time
dependence stemming from the interaction picture representation of the creation
and annihilation operators of wire electrons.

11.3.2
Computation of Moments and Cumulants

For the computation of the current given in (11.18) and the zero frequency noise
given in (11.19), we generalize the approach of [49] to the time-dependent case.
Since we restrict the noise characterization to the Fano factor, it is sufficient to
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compute the long time behavior of the first and the second moment of the electron
number in the left lead. This information is fully contained in the time derivative
of the operator F up to second order in �, for which we obtain the hierarchy

P� D L(t)� , (11.27)

PF1 D L(t)F1 C (JC(t) � J�(t)) � , (11.28)

PF2 D L(t)F2 C 2 (JC(t) � J�(t))F1 C (JC(t) C J�(t)) � (11.29)

by Taylor expansion of the equation of motion (11.23). The first equation deter-
mines the time evolution of the reduced density operator, which in the long time
limit becomes the stationary solution �0(t). Note that for a driven system it gen-
erally is time dependent. Replacing � by �0 in (11.28) and using the fact that
trwireLX D 0 for any operator X, we obtain the stationary current

I(t) D �e trwire PF1 D �e trwire(JC � J�)�0(t) . (11.30)

The dc current follows simply by averaging over one driving period and the result
is the current formula of [62].

The computation of F1(t) is hindered by the fact that the inverse of a Liouvil-
lian generally does not exist. For static systems this is obvious from the fact that
the stationary solution fulfills L�0 D 0, which implies that L is singular. This
unfortunately also complicates the computation of the second cumulant, and we
proceed in the following way. We start from (11.12) which relates the zero frequen-
cy noise to the charge fluctuation in the leads, and write the time derivative of
the first and the second moment of the electron number in the left lead by the
operators PF1,2. From the equations of motion (11.28) and (11.29), we then find
S D e2trwiref2(JC �J� � I )F1 C (JC CJ�)�g, where we again used the relation
trwireLX D 0. An important observation is now that the first part of this expression
vanishes for F1 / �0, which can easily be demonstrated by inserting the current
expectation value of (11.30). Since �0trwire acts as a projector onto the stationary
solution �0, we can define the “perpendicular” part

F1? D F1 � �0trwireF1 , (11.31)

which fulfills the relation trwireF1? D 0 and obeys the equation of motion

PF1? D L(t)F1? C (JC(t) � J�(t) � I(t)) �0(t) . (11.32)

We will see below that in contrast to F1, the long time limit of the traceless F1? can
be computed directly from the equation of motion (11.32). Upon inserting (11.31)
into the equation of motion (11.29), we finally obtain the expression for the still
time-dependent “charge diffusion coefficient”

S(t) D e2trwire f2(JC � J�)F1? C (JC C J�)�0g , (11.33)

whose time average finally provides the Fano factor F D NS/e NI .
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11.3.3
Floquet Decomposition

The remaining task is now to compute the stationary solutions �0(t) and F1?(t)
from the time-dependent equations of motion (11.27) and (11.28). As for the com-
putation of the dc current in our previous work [62], we solve this problem within a
Floquet treatment of the isolated wire, which provides a convenient representation
of the electron creation and annihilation operators.

11.3.3.1 Fermionic Floquet Operators
In the driven wire Hamiltonian (11.2), the single particle contribution commutes
with the interaction term, and thus these two Hamiltonians possess a complete set
of common many particle eigenstates. Here we start by diagonalizing the first part
of the Hamiltonian, which describes the single particle dynamics determined by
the time-periodic matrix elements Hnn0 (t). According to the Floquet theorem, the
corresponding single particle Schrödinger equation possesses a complete solution
of the form

jΨα(t)i D e�i�α t/„j'α(t)i , (11.34)

with the quasienergies �α and the T -periodic Floquet states

j'α (t)i D
X

k

e�ikΩ tj'α,ki . (11.35)

The Floquet states and the quasienergies are obtained by solving the eigenvalue
problem0@X

n,n0

jniHnn0 (t)hn0j � i„ d
dt

1A j'α (t)i D �αj'α (t)i , (11.36)

whose solution allows one to construct via Slater determinants many particle Flo-
quet states. In analogy to the quasimomenta in Bloch theory for spatially periodic
potentials, the quasienergies �α come in classes

�α,k D �α C k„Ω , k 2 Z (11.37)

of which all members represent the same physical solution of the Schrödinger
equation. Thus, we can restrict ourselves to states within one Brillouin zone as, for
example, 0 � �α < „Ω .

For the numerical computation of the operators �0 and F1?, it is essential to
have an explicit expression for the interaction picture representation of the wire
operators. It can be obtained from the fermionic Floquet creation and annihilation
operators [14] defined via the transformation

cα s(t) D
X

n

h'α (t)jnicns . (11.38)
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The inverse transformation

cns D
X
α

hnj'α(t)icα s(t) (11.39)

follows from the mutual orthogonality and the completeness of the Floquet states at
equal times [63]. Note that the right-hand side of (11.39) becomes time independent
after the summation. The Floquet annihilation operator (11.38) has the interaction
picture representation

Qcα s(t, t0) D U†
0 (t, t0)cα s(t)U0(t, t0) (11.40)

D e�i(�αCUNwire)(t�t 0)/„cα s(t0) , (11.41)

with the important feature that the time difference t � t0 enters only via the expo-
nential prefactor. This allows us to evaluate the τ-integration of the master equa-
tion (11.27) after a Floquet decomposition. Relation (11.41) can easily be shown
by computing the time derivative with respect to t, which by use of the Floquet
equation (11.36) becomes

d
dt

Qcα s(t, t0) D � i
„ (�α C U Nwire) Qcα s(t, t0) . (11.42)

From this equation on the initial condition Qcα(t0, t0) D cα(t0) follows relation (11.41).
Note that the time evolution induced by Hwire(t) conserves the number of electrons
on the wire.

11.3.3.2 Master Equation and Current Formula
In order to make use of the Floquet ansatz, we decompose the master equa-
tion (11.27) and the current formula (11.30) into the Floquet basis derived in the
last subsection. For that purpose, we use the fact that we are finally interested in
the current at asymptotically large times in the limit of large interaction U. The
latter has the consequence that only wire states with at most one excess electron
play a role, so that the stationary density operator �0(t) can be decomposed into the
2N C 1 dimensional basis fj0i, c†

α s(t) j0ig, where j0i denotes the wire state in the
absence of excess electrons and s D ", #. Moreover, it can be shown that at large
times the density operator becomes diagonal in the electron number Nwire, so that
a proper ansatz reads

�0(t) D j0i�00(t)h0j C
X

α,
,s,s0

c†
α sj0i�α s,
 s0(t)h0jc
 s0 . (11.43)

Note that we keep terms with α ¤ 
, which means that we work beyond a ro-
tating wave approximation. Indeed, in a nonequilibrium situation the off-diagonal
density matrix elements �α
 will not vanish, and neglecting them might lead to
artefacts [14, 64].
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By inserting the decomposition shown in (11.43) into the master equation (11.27),
we obtain an equation of motion for the matrix elements �α s,
 s0 D h0jcα s�wire c†


 s0j0i.
We evaluate the trace over the lead states and compute the matrix element
h0jcα s(t) . . . c†


 s0(t)j0i. Thereby, we neglect the two particle terms which are of the

structure c†
α s c

†

 sj0ih0jc
 s cα s. Formally, these terms drop out in the limit of strong

Coulomb repulsion because they are accompanied by a rapidly oscillating phase
factor exp(�iU Nwireτ/„). Then the τ-integration results in a factor fL(�α,k C U)
which vanishes in the limit of large U. Since the total Hamiltonian of (11.1) is
diagonal in the spin index s, we find that the density matrix elements �α s,
 s0 are
spin-independent as well, so that after a transient stage

�α",
"(t) D �α#,
#(t) � �α
(t) (11.44)

and �α",
# D 0. Moreover, the stationary density operator (11.43) obeys the time
periodicity of the driving field [14], and thus can be decomposed into the Fourier
series

�α
(t) D
X

k

e�ikΩ t�α
,k (11.45)

and �00(t) accordingly. After some algebra, we arrive at a set of N 2 coupled equa-
tions of motion for �α
(t), which in Fourier representation read

i(�α � �
 � k„Ω )�α
,k

D ΓL

2

X
k 0,k 00

h'α,k 0Ck 00j1ih1j'
,kCk 00i�00,k 0

�
fL(�α,k 0Ck 00) C fL(�
,kCk 00)

�
� ΓL

2

X
α0,k 0,k 00

h'α,k 0Ck 00j1ih1j'α0 ,kCk 00i�α0
,k 0 Nf (�α0,kCk 00)

� ΓL

2

X

0,k 0,k 00

h'
0,k 0Ck 00j1ih1j'
,kCk 00i�α
0,k 0 Nf (�
0,k 0Ck 00 )

C same terms with the replacement 1, L ! N, R .

(11.46)

In order to solve these equations we have to eliminate �00,k , which is most conve-
niently done by inserting the Fourier representation of the normalization condition

trwire�0(t) D �00(t) C 2
X
α

�αα(t) D 1 . (11.47)

In order to obtain an expression for the current that is consistent with the restric-
tion to one excess electron, we compute the expectation values in the current for-
mula of (11.30) with the reduced density operator given in (11.43), and insert the
Floquet representation of the wire operators from (11.39). Performing an average
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over the driving period, we obtain for the dc current the expression [62]

NI D 2eΓL

„ Re
X
α,k

0@X

,k 0

h'
,k 0Ck j1ih1j'α,k i�α
,k 0 NfL(�α C k„Ω )

�
X

k 0

h'α,k 0Ck j1ih1j'α,ki�00,k 0 fL(�α C k„Ω )

1A . (11.48)

Physically, the second contribution of the current formula (11.48) describes the
tunneling of an electron from the left lead to the wire, and thus is proportional to
�00 fL, which denotes the probability that a lead state is occupied while the wire is
empty. The first terms corresponds to the reversed process, namely the tunneling
on an electron from site j1i to the left lead.

The decomposition of the equation of motion (11.32) for the long time limit of
F1? and the subsequent computation of the NS from (11.33) proceed along the same
lines. The only difference is that the current operators J˙ yield an inhomogeneity,
and that the r.h.s. of the trace condition shown in (11.47) is

trwireF1? D (F1?)00 C 2
X
α

(F1?)αα D 0 . (11.49)

11.3.4
Spinless Electrons

A particular consequence of strong Coulomb repulsion is the mutual blocking of
different spin channels. This also motivates us to compare to the case of spinless
electrons, which is physically realized by spin polarization. For spinless electrons,
we drop all spin indices in the Hamiltonian given in (11.1). Physically, this limit
is realized by a sufficiently strong magnetic field that polarizes all electrons con-
tributing to the transport. By the same calculation as that shown above, we can also
obtain the expression given in (11.48) for the current, but without the prefactor 2.
The factor 2 is also no longer present in the normalization condition (11.47), which
now reads

trwire�0(t) D �00(t) C
X
α

�αα(t) D 1 , (11.50)

and accordingly in the equation of motion for F1?.

11.4
Transport under Multi-Photon Emission and Absorption

As an application of the master equation approach derived in the last section, we
study the transport through a double quantum dot in which multi-photon transi-
tions entail significant consequences for the dc current. In particular, we focus on
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the creation of a dc current in the absence of a transport voltage and on the current
suppression by the purely coherent influence of an oscillating field.

11.4.1
Electron Pumping

In experiments with double quantum dots [2, 3, 65], it has been demonstrated that
resonant excitations may induce pump currents that are much larger than those
predicted in the limit of an adiabatically slow driving [66]. This effect requires in-
ternal asymmetries of the quantum dots which can be induced by gate voltages,
such that the relevant level of one dot has a different on site energy than the other
one (see Figure 11.1). Corresponding theoretical studies explained this behavior by
the fact that the driving bridges the energy difference, and in this way opens an
inelastic transport channel. This holds both for the case of strong Coulomb repul-
sion [21, 44, 62] and for non-interacting electrons [67]. For the latter case, which
can be treated within a Floquet scattering approach [14], the investigation of the
corresponding shot noise confirmed this picture. As expected for an open channel,
the electron flow through this system is sub-Poissonian, which is reflected by the
observed small Fano factor [67].

Figure 11.2a shows the behavior of the current in the limit of strong Coulomb
repulsion. It demonstrates that whenever the driving field is in resonance with
the energy difference, an electron residing in the left quantum dot can absorb a
photon which leads to a transition to the higher levels in the right quantum dot.
Since this level lies above the Fermi level of the right lead, the electron can leave
the central system and will be replaced by an electron that tunnels from the left
lead to the left dot. For off-resonant driving, photon absorption is not very efficient,
such that only a few electrons can tunnel from the left to the right quantum dot.
Then only a small tunnel current emerges. The Fano factor shown in Figure 11.2b
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Figure 11.2 (a) Average current through the
double quantum dot setup sketched in Fig-
ure 11.1 as a function the driving frequency
and amplitude. The dark area at Ω � 5Δ/„
marks the first order resonance, while the
other current maxima correspond to the

nonlinear response. (b) Corresponding Fano
factor. White marks Poissonian noise (F � 1).
At the first order resonances, the noise is sub-
Poissonian (elliptically shaped dark areas),
while it becomes super-Poissonian with an
increasing driving amplitude.
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is much smaller than unity at the resonances. This reveals that the transport is
quite regular.

The current as a function of the driving amplitude exhibits an interesting non-
monotonic behavior. This can be attributed to the fact that in strongly driven sys-
tems, the response is governed by an effective Hamiltonian whose matrix elements
are dressed by Bessel functions Jν(A/„Ω ), where ν reflects the order of the reso-
nance. For noninteracting electrons, this behavior has even been predicted in an-
alytical calculations [67], while here our numerical results provide a strong indica-
tion for a similar behavior.

11.4.2
Coherent Current Suppression

A transport effect opposite to pumping is the suppression of a dc current by
an ac field with a proper ratio between driving amplitude and frequency [33].
The physical cause of this effect is the so-called coherent destruction of tunnel-
ing [68, 69] between the two quantum dots, which turns out to be stable in the
presence of Coulomb repulsion [70]. This phenomenon can be quantitatively un-
derstood in terms of a driven two level system in the absence of external leads. We
consider a single particle in a driven two level system described by the Hamiltonian

HTLS(t) D �Δ
2
σx C Aσz cos(Ω t) , (11.51)

where σx ,z denotes the usual Pauli matrices. If the energy „Ω of the quanta of the
driving field is much larger than the tunnel matrix element Δ, one can transform
the Hamiltonian to an interaction picture with respect to the time-dependent part
of the Hamiltonian,

HTLS(t) ! eHTLS(t) D �Δ
2

U†
0 (t)σx U0(t) , (11.52)

where U0(t) D expf�(iA/„Ω )σz sin Ω tg. Since we assumed that the driving is
much faster than the tunneling, we can separate time scales, and thus replace the
interaction-picture Hamiltonian by its time average

NHTLS,eff D �Δeff

2
σx , (11.53)

with the tunnel matrix element renormalized according to

Δ �! Δeff D J0(A/„Ω )Δ , (11.54)

where J0 denotes the zeroth order Bessel function of the first kind. If the ratio
A/„Ω equals a zero of the Bessel function J0 (i.e., for the values 2.405.., 5.520..,
8.654.., . . . ), the effective tunnel matrix element vanishes and the tunneling is
brought to a standstill.

When going beyond this approximation, the effective tunnel matrix element no
longer vanishes exactly, but it still becomes very small. Then in the presence of two
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Figure 11.3 Average current through an unbiased two level
system as a function the driving amplitude and source-drain
voltage. The driving frequency is Ω D 5Δ/„.

leads with a source-drain voltage, the electron transport acquires a “bottleneck”
between the two quantum dots. This situation corresponds to a quantum point
contact for which the transmission of an electron is a “rare event”. Consequently,
the electron transport obeys Poisson statistics, for which the Fano factor is F D 1.
This has been demonstrated within Floquet scattering theory for noninteracting
electrons at low temperature [36].

In the limit of strong Coulomb repulsion, the average current and the corre-
sponding Fano factor are shown in Figure 11.3. For very small driving amplitudes
the system is practically undriven, and we find a dc current when the source-drain
voltage is so large that the eigenenergies of the two level system lie within the volt-
age window. Then electrons from the left lead can tunnel into the double dot and
proceed further to an empty state in the right lead. Since the transport channel is
blocked while an electron resides in the dots, the electrons are anti-bunched. This
is reflected by sub-Poissonian noise, with F � 1/2.

With an increasing driving amplitude, the renormalization of the tunnel matrix
element according to (11.54) becomes relevant. When the ratio A/„Ω matches a
zero of the Bessel function, the current is suppressed while the Fano factor increas-
es. Comparing with the case of noninteracting electrons, we find that Coulomb
repulsion generally reduces the current. This can be attributed to the fact that elec-
trons approaching the central region from the left-hand side are repelled even by
electrons that have already tunneled to the right dot. The Poissonian “rare event”
character of the transport process is nevertheless maintained. Thus, we observe
F � 1 for driving parameters that lead to suppression of tunneling, while outside
these regions resonant tunneling dominates and the Fano factor assumes values
close to F D 1/2.

We also find that the current exhibits a step-like behavior as a function of the
source-drain voltage, even when the voltage is already quite large. This can be
attributed to the photon absorption during the transport. In the current formula
of (11.48), photon absorption is manifest in the energy shifts by multiples of „Ω
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in the arguments of the Fermi functions. Thus, a particular sideband of a Floquet
state jφαi may or may not contribute to the transport, depending on whether its
energy �α C k„Ω lies inside or outside the voltage window. When the voltage win-
dow increases, more sidebands contribute to the transport. The observed step size
of „Ω /e confirms this scenario.

11.5
Conclusions

We have studied the influence of strong Coulomb repulsion on the transport
through a driven double quantum dot, focusing on electron pumping and co-
herent current suppression. While the former denotes the emergence of a dc
current due to a pure ac driving in an asymmetric system, the latter means that
an ac driving can substantially reduce the dc current that stems from an applied
source-drain voltage. Both effects represent particular nonlinear responses of a
coherent conductor to an oscillating force. A proper theoretical tool for the com-
putation of such a nonlinear response is Floquet theory. In the present case we
combined a Floquet theory for the isolated conductor with a master equation
approach that describes the electron transport in the regime of strong Coulomb
repulsion.

Our main quantities of interest were the average current and the Fano factor
which provides information about the nature of the transport process. We also re-
vealed that in this limit pumping stems mainly from resonant excitations of elec-
trons from the lower to the higher levels of the double dot. Moreover, it turned
out that multi-photon transitions are almost indistinguishable from single photon
transitions, since they lead to very similar peaks of the dc current, while shot noise
is reduced. Coherent current suppression represents a more involved type of re-
sponse and can be understood in terms of a high frequency approximation. Here
we found that Coulomb repulsion mainly influences the magnitude of the current,
while it renders shot noise, as characterized by the Fano factor, virtually unchanged.
Our results indicate that for both effects under investigation, Coulomb repulsion
does not play a major role.
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12
Pattern Formation and Time Delayed Feedback Control
at the Nanoscale
Eckehard Schöll

12.1
Introduction

Nonlinear and chaotic space-time patterns arise in a variety of nonlinear dissipa-
tive dynamic systems in physics, chemistry, and biology [1–5]. In semiconductors
driven far from thermodynamic equilibrium by an applied voltage, such patterns
occur as current density and electric field distributions, providing an abundance
of examples for complex or chaotic dynamics and self-organized spatiotempo-
ral patterns [6–8]. Of particular current interest are state-of-the-art semiconduc-
tor structures whose structural and electronic properties vary on a nanometer
scale [9]. In these nanostructures, nonlinear charge transport mechanisms are
given, for instance, by quantum mechanical tunneling through potential barriers
or by thermionic emission of hot electrons which have enough kinetic energy to
overcome the barrier. A further important feature connected with potential barriers
and quantum wells in such semiconductor structures is the ubiquitous presence
of space charges. This, according to Poisson’s equation, induces a further feed-
back between the charge carrier distribution and the electric potential distribution
governing the transport. This mutual nonlinear interdependence is particularly
pronounced in the cases of semiconductor heterostructures (consisting of layers
of different materials) and low-dimensional nanostructures where abrupt junc-
tions between different materials on an atomic length scale cause conduction band
discontinuities resulting in potential barriers and wells. The local charge accumu-
lation in these potential wells, together with nonlinear transport processes across
the barriers have been found to provide a number of nonlinearities and instabilities
in current-voltage characteristics [8].

In particular, instabilities are very likely to occur in the case of negative differen-
tial conductance, that is, if the current I decreases with increasing voltage U, and
vice versa. The actual electric response depends upon the attached circuit which
generally contains, even in the absence of external load resistors, unavoidable re-
sistive and reactive components such as lead resistances, lead inductances, package
inductances, and package capacitances. These reactive components give rise to ad-
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Figure 12.1 A semiconductor device operated in a circuit with
load resistor R and capacitor C, and applied bias voltage U0.

ditional degrees of freedom which are described by Kirchhoff’s equations of the
circuit. If, for instance, a circuit is considered which contains a capacitance C par-
allel to the semiconductor device, and a load resistance RL and a bias voltage U0 in
series with the device (Figure 12.1), then Kirchhoff’s laws lead to

U0 D RL I0(t) C U(t) , (12.1)

I0(t) D I(t) C C
dU
dt

. (12.2)

Hence, the temporal behavior of the voltage is determined by the circuit equation

dU(t)
dt

D 1
C

�
U0 � U

RL
� I

�
. (12.3)

If a semiconductor element with negative differential conductance is operated in
a reactive circuit, oscillatory instabilities may be induced by these reactive compo-
nents, even if the relaxation time of the semiconductor is much smaller than that
of the external circuit so that the semiconductor can be described by its stationary
I(U) characteristic and simply acts as a nonlinear resistor. Here, we will consider
the more interesting case where the semiconductor itself introduces an internal
unstable temporal degree of freedom, leading to self-sustained current or voltage
oscillations. Such self-sustained oscillations under time-independent external bias
will be discussed in the following. Examples for internal degrees of freedom are the
charge carrier density, the electron temperature, or a junction capacitance within
the device. Equation (12.3) is then supplemented by a dynamic equation for this
internal variable. It should be noted that the same class of models is also applica-
ble to describe neural dynamics in the framework of the Hodgkin–Huxley equa-
tions [10].

The global I(U) characteristic must be distinguished from the local current den-
sity j versus electric field F. Two important cases of negative differential conductivity
(NDC) are described by an N-shaped or an S-shaped j (F ) characteristic, and de-
noted by NNDC and SNDC, respectively. However, more complicated forms like
Z-shaped, loop-shaped, or disconnected characteristics are also possible [8]. NNDC
and SNDC are associated with voltage- or current-controlled instabilities, respec-
tively. In the NNDC, case the current density is a single-valued function of the
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field, but the field is multivalued: the F( j ) relation has three branches in a certain
range of j. The SNDC case is complementary in the sense that F and j are inter-
changed. In the case of NNDC, the NDC branch is often but not always, depend-
ing upon external circuit and boundary conditions, unstable against the formation
of nonuniform field profiles along the charge transport direction (electric field do-
mains). While in the SNDC case, current filamentation generally occurs, that is, the
current density becomes nonuniform over the cross-section of the current flow and
forms a conducting channel, a current filament. The elementary structures which
make up these self-organized patterns are stationary or moving fronts representing
the boundaries of the high-field domain or high-current filament. These prima-
ry self-organized spatial patterns may themselves become unstable in secondary
bifurcations leading to periodically or chaotically breathing, rocking, moving, or
spiking filaments or domains, or even solid-state turbulence and spatiotemporal
chaos [6–8, 11–13].

The control of such complex spatiotemporal scenarios is of utmost importance.
For instance, chaotic current or voltage oscillations should be avoided for a reli-
able operation of semiconductor nanostructure devices. Moreover, there is need to
control the frequencies and the regularity of noisy oscillations, or stabilize steady
states. The whole issue of controlling unstable or noisy states has evolved into
a growing field of applied nonlinear science [14]. This field has various aspects
comprising stabilization of unstable periodic orbits embedded in a determinis-
tic chaotic attractor, which is generally referred to as chaos control, stabilization
of unstable fixed points, or control of the coherence and timescales of stochastic
motion. Various methods of control, going well beyond the classical control theo-
ry [15–17], have been developed since the ground-breaking work of Ott, Grebogi
and Yorke [18]. One scheme where the control force is constructed from time-
delayed signals [19] has turned out to be very robust and universal in applica-
tion. It has been used in a large variety of systems in physics, chemistry, biolo-
gy, and medicine, and in purely temporal dynamics as well as in spatially extend-
ed systems. Moreover, it has recently been shown to be applicable also to noise-
induced oscillations and patterns [20, 21]. This is an interesting observation in the
context of ongoing research on the constructive influence of noise in nonlinear
systems [22–26].

An important aspect of time-delayed feedback control (time-delay autosynchro-
nization, TDAS) is the noninvasiveness of this control method, that is, the control
force vanishes when the target orbit is reached. An extension to multiple time-
delays (extended time-delay autosynchronization, ETDAS) has been proposed by So-
colar et al. [27], and analytical insight into those schemes has been gained by sev-
eral theoretical studies, for example, [28–40] as well as by numerical bifurcation
analysis, for example, [41, 42]. Such self-stabilizing feedback control schemes with
different couplings of the control force have also been applied to spatiotemporal
patterns resulting from various models of semiconductor oscillators, for example,
impact ionization driven Hall instability [43], and semiconductor nanostructures
described by an N-shaped [44–46], S-shaped [47–50], or Z-shaped [51] j (F ) charac-
teristics.
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Figure 12.2 Schematic energy profiles of two
nanostructures. (a) Superlattice exhibiting do-
main formation. The associated current den-
sity ( j ) versus field (F ) characteristic shows
negative differential conductivity (NDC). The
low-field domain corresponds to sequential
tunneling between equivalent levels of adja-
cent quantum wells (low-field peak of the j(F )
characteristic), while the high-field domain

corresponds to resonant tunneling between
different levels of adjacent wells (high-field
peak). (b) Schematic potential profile of the
double barrier resonant tunneling structure
(DBRT). EF and Ew denote the Fermi level in
the emitter, and the energy level in the quan-
tum well, respectively. U is the voltage applied
across the structure.

Time-delayed feedback control has also been applied to purely noise-induced os-
cillations and patterns in a regime where the deterministic system rests in a steady
state. In this way, both the coherence and the mean frequency of the oscillations
has been controlled in various nonlinear systems [20, 21, 52–58], including semi-
conductor nanostructures of N-type [59, 60], S-type [61], and Z-type [62, 63].

In the following, we use two paradigmatic models of state-of-the-art semicon-
ductor nanostructures (Figure 12.2) where time-delayed feedback control should
be easy to implement experimentally by a feedback loop in the electronic circuit:

1. Electron transport in semiconductor superlattices exhibits strongly nonlin-
ear spatiotemporal dynamics. Complex scenarios including chaotic motion
of multiple fronts and domains have been found under time independent
bias conditions [64], showing signs of universal front dynamics [65, 66].
Deterministic chaos of traveling field domains can be controlled by time-
delayed feedback control [46], as well as noise-induced front patterns [59,
60, 67, 68].

2. Charge accumulation in the quantum-well of a double-barrier resonant-
tunneling diode (DBRT) may result in lateral spatiotemporal patterns of
the current density and chaos [69]. Unstable deterministic current densi-
ty patterns, for example, periodic breathing or spiking modes [51], as well
as noise-induced breathing patterns [62, 63, 70, 71]. can be stabilized by a
delayed feedback loop.
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12.2
Control of Chaotic Domain and Front Patterns in Superlattices

Semiconductor superlattices [72] have been demonstrated to give rise to self-
sustained current oscillations ranging from several hundred MHz [73, 74] to
150 GHz at room temperature [75]. In any case, a superlattice constitutes a highly
nonlinear system [8, 76–78], and instabilities are likely to occur. Indeed, chaotic
scenarios have been found experimentally [79–81] and described theoretically in
periodically driven [82] as well as in undriven systems [64]. For a reliable opera-
tion of a superlattice as an ultra-high frequency oscillator, such unpredictable and
irregular conditions should be avoided, which might not be easy in practice.

Here, we focus on simulations of dynamic scenarios for superlattices under
fixed time independent external voltage in the regime where self-sustained dipole
waves are spontaneously generated at the emitter. The dipole waves are associ-
ated with traveling field domains and consist of electron accumulation and de-
pletion fronts which generally travel at different velocities and may merge and
annihilate. Depending on the applied voltage and the contact conductivity, this
gives rise to various oscillation modes as well as different routes to chaotic be-
havior [64, 66].

We use a model of a superlattice based on sequential tunneling of electrons. In
the framework of this model, electrons are assumed to be localized at one partic-
ular well and only weakly coupled to the neighboring wells. The tunneling rate to
the next well is lower than the typical relaxation rate between the different energy
levels within one well. The electrons within one well are then in quasi-equilibrium
and transport through the barrier is incoherent. The resulting tunneling current
density Jm!mC1(Fm , nm , nmC1) from well m to well m C 1 only depends on the
electric field Fm between both wells and the electron densities nm and nmC1 in the
wells (in units of cm�2). A detailed microscopic derivation of the model has been
given elsewhere [76]. A typical result for the current density versus electric field
characteristic is depicted in Figure 1.1a in the spatially homogeneous case, that is,
nm D nmC1 D ND, with donor density ND.

In the following, we will adopt the total number of electrons in each well as
the dynamic variables of the system. The dynamic equations are then given by the
continuity equation

e
dnm

dt
D Jm�1!m � Jm!mC1 for m D 1, . . . N , (12.4)

where N is the number of wells in the superlattice, and e < 0 is the electron charge.
The electron densities and the electric fields are coupled by the following discrete

version of Gauss’s law

�r�0(Fm � Fm�1) D e(nm � ND) for m D 1, . . . N , (12.5)

where �r and �0 are the relative and absolute permittivities, and F0 and FN are the
fields at the emitter and collector barrier, respectively.
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The applied voltage between emitter and collector gives rise to a global constraint

U D �
NX

mD0

Fm d , (12.6)

where d is the superlattice period.
The current densities at the contacts are chosen such that dipole waves are gen-

erated at the emitter. For this purpose, it is sufficient to choose Ohmic boundary
conditions:

J0!1 D σF0 , (12.7)

JN!NC1 D σFN
nN

ND
, (12.8)

where σ is the Ohmic contact conductivity, and the factor nN /ND is introduced
in order to avoid negative electron densities at the collector. Here, we make the
physical assumption that the current from the last well to the collector is propor-
tional to the electron density in the last well. In principle, it is possible to use
a more realistic exponential emitter characteristic [83] or calculate the boundary
conditions using microscopic considerations, but the qualitative behavior is not
changed.

In our computer simulations, we use a superlattice with N D 100 periods,
Al0.3Ga0.7As barriers of width b D 5 nm and GaAs quantum wells of width w D
8 nm, doping density ND D 1.0 � 1011 cm�2 and scattering induced broadening
Γ D 8 meV at T D 20 K. If the contact conductivity σ is chosen such that the in-
tersection point with the homogeneous N-shaped current density versus field char-
acteristic is at a sufficiently low current value, accumulation and depletion fronts
are generated at the emitter. Those fronts form a traveling high-field domain, with
a leading electron depletion front and trailing accumulation front. For fixed volt-
age U, (12.6) imposes constraints on the lengths of the high-field domains and
thus on the front velocities. If Na accumulations fronts and Nd depletion fronts are
present, the respective front velocities va and vd must obey vd/va D Na/Nd. Since
the front velocities are monotonic functions of the current density [84], this also
fixes the current. If the accumulation and depletion fronts have different velocities,
they may collide in pairs and annihilate. With decreasing contact conductivity or
increasing voltage, chaotic scenarios arise where the annihilation of fronts of op-
posite polarity occurs at irregular positions within the superlattice [64], leading to
complex bifurcation diagrams.

The transition from periodic to chaotic oscillations is enlightened by considering
the space-time plot for the evolution of the electron densities (Figure 12.3a). At
U D 1.15 V, chaotic front patterns with irregular sequences of annihilation of front
pairs occur.

We shall now introduce a time-delayed feedback loop (ETDAS) to control the
chaotic front motion and stabilize a periodic oscillation mode which is inherent in
the chaotic attractor [46, 85]. As a global output signal which is coupled back in the



12.2 Control of Chaotic Domain and Front Patterns in Superlattices 331

Figure 12.3 Control of chaotic front dynamics
by extended time-delay autosynchroniza-
tion. (a) Space-time plot of the uncontrolled
charge density, and current density J ver-
sus time. (b) Same with global voltage con-

trol with low-pass filtered current density
(denoted by the black curve in panel (a)).
U D 1.15 V, σ D 0.5 Ω�1 m�1, τ D 2.29 ns,
K D 3 � 10�6 V mm2/A, R D 0.2,
α D 109 s�1. Other parameters as in [46, 66].

feedback loop, it is natural to use the total current density

J D 1
N C 1

NX
mD0

Jm!mC1 . (12.9)

For the uncontrolled chaotic oscillations, J versus time (grey trace in Figure 12.3a)
shows irregular spikes at those times when two fronts annihilate. Note that the
grey current time trace is modulated by fast small-amplitude oscillations (due to
well-to-well hopping of depletion and accumulation fronts in our discrete model)
which are not resolved temporally in the plot. They can be averaged out by con-
sidering an exponentially weighted current density (black curve in Figure 12.3a),
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which corresponds to a low-pass filter:

J(t) D α
Z t

0
J(t0) e�α(t�t 0) dt0 , (12.10)

with a cut-off frequency α.
The information contained in the low-frequency part of the current (Figure 12.3a,

black curve) is then used as input in the extended multiple-time autosynchroniza-
tion scheme. The voltage U across the superlattice is modulated by multiple differ-
ences of the filtered signal at time t and at delayed times t � τ

U(t) D U0 C Uc(t) (12.11)

Uc(t) D �K
�

J (t) � J (t � τ)
�C RUc(t � τ)

D �K
1X
νD0

R ν � J (t � ντ) � J(t � (ν C 1)τ)
�

D �K

"
J(t) � (1 � R)

1X
kD1

R k�1 J (t � kτ)

#
, (12.12)

where U0 is a time-independent external bias, and Uc is the control voltage. K is the
amplitude of the control force, τ is the delay time, and R is a memory parameter.
A sketch of the entire control circuit is displayed in Figure 12.4a. Such a global
control scheme is easy to experimentally implement. It is noninvasive in the sense
that the control force vanishes when the target state of period τ has been reached.
This target state is an unstable periodic orbit of the uncontrolled system. The period
τ can be determined a priori by observing the resonance-like behavior of the mean
control force versus τ. The result of the control is shown in Figure 12.3b. The front
dynamics exhibit annihilation of front pairs at fixed positions in the superlattice,
and stable periodic oscillations of the current are obtained.

In Figure 12.4b, the control domain is depicted in the parameter plane of R
and K. A typical horn–like control domain similar to the ones known from oth-
er coupling schemes [48] is found. Control is achieved in a range of values of
the control amplitude K, which is widened and shifted to larger K with increas-
ing memory parameter R. Typically, the left-hand control boundary corresponds to
a period-doubling bifurcation leading to chaos for smaller K, while the right-hand
boundary is associated with a Hopf bifurcation. The shape of our control domain
and its size resemble the results obtained analytically for diagonal control schemes
where observables are measured and controlled locally. Thus, our control scheme
is of similar control performance as local control.

In conclusion, time-delay autosynchronization represents a convenient and sim-
ple scheme for the self-stabilization of high-frequency current oscillations due to
moving domains in superlattices under dc bias. This approach lacks the drawback
of synchronization by an external ultrahigh-frequency forcing since it requires
nothing but delaying of the global electrical system output by the specified time
lag.
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Figure 12.4 (a) Control circuit including the low-pass filter with
cut-off frequency α and the time-delayed feedback loop (K) and
its extension to multiple time delays (R). (b) Control domain
for global voltage control. Full circles denote successful control,
small dots denote no control. Parameters as in Figure 12.3 [46].

12.3
Control of Noise-Induced Oscillations in Superlattices

Theoretical and experimental research has recently shown that noise can have sur-
prisingly constructive effects in many nonlinear systems. In particular, an optimal
noise level may give rise to ordered behavior and even produce new dynamical
states [26]. Well known examples are provided by stochastic resonance [86] in pe-
riodically driven systems, and by coherence resonance [22, 23] in autonomous sys-
tems. In spite of considerable progress on a fundamental level, useful applications
of noise-induced phenomena in technologically relevant devices are still scarce.
Here, we will demonstrate that noise can give rise to oscillating current and charge
density patterns in semiconductor nanostructures even if the deterministic system
exhibits only a steady state, and that these space-time patterns can be controlled
by the time-delayed feedback scheme applied to purely deterministic chaotic front
patterns in a superlattice mentioned in the previous section [59, 60, 67, 68].

We develop a stochastic model for the superlattice [67] approximating the ran-
dom fluctuations of the current densities by additive Gaussian white noise �m (t)
with

h�m (t)i D 0 , h�m (t)�m0 (t0)i D δ(t � t0)δmm0 (12.13)

in the continuity equation (12.4)

e
dnm

dt
D Jm�1!m C D�m(t) � Jm!mC1 � D�mC1(t) , (12.14)

where D is the noise intensity. Since the inter-well coupling in our superlattice
model is very weak and the tunneling times are much smaller than the character-
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istic time scale of the global current, these noise sources can be treated as uncor-
related both in time and space. Charge conservation is automatically guaranteed
by adding a noise term �m to each current density Jm�1!m. The physical origin
of the noise may be, for example, thermal noise, 1/ f noise, or shot noise due to
the randomly fluctuating tunneling times of discrete charges across the barriers.
The latter is Poissonian and can be approximated [78, 87] by D D (e Jm�1!m/A)1/2

which increases with decreasing current cross-section A. Therefore, this type of
noise dominates for small devices. In the following, we summarize the global ef-
fect of noise by a constant D.

We choose the control parameters U and σ such that the deterministic system
exhibits no oscillations but is very close to a bifurcation, yielding it very sensitive
to noise. The transition from stationarity to oscillations in the system may occur
either via a Hopf or a saddle-node bifurcation on a limit cycle, as depicted in the
bifurcation diagram of Figure 12.5. The different nature of these two bifurcations
is reflected in the effect noise has in each case.

In the vicinity of the lower bifurcation line in Figure 12.5, slightly below a Hopf
bifurcation marked by the small rectangle in Figure 12.5 [59], the only station-
ary solution in the absence of noise is a stable fixed point which corresponds to
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Figure 12.5 Bifurcation diagram in the (σ, U)
plane. Thick and hatched lines mark the tran-
sition from stationary to moving fronts via a
Hopf or a saddle-node bifurcation on a limit
cycle, respectively. The inset shows a blow-up
of a small part of the hatched line revealing
its sawtooth-like structure. Dark and white

correspond to stationary and moving fronts,
respectively, where the numbers denote the
positions of the stationary accumulation front
in the superlattice. Upper inset shows the fre-
quency f of the limit cycle which is born above
the critical point (marked by a cross in the
lower inset) as function of U [67].
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a stationary depletion front near the emitter, associated with a stationary current
density flowing through the device. With increasing noise intensity (D > 0), the
current density exhibits small irregular oscillations around the steady state. In the
spatiotemporal picture, no significant front motion is observed, but the depletion
front as a whole starts to “wiggle” around its deterministically fixed position. In
order to investigate the effect of time-delayed feedback on the coherence and time
scales of the noise-induced oscillations, the scheme proposed by (12.11) has been
applied with R D 0 and cut-off frequency α D 1 GHz [59]. The application of
control with delay time τ chosen equal to the basic period of the Hopf bifurca-
tion certainly improves the coherence of the current signal, and the main peak
in the Fourier power spectral density (shortly referred to as spectrum) becomes
narrower. The position of the main spectral peak shifts in dependence of τ in
the same piecewise linear way as in simple generic models of a Hopf bifurca-
tion [20, 52].

A more interesting regime is the noise-induced transition from stationary to
moving fronts (and associated high-field domains) [67]. This scenario corresponds
to a global saddle-node bifurcation on a limit cycle (cross in the lower inset of
Figure 12.5). Keeping σ fixed and increasing the voltage U, a limit cycle of ap-
proximately constant amplitude and increasing frequency is born. This happens
through the collision of a stable fixed point and a saddle-point. Plotting the fre-
quency of these oscillations versus the bifurcation parameter U, we obtain the char-
acteristic square-root scaling law (upper inset of Figure 12.5) that governs a saddle-
node bifurcation on a limit cycle. At the critical point Ucrit, the frequency of the
oscillations tends to zero. This corresponds to an infinite period of oscillation and
therefore this bifurcation is also known as saddle-node infinite period bifurcation
or SNIPER [88, 89].

We now prepare the system at the stable fixed point which corresponds to a sta-
tionary accumulation front (Figure 12.6a), and introduce noise. As the noise inten-
sity is increased, the behavior of the system changes dramatically (Figure 12.6b):
the accumulation front remains stationary only for a while, until a pair of a deple-
tion and another accumulation front (i.e., a charge dipole with a high-field domain
in between) is generated at the emitter. As is known from the deterministic sys-
tem, this dipole injection critically depends upon the emitter current [66]. Here, it
is triggered by noise at the emitter (the same scenarios occur if noise is applied
locally only to the wells near the emitter). Because of the global voltage constraint,
(12.6), the growing dipole field domain between the injected depletion and accumu-
lation fronts requires the high-field domain between the stationary accumulation
front and the collector to shrink, and hence, that accumulation front starts mov-
ing towards the collector. For a short time, there are two accumulation fronts and
one depletion front in the sample, thereby forming a tripole [90], until the first ac-
cumulation front reaches the collector and disappears. When the depletion front
reaches the collector, the remaining accumulation front must stop moving because
of the global constraint. This happens at the position where the first accumulation
front was initially localized. After some time, noise generates another dipole at the
emitter and the same scenario is repeated.
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Figure 12.6 Noise-induced front motion:
Space-time plots of the electron density
for (a) D D 0 (no noise), (b) D D
0.5 A s1/2/m2, (c) D D 2.0 A s1/2/m2.
Light and dark shading corresponds to elec-
tron accumulation and depletion fronts,

respectively. The emitter is at the bot-
tom. Parameters: U D 2.99 V, σ D
2.0821012488 Ω�1 m�1, ND D 1011 cm�2,
T D 20 K, N D 100 GaAs wells of width
w D 8 nm, and Al0.3Ga0.7As barriers of width
b D 5 nm, other parameters as in [66, 67].

There are two distinct time scales in the system. One is related to the time the
depletion front takes to STOP travel through the superlattice. The other timescale
is associated with the time needed for a new depletion front to be generated at the
emitter. These two time scales are also visible in the noise-induced current oscil-
lations, see Figure 12.7a. The time series of the current density are in the form of
a pulse train with two characteristic times: the activation time, which is the time
needed to excite the system from this stable fixed point (time needed for a new
depletion front to be generated at the emitter) and the excursion time which is the
time needed to return from the excited state to the fixed point (time the depletion
front needs to travel through the device). Low noise is associated with large acti-
vation times and small, almost constant, excursion times, while as the noise level
increases activation times become smaller and at sufficiently large D vanish. At
low D, the spike train looks irregular and the interval between excitations (mean
interspike-interval hT i) is relatively large and random in time. At moderate noise,
the spiking is rather regular, suggesting that the mean interspike-interval does not
substantially vary. Further increase of noise results in a highly irregular spike train
with very frequent spikes.

To gain deeper insight into the effect noise has on the time scales and coherence
of the system, we determine the interval between two consecutive excitations and
calculate the mean interspike-interval hT i. In Figure 12.7b (top), the decrease of
hT i as a function of D is shown, demonstrating that the mean interspike-interval
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Figure 12.7 (a) Three noise realizations of the current den-
sity J(t). From top to bottom, D D 0.8, D D 2.0 and
D D 5.0 A s1/2/m2. (b) Mean interspike-interval (top) and
its normalized fluctuations RT (bottom) vs. noise intensity.
The inset shows the peak frequency vs. D. Parameters as in
Figure 12.6 [67].

is strongly controlled by the noise intensity especially at lower values of the latter.
This is very important in terms of experiments, where noise can induce oscillations
by forcing stationary fronts to move. The corresponding spectral peak frequency f
shows a linear scaling for small D. As a measure for coherence, we use the normal-
ized fluctuations of pulse duration [23]

RT D

hT 2i � hT i2

�1/2

hT i . (12.15)

This quantity, as seen in Figure 12.7b (bottom), is a non-monotonic function of D,
exhibiting a minimum at moderate noise intensity. This is the well known phe-
nomenon of coherence resonance and is strongly connected to excitability.

An alternative measure of coherence is the correlation time tcor given by the
formula [91]:

tcor D 1
ψ(0)

Z 1

0
jψ(s)j ds , (12.16)

where ψ(s) is the autocorrelation function of the current density signal J(t),

ψ(s) D h( J(t) � h Ji)( J(t � s) � h Ji)i , (12.17)

and ψ(0) is its variance.
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Next, we will focus on controlling this noise-induced domain motion by time-
delayed feedback. To this purpose we add the feedback control voltage to the time-
independent external voltage U0 as in (12.11), but with R D 0:

U D U0 � K( J(t) � J (t � τ)) , (12.18)

where J is the low-pass filtered total current density (12.10).
First, we switch off the noise in order to investigate the effect that time-delayed

feedback has on its own. We observe a delay-induced limit cycle (traveling field do-
main) which we track in the K � τ parameter plane. The resulting phase diagram
can be seen in Figure 12.8. For values of K and τ in the grey area, delay control gen-
erates oscillations. In the white area, no delay-induced limit cycle exists, but only
a stationary domain. The bifurcation line separating the two regimes denotes a
global, homoclinic bifurcation [8]. For a fixed value of τ, the period of these os-
cillations decreases with increasing control strength K, as shown in the inset of
Figure 12.8. The logarithmic scaling of the period is characteristic of a homoclinic
bifurcation. Thus, the frequency goes to zero at the bifurcation point.

Now, we turn on the noise and observe how control influences the noise-induced
dynamics in the regime where delay induces a limit cycle (marked by the cross
in the grey area in Figure 12.8). The corresponding time series without control
exhibits irregular noise-induced oscillations (Figure 12.9a). With delayed feedback
control, the time series looks much more regular reflecting the delay-induced limit
cycle which is just smeared out a little by noise (Figure 12.9b). The coherence res-
onance effect is thus destroyed. This is visible both in tcor and RT. Figure 12.10a
and b show these coherence measures for K D 0 (black circles) and for K ¤ 0 (grey

Figure 12.8 Bifurcation diagram of delay-
induced limit cycles, corresponding to travel-
ing domains, in the K � τ control parameter
plane (marked by grey shading) for D D 0.
Inset shows the scaling of the period of the
delay-induced limit cycle above the homoclinic

bifurcation in dependence on K for a fixed val-
ue of τ D 2 ns denoted by the vertical dashed
line. Full circles: simulation, line: linear fit.
Kc � 0.006437 V mm2/A. Parameters as in
Figure 12.6 [60].
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Figure 12.9 Time series of the total current density J(t) for
noise-induced front patterns (D D 0.8 A s1/2/m2). (a) K D 0
and (b) K D 0.02 V mm2/A, τ D 5 ns. T marks the pulse
duration in (a). Dashed curves correspond to filtered signal
J(t). Parameters as in Figure 12.6 [60].
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Figure 12.10 (a) Correlation time tcor and (b) normalized fluc-
tuations of pulse duration RT vs. noise intensity D. Black circles
correspond to free system (K D 0) while grey (cyan) squares
are calculated for K D 0.02 V mm2/A, τ D 5 ns marked by the
cross in Figure 12.8. Parameters as in Figure 12.6 [60].

squares). For K ¤ 0, both tcor and RT depend monotonically upon the noise inten-
sity (grey squares). Maximum coherence is now achieved at low noise where the
delay-induced domain motion is most regular, and the coherence monotonically
decreases with increasing noise intensity. For small noise intensity, the correlation
time and the fluctuation of the pulse duration is dramatically improved by the de-
layed feedback.

By fixing the control parameters such that they lie outside the delay-induced
limit cycle regime, that is, in the white area in Figure 12.8, we observe almost
no change in the presence of delay since the feedback amplitude K is too small
(Figure 12.11a). In the right panel of Figure 12.11a, the correlation time is plotted
versus the time delay. It exhibits a slight modulation with a period close to the
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Figure 12.11 (Color online) Mean interspike
interval hT i (left) and correlation time tcor
(right) in dependence on the time delay τ.
(a) Control strength K D 0.002 V mm2/A
and noise intensity D D 1.0 A s1/2/m2,
(b) K D 0.02 V mm2/A and D D 1.0 A s1/2/m2

and (c) K D 0.02 V mm2/A and D D
2.5 A s1/2/m2. Averages over 30 time series
realizations of length T D 1600 ns have been
used for the calculation of tcor and averages
over 1000 periods for hT i. Parameters as in
Figure 12.6 [68].

period of the noise-induced oscillations [67], hT i D 14.5 ns, and reaches min-
imum values for τ D nhT i, n 2 N. Overall, however, it remains close to the
control-free value, tcor D 19.76 ns. At K D 0.02 V mm2/A inside the delay-induced
limit cycle regime (grey), this modulation is much stronger and has a period
close to the delay-induced period (T D 11 ns). In addition, one can better dis-
tinguish between non-optimal and optimal values of τ at which the correlation
time attains maximum values. This is shown in the right panel of Figure 12.11b.
For a higher noise intensity (Figure 12.11c, right panel), the effect is similar but
weaker.

Next, we are interested in how the time scales are affected by the delay. We
express the time scales through the mean interspike interval hT i and look at its
dependence upon the time delay τ for a fixed value of the noise intensity, D D
1.0 A s1/2/m2, and control strength K D 0.002 V mm2/A, chosen outside of the
delay-induced oscillations regime. As shown in the left panel of Figure 12.11a, hT i
is slightly modulated due to the delay with a period close to the noise-induced mean
period (hT i � 14.5 ns) [67]. In the left panel of Figure 12.11b, a value of K inside
the delay-induced oscillations regime is used, K D 0.02 V mm2/A. For τ D 0, the
mean interspike interval is equal to the noise-induced period, hT i � 14.5 ns [67].
As the time delay increases, and the delay-induced bifurcation line is crossed, hT i
sharply drops to the value of 11 ns which corresponds to the period induced by the
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delay. By further increase of τ, hT i rises a little above 12 ns. Then, for τ D 11 ns, the
mean interspike interval decreases again and the same scenario is repeated with a
modulation period very close to the delay-induced period.

There is some resemblance to the piecewise linear dependence of hT i upon τ
reported in other excitable systems, for example, the FitzHugh–Nagumo model
in [20, 52, 58] or the Oregonator model of the Belousov–Zhabotinsky reaction (un-
der correlated noise and nonlinear delayed feedback) in [55] which, like our system,
is also spatially extended. The difference to our present analysis is that in those
models, the case of a delay-induced limit cycle was excluded. An explanation for
the entrainment of the time scales by the delayed feedback in case of systems be-
low a Hopf bifurcation [20, 21, 52, 62] was given on the basis of a linear stability
analysis. It was shown that the basic period is proportional to the inverse of the
imaginary part of the eigenvalue of the fixed point which itself depends linearly
upon τ for large time delays. The effect of noise and delay in excitable systems was
also studied analytically in [58, 92] based on waiting time distributions and renewal
theory.

In conclusion, noise is able to force field domains to move through the superlat-
tice when prepared in the regime of stationary domains below a global bifurcation
(saddle-node bifurcation on a limit cycle). The signature of this global determinis-
tic bifurcation is still visible in the nonlinear stochastic system, and makes the sys-
tem excitable and thus sensitive to fluctuations. Maximum coherence is observed
at an optimum noise level, that is, coherence resonance occurs. Time-delayed feed-
back induces traveling domains, the frequency of which increases with the control
force for a fixed time delay, in a homoclinic bifurcation. Coherence resonance is no
longer maintained due to the delay-imposed frequency which is now robust against
noise. For small noise intensity (less than the maximum of coherence resonance),
the regularity of the current oscillations is strongly enhanced by time-delayed feed-
back.

12.4
Control of Chaotic Spatiotemporal Oscillations in Resonant Tunneling Diodes

In this section, we consider a double-barrier resonant tunneling diode (DBRT),
see Figure 1.1b, which exhibits a Z-shaped (bistable) current-voltage characteris-
tic [8, 93]. The DBRT is a semiconductor nanostructure which consists of one GaAs
quantum well sandwiched between two AlGaAs barriers along the z-direction. The
quantum well defines a two-dimensional electron gas in the x-y plane. We include
the lateral redistribution of electrons in the quantum well plane giving rise to fil-
amentary current flow [94–96]. Complex chaotic scenarios including spatiotempo-
ral breathing and spiking oscillations have been found in a simple deterministic
reaction-diffusion model with one lateral dimension x [69] as well as with two lat-
eral dimensions x , y [97]. We extend this model (in the one-dimensional case) to
include control terms and obtain the following equations [51] where we use dimen-
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sionless variables throughout

@a
@t

D f (a, u) C @

@x

�
D(a)

@a
@x

�
� K Fa(x , t) (12.19)

du
dt

D 1
ε

(U0 � u � r J ) � K Fu(t) . (12.20)

Here, u(t) is the inhibitor and a(x , t) is the activator variable. In the semiconductor
context, u(t) denotes the voltage drop across the device and a(x , t) is the electron
density in the quantum well.

The net tunneling rate of the electrons through the two energy barriers (Fig-
ure 12.2b) is given by the balance of the incoming and outgoing current densities,
that is, from the emitter into the quantum well j in and from the quantum well
into the collector jout, respectively. It is modeled by the nonlinear, nonmonotonic
function [69]

f (a, u) D j in � jout
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jout D a , (12.21)

where d is the effective thickness of the double-barrier nanostructure, rB D
(4π��0„2)/(e2m) is the effective Bohr radius in the semiconductor material, � and
�0 are the relative and absolute permittivity of the material, x0 and γ describe the
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Figure 12.12 Current-voltage characteris-
tic of the DBRT model. The null isoclines
for the dynamical variables u (i.e., the load
line, dash-dotted) and a in the case of a ho-
mogeneous a(x) (solid) and in the case of
inhomogeneous a(x) (dotted) are shown. The

inset shows an enlargement where I and H
mark the inhomogeneous and the homoge-
neous fixed points of the system, respectively.
U0 D �84.2895, r D �35. Other parameters
as in [51, 62, 70].
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energy level and the broadening of the electron states in the quantum well, and ηe

is the dimensionless Fermi level in the emitter, all in units of kB T . Throughout
this work, we use values of γ D 6, d/rB D 2, ηe D 28 and x0 D 114, corresponding
to typical device parameters at 4 K [69].

The effective diffusion coefficient D(a) resulting from the inhomogeneous later-
al redistribution of carriers and from the change in the local potential due to the
charge accumulated in the quantum well by Poisson’s equation is given by [95]

D(a) D a
�

d
rB

C 1
1 � exp(�a)

�
. (12.22)

It describes the diffusion of the electrons within the quantum well perpendicular
to the current flow. J D 1

L

R L
0 j dx gives the total current through the device, where

j (a, u) D 1
2 ( j in C jout) D 1

2 ( f (a, u) C 2a) is the local current density within the
well.

Equation (12.20) represents Kirchhoff’s law of the circuit (12.3) in which the de-
vice is operated. The external bias voltage U0, the dimensionless load resistance
r 
 RL, and the time-scale ratio ε D RLC/τa (where C is the capacitance of the cir-
cuit and τa is the tunneling time) act as control parameters. The one-dimensional
spatial coordinate x corresponds to the direction transverse to the current flow. We
consider a system of width L D 30 with Neumann boundary conditions @x a D 0
at x D 0, L corresponding to no charge transfer through the lateral boundaries.

Equations (12.19) and (12.20) contain control forces Fa and Fu for stabilizing
time periodic patterns. The strength of the control terms is proportional to the con-
trol amplitude K, which gives one important parameter of each control scheme.
Physically, the control forces may be realized by appropriate electronic control cir-
cuits. K Fu corresponds to an additional control voltage applied in series with the
bias U0, and K Fa may be implemented by a spatially extended lateral gate electrode
which influences the two-dimensional electron gas in the quantum well locally or
globally.

Without control, K D 0, one can calculate the null isoclines of the system. These
are plotted in Figure 12.12 using the current-voltage projection of the originally
infinite-dimensional phase space. There are three curves, the null isocline Pu D 0
(i.e., the load line, dash-dotted) and two null isoclines Pa D 0, one for a reduced
system, including only spatially homogeneous states (solid), and one for the full
system (dotted). We call the system spatially homogeneous if the space dependent
variable a(x , t) is uniformly distributed over the whole width of the device, that is,
a(x , t) D a(t) for all x 2 [0, L], otherwise it is called spatially inhomogeneous. Fig-
ure 12.12 shows the Z-shaped homogeneous current-voltage characteristic of the
DBRT (solid curve) and the branch of inhomogeneous, filamentary states (dotted).
The inset represents our special regime of interest for the following investigations.
The spatially inhomogeneous fixed point marked ‘I’ in the inset of Figure 12.12 is
determined by the intersection of the load line with the nullcline Pa D 0 for inhomo-
geneous a(x , t). With increasing ε, a supercritical Hopf bifurcation of the inhomo-
geneous steady state I occurs at εHopf � 6.469 (cf. Figure 12.13). Below this value, I
is stable. The neighboring intersection of the load line with the homogeneous null-
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Figure 12.13 Chaotic bifurcation diagram of the resonant tun-
neling diode. The maxima and minima of the voltage oscilla-
tions are plotted versus the time-scale parameter ε (r D �35,
U0 D �84.2895, K D 0) [51].

cline (marked ‘H’) defines another spatially homogeneous fixed point. It is always
unstable in a passive external circuit with load resistance r > 0 [94]. By choosing
r < 0, which can be realized by an active circuit [98], the homogeneous fixed point
can be stabilized with respect to completely homogeneous perturbations, though
it is generally unstable against spatially inhomogeneous fluctuations, that is, it is a
saddle-point. In the following, we assume r < 0.

The dynamics of the free system, that is, K D 0, develops temporally chaotic
and spatially nonuniform states (spatiotemporal breathing or spiking) in appropri-
ate parameter regimes [69] which can be corroborated by calculating the Lyapunov
exponents [51]. A characteristic bifurcation diagram exhibiting a period-doubling
route to chaos is shown in Figure 12.13. Figure 12.14 shows two examples of pe-
riodically (a) and chaotically (b) breathing current filaments. Note that the current
density distribution is qualitatively similar to the electron density distribution in
the quantum well. For any value of L, the system, due to the global coupling, only
allows monotonic spatial profiles, that is, current filaments located at the boundary
of the spatial domain [99]. In the semiconductor context, the time and length scales
of our dimensionless variables are typically given by a few picoseconds (tunneling
time) and 100 nm (diffusion length), respectively. Typical units of the electron den-
sity, the current density, and the voltage are 1010 cm�2, 500 A/cm2, and 0.35 mV,
respectively.

We are now concerned with controlling unstable time periodic patterns up(t) D
up(t Cτ), ap(x , t) D ap(x , t Cτ) which are embedded in a chaotic attractor. For that
purpose, we apply control forces Fa and Fu which are derived from time-delayed
differences of the voltage and the charge density. For example, we may choose Fu D
Fvf with the voltage feedback force

Fvf(t) D u(t) � u(t � τ) C R Fvf(t � τ) (12.23)

(extended time-delay autosynchronization).
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Figure 12.14 Spatiotemporal breathing patterns of the DBRT:
electron density evolution, phase portrait, and voltage evolution
for (a) ε D 7.0: periodic breathing, (b) ε D 9.1: chaotic breath-
ing (r D �35, U0 D �84.2895, K D 0). Time t and space x are
measured in units of the tunneling time τa and the diffusion
length la , respectively. Typical values at 4 K are τa D 3.3 ps and
la D 100 nm [51].
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Here, we concentrate on the question of how the coupling of the control forces
to the internal degrees of freedom influences the performance of the control. For
our model, we consider different choices for the control force Fa. On the one hand,
we may use a force which is based on the local charge density according to

Floc(x , t) D a(x , t) � a(x , t � τ) C R Floc(x , t � τ) . (12.24)

Whereas on the other hand, we propose a construction which is only based on its
spatial average

Fglo(t) D 1
L

Z L

0

�
a(x , t) � a(x , t � τ)

�
dx C R Fglo(t � τ) . (12.25)

We call the choice Fa D Floc a local control scheme in contrast to the global control
scheme Fa D Fglo which requires only the global average and does not depend
explicitly on the spatial variable. The second option has considerable experimental
advantages since the spatial average is related to the total charge in the quantum
well and does not require a spatially resolved measurement.

In general, the analysis of the control performance of time-delayed feedback
methods results in differential-difference equations which are hard to tackle. Sta-
bility of the orbit is governed by eigenmodes and the corresponding complex val-
ued growth rates (Floquet exponents). A simple case exists (which we call diagonal
control) where analytical results are available [29, 100], namely, for Fa D Floc and
Fu D Fvf. It is a straightforward extension to a spatially extended system of an
identity matrix for the control of discrete systems of ordinary differential equations
(cf. [28]). Figure 12.15 shows successful control of the chaotic breathing oscillation
of Figure 12.14b. After the control is switched on, the control force decays exponen-
tially as jF js 
 j exp (Λ t)j to a new level which is about three orders of magnitude
smaller than the uncontrolled level (Figure 12.15b). At the same time, the voltage
signal becomes periodic (Figure 12.15a) and the chaotic attractor in the phase por-
trait collapses to a periodic orbit (Figure 12.15c).

In Figure 12.16, the regime of successful control in the (K, R) parameter plane
and the real part of the Floquet spectrum Λ(K ) for R D 0 is depicted. The con-
trol domain has a typical triangular shape bounded by a flip instability (period-
doubling, R e(Λ) D 0, I m(Λ) D π/τ) to its left and by a Hopf (Neimark-Sacker)
bifurcation to its right. Inclusion of the memory parameter R increases the range
of K over which control is achieved. We observe that the numerical result fits very
well with the analytical prediction.

To confirm the bifurcations at the boundaries, we consider the real part of the
Floquet spectrum of the orbit subjected to control. Complex conjugate Floquet ex-
ponents show up as doubly degenerate pairs. The largest nontrivial exponent de-
creases with increasing K and collides at negative values with a branch coming
from negative infinity. As a result, a complex conjugate pair develops and real parts
increase again. The real part of the exponent finally crosses the zero axis giving rise
to a Hopf (Neimark-Sacker) bifurcation. Our numerical simulations are in agree-
ment with the analytical result.
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Figure 12.15 Diagonal control in the DBRT where the con-
trol force is switched on at t D 5000. (a) Voltage u vs. time.
(b) Supremum of the control force vs. time. (b) Phase portrait
(global current vs. voltage) showing the chaotic breathing at-
tractor and the embedded stabilized periodic orbit (black cycle).
Parameters: r D �35, ε D 9.1, τ D 7.389, K D 0.137,
R D 0 [51].

If we replace the local control force Fa D Floc by the global control Fa D Fglo, the
corresponding control domain looks similar in shape as for diagonal control, al-
though the size of the domain for the global scheme is drastically reduced [51]. The
shift in the control boundaries is due to different branches of the Floquet spectrum
crossing the (R eΛ D 0)-axis. It is now interesting to note that if we keep Fa D Fglo

as before, but remove the voltage feedback completely, the control domain is shifted
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Figure 12.16 (a) Control domains in the (K, R) parameter plane
for diagonal control of the unstable periodic orbit with period
τ D 7.389. Large dots: successful control in the numerical sim-
ulation, small grey dots: no control, dotted lines: analytical re-
sult for the boundary of the control domain according to [100].
(b) Leading real parts Λ of the Floquet spectrum for diagonal
control in dependence on K (R D 0) [51].

to higher K values and at the same time is dramatically increased [51]. For local con-
trol without voltage feedback, the control regime is surprisingly even larger than
for diagonal control. The reason for this behavior has been explained by a Floquet
analysis [51].

From the practical point of view, the most relevant control scheme is the pure
voltage control, namely, Fu D Fvf, Fa D 0, since the voltage variable may be con-
veniently measured and manipulated by an external electronic device. The corre-
sponding control domain and Floquet exponents are shown in Figure 12.17. Here,
the control regime is even somewhat smaller than in the case of global control with
voltage feedback, but the shape of the control regime and the Floquet spectrum are
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Figure 12.17 Same as Figure 12.16 for pure voltage control (b)
(R D 0.6). The boundaries of the control domain for diagonal
control from Figure 12.16 are shown in panel (a) as dotted lines
for comparison [51].

qualitatively very similar. The Floquet spectrum reveals a feature which has already
been noted in a general context: The influence of lower Floquet modes, which may
cross over, can reduce the size of the control domain severely [101]. It should be
noted that this voltage control scheme opens up the opportunity to conveniently
study chaos control in a real world device.

Finally, we note that the period-one orbit can be stabilized by our control scheme
throughout the whole bifurcation diagram, including chaotic bands and windows
of higher periodicity, as marked by two solid lines in Figure 12.13 for diagonal con-
trol. Thus, our method represents a way of tracking desired unstable orbits. In our
nanostructure model, this finds an interesting application since we obtain stable
periodic self-sustained voltage oscillations in a whole range of operating conditions
independent of parameter fluctuations.
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12.5
Noise-Induced Spatiotemporal Patterns in Resonant Tunneling Diodes

In the previous section, we discussed the possibilities of controlling deterministic
chaotic oscillations in the double barrier resonant tunneling diode (DBRT). Now,
we will study the effects of noise in this system and investigate whether we can con-
trol noise-induced spatiotemporal oscillations by the same method of time-delayed
feedback [62, 63, 70, 71].

We use the same model (12.19) and (12.20), but with two additional noise
sources [70] and with voltage control [62]

@a(x , t)
@t

D f (a, u) C @

@x

�
D(a)

@a
@x

�
C Da� (x , t)

@u(t)
@t

D 1
ε

(U0 � u � r J ) C Duη(t) C F(t) , (12.26)

where � (x , t) and η(t) represent uncorrelated Gaussian white noise with noise
intensities Da and Du, respectively:

h� (x , t)i D hη(t)i D 0 (x 2 [0, L]) ,

h� (x , t)� (x 0, t0)i D δ(x � x 0)δ(t � t0) ,

hη(t)η(t0)i D δ(t � t0) . (12.27)

Here, we concentrate on the effects of external noise modeled by the additional
noise voltage Duη(t) in the circuit equation. This term is easily accessible in a real
circuit and the noise intensity Du can be adjusted in a large parameter range using
a noise generator in parallel with the supply bias, as realized experimentally, for
example, in [102]. In typical dimensional units of εkB T/e [69], Du D 1 corresponds
to a parallel noise voltage of 2 mV at temperature T D 4 K. Internal fluctuations of
the local current density on the other hand, for example, shot noise [87], can not
be tuned from the outside. Therefore, in the following, we keep this value fixed at
a small noise amplitude of Da D 10�4, corresponding to a noise current densi-
ty of the order of 50 mA/cm2 which is within the range of Poissonian shot noise
currents.

The control force F(t) represents a control voltage which is constructed recursive-
ly from a time-delayed feedback loop with delay time τ, feedback strength K � 0,
and memory parameter R, and can be written as

F(t) D K(u(t � τ) � u(t)) C R F(t � τ) (12.28)

D K
1X

nD0

R n �u(t � (n C 1)τ) � u(t � nτ)
�

. (12.29)

We fix ε D 6.2 slightly below the Hopf bifurcation of the system (Da D Du D 0),
which occurs at εHopf � 6.469 (Figure 12.13). Although the deterministic systems
rests in the stable spatially inhomogeneous steady state, noise can induce irreg-
ular spatiotemporal oscillations of the current density [70]. With increasing noise
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namics under multiple time-delayed feedback
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ing to typical device parameters at 4 K [69].
Parameters are U0 D �84.2895, r D �35,
� D 6.2, Du D 0.1, Da D 10�4, K D 0.1,
τ D 6.3, R D 0.5 [71].

intensity Du, they become more and more spatially homogeneous, but at the same
time, more temporally irregular. In the following, we shall study how these noise-
induced oscillations are influenced by the control force.

Figure 12.18 shows simulations of the spatiotemporal dynamics under the influ-
ence of noise and delayed feedback. The voltage time series (a), the spatiotempo-
ral charge density patterns (b), and the current-voltage projection of the infinite-
dimensional phase space (c) are depicted. Noise induces small spatially inhomo-
geneous oscillations around the inhomogeneous steady state (breathing current fila-
ments). In the J–u phase portrait (c), the spatially inhomogeneous steady state (fixed
point) is determined by the intersection of the load line (null isocline Pu D 0, dash-
dotted) with the nullcline Pa D 0 for inhomogeneous a(x , t) (dotted). The neigh-
boring intersection of the load line with the nullcline Pa D 0 for homogeneous a
(black solid curve) defines the second, spatially homogeneous fixed point which is
a saddle. With increasing noise intensity (Figure 12.19), the oscillation amplitude
becomes larger, the oscillations become more irregular, and finally, at even larger
noise, the oscillations are more spatially homogeneous, that is, in the phase space
they are more centered around the homogeneous fixed point (Figure 12.20).

We shall now investigate how the regularity and the time-scales of these noise-
induced oscillations depend upon the feedback parameters K, R, τ.

To quantify the temporal regularity of the noise-induced oscillations, we evaluate
the correlation time [91] calculated from the voltage signal,

tcor � 1
σ2

Z 1

0
jΨ (s)j ds , (12.30)
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where Ψ (s) � h(u(t) � hui) (u(t C s) � hui)it is the autocorrelation function of the
variable u(t) and σ2 D Ψ (0) its variance.

To get a first impression as to whether or not this control force is able to change
the temporal regularity of the noise-induced oscillations, we fix Du D 0.1, Da D
10�4, as in Figure 12.18, and calculate the correlation time in dependence of the
feedback strength K for two different delay times τ, and R D 0. From Figure 12.21,
one can see that the qualitative result depends strongly upon the choice of the
delay time. While for τ D 7 the control loop strongly increases the correlation
time with increasing K, it is also able to significantly decrease it for τ D 5. The
same can be seen from Figure 12.22. Here, the control with K D 0.1 and τ D 7
strongly enhances the correlation time, compared with the uncontrolled case, over
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Figure 12.19 Same as Figure 12.18 for Du D 1.0.
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Figure 12.20 Same as Figure 12.18 for Du D 2.0.
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Figure 12.21 Correlation time vs. feedback strength K for τ D 5
and τ D 7. Du D 0.1, Da D 10�4, R D 0. Averages from
100 time series of length T D 10 000, other parameters as in
Figure 12.18 [62].
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Figure 12.22 Correlation time vs. noise intensity Du without
control (K D 0) and with control and two different values of τ
as indicated, R D 0. Averages from 100 time series of length
T D 10 000, parameters as in Figure 12.18. The inset shows a
blow-up [62].

a relatively wide range of the noise intensity up to Du � 0.5, whereas τ D 5
decreases it within the same range. The difference in regularity for different values
of τ and K also shows up in the spatiotemporal patterns and voltage time series
(Figure 12.23), where (b) is clearly more regular than (a).

The role of the appropriate choice of the control delay τ becomes even clearer if
we keep K fixed and calculate the correlation time in dependence of τ. The result
is plotted in Figure 12.24a where one can clearly see the oscillatory character of
the correlation time under variation of τ, which is characterized by the presence of
“optimal” values of τ, corresponding to maximum regularity and “worst” values of
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Figure 12.23 Spatiotemporal patterns a(x , t) and voltage time
series u(t) for different values of the control strength K and
delay time τ: (a) τ D 4.0, K D 0.4, (b) τ D 13.4, K D 0.1.
Du D 0.1, Da D 10�4, R D 0 and other parameters as in
Figure 12.18 [62].

τ which are related to minimum regularity of the noise-induced dynamics. At the
same time, it is shown that the control with K D 0.1 produces no effect upon the
correlation time if the noise is too large (lower curve for Du D 1.0).

The fact that noise-induced oscillations take place in the vicinity of the spatially
inhomogeneous fixed point gives us a hint that some properties of these oscilla-
tions could relate to the stability of this fixed point. To gain some insight into how
the control actually affects the systems dynamics around the spatially inhomoge-
neous fixed point, we linearize the system equations (12.26) for Du D Da D 0
and calculate the complex eigenvalues Λ i at the fixed point. First of all, we cal-
culate these eigenvalues from the spatially discretized system which we use for
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Figure 12.24 (a) Correlation time (12.30) for
two different noise intensities in dependence
of the feedback delay τ for R D 0. (b) Real
parts of the eigenvalues Λ i of the linearized
deterministic system (Da D Du D 0) cal-
culated at the spatially inhomogeneous fixed
point for K D 0.1. The black dots are calcu-
lated from the spatially discretized system (set
of ODEs) whereas the squares are calculated
from (12.36) (see text). The vertical dotted

lines mark values of τ at which the leading
eigenvalue (i.e. the one with the largest real
part) changes. (c) Eigenperiods 2π/Im(Λ i )
of the deterministic system and basic periods
T0 WD 1/ fmax of the noise-induced oscilla-
tions, where fmax denotes the frequency of
the highest peak in the Fourier power spectral
density of the noisy system with Du D 0.1,
K D 0.1 [62].

the numerical simulation. This discretized version is just a set of ordinary differ-
ential equations (ODEs) and the linearization and the eigenvalues can be easily
computed.

In Figure 12.24b, one can see that the control with K D 0.1 does not change the
stability of the inhomogenous fixed point since the real parts of all eigenvalues do
not become positive within the given range of τ. Nevertheless, by increasing τ, the
real parts of the eigenvalues intersect at particular values of τ (vertical dotted lines)



356 12 Pattern Formation and Time Delayed Feedback Control at the Nanoscale

and therefore the leading eigenvalue, that is, the least stable one or the one with
the largest real part, changes at these values of τ. As one can see, these crossover
points correspond to the minima of the correlation time in Figure 12.24a, whereas
the local maxima of the real parts correspond to the maxima of the correlation time.
This gives rise to a rather intuitive explanation for the behavior of the correlation
time. The closer to zero the real part of an eigenvalue is, the weaker the attracting
stability of the fixed point and the easier it is for the noise to excite the oscillating
mode corresponding to this particular eigenvalue. On the other hand, at the in-
tersection points of the real parts of the leading eigenvalue, these values have the
largest distance from zero, meaning that the attracting stability of the fixed point
is stronger. In addition, there are two different corresponding oscillating modes
which are excited by the noise. Thus, the control cannot reach its optimal effect.

As a direct consequence, the main frequency which is activated by the noise
switches exactly at these values of τ to the eigenfrequency of the corresponding
leading eigenvalue. In Figure 12.24c, the eigenperiods are plotted as black dots in
dependence of τ. The circles mark the positions of the highest peak in the Fouri-
er power spectrum for the corresponding noisy system with Du D 0.1. One can
clearly see that these main periods switch from one branch to another exactly at
the positions where the real parts of two different eigenvalues crossover.

In order to achieve a deeper understanding, we examine the stability properties
of the inhomogeneous fixed point (a0(x ), u0) under the influence of the control
force. We perform a linearization of the original continuous system (12.26) (with
Du D Da D 0) around the inhomogeneous fixed point along the same lines as
in [62, 99]. We use an exponential ansatz for the deviations from the fixed point
δa(x , t) � a(x , t) � a0(x ) D eΛ t Qa(x ) and δu(t) � u(t) � u0 D eΛ t Qu. The resulting
coupled eigenvalue problem reads

Λ Qa(x ) D OH Qa(x ) C f u(x ) Qu , (12.31)

Λ Qu D � r
εL

Z L

0
j a(x ) Qa(x ) dx � 1 C r Ju

ε
Qu

� K
1 � e�Λτ

1 � R e�Λτ
Qu , (12.32)

where we have introduced a self-adjoint linear operator OH . Its eigenfunctions Ψi

and eigenvalues λ i correspond to the voltage-clamped system, δu D 0. Further-
more,

f u � @ f
@u

ˇ̌̌̌
a0,u0

, j a � @ j
@a

ˇ̌̌̌
a0,u0

,

Ju D 1
L

Z L

0

@ j
@u

ˇ̌̌̌
a0,u0

dx . (12.33)

Due to the global constraint, (12.32) mixes the eigenmodes Ψi and both equations
have to be solved simultaneously. An expansion of the eigenmodes Qa of the full
system in terms of the eigenmodes Ψi of the voltage-clamped system, keeping
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only the dominant eigenmode Ψ0 with eigenvalue λ0 > 0, leads to a characteristic
equation for the eigenvalues Λ

Λ2C
�

1 C r Ju

ε
� λ0

�
ΛC(Λ�λ0)K

1 � e�Λτ

1 � R e�Λτ � λ0

ε
(1Crσd) D 0 , (12.34)

where the static differential conductance at the inhomogeneous fixed point σd �
d J
du

ˇ̌̌
a0,u0

has been introduced. In [62], a more detailed derivation of the characteris-

tic equation is given for the special case R D 0. The extension to the case R ¤ 0 is
straightforward.

Without control, K D 0, (12.34) reduces to a characteristic polynomial of second
order, which gives the well known conditions for stability of a filament [99]

A � 1 C r Ju

ε
� λ0 > 0 ,

C � � λ0

ε
(1 C rσd) > 0 . (12.35)

A Hopf bifurcation occurs on the two-dimensional center manifold if A D 0.
With control, (12.34) can be expressed as

Λ2 C AΛ C (Λ � B)K
1 � e�Λτ

1 � R e�Λτ
C C D 0 (12.36)

with B � λ0 > 0. The parameters A, B, C can be calculated directly from
(12.35) [62], yielding A D 0.0447, B D 1.0281 and C D 1.1458.

Using (12.36), we can calculate the domains of stability in the τ-K plane numer-
ically for selected values of the memory parameter R. In order to find the curves
containing the boundaries of stability of the inhomogeneous fixed point as a sub-
set, we set Λ D p C iq with p D 0 and separate (12.36) into real and imaginary
parts: �

B K � R
�
C � q2�� cos(qτ) � q (AR C K ) sin(qτ) D B K C �

q2 � C
�

q (AR C K ) cos(qτ) C �
B K C R

�
q2 � C

��
sin(qτ) D q (A C K ) .

(12.37)

Using (12.37), the boundary of stability can be obtained from the set of paramet-
ric functions K(q) and τ(q) using q D Im(Λ) as the curve parameter.

K(q) D
�
A2q2 C (C � q2)2

�
(1 C R)

2B C � 2(A C B)q2

τ(q) D 1
q

(arcsin Φ C 2πN )

Φ D q(AB C C � q2)(1 � R)K
(A2q2 C (C � q2)2)R2 C 2(�B C C (A C B)q2)R K C (B2 C q2)K2

(12.38)
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Figure 12.25 Stability domains of the inho-
mogeneous fixed point in the τ-K plane of the
deterministic system (12.26) (Du D Da D 0),
for selected values of the memory param-
eter R. Curved lines: Solutions of (12.36)
with Re(Λ) D 0 calculated from (12.38).
Gray region: regime of stability of the fixed
point obtained from the numerical solution

of (12.26). Black horizontal line: upper bound
for K where the fixed point is stable for all val-
ues of τ, calculated from (12.39). The black
diamond in panel (c) marks the parameter
values for which a (J-u) phase portrait of the
delay-induced limit cycle is shown in the in-
set [71].

Figure 12.25 shows these curves (12.38). The boundaries of stability where a
delay-induced Hopf bifurcation of deterministic breathing oscillations occurs are
a subset of these curves because the fixed point may already be unstable when
a complex eigenvalue crosses the imaginary axis due to other unstable eigenval-
ue branches. The boundaries are in good agreement with the domain of stability
obtained from dynamical simulations of the nonlinear system equations (12.26)
(Du D Da D 0), shown as gray areas. The inset of panel (c) shows the delay-
induced limit cycle in the J–u phase space for parameters outside the stability do-
main of the inhomogeneous fixed point. The stability domains increase significant-
ly with increasing memory parameter R from (a) to (d). The modulation of their
boundaries in dependence on τ results from the crossover of different eigenvalue
branches, which is a typical feature of delay differential equations.

From (12.38), it is possible to calculate an upper bound Kc of K for which the
stability properties of the uncontrolled deterministic system remain unchanged
over the whole τ interval, meaning that no delay-induced Hopf bifurcation occurs.

Kc D A2(A C B) (B C � G ) C (AC C G )2

2(A C B)2G
(1 C R)

� 0.1059(1 C R)

G W D
q

A2C(B(A C B) C C ) (12.39)

Figure 12.25 shows this upper bound plotted as a black horizontal line.
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In Figure 12.26, the Fourier power spectral density Suu( f ) obtained from the
time series u(t) is shown for different values of the delay time τ and the memory
parameter R. The shape of the spectra Suu( f ) alternates between broad and sharply
peaked with varying τ. An excellent analytic approximation of the power spectral
density can be obtained by a straightforward extension of the arguments in [53, 62]
to multiple time-delayed feedback:

Suu(ω) D
D 02

2π

"�
�ω2 C B K

(cos (ωτ) � 1)(R C 1)
1 C R2 � 2R cos (ωτ)

� ωK(1 � R) sin (ωτ)
1 C R2 � 2R cos (ωτ)

C C
�2

C
�
�Aω C ωK

(cos (ωτ) � 1)(R C 1)
1 C R2 � 2R cos (ωτ)

C B K
(1 � R) sin (ωτ)

1 C R2 � 2R cos (ωτ)

�2
#�1

,

(12.40)

which is shown as black curves in Figure 12.26.
At certain resonant values of τ (left column), the spectral peaks become extremely

sharp. With increasing memory parameter R, the broad spectra prevail over larg-
er intervals of τ, whereas the regime of sharply peaked spectra becomes smaller.
Thus, multiple time feedback control exhibits more pronounced resonant features
both in the frequency domain and in the delay time. Since a sharply peaked spec-
trum gives rise to long correlation times (which are in the linear regime propor-
tional to the inverse spectral width), we expect the domains of strong correlation
to shrink with increasing memory parameter and the domains of low correlation
to increase. Extracting from the Fourier power spectral density, the autocorrelation
function Ψ (s) D R1

�1 Suu( f ) e2π i f s d f and using (12.30), we obtain the correla-
tion time tcor in dependence of τ. This is shown in Figure 12.27 for different values
of the memory parameter R. The feedback strength is kept at a constant value of
K D 0.1, where the system is below the Hopf bifurcation for all values of τ and R.

For small memory parameter R, the correlation times alternate between high and
low values with growing τ. For higher memory parameters R, the peaks in corre-
lation time become narrower and sharpen up, and the domains of low correlation
time increase. The stability of the inhomogeneous fixed point reveals a relation
between properties of the controlled deterministic system and the noise-induced
dynamics: maximum regularity of noise-induced oscillations is attained when the
deterministic fixed point is least stable. This feature is maintained for all values
of the memory parameter R. In the case of small R, the crossover of the real part
of eigenvalue branches also determines the location of the minima in correlation
time. In that case, two eigenmodes with the same stability (real part) but different
frequencies are present in the system, resulting in rather irregular noise-induced
dynamics. For large memory parameters, the broad domains of low correlation dis-
play many eigenmodes that are not well separated (stability-wise), causing irregular
mixed dynamics.

In conclusion, the regularity of noise-induced oscillations measured by the cor-
relation time exhibits sharp resonances as a function of the delay time τ, and can



360 12 Pattern Formation and Time Delayed Feedback Control at the Nanoscale

0  0.1  0.2  0.3  0.4  0.5S
uu

(f
) 

/ a
rb

itr
ar

y 
un

its

f

R=0 τ=7

0  0.1  0.2  0.3  0.4  0.5S
uu

(f
) 

/ a
rb

itr
ar

y 
un

its

f

R=0, τ=4

0  0.1  0.2  0.3  0.4  0.5S
uu

(f
) 

/ a
rb

itr
ar

y 
un

its

f

R=0.1, τ=6.8

0  0.1  0.2  0.3  0.4  0.5S
uu

(f
) 

/ a
rb

itr
ar

y 
un

its
f

R=0.1, τ=3.9

0  0.1  0.2  0.3  0.4  0.5S
uu

(f
) 

/ a
rb

itr
ar

y 
un

its

f

R=0.5, τ=6.2

0  0.1  0.2  0.3  0.4  0.5S
uu

(f
) 

/ a
rb

itr
ar

y 
un

its

f

R=0.5, τ=3.5

0  0.1  0.2  0.3  0.4  0.5S
uu

(f
) 

/ a
rb

itr
ar

y 
un

its

f

R=0.9, τ=6.1

0  0.1  0.2  0.3  0.4  0.5S
uu

(f
) 

/ a
rb

itr
ar

y 
un

its

f

R=0.9, τ=3.0

Figure 12.26 Power spectral density Suu( f ) of the dynamical
variable u in dependence of the frequency f for various delay
times τ and memory parameters R (K D 0.1, � D 6.2,
Du D 0.1, Da D 10�4) [71].

be strongly increased by control with optimal choices of τ, whereas it decreases in
a broad range of non-optimal values of τ. These resonant features are enhanced
by multiple time-delayed feedback control, as compared to single time feedback.
Similarly, the peaks in the power spectral density are sharper and exhibit stronger
resonances in dependence on τ for multiple time feedback, whereas their position,
namely, the main period of the oscillations, is less sensitive to variations in τ in
wider intervals.

Furthermore, delay-induced bifurcations occur at some threshold values of the
control amplitude K. For multiple time-delayed feedback, the regime of stability of
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Figure 12.27 Correlation times tcor (upper
panels of (a)–(d)) and deterministic stability
of the inhomogeneous fixed point, Re(Λ)
(lower panels of (a)–(d)), in dependence
of the delay time τ for different values of
the memory parameter R (a)–(d) and fixed

K D 0.1. The dark-gray curves in the lower
panels mark the leading eigenvalue which gov-
erns the overall stability of the fixed point. Pa-
rameters: � D 6.2, Du D 0.1 and Da D 10�4

(in the panels showing tcor) [71].

the stationary filamentary current pattern in the deterministic system is larger than
for single time-delayed feedback.

12.6
Conclusion

We have investigated the complex spatiotemporal behavior of two semiconduc-
tor nanostructures, namely, the superlattice and the double barrier resonant tun-
neling diode (DBRT). The first exhibits nonlinear dynamics of interacting fronts,
while the second demonstrates breathing and spiking of filamentary current den-
sity patterns characteristic of globally coupled reaction-diffusion systems. By apply-
ing time-delayed Pyragas-type feedback control to both deterministic and stochastic
oscillations, we have been able to suppress deterministic chaos and control the reg-
ularity and the mean period of noise-induced dynamics.

As an example for the constructive influence of noise in nonlinear systems, we
have shown that random fluctuations are able to induce quite coherent oscillations
of the current density in a regime where the deterministic system exhibits a sta-
ble fixed point, thereby demonstrating the phenomenon of coherence resonance
for systems close to, but below, a Hopf bifurcation (superlattice and DBRT) as well
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as close to, but below, a global saddle-node bifurcation on a limit cycle (superlat-
tice). This extends the phenomena of noise-induced oscillations from purely time-
dependent generic models, for example, [20], to space-time patterns. Moreover, we
have shown that for the DBRT, the noise which is applied globally to a space-
independent variable determines the type of the spatiotemporal pattern of these
oscillations. While for small noise intensity the system demonstrates oscillations
which are quite correlated in time, but spatially inhomogeneous, with increasing
noise intensity the shape of the spatiotemporal pattern changes qualitatively until
the system reaches a highly homogeneous state. Thus, the increase of spatial co-
herence is accompanied by the decrease of temporal correlation of the observed
oscillations. In between these two situations, for intermediate noise strength one
can observe complex spatiotemporal behavior resulting from the competition be-
tween homogeneous and inhomogeneous oscillations.

We have seen that delayed feedback can be an efficient method for manipulation
of essential characteristics of chaotic or noise-induced spatiotemporal dynamics in
a spatially discrete front system and in a continuous reaction-diffusion system. By
variation of the time delay, one can stabilize particular unstable periodic orbits asso-
ciated with space-time patterns, or deliberately change the timescale of oscillatory
patterns and thus adjust and stabilize the frequency of the electronic device. More-
over, with a proper choice of feedback parameters, one can also effectively control
the coherence of spatiotemporal dynamics and, for example, enhance or destroy it.
Increase of coherence is possible up to a reasonably large intensity of noise. How-
ever, as the level of noise grows, the efficiency of the control upon the temporal
coherence decreases.

The effects of the delayed feedback can be explained in terms of a Floquet mode
analysis of the periodic orbits, or a linear stability analysis of the fixed point. For
a better understanding of noise-induced patterns in the DBRT, we have derived
the general form of the characteristic equation for the deterministic system close
to, but below, a Hopf bifurcation. Both dependences, coherence and timescale ver-
sus τ, demonstrate an oscillatory character which can be explained by oscillations of
the real and imaginary parts of the eigenvalues of the linearized system at the fixed
point in the vicinity of which the noise-induced oscillations occur. The most coher-
ent timescale corresponds to values of τ for which the real parts of the eigenvalues
attain a maximum. In some sense, the noise excites the least stable eigenmode: the
less stable an eigenmode is, the greater the coherence of the corresponding oscilla-
tions. Multiple time-delayed feedback control leads to more pronounced resonant
features of noise-induced spatiotemporal current oscillations compared to single
time feedback, rendering the system more sensitive to variations in the delay time.
It also enlarges the regime in which the deterministic dynamical properties of the
system are not changed by delay-induced bifurcations.

While these investigations have enlightened our basic understanding of nonlin-
ear, spatially extended systems under the influence of time-delayed feedback and
noise, they may also introduce relevant applications as nanoelectronic devices, such
as oscillators and sensors.
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Laser-Assisted Electron Transport in Nanoscale Devices
Ciprian Padurariu, Atef Fadl Amin, and Ulrich Kleinekathöfer

Electron transport in nanoscale devices such as molecular wires and quantum dots
has become an intensively studied field of research in recent years [15]. On the
theoretical side, the formalism of open quantum systems has been well devel-
oped [9, 17, 50, 58, 70], primarily considering quantum dissipation for cases of
quantum systems coupled to a heat baths. In recent years, the focus has shifted
partially to transport systems, as will be described below. To a large extent this is
motivated by the experimental progress in manipulation of atoms and molecules
with nanoscale precision [13, 26, 32, 48, 67]. Externally shaped or self-assembled
structures of nanometer dimensions and high structural complexity are now be-
ing produced in a rather routine manner. For example, efforts to reliably produce
and characterize devices where a single molecule acts as a current rectifier have in-
creased considerably in the past decades [59]. Furthermore, developments in lithog-
raphy have made it possible to create metallic islands consisting of a small number
of atoms. These can be connected to metallic leads and allow the passing of electric
current [6, 20]. Such small clusters of atoms, or quantum dots, exhibit distinctly
quantum mechanical features, and due to their orbital-like distribution of quan-
tum levels have been compared to artificial atoms. Other particularly interesting
aspects of nanotechnology are the possibilities of increasing the efficiency of infor-
mation storage and information processing using molecular electronic devices in
which the motion and the spin of single electrons can be manipulated [72, 74].

In the present chapter, the focus is on theoretical descriptions of the transport
through molecular junctions and quantum dots using time-dependent methods.
The motivation stems from the idea of combining electron transport with coher-
ent optical manipulation of the quantum dynamics of molecules and quantum
dots [8, 41, 42, 53]. The increased precision and ease in the technique of shaping
laser pulses allows increasingly accurate control of molecular quantum mechanical
evolution by optical coupling. The laser field leads to a (possibly ultra-short) time-
dependent perturbation of the system, thus inducing nonequilibrium dynamics
that provide interesting opportunities. In the future, optically activated molecu-
lar devices could create current pulses of femtosecond temporal widths, speeds
greatly exceeding those of conventional electronics. In addition to building new
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and promising opto-electronic devices, the combination of laser manipulation of
quantum systems with the coupling to external leads may prove an important tech-
nique in spectroscopy. By this means, an optically induced current or a current
induced fluorescent light signal could be transformed into information regarding
the molecule included in the device, or information about the characteristics of the
device itself [22, 23].

This contribution starts by describing the theoretical basics of open quantum
systems before detailing the calculation of current and shot noise in transport sys-
tems. The quantum master equation (QME) developed is then applied to the so-
called single resonant level model. In the subsequent section, numerical results
for the transport properties are presented. Finally, a summary is provided in the
final section.

13.1
Open Quantum Systems

There have been many theories developed capable of describing the many body in-
teractions involved in electron transport through various junctions [10, 17, 58, 70].
Most of these theories stem from the field of solid state physics. Theories that
describe the dynamics of molecules, including their interactions with the electro-
magnetic field of laser light, usually have their basis in molecular and chemical
physics. This field is traditionally directed towards the dynamics of molecules and
optical spectroscopy (see, e.g., [65]). The domain of interest here is situated at the
junction of these two research fields. The study of molecules, or even of some
discrete quantum levels, incorporated in electron transport devices borrows tech-
niques from both solid state physics and molecular and chemical physics. The in-
tention of this contribution is to show how the description of electron transport
through molecules and quantum dots can profit from its connection to these fields.

The approach used to investigate a quantum mechanical transport system is to
treat the degrees of freedom of the molecule or quantum dot that are actively in-
volved in transport as a reduced quantum system. This reduced system is coupled
through electric contacts to the leads. The leads, which are considered massive,
thus act as electron reservoirs that may accept or donate electrons from and towards
the relevant system (see Figure 13.1). At this point in the analysis, there are differ-
ent ways in which to proceed. Nonequilibrium Green’s function theory [33, 53] is a
commonly used formalism. Recently, other accurate formalisms have been applied
to transport situations. These include the real time path integral approach [55, 69],
the multilayer multiconfiguration time-dependent Hartree method [68], and the
numerical renormalization group approach [2]. These approaches are promising
but computationally demanding, and further tests of their applicability ranges are
required. In another class of approaches, QMEs are derived in a perturbative treat-
ment of the coupling between the relevant system and environment. Many of the
studies, including those in this contribution, are based on a second order formal-
ism. In recent years, the perturbative approaches have begun to go beyond second
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Reservoir Reservoir

Laser

System

Figure 13.1 The concept of open quantum systems is illus-
trated schematically. The influence of the external field on the
reduced system dynamics is suggested by the curly arrow.

order in the molecule-lead coupling. For example, cotunneling events only show up
in perturbation expansions beyond the lowest order [66]. The hierarchical equations
of motion method provides a systematic approach towards obtaining the higher or-
der contributions. This formalism was first developed for the coupling to bosonic
baths [64], but was recently extended to fermionic reservoirs as well [34, 35].

13.1.1
Quantum Master Equation Approach

In what follows, the goal is to derive an effective theoretical method for determining
the time evolution of an open quantum system. Throughout this chapter, atomic
units are employed, such that „ D 1. Therefore, „ does not appear explicitly in the
equations shown. In general, the full system density matrix obeys the Liouville–von
Neumann equation of motion

@

@t
�(t) D i

�
H, �(t)

�
. (13.1)

This equation can be derived directly from the Schrödinger equation, to which
it is basically equivalent. It completely describes the full dynamics of the system.
When treating an open quantum system, the complete Hamiltonian is decomposed
as

H D HS C HR C HSR . (13.2)

The reservoir and the system-reservoir coupling part of the Hamiltonian are con-
sidered to be time independent. In contrast, the Hamiltonian governing the dy-
namics of the relevant system may be time dependent, providing the possibility to
consider laser driving.

The reservoir Hamiltonian describes the large number of modes of the electronic
lead states, which are assumed to remain in equilibrium. The electrons in the lead
are well approximated to behave harmonically as an ideal free electron gas. For the
purposes of this contribution, the spin degree of freedom of electrons plays no role
in the dynamics and may thus be neglected. It can be included in a straightforward
manner as, for example, in [39]. The reservoir Hamiltonian, in second quantiza-
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tion, reads

HR D
X

k

ωk c†
k ck , (13.3)

where k labels all the states in the reservoir and ωk are the corresponding energies.
The structure of the relevant system Hamiltonian HS depends strongly on the

structure of the molecule or quantum dot and defines the model to be described. It
includes as a main component the energies of the system states

HS D
X
�

ω� c†
� c� , (13.4)

where � labels the states of the system and ω� , the corresponding energies. Off-
diagonal elements coupling various system states may also be included as well as
time-dependent components of the energies ω� , introduced, for example, in order
to model a time-dependent gate voltage.

Finally, the system-reservoir coupling HSR is intended to describe electron tun-
neling between states of the reservoir and the system. Here we restrict ourselves
to the standard bilinear coupling between the relevant system and the contacting
leads, although this is not a necessary restriction [37, 52]. This yields

HSR D
X
k ,�

Vk � c†
k ˝ c� C H.c. , (13.5)

where jVk � j2 is the tunneling amplitude characterizing the probability for an elec-
tron to tunnel between states k of the reservoir and � of the system. The coupling
Hamiltonian may also include other types of coupling terms, as will be described
later.

The convention throughout this chapter will be that indices S, R, and SR will de-
note operators related to the relevant system, reservoir, and system-reservoir cou-
pling, respectively. Apart from the Hamiltonians, other superoperators that depend
on the Hamiltonian will exhibit the same indices. For example, consider a gener-
al superoperator O(H). The notation OS will denote O (HS). Similarly, the indices
will appear to differentiate the density matrices of the reduced and reservoir parts
of the system, and also to specify the states over which a trace acts.

The Liouville–von Neumann equation is considerably difficult to solve because
it involves the density matrix defined in the full Fock space of system states. The
dimension of the Fock space is infinite, or at least very large since it contains all
states of the reservoir.

The formal solution of the Liouville–von Neumann equation can be written in
the form of a propagation operator U(t, t0),

�(t) D ET exp
�

i
Z t

t0

dτH(τ)
�

� (t0) exp
�

�i
Z t

t0

dτH(τ)
�

D U(t, t0)�(t0) , (13.6)

U(t, t0)� D ET exp
�

i
Z t

t 0
dτH(τ)

�
� exp

�
�i
Z t

t 0
dτH(τ)

�
. (13.7)
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ET denotes the time ordering operator in the positive time direction. Even though
the solution seems simple and compact, there is no easy way to keep track of the
complete system evolution induced by U(t, t0).

Furthermore, due to its infinite number of degrees of freedom, the reservoir
cannot be driven out of the equilibrium by the interaction with the small relevant
system [11]. It is thus inefficient to treat the reservoir states on the same level of
theory as the relevant system states. Therefore, one projects the Liouville–von Neu-
mann equation onto the states of the relevant part of the system. Formally, this can
be achieved with the use of a projection operator. The choice of such an operator
is not unique and several methods for its construction have been discussed in the
literature. For example, the use of the Argyres–Kelley projection operator [4] has
become standard, with

P(O) D OR ˝ trR fOg , (13.8)

and tr fORg D 1 in order to insure that P2 D P . Such a projector transforms any
arbitrary operator into a form which is separable in the parts corresponding to the
relevant system and the reservoir. Its action on the full density matrix is particularly
illustrating for its use, with the result

P(�(t)) D �R ˝ trR f�(t)g D �R ˝ �S(t) . (13.9)

This projection operator can be used to transform (13.1) into an equation of motion
for the relevant part of the density matrix. Such an equation has the form

@

@t
�S(t) D i

�
HS(t), �S(t)

�C D(t) , (13.10)

where D(t) is a term describing the dissipation due to system-reservoir coupling.
The interpretation of (13.10) is simple. The reduced density matrix evolves accord-
ing to the Liouville–von Neumann equation generated by the corresponding sys-
tem Hamiltonian, together with an additional term generated by the presence of
the reservoir. The latter term should vanish if the system and the reservoir are de-
coupled, that is, if HSR D 0.

13.1.2
Time-Local and Time-Nonlocal Master Equations

Using the projection operator given in (13.8), two distinct forms of the dissipa-
tion term have been developed in the literature. One is the so-called time-nonlocal
(TNL) formalism based on the Nakajima–Zwanzig identity [56, 75] and the time-
local (TL) approach is based on the Tokuyama–Mori identity [62]. Both approaches
lead to exact dissipation terms D(t), providing QMEs which are analytically equiv-
alent to the Liouville–von Neumann equation. This is expected, since introducing
the projection does nothing else but reformulate the initial problem, focusing on
the relevant degrees of freedom.
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Except for the simplest cases, the equations arising after applying the projection
operator are very difficult to implement and solve. In order to proceed, one usually
invokes the assumption of weak system-reservoir coupling. The explicit derivation
of the dissipation term and the concrete method of applying the theory of small
perturbations is presented elsewhere [38, 50, 58]. The results are reviewed below.

In second order perturbation theory, the TNL dissipation term takes the form

DTNL(t) D � trR

�
LSR(t)

Z t

t0

dt0US(t, t0) ˝ UR
�
LSR(t0)�S(t0) ˝ �R

��
.

(13.11)

It can be written in a more compact form by introducing the dissipation kernel

K(t, t0) � D trR
˚
LSR(t)

�
US(t, t0) ˝ UR

�
LSR(t0) (� ˝ �R)

���
. (13.12)

The dissipation kernel is an operator that acts only on the Fock space of the relevant
system states. This is insured by the trace over the reservoir degrees of freedom. In
terms of this kernel, the dissipation takes the form

DTNL(t) D �
Z t

t0

dt0K(t, t0)�S(t0) . (13.13)

It is now clear why this equation is nonlocal in time. The dissipation term at time t
depends on the state of the system at all previous times t0. This is contrasted by the
TL dissipation term

DTL(t) D � trR

�
LSR(t)

Z t

t0

dt0US(t, t0) ˝ UR
�
LSR(t0)�S(t) ˝ �R

��
D �

Z t

t0

dt0K(t, t0)�S(t) . (13.14)

Here, the dissipation depends on the system reduced density matrix only at time t,
that is, at the same time as the dissipation term DTL(t). Note that the TL dissipation
term can be derived from the TNL counterpart by making the substitution [18]

�S(t0) ! U†
S (t, t0)�S(t) . (13.15)

Comparisons between the TL and TNL approach have been performed [9, 37, 61],
but a clear proof of the superiority of either method has yet to arise. The initial con-
ditions for a specific problem may decide which method is more suitable. For suf-
ficiently weak coupling, the results obtained using both methods of course agree,
since they are equivalent to second order in the system environment coupling. The
TNL and TL approaches differ by different resummations of higher order terms.
In the derivation of the dissipation terms, it was assumed that the reduced density
matrix corresponding to the reservoir �R and the relevant system �S are initially
uncorrelated. If this assumption is not satisfied, the initial correlations give rise
to an extra dissipation term which complicates the calculations [12]. This fact may
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render a TNL approach artificial, as past correlations do not exist at the start of the
system-reservoir interaction. Thus, throughout this chapter, the study will focus on
the TL equation of motion.

Together with the TL dissipation term already described, the equation of motion
for the reduced density matrix given in general form by (13.10) becomes

@

@t
�S D iLS�S �

Z t

t0

dt0K(t, t0)�S(t) . (13.16)

At a glance, it can be noticed that the QME, (13.16), is an integro-differential equa-
tion, since the intermediary time t0 is still present in the dissipation kernel K(t, t0).
In order to solve such an equation numerically, it is more convenient to transform
it to a system of ordinary differential equations (ODEs). The system of ODEs will
involve the reduced density matrix, together with several auxiliary operators that
describe the evolution of the dissipation kernel. In what follows, the kernel will be
reformulated to a suitable shape, and with the use of a numerical decomposition
it will be split into the auxiliary operators desired for obtaining a closed system of
ODEs.

First consider the shape of K(t, t0) given by (13.12). The goal is to split the entire
operator into a direct product of a system and a reservoir part. The propagator
U(t, t0) is already split into its corresponding system and reservoir parts, so the
focus can be directed to the coupling Hamiltonian involved in LSR. The structure
of the coupling Hamiltonian is

HSR D
X

x

Kx ˝ φx , (13.17)

with Kx an operator defined on the states of the relevant system and φx an operator
defined on the states of the reservoir. For the explicit coupling Hamiltonian given
by (13.5), such a decomposition is easily realized using as the system part K1 D c�
and K2 D c†

� , and as the bath part φ1 D P
k Vk ,� c†

� and φ2 D P
k Vk ,� c� . The

index � , as used in (13.5), labels the system states. Thus, the coupling Hamiltonian
is readily split into a direct sum of system and reservoir operators. The index x
incorporates three indices, x � f� , i, αg, where � counts system states, i 2 f1, 2g
for the system operator, i D 1, or its Hermitian conjugate, i D 2, and α labels the
corresponding leads, when more than one lead is connected to the dot.

It is now possible to write the dissipation kernel as a direct product of system
and reservoir operators, yielding

K(t, t0)� D
X
x x 0

�
Kx , US(t, t0) [Kx 0 , �]

�˝ trR f[φx , UR [φx 0 , �R]]g . (13.18)

The trace in this equation transforms the reservoir operator into a scalar function
of time and thus, the direct product is transformed into a simple multiplication by
a scalar function. The resulting function of time is called the reservoir correlation
function. It can be interpreted as the correlation strength between transitions in-
volving the various levels of the system and the quantum levels of the reservoir.
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The correlation function is specific to a reservoir and also specific to the quantum
levels of the system involved in the electron tunneling

Cx x 0 (t) D trR fUR(φx ) φx 0 �Rg . (13.19)

In terms of the correlation function, the dissipation kernel takes the form

K(t, t0)� D
X
x x 0

�
Kx , Cx x 0 (t � t0)US(t, t0)Kx 0��

C �
Kx 0 , Cx 0 x (t � t0)US(t, t0)Kx ��† . (13.20)

The second term in the sum is obtained from the first term by interchanging x
and x 0 and taking the Hermitian conjugate.

In the next step, it is also easy to write the dissipation term DTL(t) by plug-
ging (13.20) into (13.14). In order to simplify the resulting form of the dissipation
term, it is convenient to define auxiliary operators Λx x 0 (t) as

Λx x 0 (t) D
Z t

t0

dt0 Cx x 0 (t � t0)US(t, t0)Kx 0 . (13.21)

Using these auxiliary operators the dissipation term becomes

DTL(t) D �
X
x x 0

h
Kx , Λx x 0 (t)�S(t) � �S(t)Λ†

x 0x (t)
i

. (13.22)

This is the form of the dissipation term that transforms the most general form
of the TL QME, (13.10), into an ODE that can be implemented and easily solved
numerically using the wide array of efficient ODE solvers. All that is needed is
the time evolution of the auxiliary operators, so that the system of ODEs becomes
closed.

In order to obtain the equation of motion for the auxiliary operators, it is conve-
nient to take the time derivative of (13.21),

@

@t
Λx x 0 (t) D Cx x 0 (0)Kx 0

C
Z t

t0

dt0 @

@t
Cx x 0 (t � t0) US(t, t0) Kx 0

� i
Z t

t0

dt0 Cx x 0 (t � t0)LS US(t, t0) Kx 0 . (13.23)

The equation of motion above takes a particularly simple form if the correlation
function can be numerically decomposed into a sum of exponentials [37, 52],

Cx x 0 (t) D
X

k

ak
x x 0 eγ

k
x x0 t . (13.24)

The coefficients ak
x x 0 and γ k

x x 0 are time-independent complex numbers. The de-
composition has the role of reshaping the time dependence of the correlation
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function to a purely exponential form, which allows further analytic treatment of
(13.23).

Equation 13.24 should not be interpreted as a limitation of the theory. Indeed,
it does not introduce any significant additional approximation. Any useful correla-
tion function can be approximated arbitrarily well by the series implied in (13.24).
For functions that are smooth, everywhere bounded, and admit a Fourier series,
the exponential γ k

x x 0 will take only imaginary values, recovering the corresponding
series. For smooth functions with exponential divergences, the diverging parts can
be arbitrarily well approximated by the real part of the coefficients γ k

x x 0 . From a
practical point of view, it is imperative to reduce the number of terms in the de-
composition. This can be achieved by using numerical optimization algorithms, in
order to achieve the smallest approximation with the best truncation of the series
(see the example in [52] for an illustration).

The form of the correlation function given by (13.24) inspires a decomposition
of the lambda operators

Λk
x x 0 (t) D

Z t

t0

dt0 ak
x x 0 exp

n
γ k

x x 0

�
t � t0

�o
US(t, t0)Kx 0 , (13.25)

such that Λx x 0 (t) D P
k Λ

k
x x 0 (t) . The equation of motion for each individual

Λk
x x 0 (t) can be easily read from (13.23) as

@

@t
Λk

x x 0 (t) D ak
x x 0 Kx 0 C γ k

x x 0Λk
x x 0 (t) � iLSΛk

x x 0 (t) . (13.26)

The set of ODEs (13.26) completely describes the time evolution of the auxiliary
operators, and together with the equation of motion for the reduced density matrix

@

@t
�S D iLS�S �

X
x x 0

h
Kx , Λx x 0 (t)�S(t) � �S(t)Λ†

x 0x (t)
i

, (13.27)

a complete set of ODEs governing the time evolution of the system is obtained.

13.1.3
Full Counting Statistics

Charge transfer through molecules and quantum dots occurs via electron tunnel-
ing between the leads and the states of the relevant system. The discrete nature of
the charge flow and the distinct quantum mechanical features encountered render
the electron transport a stochastic process. In order to completely describe charge
transfer, one must count the number of electrons that have tunneled to and from
any of the contacting leads. This turns out to be a difficult task that has attract-
ed a lot of theoretical [7, 57], and recently also experimental, interest [29–31]. Its
solution involves keeping track of the probabilities Pn(t) that n electrons have tun-
neled through a specific junction at a given time. Solving the statistics of the charge
transfer process and its cumulants is the task of this section.
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It will be shown that the formalism employed to solve the dynamics of the re-
duced density matrix can be extended to provide a powerful tool for handling
electron transfer statistics. Here, the time dependence of the particle current and
the current noise will be calculated explicitly. The equation of motion for the re-
duced density matrix derived above can be projected onto those states involving
a precise number of tunneled electrons, thus providing equations of motion for
the n-resolved reduced density matrices. Further, this chapter presents an efficient
method for side stepping the numerical complications arising from keeping track
of the density matrices describing all the possible numbers of tunneled electrons
up to infinity. The transfer of electrons or other relevant quantum particles such
as Cooper pairs, phonons, and excitons is described mainly by the two quantities
current and shot noise. These quantities are also very important measurables from
an experimental point of view. In recent years the full counting statistics has also
attracted a lot of attention.

The operator representing the transferred charge for one of the contacts is

Q(t) D e(N (t) � N (t0)) , (13.28)

where N is the number operator in the respective lead and e is the elementary
charge. Using atomic units with e D 1, the elementary charge may be omitted
throughout the derivation. Note that the sign in front of the charge is defined to be
positive if electrons have tunneled into the lead, and negative if electrons from the
lead have tunneled into the relevant system.

The current is defined as the rate of the particle transfer, that is, the time deriva-
tive of the number of transferred particles. The current operator, describing the
current flow through one of the contacts is given by

I(t) D @

@t
Q(t) D @

@t
N (t) . (13.29)

Another important point here is that the current and charge operators are defined
on the full Fock space of the system plus reservoir states.

Finally, the shot noise describes the current fluctuations and may be understood
as a charge diffusion coefficient

S(t) D ˝
I2(t)

˛� hI(t)i2 D @

@t

˝
Q2(t)

˛� hQ(t)i2
�

, (13.30)

where h�i D tr f� �g and the trace and � refer to all the states of the full system.
Note that the shot noise is not an operator but a time-dependent scalar function.
Similar measurable scalar quantities, the transferred charge and the current, can
be obtained averaging the corresponding operators

Q(t) D hQ(t)i , (13.31)

I(t) D hI(t)i . (13.32)

Due to the discrete nature of the charge carriers, it is more convenient to express
the quantities charge, current, and noise in terms of the probability that n electrons
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tunneled through the junction Pn(t). The transferred charge, in atomic units, is
given by

Q(t) D
1X

nD�1

n Pn(t) . (13.33)

The fact that n assumes positive as well as negative values reflects once more that
the electron counting is done in one specific direction. For example, the transfer of
particles is considered positive when particles are transferred from the reservoir to
the relevant system. P�1(t) then designates the probability that in total one electron
has tunneled in the reverse direction, that is, from the system to the reservoir.

Equation 13.33 expresses the charge transferred through a specific junction as a
probabilistic quantity, emphasizing the stochastic nature of the tunneling process.
Similar expressions can be obtained for the current and the shot noise by insert-
ing (13.33) into (13.32) and (13.30), respectively

I(t) D
1X

nD�1

n
@

@t
Pn(t) , (13.34)

S(t) D @

@t

0@ 1X
nD�1

n2 Pn(t) �
 

1X
nD�1

n Pn(t)

!2
1A . (13.35)

Relations (13.34) and (13.35) reveal the information that can be extracted from
the probabilities Pn(t). These probabilities can be interpreted as the population
summed over all the states in the Fock subspace involving the tunneling of pre-
cisely n electrons at a given time t. If we denote by Fn the corresponding subspace
and by jψni the wavefunctions of the states in Fn , then Pn(t) is given by

Pn(t) D
X

fjψnig2Fn

hψn(t) jψn(t)i . (13.36)

Here, the number of tunneled electrons n can be interpreted as an additional quan-
tum number. Thus, it is possible to define a density matrix �n(t) corresponding to
the states in Fn . The use of n-resolved density matrices for solving the full count-
ing statistics of electron transfer processes has been proposed in [28]. Several ele-
gant implementations for solving the statistical cumulants have been implemented
in the cases of quantum interference phenomena [27, 54] and the quantum shut-
tle [21, 60]. While these methods treat steady state properties of transport, a gener-
alized method has been developed that solves the time dependence of the statistical
cumulants [36]. The derivations presented in this chapter follow along the lines of
the latter method.

In order to transform between the full system density matrix and the n-resolved
density matrix �n(t), it is necessary to define an additional projection operator Pn ,
such that Pn�(t) D �n(t). The properties of the Pn projector stem from its defini-
tion and its intended use. It should provide a flexible, formally correct method of
focusing on the dynamics of the states in any subspace Fn of the Fock space. Thus,
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Pn should commute with any operator that does not directly influence the num-
ber of tunneled electrons, such as the Hamiltonian of the system or reservoir, the
number operators in any states, and others. The nontrivial use of Pn results from
the action of the system-reservoir coupling Hamiltonian HSR, which introduces the
process of tunneling at the theoretical level. The quantum number n counts elec-
trons passing through only one of the contacts of the quantum dot. Even if several
leads are in contact with the quantum device, the operators describing tunneling
through different contacts do not mix. This allows us to consider each contact in-
dividually and calculate the statistics of each corresponding transport process indi-
vidually.

In order to understand the properties of the projector Pn , it is useful to study an
illustrating example. Consider, for simplicity, a quantum dot with several quantum
states, in contact with one electron reservoir. The coupling Hamiltonian may be the
one described by (13.5). We may arbitrarily choose to count the electrons jumping
from the reservoir to the states of the quantum dot, that is, n increases for tunnel-
ing into the dot. The operator inducing tunneling in the positive direction can be
abbreviated VC and its Hermitian conjugate V�

V� D
X
k ,�

Vk � c†
k ˝ c� , (13.37)

VC D
X
k ,�

Vk � ck ˝ c†
� , (13.38)

and

HSR D VC C V� . (13.39)

The two operators VC and V� act as ladder operators for the number of tunneled
electrons, and

VC jψni / jψnC1i , (13.40)

V� jψni / jψnC1i , (13.41)

with 8 jψni 2 Fn and jψn˙1i 2 Fn˙1.
VC and V� make the transition between neighboring Fock subspaces, and thus

do not commute with the projection operators Pn . The commutation relations are
analogous to those between the creation/annihilation operators and the number
operator

VCPn D PnC1VC , (13.42)

V�Pn D Pn�1V� . (13.43)

In what follows, the goal will be to derive an equation of motion for the n-resolved
density matrices by using Pn to project (13.27) onto the subspace Fn . Knowing the
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n-resolved density matrix operators, the probabilities Pn(t) are given by the trace of
�n(t), as suggested by (13.36),

Pn(t) D trf�n(t)g . (13.44)

Because the trace does not involve off-diagonal elements, the following relation can
be used

tr f�n(t)g D tr fPn (�S(t) ˝ �R)g . (13.45)

The operator Pn has no effect on the reservoir part of the density matrix �R, as it
was assumed that �R has no dynamics and remains in equilibrium, that is, �R is
invariant with the number of tunneled electrons. Taking the trace over the reservoir
degrees of freedom in (13.45) first, the equation is for Pn(t)

Pn(t) D trSf�S,n(t)g , (13.46)

where �S,n (t) D Pn�S(t), that is, it is sufficient to add the quantum number n to
the reduced system density matrix.

For simplicity, we will assume here that the tunneling can occur in only one
state of the quantum dot, eliminating the need to use � in (13.42) and (13.43) to
keep track of the states. The index α, which labels the contacts, will contribute
significantly only for the contact where we count the tunneled electrons. Auxiliary
operators originating from all other contacts commute with the projection opera-
tor Pn . In order to keep the illustration simple, it will be assumed that only one
electron reservoir is in contact with the quantum dot, thus eliminating the need to
include the α index.

Particularly important is the index i 2 f1, 2g, which specifies if Λx x 0 (t) involves
electron tunneling into or out of the relevant system states. Explicitly showing the
summation over this index, the projection operator applied to the dissipation term
yields

PnDTL(t) D �Pn

h
K1, Λ12(t)�S(t) � �S(t)Λ†

21(t)
i�

� Pn

h
K2, Λ21(t)�S(t) � �S(t)Λ†

12(t)
i�

, (13.47)

where K1 D c† denotes the creation operator in the system state involved in the
tunneling event. Furthermore, one has the relation K2 D K†

1 D c.
The commutation relations between the projector and the various operators are

Pn K1 D K1 Pn�1 ,

Pn K2 D K2 PnC1 ,

Pn Λ12 D Λ12 PnC1 ,

Pn Λ21 D Λ21 Pn�1 ,

Pn Λ
†
12 D Λ†

12 Pn�1 ,

Pn Λ
†
21 D Λ†

21 PnC1 . (13.48)
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Using these relations, (13.47) becomes

PnDTL(t) D ��S,n


Λ†

21(t)K1 C Λ†
12(t)K2

�
� (K1Λ12(t) C K2Λ21(t)) �S,n

C K1�S,n�1Λ
†
21(t) C Λ12(t)�S,nC1K1

C K2�S,nC1Λ
†
12(t) C Λ21(t)�S,n�1K2 . (13.49)

As can be seen in (13.49), the dissipation part contributes several terms that relate
to �S,n , which can be interpreted as energy due to electrons tunneling in and out
of the reduced system. The rest of the terms describe effective electron tunneling
into the system �S,nC1 and out of the system �S,n�1. The latter terms are important
for the statistics of the electron transport process. In fact, it will turn out that these
terms are directly related to the current of particles through the respective junction.
In anticipation, the two corresponding operators can be denoted by

IC � D K1 � Λ†
21(t) C Λ21(t) � K2 , (13.50)

I� � D K2 � Λ†
12(t) C Λ12(t) � K1 . (13.51)

The interpretation of IC and I�, as will be seen later, is that they are the current
operators for particles going into and out of the system, respectively.

Using the additional abbreviation introduced above, the equation of motion of
the n-resolved reduced density matrix is given by

@

@t
�S,n D iLS�S,n � �S,n


Λ†

21(t)K1 C Λ†
12(t)K2

�
� (K1Λ12(t) C K2Λ21(t)) �S,n

C IC (�S,n�1) C I� (�S,nC1) . (13.52)

This equation provides a complete method of solving the dynamics of the tunnel-
ing process. A similar equation has been reported in [49], starting from a slightly
modified QME.

In terms of the n-resolved density matrices, the first and second statistical mo-
ments of the particle transfer can be written as

1X
nD�1

n Pn(t) D
1X

nD�1

n tr f�S,ng , (13.53)

1X
nD�1

n2 Pn(t) D
1X

nD�1

n2 tr f�S,ng . (13.54)

While useful for the in depth understanding of the interpretation to be given to the
various operators involved in the equation of motion, (13.52) has limited applica-
bility in the implementation and solving of the transport dynamics. The obvious
practical problem that arises is the necessity to solve all n equations of motion,
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that is, to keep track of an infinite number of density matrices. Therefore, in order
to obtain the correct expression of the moments, additional techniques need to be
developed. This will be the goal of the next two sections.

The time-dependent electron current, as given by (13.34), is the time derivative
of the first statistical moment. In order to extract the statistical moments from
the equation of motion of the density matrix, it is useful to define the moment
generating function [36, 49]

φ(�, t) D tr fexp (i�N ) �(t)g , (13.55)

where N is the number operator counting the tunneling electrons and the trace is
over all the system plus reservoir degrees of freedom.

The variable �, the so-called counting variable, is the dual of the number of trans-
ferred particles, in the sense that � and n form a conjugate pair similar to the re-
lation between coordinate and momentum, or time and frequency [5]. As can be
guessed from (13.55), � and n are related via the Fourier transform.

The definition of the moment generating function φ(�, t) justifies its name. In-
deed, taking its Taylor series with respect to � around � D 0, one obtains the
moments as the coefficients of the polynomial

φ(�, t) D
1X

kD0

(i�)k

k!

 
1X

nD�1

nk Pn(t)

!
. (13.56)

It turns out to be more useful to find the time evolution of the moment generating
function instead of the n-resolved density matrices. In fact, it is convenient to define
the moment generating operator in the Fock space of the reduced system as

F(�, t) D trR fexp (i�N ) �S(t) ˝ �Rg , (13.57)

whose trace obviously recovers the moment generating function. The equation of
motion of F(�, t) and its Taylor series components will provide a general solution
for the calculation of statistical moments of electron transport.

The time derivative of the moment generating operator is given by

@

@t
F(�, t) D trR

�
exp (i�N )

@

@t
(�S(t) ˝ �R)

�
. (13.58)

The equation of motion (13.27) in the form developed for (13.52) is inserted in-
to (13.58), and the straightforward operator algebra involved in the commutation
of N with the operators IC and I� is performed, yielding [36]

@

@t
F(�, t) D fRS(t) C (exp(i�) � 1) IC C (exp(�i�) � 1) I�g F(�, t) ,

(13.59)

where RS(t) D LS(t) � R t
t0

dt0K(t, t0) is used for the brevity of notation. The opera-
tor RS(t) is chosen such that @/(@t)�S(t) D RS(t)�S(t). Equation 13.59 provides an
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efficient means of calculating the statistical moments. In the following, it will be
shown explicitly how to calculate the first two moments needed for the expression
of the current and the shot noise. The generalization to the calculation of higher
moments is straightforward.

As suggested by (13.56), the information in the moment generating operator
can be extracted by taking the Taylor series of (13.59) with respect to the counting
variable �. The Taylor series of the moment generating operator is given by

F(�, t) D
1X

kD0

(i�)k

k!
Fk (t) , (13.60)

where F0(t) is nothing else but the reduced system density matrix and, by compar-
ison with (13.56), tr fFk (t)g D P1

nD�1 nk Pn(t).
To zeroth order in � one obtains

@

@t
F0(t) D RS(t)F0(t) . (13.61)

This was expected because F0(t) D �S(t). The zeroth order recovers the QME for
the density matrix.

The first order term in � of the Taylor expansion of (13.59) provides the first
statistical moment, whose time derivative provides the current operator, that is,

@

@t
F1(t) D RS(t)F1(t) C (IC(t) � I�(t))F0(t) . (13.62)

Finally, the current is given by

I(t) D tr
�

@

@t
F1(t)

�
D tr f(IC(t) � I�(t))F0(t)g , (13.63)

where tr fRS(t)Og D 0 was used for any operator O, that is, the QME describes a
dynamical behavior that preserves the trace.

The current operator, as defined by (13.29), is given by

I(t) D IC(t) � I�(t) , (13.64)

where again it was used that F0(t) D �S(t).
The shot noise involves the use of the second statistical moment of the transport

process. This moment is contained in the second order term of the Taylor expan-
sion of F(�, t). The equation of motion corresponds to the second order expansion
of (13.59),

@

@t
F2(t) D RS(t)F2(t)C2(IC(t)�I�(t))F1(t)C(IC(t)CI�(t))F0(t) . (13.65)

Comparing this QME with (13.35), the shot noise, in terms of the Taylor compo-
nents of F(�, t), is

S(t) D tr
�

@

@t
F2(t)

�
� 2 tr fF1(t)g tr

�
@

@t
F1(t)

�
. (13.66)
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Replacing tr
˚

@
@t F1(t)

� D I(t) and inserting (13.65) into the above equation, the
noise becomes

S(t) D tr f2(IC(t) � I�(t) � I(t))F1(t) C (IC(t) C I�(t))F0(t)g . (13.67)

Note that the noise depends on the full dynamics of F1(t) as opposed to the current,
which can be directly extracted from the time dependence of the reduced system
density matrix. In order to solve the dynamics of the noise, or charge diffusion as
suggested by the definition (13.30), it is necessary to solve the equation of motion
for F1(t) in addition to the equation of motion for the reduced density matrix. How-
ever, this is feasible and the method described provides an elegant and efficient
method to solve the statistics of an arbitrary transport process. The method proves
particularly superior to other methods developed in the case of relevant systems
with many quantum states.

Finally, it will prove more convenient (see [36]) to define a quantity F1?(t) D
F1(t) � �S(t) tr fF1(t)g that has the property of being perpendicular to the reduced
density matrix operator, and additionally that tr fF1?(t)g D 0. The equation of mo-
tion for F1?(t) can be easily derived from (13.62), yielding

@

@t
F1?(t) D RS(t)F1?(t) C (IC(t) � I�(t) � I(t))F0(t) . (13.68)

In terms of F1?(t), the shot noise takes the form

S(t) D tr f2(IC(t) � I�(t))F1?(t) C (IC(t) C I�(t))�S(t)g . (13.69)

The above equation can be directly implemented and used for the practical compu-
tation of the shot noise.

In addition, the methods described give access to the calculation of the so-called
Fano factor, a dimensionless quantity measuring the relative noise strength. It is
defined as

F D lim
t!1

S(t)
jI(t)j . (13.70)

The Fano factor provides information related to the nature of the transport mech-
anism [5]. It is equal to one for a Poissonian stochastic process, that is, a process
where the tunneling of one electron is completely independent of any other tunnel-
ing processes. A process is called super-Poissonian if F > 1, meaning that the elec-
trons are bunching, so that when one tunneling process occurs it is more likely that
a second tunneling process follows soon after. The process is called sub-Poissonian
if F < 1, meaning that the electrons are anti-bunching, that is, the tunneling of one
electron reduces the probability of another tunneling process.

13.2
Model System Describing Molecular Wires and Quantum Dots

A simple model describing a molecular wire consists of a series of N localized
sites, representing empty orbitals that can accommodate electrons. In real molecu-
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Figure 13.2 Scheme of the tight-binding model for a molecular
wire. The sites of the wire, each with energy En , are coupled by
a constant coupling Δ. The chemical potentials of the leads are
denoted by EF,l and EF,r , respectively. The energies of the sites
can be manipulated by a time-dependent field E(t).

lar wires, such orbitals may overlap so that there is a finite probability that electrons
can tunnel between the sites. For simplicity, in the following we will assume that
the energy associated with the tunneling processes between all sites is a fixed quan-
tity Δ.

The molecular wire can be connected to two metallic leads that act as reservoirs
of electrons. Here, we consider that the leads couple weakly to the wire, so that
only the closest site is involved in direct tunneling into and out of the leads. The
convention we adopt is that site number one is coupled to the left lead and site
number N is coupled to the right lead. Also by convention, we choose the left lead
as the source of electrons, having a high chemical potential, while the right lead
will act as a drain, with a lower chemical potential (see Figure 13.2).

An additional important assumption made in the following derivations is that
the on site electron–electron interaction is strong enough such that not more than
one electron can occupy the site at any time. This justifies the assumption that the
spin degree of freedom of electrons can be disregarded.

In the following, it is described in detail how to employ the methods developed in
the previous theoretical sections. The particular case of a single site wire is solved
analytically for illustration in Section 13.3, and numerical results obtained using
single and double site wires are presented in Section 13.4.

As described above, the full Hamiltonian can be split into a system part, a reser-
voir part, and a coupling part. The system Hamiltonian is given by the Hamiltoni-
an of the N-sites molecular wire in the orbital tight-binding description assumed
above [42, 58],

HS D
NX

n,n0D1

(HS)nn0 c†
n cn0 , (13.71)

(HS)nn0 D En δn,n0 � Δ (δnC1,n0 C δn,n0C1) . (13.72)

The reservoir part is described by a Hamiltonian identical to the one given by (13.3),
HR D P

k ,α ωkα c†
kα ckα, where k labels the continuum of states in the leads and

α 2 fL, Rg, designates the left (L) or right lead (R), respectively. The occupation
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of the reservoir states at equilibrium is described by the Fermi–Dirac distribution
function. Thus, the expectation value of the number operator corresponding to a
reservoir state is

trR

n
c†

kαck 0α0�R

o
D nF (ωkα � μα) δk ,k 0δα,α0 , (13.73)

where the Fermi function is given by

nF(ω) D 1
exp(ω) � 1

, (13.74)

and μα is the chemical potential of lead α. nF (ωkα � μα) represents the prob-
ability that the reservoir state with energy ωkα is filled with an electron, while
nF (μα � ωkα) represents the probability that the same reservoir state is empty.

The coupling Hamiltonian is given by

HSR D
X

k2L, k 02R


VkLc†

1 ckL C Vk 0R c†
N ck 0R C H.c.

�
. (13.75)

It is of the same type as the coupling in (13.5), describing the tunneling processes
between the left lead states and the first site, and the tunneling processes between
the right lead states and the Nth site of the wire.

In order to apply the theory developed in the previous section, and thus solve the
system dynamics within second order perturbation theory in the tunneling ampli-
tudes Vkα, there are a few steps that need to be followed. The immediate goal is to
find the correlation functions, defined by (13.19). The coupling Hamiltonian can
be split in the spirit of (13.17), by defining

K1 D c†
1 and φ1 D

X
k2L

VkLckL , (13.76)

K2 D c1 and φ2 D
X
k2L

NVkLc†
kL , (13.77)

K3 D c†
N and φ1 D

X
k2R

VkRckR , (13.78)

K4 D cN and φ2 D
X
k2R

NVkRc†
kR , (13.79)

where the overbar denotes complex conjugation. Focusing on the correlation func-
tions in the left lead, we have

C12(t) D trR fUR (φ1) φ2�Rg

D trR

8<: X
k ,k 02L

VkL NVk 0LUR (ckL) c†
k 0L�R

9=; and (13.80)

C21(t) D trR fUR (φ2) φ1�Rg

D trR

8<: X
k ,k 02L

VkL NVk 0LUR


c†

kL

�
ck 0L�R

9=; . (13.81)



388 13 Laser-Assisted Electron Transport in Nanoscale Devices

The diagonal correlation functions C11(t) and C22(t) vanish since they involve the
square of the creation and annihilation operators, respectively, which are fermionic
operators.

The action of the propagation operator on the creation or annihilation operators
is equivalent to their interaction picture form [10], namely

UR


c†

kα

�
D exp (iωkα t) c†

kα , (13.82)

UR (ckα) D exp (�iωkα t) ckα . (13.83)

Using the fermionic commutation relations of (13.73), the correlation functions
become

C12(t) D
X
k2L

jVkLj nF (μL � ωkL) exp (�iωkLt) , (13.84)

C21(t) D
X
k2L

jVkLj nF (ωkL � μL) exp (iωkLt) . (13.85)

The final information needed to completely define the problem concerns the reser-
voir density of states and the tunneling amplitudes Vkα, α 2 fL, Rg. This informa-
tion is encoded in the spectral density [70]

Jα(ω) D π
X
k ,α

jVkαj2 δ (ω � ωk ) . (13.86)

In terms of the left lead spectral function, the correlation functions take the form

C12(t) D
Z 1

�1

dω
π

JL(ω) nF (μL � ω) e�iω t , (13.87)

C21(t) D
Z 1

�1

dω
π

JL(ω) nF (ω � μL) eiω t . (13.88)

The integral form of the correlation function is a more suggestive indication that
the states of the leads form a continuum. In the negative region of the spectrum,
the spectral density should be defined such that it vanishes, J(ω) D 0, ω 2
(�1, 0]. This is not a concern, since the spectral density has a physical meaning
only in the positive region of the spectrum.

In complete analogy, the right lead correlation functions can be recovered as

C34(t) D
Z 1

�1

dω
π

JR(ω) nF (μR � ω) e�iω t , (13.89)

C43(t) D
Z 1

�1

dω
π

JR(ω) nF (ω � μR) eiω t . (13.90)

The correlation functions are very important quantities for the dynamical problem.
Their physical interpretation can be easily understood. For example, C12(t) is di-
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rectly proportional to the probability that one electron tunnels from the first site of
the wire to the left lead, while C21(t) provides the probability of tunneling in the
reverse direction, from the left lead states to the first site.

In order to proceed in applying the method developed in Section 13.1.1, the cor-
relation functions should be decomposed in the spirit of (13.24). For this model
and, in general, for electron tunneling correlations resulting from the bilinear cou-
pling Hamiltonian in (13.5), it turns out that the decomposition of the correlation
functions is equivalent to the decomposition of the spectral density into a sum of
Lorentzian functions

Jα(ω) D
NX

kD1

pk ,α
Γ 2

k ,α

(ω � Ωk ,α)2 C Γ 2
k ,α

, (13.91)

where Ωk ,α is the position of the peak of the k-th Lorentzian, Γk ,α controls the
width, and pk ,α is the energy scale of the system-reservoir coupling, determining
the height of the Lorentzian function.

The quantity pk ,α is a measure of lead-quantum dot coupling strength. It is now
possible to quantify the concept of weak coupling. Through numerical investiga-
tions [37], it was found that at room temperature the parameter regime where sec-
ond order perturbation theory in the coupling strength can be considered to con-
verge occurs when the order of magnitude of the coupling is

PN
kD1 pk ,α / 10�2eV.

Inserting the decomposed form of the spectral density function into (13.87),
(13.88), (13.89), and (13.90), and applying the theorem of residues by closing the
integral along the real axis with a semicircle in the complex plane, the correlation
functions become

Cα�(t) D
NX

kD1

pk ,αΓk ,α nF
�
μα � Ω�

k ,α

�
e�iΩ�

k,α t

� 2i



1X
kD0

Jα( Nνk ,α)e�iNνk,α t , (13.92)

CαC(t) D
NX

kD1

pk ,αΓk ,α nF


ΩC

k ,α � μα

�
eiΩC

k,α t

� 2i



1X
kD0

Jα(νk ,α)eiνk,α t , (13.93)

with the convenient notation CL�(t) D C12(t), CLC(t) D C21(t) and CR�(t) D
C34(t), CRC(t) D C43(t). The abbreviations 
 D 1/(kB T ), Ω˙

k ,α D Ωk ,α ˙ iΓk ,α,
and νk ,α D i(2πk C π)/
 C μα have been used.

The above equations give the correlation functions in the desired form, described
by (13.24). The terms involving νk ,α are formally infinitely many, resembling the
well known Matsubara terms. The sum may be truncated at a finite value depend-
ing on the system temperature [1]. In the following it will be assumed for simplicity
that the spectral density of the two leads has a Lorentzian shape, that is, N D 1 in
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(13.92) and (13.93). Thus, JL and JR are given by

Jα(ω) D pα
Γ 2
α

(ω � Ωα)2 C Γ 2
α

. (13.94)

Directed electron transport is normally induced by a voltage drop between the left
and the right lead. The bias voltage can be modeled by a difference in the chemical
potential of the two leads. It will be assumed by convention and without loss of
generality, that the left lead has the higher chemical potential, that is, μL � μR D
eVb, where Vb is the bias voltage.

If the energy eVb is much larger than the thermal energy kBT , it can be assumed
that the chemical potentials of the left and right lead may be taken to infinity, that is,
μL D 1 and μR D �1. The result is that the states of the left lead are all occupied
by electrons, while the states of the right lead are all empty. Electron transport can
thus occur only from the left lead to the quantum dot, and from the quantum dot
to the right lead. Tunneling from the quantum dot and the left lead, or from the
right lead and the dot level is forbidden. For the rest of this chapter we will restrict
ourselves to this special case, but numerical solutions are easily done for finite bias
as well [71].

This is mathematically expressed through the vanishing of the corresponding
tunneling strengths, that is, vanishing of the corresponding correlation functions.
Thus, since nF(ω� μL) D 1 and nF(ω� μR) D 0, in comparison to (13.87), (13.88),
(13.89), and (13.90), the correlations C12 D 0 and C43 D 0 vanish. Only two corre-
lation functions remain, one modeling electron hopping from the left lead to the
first site C21, and from the Nth site to the right lead C34. They take the form

C21(t) D
Z 1

�1

dω
π

JL(ω)eiω t , (13.95)

C34(t) D
Z 1

�1

dω
π

JR(ω)e�iω t . (13.96)

It can be observed that in this simple model, the correlation functions are the Fouri-
er transforms of the lead spectral densities.

Using the Lorentzian form of the spectral functions and applying the residue
theorem to the integrals in (13.95) and (13.96), the correlation functions become

C21(t) D pL ΓL exp (i (ΩL C iΓL) t) , (13.97)

C34(t) D pR ΓR exp (�i (ΩR � iΓR) t) . (13.98)

The correlation functions have been brought to the desired form, where the time
dependence is placed in the exponent. The coefficients in (13.24) can be trivially
recovered as

aL D pL ΓL , γL D iΩL � ΓL , (13.99)

aR D pR ΓR , γR D �iΩR � ΓR . (13.100)
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Using (13.26), the equation of motion for the non-vanishing auxiliary operators
Λ21(t) and Λ34(t) can be easily derived, yielding

@

@t
Λ21(t) D pL ΓLK1 C (iΩL � ΓL) Λ21(t) � iLS (Λ21(t)) , (13.101)

@

@t
Λ34(t) D pR ΓRK4 C (�iΩR � ΓR) Λ34(t) � iLS (Λ34(t)) . (13.102)

The initial condition imposed on the system that the system and reservoir states
are uncorrelated at time t D 0 implies that all auxiliary operators initially van-
ish, that is, Λ21(0) D Λ34(0) D 0. The above equations, together with the ini-
tial condition, completely define the time evolution of the auxiliary operators. Us-
ing (13.27), the evolution of the reduced density matrix is straightforward to solve.
Further analytic treatment requires explicit knowledge of the number of sites of the
wire.

13.3
The Single Resonant Level Model

The QME approach developed in the previous sections is employed here for a sim-
ple test system. The single resonant level model has attracted a lot of interest from
the theoretical point of view [3, 14, 19, 63, 73]. The model describes a one level
quantum dot in contact with two leads that play the role of the electron reservoirs
(see Figure 13.3). In the Coulomb blockade regime, this model can be considered
as a one site molecular wire. Even though this model has been extensively stud-
ied in recent years [33], it remains an interesting study case for the comparison
of different approximate methods. The fact that there exists an exact analytic so-
lution [33], obtained by the use of nonequilibrium Green’s functions techniques,
provides a good reference for testing the approximate methods developed here.
These are second order in the coupling Hamiltonian, and thus are accurate only
for weak reservoir-system coupling.

The relevant system consists of only one quantum level. Thus, the corresponding
Fock subspace is spanned by two state vectors, denoted as j0i for the state when the
system is unoccupied, and j1i when the system is occupied by one electron. It may
be convenient to represent the two states of the dot by the vectors j0i � (1 0)T

and j1i � (0 1)T. In this basis, the dot annihilation operator is given in matrix

E   F,l

J (E)L

J (E)R

E F,r

E
E(t)

Figure 13.3 The single resonant level model. The two chemical
potentials of the leads are denoted by E f,L and E f,R, respec-
tively. The site energy, denoted by ED D ωD („ D 1), is
situated in the bias window, that is, E f,L > ED > E f,R. The
energy of the site can be manipulated by a time-dependent
electric field E(t).
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representation by

d D
�

0 1
0 0

�
, (13.103)

obeying d j1i D j0i. The creation operator is recovered by taking the Hermitian
conjugate of d and satisfies d† j0i D j1i. Using this matrix representation of the
reduced system, the Hamiltonian takes the form

HS D
�

0 0
0 ωD

�
. (13.104)

Equations 13.101 and (13.102), derived for a general molecular wire, become for
this example

@

@t
Λ21(t) D pL ΓL

�
0 0
1 0

�
C (iΩL � ΓL) Λ21(t)

� i
�

0 0
0 ωD

�
Λ21(t) C iΛ21(t)

�
0 0
0 ωD

�
, (13.105)

@

@t
Λ34(t) D pR ΓR

�
0 1
0 0

�
C (�iΩR � ΓR) Λ34(t)

� i
�

0 0
0 ωD

�
Λ34(t) C iΛ34(t)

�
0 0
0 ωD

�
. (13.106)

It can be observed that all the terms in the left hand side (LHS) of (13.105) and
(13.106) are proportional to the auxiliary operator, except for the first. This obser-
vation, together with the initial conditions, lead to the conclusion that the auxiliary
operators have only one non-vanishing entry, that is,

Λ21(t) D
�

0 0
ΛL(t) 0

�
, (13.107)

Λ34(t) D
�

0 ΛR(t)
0 0

�
, (13.108)

where ΛL(t) and ΛR(t) are scalar functions. They obey simple ODEs that can be
derived from (13.105) and (13.106), producing

@

@t
ΛL(t) D pL ΓL C (iΩL � ΓL � iωD) ΛL(t) , (13.109)

@

@t
ΛR(t) D pR ΓR C (�iΩL � ΓR C iωD) ΛR(t) . (13.110)
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Using the abbreviations Ω˙
α D Ωα ˙ iΓα , the solutions to the above equations

are

ΛL(t) D pL ΓL

exp


i

ΩC

L � ωD

�
t
�

� 1

i

ΩC

L � ωD

� , (13.111)

ΛR(t) D pR ΓR
exp

�
i
��Ω�

R C ωD
�

t
� � 1

i
��Ω�

R C ωD
� . (13.112)

The expressions above provide the time evolution of the auxiliary operators. It may
be noted that in the TL formalism, the equation of motion of the auxiliary operators
is independent of the reduced density matrix. In the TNL formalism, the reduced
density matrix enters the expression of the auxiliary operators, and thus also be-
comes involved in their equation of motion. This makes finding analytic solutions
to the problem a more difficult task.

Having the time evolution of the auxiliary operators, it is easy to use (13.27),
and thus provide the equation of motion of the reduced system density matrix. By
simply plugging in and solving the algebra, it turns out that the 2�2 density matrix
has only two non-vanishing entries. These are the diagonal entries (�S)11 � �0

and (�S)22 � �1, which represent the probabilities that the quantum dot level is
empty (�0), or filled with one electron (�1). The two probabilities must obey the
normalization condition �0 C �1 D 1 and, therefore, only the equation for one of
the probabilities is needed.

The ODE governing the dynamics of the probability that there is an electron on
the dot is given by

@

@t
�1(t) D 2 Re

�
ΛL(t)

�� 2 Re
�
ΛL(t) C ΛR(t)

�
�1(t) . (13.113)

The equation of motion for �1(t) is of the type @/(@t) �1(t) D q(t) � p (t)�1(t), where
q(t) D 2 Re

�
ΛL(t)

�
and p (t) D 2Re

�
ΛL(t) C ΛR(t)

�
are known functions. Such an

equation can be solved analytically using an integrating factor. The general solution
is reads

�1(t) D
R

dt q(t) exp
R t dτ p (τ)

�
C C

exp
R t dτ p (τ)

� , (13.114)

where C is an integration constant that is fixed by the initial value �1(0). The inte-
grals involved in (13.114) can be solved analytically, but the results are too lengthy
to be presented. Even though the analytic expression is available, it is easier to de-
scribe �1(t) using numerical methods. Finally, knowing the probability that the
quantum dot level is filled, the probability that it is empty is simply given by
�0(t) D 1 � �1(t).

The current as a function of time can be easily derived using techniques devel-
oped in Section 13.1.3. The expression of the current operators I˙ can be derived
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directly from (13.50) and (13.51). For the left lead

IC � D K1 � Λ†
21(t) C Λ21(t) � K2 , (13.115)

I� � D 0 , (13.116)

and for the right lead

IC � D 0 , (13.117)

I� � D K4 � Λ†
34(t) C Λ34(t) � K3 . (13.118)

The current is given by (13.63) and therefore reads

IL(t) D tr
n

K1 �S Λ
†
21,L(t) C Λ21,L(t) �S K2

o
D 2 Re

�
ΛL(t)

�
�0(t) , (13.119)

IR(t) D tr
n
�K2 �S Λ

†
12,R(t) � Λ12,R(t) �S K1

o
D �2 Re

�
ΛR(t)

�
�1(t) . (13.120)

The interpretation of the result is clear. The current through the left lead is positive,
indicating that electrons tunnel into the dot, while the right current is negative,
indicating that electrons tunnel into the lead. The left current going into the dot is
proportional to the probability that the dot is empty, since this is the state in which
an electron can tunnel, while the reverse is true for the right current.

The total current is the difference between the left and the right current, divided
by two to avoid double counting. Considering the direction from left to right to be
positive, the total current is given by

Itotal(t) D Re
�
ΛL(t)�0(t) C ΛR(t)�1(t)

�
. (13.121)

This current is positive, indicating that electrons indeed tunnel in the direction
from the left to the right lead.

The shot noise is another important quantity that describes the transport process
which can be calculated using the methods developed in Section 13.1.3. In order
to apply (13.69) and calculate the noise, it is necessary to first solve the equation of
motion for F1?(t), which is given by (13.68).

Studying the structure of the operators in (13.68) and knowing that initially
F1?(0) D 0, it can be observed that the only non-vanishing entries of the 2 � 2
matrix are the diagonal ones. This is analogous to the case of �S. Since we have de-
fined F1?(t) such that, by construction, tr fF1?(t)g D 0, it will be sufficient to know
only (F1?(t))11 � f1. The other non-zero entry will be (F1?(t))22 � f2 D � f1.

It is straightforward to find the equation of motion for f1 from (13.68). It is only
necessary to plug in the corresponding matrices in a similar fashion as for the
equation of motion of �S, and then to carry out the algebra. The resulting equation
reads

@

@t
f1L(t) D �2 Re

�
ΛL(t) C ΛR(t)

�
f1L(t) � 2 Re

�
ΛL(t)

�
(�0(t))2 , (13.122)
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for the noise in the left lead, and

@

@t
f1R(t) D �2 Re

�
ΛL(t) C ΛR(t)

�
f1R(t) � 2 Re

�
ΛR(t)

�
(�1(t))2 , (13.123)

for the noise in the right lead.
The solutions to the above equations can be directly used to calculate the shot

noise by inserting the appropriate form of the operators in (13.69). The resulting
form of the noise in the left and right leads is

SL(t) D 4 Re
�
ΛL(t)

�
f1L(t) C 2 Re

�
ΛL(t)

�
�0(t) , (13.124)

SR(t) D 4 Re
�
ΛR(t)

�
f1R(t) C 2 Re

�
ΛR(t)

�
�1(t) . (13.125)

The total noise may be defined as half the sum of the left and right noise. Thus

Stotal(t) D 2 Re
�
ΛL(t) f1L(t) C ΛR(t) f1R(t)

�C Itotal(t) . (13.126)

The Fano factor, defined in (13.70), is given by

F D lim
t!1

 
1 C 2

Re
�
ΛL(t) f1L(t) C ΛR(t) f1R(t)

�
Re
�
ΛL(t)�0(t) C ΛR(t)�1(t)

� !
. (13.127)

The question whether the dynamics of the transport is sub- or super-Poissonian
can be answered by observing that �0 and �1 are positive real numbers, while f1L

and f1R are negative reals, as can be observed from (13.122) and (13.123). The real
parts of the auxiliary operators are also positive, and thus the second term of the
Fano factor is negative overall. This means that F < 1 and that the dynamics is
sub-Poissonian.

The fact that the dynamics is sub-Poissonian, that is, that the electrons are anti-
bunching, is physically reasonable. The mechanism of anti-bunching originates
from the fact that the quantum level of the dot can accommodate at most one
electron at any time. Thus, after one tunneling event occurs from the left lead to
the dot, a second tunneling in the same direction is hindered by the presence of
the previous electron. It is the finite time that the electron needs to tunnel to the
right lead, and thus leave the quantum dot empty, that induces the sub-Poissonian
character of the dynamics.

The main value for this simple model of the calculation presented in the section
above stems from the possibility to resolve in time the transient dynamics. This
resolution is between the initial nonequilibrium state of the system, that is, the
uncorrelated state, and the long time equilibrium dynamics. The calculation of
transients and the possibility to see current and noise build up in time are two of
the arguments for the strength of the theoretical method described here.

In order to illustrate the transient behavior of the system, that is, the population,
current, and noise, it is sufficient to discuss the fundamental quantity which de-
termines the others – the real part of the auxiliary operators given by (13.111) and
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(13.112). Their real part is given by

Re
�
ΛL(t)

� D pL ΓL

Γ 2
L C Δ2

L

�
e�ΓL t (ΔL sin (ΔL t) � ΓL cos (ΔL t)) C ΓL

�
,

(13.128)

Re
�
ΛR(t)

� D pR ΓR

Γ 2
R C Δ2

R

�
e�ΓR t (ΔR sin (ΔR t) � ΓR cos (ΔR t)) C ΓL

�
,

(13.129)

with the abbreviation ΔL,R D ωD � ΩL,R.
It can be seen that the time dependence is dominated by the exponential factor

e�ΓL,R t . The auxiliary operators grow from zero, at t D 0, to their limit as t !
1, and are Re

�
ΛL,R(t ! 1)

� D JL,R(ωD). The time of transit between these two
values defines the transient, and the time scale is clearly τtransient D Γ�1

L,R . The
transient time scale may be given by the inverse of the coupling strength p �1

L,R if
the spectral density function is too broad. The latter time scale is a measure of the
charging time and thus limits the speed at which the system can reach equilibrium.

An important observation is that the model discussed involves shaped spectral
densities. If the wide band limit is invoked, that is, spectral density is considered
flat with Jα(ω) D pα , the time corresponding to the transient behavior becomes
infinitesimal. This occurs because the constant spectral density is equivalent to a
Lorentzian density with Γα ! 1.

In this limit, all quantities describing transport are constant in time, and this
model has been solved using many techniques [7, 16] that are exact, that is, that do
not need the assumption of weak tunneling. Thus, it is possible in the wide band
limit to test the results yielded by the technique presented here.

Indeed, by straightforward computation, the populations are given by

�0 D pR

pL C pR
, (13.130)

�1 D pL

pL C pR
. (13.131)

The total current becomes

Itotal D 2
pL pR

pL C pR
. (13.132)

Finally, the noise and the Fano factor yield

Stotal D
�

1 � 2
pL pR

(pL C pR)2

�
Itotal , (13.133)

F D 1 � 2
pL pR

(pL C pR)2 . (13.134)

All these results are in perfect agreement with results well known from the lit-
erature [7, 16]. It is interesting to observe that the existence of the transient be-
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Figure 13.4 Time evolution of the population (a), current (b),
and shot noise (c) for the single resonant level model. In the
plots for the current and for the noise, the net quantities (black
solid lines) are plotted together with the corresponding quan-
tities measured on the left (dotted lines) and on the right hand
side (dashed lines).

havior depends on the spectral density, that is, on the structure of the leads. Such
a statement has subtle physical implications and may cast a shadow of doubt on
the physical validity of the wide band limit that has recently become a widely used
assumption.

As an example, Figure 13.4 depicts the time evolution of the population, current,
and noise, including the transient behavior and the equilibrium values reached
for longer times. The spectral densities of the left and right lead have been as-
sumed to take a reasonably broad Lorentzian shape, as described by (13.94). The
Lorentzian is described by the parameters pL D pR D 0.01 eV, ΓL D ΓR D 5 eV,
and ΩL D ΩR D ωD D 50 eV. Note that the actual value of ΩL,R or of ωD has
no impact on the dynamics. It is only their difference that is important. Here, the
peak of the Lorentzian was aligned with the energy of the sites. It can be observed
in Figure 13.4 that the equilibrium values of the population, current, and noise
agree with the values calculated in the wide band limit, (13.132) and (13.133). The
Fano factor is found to be F D 0.5 for sufficiently large times. The equilibrium is
reached in a timescale on the order of t � 100 fs, that is, on the order of p �1

L,R . For
the relatively broad spectral function chosen, it was expected that the equilibrium
time is proportional to the time needed to charge the dot.
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13.4
Influence of Laser Pulses

In the previous section, the time-independent single resonant level model was
studied, while here this is extended to two site models and the influence of laser
pulses. The time evolution of a two site molecular wire is plotted in Figure 13.5. The
quantities can be easily implemented and evaluated numerically by starting from
(13.101) and (13.102), and plugging fj0, 0i , j1, 0i , j0, 1i , j1, 1ig in the Hamiltonian
of the system, written in the occupation number representation basis, yielding

HS D

0BB@
0 0 0 0
0 E1 �Δ 0
0 �Δ E2 0
0 0 0 E1 C E2

1CCA . (13.135)

After solving the dynamics of the auxiliary operators, the relevant quantities can be
calculated in a straightforward manner following the steps taken for the single site
wire in the previous sections [71].

As for the case of the single resonant level model, the difference between the
Fermi energies of the left and right lead is assumed to be infinite, and the lead
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Figure 13.5 The same time evolution as shown in Figure 13.4,
but for a system with two sites. In the plot of the populations,
the solid black line represents the evolution of the population
of site 1 and the dotted line represents the evolution of the
population of site 2.
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spectral densities were chosen to be identical to the single site case. For the results
shown in Figure 13.5, the energy levels of the system were aligned with the peak
of the Lorentzian spectral functions ΩL D ΩR D E1 D E2 D 50 eV. The intersite
hopping parameter was chosen to be Δ D 0.1 eV, and the wire-lead coupling to be
pL,R D 0.1Δ.

One can observe that the population transient depicted in Figure 13.5 shows
small oscillations which do not appear in the case of the single site wire. This can
be attributed to interference of waves going from site 1 to site 2 and vice versa. The
equilibrium population is close to one half in each site, showing a small difference
between site 1 and site 2 due to their imperfect coupling. The total population in
the wire is equal to one. At equilibrium, the current and the noise are the same
as in the single site wire, owing to the tight-binding assumption. The correspond-
ing equilibrium values are limited by the weakest coupling. Thus, if the intersite
coupling becomes weaker than the wire-lead coupling, there will be a significant
difference between single site and double sites wires.

The main advantage of being able to resolve the complete dynamics of the sys-
tem, including the transient behavior, is that one can study perturbations that drive
the system away from equilibrium. An important example of such a perturbation is
the electric component of a strong laser field. It is straightforward to include exter-
nal field driving in the system, as long as the laser is focused on the molecular wire
and does not influence the reservoir or the system-reservoir coupling. For example,
the following field-induced term can be added to the system Hamiltonian [42]

Hfield D μE(t) , (13.136)

where the wire electrical dipole operator μ acts on the states of the reduced system
and E(t) is an arbitrary time-dependent electrical field strength. In the system de-
scribed, the field can be used to manipulate the energies of the sites, shifting them
up or down in a controlled manner. The corresponding dipole operator is given by

μ D c† c , (13.137)

for the single site wire and

μ D 1
2


c†

1 c1 � c†
2 c2

�
, (13.138)

for the double sites case. The minus sign in expression (13.138) describes an asym-
metric coupling, that is, while the first site gains energy from the field, the second
site loses energy. A similar energy modulation can be achieved in quantum dots by
applying a time-dependent gate voltage to each site. Possible effects of field-induced
resonant excitations, for example ionization, have been neglected. In the theoreti-
cal framework designed, the laser field is introduced as an additional term to the
system Hamiltonian, H 0

S D HS C Hfield, and within the present TL formalism it
is treated non-perturbatively [44]. The equations of motion and all the techniques
presented for the case without laser field are carried out identically.

It has been shown that a field-induced modulation of the site energies in a
molecular wire can coherently enhance the interference. For example, for a spe-
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Figure 13.6 Single site system as in Figure 13.4, but with laser
pulse as given in (a) and a bias voltage of 0.4 eV at temperature
T D 4 K. The curves representing currents and noise have been
obtained by averaging the corresponding quantities over four
pulse periods in order to suppress the strong oscillations.

cific choice of the pulse amplitude and frequency, the electron transport through
the wire can be suppressed, an effect known as coherent destruction of tunneling
(CDT). It was first investigated by Grossmann et al. [24, 25]. They found that tun-
neling can be quenched in a periodically driven quantum system. In the context of
molecular wires, this phenomenon can be explained using Floquet theory for the
case of a periodic laser field [43], and it occurs for certain amplitudes of the laser
field at fixed frequencies [42, 71]. As shown earlier, CDT also works in combination
with short laser pulses to switch the current [40, 45]. The CDT effect is demonstrat-
ed in Figure 13.6 for a single site wire. As discussed in [45], for a single site wire
CDT is only effective for bias voltages that are small compared to the pulse ampli-
tude, since otherwise photon-assisted states wash out this effect. The population
and noise shown in Figure 13.6 for a site which is energetically in the middle of
the conduction window is rather independent of the bias voltage. In contrast, for a
small bias voltage as in Figure 13.6 the current is suppressed by CDT, while in the
infinite bias limit there is only a very small effect of the laser pulse on the current.
The parameters characterizing the leads in Figure 13.6 are identical to those used
to produce Figure 13.4. The laser pulse used had a Gaussian shape given by the
expression

E(t) D E(t0) exp
�
� (t � t0)2

2σ

�
cos (ω (t � t0)) . (13.139)
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Figure 13.7 Two site system as in Figure 13.5 but with laser pulse as given in (a).

The parameters characterizing the pulse were as follows. The pulse is centered at
t0 D 800 fs, its width is given by σ D 250 fs2, its intensity is E(t0) D 2.405 eV, and
the carrier frequency by ω D 1 eV. The ratio of laser amplitude E(t0) and laser fre-
quency ω has to be a root of the zeroth order Bessel function J0(E(t0)/ω) for CDT
to be most effective. The pulse is turned on at some time after the system reaches
equilibrium. It must be noted that the current and the noise oscillate strongly with
the same period as the high frequency driving field.

From Figure 13.6 one can observe that the pulse action suppresses the current
for a short period of time. Once the pulse strength decreases, at times larger than t0

the system relaxes back to equilibrium. It is interesting to note that the noise does
not deviate much from its equilibrium value, even when the current is strongly
suppressed. This is a clear indication that the suppression is due to interference
and not due to a blockade of the electron tunneling process.

For comparison, the phenomenon of CDT is presented for a wire with two sites
in Figure 13.7. The parameters characterizing the wire are identical to those used
in Figure 13.5, while the parameters characterizing the pulse are the same as in
Figure 13.6. Here also, the current and noise are averaged over four pulse periods.
The first striking difference between the CDT behavior in the two models can be
observed by comparing the transients of the populations. For the double site wire,
the fact that the intersite coupling is finite creates an asymmetry in the population
distribution of the two sites. The opposite shifts induced in the site energies fuel
this asymmetry, hindering the relaxation process between the sites. As a result, a
strong localization of charge is observed in the first site. In this case, the external
field suppresses the tunneling of the charges between the two sites of the wire, but
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Figure 13.8 Optimal control field current for a molecular wire
model with two sites obtained by optimal control theory. The
electric field in (a) induces the current shape in (b), displayed as
a solid black line. The target current is depicted as dotted line.

not between wire and leads. Due to this effect, charge accumulates on the first site.
The noise in the case of the wire with two sites supports this conclusion. Because
the current between the two sites is blocked completely, the noise also goes to zero
at the maximum of the external field. This is different from the case of one site in
which the current between the leads and the site is effectively zero due to the same
amount of in- and outflowing electrons [46]. This nonzero partial currents result in
a non-vanishing noise value.

For the current suppression in the CDT case described above, a predefined pulse
was employed and then the corresponding current was calculated. The inverse sit-
uation is also possible. One first defines a desired electron flow pattern and then
determines the corresponding laser field, which achieves this goal by applying op-
timal control theory. Using this technique optimal laser pulses can be achieved,
which suppress the current [46, 47] or reverse the spin current [1]. Figure 13.8 de-
picts an example of an optimal control calculation for a target charge current show-
ing current suppression for a short period of time. The electric field acts on the two
site wire system, identical to the one in Figures 13.5 and 13.7. In this example no
high frequency carrier field is present, but such a field can be added as well [47].
Accordingly, the electric pulse found through the optimal control algorithm does
not oscillate. This example of optical control of the current through a molecu-
lar wire illustrates the interesting new possibilities offered by opto-electronic de-
vices.
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13.5
Summary and Outlook

This chapter presents a theoretical study focusing on the process of electron trans-
port through small quantum systems in contact with metallic leads, with the goal
of describing nanoscale electronic devices. The main result presented is the TL
QME for the reduced density matrix and the elegant techniques necessary for con-
structing its solution. The properties of the electron transport are extracted from
the system evolution using the theory of full counting statistics. Everything is done
consistently, using the assumption of weak system-reservoir coupling. Extension
towards stronger system-environment coupling can be done through the hierar-
chical method [34, 35] including, for example, cotunneling events.

The advantages of the method described over other popular transport methods
are the easy possibility of calculating transient behaviors, which provides access to
the full time dependence of the current and noise. This allows one to treat time-
dependent external fields, providing the possibility of optical manipulation of elec-
tron transport. Since the external field is treated non-perturbatively in the present
theory, full freedom in the choice of pulse shape and intensity is provided.

The outlook of this work is oriented towards describing models increasingly re-
sembling the quantum features of realistic molecules, such as an improved de-
scription of laser-matter interaction. An interesting and popular subject at the mo-
ment is the interplay between electron tunneling and vibrational degrees of free-
dom of the molecule [51]. The electron-phonon coupling and the discrete phonon
spectrum of the molecule constitute a complex problem that continues to elude a
complete theoretical formulation.
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14
Two-Photon Photoemission of Plasmonic Nanostructures
with High Temporal and Lateral Resolution
Michael Bauer, Daniela Bayer, Carsten Wiemann,and Martin Aeschlimann

14.1
Introduction

In modern science, the optical properties of nanostructures has become a topic
attracting much interest within fundamental physics as well as in technical appli-
cations. Silver and gold nanoparticles with typical sizes of 5 to 150 nm can exhibit
particularly strong optical extinction in the visible spectral range due to resonantly
driven electron plasma oscillations, termed as localized surface plasmons (LSP).
The resonance energy of the LSP depends critically on the size and the shape
as well as on the material of the particle and the embedding environment [1–3].
This enables the spectral tuning of the resonance, a property which is of consider-
able interest in the context of future electronic and optical device applications. Due
to the rapid advances in the fabrication of small particles [4] and nanowires [5],
their optical properties are now used in a wide range of applications, including
biosensors [6, 7], near-field microscopy [8] and new optical devices [9–11]. Fur-
thermore, since plasmons are associated with large electromagnetic fields near the
particle surface, they play an important role within nonlinear processes including
surface-enhanced Raman scattering (SERS) [12], second and high harmonic gener-
ation [13–15] and multiphoton photoemission [16–20]. The limiting factor for ap-
plications is the energy loss of the collective electron oscillation due to the damping
of the LSP, which is manifested in the plasmon decay time τpl [21].

The fundamental microscopic mechanisms of collective electron excitations in
small particles as well as their decay are still far from being completely understood.
As a pioneer in this field, Gustav Mie developed a first theory based on Maxwell’s
equations to explain the optical properties of spherical nanoparticles. Mie’s theo-
ry easily describes red shifts and the lifetime broadening of the dipole plasmon
resonance as the particle size is increased. It also explains the appearance of reso-
nance contributions of higher multipolar order [1]. However, this theory is strictly
valid only for single particles with a spherical geometry. Therefore, during the last
decades many theoretical studies have focused on the properties of LSP in nanos-
tructures of different shapes in order to gain insight, for example, into their optical
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response, the field distribution of the resonant modes as well as relevant decay
channels and the coupling between neighboring particles [22–24].

A simple oscillator model describing the interaction of a light field and a
nanoparticle can be discussed as follows [25]. The light field couples occupied
and unoccupied single electron states which are separated by the photon ener-
gy hυ. The induced polarizations of these different, coherently coupled transitions
superpose to a macroscopic polarization which represents the collective response
of the electronic system. This polarization field adds to the incident light field
and causes a modification of the particle-internal field (Figure 14.1). The relation
between the internal field and light field is described by the frequency dependent
field enhancement factor f (ω) [16]. Figure 14.2 displays the phase shift φ(ω) of
the induced polarization with respect to the light field and the amplitude of the
field enhancement factor f (ω). For frequencies below the evident resonance peak,
the internal field is small because the π-shifted polarization field destructively adds
to the light field. While passing the resonance frequency, the polarization response
undergoes a phase shift from �π to 0. The extraordinary field enhancement at λpl

(corresponding to the LSP resonance) is determined by the resonant response of
the electron collective to the light field, adding up to an extremely large polariza-
tion field. Finally, in the short wavelength regime, the amplitude of the polarization
field decreases since the electron collective is too inert to follow the oscillating light
field.

Damping of the plasmon excitation is basically governed by two different decay
channels (see Figure 14.3). First, the plasmon energy can be returned coherently
to the external radiation field (radiation damping) as the oscillating polarization
field must emit electromagnetic radiation. According to the optical far-field theory,
this decay channel corresponds to the scattering of the incident excitation light
field. The signals exploited by pure optical far-field detection techniques such as

Figure 14.1 Schematic illustration of the interaction between
an external light field pulse Eext(ω) and a localized surface
plasmonic excitation (LSP) resulting in a modified internal
field Eint(ω). The amplitude Eint(ω) with respect to Eext(ω)
is determined by the field enhancement factor f (ω), the tem-
poral characteristic of Eint(ω) is governed by the plasmon life-
time τPlasmon.
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Figure 14.2 Field enhancement f (λ) (dark grey line) and phase
shift φ(λ) (light grey line) of Eint(ω) with respect to Eext(ω) as
function of the wavelength of the excitation field in the vicinity
of the plasmon resonance λPlasmon calculated in the dipole
approximation for a small silver nanoparticle (diameters: d1 D
d2 D 5 nm, d3 D 1 nm, excitation along one of the two long
axis).

Figure 14.3 Schematic illustration of the relevant damping
mechanisms of a localized surface plasmon adapted from refer-
ence [27]. For large particle diameters (d > 10 nm) the damping
of the LSP is goverened by the coupling to the light field
(radiation damping) and by the coupling to electron–hole pair
excitations in the particle (Landau damping).

second harmonic generation [13, 14] and extinction spectroscopy [26] are due to
the coupling to this radiation damping channel.

Furthermore, the decay of a plasmon is possible by the creation of electron–hole
pairs and a subsequent transfer of energy to the internal degrees of freedom inside
the particles (internal damping). This process results in a complete loss of coher-
ence with respect to the exciting light field. In the far field, this damping channel
is recognized as absorption. The involvement of single electron excitations in this
process suggests that electron emission techniques such as photoemission may
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also be useful as probes for plasmonic properties. In this paper, we demonstrate
that, in particular, two-photon photoemission (2PPE) is highly sensitive to plasmon
excitations in metallic nanoparticles. A striking example is the study of particle-
shape characteristics of the plasmon damping in elliptical nanoparticles as probed
by means of the time-resolved 2PPE. Furthermore, we show that 2PPE in combina-
tion with the photoemission electron microscopy technique (PEEM) allows map-
ping of local near-field variations associated with plasmonic excitations with sub-
diffraction (< 40 nm) resolution. Experimental examples illustrating the potential
of this technique serve as the real-time observation of the field retardation in large
nanoparticles and the plasmon-governed coupling of neighboring nanoparticles.

14.2
Experimental

Figure 14.4 shows the basic scheme of the time-resolved two-photon photoemis-
sion process for probing the decay of electronic excitations at a metal surface [28].
A first ultrashort laser pulse (pump) in interaction with the electronic subsystem
at a given time t0 populates an intermediate excited electron state EI below the vac-
uum level. A second laser pulse (probe) incident at the time t1 couples this excited
state population to a detection state above the vacuum level, where it is addressed by
an electron-sensitive detector such as an electron energy analyzer or a photoemis-
sion electron microscope. A successive and controlled increment of the temporal
delay between both pulses enables one to record the time-evolution of the depop-
ulation of the intermediate state. For instance, for an electron gas of a metal, the

Figure 14.4 Scheme of a 2PPE process in a metal as used for
time-resolved spectroscopy with femtosecond resolution; a first
photon pulse (pump pulse) induces an electronic excitation
in the metal which is probed by a second, temporally delayed
photon via emission into the vacuum. The successive increase
of the temporal delay t1 � t0 allows probing the depopulation
dynamics of the electronic excitation.
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Figure 14.5 2PPE cross-correlation trace as recorded within
a TR-2PPE experiment; the 2PPE yield increases as pump and
probe pulse overlap in time due to the non-linear character of
the 2PPE process. A finite lifetime of the involved electronic
excitation delays the response of the system and gives rise to an
increase of the cross-correlation FWHM.

depopulation is governed by inelastic electron–electron scattering processes and is
characterized by the inelastic lifetime τee.

A typical experimental time-resolved 2PPE trace as a function of the time delay
between a pump pulse and cross-polarized probe pulses is shown in Figure 14.5.
The shape of this cross-correlation trace is a convolution of the two laser pulses
and the exponential decay of the probed intermediate state EI determined by the
inelastic lifetime τee. A deconvolution of τee can be performed by a fit of simulated
correlation traces to this data set. For bulk electron excitations, these simulations
are performed within a rate equation model which corresponds to the solution
of the Liouville–von Neumann equations of a three-level system within the density
matrix formalism in the limit of rapid dephasing [29–31]. For qualitative statements
on τee and for comparing studies, it is often sufficient to analyze the broadening
of the full width at half maximum (ΔFWHM) of the cross-correlation trace, which
increases as the lifetime of the intermediate state τee increases.

Thus far, only single electron states have been considered for the description of
the 2PPE process. In the following, we will discuss to what extent the 2PPE process
is also sensitive to the collective electron excitations in nanoparticles.

2PPE is a second order process and, therefore, the measured electron cur-
rent j2PPE is proportional to the fourth power of the electric field ( j2PPE(r) / jE4

intj)
acting on the electrons. In the case of a plasmon-resonant excitation of a nano-
sized particle, this (particle internal) field is determined by the local field enhance-
ment f (ω) as governed by the properties of the LSP. It is this relation which makes
the two-photon photoemission a versatile tool in the investigation of plasmonic ex-
citations. Later, we will see that besides a high-field enhancement, an efficient
transfer of energy from the LSP resonance to the single electron excitation spec-
trum is a necessary condition to generate a sufficiently high photoemission signal.
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Figure 14.6 Principle scheme of the setup
for the time-resolved 2PPE experiment: a fem-
tosecond laser system delivers the required
ultrafast light pulses. A nonlinear crystal is
used for frequency doubling of the light so
that LSP-resonances in silver nanoparticles
can be excited resonantly. The temporal delay

between pump and probe pulse is adjusted by
an optical delay stage in the Mach–Zehnder
interferometer. The sample is mounted in
an UHV-chamber which is equipped with an
electron energy analyzer or a photoemission
electron microscope.

The involvement of the LSP in the 2PPE process also affects the shape of the
cross-correlation trace in time-resolved experiments. Next to τee, the inelastic life-
time of single electron excitation, also the LSP-lifetime τLSP, now contributes to the
broadening ΔFWHM. A reasonable quantitative deconvolution of both quantities
from the cross-correlation trace is a rather complex task as has been shown, for in-
stance, in [25]. However, as we will see in the following, the elaborate application of
the different experimental degrees of freedom will also provide interesting insights
into the LSP dynamics and the single electron dynamics even though only changes
in the FWHM of the cross-correlation are considered.

The setup of the time-resolved 2PPE experiments used for our studies is shown
in Figure 14.6. Pump and probe laser pulses are delivered from the frequency dou-
bled output (photon energy of 3.1 eV) of a femtosecond Ti:Sapphire laser system
(repetition frequency 80 MHz, temporal pulse width 20 fs). A Mach–Zehnder in-
terferometer allows one to adjust the difference in optical pathway between pump
and probe pulse with an accuracy of more than 100 nm corresponding to a timing
accuracy of < 0.3 fs. The collinear pulse pair is then focused onto the sample sur-
face and excites the electrons in a 2PPE process which are subsequently detected
by a suitable detection unit.

Two different types of electron detectors have been used for our studies. Spec-
troscopic measurements have been performed with a cylindrical sector electron
energy analyzer (Focus CSA 200) with an energy resolution of 80 meV. For the
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plasmonic systems under consideration, it allows one to investigate the energy
dependence of the electron–hole pair excitation spectrum subsequent to the LSP
decay within lateral integrating measurements.

The second electron detector is a photoemission electron microscope (PEEM,
Focus IS-PEEM), which enables one to focus on details of an individual nanoparti-
cle [32, 33]. The (electrostatic) PEEM maps the lateral distribution of the electrons
photoemitted from the sample at a lateral resolution in the sub-30 nm regime. Note
that the experimental configuration of the PEEM system restricts the incident an-
gle of the laser light with respect to the surface normal to a fixed angle of 65ı (see
Figure 14.6). This detail will be of relevance in the interpretation of time-resolved
PEEM data discussed later in Section 14.3.2. For these PEEM experiments, a mer-
cury vapor UV source (high energy cut-off 4.9 eV) next to the laser light is also
available. It allows imaging of the surface by linear photoemission directly above
the work function threshold of silver, at about 4.5 eV photon energy.

Figure 14.7 Scanning electron micrographs of the used
nanoparticle arrays: (a) elliptical silver nanoparticles (long axis:
140 nm, short axis: 60 nm, height: 50 nm); (b) silver nano-dots
(diameter: 200 nm, height: 50 nm); (c) silver nanowires (length:
1.6 µm, width: 60 nm, height: 50 nm); (d) silver nano-dot pairs
(diameter: 50 nm, height: 40 nm, interparticle spacing: 130 nm,
grating constant: 740 nm).
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The nanostructured samples have been prepared by electron-beam lithography
in a lift-off process. This technique enables a controlled and flexible design of
metallic nanoparticles with respect to their shape and size. It allows for a tuning
of the characteristic LSP resonance frequencies to the wavelength regime acces-
sible by our laser system. Figure 14.7 shows SEM images of the different silver
nanostructures deposited on ITO covered glass substrates as they are used in this
study. The dimensions of the elliptical-shaped silver nanoparticles in Figure 14.7a
are 140 nm (long axis), 60 nm (short axis) and 50 nm (height). They comprise ver-
satile samples for the investigation of variations in the LSP decay in respect to res-
onant or off-resonant excitation. The silver nano-dot array (Figure 14.7b diameter:
200 nm, height: 50 nm) and the silver nanowire array (Figure 14.7c length: 1.6 µm,
width: 60 nm, height: 50 nm) are used to illustrate the potential of the time-resolved
PEEM technique to map retardation effects associated with a plasmon excitation at
a nanometer resolution. Studies of the plasmon-induced coupling between neigh-
boring nanoparticles are possible with nano-dot pairs of varying center-to-center
spacing. Figure 14.7d shows an example of 50 nm dimers (height: 40 nm) at an
interparticle spacing of 130 nm (grating constant: 740 nm).

14.3
Results and Discussion

14.3.1
Localized Surface Plasmons Probed by TR-2PPE

Figure 14.8 presents measured (black line) and calculated extinction spectra of the
array of elliptically shaped silver nanoparticles, as shown in Figure 14.7a. The ex-
periments were performed at normal light incidence using unpolarized light. The
calculations are based on a numerical model described in [34]. Three different res-
onances at 431 nm, 450 nm and 795 nm are predicted corresponding to plasmon
excitations along the z-axis (perpendicular to the surface plane), the in-plane short
axis, and the in-plane long axis, respectively (see Figure 14.8 for details). The ex-
perimental configuration (perpendicular light incidence) only allows a coupling of
the light field to the two in-plane resonances. The resonance energies of these two
modes are almost perfectly reproduced by the calculations, whereas the broaden-
ing of the resonances is somewhat underestimated. This indicates the presence
of damping mechanisms in the nanoparticles which are not taken into account in
the simulation, for example, the interaction between particle and substrate and an
enhanced internal damping due to a finite defect density in the particle itself [17].

The 400 nm laser-light used for the TR-2PPE experiment is close to resonance to
the in-plane short axis mode of the particle. In contrast, a coupling to the long-axis
mode is only possible under off-resonant conditions. Therefore, the polarization
state of the laser light (p- or s-polarized) enables one to experimentally prepare
resonant and off-resonant excitation conditions. Resonant conditions are obviously
achieved with the polarization vector (electric field vector) oriented along the in-
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(a) (b)

Figure 14.8 Measured and calculated extinction spectra of the
investigated array of elliptical nanoparticles (see Figure 14.7a);
resonant and off-resonant excitation conditions in the 2PPE ex-
periments are realized by coupling of the 400 nm light pulses to
the in-plane resonance along the long axis (off-resonant excita-
tion) and the in-plane resonance along the short axis (resonant
excitation), respectively.

plane short axis, whereas off-resonant conditions are achieved with a polarization
vector oriented along the long axis.

The high sensitivity of the two-photon photoemission yield to a resonant excita-
tion of the LSP becomes evident from the experimental date shown in Figure 14.9b.
The displayed data points correspond to the 2PPE yield at varying polarization an-
gles of the incident laser light with respect to the long or off-resonant axis of the
nanoparticle. We observe a clear oscillation in the yield, where the yield maxima
and minima coincide with the orientations of the electric field vector along the
short and long axis, respectively. The same periodicity is observed in the time-
resolved 2PPE data. The triangles in Figure 14.9a display the corresponding varia-
tion of the FWHM as obtained from sech2 fits to the experimental cross-correlation
traces. As discussed in Section 14.2, differences in the FWHM of the correlation
trace can be assigned to variations in the femtosecond dynamics associated with the
LSP excitation. For resonant (short-axis) excitation, the cross-correlation FWHM
is maximum, indicating a long LSP lifetime. For smaller off-resonant excitation,
FWHM points to a more efficient LSP decay.

TR-2PPE experiments at varying intermediate state energies E–EF allow one
to illustrate the different mechanisms governing the inelastic lifetime τee of sin-
gle electron excitations and the plasmon lifetime τLSP associated with the decay
of a collective electron mode. For metals, τee exhibits a characteristic energy de-
pendence, as has been shown in the past in several theoretical and experimental
works [25, 28, 35–37]. As an example, Figure 14.10a shows TR-2PPE data of the life-
time of single electron excitations in a polycrystalline silver sample. τee increases
monotonously as the intermediate state energy decreases. In contrast, the plasmon
lifetime τLSP is expected to exhibit no dependence on the probed intermediate state
energy (E–EF). Figure 14.10b shows 2PPE cross-correlation FWHM data for vary-
ing intermediate state energies (E–EF) measured for the elliptical nanoparticles
under resonant and off-resonant conditions. Both curves exhibit an energy depen-
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(a)

(b)

Figure 14.9 2PPE data of the elliptical
nanoparticles – polarization scans: (a) cross-
correlation FWHM of time-resolved 2PPE data
as function of polarization angle; the period-
ic modulation in the 2PPE signal is evident
and indicates strong differences in the decay
of the LSP-induced particle field for resonant

and off-resonant conditions. (b) 2PPE yield
as function of polarization angle; the peri-
odic modulations (which are in phase with
the changes in the FWHM) arise from the
changes in the field enhancement as the exci-
tation is tuned from resonant to off-resonant
conditions.

(a) (b)

Figure 14.10 (a) Inelastic lifetime τee of
electron excitations in polycrystalline bulk
silver as function of intermediate state ener-
gy EI D E � EF (see Figure 14.4) as mea-
sured within a time-resolved 2PPE study [35].
(b) cross-correlation FWHM data from TR-

2PPE measurements of the elliptical nanopar-
ticle array as function of EI D E � EF for
LSP resonant and LSP off-resonant excitation
conditions; the offset between the two traces
arises from the finite lifetime τPlasmon of the
LSP.

dence characteristic for the single electron decay τee in silver. At the same time, the
resonant and off-resonant curves keep a constant FWHM displacement along the
abscissa (time axis) caused by the energy-independent broadening of the internal



14.3 Results and Discussion 417

electric field pulse under resonant conditions. The offset is about 3 fs and is of the
same order as the plasmon decay time determined from line width analysis of the
optical extinction spectrum (1/Γ � 2 fs, see Figure 14.8).

14.3.2
Single Particle Plasmon Spectroscopy by Means of Time-Resolved Photoemission
Microscopy

In order to study local variations in electron dynamics on nanometer scales, a tech-
nique capable of a high lateral resolution is required, such as photoemission elec-
tron microscopy. In combining the high temporal resolution of the time-resolved
2PPE technique and the high lateral resolution of the PEEM, we succeeded in map-
ping local variations in the LSP dynamics even within a single nanoparticle. Fig-
ure 14.11 shows PEEM images of a 2D array of silver nano-dots (diameter: 200 nm,
height: 50 nm, grating constant: 650 nm) recorded with a mercury vapor lamp in
1PPE (hν D 4.9 eV, Figure 14.11a) and the second harmonic of the laser in 2PPE
(hν D 3.1 eV, (Figure 14.11b), respectively.

The homogeneous response of the nanoparticle array to the UV excitation, as
visible in Figure 14.11a, is clear evidence for the accurate lithography process. In
contrast, the 2P-PEEM image (Figure 14.11b) exhibits a distinct brightness varia-
tion among the particles pointing in the first instance to considerable variations
in the LSP excitation conditions. However, a detailed analysis of the data and the
comparison of images taken at different excitation wavelengths show that these in-
homogeneities are caused by the internal defect structure of the different particles
rather then differences in the collective electron response [17].

Figure 14.11c shows the result from a time-resolved PEEM scan of the identi-
cal area of the sample. In this depiction, the grey-scale coded FWHM-value of the

Figure 14.11 PEEM images of the silver
nano-dot array from Figure 14.7b (diam-
eter: 200 nm, height: 50 nm, grating con-
stant: 650 nm) (a) Conventional PEEM im-
age recorded in threshold one-photon photo-
emission using the mercury vapor lamp
(4.9 eV). (b) 2P-PEEM image of the same sam-

ple recorded with a photon energy of 3.1 eV.
(c) Lifetime map deduced from a pixel-wise
analysis of the cross-correlation traces of a
TR-PEEM scan. The map displays the corre-
sponding gray-scale coded FWHM values of
the traces.
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cross-correlation trace of every image pixel is plotted as a measurement for the
local femtosecond dynamics. This lifetime map allows for the identification of lo-
cal variations in the ultrafast response between neighboring particles as well as
particle internal variations in the ultrafast response in an intuitive way. The cen-
tral cross-section of the 2PPE intensity distribution and the FWHM distribution
of an individual particle is displayed in Figure 14.12a. Surprisingly, the FWHM-
trace and 2PPE intensity profile do not match one another. Instead, both traces are
laterally shifted with respect to each other. Furthermore, it seems as if the decay
of the LSP varies considerably across the particle. This view is quantitatively con-
firmed by the data plotted in Figure 14.12b. Here, three cross-correlation traces
recorded along the central particle cross-section are shown, including correspond-
ing cross-correlation simulations based on a rate equation model that describes a
depopulation process. These fits yield a maximum variation of the decay character-
istics as large as 10 fs. However, such an interpretation is against the intuition that
the LSP, as a collective excitation of the electron gas, is a global and characteristic
property of the entire nanoparticle. Upon locally probing the LSP excitation with
the external laser field, we instead create a situation of laterally varying interference
conditions between the external and the internal (plasmonic) field, quite similar to
the explanation given in [39] for the observation of stationary emission maxima
and minima along self-assembled nanowires. In this study, silver wires of varying
length are imaged in two-photon photoemission PEEM using a setup very simi-
lar to the experiment described herein. The authors assign the occurrence as well
as the periodicity of the emission pattern to the constructive and destructive inter-
ference between a propagating surface plasmon wave in the wire and the external
light field which is incident at an oblique angle of 74ı with respect to the surface
normal. Since the phase velocity of the surface plasmon is reduced in comparison
to the phase velocity of the light field propagating in vacuum, the relative phase be-
tween the two fields changes along the wire, forming a stationary beating pattern of

(a) (b)

Figure 14.12 (a) variation in the 2PPE yield
and the cross-correlation FWHM across a
single nanoparticle; note the relative shift
between yield and FWHM (b) 2PPE cross-
correlation traces as measured at three differ-
ent points at the right edge of the particle; the

respective postitions are also indicated by the
arrows in (a). The solid, dashed and dotted
lines are sech2-fits to the experimental data
and allow one to determine the FWHM value
of the respective traces in a reliable manner.
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alternating constructive and destructive interference. In our case, the experimental
situation is similar to the extent that the detected photoemission is due to a local
field which results from the superposition of the external light field and the light
induced polarization field within the nanoparticle. However, the dimension of the
particles is, in our case, much smaller than the periodicity P of the induced beat-
ing pattern (P � 2.5 µm). Therefore, the mapped variations correspond to a small
fraction of a π-shift between the two phases and are consequently much less devel-
oped. The overall shape of time-resolved correlation traces is also influenced by the
varying phase between light and plasmon field and changes systematically across
the particle, which in turn, results in a systematic variation of the best-fit sech2

FWHM parameter. The grey-scale coded display of the FWHM in Figure 14.11c
shows that it is indeed a systematic effect since each of the imaged nanoparticles
shows a distinct red-blue contrast from left to right.

Further evidence for this interpretation is obtained within time-resolved PEEM
measurement at extremely high, so-called interferometric temporal resolution. In
these experiments, the temporal delay between the pump and the probe pulse is
adjusted at accuracy much better than the oscillation period (T � 1.5 fs) of the
electric field vector of the laser light. This enables mapping of the variations in the
two-photon photoemission arising from the constructive and destructive interfer-
ence of the pulses as a function of the temporal delay. By these means, the rela-
tive phase between the (total) external field and the induced plasmonic excitation
is also changed, giving rise to modifications in the beating pattern. Figure 14.13a
shows experimental results from reference [40] obtained from a single nanoparti-
cle within a interferometric time-resolved PEEM measurement. Five PEEM images
are shown which have been recorded at incremental temporal delay steps of 130 fs.
The modifications in the interference pattern are clearly visible, as the phase rela-
tion between the external light field and internal plasmonic field are changed. A
quantitative comparison of the 2PPE yields from two different areas of the particle
for a temporal delay covering five oscillation periods of the light field is shown in
Figure 14.12b. From this data, we find a net phase shift of Δ' � π/30 in the 2PPE
response from the two different areas.

As mentioned above [39], the interference patterns are more pronounced for ex-
tended nanostructures, such as nanowires. Figure 14.14 shows 1P-PEEM and a
2P-PEEM images and a corresponding lifetime map of an array of nanowires in-
troduced in Figure 14.7c.

The 1P-PEEM images show clear internal intensity variations, indicating a
structural inhomogeneity of the nanowires. Also, the 2PPE image shows dis-
tinct brightness variations along the wires. Note that for the 2PPE measurements,
the nanowires have been aligned perpendicular to the direction of incidence of the
excitation laser pulse. Strikingly, the endings of the wires almost exclusively exhib-
it a local maximum in the 2PPE yield. Additionally, most of the wires show three
further emission maxima. These local variations are also reproduced in the corre-
sponding lifetime map (Figure 14.14c). The FWHM of the cross-correlation traces
varies along the wire on length-scales of about 100 nm, roughly the value also de-
termining the width of the wires. We conclude that the individual nanowires have
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(a)

(b)

Figure 14.13 Results from interferometric
TR-PEEM measurements of a single nanopar-
ticle; (a) on timescales much shorter than the
oscillation period of the electric field of the
incident light field, the local 2PPE yield distri-
bution clearly changes within the nanoparticle;
these changes are induced by the interference

between pump and probe pulse and the par-
ticle internal field due to the excitation of the
LSP mode; (b) quantitative representation of
the data in (a) over several oscillation periods.
The phase-shift in the response between the
two selected areas is about π/30.

Figure 14.14 PEEM images of the silver nanowires from Fig-
ure 14.7c (length: 1.6 µm). (a) 1P-PEEM image taken with the
mercury vapor lamp; (b) 2P-PEEM image recorded at 400 nm
with the femtosecond laser; (c) corresponding TR-PEEM life-
time map.
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a structural inhomogeneity. The wires obviously decompose into conglomerates
of small silver particles during the preparation process. The brightness variations
originate from LSP excitations in the individual conglomerates as well as from
local defects along the wire. This result is in good agreement with the findings by
Kubo et al. [41] and by Cherula et al. [42], and is corroborated by scanning near-field
microscopy (SNOM) data by Ditlbacher et al. [43], who showed that propagating
plasmon modes leading to standing wave patterns are only supported in single
crystalline nanowires. Note, however, that the FWHM variations perpendicular
to the long wire axis are very similar to those observed for the nano-dot array in
Figure 14.11 and can be interpreted in terms of the model introduced before.

In a final example, we would like to show how a static 2P-PEEM measurement
can be used to monitor the dipolar coupling of LSP modes excited in two neigh-
boring particles. The interaction between both particles is governed by the relative
phase of the LSP excitations and, hence, by the interparticle distance and angle
of light incidence. Here, we map to what extent the dipolar field of one particle
of a particle dimer modulates the local 2PPE signal from the other particle. Fig-
ure 14.15 shows 1P-PEEM (Figure 14.15a) and 2P-PEEM (Figure 14.15b) images of
an array of silver particle dimers (diameter: 50 nm, height: 40 nm, grating constant:
740 nm) with a center-to-center distance of 130 nm. The 2PPE data were collected
under resonance conditions with respect to the perpendicular single particle LSP
resonance at a photon energy of 3.1 eV (400 nm, p-polarized light incident parallel
to the dimer axis).

In the 1P-PEEM image, the individual particles are clearly resolved. For the 2P-
PEEM image, we observe strong local variations of the photoemission signal sim-
ilar to the findings of the array of individual nano-dots. A randomly distributed
contribution to these inhomogeneities arises once again from particle to particle

Figure 14.15 PEEM images of the silver particle pair array from
Figure 14.7d (diameter: 50 nm, height: 40 nm, grating constant:
740 nm) with a center-to-center distance of 130 nm. (a) 1P-
PEEM image taken at a photon energy of 4.9 eV; (b) 2P-PEEM
image taken at a photon energy of 3.1 eV (p-polarized light, light
is incident from the left).
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(a) (b)

(c)

Figure 14.16 (a) Frequency distribution of the ratio in the 2PPE
yield between left and right particle of particle pairs with a dis-
tance of 130 nm (left); (b) Mean value of the 2PPE yield ratio
as function of the distance; (c) calculated field amplitude of left
and right particles in a particle pair (grey lines) as modified by
the dipolar interaction and the resulting ratio in the field ampli-
tude (black line).

variations in the local defect density (see also Figure 14.11b). In contrast, a dipolar
particle–particle coupling should give rise to a well determined difference in the
2PPE yield between two neighboring particles. To be able to discriminate between
random and systematic intensity variations, we performed a statistical analysis of
the 2PPE intensity ratio between the left and right particles of the dimers. The aver-
age brightness values in a 7�7 pixel region of interest centered on the left and right
particle within each pair is extracted from the image. In a further step, we calcu-
late the relative count rate difference between left and right particles Δ Irel D NIr/ NIl.
Figure 14.16a shows the distribution of the frequency of occurrence of Δ Irel as
determined from a sample area covering 100 individual dimers.

A positive value of Δ Irel corresponds to the situation where the right particle is
brighter than the left particle. The histogram gives evidence that on average, the
right particle shows a 28% yield enhancement in comparison to the left particle.
Note that the left particle is located towards the direction of light incidence. Calcu-
lations based on a dipole model can qualitatively reproduce the trend of asymme-
try [44]. Further measurements have been conducted for particle dimers at varying
intra-pair distances between 100 and 140 nm. The Δ Irel values are shown as func-
tions of particle distance in Figure 14.16b. For all distances, we observe an asym-
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metry in the photoemission yield with preferential photoemission from the right
particle (Δ Irel > 0). Overall, we find a monotonous variation in Δ Irel with a local
maximum at about 120 nm. The results of the corresponding model calculation are
shown in Figure 14.16c. For excitation at a fixed wavelength (in the present exam-
ple λ D 400 nm), a periodic distance modulation of Δ Irel is predicted at a period-
icity of the order of the wavelength of the excitation field. It arises from the relative
phase change of the particle fields at a given position as the particle distance in-
creases and the consequent modulation of the interference conditions. The experi-
mental data shown in Figure 14.16b correspond to the first oscillation maximum of
this modulation. At sufficiently large distances, the differences in the particle yields
will disappear due to the finite range of the dipolar plasmon field. Note that once
again, the dipolar coupling between the particles has been identified on the basis of
a statistical analysis of the particle array. This approach delivers very reproducible
and clear results even though the photoemission signal from a single dimer is con-
siderably blurred by the sample inhomogeneities. The 2PPE yield analysis gives
direct evidence for the dipole induced coupling between neighboring particles.

14.4
Conclusion

Time-resolved 2PPE is a well established method of investigating the relaxation dy-
namics of optically excited electrons. In contrast to pure optical methods, the 2PPE
directly addresses the electronic system and is therefore well suited to investigate
the complex interplay between collective and single electron excitations on a mi-
croscopic level. By using well designed, elliptically shaped nanoparticles, switching
between resonant and off-resonant excitation conditions is achieved by the rotation
of the polarization vector of the incident light pulse. The presented time-resolved
2PPE data allow insight into the ultrafast decay dynamics of collective electron os-
cillation. The results presented in this context confirm the model developed by
Pfeiffer et al. [25], which treats the plasmon resonance as a modification of the in-
ternal electric field with respect to amplitude, phase and temporal structure.

The combination of TR-2PPE and a photoemission electron microscope (PEEM)
permits a spatial resolution well below the optical diffraction limit at a time reso-
lution in the femtosecond regime. The direct imaging capability of the PEEM in-
strument allows access to the spatiotemporal dynamics of the plasmon-resonance-
enhanced electric fields in the vicinity of metallic nanostructures. In comparison to
other microscopy techniques, such as scanning near-field optical microscopy, the
PEEM lacks the need to scan the sample surface, enabling an efficient parallel data
acquisition. The presented data underlines the capabilities of TR-PEEM in visualiz-
ing the ultrafast dynamics of energy flow through nanoscopic devices. Illustrative
results on static and dynamical properties of near-fields in the vicinity of single
particles, nanowires and particle pairs have been presented and discussed. In the
case of extended silver nanoparticles, the direct observation of the phase propaga-
tion of a plasmon mode was demonstrated. In polycrystalline silver nanowires, the
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PEEM method has been used to clearly identify structural distortions. Finally, we
succeeded in imaging characteristic LSP field modulations that are due to the dipo-
lar coupling between neighboring particles, and have center-to-center distances as
small as 100 nm. In conclusion, we would like to stress that employing TR-PEEM
as a tool for characterizing metal nanostructures shows potential for becoming a
key technique in the field of ultrafast nano-optics.

Acknowledgments

The authors would like to thank O. Oksana for assisting in finishing this arti-
cle. Furthermore, we would like to thank the Nano-Bio Center at the University
of Kaiserslautern for their support in preparing the silver nanoparticle samples.
This work was supported by the Deutsche Forschungsgemeinschaft through SPP
1093 and the DFG Graduiertenkolleg 792.

References

1 Mie, G. (1908) Ann. Phys., 25, 377.
2 Kreibig, U. and Vollmer, M. (1995) Op-

tical Properties of Metal Clusters, Vol. 25,
Springer, Berlin.

3 Bohren, C.F. and Huffmann, D.R. (1983)
Absorption and Scattering of Light by Small
Particles, John Wiley & Sons Ltd, New
York.

4 Hohenau, A., Ditlbacher, H., Lam-
precht, B., Krenn, J.R., Leitner, A., and
Aussenegg, F.R. (2006) Microelectron.
Eng., 83, 1464.

5 Graff, A., Wagner, D., Ditlbacher, H., and
Kreibig, U. (2005) Eur. Phys. J. D, 34, 263.

6 Elghanian, R., Storhoff, J.J., Mucic, R.C.,
Letsinger, R.L., and Mirkin, C.A. (1997)
Science, 277, 1078.

7 Lyon, L.A., Musick, M.D., and Natan, M.J.
(1998) Anal. Chem., 70, 5177.

8 Gan, Y. (2007) Rev. Sci. Instrum., 78,
081101.

9 Weeber, J.C., Dereux, A., Girad, C., Krenn,
J.R., and Goudonnet, J.-P. (1999) Phys.
Rev. B, 60, 9061.

10 Quitten, M., Leitner, A., Krenn, J.R., and
Aussenegg, F.R. (1998) Opt. Lett., 23,
1331.

11 Salerno, M., Krenn, J.R., Lamprecht, B.,
Schider, G., Ditlbacher, H., Félidj, H.,
Leitner, A., and Aussenegg, F.R. (2002)
Opto-Electron. Rev., 10(3), 217.

12 Moskovits, M. (1985) Rev. Mod. Phys., 57,
783.

13 Simon, H.J. and Chen, Z. (1989) Phys.
Rev. B, 39, 3077.

14 Bouhelier, A., Beversluis, M., Hartschuh,
A., and Novotny, L. (2003) Phys. Rev. Lett.,
90, 013903.

15 Kim, S., Jin, J., Kim, Y.-J., Park, I.-Y., Kim,
Y., and Kim, S.-W. (2008) Nature, 453, 757.

16 Scharte, M., Porath, R., Ohms, T., Aeschli-
mann, M., Krenn, J.R., Dittelbacher, H.,
Aussenegg, F.R., and Liebsch, A. (2001)
Appl. Phys. B, 73, 305.

17 Wiemann, C., Bayer, D., Rohmer, M.,
Aeschlimann, M., and Bauer, M. (2007)
Surf. Sci., 601, 4714.

18 Lange, J., Bayer, D., Rohmer, M., Wie-
mann, C., Gaier, O., Aeschlimann, M.,
and Bauer, M. (2006) Proc. SPIE, 6195,
61950Z.

19 Rohmer, M., Ghaleh, F., Aeschlimann,
M., Bauer, M., and Hövel, H. (2007) Eur.
Phys. J. D, 45, 491.

20 Cinchetti, M., Gloskowskii, A., Nepjiko,
S.A., and Schönhense, G. (2005) Appl.
Phys. Lett., 95, 047601.

21 Bosbach, J., Hendrich, C., Stietz, E., Var-
tanyan, T., and Träger, F. (2002) Phys. Rev.
Lett., 89, 257404.

22 Kottmann, J.P. and Martin, O.J.F. (2001)
Opt. Lett., 26, 1096.



References 425

23 Kottmann, J.P. and Martin, O.J.F. (2001)
Opt. Express, 8, 655.

24 Zhao, L.L., Kelly, K.L., and Schatz, G.C.
(2003) J. Phys. Chem B, 107, 7343.

25 Merschdorf, M., Kennerknecht, C., and
Pfeiffer, W. (2004) Phys. Rev. B, 70,
193401.

26 Lamprecht, B., Schider, G., Lechner, R.T.,
Ditlbacher, H., Krenn, J.R., Leitner, A.,
and Aussenegg, F.R. (2000) Phys. Rev.
Lett., 84, 4721.

27 Sönnichsen, C., Franzl, T., Wilk, T., von
Plessen, G., and Feldmann, J. (2002) Phys.
Rev. Lett., 88, 077402.

28 Schmuttenmaer, C.A., Aeschlimann, M.,
Elsayed-Ali, H.E., Miller, R.J.D., Mantell,
D.A., Cao, J., and Gao, Y. (1994) Phys. Rev.
B, 50, 8957.

29 Loudon, R. (1973) The Quantum Theory of
Light, Oxford Univ. Press, Oxford.

30 Hertel, T., Knoesel, E., Wolf, M., and
Ertl, G. (1996) Phys. Rev. Lett., 76,
535.

31 Zhukov, V.P., Andreyev, O., Hoffmann,
D., Bauer, M., Aeschlimann, M., Chulkov,
E.V., and Echenique, P.M. (2004) Phys.
Rev. B, 70, 233106.

32 Swiech, W., Fecher, G.H., Zieten, C.,
Schmidt, O., Schönhense, G., Grze-
lakowski, K., Schneider, C.M., Frömter,
R., Oepen, H.P., and Kirschner, J. (1997)
J. Electron. Spectroscop. Relat. Phenom., 84,
171.

33 Schmidt, O., Bauer, M., Wiemann, C.,
Porath, R., Scharte, M., Andreyev, O.,
Schönhense, G., and Aeschlimann, M.
(2002) Appl. Phys. B, 74, 223.

34 Kuwata, H., Tamaru, H., Esumi, K., and
Miyano, K. (2003) Appl. Phys. Lett., 83,
4625.

35 Aeschlimann, M., Bauer, M., Pawlik, S.,
Knorren, R., Bouzerar, G., and Benne-
mann, K.H. (2000) Appl. Phys. A, 71,
485.

36 Zhukov, V.P., Aryasetiawan, F., Chulkov,
E.V., de Gurtubay, I.G., and Echenique,
P.M. (2001) Phys. Rev. B, 64, 195122.

37 Chulkov, E.V., Borisov, A.G., Gauyacq,
J.P., Sánchez-Portal, D., Silkin, V.M.,
Zhukov, V.P., and Echenique, P.M. (2006)
Chem. Rev., 106, 4160.

38 Cinchetti, M., Valdaitsev, D.A.,
Gloskovskii, A., Oelsner, A., Nepijko,
S.A., and Schönhense, G. (2004) J. Elec-
tron. Spectrosc. Relat. Phenom., 137–140,
249.

39 Meyer zu Heringdorf, F.-J., Chelaru, L.I.,
Möllenbeck, S., Thien, D., and Horn-von
Hoegen, M. (2007) Surf. Sci., 601, 4700.

40 Bauer, M., Wiemann, C., Lange, J., Bayer,
D., Rohmer, M., and Aeschlimann, M.
(2007) Appl. Phys. A, 88, 473.

41 Kubo, A., Onda, K., Petek, H., Sun, Z.J.,
Jung, Y.S., and Kim, H.K. (2005) Nano
Lett., 5, 1123.

42 Cherula, L.I., Horn-von Hoegen, M.,
Thien, D., and Meyer zu Heringdorf, F.-J.
(2006) Phys. Rev. B, 73, 115416.

43 Ditlbacher, H., Hohenau, A., Wagner,
D., Kreibig, U., Rogers, M., Hofer, F.,
Aussenegg, F.R., and Krenn, J.R. (2005)
Phys. Rev. Lett., 95, 257403.

44 Wiemann, C. (2006) Dissertation, Univer-
sity Kaiserslautern.





427

15
Dynamics and Nonlinear Light Propagation
in Complex Photonic Lattices
Bernd Terhalle, Patrick Rose, Dennis Göries, Jörg Imbrock, and Cornelia Denz

15.1
Introduction

Periodic structures in one dimension have been known for more than 100 years as
Bragg filters. In the past twenty years, they have also been realized in two or three
dimensions and are currently known as photonic crystal structures. Being period-
ic structures, they support wave dynamics equivalent to the transport dynamics of
electrons in semiconductors [1]. Classic optical effects as Bragg reflection, inter-
ference, and diffraction effects dominate the light propagation in these structures.
However, their linear dynamics is already fundamentally different as compared to
their counterparts in homogeneous media.

When considering light propagation in periodic structures, we are interested in
the propagation dynamics. The change in the diffraction features is crucial when
considering them as long as we are using continuous waves. Here, the diffraction
relation (kz vs. kx , ky ) plays the role of the dispersion relation (ω vs. k) that is
well known in the temporal domain. In periodic wave systems, the linear modes
in a waveguide structure are extended Bloch modes, with a transmission spectrum
consisting of allowed bands separated by forbidden gaps.

This means that there exists a range of propagation constants 
 which are not al-
lowed. Since each localized wavepacket consists of an ensemble of such modes, the
band geometry determines the group dynamics. As an example, a grating structure
can modify the spreading of a narrow beam in much the same sense as it can affect
the dispersive behavior of a temporal pulse.

In a nonlinear lattice, the propagation dynamics will be further modified by the
interplay between periodicity and nonlinearity. An intriguing example is the Kerr
effect, in which the refractive index is changed as a function of the light inten-
sity and directly depends on the spatial distribution of the light. In the case of
a narrow beam, the light modifies the refractive index locally, thereby inducing
a defect in the periodic structure of the lattice. Such a defect naturally has local-
ized modes, whose propagation constants lie inside a gap. When these nonlinear
modes induce the defect and populate it self-consistently, the wavepacket becomes
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self-localized and its diffractive broadening is eliminated. Showing a spatial profile
that remains constant and stable during propagation, the beam is considered to be
a “discrete soliton” or a “gap soliton” [2]. By now, discrete and gap spatial solitons
have been studied in many different systems such as photorefractive materials,
conjugated polymers [3], Bose–Einstein condensates [4], and nonlinear waveguide
arrays [2].

In nonlinear optics, the induction of periodic refractive index structures in pho-
torefractive materials [5] has been utilized to demonstrate a large variety of nonlin-
ear localization effects. Apart from supporting lattice solitons, a nonlinearity can
also couple different Bloch modes in a lattice, giving rise to such fundamental phe-
nomena as modulation instability and spontaneous pattern formation known from
homogeneous media.

Moreover, nonlinear mode coupling can occur not only within a band, but also
between different bands. Novel waveguiding features arise from these effects, and
the potential of spatial band engineering is increasingly being explored. Examples
of such features that appear in photorefractive lattices are soliton trains [6], Zener
tunneling, and Bloch oscillations [7] as well as vortex solitons [8–10].

The advantage of the optical induction technique is given by the electro-optic
properties of photorefractive crystals such as strontium barium niobate (SBN),
which allow highly nonlinear, reconfigurable refractive index patterns to be
achieved at very low power levels. While in the past only comparatively simple
geometries such as diamond, square [11–13], or hexagonal [14] lattices were stud-
ied, special attention is currently paid to more complex photonic structures such
as modulated waveguide arrays [15], lattice interfaces [16], or double-periodic one-
dimensional photonic lattices [17]. In addition, the propagation of more complex
waves such as optical vortices or vortex solitons [18] have also received attention.
In general, complex or multiperiodic structures as well as complex wavefronts in-
teracting with these lattices are of immense interest since they offer many exciting
possibilities to engineer the diffraction properties of light.

In this chapter, we review some of our results on realizing complex two-
dimensional photonic lattices and their linear and nonlinear interactions with
complex wavefronts. The latter carry phase dislocations that lead to novel stabiliza-
tion mechanisms of complex waves.

15.2
Wave Propagation in Periodic Photonic Structures

Linear wave propagation in photonic lattices can be described using the Floquet–
Bloch theory [19], with the corresponding dispersion/diffraction relation kz D
kz (kx , ky ) characterized by bands of allowed propagation constants separated by
forbidden gaps. The localization of a wave by compensation of diffraction is ob-
tained by defect states, which can either be imposed by construction, as in solid-
and hollowcore photonic crystal fibers [20], or through the self-focusing effect of an
optical nonlinearity [2].
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15.2.1
Linear Propagation

As a simple example of a periodic structure, we consider a two-dimensional square
photonic lattice (Figure 15.1a). A typical band structure (in k-space) for such a lattice
is depicted in Figure 15.1c.

It can be created exploiting the 2π periodicity and using the standard procedure
of representing dynamics only within the irreducible part of the first Brillouin zone,
which is determined by the high symmetry points Γ , X, and M (Figure 15.1b).

Since each mode of the system is an extended Bloch wave with its own propaga-
tion constant given by the eigenvalue and direction given by the normal gradient to
the transmission band, different modes acquire their own individual phase as they
propagate. Any wave, or wavepacket, entering the lattice is decomposed in these
Bloch modes. Therefore, the accumulation of different relative phases during prop-
agation will affect the waveform of the propagating wave significantly, resulting in
an output that may considerably differ from the input waveform.

A typical example of linear wave propagation in photonic lattices is diffraction
of a localized beam. Because the second derivative of the diffraction relation gives
the relative spread or convergence of adjacent waves, the diffractive properties of
a wavepacket are governed by the band curvature. In regions of convex curvature,
the beam acquires a convex wavefront during propagation resulting in normal dis-
crete diffraction, with wave behavior analogous to that in homogeneous media. By
contrast, a group of modes in concave regions of band curvature will evolve anoma-
lously, acquiring a concave wavefront during propagation. Therefore, because the
propagation characteristics are strongly affected by the incident angle of a probe
beam, changing the angle controls its diffraction properties. This feature is known
as diffraction management [21] in analogy to dispersion management of optical
pulses with gratings in fibers.

kx

ky

Γ X

M

( kx , ky )
Γ X M Γ

β

(a)

(b) (c)

Figure 15.1 Characteristics of a two-dimensional square pho-
tonic lattice. (a) Intensity distribution of the lattice wave; (b)
irreducible Brillouin zone; (c) band structure.
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The effect of the lattice on the wave propagation depends on the transverse size
of the input beam relative to the lattice spacing, and on its internal structure. For
example, a broad Gaussian beam launched on-axis into the lattice excites modes
from different bands and stays mostly Gaussian as it propagates. In contrast, cou-
pling a narrow beam into the fundamental guided mode of a single period of the
lattice excites Bloch modes primarily from the first band. In this case, the beam
undergoes “discrete diffraction” characterized by intense side lobes with little or no
light in the central starting lattice location [22]. This effect is a result of coupling
between neighboring sites of the lattice combined with interference effects.

15.2.2
Nonlinear Propagation

One would expect nonlinear effects to considerably change light propagation in a
lattice. This is due to the fact that in the nonlinear regime, Bloch modes of the
underlying linear lattice can undergo modulational instabilities, while focusing ef-
fects can counteract the diffractive tendencies of a narrow beam [2, 23]. Therefore,
localized wave propagation or spatial solitons can appear in periodic lattices.

The influence of the nonlinearity again depends on the band curvature of the
Floquet–Bloch mode. In regions of convex curvature and thus normal diffraction, a
focusing nonlinearity can compensate the convex curvature of the wavefront, while
regions of concave curvature and thus anomalous diffraction require a defocussing
nonlinearity [24, 25] to create localization. In turn, nonlinear dynamics can be ma-
nipulated by engineering the band structure, in much the same way as the man-
agement of linear diffraction [26].

A spatial soliton can only propagate in a stable manner if the propagation con-
stant of the beam deviates from the linear bands of the transmission spectrum in
such a way that the propagation constant is located in a gap. In this case only, a
localized state rather than an extended Bloch mode is created.

The so-called lattice soliton lies in the semi-infinite gap above the first band (Fig-
ure 15.1c). A different type of soliton can be created at the edge of the Brillouin
zone (high symmetry points X and M in Figure 15.1c), where its propagation con-
stant lies between the first and second band, while the Bragg condition gives this
soliton a staggered phase profile. This soliton is called a spatial “gap soliton”.

For modes originating from the first band, the curvature dictates that a defo-
cussing nonlinearity is necessary for the formation of bright gap solitons, and
the propagation constant decreases into the gap with increasing nonlinearity. For
modes originating from the second band that have a different mode structure, the
propagation constant increases into the gap.

Dynamics in lattices can be even richer because nonlinear effects can couple de-
fect states between bands or gaps [27, 28]. Moreover, indirect gaps may occur in
which the minimum of one band (upper branch) occurs at a different k-vector than
the maximum of the adjacent band (lower branch). The situation becomes even
more complex when the transverse dimensions involved exhibit an anisotropy, re-
sulting in different propagation behavior in different directions. This may result
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in effects of localization in one transverse direction due to Bragg reflection (semi-
infinite band gap), and due to gap soliton formation (first gap) in the other direc-
tion. As a consequence, soliton mobility can be implemented in anisotropic lat-
tices [29].

15.3
Optically-Induced Photonic Lattices in Photorefractive Media

A simple and well known procedure to generate the desired intensity distribution
for optical induction of two-dimensional photonic lattices utilizes the interference
of several plane waves inside the biased photorefractive crystal [5, 11]. The period-
icity of the induced patterns can be controlled by the interference angle, whereas
the modulation depth depends on the externally applied electric field.

More flexibility in changing the lattice parameters can be achieved by using a
programmable spatial light modulator to create the diffraction free propagating
transversely periodic lattice wave [12]. For example, we will demonstrate below that
this configuration can be used to study photonic lattices of triangular shape which
would otherwise require the use of six plane waves, and are consequently inconve-
nient for induction by interference.

15.3.1
Mathematical Description of Photorefractive Photonic Lattices

Assuming a temporal steady state and neglecting photovoltaic effects, one can de-
scribe the optical induction of photonic lattices in a photorefractive medium as well
as beam propagation in these structures by the set of equations

2i
@A
@z

C r2
?A � Γ Esc(I ) A D 0 , (15.1)

Esc(I ) D � @'

@x
, (15.2)

r2' C r'r ln(1 C I ) D Eext
@

@x
ln(1 C I ) . (15.3)

It is r2
? D @2/@x2C@2/@y 2. Γ D k2w2

0 n2
0reff is proportional to the effective element

of the linear electro-optic tensor reff. ' denotes the scalar potential of the electric
screening field Esc, and the externally applied electric field Eext is directed along the
c-axis of the crystal. I D jA lattj2 C jA probej2 gives the total light intensity as a sum
of the lattice wave and the probe beam intensity.

Equation 15.1 has been made dimensionless by introducing the length scales w0

and z0 D kw2
0 . k and n0 denote the wave vector and the unperturbed refractive

index, respectively. Throughout this chapter, we use reff D 280 pm/V, n0 D 2.35,
and w0 D 10 μm.

One of the most important features of the photorefractive nonlinearity is that it
is saturable, that is, Esc(I ) does not grow infinitely as I ! 1. As a consequence,
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the catastrophic self-focusing known from Kerr media cannot occur in photorefrac-
tive media [30]. Due to the externally applied electric field, (15.3) is also inherently
anisotropic as can also be seen from the single partial x derivative on the right hand
side. Furthermore, it is nonlocal in the sense that the change of the refractive index
in each point depends on the intensity distribution in the whole transverse plane.

Although (15.3) can easily be solved in the transversely one-dimensional limit,
there is no analytical solution for the two-dimensional case and one has to integrate
numerically.

However, sometimes it is desirable to have an explicit, local expression for the
photorefractive nonlinearity. Therefore, the solution of the one-dimensional case is
often used in two dimensions as well, giving

Esc D �r' D Eext I
1 C I

. (15.4)

Obviously, this approximation is able to reproduce the saturability, but it cannot
describe the intrinsic photorefractive anisotropy. As a result, (15.4) is often referred
to as the isotropic approximation. Although this approximation has shown to be
sufficient in special cases, the anisotropic effects cannot be neglected in general.
Therefore, we will use (15.3) throughout this chapter and refer to it as the full
anisotropic model. In fact, we will discuss below several examples clearly showing
the importance of anisotropy for the lattice induction as well as for nonlinear light
propagation inside the periodic refractive index structures.

15.3.2
Experimental Configuration for Photorefractive Lattice Creation

Figure 15.2 shows a schematic of a typical setup used in our experiments. A beam
derived from a frequency-doubled Nd:YAG laser at a wavelength of λ D 532 nm
is split into two beams using a beam splitter. The transmitted beam illuminates a
programmable spatial light modulator (SLM1) to imprint a phase modulation in
such a way to create the desired non-diffracting lattice forming wave [12] necessary
for the induction of periodic structures. The modulated beam is then imaged at
the input face of a Sr0.60Ba0.40Nb2O6 (SBN:Ce) crystal by a high numerical aperture
telescope.

A half wave plate in front of the telescope is used to insure ordinary polarization
of the lattice wave, thus enabling its effectively linear propagation. The crystal is
additionally biased by an externally applied electric field and uniformly illuminated
with a white-light source in order to control the dark irradiance. The second spa-
tial light modulator (SLM2) combined with proper Fourier filtering is employed to
achieve the desired amplitude and phase structure of an incident Gaussian probe
beam. The polarization of the probe beam is extraordinary, so it propagates through
the crystal in the nonlinear regime [5]. The strength of the nonlinearity is controlled
by varying an applied external dc electric field. In order to visualize the phase struc-
ture of the probe beam, a third beam is derived from the laser. It is passed through
a half wave plate to insure its extraordinary polarization and is subsequently sent
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Figure 15.2 Experimental setup. BS: beam splitter, CCD: cam-
era, FF: Fourier filtering, L: lens, M: mirror, MO: microscope
objective, PH: pinhole, SLM: spatial light modulator.

directly to the CCD camera to record a phase interferogram with the probe beam.
To observe the induced refractive index structure, the lattice can be illuminated
with a broad plane wave, which is guided by the regions of high refractive index.
As a consequence, the modulated intensity distribution at the output of the crystal
qualitatively maps the induced refractive index change. When including a Fourier
transform lens, the spectrum of the lattice can be analyzed too.

15.4
Complex Optically-Induced Lattices in Two Transverse Dimensions

As already discussed in Section 15.3.1, the induced refractive index change depends
strongly on the anisotropy of the photorefractive response [12, 13]. In particular, the
spatial orientation of the lattice wave with respect to the c-axis of the crystal signif-
icantly affects the structure of the resulting refractive index pattern. Therefore, the
utilized lattice wave and the effectively induced refractive index change can have
completely different symmetries.

Figure 15.3 illustrates these characteristics for the case of lattice waves with
fourfold symmetry, which is one of the simplest examples of highly symmetric
structures. Here, two lattice orientations can be distinguished. These are a square
pattern with one high-symmetry axis orientated parallel to the c-axis (Figure 15.3,
bottom), and a 45ı tilted, so-called diamond pattern (Figure 15.3, top). The cor-
responding lattice fields can be described as A latt(X , Y ) D A 0 sin(X ) sin(Y ) with
(X , Y ) D (x , y ) for the square pattern, and (X , Y ) D ((x C y )/

p
2, (x � y )/

p
2) for

the diamond case, respectively.
It has been shown that the square lattice results in an effectively one-dimensional

refractive index structure consisting of vertical lines due to the photorefractive
anisotropy, whereas the induced refractive index change for the diamond pattern



434 15 Dynamics and Nonlinear Light Propagation in Complex Photonic Lattices

Figure 15.3 Structure analysis of the diamond (top) and square
(bottom) lattice. (a), (d) Experimental lattice wave. (b), (e) Nu-
merical simulation of the light-induced refractive index change.
(c), (f) Guided wave.

contains well separated spots, thus forming a fully two-dimensional structure [12].
Therefore, in almost all experiments on optically induced lattices, the lattice wave
used has been restricted to the diamond configuration (Figure 15.3, top) and the ef-
fects of anisotropy with respect to the electro-optic properties of the photorefractive
crystal have been neglected. Recently, in the same spirit, the properties of hexago-
nal lattices and their potential to support discrete and gap solitons have also been
investigated [14]. Again, in these experiments the orientation of the lattice wave has
been chosen to minimize the effect of anisotropy.

To overcome these previous limitations of usable lattice configurations, the con-
cept of optically-induced lattices can be extended to the more complex anisotropic
lattices. In the following, we will introduce the highly anisotropic so-called trian-
gular lattices and prove that they support discrete and gap solitons, even those of
higher order.

15.4.1
Triangular Lattices

Akin to a lattice wave with fourfold symmetry, one can distinguish two orienta-
tions of the lattice wave of the triangular lattice and, therefore, two different con-
figurations of the triangular lattice exist. These configurations are denoted as per-
pendicular and parallel, respectively. The corresponding lattice waves (Figure 15.4a
and 15.4d) are given by

A latt(X , Y ) D A 0 sin(2 Y/
p

3) sin(Y/
p

3 C X ) sin(Y/
p

3 � X ) , (15.5)
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Figure 15.4 Structure analysis of the parallel (top) and perpen-
dicular (bottom) triangular lattice. (a), (d) Experimental lattice
wave. (b), (e) Numerical simulation of the light-induced refrac-
tive index change. (c), (f) Guided wave.

with (X , Y ) D (x , y ) for the parallel lattice and (X , Y ) D (y , x ) for the perpendicu-
lar orientation.

Similar to the diamond and square patterns, these lattices also show a strong
anisotropy in the symmetry of the induced refractive index changes. Corresponding
numerical simulations (Figure 15.4b and 15.4e) have been performed in the full
anisotropic model described in Section 15.3.1.

For the parallel orientation (Figure 15.4, top), every two vertically neighboring
out of phase lobes of the field distribution induce a focusing dipole island, and
these islands essentially form a diamond pattern with angles of 60ı (Figure 15.4b).
In the same way, the triangular pattern with perpendicular orientation (Figure 15.4,
bottom) induces a refractive index change comparable to the square pattern, with
regions of high refractive index forming vertical lines (Figure 15.4e). The experi-
mentally observed guided waves (Figure 15.4c and 15.4f) confirm these numerical
results.

In the next step, we study the propagation of a Gaussian probe beam inside the
two triangular lattice structures. The results for the parallel pattern are shown in
Figure 15.5. It is clearly visible that the diffraction of the probe beam in the parallel
lattice at low power shows a behavior similar to the diamond lattice forming a
fully two-dimensional diffraction pattern (Figure 15.5a). Increasing the power of
the probe beam, we observe the evolution from the described diffraction pattern to
the strongly localized discrete solitons (Figure 15.5e).

Corresponding results for the perpendicular orientation are shown in Fig-
ure 15.6. Again, the low intensity diffraction pattern reveals the symmetry of
the underlying refractive index structure, showing an effectively one-dimensional
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Figure 15.5 Experimental results (top) and numerical simula-
tions (bottom) for the formation of fundamental discrete soli-
tons in the parallel triangular lattice. (a), (d) Diffraction of the
probe beam at low power. (b), (e) Localized state at moderate
power. (c), (f) Discrete soliton.

Figure 15.6 Experimental results (top) and numerical sim-
ulations (bottom) for the formation of fundamental discrete
solitons in the perpendicular triangular lattice. (a), (d) Diffrac-
tion of the probe beam at low power. (b), (e) Localized state at
moderate power. (c), (f) Discrete soliton.
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Figure 15.7 Experimental results (a–c) and numerical simula-
tions (d–f) for the formation of dipole-mode gap solitons in the
parallel triangular lattice. (a), (d) Diffraction of the probe beam
at low power. (b), (e) Localized state at moderate power.
(c), (f) Dipole-mode gap soliton.

diffraction pattern (Figure 15.6a). Also, with increased power the beam finally
evolves into a discrete soliton as shown in Figure 15.6c and 15.6f.

In the following, we will expand the analysis to the propagation of dipole modes
in the parallel triangular structure and show that it is possible to obtain a stable
dipole structure, or a molecule of light, in this highly anisotropic lattice type.

In addition to the previously discussed fundamental discrete solitons in trian-
gular photonic lattices, our numerical simulations reveal that the lattice in parallel
orientation with its dipole-like islands of high refractive index gives rise to the for-
mation of dipole-mode gap solitons [31].

To compare these numerical simulations to the experiment, we generate a dipole-
like input beam and observe the output at the back face of the crystal for different
probe beam powers. The experimental as well as the numerical results are sum-
marized in Figure 15.7. At low probe beam powers the diffraction pattern con-
sists of a central dipole surrounded by four side lobes, each forming a dipole itself
(Figure 15.7a and 15.7b). With increased power the side lobes vanish and a stable
dipole-mode gap soliton evolves (Figure 15.7c and 15.7f).

15.4.2
Multiperiodic Lattices

In addition to the previously discussed lattice geometries, more complex photonic
structures such as modulated waveguide arrays [15], lattice interfaces [16], or dou-
ble periodic one-dimensional photonic lattices [17] offer many exciting possibili-
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ties to engineer the diffraction properties of light. These structures open additional
mini-gaps in the transmission spectrum and thereby facilitate the existence of new
soliton families in nonlinear media [32].

In this spirit, we have implemented a novel approach for all optical induction of
multiperiodic superlattices by superposition of several single periodic lattices [33].
Unfortunately, the first order approach to use the spatial light modulator for direct
modulation of the lattice wave with a corresponding pattern is not successful for
the induction of multiperiodic lattices. The reason is that lattice waves of different
periodicities acquire different phase shifts during propagation, and their coherent
superposition therefore leads to an intensity modulation in the direction of propa-
gation due to interference. Consequently, a method of incoherent superposition is
required.

A simple overlay of multiple mutually incoherent interference patterns is feasible
for this purpose, but lacks the flexibility benefits offered by the usage of a spatial
light modulator. One solution to this challenge will be demonstrated below. It is
closely related to the multiplexing technology known from holographic data stor-
age, where several different approaches like wavelength, angular, and phase code
multiplexing [34–36] are utilized in this context. These methods allow a superpo-
sition of different refractive index patterns inside the volume of a photorefractive
crystal. Therefore, they can serve as a basis for the induction of multiperiodic pho-
tonic superlattices.

In contrast to the commonly used sequential recording scheme, we decided to
use the method of incremental multiplexing [37]. Thus, we are able to induce the
superimposed lattices with different modulation depths by simply adjusting their
relative illumination times. In fact, this enhances the flexibility of the presented
induction process even more.

We first implement our method for the induction of one-dimensional stripe
patterns (Figure 15.8). The induced refractive index structures are subsequently
analyzed in Fourier space using the well established Brillouin zone spectroscopy
technique [38]. This analysis is performed by imaging the partially spatially in-
coherent output of a rotating diffuser onto the front face of the crystal, and
monitoring the output spectrum using a Fourier transform lens and a CCD
camera.

If only one lattice period is used during the induction process, the Brillouin zone
pictures show two dark lines marking the borders of the first Brillouin zone of the
corresponding lattice. This is demonstrated in Figure 15.8d and 15.8e for two dif-
ferent lattice periods. The corresponding real space images of the lattice wave are
shown in Figure 15.8a and 15.8b. Figure 15.8c and 15.8f depict the induction of
a one-dimensional superlattice as a superposition of the two former lattices. The
arrows in Figure 15.8c indicate the alternating sequence of the two single period-
ic lattice waves. Both waves are sent into the crystal in an alternating scheme for
about 2 s, respectively. In this case, Figure 15.8f clearly shows four dark lines cor-
responding to the Brillouin zone structure of the double periodic one-dimensional
superlattice induced by the superposition of the two single periodic structures via
incremental recording.
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Figure 15.8 Lattice wave (a–c) and Brillouin zone spectroscopy
(d–f) of a one-dimensional multiperiodic lattice. (a), (d) Stripe
pattern with lattice period of 15 μm. (b), (e) Stripe pattern with
lattice period of 24 μm. (c), (f) Incremental multiplexing of
stripe patterns with lattice periods of 15 μm and 24 μm.

Figure 15.9 Lattice wave (a–c) and Brillouin zone spectroscopy
(d–f) of a two-dimensional multiperiodic lattice. (a), (d) Dia-
mond pattern with lattice period of 17 μm. (b), (e) Diamond
pattern with lattice period of 28 μm. (c), (f) Incremental multi-
plexing of diamond patterns with lattice periods of 17 μm and
28 μm.
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In addition to the optical induction of one-dimensional superlattices, the method
can easily be extended to achieve multiperiodic structures in two transverse dimen-
sions as well [33]. Figure 15.9 shows the corresponding results for the superposi-
tion of diamond lattices with different lattice constants. As before, Figure 15.9d
and 15.9e show the first Brillouin zone of the single periodic lattices, and the cor-
responding Brillouin zone picture of the multiplexed superstructure is depicted in
Figure 15.9f. Again, the superposition of the two single periodic lattices is clearly
visible by the two dark squares indicating the first Brillouin zones of the two single
periodic structures.

The only fundamental restriction on the successively multiplexed structures is
their diffraction-free propagation through the medium. Therefore, the method of
holographic multiplexing may also be extended to induce more sophisticated re-
fractive index structures, for example asymmetric lattices that are a superposition
of many single periodic lattices of different symmetries. Due to its simplicity and
high flexibility, the presented method can serve as a novel tool for the investiga-
tion of several fascinating effects of nonlinear wave propagation in multiperiodic
photonic lattices.

15.5
Vortex Clusters

Some of the most spectacular observations of nonlinear dynamics of coherent light
waves in periodic potentials relate to the properties of vortices and vortex flows in
optical lattices [8, 9, 39, 40]. Dramatic changes of light diffraction or tunneling of
matter waves in media with periodically modulated parameters indicate novel di-
rections for manipulating waves with complex phase structures. Self-trapped phase
singularities [18] in the form of isolated discrete vortices have been predicted theo-
retically [41–44] and generated experimentally in square photonic lattices [8, 9, 45].

(a) (b)

Figure 15.10 Sketch of the investigated vortex clusters in hexag-
onal photonic lattices. (a) Ring-shaped cluster containing six
lobes and one phase singularity (topological charge m D 1, 2).
(b) Multivortex cluster containing seven lobes and six phase
singularities (total topological charge m D 0).
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Here, we focus on the propagation of vortex clusters, that is, clusters of weakly
coupled fundamental solitons with a superimposed vortex phase, and investigate
the propagation dynamics in hexagonal photonic lattices. In particular, we study
the stability properties of ring-shaped 6-lobe clusters (Figure 15.10a) as well as the
more complex 7-lobe multivortex clusters shown in Figure 15.10b.

15.5.1
Necessary Stability Criterion

The stability of a vortex cluster is determined by the intensity flows between the
individual lobes. In order to obtain a stable intensity distribution as well as phase
profile, all the intensity flows within the cluster must be balanced. Provided that
the lattice is deep enough, two adjacent lobes can be treated approximately as bell-
shaped intensity distributions having homogeneous phases φ1 and φ2, and the
coupling can be assumed to be only via evanescent fields. To derive a general cri-
terion for the stability of vortex clusters, we choose, without loss of generality, a
one-dimensional notation with the lobes located at x D ˙δx . Thus, the total opti-
cal amplitude can be written as

A(x ) D A 1eiφ1 e�� (xCδx ) C A 2eiφ2 e� (x�δx ) for jx j 	 δx . (15.6)

The real constants A 1 and A 2 are proportional to the maximum amplitudes of the
lobes. The intensity flow between the lobes

Jx D 2 Im(A@x A�) D 4�A 1A 2e�2δx sin (φ1 � φ2) (15.7)

is proportional to the sine of their phase differences. The same result is obtained
in two transverse dimensions after integrating along the y axis.

In general, the intensity flows within a cluster are balanced if the intensities of
the lobes do not change during propagation. Therefore, the sum of all intensity
flows must vanish for each lobe, yielding [46]

NX
iD1

c i j sin
�
φ i � φ j

� !D 0 8 1 � j � N . (15.8)

All constants have been collected in the coupling coefficients c i j , where i and j
denote the respective lobes.

15.5.2
Compensation of Anisotropy in Hexagonal Photonic Lattices

Studying the propagation of vortex clusters in optically induced hexagonal photonic
lattices, it is crucial to consider the photorefractive anisotropy. We consider the
lattice field in the general form of three interfering plane waves

A latt D exp(2ikx x/3) C exp(�ikx x/3 C iky y ) C exp(�ikx x/3 � iky y ) , (15.9)
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Figure 15.11 Structure analysis of symmetric (a–c) and
stretched hexagonal lattice (d–f). (a), (d) Sketch of the Fouri-
er image. (b), (e) Numerically calculated lattice wave intensity.
(c), (f) Calculated refractive index change.

and start with an intensity profile of exact hexagonal symmetry when the spatial
frequencies kx and ky obey the simple relation kx D p

3ky . In Fourier space, the
three interfering beams are represented by spots, forming an equilateral triangle
as indicated in Figure 15.11a.

Due to the anisotropic nature of the nonlinear response of the crystal, the in-
duced refractive index structure (Figure 15.11c) does not preserve the symmetry of
the lattice wave (Figure 15.11b). In particular, the modulation of the refractive index
is much stronger along the c-axis than along the diagonals, making the resulting
optical coupling between refractive index maxima very asymmetric. As a result, the
flow condition (15.8) cannot be fulfilled.

To counteract this effect of the anisotropy and to enable stable vortex clusters, the
lattice can be stretched along the vertical direction such that the optical coupling
between lattice maxima is closer to that of the original hexagonal symmetry of the
lattice [10]. This is demonstrated in Figure 15.11d–f.

15.5.3
Ring-Shaped Vortex Clusters

Perhaps the most counterintuitive result to emerge from the consideration of
hexagonal lattices is that in the simplest six site configuration (Figure 15.10) dou-
ble charge vortices may become stable, while single charge vortices are always
unstable [47, 48]. This is in agreement with the stability properties of vortex soli-
tons in modulated Bessel lattices [49]. This is particularly surprising as higher
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Figure 15.12 Experimentally obtained intensity (a–c) and phase
profile (d–f) for the single charge vortex. Circles indicate posi-
tions of vortices with topological charge m D C1 (light) or
m D �1 (dark). (a), (b) Intensity and phase distribution of
an input single-charge vortex beam. (c), (d) Beam profile and
phase at the output for low input power. (e), (f) Output for high
input power.

charge vortices are typically unstable in homogeneous nonlinear systems [18].
Here, we demonstrate experimentally the stability of a double charge vortex in
contrast to the corresponding single charge vortex state which is unstable under
the same conditions. As described in Section 15.3.2, the lattice is formed with the
help of one spatial light modulator. We use the second phase modulator to impose
either a 2π or 4π phase winding on an input modulated six site beam for the
generation of single and double charge vortices, respectively. The characteristics of
the beams are otherwise identical, and thus any differences in the dynamics are
due solely to the different input phases. We selectively vary the beam intensity to
effectively move from the linear to the nonlinear regime.

The single charge vortex input is shown in Figure 15.12a. Its intensity distribu-
tion has a form of a necklace with six intensity peaks whose positions correspond to
the lattice sites or index maxima. At low input power, the beam undergoes discrete
diffraction and a complete loss of the initial six site input state (Figure 15.12b). At
high power, the initial six site intensity profile changes significantly after propaga-
tion (Figure 15.12c), showing strong intensity modulations and even filling in the
central lattice site. Furthermore, in the phase profile multiple vortices are seen to
appear, further indicating a breakdown of the single charge state (circles in Fig-
ure 15.12f).

In the case of the double charge vortex (Figure 15.13), we again observe a discrete
diffraction with low input power (see Figure 15.13b), however the result changes
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Figure 15.13 Experimentally obtained intensity (a–c) and phase
profile (d–f) for the double-charge vortex. Circles indicate po-
sitions of vortices with topological charge m D C1 (light) or
m D �1 (dark). (a), (b) Intensity and phase distribution of the
double-charge input. (c), (d) Beam profile and phase at the out-
put for low input power. (e), (f) Discrete double-charge vortex
soliton.

dramatically when the power is increased (see Figure 15.13c). We now observe that
the six site input structure is preserved in the nonlinear propagation. Interestingly,
while the overall phase winding is still 4π, it can be clearly seen that the initial dou-
ble charge singularity has split into two single charge vortices. This splitting of the
higher order singularity has been shown to be due to an inherent topological insta-
bility in the higher phase winding. This topological breakdown in the linear or low
power part of the field further indicates that the stability of the 4π phase winding
across the six sites is due to the interplay of the nonlinearity and the local phase
of the high power sites suppressing the development of a dynamical instability.
However, this stability is critically dependent on the symmetry of the lattice, with
a decrease in the lattice stretching and, thus, a corresponding decrease in the sym-
metry of the underlying modulated refractive index, leading to a dynamical insta-
bility in the double charge state as well. The phase interferogram in Figure 15.13f
also indicates an additional pair of single charge vortices of the opposite charge
inside the vortex structure (not marked by circles). However, this additional pair
does not affect the stability of the 4π phase winding, and it can be fully attributed
to inevitable experimental noise in this region of low light intensity. To corroborate
our experimental results, we have performed numerical simulations using the full
anisotropic model as described in Section 15.3.1.

First we consider the case of a six site initial state with a single charge vortex
phase of the form shown in Figure 15.14a, with either low or high power propagat-
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Figure 15.14 Numerical simulation of the intensity (a–d) and
phase profile (e–h) for a single charge vortex. (a), (e) Input.
(b), (f) Beam profile at z D 20 mm for low input power.
(c), (g) Beam profile at z D 20 mm for high input power.
(d), (h) High power output at z D 280 mm.

Figure 15.15 Numerical simulation of the intensity (a–d) and
phase profile (e–h) for a double charge vortex. (a), (e) Input.
(b), (f) Beam profile at z D 20 mm for low input power.
(c), (g) Double charge discrete vortex soliton at z D 20 mm.
(d), (h) Double-charge discrete vortex soliton at z D 280 mm.

ing a distance of 20 mm in the lattice. For the low input power case of Figure 15.14b
we see that, as in the experiment, the vortex beam undergoes diffraction. If a high
input power is instead considered as in Figure 15.14c, the vortex maintains much
of its form. Some intensity fluctuations are evident, and more importantly the vor-
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tex phase has deteriorated, showing breakdown of the initial single charge vortex
circulation. It must be noted that the breakup is clearly less than that observed
in the experiment, and this discrepancy is attributed to the higher anisotropy of
the experimental lattice leading to a larger instability growth rate. In our numeri-
cal simulations, the strong instability becomes evident for longer propagation dis-
tances as shown in Figure 15.14d for z D 280 mm. In Figure 15.15, we consider
the same input beam intensities but change the phase to that of a double charge
vortex. The low power output (Figure 15.15b and 15.15f) appears similar to the sin-
gle charge case, exhibiting diffraction and break up of the vortex. In contrast, the
high power output in Figure 15.15c and 15.15d appears unchanged in the intensity
profile, with a well pronounced corresponding double charge vortex phase (Fig-
ure 15.15g and 15.15h). Similar to the experimental results, the separation of the
double charge phase singularity into two single charge singularities is observed.
However, the phase circulation around a contour tracing the six high intensity sites
is well defined and equals 4π.

15.5.4
Multivortex Clusters

Multivortex coherent states appear naturally in systems with repulsive interparticle
interactions where they can be confined by external potentials. For attractive inter-
action, multivortex structures are known to be unstable, and they have only been
observed as infinite periodic waves [13]. However, it was predicted theoretically that
photonic lattices with threefold symmetry can support stable multivortex spatially
localized states [50], in sharp contrast to earlier studied square lattices [46]. Here,
we present the experimental observation of topologically stable spatially localized
multivortex solitons generated in optically induced hexagonal photonic lattices [10].

To generate a multivortex probe beam, we focus three extraordinarily polarized
beams onto the front face of the crystal in such a way that they have the same
symmetry as the induced lattice. In the real space depicted in Figure 15.16a, this
arrangement results in an input probe beam having the form of seven distinctive
spots, forming a hexagonal pattern with the same periods as the lattice and con-
taining six vortices.

At low input powers, the diffraction of the probe beam leads to a broad out-
put distribution as shown in Figure 15.16b. However, at high powers the structure
becomes localized and the output intensity distribution features seven well pro-
nounced spots closely resembling the input. To show the topological structure of
multivortex solitons, we record the phase interferograms of the reference beam
and the probe beam at low and high intensities, respectively. It is clearly visible
that at low power and thus in the linear regime, the initial phase profile becomes
strongly distorted. While the six initial vortices can still be found in the output field,
their positions are changed. In contrast, for high input power of the probe beam
(Figure 15.16c and 15.16f) in the nonlinear regime, the beam intensity not only
becomes self-trapped but the phase profile (Figure 15.16f) also retains exactly the
same hexagonal vortex pattern of the input beam.
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Figure 15.16 Intensity distributions (a–c) and phase interfer-
ograms (d–f) of a multivortex soliton in a hexagonal lattice.
Positions of the vortices are indicated by dark circles for the
topological charge m D �1 and light ones for m D C1.
(a), (d) Probe beam input. (b), (e) Output intensity at low pow-
er. (c), (f) Multivortex soliton.

15.6
Summary and Outlook

In this chapter we have investigated the nonlinear propagation dynamics of com-
plex light fields in periodic photonic structures, and demonstrated that the optical
induction in photorefractive materials provides a powerful tool for the realization
of complex photonic structures. These structures can offer a variety of possibilities
for investigating linear and nonlinear dynamics of wave propagation in periodic po-
tentials. By transferring the multiplexing techniques known from holographic data
storage to the field of optically induced photonic structures, this variety increases
even further. As examples of such complex wave dynamics, we have investigated
discrete and dipole mode gap solitons in triangular lattices as well as vortex clusters
carrying one or more phase singularities in hexagonal structures.

Two-dimensional reconfigurable photorefractive lattices have already become
quite well understood, and show fascinating effects of complex nonlinear physics
as we demonstrated above. However, three dimensional (3d) reconfigurable struc-
tures that are able to show advanced nonlinear features as, for example, slow and
stopped light have not been realized until now. Theoretically, it has been shown
that by the interference of multiple beams as well as by the multiple exposure of
two beam interference, all fourteen three-dimensional Bravais lattices could be
generated [51, 52].
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The generation of well defined reconfigurable three-dimensional nonlinear pho-
tonic lattices in photorefractive crystals therefore seems to be a promising tech-
nique. As the photonic lattices in higher spatial dimensions drastically influence
the intersite coupling and wave scattering in anisotropic media, the optical induc-
tion approach is well suited to the fabrication of large area reconfigurable three-
dimensional structures with flexible parameters in such media.

In view of actual nonlinear photonic device integration in the technological quest
for the realization of all optically active devices, we envisage the investigation of
many exciting nonlinear propagation, trapping, switching, and steering beam dy-
namics in these highly reconfigurable photonic lattices.
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