

Digital Signal Processing

Everything you need to know to get started
Michael Parker
Altera Corporation
AMSTERDAM • BOSTON • HEIDELBERG • LONDON
NEW YORK • OXFORD • PARIS • SAN DIEGO

SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO

Newnes is an imprint of Elsevier

Newnes is an imprint of Elsevier

30 Corporate Drive, Suite 400, Burlington, MA 01803, USA

The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, UK

© 2010 ELSEVIER Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic

or mechanical, including photocopying, recording, or any information storage and retrieval system,

without permission in writing from the publisher. Details on how to seek permission, further

information about the Publisher’s permissions policies and our arrangements with organizations such

as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our

website: www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the

Publisher (other than as may be noted herein).
Notices

Knowledge and best practice in this field are constantly changing. As new research and experience

broaden our understanding, changes in research methods, professional practices, or medical

treatment may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating

and using any information, methods, compounds, or experiments described herein. In using such

information or methods they should be mindful of their own safety and the safety of others,

including parties for whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume

any liability for any injury and/or damage to persons or property as a matter of products liability,

negligence or otherwise, or from any use or operation of any methods, products, instructions,

or ideas contained in the material herein.

Library of Congress Cataloging-in-Publication Data
Parker, Michael, 1963

Digital signal processing 101: everything you need to know to get started / Michael Parker.

p. cm.

Includes bibliographical references and index.

ISBN 978 1 85617 921 8 (alk. paper)

1. Signal processing Digital techniques. I. Title.

TK5102.9.P385 2010

621.38202 dc22 2010002121

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

For information on all Newnes publications

visit our Web site at www.elsevierdirect.com

10 11 12 13 14 10 9 8 7 6 5 4 3 2 1

Printed in the United States of America

http://www.elsevier.com/permissions
http://www.elsevierdirect.com

Introduction
This book is intended for those who work in or provide components for industries that are

made possible by digital signal processing, or DSP. Sample industries are wireless mobile

phone and infrastructure equipment, broadcast and cable video, DSL modems, satellite

communications, medical imaging, audio, radar, sonar, surveillance, electrical motor

control—this list goes on. While the engineers who implement these systems must be very

familiar with DSP, there are many others—executive and midlevel management, marketing,

technical sales and field engineers, business development, and others—who can benefit

from a basic knowledge of the fundamental principles of DSP.

Others who are a potential audience include those interested in studying or working in any of

these areas. High school seniors or undeclared college majors considering a future in the

industries made possible by DSP technology may gain sufficient understanding that enables

them to decide whether to continue further.

That, then, is the purpose of this book: to provide a basic tutorial on DSP. This topic seems to

have a dearth of easy-to-read and understand explanations. Unlike most technical resources,

this is a treatment in which mathematics is minimized and intuitive understanding

maximized. This book attempts to explain many difficult concepts like sampling, aliasing,

imaginary numbers, and frequency response using easy-to-understand examples. In addition,

there is an overview of the DSP functions and implementation used in several DSP-intensive

fields or applications, from error correction to CDMA mobile communication to airborne

radar systems.

So this book is intended for those of you who, like me, are somewhat dismayed when

presented with a blackboard (or whiteboard) full of equations as an explanation on DSP.

The intended readers include those who have absolutely no previous experience with DSP,

but are comfortable with high-school-level math skills. Many technical details have been

deliberately left out, in order to emphasize just the key concepts. While this book is not

expected to be used as a university-course-level text, it can initiate readers prior to tackling

a proper text on DSP. But it may also be all you need to talk intelligently to other people

involved in a DSP-centric industry and understand many of the fundamental concepts.
viii

Introduction ix
To start with, just what is DSP? Well, DSP is performing operations on a digital signal of

some sort and using a digital semiconductor device. Most commonly, multipliers and adders

are used. If you can multiply and add, you can probably understand DSP. Actually, signal

processing was around long before digital electronics. Examples of this are radios and TVs.

Early tuners used analog circuits with variable capacitors to dial a station. Resistors,

capacitors, and vacuum tubes were used to either attenuate or amplify different frequencies or

to provide frequency shifting. These are examples of basic signal processing applications.

The signals were analog signals, and the circuits doing the processing were analog, as was the

final output.

Today, most signal processing is performed digitally. The reason is that digital circuits have

progressively become cheaper and faster, as well as due to the inherent advantages of

repeatability, tolerance, and consistency that digital circuits enjoy compared to analog

circuits.

If the signal is not in a digital form, then it must first by converted, or digitized. A device

called an analog-to-digital converter (ADC) is used. If the output signal needs to be analog,

then it is converted back using a digital-to-analog converter (DAC). Of course, many signals

are already digitized and can be processed by digital circuits directly.

DSP is at the heart of a wide range of everyday devices in our lives, although many people

are unaware of this. A few everyday examples are cellular phones, DSL modems, digital

hearing aids, MRI and ultrasound equipment, audio equipment, set top boxes, flat-screen

televisions, satellite communications, and DVD players.

As promised, the mathematics will be minimized, but it cannot be eliminated altogether.

Some basic trigonometry and the use of complex numbers are unavoidable, so an early

chapter is included to introduce these concepts, using as simple examples as possible.

There is also one appendix section where very basic calculus is used, but this is not essential to

the overall understanding.

Acknowledgments
This book grew out of a need for Altera marketing and technical sales people to have an

intuitive-level understanding of DSP fundamentals and applications, in order to better work

on issues that our customers face as they implement DSP systems. I am grateful to the Altera

management for the support this book has received, in particular from Steve Mensor and

Chris Balough.

My understanding of the topics in this book is based on many years of engineering

implementation work and collaboration and explanations from many of my colleagues at

multiple firms over the years. More recently, within Altera, many people have contributed to

my knowledge in these areas. I would like to especially acknowledge a few people who have

been helpful both in DSP domain and relevant applications and implementations. Within

Altera engineering, this includes Volker Mauer, Martin Langhammer, and Mike Fitton.

Within the Altera technical sales organization, people who have been especially helpful

to my understanding of some of the relevant DSP applications include Colman Cheung,

Ben Esposito, Brian Kurtz, and Mark Santoro.

Within Altera publications, James Adams has been instrumental in getting this project off the

ground and working with the publisher.

Finally, the support of my wife, Zaida, and daughter, Ariel, have been most important.

This book has been primarily an “evenings and weekends” project, and their patience has

been essential.
x

Contents

1. Numerical Representation
2. Complex Numbers and Exponentials
3. Sampling, Aliasing, and Quantization
4. Frequency Response
5. Finite Impulse Response (FIR) Filters
6. Windowing
7. Decimation and Interpolation
8. Infinite Impulse Response (IIR) Filters
9. Complex Modulation and Demodulation
10. Discrete and Fast Fourier Transforms (DFT, FFT)
11. Numerically Controlled Oscilators
12. Digital Up and Down Conversion
13. Error Corrective Coding
14. CDMA Modulation and Demodulation
15. OFDM Modulation and Demodulation
16. Discrete Cosine Transform (DCT)
17. Video and Image Processing
18. Video Compression and Decompression
19. Implementation Using Digital Signal Processors
20. Implementation Using FPGAs
21. Design and Debug Methodology Trends
22. Future Implementation Trends

Appendix A: Q Format Shift with Fractional Multiplication
Appendix B: Evaluation of FIR Design Error Minimization
Appendix C: Laplace Transform
Appendix D: Z Transform

Digital Signal Processing 101. DOI: 10.1016/B978-1-85617-921-8.00005-5
2010 Elsevier Inc. All rights reserved. 1
CHAPTER 1
Numerical Representation
To process a signal digitally, it must be represented in a digital format. This point may seem

obvious, but it turns out that there are a number of different ways to represent numbers, and this

representation can greatly affect both the result and the number of circuit resources required to

perform a given operation. This chapter is focused more for people who are implementing digital

signal processing (DSP) and is not really required to understand DSP fundamental concepts.

Digital electronics operate on bits, of course, which are used to form binary words. The bits

can be represented as binary, decimal, octal, hexadecimal, or another form. These binary

numbers can be used to represent “real” numbers. There are two basic types of arithmetic

used in DSP: floating point and fixed point. Fixed-point numbers have a fixed decimal point

as part of the number. Examples are 1234 (the same as 1234.0), 12.34, and 0.1234. This is the

type of number we normally use every day. A floating-point number has an exponent. The

most common example is scientific notation, used on many calculators. In floating point,

1,200,000 would be expressed as 1.2� 106, and 0.0000234 would be expressed as 2.34� 10 5.

Most of our discussion will focus on fixed-point numbers, as they are most commonly found in

DSP applications. Once we understand DSP arithmetic issues with fixed-point numbers, then

there is short discussion of floating-point numbers.

In DSP, we pretty much exclusively use signed numbers, meaning that there are both positive and

negative numbers. This leads to the next point, which is how to represent the negative numbers.

In signed fixed-point arithmetic, the binary number representations include a sign, a radix or

decimal point, and the magnitude. The sign indicates whether the number is positive or negative,

and the radix (also called decimal) point separates the integer and fractional parts of the number.

The sign is normally determined by the leftmost, or most significant bit (MSB). The

convention is that a zero is used for positive and one for negative. There are several formats

to represent negative numbers, but the almost universal method is known as 2s complement.

This is the method discussed here.

Furthermore, fixed-point numbers are usually represented as either integer or fractional.

In integer representation, the decimal point is to the right of the least significant bit (LSB),

and there is no fractional part in the number. For an 8-bit number, the range that can be

represented is from 128 to þ127, with increments of 1.

2 Chapter 1

ww
In fractional representation, the decimal point is often just to the right of the MSB, which is

also the sign bit. For an 8-bit number, the range that can be represented is from 1 to þ127/

128 (almost þ1), with increments of 1/128. This may seem a bit strange, but in practice,

fractional representation has advantages, as will be explained.

This chapter presents several tables, with each row giving equivalent binary and hexadecimal

numbers. The far right column gives the actual value in the chosen representation—for

example, 16-bit integer representation. The actual value represented by the hex/binary

numbers depends on which representation format is chosen.

1.1 Integer Fixed-Point Representation

The following table provides some examples showing the 2s complement integer fixed-point

representation.
Table 1.1: 8-Bit integer representation

Binary Hexadecimal Actual Decimal Value

0111 1111 0x7F 127
0111 1110 0x7E 126
0000 0010 0x02 2
0000 0001 0x01 1
0000 0000 0x00 0
1111 1111 0xFF 1
1111 1110 0xFE 2
1000 0001 0x81 127
1000 0000 0x80 128
The 2s complement representation of the negative numbers may seem nonintuitive, but it has

several very nice features. There is only one representation of 0 (all 0s), unlike other formats

that have a “positive” and “negative” zero. Also, addition and multiplication of positive

and negative 2s complement numbers work properly with traditional digital adder and

multiplier structures. A 2s complement number range can be extended to the left by simply

replicating the MSB (sign bit) as needed, without changing the value.

The way to interpret a 2s complement number is to use the mapping for each bit shown in the

following table. A 0 bit in a given location of the binary word means no weight for that bit.

A 1 in a given location means to use the weight indicated. Notice the weights double with

each bit moving left, and the MSB is the only bit with a negative weight. You should satisfy

yourself that all negative numbers will have an MSB of 1, and all positive numbers and zero

have an MSB of 0.
w.newnespress.com

http://www.newnespress.com/

Table 1.2: 2s complement bit weighting with 8 bit words

8-Bit Signed Integer MSB LSB

Bit weight 128 64 32 16 8 4 2 1

Weight in powers of 2 27 26 25 24 23 22 21 20

Numerical Representation 3
This can be extended to numbers with larger number of bits. Following is an example with

16 bits. Notice how the numbers represented in a lesser number of bits (e.g., 8 bits) can be

easily put into 16-bit representation by simply replicating the MSB of the 8-bit number eight

times and tacking onto the left to form a 16-bit number. Similarly, as long as the number

represented in the 16-bit representation is small enough to be represented in 8 bits, the

leftmost bits can simply be shaved off to move to the 8-bit representation. In both cases, the

decimal point stays to the right of the LSB and does not change location. This can be seen

easily by comparing, for example, the representation of 2 in the 8-bit representation table

and again in the 16-bit representation table.
Table 1.3: 16-Bit signed integer representation

Binary Hexadecimal Actual Decimal Value

0111 1111 1111 1111 0�7FFF 32,767
0111 1111 1111 1110 0�7FFE 32,766
0000 0000 1000 0000 0�0080 128
0000 0000 0111 1111 0�007F 127
0000 0000 0111 1110 0�007E 126
0000 0000 0000 0010 0�0002 2
0000 0000 0000 0001 0�0001 1
0000 0000 0000 0000 0�0000 0
1111 1111 1111 1111 0�FFFF 1
1111 1111 1111 1110 0�FFFE 2
1111 1111 1000 0001 0�FF81 127
1111 1111 1000 0000 0�FF80 128
1111 1111 0111 1111 0�FF80 129
1000 0000 0000 0001 0�FF80 32,767
1000 0000 0000 0000 0�FF80 32,768

Table 1.4: 2s complement bit weighting with 16 bit word

MSB LSB

32,
768

16,
384

8192 4096 2048 1024 512 256 128 64 32 16 8 4 2 1

215 214 213 212 211 210 29 28 27 26 25 24 23 22 21 20

www.newnespress.com

http://www.newnespress.com/

4 Chapter 1

ww
Now, let’s look at some examples of trying to adding combinations of positive and negative

8-bit numbers together using a traditional unsigned digital adder. We throw away the carry

bit from the last (MSB) adder stage.
Case #1: Positive and negative number sum

þ15 0000 1111 0x0F

�1 1111 1111 0xFF

þ14 0000 1110 0x0E

Case #2: Positive and negative number sum

�31 1110 0001 0xE1

þ16 0001 0000 0x80

�15 1111 0000 0xF0

Case #3: Two negative numbers being summed

�31 1110 0001 0xE1

�64 1100 0000 0xC0

�95 1010 0001 0xF0

Case #4: Two positive numbers being summed; result exceeds range

þ64 0100 0000 0x40

þ64 0100 0000 0x40

þ128 1000 0000** 0x80**
**Notice all the results are correct, except the last case. The reason is that the result, þ128, cannot be represented in the
range of an 8 bit 2s complement number.
Integer representation is often used in many software applications because it is familiar

and works well. However, in DSP, integer representation has a major drawback. In DSP,

there is a lot of multiplication. When you multiply a bunch of integers together, the results

start to grow rapidly. It quickly gets out of hand and exceeds the range of values that can

be represented. As we saw previously, 2s complement arithmetic works well, as long as

you do not exceed the numerical range. This has led to the use of fractional fixed-point

representation.

1.2 Fractional Fixed-Point Representation

The basic idea behind fractional fixed-point representation is all values are in the range

from þ1 to 1, so if they are multiplied, the result will not exceed this range. Notice

that, if you want to convert from integer to 8-bit signed fractional, the actual values

are all divided by 128. This maps the integer range of þ127 to 128 to almost

þ1 to 1.
w.newnespress.com

http://www.newnespress.com/

Table 1.7: 16-Bit signed fractional representation

Binary Hexadecimal Actual Decimal Value

0111 1111 1111 1111 0x7FFF 32,767/32,768
0111 1111 1111 1110 0x7FFE 32,766/32,768
0000 0000 1000 0000 0x0080 128/32,768
0000 0000 0111 1111 0x007F 127/32,768
0000 0000 0111 1110 0x007E 126/32,768
0000 0000 0000 0010 0x0002 2/32,768
0000 0000 0000 0001 0x0001 1/32,768
0000 0000 0000 0000 0x0000 0
1111 1111 1111 1111 0xFFFF 1/32,768
1111 1111 1111 1110 0xFFFE 2/32,768
1111 1111 1000 0001 0xFF81 127/32,768
1111 1111 1000 0000 0xFF80 128/32,768
1111 1111 0111 1111 0xFF7F 129/32,768
1000 0000 0000 0001 0x8001 32,767/32,768
1000 0000 0000 0000 0x8000 1

Table 1.5: 8-Bit fractional representation

Binary Hexadecimal Actual Decimal Value

0111 1111 0x7F 127/128 ¼ 0.99219
0111 1110 0x7E 126/128 ¼ 0.98438
0000 0010 0x02 2/128 ¼ 0.01563
0000 0001 0x01 1/128 ¼ 0.00781
0000 0000 0x00 0
1111 1111 0xFF 1/128 ¼ 0.00781
1111 1110 0xFE 2/128 ¼ 0.01563
1000 0001 0x81 127/128 ¼ 0.99219
1000 0000 0x80 1.00

Table 1.6: 2s complement weighting for 8 bit fractional word

8-Bit Signed Fractional MSB LSB

Weight 1 1/2 1/4 1/8 1/16 1/32 1/64 1/128

Weight in powers of 2 20 2�1 2�2 2�3 2�4 2�5 2�6 2�7

Table 1.8: 2s complement weighting for 16 bit fractional word

MSB LSB

1 1/2 1/4 1/8 1/
16

1/
32

1/
64

1/
128

1/
256

1/
512

1/
1024

1/
2048

1/
4096

1/
8192

1/16,
384

1/32,
768

20 2 1 2 2 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15

Numerical Representation 5

www.newnespress.com

http://www.newnespress.com/

6 Chapter 1

ww
Fractional fixed point is often expressed in Q format. The representation shown above is

Q15, which means that there are 15 bits to the right of the radix or decimal point. It might

also be called Q1.15, meaning that there are 15 bits to right of the decimal point and one

bit to the left.

The key property of fractional representation is that the numbers grow smaller, rather than

larger, during multiplication. And in DSP, we commonly sum the results of many

multiplication operations. In integer math, the results of multiplication can grow large

quickly (see the following example). And when we sum many such results, the final sum can

be very large, easily exceeding the ability to represent the number in a fixed-point integer

format.

As an analogy, think about trying to display an analog signal on an oscilloscope.

You need to select a voltage range (volts/division) in which the signal amplitude does

not exceed the upper and lower range of the display. At the same time, you want the

signal to occupy a reasonable part of the screen, so the detail of the signal is visible.

If the signal amplitude occupies only 1/10 of a division, for example, it is difficult to

see the signal.

To illustrate this situation, imagine using a 16-bit fixed point, and the signal has a value

of 0.75 decimal or 24,676 in integer (which is 75% of full scale), and is multiplied by a

coefficient of value 0.50 decimal or 16,384 integer (which is 50% of full scale).
0.75 24,576

� 0.50 � 16,384

0.375 402,653,184
Now the larger integer number can be shifted right after every such operation to

scale the signal within a range that it can be represented, but most DSP designers

prefer to represent numbers as fractional because it is a lot easier to keep track of the

decimal point.

Now consider multiplication again. If two 16-bit numbers are multiplied, the result is a 32-bit

number. As it turns out, if the two numbers being multiplied are Q15, you might expect the

result in the 32-bit register to be a Q31 number (MSB to the left of the decimal point, all

other bits to the right). Actually, the result is in Q30 format; the decimal point has shifted

down to the right. Most DSP processors will automatically left shift the multiplier output to

compensate for this when operating in fractional arithmetic mode. In Field Programmable

Gate Array (FPGA) or hardware design, the designer may have to take this into account when

connecting data buses between different blocks. Appendix A explains the need for this extra

left shift in detail, as it will be important for those implementing fractional arithmetic on

FPGAs or DSPs.
w.newnespress.com

http://www.newnespress.com/

0�4000 value ¼ ½ in Q15

� 0�2000 value ¼ ¼ in Q15

0�0800 0000 value ¼ 1/16 in Q31

After left shifting by one, we get

0�1000 0000 value ¼ 1/8 in Q31 the correct result!

If we use only the top 16-bit word from multiplier output, after the left shift, we get

0�1000 value ¼ 1/8 in Q15 again, the correct result!

1.3 Floating-Point Representation

Numerical Representation 7
Many of the complications encountered using the preceding methods can be avoided by using

floating-point format. Floating-point format is basically like scientific notation on your

calculator. Because of this, a floating-point number can have a much greater dynamic range

than a fixed-point number with an equivalent number of bits. Dynamic range means the

ability to represent very small numbers to very large numbers.

The floating-point number has both a mantissa (which includes sign) and an exponent. The

mantissa is the value in the main field of your calculator, and the exponent is off to the side,

usually as a superscript. Each is expressed as a fixed-point number (meaning the decimal

point is fixed). The mantissa is usually in signed fractional format, and the exponent in

signed integer format. The size of the mantissa and exponent in number of bits will vary

depending on which floating-point format is used.

The following table shows two common 32-bit formats: “two word” and IEEE 754.
Table 1.9: Floating point format summary

Floating-Point Formats No. of Mantissa Bits No. of Exponent Bits

“two word” 16, in signed Q15 16, signed integer

IEEE STD 754 23, in unsigned Q15, plus 1 bit to
determine sign (not 2s complement!)

8, unsigned integer,
biased by þ127
To convert a fixed-point number in floating-point representation, we shift the fixed number

left until there are no redundant sign bits. This process is called normalization. The number

of these shifts determines the exponent value.

The drawback of floating-point calculations is the resources required. When adding or

subtracting two floating-point numbers, we must first adjust the number with smaller absolute

value so that its exponent is equal to the number with larger absolute value; then we can add
www.newnespress.com

http://www.newnespress.com/

8 Chapter 1

ww
the two mantissas. If the mantissa result requires a left or right shift to represent, the exponent

is adjusted to account for this shift. When multiplying two floating-point numbers, we

multiply the mantissas and then sum the exponents. Again, if the mantissa result requires

a left or right shift to represent, the new exponent must be adjusted to account for this shift.

All of this requires considerably more logic than fixed-point calculations and often must

run at much lower speed (although recent advances in FPGA floating-point implementation

may significantly narrow this gap). For this reason, most DSP algorithms use fixed-point

arithmetic, despite the onus on the designer to keep track of where the decimal point is and

ensure that the dynamic range of the signal never exceeds the fixed-point representation or

else becomes so small that quantization error becomes insignificant. We will see more on

quantization error in a later chapter.

If you are interested in more information on floating-point arithmetic, there are many texts

that go into this topic in detail, or you can consult the IEEE STD-754 document.
w.newnespress.com

http://www.newnespress.com/

Digital Signal Processing 101. DOI: 10.1016/B978-1-85617-921-8.00006-7
2010 Elsevier Inc. All rights reserved. 9
CHAPTER 2
Complex Numbers and Exponentials
Complex numbers are among those things many of us were taught a long time ago and

have long since forgotten. Unfortunately, they are important in digital communications

and DSP, so we need to resurrect them.

What we were taught—and some of us vaguely remember—is that a complex number has a

“real” and an “imaginary” part, and the imaginary part is the square root of a negative

number, which is really a nonexistent number. This explanation right away sounds fishy, and

while it’s technically true, there is a much more intuitive way of looking at it.

The whole reason for complex numbers is that we are going to need a two-dimensional

number plane to understand DSP. The traditional number line extends from plus infinity to

minus infinity, along a single line. To represent many of the concepts in DSP, we need

two dimensions. This requires two orthogonal axes, like a North–South line and an

East–West line. For the arithmetic to work out, one line, usually depicted as the horizontal

line, is the real number line. The other vertical line is the imaginary line. All imaginary

numbers are prefaced by “j,” which is defined as the square root of –1. Don’t get confused

by this imaginary number stuff, but rather view “j” as an arbitrary construct we will use to

differentiate the horizontal axis (normal) numbers from those on the vertical axis. This is the

essence of this whole chapter.

As depicted in Figure 2.1, any complex number Z has a real and an imaginary part, and

is expressed as X þ j � Y or just X þ jY. The value of X and Y for any point is determined

by the distance one must travel in the direction of each axis to arrive at the point. It can

also be visualized as a point on the complex number plane, or as a vector originating at

the origin and terminating at the point. We need to be able to do arithmetic with complex

numbers. There has to be a way to keep track of the vertical and horizontal components.

That’s where the “j” comes in (in some texts, “i” is used instead).

2.1 Complex Addition and Subtraction

Adding and subtracting are simple: just add and subtract the vertical and horizontal components

separately. The “j” helps us keep frommixing the vertical and horizontal components. For example,

ð3þ j4Þ ð1 j6Þ ¼ 2þ j10

1-1

j

-j

Real (X) axis

Imag (Y) axis

Z=X+ jY

10 Chapter 2

www
Scaling a complex number is simply scaling each component:

4 � ð3þ j4Þ ¼ 12þ j16

2.2 Complex Multiplication

Multiplication gets a little trickier and is harder to visualize graphically. Here is the way

the mechanics of it work:

ðAþ jBÞ � ðCþ jDÞ ¼ A � Cþ jB � Cþ A � jDþ jB � jD ¼ ACþ jBCþ jADþ j2BD

Now remember that j2 is, by definition, equal to –1. After collecting terms, we get

Figure 2.1
ACþ jBCþ jADþ j2BD ¼ ACþ jBCþ jAD BD ¼ ðAC BDÞ þ jðBCþ ADÞ
The result is another complex number, with AC – BD being the real part and BC þ AD
being the imaginary part (remember, imaginary just means the vertical axis, while real

is the horizontal axis). This result is just another point on the complex plane.

The mechanics of this arithmetic may be simple, but we need to be able to visualize what is

really happening. To do this, we need to introduce polar (R, O) representation. Until now,
we have been using Cartesian (X, Y) coordinates, which means each location on the complex

number plane is specified by the distance along each of the two axes (like longitude and

latitude on the earth’s surface). Polar representation replaces these two parameters, which can

specify any point on the complex plane, with another set of two parameters, which also

can specify any point on the complex plane. The two new parameters are the magnitude and

angle. The magnitude is simply the length of the line or vector from the origin to the point.

The angle is defined as the angle of this line starting at the positive X axis and arcing

counterclockwise.
.newnespress.com

http://www.newnespress.com/

Complex Numbers and Exponentials 11
This relationship is shown in Figure 2.2, where the same point Z ¼ X þ jY is identified by

having radius R (length of the vector from origin to the point) with angle O specified

counterclockwise from the positive real axis.
1-1

j

-j

R

X axis
W

Y axis

Z=R angle W

Figure 2.2
Any point Z on the graph may be specified as X þ jY or R with angle O.

To understand the relationships between these, we need to go back to basic high

school math. Consider the right triangle formed in Figure 2.3, with sides X, Y, R, and

angle O.
R

X

Y

W

Figure 2.3
Remember the Pythagorean theorem? For any right triangle, X2 þ Y2 ¼ R2.

Also, remember that sine is defined as the length of the opposite side divided by the

hypotenuse, and cosine is defined as the length of the adjacent side divided by the hypotenuse

(but it must be a right triangle). Tangent is defined as the opposite over the adjacent side.

So we get the following relationships, which can be used to convert between Cartesian (X,Y)

and polar (R, O).
www.newnespress.com

http://www.newnespress.com/

12 Chapter 2

www
2.2.1 Polar Representation

sinðOÞ ¼ ðY=RÞ) Y ¼ R � sinðOÞ
cosðOÞ ¼ ðX=RÞ) X ¼ R � cosðOÞ
X2 þ Y2 ¼ R2) R ¼ sqrt ðX2 þ Y2Þ

tanðOÞ ¼ ðX=YÞ) O ¼ arctan ðX=YÞ
The reason for this little foray into polar representation is that multiplication (and
division) of complex numbers is very easy in polar form, and that angles in the complex

plane can be easily visualized in polar form.

2.2.2 Complex Multiplication Using Polar Representation

We will define two points, Z1 and Z2:

Z1¼ R1 angle ðO1Þ Z2¼ R2 angle ðO2Þ
Z1 � Z2 ¼ ðR1 � R2Þ angle ðO1 þ O2Þ

This means that with any two complex numbers, the magnitude, or distance from the
origin to the radius, gets multiplied together to form the new magnitude. This makes

sense intuitively. The angles of the two complex numbers get added together to

form the new angle. Not so intuitive, so let’s try a few examples to get the

hang of it.

Let’s use real numbers to start; a real number is just a complex number with the “j”

part equal to zero. Real numbers are “simplified” versions of complex numbers, so any

arithmetic rules on a complex number had better work with the real numbers.

Z ¼ R angle ðOÞ for real numbers; the angle must be equal to 0�

Then X ¼ R � cos(0) or X ¼ R and Y ¼ R � sin(0) or Y ¼ 0. This is what we expect:
the Y portion must be zero for the number to lie on the X (real number) axis.

Now consider two complex numbers, both with angle zero:

Z1 ¼ R1 angle ð0Þ, Z2 ¼ R2 angle ð0Þwith the product

Z1 � Z2 ¼ R1 � R2 angle ð0þ 0Þ ¼ R1 � R2 ðreverts to traditional multiplicationÞ
Now consider another set of complex numbers, both with angles of 180�:
Z1¼ R1 angle ð180Þ, Z2 ¼ R2 angle ð180Þ
From the relation above, Y ¼ R � sin (O), X ¼ R � cos (O). With angles of 180�,

Y ¼ 0, X ¼ –R, meaning the point Z lies on the negative part of the real axis. Z is
.newnespress.com

http://www.newnespress.com/

Complex Numbers and Exponentials 13
simply a negative real number. If we multiply two real negative numbers, we know that we

should get a real positive number. Let’s check using complex multiplication:

Z1 � Z2 ¼ R1 � R2 angle ð180þ 180Þ ¼ R1 � R2 angle ð360Þ :
The angle 360� is all the way around the circle and equal to 0�:
Z1 � Z2 ¼ R1 � R2 angle ð360Þ ¼ R1 � R2 angle ð0Þ ¼ R1 � R2¼ X1 � X2

The result is a real positive number.
There is another point to all these exercises, which is to explain why we chose something

strange like j equals the square root of –1 to designate the vertical axis in the complex

number plane. Be patient; we’re almost there.

There are four “special” angles: 0�, 90�, 180�, 270�. Notice that
Z ¼ R angle (0) ¼ X degrees is a positive real number on a positive real axis.

Z ¼ R angle (90) ¼ Y degrees is a positive imaginary number on a positive

imaginary axis.

Z ¼ R angle (180) ¼ –X degrees is a negative real number on a negative real axis.

Z ¼ R angle (270) ¼ –Y degrees is a negative imaginary number on a negative

imaginary axis.
If we add 360� to any complex number, it wraps all the way around the circle. Or we can

have a negative angle, which means just going backward (clockwise) around the circle:
Z ¼ R angle (0) ¼ R angle (360) ¼ R angle (720). . .

Z ¼ R angle (120) ¼ R angle (480) ¼ R angle (840). . .

Z ¼ R angle (90) ¼ R angle (–270) ¼ R angle (–630). . .

Z ¼ R angle (–53) ¼ R angle (307) ¼ R angle (667). . .
We now know when multiplying two complex numbers, the magnitudes R are multiplied

and the angles O are summed. Now let’s consider a few sample cases to illustrate how this

imaginary “j” operator helps us.

Imagine two complex numbers with only an imaginary component. They are both located on

the positive imaginary axis:

Z1 ¼ jY1, Z2 ¼ jY2 ðreal parts X1 ¼ X2 ¼ 0Þ
Z1 � Z2 ¼ jY1 � jY2 ¼ j � j � Y1 � Y2

Recall, we defined j ¼ sqrt(–1), so j2 ¼ –1
Z1 � Z2¼ ðY1 � Y2Þ, a negative real number
www.newnespress.com

http://www.newnespress.com/

14 Chapter 2

www
Or equivalently,

Z1 ¼ R1 angle ð90Þ, Z2 ¼ R2 angle ð90Þ
Z1 � Z2 ¼ R1 � R1 angle ð180Þ ¼ ðR1 � R2Þ ¼ ðY1 � Y2Þ since X1 ¼ X2 ¼ 0

You can experiment with other combinations, but what you will find is that the
arithmetic of adding angles around the circle when multiplying complex numbers works

out perfectly when we designate the positive imaginary axis with j and the negative

imaginary axis with –j.

By visualizing this business of going around the circle, you can see by inspection that

• Multiply two positive real numbers, both angles ¼ 0, the result has an angle

of zero:

3 � 5 ¼ 15

• Multiply two negative real numbers, both angles ¼ 180 (or –180), the result has an angle
of zero (or 360):

3 � 5 ¼ 15

• Multiply a positive real number (angle 0) with a negative real number (angle 180), the
result has an angle of 180, a negative real number:

3 � 5 ¼ 15

• Multiply a positive real number (angle 0) with a positive imaginary number (angle 90),
the result has an angle of 90, an imaginary number:

j3 � 5 ¼ j15

• Multiply a positive imaginary number (angle 0) with a positive imaginary number (angle
90), the result has an angle of 180, a negative real number:

j3 � j5 ¼ j2 � 15 ¼ 15

• Multiply a negative imaginary number (angle 90) with a negative imaginary number
(angle 90), the result has an angle of 180, a negative real number:

j3 � j5 ¼ ð jÞ � ð jÞ � 15 ¼ ð ð ð15ÞÞÞ ¼ 15

• Multiply a positive imaginary number (angle 90) with a negative imaginary number
(angle –90), the result has an angle of 0, a positive real number:

j3 � j5 ¼ j � ð jÞ � 15 ¼ ð ð15ÞÞ ¼ 15
.newnespress.com

http://www.newnespress.com/

Complex Numbers and Exponentials 15
2.3 Complex Conjugate

The last example illustrates a special case. Every number Z ¼ R angle (O) has what is called
a complex conjugate, Z* ¼ R angle (–O). In the earlier example, O ¼ 90, but O can be any

angle. The * symbol is the complex conjugate symbol, and means to take the point Z and

mirror it across the X axis as shown in Figure 2.4.
-j

1-1

j

Z

X axis

Z*

Y axis

Figure 2.4
So Z ¼ X þ jY has the conjugate Z* ¼ X – jY. We just negate or reverse the sign

of the imaginary part of a number to get its conjugate, or if in polar form, just negate

the sign of the angle:

Z ¼ R angle ðOÞ, Z� ¼ R angle ð OÞ
A special property of the complex conjugate is that for any complex number
Z � Z� ¼ R angle ðOÞ � R angle ð OÞ ¼ R2angleð0Þ:
In other words, when you multiply a number by its conjugate, the product is a real
number, equal to the magnitude squared. This point will become important in digital

signal processing because it can be used to compute the power of a complex signal.

To summarize, we have tried to show that the imaginary numbers that are used to form

things called complex numbers are really not so complex, and imaginary is really a

very misleading description. What we have really been trying to do is to create a two-

dimensional number plane and define a set of expanded arithmetic rules to manipulate the

numbers in it. Now we are ready to move onto the next topic, the complex exponential.
www.newnespress.com

http://www.newnespress.com/

16 Chapter 2

www
2.4 The Complex Exponential

The complex exponential has an intimidating sound to it, but in reality, it is very simple

to visualize. It is simply the unit circle (radius ¼ 1) on the complex number plane

(see Figure 2.5).
-j

Z = ejW

X axis
1

j

Y axis

W-1

Figure 2.5
Any point on the unit circle can be represented by “e” or raised to the power (j � angle)
or also expressed as ejO, which is called a complex exponential function. A few examples

should help.

Let the angle O ¼ 0�. Anything raised to the power 0 is equal to 1. This checks out, since this

is the point 1 on the positive real axis.

Let angle O ¼ 90�. The complex exponential is ej90. This is the point j on the positive

imaginary axis. We need a way to evaluate the complex exponential to show this point.

This leads to the Euler equation. This equation can easily be derived using Taylor series

expansion for exponentials, but we’ve promised to minimize the math. The result is

ejO ¼ cosðOÞ þ j sinðOÞ
Let’s try exp(j90) again. Using the Euler equation, we get
ej90 ¼ cosð90Þ þ j sinð90Þ ¼ 0þ j � 1 ¼ j

Imagine the point Z ¼ ejO with the angle O starting at 0� and gradually increasing to 360�.

This will start at the point þ1 on the real axis and move counterclockwise around the circle

until it ends up where it started, at 1 again. If the angle starts at 0 and gradually decreases

until it reaches –360, the point will do exactly the same thing, except rotate in a clockwise

fashion.
.newnespress.com

http://www.newnespress.com/

Complex Numbers and Exponentials 17
Now we know from the Euler equation that the complex exponential has a real and

an imaginary component. Try to imagine the movement of the point on the unit

circle as reflected on the real axis (imagine a second point, allowed to move only on

the real axis, trying to follow the first point as it moves about the circle). The movement

of the second point on the real axis will equal to cos(O). So if we continually rotate in

either direction about the unit circle, the real component will move back and forth

between þ1 and –1 using the motion of the cosine function. Similarly, the movement of

the point on the unit circle as reflected on the imaginary axis will be similar, except

instead of starting at a value of þ1, it will start with a value of 0. The pattern of

motion will lag by 90�. The imaginary axis movement is equal to j�sin(O), and
the imaginary component will move back and forth between j and –j using the sine

function.

This scenario is shown in Figure 2.6, where the dashed line represents the imaginary

axis movement of j�sin(O) and the dotted line represents the real axis movement

of cos(O).
90� 180� 270� 360� 450�0�

Figure 2.6
X ¼ cos ðOÞ ðreal axis movementÞ
Y ¼ sin ðOÞ ðimaginary axis movementÞ

This gives us a better way to express a complex number in polar coordinates:
Recall Z ¼ X þ jY ¼ R angle (O)
www.newnespress.com

http://www.newnespress.com/

18 Chapter 2

www
As we saw before,

X ¼ Rcos ðOÞ
Y ¼ Rsin ðOÞ

So we can see that angle (O) has the same meaning as exp(jO). Also, for the unit circle,
R ¼ 1 by definition. So our new way to express a number in polar form using the complex

exponential is

Z ¼ R angle ðOÞ ¼ R ejO ðany point in a complex planeÞ
Z ¼ angle ðOÞ ¼ ejO ðfor R ¼ 1, any point on the unit circleÞ

This is the way you will often see these expressions in the textbooks and industry literature.
2.5 Measuring Angles in Radians

The last curve ball in this chapter involves measuring angles in radians. You will have to get

accustomed to this format because you will see it everywhere in DSP. In our discussion, to

make things more familiar, we will start measuring angles in degrees, where 360� describes a
full circle. More commonly, the angle measurement in radians is based on p, which is a

number defined to have a value of about 3.141592 (it actually is an irrational number, with

an infinite number of digits, like 1/3 ¼ 0.3333. . .). It takes exactly 2p radians to describe a

full circle (see Table 2.1).
Table 2.1: Equivalence between degrees and radians

Angle in Degrees Angle in Radians

0 0 p
45 p/4
90 p/2

180 ¼ 180 p ¼ p
270 ¼ 90 (3/2) p ¼ p/2
360 ¼ 0 2p ¼ 0p
360 ¼ 0 2p ¼ 0p

540 ¼ 180 3p ¼ p
540 ¼ 180 ¼ 180 3p ¼ p ¼ p
Just as angle measurements are periodic in 360�, they are also periodic in 2p radians.

Using p is really no different than getting used to meters rather than using feet for measuring

distances (or the reverse if you didn’t grow up in the United States).
.newnespress.com

http://www.newnespress.com/

Complex Numbers and Exponentials 19
We are going to see this same concept later in sampling theory, where everything tends to

wrap around, or behave periodically. We can visualize this concept as traveling either

clockwise (negative rotation) or counterclockwise (positive rotation) around the circle.

There is one more DSP convention to be aware of. The real component (we used X in the

preceding discussion) is usually called the “I,” or in-phase component, and the imaginary

component (we used Y in the preceding discussion) is usually referred to as the “Q,” or

quadrature phase component. In many DSP algorithms, the digital signal processing must be

performed simultaneously on both I and Q data streams, which we now know simply

represent the signal’s movement, over time, within the two dimensions of our complex

number plane.
www.newnespress.com

http://www.newnespress.com/

Digital Signal Processing 101. DOI: 10.1016/B978-1-85617-921-8.00007-9
2010 Elsevier Inc. All rights reserved. 21
CHAPTER 3
Sampling, Aliasing, and Quantization
Now that we have the basic background material covered, let’s start talking about DSP.

The starting point we need to understand is sampling and its effect on the signal of interest. To take

an analog signal and convert it to a digital signal, we need to sample the signal using a device

called an analog-to-digital converter (ADC). The ADC measures the signal at rapid intervals,

and these measurements are called samples. It outputs a digital signal proportional to the

amplitude of the analog signal at that instant. This scenario can be compared to looking at an

object with only a strobe light for illumination. You can see the object only when the strobe

light flashes. If the object is not moving, then everything looks pretty much the same, as if we

had used a normal, continuous light source. Things get interesting when we look at a moving

object with the strobe light. If the object ismoving rapidly, then the appearance of themotion can be

quite different from that viewed under normal light. We can also see strange effects even if the

object is moving fairly slowly, and we reduce the rate of the strobe light enough. Intuitively, we can

see that what is important is the rate of the strobe light compared to the rate of movement of the

illuminated object. As long as the light is strobing fast compared to the movement of the object, the

movement of the object looks very fluid and normal.When the light is strobing slowly compared to

the rate of object movement, the movement of the object looks funny, often like slow motion,

because we can see the object is moving, but we miss the sense of continuous, fluid movement.

Let’s examine one more example many of us experienced as children. Imagine trying to

make your own animated movie and sketching a character on index cards. We want to

depict this character moving, perhaps jumping and falling. We might sketch 20 or 40 cards,

each showing the same character in sequential stages of this motion, with just small

movement changes from one card to the next. When we are finished, we can show it to our

friends by holding one edge of the deck of index cards and flipping through it quickly by

thumbing the other edge. We see our character in this continuous motion of jumping and

falling by flipping through the deck of index cards in a second or two.

Actually, whenever we watch TV, this same thing is occurring. But the TV is updating the

screen at about 60 times per second, which is rapid enough that we don’t notice the separate

frames, and we think that we are seeing continuous motion.

So it makes sense that if we sample a signal very fast compared to how rapidly the signal

is changing, we get a pretty accurate sampled representation of the signal, but if we sample

too slow, we see a distorted version of the signal.

22 Chapter 3

www
The graphs in Figures 3.1 and 3.2 show two different sinusoidal signals being sampled. The

slower moving signal (lower frequency) in Figure 3.1 can be represented accurately with the

indicated sample rate, but the faster moving signal (higher frequency) in Figure 3.2 is not

accurately represented by our sample rate. In fact, it actually appears to be a slow-moving

(low frequency) signal, as indicated by the dashed line. This shows the importance of

sampling fast enough for a given frequency signal.
Time
axis

Figure 3.1:
Sampling a low-frequency signal (arrows indicate sample instants).

Time
axis

Figure 3.2:
Sampling a high-frequency signal (same sample instants).
The dashed line in Figure 3.2 shows how the sampled signal will appear if we connect the

sample dots and smooth out the signal. Notice that since the actual (solid line) signal is

changing so rapidly between sampling instants, this movement is not apparent in the sampled

version of the signal. The sampled version actually appears to be a lower frequency signal

than the actual signal. This effect is known as aliasing.
.newnespress.com

http://www.newnespress.com/

Sampling , Aliasing , and Quantization 23
We need a way to quantify how fast we must sample to accurately represent a given signal.

We also need to better understand exactly what is happening when aliasing occurs. The idea

may seem strange, but in some instances aliasing can be useful.

Let’s go back to the analogy of the strobe light and try another thought experiment. Imagine

a spinning wheel with a single dot near the edge. Let’s set the strobe light to flash every

1/8 of a second, or 8 times per second. Figures 3.3 through 3.10 show what we see over

six flashes, depending on how fast the wheel is rotating. Time increments from left to right

in all figures.
Wheel rotating counterclockwise once per second, or 1 Hz

Figure 3.3:
The dot moves 1/8 of a revolution, or p/4 radians with each strobe flash.

Wheel rotating counterclockwise twice per second, or 2 Hz

Figure 3.4:
Now the dot moves twice as fast, ¼ of a revolution, or p/2 radians with each strobe flash.

Wheel rotating counterclockwise 4 times per second, or 4 Hz

Figure 3.5:
The dot moves ½ of a revolution, or p radians with each strobe flash. It appears to alternate

on each side of the circle with each flash. Can you be sure which direction the wheel
is rotating?

www.newnespress.com

http://www.newnespress.com/

Wheel rotating counterclockwise 7 times per second, or 7 Hz

Figure 3.7:
The dot moves almost a complete revolution counterclockwise, 7/4p radians with each strobe flash.

Now it definitely appears to be moving backward (clockwise).

Wheel rotating counterclockwise 8 times per second, or 8 Hz

Figure 3.8:
It looks as though the dot stopped moving! Here, the dot completes exactly one revolution (2p

radians) every strobe interval. You can’t tell whether the wheel is moving at all, spinning forward or
backward. In fact, could the wheel be rotating twice per strobe interval (4p radians)?

Wheel rotating counterclockwise 9 times per second, or 9 Hz

Figure 3.9:
The image sure looks the same as when the wheel was rotating once per second, or 1 Hz. In fact,

the wheel is moving 9/4p radians with each strobe flash.

Wheel rotating counterclockwise 6 times per second, or 6 Hz

Figure 3.6:
The dot moves counterclockwise 3/4 of a revolution, or 3/2p radians with each strobe flash. But it

appears to be moving backward (clockwise).

24 Chapter 3

www.newnespress.com

http://www.newnespress.com/

Wheel rotating backward (clockwise) once per second, or −1 Hz

Figure 3.10:
Now we stopped the wheel and started rotating backward at �p/4 radians with each strobe flash.
Notice that this appears exactly the same as when we were rotating forward at 7/4p radians with

each strobe flash.

Sampling , Aliasing , and Quantization 25
Doesn’t all this look familiar from the preceding chapter? The positive rotation is

wrapping around and appears like a negative rotation as the wheel speed increases.

And the rotation perception appears periodic in 2p radians per strobe, just like the angle

measurements.

The reality is that once we sample a signal (this is what we are doing by flashing the

strobe light), we cannot be sure what has happened in between flashes. Our natural

instinct is to assume that the signal (or dot in our example) took the shortest path from

where it appears in one flash and then in the subsequent flash. But as we can see in the

preceding figures, this assumption can be misleading. The dot could be moving around

the circle in the opposite direction (taking the longer path) to get to the point where we

see it on the next flash. Or imagine that the wheel is rotating in the assumed direction,

but it rotates one full revolution plus “a little bit extra” every flash (the 9 Hz diagram).

What we see is only the “a little bit extra” on every flash. For that matter, the wheel

could go around 10 times plus the same “a little bit extra,” and we could not tell the

difference.

3.1 Nyquist Sampling Rule

To prevent this confusion, we have to come up with a sampling rule, or convention. What we

are going to agree is that we will always sample (or strobe) at least twice as fast as the

frequency of the signal we are interested in. And in reality, we need to have some margin,

so we had better make sure we are sampling more than twice as fast as our signal. Going back

to the preceding example, at what point do things start to get fishy?

Consider what happens when we start the wheel moving slowly in a counterclockwise

direction. Everything looks fine until we reach a rotational speed of 4 Hz. At this point the

dot will appear to be alternating on either side of the circle with each strobe flash. Once we

have reached this point, we can no longer tell which direction the wheel is rotating; it will

look the same rotating both directions. This is the critical point, where we are sampling at
www.newnespress.com

http://www.newnespress.com/

26 Chapter 3

www
exactly twice as fast as the signal. The sampling speed is the frequency of the strobe light

(this would be analogous to the ADC sample frequency), eight times per second, or 8 Hz. The

rotational speed of the wheel (our signal) is 4 Hz.

If we spin the wheel any faster, it appears as though it begins to move backward (clockwise),

and by the time we reach a rotational speed of 8 Hz, it appears to stop altogether. Spinning

still faster will appear as though the wheel moves forward again, until it again appears to

start going backward and the cycle repeats.

To summarize, whenever you have a sampled signal, you cannot really be sure of its

frequency. But if you assume that the rule was followed—that the signal was sampled at

more than twice the frequency of the signal itself—then the sampled signal will really

represent the same frequency as the actual signal prior to sampling. The critical frequency

that the signal must not ever exceed, which is one half of the sampling frequency, is called

the Nyquist frequency.

If we follow this rule, then we can avoid the aliasing phenomenon we demonstrated

with the moving wheel example earlier. Normally, the ADC converter frequency is

selected to be high enough to sample the signal on which we want to perform digital signal

processing. To make sure that unwanted signals above the Nyquist frequency do not enter

the ADC and cause aliasing, the desired signal in usually passed through an analog

low-pass filter, which attenuates any unwanted high-frequency content signals, just prior

to the ADC.

A common example is the telephone system. Our voices are assumed to have a maximum

frequency of about 3600 Hz. At the microphone, our voice is filtered by an analog filter to

eliminate, or at least substantially reduce, any frequencies above 3600 Hz. Then the

microphone signal is sampled at 8000 Hz, or 8 kHz. All subsequent digital signal processing

occurs on this 8 kSPS (kilo-samples per second) signal. That is why if you hear music in

the background while on the telephone, the music will sound flat or distorted. Our ears

can detect up to about 15 kHz frequencies, and music generally has frequency content

exceeding 3600 Hz. But little of this higher frequency content will be passed through the

telephone system.

In the next chapter, we will start representing our signals and sampling in the frequency

(or spectral) domain. This means that when we plot the signal spectrum, the X axis will

represent increasing frequency (see Figure 3.11).

So far, we have covered the most important effects of sampling, but there remains one last

issue related to sampling: quantization. We saw earlier how a digital signal is represented

numerically and how we must be sure that the numbers representing the sampled signal do

not exceed the range of our binary or hexadecimal number range.
.newnespress.com

http://www.newnespress.com/

Frequency
axis

Sampling
frequency

Nyquist
frequency

Our signal should have a
frequency content only
in this area (below
Nyquist) to avoid
aliasing effect

Figure 3.11

Sampling , Aliasing , and Quantization 27
3.2 Quantization

What happens if the signals are very small? Remember in our discussion of signed fractional

8-bit fixed-point numbers, the range of values we could represent was from 1 to þ1 (well,

almost þ1). The step size was 1/128, which works out to 0.0078125. Let’s say the signal has

an actual value of 0.5030 at the instant in time we sample it, using an 8-bit ADC. How

closely can the ADC represent this value? Let’s compare this to a signal that is 1/10 the level

of our first sample, or 0.0503. And again, consider a signal with a value 1/10 the level of the

second sample, at 0.00503. The following table shows the possible outputs from an 8-bit

ADC at each of these signal levels and the error that will result in the conversion of the actual

signal to sampled signal value. We say “possible outputs” because we are assuming that

the ADC will output either the value immediately above or below the actual input signal

level.
Table 3.1: Quantization effect with 8-bit signal

Signal

Level

Closest 8-Bit

Representation

Hexadecimal

Value Actual Error

Error as a Percent of

Signal Level

0.50300 0.5000000 0x40 0.00300 0.596%
0.50300 0.5078125 0x41 0.0048128 0.957%
0.05030 0.0468750 0x06 0.003425 6.809%
0.05030 0.0546875 0x07 0.0043875 8.722%
0.00503 0.000000 0x00 0.00503 100%
0.00503 0.0078125 0x01 0.0027825 55.32%
The actual error level remains more or less in the same range over the different signal ranges.

This error level will fluctuate, depending on the exact signal value, but with our 8-bit signed

example, the error level will always be less than 1/128, or 0.0087125. This fluctuating error
www.newnespress.com

http://www.newnespress.com/

28 Chapter 3

www
signal will be seen as a form of noise, or unwanted signal, by the DSP system. It is called

quantization noise.

When the signal level is fairly large for the allowable range (0.503 is close to one half the

maximum value), the percentage error is small ¼ less than 1%. As the signal level gets

smaller, the error percentage gets larger, as the table shows.

The quantization noise is always present and is, on average, the same level (any noise-like

signal will rise and fall randomly, so we usually concern ourselves with the average level).

But as the input signal decreases in level, the quantization noise becomes more significant in

a relative sense. Eventually, for very small input signal levels, the quantization noise can

become so significant that it degrades the quality of whatever signal processing is to be

performed. Think of it as like static on a car radio. As you get farther from the radio station,

the radio signal gets weaker, and eventually the static noise makes it difficult or unpleasant to

listen to, even if you increase the volume.

So what can we do if our signal sometimes is strong (e.g., 0.503) and other times is weak

(e.g., 0.00503)? Another way of saying this is that the signal has a large dynamic range. The

dynamic range describes the ratio between the largest and smallest value of the signal—in

this case, 100.

Suppose we exchange our 8-bit ADC for a 16-bit ADC? Then our maximum range is still

from 1 to þ1, but our step size is now 1/32,768, which works out to 0.000030518. Let’s

make a 16-bit table similar to the 8-bit example.
Table 3.2: Quantization effects with 16-bit signal

Signal

Level

Closest 16-Bit

Representation

Hexadecimal

Value Actual Error

Error as a Percent

of Signal Level

0.50300 0.5029907 0x4062 0.000009277 0.00185%
0.50300 0.5030212 0x4063 0.00002124 0.00422%
0.05030 0.0502930 0x0670 0.00000703 0.0140%
0.05030 0.0503235 0x0671 0.0000235 0.0467%
0.00503 0.005005 0xA4 0.0000251 0.499%
0.00503 0.0050354 0xA5 0.0000054 0.107%
What a difference! The actual error is always less than our step size, 1/32,768. But the

error as a percent of signal level is dramatically improved. This is what we usually care

about in signal processing. Because of the much smaller step size of the 16-bit ADC,

the quantization noise is much less, allowing even small signals to be represented with very

good precision (<1%). Notice that even for our small signal level, 0.00503, the error is

about 0.1%.
.newnespress.com

http://www.newnespress.com/

Sampling , Aliasing , and Quantization 29
Another way of describing this scenario is to introduce the concept of signal-to-noise

power ratio, or SNR. This ratio describes the power of the largest signal compared to the

background noise. This can be very easily seen on a frequency domain or spectral plot

of a signal. There can be many sources of noise, but for now, we are considering only the

quantization noise introduced by the ADC sampling.

SNR is usually expressed in decibels (denoted dB), using a logarithmic scale. The SNR of an

ideal ADC can be determined by the following equation:

SNRquantizationðdBÞ ¼ 6:02�ðnumber of bitsÞ þ 1:76

Basically, for each additional bit of the ADC, 6 dB of SNR is gained. An 8-bit ADC is
capable of representing a signal with an SNR of about 48 dB, a 12-bit ADC can do better at

72 dB, and a 16-bit ADC will give up to 96 dB. This accounts only for the effect of

quantization noise; in practice there are other effects that also will degrade SNR in a system.

There is one last important point regarding decibels. They are very commonly used in many

areas of digital signal processing subsystems. A decibel is simply a signal power ratio, similar to

a percentage. But because of the extremely high ratios commonly used (a billion is not

uncommon), it is convenient to express this amount logarithmically. The logarithmic

expression also allow chains of circuits or signal processing operations, each with its own ratio

(e.g., of output power to input power), to simply be added up to find the final ratio.

Where people commonly get confused is in differentiating between signal levels or amplitude

(voltage if an analog circuit) and signal power. Power measurements are virtual in the digital

world but can be directly measured in analog circuits in which DSP systems interface with.

Two definitions of dB are commonly used:

dBvoltage¼ dBdigital value ¼ 20 � logðvoltage signal 1=voltage signal 2Þ
dBpower ¼ 10 � logðpower signal 1=power signal 2Þ

The designations “signal 1” and “signal 2” depend on the situation. For an RF power
amplifier, the dB of gain will be 10 log (output power/input power). For an ADC, the dB of

SNR will be 20 log (maximum input signal/quantization noise signal level). For a DAC, the

dB of spurious free dynamic range will be 20 log (maximum output signal level/largest

unwanted frequency component level generated by DAC circuits).

So dB can refer to many different ratios. But it is easy to get confused whether to use to the

multiplicative factor of 10 or 20 without understanding the reasoning behind this.

Voltage squared is proportional to power. If a given voltage is doubled in a circuit, it requires

four times as much power. This can be easily derived from the basic Ohm’s law equation:

Power ¼ Voltage2=Resistance
www.newnespress.com

http://www.newnespress.com/

30 Chapter 3

www
In many analog circuits, signal power is used because that is what the lab instruments work

with, and while different systems may use different resistance levels (which affects voltage),

power is universal (however, 50 ohm is the most common standard in most analog systems).

The important point is that since voltage is squared, this effect needs to be taken into account

in the computation of logarithmic decibel relation. Remember, log xy ¼ y log x. Hence, the

multiplication factor of 2 is required for voltage ratios, changing the 10 to a 20.

In the digital world, the concepts of resistance and power do not exist. A given signal has

specific amplitude, expressed in a digital numerical system (such as signed fractional or

integer, for example).

Understanding dB increases using the two measurement methods is important. Let’s look at

doubling of the amplitude ratio and doubling of the power ratio:

6:02 dBvoltage ¼ 6:02 dBdigital value ¼ 20 � logð2=1Þ
3:01 dBpower ¼ 10 � logð2=1Þ

This is why shifting a digital signal left 1 bit (multiply by 2) causes a 6 dB signal power
increase, and why so often the term 6 dB/bit is used in conjunction with ADCs, DACs, or

digital systems in general.

By the same reasoning, doubling in power to a radio frequency (RF) engineer means a 3 dB

increase. This will also impact the entire system. Coding gain, as used with error correcting

code methods, is based on power. All signals at antenna interfaces are defined in terms of

power, and the decibels used will be power ratios.

In both systems, ratios of equal power or voltage are 0 dB. For example, a unity gain

amplifier has a gain of 0 dB:

0 dBpower ¼ 10 � logð1=1Þ
A loss would be expressed as a negative dB—for example, a circuit whose output is equal to
½ the input power:

3:01 dBpower ¼ 10 � logð1=2Þ
.newnespress.com

http://www.newnespress.com/

Digital Signal Processing 101. DOI: 10.1016/B978-1-85617-921-8.00008-0
2010 Elsevier Inc. All rights reserved. 31
CHAPTER 4
Frequency Response
When we have a sampled digital signal, we are ready to perform digital signal processing on

this signal. In the preceding chapter, we briefly touched on representing the signal in the

frequency domain. Usually, our goal is to modify the signal’s frequency representation.

This is normally performed using a filtering function. This is probably the most fundamental

of DSP functions. In the previous example of the telephone system, we talked about

sampling the voice signal at 8 kHz. Let’s say we want to build an automated system to detect

touch tones (on a touch-tone phone, whenever you press a number key, the phone creates

two specific tones or frequencies in the audio signal band; i.e., what you hear when pressing

the button). We could build a digital filter for each of the possible tones, feed the sampled

audio signal into each filter, and monitor the outputs of the filters. In this way, we could

detect when the telephone user presses the buttons, and which buttons are pressed, which is

exactly what touch-tone phone systems do.

4.1 Frequency Response and the Complex Exponential

In this chapter, we discuss the concept of frequency response. Then in the next chapter, we

will develop a way to relate a filter’s frequency and time response. First, let’s begin with

an intuitive way to understand the frequency response of a filter. From the preceding chapter,

we learned that we can create a complex exponential signal, which is just a positive or

negative frequency rotation about the unit circle (radius ¼ 1). Furthermore, when the

frequency of the complex exponential reaches the Nyquist frequency, we have reached

the maximum frequency that can be represented for a given sampling rate.

A complex exponential signal has the following form:

ejot ¼ cosðotÞ þ j sinðotÞ
or
ej2fp ¼ cosð2pftÞ þ j sinð2pftÞ
This is very similar to what we saw before. The earlier angle O has been replaced by ot or by

2pft. The significance of this is that we are no longer representing a point or vector on the

unit circle of the complex number plane (as determined by angle O). Now we are

32 Chapter 4

www
representing a time-varying signal. This signal will move about the unit circle with a

rotational speed of o radians per second. For a given o (rotational speed), we can determine

the position of the signal at any given point in time (denoted by “t”).

The second equation is equivalent to the first, except the rotational speed is expressed in

cycles (revolutions) per second, denoted by “f.” Make sure you understand this concept

before moving on because both forms will appear interchangeably in the DSP world:
.ne
t represents time, in seconds

o represents rotational speed, in rad/s (2p radians ¼ 1 revolution)

f represents rotational speed, in cycles (or revolutions) per second
The variables o and f simply describe the same thing, using different units, like inches and

centimeters. Recall that it takes exactly 2p radians to complete a full circle. So 1 cycle/s equals

2p rad/s, or o ¼ 2pf.

Both o and f denote the rotational speed in the counterclockwise direction. A negative value

for o or f means we are rotating in the opposite direction (clockwise). Let’s now consider

an example. Let the rotational speed equal to 1/8 of a circle per second (it takes 8 s to

complete 1 revolution). Therefore, f ¼ 1/8. Also, o ¼ 2pf or o ¼ p/4. This signal
(let’s call it “s”) can be described as follows:

sðtÞ ¼ ejpt=4 ¼ cosðpt=4Þ þ j sinðpt=4Þ
We can evaluate s(t) at any given time t. For example, see Table 4.1.
Table 4.1: Angular motion of complex exponential

Time (s) s(t) ¼ e jpt/4 Angle of s(t) (�) Angle of s(t) (rad)

0 1 0 0
1 0.707 þ0.707j 45 p/4
2 j 90 p/2
3 0.707 þ0.707j 135 3p/4
4 1 180 p
5 0.707 0.707j 225 5p/4 ¼ 3p/4
6 j 270 3p/2 ¼ p/2
7 0.707 0.707j 315 7p/8 ¼ p/4
8 1 360 ¼ 0 2p ¼ 0
We can also plot s(t). Figure 4.1 shows separate plots of the real (dotted line) part of

s(t) and the imaginary (dashed line) part of s(t). On a separate plot in Figure 4.2 is the

complete signal s(t) on the unit circle of the complex number plane with time labels at

each point.
wnespress.com

http://www.newnespress.com/

t=4

s(t) = ejπt/4

X (real)
 axis

t=7

t=0

t=1

t=2

t=3

t=5

t=8

Y (imag)
 axis

Figure 4.2

Time
axis

t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=8 t=9 t=10
t=0

Figure 4.1

Frequency Response 33
4.2 Normalizing Frequency Response

Notice that we are measuring the value of our signal once per second. It turns out that setting

the sampling frequency Fs equal to 1 s is often convenient. This process is called

normalization. The frequency response of a filter can be expressed as a normalized response,

where the input frequency is expressed as a fraction of sampling frequency Fs.

Let’s illustrate this concept using the telephone system as an example. In this case,

Fs ¼ 8000 Hz, FNyquist ¼ 4000 Hz, and one of the touch tones we need to detect is at 770 Hz.

We could build a filter with a passband (portion of frequency band to “pass through” the
www.newnespress.com

http://www.newnespress.com/

34 Chapter 4

www
signal, with minimum attenuation) to detect 770 Hz. Since we need a little tolerance, let’s

make the passband from 760 to 780 Hz and our desired stopbands (portion of frequency band

to “stop” or block the signal, with maximum attenuation) from 0 to 760 Hz and from 780 to

4000 Hz (recall FNyquist ¼ Fs/2). Do not forget that we are assuming no signal at frequencies

above FNyquist; this has been already taken care of before sampling. This example could

also be expressed as a passband from 0.0950 to 0.0975 Fs, and stopbands from 0 to 0.0950 Fs
and from 0.0975 to Fs /2. All these frequencies have been normalized by dividing with our

Fs ¼ 8000 Hz. When you are designing a digital filter, it is common to normalize the

frequency response in terms of Fs.
Table 4.2: Mapping filter to normalized frequency

Touch-Tone BandPass

Detection Filter Example Actual Frequency (Hz)

Normalized Frequency

(Fs ¼ 8000 Hz)

Touch tone frequency 770 0.09625 Fs (770/8000)
Start of passband 760 0.0950 Fs (760/8000)
End of passband 780 0.0975 Fs (780/8000)
Nyquist frequency 4000 0.50 Fs (4000/8000)
Now let’s get back to frequency response. Suppose we input a series of complex exponential

signals into our filter. Each exponential will be a little higher frequency than the previous one.

We check the output of each frequency. If we input a complex exponential of a given

frequency, we will see at the output a complex exponential signal of the same frequency.

The reason is that a digital filter is a linear device, so it cannot create new frequencies or change

the frequency of a signal passing through it. What it can do is change the amplitude and phase

of the input signal. Let’s leave the phase part out of it for now and focus on the amplitude.

4.3 Sweeping across the Frequency Response

Suppose we build a digital signal generator that can create a complex exponential signal of

any frequency we desire, from 0 to FNyquist. (This is called a numerically controlled

oscillator, or NCO, and is common in digital communication systems.) We drive our filter

with the NCO, incrementing the frequency in small steps, and we measure the amplitude

of the filter output signal. If we plot these data, we will have the magnitude response of our

filter with all frequencies from 0 to FNyquist .

If we follow these steps for the touch-tone filter described previously, we will get zero output

until we input a complex exponential at frequency 0.0950 Fs. From frequency 0.0950 Fs
until 0.0975 Fs, the complex exponential will pass through our filter and could be detected.

Above 0.0975 Fs up until FNyquist, we will get zero output. This type of filter is called a

bandpass filter because it allows only a portion of the frequency band to pass, and it blocks

frequencies above and below this band.
.newnespress.com

http://www.newnespress.com/

Frequency Response 35
Now remember that we can also have negative frequency complex exponentials, so we could

also do a similar plot from 0 to FNyquist. For the vast majority of digital filters, the

frequency response is the same whether the input is a positive or negative frequency. All

filters with real coefficients have this property.

Referencing everything to Fs is also convenient when using our NCO. The NCO does not

know that it is being clocked at 8 kHz sampling frequency. Instead, when we program it,

we need to set the desired frequency output in terms of Fs. For example, to test our filter

with an input of 770 Hz, we need to set the NCO to produce a complex exponential at

0.09625 Fs or (770/8000) Fs.

4.4 Example Frequency Responses

After this lengthy explanation, let’s look at some examples of frequency responses to help

clarify things. In this chapter, we depict the frequency response of ideal filters. First, we show

low pass, then high pass, and lastly a bandpass, like our touch-tone 770 Hz detector.

Note that the filter response repeats at intervals of Fs. This is an artifact of sampling, as

explained in the preceding chapter. The valid portion of the sampled frequency response is

from –FNyquist to þFNyquist. Just as we saw the apparent rate of rotation of the wheel with the

red dot reach a maximum at a rate of ½ the sample rate and then slowly decrease until it

finally stopped when the rate of rotation equaled the sample rate, the frequency response

of the filter will behave similarly between zero and Fs. So the filter response near zero will

be the same as that near Fs, and the filter response just below FNyquist will be the same as

just above FNyquist. In fact, since this phenomenon is well understood, there is really no

reason to plot a digital filter’s response above FNyquist and below –FNyquist. We plot it in

Figure 4.3 mainly to show this point.
Frequency
axis

FNyquist Fs

Ideal low pass filter

-Fs -FNyquist

Normalized
filter output
magnitude axis

1

Fcutoff-Fcutoff

Figure 4.3

www.newnespress.com

http://www.newnespress.com/

36 Chapter 4

www
The low-pass filter passes frequencies near zero. Both positive and negative frequencies

are passed. When the frequency reaches the chosen Fcutoff, the filter no longer passes the

signal. As we approach any multiple of Fs, we see the aliasing of the filter response, as

shown in Figure 4.4.
Frequency
axis

FNyquist Fs

Ideal low pass filter
with tapered response

−Fs −FNyquist

Normalized
filter output
magnitude axis1

Figure 4.4
In Figure 4.4 we gradually reduced the low-pass filter response as it approaches Fcutoff.

This example shows that it is possible to design for an arbitrary passband response and a

gradual transition to the stopband, not just a flat response in the filter passband with an

abrupt transition at Fcutoff.

The high-pass filter in Figure 4.5 passes frequencies near FNyquist. Both positive and negative

frequencies are passed. When the frequency falls below Fcutoff, the filter no longer passes

the signal. Aliasing is again seen by the symmetry about FNyquist.
Frequency
axis

FNyquist
Fs

Ideal high pass filter

-Fs -FNyquist

Normalized
filter output
magnitude axis

1

Fcutoff-Fcutoff

Figure 4.5

.newnespress.com

http://www.newnespress.com/

Frequency Response 37
Bandpass (do not confuse this with the early term “passband”) filters pass only a specific

band, or portion of frequencies, that does not include either DC (0 Hz) or FNyquist. The

bandpass filter in Figure 4.6 again shows the alias effect. This repeats to infinity at every

multiple of Fs. Going back to Figure 4.3, the low-pass filter frequency plot, we see the

alias centered at Fs. So according to our plot, the filter will pass frequencies around Fs,

even though this is above our Fcutoff. So if we input a signal near Fs to an ADC, it will

appear as a frequency near zero and be passed by our filter.
Frequency
axis

FNyquist Fs

Ideal band pass filter

-Fs -FNyquist

Normalized
filter output
magnitude axis

1

Figure 4.6
This concept is difficult to understand, which is why there is so much repetition on this

theme. Do not be worried if you have to go back and forth a few times to review the diagrams

or earlier chapters to really satisfy yourself that you understand it. It is a key concept for

much of what follows, and unfortunately, some experienced people working in the DSP

industry still have trouble with these fundamentals.

4.5 Linear Phase Response

Earlier, we decided to ignore the phase response. The reason is that, for most filters, the

phase response is not something we need to worry about. The most common type of digital

filter is called the finite impulse response, or FIR, and it has what is called a linear phase

response. This means that every frequency passing through the filter experiences the

same delay, which works out to a linearly increasing phase as the frequency increases.

This sounds complicated, but the short explanation is that for FIR filters, we do not need

to worry about phase response. This is the type of filter we will discuss in detail in the

next chapter, and is the most common DSP function implemented.
www.newnespress.com

http://www.newnespress.com/

38 Chapter 4

www
4.6 Normalized Frequency Response Plots

Now we have one more topic to finish out this chapter. We now know that it is

sufficient to describe a digital filter response from –FNyquist to þFNyquist. But frequently,

in textbooks or filter design programs, the frequency response is given in terms

of normalized radians per second, o, rather than normalized frequency, as shown in

Figure 4.7.
w axis

π 2π

Ideal low pass filter

-2π -π

Normalized
filter output
magnitude axis

1

Figure 4.7
Again, let’s refer back to our complex exponential, ejot. We are sampling at a normalized

frequency of 1 sample/s, or 2p rad/s. This means that a complex exponential of frequency

p rad/s will correspond to FNyquist, and 2p rad/s will correspond to Fs. This is exactly what we

see when we plot the frequency response using the o axis.

As a review, see the following table, which gives sample low-pass response cutoff both in

terms of o and Fs. It is important to be comfortable going between these two representations

because most filter design programs are defined in terms of o, but to design your filter,

you need to be able to translate to the real frequencies used in your application to the filter

response in terms of o.

The cutoff point is defined as a percentage of the maximum bandwidth possible for a

low-pass filter, with 100% becoming an all-pass filter (every frequency passes through).

Normally, the filter frequency response is symmetric, so Fcutoff ¼ –Fcutoff.
.newnespress.com

http://www.newnespress.com/

Table 4.3: Converting radians and Hertz

% of Maximum Possible Low-Pass

Filter Bandwidth V (rad/s) Fs (Hz or cycles/s)

10% p/10 Fs/20
10% p/10 Fs/20
25% p/4 Fs/8
50% p/2 Fs/4
80% 4p/5 2Fs/5

100% p Fs/2 or FNyquist

Frequency Response 39

www.newnespress.com

http://www.newnespress.com/

Digital Signal Processing 101. DOI: 10.1016/B978-1-85617-921-8.00009-2
2010 Elsevier Inc. All rights reserved. 41
CHAPTER 5
Finite Impulse Response (FIR) Filters
This chapter focuses on the workhorse of DSP: the finite infinite response (FIR) filter.

We discuss three main topics. First, we talk about the structure of an FIR filter, how to

build one, and some of its properties. Next, we show how, given the filter coefficients, to

compute the frequency response of the filter (normally, this is done with software, but we can

gain insight by understanding how to perform this procedure). Last, we show a method to

compute coefficients to meet a given frequency response. This last step is what is commonly

required of a DSP designer: to find the number and value of filter coefficients required for

frequency response required by the application. Again, this procedure is normally performed

with software, but we need to gain insight as to what is involved. Filter design is a process in

which we cannot have everything, and compromise is necessary. To use software tools to

design filters, we need to understand what the different trade-offs are and how they interact.

5.1 FIR Filter Construction

Let’s begin with how to construct an FIR filter. An FIR filter is built of multipliers and

adders. It can be implemented in hardware or software, and run in a serial fashion, parallel

fashion, or some combination. We focus on the parallel implementation because it is the most

straightforward to understand.

FIR filters, and DSP in general, often use delay elements. A delay element is simply

a clocked register, and a series of delay elements simply comprise a shift register.

However, in DSP, a one-sample delay element is often represented as a box with a z 1

symbol. This comes from the mathematical properties of the z-transform, which we have

not covered in the interest of minimizing mathematics (although there is a discussion of

z-transform in Appendix D). But we cannot skip the use of z 1 representing a single clock

or register delay because it is prevalent in DSP diagrams and literature. We use it here so

that you can get accustomed to seeing this representation.

A key property of an FIR filter is the number of taps, or multipliers, required to compute each

output. In a parallel implementation, the number of taps equals the number of multipliers.

In a serial implementation, one multiplier is used to perform all the multiplication operations

sequentially for each output. Assuming single clock cycle multipliers, a parallel FIR filter

can produce one output each clock cycle, and a serial FIR filter would require N clock cycles

42 Chapter 5

www
to produce each output, where N is the number of filter taps. Filters can sometimes have

hundreds of taps. Figure 5.1 shows a small five-tap parallel filter.
z-1

X X X X X
C0 C1

Xk

Yk

Xk-1

∑

C2 C3 C4

Xk-2 Xk-3 Xk-4
z-1 z-1 z-1

Figure 5.1
The inputs and outputs of the FIR filter are sampled data. For simplicity, let’s assume that the

inputs, outputs, and filter coefficients Cm are all real numbers. The input data stream is

denoted as xk, and the output is yk. The “k” subscript is used to identify the sequence of data.

For example, xkþ1 follows xk, and xk 1 precedes xk. Often for the purpose of defining a

steady state response, we assume that the data streams are infinitely long in time, or that

k extends from –1 to þ1.

The coefficients are usually static (meaning they do not change over time) and determine

the filter’s frequency response.

In equation form, the filter could be represented as

yk ¼ C0 � xk þ C1 � xk 1 þ C2 � xk 2 þ C3 � xk 3 þ C4 � xk 4

It is just the sum of multipliers. Writing this equation could get pretty tedious as the
number of taps gets larger, so the following shorthand summation is often used:

yk ¼
X

i 0 to 4

Ci xk i

We can also make the equation for any length of filter. To make our filter of length N,
we simply replace the 4 (5 – 1 taps) with N – 1:

yk ¼
X

i 0 to N 1

Ci xk i

Another way to look at this is that the data stream . . .xkþ2, xkþ1, xk, xk 1, xk 2. . .
is sliding past a fixed array of coefficients. At each clock cycle, the data and

coefficients are cross-multiplied, and the outputs of all multipliers for that clock cycle

are summed to form a single output (this process is also known as dot product).
.newnespress.com

http://www.newnespress.com/

Finite Impulse Response (FIR) Filters 43
Then on the next clock cycle, the data is shifted one place relative to the coefficients

(which are fixed), and the process repeated. This process is known as convolution.

The FIR structure is very simple, yet it has the capability to create almost any frequency

response, given a sufficient number of taps. This structure is very powerful, but

unfortunately not at all intuitive. It’s somewhat analogous to the brain—a very simple

structure of interconnected neurons, yet the combination can produce amazing results.

During the rest of the chapter, we try to gain some understanding of how this happens.

Following is an example using actual numbers, to illustrate this process called convolution.

To start, let’s define a filter of 5 coefficients {C0,C1,C2,C3,C4} ¼ {1,3,5,3,1}. Our xk
sequence is defined as {x0,x1,x2,x3,x4,x5} ¼ {–1,1,2,1,4,–1} and xk ¼ 0 for k < 0 and for

k > 6 (everywhere else). Let’s start by computing y 1 ¼
P

i¼0 to N 1 Ci x 1 i.

We can see that the subscript on x will be negative for all i ¼ 0 to 4. In this example,

yk ¼ 0 for k < 0. This means that until there is a non-zero input xk, the output yk will also

be zero. Things start to happen at k ¼ 0 because x0 is the first nonzero input:

y 1 ¼
X

i 0 to N 1

Ci x0 i ¼ ð1Þð0Þ þ ð3Þð0Þ þ ð5Þð0Þ þ ð3Þð0Þ þ ð1Þð0Þ ¼ 0

y0 ¼
X

i 0 to N 1

Ci x0 i ¼ ð1Þð 1Þ þ ð3Þð0Þ þ ð5Þð0Þ þ ð3Þð0Þ þ ð1Þð0Þ ¼ 1

y1 ¼
X

i 0 to N 1

Ci x0 i ¼ ð1Þð1Þ þ ð3Þð 1Þ þ ð5Þð0Þ þ ð3Þð0Þ þ ð1Þð0Þ ¼ 2

y2 ¼
X

i 0 to N 1

Ci x0 i ¼ ð1Þð2Þ þ ð3Þð1Þ þ ð5Þð 1Þ þ ð3Þð0Þ þ ð1Þð0Þ ¼ 0

y3 ¼
X

i 0 to N 1

Ci x0 i ¼ ð1Þð1Þ þ ð3Þð2Þ þ ð5Þð1Þ þ ð3Þð 1Þ þ ð1Þð0Þ ¼ 9

y4 ¼
X

i 0 to N 1

Ci x0 i ¼ ð1Þð4Þ þ ð3Þð1Þ þ ð5Þð2Þ þ ð3Þð1Þ þ ð1Þð 1Þ ¼ 19

y5 ¼
X

i 0 to N 1

Ci x0 i ¼ ð1Þð 1Þ þ ð3Þð4Þ þ ð5Þð1Þ þ ð3Þð2Þ þ ð1Þð1Þ ¼ 23

y6 ¼
X

i 0 to N 1

Ci x0 i ¼ ð1Þð0Þ þ ð3Þð 1Þ þ ð5Þð4Þ þ ð3Þð1Þ þ ð1Þð2Þ ¼ 22

y7 ¼
X

i 0 to N 1

Ci x0 i ¼ ð1Þð0Þ þ ð3Þð0Þ þ ð5Þð 1Þ þ ð3Þð4Þ þ ð1Þð1Þ ¼ 8

y8 ¼
X

i 0 to N 1

Ci x0 i ¼ ð1Þð0Þ þ ð3Þð0Þ þ ð5Þð0Þ þ ð3Þð 1Þ þ ð1Þð4Þ ¼ 1

y9 ¼
X

i 0 to N 1

Ci x0 i ¼ ð1Þð0Þ þ ð3Þð0Þ þ ð5Þð0Þ þ ð3Þð0Þ þ ð1Þð 1Þ ¼ 1

y10 ¼
X

i 0 to N 1

Ci x0 i ¼ ð1Þð0Þ þ ð3Þð0Þ þ ð5Þð0Þ þ ð3Þð0Þ þ ð1Þð0Þ ¼ 0
www.newnespress.com

http://www.newnespress.com/

44 Chapter 5

www
y11 ¼
X

i 0 to N 1

Ci x0 i ¼ ð1Þð0Þ þ ð3Þð0Þ þ ð5Þð0Þ þ ð3Þð0Þ þ ð1Þð0Þ ¼ 0

y12 ¼
X

i 0 to N 1

Ci x0 i ¼ ð1Þð0Þ þ ð3Þð0Þ þ ð5Þð0Þ þ ð3Þð0Þ þ ð1Þð0Þ ¼ 0

This procedure is definitely tedious. There are a couple of points to notice. Follow the input
x4 ¼ 4 (bold) in our example. See how it moves across, from one multiplier to the next. Each

input sample xk is multiplied by each tap in turn. Once it passes through the filter, that input

sample is discarded and has no further influence on the output. In our example, x4 is

discarded after computing y8.

Once the last nonzero input data xk has shifted its way through the filter taps, the output data

yk will go to zero (this starts at k ¼ 10 in our example).

Now let’s consider a special case in which xk ¼ 1 for k ¼ 0, and xk ¼ 0 for k 6¼ 0. This

means that we have only one nonzero input sample, and it is equal to 1. Now if we again

compute the output, which is simpler this time, we get

y 1 ¼
X

i 0 to N 1

Ci x0 i ¼ ð1Þð0Þ þ ð3Þð0Þ þ ð5Þð0Þ þ ð3Þð0Þ þ ð1Þð0Þ ¼ 0

y0 ¼
X

i 0 to N 1

Ci x0 i ¼ ð1Þð1Þ þ ð3Þð0Þ þ ð5Þð0Þ þ ð3Þð0Þ þ ð1Þð0Þ ¼ 1

y1 ¼
X

i 0 to N 1

Ci x0 i ¼ ð1Þð0Þ þ ð3Þð1Þ þ ð5Þð0Þ þ ð3Þð0Þ þ ð1Þð0Þ ¼ 3

y2 ¼
X

i 0 to N 1

Ci x0 i ¼ ð1Þð0Þ þ ð3Þð0Þ þ ð5Þð1Þ þ ð3Þð0Þ þ ð1Þð0Þ ¼ 5

y3 ¼
X

i 0 to N 1

Ci x0 i ¼ ð1Þð0Þ þ ð3Þð0Þ þ ð5Þð0Þ þ ð3Þð1Þ þ ð1Þð0Þ ¼ 3

y4 ¼
X

i 0 to N 1

Ci x0 i ¼ ð1Þð0Þ þ ð3Þð0Þ þ ð5Þð0Þ þ ð3Þð0Þ þ ð1Þð1Þ ¼ 1

y5 ¼
X

i 0 to N 1

Ci x0 i ¼ ð1Þð0Þ þ ð3Þð0Þ þ ð5Þð0Þ þ ð3Þð0Þ þ ð1Þð0Þ ¼ 0

y6 ¼
X

i 0 to N 1

Ci x0 i ¼ ð1Þð0Þ þ ð3Þð0Þ þ ð5Þð0Þ þ ð3Þð0Þ þ ð1Þð0Þ ¼ 0

Notice that the output is the same sequence as the coefficients. This should come as no
surprise when you think about it. This output is defined as the filter’s impulse response,

named as it occurs when the filter input is an impulse, or a single nonzero input equal

to 1. This gives the FIR filter its name. By “finite impulse response,” or FIR, this

indicates that if this type of filter is driven with an impulse, we will see a response

(the output) has a finite length, after which it becomes zero. This point may seem trivial,

but it is a very good property to have, as we will see in Chapter 8 on infinite impulse

response filters.
.newnespress.com

http://www.newnespress.com/

Finite Impulse Response (FIR) Filters 45
5.2 Computing Frequency Response

What we have covered so far is the mechanics of building the filter and how to

compute the output data, given the coefficients and input data. But we do not have

any intuitive feeling as to how this operation can allow some frequencies to pass

through and yet block other frequencies. A very basic understanding of a low-pass

filter can be gained by examining the concept of averaging. We all know that if we

average multiplication results, we get a smoother, more consistent output, and rapid

fluctuations are damped out. A moving average filter is simply a filter with all the

coefficients set to 1. The more filter taps, the longer the averaging, and the more

smoothing takes place. This gives an idea of how a filter structure can remove high

frequencies, or rapid fluctuations. Now imagine if the filter taps were alternating þ1,

–1, þ1, –1, . . . and so on. A slowly varying input signal has adjacent samples nearly the

same, and these cancel in the filter, resulting in a nearly zero output. This filter blocks

low frequencies. On the other hand, an input signal near the Nyquist rate has big changes

from sample to sample, and results in a much larger output. However, to get a more

precise handle on how to configure the coefficient values to get the desired frequency

response, we need to use a bit of math.

We start by computing the frequency response of the filter from the coefficients. Remember,

the frequency response of the filter is determined by the coefficients (also called the

impulse response).

Let us begin by trying to determine the frequency response of a filter by measurement.

Imagine if we take a complex exponential signal of a given frequency and use this

as the input to our filter. Then we measure the output. If the frequency of the

exponential signal is in the passband of the filter, it will appear at the output. But

if the frequency of the exponential signal is in the stopband of the filter, it will

appear at the output with a much lower level than the input, or not at all. Imagine

we start with a very low frequency exponential input and do this measurement; then

we slightly increase the frequency of the exponential input, measure again, and keep going

until the exponential frequency is equal to the Nyquist frequency. If we plot the level of the

output signal across the frequency from 0 to FNyquist, we will have the frequency response of

the filter. It turns out that we do not have to do all these measurements; instead, we can

compute this fairly easily. The computation is as follows:
yk ¼
P

i 0 to 4Ci xk i

This is the output of our five-tap sample filter.
yk ¼
P

i 1 to 1Ci xk i

Same equation, except that we are allowing an

infinite number of coefficients (no limits on filter length).
xm ¼ ejom ¼ cosðomÞ þ j sinðomÞ
 This is our complex exponential input at o radians

per sample.
Let’s take a closer look at the last equation and review a bit.
www.newnespress.com

http://www.newnespress.com/

46 Chapter 5

www
This last equation is just a sampled version of a signal rotating around the unit circle. We

sample at time ¼ m and then sample again at time ¼ m þ 1. So from one sample to the

next, our sampled signal will move o radians around the unit circle. If we are sampling at

10 times faster than we are moving around the unit circle, then it will take 10 samples to

get around the circle, and move 2p/10 radians each sample:

xm ¼ ej2pm=10 ¼ cosð2pm=10Þ þ j sinð2pm=10Þ, when o ¼ 2p=10

To clarify, the following table shows xm ¼ ej2pm/10 evaluated at various m. If you want to
check using a calculator, remember that the angles are in units of radians, not degrees.

We could next increase xm so that we rotate the unit circle every five samples. This is twice

as fast as before. I hope you are getting more comfortable with complex exponentials.

xm ¼ ej2pm=5 ¼ cosð2pm=5Þ þ j sinð2pm=5Þ, when o ¼ 2p=5
Table 5.1

m ¼ 0 x0 ¼ ej0 ¼ cos (0) þ jsin (0) 1 þ j0
m ¼ 1 x1 ¼ ejp/5 ¼ cos (p/5) þ jsin (p/5) 0.8090 þ j0.5878
m ¼ 2 x2 ¼ ej2p/5 ¼ cos (2p/5) þ jsin (2p/5) 0.3090 þ j0.9511
m ¼ 3 x3 ¼ ej3p/5 ¼ cos (3p/5) þ jsin (3p/5) 0.3090 þ j0.9511
m ¼ 4 x4 ¼ ej4p/5 ¼ cos (4p/5) þ jsin (4p/5) 0.8090 þ j0.5878
m ¼ 5 x5 ¼ ejp ¼ cos (p) þ jsin (p) 1 þ j0
m ¼ 6 x6 ¼ ej6p/5 ¼ cos (6p/5) þ jsin (6p/5) 0.8090 j0.5878
m ¼ 7 x7 ¼ ej7p/5 ¼ cos (7p/5) þ jsin (7p/5) 0.3090 j0.9511
m ¼ 8 x8 ¼ ej8p/5 ¼ cos (8p/5) þ jsin (8p/5) 0.3090 j0.9511
m ¼ 9 x9 ¼ ej9p/5 ¼ cos (9p/5) þ jsin (9p/5) 0.8090 j0.5878
m ¼ 10 x10 ¼ x0 ¼ ej2p ¼ cos (2p) þ jsin (2p) 1 þ j0
Now we go back to the filter equation and substitute the complex exponential input for xk i.
.n
yk ¼
P

i 1 to 1 Ci xk I
ewnespress.com
xm ¼ ejom ¼ cos(om) þ j sin(om)
 insert k�i for m
xk i ¼ ejo(k i) ¼ cos (o(k�i)) þ jsin (o(k�i))
 next, replace in xk i in filter equation
yk ¼
P

i 1 to 1 C i e
jo(k i)
There is a property of exponentials that we frequently need to use:

eðaþbÞ ¼ ea � eb and eða bÞ ¼ ea � e b

If you remember your scientific notation, this makes sense. For example,
102 � 103 ¼ 100 � 1000 ¼ 100, 000 ¼ 105 ¼ 10ð2þ3Þ

http://www.newnespress.com/

Finite Impulse Response (FIR) Filters 47
Now we go back to the filter equation:
yk ¼
X

i 1 to 1
Ci e

joðk iÞ ¼
X

i 1 to 1
Ci e

jok � e joi

Let’s do a little algebra trick. Notice the term ejok does not contain the term i used in the
summation. So we can pull this term out in front of the summation:

yk ¼ ejok �
X

i 1 to 1
Ci e

joi

Notice the term ejok is just the complex exponential we used as an input:
yk ¼ xk �
X

i 1 to 1
Ci e

joi

Voila! The expression
P

i¼ 1 to 1 Ci e
joi gives us the value of the frequency response of
the filter at frequency o. It is solely a function of o and the filter coefficients.

This expression applies a gain factor to the input, xk, to produce the filter output. Where this

expression is large, we are in the passband of the filter. If this expression is close to zero, we

are in the stopband of the filter.

Let us give this expression a less cumbersome representation. Again, it is a function of o,
which we expect because the characteristics of the filter vary with frequency. It is also a

function of the coefficients, Ci, but these are assumed fixed for a given filter:

Frequency response ¼ HðoÞ ¼
X

i 1 to 1
Cie

joi

Now in reality, this equation is not as bad as it looks. The preceding is the generic version of
the equation, where we must allow for an infinite number of coefficients (or taps). But

suppose we are determining the frequency response of our five-tap sample filter:

HðoÞ ¼
X

i 0 to 4

Ci e
joi and fC0, C1, C2, C3, C4g ¼ f1, 3, 5, 3, 1g

Let’s find the response of the filter at a couple of different frequencies. First, let o ¼ 0. This
corresponds to DC input; we are putting a constant level signal into the filter. This would be

xk ¼ 1 for all values k:

Hð0Þ ¼ C0 þ C1 þ C2 þ C3 þ C4 ¼ 1þ 3þ 5þ 3þ 1 ¼ 13

This one was simple, since e0 ¼ 1. The DC or zero frequency response of the filter is called
the gain of the filter. Often, it may be convenient to force the gain ¼ 1, which would involve

dividing all the individual filter coefficients by H(0). The passband and stopband
www.newnespress.com

http://www.newnespress.com/

48 Chapter 5

www
characteristics are not altered by this process, since all the coefficients are scaled equally.

It just normalizes the frequency response so the passband has a gain equal to 1.

Now compute the frequency response for o ¼ p/2:

Hðp=2Þ ¼ C0e
0 þ C1e

p=2 þ C2e
p þ C3e

3p=2 þ C4e
4p=2

¼ 1 � 1þ 3 � ð jÞ þ 5 � ð 1Þ þ 3 � ðjÞ þ 1 � 1 ¼ 3

So the magnitude of the frequency response has gone from 13 (at o ¼ 0) to 3 (at o ¼ p/2).

The phase has gone from 0� (at o ¼ 0) to 180� (at o ¼ p/2), although generally we are not

concerned about the phase response of FIR filters. Just from these two points of the frequency

response, we can guess that the filter is probably some type of low-pass filter.

Recall that the magnitude is calculated as follows:

Magnitude Z ¼ Xþ jY ¼ ðX2 þ Y2Þ1=2 ¼ jZj
Our earlier sample calculation turned out to have only real numbers, but the reason is that the
imaginary components of H(p/2) canceled out to zero. The magnitude of H(p/2) is

Magnitude j 3þ 0jj ¼ 3

A computer program can easily evaluate H(o) from –p to p and plot it for us. Of course, this
is almost never done by hand. Figure 5.2 shows a frequency plot of this filter using an FIR

filter program.
Figure 5.2

.newnespress.com

http://www.newnespress.com/

Finite Impulse Response (FIR) Filters 49
This is not the best filter, but it still is a low-pass filter. The frequency axis is normalized to

Fs, and the magnitude of the amplitude is plotted on a logarithmic scale, referenced to a

passband frequency response of 1.

We can verify our hand calculation was correct. We calculated the magnitude of jH(p/2)j at
3 and jH(0)j at 13. The logarithmic difference is

20 log10ð3=13Þ ¼ 12:7 dB

If you check the frequency response plot shown in the figure, you will see at frequency Fs/4
(or 0.25 on the normalized frequency scale), which corresponds to p/2 in radians, the filter

does indeed seem to attenuate the input signal by about 12–13 dB relative to jH(0)j. Other
filter programs might plot the frequency axis referenced from 0 to p, or from p to p.
5.3 Computing Filter Coefficients

Now suppose you are given a drawing of a frequency response and told to find the

coefficients of a digital filter that best matches this response. Basically, you are designing the

digital filter. Again, you would use a filter design program to do this, but if you need to do

this, it is helpful to have some understanding of what the program is doing. To optimally

configure the program options, you should understand the basics of filter design. In this

section, we explain a technique known as the Fourier design method. This method requires

more math than we have used so far, so if you are a bit rusty, just try to bear with it. Even if

you do not follow everything in the rest of the chapter, the ideas should still be very helpful

when using a digital filter design program.

The desired frequency response is designated as D(o). This frequency response is your

design goal. As before, H(o) represents the actual filter response based on the number and

value of your coefficients. We now define the error, x(o), as the difference between what we

want and what we actually get from a particular filter:

xðoÞ ¼ DðoÞ HðoÞ
Now all three of these functions are complex; when evaluated, they will have magnitude
and phase. We are concerned with the magnitude of the error, not its phase. One simple

way to eliminate the phase in the x(o) is to work with the magnitude squared of x(o) as in

jxðoÞj2 ¼ fReal part xðoÞg2þ ¼ fImag part xðoÞg2 ¼ xðoÞxðoÞ�

where * is the complex conjugate operator (recall from Chapter 2 on complex numbers,
magnitude squared is a number multiplied by its conjugate). The squaring of the error

function differentially amplifies errors. It makes the error function much more responsive to

large errors than smaller errors, usually considered a good thing.
www.newnespress.com

http://www.newnespress.com/

50 Chapter 5

www
To get the cumulative error, we need to evaluate the magnitude squared error function over

the entire frequency response:

Error ¼ x ¼
ðp

p
jxðoÞj2do

The classic method to minimize a function is to evaluate the derivative with respect to the
parameter over which we have control. In this case, we will try to evaluate the derivative of

x with respect to the coefficients, Ci. This will lead us to an expression that allows us to

compute the coefficients that result in the minimum error, or minimize the difference

between our desired frequency response and the actual frequency response. Because

I promised to minimize the math (and many of you probably would not have started

reading this otherwise), this derivation is located in Appendix A. If you have trouble with this

derivation, do not let it bother you. It is the result that is important anyway.

Ci ¼ ð1=2pÞ �
ðp

p
DðoÞ ejoi do

The preceding provides a design equation to compute the filter coefficients that give a
response best matching the desired filter response, D(o).

Let’s try an example. Let D(o) be defined as a low-pass filter with cutoff at o ¼ p/2
(see Figure 5.3).
2π-2π -π -π/2 π/2 π

1

Figure 5.3
We can change the limits on the integral to –p/2 to p/2 because D(o) is zero in the remainder

of the integration interval:

Ci ¼ ð1=2pÞ �
ðp

p
DðoÞ ejoi do ¼ ð1=2pÞ �

ðp=2
p=2

1 � ejoi do

From an integration table in a calculus book, we will find

ð
ex dx ¼ ð1=kÞ � ekx
.newnespress.com

http://www.newnespress.com/

Finite Impulse Response (FIR) Filters 51
so that we get

ð
ejoi do ¼ ð1=jiÞ � ejoi

The filter coefficients are therefore this expression, evaluated at –p/2 and p/2:
Ci ¼ ð1=2pÞ �
ðp=2

p=2
1 � ejoi do ¼ ð1=2pÞ � ð1=jiÞ � ejoi jp=2p=2

Next, we plug in the integral limits:
Ci ¼ ð1=2pÞ � ð1=jiÞ � ½ejpi=2 e jpi=2�
By using the Euler equation for ejpi/2 and e jpi/2, we find the cosine parts cancel:
Ci ¼ ð1=2pÞ � ð1=jiÞ � 2j sinðpi=2Þ ¼ ð1=piÞ � sinðpi=2Þ
This expression gives the ideal response for a digital low-pass filter. The coefficients, which
also represent the impulse response, decrease as 1/i as the coefficient index i gets larger. It is

like a sine wave, with the amplitude gradually diminishing on each side. This function is

called the sinc function, also known as sin(x)/x. It is a special function in DSP because it

gives an ideal low-pass frequency response. The sinc function is plotted in Figure 5.4, both as

a sampled function and as a continuous function.
Figure 5.4

www.newnespress.com

http://www.newnespress.com/

52 Chapter 5

www
Our filter instantly transitions from passband to stopband. But before getting too excited

about this filter, we should note that it requires an infinite number of coefficients to realize this

frequency response. As we truncate the number of coefficients (which is also the filter’s impulse

response), we get a progressively sloppier and sloppier transition from passband to stopband as

well as less attenuation in the stopband. This can be seen in the figures in the following section.

What is important to realize is that to get a sharper filter response requires more coefficients or

filter taps, which in turn require more multiplier resources to compute. There will always be a

trade-off between quality of filter response and number of filter taps, or coefficients.

5.4 Effect of Number of Taps on Filter Response

A picture is worth a thousand words, or so it is said. The following figures showmultiple plots of

this filter with the indicated number of coefficients. By inspection, you can see that as the number

of coefficients grows, you see actual jH(o)j approaching desired jD(o)j frequency response.
Filter plots are always given on a logarithmic amplitude scale. This allows us to see passband

flatness, as well as see how much rejection, or attenuation, the filter provides to signals in its

stopband.

All the following filter and coefficient plots are done using the FIR filter program. These

filters can be easily implemented in FPGA or a DSP processor.

Figure 5.5 shows a frequency plot of our ideal low-pass filter. It does not look very ideal.

The problem is that it is only 7 coefficients long. Ideally, it should have unlimited coefficients.
Figure 5.5:
A 7-tap ideal low-pass filter frequency response.

.newnespress.com

http://www.newnespress.com/

Figure 5.6:
A 15-tap ideal low-pass filter frequency response.

Finite Impulse Response (FIR) Filters 53
We can see some improvement in Figure 5.6, with about twice the number of taps.

Now this is starting to look like a proper low-pass filter (see Figure 5.7).

You should notice how the transition from passband to stopband gets steeper as the number

of taps increases (see Figure 5.8). The stopband rejection also increases.

Figure 5.9 shows a very long filter, with closer to ideal response. Notice how as the number

of filter taps grows, the stopband rejection increases (it is doing a better job attenuating

unwanted frequencies). For example, using 255 taps, by inspection jH(o ¼ 0.3)j � 42 dB.

With 1023 taps, jH(o ¼ 0.3)j � –54 dB. Suppose a signal of frequency o ¼ 0.3 radians per

second, with peak-to-peak amplitude equal to 1, is our input. The 255-tap filter would

produce an output with peak-to-peak amplitude of �0.008. The 1023-tap filter would give

4� better rejection, producing an output with peak-to-peak amplitude of �0.002.

Figure 5.10 shows the plot of the 63-tap sinc filter coefficients (this is not a frequency

response plot). The sinc shape of the coefficient sequence can be easily seen. Notice that the

coefficients fall on the zero crossing of the sinc function at every other coefficient.

There is one small point that might confuse alert readers. Often a filter program will display

the filter coefficients with indexes from –N/2 to N/2. In other cases, the same coefficients

might be indexed from 0 to N or from 1 to N þ 1. Our five-tap example was {C0, C1, C2, C3,
www.newnespress.com

http://www.newnespress.com/

Figure 5.8:
A 255-tap ideal low pass filter frequency response.

Figure 5.7:
A 63-tap ideal low-pass filter frequency response.

54 Chapter 5

www.newnespress.com

http://www.newnespress.com/

Figure 5.10:
The 63-tap ideal low-pass filter coefficients.

Figure 5.9:
A 1023-tap ideal low-pass filter frequency response.

Finite Impulse Response (FIR) Filters 55

www.newnespress.com

http://www.newnespress.com/

56 Chapter 5

www
C4}. What if we use {C 2, C 1, C0, C1, C2} instead? These indexes are used in calculating

the filter response, so does it matter how they are numbered or indexed?

The simple answer is no. The reason for this is that changing all the indexes by some constant

offset has no effect on the magnitude of the frequency response.

Imagine if you put a shift register in front of your FIR filter. It would have the effect of

delaying the input sequence by one sample. This is simply a one-sample delay. When a

sampled signal is delayed, the result is simply a phase shift. Think for a moment about a

cosine wave. If there is a delay of ¼ of the cosine period, this corresponds to 90�. The result
is a phase-shifted cosine—in this case, a sine wave signal. It does not change the amplitude

or the frequency, only the phase of the signal. Similarly, if the input signal or coefficients are

delayed, this is simply a phase shift. As we saw previously, the filter frequency response is

calculated as a magnitude function. There is no phase used in calculating the magnitude of

the frequency response.

FIR filters have a delay or latency associated with them. Usually, this delay is measured

by comparing an impulse input to the filter output. We see the output, starting one clock

after the impulse input. This output or filter impulse response spans the length of the filter.

So we measure the delay from the impulse input to the largest part of the filter output.

In most cases, this is the middle or center tap. For example, with our five-tap sample filter,

the delay would be three samples. This is from the input impulse to the largest component of

the output (impulse response), which is 5. In general, for an N tap filter, where N is odd, the

delay is N/2 þ 1. When N is even, it is N/2 þ ½. Since an FIR filter adds equal delay to

all frequencies of the signal, it introduces no phase distortion, and it has a property called

linear phase.

This explanation might not be as clear as you would like, but the essence is that since no

phase distortion occurs when the signal passes though an FIR filter, we do not need to

consider filter phase response in our design process. This is one reason why FIR filters are

preferred over other types of digital filters.

The next chapter covers a topic called “windowing,” which is a method to optimize FIR filter

frequency response without increasing the number of coefficients.
.newnespress.com

http://www.newnespress.com/

Digital Signal Processing 101. DOI: 10.1016/B978-1-85617-921-8.00010-9
2010 Elsevier Inc. All rights reserved. 57
CHAPTER 6
Windowing
In the preceding chapter, we developed a technique for calculating filter coefficients

to generate a desired frequency response. Our desired filter response will generate an infinite

number of coefficients, and we have to decide how many coefficients to keep, and throw

away or truncate the rest. As the previous plots show, as the number of coefficients grows

larger, the transition region from passband to stopband grows smaller, and the stopband

rejection or attenuation increases.

Frequency response ¼ HðoÞ ¼
X

i 1 to 1
Cie

joi

The smaller transition region, or steepness of the transition from passband to stopband, is due
to higher frequency components in the frequency response. The higher indexes of “i” in

the frequency response correspond to higher frequency complex exponentials. Complex

exponentials have a sinusoidal characteristic, so to get a quick response, we must use higher

frequency exponentials.
6.1 Truncation of Coefficients

The process of truncating the infinite number of coefficients is called windowing. We can

imagine Ci¼ 1 to 1, and multiplying it term by term with a window function, Wi¼ 1 to 1.

Let’s consider the sample plots from the preceding chapter with our low-pass filter with a

cutoff frequency of p/2:

Ci ¼ ð1=piÞ � sinðpi=2Þ for 1 < i < 1
For our 7-tap filter,
Wi ¼ 1 for 3 � i � 3 and Wi ¼ 0 otherwise

Similarly, for our 15-tap filter,
Wi ¼ 1 for 7 � i � 7 and Wi ¼ 0 otherwise

In both cases, Wi is a rectangular window. This means that the coefficients are unaltered
within the window and are zeroed, or truncated, outside the window. The length of the

58 Chapter 6

www
rectangular window determines the length of the impulse response of the filter. This is called

a rectangular window because the window coefficients Wi are all 1 within the window

and 0 outside.

With the rectangular window, we abruptly truncate the impulse response of the filter.

Obviously, for realistic filter implementations, we have to limit the impulse response at some

point because each tap or coefficient requires a multiplication operation to compute each

filter output. But perhaps we can get a more desirable response by reducing the coefficient

values gradually at either end of the impulse response before we reach the point of impulse

response truncation.

6.2 Tapering of Coefficients

Reducing the coefficient values has led to efforts to develop other window functions besides

the default rectangular window. Window design and analysis involve a fair bit of

mathematics. But after the rigors of the preceding chapter, you may not mind too much if

we skip over this. Actually, many filter designers do not know the details of the various

window functions offered by their filter design software but work iteratively instead. That is,

designers experiment with moving the frequency cutoff point slightly, and playing the

allowable number of taps, the various window options, and sometimes the numerical precision

(number of bits) of the input data and coefficients. By observing the computer-generated

frequency plots, designers can iterate to find an optimum combination of these parameters

to meet application requirements.

Often, the requirements are a certain degree of filter rejection or attenuation at one or

more specific frequency points, a maximum amount of ripple or variance in the passband

region of the frequency response, and a specified region of the frequency response.

(See Figure 6.1.)

Most windows are named after their inventors. They include Hanning, Hamming, von Hann,

Kaiser, Blackman, Bartlett, and others. The window coefficients are not equal to 1, as in

the rectangular window, but will gradually transition from 1 to 0 in some fashion near the

edges of the window. The form of this transition, or tapering off, of the coefficients defines

the window properties. Note that this is a different function from filter design, which

produces the original and ideal set of coefficients. Windowing is used to avoid the abrupt

truncation of the filter coefficient set, required to allow implementation of the filter with a

finite number of multiply-add operations.

In general, a window cannot increase the steepness of the transition region, but it can be

used to reduce either the passband or stopband ripple in the frequency response. Most filter

design programs offer several window options. The following figures show the frequency
.newnespress.com

http://www.newnespress.com/

Figure 6.1

Windowing 59
responses with different windows for comparison. All the filters shown are for a 61-tap

bandpass filter. The major trade-off between the different windows is the width of the

transition band and the amount of attenuation in the stopband region of the frequency

response. Often, filter designers make trade-offs in transition width, passband ripple,

stopband attenuation (including ripple of lobes in the stopband), number of coefficients,

and the chosen window to achieve the application requirements.

6.3 Example Coefficient Windows

In Figures 6.2 through 6.5, several windows are shown, with the rectangular window as the

baseline. Notice that the rectangular window (Figure 6.2) provides the steepest transition

band. However, the stopband sidelobes are very high, reducing the amount of stopband

attenuation. The Hanning, Hamming, and Blackman windows provide increasing stopband

attenuation, at the expense of a wider transition band. Windowing is supported in all FIR

filter design software programs.

These windows have a similar effect on the transition band and sidelobes whether applied to

low-pass filters, high-pass filters, or bandpass filters.
www.newnespress.com

http://www.newnespress.com/

Figure 6.2:
A 61-tap bandpass filter with rectangular window.

Figure 6.3:
A 61-tap bandpass filter with Hanning window.

60 Chapter 6

www.newnespress.com

http://www.newnespress.com/

Figure 6.4:
A 61-tap bandpass filter with Hamming window.

Figure 6.5:
A 61-tap bandpass filter with Blackman window.

Windowing 61

www.newnespress.com

http://www.newnespress.com/

Digital Signal Processing 101. DOI: 10.1016/B978-1-85617-921-8.00011-0
2010 Elsevier Inc. All rights reserved. 63
CHAPTER 7
Decimation and Interpolation
In this chapter, we discuss decimation and interpolation. Decimation is the process of

reducing the sample rate Fs in a signal processing system, and interpolation is the opposite,

increasing the sample rate Fs in a signal processing system. These processes are very

common in signal processing systems and are nearly always performed using an FIR filter.

First, why are sampling rates changed? The most common reason is to ease the interface of

the digital signals to the outside environment. As we saw in previous chapters, signals have a

frequency representation, and this frequency representation must be less than the Nyquist

frequency, which is defined as Fs/2. This sets a lower bound on Fs. The amount of hardware

or software processing resources is normally proportional to Fs, so we usually want to keep

Fs as small as practical. So while there is no upper bound on Fs, it is usually less than 10�
the frequency representation of the signal. A minimum Fs is needed to ensure the highest

frequency portion of the signal does not approach the FNyquist frequency.

In some cases, there are advantages to highly oversampling a signal, where Fs >> Fsignal. One

such example might be when sampling a signal using an analog-to-digital converter (ADC). If Fs
is high, then so is FNyquist. Recall that we can accurately represent all signals below FNyquist in

the sampled domain without aliasing occurring. When we make FNyquist large, any unwanted

signals in that frequency space can be eliminated, or at least highly attenuated, by using a digital

filter with its passband matching our desired frequency and with its stopband for the rest of

the frequency spectrum up to FNyquist. The analog filter needs to filter out frequencies above

FNyquist. In this manner, by increasing Fs and therefore FNyquist, we can simplify the requirements

for analog filtering prior to the ADC. Once we have successfully filtered out these unwanted

signals through both the analog and digital filters, we have no further need for keeping the Fs >>

Fsignal and should consider lowering Fs to reduce resources required for subsequent processing.

7.1 Decimation

To discuss decimation, or downsampling as it is also called, we need to consider the

frequency representation of the signal as well as the time domain. First, let’s look at the

sampled signal sampled at Fs (see Figure 7.1) and at Fs
0, where Fs

0 ¼ Fs/2 (see Figure 7.2).

The new sampling rate Fs
0 is the sampling rate after decimating by 2.

Figure 7.3 shows the frequency domain perspective of decimation.

Time
axis

Figure 7.1:
Original sampling rate ¼ Fs.

Time
axis

Figure 7.2:
New sampling rate ¼ Fs

0 ¼ Fs/2.

FsFNyquist

F�Nyquist Fs�

Fsignal

Fsignal

After decimation by 2

2Fs�

Before decimationAnalog
LPF
response

Digital
LPF
response

Figure 7.3

64 Chapter 7

www.newnespress.com

http://www.newnespress.com/

Decimation and Interpolation 65
As we can see by examining the frequency plots, the signal itself has not changed; only

the sampling rate frequency and corresponding Nyquist rate frequency have changed.

As long as the new Nyquist frequency is larger than the signal frequency, no aliasing

will occur.

The signal images, which are periodic in Fs, and a natural consequence of sampling,

are also shown. When we are decimating, the images become periodic in the new sample

rate Fs
0.

We could decimate by simply throwing away samples. In our example, if we throw away

every other sample, the sample rate is reduced by a factor of ½, and the result is as shown in

Figure 7.3.

In practice, however, the decimation process usually has a low-pass filter (LPF) incorporated.

Let’s go back to our ADC example. This could be implemented using the block diagram

shown in Figure 7.4. In this example, the analog low-pass filter is responsible for removing

all unwanted signals above FNyquist, which would otherwise alias into the frequency

region where our signal is. With this analog LPF prior to the ADC, we can then be confident

that any signals we see below FNyquist are legitimate signals, and not aliased versions of

some higher-frequency unwanted signal or noise. We must similarly provide an LPF prior

to the decimator, to remove any frequency components between F 0
Nyquist and Fs

0;
otherwise, any frequency components in this frequency band will alias, or fold back, into the

frequency band below our new Nyquist frequency, F 0
Nyquist. The approximate frequency

response of the analog and digital LPF is depicted in the previous frequency domain

(Figure 7.3).
ADC
Analog
LPF

Digital
LPF

Decimator

Fs Fs Fs�

Figure 7.4
Now we can ask an interesting question: Why bother to compute samples at rate Fs in the

digital LPF if we are going to discard ½ of them in the decimator? This is a waste of

processing resources. Instead, we can build a digital filter that computes only every other

sample and therefore accomplishes the function of the decimator (shown separately in our

block diagram). And in the process, we find that we need only ½ the multiplier rate to

implement the digital LPF.

To see how we might do this, let’s consider the FIR block diagram shown in Figure 7.5.
www.newnespress.com

http://www.newnespress.com/

z-2

X X X X X
C0 C1 C2 C3 C4

Xk

Yk

Xk-1 Xk-2 Xk-3 Xk-4

∑

z-2 z-2 z-2

Figure 7.5

66 Chapter 7

www
In a normal case, at each clock cycle, the xk data advances into the shift register of the filter

structure, and an output yk is produced. As we did earlier, we can build a sequence of inputs

and compute the sequence of outputs. The filter equation is repeated here:

yk ¼ C0 � xkþC1 � xk 1þC2 � xk 2þC3 � xk 3þC4 � xk 4

Now suppose that on every even clock cycle (k is even), we operate the filter normally, but
on the odd clock cycles (k is odd), we merely shift the input data but disable the operation

of multipliers, summation, and update of the output register (this register not explicitly

shown). The output register will just hold the previous value, since there has been no update.

Let’s look at how to compute a few outputs:

y0 ¼ C0 � x0þC1 � x 1þC2 � x 2þC3 � x 3þC4 � x 4

(y1 output is not computed; only xk input data is shifted through);
y2 ¼ C0 � x2þC1 � x1þC2 � x0þC3 � x 1þC4 � x 2

(y3 output is not computed; only xk input data is shifted through);
y4 ¼ C0 � x4þC1 � x3þC2 � x2þC3 � x1þC4 � x0
and so forth.
The output sequence is the decimated, filtered sequence {. . . y0, y2, y4, . . .}. Only the shift

registers operate at the input rate. The rest of the circuitry can be clocked at the output clock

rate. If implemented using DSP processors, or if you are clever in your hardware filter

design, you can utilize less multipliers by operating them at the faster input speed. This

concept is beyond our scope here, but in general, whether you are implementing DSP

algorithms in hardware (FPGA or ASIC) or in software (DSP processor), the multipliers can

be multiplexed such that it does not matter whether you have a few very fast multipliers or
.newnespress.com

http://www.newnespress.com/

Decimation and Interpolation 67
a large number of slow multipliers or anything in between, so long as the cumulative

multiply-accumulate capacity is sufficient for the DSP algorithm requirement.

Decimation is limited to integer values. So this concept can be extended to decimate by 3,

decimate by 4, decimate by 10, and so forth. In each case, the decimation filter computes

only the required samples. The input data is shifted right by the decimation rate between each

computation. In our earlier decimate-by-2 example, the input data is shifted right by two

places between each output computation (check the x indexes in the sample computations

shown previously).

7.2 Interpolation

As we just saw, the sample rate Fs can be decreased by an integer value using a decimation

FIR filter. Similarly, the sample rate Fs can be increased by an integer value using a type of

FIR filter called an interpolation filter. This is called upsampling, and is the opposite of

decimation. As long as the signal frequency content is below the Nyquist frequency at the

lowest sampling frequency, we can decimate a signal and then turn around and interpolate it,

and recover the same signal.

Interpolation requires that the sample rate be increased by some integer factor. New samples

need to be created and inserted between the existing samples. Let us look at the simplest

example of interpolation. Let’s go back to our sine wave example and interpolate it by a

factor of two, as shown in Figure 7.6.
Time
axis

Figure 7.6
This figure shows the original signal at sample rate Fs. Triangles indicate approximately

where new samples must be created to interpolate up to sample rate Fs
0 ¼ 2 � Fs. This concept

seems straightforward enough. We do not have to worry about aliasing issues because we are

doubling both the sample frequency and Nyquist frequency.
www.newnespress.com

http://www.newnespress.com/

68 Chapter 7

www
The simplest and most intuitive way to interpolate is called linear interpolation. In linear

interpolation, we simply draw a straight line between the original samples and calculate the

new samples along this line. In our case, if we interpolate by 2, then we need the point

located midway along the line between the original points. Linear interpolation, whether by a

factor of 2, 3, 4, . . ., is equivalent to drawing a line between all the original points and will

look something like that in Figure 7.7.
Time
Axis

Linear Interpolation by 2 (dashed lines indicate
Interpolated samples)

Figure 7.7
The signal at Fs
0 ¼ 2 � Fs is shown in Figure 7.7 with linear interpolation. Obviously, this

doesn’t look quite right. But let’s consider how we would build an interpolation filter.

An interpolation filter is actually several filters running in parallel, each with the same data

input xk. Each filter computes a different intermediate sample. One filter has a single tap ¼ 1,

which provides the original signal at the output (this could just be a shift register to provide

correct delay). Each of the other filters calculates one of the new samples between the

original samples. When we are interpolating by N, there will be N of these filters, including

the trivial filter that generates the original samples. For example, when we are interpolating

by four, N ¼ 4, and there will be four of these filters. Every input sample will produce

four output samples, one from each filter, which will be interleaved at the output at a

combined rate four times larger than the input rate. This concept of multiple filters creating a

single output with a higher rate sequence is called polyphase filtering.

The length or number of taps in each of the N interpolation filters largely determines the

quality of the interpolation. With linear interpolation, the number of filter taps is only 2,

so the quality of the interpolated signal is rather poor, as can be seen in Figure 7.7.

The ideal filter is a low-pass filter with cutoff frequency at FNyquist of the original signal

sampling rate. As we learned previously, an ideal filter has an infinite number of coefficients.

We will have to compromise at less than infinity, and so each individual filter will have

M taps.
.newnespress.com

http://www.newnespress.com/

Decimation and Interpolation 69
Shown in Figure 7.8 is an interpolate-by-4 (N ¼ 4) polyphase filter, with 5 taps (M ¼ 5)

used for each phase. The input data stream xk is sampled at Fs, and the serialized output

data stream ym is sampled at Fs
0 ¼ N � Fs. Coefficient representations An, Bn, Cn are

used to indicate that each phase of the interpolation filter may have a different set of

coefficients.
· A0 · A1 · A2 · A3 · A4

Ym+1

Ym+3

Ym+2

z-1

z-1

z-1 z-1 z-1 z-1

z-1 z-1 z-1 z-1

z-1 z-1 z-1

z-1

· 0 · 0 · 0 · 0· 1

xk-1 xk-2 xk-3 xk-4

xk-1 xk-2 xk-3 xk-4

xk-1 xk-2 xk-3 xk-4

xk-1 xk-2 xk-3 xk-4

YmS

S

S

S

…Ym-1,Ym,Ym+1…

S
E
R
I
A
L
I
Z
E
R

xk

z-1 z-1

· B0 · B1 · B2 · B3 · B4

· C0 · C1 · C2 · C3 · C4

Figure 7.8

www.newnespress.com

http://www.newnespress.com/

70 Chapter 7

www
You should note how the first filter could be eliminated and replaced by a shift register.

All the taps except the center one multiply by zero, so the multiplier and adder logic is

not required. The original input sample simply passes through with some delay.

Interpolating polyphase filters is a little tricky, so we also show what is happening in

the time or sample domain. Figure 7.9 shows the input and output sequences, which are

time aligned for clarity. The output data rate is four times the input, and as with all FIR

filters, there is some processing delay through the filter. The function of the serializer is to

input N samples in parallel at rate Fs and output a serial sample stream at Fs
0, which is the

new interpolated sample rate.
xk xk+1 xk+2 xk+4xk+3

ym ym+2
ym+1 ym+3 ym+5 ym+7

ym+4 ym+6 ym+8ym-8
ym-7 ym-5 ym-3 ym-1

ym-6 ym-4 ym-2

Figure 7.9
The dashed lines indicate the interpolated samples. The dotted lines show the delay of the

original samples through the interpolation filter. This delay depends on filter design but

is generally equal to (M – 1)/2 input samples, plus any additional register pipeline delays.

In our example, M ¼ 5, so the delay is (5 – 1)/2 ¼ 2 input sample intervals.

Note that the “m” output index is increasing faster than the “k” input index. The interpolation

filter must produce N output samples for every input sample, so the output index “m” needs

to run N times faster than “k.”

7.3 Resampling by Non-Integer Value

Suppose that you need to align the sample rates between sets of digital circuitry running

at different sampling rates. For example, the sampling rate of the first circuit is 3 MSPS,

and the second circuit has a sampling rate of 2 MSPS. You need to decimate, or downsample,

by 2/3.

You can achieve this effect by a combination of interpolating and decimating. In this case,

you would interpolate by 2 and then decimate by 3, as shown in Figure 7.10.
.newnespress.com

http://www.newnespress.com/

Interpolate
by 2 filter

Decimate by
3 filter

Fs = 3
MSPS

Fs = 6
MSPS

Fs = 2
MSPS

Figure 7.10

Decimation and Interpolation 71
Next, a frequency domain representation of both interpolation and decimation steps is shown

in Figure 7.11.
Fs

Fs

Fs

0 3 6-3-6

-6 -4 -2

-6

Original signal at 3 MSPS

0 6

Interpolated signal at 6 MSPS

0 2 4
Decimated signal at 2 MSPS

6

Figure 7.11
Both the interpolation and decimation filters incorporate a low-pass filtering function. The

reason for this low-pass filter, however, is quite different for each case. For decimation,

the low-pass filter serves to eliminate high-frequency components in the spectrum. If these

components were not filtered out, they would alias when the reduction in sample rate is

performed.

For interpolation, the low-pass filter serves to provide a “smoothing” function when

calculating the new samples so that a smooth curve results when the new samples are inserted

between the original samples. A longer interpolating filter (more taps ¼ larger M) will use a

weighted calculation of a larger number of the adjacent samples to determine the new

samples. An analogy might be when a person is driving a car on a winding road. If you look

only a few feet in front of the car, you cannot take the curves smoothly. Since you are not

looking ahead, you cannot anticipate the direction and rate of curves and smoothly adjust
www.newnespress.com

http://www.newnespress.com/

72 Chapter 7

www
your driving. The interpolating filter works best when it can look at samples on both sides

(or in front and behind) when computing the new samples, which should smoothly fit in

between the existing samples.

When M ¼ 2, which is linear interpolation, only the two adjacent samples are used, and the

filter computes the sample that lies on a straight line between the two points. As we saw in

the example, this does not give a very smooth response. This lack of smooth response can

also create some higher-frequency components in the signal spectrum. If M ¼ 4, then the

filter uses 4 samples, 2 on either side, to compute the new samples. As M becomes larger, the

interpolated response improves, both in time domain and frequency domain. To achieve

perfect interpolation, you would need to use an infinite number of samples and build a perfect

low-pass filter. This perfect interpolation filter would be in the form of the sinc function,

also known as sin(x)/x, introduced in Chapter 5 on FIR filters, and be of infinite length.

In practice, using between 8 and 16 samples, or filter coefficients, is usually enough to

a reasonable job of interpolating a signal for most applications.
.newnespress.com

http://www.newnespress.com/

Digital Signal Processing 101. DOI: 10.1016/B978-1-85617-921-8.00012-2
2010 Elsevier Inc. All rights reserved. 73
CHAPTER 8
Infinite Impulse Response (IIR) Filters
This chapter discusses infinite impulse response (IIR) filters. The IIR filter is unfortunately

a much more complex topic than the finite impulse response (FIR) filter, and due to its

nonlinear behavior, it is very difficult to analyze. It is also more complex to implement,

due to the feedback, though it typically does require fewer multipliers. For these reasons,

IIR filters are used much less often than FIR filters. On the plus side, since they are not

commonly used, understanding IIR filters is not essential to the fundamental concepts

of DSP. The IIR filter design technique is usually considered a bit of a specialty in the

DSP world, so do not feel that you need to master this topic.

All the popular IIR filter designs are based on analog filter circuits. The nature of analog

components—capacitors, inductors, opamps—tends to be naturally suited to recursive filter

designs. By contrast, FIR filters are naturally implemented digitally. This chapter introduces

IIR filters and then focuses primarily on how to convert an analog IIR filter into a sampled

digital implementation.

Mathematics for IIR filters tends to be more daunting. If the math proves too much, note that

the discussion in this chapter is not necessary to continue on to the other topics in the

remainder of this book. Plus, the following chapter on digital modulation is really interesting;

you would not want to miss it.

Most digital IIR filter designs are derived from analog filter designs. Because analog filters

were around long before digital filters existed, this provides for many types of filters.

The basic design procedure is to take an analog filter design and convert it to a digital

IIR filter implementation. Since we do not have time or space to go through analog

filter fundamentals, some material presented here may be difficult if you do not have

any familiarity with analog filter design techniques. Now, enough of the disclaimers;

let’s begin.

An IIR filter is basically an FIR filter with feedback added. The FIR filter takes a

stream of input data and multiplies it by a series of coefficients to produce each output.

The IIR filter also does this, but in addition, it feeds the output data stream back through

another series of multipliers and coefficients. This structure is shown in the diagram

in Figure 8.1.

+

+

+

C2

C1

C0

D2

Z 1

Z 1

D1

ykxk

yk = C0·xk + C1·xk-1 + C2·xk-2 – D1·yk-1 – D2·yk-2

Figure 8.1

74 Chapter 8

www
This feedback eliminates many of the linear properties of the FIR filter and makes the IIR

filter much more difficult to analyze. It can also create some undesired behavior, depending

on the choice of coefficients, where the impulse response may have an infinite duration or

even an infinite magnitude.

8.1 IIR and FIR Filter Characteristic Comparison

Before we get too far into IIR filters, it is useful to compare IIR and FIR filters. Following is

a summary of advantages and disadvantages of IIR and FIR digital filters:

• FIR filters have a linear phase, meaning that no phase distortion of the signal occurs. IIR

filters always cause some phase distortion,* so filter designers need to consider the phase

as well as magnitude response.

• FIR filters are always stable and have a finite length impulse response. IIR filters

generally have an infinite length impulse response and may have infinite magnitude

output (become unstable) under some conditions.

• FIR filters can be designed with a specified amount of quantization noise (remember

quantization from Chapter 1 on numerical representation), which can be made as small as

necessary. This is not the case with IIR filters.
* Phase distortion happens when the phase response of the filter changes nonlinearly across the filter’s passband

frequency response. Recall that filters are complex; they can affect both the magnitude and phase of the signal.

.newnespress.com

http://www.newnespress.com/

Infinite Impulse Response (IIR) Filters 75
• FIR filters can be implemented efficiently in multirate systems or systems that have

decimation or interpolation steps.

• IIR filters are very sensitive to coefficient values and numerical precision in designs

that require a sharp cutoff frequency response.

• IIR filters are a more natural digital form to replace existing analog filters.

• An IIR filter can provide a much sharper cutoff frequency response compared to the same

order FIR filter. In other words, for sharp response in an FIR filter, more resources

(multipliers and adders) are required than in an IIR filter.

Based on these reasons, you might wonder why anyone would want to use IIR filters. Well,

aside from the last item, which lists a key advantage of IIR filters, the reason is that IIR filters

can best approximate the performance of many analog filter responses. Sometimes when a

system with analog filtering is being upgraded to digital implementation, it is important to

preserve its performance characteristics, especially in the phase domain. An example of this

might be professional audio equipment.

Intuitively, the reason IIR filters can have a much more rapid frequency response is that their

frequency response is determined by both zeros and poles. Zeros are caused by cancellations.

Remember the FIR discussion, with coefficients of þ1, 1, þ1, 1, and so on? This filter

causes cancellations at high frequencies, and this can be described as zero at a specific

frequency. Filter response is determined by canceling various frequencies.

Poles, on the other hand, involve feedback and result in an effect similar to division by

zero at specific frequencies. Actually, it is not exactly divided by zero because this would

produce an infinite response, but the idea is to divide by a small number at certain

frequencies, which can produce a large output in the signal in that frequency region. Think of

a rope representing frequency response. The poles would hold up the rope at specific points,

and the zeros would be like a lead weight holding it to the ground at other points. This is

analogous to how poles and zeros can act on the frequency response.

The additional flexibility of using poles with zeros, while resulting in some unstable filter

responses if we are not careful (imagine a pole that is very high or even infinite), can also

provide for more rapid changes in the frequency response. This makes IIR filters more

sensitive and complicated than FIR filters.

In this introductory chapter, we do not try to explain the design of IIR filters using pole and

zero placement. There are whole books on this topic, and it is too big for this introductory

treatment here. Rather, we show how to take popular analog filter designs, with a defined

pole and zero arrangement and thus frequency response, and convert to a digital

implementation because this is a more common task for DSP system designers.

Even a basic understanding of IIR filters requires some mathematics. The reason is that

analog filters are analyzed using something called the Laplace transform. Digital filters are
www.newnespress.com

http://www.newnespress.com/

76 Chapter 8

www
analyzed using something called the z-transform. Because of their simplicity, we managed

to avoid the z-transform when discussing FIR filters, but we do not have that option here.

Refer to Appendices C and D at the end of book introducing Laplace and z-transforms if

they are new to you.
8.2 Bilinear Transform

The normal design procedure for IIR filters is to specify the filter response and design an analog

filter using analog filter techniques (using the Laplace transform). Alternately, you might be

given an analog filter design and be asked to convert it to a digital implementation. The

analog filter design is based on the location of poles and zeros in the s-plane. A digital filter

response can be characterized by using the z-transform. The equivalent pole and zero domain for

digital filters is called the z-plane. The idea is to map the s-plane poles and zeros to the z-plane.

The mapping technique most often used between the s- and z-domains is called the bilinear

transform. There are alternative techniques, but we do not cover them here. Further, only a

rudimentary coverage is attempted here because the topics involved are fairly mathematical.

Again, note that both the Laplace and z-transforms are reviewed in Appendices C and D at

the end of this book. If you have not looked at them already, you might want to spend a little

time going through the Laplace and z-transform appendices.

We use �o for the s-plane to distinguish between o of the sampled domain z-plane. Similarly,

we define the frequency response of the analog filter as Hs and the frequency response of the

digital filter as Hz.

In analog filter design, the frequency response of an analog filter is defined by setting

s¼ j�o and evaluating for 1< �o <1. This corresponds to the imaginary axis of the s-plane.

The frequency response of a digital filter is defined by setting z ¼ ejo and evaluating for

p < o < p. This corresponds to the unit circle of the z-plane.

To go between these two domains, we need a mapping function from the s-plane to the

z-plane. Then we can map the zeros and poles across the two domains.

This task is performed by replacing s in the expression for Hs

s ¼ 2 � ð1 z 1Þ=ðT � ð1þ z 1ÞÞ
where T ¼ 1 / Fs (T ¼ time between sampling interval of the digital filter in seconds).
Let’s go through an example of converting an analog filter to a digital IIR filter. There

are a great many analog filter types. Here, we discuss only one because we do not want to

focus on analog filters. A very common analog filter is the Butterworth filter. It has the

characteristic of not having ripples in the passband or stopband.
.newnespress.com

http://www.newnespress.com/

Infinite Impulse Response (IIR) Filters 77
We are going take a third-order Butterworth analog filter and convert it to an IIR

digital filter using the bilinear transformation technique. Many analog filters are known

simply by their pole and zero locations (since this is another way of defining frequency

response). We can eliminate quite a bit of algebra by using the previously described

relationship between s- and z-domains to come up with a relationship between poles

and zeros in the s- and z-domains. These derivations are not discussed here,

only the result.

The digital filter has poles and zeros at the following locations:

z-polei ¼ ð2þ s-polei � T Þ=ð2 s-polei � T Þ
z-zeroi ¼ ð2þ s-zeroi � T Þ=ð2 s-zeroi � T Þ

Let’s set the cutoff frequency of our third-order Butterworth filter to 100 Hz, or 628 rad/s
(100�2�p). For a third-order Butterworth filter, the three pole locations in the s-plane are

located at

s-pole1 ¼ 628 angle ð120�Þ ¼ 314þ j544

s-pole2 ¼ 628 angle ð180�Þ ¼ 628

s-pole3 ¼ 628 angle ð240�Þ ¼ 314 j544

Now we set our digital sampling frequency at 1000 samples per second, so T ¼ 0.001.
The s-domain poles map to the following poles in the z-plane:

z-pole1 ¼ ½2þ ð 314þ j544Þ � 0:001�=½2 ð 314þ j544Þ � 0:001�
¼ 0:745 angle ð72:56�Þ

z-pole2 ¼ ½2þ ð 628Þ � 0:001�=½2 ð 628Þ � 0:001� ¼ 0:523

z-pole3 ¼ ½2þ ð 314 j544Þ � 0:001�=½2 ð 314 j544Þ � 0:001�
¼ 0:745 angle ð 72:56�Þ

The Butterworth filter has three zeros located at infinity. They can be evaluated as
z-pole1, 2, 3 ¼ ½2þ1 � 0:001�=½2 1 � 0:001� ¼ 1= 1 ¼ 1

Now that we have the poles and zeros on the z-plane, we can determine the
z-transform of the digital IIR filter approximating the response of the analog

Butterworth filter:

Hðz Þ ¼
Y

i 0 to M
ðz z zeroiÞ

h i.Y
i 0 to N

ðz z poleiÞ�
www.newnespress.com

http://www.newnespress.com/

78 Chapter 8

www
where M ¼ number of zeros and N ¼ number of poles. In our example, M ¼ N ¼ 3. With a

bit of algebra, we can multiply this whole mess out to get the more familiar form:

HðzÞ ¼
X

i 0 to N
Ci � z i

� �
= 1

X
i 1 to M

Di � z i
� �

In this form, we can pick off our coefficients needed to implement the IIR filter.
Multiplying the numerator and denominator components, we get

Hðz Þ ¼ z3 þ 3z2 þ 3zþ 1

z3 0:970z2 þ 0:108z 0:290
¼ 1þ 3z 1 þ 3z 2 þ z 3

1 ð0:970z 1 0:108z 2 þ 0:290z 3Þ

From inspection, we can see
C0 ¼ 1 C1 ¼ 3 C2 ¼ 3 C3 ¼ 1

and
D1 ¼ 0:970 D2 ¼ 0:108 D3 ¼ 0:290

These coefficients apply to the IIR filter structure depicted earlier in the chapter
(although this is a third-order filter, the sample diagram is second order).
8.3 Frequency Prewarping

We still have another point to consider. Our technique is to take the pole and zero

locations (in the s-plane) of an analog filter and to map them to pole and zero locations

(in the z-plane) of an IIR digital filter.

The problem is that this relationship is not linear. For example, the y-axis of the s-plane,

which is infinite in length, is mapped to the unit circle in the z-plane. This relationship is

�os-plane ¼ ð2=T Þ � tanðo=2Þ and
oz-plane ¼ ð2=T Þ � tan 1ð�oT=2Þ, where T ¼ 1=Fs

This nonlinear mapping causes filter response distortion, particularly at higher
frequencies. A method to mitigate this is to prewarp the analog filter. The whole

analog filter is not prewarped; instead, key breakpoints in the analog filter response are

prewarped. This prewarping, in essence, stretches the analog filter in frequency, so that

when it is compressed by the bilinear transform, the prewarped breakpoint(s) is(are)

mapped correctly. This ensures that transition points between passband and stopband are

accurately converted by the bilinear transform.
.newnespress.com

http://www.newnespress.com/

Infinite Impulse Response (IIR) Filters 79
The following table shows the distortion caused by mapping between the s- and

z-domains. For this table, we set T ¼ 1. Note how this distortion or warping increases

with frequency.
Table 8.1: Mapping between s-domain and z-domain

�o, Analog Frequency (s-plane) v, Digital Frequency (z-plane)

0.0 � p 0.0 � p
0.1 � p 0.0992 � p
0.2 � p 0.1938 � p
0.3 � p 0.2804 � p
0.4 � p 0.3571 � p
0.5 � p 0.4238 � p
0.6 � p 0.4812 � p
0.7 � p 0.5302 � p
0.8 � p 0.5702 � p
0.9 � p 0.6081 � p
1.0 � p 0.6391 � p
Let’s consider a simple example. Say we have an analog low-pass filter, with a 3 dB

breakpoint at 100 Hz (a 3 dB breakpoint is the point in the transition band where filter

response is 3 dB lower than the passband response). We want to implement this filter with

a digital IIR filter, which has an Fs ¼ 1000 Hz.

The digital breakpoint frequency should be (100/1000) � 2p ¼ 0.2 � p. The warping will cause

this breakpoint to occur at digital frequency 0.1938 � p instead.

The analog filter breakpoint needs to be moved, or prewarped, to compensate for this.

Substituting into �o (s-plane) ¼ (2/T) � tan(o/2), we find

�o ¼ ð2=0:001Þ � tanð0:2 � p=2Þ ¼ 649:8 rad=s ¼ 103:4 Hz:

We should design the analog filter with a 3 dB point at 103.4 Hz, rather than 100 Hz prior to
converting to a digital IIR filter using the bilinear transform to map the pole/zero locations.

To illustrate the effect as the frequency rises, let’s revise the problem to building a digital

filter to replace an analog filter with a 3 dB breakpoint at 250 Hz. We still can use Fs ¼
1000 Hz.

The digital frequency of the breakpoint is o ¼ (250/1000) � 2p ¼ 0.5 � p.
The analog frequency of the breakpoint needs to be moved from 250 Hz to prewarp the filter.

The new analog filter breakpoint is found to be

�o ¼ ð2=0:001Þ � tan ð0:5 � p=2Þ ¼ 2000 rad=s ¼ 318:3 Hz
www.newnespress.com

http://www.newnespress.com/

80 Chapter 8

www
We can see the importance of prewarping the analog filter prior to applying the bilinear

transform as we move our breakpoint closer to the Nyquist frequency of the digital filter

(in this example, equal to 500 Hz). If there are multiple transition points, they can all be

prewarped, and the analog filter modified to meet these new transition points.

If you do not have much analog filter design experience, you may be wondering how to

modify the analog filter to find prewarped analog poles and zeros that will then be mapped

to the digital domain. This is a valid concern but unfortunately beyond the scope of this

chapter. The focus of our discussion is how to learn the basics of converting an analog

filter to a digital IIR filter. Since analog filter design is a complex and mathematical subject,

this issue is just too much to try to cover here. However, as you might expect, there are

software programs you can use to perform analog filter design and even convert them to

a digital IIR design.
.newnespress.com

http://www.newnespress.com/

(0,0)

(1,1)

(1,0)

(0,1)

I axis

QPSK
constellation

Q axis

Figure 9.1

Digital Signal Processing 101. DOI: 10.1016/B978-1-85617-921-8.00013-4
2010 Elsevier Inc. All rights reserved. 81
CHAPTER 9
Complex Modulation and Demodulation
We are going to take an unusual approach here. The normal explanations on modulation

and demodulation are heavily based on mathematics and equations. In this chapter, we try

to take an almost entirely intuitive approach, based on examples. We do not attempt to

establish any mathematical foundation or to calculate performance.

Modulation is the process of taking information bits and mapping them to symbols.

The sequence of symbols is then filtered to produce a baseband waveform, with the

desired spectral properties. This baseband waveform or signal is then upconverted to a

carrier frequency, which can be transmitted over the air, through coaxial cable, or through

fiber or some other medium. The key idea here is the concept of a symbol.
9.1 Modulation Constellations

We are going to use a common modulation method, known as quadrature phase shift keying

(QPSK), as our first example. Don’t let the technical-sounding names of these different

modulations confuse you. We describe what these names mean later. With QPSK, every two

input bits map to one of four symbols, as shown in Figure 9.1.

82 Chapter 9

www
The bitstream of zeros and ones input to the modulator is converted into a stream of

symbols. Each symbol is represented as the coordinates of a location in the I-Q plane.

In QPSK, there are four possible symbols, arranged as shown. Since there are four

symbols, the input data is arranged as groups of 2 bits, which are mapped to the

appropriate symbol. The arrangement of symbols in the I-Q plane is also called the

constellation.
Table 9.1: QPSK constellation mapping

Input Bit Pair

Symbol Location

on Complex Plane I Value Q Value

Symbol Value (Same as

Location on Complex Plane)

0, 0 1 þ j 1 1 IþjQ ¼> 1 þ j
0, 1 1 j 1 1 IþjQ ¼> 1 j
1, 0 1 þ j 1 1 IþjQ ¼> 1 þ j
1, 1 1 j 1 1 IþjQ ¼> 1 j
Another common modulation scheme is known as 16-quadrature amplitude modulation

(16-QAM), which has 16 symbols, arranged as shown in Figure 9.2. Again, do not worry

about the name of the modulation. Since we have 16 possible symbols, each symbol maps

to 4 bits. To put it another way, in QPSK, each symbol carries 2 bits of information, while in

16-QAM, each symbol carries 4 bits of information.
I axis

(0,0,0,0)

(0,0,1,0)

(1,1,1,0)

(1,1,0,0)

(0,1,1,0)

(0,1,0,0)(0,1,0,1)

(0,1,1,1)

(0,0,1,1)

(0,0,0,1)

(1,1,0,1)

(1,1,1,1)

(1,0,1,1)

(1,0,0,1)

(1,0,1,0)

(1,0,0,0)

16 QAM
constellation

Q axis

Figure 9.2

.newnespress.com

http://www.newnespress.com/

Complex Modulation and Demodulation 83
We can easily see that the 16-QAM is the more efficient modulation method. In this

chapter, we are going to pick a convenient symbol rate and reference our discussion to this

symbol rate. But this is an arbitrary choice on my part, and systems are designed with symbol

rates ranging from a few kilohertz to hundreds of megahertz. We will decide to transmit

symbols at a rate of 1 MHz, or 1 million symbols per second (MSPS). Then our system, if

using the 16-QAM modulation, is able to send 4 megabits per second (Mbps). If instead

QPSK is used in this system, it is able to send only 2 Mbps. We could also use an even more

efficient constellation, 64-QAM. Since there are 64 possible symbols, arranged as 8 rows of

8 symbols each, then each symbol carries 6 bits of information and supports a data rate of

6 Mbps. This is shown in the following table for a few sample constellation types.
Table 9.2: Modulation data rates

Modulation Type Possible Number of Symbols Bits per Symbol Transmitted Bit Rate

QPSK 4 ¼ 22 2 2 * symbol rate
8 PSK 8 ¼ 23 3 3 * symbol rate

16 QAM 16 ¼ 24 4 4 * symbol rate
64 QAM 64 ¼ 26 6 6 * symbol rate
256 QAM 256 ¼ 28 8 8 * symbol rate
The frequency bandwidth is determined mainly by the symbol rate. A QPSK signal at

1 MSPS requires about the same bandwidth as a 16-QAM signal at 1 MSPS. Notice the

16-QAM modulator is able to send twice the data within this bandwidth, compared to

the QPSK modulator. There is a trade-off, however. As we increase the number of

symbols, it becomes more and more difficult for the receiver to detect which symbol was

sent. If the receiver needs to choose among 16 possible symbols that could have been

transmitted rather than choose from among 4 possibilities, it is more likely to make

errors. The level of errors depends on the noise and interference present in the receive

signal, the strength of the receive signal, and how many possible symbols the receiver

must select from. In cellular systems, there are often high levels of interfering noise or

weak signals due to buildings or other objects blocking the transmission path. In this

situation, it is often preferable to use a simple constellation, such as QPSK. Even with

a weak signal, the receiver can usually make the correct choice of four possible symbols.

Other systems, such as microwave radio systems, usually have directional receive and

transmit antennas facing each other from building roofs or mountaintops. Consequently,

the interfering noise level is usually very low, and complex constellations such as

64-QAM or 256-QAM can be used. This assumes the receiver is able to make the correct

choice from among 64 symbols, which allows three times more bits to be encoded into

each symbol, resulting in a 3� higher data rate. Recently, sophisticated communication

systems such as LTE and WiMax have been introduced, allowing the transmitter to

dynamically switch between constellation types depending on quality of reception the

receiver experiences.
www.newnespress.com

http://www.newnespress.com/

84 Chapter 9

www
9.2 Modulated Signal Bandwidth

Now that we have discussed what a constellation is, we still need to discuss some of the

steps in taking this set of constellation points and transmitting them over some medium to

a receiver. Let’s take a look at a QPSK constellation, with a transmission rate of 1 MSPS.

The baseband signal is two dimensional, so it must be represented with two orthogonal

components, which are, by convention, denoted I and Q.

Let us consider a sequence of 5 QPSK symbols, at time t ¼ 1, 2, 3, 4, and 5, respectively.

First, let’s look at the sequence in the two-dimensional complex constellation plane

(see Figure 9.3). It appears as a signal trajectory moving from one constellation point

to another over time.
(t=3)

(t=4)

(t=2)

(t=5)

(t=1)

I axis

Q axis

Figure 9.3
We can also look at the I and Q signals individually, plotted against time in Figure 9.3.

We can take this two-dimensional signal and plot each component separately (see Figure 9.4).

In actuality, the I and Q baseband signals are generated as two separate signals and later

combined together with a carrier frequency to form a single passband signal. This topic is

discussed in Chapter 11.

Notice the sharp transitions of the I and Q signals at each symbol. Intuitively, we know that a

sharp transition requires the signal to have high-frequency content. A signal that is of low

frequency can change only slowly and smoothly.

The high-frequency content of these I and Q signals can cause problems, because in

most systems, it is important to minimize the frequency content, or bandwidth, of

the signal. Remember the early discussion on frequency response, where a low-pass
.newnespress.com

http://www.newnespress.com/

t=1 t=2 t=3 t=4 t=5

I component

Q component

Figure 9.4

Complex Modulation and Demodulation 85
filter removes fast transitions or changes in a signal (or eliminates the high-frequency

components of that signal). If the frequency response of the signal is reduced, this is

the same as reducing its bandwidth. The smaller the bandwidth of the signal, the more

signal channels and, therefore, capacity can be packed into a given amount of frequency

spectrum. Thus, the channel bandwidth is often carefully controlled.

A simple example is FM radio. Each station, or channel, is located 200 kHz from its

neighbor. This means that each station has a 200 kHz spectrum, or frequency response,

it can occupy. The station on 101.5 is actually transmitting with a center frequency

of 101.5 MHz. The channels on either side transmit with center frequencies of 101.3

and 101.7 MHz. Therefore, it is important to restrict the bandwidth of each FM station

to within �100 kHz, which ensures it does not overlap, or interfere, with neighboring

stations. As we know by now, one way to restrict the bandwidth of a signal is to

use a filter.

In this discussion, we assume that a given signal’s frequency response, or spectrum, can

be moved up or down the frequency axis at will. This is true, and is called upconversion

or downconversion, and will be discussed in Chapter 11.
9.3 Pulse-Shaping Filter

To accomplish this frequency limiting of the modulated signal, we need to pass the

I and Q signals through a low-pass filter. This filter is often called a pulse-shaping filter,

and it determines the bandwidth of the modulated signal. But it is not quite that

simple. We need to consider what the filter does to the signal in the time domain

as well.
www.newnespress.com

http://www.newnespress.com/

86 Chapter 9

www
Suppose that we use an ideal low-pass filter. Let’s use our example where symbols are

generated at a rate R of 1 MSPS. The period T is the symbol duration, and equal to

1 ms in our example. The relationship between the rate R and symbol period T is

R ¼ 1=T and T ¼ 1=R

If we alternate with positive and negative I and Q values at each sample interval (this is
the worst case in terms of high-frequency content), the rate of change is 500 kHz. So we

start with a low-pass filter with a passband of 500 kHz (see Figure 9.5).
1

R/2=
500 kHz

Frequency
axis

-R/2=-
500 kHz

Figure 9.5
This filter has the sinc impulse or time response. The impulse response is shown above

in Figure 9.5. It has zero crossings at intervals of T seconds, and decays slowly. A very

long filter is needed to approximate the sinc response. The impulse responses of the

symbols immediately preceding and following the center symbol are shown in

Figure 9.6. The actual transmitted signal will be the sum of all the symbols’ impulse

response (we just show three symbols here). If the I or Q sample has a negative value

for a particular symbol, then the impulse response for that symbol will be inverted from

what is shown in Figure 9.6.
Time axis

T 2T 3T 4T-T-2T-4T -3T

Fcutoff = R/2 = 1/2T

Preceding
symbol

Following
symbol

Figure 9.6

.newnespress.com

http://www.newnespress.com/

Complex Modulation and Demodulation 87
Think for a moment about the job of the receiver. The receiver is sampling the signal

at T intervals in time to detect the symbol values. It must sample at the T intervals shown

on the time axis in Figure 9.6 (leave aside for now the question of how the receiver knows

exactly where to sample). At time t ¼ –T, the receiver samples the first symbol. Notice

how the two later symbols have zero crossings at t ¼ –T, and so have no contribution

at this instant. At t ¼ 0, the receiver samples the value of the second symbol. Again,

the other symbols, such as the first and third adjacent symbols, have zero crossings at

t ¼ 0 and have no contribution. If we were to reduce the bandwidth of the filter to

less than 500 kHz (R/2), then in the frequency domain, these pulses would widen

(remember that the narrower the frequency spectrum, the longer the time response,

and vice versa). This scenario is shown in Figure 9.7 if the Fcutoff of the pulse-shaping

filter is narrowed to 250 kHz, or R/4.
Time axis

T 2T 3T 4T-T-2T-4T -3T

Fcutoff = R/4 = 1/4T

Figure 9.7
In this case, notice how at time t ¼ 0, the receiver samples contributions from all three

pulses. At each sampling point of t equal to . . .–3T, –2T, –T, 0, T, 2T, . . ., the signal is

going to have contributions from many nearby symbols, preventing detection of any specific

symbol. This phenomenon is known as intersymbol interference (ISI) and shows that to

transmit symbols at a rate R, we need to have at least R Hz (or 1/T Hz) in the passband

frequency spectrum. At baseband, the equivalent two-dimensional (complex) spectrum

is from –R/2 to þR/2 Hz to avoid creating ISI. Therefore, to transmit a 1 MSPS signal over

the air, at least 1 MHz of RF frequency spectrum is required. The baseband filters need a

cutoff frequency of at least 500 kHz.

Notice that the frequency spectrum or bandwidth required depends on the symbol rate,

not the bit rate. We can have a much higher bit rate, depending on the constellation type

used. For example, each 256-QAM symbol carries 8 bits of information, while a QPSK

symbol carries only 2 bits of information. But if they both have a common symbol rate,

both constellations require the same bandwidth.
www.newnespress.com

http://www.newnespress.com/

88 Chapter 9

www
We still have two problems, however. One is that the sinc impulse response decays very

slowly and so takes a long filter (many multipliers) to implement. The second is that

although the response of the other symbols does go to zero at the sampling time when

t ¼ N�T, where N is any integer, we can see visually that if our receiver samples just

a little bit to either side, the adjacent symbols will contribute. This makes the receiver

symbol detection performance very sensitive to our sampling timing.

Ideally, we want an impulse response that still goes to zero at intervals of T but decays

faster and has lower amplitude lobes, or tails. This way, if we sample a bit to one side of

the ideal sampling point, the lower amplitude tails make the unwanted contribution of

the neighboring symbols smaller. By making the impulse response decay faster, we can

reduce the number of taps and, therefore, multipliers required to implement the

pulse-shaping filter.

9.4 Raised Cosine Filter

There is a type of filter commonly used to meet the requirements described in the

preceding section. It is called the raised cosine filter, and it has an adjustable bandwidth,

controlled by the “roll-off” factor. The trade-off is that as bandwidth of the signal becomes

a bit wider, more frequency spectrum is required to transmit the signal.

The following table summarizes the raised cosine response shown in Figure 9.8 for

different roll-off factors. These labels are also used in Figures 9.10 and 9.11.
Table 9.3: Roll-off factor characteristics

Roll-off Factor Label Comments*

0.10 A Requires long impulse response (high multiplier resources), has small
frequency excess bandwidth of 10%

0.25 B A commonly used roll off factor, excess bandwidth of 25%
0.50 C A commonly used roll off factor, excess bandwidth of 50%
1.00 D Excess bandwidth of 100%, never used in practice

*Excess bandwidth refers to percentage of additional bandwidth required compared to ideal low pass filter.
In Figure 9.8, the frequency response of the raised cosine filter is shown. So that we

can better see the passband shape, it is plotted linearly rather than logarithmically (dB).

It has a cutoff frequency of 500 kHz, the same as our ideal low-pass filter. A raised

cosine filter response is wider than the ideal low-pass filter, due to the transition band.

This excess frequency bandwidth is controlled by a parameter called the “roll-off” factor.

The frequency response is plotted for several different roll-off factors. As the roll-off

factor gets closer to zero, the transition becomes steeper, and the filter approaches the

ideal low-pass filter.
.newnespress.com

http://www.newnespress.com/

A

C

B

D

�

Raised cosine frequency response (linear)

Figure 9.8

Complex Modulation and Demodulation 89
The impulse response of the raised cosine filter is shown in the following figures.

Figure 9.9 shows the filter impulse response, and Figure 9.10 zooms in to better show

the lobes of the filter impulse. Again, this response is plotted for several different roll-off

factors. It is similar to the sinc impulse response in that it has zero crossings at time

intervals of T (because this is shown in the sample domain, rather than the time domain,

this similarity is not readily apparent from the figures).
Figure 9.9

www.newnespress.com

http://www.newnespress.com/

A

C
B

D

Raised cosine impulse response

Figure 9.10

90 Chapter 9

www
As the excess bandwidth is reduced to approach the ideal low-pass filter frequency

response, the lobes in the impulse response become higher, approaching the sinc impulse

response. The signal with the smaller amplitude lobes has a larger excess bandwidth, or

wider spectrum.

Let’s review this idea of pulse-shaping filter again, in light of Figures 9.9 and 9.10.

We need a pulse-shaping filter that has a zero response at intervals of T in time so

that a given symbol’s pulse response does not have a contribution to the signal at the

sampling times of the neighboring symbols. We also would like to minimize the height

of the lobes of the impulse (time) response and have it decay quickly, so as to reduce

our sensitivity to ISI if the receiver doesn’t sample precisely at the correct time for

each symbol.

As the roll off factor increases, we can see this is exactly what happens in the figures

(signal “D”). The impulse response goes to zero very quickly, and the lobes of the filter

impulse response are very small. On the other hand, we have a frequency spectrum which

is excessively wide. A better compromise would be a roll off factor somewhere between

0.25 and 0.5 (signals “B” and “C”).

Here, the impulse response decays relatively quickly with small lobes, requiring a pulse-shaping

filter with a small number of taps, while still keeping the required bandwidth reasonable.

The roll-off factor controls the compromise between

• Spectral bandwidth requirement

• Length or number of taps of the pulse-shaping filter

• Receiver sensitivity to ISI
.newnespress.com

http://www.newnespress.com/

Complex Modulation and Demodulation 91
Another significant aspect of the transmit pulse-shaping filter is that it is always an

interpolating filter. In our figures, this is shown as a 4� interpolation filter. If you look

carefully at the impulse response in Figure 9.10, you can see that the zero crossings occur

every four samples. This corresponds to t ¼ N � T in the time domain, due to the

4� interpolation.

The transmit pulse-shaping filter must be an interpolating filter because our I and

Q baseband signals must meet the Nyquist criterion. In this example, the symbol rate

is 1 MSPS. If we use a high roll-off factor, the baseband spectrum of the I and Q signals

can be as high as 1 MHz. So we require a minimum sampling rate of 2 MHz, or twice

the symbol rate. Therefore, the pulse-shaping filter needs to interpolate by at least a

factor of two, and is often interpolated quite a bit higher than this, for reasons we

discuss in Chapter 11 on digital upconversion.

Once we have our pulse-shaped and interpolated I and Q baseband digital signals, we

can use digital-to-analog converters (DACs) to create the analog I and Q baseband signals.

These signals can be used to drive an analog mixer, which can create a passband signal.

A passband signal is a baseband signal that has been upconverted or mixed with a carrier

frequency.

For example, we might use a 0.25 roll-off filter for our 1 MSPS modulator. The

baseband I and Q signals then have a bandwidth of 625 kHz. If we use a carrier

frequency of 1 GHz, our transmit signal then requires about 1.25 MHz of spectrum

centered at 1 GHz.

So far, we have discussed the process that occurs in the transmission path. The receive

path is quite similar. The signal is downconverted, or mixed down to baseband. We

discuss this topic in more detail in Chapter 11. The demodulation process starts with

baseband I and Q signals. The receiver is more complex because it must deal with several

additional issues. For example, there may be nearby signals that can interfere with the

demodulation process. These signals must be filtered out, usually with a combination

of analog and digital filters. The final stage of digital filtering is often the same

pulse-shaping filter used in the transmitter. This is called a matched filter. The idea is

that if the same filter that was used to create the signal is also used to filter the spectrum

prior to sampling, we can maximize the amount of signal energy used in the detection

(or sampling process). There is a bit of mathematics to prove this point, so we can just

take it at face value. Due to this idea of using the same filter in the transmitter and

receiver, the raised cosine filter is usually modified to a square root raised cosine filter.

The frequency response of the raised cosine filter is modified to be the square root of

the amplitude across the passband. This also modifies the impulse response as well.

This is shown in Figures 9.11 and 9.12 for the same roll-off factors.
www.newnespress.com

http://www.newnespress.com/

Figure 9.12

A

C

B

D

�

Figure 9.11

92 Chapter 9

www.newnespress.com

http://www.newnespress.com/

Complex Modulation and Demodulation 93
Since the signal passes through both filters, the net frequency response is the raised cosine

filter. After passing through the receive pulse-shaping (also called matched) filter, the

signal is sampled. Using the sampled I and Q value, the receiver chooses the constellation

point in the I-Q plane closest to the sampled value. The bits corresponding to that symbol

are recovered, and if all goes well, the receiver chooses the same symbol point selected

by the transmitter. We have greatly simplified this whole process, but this is the essence

of digital communications.

We can see why it will be easier to have errors when transmitting 64-QAM as compared to

QPSK. The receiver has 64 closely spaced symbols to select from in the case of 64-QAM,

whereas in QPSK, there are only 4 widely spaced symbols to select from. This makes 64-

QAM systems much more susceptible to ISI, noise, or interference. You might think you

should transmit the 64-QAM signal with higher power, to spread the symbols further apart.

This is an effective but very expensive way to mitigate the noise and interference that

prevents correct detection of the symbol at the receiver. Also, the transmit power is often

limited by the regulatory agencies, or the transmitter may be battery powered or have other

constraints.

The receiver also has a number of other problems to contend with. We assumed that

we always sample at the correct instant in time when one symbol has a nonzero value

in the signal. The receiver must somehow determine this correct sampling time, usually

by a combination of trial and error during the initial part of the reception, and sometimes

by having the transmitter send a predetermined (or training) sequence known by both

transmitter and receiver. This process is known as acquisition, where the receiver

tries to fine-tune the sampling time, the symbol rate, the exact frequency and phase

of the carrier, and other parameters that may be needed to demodulate the received

signal with a minimum of errors. And once all this information is determined, it must

still be tracked to account for differences in transmit and receive clocks, Doppler

shifts due to relative motion between the receiver and transmitter, and changes in

the path the signal takes from transmitter to receiver, causing various reflections,

distortions, and attenuations.

These problems are what make digital receivers so difficult and interesting to work

with. Unfortunately, there is usually a lot of mathematics associated with most

receiver algorithms and methods, so we do not go into this topic in any depth.

But later chapters describe the basic principles of several common types of digital

communication systems.

Figures 9.13 and 9.14 show plots from both a 16-QAM and 64-QAM constellation after

being sampled by an actual digital receiver. Each receiver signal has the same average

energy. This is from a WiMax wireless system, operating in the presence of noise. The

receiver does manage to do a sufficiently good job at detection so that each constellation
www.newnespress.com

http://www.newnespress.com/

94 Chapter 9

www
point is clearly visible. But we can imagine that as the receiver noise level increases, the

constellation samples would quickly start to drift together on the 64-QAM constellation,

and we would be unable to accurately determine to which constellation point a given

symbol should map. Error vector magnitude (EVM) is a measurement of the constellation

noise level. The 16-QAM system is more robust in the presence of additive noise and other

impairments, compared to the 64-QAM.
Figure 9.13
The modulation and demodulation (modem) ideas presented in this chapter are used in most

digital communication systems, including satellite, microwave, cellular (CDMA and

TDMA), wireless LAN (OFDM), DSL, fax, and data dial-up modems. Actually, the lowly

dial-up modem is among the most complicated of all: a V.34 modem can have over 1000

constellation points.

I hope that by now the name conventions of the modulation methods are starting to make

more sense to you. In QPSK, all four symbols have the same amplitude. The phase in the
.newnespress.com

http://www.newnespress.com/

Figure 9.14

Complex Modulation and Demodulation 95
complex plane is what distinguishes the different symbols, each of which is located in a

different quadrant. For QAM, the amplitude and phase of the symbol are needed to

distinguish a particular symbol.

In general, communication systems are full of trade-offs. The most important comes from a

famous theorem developed by Claude Shannon that gives the maximum theoretical data bit

rate which can be communicated over a communications channel depending on bandwidth,

transmit power, and receiver noise level. It gives the maximum data rate that can be sent over

a channel or link with a given noise level and bandwidth. This is known as the Shannon limit,

and is somewhat analogous to the speed of light, which can be approached with ever-

increasing amounts of cleverness and effort but can never be exceeded. This topic is

discussed further in Chapter 12 on error correction codes.
www.newnespress.com

http://www.newnespress.com/

Digital Signal Processing 101. DOI: 10.1016/B978-1-85617-921-8.00014-6
2010 Elsevier Inc. All rights reserved. 97
CHAPTER 10
Discrete and Fast Fourier Transforms
(DFT, FFT)
You have likely heard the term FFT. In this chapter, we discuss the discrete Fourier

transform, or DFT, and its more popular cousin, the fast Fourier transform, or FFT.

We again try to approach this topic intuitively, although a bit of math is unavoidable.

The key is to understand the DFT operation. The FFT is simply a highly optimized

implementation of the DFT. They both produce identical results. While the implementation

of the FFT is interesting, unless you are actually building it, you don’t really need to

know the details. Because the FFT is such a basic building block in DSP, many

implementations are already available.

So just what is the DFT? To start with, the DFT is simply a transform. It takes a sequence of

sampled data (a signal) and computes the frequency content of that sampled data sequence.

This gives the representation of the signal in the frequency domain, as opposed to the familiar

time domain representation. This process is very similar to what we did when computing

frequency response of FIR filters. This tool can be very powerful in signal processing

applications because it allows us to examine any given signal (not just a filter) in the

frequency domain, which provides the spectral content of a given signal.

There is also an inverse discrete Fourier transform (IDFT) and inverse fast Fourier transform

(IFFT). Again, the IFFT is simply an optimized form of the IDFT. They both compute the

time domain representation of the signal from the frequency domain information. Using these

transforms, we can go back and forth from the time domain signal and the frequency domain

spectral representation.

Conceptually, the DFT tries to take any complex signal, and break it up into a sum of many

cosine and sine waves of different frequencies.

This idea is a bit novel if this is your first exposure to it.

To appreciate what is happening, we are going to examine a few simple examples.

Doing so involves multiplying and summing up complex numbers, which, while not difficult,

can be tedious. We minimize the tedium by using a short transform length, but it cannot

98 Chapter 10

www
really be avoided if you want to understand the DFT and later if you wish to delve into FFT

(the optimized form of DFT).

Let’s begin with the equation we used earlier for frequency response in Chapter 5 on FIR filters:

Frequency response ¼ HðoÞ ¼
X

i 1 to 1
Ci e

joi

Let’s see if we can start simplifying. For example, say we decide to perform the calculation
over a finite length of sampled data signal “x,” which contains N samples rather than an

infinite sequence of coefficients Ci. Doing so gets rid of the infinity and makes this

something we can actually build:

HðoÞ ¼
X

i 0 to N 1

Xie
joi

Next, notice that o is a continuous variable, which we evaluate over a 2p interval, usually
from –p to p. Instead, we will transform a sampled time domain signal to a sampled

frequency domain spectral plot. So rather than computing o continuously from –p to p, we
instead compute o at M equally spaced points over an interval of 2p. Now it turns out that to

avoid aliasing in the frequency domain, we must make M � N.

The reverse transform is the IDFT (or IFFT), which reconstructs the sampled time domain

signal of length N. This process requires N or more points in the frequency domain.

The end result is that we set N ¼ M, and the frequency domain representation has the

same number of points as the time domain representation. We use the convention “xi” to

represent the time domain version of the signal, and “Xk” to represent the frequency

domain representation of the signal. Both indexes “i” and “k” run from 0 to N – 1.

10.1 DFT and IDFT Equations

The DFT and IDFT equations appear very similar:

DFTðtime ! frequencyÞ Xk ¼ Hð2pk=NÞ ¼
X

i 0 to N 1

Xie
j2pki=N, for k ¼ f0, . . . , N 1g

DFTðfrequency ! timeÞ Xi ¼ 1=N �
X

k 0 to N 1

Xke
þj2pki=N, for i ¼ f0, . . . , N 1g

The differences are the negative sign on the exponent on the DFT equation and the factor of
1/N on the IDFT equation. The DFT equation requires that every single sample in the

frequency domain has a contribution from each and every one of the time domain samples.

And the IDFT equation requires that every single sample in the time domain has a

contribution from each and every one of the frequency domain samples. To compute a single

sample of either transform requires N complex multiplication and addition operations.
.newnespress.com

http://www.newnespress.com/

Discrete and Fast Fourier Transforms (DFT, FFT) 99
To compute the entire transform requires computing N samples, for a total of N2

multiplication and addition operations. This can become a computational problem when

N grows large. As we see later, this is the reason the FFT and IFFT were developed.

The values of Xk represent the amount of signal energy at each frequency point. Imagine taking

a spectrum of 1 MHz. Then we divide it into N bins. If N ¼ 20, then we will have 20 frequency

bins, each 50 kHz wide. The DFT output, Xk, represents the signal energy in each of these bins.

For example, X0 represents the signal energy at 0 kHz, or the DC component of the signal.

X1 represents the frequency content of the signal at 50 kHz. X2 represents the frequency content

of the signal at 100 kHz. X19 represents the frequency content of the signal at 950 kHz.

Now let’s examine a few comments on these transforms. First, they are reversible. We can take

a signal represented by N samples and perform the DFT on it. We get N outputs representing

the frequency response or spectrum on the signal. If we take this frequency response and

perform the IDFT on it, we get back our original signal of N samples. Second, when the DFT

output gives the frequency content of the input signal, it assumes that the input signal is

periodic in N. To put it another way, the frequency response is actually the frequency response

of an infinite long periodic signal, where the N long sequence of xi samples repeats over

and over. Last, the input signal xi is usually assumed to be a complex (two-dimensional) signal.

The frequency response samples Xk are also complex. Often we are more interested in only

the magnitude of the frequency response Xk, which can be more easily displayed. But to get

back the original complex input xi using the IDFT, we would need the complex sequence Xk.

At this point, let’s examine a few examples, selecting N ¼ 8.

For our N ¼ 8-point DFT, the output gives us the distribution of input signal energy into

8 frequency bins, corresponding to the frequencies in the following table. By computing

the DFT coefficients Xk, we are performing a correlation, or trying to match our input signal

to each of these frequencies. The magnitude DFT output coefficients Xk represent the degree

of match of the time domain signal xi to each frequency component.
Table 10.1: 8-Point DFT coefficients

k Xk

Compute by Correlating to

Complex Exponential Signal

DPhase Between Each Sample

of Complex Exponential Signal

0 X0 e0 for i ¼ 0,1, . . ., 7 0
1 X1 e�j2pi/8 for i ¼ 0,1, . . ., 7 p/4 or 45 degrees
2 X2 e�j4pi/8 for i ¼ 0,1, . . ., 7 2p/4 or 90 degrees
3 X3 e�j6pi/8 for i ¼ 0,1, . . ., 7 3p/4 or 135 degrees
4 X4 e�j8pi/8 for i ¼ 0,1, . . ., 7 4p/4 or 180 degrees
5 X5 e�j10pi/8 for i ¼ 0,1, . . ., 7 5p/4 or 225 degrees
6 X6 e�j12pi/8 for i ¼ 0,1, . . ., 7 6p/4 or 270 degrees
7 X7 e�j14pi/8 for i ¼ 0,1, . . ., 7 7p/4 or 315 degrees

www.newnespress.com

http://www.newnespress.com/

100 Chapter 10

www
10.1.1 First DFT Example

Let us start with a simple time domain signal consisting of {1,1,1,1,1,1,1,1}. Remember,

the DFT assumes this signal keeps repeating, so the frequency output will actually be that

of an indefinite string of 1s. Because this signal is unchanging, then by intuition we expect

that the zero frequency component (DC of signal) is going to be the only nonzero component

of the DFT output Xk.

Starting with Xk ¼
X

i 0 to N 1

xi e
j2pki/N and setting N ¼ 8 and all xi ¼ 1

Xk ¼
X

i 0 to 7

1 � e j2pki=8,

and setting k ¼ 0 (recall that e0 ¼ 1)
X0 ¼
X

i 0 to 7

1 � 1 ¼ 8

Next, we evaluate for k ¼ 1:
X1 ¼
X

i 0 to 7

1 � e j2pi=8

¼ 1 þ e j2p=8 þ e j4p=8 þ e j6p=8 þ e j8p=8 þ e j10p=8 þ e j12p=8 þ e j14p=8

X1 ¼ 1 þ ð0:7071 j0:7071Þ j þ ð 0:7071 j0:7071Þ 1 þ ð 0:7071 j0:7071Þ
þ j þ ð0:7071 j0:7071Þ

X1 ¼ 0

The eight terms of the summation for X1 cancel out. This makes sense if you think about it.
This is a sum of eight equally spaced points about the origin on the unit circle of complex plane.

The summation of these points must equal the center—in this case, zero.

Next, we evaluate for k ¼ 2:

X2 ¼
X

i 0 to 7

1 � e j2pi=8 ¼ 1þ e jp=2 þ e jp þ e j3p=2 þ e j2p þ e j5p=2 þ e j3p þ e j7p=2

X2 ¼ 1 j 1þ jþ 1 j 1þ j ¼ 0

We find out similarly that X3, X4, X5, X6, and X7 also are zero. Each of these represents
eight points equally spaced about the unit circle. X1 has its points spaced at –45o increments,

X2 has its points spaced at –90o increments, X3 has its points spaced at –135o increments,

and so forth (the points may wrap around the unit circle in the frequency domain multiple

times). So as we expected, the only nonzero term is X0, which is the DC term. There is no

other frequency content of the signal.
.newnespress.com

http://www.newnespress.com/

Discrete and Fast Fourier Transforms (DFT, FFT) 101
Now, let us use the IDFT to get back the original sequence:

xi ¼ 1=N �
X

k 0 to N 1

Xke
þj2pki=N for N ¼ 8 and X0 ¼ 8, all other Xk ¼ 0

xi ¼ 1=8 �
X

k 0 to N 1

Xke
þj2pki=8

Since X0¼ 8 and the rest are zero, we need to evaluate only the summation for k ¼ 0:
xi ¼ 1=8 � 8 � eþj2p0 i=8 ¼ 1

This is true for all values of i (the 0 in the exponent means the value of i is irrelevant). So we
get an infinite sequence of 1s.

In general, however, we would evaluate for i from 0 to N – 1. Due to the periodicity of the

transform, there is no point in evaluating when i ¼ N or greater. If we evaluate for i ¼ N,

we get the same value as i ¼ 0, and for i ¼ N þ 1, we get the same value as i ¼ 1.

10.1.2 Second DFT Example

Let us consider another simple example, with a time domain signal {1,j, –1, –j,1,j, –1, –j}.

This is actually the complex exponential eþj2pi/4. This signal consists of a single frequency and

corresponds to one of the frequency “bins” that the DFT will measure. So we can expect a

nonzero DFT output in this frequency bin, but zero elsewhere. Let’s see how this works out.

Starting with Xk ¼
X

i 0 to N 1

xi e
j2pk i=N and setting N ¼ 8 and xi ¼ {1,j, –1, –j,1,j, –1, –j}

X0 ¼
X

i 0 to 7

xi � 1, as k ¼ 0ðe0 ¼ 1Þ

X0 ¼ 1 þ j – 1 – j þ 1 þ j –1 – j ¼ 0, so the signal has no DC content, as expected. Notice
that to calculate X0, which is the DC content of xi, the DFT reduces to just summing

(essentially averaging) the input samples.

Next, we evaluate for k ¼ 1:

X1 ¼
X

i 0 to 7

xi � e j2pi=8 ¼ 1 � 1þ j � e j2p=8 1 � e j4p=8 j � e j6p=8

þ 1 � e j8p=8 þ j � e j10p=8 1 � e j12p=8 j � e j14p=8

X1 ¼ 1þ ½j � ð0:7071 j0:7071Þ� þ j ½j � ð 0:7071 j0:7071Þ�
1þ ½j � ð 0:7071þ j0:7071Þ� j ½j � ð0:7071þ j0:7071Þ�

X1 ¼ 0

If you take the time to work this out, you see that all eight terms of the summation cancel out.
This also happens for X3, X4, X5, X6, and X7. Let’s look at X2 now. We also express xi using

the complex exponential format of eþj2pi/4:
www.newnespress.com

http://www.newnespress.com/

102 Chapter 10

www
Xk ¼
X

i 0 to 7

xie
j2pki=8

X2 ¼
X

i 0 to 7

xi � e j4pi=8 ¼
X

i 0 to 7

eþj2pi=4 � e j4pi=8 ¼
X

i 0 to 7

eþj2pi=4 � e j2pi=4

Remember that when exponentials are multiplied, the exponents are added (x2�x3 ¼ x5).
Here, the exponents are identical, except of opposite sign. So they add to zero:

X2 ¼
X

i 0 to 7

eþj2pi=4 � e j2pi=4
X

i 0 to 7

e0 ¼
X

i 0 to 7

1 ¼ 8

The sole frequency component of the input signal is X2. The reason is that our input is
a complex exponential frequency at the exact frequency that X2 represents.

10.1.3 Third DFT Example

Next, we can try modifying xi such that we introduce a phase shift or delay (like

substituting a sine wave for a cosine wave). Suppose we introduce a delay, so xi starts

at j instead of 1, but is still the same frequency. The input xi is still rotating around the

complex plane at the same rate but starts at j (angle of p/2) rather than 1 (angle of 0).

Now the sequence xi ¼ {j, –1, –j,1,j, –1, –j,1} or eþj(2p(iþ1)/4).

The DFT output results in X0, X1, X3, X4, X5, X6, and X7 ¼ 0, as before. Changing the

phase cannot cause any new frequency to appear in the other bins.

Next, we evaluate for k ¼ 2:

Xk ¼
X

i 0 to 7

xie
j2pki=8

X2 ¼
X

i 0 to 7

xi � e j4pi=8 ¼
X

i 0 to 7

eþjð2pðiþ1Þ=4Þþ1Þ � e j4pi=8

We need to sum the two values of the two exponents:
þjð2pðiþ 1Þ=4Þ þ j4pi=8 ¼ þj2pi=4þ j2p=4 j2pi=4 ¼ jp=2

Substituting back this exponent value
X2 ¼
X

i 0 to 7

eþjðð2pi=4Þþ1Þ � e j4pi=8 ¼
X

i 0 to 7

eþjp=2 ¼
X

i 0 to 7

j ¼ j8

So we get exactly the same magnitude at the frequency component X2. The difference
is the phase of X2. So the DFT does not just pick out the frequency components of a signal but is

sensitive to the phase of those components. The phase as well as amplitude of the frequency

components Xk can be represented because the DFT output is complex.
.newnespress.com

http://www.newnespress.com/

Discrete and Fast Fourier Transforms (DFT, FFT) 103
The process of the DFT is to correlate the N sample input data stream xi against N equally spaced

complex frequencies. If the input data stream is one of these N complex frequencies, then we

get a perfect match and get zero in the other N – 1 frequencies that do not match. But what

happens if we have an input data stream with a frequency in between one of the N frequencies?

To review, we have looked at three simple examples. The first was a constant-level signal,

so the DFT output was just the zero frequency or DC component. The second example

was a complex frequency that matched exactly to one of the frequency bins, Xk, of the

DFT. The third was the same complex frequency, but with a phase offset. The fourth,

examined in the following section, is a complex frequency not matched to one of the

N frequencies used by the DFT. Next, we look at an example where the frequency is

somewhere in between the DFT bins.
10.1.4 Fourth DFT Example

Now let’s look at an input signal of frequency eþj2.1pi/8. This is pretty close to eþj2pi/8, so

we would expect a pretty strong output at X1. Let’s see what the N ¼ 8 DFT result is; let’s

hope the arithmetic is all correct. Slogging through this arithmetic is purely optional; the

details are shown to provide a complete example.

Generic DFT equation for N ¼ 8: Xk ¼
P

i 0 to 7xie
j2pki=8

X0 ¼
X

i 0 to 7

eþj2:1pi=8 � 1 ¼
X

i 0 to 7

eþj2:1pi=8

¼ ½1þ j0� þ ½0:6788þ j0:7343� þ ½ 0:0785þ j0:9969� þ ½ 0:7853þ j0:6191�
þ ½ 0:9877 j0:1564� þ ½ 0:5556 j0:8315� þ ½0:2334 j0:9724� þ ½0:8725 j0:4886�
¼ 0:3777 j0:0986

X1 ¼
X

i 0 to 7

eþj2:1pi=8 � e j2pi=8 ¼
X

i 0 to 7

eþj0:1pi=8

¼ ½1þ j0� þ ½0:9992þ j0:0393� þ ½0:9969þ j0:0785� þ ½0:9931þ j0:1175�
þ ½0:9877þ j0:1564� þ ½0:9808þ j0:1951� þ ½0:9724þ j0:2334� þ ½0:9625þ j0:2714�
¼ 7:8925þ j1:0917

X þj2:1pi=8 j4pi=8
X

j1:9pi=8
5�

om
X2 ¼
i 0 to 7

e � e ¼
i 0 to 7

e

¼ ½1þ j0� þ ½0:7343 j0:6788� þ ½0:0785 j0:9969� þ ½ 0:6191 j0:7853�
þ ½ 0:9877 j0:1564� þ ½ 0:8315þ j0:5556� þ ½ 0:2334þ j0:9724� þ ½0:4886þ j0:872

¼ 0:3703 j0:2170

www.newnespress.c

http://www.newnespress.com/

104 Chapter 10

www
X3 ¼
X

i 0 to 7

eþj2:1pi=8 � e j6pi=8 ¼
X

i 0 to 7

e j3:9pi=8

¼ ½1þ j0� þ ½0:0393 j0:9992� þ ½ 0:9969 j0:0785� þ ½ 0:1175þ j0:9931�
þ ½0:9877þ j0:1564� þ ½0:1951 j0:9808� þ ½ 0:9724 j0:2334� þ ½ 0:2714þ j0:9625�
¼ 0:1362 j0:1800

X4 ¼
X

eþj2:1pi=8 � e j8pi=8 ¼
X

e j5:9pi=8
6�
i 0 to 7 i 0 to 7

¼ ½1þ j0� þ ½ 0:6788 j0:7343� þ ½ 0:0785þ j0:9969� þ ½0:7853 j0:6191�
þ ½ 0:9877 j0:1564� þ ½ 0:5556þ j0:8315� þ ½0:2334 j0:9724� þ ½ 0:8725þ j0:488

¼ 0:0431 j0:1652

X5 ¼
X

eþj2:1pi=8 � e j10pi=8 ¼
X

e j7:9pi=8
i 0 to 7 i 0 to 7

¼ ½1þ j0� þ ½ 0:9992 j0:0393� þ ½0:9969þ j0:0785� þ ½ 0:9931 j0:1175�
þ ½0:9877þ j0:1564� þ ½ 0:9808 j0:1951� þ ½0:9724þ j0:2334� þ ½ 0:9625 j0:2714�
¼ 0:0214 j0:1550

X6 ¼
X

eþj2:1pi=8 � e j12pi=8 ¼
X

e j9:9pi=8
5�
i 0 to 7 i 0 to 7

¼ ½1þ j0� þ ½ 0:7343þ j0:6788� þ ½0:0785 j0:9969� þ ½0:6191þ j0:7853�
þ ½ 0:9877 j0:1564� þ ½0:8315 j0:5556� þ ½ 0:2334þ j0:9724� þ ½ 0:4886 j0:872

¼ 0:0849 j0:1449

X7 ¼
X

eþj2:1pi=8 � e j14pi=8 ¼
X

e j11:9pi=8
i 0 to 7 i 0 to 7

¼ ½1þ j0� þ ½ 0:0393þ j0:9992� þ ½ 0:9969 j0:0785� þ ½0:1175 j0:9931�
þ ½0:9877þ j0:1564� þ ½ 0:1951þ j0:9808� þ ½ 0:9724 j0:2334� þ ½0:2714 j0:9625�
¼ 0:1730 j0:1310

This is a bit tedious. But there is some insight to be gained from the results of these simple
examples, as you can see in the following table.

This table shows how the DFT is able to represent the signal energy in each frequency bin.

The first example has all its energy at DC. The second and third examples are complex

exponentials at frequency o ¼ p/2 rad/sample, which corresponds to DFT output X2.

The magnitude of the DFT outputs is the same for both examples, since the only difference of
.newnespress.com

http://www.newnespress.com/

Table 10.2: Example DFT results

DFT Output

Magnitude xi ¼ {1,1,1,1,1,1,1,1} xi ¼ eþj2pi/4 xi ¼ eþj(2p(iþ1)/4) xi ¼ eþj2.1pi/8

Output X0 8 0 0 0.39
Output X1 0 0 0 7.99
Output X2 0 8 8 0.43
Output X3 0 0 0 0.23
Output X4 0 0 0 0.17
Output X5 0 0 0 0.16
Output X6 0 0 0 0.17
Output X7 0 0 0 0.22

Discrete and Fast Fourier Transforms (DFT, FFT) 105
the inputs is the phase. The fourth example is the most interesting. In this case, the input

frequency is close to p/4 rad/sample, which corresponds to DFT output X1. So X1 does

capture most of the energy of the signal. But small amounts of energy spill into other

frequency bins, particularly the adjacent bins.

We can increase the frequency sorting ability of the DFT by increasing the value of N.

Then each frequency bin is narrower (since the frequency spectrum is divided in N

sections in the DFT). This results in any given frequency component being more selectively

represented by a particular frequency bin. For example, the frequency response plots of

the filters contained in Chapter 5 on FIR filters are computed with a value of N equal to

1024. This means the spectrum was divided into 1024 sections, and the response computed

for each particular frequency. When plotted together, this gives a very good representation

of the complete frequency spectrum.

Note this also requires taking a longer input sample stream xi, equal to N. This, in turn,

requires a much greater number of operations to compute.

At some point, some smart people searched for a way to compute the DFT in a more

efficient way. The result is the FFT, or fast Fourier transform. Rather than requiring N2 complex

multiplies and additions, the FFT requires N�log2N complex multiplication and addition

operations. This may not sound like a big deal, but look at the comparison in the following table.
Table 10.3: FFT computational efficiency

N

DFT N2 Complex

Multiplication and

Addition Operations

FFT N�log2N Complex

Multiplication and

Addition Operations

Computational Effort of FFT

Compared to DFT (%)

8 64 24 37.50
32 1024 160 15.62
256 65,536 2048 3.12
1024 1,048,576 10,240 0.98
4096 16,777,216 49,152 0.29

www.newnespress.com

http://www.newnespress.com/

106 Chapter 10

www
So by using the FFT algorithm on a 1024-point (or sample) input, we are able to reduce

the computational requirements to less than 1%, or by 2 orders of magnitude, of what the

DFT algorithm would require.
10.2 Fast Fourier Transform (FFT)

Let’s start with the calculation of the simplest DFT: N ¼ 2 DFT.

Generic DFT equation for N ¼ 2: Xk ¼
P

i 0 to 1xie
j2pki=2

X0 ¼ x0 � e j2p0=2 þ x1 � e j2p0=2

X1 ¼ x0 � e j2p0=2 þ x1 � e j2p1=2

Simplifying since e0 ¼ 1, we find
X0 ¼ x0 þ x1
X1 ¼ x0 þ x1 � e jp ¼ x0 x1

Next, we do the 4-point (N ¼ 4) DFT.
Generic DFT equation for N ¼ 4: Xk ¼
P

i 0 to 3xie
j2pki=4

X0 ¼ x0 � e j2p0=4 þ x1 � e j2p0=4 þ x2 � e j2p0=4 þ x3 � e j2p0=4

X1 ¼ x0 � e j2p0=4 þ x1 � e j2p1=4 þ x2 � e j2p2=4 þ x3 � e j2p3=4

X2 ¼ x0 � e j2p0=4 þ x1 � e j2p2=4 þ x2 � e j2p4=4 þ x3 � e j2p6=4

X3 ¼ x0 � e j2p0=4 þ x1 � e j2p3=4 þ x2 � e j2p6=4 þ x3 � e j2p9=4

The term e j2pk/4 repeats itself with a period of k ¼ 4 because the complex exponential
makes a complete circle and begins another. This periodicity means that e j2pk/4 is equal

when evaluated for k ¼ 0, 4, 8, 12, It is again equal for k ¼ 1, 5, 9, 13,

Consequently, we can simplify the last two terms of expressions for X2 and X3 (shown in

bold below). We can also remove the exponential when it is to a power of zero.

X0 ¼ x0 þ x1 þ x2 þ x3

X1 ¼ x0 þ x1 � e j2p1=4 þ x2 � e j2p2=4 þ x3 � e j2p2=4

X2 ¼ x0 þ x1 � e j2p2=4 þ x2 � e j2p0=4 þ x3 � e j2p2=4

X3 ¼ x0 þ x1 � e j2p3=4 þ x2 � e j2p2=4 þ x3 � e j2p1=4

Now we are going to rearrange the terms of the 4-point (N ¼ 4) DFT. The even and odd
terms are grouped together:
.newnespress.com

http://www.newnespress.com/

Discrete and Fast Fourier Transforms (DFT, FFT) 107
X0 ¼ ½x0 þ x2� þ ½x1 þ x3�
X1 ¼ ½x0 þ x

j2p2=4
2 � þ ½x1 � e j2p1=4 þ x3 � e j2p3=4�

X2 ¼ ½x0 þ x2� þ ½x1 � e j2p2=4 þ x3 � e j2p2=4�
X3 ¼ ½x0 þ x2 � e j2p2=4� þ ½x1 � e j2p3=4 þ x3 � e j2p1=4�

Next, we factor x1 and x3 to get this particular form:
X0 ¼ ½x0 þ x2� þ ½x1 þ x3�
X1 ¼ ½x0 þ x2 � e j2p2=4� þ ½x1 � e j2p1=4 þ x3 � e j2p3=4�

¼ ½x0 þ x2 � e j2p2=4� þ ½x1 þ x3 � e j2p2=4� � e j2p=4

X2 ¼ ½x0 þ x2� þ ½x1 � e j2p2=4 þ x3 � e j2p2=4�
¼ ½x0 þ x2� þ ½x1 þ x3� � e j2p2=4

X3 ¼ ½x0 þ x2 � e j2p2=4� þ ½x1 � e j2p3=4þx3 � e j2p1=4�
¼ ½x0 þ x2 � e j2p2=4� þ ½x1 þ x3 � e j2p2=4� � e j2p3=4�

Here is the result:
X0 ¼ ½x0 þ x2� þ ½x1 þ x3�
X1 ¼ ½x0 þ x2 � e j2p2=4� þ ½x1 þ x3 � e j2p2=4� � e j2p=4

X2 ¼ ½x0 þ x2� þ ½x1 þ x3� � e j4p=4

X3 ¼ ½x0 þ x2 � e j2p2=4� þ ½x1 þ x3 � e j2p2=4� � e j6p=4

Now comes the insightful part. Comparing the preceding four equations, you can see that the
bracketed terms used for X0 and X1 are also present in X2 and X3. So we do not need to

recompute these terms during the calculation of X2 and X3. We can simply multiply them

by the additional exponential outside the brackets. This reusing of partial products in multiple

calculations is the key to understanding the FFT efficiency, so at the risk of being repetitive,

this example is shown again more explicitly here:

! define A ¼ ½x0 þ x2�, B ¼ ½x1 þ x3�
X0 ¼ ½x0 þ x2� þ ½x1 þ x3� ¼ Aþ B

! define C ¼ ½x0 þ x2 � e j2p2=4�, D ¼ ½x1 þ x3 � e j2p2=4�
X1 ¼ ½x0 þ x2 � e j2p2=4� þ ½x1 þ x3 � e j2p2=4� � e j2p=4 ¼ Cþ D � e j2p=4

X2 ¼ ½x0 þ x2� þ ½x1 þ x3� � e j4p=4 ¼ Aþ B � e j4p=4

X3 ¼ ½x0 þ x2 � e j2p2=4� þ ½x1 þ x3 � e j2p2=4� � e j6p=4 ¼ Cþ D � e j6p=4
om
w
ww.newnespress.c

http://www.newnespress.com/

108 Chapter 10

www
This process quickly gets out of hand for anything larger than a 4-point (N ¼ 4) FFT.

So we are going to use a type of representation called a flow graph, as shown in

Figure 10.1.
e-jp

e-jp

e-jp/2

e-j2p/2

e-j3p/2

x0

x2

x1

x3

A

C

B

D

X0

X1

X2

X3S

S

S

SS

S

S

S

Figure 10.1
The flow graph is an equivalent way of representing the equations and, moreover,

represents the actual organization of the computations. You should check for yourself

in the preceding simple example that the flow graph gives the same results as the

DFT equations. For example, X0 ¼ x0 þ x1 þ x2 þ x3, and by examining the flow

graph, you can see that X0 ¼ A þ B ¼ [x0 þ x2] þ [x1 þ x3], which is the same result.

The order of computations would be to compute pairs {A,C} and {B,D} in the first

stage. The next stage would be to compute {X0,X2} and {X1,X3}.

These stages (the preceding example has two stages) are composed of “butterflies.”

Each butterfly has two complex inputs and two complex outputs. The butterfly

involves one or two complex multiplication and two complex addition operations.

In the first stage, there are two butterflies to compute the two pairs {A,C} and {B,D}.

In the second stage, there are two butterflies to compute the two pairs {X0, X2} and

{X1,X3}. The complex exponentials multiplying the data path are known as “twiddle

factors.” In higher N count FFTs, they are simply sine and cosine values. These values

are usually stored in a table.
.newnespress.com

http://www.newnespress.com/

Discrete and Fast Fourier Transforms (DFT, FFT) 109
Although you may grumble, next we are going to present an 8-point FFT:

Generic FDT equation for N ¼ 8 : Xk ¼
P

i 0 to 7Xie
j2pki=8

X0 ¼ x0 � e j2p0=8 þ x1 � e j2p0=8 þ x2 � e j2p0=8 þ x3 � e j2p0=8

þ x4 � e j2p0=8 þ x5 � e j2p0=8 þ x6 � e j2p0=8 þ x7 � e j2p0=8

X1 ¼ x0 � e j2p0=8 þ x1 � e j2p1=8 þ x2 � e j2p2=8 þ x3 � e j2p3=8

þ x4 � e j2p4=8 þ x5 � e j2p5=8 þ x6 � e j2p6=8 þ x7 � e j2p7=8

X2 ¼ x0 � e j2p0=8 þ x1 � e j2p2=8 þ x2 � e j2p4=8 þ x3 � e j2p6=8

þ x4 � e j2p8=8 þ x5 � e j2p10=8 þ x6 � e j2p12=8 þ x7 � e j2p14=8

X3 ¼ x0 � e j2p0=8 þ x1 � e j2p3=8 þ x2 � e j2p6=8 þ x3 � e j2p9=8

þ x4 � e j2p12=8 þ x5 � e j2p15=8 þ x6 � e j2p18=8 þ x7 � e j2p21=8

X4 ¼ x0 � e j2p0=8 þ x1 � e j2p4=8 þ x2 � e j2p8=8 þ x3 � e j2p12=8

þ x4 � e j2p16=8 þ x5 � e j2p20=8 þ x6 � e j2p24=8 þ x7 � e j2p28=8

X5 ¼ x0 � e j2p0=8 þ x1 � e j2p5=8 þ x2 � e j2p10=8 þ x3 � e j2p15=8

þ x4 � e j2p20=8 þ x5 � e j2p25=8 þ x6 � e j2p30=8 þ x7 � e j2p35=8

X6 ¼ x0 � e j2p0=8 þ x1 � e j2p6=8 þ x2 � e j2p12=8 þ x3 � e j2p18=8

þ x4 � e j2p24=8 þ x5 � e j2p30=8 þ x6 � e j2p36=8 þ x7 � e j2p42=8

X7 ¼ x0 � e j2p0=8 þ x1 � e j2p7=8 þ x2 � e j2p14=8 þ x3 � e j2p21=8

þ x4 � e j2p28=8 þ x5 � e j2p35=8 þ x6 � e j2p42=8 þ x7 � e j2p49=8

The corresponding flow graph is shown in Figure 10.2.
Again, you are encouraged to try a few calculations and verify that the FFT flow graph gives

the same results as the DFT equations. Now we can see why the FFT is effective in reducing

the number of computations. Each time the FFT doubles in size (N increases by a factor of 2),

we need to add one more stage. For a 4-point FFT, we require two stages. For an 8-point

FFT, we require three stages. For a 16-point FFT, four stages are required, and so on. The

number of computations required for each stage is proportional to N. The required number of

stages is equal to log2 N. Therefore, the FFT computational load increases by N � log2 N. The
DFT computational load increases as N2.

This is also the reason why FFT sizes are almost always in powers of 2 (2, 4, 8, 16, 32,

64, . . .). This is sometimes called a “radix 2” FFT. So rather than a 1000-point FFT, we see a

1024-point FFT. In practice, this common restriction to powers of 2 is not a problem.
www.newnespress.com

http://www.newnespress.com/

e-jp/2

e-j2p/2

e-j3p/2

x0

x4

x2

x6

X0

X1

X2

X3

e-jp

e-jp

e-jp

e-jp

e-jp/2

e-j2p/2

e-j3p/2

x1

x5

x3

x7

X4

X7

X6

X5

e-j4p/4

e-j5p/4

e-j6p/4

e-j7p/4

e-jp/4

e-j2p/4

e-j3p/4

S

S

S

S

S

S

S

SS

S

S

S

S

S

S

SS

S

S

S

S

S

S

S

Figure 10.2

110 Chapter 10

www
Another fairly common FFT implementation is the “radix 4” FFT. In this case, the

butterfly has four complex inputs and four complex outputs. Although it does not reduce

the number of operations, this type of FFT may sometimes be more efficient to implement

in hardware or software. The FFT size would be restricted to powers of 4 in this case

(4, 16, 64, 256, 2048, . . .).

10.3 Filtering Using the FFT and IFFT

The FFT algorithm is heavily used in many DSP applications. It is used whenever the signal

needs to be processed in the spectral or frequency domain. Because it is so efficient to

implement, sometimes even FIR filtering functions are performed using an FFT. This can be

advantageous when the data is processed in batches. Rather than shifting the input data past a
.newnespress.com

http://www.newnespress.com/

Discrete and Fast Fourier Transforms (DFT, FFT) 111
series of multipliers with filter coefficients, we can transform a buffer of N input data

samples into the frequency domain using the FFT. This creates an N sample spectral

representation of the input data. The coefficients represent the impulse, or time response, of

the filter. This filter also has a corresponding frequency response, as discussed in earlier

chapters. The spectral representation of the input created by the FFT can be multiplied by the

filter frequency response, and the result then converted back to the time domain using the

IFFT. This seems like a roundabout way, but this method often requires less work than

traditional FIR filtering. In an FIR filter, each data sample must slide past all the coefficients,

resulting in M multiplication operations per data sample in an M tap filter. This process is

known as convolution. In the frequency domain, in contrast, the entire input spectral response

is simply multiplied by the filter frequency response, which is only one multiplication

operation per input data sample. This process is performed on groups of every N input data

samples in a continuous manner. Even with the additional work of the FFT and IFFT, the

net result still requires less computational effort than using an FIR filter, particularly when

N is reasonably large, such as 1024.

10.4 Bit Growth in FFTs

As is apparent in the FFT flow diagrams in Figures 10.1 and 10.2, each stage of butterflies

has complex exponential multiplication and summation operations. These operations are

important when considering implementation. First, the multipliers are complex, and so is the

data. This requires use of four real multipliers and two adder operations per complex

multiplication, as shown here:

ðAþ jBÞ � ðCþ jDÞ
¼ A � Cþ jB � Cþ A � jDþ jB � jD
¼ ACþ jBCþ jAD BD

¼ ðAC BDÞ þ jðBCþ ADÞ
Second, the summation in each butterfly can result in a doubling of the signal amplitude if
the two signals have the same phase. This process is known as FFT bit growth. It is 1 bit per

stage in a radix 2 FFT and 2 bits per stage in a radix 4 FFT. This growth must be considered

in fixed-point arithmetic. It can be most easily compensated for by simply shifting all the

butterfly results right, or dividing by 2, before processing the next stage of butterflies. This

operation ensures there can never be an overflow due to the summations. This is common

when implementing fixed-point FFTs using a processor-based architecture. However, for

small input signals, this truncation of the LSB at each stage can raise the quantization noise

floor, leading to a loss in precision, especially in large FFTs.

In a hardware-based architecture, there is more flexibility. In particular, if the multiplier

precision for one input operand can be increased, then the precision loss can be avoided.
www.newnespress.com

http://www.newnespress.com/

112 Chapter 10

www
Note that the complex exponential always has a magnitude of one, so the other operand of the

multiplier is not required to grow. This is why sometimes asymmetrical-sized multipliers are

used in FFT applications.

Another solution to this issue is to use floating-point arithmetic, which can allow for very

large dynamic ranges. This usage is less common except in applications where the FFT

precision (very low noise floor) is extremely important or when the size of the FFT is very

high, due to the high implementation cost of floating point. For example, a 220 point FFT

(1 million points) would require double-precision floating point to implement the required

precision in both the complex data and complex exponential coefficients.

10.5 Bit-Reversal Addressing

One last discussion point is bit-reversal. Notice the order of the xi inputs to the 8-point FFT.

This order is bit-reversed from normal sequential order (see the following table) to form the

symmetry needed in the FFT structure. This bit-reversal addressing of the input order can be

easily implemented in hardware by crossing, or reversing, the order of address bits. DSP

processors can also perform this operation, usually by using a special bit-reversing addressing

mode.
Table 10.4: Bit reversal example

Bit-Reversed

Input (Decimal)

Bit-Reversed Input

Index (Binary)

Sequential Input

Index (Binary)

Sequential Input

Index (Decimal)

0 000 000 0
4 100 001 1
2 010 010 2
6 110 011 3
1 001 100 4
5 101 101 5
3 011 110 6
7 111 111 7
In practice, the FFT can be set up to have either the input sequence bit-reversed or the output

sequence bit-reversed (but not both). If the input is sequential, then the output is bit-reversed.

If the input is bit-reversed (as in our examples), then the output is sequential. Either situation

provides the needed symmetry. If the input (time domain) sequence is bit-reversed, this is

called “decimation in time.” If, on the other hand, it is chosen to have the output (frequency

domain) sequence bit-reversed, then this is called “decimation in frequency.” You may need

to be aware of this vernacular when using FFT software or IP modules. Also, most DSP

processors have special instructions that support bit-reversed addressing for use in FFT

implementations.
.newnespress.com

http://www.newnespress.com/

Digital Signal Processing 101. DOI: 10.1016/B978-1-85617-921-8.00015-8
2010 Elsevier Inc. All rights reserved. 113
CHAPTER 11
Digital Upconversion and Downconversion
Previously, we discussed complex modulation and baseband signals. The whole point of this

discussion is to create a signal that can be used to carry the information bits from one location

to another, whether over copper wire, a fiber-optic cable, or electromagnetically through the

air. In nearly all cases, the signal needs to ride on a carrier frequency to be efficiently sent from

one location to another. To do this, the signal frequency spectrum needs to be able to be moved

up and down the frequency axis at will. This is a process of (frequency) upconversion and

downconversion. All early methods used analog circuits to accomplish this task. In the past

couple of decades, digital circuits, particularly FPGAs, have developed the computational

capacity to perform these functions in many cases and offer important advantages over analog

methods. These methods are known as digital upconversion and downconversion (also

known as DUC and DDC, respectively, within the industry).

The process of upconversion is to take a signal that is at baseband (the frequency

representation of the signal) and move or shift that frequency spectrum up to a carrier

frequency. The width of the signal’s frequency spectrum does not change; it is just moved to

another part of the frequency spectrum. One common area of confusion is what happens

to the negative part of the frequency spectrum. In a baseband signal, the negative frequency

components overlie the positive components. Positive and negative frequencies are

distinguished using complex representation. When the signal is upconverted, the positive and

negative components are “unfolded” from on top of each, with the negative components

below the carrier and the positive components above the carrier frequency.

A common example of this type of conversion occurs with speech. When you speak into a

microphone, the sound waves create an electrical baseband signal, with frequency content from

near 0 to about 3 kHz.Withmusic, the frequency range can bemuch greater, up to 20 kHz.When

we hear, the vibrations our ears detect arewithin this frequency range (in fact, our ears cannot hear

frequencies beyond this range). This signal can be sampled and converted into a digital baseband

signal, or it can remain as an analog signal. To transmit this signal over the air using

electromagnetic radio waves, we need to increase the frequency. For example, the commercial

AM radio system in the United States operates between 540 and 1600 kHz. The baseband speech

signal is multiplied, or “mixed,” with the much higher frequency carrier signal. This process

superimposes the baseband signal on top of the carrier. For example, if the carrier frequency is

600 kHz, the upconverted 3 kHz speech signal will now ideally have a frequency or spectral

114 Chapter 11

www
content between 600 – 3 kHz and 600 þ 3 kHz. This process also allows for multiple users to

transmit and receive signals simultaneously because each user can be assigned a different carrier

frequency and occupy different portions of the frequency spectrum. The upconversion and

downconversion process can place the baseband signal at any desired “channel” frequency,

allowing many different signals to occupy a common frequency band or range without

interference. In the AM radio example, the carrier frequencies are spaced 10 kHz apart. This

frequency separation is sufficient to prevent interference between stations.

Traditionally, this upconversion and downconversion process was done using analog signals and

analog circuits. Analog upconversion with real (not complex) signals is depicted in Figure 11.1.
600 kHz
oscillator

MIC
Low pass
filter

Mixer
Band pass
filter

ANT

RF signal
600 kHz

Figure 11.1
To see why a mixer works, let’s consider a simple baseband signal of 1 kHz tone and a

carrier frequency of 600 kHz. Each can be represented as a sinusoid. A real signal, such

as a baseband cosine, has both positive and negative frequency components. At baseband,

these components overlie each other, so this is not obvious. But once upconverted, the

two components can be readily seen both above and below the carrier frequency.

The equation for the upconversion mixer is

cos ðocarriertÞ� cos ðosignaltÞ ¼ 1/2�½ cos ððocarrier þ osignalÞ�tÞ þ cos ððocarrier osignalÞ�tÞ�
or
cos ð2p�600; 000�tÞ� cos ð2p�1000�tÞ ¼ 1/2�½ cos ð2p�599; 000�tÞ þ cos ð2p�601; 000�tÞ�
The result is 2 tones, of half amplitude, at 599 and 601 kHz.
11.1 Digital Upconversion

This upconversion process can also be done digitally. Let’s assume that the information

content, whether it is voice, music, or data, is in a sampled digital form. In fact, as we

covered in Chapter 9 on modulation, this digital signal is often in a complex constellation

form, such as QPSK or QAM, for example.

If we want to transmit this information signal, at some point, it must be converted to the analog

domain. In the past, the conversion from digital to analog occurred when the signal was in
.newnespress.com

http://www.newnespress.com/

Digital Upconversion and Downconversion 115
baseband form because the data converters could not handle higher frequencies. As the speeds

and capabilities of analog-to-digital converters (ADCs) and digital-to-analog converters

(DACs) improved, it became possible to perform the upconversion and downconversion

digitally, using a digital carrier frequency. The upconverted signal, which has much higher

frequency content, can then be converted to analog form using a high-speed DAC.

Upconversion is accomplished by multiplying the complex baseband signal (with I and

Q quadrature signals) with a complex exponential of frequency equal to the desired carrier

frequency.

The complex carrier sinusoid can be generated using a lookup table or implemented using

any circuit capable of generating two sampled sinusoids offset by 90� (see Figure 11.3).

If we want to do this digitally, the sample rates of the baseband and carrier sinusoid signal

must be equal. Since the carrier signal is usually of much higher frequency than the baseband

signal, the baseband signal has to be interpolated, or upsampled, to match the sample

frequency of the carrier signal. Then the mixing, or upconversion, process results in the

frequency spectrum shift depicted in Figure 11.2.
Numerically
controlled
oscillator

Digital
data
source

QPSK
modulator

Complex
multiplier

Real
part of
product

DAC
I+ jQ
symbols

1, 0, 1..

e jωct = cos ωct + j sin ωct

Figure 11.2
To simplify things, let’s assume the output of the modulator is a complex sinusoid of 1 kHz.

The equation for this upconversion process is

½ cos ðocarriertÞ þ jsin ðocarriertÞ��½ cos ð2p � 1000�tÞ þ jsin ð2p�1000�tÞ� ¼
1/2 � ½ cos ððocarrier 2p�1000Þ�tÞ þ cos ððocarrier þ 2p�1000Þ�tÞ�
1/2 � ½ cos ððocarrier 2p�1000Þ�tÞ cos ððocarrier þ 2p�1000Þ�tÞ�þ
j � 1/2 � ½ sin ððocarrier þ 2p�1000Þ�tÞ þ sin ððocarrier 2p�1000Þ�tÞ�þ
j � 1/2 � ½ sin ððocarrier þ 2p�1000Þ�tÞ þ sin ðð ocarrier þ 2p�1000Þ�tÞ�

Simplifying, this becomes
cos ððocarrier þ 2p�1000Þ�tÞ þ j � sin ððocarrier þ 2p�1000Þ�tÞ
www.newnespress.com

http://www.newnespress.com/

Baseband Fc = Carrier
signal

Frequency, F Baseband Carrier
signal

Frequency, F

Carrier signal
Baseband on
carrier signal

Figure 11.3

116 Chapter 11

www
We can discard the imaginary portion. It is not needed because, at carrier frequencies, both

positive and negative baseband frequency components can be represented by the spectrum

above and below the carrier frequency.

The final result at the output of the DAC is

cos ððocarrier þ 2p�1000Þ�tÞ
Note there is only a frequency component above the carrier frequency. The reason is that the
input was a complex sinusiod rotating in the positive (counterclockwise) direction; there was

no negative frequency component in this baseband signal.

Normally, a baseband signal has both positive and negative frequency components. For

example, the complex QPSK modulator output can jump both clockwise and counterclockwise

depending on the input data sequence. When upconverted, the positive and negative

baseband components no longer overlie each other, but are unfolded on either side of the

carrier frequency. The baseband signal with a frequency spectrum of 0-10 kHz occupies a total

of 20 kHz, with 10 kHz on either side of the carrier frequency. But keep in mind that

the baseband signal represents the positive and negative frequencies using quadrature form,

so it is in the form of I and Q signals, each with a frequency spectrum from 0 to 10 kHz.

Frequently, there are several steps in upconverting to the final frequency used for

transmission, as shown in Figure 11.4. There are several advantages to upconverting in steps.

Generally, the DAC must operate at least 2½ times the carrier frequency. For signals in the

gigahertz range, this exceeds the capacity of most DACs (although very high performance

DACs can now operate at several gigahertz conversion rates). Another consideration is

filtering. If several upconverting steps are used, filtering can be applied at each step.

Often, multiple stages of filtering are required to meet overall system requirements, such as

the spectral emission requirements in the transmitted RF signal. These requirements are

designed to ensure the transmitted signal does not cause interference with other users

A typical digital upconverting circuit is shown in Figure 11.4.
.newnespress.com

http://www.newnespress.com/

Data

Baseband Intermediate
frequency (IF)

Digital circuit

F = Sample clock > 2.5 * FIF

Analog circuitA

RF carrier
frequency

Frequency, F

FIF FRF

Figure 11.4

Digital Upconversion and Downconversion 117
11.2 Digital Downconversion

Digital downconversion is the opposite of upconversion. The circuit diagram for this process

looks similar, as you can see in Figure 11.5.

Digital downconversion involves sampling, so naturally aliasing needs to be considered.

The Nyquist sampling rule states that the sampling frequency must be at least twice the

highest frequency of the signal being sampled. In practice, usually the sampling frequency

is at least 2½ times the rate of signal frequency, to allow an extra margin for the transition

band of the digital low-pass filters following.

But this is not quite true. It is possible to sample a signal at a frequency lower than its carrier

frequency. The Nyquist rule applies to the actual bandwidth of the signal, not the frequency

of the carrier.
ADC

Real
IF data Complex

multiplier
QPSK
demodulator

1, 0, 1..

Numerically
controlled
oscillator

e jωct = cos ωct + j sin wct

I+ jQ
Symbols

Figure 11.5

www.newnespress.com

http://www.newnespress.com/

118 Chapter 11

www
11.3 IF Subsampling

Using a technique called IF subsampling, we are able to sample at a much lower frequency

than the carrier frequency. The term IF subsampling is used because the frequencies typically

used in this technique lie somewhere between baseband and RF. The term IF refers to

intermediate frequency. In this case, we are going to deliberately take advantage of an

alias of the signal of interest. This is best illustrated using an example.

Let’s use a 4G (fourth generation) wireless example. The signal of interest lies at 2500 MHz.

Analog circuits are used to downconvert the signal to an IF, or intermediate frequency.

Let’s assume that we have an ADC sampling at 200 MHz. Further, let us also assume we

have 20 MHz BW IF signal centered at 60 MHz, as in Figure 11.6, which we are trying to

sample and downconvert for baseband processing. By the Nyquist rule, we can sample up to

½ the sample rate, or 100 MHz. To allow easier post-sampling filtering, we may want to limit

this amount to 80 MHz instead. Our signal here lies between 50 and 70 MHz, so these

conditions are met.
Frequency
shifting

by
DDC

0

Sampled
by

ADC

Sampled
baseband
spectrum

Input
to

ADC -2Fs= -400 2Fs=400 3Fs=600 4Fs=800-Fs= -200 Fs=200

0-2Fs= -400 2Fs=400 3Fs=600 4Fs=800-Fs= -200 Fs=200

0-2Fs= -400 2Fs=400 3Fs=600 4Fs=800-Fs= -200 Fs=200

0-2Fs= -400 2Fs=400 3Fs=600 4Fs=800-Fs= -200 Fs=200

Figure 11.6
This process should be familiar from Chapter 3 on sampling. Now let us consider what

happens if the IF signal is centered at 460 MHz, as in Figure 11.7, rather than 60 MHz.

As we also discussed in Chapter 3 on sampling and aliasing, there is no way to distinguish

between a signal and an alias at a multiple of the sample frequency. When IF subsampling is

performed, this aliasing can be used to our advantage.
.newnespress.com

http://www.newnespress.com/

Frequency
shifting

by
DDC

0

Sampled
by

ADC

--

Sampled
baseband
spectrum

Input
to

ADC -2Fs= -400 2Fs=400 3Fs=600 4Fs=800-Fs= -200 Fs=200

0-2Fs= -400 2Fs=400 3Fs=600 4Fs=800-Fs= -200 Fs=200

0-2Fs= -400 2Fs=400 3Fs=600 4Fs=800-Fs= -200 Fs=200

0-2Fs= -400 2Fs=400 3Fs=600 4Fs=800-Fs= -200 Fs=200

Figure 11.7

Digital Upconversion and Downconversion 119
In our examples, any signal that aliases to a baseband frequency from –80 MHz to þ80 MHz

can work. Remember, the digital downconversion multiplies by a complex exponential,

which can be rotating either counterclockwise or negative, thereby either shifting the

spectrum left or right. Figure 11.8 provides another example, showing downconversion from

a 340-MHz carrier frequency.

The signal at 340 MHz is aliased as if it were at –60 MHz and then can be shifted to

baseband. The only areas of the spectrum that cannot be properly aliased down are those that

alias to the region near the Nyquist frequency—in our case, 100 MHz. So signals close to

300 MHz, 500 MHz, and 700 MHz cannot be sampled in this way. But the rest of the

spectrum can be sampled, so long as the sampling frequency meets the requirement of being

more than twice the bandwidth of the signal of interest. In practice, the sampling frequency

is often much higher than the signal bandwidth, which offers the additional advantage of

allowing an increase in signal-to-noise ratio when the baseband signal is decimated to a lower

frequency for baseband processing.

In our example, the downconverted signal has a spectrum from –10 to þ10 MHz. This

requires a sampling frequency of at least 20 MHz for both I and Q. If a decimate-by-4

FIR filter is used to low-pass-filter the downconverted signal, then further complex

symbol processing can take place at 25 MHz. If we sample at a much higher rate and

then low-pass-filter, a much greater percentage of the sampling quantization noise can

be eliminated. Quantization noise, as discussed in Chapter 3, is due to the effect of the
www.newnespress.com

http://www.newnespress.com/

Frequency
shifting

by
DDC

0

Input
to

ADC

Sampled
by

ADC

Sampled
baseband
spectrum

-2Fs= -400 -Fs= -200 Fs=200 2Fs=400 3Fs=600 4Fs=800

0-2Fs= -400 -Fs= -200 Fs=200 2Fs=400 3Fs=600 4Fs=800

0-2Fs= -400 -Fs= -200 Fs=200 2Fs=400 3Fs=600 4Fs=800

0-2Fs= -400 -Fs= -200 Fs=200 2Fs=400 3Fs=600 4Fs=800

Figure 11.8

120 Chapter 11

www
signal being sampled and mapped to specific amplitude levels that are limited by how many

bits of resolution are available in the ADC. This noise is broadband, meaning that it is

distributed evenly across the frequency spectrum. The effect of the low-pass filter is to

attenuate much of this quantization sampling noise, along with unwanted signals, in the

stopband region. The net effect is the equivalent of adding 1 bit of precision or 6 dB to the

SNR, for every factor of two in decimation and filtering.

In our example, if we use a 12-bit ADC at 200 MHz Fs and perform the digital

downconversion, low-pass-filter, and then decimate by 4, it is the equivalent of sampling at

50 MHz Fs using a 14-bit ADC. The decimation filter has, in essence, added 2 bits of

resolution to the ADC, or 12 dB to the SNR of the sampled signal. This concept can be taken

to extremes. There is a class of ADCs, called sigma-delta converters, that run at very high

frequencies relative to the signal they are sampling, but use only a 1-bit sampler. An effective

10- or 12-bit ADC can be built using a single-bit sampling front end running at extremely

high frequencies followed by decimation filtering stages.

Now let us go back to IF subsampling. In theory, we could sample a signal at any arbitrary

frequency, but there must be some practical limitations. So far, we have discussed only the

limitation of not sampling signals that alias to near the Nyquist frequency. But there are other

limitations, and we discuss two of them here.

First, we must consider the performance of the ADC. Two principal characteristics are of

concern here. Of course, the first is the maximum sampling rate at which the ADC operates.
.newnespress.com

http://www.newnespress.com/

Digital Upconversion and Downconversion 121
In our example, we assumed an ADC that could sample at 200 MHz. When we use IF

subsampling, we must also consider the analog bandwidth of the sampling circuit in the

ADC. Ideally, the ADC samples the signal for an infinitely small instant of time and converts

that measurement into a digital number. In practice, this circuit has a sampling window,

or period of time in which it samples. The narrower this window, the higher signal

frequencies it can sample. This specification is given in the datasheets provided by ADC

manufacturers. In our example, we sampled a signal at 460 MHz. So we should check that

our ADC has an analog front-end bandwidth of 500 MHz or higher.

Another factor that must be considered is clock jitter. Clock jitter is the amount of timing

variability of the edge of the ADC sampling clock from cycle to cycle. It can be readily seen

on an oscilloscope of sufficient quality. It is more easily seen as clock phase noise on a

spectrum analyzer. Jitter shows up as spectral noise tapering off on either side of the clock

frequency component. The less jitter, the more closely the clock appears as simply a vertical

line in the frequency response. The effect of clock jitter is proportional to the frequency

of the signal being sampled. It limits the SNR according to the following relationship:

SNRjitter ¼ 20 log ð1=ð2p � Fsignal � tjitterÞÞ
An example may make this concept clearer. In our example, the ADC clock is 200 MHz,
which has a period of 5 nanoseconds (ns). Let us assume this clock has jitter of 5 picoseconds

(ps). This doesn’t sound like too much—only 0.1% of the clock period. First, we compute the

SNR limitation due to clock jitter with an input signal at 60 MHz and then at 460 MHz:

60 MHz IF signal:

SNRjitter ¼ 20 log ð1=ð2p � 60 � 106 � 5 � 10 12ÞÞ ¼ 54:5 dB

460 MHz IF signal:
SNRjitter ¼ 20 log ð1=ð2p � 460 � 106 � 5 � 10 12ÞÞ ¼ 36:8 dB

This level of clock jitter limits the ADC performance for a 60 MHz signal at any level of
precision beyond 10 bits. For a 460 MHz signal, the clock jitter limits the SNR to 36 dB,

or about 6 bits. Clearly, this level of clock jitter is excessive in this IF subsampling

application.

An analogy can be the same strobe light concept used in Chapter 3 on sampling and aliasing.

The strobe light is assumed to flash at exact intervals. Any variance, or jitter, in the flashing

intervals causes distortion in the position of the red dot on the wheel. The IF subsampling

process would be as if the wheel made multiple rotations between strobe flashes, though it

would appear that the wheel was rotating at a slower speed. But because the wheel is actually

rotating much faster, any sampling errors due to jitter in the strobe flash are magnified,

making the red dot appear blurred.
www.newnespress.com

http://www.newnespress.com/

122 Chapter 11

www
A very reasonable question to ask is if we can do something similar with a DAC to utilize

aliased versions of the digitally upconverted signal. The answer is yes, but with an important

limitation that discourages use of this technique in practice.

A major difference between an ADC and DAC is that while an ADC converts the signal to a

digital representation, the DAC converts the digital samples to analog form and performs a

“sample and hold” function of the analog signal between clocks. It is this sample and hold

function that is a critical difference.

The sample and hold function is a rectangular filter in the time domain. Each digital sample

input is an impulse of a given magnitude. The output is a rectangular shape of the input

magnitude. The DAC impulse response, just like in any filter, defines the frequency response.

In this case, the rectangular impulse response yields a sinc function [sin(x)/x] response in the

frequency domain. This is shown in Figure 11.9, with the nulls in the frequency response

corresponding to multiples of the DAC conversion or clock frequency (Fs).
Sinc envelope

fNyquist

First Nyquist zone

fs 2fs

Desired
output First

image

Other images

Frequency

Figure 11.9
What this means in practice is that there will be a reduction in signal level at higher

frequencies. By the time the DAC frequency response reaches the Nyquist frequency (½ Fs),

it will have a droop of nearly 4 dB. The peak of the first lobe is 6 dB below the DC response,

and the second lobe peak a further 6 dB lower. Due to this attenuation, usefulness of the DAC

output at frequencies well above the DAC Fs is limited. Moreover, because the frequency

response is not flat, it often needs to be compensated for. The closer the IF signal lies to

multiples of the DAC Fs, the more distorted the frequency response is. Therefore, the IF

frequency is usually limited to the first Nyquist zone. Furthermore, it is usually limited to

about 80% of the Nyquist frequency or to 40% of the DAC Fs. For a DAC being clocked

at 250 MHz, the upconverted IF signal should be at 100 MHz or less. For example, if the
.newnespress.com

http://www.newnespress.com/

Digital Upconversion and Downconversion 123
IF carrier is chosen to be 70 MHz with a complex baseband signal extending to 10 MHz,

the IF signal will occupy a spectrum from 60 to 80 MHz. After the DAC, the analog output

will need to be filtered using an analog filter to remove the higher frequency DAC images

and the DAC clock harmonics. Often, a surface acoustic wave (SAW) bandpass filter is

used, and the choice of IF frequency is often determined in part by the frequencies where

the SAW filters are commercially available.

Many systems, particularly if the IF signals have fairly wide bandwidth (like our 4G

wireless example with an IF signal BW of 20 MHz), need to compensate for the frequency

response droop due to the sinc response of the DAC even at these low IF frequencies.

To do this, these systems use a sinc compensation FIR filter, after the NCO and complex

multiplier performing the digital upconversion.

Figure 11.10 shows the frequency response of a typical sinc compensation FIR filter,

calculated using a popular digital signal processing design tool called MATLABW (available

from The MathWorks). It compensates up to 80% of the Nyquist frequency. This digital

filter would immediately precede the DAC and be placed after the digital upconversion

process. It would have a data throughput rate equal to the DAC conversion rate.

The associated coefficients are shown in Figure 11.11.
Figure 11.10

www.newnespress.com

http://www.newnespress.com/

Figure 11.11
Sinc filter coefficients

124 Chapter 11

www.newnespress.com

http://www.newnespress.com/

Digital Signal Processing 101. DOI: 10.1016/B978-1-85617-921-8.00016-X
2010 Elsevier Inc. All rights reserved. 125
CHAPTER 12
Error Correction Coding
This chapter provides an introduction to error correction coding and decoding. This process

is also known as forward error correction, or FEC. This field is very complex and even

has its own set of mathematics. A thorough understanding also requires background in

probability and statistics theory, which is necessary to quantify the performance of any

given coding method. Most texts on this topic delve into this math to some degree.

Appendix E on binary field arithmetic gives a very quick, very basic, summary of the

little Boolean arithmetic we use in this chapter.

As for the approach here, we skip nearly all mathematics and try to give an intuitive

feel for the basics of coding and decoding. This is mostly done by example, using

two types of error correcting codes. The first is a linear block code, specifically a

Hamming code. The second is a cyclic code, using convolutional coding and Viterbi

decoding.

To correct errors, we need to have a basic idea of how and why errors occur. One of the most

fundamental mechanisms causing errors is noise. Noise is an unavoidable artifact in

electronic circuits and in many of the transmission mediums used to transmit information.

For example, in wireless and radar systems, there is a certain noise level present in the

transmit circuitry, in the receive circuitry, and in the frequency spectrum used for

transmission. During transmission, the transmitted signal may be attenuated to less than one

billionth of the original power level by the time it arrives at the receive antenna. Therefore,

small levels of noise can cause significant errors. There can also be interfering sources as

well, but because noise is random, it is much easier to model and is used as the basis for

defining most coding performance.

It makes sense that, given the presence of noise, we can improve our error rate by just

transmitting at a higher power level. Since the signal power increases but the noise does not,

the result should be better performance. This also leads to the concept of energy per bit,

or Ebit. This measurement is computed by dividing the total signal power by the rate of

information carrying bits.

One characteristic of all error correction methods is that we need to transmit more

bits, or redundant bits, compared to the original bit rate being used. Consider a really

basic error correction method. Suppose we just repeat each bit three times and have

126 Chapter 12

www
the receiver take a majority vote across each set of three bits to determine what was

originally transmitted. If one bit is corrupted by noise, the presence of the other two

still allows the receiver to make the correct decision. But the trade-off is that we have

to transmit three times more bits. Now assume we have a transmitter of a fixed power

(say 10 watts). If we are transmitting three times more bits, that means the energy per

bit is only one third what it was before, so each bit is now more susceptible to being

corrupted by noise. To measure the effectiveness of a coding scheme, we can define a

concept of coding gain. The goal is that with the addition of an error correcting code,

the result is better system performance, and we want to equate the improvement in error

rate due to error corrective coding to the equivalent improvement we could achieve if

instead we transmitted the signal at a higher power level. We can measure the increase

in transmit power needed to achieve the same improvement in errors as a ratio of

new transmit power divided by previous transmit power and express it in dBpower

(see Section 3.2, “Quantization,” in Chapter 3 for a further explanation of decibels).

This measurement is called the coding gain. The coding gain takes into account that

redundant bits must be transmitted for any code, which actually reduces the signal

transmit power per bit because the overall transmit power must be divided by the bit

rate to determine the actual energy per bit available.

You can probably see that the basic idea is to correct errors in an efficient manner.

This means being able to correct as many errors as possible using the minimum

redundant bits. The efficiency is generally measured by coding gain. Again, the

definition of coding gain is how much the transmit power of an uncoded system

(in dB) must be increased to match the performance of the coded system. Matching

performance means that the average bit error rates (BERs) are equal. Coding

performance can also change at different BER rates, so sometimes this is expressed

in graphical form.

Codes are often described by the parameters “k” and “n.” The number of information bits

in a codeword is given by k, and the total number of bits in a codeword, including the

redundant bits, is given by n. The code rate is equal to k/n, and it tells us how much the

data rate must be increased for a given code. Next, we are going to use a sample

Hamming linear block code where k ¼ 4 and n ¼ 7.

12.1 Linear Block Encoding

With k information bits, we have 2k possible input sequences. Specifically, with k ¼ 4, we

have 16 possible codewords. We could use a lookup table, but there is a more efficient

method. Because this is a linear code, we need to map only the codewords generated by each

of the k bits. For k ¼ 4, we need to map only 4 inputs to codewords and then use the linear

properties to build the remaining possible 12 codewords.
.newnespress.com

http://www.newnespress.com/

Error Correction Coding 127
Inputs:
0001, 0010, 0100, 1000

Code mapping rule:
Map 4 input bits to bits 6–3 of a 7-bit codeword.
Then create redundant parity bits according to the following rules:

bit 2 ¼ bit 6þ bit 5þ bit 3

bit 1 ¼ bit 6þ bit 4þ bit 3

bit 0 ¼ bit 5þ bit 4þ bit 3

Let’s take the input 0001 (bit 3 of codeword ¼ 1). Therefore, 0001 ! 0001111.
With our 4 inputs, we get the following codewords:

1000 ! 1000110

0100 ! 0100101

0010 ! 0010011

0001 ! 0001111

Due to the linear property of the code, this is sufficient to define the mapping of all
possible 2k, or 16, input sequences. This process can be easily performed by a matrix:

½7-bit codeword� ¼ ½4-bit input sequence��
1000110

0100101

0010011

0001111

2
664

3
775

Notice this matrix, called a generator matrix G, is simply made up of the four codewords,
where each row is one of the four single active bit input sequences. A simple example of

generating the codeword follows:

½1101��
1000110

0100101

0010011

0001111

2
664

3
775 ¼ ½1101100�

12.2 Linear Block Decoding

At the receiving end, we recover 7-bit codewords. There exists a total of 27, or 128,

possible 7-bit sequences that we might receive. Only 24, or 16, of these are valid

codewords. If we receive one of the 16 valid codewords, then there has been no error

in transmission, and we can easily know what 4-bit input sequence was used to generate

the codeword at the transmit end. But when an error does occur, we receive one of the
www.newnespress.com

http://www.newnespress.com/

128 Chapter 12

www
remaining 112 codewords. We need a method to determine what error occurred and what

the original 4-bit input sequence was.

To do this, we use another matrix, called a parity check matrix H. Let us look again at how

the parity bit 2 is formed in this code, using the original parity definition:

bit 2 ¼ bit 6þ bit 5þ bit 3

Based on this relationship, bit 2 ¼ 1 only when bit 6 þ bit 5 þ bit 3 ¼ 1. Given the rules of
binary arithmetic, we can say bit 2 þ bit 6 þ bit 5 þ bit 3 ¼ 0 for any valid codeword.

Extending this arithmetic, we can say this about any valid codeword:
.n
bit 6 þ bit 5 þ bit 3 þ bit 2 ¼ 0
ewnespress.com
from parity bit 2 rule
bit 6 þ bit 4 þ bit 3 þ bit 1 ¼ 0
 from parity bit 1 rule
bit 5 þ bit 4 þ bit 3 þ bit 0 ¼ 0
 from parity bit 0 rule
This arithmetic comes from the earlier definition of the parity bit relationships we used

to form the generator matrix. We can represent the preceding three equations in the form

of parity generation matrix H.

H ¼
1101100

1011010

0111001

2
4

3
5

As a quick arithmetic check, G�HT must equal zero.
We can use the parity check matrix H to decode the received codeword. We can compute

something called a syndrome S as follows:

½received codeword��HT ¼ S ðthe syndromeÞ
When the syndrome is zero, all three parity equations are satisfied, there is no error, a
valid codeword was received, and we can simply strip away the redundant parity bits

from the received codeword, thus recovering the input bits. When the syndrome is

non-zero, an error has occurred. Because this is a linear code, we can consider any

received codeword to be the sum of a valid codeword and an error vector or word. Errors

occur whenever the error vector is nonzero. This result leads to the realization that the

syndrome depends only on the error vector, and not on the valid codeword originally

transmitted.

In our example, the syndrome is a 3-bit word, capable of representing 8 states. When

S ¼ [0,0,0], no error has occurred. When the syndrome is any other value, an error

has occurred, and the syndrome indicates in which bit position the error is located.

But which syndrome value maps to which 7 possible error positions in the received

codeword?

http://www.newnespress.com/

Error Correction Coding 129
Let’s go back to the parity relationship that exists when S ¼ 0:

bit 6 ¼ bit 5þ bit 3þ bit 2 ¼ 0

bit 6 ¼ bit 4þ bit 3þ bit 1 ¼ 0

bit 5 ¼ bit 4þ bit 3þ bit 0 ¼ 0

Let’s examine our earlier example of the valid codeword [1101100]. The parity check
matrix is

H ¼
1101100

1011010

0111001

2
4

3
5 and HT ¼

110

101

011

111

100

010

001

2
666666664

3
777777775

S ¼ �
1101100

��

110

101

011

111

100

010

001

2
666666664

3
777777775

¼ �
0, 0, 0

�

By inspection of the parity equations, we can see that syndromes with only one nonzero bit
must correspond to an error in the parity bits of the received codeword.

S ¼ [1,0,0] indicates the first parity equation is not satisfied, but the second and

third are true. By inspection of parity bit definitions, we can see this must be caused

by bit 2 of the received codewords because this bit alone is used to create bit 2 of

the syndrome. Similarly, an error in bit 1 in the received codeword creates the

syndrome [0,1,0], and an error in bit 0 in the received codeword creates the syndrome

[0,0,1].

An error in bit 3 of the received codeword causes a syndrome of [1,1,1] because this bit

appears in all three parity equations. Therefore, we can map the syndrome value to specific

bit positions where an error has occurred:
S ¼ [0,0,0] ! no error in received codeword

S ¼ [0,0,1] ! error in bit 0 of received codeword

S ¼ [0,1,0] ! error in bit 1 of received codeword

S ¼ [0,1,1] ! error in bit 4 of received codeword

S ¼ [1,0,0] ! error in bit 2 of received codeword
www.newnespress.com

http://www.newnespress.com/

130 Chapter 12

www.ne
S ¼ [1,0,1] ! error in bit 5 of received codeword

S ¼ [1,1,0] ! error in bit 6 of received codeword

S ¼ [1,1,1] ! error in bit 3 of received codeword
The procedure to correct errors is to multiply the received codeword by HT, which gives S.

The value of S indicates the position of error in the received codeword to be corrected.

This concept can best be illustrated with an example.

Suppose we receive the codeword [1111100]. We then can calculate the syndrome as follows:

S ¼ ½1111100��

110

101

011

111

100

010

001

2
666666664

3
777777775

¼ ½0, 1, 1�

This syndrome indicates an error in bit 4. The corrected codeword is [1101100], and the
original 4-bit input sequence 1,1,0,1, which is not the 1,1,1,1 of the received codeword.
12.3 Minimum Coding Distance

A good question is what happens when there are two errors simultaneously. Hamming codes

can detect and correct only one error per received codeword. The amount of detection and

correction a code can perform is related to something called the minimum distance. For

Hamming codes, the minimum distance is three. This means that all the transmitted

codewords have at least 3 bits different from all the other possible codewords. Recall that in

our case, we have 16 valid codewords out of 128 possible sequences. They are as follows:
0000000
wnespress.com
0001111
 0010011
 0011100
0100101
 0101010
 0110110
 0111001
1000110
 1001001
 1010101
 1011010
1100011
 1101100
 1110000
 1111111
Each of these codewords has 3 or more bit differences from the other 15 codewords. In

other words, each codeword has a minimum distance of three from neighboring codewords.

That is why with a single error, it is still possible to correctly find the closest codeword,

with respect to bit differences. With two errors, the codeword is closer to the wrong

codeword, again with respect to bit differences. This is analogous to trying to map a symbol

in two-dimensional I-Q space to the nearest constellation point in a QAM demodulator.

There are other coding methods with greater minimum distances, able to correct multiple

errors. We look at one of these next.

http://www.newnespress.com/

Error Correction Coding 131
12.4 Convolutional Encoding

A second major class of channel codes is known as convolutional codes. Convolutional codes

can operate on a continuous string of data, whereas block codes operate on words.

Convolutional codes also have memory; the behavior of the code depends on previous data.

Convolutional coding is implemented using shift registers with feedback paths. There is a

ratio of “k” input bits to “n” output bits, as well as a constraint length “K.” The code rate

is k/n. The constraint length K corresponds to the length of the shift register and also

determines the length of time or memory that the current behavior depends on past inputs.

Next, let’s go through a very simple convolutional coding and Viterbi decoding example.

We use an example with k ¼ 1, n ¼ 2, and K ¼ 3. The encoder is described by generator

equations, using polynomial expressions to describe the linear shift register relationships.

The first register connection to the XOR gate is indicated by the 1 in the equations, the second by

X, the third by X2, and so forth. Most convolution codes have a constraint length less than 10.

The rate is defined as the ratio of input bits to output bits. The rate here is ½ as there are

every input bit M, there are two output bits N.

The output is usually interleaved in a bitstream N1j, N2j, N1jþ1, N2jþ1, N1jþ3, N2jþ3, . . .

(See Figure 12.1.)
+

+

N1j

N2j

Mj

clk

K=3
G1=1 + X + X2

G2=1 + X2

Figure 12.1
The following table shows encoder operation with the input sequence 1,0,1,1,0,0,1,0,1,1,0,1

for each clock cycle. The register is initialized to zero.

The resulting output sequence is as follows:

f1, 1gf1, 0gf0, 0gf0, 1gf0, 1gf1, 1gf1, 1gf1, 0gf0, 0gf0, 1gf0, 1gf0, 0g
Notice that the output N1j and N2j are both a function of the input bit Mj and the two
previous input bits Mj-1 and Mj-2. The previous K – 1 bits, Mj-1 and Mj-2, form the state of the
www.newnespress.com

http://www.newnespress.com/

Table 12.1: Encoder state and outputs

Register Value N1 Value N2 Value Time or Clock Value

1 0 0 1 1 T1

0 1 0 1 0 T2
1 0 1 0 0 T3
1 1 0 0 1 T4
0 1 1 0 1 T5
0 0 1 1 1 T6
1 0 0 1 1 T7
0 1 0 1 0 T8
1 0 1 0 0 T9
1 1 0 0 1 T10
0 1 1 0 1 T11
1 0 1 0 0 T12

132 Chapter 12

www
encoder state diagram. As shown in Figure 12.2, the encoder is at a given state. The input

bit Mj causes a transition to another state at each clock edge, or Tj. Each state transition

results in an output bit pair N1j and N2j. Only certain state transitions are possible.

Transitions due to a 0-bit input are shown in dashed lines, and transitions due to a 1-bit

input are shown in solid lines. The output bits shown at each transition are labeled on

each transition arrow in the figure.
State Mj−1, Mj−2

1,1

0,1

1,0

0,0

Output N1j,N2j Output N1j+1,N2j+2 Output N1j+2,N2j+2

(0,0)

(1,1) (1,1) (1,1)

(1,1)

(0,0)

(1,0)

(1,0)
(0,1)

(0,1) (0,1) (0,1)

(0,0)

(1,1)

(0,0)

(1,0)

(1,0)
(0,1)

(0,0)

(1,1)

(0,1)

(0,0)

(1,0)

(1,0)

Tj Tj+1 Tj+2 Tj+3

Figure 12.2
Now, let us trace the path of the input sequence through the trellis using Figure 12.3 and

the resulting output sequence. This task helps us gain the insight that the trellis is

representative of the encoder circuit because use of the trellis will be key in Viterbi decoding.

The highlighted lines show the path of input sequence.
.newnespress.com

http://www.newnespress.com/

(0,0)

(1,1)

(1,1)

(0,0)

(1,0)

(1,0)

(0,1)

(0,1)

Input 1
Output 1,1

Input 0
Output 1,0

Input 0
Output 0,0

Input 1
Output 0,1

(0,0)

(1,1)

(1,1)

(0,0)

(1,0)

(1,0)

(0,1)

(0,1)

(0,0)

(1,1)

(1,1)

(0,0)

(1,0)

(1,0)

(0,1)

(0,1)

(0,0)

(1,1)

(1,1)

(0,0)

(1,0)

(1,0)

(0,1)

(0,1)

T0 T1 T2 T3 T4

Figure 12.3-1

Input 0
Output 0,1

Input 0
Output 1,1

Input 1
Output 1,1

Input 0
Output 1,0

T4 T5 T8 T7 T8

(0,0) (0,0) (0,0) (0,0)

(1,1) (1,1) (1,1) (1,1)

(1,1) (1,1) (1,1) (1,1)

(0,0) (0,0) (0,0) (0,0)

(1,0) (1,0) (1,0) (1,0)

(0,1) (0,1) (0,1) (0,1)

(0,1) (0,1) (0,1) (0,1)

(1,0) (1,0) (1,0) (1,0)

Figure 12.3-2

Input 1
Output 0,0

Input 1
Output 0,1

Input 0
Output 0,1

Input 1
Output 0,0

T8 T9 T10 T11 T12

(0,0) (0,0) (0,0) (0,0)

(1,1) (1,1) (1,1) (1,1)

(1,1) (1,1) (1,1) (1,1)

(0,0) (0,0) (0,0) (0,0)

(1,0) (1,0) (1,0) (1,0)

(0,1) (0,1) (0,1) (0,1)

(0,1) (0,1) (0,1) (0,1)

(1,0) (1,0) (1,0) (1,0)

Figure 12.3-3

www.newnespress.com

Error Correction Coding 133

http://www.newnespress.com/

134 Chapter 12

www
By tracing the highlighted path through the trellis, you can see that the output sequence is the

same as our results when computing using the shift register circuit. For constraint length K,

we have (K – 1)2 states in our trellis diagram. Therefore, with K ¼ 3 in our design example,

we have 4 possible states. For a more typical K ¼ 6 or K ¼ 7 constraint length, there would

be 32 or 64 states, respectively, although this is too tedious to try to diagram.
12.5 Viterbi Decoding

The Viterbi decoding algorithm takes advantage of the fact that only certain paths through

the trellis are possible. For example, starting from state 00, the output on the next transition

must be either 0,0 or 1,1, resulting in the next state being either 0,0 or 1,0, respectively.

The output of 1,0 or 0,1 is not possible, and if this sequence occurs, then an error must be

present in the received bit sequence.

We first look at Viterbi decoding using the sequence given in the preceding section as our

example. Keep in mind that when we are decoding, the input data is unknown (whether a

“dashed” or “solid” transition), but the output (received) data is known. The job of the

decoder is to correctly recover the input data using possibly corrupted received data.

The decoder does assume we start from a known state (Mj-1, Mj-2 ¼ 0, 0).

We are going to do this by computing the difference between the received data pair and the

transition output for each possible state transition. We keep track of this cost for each

transition. Once we get further into the trellis, we can check the cumulative cost entering

each of the possible states at each transition and eliminate the path with the higher cost.

In the end, this will yield the lowest cost valid path (or valid path closest to our received

sequence). As always, the best way to get a handle on this concept is through an example.

First, we look at the cost differences with a correct received sequence (no errors) and then

one with errors present. In the diagram shown in Figure 12.4, the figures on each transition

arrow are the absolute difference (D) between the two received bits and the encoder

output generated by that transition (as shown on the encoding trellis diagram above in

Figure 12.3-1).

Notice that the cumulative D is equal to zero as we follow the path the encoder took

(solid highlighted) to generate the received sequence. But also notice two other paths that can

arrive at the same point (dashed highlighted) and have a nonzero cumulative D. The
cumulative cost of each of these paths is 5. The idea is to find the path with the least

cumulative D or difference from the received sequence. If we are decoding, we can then

recover the input sequence by following the zero cost (solid highlighted) path. The dashed

arrows indicate a “zero” input bit, and the solid arrows indicate a “one” input bit. The

sequence recovered is therefore 1, 0, 1, 1. Notice that this sequence matches the first 4 bits

input to the encoder. This is called “maximum likelihood decoding.”
.newnespress.com

http://www.newnespress.com/

(Δ=0)

Received 1,1 Received 1,0 Received 0,0 Received 0,1

(Δ=2)

(Δ=1) (Δ=2)

(Δ=1)

(Δ=1) (Δ=0)

(Δ=0)

(Δ=1)

(Δ=0)
(Δ=2)

(Δ=1)

(Δ=1)

(Δ=1)

(Δ=1)(Δ=2)

(Δ=0)

(Δ=1) (Δ=0)

(Δ=1)

(Δ=2)

(Δ=2)

Figure 12.4

Error Correction Coding 135
This approach is all well and good, but as the trellis extends further into time, there

are too many possible paths merging and splitting to calculate the cumulative costs.

Imagine having 32 possible states, rather than the 4 in our example, and a trellis

extending for hundreds of transitions. What the Viterbi algorithm does is to remove, or

prune, less likely paths. Whenever two paths enter the same state, the path having the

lowest cost is chosen. The selection of lowest cost, or surviving path, is performed for

all states at each transition (excluding some states at the beginning and end, when the

trellis is either diverging or converging to a known state). The decoded path advances

through the trellis, eliminating the higher cost paths and, at the end, will backtrack

along the path of cumulative least cost to extract the most likely sequence of received

bits. In this way, the codeword or valid sequence most closely matching the actual

received sequence (which can be considered a valid code sequence plus errors) will

be chosen.

Before proceeding further, we need to consider what happens at the end of the

sequence. To backtrack after all the paths’ costs have been computed and the less

likely paths pruned, we need to start backtracking from a known state. To achieve this,

K – 1 zeros are appended to the input bit sequence entering the encoder. This guarantees

that the last state in the encoder, and therefore the decoder trellis, must be the zero

state (the same state we start from, as the encoder shift register values are initialized

to zero). So we add K – 1 or two zeros to our input sequence, shown in bold below,

and use them in our Viterbi decoding example. The longer the bit sequence, the less

impact the addition of K – 1 zeros has on the overall code rate because these extra bits

do not carry information and have to be considered as part of the “redundant bits”

(present only to facilitate error correction). So our code rate is slightly less than k/n.

(See Figure 12.5.)
www.newnespress.com

http://www.newnespress.com/

136 Chapter 12

www
Input bit sequence to encoder:

1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0

Output bit sequence from encoder:
f1, 1gf1, 0gf0, 0gf0, 1gf0, 1gf1, 1gf1, 1gf1, 0gf0, 0gf0, 1gf0, 1gf0, 0gf1, 0gf1, 1g
(0,0) Δ =2

(1,1) Δ =0

(0,0) Σ Δ 3 (0,0) Σ Δ 3

T0 T1 T2 T3 T4

Received 1,1 Received 1,0 Received 0,0 Received 0,1

(1,1) Σ Δ 5
(1,1) Σ Δ 3

(1,1) Σ Δ 2

(1,0) Σ Δ 0
(0,0) Σ Δ 0

(1,0) Σ Δ 4

(0,1) Σ Δ 4

(0,1) Σ Δ 2
(0,1) Σ Δ 3

(1,0) Σ Δ 3

Figure 12.5
The circles in Figure 12.5 identify the four higher-cost paths that can be pruned at T3,
based on the higher cumulative path cost (SD ¼ sum of delta or the difference from

the received bit sequence). The results after pruning are shown in Figures 12.6 and 12.7.
T0 T1 T2 T3 T4

Received 1,1 Received 1,0 Received 0,0 Received 0,1

(0,0) Δ =2

(1,1) Δ =0

(0,0) Σ Δ 3

(1,1) Σ Δ 3 (1,1) Σ Δ 2

(1,0) Σ Δ 0
(0,0) Σ Δ 0

(0,1) Σ Δ 2
(0,1) Σ Δ 3

(1,0) Σ Δ 3

Figure 12.6

.newnespress.com

http://www.newnespress.com/

T0 T1 T2 T3 T4

Received 1,1 Received 1,0 Received 0,0 Received 0,1

(0,0) Δ =2 (0,0) Σ Δ 3 (0,0) Σ Δ 3

(1,1) Σ Δ 3
(1,1) Δ =0

(1,1) Σ Δ 3
(1,1) Σ Δ 2 (1,1) Σ Δ 4

(0,0) Σ Δ 4
(1,0) Σ Δ 2

(0,1) Σ Δ 2 (0,1) Σ Δ 3

(1,0) Σ Δ 3

(0,1) Σ Δ 0(0,1) Σ Δ 3

(0,1) Σ Δ 5

(1,0) Σ Δ 0 (0,0) Σ Δ 0

Figure 12.7

Error Correction Coding 137
Next, the higher-cost paths (circled) are pruned at T4, again eliminating ½ of the paths again.

The path taken by the transmitter encoder is again highlighted at zero cumulative cost

because there are no receive errors. (See Figures 12.8 and 12.9).
T0 T1 T2 T3 T4

Received 1,1 Received 1,0 Received 0,0 Received 0,1

(0,0) Δ =2

(0,0) Δ =0

(0,0) Σ Δ 3 (0,0) Σ Δ 3

(1,1) Σ Δ 3

(1,0) Σ Δ 0

(1,1) Σ Δ 2 (1,1) Σ Δ 3

(1,0) Σ Δ 2

(0,1) Σ Δ 0
(0,1) Σ Δ 3

(0,0) Σ Δ 0

(1,0) Σ Δ 3

(0,1) Σ Δ 2

Figure 12.8
Due to the constant pruning of the high-cost paths, the cumulative costs are not higher than

3 so far. (See Figure 12.10.)

Next, we have the K – 1 added bits to bring the trellis path to state 0. (See Figure 12.11.)

We know that, due to the K – 1 zeros added to the end of the encoded sequence, we must

start at state 0 at the end of the sequence, at T14.
www.newnespress.com

http://www.newnespress.com/

T4 T5 T8 T7 T8

Received 0,1 Received 1,1 Received 1,1 Received 1,0

(0,0) Δ =2 (0,0) Σ Δ 3

(1,1) Σ Δ 3

(0,0) Σ Δ 3

(0,1) Σ Δ 0

(1,0) Σ Δ 2 (1,0) Σ Δ 3

(0,1) Σ Δ 3 (0,1) Σ Δ 3 (0,1) Σ Δ 2

(0,0) Σ Δ 2 (1,0) Σ Δ 3
(1,0) Σ Δ 0

(1,1) Σ Δ 0
(1,1) Σ Δ 0 (1,1) Σ Δ 3

Figure 12.9

T8 T9 T10 T11 T12

Received 0,0 Received 0,1 Received 0,1 Received 0,0

(1,0) Σ Δ 3

(0,0) Σ Δ 0

(0,1) Σ Δ 3
(0,1) Σ Δ 0

(0,1) Σ Δ 0
(0,1) Σ Δ 3

(0,0) Σ Δ 3
(0,0) Σ Δ 0

(1,1) Σ Δ 2
(1,1) Σ Δ 3

(1,0) Σ Δ 2

(1,1) Σ Δ 3

(0,0) Σ Δ 3

(1,1) Σ Δ 2

(1,0) Σ Δ 2 (1,0) Σ Δ 3

Figure 12.10

Start error corrected bit
sequence recovery from
known end state, work
backwards through trellis

T12 T13 T14

Received 1,0 Received 1,1

(0,0) Σ Δ 3

(1,1) Σ Δ 3

(1,0) Σ Δ 0

(1,1) Σ Δ 0

(0,0) Σ Δ 2

(0,1) Σ Δ 2 (0,1) Σ Δ 3

(1,0) Σ Δ 2

Figure 12.11

138 Chapter 12

www.newnespress.com

http://www.newnespress.com/

Error Correction Coding 139
We can simply follow the only surviving path from state 0,0 at T14 backward, as highlighted.

We can determine the bit sequence by the use of dashed or solid lines for the arrows

(dashed for 0, solid for 1). In a digital system, a 0 or 1 flag would be set for each of the

four states at each Tj whenever a path is pruned, identifying the original bit Mj as 0 or 1

associated with the surviving transition.

Now let’s reexamine what happens in the event of receive bit errors (indicated in bold in

Figure 12.12). We assume that there is a bit error at transition T8 and T10. The correct path

(generated by the encoder) through the trellis is again highlighted. Note how the cumulative

costs change and the surviving paths change. However, in the end, the correct path is the

sole surviving path that reaches the end point with the lowest cost.
T8 T9 T10 T11 T12

Received 0,1 Received 0,1 Received 1,1 Received 0,0

(0,0) Σ Δ 2

(1,1) Σ Δ 1

(0,0) Σ Δ 1

(0,1) Σ Δ 3

(0,1) Σ Δ 2

(0,1) Σ Δ 1

(1,0) Σ Δ 3 (1,1) Σ Δ 3

(0,1) Σ Δ 2

(1,0) Σ Δ 2 (1,0) Σ Δ 3

(0,1) Σ Δ 3

(0,0) Σ Δ 2

(1,1) Σ Δ 2
(1,1) Σ Δ 3

(0,0) Σ Δ 3

Figure 12.12
When we had no errors, we found all the competing paths had different costs,

and we would always prune away the higher-cost path. However, in the presence of

errors, we occasionally have paths of equal cost. In these cases, it does not really

matter which path we choose. For example, we can just make an arbitrary rule and

always prune away the bottom path when paths of equal cumulative costs merge.

And if we use soft decision decoding, which is explained shortly, the chances of

equal-cost paths is very low.

The path ending at state 0, at T14, has a cumulative cost of 2 because we corrected two

errors along this path (see Figure 12.13). Notice that some of the pruned paths are different

from the no-error Viterbi decoding example, but the highlighted path that is selected is the

same in both cases. The Viterbi algorithm finds the most likely valid encoder output sequence

in the presence of receive errors and is able to do so efficiently because it prunes away less

likely (higher cost) paths continuously at each state where two paths merge together.
www.newnespress.com

http://www.newnespress.com/

T14T12 T13

Received 1,0 Received 1,1

(1,0) Σ Δ 3

(1,0) Σ Δ 2

(1,1) Σ Δ 4 (1,1) Σ Δ 2

(1,1) Σ Δ 4

(0,0) Σ Δ 4

(0,1) Σ Δ 4

(0,1) Σ Δ 5

Figure 12.13

140 Chapter 12

www
12.6 Soft Decision Decoding

Another advantage of the Viterbi decoding method is that it supports a technique called “soft

decision.” Recall from Chapter 9 on complex modulation that data is often modulated and

demodulated using constellations. During the modulation process, the data is mapped to

one of several possible constellation points. Demodulation is the process of mapping the

received symbol to the closest constellation point. This is also known as “hard decision”

demodulation. However, suppose instead of having the demodulator output the closet

constellation point, it outputs the location of the received symbol relative to the constellation

points. This is also known as “soft decision” demodulation.

For example, in the constellation in Figure 12.14, imagine that we receive the symbols

labeled S1, S2, S3, and S4. We demodulate these symbols as shown in the following table.
(0,0)(1,0)

(1,1) (0,1)

I axis

QPSK
Constellation

S2S1

S3

S4

Figure 12.14

.newnespress.com

http://www.newnespress.com/

Table 12.2: Demodulator outputs

S1 S2 S3 S4

Hard decision
demodulation

0*, 0 0, 0 1, 1 0, 1

Soft decision
demodulation

½, 0 ¼, 0 3/4, 3/4 0, 1

*as equal distance between two points, arbitrarily assign to one of the points

Error Correction Coding 141
Basically, we tell the Viterbi decoder how sure we are of the correct demodulation. Instead

of giving a yes or no at each symbol, we can also say “maybe” or “pretty sure.” The received

signal value in the trellis calculation is now any value between 0 and 1, inclusive. This result

is then factored into the path costs and the decision on which merged path to prune away.

Simulation and testing have shown over 2 dB improvement in coding gain when using soft

decision (16 levels, or 4 bits) compared to hard decision (2 levels, or a single bit)

representation for the decisions coming from the demodulator. The additional Viterbi

decoding complexity for soft decoding is usually negligible.

There are many other error corrective codes besides the two simple ones we have presented

here. Some common codes used in the industry are Reed Solomon, BCH, and Turbo

decoding. Low density parity code (LDPC) is another emerging coding technique, which

promises even higher performance at a cost of much increased computational requirements.

In addition, different codes are sometime concatenated to further improve performance.
12.7 Cyclic Redundancy Check

A cyclic redundancy check (CRC) word is often appended at the end of a long string or

packet of data, prior to the error correcting encoder. The CRC word is formed by taking all

the data words and exclusive-ORing (EXOR) each word together. For example, the data

sequence might be 1024 bits, organized as 64 words, each 16 bits. This would require 16-1

EXOR word operations in a DSP or in hardware to form the 16-bit CRC word. This function

is analogous to that of a parity check bit for a single digital word being stored and accessed

from dynamic random access memory (DRAM).

At the conclusion of the error decoding process, the recovered input stream can again be

partitioned in words and EXORed together and the result compared to the recovered CRC

word. If they match, then we can be assured with very high probability that the error

correction was successful in correcting any error in transmission. If not, then there were

too many errors to be corrected, and the whole data sequence or frame can be discarded.

In some cases, there is a retransmission facility built into the higher-level communication
www.newnespress.com

http://www.newnespress.com/

142 Chapter 12

www
protocol for these occurrences, and in others, such as a voice packet in a mobile phone

system, the data is real time, so alternate mechanisms of dealing with corrupt or missing data

are used.

12.8 Shannon Capacity and Limit Theorems

No discussion on coding should be concluded without at least a mention of the Shannon

Capacity Theorem and Shannon limit. The Shannon Capacity Theorem defines the maximum

amount of information, or data capacity, that can be sent over any channel or medium

(wireless, coax, twister pair, fiber, etc.):

C ¼ B log2ð1þ S=NÞ
where
.ne
C is the channel capacity in bits per second (or maximum rate of data).

B is the bandwidth in Hz available for data transmission.

S is the received signal power.

N is the total channel noise power across bandwidth B.
What this theorem says is that the higher the signal-to-noise ratio and the more channel

bandwidth, the higher the possible data rate. This equation sets the theoretical upper limit on

data rate, which, of course, is not fully achieved in practice. This equation does not make any

limitation on how low the achievable error rate will be. That is dependent on the coding

method used.

As a consequence, the minimum SNR required for data transmission can be calculated. This

is known as the Shannon limit, and it occurs as the available bandwidth goes to infinity:

Eb=N0 ¼ 1:6 dB

where
Eb is the energy per bit.

N0 is the noise power density in Watts/Hz (N ¼ BN0).
If the Eb/N0 falls below this level, no modulation method or error correction method will

allow data transmission.

These relationships define maximum theoretical limits against which the performance of

practical modulation and coding techniques can be compared. As newer coding methods are

developed, we are able to get closer and closer to the Shannon limit, usually at the expense

of higher complexity and computational rates.
wnespress.com

http://www.newnespress.com/

Digital Signal Processing 101. DOI: 10.1016/B978-1-85617-921-8.00017-1
2010 Elsevier Inc. All rights reserved. 143
CHAPTER 13
Analog and TDMA Wireless
Communications
The first mobile phone systems were based on analog technology. Developed in the 1970s,

this system in the United States was known as the American mobile phone system

(AMPS). Similar systems were developed in Europe and Japan. These are known as first

generation, or “1G,” systems. What differentiated these systems from previous wireless

systems (police or public service radio, citizens’ band radio, military systems) was the

concept of frequency reuse. Because these systems reused frequency channels, enough

frequency was available that each pair of users could be assigned their own, private,

communication link. Once the call was finished, this frequency channel could be assigned

to other users. An important aspect of frequency reuse was that a large region of phone

service or coverage could be divided into sections, or “cells,” to allow the same frequency

to be used over and over, providing these locations were not too close to each other.

This was the origin of the name “cellular” phone service. This allowed a large pool of

users to be serviced with a much smaller set of frequency channels, which allowed for

efficient use of the frequency spectrum.

In the cellular diagram in Figure 13.1, each cell also has its own base station or transmitter/

receiver equipment connected to a central network. The cells are lettered, depicting that

each different letter cell is assigned a different set of frequency channels. This is a seven-cell

reuse pattern. Each of the seven letters uses different frequencies, and no cells of the same

letter are adjacent to each other. Additionally, separate frequency bands are used for

downlink transmission (base station ! mobile phones) and uplink (mobile phones ! base

station). This is known as frequency division duplex, or FDD. For example, the AMPS

system uses the 824-849 MHz band for downlink and 869-894 MHz band for uplink.

Each individual user channel occupies 30 kHz, resulting in 800 channel pairs. If we have

frequency reuse every seven cells, then about 114 channel pairs are available in each cell.

If we assume that at peak usage times, 10% of cell phone subscribers are making phone calls,

then over 1000 users can be serviced by any given cell.

In addition, most base stations use directional panel antennas. There are typically

one transmit and two receive antennas per sector. A sector is roughly 120�,

AA AA

AA

BB

BB

BB

CC

CC

DD

DD

EE

EEFF

FF

GG

Figure 13.1

144 Chapter 13

www
with some overlap. There are three sectors per cell site, and the base station antenna tower

has each sector’s antenna pointing in three different directions, 120� apart.

Each user is able to move about within the boundaries of a given sector of a given cell,

which is defined by the RF coverage area of the base station within that sector. But to

move further than this, or roam, requires a centralized network control system. When the

mobile phone reaches the edge cell, it can detect the weakening strength of the base

station signal. The base station can also detect the lower signal strength of that mobile

handset. The mobile phone is instructed by the network via that base station to scan the

frequencies of adjacent sectors and of neighboring base stations. When an adjacent sector

or neighboring base station’s signal is found to be stronger, then the network performs a

handoff. The mobile phone is instructed to switch to an unoccupied frequency channel of

the adjacent sector or neighboring base station. Simultaneously, the landline connection of

the phone call in progress is switched from the original base station sector to the adjacent

sector or to the neighboring base station. In this way, a phone call can be carried on

continuously as the mobile phone travels throughout the network coverage area of the

network, defined by the contiguous RF coverage of the network’s or service provider’s

base stations.

13.1 Early Digital Innovations

Two technology breakthroughs made this type of digital service possible. For this type of

network to function, the mobile phones have to be intelligent enough to receive and reply to

commands, perform signal strength measurements, and rapidly tune to new frequencies on

command. This required a low-power and low-cost microprocessor, which could be

incorporated into the mobile phones. It also required something called a fractional “N”

synthesizer, which was used to build a digitally controlled phase-locked loop oscillator

circuit. This allowed for software-controlled frequency tuning, to one of many closely spaced

frequency channels. Both of these technologies became available in the 1970s and were

essential to the development of an intelligent, frequency agile mobile cell phone. However,
.newnespress.com

http://www.newnespress.com/

Analog and TDMA Wireless Communications 145
the baseband and RF processing of the voice signal from microphone/speaker to the antenna

in the mobile phone was, for the most part, implemented using traditional analog circuits

and techniques.

In each cell, most of the frequency channels are available for use as voice channels

that can be assigned to a given user during a call. But one or more of the channels in each

cell are used as control channels. A phone that is not in conversation monitors one of these

pre-assigned control channels. Here, it can monitor RF signal strength and listen for

paging messages and other commands. The modulation used is called frequency shift

keying, or FSK. It is like Morse code, except instead of dashes and dots, two different

frequency tones are transmitted to indicate “ones” and “zeros.” All mobile phones would

reply to commands using a common uplink channel, known as a random access channel,

or RACH. This was a somewhat uncontrolled process because several mobiles could

transmit simultaneously on this channel. To ensure message replies would eventually get

through, each phone would wait a random amount of time before retransmitting in the

event of a collision. The great majority of channels were designated as voice channels,

which carried the voice conversation using frequency modulation, similar to any FM radio

station. In fact, in the early days of analog cell phones, a person could eavesdrop on

wireless conversations using a simple FM scanner (but hear only one side of the conversation

at a time because in an FDD system, there are separate uplink and downlink frequency

bands).

13.2 Frequency Modulation

Information can be carried by a sinusoidal wave using varying amplitude, frequency, and

phase. In QAM modulation, the amplitude and phase are changed. In FM modulation, only

the frequency is modified. FM is a modulation method inherently suitable for an analog

input or baseband signal. Basically, the instantaneous frequency of the carrier is made to

increase or decrease from the carrier frequency by an amount proportional to the

modulating or baseband signal. This change in the carrier frequency is known as the

frequency deviation. The frequency deviation is proportional to the amplitude of the

baseband input. The rate of change (derivative) of the carrier frequency is proportional

to the frequency of the baseband input. The AMPS system used FM with a peak derivative

of 12 kHz.

Since there is no amplitude modulation, the FM signal is of constant amplitude. This is the

inherent FM characteristic that is superior over AM modulation, and why FM radio, from its

beginnings in the 1930s, was designed for high fidelity compared to AM radio. Any additive

noise with an AM signal causes distortion of the amplitude, which is the baseband signal.

In contrast, with FM, the frequency carries the baseband signal and is much less affected by

additive noise. This additive noise causes phase distortion, which can affect the frequency
www.newnespress.com

http://www.newnespress.com/

146 Chapter 13

www
demodulation, but most of this can be filtered out of the resulting baseband signal.

Another important characteristic of FM modulation is that, due to the constant amplitude

characteristic, it can be very efficiently amplified. This topic is further discussed in

chapter 15.
13.3 Digital Signal Processor

The analog-based cell phone system brought a landline-telephone-like experience to mobile

communications. The invention of the digital signal processor, or DSP, paved the way for the

next step in the evolution of wireless phone communication.

The DSP is basically a specialized microprocessor. It has at least one dedicated multiplier

with an associated accumulator, or adder with a feedback path. This processor can be used to

efficiently calculate a sum of products, used in FIR filters. DSPs, unlike most

microprocessors, can fetch instruction and data words from memory simultaneously.

To be able to do one calculation per clock cycle, the DSP generally requires at least three

data buses. One data bus is used to fetch the instruction word, and two more buses to fetch

the two operands for the multiplier from memory. Sometimes there is a fourth dedicated data

bus to be able to simultaneously store data back to memory. This memory is generally all

single-cycle access, on-chip, also known as Level 1 memory. In DSP, the data, unlike

instructions, is usually read and written in a predictable manner. Therefore, DSPs contain at

least two data address generators, which can be preconfigured to calculate addresses in a

given pattern and even in a circular, or repeating, manner. This allows implementation of

virtual shift registers in memory and accessing of filter coefficients in the correct order.

There is often a “bit-reversing” mode, which can be used to read or write FFT data in a

decimation in time or decimation in frequency fashion (refer to Chapter 10 on FFT for

more detail).

In addition, DSP instructions often have data-shifting capabilities, which allow for the

decimal point to be aligned as needed prior to saving data to memory. The data shifting can

also be configured as a barrel shifter and, in conjunction with logical operations, used to

implement many error coding operations. Given the popularity of the Viterbi algorithm, there

is often a special instruction to implement path-metric comparisons and selections. Various

accumulator data rounding and saturation modes are often supported. To obtain maximum

performance, DSPs often had some instructions with pipeline restrictions, which created

exception cases for the programmer.

DSPs were programmed using a manufacturer-specific assembly language, usually by

firmware engineers extremely familiar with the details of the DSP hardware architecture.

As a consequence, the majority of DSP programmers came not from a software programming

background, but from an electrical engineering background. Due to the small on-chip
.newnespress.com

http://www.newnespress.com/

Analog and TDMA Wireless Communications 147
memory available, the need to minimize the number of clock cycles per calculation, and the

intricate, mathematical nature of the algorithms being implemented, DSP programming

became as much an art as a skill. Current DSPs come with advanced C compilers, making

code development much more efficient, although assembly macros are still used for

specialized instructions because they often operate in a parallel manner.

With the advent of the first DSPs, it didn’t take long for many applications to develop.

Among the most important were digital mobile phone systems.

These systems were the second generation of mobile phone technology, now known as “2G.”

These systems are known as time division multiple access, or TDMA. This fancy term just

means that multiple users rotate turns using both the uplink and downlink frequency

channels, allowing more simultaneous users.
13.4 Digital Voice Phone Systems

A key feature of a digital mobile phone system is that the voice is digitized. Landline phone

systems have long been digital. The actual phones in homes and businesses are analog and,

using twisted-pair phone lines, connect to the local telephone exchange (this same line also

carries the DSL signal for an Internet connection). At the telephone exchange, the voice

signal is digitized using ADCs and DACs sampling at 8 kHz. The samples are not mapped

linearly, but logarithmically, into an 8-bit digital representation, using a process known as

companding. This technique reduces the quantization noise at low signal levels at the expense

of quantization noise at higher signal levels, effectively resulting in a higher dynamic

range. The voice signal is now in a digital format, with 8-bit samples at 8 kHz, for a resulting

bit rate of 64 kilobits per second (kbps). In this form, the signal can be managed and

transmitted by telephone switches and systems worldwide. This is known as an

uncompressed digital voice signal.

Uncompressed digital voice would require as much frequency bandwidth to transmit as the

FM voice signal used in analog mobile wireless phone systems. However, using digital

voice compression technology, known as vocoders, the required data rate can be reduced.

There is a trade-off in compressed bit rate, voice quality, and complexity of voice

compression algorithm used. In North American TDMA systems, the voice was generally

compressed from 64 to 8 kbps, using an algorithm known as vector sum excited linear

prediction (VSELP). Unfortunately, the voice quality of VSELP was poorer than the previous

analog FM-modulated AMPS system. Subsequently, using more powerful DSPs both in

base stations and mobile handsets, a more powerful 8 kbps voice compression algorithm

known as advanced code excited linear prediction (ACELP) was used, which closed the

quality gap. Both vocoders used convolutional encoding and Viterbi decoding error

correction, which resulted in a transmitted data rate of about 13 kbps.
www.newnespress.com

http://www.newnespress.com/

148 Chapter 13

www
13.5 TDMA Modulation and Demodulation

In the United States, the TDMA upgrade system to the AMPS system was known as

IS-54 and then later upgraded to IS-136, referring to the Interim Standards of the

telecommunications industry association (TIA). This system used the same 30 kHz channel

spacing as AMPS. Each frequency channel was organized into frames of 20 ms, or 50 frames

per second. Each frame had three time slots, each of which can be assigned to one user,

as shown in Figure 13.2. This capability increased the capacity of the system threefold,

compared to AMPS. Since it was compatible and inclusive with AMPS, the digital service

could be gradually rolled out by the service provider, allowing for a gradual obsolescence

of the AMPS handsets.
NADC downlink

NADC uplink

User 1

User 1

User 2

User 2

User 3

User 3User 3

User 1

20 ms

Figure 13.2
Notice that the frame timing is offset between the downlink and uplink. This offset allows the

mobile handset to operate in transmit and receive modes at different, nonoverlapping

intervals. Since the mobile handset needs to transmit for only about one third of the time,

power consumption can be reduced and battery life extended.

A number of DSP technologies were used in TDMA systems. In addition to vocoding and

error correction, baseband digital modulation and demodulation methods were implemented.

The channel quality between the base station and mobile handsets is often of very poor

quality. Unlike with satellite and microwave links, with digital links it is rare to have a direct

line of sight connection between base stations and handsets. The received signals are

composed of multiple reflections, often distorted from passing through walls or other

obstructions. These signals can sometimes combine out of phase, effectively canceling each

other. This phenomenon is known as Rayleigh fading, which can be mitigated by using a

second receive antenna (diversity). If the antennas are sufficiently separated in distance,

then the phases of the multiple signals will vary differently, and in fact the Rayleigh fading

will be uncorrelated, or independent. This means that the likelihood of the signal at one

antenna canceling due to Rayleigh fading at the same time as the other receive antenna is

very small. Through dynamic switching between the antennas, depending on which has

the best signal, the impact of this fading can be largely mitigated, compared to using just

a single antenna.
.newnespress.com

http://www.newnespress.com/

Analog and TDMA Wireless Communications 149
A reflection can become delayed and be received on top of other later symbols at the

receiver. This is called inter-symbol interference (ISI) and can be compensated for by using

an adaptive equalizer. Then there is the effect of the handset motion, which causes Doppler

frequency shift in the received signals, and rapid changes in the ISI and fading effects,

requiring fast-adapting digital receivers.

In IS-136, a form of QPSK modulation was used, called differential p/4 offset QPSK. It is

more robust in terms of synchronization and sensitivity to Doppler shift compared to standard

QPSK. It also has reduced dynamic range, which is beneficial to RF power amplifier

performance. The receivers in both the base stations and handsets were equipped with

adaptive equalizers, multiple or diversity receivers, synchronization, and frequency offset

compensation algorithms. All this was implemented in DSP software in both the handsets and

base stations.

There were alternative forms of TDMA. In Japan, a system called Personal Digital

Communications (PDC) was widely used. It had 25 kHz channel spacing and also used

three voice slots per 20 ms frame. Later, a half-rate vocoder with sufficient quality, called

PSI-CELP, was developed; it allowed six voice slots per frequency channel. This was the

most spectrally efficient version of TDMA. In Europe, the Global System for Mobile

Communications (GSM) TDMA system was developed, which had eight voice slots, but

used a wider 200 kHz channel spacing. While not especially spectrally efficient, it was

adopted across all the European countries and came to have widespread commercial

adoption around the world. Due to the simplicity and low cost of GSM handsets and

infrastructure, it is still popular in the developing world, where often there is little or no

landline phone service. The GSM system used Gaussian Minimum Shift Keying (GMSK)

modulation, which is a form of phase shift modulation. Unlike QAM and QPSK

modulation, GMSK is a constant amplitude type of modulation. Similar to FM, this made

GSM signals very efficient to amplify for transmission in both the base stations and

handsets.

The TDMA architectures, both handset and base station, were DSP based. The main

difference was that the base station radios supported all the time slots simultaneously.

Mobile handsets, on the other hand, would support one uplink and downlink time slot

simultaneously, sufficient for a single call. Later, a derivative system called Enhanced

Data GSM Evolution (EDGE) was developed from GSM. Sometimes called a “2.5G”

technology, EDGE was developed to be an add-on to GSM networks; it supports somewhat

higher data rates for mobile Internet or email access. It provides these higher date rates by

allowing a single handset to occupy all 8 time slots of the frequency channel and by using a

more efficient modulation method called 8-PSK.

Figure 13.3 shows a basic block diagram of a TDMA base station radio system. There are

typically 4-24 radio cards in a TDMA base station.
www.newnespress.com

http://www.newnespress.com/

64 kbps
voice
(serial
buses to
E1/T1
card)

DSP

RF downconvert
and filter

D
uplexor filter

I

Q

DAC

DAC

ADC

ADC

RF
upconvert
and filter

PA

I

Q

Figure 13.3

150 Chapter 13

www
TDMA mobile phone networks work well, are relatively simple and low cost, and provide

reliable wireless connectivity rates sufficient for compressed voice. However, new

technologies promised higher data rates for Internet access, plus more efficient, higher-

capacity networks. The latter became more important as wireless usage grew, and there was

increased demand for frequency spectrum to service the market demand.

However, a rival technology was also being developed, known as Code Division Multiple

Access (CDMA). The original goal of second-generation digital systems was a tenfold

increase in capacity compared to AMPS. The IS-136 TDMA standard, with a threefold

increase, fell short of that goal. Proponents of CDMA claimed that their technology would

be able to meet this capacity increase. And that is the subject of the next chapter.
.newnespress.com

http://www.newnespress.com/

RF LO

Baseband
data source

PN Code

Spreading RF Upconve

DAC

ADC

RF Downcon

Acquire and
Synchronize

PN Code

De-Spreading

Baseband data

X-Σ

X

RF LO

Figure 14.1

Digital Signal Processing 101. DOI: 10.1016/B978-1-85617-921-8.00018-3
2010 Elsevier Inc. All rights reserved. 151
CHAPTER 14
CDMA Wireless Communications
The term CDMA stands for Code Division Multiple Access. CDMA modulation and

demodulation technology grew out of military spread spectrum techniques. CDMA

technology was commercialized by Qualcomm in the early 1990s. The initial Qualcomm

CDMA system was known as IS-95. Later, Qualcomm developed and deployed an enhanced

version of IS-95, known as CDMA2000 1xRTT, or just CDMA2000.

14.1 Spread Spectrum Technology

The basic idea behind spread spectrum is to start with a narrow band signal and mix it with

a high-frequency pseudo-random number (PN) signal, which would have the effect of

“spreading” the frequency spectrum occupied by the signal, thereby making it much harder

for adversaries to jam or interfere (see Figure 14.1). Upon reception, the process could be

reversed using the same pseudo-random code, and the original signal recovered.
rsion

version

∼∼∼∼

∼∼∼∼

152 Chapter 14

www
14.2 Direct Sequence Spread Spectrum

There are several methods to perform frequency spreading. The method employed in

CDMA is known as direct sequence spread spectrum. In direct sequence, the digital data is

modulated by a much higher rate sequence of PN data. Each bit of the PN sequence is a

“chip,” and the higher rate is known as the chip rate. These chips typically modulate the

much lower rate digital input data by a 180-degree phase shift in the carrier at the chip rate.

The chip rate phase changes are superimposed on the much lower rate phase shifts caused by

input data (see Figure 14.2). The higher rate chip phase changes will greatly increase the

occupied frequency bandwidth of the signal, and decrease the concentration of signal energy

around the carrier.
Signal Data

PN Code
Chip

Spread Signal

(No phase shift) (180� phase shift)

Power

Bit 0 Bit 1

−fPNchip −fsymbol fsymbol fPNchip

Figure 14.2
CDMA technology takes this concept further. The pseudo-random sequences were replaced

by special sequences called Walsh codes. The Walsh codes have a property called

orthogonalization. Each codeword is independent or orthogonal of the other. If any code

is cross-correlated with another, the result is zero. This property is used to allow multiple

users to share the same frequency band, each being assigned a unique codeword, which
.newnespress.com

http://www.newnespress.com/

CDMA Wireless Communications 153
allows a receiver to pick out the one desired user signal from all the others (see Figure 14.3).

The rest of other user signals are removed in the demodulation process.
Figure 14.3
In CDMA mobile communications, not only do all the users in a given cell or sector

share the same frequency channel, but all the cells also use the same frequency channel.

For CDMA2000, each frequency channel is 1.25 MHz bandwidth. Unlike TDMA or analog

systems, CDMA does not use frequency channel handoff as the user moves or transitions

from sectors or cells. In fact, the mobile phone can be in communication with several

cells simultaneously. This is one of the remarkable qualities of the CDMA mobile

communications system.

14.3 Walsh Codes

There are 64 Walsh codes used in CDMA2000, each 64 bits long, listed here. The Walsh

codes are clocked at the chip rate, which is 64 times faster than the data rate. In CDMA2000,

the chip rate is 1.2288 MegaChips per second (Mcps), and the input data rate to the CDMA

modulator is 19.2 kbps per Walsh code.
W0 0000000000000000 0000000000000000 0000000000000000 0000000000000000

W1 0000000000000000 0000000000000000 1111111111111111 1111111111111111

W2 0000000000000000 1111111111111111 1111111111111111 0000000000000000

W3 0000000000000000 1111111111111111 0000000000000000 1111111111111111

W4 0000000011111111 1111111100000000 0000000011111111 1111111100000000

W5 0000000011111111 1111111100000000 1111111100000000 0000000011111111

W6 0000000011111111 0000000011111111 1111111100000000 1111111100000000

W7 0000000011111111 0000000011111111 0000000011111111 0000000011111111

W8 0000111111110000 0000111111110000 0000111111110000 0000111111110000

W9 0000111111110000 0000111111110000 1111000000001111 1111000000001111

W10 0000111111110000 1111000000001111 1111000000001111 0000111111110000
www.newnespress.com

http://www.newnespress.com/

154 Chapter 14

www.ne
W11 0000111111110000 1111000000001111 0000111111110000 1111000000001111

W12 0000111100001111 1111000011110000 0000111100001111 1111000011110000

W13 0000111100001111 1111000011110000 1111000011110000 0000111100001111

W14 0000111100001111 0000111100001111 1111000011110000 1111000011110000

W15 0000111100001111 0000111100001111 0000111100001111 0000111100001111

W16 0011110000111100 0011110000111100 0011110000111100 0011110000111100

W17 0011110000111100 0011110000111100 1100001111000011 1100001111000011

W18 0011110000111100 1100001111000011 1100001111000011 0011110000111100

W19 0011110000111100 1100001111000011 0011110000111100 1100001111000011

W20 0011110011000011 1100001100111100 0011110011000011 1100001100111100

W21 0011110011000011 1100001100111100 1100001100111100 0011110011000011

W22 0011110011000011 0011110011000011 1100001100111100 1100001100111100

W23 0011110011000011 0011110011000011 0011110011000011 0011110011000011

W24 0011001111001100 0011001111001100 0011001111001100 0011001111001100

W25 0011001111001100 0011001111001100 1100110000110011 1100110000110011

W26 0011001111001100 1100110000110011 1100110000110011 0011001111001100

W27 0011001111001100 1100110000110011 0011001111001100 1100110000110011

W28 0011001100110011 1100110011001100 0011001100110011 1100110011001100

W29 0011001100110011 1100110011001100 1100110011001100 0011001100110011

W30 0011001100110011 0011001100110011 1100110011001100 1100110011001100

W31 0011001100110011 0011001100110011 0011001100110011 0011001100110011

W32 0110011001100110 0110011001100110 0110011001100110 0110011001100110

W33 0110011001100110 0110011001100110 1001100110011001 1001100110011001

W34 0110011001100110 1001100110011001 1001100110011001 0110011001100110

W35 0110011001100110 1001100110011001 0110011001100110 1001100110011001

W36 0110011001100110 1001100110011001 0110011001100110 1001100110011001

W37 0110011001100110 1001100110011001 1001100110011001 0110011001100110

W38 0110011010011001 0110011010011001 1001100101100110 1001100101100110

W39 0110011010011001 0110011010011001 0110011010011001 0110011010011001

W40 0110100110010110 0110100110010110 0110100110010110 0110100110010110

W41 0110100110010110 0110100110010110 1001011001101001 1001011001101001

W42 0110100110010110 1001011001101001 1001011001101001 0110100110010110

W43 0110100110010110 1001011001101001 0110100110010110 1001011001101001

W44 0110100101101001 1001011010010110 0110100101101001 1001011010010110

W45 0110100101101001 1001011010010110 1001011010010110 0110100101101001

W46 0110100101101001 0110100101101001 1001011010010110 1001011010010110

W47 0110100101101001 0110100101101001 0110100101101001 0110100101101001

W48 0101101001011010 0101101001011010 0101101001011010 0101101001011010

W49 0101101001011010 0101101001011010 1010010110100101 1010010110100101

W50 0101101001011010 1010010110100101 1010010110100101 0101101001011010
wnespress.com

http://www.newnespress.com/

CDMA Wireless Communications 155
W51 0101101001011010 1010010110100101 0101101001011010 1010010110100101

W52 0101101010100101 1010010101011010 0101101010100101 1010010101011010

W53 0101101010100101 1010010101011010 1010010101011010 0101101010100101

W54 0101101010100101 1010010101011010 0101101010100101 1010010101011010

W55 0101101010100101 0101101010100101 0101101010100101 0101101010100101

W56 0101010110101010 0101010110101010 0101010110101010 0101010110101010

W57 0101010110101010 0101010110101010 1010101001010101 1010101001010101

W58 0101010110101010 1010101001010101 1010101001010101 0101010110101010

W59 0101010110101010 1010101001010101 0101010110101010 1010101001010101

W60 0101010101010101 1010101010101010 0101010101010101 1010101010101010

W61 0101010101010101 1010101010101010 1010101010101010 0101010101010101

W62 0101010101010101 0101010101010101 1010101010101010 1010101010101010

W63 0101010101010101 0101010101010101 0101010101010101 0101010101010101
Each user’s input data stream of 19.2 kbps is modulated by a different Walsh code.
14.4 Concept of CDMA

A common nontechnical analogy to CDMA is the following. Imagine a round table, where

there are multiple one-to-one conversations occurring between various pairs of people who

are not adjacent to each other. Ordinarily, this would present a difficult situation, and it

would be very difficult for anyone to communicate due to interference from all the other

conversations. Now imagine if each pair of people spoke only one language, and for each

pair, it was a different language. Now the conversations could proceed much more

efficiently. Each pair would hear the other pairs’ conversations as unintelligible noise, and

their own conversation would stand out because each person could correlate what he heard

against familiar words and speech of his own language. Another caveat is that this

communication will work only if there are not too many other conversations and if everyone

cooperates by speaking in a conversational tone at the same volume.

If one pair tries to enhance their conversation by raising their voices, it degrades everyone

else’s conversation. And if others in turn respond by raising their voices, things soon

degenerate into a shouting match, and all communication is hindered. With this analogy in

mind, we try to outline the essential basics of the CDMA2000 system in the following

sections.

14.5 Walsh Code Demodulation

Imagine each Walsh code Wk sequence is mapped so that a zero is a þ1, and a one is a 1.

There is a single user channel input data bit every 64 chips, or period, of the Walsh code.

If the data bit is “0,” then the Walsh code Wk is transmitted, or if it’s “1,” the inverse, or
www.newnespress.com

http://www.newnespress.com/

156 Chapter 14

www
negative, of the Wk is transmitted. Furthermore, the detector is based on a correlator, or

integrator. The correlator performs a correlation (cross-multiply and sum) of the received

sequence against the same Walsh code Wk. Next, let’s go through a few examples. To make

them easier to represent, we use only the first 16 chips of each Walsh code and pick the

Walsh codes that are orthogonal over the first 16 chips. These are every fourth Walsh code,

numbers 0, 4, 8, 12. . .60. This set of 16 sequences, each 16 chips long, forms a set of

16 orthogonal Walsh codes. The same concept applies to the larger set of 64 Walsh codes

and when the correlation is applied over the complete 64 chips.

Example 1:

Input bit ¼ 0, with Walsh code W0, gives a transmitted signal of
X

X

.ne
þ1, þ1, þ1, þ1, þ1, þ1, þ1, þ1, þ1, þ1, þ1, þ1, þ1, þ1, þ1, þ1
When we correlate against shortened W0,
þ1, þ1, þ1, þ1, þ1, þ1, þ1, þ1, þ1, þ1, þ1, þ1, þ1, þ1, þ1, þ1

þ1, þ1, þ1, þ1, þ1, þ1, þ1, þ1, þ1, þ1, þ1, þ1, þ1, þ1, þ1, þ1

þ1, þ1, þ1, þ1, þ1, þ1, þ1, þ1, þ1, þ1, þ1, þ1, þ1, þ1, þ1, þ1
S ¼ þ16, which we decode as a “0” input bit.

Example 2:

Input bit ¼ 1, with Walsh code W0, gives a transmitted signal of
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
When we correlate against shortened W0,
þ1, þ1, þ1, þ1, þ1, þ1, þ1, þ1, þ1, þ1, þ1, þ1, þ1, þ1, þ1, þ1

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
S ¼ 16, which we decode as a “1” input bit.

Example 3:

Input bit ¼ 0, with Walsh code W32, gives a transmitted signal of
þ1, 1, 1, þ1, þ1, 1, 1, þ1, þ1, 1, 1, þ1, þ1, 1, 1, þ1
When we correlate against shortened W32,
wnespress.com

http://www.newnespress.com/

X

X

þ
þ

X

CDMA Wireless Communications 157
þ1, 1, 1, þ1, þ1, 1, 1, þ1, þ1, 1, 1, þ1, þ1, 1, 1, þ1

þ1, 1, 1, þ1, þ1, 1, 1, þ1, þ1, 1, 1, þ1, þ1, 1, 1, þ1

þ1, þ1, þ1, þ1, þ1, þ1, þ1, þ1, þ1, þ1, þ1, þ1, þ1, þ1, þ1, þ1
S ¼ þ16, which we decode as a “0” input bit.

Example 4:

Input bit ¼ 1, with Walsh code W52, gives a transmitted signal of
þ1, 1, þ1, 1, 1, þ1, 1, þ1, 1, þ1, 1, þ1, þ1, 1, þ1, 1
When we correlate against shortened W52,
þ1, 1, þ1, 1, 1, þ1, 1, þ1, 1, þ1, 1, þ1, þ1, 1, þ1, 1

1, þ1, 1, þ1, þ1, 1, þ1, 1, þ1, 1, þ1, 1, 1, þ1, 1, þ1

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
S ¼ 16, which we decode as a “1” input bit.

Next, let’s assume we have three different codes in use—W0, W32, W52—and have

input bits 1 for W0 (example 2), 0 for W32 (example 3), and 1 for W52 (example 4).

Next, we sum the transmitted signals together, for a combined signal to be sent to the

receiver:
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1

þ1, 1, 1, þ1, þ1, 1, 1, þ1, þ1, 1, 1, þ1, þ1, 1, 1, þ1

þ1, 1, þ1, 1, 1, þ1, 1, þ1, 1, þ1, 1, þ1, þ1, 1, þ1, 1

þ1, 3, 1, 1, 1, 1, 3, þ1, 1, 1, 3, þ1, þ1, 3, 1, 1
In the receiver, we can recover the original bits correlating to the original Walsh

codes.

When we correlate with shortened W0,
þ1, þ1, þ1, þ1, þ1, þ1, þ1, þ1, þ1, þ1, þ1, þ1, þ1, þ1, þ1, þ1

þ1, 3, 1, 1, 1, 1, 3, þ1, 1, 1, 3, þ1, þ1, 3, 1, 1

þ1, 3, 1, 1, 1, 1, 3, þ1, 1, 1, 3, þ1, þ1, 3, 1, 1
S ¼ 16, which we decode as a “1” input bit.
www.newnespress.com

http://www.newnespress.com/

158 Chapter 14

www
When we correlate against shortened W32,
X

X

X

.ne
þ1, 1, 1, þ1, þ1, 1, 1, þ1, þ1, 1, 1, þ1, þ1, 1, 1, þ1

þ1, 3, 1, 1, 1, 1, 3, þ1, 1, 1, 3, þ1, þ1, 3, 1, 1

þ1, þ3, þ1, 1, 1, þ1, þ3, þ1, 1, þ1, þ3, þ1, þ1, þ3, þ1, 1
S ¼ þ16, which we decode as a “0” input bit.

When we correlate against shortened W52,
þ1, 1, þ1, 1, 1, þ1, 1, þ1, 1, þ1, 1, þ1, þ1, 1, þ1, 1

þ1, 3, 1, 1, 1, 1, 3, þ1, 1, 1, 3, þ1, þ1, 3, 1, 1

þ1, þ3, 1, þ1, þ1, 1, þ3, þ1, þ1, 1, þ3, þ1, þ1, þ3, 1, þ1
S ¼ þ16, which we decode as a “1” input bit.

This simple example shows how a composite of several Walsh codes can be separated

into individual contributions by the correlation process, and the input bits used to set

the polarity of the individual Walsh codes recovered. During this recovery process,

the other Walsh codes are completely excluded due to the nature of orthogonality of the

codes.

Next, let’s consider what happens when we correlate the received sequence against a Walsh

code that is not present in the composite signal.

When we correlate against shortened W20,
þ1, þ1, 1, 1, 1, 1, þ1, þ1, 1, 1, þ1, þ1, þ1, þ1, 1, 1

þ1, 3, 1, 1, 1, 1, 3, þ1, 1, 1, 3, þ1, þ1, 3, 1, 1

þ1, 3, þ1, þ1, þ1, þ1, 3, þ1, þ1, þ1, 3, þ1, þ1, 3, þ1, þ1
S ¼ 0. This indicates no correlation and no W20 component in the received signal.

The properties of Walsh codes allow each different code to be perfectly separated from the

composite signal of all the Walsh-coded user data.
14.6 Network Synchronization

The concept described in the preceding section can be extended to build a receiver with a

bank of correlators and threshold detectors to recover the data modulated by any given

Walsh code. For the correlation process to work, all the Walsh codes must be transmitted

with the same start and end timing. This process requires close synchronization between

all the base stations and the mobile phones. The base stations are all synchronized using
wnespress.com

http://www.newnespress.com/

CDMA Wireless Communications 159
global positioning system (GPS) satellite receivers. In addition to position data, the GPS

system also provides timing data with great precision. By comparison, the previous analog

and TDMA cellular systems did not require base station synchronization. The mobile phones

would reacquire each base station’s individual timing at each handoff.

While use of the GPS system provides a means for all the CDMA base stations to be

synchronized, this approach does not work for mobile phones (GPS signals cannot be

received indoors or when blocked by tall buildings). Instead, a pilot signal is transmitted by

each base station. The pilot signal provides a known signal to allow the mobile to determine

the basic start and end time of the Walsh code timing, provides a coherent reference for

demodulation, and allows for individual base station identification.

Recall in our discussion of Walsh codes that 180-degree phase shifts in the signal are used to

identify 0!1 and 1!0 transitions. However, wireless signals can carry only relative phase

information, not absolute (phase is the same as delay, so the absolute phase changes

whenever distance between the transmitter and receiver changes). This limitation can be

overcome in two ways. First is to encode all data in a differential form, such as the

differential offset QPSK used in IS-136 TDMA. This is known as noncoherent demodulation.

It is simpler but more susceptible to noise. The other method is to detect and track the

received carrier phase and use this to determine actual phase changes. This is known as

coherent demodulation. All this sounds complicated, and it is. Suffice to say here that the

pilot signal is required to perform coherent demodulation and provides a phase reference for

the correlators.

14.7 RAKE Receiver

The receiver architecture used for CDMA is known as a RAKE receiver. The RAKE receiver

has multiple correlators. These correlators can be programmed for different Walsh codes.

Some of the correlators can also be programmed for slight differences in arrival timing

(remember multipath in the preceding chapter?) of the same Walsh code. The CDMA

receiver constantly tunes the RAKE receiver multiple correlators, also called “fingers,”

for optimal reception. This is required in the presence of multiple delayed versions of the

received signal or multipath, which would cause ISI in a TDMA system. Multipath is

much more prevalent in CDMA, due to the much higher chip rate than TDMA’s symbol rate,

and the RAKE receiver architecture is well suited to compensate for this effect.

14.8 Pilot PN Codes

PN sequences are important in CDMA systems. One key characteristic of PN sequences

is the autocorrelation property. When a PN sequence correlates to itself, the result is

a perfect match if the sequences are perfectly time aligned, as with any other type of
www.newnespress.com

http://www.newnespress.com/

160 Chapter 14

www
sequence. But if a PN sequence is correlated with an offset, even just one sample, the result is

near zero correlation. This is also a property of a true random noise signal of infinite length.

One of the most important uses of PN sequences is in the pilot signal. The pilot signal is

a pair of PN sequences that operate at the chip rate and repeat about every 26.66

milliseconds. The pilot signal is sent in quadrature, using QPSK. There is a separate

sequence defined for I and Q, given by the following generator equations:
.ne
I PN sequence: GI ¼ 1 þ X2 þ X6 þ X7 þ X8 þ X10 þ X15

Q PN sequence: GQ ¼ 1 þ X3 þ X4 þ X5 þ X9 þ X10 þ X11 þ X12 þ X15
The PN sequences can be generated using a very simple circuit, as shown in Figure 14.4.

The PN circuit output repeats every 32,767 bits, and an extra zero is inserted to bring this to

the full 32,768-length pilot sequence. The shift register state has 215, or 32,768, possible

values. The only invalid state is the all-zero state because this state is self-perpetual (that is

why the extra zero is added separately to the output sequence). Any nonzero state can be

used at startup, and this state determines where the repetitive 32,767 sequence begins, or the

startup “phase” of the PN sequence. The pilot signal, with the zero inserted, has 32,768

possible phases.
7

1 52 3 4 6 11107 8 9 12

3

13 14 15

1 42 8 95 6 10 11 12 13 14 15

I PN Sequence Generator

Q PN Sequence Generator

Figure 14.4
14.9 CDMA Transmit Architecture

The transmitter circuit for IS-95 and CDMA2000 is shown in the diagram in Figure 14.5.

The I and Q quadrature paths are each mixed, or EXORed, with separate PN sequences.

These PN sequences make up the pilot channel. Because the pilot channel uses W0, it is the

only channel not modified by the Walsh code mixing. The pilot tone is a simple QPSK

signal, modulated by the pilot PN sequences. Different cells or base stations distinguish

themselves by using different offsets, or phases, of the pilot sequence. The offsets are in

increments of 512 chips, providing 64 possible offsets. When a CDMA mobile phone
wnespress.com

http://www.newnespress.com/

CDMA Wireless Communications 161
scans for the nearby cell sites, it identifies them by the relative signal strength and their

PN offset of the pilot channel. Because transmission delays due to distance between base

station and mobile are usually in the tens of chips, a separation in phase or delay of 512

chips clearly indicates that another base station is the source. These known PN sequence

phase delays of 512 chips allow the mobile phone to perform a correlator search across

increments of 512 chip delays to detect nearby base station pilots.
I PN
sequence

Q PN
sequence

+

W0

W1

EX-OR at
1.2288 MHz

Summation and
individual user
gain setting

Q data @
2.4576 MSPS

I data @
2.4576 MSPS

FIR pulse
shaping and
interpolate

filter

FIR pulse
shaping and
interpolate

filter

Sync Channel

Interleaver 19.2 kbps

19.2 kbps

19.2 kbps

Long Code
generator

Long Code
generator

Interleaver

Interleaver

Convolutional
Encoder &

repeat

Convolutional
Encoder &

repeat

Convolutional
Encoder &

repeat

Paging Channel

User Channels

1.2
kbps

4.8
9.6
kbps

1.2
2.4
4.8
9.6
kbps

EX-OR at
19.2 kHz

Pilot Channel
(all zeros)

W32

Wk

Figure 14.5
The mobile phones uses the strength of the pilot signal to determine if it is nearing the

edges of the cell, defined by the area of strong pilot signal coverage. By measuring the

strength of other phase offset pilots, the mobile phone can report to the network which of

the adjacent cells are in range, information that is used in handoff decisions.

Note that the pilot I and Q sequences are used both in the pilot and all other channels, after

Walsh code modulation. This provides for the individual quadrature components for each

channel. The synchronization channel uses W32 and provides the GPS time reference used to

obtain all the system timing information needed. Included in this is the data needed to set up

the long code generator. This is a much longer PN sequence, 242 bits long (which repeats

about every 41 days!). Each mobile is assigned a unique long code phase to provide privacy

for the user channel data. There is often only one paging channel, although the system allows

up to seven paging channels. Paging channels are used similarly to control channels in
www.newnespress.com

http://www.newnespress.com/

162 Chapter 14

www
TDMA systems. The mobile phones monitor the paging channels to determine if there is an

incoming call. The rest of the Walsh codes, up to 55, can be allocated to users for voice

or data calls. Due to mutual interference limitations, the number of simultaneous users is

normally 40 or fewer.

All the channels are then summed together. At this point, the signal is no longer a

sequence of 1s and 0s, but is often 10–14 bits wide. In addition, gain is individually applied

to each channel (or set to zero for unused channels). In CDMA, optimal capacity requires

that each channel be transmitted only at the minimum power level necessary for low error

rate reception. The exception is the pilot channel, which is discussed further. After the

summation and gain setting stage, the transmit signal is then filtered and interpolated by the

pulse-shaping filters, and then digitally upconverted to the IF frequency for conversion to

analog form by the DAC. The analog RF circuitry then mixes and filters the signal to the

carrier frequency, amplifies using a high-power RF amplifier, and transmits through the

antennas. The RF signal bandwidth is approximately 1.25 MHz.

14.10 Variable Rate Vocoder

One of the many innovations introduced in the CDMA system was the variable rate vocoder.

Notice that the input data rate to each user or traffic channel can be one of four rates: 1.2, 2.4,

4.8, or 9.6 kbps. This was due to the use of a vocoder known as the Enhanced Variable

Rate Coder (EVRC), also known as the CTIA IS–127 standard. The EVRC vocoder exploits

the nature of voice compression. Depending on the nature of the speech, or if there are pauses

in conversation, the speech can be compressed to a much greater degree than the normal

8 kbps rate without sacrificing voice quality. The EVRC was designed to do just that.

With a TDMA system, the allocated bandwidth in a slot is fixed. A variable rate vocoder

would need to be allocated a channel with a data rate equal to the maximum possible rate.

CDMA, however, can take advantage of variable rates. When EVRC is operating at a rate

of 1.2 kbps, the data can be repeated four times. This does not directly help the system

operation. But with this repetition, the correlation is stronger because it is over four

times the length. This, in turn, allows the data to be transmitted at lower power levels.

This adjustment is possible because of the power, or gain, control adjustment for each

individual channel. The very sophisticated power control algorithm keeps each mobile

handset transmitting at the minimum power level to maintain a reasonable bit error rate.

When EVRC is operating at a low data rate, the power level of that user channel can be

reduced. Recall that in the uplink, each channel acts like noise in all the other channels.

The lower the power required for each channel, the less noise-like interference is experienced

by all the channels. For that reason, CDMA is often referred to as an interference limited

system. The level of mutual interference, or noise, created by all the channels with respect

to each other is the major determining factor in the capacity of a CDMA system.
.newnespress.com

http://www.newnespress.com/

CDMA Wireless Communications 163
14.11 Soft Handoff

The CDMA system uses a common 1.25 MHz frequency band in each cell site and sector.

Through the use of different Walsh codes, interference is prevented between different users in

the same cell or adjacent cells. For adjacent cells, even where the same Walsh code is in use,

the different offsets of the short PN code limit interference by making the other users appear as

noise. This use of the same frequency band allows “soft” handoff. In the preceding chapter,

frequency handoff was discussed in analog and TDMA systems. This is called hard handoff,

where the mobile phone must break communication with the existing base station and change

frequency to communicate with the newly assigned base station. Soft handoff, in contrast,

allows the mobile phone to maintain communication with the previous base station while

simultaneously communicating with the next base station. Depending on the pilot strength

thresholds set by the network, it is possible for a single mobile to be in communication with

three or more base stations at once. The mobile phone has pilot signal strength thresholds to

allow communication with a new base station and thresholds to discontinue communication

with a previous base station. These thresholds are under network control.

Soft handoff can provide greater reliability and voice quality, due to the ability to

communicate with both or several base stations at or near cell boundaries, where the signals

tend to be weak. There is also a network capacity trade-off in that as the number of

simultaneous base stations in the handoff process increases, or the duration of the soft

handoff process increases, more network capacity is being consumed by that particular user.

Soft handoff is possible in CDMA networks because of the common frequency band used by

all cells, and the network synchronization of all the base stations, neither of which exists

in analog or TDMA systems. The network synchronization allows the voice or data to

be simultaneously and synchronously routed to several base stations for transmission.

The network can also synchronously combine voice or data traffic from a given mobile

phone. This is an important advantage of CDMA voice systems over 2G systems.
14.12 Uplink Modulation

CDMA systems are so named for the downlink modulation method used. The uplink is

somewhat different. The Walsh codes are orthogonal only if all the codes are sent and

received synchronously. This is possible with the downlink because the base stations are all

synchronized through GPS. In the uplink, the arrival time of the signals at the base station

receiver are delayed by the roundtrip transit time. There is a time or propagation delay from

the base station downlink signal to the mobile phone. It is the speed of light, which works out

to about one mile per microsecond (millionth of a second), which is close to the one chip

delay in CDMA2000. The mobile phone then synchronizes to the received signal using the

downlink sync channel. The mobile, in turn, transmits the uplink signal, which also
www.newnespress.com

http://www.newnespress.com/

164 Chapter 14

www
experiences a similar propagation delay to the base station. Because this is dependent on the

mobile phone position, and constantly changing, it is not possible to guarantee that the

different mobile phone uplink signals are all aligned at the base station receiver. Recall from

the discussion on Walsh code demodulation, we needed all the 64-chip long Walsh code

boundaries to be aligned to preserve the orthogonality. If one Walsh sequence is delayed

by ½, 1, 2, or 5 chips, this demodulation process does not work. For this reason, CDMA

modulation is not used in the uplink direction.

The uplink users are instead distinguished by different PN codes. Actually, they all use the

same very long PN code but are assigned different phases. A 242 length PN code is used,

which is more than 4 trillion chips in length before repeating. Due to the autocorrelation

properties of PN sequences, every other user uplink signal appears like noise to a receiver

tuned to the correct PN sequence phase.

Walsh codes are still used in the uplink but not to separate the different users as in the

downlink. In CDMA2000, there are 26, or 64, Walsh codes. In the uplink, after the

convolutional encoder and interleaver, each set of 6 bits selects one of the 64 Walsh codes.

The 64 chips of that Walsh code are mixed with the selected phase of the 242 length PN code

sequence. By detecting which of 64 Walsh codes was sent, the base station receiver can

recover the original 6 bits. This process works similarly to maximum likelihood in coding.

There is a possible 264 sequences with a 64-bit word. However, only the 64 Walsh code

sequences are valid transmit sequences. The base station receiver attempts to match the

received sequence to the closest valid Walsh sequence.

After theWalsh encoding, the quadrature phases aremixedwith I andQPNshort codes and pulse-

shaped filters, similar to the downlink circuit. In this case, however, offset QPSK modulation is

used rather than QPSK. The advantage of this approach is discussed in the next chapter.

The uplink is inherently the weaker link compared to the downlink. The Walsh codes in the

downlink are perfectly synchronized and theoretically eliminate interference between users.

But the uplink uses different PN phases to distinguish user channels. The autocorrelation

properties do not eliminate each user’s effect on each other, as the Walsh codes do, but make

the other users’ signals appear as noise. This makes the uplink interference limited. The

downlink, on the other hand, tends to be power limited because the base station power

amplifier must provide sufficient power to all users.

14.13 Power Control

Transmit RF power control was one of the key challenges of CDMA, and many of the

enhancements of CDMA2000 over the earlier IS-95 system involved power control. Power

control is used in both the downlink and uplink. In the downlink, the prime consideration is
.newnespress.com

http://www.newnespress.com/

CDMA Wireless Communications 165
to keep the pilot power constant, even as the user channel power varies with the number

of users and distance from the base station. Consistent pilot power is important because the

pilot signal strength is used by mobile phones to determine cell boundaries and make handoff

decisions.

Power control is even more critical in the uplink because each uplink is interference limited.

To minimize the interference, each mobile phone needs to transmit an amount of power

such that all the mobile transmit power levels are roughly equal at the base station antenna

for equivalent user traffic bit rates (9.6 kbps).

Both open and closed loop power control methods are used. Open loop power control is

performed by the mobile phone with no assistance from the base station network. Essentially,

this type of control works as follows. The further from the base station, or more obstacles

between, the lower the pilot and other downlink signal powers appear to the mobile phone.

The mobile phone can use this information to estimate the uplink power level required.

The weaker the pilot signal, the higher the loss and greater the distance to the base station,

which requires a higher transmit power from the mobile to compensate. The converse is

also true.

The rate of response of the open loop power control is nonlinear. If the received pilot signal

suddenly increases, such as if the mobile emerges from behind a building, the mobile

transmit power is immediately reduced. But if the pilot signal strength drops, then the mobile

transmit power is increased slowly, to prevent inadvertent interference with other users’

uplink signals.

In addition to open loop power control, there is also a closed loop power control loop

operating. Closed loop power control is needed because estimating the uplink losses based

on downlink losses can lead to errors. The downlink and uplink bands are different (separated

by either 25 or 80 MHz depending on whether in the 800 or 1900 MHz bands), and different

frequencies can fade independently.

Closed loop power control is more accurate because it is based on the uplink power

measurements at the base station. A key challenge is to close the loop quickly. For that

reason, a special power control bit is allocated in each downlink data frame, which can

incrementally increase or decrease the mobile transmit power every 1.25ms. In addition,

the base station is designed to use hardware circuits to drive this bit depending on receive

correlation results.

Optimal uplink transmit power control requires quick reaction time be the basestation to tell

the mobile how to adjust its transmit power level. In order to achieve rapid power control

response, CDMA basestations use hardware circuits, rather than software-based control,

to adjust the state of the power control bit.
www.newnespress.com

http://www.newnespress.com/

166 Chapter 14

www
14.14 Higher Data Rates

One advantage of CDMA is that multiple Walsh codes can be aggregated to a single user,

to allow a higher data rate. Data rates in multiples of 9.6 kbps are available. Aggregating

16 channels together allows a data rate of 153.6 kbps. With 32 channels aggregated—the

maximum because the pilot, sync, and paging channel are not available for user traffic—the

data rate is 307.2 kbps. This rate is simply not possible in a TDMA system.

However, the disadvantage is that a few data users can consume most of the downlink

capacity, compromising the available capacity for voice users, who provide the bulk of the

revenue to the wireless carriers.

Therefore, a companion technology was developed to support high-speed data users. The

market for this type of service is primarily businesspeople who need and are willing to pay

for mobile high-speed service to allow remote Internet and email access. This service is

known as Evolution for Data Only, or EVDO. It uses the same 1.25 MHz channel bandwidth

and same uplink modulation techniques as CDMA2000. The downlink is completely

redesigned and does not use CDMA techniques. It uses a very high speed form of QAM

modulation, and the entire signal is devoted to one user at a time. The users share this

high-speed link in a time-division duplex fashion. This link is suitable for high-speed data

access, where the data access is often intermittent and packet based. The uplink typically

requires much lower data rates and so retains the original CDMA uplink technology.

Where EVDO service is offered, it uses a separate frequency spectrum from the CDMA2000

service.
14.15 Spectral Efficiency Considerations

So how does CDMA stack up against TDMA when it comes to spectral efficiency? The

original goal was for digital systems to provide a 10-fold increase in spectral efficiency. The

IS-136 TDMA efficiency provided a threefold increase.

• AMPS: One voice call per 30 kHz channel bandwidth. With seven-cell frequency reuse,

the effective spectrum per user was 210 kHz.

• IS-136: Three voice calls per 30 kHz channel bandwidth. With seven-cell frequency

reuse, the effective spectrum per user was 70 kHz.

• PDC: Six voice calls (half rate vocoder) per 25 kHz channel bandwidth. With seven-cell

frequency reuse, the effective spectrum per user was 29 kHz.

• GSM: Eight voice calls per 200 kHz channel bandwidth. With seven-cell frequency

reuse, the effective spectrum per user was 175 kHz.

• CDMA2000: CDMA is tougher to calculate capacity because this depends on network

settings. In general, higher capacity is possible at the expense of voice quality, due to
.newnespress.com

http://www.newnespress.com/

CDMA Wireless Communications 167
the mutual interference issues and soft handoff thresholds. In general, most CDMA

systems operate with a maximum of about 40 voice calls per cell. Assuming 40 voice

calls per 1.25 MHz, with reuse every sector, the effective spectrum per user is 31 kHz.

To reach the 10-fold increase, the CDMA system would have to operate at the maximum of

55 voice channels per sector, which, while possible, does not lead to satisfactory quality

in practice. But CDMA does lead to about a factor of over twice the spectral efficiency of

IS-136 TDMA. The GSM TDMA system is by far the least spectrally efficient system. It now

tends to dominate where lowest cost of service is critical, and user density (and therefore

spectrum requirements) is moderate, such as in third world countries to provide basic

phone service in rural areas.
14.16 Other CDMA Technologies

Alternate CDMA technologies were developed after CDMA2000. The most common CDMA

system is known both as WCDMA, or Wideband CDMA, and UMTS. This form of

CDMA was heavily based on IS-95 technologies. The biggest difference is a chip rate of

3.84 Mcps, a spectral bandwidth of 5 MHz, and a higher count of 256 Walsh codes to allow

more user or traffic channels. This system was developed principally by the European

wireless OEMs, and designed to be a 3G upgrade from the GSM system. UMTS has basically

become the worldwide standard for CDMA because CDMA2000 is largely limited to

usage in North America, Japan, and South Korea.

Just as Qualcomm developed EVDO for high-speed data access, a companion service to

UMTS for high-speed data users was developed. It is known as HSDPA.

Another higher-rate version of CDMA2000 was developed by Qualcomm, called 3xRTT.

This system had a chip rate of 3.68 Mcps, three times that of 1xRTT. It was designed to

compete with the higher chip rate of WCDMA. It was never really deployed because similar

capacity could be achieved using three separate 1xRTT systems.

A third CDMA system was developed in China. It is known as TD-SCDMA and is expected

to be limited to deployment within China only.
www.newnespress.com

http://www.newnespress.com/

Digital Signal Processing 101. DOI: 10.1016/B978-1-85617-921-8.00019-5
2010 Elsevier Inc. All rights reserved. 169
CHAPTER 15
OFDMA Wireless Communications
The latest mobile communication technology following CDMA wireless systems is naturally

called fourth generation, or “4G.” The goals of a fourth generation system are yet even higher

data capabilities, to be able to support voice, Internet, streaming video, and other services.

Known as orthogonal frequency division multiplexing, or OFDM, it utilizes a completely

different technology than 3G. OFDM has also been used in broadcast systems and for

wireless LAN (Wi-Fi). These systems are point-to-multipoint systems. In the case of

broadcast, it was basically one-way transmission. To use OFDM in mobile communications

systems require a multiple access system, which requires some additional considerations.

This is known as orthogonal frequency division multiple access, or OFDMA.

15.1 WiMax and LTE

There are two major standards for OFDMA mobile technology. The first is known as

WiMax. It grew out of the Wi-Fi wireless LAN technology. Wi-Fi is now standard in virtually

every PC laptop, DSL, or cable ISP gateway, providing private Internet access in many homes

and public coverage in most airports, coffee houses, and hotels. Wi-Fi is defined as IEEE

standard 802.11. WiMax, which has received major additions to support mobility and multiple

access, is defined as IEEE standard 802.16. Shortly after the standardization of WiMax, the

mobile communications industry began definition of its own OFDMA standard, which is

known by the acronym LTE, for long term evolution. The technology path envisioned is a

worldwide wireless technology roadmap for mobile service providers, starting with GSM,

migrating to WCDMA, and eventually to LTE. Because LTE is being promoted by most of

the mobile wireless industry, it is expected to have much wider deployment than WiMax.

WiMax is more likely to find use in wireless network backhaul, military communications,

and wireless local loop (basic phone service for rural areas without landline phones).

OFDMA does utilize a common concept with CDMA: orthogonality. To maximize spectral

efficiency, OFDMA makes all the user traffic channels orthogonal to each other. In that way,

there is no interference between users, even though they all share a large common frequency

bandwidth. Yet in OFDMA, the different users do occupy different subsections of the

frequency band, but are spaced much more closely together, compared to TDMA by using a

technique that prevents adjacent channel interference.

170 Chapter 15

www
15.2 OFDMA Advantages

It is natural to ask what advantages OFDMA offers over CDMA mobile technology. First,

OFDMA can be easily configured to support multiple bandwidths and, therefore, system

capacities. LTE, for example, is able to operate in frequency bands ranging from

1.25 up to 20 MHz wide. CDMA, in contrast, has a fixed bandwidth, which is largely due

to the chip rate and filtering. This characteristic allows OFDMA system operators to

deploy service initially in a small frequency band and then expand that band as the

number of users or customers increases. It also allows for higher data rates because more

RF bandwidth can be used (up to 16 times CDMA2000 or four times WCDMA). Second,

the individual subchannel modulation method can change dynamically depending on the

quality of RF channel between the base station and mobile phone (which depends on the

distance to base station, obstacles between, number of reflecting signals, and elevation

and motion of user). OFDMA has the capability to vary on-the-fly the modulation used to

either provide more robust communications links or a higher data rate on a per user basis.

This is done without changing the amount of frequency bandwidth or number of

subchannels that an individual user is allocated. Another consideration is more business

focused. Given the prominent role Qualcomm had in the design, commercialization, and

deployment of CDMA mobile technology, the company naturally enjoys dominance in

the CDMA handset chip market, as well as the intellectual property rights and the

associated royalties worldwide. OFDMA mobile technology, by comparison, is being

more or less developed in parallel by multiple wireless and semiconductor companies and

therefore provides a more level business landscape. Actual OFDMA system user

capacity, spectral efficiency, and quality of service relative to CDMA are not known at

the time of this writing because OFDMA widescale deployment is still in very early

stages. Comparisons to OFDM used in the broadcast industry may not be relevant because

this is a one-to-many broadcast system with little or no reverse-link traffic. In OFDMA

mobile communications, the uplink is expected to be the weaker link, due to its

multiple access requirement. However, if a significant portion of the mobile user

traffic becomes Internet access or video streaming, then the downlink traffic loads

will be much higher than the uplink, and the uplink limitations may be less important than

downlink capacity.

In an FDD system, each user channel occupies a separate frequency band. Other users

are rejected at the receiver by downconverting and filtering out the desired signal. Since

all filters require a transition region between the passband and stopband, there must be a

guard band, or separation region, between the frequency band of the individual carriers.

The larger the difference in signal levels of multiple carriers at the receiver, the more

rejection is required by the filtering. More rejection or attenuation of adjacent channels

in the digital receive filters usually requires either a longer filter or a larger transition band.
.newnespress.com

http://www.newnespress.com/

OFDMA Wireless Communications 171
With OFDM, we pack the different frequency channels, or subcarriers, very close

together, and both demodulate all the subcarriers simultaneously. The basis of OFDM is

utilization of the property that a group of sinusoidal signals spaced at a specific frequency

separation will be orthogonal, or independent of each other. Just as we saw in CDMA,

orthogonal signals do not interfere with each other, and using proper techniques, the

desired signal can be separated from the other signals. We do not use traditional filtering

to perform this separation of subcarriers.

15.3 Orthogonality of Periodic Signals

Two signals are considered to be orthogonal to each other when the cross-product of the two

signals (e.g., sinusoids) equals zero. This is usually defined for periodic signals (signals

which repeat) and the interval which the cross multiplication (or correlation) is the period of

the signals.

What this means is that if we cross-multiply the two signals and add the results over a length

of time in which both signals repeat, the result is zero. We saw this happen with the

CDMA2000 Walsh codes in the preceding chapter. The period in that case was defined as

64 samples.

In continuous time, we can express the orthogonality relationship as

ðT
0

cosð2p m f0tÞ� cosð2p n f0 tÞdt ¼ 0, as long as m 6¼ n

In this expression, m and n are integers, and 1/f0 ¼ T, the period, which is the interval to
integrate over.

We can see this scenario graphically in Figure 15.1. The fundamental frequency

f0 in the graph is 1 kHz, and the period T is 1000 ms or 1 ms.

Next, the product, or cross-correlation, of several cosines is graphed, as shown in

Figure 15.2.

The results in Figure 15.2 are as follows:
E: 1 kHz * 1 kHz, will integrate to a positive value over the interval T

F: 1 kHz * 2 kHz, will integrate or average to zero over the interval T

G: 1 kHz * 3 kHz, will integrate or average to zero over the interval T

H: 1 kHz * 4 kHz, will integrate or average to zero over the interval T
Similarly, the 2 kHz sinusoid multiplied by the 3 kHz sinusoid, and every other combination

of different frequency cosines, also integrates to zero over the integral T. Note that all the

sinusoids are periodic over interval T, which simply means that they have an integer number
www.newnespress.com

http://www.newnespress.com/

A

B

C
D

Figure 15.1
A: 1 kHz, B: 2 kHz, C: 3 kHz, D: 4 kHz

E

F

G

H

Figure 15.2

172 Chapter 15

www.newnespress.com

http://www.newnespress.com/

OFDMA Wireless Communications 173
of cycles in that interval. Notice in Figure 15.1 that since every sinusoid returns to its

starting value of “1” at the end of the 1000 ms interval, they are all periodic over T, equal

to 1000 ms in this example.

In digital signal processing, we use sampled signals rather than continuous signals.

The orthogonality relationship can be expressed as follows:
X

k 0 to N 1

cosð2p m k=NÞ� cosð2p n k=NÞ ¼ 0, as long as m 6¼ n

For example, suppose we are sampling at 1 MHz. We can make the symbol period equal
to 1000 samples, which equates to 1 k-symbol/second. Because of the orthogonality

principle, we can have carriers at 1, 2 kHz, and so on, up to the Nyquist limit of 500 kHz.

Each of these subcarriers can carry one symbol, perhaps using the phase of the subcarrier to

carry the information. The demodulation process would require cross-multiplying, or

cross-correlating, by each subcarrier frequency. This excludes the other subcarriers and

allows the recovery of the symbol information by determining the phase of the subcarrier.

In this way, it is possible to transmit simultaneous data across multiple subcarriers without

interference.
15.4 Frequency Spectrum of Orthogonal Subcarrier

Each subcarrier is modulated, usually using either QPSK or QAM modulation.

Sinusoids have their frequency content all at the carrier frequency and appear as a vertical

line in the frequency spectrum. A QPSK or QAM modulation has nulls in the spectrum at the

offset by the symbol frequency. In OFDM, these nulls line up perfectly with the adjacent

subcarriers, resulting in minimal adjacent channel interference and efficient packing of the

subcarriers in the frequency spectrum, as shown in Figure 15.3.

One possible method of OFDM modulation and demodulation would be to multiply

each complex baseband QPSK or QAM signal by a complex exponential corresponding

to each subcarrier frequency, located at integer spacings of the symbol frequency.

For N carriers, this would require N parallel circuits for both OFDM modulation and

demodulation.

Let us review the DFT and IDFT equations:

DFT ðtime ! frequencyÞ Xk ¼ Hð2pk=NÞ ¼
X

i 0 to N 1

xie
j2pki=N for k ¼ f0, . . . , N 1g

X þj2pki=N
IDFT ðfrequency ! timeÞ xi ¼ 1=N �
k 0 to N 1

Xke for i ¼ f0, . . . , N 1g
www.newnespress.com

http://www.newnespress.com/

174 Chapter 15

www
Expanding the IDFT equation, we get

x0 ¼ 1=N�
X

k 0 to N 1

Xke
þj0

x1 ¼ 1=N�
X

k 0 to N 1

Xke
þj2p k=N

x2 ¼ 1=N�
X

k 0 to N 1

Xke
þj2p 2k=N

x3 ¼ 1=N�
X

k 0 to N 1

Xke
þj2p 3k=N

. . .

xN 1 ¼ 1=N�
X

k 0 to N 1

Xke
þj2pðN 1Þ=N

Notice that each complex exponential frequency is orthogonal to all the others. Each of

Figure 15.3
these complex exponentials is periodic in N samples. The reason is that each has an integer

number of cycles in N samples. To complete the orthogonality requirement, the symbol

data rate should be equal to the frequency spacing, which is equivalent to the subcarrier

spacing ej2p�1/N, and will be Fsampling/N symbols per second.
.newnespress.com

http://www.newnespress.com/

OFDMA Wireless Communications 175
15.5 OFDM Modulation

The DFT can be used to perform OFDM modulation and demodulation. If we make N

equal to 2m, where y is an integer, then an even better way is to use the FFT. For example, if

m ¼ 10, then N ¼ 1024. In OFDM systems, the IFFT is used for modulation in the transmit

path, while the FFT is used for demodulation in the receiver. The OFDM modulation

architecture is shown in Figure 15.4 for a 10 MHz LTE system.
1024 IFFT
data #1 QAM SC 1

IFFT bin 0Zero input

IFFT complex
input buffer

IFFT bin 1

IFFT bin 300

.

IFFT bin 301

.

.

.
IFFT bin 723

.

.

Zero input

IFFT bin 724

IFFT bin 1023

QAM SC 300

QAM SC -300

QAM SC -1

.

.

.

.

.

data #300

data #301

data #600

.

.

.

Subcarrier
modulators

Figure 15.4
The IFFT processes 1024 complex samples to form a single OFDM symbol. Each user is

assigned to a separate subcarrier. For 10 MHz LTE, there about 600 allowable subcarriers,

spaced 15 kHz apart. Each subcarrier has a QPSK or QAM modulator that takes each user’s

input data and creates a single constellation point. This forms one bin of the IFFT input

buffer. Each bin is mapped to an individual subcarrier in the frequency spectrum. Each

OFDM symbol contains a single constellation point from each of the subcarrier modulators.

And each successive OFDM symbol contains the successive constellation points from the

modulators.

As shown earlier in the Figure 15.4, there is a data source for each subcarrier. This data

source is modulated. If the chosen modulation for that subcarrier is QPSK, then every two

bits of input data are mapped to one of four possible complex points on the QPSK

constellation. The QPSK symbol for our subcarrier becomes one of the complex input

samples for the IFFT. In parallel, this occurs with all the other subcarriers. They form the rest

of the input samples for the IFFT. Additionally, certain samples in the IFFT input are always

forced to zero. The IFFT output forms the OFDMA symbol. Therefore, the symbol rate of the
www.newnespress.com

http://www.newnespress.com/

176 Chapter 15

www
OFDMA system is the same as the rate at which the IFFT is performed. Selection of the input

bin of the IFFT input buffer maps to a specific frequency subcarrier in the IFFT output.

A continuous transmit data signal can be formed by concatenating successive IFFT outputs.

The process just described is the equivalent function as QSPK or QAM modulation of

hundreds of users data in parallel and upconverting each using a different complex exponential

with a frequency separation or difference equal to the QPSK or QAM symbol rate.

Note that each subcarrier can be independently modulated using either QPSK, 16-QAM,

or 64-QAM. The higher order modulation requires a higher signal-to-noise ratio at the

receiver, which occurs when there is little degradation in signal path from transmitter to

receiver. The benefit is that higher amounts of data can be transmitted per subcarrier.

Recall from Chapter 9 on modulation that QPSK carries 2 bits, 16-QAM carries 4 bits,

and 64-QAM carries 6 bits of user data per symbol. This dynamic trade-off per user of data

rate-to-signal link quality is one of the benefits of OFDMA.

The output of the IFFT forms the wide-band transmit signal. Depending on the IFFT size, the

frequency spectrum can be made larger or smaller. The following table shows the

configurable frequency bandwidths of the LTE system. In all cases, the subcarrier symbol

rate and subcarrier frequency spacing are constant. Using a larger IFFT/FFT size allows for

more subcarriers and occupies more bandwidth. This property allows a wireless service

provider to initially deploy LTE in a smaller frequency spectrum, say 5 MHz. As customer

usage grows, the LTE system can be reconfigured for up to 20 MHz. The mobile phones are

dynamically configurable as well. A single subcarrier has bandwidth that is high enough to

accommodate compressed voice data rates. However, higher data rates are available by

assigning multiple subcarriers to the same user.
Table 15.1: LTE bandwidth dependent system parameters

BW (MHz) 1.4 3 5 10 15 20
Frame/slot length 10 ms / 500 ms ����� �������������!
Subcarrier spacing 15 kHz ����� �������������!

FFT size used 128 256 512 1024 1536 2048
Number of subcarriers 72 180 300 600 900 1200
Sampling frequency

(MHz)
1.92 3.84 7.68 15.36 23.04 30.72

OFDMA symbol samples
(using extended CP)

128
þ32

256
þ64

512
þ128

1024
þ256

1535
þ384

2048
þ512
Of course, an OFDMA system is a bit more complicated than this. For example, not all

subcarriers are available for users. Certain subcarriers carry known, fixed data patterns and

are known as pilot subcarriers. The receiver uses these subcarriers to perform

synchronization, frequency offset tracking, and equalization.
.newnespress.com

http://www.newnespress.com/

OFDMA Wireless Communications 177
The baseband signal has both positive and negative frequency subcarriers (remember, this is

possible because we are using complex exponential subcarriers). The middle subcarrier,

which is also the first IFFT bin, is located at 0 Hz in the baseband signal. It is always set to

zero, to avoid introducing any DC into the baseband signal. And the outer subcarriers on

both sides of the baseband signal are also set to zero, to provide a transition band for the

low-pass filtering of the entire OFDMA signal from the last active subcarrier to the frequency

channel edge (see Figure 15.5).
N/2 Sub-Carriers, arranged in
groups, known as Resource Blocks

Sub-Carriers = FFT Size
(example 1024)

M Sub-Carriers
per group

Guard
Interval DC Carrier

Baseband
Frequency

Baseband Frequency Spectral Width

Pilot Carriers used for
acquisition, equalization, and
frequency offset
compensation

Spectral
Mask

Figure 15.5
For example, the baseband sampling frequency of a 10 MHz LTE signal is 15.36 complex

MSPS. So the Nyquist frequency is one half of this, or 7.68 MHz. The actual signal

bandwidth is approximately �300 � 15 kHz ¼ �4.5 MHz. This frequency provides sufficient

transition band for a low-pass filter (remember, there is another aliased image centered at

each multiple of 15.36 MHz).
15.6 Intersymbol Interference and the Cyclic Prefix

Just as in the other wireless technologies, in mobile communications a direct line of sight is

often impossible. This results in multiple reflected versions of the signal and of different

signal strength, phase, and delay being received. This situation is sometimes referred to as

“delay spread.” The delay between different received reflections causes intersymbol
www.newnespress.com

http://www.newnespress.com/

178 Chapter 15

www
interference, or ISI. In TDMA, adaptive equalizers are used to cope with ISI, and in CDMA,

the RAKE receiver is designed to operate in the presence of ISI. OFDM systems use a

different method, called a “cyclic prefix.”

Of the three methods mentioned here, cyclic prefix is the simplest. The easiest way to prevent

ISI is to simply pause between symbols. Think about trying to talk to someone at the

other end of a long cave. If you yell, the echoes garble what the other person hears. But if

you speak each word, separated by a pause of a few seconds, the echoes die away before

the next word, and the listener can hear each word distinctly. The cyclic prefix involves a

guard interval between symbols. This method works because the symbols are of long

duration (for LTE the symbol length is about 67 ms, not counting guard interval),

compared to TDMA (the GSM symbol length is less than 4 ms), and especially CDMA

(CDMA2000 chip rate is 1.2288 MHz, or less than 1us period). So having a guard interval

of a fraction of a symbol is sufficient to prevent ISI or, in our analogy, let the echoes die

away. For most mobile environments, 5–10 ms is sufficient for this purpose. For much

longer time delays, the received signal echoes take a much longer transmission path and so

are much lower amplitude (perhaps reflected from a mountain range outside your city);

therefore, these echoes can generally be ignored. This technique works because of the

long OFDM symbol time. If we had to wait 10þ ms in a TDMA system, we would

spend much more time waiting than transmitting and would have a very slow data

throughput.

Still, even in OFDM, the guard interval does come at a penalty. During the guard

interval, no user data can be transmitted, reducing the capacity and efficiency of the

OFDMA system. And transmitting zero signal during the guard interval causes other

issues. For example, the RF power amplifier would need to switch on and off each symbol,

which can cause unwanted spectral output during these transitions. And this interval can

still be used by the receiver if a known signal is sent during this interval. What is done in

practice is that the last portion of the OFDM symbol is copied and inserted in the guard

interval just prior to that OFDM symbol. This scenario is shown in Figure 15.6.

The receiver processes the OFDM symbol period including the guard interval. In LTE, for

example, there is an extended cyclic prefix mode where the guard interval is set at 25% (the

default mode is similar, but slightly more complex because the guard interval varies in

different symbols). In this mode, the IFFT symbol period is 66.67 ms, with a guard interval of

16.67 ms, for a final symbol period of 83.33 ms. The receiver processes the OFDM symbol

period of 83 ms including guard interval. During this interval, the symbol appears to be

periodic or repeating. For this reason, the guard interval is called a cyclic prefix. Multiple

OFDM symbols are aggregated to form slots and frames, which provide the structure needed

to organize pilot subcarriers (used by mobile phones to synchronize timing and frequency to

base station) as well as the user or data subcarriers.
.newnespress.com

http://www.newnespress.com/

ith IFFT
Output

(i+1)th IFFT
Output

Copy last part of
Symbol as Cyclic Prefix

ith OFDM
Symbol

(i+1)th OFDM
Symbol

Guard
Interval

Guard
Interval

Figure 15.6

OFDMA Wireless Communications 179
Figure 15.7 shows the organization of the LTE structure of frames, slots, and symbols,

and how the samples are organized to allow for the cyclic prefix. This is shown for the

10 MHz bandwidth and extended cyclic prefix configuration. LTE systems are generally

configurable to support all the different possible bandwidths and cyclic prefix options

because this enables the wireless service provider to select the optimum configuration for

its capacity and licensed spectrum allowances. The mobile phones are also able to support the

various configurations.
10 ms frame, composed of 20 slots

symb

CP=16.666ms
256 samples

OFDM symbol (extended CP)

0.5 ms slot (extended CP)

symb symb symb symb symb

IFFT=66.666ms
1024 samples

Figure 15.7

www.newnespress.com

http://www.newnespress.com/

180 Chapter 15

www
Figure 15.8 shows a simplified block diagram of a sample LTE transmitter. A bank of

modulators performs modulation for all active subcarriers, each of which provides data to a

different bin on the IFFT. After the IFFT, the cyclic prefix is inserted as described earlier.

The rest of the chain performs digital upconversion and interpolation. Analog RF circuitry

(not shown) further upconverts the signal to the actual transmit frequency and amplifies it

to a sufficient power level to provide coverage over the cell sector and radius.
QPSK/QAM IFFT (1024) CP

FIR
(4 �)

12 KSPS/
subcarrier

12.288
MSPS

15.36
MSPS

Complex
mixer

245.76
MSPS

Complex
NCO

245.76
MSPS

Output
To DACSinc

Comp

245.76
MSPS

245.76
MSPS

CIC
(4 �)

61.44
MSPS

LTE configuration:
10 MHz BW
15.36 MHz sample rate

CFR

Figure 15.8
Two blocks in the diagram may be unfamiliar. The CFR block denotes crest factor reduction,

which is discussed in the next section. The CIC block denotes a cascade integrate comb

interpolation filter, which is a type of filter that does not require multipliers and so is

inexpensive to build in hardware. The CIC is not covered in this introductory book. Note

the sinc compensation filter block, which compensates for the DAC response, as described in

Chapter 11 on digital up- and downconversion.

15.7 MIMO Equalization

MIMO is an acronym for Multiple Input and Multiple Outputs. This refers to antennas.

Previous wireless systems typically used two antennas for reception and one antenna for

transmission at the base station. The receiver could dynamically pick between the two

antenna signals, greatly improving performance during Rayleigh fading. In MIMO systems,

this approach is taken further.

For 4G wireless systems, the base stations have a minimum of two receive and two transmit

antennas per sector. (Note that sometimes a transmit antenna and receive antenna are
.newnespress.com

http://www.newnespress.com/

OFDMA Wireless Communications 181
packaged together, particularly in FDD systems.) This is often referred to as 2 � 2 MIMO.

Other likely configurations are 2 � 4 (two transmit and four receive antennas) and 4 � 4

(four transmit and four receive antennas).

In a MIMO system, the receiver does not simply select the best signal from two or more

antennas. Instead, the receiver uses both signals and tries to estimate and compensate for the

degradation the signal experiences in the separate paths to each antenna. This process usually

involves solving multiple equations simultaneously and the use of matrix inversion

algorithms to obtain the individual channel degradation estimates and perform the

compensation, or equalization, of each receiver path.

In the uplink, the mobile signal travels to multiple receive antennas, with each antenna

having independent, or uncorrelated, path reflections, fading, and additive noise. In the

downlink, the mobile has only one receive antenna. However, multiple base station transmit

antennas can be used in a similar manner. Often, each transmit antenna transmits a slightly

different version of the signal, using a technique called “space time encoding,” which is

known by the mobile receiver. Each version of the signal experiences uncorrelated path

reflections, fading, and additive noise, which can be simultaneously processed to obtain the

best estimate of the transmit signal.

These techniques involve sophisticated processing and statistical theory and are not suitable

for this introductory discussion.

The use 4 � 4 system basically doubles the cost of the most expensive portion of the wireless

base station compared to a 2 � 2 system but promises improved performance and system

capacity. Whether this improvement is enough to justify the additional base station cost is

still unknown at the time of this writing.
15.8 OFDMA System Considerations

Before we conclude this introduction to OFDMA, it may be worthwhile to summarize the

relative merits and challenges of this fourth generation mobile wireless technology.

In addition to the two benefits of configurable RF bandwidth (BW) and dynamically variable

user data rates depending on subcarrier SNR described earlier in the chapter, there are some

further benefits to OFDM technology.

OFDM efficiently deals with multipath, or ISI, using the cyclic prefix. This is much less complex

and cheaper to implement than the adaptive equalizer in TDMA and RAKE receiver in CDMA.

OFDM is fairly insensitive to narrowband interference because only a few subcarriers

are affected. And given the dynamic monitoring of subcarrier SNR, this situation can be

detected and users allocated to subcarriers where interference is not present.
www.newnespress.com

http://www.newnespress.com/

182 Chapter 15

www
OFDM is, however, very sensitive to frequency offset. Both mobile and base station receivers

must compensate for Doppler shift prior to demodulation to preserve orthogonality of the

subcarriers.

OFDM is also computationally efficient when considering the amount of circuitry and

number of calculations required to support high data rates. Due to the high efficiency of

FFT implementations, mobile phones are able to receive high data rates with less DSP

processing than comparable rates would require in a CDMA system, and would not be

possible at all in a TDMA system.
15.9 OFDMA Spectral Efficiency

Estimating spectral efficiency for OFDMA, particularly for voice capacity, is difficult

because no large high-capacity systems are in operation at the time of this writing. Many

parameters can affect efficiency and capacity. For example, through use of dynamic

modulation modes, multiple antenna receive and transmit (MIMO), and packetized

voice (voice over IP), the proportion of voice to data traffic may contribute to system

optimization.

Similar to CDMA, OFDMA systems use the same channel frequency in all cells

(see Figure 15.9). This could be anywhere from a 1.25 to 20 MHz bandwidth. Interference

between users is avoided by assigning different subcarriers to each base station.

Groups of subcarriers are preassigned specific pilot subcarriers, so a mobile phone is able

to use known pilot subcarriers to acquire and synchronize to any assigned group of

subcarriers. The frequency reuse of the subcarriers is not defined and may vary by

wireless service provider. In TDMA and analog systems, the frequency reuse pattern
Figure 15.9

.newnespress.com

http://www.newnespress.com/

OFDMA Wireless Communications 183
was every 7 cells. However, for OFDMA, it may be possible to have subcarrier frequency

reuse of every 3 cells, due to the lower SNR requirements when using QPSK and

MIMO techniques. Also, the channel spacing is tighter, a consequence of the OFDM

modulation. For the LTE system, channel spacing is 15 kHz, much closer than any

TDMA system.

In summary, at this point it is very difficult to reliably predict actual capacity and spectral

efficiency with so many variables. Similar to CDMA, the OFDMA network service providers

will have to go through a learning curve in optimizing their systems for both high capacity

and high quality of service.
15.10 OFDMA Doppler Frequency Shift

All mobile communication systems must contend with Doppler frequency shift. However,

OFDM is especially sensitive to Doppler shift because it relies on the precise alignment of

subcarrier frequencies to provide orthogonality. The mobile phone velocity relative to the

base station causes Doppler frequency shift, which must be tracked and compensated for

to provide proper demodulation using FFT processing. The following equation can be used to

calculate the Doppler frequency shift:

Doppler Frequency shift ¼ fcarrier � relative velocity=speed of light

For example, assume a system operating at a 2 GHz frequency band, with a mobile user
traveling at a speed of 120 km/h (33.3 ms/s).

Doppler Frequency shift ¼ 2 � 109 � 33:3=ð3 � 108Þ ¼ 220 Hz:

This speed is enough to cause a problem in OFDMA systems if not compensated for, by
frequency shifting or rotating the input signal prior to demodulation.
15.11 Peak to Average Ratio

Both OFDM and CDMA have what is known as high peak to average ratios, or PARs, on the

order 10–20 times, or 10–13 in decibels. Every signal has an average power. The peak to

average power level, usually expressed in decibels, is the power level of the highest

instantaneous power compared to the average power level. A PAR of 1, or 0 dB, means the

signal is of constant power, so the peak power is equal to the average power. A large PAR

means that the signal power fluctuated occasionally to a very large value; therefore, a large

PAR requires the linear transmit amplification circuit to operate over a wide power range,

which tends to be both costly and inefficient. The plot in Figure 15.10 shows a typical OFDM

symbol amplitude over the duration of the symbol, with I and Q shown separately. This is

a plot of the output of the IFFT in the modulator.
www.newnespress.com

http://www.newnespress.com/

Figure 15.10

184 Chapter 15

www
In mobile communication systems, the base station signals are amplified using fairly

high-power amplifiers (PAs). The amplifiers must behave linearly over the output power

range to avoid creating spectral energy outside the transmit band. The required power

capacity and, therefore, power consumption and cost of the amplifier depend on the

PAR of the signal being amplified.

Let us assume that we need to transmit 50 W of power, on average, to provide RF coverage

to a cell during high-traffic hours. If the transmit signal has a PAR of 0 dB, we need an

amplifier with a power rating of 50 W (able to output 50 W while operating linearly).

However, if the signal has PAR of 3 dB, we ideally need an amplifier capable of 100 W to

linearly amplify peaks of the signal. And if the signal has a PAR of 10 dB, we require an

amplifier capable of a 500 W amplifier to linearly amplify the peaks of the signal. The

amount of reduction in the input power to accommodate the peaks in the signal and still have

linear performance in the PA is known in the industry as “backoff” and is expressed in

decibels. If no compensation techniques are used, the required PA backoff is approximately

the same as the input signal PAR. This assumes use of a basic class AB power amplifier.
.newnespress.com

http://www.newnespress.com/

OFDMA Wireless Communications 185
The PAR directly effects PA efficiency. The efficiency is defined as the RF power output

divided by the DC power input. High PAR tends to decrease efficiency because PA power

consumption is roughly proportional to the peak RF output power capacity. High RF

power output requires a high level of bias current at all times, which is reflected in the

DC power consumption, even when the PA is not outputting high levels of output power.
Table 15.2: Power amplifier efficiency variance by technology

Wireless Technology Wireless Standard PAR (dB) Typical PA Efficiency (%)

TDMA GSM 0 60
TDMA NADC 3 20

Multicarrier any 10þ 10*
CDMA CDMA2000 or UMTS 10 12 10*
OFDM LTE or WiMax 10 13 10*

*To achieve required linearity and meet adjacent channel spectral emission requirements, PAs often include “feed forward
compensation,” which involves using analog techniques to cancel PA output distortion, improving linearity.
Note that GSM is 0 dB PAR. The reason is that the modulation technique used affects only

the phase; there is no change in amplitude. This is one factor that makes GSM the lowest-cost

wireless system and why it is still commonly used in many cost-sensitive markets, despite

its low spectral efficiency.

15.12 Crest Factor Reduction

New digital technology now allows for improvements in PA efficiency. The two technologies are

commonly known as crest factor reduction (CFR) and digital predistortion (DPD). Awell-designed

PA with CFR and DPD can achieve efficiency of about 30% in a typical OFDM application.

This is a threefold increase in output power for the same PA circuit and power consumption.

It results in major cost reductions and, due to lower power dissipation, higher reliability.

Crest factor reduction is a digital processing function that can reduce the PAR of a signal.

A simple way to accomplish this is to limit or saturate the peaks in the digital signal

amplitude. The problem with this approach is that it produces high-frequency spectrum

components that cause interference in the adjacent frequency spectrum. More sophisticated

techniques are needed. There are usually three different conditions to satisfy, with

measurements associated with each:

• Maximum reduction in PAR of signal. PAR is measured using the complementary

cumulative distribution function (CCDF) function on the spectrum analyzer.

• Minimum distortion of transmitted signal. Signal quality is measured using the EVM

measurement mode of the spectrum analyzer.

• Minimum adjacent channel frequency signals. This is measured using an emission mask

function on the spectrum analyzer.
www.newnespress.com

http://www.newnespress.com/

186 Chapter 15

www
Spectrum analyzers designed for wireless system development come with personality

modules, which are firmware-enabled functions to perform many different measurements

required by a specific wireless standard, such as LTE.

The complementary cumulative distribution function (CCDF) is used to measure PAR.

A typical plot is shown in Figure 15.11.
CCDF

Figure 15.11
PAR is naturally statistical in nature. This is a plot of the percentage of time the signal power

is a given number of decibels above the average power. For example, the plot here shows

about 10% (1E-1) of the time the signal is 4.5 dB higher than average power. The plot also

shows that about 1% (1E-2) of the time the signal is 8 dB higher than average power. The

PAR is not just one value but varies according to the duty cycle of the time the signal is a

given level above the average power. The maximum PAR depends on how long the

measurement system can wait because the longer the measurement interval, the greater

likelihood of a large peak in the signal to occur. Typically, for many wireless systems, the

PAR is taken at about 0.001–0.0001%, or E-5 to E-6. In this case, the signal would have a

PAR of about 13 dB. At percentages lower than this, higher peaks occur so infrequently to

cause little effect in the other measurements, such as spectral mask or EVM measurements.

EVM stands for error vector measurement. A standard way to measure distortion in a signal

is to measure the actual constellation points compared to the ideal constellation. In a perfect

constellation, each point lands exactly on one of the allowable constellation values. CFR

techniques introduce distortion. The EVM is defined as the distance between the actual
.newnespress.com

http://www.newnespress.com/

OFDMA Wireless Communications 187
demodulated point on the constellation and the nearest valid constellation, divided by the

distance of the valid constellation point from the origin. Again, this is a statistical

measurement, averaged over many points in a signal. It is normally expressed in percent.

For example, for 64-QAM, the typical transmit quality must be 3% or less.

To prevent interference in the nearby spectrum, all wireless standards have a transmit

emission mask (the GSM example in Figure 15.12) that specifies how quickly the transmit

power must fall off as a function of the distance from the center of the RF carrier frequency.

The measurement is usually specified in decibels, relative to the signal power at the carrier

frequency. For example, in the GSM transmit mask requirement shown here, the RF power

must drop by at least 30 dB at a 200 kHz offset to the carrier frequency.

Two common approaches are used in CFR, both applied to the digital baseband

representation of the signal prior to upconversion. One is a time-domain-based technique,
0

R
el

at
iv

e
po

w
er

 (
dB

)

-10

-20

-30

-40

-50

-60

-70

-80

0 200
Frequency from the carrier (kHz)

Measurement bandwidth 100 kHz

400 600 1200 1800 3000 6000

Measurement bandwidth 30 kHz

Figure 15.12

www.newnespress.com

http://www.newnespress.com/

188 Chapter 15

www
where peaks in amplitude are monitored and reduced in amplitude in a smooth manner to

present unwanted high-frequency content from being added to the signal. This approach has

the advantage of being able to be applied to any signal.

Another approach is often used in OFDMA systems such as WiMax or LTE. In this approach,

the signal is converted to the frequency domain, and the amplitude of various subcarriers is

adjusted in such a way as to reduce the CFR of the complete composite signal. After this

adjustment, the signal is reconverted back to the time domain. For both of these techniques,

the signal must first be interpolated to a sample rate of four or more times faster, which also

proportionally enlarges the baseband frequency band. This is required because all CFR

techniques introduce some higher frequency spectral content, which would be aliased into the

baseband signal at a lower sample rate.

15.13 Digital Predistortion

A second technique used to increase PA efficiency is digital predistortion, or DPD. While

CFR works to reduce the PAR of the input signal to the PA, the purpose of DPD is to extend

the linear range of the PA, thereby reducing the amount of backoff required. Many

proprietary techniques are used to compensate for the nonlinear behavior of a PA at high-

output power levels. When a PA is overdriven or operated at output power levels beyond the

linear range, it tends to saturate, which causes undesirable effects, such as generation of

unwanted high-frequency distortion and degradation of EVM. PA saturation can be

compensated for, by “predistorting” the input signal so that the PA output has the correct

characteristics. This process requires a closed-loop operation, that is, feeding back an

attenuated version of the PA output for monitoring by the DPD circuit (see Figure 15.13).
VOUT
Ideal PA Actual PA “Predistorted”

PA inputVOUT VOUT

VIN VIN VIN

VOUT=k VIN VOUT= fNL k’ VOUT= fNL−1
 k VIN

Figure 15.13
A very basic DPD circuit is depicted in Figure 15.14. It monitors the instantaneous power of

the digital input signal and multiplies the input by polynomial with coefficient values stored

in a register bank. The polynomial provides a non-linear output level at different input power

levels. A closed-loop algorithm continually adjusts the register bank values to optimally

compensate for the PA reduction in gain at high power levels, thereby predistorting the
.newnespress.com

http://www.newnespress.com/

RF
Down
convert

PA

RF
Down
convert

RF
Down-
convert

ADC

RF Up-
convert

DAC
Polynomial
Curve Fit

Coefficient
Registers

Adaptive
Coefficient
Update
Algorithm

RF out

-

-

+

+

R = SQRT
(I2 + Q2)

Delay

I & Q Digital Input

arctan(I/Q)

R = SQRT
(I2 + Q2)

=
arctan(I/Q)

=

Figure 15.14

OFDMA Wireless Communications 189
signal. Note that it cannot actually increase the RF power capacity of the amplifier but may

increase the range over which the amplifier behaves linearly. One of the challenges of DPD is

the multiple disciplines required. Digital signal processing, RF amplification, and software

and hardware design knowledge are required.

Through use of DPD and CFR techniques, PA efficiency can be increased threefold. But

there is yet another method to further increase the overall efficiency of wireless base stations

that does not involve digital signal processing at all.

15.14 Remote Radio Head

For reasons for serviceability, cooling, and equipment size, a building or shed is used to

house the base station at the base of an antenna tower. This setup typically requires RF cables

of 50 m or longer between the base station and the antennas mounted on the antenna mast

tower. This often results in a 2 dB or more reduction in transmit signal power, due to cable

loss. This loss increases as the RF carrier frequency increases.

A 2 dB loss can mean almost two thirds of the RF amplifier power is dissipated in the cabling

prior to reaching the antenna. To eliminate this loss, most modern wireless base stations

are designed with remote radio heads (RRHs). The functions associated with the PA and

antenna circuits are packed into an air-cooled module that is small and light enough to be

mounted next to the antenna arrays, up to 50 m high in the antenna tower. This setup can

reduce cost, primarily due to the use of much smaller PAs and elimination of RF cabling.
www.newnespress.com

http://www.newnespress.com/

190 Chapter 15

www
It does, however, require very high reliability because servicing RRHs mounted 50 m high is

costly and difficult. The industry has standardized on two interface standards between RRH

and the rest of the base station equipment mounted at the base of the tower or in a nearby

building. These RRH interface standards are known as open base station architecture

initiative (OBSAI) and common public radio interface (CPRI).

A simplified block diagram of an RRH is shown in Figure 15.15.
TX FIR
filtering/

interpolate

Interface to channel card - C
P

R
I/O

B
S
A

I serial link

Crest
factor

reduction

PA digital
predistortion

(DPD)

CIC
interpolation

Up
converting

NCO

Sinc
correction
FIR filter

FDBK
ADC

Digital circuits

Down
converting

NCO

CIC or FIR
decimation

RX FIR
filtering/
decimate

RF/analog
circuits

RF subsystem
components

Duplexer

LNA

TX IF
DAC

SAW SAW TX PA

ANT

X

X

X

Coupler

SAW

SAWSAW
RX IF
ADC

Figure 15.15

.newnespress.com

http://www.newnespress.com/

Table 16.1: Radar frequency bands

Radar Band Frequency (GHz) Wavelength

Millimeter 40 100 0.75 0.

Ka 26.5 40 1.1 0.7
K 18 26.5 1.7 1.
Ku 12.5 18 2.4 1.
X 8 12.5 3.75 2
C 4 8 7.5 3.7
S 2 4 15 7.5
L 1 2 30 15

UHF 0.3 1 100 3

Digital Signal Processing 101. DOI: 10.1016/B978-1-85617-921-8.00020-1
2010 Elsevier Inc. All rights reserved. 191
CHAPTER 16
Radar Basics
Radar stands for Radio Detection and Ranging. It can be used to detect target

range, direction, and motion. Radar was first widely used during World War II and

has continually evolved since. Early radars were composed of analog circuits, but

since the 1960s, radars have become increasingly digital. Today, radar systems

contain some of the most sophisticated and powerful digital signal processing systems

anywhere.

Radar has widespread use in both commercial and military applications. Air traffic control,

mapping of ground contours, and automotive traffic enforcement are just a few civilian

applications. Radar is ubiquitous in military applications being used in air defense systems,

aircraft, missiles, ships, tanks, helicopters, and so forth.

16.1 Radar Frequency Bands

Radar systems transmit electromagnetic, or radio, waves. Most objects reflect radio

waves, which can be detected by the radar system. The frequency of the radio waves used

depends on the radar application. Radar systems are often designated by the wavelength

or frequency band in which they operate, using the band designations shown in the

following table.
(cm)

30

5
1
7
.4
5

0

192 Chapter 16

www
The choice of frequency depends on the application requirements. The minimum antenna size

is proportional to wavelength and inversely proportional to frequency.

Airborne applications often are limited in the size of antenna that can be used. A smaller

antenna dictates a higher frequency and lower wavelength choice.

Beamwidth, or the ability of the radar to focus the radiated and received energy in a

narrow region, is also dependent on both antenna size and frequency choice. Larger

antennas allow the beam to be more tightly focused. Therefore, a higher frequency also

allows the beam to be more tightly focused for a given antenna size. The “focusing”

ability of the antenna is often described using an antenna lobe diagram, which plots the

directional gain of an antenna over the azimuth (side to side) and elevation (up and

down).

The range of the radar system is also influenced by the choice of frequency.

Higher-frequency systems usually are lower power due to electronic circuit limitations,

and they experience greater atmospheric attenuation. The ambient electrical noise that can

impair operation of analog circuitry also becomes more pronounced at higher frequencies.

Most of the radar signal absorption and scattering is due to oxygen and water vapor.

Water vapor, in particular, has high absorption in the “K” band. When this was discovered,

the band was divided into Ka, for “above” and Ku for “under,” the frequencies where

radar operation is limited due to water vapor absorption. At higher frequencies in portions of

the millimeter band, oxygen causes similar attenuation through absorption and scattering.

Another consideration, discussed more fully in the next chapter, is the effect of the radar

operating frequency on Doppler frequency measurements. Doppler frequency shifts are

proportional to both the relative velocity and the radar frequency. Doppler frequency shifts

can provide important information to the radar system.

Most airborne radars operate between the L and Ka bands, also known as the microwave

region. Many short-range targeting radars, such as on a tank or helicopter, operate in the

millimeter band. Many long-range ground-based radars operate at UHF or lower frequencies,

due to the ability to use large antennas and minimal atmospheric attenuation and ambient

noise. At even lower frequencies, the ionosphere can become reflective, allowing very long

range over-the-horizon operation.
16.2 Radar Antennas

A critical function in any radar system is the antenna. Early radars often used mechanical

parabolic antennas. The antenna is capable of focusing both the receive and transmit energy

in a given direction (see Figure 16.1). The antenna could be moved mechanically using

motors and aimed to search over different parts of the sky.
.newnespress.com

http://www.newnespress.com/

Focus point

Figure 16.1

Radar Basics 193
The degree of directionality is often shown in azimuth and elevation gain diagrams.

The diagram in Figure 16.2 shows an antenna that has a fairly wide, or broad, main lobe.

Most radar antennas may have a much narrower main lobe, on the order of a few degrees.

Frequently, the width of the main lobe is specified by the point at which the receive or

transmit signals are attenuated by 3 dB, or about one half. The antenna shown in this figure

has a lobe width of about 20�. However, all antennas receive some level of signal from

undesired directions, even from behind. The antenna gain plots visually quantify the relative

gain across both azimuths and elevations (usually a separate plot for each). In general, the

narrower the main lobe, the higher the antenna gain is.
90
60

30

10-10 0

30

60

90
120

150

180

150

120

0

(dB)
20

Figure 16.2
The antenna design influences both the amount of energy the radar can transmit at the desired

target space, as well as how much energy it can receive from the same direction. It also

determines how much unwanted energy from other directions is attenuated (e.g., reflections

from the ground in an airborne search radar). Having a narrow or focused beam allows the

energy to be more focused. To search across a wide area, the antenna must steer its beam
www.newnespress.com

http://www.newnespress.com/

194 Chapter 16

www
across the entire search space. As just mentioned, this was done mechanically in early radars.

However, more advanced radars, especially airborne, use electronically steerable antennas.

An electronically steerable antenna is built from many small antennas, or individual

elements. Each element can individually vary the phase of both receive and transmitted

signals, as well as the signal strength using analog or digital electronic circuits. It is the

changes in phase that provide for steerable directivity of the antenna beam over both

azimuth and elevation. Only when the receive signal arrives in-phase across all the

antenna elements will the maximum signal be received. This provides the ability to “aim”

the main lobe of the antenna in a desired direction. The process is reciprocal, meaning

that the same antenna lobe pattern exists on both receive and transmit.

Each antenna element must have a delay, or phase adjustment, such that after this adjustment, all

elements will have a common phase of the signal. If the angle y ¼ 0, then all the elements receive

the signal simultaneously, and no adjustment is necessary (see Figure 16.3). At a nonzero

angle, each element has a delay to provide alignment of the wavefront across the antenna array.
θ

λ

Phase
controlled
antenna
element

Figure 16.3
Using an electrically steered antenna has several advantages. It can be steered very rapidly,

which can allow fast searching as well as tracking of objects. Through the use of a

technique called “lobing,” the radar beam can be rapidly steered on either side of a target.

By noting where the stronger return is, the antenna can track the target location. Further,

different regions of the antenna can be aimed in different directions to scan or track

multiple regions or targets, albeit with a reduced transmit power and receive gain.

A disadvantage of an electrically steered antenna is the reduced aperture at larger incident

angles (see Figure 16.4). The aperture is one factor in the antenna gain, and decreases by

the cosine y, where y is the angle of the steering direction, relative to the perpendicular

vector from the antenna.
.newnespress.com

http://www.newnespress.com/

Effective
aperture

Actual
antenna
aperture

Figure 16.4

Radar Basics 195
16.3 Radar Range Equation

Detection of objects using radar involve sophisticated signal processing. However, all this is

first dependent on the amount of energy received from the target echo:

Receiver power Preceive ¼ PtGtArsF4ðtpulse=TÞ=ðð4pÞ2R4Þ
where
Pt ¼ transmitted power

Gt ¼ antenna transmit gain

Ar ¼ receive antenna aperture area

s ¼ radar cross-section (a function of target geometric cross-section, reflectivity of

surface, and directivity of reflections)

F ¼ pattern propagation factor (unity in vacuum, accounts for multipath, shadowing,

and other factors)

tpulse ¼ duration of receive pulse

T ¼ duration of transmit interval, or the inverse of the PRI

R ¼ range between radar and target
Notice that the received power drops with the fourth power of the range, so radar systems

must cope with very large dynamic ranges in the receive signal processing. The radar energy

seen by the target drops proportional to the range squared. The reflected energy seen by

the radar receive antenna further drops by a factor of the range squared. The capability to

detect very small signals is crucial to operate at longer ranges.
www.newnespress.com

http://www.newnespress.com/

196 Chapter 16

www
16.4 Stealth Aircraft

Military planes have been developed with “stealth” characteristics. This means that such

a plane has a very small s, or radar cross-section, relative to other aircraft of similar size.

It can still be detected by a sufficiently powerful radar or at sufficiently close ranges.

Because the size of stealth aircraft is not significantly different from other planes, the

stealth characteristic is achieved by reducing the amount of radar signal that is reflected back

from the aircraft to the transmitted radar. There are two fundamental ways to reduce these

reflections: either absorb the radar signal or deflect it away from the radar transmitter.

Special radar-absorbent materials are used in stealth aircraft. The shape and contours of the

aircraft also greatly influence the radar cross-section. In general, a concave surface tends

to reflect radar waves back in the general direction of their source, which is not good for a

stealth plane. Examples of concave surfaces are engine inlets, right angles where wings join

the fuselage, open bomb bays, and even the cockpit if the windscreens are transparent to

radar waves. Convex surfaces, on the other hand, tend to scatter radar waves in widely

separated directions, reducing the amount of signal reflected back to the source. For

example, the B2 stealth bomber is shaped like a flying wing, which is basically a convex

shape when viewed from just about any direction. Smaller features, such as the engine air

inlets, have a geometry designed to reflect impinging radar signals in a direction other than

that of the illuminating radar.
16.5 Pulsed Radar Operation

Most radar systems are pulsed, meaning that the radar transmits a pulse and then listens for

receive signals, or echoes. This type of system avoids the problem of a sensitive receiver

trying to operate simultaneously with a high-power transmitter. The pulse width or duration

is an important factor. The shorter the pulse width, the easier it is to determine range

because the receive signal is of short duration also. Radars operate by “binning” the receive

signals. The receive signal returns are sorted into a set of bins by time of arrival relative

to the transmit pulse. This is proportional to the roundtrip distance to the object(s) reflecting

the radar waves. By analyzing the receive signal strength in the bins, the radar can sort

the objects by radar cross-section size and across different ranges. This analysis is performed

for all desired azimuths and elevations.

Having many range bins allows more precise range determinations. A short duration pulse is

likely to be detected and mapped into only one or two range bins, rather than being spread

over many bins. However, a longer pulse duration or width allows for a greater amount of

signal energy to be transmitted, and a longer time for the receiver to integrate the energy.

This means longer detection range. To optimize for both fine-range resolution and long-range

detection, radars use a technique called pulse compression.
.newnespress.com

http://www.newnespress.com/

Radar Basics 197
16.6 Pulse Compression

The goal of pulse compression is to transmit a long duration pulse of high energy, but to

detect a short duration pulse to localize the receive filter output response to one or at most

two radar range bins. Early radars accomplished this by transmitting a signal with linear

frequency modulation. The pulse would start at a low-frequency sinusoid and increase the

frequency over the duration of the radar pulse. This is referred to as a “chirp.” A special

analog filter is used at the receive end, with a nonlinear phase response. This filter has a time

lag that decreases with frequency. When this rate of time lag decrease is matched to the

rate of increase in the chirp, the result is a very short, high-amplitude output from the filter.

The response of the pulse detection has been “compressed.”

All digital radars can also perform pulse compression, but using a different method. Recall

the matched filter in Chapter 9 on complex modulation and demodulation. The matched filter

performs the same effect as the analog pulse compression technique just described. If the

transmitted radar pulse uses a pseudorandom sequence of phase modulations and is detected

using a matched filter, then the resulting output is of high amplitude only when the receive

signal sequence matches up in phase (or delay) to the transmitted pulse sequence. This

approach can be used to precisely identify delay or time of arrival of the receive pulse. The

sequence used for radar transmit pulses must have strong autocorrelation properties

(sequence of length N correlates to value N with zero offset, and to 0 for any nonzero sequence

offset). In radar systems, sequences known as Barker sequences are sometimes used.
16.7 Pulse Repetition Frequency

A high pulse repetition frequency (PRF) has several advantages. First, the higher the PRF, the

greater the average power the radar is transmitting (assuming the peak power of each pulse is

limited by the transmit circuitry), and the better the chance of detection of targets. A high or

fast PRF also allows for more rapid detection and tracking of objects because range

measurements at a given azimuth and elevation can be performed during each PRF interval.

A high PRF also allows easier discrimination of the Doppler frequency, a topic discussed in

the next chapter. But a low PRF also has an important advantage, which is to allow

unambiguous determination of range over longer distances. This is our next topic.

Range to target is measured by roundtrip delay in the received echo. It is the speed of light

multiplied by the time delay and divided by two to account for the roundtrip:

Rmeasured¼ vlighttdelay=2

The maximum range that can be unambiguously detected is limited by the PRF. This is
more easily seen by example. If the PRF is 10 kHz, then we have 100 ms between pulses.
www.newnespress.com

http://www.newnespress.com/

198 Chapter 16

www
Therefore, all return echoes should ideally be received before the next transmit pulse.

This range is simply found by multiplying the echo delay time by the speed of light and

dividing by two to account for the roundtrip:

Rmaximum¼ ð3� 108 m=sÞð100� 10 6 sÞ=2 ¼ 15 km

Let us suppose the radar system sorts the returns into 100 range bins, based on the
time delay of reception. The range resolution of this radar system is then 0.15 km, or

150 m. However, there may be returns from distances beyond 15 km. Suppose that

a target aircraft 1 is 5 km distant, and a target aircraft 2 is 21 km distant. Target aircraft

1 has a delay of

tdelay¼ 2Rmeasured=vlight¼ 2ð5� 103Þ=ð3� 108Þ ¼ 33 ms

Target aircraft 2 has a delay of
tdelay¼ 2Rmeasured=vlight¼ 2ð21� 103Þ=ð3� 108Þ ¼ 140 ms

The first target return is mapped into range bin 33 out of 100, and the second target to
range bin 40. This is called a range ambiguity. The target or targets that are within the

15 km are said to be in the unambiguous range. This is analogous to the sampling rate.

The range ambiguity is analogous to aliasing during the sampling process (see

Figure 16.5).
0 ms
0 km

100 ms
15 km

200 ms
30 km

100 range bins

Increasing range and return echo time

Aliasing of return to shorter range

Figure 16.5
One solution to this problem is to transmit different pulses at each PRF interval. However,

this approach has the downside of complicating the receiver because it must now use multiple

matched filters at each range bin and at each azimuth and elevation. Doing so effectively

doubles the rate of digital signal processing required for each separate transmit pulse and

matched filter pair used.
.newnespress.com

http://www.newnespress.com/

Radar Basics 199
Another approach can be used instead. If we periodically change the PRF slightly, we find

that the returns in the unambiguous range do not move. However, those beyond that range

shift in their apparent ranges. This approach can be illustrated using an example.

Suppose we switch the PRF to 11 kHz, from 10 kHz, or 90.9 ms. The maximum unambiguous

range is

Rmaximum¼ ð3� 108 m=sÞð90:9� 10 6 sÞ=2 ¼ 13:6 km

The target aircraft at 5 km distance still has a 33 ms delay. If we use 100 bins like before,
the target return appears in bin number 100 � 33 / 90.9 ¼ 36th bin. The target aircraft 2 at

21 km has a target return delay of 140 ms. This appears as a return at 140 – 90.9 ¼ 49.1 ms,
and in 100 � 49.1 / 90.9 ¼ 54th bin.

So by switching PRFs, we are able to determine that at least one of our targets is beyond

the ambiguous range:
PRF ¼ 10 kHz: Target aircraft returns in bin 33 and in bin 40.

PRF ¼ 11 kHz: Target aircraft returns in bin 36 and in bin 54.
We assume Scenario A:
Target1 moved from bin 33!36 when we changed PRF.

Target2 moved from bin 40!54 when we changed PRF.
Instead, what if we assume Scenario B:
Target1 moved from bin 33!54.

Target2 moved from bin 40!36.
From this information, we cannot be sure that the first target was at 5 km and the second

at 21 km. We do not work this out here, but if Target1 is at 34.8 km (or 232 ms) and Target2

is at 141 km (or 940 ms), the result is Scenario B.

The way to tell which scenario is, in fact, occurring is to use a third PRF, perhaps at 9 kHz,

or 111 ms:

Rmaximum¼ ð3� 108 m=sÞð111� 10 6 sÞ=2 ¼ 16:7 km

The target aircraft at 5 km appears in bin number 100 � 33/111 ¼ 30th bin. The target
aircraft 2 at 21 km appears in bin number 100 � (140 – 111)/111 ¼ 26th bin.

This additional information allows us to know that Scenario A is the true one.

In reality, there may be many target returns, and they may also be obscured by noise or

clutter in the return. The higher the PRF, the more ambiguity is present in the range returns.

For these reasons, radar detection is at best a statistical process, with calculated probability of
www.newnespress.com

http://www.newnespress.com/

200 Chapter 16

www
detections (at a given range for a given radar cross-section). There is also the probability

of false detection that must be considered when setting detection thresholds.

16.8 Detection Processing

Most radars have thousands of range bins. They may scan wide sweeps of azimuth and

elevation. Or in tracking mode, they may be focused in narrow regions containing targets

that have been detected. In either case, the rate of digital signal processing can be

very high.

A matched filter can be used to detect incoming radar pulses. The radar focuses at a

particular azimuth and elevation for one or many PRFs. For each PRF, the incoming data is

filtered using an FIR filter with an impulse response that is the complex conjugate of the

radar transmit pulse. This produces a large peak in the filter output at the point where the

incoming data stream contains radar pulse, which corresponds to a particular range bin.

The computation load in modern radars can be very high.

Filtering or convolving the receive signals by using matched filters is a computationally

intense process. This could be done using FIR filters. However, in order to reduce the amount

of computations, another method is often used.

An alternative is to perform an FFT transform of the receive signal sequence from each PRF.

The spectral representation of the receive signal can then by multiplied by the frequency

response of the radar pulse. After this multiplication, the result can either be transformed

back into the time domain using an IFFT or all subsequent processing performed in the

frequency domain. This process performs the equivalent function as FIR filtering. This

process sounds counterintuitive, but due to the efficiency of the FFT algorithm, it is often less

computationally intensive than a large FIR filter. In any case, once the receive pulse has been

processed, the amplitude of the matched filter operation is compared to a threshold to

determine if this is a valid radar pulse return. Results over multiple PRFs can be used to

discard or confirm valid target radar returns, maximize the probability of detection, and

minimize the probability of false detections.

In the next chapter, we discuss Doppler processing. This also requires use of the FFT

algorithm. In radar systems, the FFT is the most common digital signal processing algorithm,

and efficient implementation of FFTs is critical for any digital radar system.
.newnespress.com

http://www.newnespress.com/

Digital Signal Processing 101. DOI: 10.1016/B978-1-85617-921-8.00021-3
2010 Elsevier Inc. All rights reserved. 201
CHAPTER 17
Pulse Doppler Radar
We mentioned Doppler frequency shift in our discussions of wireless systems. In general,

these frequency shifts degrade wireless receiver performance and must be compensated for.

In radar, however, Doppler shifts are a key part of the detection and tracking of objects.

For this reason, nearly all radar systems incorporate Doppler processing.

By measuring the Doppler rate, the radar is able to measure the relative velocity of all objects

returning echoes to the radar system—whether planes, vehicles, or ground features. For

targeting radars, estimating the target’s velocity is equally as important as determining its

location. And for all radars, Doppler filtering can be used to discriminate between objects

moving at different relative velocities. This capability can be especially important when

there is a high level of clutter obscuring the target return. An example of this might be an

airborne radar trying to track a moving vehicle on the ground. Since the ground returns are

at the same range as the vehicle, the difference in velocity is the means of discrimination

using Doppler measurements.

17.1 Doppler Effect

Because sensing Doppler frequency shifts is so important, it is worth reviewing their causes.

A common example we have all experienced is standing beside a train track or highway. As a

train or truck approaches, we hear a certain frequency sound. As a high-speed train or truck

passes, the sound immediately drops several octaves. This drop is caused by a frequency shift

called the Doppler effect. Although we cannot sense this, the light waves are affected in the

same way as the sound waves. In fact, the realization that our universe is expanding was

determined by making very fine Doppler measurements of the light from stars in the night sky.

The relationship between wavelength and frequency is

l ¼ v=f

where
f ¼ wave frequency (Hz or cycles/s)

l ¼ wavelength (m)

v ¼ speed of light (approximately 3 � 108 m/s)

202 Chapter 17

www
The speed of light is constant—Einstein proved this. Technically, this is true only in a vacuum,

but the effect of the medium, such as our atmosphere, can be ignored in radar discussions. In a

radar system the frequency is modified by the process of being reflected by a moving object.

Consider the transmission of a sinusoidal wave. The distance from the crest of each wave to the

next is the wavelength, which is inversely proportional to the frequency. Each successive wave

is reflected from the target object of interest. When this object is moving toward the radar

system, the next wave crest reflected has a shorter roundtrip distance to travel, from the radar to

the target and back to the radar. The reason is that the target has moved closer in the interval of

time between the previous and current wave crest. As long as this motion continues, the

distance between the arriving wave crests is shorter than the distance between the transmitted

wave crests. Since frequency is inversely proportional to wavelength, the frequency of the

sinusoidal wave appears to have increased. If the target object is moving away from the

radar system, then the opposite happens. Each successive wave crest has a longer roundtrip

distance to travel, so the time between arrival of receive wave crests is lengthened, resulting in

a longer (larger) wavelength and a lower frequency. This effect becomes more pronounced

when the frequency of the transmitted sinusoid is high (short wavelength). Then the effect of

the receive wavelength being shortened or lengthened due to the Doppler effect is

more noticeable. Therefore, Doppler frequency shifts are more easily detected when

using higher frequency waves because the percentage change in the frequency is larger.

This effect applies only to the motion relative to the radar and the target object. If the object

is moving at right angles to the radar, there is no Doppler frequency shift. An example of this

would be an airborne radar directed at the ground immediately below an aircraft. Assuming

the terrain is level and the aircraft is at a constant altitude, the Doppler shift is zero, even

though the plane is moving relative to the ground. There is no change in the distance between

the plane and ground.

If the radar is ground based, then all Doppler frequency shifts are due to the target object

motion. If the radar is vehicle or airborne based, then the Doppler frequency shifts are due to

the relative motion between the radar and target object. For example, if you are driving on

the highway at 70 mph, and an approaching police car is traveling at 50 mph, the radar shows

a Doppler shift corresponding to 120 mph. The police radar needs to subtract the speed of

the police car to display your speed.

This capability can be of great advantage in a radar system. By binning the receive echoes

both over range and Doppler frequency offset, the radar can determine target speed as well as

range. Also, this allows easy discrimination between moving objects, such as an aircraft,

and the background clutter, which is generally stationary.

Imagine we have a radar operating in the X band at 10 GHz (l ¼ 0.03 m or 3 cm). The

airborne radar, traveling at 500 mph, is tracking a target ahead moving at 800 mph in the

same direction. In this case, the speed differential is 300 mph, or 134 m/s.
.newnespress.com

http://www.newnespress.com/

Pulse Doppler Radar 203
Another target is traveling head-on toward the airborne radar at 400 mph. This gives a speed

differential of 900 mph, or 402 m/s The Doppler frequency shift can be calculated as follows:

fDoppler ¼ 2vrelative=l

First target Doppler shift ¼ 2ð 134 m=sÞ=ð0:03 mÞ ¼ 8:93 kHz

Second target Doppler shift ¼ 2ð402 m=sÞ=ð0:03 mÞ ¼ 26:8 kHz

The receive signal is offset from 10 GHz by the Doppler frequency. Notice that the Doppler
shift is negative when the object is moving away (opening range) from the radar and is

positive when the object is moving toward the radar (closing range).
17.2 Pulsed Frequency Spectrum

Measuring Doppler shift is complicated by the fact that the radar is transmitting pulses. This

has an effect on the spectrum of the radar transmit signal. To understand this, we need to start

with the frequency, or spectral representation, of a pulse. In Chapter 11 on digital upconversion,

we discussed the frequency response of DACs. The time response of a DAC is also pulse, and

we saw that the frequency response in the sin(x)/x or sinc function. If the pulse has the sharp

edges removed, we can reduce the side lobes, although doing so broadens the main lobe.

The frequency response of an infinite train of pulses is similar, except that it is composed of

discrete spectral lines in the envelope of the sinc function (see Figures 17.1–17.3). Also, the

spectrum repeats at intervals of the pulse repetition frequency (PRF). We forgo the mathematical

derivation here, but it is available in any engineering text on radar. This is not unlike a sampled

signal, in which the frequency representation repeats at the sampling frequency interval.

The important point is that the spectral line spacing imposes restrictions on Doppler

frequency shifts. For the radar to unambiguously identify the Doppler frequency shift, it must

be less than the PRF frequency. Doppler frequency shifts greater than this alias to a lower
Figure 17.1:
Spectrum of single pulse.

www.newnespress.com

http://www.newnespress.com/

Figure 17.2:
Spectrum of a pulse train repeating slowly.

Figure 17.3:
Spectrum of a pulse train repeating rapidly.

204 Chapter 17

www
Doppler frequency and are ambiguous, just as radar returns beyond the range of the PRF

interval time are ambiguous because they alias into lower range bins.

The Doppler frequency range placement is somewhat arbitrarily determined by the digital

downconversion of the received radar high-frequency carrier to baseband. Assuming

downconversion of the carrier to 0 Hz, then the Doppler frequency effect causes the target

return signal to have a positive or negative offset, as computed here:

fDoppler ¼ 2vrelative=l:

Doppler frequency detection is performed by using a bank of narrow digital filters, with
overlapping frequency bandwidth (so there are no nulls, or frequencies that could go

undetected). This detection is done separately for each range bin. Therefore, at each

allowable range, Doppler filtering is applied. Just as the radar looks for peaks from the

matched filter detector at every range bin, within every range it tests across the Doppler

frequency band to determine the Doppler frequency offset in the receive pulse. This process

dramatically expands the amount of signal processing required. Rather than build many

individual narrow-band frequency filters, the radar uses the FFT to perform spectral filtering

across the spectral bandwidth of the PRF signal.
.newnespress.com

http://www.newnespress.com/

Pulse Doppler Radar 205
17.3 Doppler Ambiguities

Doppler ambiguities can occur if the Doppler range is larger than the PRF. The maximum

Doppler requirement of a given radar can be estimated. Let’s use a military airborne radar

example. The fastest closing rates are with approaching targets because speeds of both the

radar-bearing aircraft and the target aircraft are summed. This should assume the maximum

speed of both aircraft. The highest opening rates might be when a target is flying away

from the radar-bearing aircraft. Here, we should assume the radar-bearing aircraft is traveling

at minimum speed, and the target aircraft is flying at maximum speed. We should also

assume the target aircraft is flying a large angle y from the radar-bearing aircraft flight path,

which further reduces the radar-bearing aircraft speed in the direction of the target.
Maximum positive Doppler frequency (fastest closing rate) at 10 GHz or 3 cm

Radar-bearing aircraft maximum speed: 1200 mph ¼ 536 m/s

Target aircraft maximum speed: 1200 mph ¼ 536 m/s

Maximum positive Doppler ¼ 2 (1072 m/s) / (0.03 m) ¼ 71.5 kHz
Maximum negative Doppler frequency (fastest opening rate) at 10 GHz or 3 cm

Radar-bearing aircraft minimum speed: 300 mph ¼ 134 m/s

Effective radar-bearing aircraft minimum speed with y ¼ 60-degree angle from target

track is sin(60) ¼ 0.5: 150 mph ¼ 67 m/s

Target aircraft maximum speed: 1200 mph ¼ 536 m/s

Maximum negative Doppler ¼ 2 (67 – 536 m/s) / (0.03 m) ¼ 31.3 kHz
This gives a total Doppler range of 71.5 þ 31.3 ¼ 102.8 kHz. Unless the PRF exceeds

102.8 kHz, there is aliasing of the detected Doppler rates and the associated ambiguities.

Below, in Figure 17.4, the aliasing resulting in Doppler ambiguity is shown for a higher PRF

of 80 kHz. If the PRF was 10 kHz, there would be many more Doppler ambiguities in the

spectrum.
Unambiguous Doppler
range (+/-40 kHz)

Example : PRF = 80 kHz, with 10 GHz radar

Doppler of fast
opening rate target

Doppler of fast
closing rate target

Doppler aliasing of
fast closing rate target

-40 Hz
-600 m/s 0 m/s 600 m/s 1200 m/s

0 Hz 40 Hz 80 Hz

Figure 17.4:
Doppler frequency diagram

www.newnespress.com

http://www.newnespress.com/

206 Chapter 17

www
If we assume a PRF of 10 kHz from the preceding chapter’s example, we clearly have

Doppler ambiguities. Doppler ambiguities can be resolved using a number of methods:

• Range Differentiation: Using range measurements over a period of time, we can measure

the difference in range over the time interval. Using this, the radar can estimate the

change in range, which is the relative velocity between the radar and the target. This

method is less precise than Doppler-based measurements but can provide an estimate

to use in resolving the Doppler ambiguity.

• Multiple or offset PRFs: This method is very similar to resolving range ambiguities.

Multiple PRFs with slightly different values can be used, and the ambiguities resolved

by analysis of how the aliased Doppler frequency measurements move within the

unambiguous range.

• Variable PRF: The PRF need not be constant, particularly in a digitally programmable

system. The PRF can be varied. The PRFs are generally grouped into low, medium, or

high ranges. A low PRF is generally from 2 to 8 kHz. A medium PRF is generally from

8 to 30 kHz. And a high PRF is generally from about 30 to 250 kHz. Each PRF zone

has its advantage and disadvantages.

We have already discussed range and Doppler ambiguities. The PRF directly affects the size

of the unambiguous zone. But ambiguities are not the only issue. Just as a range or Doppler

measurement return is outside the unambiguous zone and is aliased into the primary zone,

so are all other returns and radar clutter. This can raise the noise floor of the radar to such a

degree that lower amplitude returns become obscured.
17.4 Radar Clutter

There are two categories of radar clutter: main lobe clutter and side lobe clutter. Main lobe

clutter occurs when there are undesirable returns in the main lobe or within the radar

beamwidth. This usually occurs when the main lobe intersects the ground. This situation can

occur because the radar is aimed downward (negative elevation); there is higher ground such

as mountains in the radar path; or even if the radar beam is aimed level, and as the beam

spreads, it hits the ground. Because the area of ground in the radar beam is often large, the

return can be much larger than targets.

Side lobe clutter is unwanted returns coming from a direction outside the main lobe. Since

the radar is not pointed in this direction, it is never a desired radar return signal. Side lobe

clutter is usually attenuated by 50 dB or more, due to the antenna directional selectivity or

directional radiation pattern. A very common source of side lobe clutter is ground return.

When a radar is pointed toward the horizon, there is a very large area of ground covered by

the side lobes in the negative elevation region. The large reflective area covered by the side

lobe can cause significant side lobe returns despite the antenna attenuation.
.newnespress.com

http://www.newnespress.com/

Pulse Doppler Radar 207
Different types of terrain have a different “reflectivity,” which is a measure of how much

radar energy is reflected back. This measure also depends on the angle of the radar energy

relative to the ground surface. A related parameter, known as the backscattering coefficient,

has the angle incorporated into the coefficient and is therefore normalized over all angles.

Some surfaces, like smooth water, reflect most of the radar energy away from the radar

transmitter, particularly at shallow angles. A desert would reflect more of the energy back to

the radar, and wooded terrain would reflect even more. Manmade surfaces, such as in urban

areas, would reflect the most energy back to the radar system.

This reflectivity is one reason why Doppler processing is so important. Most targets

are moving, and Doppler processing is an effective method to distinguish them from

the background clutter of the ground. Remember, the Doppler frequency of the ground

is usually nonzero if the radar is in motion. In fact, side lobe Doppler clutter varies

by the elevation and azimuth angle because the relative velocity is proportional to

cosine y, where y is equal to the angle between the aircraft flight line and a given

location on the ground.

Different points on the ground, depending on how far ahead or off to the side of the radar-

bearing aircraft that particular patch of ground is located, will have different relative

velocities and therefore Doppler frequencies.

So Doppler side lobe clutter is present over a wide range of Doppler frequencies.

Main lobe clutter is more likely to be concentrated at a specific frequency, since the main

lobe is far more concentrated (typically 3-6 degrees of beam width), so the patch of ground

illuminated is likely to be far smaller and all the returns at or near the same relative velocity.

A simple example can help illustrate how the radar can combine range and Doppler returns to

obtain a more complete picture of the target environment.

The diagram in Figure 17.5 illustrates unambiguous range and Doppler returns. This assumes

the PRF is low enough to receive all the returns in a single PRF interval, and the PRF is high

enough to include all Doppler return frequencies.

The ground return comes though the antenna side lobe, known as side lobe clutter. Ground

return is often high due to the amount of reflective area at close range, which results in a

strong return despite the side lobe attenuation of the antenna. The ground return is at short

range, essentially the altitude of the aircraft. In the main lobe, the range return of the

mountains and closing target are close together, due to similar ranges. It is easy to see how if

we are just using the range return, a target return can be lost in high-terrain returns, known as

main lobe clutter.

The Doppler return gives a different picture. In this case, the ground return is more spread

out, around 0 Hz. The ground slightly ahead of the radar-bearing plane is at a slightly positive
www.newnespress.com

http://www.newnespress.com/

Range return

Doppler return

Ground terrain profile

A

B

Side
lobe

ground
return

Main lobe beam

High closing
rate target

Opening rate
target

0

0

A
C

A

A

B

B

B

C

C

D

D

D

Figure 17.5

208 Chapter 17

www
relative velocity, and the ground behind the plane is at a slightly negative relative velocity.

As the horizontal distance from the radar-bearing plane increases, the ground return weakens

due to increased range.

Notice the Doppler return from the mountain terrain is now very distinct from the nearby

closing aircraft target. The mountain terrain is moving at a relative velocity equal to the

radar-bearing plane’s velocity. The closing aircraft’s relative velocity is the sum of both

aircrafts’ velocities, which are very high, producing a Doppler return at a high velocity.

The other target aircraft, which is slowly opening the range with the radar-bearing aircraft,

is represented as a negative Doppler frequency return.

17.5 PRF Trade-offs

Different PRF frequencies have different advantages and disadvantages. The following

discussion summarizes the trade-offs.

Low PRF operation is generally used for maximum range detection. It usually requires a high-

power transmit power to receive returns of sufficient power for detection at a long range
.newnespress.com

http://www.newnespress.com/

Pulse Doppler Radar 209
(remember, receive echo power levels are proportional to the range to the fourth power).

To get the highest power, the radar system sends long transmit pulses, and correspondingly

long-matched filter processing (or pulse compression) is used. This mode is useful for precise

range determination. Strong side lobe returns can often be determined by their relatively close

ranges (ground area near the radar system) and filtered out. Disadvantages are that Doppler

processing is relatively ineffective due to so many overlapping Doppler frequency ranges. This

limits the ability to detect moving objects in the presence of heavy background clutter, such as

moving objects on the ground. These overlapping ranges can also be a problem for detecting low-

flying aircraft because of ground terrain clutter at similar ranges in the main lobe of the radar.

High PRF operation spreads out the frequency spectrum of the receive pulse, allowing a

full Doppler spectrum without aliasing or ambiguous Doppler measurements. The clutter

that is present in the spectrum is not folding or aliased from higher frequencies, which lowers

the noise floor of the receive spectrum. A high PRF can be used to determine Doppler

frequency and therefore relative velocity for all targets. It can also be used when a moving

object of interest is obscured by a stationary mass, such as the ground or a mountain, in the

radar return. The unambiguous Doppler measurements make a moving target stand out from

a stationary background. This is called main lobe clutter rejection, or filtering. Another

benefit is that since more pulses are transmitted in a given interval of time, higher average

transmit power levels can be achieved. This can help improve the detection range of a

radar system in high PRF mode.

Pulse delay-based ranging performance becomes very compromised in high PRF

operation. One solution is to use the high PRF mode to identify moving targets, especially

fast-moving targets, and then switch to a low PRF operation to determine range. Another

alternative is to use a technique called FM ranging. In this mode, the transmit duty cycle

becomes 100%—the radar transmits continuously. But it transmits a continuously increasing

frequency signal and then at the maximum frequency abruptly begins to transmit at a

continuously decreasing frequency until it reaches the minimum frequency whereby it resets

to begin another cycle of increasing frequency. The frequency over time looks like a “saw-

tooth wave.” The receive can operate during transmit operation because the receiver is

detecting time-delayed versions of the transmit signal, which are at a different frequency than

current transmit operation. Therefore, the receiver is not desensitized by the transmitter’s

high power at the received signal frequency.

The receiver can continue to operate during transmit operation, as the receiver is detecting

time delayed versions of the transmit signal, which are at a different frequency than

simultaneous transmit frequency. Since the receive and transmit frequencies are different at

any given moment, the receiver is not desensitized by the transmitter’s high power at the

received signal frequency. Measurement of the receive frequency, and knowing the transmitter

frequency ramp timing, can be used to detect roundtrip delay time, and therefore range.
www.newnespress.com

http://www.newnespress.com/

210 Chapter 17

www
This method is not as accurate as pulse delay ranging using a matched filter but can provide

ranging information nonetheless. Of course, the receive frequency is affected by the Doppler

frequency. On a rapidly closing target, the receive frequencies are all offset by a positive

fDoppler, which can be measured by the receiver once the peak receive frequency is detected.

The Doppler addition can be found because the receiver knows the peak frequency of the

transmitter (see Figure 17.6).
Time →

Frequency ↑

Transmit Pulse
Receive pulse

Doppler
shift

Range delay

Figure 17.6
Medium PRF operation is a compromise. Both range and Doppler measurements are

ambiguous, but neither is aliased or folded as severely as the more extreme low or high PRF

modes. This operation can provide a good overall capability for detecting both range and

moving targets. However, the folding of the ambiguous regions can also bring a lot of clutter

into both range and Doppler measurements. Small shifts in PRFs can be used to resolve

ambiguities, as has been discussed, but if there is too much clutter, the signals may be

undetectable or obscured in both range and Doppler.

17.6 Target Tracking

So far, we have discussed how a radar system performs measurements of range and

velocity of potential targets. After they are measured, the targets can be identified using some

of the methods already described. A target may have a specific return amplitude, azimuth,

elevation, range, and relative velocity. Since measurements are repeated continuously,

this allow for tracking of targets.

To track an identified target, the radar system uses repeated measurements over time. These

measurements can be filtered to reduce measurement error and the results of the filtering fed

back to control the measurement process. The radar system can respond by aiming the main
.newnespress.com

http://www.newnespress.com/

Pulse Doppler Radar 211
lobe, by changing PRF, and by using measurements to anticipate future behavior of the

target. For example, by estimating the target velocity and knowing the lag or latency in

measurements, the radar can estimate the next position of the target and have the main lobe

lead the target motion. This can also be done for the range binning and Doppler filtering.

Also, if the radar itself is on a moving platform, such as an aircraft, the motion of the

radar-bearing platform needs to be taken into account. This is referred to as platform

stabilization.

Filtering of target measurements can be much more complex than the basic digital filtering

discussed in previous chapters. The filtering may be recursive, where previous filter outputs

are fed back, and is adaptive, with gains and frequency cutoffs varied in response to the

measurement accuracy, degree of clutter, angle of antenna main beam, and other factors.

There may be a number of independent or dependent filtering loops in operation. One loop

may be tracking the range of a target, by monitoring the range bins and by detecting the

comparative changes in adjacent range bin results, known as range gating. By doing this, the

radar system can coarsely estimate the rate of change of the range, which can lead to a

decision on when to switch to a high PRF to confirm with Doppler measurements. The

antenna main lobe may be electronically steered by making measurements at elevation and

azimuths slightly above/below or side to side to estimate the azimuth and elevation of the

highest return, to keep the main lobe centered on a target. This process, known as angle

tracking, also must account for motion of the radar platform. Note that this tracking activity

may be a portion of the time, whereas another portion of the time can be used for scanning

or tracking of other targets.

In addition to tracking, there are often software-implemented algorithms to correlate the

various measurements to particular targets. Target ranges, velocities, azimuths, and

elevations may cross over each other. These changes need to be interpolated into a trajectory

that can be matched to a specific target. Using radar digital signal processing followed by

software-enabled target identification, tracking, monitoring, and classification, the radar

system can automate all these functions. Higher-level tracking by software can also allow

for improvements in probability of detection and minimization of false alarms because

behavior of potential targets can be correlated and analyzed over longer time intervals than

the radar measurement functions typically performed. This can allow the operator or

pilot to more quickly understand the situation and spend more time on deciding how to

respond.
www.newnespress.com

http://www.newnespress.com/

Digital Signal Processing 101. DOI: 10.1016/B978-1-85617-921-8.00022-5
2010 Elsevier Inc. All rights reserved. 213
CHAPTER 18
Synthetic Array Radar
Synthetic Array Radar, or SAR, is normally used to map ground features and terrain. It is also

known in the literature as Synthetic Aperture Radar. Both names make sense, though we use

Synthetic Array Radar here. This type of radar is used for a wide variety of military and

commercial applications. It can be made to map almost arbitrarily fine resolution ground

features or used to more coarsely map larger areas with comparative effort.

This process produces maps, which are often color coded. The color does not represent the

actual color of the landscape but is used to indicate the strength of return signals for each

resolvable location on the ground. Alternately, the images can be grayscale, with light

regions indicating strong return and dark regions indicating little or no return. Because

different terrain features reflect radar in differing amounts, features such as buildings, planes,

rivers, roads, railroads, and so on can be seen in the SAR images.

18.1 SAR Resolution

The key parameter in ground mapping is the resolution. SAR systems can be designed with

capabilities to differentiate using dimensions from few centimeters to hundreds of meters,

depending on if the purpose is to map out a military installation, an urban area, or the

contours of a mountain range. The range is basically limited by the transmit power of the

radar, which can operate at resolutions much greater than visual detection at long ranges, and

is unaffected by darkness, haze, and other factors impacting visual detection.

As with video, the quality of images depends on the pixel density (pixel stands for picture

element). The equivalent of pixel density in radar is a voxel, or volume element. The voxel

is defined by the azimuth, elevation, and range. The minimum voxel size is dependent on

the radar resolution capabilities. The voxel spacing is basically the distance that two

points on the ground can be distinguished from each other. Radar resolution capabilities,

in turn, are dependent on range resolution and main lobe beamwidth capabilities.

The voxel spacing or density should, in general, be at least 10 times the dimensions of the

objects being mapped to achieve useful images. A 1 m resolution is feasible for detecting

buildings that are at least 10 m long and wide.

214 Chapter 18

www
Because precision range detection is a fundamental requirement, high PRF operation is

unsuitable for SAR due to the range ambiguities. Low PRFs are used instead, to eliminate

range ambiguities over the distances from the aircraft to the ground being mapped.

Maximum Doppler rates tend to be low because the only motion is due to the radar-bearing

aircraft motion. Due to the nature of SAR, the relative motion is normally substantially less

than the aircraft flight speed. Use of a low PRF, while restricting the usable Doppler range,

enhances the precision of Doppler frequency detection within that restricted range.

This is an advantage in high-resolution SAR mapping.

18.2 Pulse Compression

Range resolution is dependent on the precision of the receive pulse detection arrival

delay. This resolution can be achieved by a very short transmit pulse width, which

has the disadvantage of a low transmit power level due to the short duration. Or very

high levels of pulse compression can be used, which allow relatively long transmit

pulses and therefore long integration times at the receiver, with the receiver operating

on higher-power returns. This raises the SNR and allows for longer-range mapping.

A high level of pulse compression can be achieved by using long-matched filters

(a correlation to the complex conjugate of transmit sequence) and transmit sequences

with strong autocorrelation properties. The only consequence is a higher level of

computations associated with the long-matched filter. The speed of light, and

therefore radar waves, is about 1 m per 3 ns (3 � 10 9). Since the path is roundtrip, the

range appears to become half this. So about 2 m, or � 6 feet range resolution, requires a

12-ns timing detection precision. To achieve this level of correlation would require a

transmit sequence with phase changes of at least 80 MHz rate, resulting in,

at a minimum, the same amount of transmit frequency bandwidth within a typical

10 GHz radar band.

The elevation of the antenna main lobe does not need to be narrowly focused. In an SAR

radar system, the antenna is directed to the ground at an angle off to the side, as shown

in Figure 18.1. As the elevation angle decreases, the radar beam is directed at a steeper

angle to a ground location closer to the flight path of the aircraft, with a shorter range.

The different portions of the beam elevation therefore map to different ranges, and the return

sequence can be directed into different range bins. The precision of the range detection

capability translates into the degree of elevation resolution, often utilizing pulse compression.

18.3 Azimuth Resolution

The other requirement for precise ground mapping is for a very narrow angular resolution of

the main beam in the azimuth. As discussed in a previous chapter, the narrowness of the radar
.newnespress.com

http://www.newnespress.com/

Range binning over
wide elevation angle

Narrow azimuth due to SAR processing

Figure 18.1

Synthetic Array Radar 215
beam depends on the ratio of the antenna size to the wavelength. To achieve a “pencil-like”

radar beam requires either a very large antenna or very high-frequency (and short

wavelength) radar. Both are impractical for airborne radar. The antenna size is necessarily

limited by the aircraft size. Extremely high-frequency radars tend to be useful only at very

short range, due to both atmospheric absorption and scattering. There is also the practicality

of building high-power and very high-frequency transmit circuits.

The solution to this problem is to create an artificially large antenna, or synthetic array

antenna. The forward motion of the aircraft is used to transmit and receive from many

different points along the flight path of the aircraft. When the radar main beam is focused

at the same area of ground during the aircraft motion, the returns from different angles

created by the aircraft motion can be synthesized into a very narrow equivalent azimuth

main lobe using signal processing techniques. The end result is as if an antenna of great

length (up to a kilometer) was used. Because this technique is done using radar returns over

several hundred milliseconds, it works for stationary targets and so is ideal for ground

mapping.

SAR radar typically directs a radar beam at 90� to the plane’s flight path. The width of

this radar beam does not have to be exceptionally narrow; in fact, the wider beam covers

more ground and allows more processing gain in the SAR algorithm. When a large-angle

main lobe is used, the maximum length of the synthetic antenna is increased. Therefore,

small antennas can work well with the SAR technique, as long as the antenna gain is

sufficient to meet the SNR requirements for the range involved. The antenna illuminates a

large swath on the ground, typically an oval shape due to the aspect ratio of the beam being

aimed outward from the aircraft flight path at a downward angle.
www.newnespress.com

http://www.newnespress.com/

216 Chapter 18

www
To start with, let us assume that we can build an antenna as large as necessary to meet our

azimuth resolution requirement. The rule of thumb governing antenna size is

dazimuth � lR=L

where
.ne
dazimuth ¼ Resolvable distance in the azimuth direction

l ¼ Wavelength of radar

R ¼ Range

L ¼ Length of the antenna
(Note, for reasons not explained here, this expression is valid for conventional antennas. An

SAR antenna actually has half the resolvable azimuth limit as a real antenna. In other words,

an SAR antenna needs to be twice as large as a real antenna for the same resolvable distance.)

If we need a 1-m aperture at a 10-km range, with a 3-cm (X band) radar, this requires an

antenna length of 300 m.

Imagine we had such an antenna, mounted along the fuselage of an impractically long 300 m

long plane. Each pulse could be focused with an azimuth width of 1 m at the 10 km range,

with a wide elevation, allowing the radar to scan a narrow (1 m) strip of land each PRF

as the plane travels forward.

This 300 m long antenna could be composed of many radiating elements along this length

(e.g., 301 separate elements, spaced every meter). The antenna steering is accomplished by

setting the phase of each element to ensure that the radar wave transmitted from each element

is at a common phase when arriving at the 1 m strip at a 10-km distance. The phases have to

be adjusted, or focused, because the distance to the 1 m strip of land is slightly different for

each element, due to the offset relative from the center element.

To aim the antenna beam at a very narrow region, we must carefully control the phase

relationship of the different antenna elements. In our example, the wavelength is 3 cm. If a

radar roundtrip path is 1.5 cm longer or shorter than the middle element path, it is 180�

out of phase, and adds destructively or cancels. Therefore, the roundtrip path length must be

controlled within a few millimeters for each element. We must compensate for the phase error

that occurs due to the plane’s straight flight path as compared to an arc. This is shown below.

The phase correction relative to the middle element of the antenna works is approximately

Yn ¼ ð2�p�d2nÞ=ðl�RÞ
where
Yn ¼ Phase error of nth antenna element (in radians)

dn ¼ Distance between middle element and nth antenna element
wnespress.com

http://www.newnespress.com/

Synthetic Array Radar 217
(In SAR literature, the term Yn is sometimes called the “point target phase history.”)

The return echo would be reflected from the ground at all locations and travel back to each

element. Due to the reciprocal path, it would arrive at the same phase offset that was

transmitted, and if the same phase compensation is performed on the receive element signal

prior to being summed together, the result is that only the reflections from the 1 m wide

azimuth portion arrive in phase, with all other ground returns being canceled out, or at least

severely attenuated.

Now suppose the same process is done in sequence, rather than all at once. We start

with an element at one end of the antenna, transmit a pulse, and receive the return

using only this element. All the other elements are inactive. Both transmit and receive

signals are modified by the phase compensation as before. The return sequence is

stored in memory. Then we repeat this process with each separate antenna element in turn

until we have saved all the 301 return sequences. Remember, these return sequences are

complex numbers, with a magnitude and phase. Now if we sum all the complex results

at the end, we must have the same result as if we did everything in parallel at once.

Nothing else has changed; the situation on the ground is assumed static. This is a

simplified version of the process the SAR radar performs. Imagine as the plane flies

forward, the PRF is such that 301 pulses are transmitted and received along 301 m

of flight path.
Strip being mapped

Figure 18.2
The radar could then effectively map the 1 m wide strip at right angles to the flight path.

However, while this method solves the azimuth resolution problem, it is still not workable

because only 1 m wide of strip ground is mapped perpendicular to the plane’s flight path

every 301 m, as shown in Figure 18.2.
www.newnespress.com

http://www.newnespress.com/

218 Chapter 18

www
18.4 SAR Processing

To go further, we need some conventions. Let us assign an index to each 1 m strip of

land, oriented at right angles to the flight path, designated “n.” At the PRF when the

aircraft is physically aligned with stripn, the real antenna receives a complex range

sequencen. This same index applies to the virtual or synthetic antenna element that is

directly perpendicular to the 1 m strip. The next synthetic antenna element forward

would be index n þ 1, continuing on up to n þ 150. The synthetic antenna element

behind would be n – 1, extending to n –150. We have complex weighting factors

of proper phase and amplitude for each index, W-150 through W150. W0 is always

equal to 1.

To calculate the image for stripn, we must start receiving range sequences at index n – 150

and sort into range bins according to arrival time. This is using the single real antenna with

a wide beam angle (using 6-12� is typical). This continues for 300 more PRF

intervals and results in 301 stored receive sequences in memory, indexed from –150 to

þ150. After PRF150, we can start processing. The 301 stored, binned range sequences are

multiplied or scaled by W-150 through W150, respectively. Note that both the values in the

binned range sequences and the weighting factors are complex. Each range bin is

multiplied separately by the weighting factor. Then the 301 complex range sequence results

can all be summed together across each range bin and result in a range binned sequence

that has an azimuth of 1 m. The range bins correspond to the individual values across the

elevation of the 1 m stripn:
.newnespress.com
binned range sequencen-150 � W 150
þ
 binned range sequencen-149 � W 149
þ
 binned range sequencen-148 � W 148
. . .

þ
 binned range sequencenþ0 � W0
þ
 binned range sequencenþ1 � Wþ1
. . .

þ
 binned range sequencenþ150 � Wþ150
¼
 binned range stripn (1 m azimuth)
For stripnþ1, we wait until PRF151, and the plane has advanced 1 m on its flight path. We can

then start processing again. We have just saved binned range sequence151 and can discard

binned range sequence-150. This updated set of 301 binned range sequences is again

multiplied by the weighting factors W-150 through W150. In this case, there is an offset as

follows:

http://www.newnespress.com/

Synthetic Array Radar 219
binned range sequencen-149 � W 150
þ
 binned range sequencen-148 � W 149
þ
 binned range sequencen-147 � W 148
. . .

þ
 binned range sequencenþ1 � W0
þ
 binned range sequencenþ2 � Wþ1
. . .

þ
 binned range sequencenþ151 � Wþ150
¼
 binned range stripnþ1 (1 meter azimuth)
In this manner, we can compute each of the strips, one after the other, using a single broad beam

antenna, but using a long synthetic array to achieve a narrow azimuth. We can make the synthetic

antenna arbitrarily long, by using more PRF cycles, more memory, and higher processing rates.

The signal processing achieves the same lobe cancellation of signals coming from azimuths

outside our desired 1 m ground strip as an actual 300 meter antenna would do.

This processing technique is known as line-by-line processing.

18.5 SAR Doppler Processing

Another alternative method to perform SAR processing is to incorporate Doppler processing.

Due to the use of the efficient FFT algorithm, this leads to a much lower level of

computations than line-by-line processing.

Consider the patch of ground being illuminated by the radar pulse directed at right angles to

the aircraft flight path. This patch may be 2000 m or more wide (azimuth direction),

depending on the range and antenna beamwidth azimuth. At the midpoint, the Doppler

frequency is exactly zero because the radar is moving parallel to this point and has no relative

motion. At the two azimuth end points in the scan area, we have

positive Doppler frequency ¼ sinðazimuth angleÞ�ðaircraft velocityÞ=ðwavelengthÞ
negative Doppler frequency ¼ sinðazimuth angleÞ�ðaircraft velocityÞ=ðwavelengthÞ

As an example, with a range of 10 km and a ground scan area of �1000 m, this equates to
an angle of �5.71�. If the aircraft is flying at 250 m/s, this works out to �829 Hz

in for the 10 GHz radar band. This is shown in the Figure 18.3.
Closing
(positive)
Doppler
velocityazimuth angleQ

Figure 18.3

www.newnespress.com

http://www.newnespress.com/

220 Chapter 18

www
The Doppler frequency variation is not linear across the azimuth due to the sin(azimuth

angle) in the equation. At small angles, sin(y) � y, or approximately linear. As the angle

increases, the effect becomes more nonlinear, until at 90�, the Doppler frequency

asymptotically approaches the familiar (aircraft velocity/wavelength), or 8333 Hz. However,

we want the Doppler frequency response to be completely linear across the azimuth range.

We can compensate for this by using a phase correction multiplier, known as “focusing.”

The purpose is to make the Doppler frequency variation linear across the azimuth angle,

rather than proportional to the sine of the angle. Once the frequency spacing per unit length

on the ground is made linear, we can use Doppler filters with equally spaced main lobes

along the frequency axis. This filtering is the familiar DFT, which can be implemented using

the FFT algorithm. This is known as “SAR Doppler processing.” The advantage of this

approach is that the computational load is made much more manageable than the line-by-line

processing technique, by virtue of the FFT algorithm efficiency.

As a side note, this Doppler linearity is an issue only for SAR radar. For conventional radar,

the radar is aimed toward the horizon, and there is less variation due to the aspect angles

(in this case, yelavation is close to 0�, although yazimuth can have significant variation) and the

sensitivity requirements are much less than for SAR.
Receive matched filtering

Range
bins

~~

~~

~~

~~ ~~ ~~ ~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

Doppler
frequency
filters

Focusing
factors
memory
(increment
each PRF)

Figure 18.4
At each PRF, the return sequence is multiplied by a phase correction (focusing). Each range

bin stores a complex value, representing the phase and magnitude of the return at that range.

For each range, the values are loaded into all the Doppler frequency filters matching the

azimuth angles for each ground element, as shown in Figure 18.4.

Each pulse has its return processed by azimuth and range, which allows separation over all

locations in the radar beam, with resolution determined by the number of range bin and

Doppler filter frequency banks. This process is repeated at each PRF with the next phase
.newnespress.com

http://www.newnespress.com/

Synthetic Array Radar 221
correction value, and the results are accumulated or integrated. Over the set of N PRFs equal

to the number of N elements in the synthetic antenna, this is repeated.

After each set of N PRFs, the process repeats. The same point is measured N times, and

complex values representing both magnitude and phase are integrated over the measurements

for each point. In this architecture, the number of virtual elements in the synthetic array is

equal to the number of Doppler filters, which can also be set equal to the number of range

bins. This is also the number of times each point is measured, and the results integrated.

However, each of the different measurements for a given point is done at a different

azimuth angle.

In reality, these two methods provide equivalent results, although the processing steps are

different. The first method is conceptually easier for most people to understand. The second

method has the advantage of lower computational rate. An intuitive Figure 18.5 depicts the

two different approaches.
SAR
antenna
length

Line by line processing

SAR
antenna
length

Doppler processing

Figure 18.5
Another way to look at this is that in line-by-line, a new narrow beam at right angles to the

flight line is synthetically created each PRF. With Doppler processing, many different

azimuth beams are generated by each Doppler frequency bank during each PRF, and the

returns from each beam are summed over multiple PRFs.

18.6 SAR Impairments

Several factors can degrade SAR performance. One of the most significant is the nonlinear

flight path of an aircraft. We have seen how sensitive the phase alignments are to proper

focusing, in fractions of the radar wavelength. Therefore, deviations in flight path away from

the parallel line of the radar scan path must be determined and accounted for. This motion

compensation can be done using inertial navigation equipment and by using GPS location
www.newnespress.com

http://www.newnespress.com/

222 Chapter 18

www
and elevation measurements. Another consideration is side lobe return. When the side

lobe return from the ground beneath the plane is integrated over a wide azimuth and

elevation angles, this can become significant despite the low antenna gain at the side lobes.

The design of the synthetic antenna, just like a real antenna, must take this factor into

account. There are methods, similar to windowing in FIR filters, that can reduce side lobes,

but at the expense of widening the main lobe and degrading resolution. Another issue is

that the central assumption in SAR is that the scanned area is not in motion. If vehicles or

other targets on the ground are in motion, they are not resolved correctly and are distorted

in the images. Shadowing is another impairment. This occurs when a tall object shields

another object from the radar’s illumination, causing a block or blank spot in the range

return. This issue becomes more prevalent when very shallow angles are used, which

occurs when the aircraft is at a low altitude and scanning at long ranges. At high altitudes,

such as satellite-mounted SAR, shadowing is much less of an issue.
.newnespress.com

http://www.newnespress.com/

Digital Signal Processing 101. DOI: 10.1016/B978-1-85617-921-8.00023-7
2010 Elsevier Inc. All rights reserved. 223
CHAPTER 19
Introduction to Video Processing
Video signal processing is used throughout the broadcast industry, the surveillance

industry, in many military applications, and is the basis of many consumer technologies.

Up until the 1990s, nearly all video was in analog form. In a relatively short time span,

nearly all video technologies have become digital. Virtually all video is now represented in

digital form, and DSP techniques are used in nearly all video signal processing functions.

The picture element, or pixel, is used to represent each location in an image. Each picture

element has several components, and each component is usually represented by a 10-bit value.

19.1 Color Spaces

There are several conventions, or “color spaces,” used to construct pixels. The broadcast

industry originally used black-and-white images, so a video signal contained only luminance

(or brightness) information. Later, four-color information was added to provide for color

television and movies. This was known as the chrominance information. The color space format

associated with this is known as YCrCb, where Y is the luminance information, and Cr and

Cb are the chrominance information. Cr tends to contain more reddish hue color information,

whereas Cb tends to contain more bluish hue color information Each is usually represented as

a 10-bit value. One advantage of this system is that image processing and video bandwidth can be

reduced by separating the luminance and chrominance. The reason is that our eyes are much

more sensitive to intensity, or brightness, than to color. So a higher resolution can be used for

luminance and less resolution for chrominance. There are several formats used:
4:4:4 YCrCb Each set of four pixels is composed of four Y (luminance) and four

Cr and four Cb (chrominance) samples.

4:2:2 YCrCb Each set of four pixels is composed of four Y (luminance) and two

Cr and two Cb (chrominance) samples.

4:2:0 YCrCb Each set of four pixels is composed of four Y (luminance) and one

Cr and one Cb (chrominance) samples.
Most broadcast systems and video signals use the 4:2:2 YCrCb format, where the luminance

is sampled at twice the rate of each Cr and Cb chrominance. Each pixel therefore requires an

average of 20 bits to represent, as compared to 30 bits for 4:4:4 YCrCb.

224 Chapter 19

www
An alternate system was developed for computer systems and displays. There was no

legacy black and white to maintain compatibility with, and transmission bandwidth was

not a concern because the display is just a short cable connection to the computer. This

system is known as the RGB format, for red/green/blue. Each pixel is composed of these

three primary colors and requires 30 bits to represent. Most all televisions, flat screens,

and monitors use RGB video, whereas nearly all broadcast signals use 4:2:2 YCrCb video.

These two color spaces (see Figures 19.1 and 19.2) can be mapped to each other as follows:

Y ¼ 0:299 � Rþ 0:587 � Gþ 0:114 � B
Cr ¼ 0:498 � R 0:330 � Gþ 0:498 � Bþ 128

Cb ¼ 0:168 � R 0:417 � G 0:081 � Bþ 128

and
R ¼ Yþ 1:397 � ðCr 128Þ
G ¼ Y 0:711 � ðCr 128Þ 0:343 � ðCb 128Þ
B ¼ Yþ 1:765 � ðCb 128Þ
Cr Y Cb

Figure 19.1

R BG

Figure 19.2

.newnespress.com

http://www.newnespress.com/

Introduction to Video Processing 225
There are other color schemes as well, such as CYMK, which is commonly used in printers,

but we do not cover this scheme further here.

Different resolutions are used. Very common is the National Television System Committee

(NTSC), also known as the SD or standard definition. It has a pixel resolution of 480 rows

and 720 columns. This resolution forms a frame of video. In video jargon, each frame is

composed of lines (480 rows) containing 720 pixels. The frame rate is approximately 30

frames (actually 29.97) per second, or fps.

19.2 Interlacing

Most NTSC SD broadcast video is interlaced. This was due to early technology in which

cameras filmed at 30 frames per second, but this was not a sufficient update rate to

prevent annoying flicker on television and movie theater screens. The solution was interlaced

video where frames are updated at 60 frames per second, but only half of the lines are

updated on each frame. On frame N, the odd lines are updated, and on frame N þ 1 the

even lines are updated and so forth. This is known as “odd and even field updating.”

Interlaced video requires half the bandwidth to transmit as noninterlaced, or progressive,

video at the same frame rate because only one half of each frame is updated at the 60 fps rate.

Modern cameras can record full images at 60 fps, although there are still many low-cost

cameras that produce this interlaced video. Most monitors and flat-screen televisions

usually display full, or progressive, video frames at 60 fps. When you see a 720p or

1080i designation on a flat screen, the “p” and “i” stand for progressive and interlaced,

respectively. This has become less of an issue, as nearly all new products are now 1080p.

19.3 Deinterlacing

An interlaced video stream is usually converted to progressive for image processing, as well

as to display on nearly all computer monitors. Deinterlacing must be viewed as interpolation

because the result is twice the video bandwidth. There are several methods available for

deinterlacing, which can result in different video qualities under different circumstances.

The two basic methods are known as “bob” and “weave.” Bob is the simpler of the two. Each

frame of interlaced video has only one half the lines. For example, the odd lines (1, 3, 5, . . .

479) have pixels, and the even lines (2, 4, 6, . . . 480) are blank. On the following frame, the

even lines have pixels, but the odd lines are blank. The simplest bob interlacing is to just

copy the pixels from the line above for blank even lines (copy line 1 to line 2) and copy the

pixels from the line below for blank odd lines (copy line 2 to line 1). Another method would

be to interpolate between the two adjacent lines to fill in a blank line. Both of these methods

are shown in Figure 19.3.
www.newnespress.com

http://www.newnespress.com/

Scan line duplication

Scan line interpolation

Figure 19.3

226 Chapter 19

www
This method can cause blurring of images because the vertical resolution has been

effectively halved.

Weave deinterlacing creates a full frame from the separate interlaced frames with odd and

even lines. It then copies this frame twice to achieve the 60 fps rate. This method tends to

work only if there is little change in the odd and even interlaced frames, meaning there is

little motion in the video. Because the odd and even frame pixels belong to different

instances in time (1/60th of a second difference), rapid motion can result in jagged edges in

the images rather than smooth lines. This is shown in Figure 19.4.
Figure 19.4
Both of these methods have drawbacks. A better method, which requires more sophisticated

video processing, is to use motion adaptive deinterlacing. Where there is motion on the image,

the bob technique works better, and slight blurring is not easily seen. In still areas of the
.newnespress.com

http://www.newnespress.com/

Introduction to Video Processing 227
image, the weave method results in crisper images. A motion adaptive deinterlacer scans the

whole image and detects areas of motion by comparing to previous frames. It uses the bob

method in these areas of the frame and uses the weave method on the remaining areas of the

frame. In this way, interlaced video can be converted to progressive with little loss of quality.

19.4 Image Resolution and Bandwidth

Early televisions used a cathode ray gun inside a fluorescent tube. The gun traversed the

screen horizontally from left to right for each line. There was a brief horizontal blanking

period, while the gun swung back to the left side of the screen, as indicated by the horizontal

sync (HSYNC) signal. After 480 lines, the gun would be at the bottom-right corner of the

screen. It would swing back to the top-left corner to begin a new frame, as indicated by the

vertical sync (VSYNC) signal. This time period was the vertical blanking time.

Due to these blanking periods, the frame size is larger than the image size. For example, in

SD definition, the actual image size viewed is 480 � 720 pixels. When blanking times are

included, this is as if a 525 � 858 pixel image was sent, with the pixels blanked out, or

zeroed, during the extra horizontal and vertical space. This legacy of allowing time for the

cathode ray gun to return to the beginning of the video line or frame is still present in video

standards today. In digital video and displays, these empty pixels can be filled with what is

called ancillary data. This data could be display text at the bottom of the screen, audio

information, data on the program currently being viewed, and so forth. The extra blanking

times must be taken into account when determining video signal bandwidths.

Higher definition or resolution, or HD, video formats are now common. HD can refer to

720p, 1080i, or 1080p image resolutions. Many people are unaware, but much of the HD

video content they receive from their cable or satellite provider is actually 720p video. The

quality difference is small, and it requires half the transmission bandwidth to transmit. Most

HD flat screens can display 1080p resolution, but this resolution video is often available only

through DVRs or from other in-home media sources.
Table 19.1: Common video resolution and data rates

Image Size Frame Size Color Plane Format at 60 fps Bps Transfer Rate

1080p � 1920 1125 � 2200 4:2:2 YCrCb 2200 � 1125 � 20 �
60 ¼ 2.97 Gbps

1080i � 1920 1125 � 2200 4:2:2 YCrCb 2200 � 1125 � 20 � 60
� 0.5 ¼ 1.485 Gbps

720p � 1280 750 � 1650 4:2:2 YCrCb 1650 � 750 � 20 � 60 ¼
1.485 Gbps

480i � 720 525 � 858 4:2:2 YCrCb 858 � 525 � 20 � 60 �
0.5 ¼ 270 Mbps

www.newnespress.com

http://www.newnespress.com/

228 Chapter 19

www
19.5 Chroma Scaling

Chroma scaling is used to convert between the different YCrCb formats, which have various

resolutions of color content. Themost popular format is 4:2:2 YCrCb. In this format, each Y pixel

has alternately a Cr or a Cb pixel associated with it, but not both. To convert to the RGB

format, 4:4:4 YCrCb representation is needed, where each Y pixel has both a Cr and Cb pixel

associated with it. This requires interpolation of the chroma pixels. In practice, this is often done

by simple linear interpolation or by nearest neighbor interpolation. It can also be combined

with the mapping to the RGB color space. Going the other direction is even simpler because the

excess chroma pixels can be simply not computed during the RGB! 4:2:2 YCrCb conversion.

19.6 Image Scaling and Cropping

Image scaling is required to map to either a different resolution or to a different aspect ratio

(row/column ratio). This process requires upscaling (interpolation) over two dimensions to go

to a higher resolution, or downscaling (decimation) over two dimensions to go to a lower

resolution. Several methods of increasing complexity and quality are available:

• Nearest neighbor (copy adjacent pixel)

• Bilinear (use 2 � 2 array of 4 pixels to compute new pixel)

• Bicubic (use 4 � 4 array of 16 pixels to compute new pixel)

• Polyphase (larger array of N � M pixels to compute new pixel)

When several lines of video are filtered vertically, the memory requirements increase because

multiple lines of video must be stored to perform any computations across vertical pixels.

The effects of increasing filtering when downscaling can be easily seen using a circular video

pattern. Downscaling, like decimation, causes aliasing if high frequencies are not suitably

filtered, as shown in Figure 19.5.
Bilinear
(2 x 2)

interpolation

5 Tap
(5 x 5 pixel array)

interpolation

9 Tap
(9 x 9 pixel array)

interpolation

Figure 19.5

.newnespress.com

http://www.newnespress.com/

Introduction to Video Processing 229
Upscaling is far less sensitive than downscaling. Bicubic (using a 4 � 4 array of pixels) is

sufficient. The effect of performing upscaling by using a smaller array or nearest neighbor

is limited to slight blurriness, which is far less objectionable than aliasing.

Cropping is simply eliminating pixels, to allow an image to fit within the frame size.

It does not introduce any visual artifacts.

19.7 Alpha Blending and Compositing

Alpha blending is the merging of multiple images. One image can be placed over the top of

another image, as shown in Figure 19.6. This method is known as compositing, a method

commonly used to implement “picture in picture” functionality.

The more general case is a blending or weighting of the pixels in each image. This process

is controlled by the factor alpha (a). This blending is done on a pixel-by-pixel basis, for

each color as shown:

New pixelred ¼ a � pixelredfrom image2þ ð1 aÞ � pixelredfrom image1

New pixelgreen ¼ a � pixelgreenfrom image2þ ð1 aÞ � pixelgreenfrom image1

New pixelblue ¼ a � pixelbluefrom image2þ ð1 aÞ � pixelbluefrom image1
Figure 19.6
19.8 Video Compression

Video data is very large, due to two spatial dimensions, high resolution, and requires

60 fps. To store or transmit video, data compression technology is used. This capability is

essential to allow services such as video on demand or streaming video to handheld wireless

devices. Video compression is a lossy process; some information is lost. The goal is to
www.newnespress.com

http://www.newnespress.com/

230 Chapter 19

www
achieve as much compression as possible while minimizing the data loss and restoring

same perceptual quality when video is decompressed. This gaol is especially important in

fast-motion video, such as during televised sports.

Video compression ratios depend both on the compression technology or standard used, as

well as the video content itself. The newer video compression algorithms can deliver better

quality, but at a price of very high computational requirements. Video compression

processing is almost always done in hardware due to the computational rate, either in FPGAs

or ASICs.

The most popular video compression algorithms are part of the MPEG4 standard. MPEG4

evolved from the earlier H.263. At the time of this writing, MPEG4 part 10, also known as

MPEG4 AVC or H.264, is being widely adopted by the industry.

Most other video compression algorithms are variants of MPEG4. One example is

QuickTime, developed by Apple Computer. Another is Windows Media Video, developed by

Microsoft.

As you might guess, video compression is a very complex topic. It involves analysis

across both spatial and temporal dimensions, and uses complex algorithms. In Figure 19.7,

the two images depict comparative quality of an early version of MEPG4 and quality of

the later MPEG4-10 in a video with a high degree of motion.
Figure 19.7
19.9 Video Interfaces

There are several common video interfaces used both in the broadcast industry and among

consumer products. These are briefly described here:
.newnespress.com

http://www.newnespress.com/

Introduction to Video Processing 231
• HDMI: Commonly used in high definition home theater systems. Often used to

connect to interconnect flat screen televisions, Blu-ray video recorders and cable boxes.

HDMI is a high quality shielded cable, to transmit uncompressed 1080p video in

digital form.

• SDI: This is a broadcast industry standard, used to interconnect various professional

equipment in broadcast studios and mobile video processing centers (like those big truck

trailers seen at major sporting events). SDI stands for serial data interface, which is not

very descriptive. It is an analog signal, modulated with digital information. This is

usually connected using a coaxial cable. It is able to carry all the data rates listed in the

table shown earlier and dynamically switch between them. Most FPGAs and broadcast

ASICs can interface directly with SDI signals.

• DVI: This is a connection type common on newer computer monitors. It is a multipin

connector carrying separated RGB digitized video information at the desired frame

resolution.

• Analog RGB: This is an interface used to connect most computer monitors. It is the

familiar multipin “sub-D” connector located on the back or side of all computers, used to

connect to monitors or for laptops to connect to projectors for whole-room viewing. This

interface carries separated RGB digitized video information at the desired frame

resolution.

• CVBS: Standing for Composite Video Blanking and Sync, this is the basic yellow cable

used to connect televisions, VCRs, and DVDs together. It carries an SD 4:2:2 YCrCb

combined analog video signal on a low-cost coax “patch cable.”

• S-Video: This is commonly used to connect consumer home theater equipment such as

flat-panel televisions, VCRs, and DVDs together. It carries a 4:2:2 YCrCb signal in

separate form over a single multipin connector, using a shielded cable. It is higher quality

than CVBS.

• Component Video: This is also commonly used to connect consumer home theater

equipment such as flat-panel televisions, VCRs, and DVDs together. It carries a 4:2:2

YCrCb analog signal in separate form over three coax patch cables. Often the connectors

are labeled Y, PB, and PR. It is higher quality than S-video due to the separate cables.
www.newnespress.com

http://www.newnespress.com/

Digital Signal Processing 101. DOI: 10.1016/B978-1-85617-921-8.00024-9
2010 Elsevier Inc. All rights reserved. 233
CHAPTER 20
Implementation Using Digital Signal
Processors
A digital signal processor is a special form of microprocessor that is optimized to perform

DSP operations. The first DSP processors became available in 1982. They are designed to

perform DSP functions in an efficient manner, using conventional software programming

design and verification techniques. Due to the special features and parallelism added for DSP

operations, conventional programming languages such as C often do not have the syntax to

express the needed operations, although advanced compilers developed by the DSP processor

manufacturers do try to interpret the programmer’s intent and map to the DSP processor

features in the most effective manner. For this reason, a vendor-specific language, known as

assembly, is instead used to code the most DSP-intensive portions of the software. Assembly

language is a proprietary set of instructions for a given processor. This is not as big a

restriction as it may sound because the portion of the software code implemented in assembly

is often 5–10% or less of the entire code base, and the DSP vendors themselves often provide

the reference code for many common DSP algorithmic implementations. But writing in

assembly code does require knowledge of the DSP processor hardware architecture and how

to optimally write code that takes advantage of the DSP processor architecture features.

20.1 DSP Processor Architectural Enhancements

DSP processor enhancements, as compared to those of microprocessors, are generally divided

into three categories:

• They enable maximum data bandwidth in and out of the DSP core engine.

• They efficiently implement the mathematical operations commonly required in DSP.

• They allow for the addition of multiple cores or hardware coprocessors to meet demands

of the high computational rate of DSP applications.

20.1.1 Data I/O Bandwidth

All processors can be limited by data bandwidth in and out of the processor core or engine.

However, bandwidth is especially a concern for DSP processors. This concern is due to

the nature of the processing tasks. Many microcontrollers are primarily used to make

234 Chapter 20

www
decisions based on various inputs and to control various tasks in response. A flow chart or

state diagram is often used to describe the required behavior. In contrast, a DSP processor

typically is focused on processing or performing specific mathematical operations on

continuous streaming input data, often in an assembly line fashion. Where decisions are

made, they are typically based on some mathematical characteristic of the input data,

which the DSP processor has determined after on-the-fly analysis of the data.

Data is transferred on buses, which can be 16, 32, 64, or even larger bit widths. Data

buses are used to connect the core to various memories and to various peripheral units.

The memories might be on-chip RAM or off-chip Flash or DRAM. Peripheral units could

be serial ports, parallel ports, USP ports, Ethernet MACs, and so on. The DSP core is

primarily interfacing with on-chip memory. On-chip memory is usually very fast and low

latency. Data usually can be read or written in a single processor clock cycle. This is also

known as Level 1, or L1, memory. Larger multi-cycle access memory, which can also be

on-chip, is known as L2 memory. Much larger off-chip memory, which has even longer

access times, is often referred to as L3 memory. Caches can also be used, but typically

only for the instructions because DSP data is often read or written only once from memory.

DSP processors, at a minimum, need three input data buses. On any given DSP

processor clock cycle, the core must be able to read the next instruction word and two

data words. This is sometimes referred to as the “Harvard” architecture. The two data

words are typically both the digitized signal being processed and a fixed coefficient.

This would certainly apply to FIR filters as well as FFTs (where the coefficient is the

complex exponential or twiddle factors). Often a fourth bus is employed to write back

to the on-chip memory. Data buses can sometimes have additional flexibility, such as

a 32-bit bus to be able to read or write 16-bit complex symbol pairs in a single cycle,

by concatenating the quadrature component.

In addition, DSP processors often need to read or write data in a specific order to optimize

the processing steps. Recall in our discussion of FFTs that the FFT data is either read in or

written out in “bit-reversed” format. Or imagine performing digital filtering, where after

processing one sample through all the filter coefficients, the next sample processing is

required to read the same set of coefficients again. Or data may need to be read or written in

various strides (reading every Nth sample) for decimation filters. To facilitate these functions,

the DSP processors use hardware units known as data address generators (DAGs). A DSP

processor typically has multiple DAGs (four or more) to be able to reconfigure DAGs during

a given algorithm. A DAG can be programmed to support a circular buffer, for example.

In this case, the DAG might read in a set of coefficients sequentially and, at the end, wrap

around to start anew at the top of the coefficient memory location. This is known as circular

addressing. Another typical function might be to read or write data with a programmable

stride. Often, the I and Q values might be stored in an interleaved fashion. If a function needs
.newnespress.com

http://www.newnespress.com/

Implementation Using Digital Signal Processors 235
to access the real and imaginary data separately, two DAGs might be programmed to access

data at every other memory location, with the quadrature data DAG starting an offset relative

to the real data DAG.

For other data transfers, such as from one type of memory to memory, or from a peripheral

unit to memory, special hardware units known as direct memory access (DMA) controllers

are used. The advantage is to allow the processor to preprogram these DMA controllers to

move a block of data from one place to another, relieving the processor core from spending

time and clock cycles in performing these functions itself. This capability is especially

important in DSP processors because data is usually processed in chunks or blocks, and must

be available to the DSP core when ready for processing. Typically, the DSP core processes

one block of data while the DMA engine is moving the next block of data to a designated

location in L1 memory.

A simple example might be an input signal coming through an ADC. The ADC samples

a signal and converts it into a digitized form at a specific sampling rate. The ADC data

could be transferred to the DSP through several possible serial or parallel interface methods.

The DMA engine might be configured to move these samples sequentially into a specific

processor memory space and interrupt the processor when a specific number of samples

have been received. This eliminates the need for the DSP core to perform individual read

operations, and be interrupted only when a complete block of data is ready for processing.

Like the DAGs, the DMA engines in DSP processors are often capable of supporting

different strides and offsets. DMA engines may have the flexibility to support

multidimensional data structures, which might be composed of frames, which in turn are

composed of slots, which are composed of symbols, which are composed of real and

quadrature data words.

20.1.2 Core Processing

Due to the high processing rates required and the need to complete processing in a

deterministic time interval (known as real-time processing), DSP processors usually execute

all instructions in a single clock cycle. This is similar to RISC processors, but in the case of

DSP processors, the instructions can be quite complex. In fact, an architecture known as very

long instruction word (VLIW) has become popular with several DSP processor vendors

because it allows for complex instructions to be easily defined and executed in a single cycle,

using very parallel core hardware architectures. It can also be adapted to work with a

variable-length instruction word, depending on each instruction’s complexity. The most

common instructions would tend to be the shortest, reducing code memory size.

The most fundamental DSP operation is to multiply two operands and add the product to an

accumulator. This is known as a multiply accumulate (MAC). Naturally, the DSP core
www.newnespress.com

http://www.newnespress.com/

236 Chapter 20

www
contains one or more multiply-accumulator circuits. In fact, this is so important that DSP

processors are often rated in either millions of instructions per second (MIPs) or, more

commonly, in millions of multiply accumulates per second (MMACs). The most common

precision size is a 16 � 16-bit multiplier, feeding a 40-bit accumulator. This means that there

are 8 extra bits in the accumulator, and 28, or 256, products can be summed into the

accumulator before any accumulator overflow could occur. Some DSP processors also have a

provision for 32 � 32-bit multiplication, often by combining several 16-bit multipliers.

Architectural support for single-cycle complex multiplication using multiple multipliers

in the core is also advantageous.

Larger multipliers can be built from smaller multipliers, allowing a flexible multiplier

size. As shown here, a single 32 � 32 multiplier can be built from four 16 � 16 multipliers,

using several adders:

Inputs : A½31 : 0� B½31 : 0�
Output : R½63 : 0�

The four 16 � 16 multipliers produce the following products:
A½15 : 0� � B½15 : 0� ¼ P1½31 : 0�
A½31 : 16� � B½15 : 0� ¼ P1½47 : 16� must shift left by 16

A½15 : 0� � B½31 : 15� ¼ P1½47 : 16� must shift left by 16

A½31 : 16� � B½31 : 16� ¼ P1½63 : 32� must shift left by 32

The sum of these four products forms the final 32 � 32 result, R[63:0].
A 16 � 16 complex multiplier is also implemented using four 16 � 16 multipliers:

ðAþ jBÞ�ðCþ jDÞ
¼ A�Cþ jB�Cþ A�jDþ jB�jD
¼ ACþ jBCþ jAD BD

¼ ðAC BDÞ þ jðBCþ ADÞ
The real part of the complex product is the difference between the two multiplier products.
The imaginary part of the complex product is the sum of the two multiplier products.

Notice that four multiply operations are required.

Barrel shifting, rounding, and saturation circuits and other shift instructions are also

important for DSP processing. A simple example could be implementation of FIR filters. The

input data is multiplied by all the coefficients, each output requiring N cycles for an N tap

FIR filter. As the result is accumulated over the N cycles, the result grows. Assuming a 16-bit

DSP and a 40-bit accumulator, the filter output is 40 bits. The accumulator can often be saved

as the LSW (least significant word, 16 bits), MSW (most significant word, 16 bits), and

overflow (8 bits). Often, only the MSW result is saved back to memory as a 16-bit result.
.newnespress.com

http://www.newnespress.com/

Implementation Using Digital Signal Processors 237
This requires shifting the result as needed to align with MSW boundaries, rounding the result

using the LSW content, and performing saturation in the event the result exceeds this

representation. All these functions should be able to be performed in a single cycle as the

16-bit result is saved back to memory, and so provisions for this must be provided in

the vendor-specific assembly instructions.

Other necessary functions are supported for Boolean operations such as AND, OR, and

EXOR. These are normally performed across a 16- or 32-bit word. In addition, bit field

packing, concatenation, rotation, and extraction are often highly useful for various

error correction and cryptography applications, and are included in a DSP processor

instruction set.

DSP processors spend most of their cycles in tight loops. Therefore, they have provisions

for what is called “zero overhead looping.” In a conventional processor, the code must

often decrement a counter and test the result at the end of the loop to determine whether

to exit or jump to top of the code loop again. In DSP processors, this capability is built

into the hardware, so no extra cycles need to be used in this testing or jumping back to

the top.

Due to the need to respond quickly in external inputs, DSP processors have resources to

facilitate low-latency interrupt service routines (ISRs). Features such as interrupt shadow

registers, vectored ISRs (rather than use of single global ISR locations), nested interrupt

capabilities, and other operations allow for a DSP processor to react quickly, prioritize, and

perform necessary processing from a number of different interrupt sources, including the

DMA controller engines.

DSP processors may also have application-specialized instructions. For example, vector

instructions might allow simultaneous processing of real and quadrature portions of a symbol.

Often, there is an ADD, COMPARE & SELECT instruction to allow efficient

implementation of the Viterbi algorithm.

20.1.3 Multiple Cores or Hardware Coprocessors

DSP vendors have also responded to the high computational demands of LTE wireless

baseband processing in particular by building hardware circuits to perform specialized LTE

algorithmic tasks, thereby off-loading the DSP cores. Otherwise, the DSP cores would be

unable to keep up with the required LTE baseband processing. Due to the large LTE base

station market for DSP processors and the well-defined requirements in the LTE standard, it

has been economically feasible to optimize DSP processor products specifically for this

application. Functions like Turbo error correction and OFDMA FFT processing can be

implemented in hardware coprocessors, with the data flow being managed by one or more of

the multiple DSP cores contained in a single device.
www.newnespress.com

http://www.newnespress.com/

238 Chapter 20

www
20.2 Scalability

In many applications, the trend is for increasing DSP computational requirements. For

example, use of high definition in video processing, 4 G LTE systems, advanced radar and

sonar, and some new error correction algorithms requires increasingly high rates of DSP.

In the 1990s, DSPs evolved by increasing clock rates, increasing amounts of L1 memory,

and some architectural improvements. In the next decade, further improvements such as more

onboard multiply accumulate circuits per core, better C compilers, addition of Ethernet

MAC, and other high-bandwidth interfaces were included. However, silicon process

technology improvements were unable to deliver the same improvements in clock circuit

speeds. Clock rates have topped out at about 1.2 GHz in the highest performance DSPs.

To deliver more processing power, DSP processor vendors have responded by adding more

DSP cores per chip, currently up to six independent cores.

Having more processor cores is effective when many different and independent DSP tasks

can be partitioned and run simultaneously. It is a poor solution when the tasks are

interrelated, or individual tasks have very high computational requirements. It is also not

especially scalable. As the number of cores increases, partitioning the tasks across the cores

and managing the intercore communications become increasingly difficult. Several DSP

processor “startup” or venture-funded companies have developed products with dozens or

hundreds of cores, but these products were not significantly adopted by industry.

20.3 Floating Point

Nearly all DSP processors are fixed-point processors. This is due to the larger floating-point

circuit requirements, higher power consumption, and lower performance compared to fixed

point. For the vast majority of DSP applications, fixed-point arithmetic is suitable. However,

this does require care on the part of the designer to ensure the dynamic range of the signal is

mapped into the limited fixed-point precision.

Several DSP processors do offer floating-point DSP products, although at much lower

performance levels than the fixed-point products. One popular application for floating-point

DSP processors is high-fidelity audio processing. This is due to relatively low processing

rates, high dynamic range requirements, and extensive use of IIR filters, which can have

stability issues when implemented in fixed point.

High-performance floating point is more commonly implemented on Pentium-type

processors, graphics processors, or some specialty floating-point processors.

Usage tends to be on military applications, such as radar back-end processing, or

high-performance computing, such as for research purposes (an example might be

climate simulations).
.newnespress.com

http://www.newnespress.com/

Implementation Using Digital Signal Processors 239
20.4 Design Methodology

The design methodology used with DSP processors is very similar to that used on other

types of processors. The software-based approach offers the optimal flexibility to build

and debug complex algorithms. Due to the serial nature of the software flow, the

implementation and debugging are simplified, all variables in memory are accessible,

and the flow tends to be more “natural” to the designer’s thought process.

In summary, the DSP processor is a specialized processing engine that is reconfigured

each clock cycle for many different functions, mostly DSP related, others more control

or protocol oriented. Resources such as processor core registers, internal and external

memory, DMA engines, and I/O peripherals are shared by all tasks, often referred to as

“threads.” This creates ample opportunities for the design or modification of one task to

interact with another, often in unexpected or nonobvious ways. In addition, most DSP

algorithms must run in real time, so unanticipated delays or latencies can cause system

failures. Some of the challenges of DSP programming include

• Mixture of C or high-level language subroutines with assembly language subroutines

• Possible pipeline restrictions of some assembly instructions

• Nonuniform assumptions regarding processor resources by multiple engineers

simultaneously developing and integrating disparate functions

• Ensuring interrupts completely restore the processor state upon completion

• Blocking of a critical interrupt by another interrupt or by an uninterruptible process

• Undetected corruption or noninitialization of pointers

• Properly initializing and disabling circular buffering addressing modes

• Preventing memory leaks, the gradual consumption of available volatile memory due to

failure of a thread to release all memory when finished

• Dependency of DSP routines on specific memory arrangements of variables

• Unexpected memory rearrangement by optimizing linkers and compilers

• Use of special “DSP mode” instruction options in core

• Conflicts or unexpected latencies of data transfer peripherals and memory when using

DMA controllers

• Corrupted stack or semaphores

• Subroutine execution times dependent on input data or configuration

• Pipeline restrictions of some assembly instructions

20.5 Managing Resources

Interaction between different tasks or threads can cause intermittent and sometimes

hard-to-detect problems in all processor architectures. Microprocessor, DSP, and operating

system (OS) vendors have attempted to address these problems with different levels of
www.newnespress.com

http://www.newnespress.com/

240 Chapter 20

www
protection or isolation of one task or “thread” from each other. An operating system can

be used to manage access processor resources, such as allowable execution time, memory,

or common peripheral resources. However, there tends to be an inherent compromise

between processing efficiency and the level of protection offered by the OS. In DSPs,

where processing efficiency and deterministic latency are often critical, the result is usually

minimal or no level of real-time operating system (RTOS) isolation between tasks. Each

task or thread often requires unrestricted access to many processor resources in order to run.

The diagram in Figure 20.1 helps illustrate how complex a DSP processor system is.

All these functions exist to service the DSP processor core, which can execute only one

instruction at a time. But generally, only a subset of the hardware in a DSP processor is

needed at any given time because the hardware must be designed to support every

instruction. This is the inherent inefficiency in any processor architecture, compared to a

custom hardware implementation. The penalty of the flexibility of the DSP processor is

this hardware inefficiency.
External memory
PLL, clock, reset
Peripheral I/O

DMA engines

L1 memory, stack, cache
Data address generators

DSP core
RTOS or scheduler

Interrupt service routines

T
H
R
E
A
D

1

T
H
R
E
A
D

2

T
H
R
E
A
D

3

T
H
R
E
A
D

4

T
H
R
E
A
D

5

T
H
R
E
A
D

6

Figure 20.1
20.6 Ecosystem

A significant factor in choosing a silicon platform for DSP applications is the available

tool and intellectual property (IP). Different DSP processor vendors have various amounts

of DSP software IP available. Smaller, independent DSP IP companies also license software

modules for many functions on popular DSP families. This can be a major factor in the

choice of DSP processor. For example, someone wishing to build media gateways needs

to implement voice compression and decompression for a variety of industry-standard
.newnespress.com

http://www.newnespress.com/

Implementation Using Digital Signal Processors 241
voice codecs, or vocoders, as well as echo cancellation capability. These algorithms are

available for several DSP processor families, eliminating the need for a proprietary

development. Similar IP is available for image compression used in the video surveillance

industry, motor control algorithms used in industrial applications, code for facsimile and

modem standards, and many other applications.

In addition, major DSP processor manufacturers have sophisticated and robust development

tools, which include compilers, assemblers, linkers, and debuggers. They also often supply

RTOS, Ethernet TCIP stacks, and many other commonly used device drivers and IP stacks.

In addition, many third-party companies also supply RTOS products and various IP stacks for

specific DSP processor architectures.
www.newnespress.com

http://www.newnespress.com/

Digital Signal Processing 101. DOI: 10.1016/B978-1-85617-921-8.00025-0
2010 Elsevier Inc. All rights reserved. 243
CHAPTER 21
Implementation Using FPGAs
Field Programmable Gate Arrays (FPGAs) can be used to perform DSP. From their

origins as custom logic and interface functions, FPGAs have grown to include nearly

every function that can be implemented digitally and are able to interface to nearly any

other circuit at nearly any data rate desired. From a DSP point of view, FPGAs are often

used to interface to ADCs and DACs, as well as backplanes. Wherever a DSP processor

is used, the FPGA often is used in the system for interfacing as well.

FPGA fabric is composed of configurable logic elements and programmable routing, which

allow any digital function to be built, including multipliers, adders, accumulators, shifters,

registers, and any other functions that might be found in a DSP processor. Distributed

memory in different-size arrays or blocks is also integrated within FPGAs. In addition, to

optimize FPGAs for DSP applications, special DSP blocks are available in most FPGA

devices. Logic-intensive functions like multipliers can be hardened, which, besides leaving

more programmable logic available for other functions, allows the multipliers to run

much faster and consume less power. There are other circuits that can be hardened in addition

to the multipliers. Typically, these circuits are collected into DSP blocks, which are

architected to implement common DSP operations efficiently. This topic is discussed in

more detail later in this chapter.

FPGA devices can be very small, from a few thousand logic elements, or very large,

up to one million or more logic elements. The number of hardened multipliers can

vary from a few dozen to thousands in a single device. Because of the sheer number

of available circuits, FPGAs are much more powerful DSP platforms than any

DSP processor. A high-end DSP might be able to perform perhaps 10 giga

multiply accumulates (GMACs) per second, whereas a high-end FPGA could

perform in excess of 1000 GMACs per second. This is an increase of about 100-fold,

or two orders of magnitude.

With this disparity in processing power, you might wonder why DSP processors are

so commonly used. DSP processors first became available in 1982, whereas FPGAs

suitable for DSP applications were not available until the mid-1990s. Many

applications have a legacy of using DSP processors. More importantly, the design

244 Chapter 21

www
methodology of the two technologies is completely different. This point is very

important and helps explain why either a DSP processor or an FPGA is more suitable

for a given application.

21.1 FPGA Design Methodology

FPGAs are fundamentally hardware devices, even though they are programmable.

Unlike a processor, an FPGA is not controlled by scheduling the operations of a processing

engine, but by configuring the hardware itself to perform the necessary operations for a

particular design.

A DSP processor core is a reconfigurable engine, which on a cycle-by-cycle basis is

configured to support a specific operation. Aside from the parallelism built into the core

(e.g., parallel circuits to fetch the next instruction plus two data operands, while

multiplying and accumulating previous operands), each algorithm is fundamentally

implemented in a serial fashion. Processing rates are primarily determined by the DSP

processor clock rate. The software designer of a processor-based system is limited by the

available instructions of a given processor, which in turn depends on the processor

architecture. Operations not supported in the processor hardware can still be implemented

in software, but usually inefficiently. For example, a 16-bit division operation in most

DSP processors is implemented iteratively over at least 16 clock cycles because there is

no single-cycle division instruction.

By contrast, in an FPGA, the hardware is normally configured to support a predetermined

DSP data path function. The entire application is normally implemented by building

a separate hardware circuit for each operation and passing the data through in a process

not unlike the assembly line used in factories. Just like on an assembly line, the

distribution of operations to separate circuits results in a dramatic speedup in throughput

because many operations are performed in parallel in a pipelined or step-by-step

fashion. The DSP processor analogy would be a single worker to build the entire

product, step by step. Throughput is increased by adding more workers (DSP

processor cores).

Due to the distributed nature of memory in an FPGA, the needed data can always be

quickly accessed from memory by each different circuit. The composite memory I/O

bandwidth in the distributed FPGA memory far exceeds that of a DSP processor

bandwidth, despite the multiple memory buses of the DSP processor.

An FPGA circuit can be made adaptable, often by using registers to set the operational

mode. For example, an FFT hardware circuit can be built with a register-configurable

number of points (although often limited to 2N, where N is an integer), or an FIR filter can

have coefficients stored in a memory block or registers, which can be updated during
.newnespress.com

http://www.newnespress.com/

Implementation Using FPGAs 245
operation. Despite this, an FPGA simply does not have the same flexibility as a DSP

processor. The processor can execute any valid instruction on the next cycle, whereas

the flexibility needed in an FPGA hardware data path must be anticipated and

provisioned for by the designer.

DSP processors, while having much smaller memory bandwidth, do have the capability

to access any location across the entire memory space from cycle to cycle. FPGAs,

while having much higher memory bandwidth due to inherent parallelism, can access

only the data available in each local memory block, which is normally determined by

the data flow through the data path as anticipated by the designer. Again, the

FPGA achieves a massive increase in bandwidth, but at the expense of runtime

flexibility.

21.2 DSP Processor or FPGA Choice

Given their differences, FPGAs and DSP processors tend to be used in applications

where their respective merits can provide the optimum implementation platform. DSP

processors tend to be more suitable when the application is very complex or requires

many configurations, and the processing rates are low enough to allow for DSP processor

implementation. Complex algorithms are often easier to implement and debug in a

software-based flow. Some applications may require very data-dependent processing

algorithms, where different DSP operations may be needed, as determined by the input

data. In an FPGA, this would require several alternative hardware circuits, which can be

complex and inefficient to implement in hardware.

In some organizations, a large DSP processor legacy code base used in product development

and an experienced DSP processor programming team on staff can make use of an FPGA

unattractive, despite its greater processing capabilities.

FPGA usage is prevalent when high rates of data throughput and processing are

required. In terms of GMACs, a single FPGA can replace a whole board full of DSPs.

Many times, the application processing rate dictates the implementation method. For

example, high-definition image-compression algorithms such as H.264 require use of a

hardware-based solution such as an FPGA, whereas standard (low) definition image

compression may be able to be processed in real time by a suitable DSP processor.

Radar systems often have extremely high rates of data throughput and may use

multiple FPGAs chained together.

Even in many higher performance DSP systems, it is common to find both FPGAs

and DSP processors in use. In such systems, FPGAs are generally used for preprocessing,

filtering, and performing the main DSP data path operations. DSP processors may be

used for back-end processing once the data rate has been reduced, or for more
www.newnespress.com

http://www.newnespress.com/

246 Chapter 21

www
complex portions of an algorithm. An example is an adaptive filter. The FPGA may

perform the actual filtering, but the DSP processor could be used to process any feedback

information used by an adaptive algorithm to update the filter coefficients.

Small FPGAs can be useful coprocessors for DSP processors. When standard but high

MMAC functions like digital filters and FFTs are offloaded, the DSP processor MIPs are

freed up for more value-added functions. Implementing this type of setup is also often very

feasible because in many DSP processor-based systems, an FPGA is already present in many

cases to interface between the data convertors and the DSP processor, or between the

backplane and the DSP processor.

21.3 Design Methodology Considerations

Designing with FPGAs is inherently more difficult than designing with a DSP processor.

This is due to the high degree of choice in an FPGA device. The designer is able to

create any hardware circuit desired, create any size data bus, configure the data flow as

needed, plus synthesize internal microprocessors out of logic, and support nearly all

possible serial and parallel external interfaces. This capability results in many available

degrees of design freedom. The standard design entry method is known as Hardware

Description Language (HDL). Two variants are commonly used: Verilog and VHDL. One

HDL issue is compile time. On processors, new software updates can be compiled in a

matter of seconds. With FPGAs, compile times can take minutes or hours. This is again

due to many degrees of freedom. The structures described in the HDL code must be

synthesized, a process not unlike that of compiling on a processor. The HDL code is

broken down and synthesized into many small logic functions. It then must be mapped to

FPGA hardware resources, and all interconnections made using the FPGA routing

resources. The FPGA vendor-provided tools, known as place and route, perform this

function while simultaneously ensuring the connection and logic delays still allow the

design to operate at the clock rate specified by the designer. Verification is also much

more arduous than on DSP processors, due to the need to verify not only logical

operation, but the timing of all circuits and routed connections. Complex test benches that

simulate as many possible states of the design in operation as possible are used for

verification.

Surprisingly, FPGA designs can be more robust than DSP processor code implementations,

despite the increased design effort. This is fundamentally due to the independence of the

different tasks because of the inherent parallelism of the FPGA. Each task has separate

hardware, including memory structures. This tends to limit the number of unexpected

interactions that can occur when all functions share the same hardware and memory. The

separation in an FPGA is shown in Figure 21.1, which is in contrast to the structure used in

processors shown in the preceding chapter.
.newnespress.com

http://www.newnespress.com/

PLL, Clock, Reset

External data and control I/F

Top-level file

T

A

S

K

1

T

A

S

K

2

MEMMEMMEM

DSP

I/O I/O I/O

DSP DSP

T

A

S

K

3

MEM

T

A

S

K

4

DSP

I/O

Figure 21.1

Implementation Using FPGAs 247
Additionally, FPGA verification methodologies are patterned after that of application

specific integrated circuit (ASIC) design flows. With ASICs, millions of dollars and

dozens of man years are often spent on each chip, so verification is a major function in

the design flow. Bug fixes such as a simple recompile and software download are not

possible. This has led to a huge investment in design verification tools by the EDA

industry that can also be used to verify FPGA designs.

21.4 Dedicated DSP Circuit Blocks in FPGAs

Initially, it may appear that the hardened DSP block circuits in FPGAs should be designed to

have the same capabilities as DSP processor cores. After all, most of the DSP algorithms to

be implemented are the same. However, there are two major differences. First, in addition to

DSP blocks, the FPGA also contains large amounts of programmable logic, which can also be

used to implement DSP functions. So, in the FPGA’s DSP block circuits, unlike a DSP processor,

not all functional capabilities need to be implemented. Second, the large FPGAs may contain

several thousand DSP block circuits. Therefore, the size of these blocks may significantly affect

the silicon area and power consumption of the FPGA. Intelligent trade-offs need to be made

on what should be hardened in the DSP block and what should be left in soft or programmable

logic. FPGA vendors need to partition their silicon areas between DSP circuits, memory blocks,

configurable logic, routing resources, high-speed I/O circuits, and hardened interface protocol

circuits. By eliminating seldom-used functions within the FPGA DSP block circuit, FPGA
www.newnespress.com

http://www.newnespress.com/

248 Chapter 21

www
vendors can reduce DSP block area and instead allow for higher numbers of DSP block

circuits for the silicon area that is devoted to DSP processing. Optimizing this area also

reduces power consumption, which is a critical factor in ever larger FPGA devices.

There are a number of potential features to be included in an FPGA-hardened DSP circuit.

These features are normally included in a DSP processor and are discussed one by one,

with a view on the merit of including them into a DSP block circuit.
21.4.1 Adjustable Precision Multipliers

In most FPGA products, the standard multiplier size is 18 � 18, rather than the 16 � 16

size used in DSP processors. This size is sufficient for the majority of applications. Some

FPGAs, like some DSP processors, can use four 18 � 18 multipliers to implement a single

36 � 36 multiplier, or else a complex 18 � 18 multiplier within a DSP block.

There is also a growing need for higher precision multipliers in many applications, at

least in some parts of the data path. Most data converters are 12–16 bits, and 18-bit

multipliers are sufficient. Yet in some applications, the processing gain in decimation

filters, or by algorithmically combining several correlated receivers’ data (MIMO), can

lead to an increase in data path precision. In FFTs, data precision naturally increases on only

one side of the multiplier because the data path precision grows with each successive

butterfly stage, but the complex exponential coefficients remain of fixed precision. Also,

some DSP algorithms and applications just naturally require higher precision to meet their

performance requirements. This can be accommodated by using higher-precision multipliers.

However, use of a 25 � 25-bit multiplier requires twice the multiplier area of an 18 � 18

multiplier. This is a large penalty on applications requiring only 18-bit multipliers or less.

And use of 36 � 36 multipliers built from 18 � 18s is also very expensive, particularly if

the needed precision is only a few bits more than 18. Fortunately, FPGA multiplier circuits

can be designed with more flexibility than DSP processors because they are not intrinsically

tied to the data bus widths and instructions of a DSP processer. With 9 � 9 multipliers as

building blocks, FPGA DSP blocks could support 9 � 9, 18 � 18, 27 � 27, 36 � 36, and 54

� 54 multiplier sizes with a roughly proportionate increase in DSP block resources as

multiplier precision increases. The DSP circuits could be configured to allow either a high

count of lower precision multipliers or a lower count of high-precision multipliers, which

would allow system designers to design with the precision they need, rather than try to tailor

to the limitations of the hardware device. When this approach is used, only the applications

actually using this additional precision need to allocate more multiplier resources.

This capability is useful in a high percentage of DSP applications and cannot be efficiently

implemented in soft logic. Therefore, this is a good capability to include in the DSP

block structure of an FPGA.
.newnespress.com

http://www.newnespress.com/

Implementation Using FPGAs 249
21.4.2 Accumulators

Accumulators are integral to many DSP operations. They are necessary when using a

single multiplier to calculate in series a number of multiplication and addition operations.

The accumulator circuit can also be reused in another mode, the distributed adder circuit,

described next. Accumulators are essentially large adders with feedback on one operand.

They can be implemented in logic but then may not run as fast as the hard multiplier. Since they

are used in a high percentage of DSP applications, this is a good capability to include in the DSP

block of an FPGA. The size of the accumulator depends on the common multiplier precisions

used. Normally, at least 8 extra bits should be used above the product size of the multiplier, to

allow at least 256 product accumulations. An 18 � 18 multiplier size needs a 44 or more bits

accumulator, a 27 � 27 multiplier size needs a 62 or more bits accumulator, and a 36 � 36

multiplier size needs an 80 or more bits accumulator. However, the larger accumulator size is

a penalty on all DSP blocks, even when smaller multiplier sizes are used, although a much

smaller penalty than an oversized multiplier. A good compromise would be to accommodate at

least 18� 18, 18� 27, and 27� 27multiplier sizes because they are likely to be used frequently.

This would lead to an accumulator size of about 62 bits or so.

21.4.3 Postadder (Subtracter) and Distributed Adder

Postadders are used to construct larger adders from smaller adders, to perform the sum/subtraction

in complex multiplications, and to perform sums of products used in FIR filters. A postadder

also should be able to perform subtraction if desired. This is an excellent function to include in a

DSP block. An example of a postadder used in an FIR filter is depicted in Figure 21.2.
X XXX

+ +++

X X X X

Remaining adder structure in FPGA logic

CN CN+1
CN+2 CN+3 CN+4 CN+5 CN+6 CN+7

Data

+ +
DSP Block(s)

Figure 21.2

www.newnespress.com

http://www.newnespress.com/

250 Chapter 21

www
An alternate FIR filter architecture is known as the systolic architecture. It uses a distributed

output adder, and therefore, no matter how large the FIR filter, no programmable logic-based

adder circuits are required. This can allow for more efficient and higher Fmax (clock

frequency) FIR filter implementations. The only penalty is an increase in filter latency and a

slightly more complex sequencing of input data. This is a small price to pay for the benefits.

With the inclusion of an accumulator or postadder, there is little extra cost to add this useful

feature to an FPGA DSP block. A vertical cascade path is needed between DSP blocks,

which are normally placed in columns in an FPGA. This fixed path is of insignificant

cost, and could also be used to build large multiplier circuits that span several DSP blocks,

such as 54 � 54 or complex 27 � 27. For these reasons, the cascade path is an excellent

function to include in a DSP block.

An example of a postadder used in a systolic FIR filter is depicted in Figure 21.3.

The postadder is connected as a distributed adder cascaded from block to block. Note the

additional registers in the input data chain to compensate for the postadder register delay

stages. This example performs the same algorithmic function as the diagram in Figure 2.12,

although with greater latency (clock delay).
X XXX

+ +++

CN CN+1 CN+2 CN+3

Data

DSP Block(s)

Figure 21.3
21.4.4 Preadder (Subtracter)

Preadders are primarily used in hardware circuits and not commonly found in DSP

processors. The main application is for symmetric FIR filters. As the filter data is shifted

across the coefficient set, two data samples can be multiplied by a common coefficient due

to the symmetry. The preadder adds the two samples prior to multiplication, which allows

the use of one multiplier for every two taps, rather than two multipliers. This preadder

function can be implemented in FPGA logic, but because most FIR filters are symmetric

and FIR filters are the most common DSP application, this is a reasonable feature to include
.newnespress.com

http://www.newnespress.com/

Implementation Using FPGAs 251
in a DSP block. Configured as a subtracter, this block can also be used to perform a “sum of

absolute differences,” a less commonly used function. Also, although not discussed here, in

some cases a preadder can also be used to more efficiently implement complex

multiplication architectures.

The preadder is difficult to implement with DSP processors because normally a single

multiplier is used, with the input data being in a circular buffer. The input data is therefore

not organized in a way to easily take advantage of a preadder.

Two symmetric eight-tap filters are diagramed in Figure 21.4. The filter taps are [C0, C1, C2,

C3, C3, C2, C1, C0]. A preadder is used on the left in a conventional FIR filter and on the right

in a systolic FIR filter implementation.

The extra input data registers in the systolic diagram used to align data flow are shown in the

datapath at the top of Figure 21.4.

The input data needs to “wrap around” to utilize the preadder, which makes it difficult to

implement in DSP processors. In both conventional and systolic FIR filter architectures,

it can reduce multiplier usage by approximately one half. This is a valuable feature to

incorporate into a DSP block.
+

X

+

X

+

X

+

X

C0 C1

+

+

+

+

X

+

X

+

X

+

X

+ + + +

C2 C3 C0 C1 C2 C3

Figure 21.4
21.4.5 Coefficient Storage

Coefficients are required for most DSP operations, including FIR filters and FFTs.

These coefficients are normally stored in distributed memory blocks external to the DSP

block. This allows for large numbers of coefficients to be used, and for easy updating in the

case of adaptive filters, for example. However, since most FIR filters in a hardware
www.newnespress.com

http://www.newnespress.com/

252 Chapter 21

www
implementation are built using a parallel, or at least partially parallel, structure, the

number of coefficients used per multiplier is often fairly small. For these cases, it may

be advantageous to allow internal coefficient storage, dynamically selectable on each

clock cycle, inside the DSP block. The advantage, besides an obvious savings of FPGA

memory resources, is reduced routing congestion and logic in the region near the DSP

block inputs. The logic and routing in this area of the design is usually in high demand,

due to the input data routing and need to build variable-length shift registers to provide

proper input data flow, especially for FIR filters incorporating preadders, interpolation,

and/or decimation structures. Use of internal coefficient registers also eliminates the

possibility of being unable to run at the required circuit Fmax due to routing congestion.

There is a trade-off in number of coefficients, DSP block area required, and percentage

of applications where the internal coefficient bank contains enough coefficients to

accommodate the FIR filter. However, on the balance, this seems to be a valuable

feature to consider including in an FPGA DSP block.

21.4.6 Barrel Shifter

Shifters are necessary in DSP processors and are an integral part of a DSP processor

instruction set. Shifting is often possible in parallel with many other DSP processor

operations. Surprisingly, dedicated barrel shifters are not often required in a DSP block

structure. The principal justification, which is to align outputs or decimal points for 16- or

32-bit memory storage or for further processing, is driven by DSP processor architecture

limitations. In programmable hardware, this can be easily achieved by simply selecting

which subset of accumulator output pins to route to the next stage in an FPGA.

For the remaining cases where an adjustable shift circuit is needed, a hard multiplier

circuit can be used. This is done by multiplying the operand to be shifted by 2N, which

achieves a shift by N. This can also be very useful for floating-point normalizations.

The low usage and the options of using either multipliers or logic as shift registers argue

against hardening barrel shifter functions in DSP blocks.

21.4.7 Rounding and Saturation

Rounding and saturation functions are necessary in DSP processors to reduce the output

data width after multiple accumulate or distributed adder circuits. This step must be implemented

in hardware; there is no practical way to implement it in software. In FPGAs, only a small

fraction of the DSP blocks tend to need rounding and saturation. The reason is partly that, in a

distributed adder filter, only the last stage tends to be rounded or saturated. There are also a

number of different rounding methods used by system designers in different applications.

Hardening this relatively silicon-costly function across thousands of DSP blocks makes little

sense when it can be efficiently implemented in logic in the instances where it is required, with
.newnespress.com

http://www.newnespress.com/

Implementation Using FPGAs 253
the flexibility to use any preferred rounding method. The one exception is to offer “biased

rounding,” the simplest rounding method (other than truncation), which can be implemented

almost free in the existing accumulator/adder circuit.

21.4.8 ALU and Boolean Operations

ALU and Boolean operations include ADD, SUBTRACT, AND, OR, and EXOR type

functions. Normally, use of these functions is not associated with multiply accumulate

operations. Therefore, it is wasteful to use a DSP block to implement these simple ALU

operations, since the great majority of any DSP block area is used to build multiply accumulate

circuits. This is better implemented in logic wherever needed and can be efficiently built using

soft logic. Extra dedicated circuits for these functions are not recommended for DSP block

inclusion, due to the additional complexity and circuitry.

21.4.9 Specialty Operations

Some DSP processors have special instructions for bit-reversed addressing for FFTs, modes

for Viterbi FEC processing, or instructions to perform bit-by-bit correlation necessary in

CDMA applications. FPGAs need not support these functions in a hard DSP block; they are

not often used in a high percentage of DSP blocks and can be easily implemented in logic.

21.4.10 Tco and Fmax

Most DSP blocks in high-performance FPGAs can be clocked in excess of 500 MHz.

However, delays in logic and routing limit design of the Fmax to 400 MHz or less in

nearly all designs of any size. Further increases in DSP block Fmax are not especially useful,

due to this mismatch in logic and routing speeds, and very high Fmax circuits require a

disproportionate amount of current, even when not being clocked at high rates.

What is more useful is to minimize the Tco, or settling time relative to output clock.

Using Tco reduces the routing delay contributions in the DSP block to route to the next

stage of logic. This helps reduce routing delays at the DSP block output, where routing

congestion is often high and, as a result, increases system clock frequency. To achieve

lower Tco requires eliminating unnecessary circuits after the last register stage in the

DSP block. This is another reason to remove some of the previously listed features that

are of questionable value in the DSP block.

21.5 Floating Point in FPGAs

The vast majority of DSP applications utilize fixed point. However, some high-performance

systems require the dynamic range and precision of floating point. Some examples would be
www.newnespress.com

http://www.newnespress.com/

254 Chapter 21

www
high-resolution radar systems, STAP radar processing, and MIMO channel calculations in

LTE wireless systems. Typical functions implemented in floating point could be FFTs,

matrix multiplication, matrix inversion, trigonometric operators, and others.

Single-precision floating point uses a 23-bit mantissa, plus a sign bit. This requires a

minimum of 24 � 24-bit multiplier for floating-point multiplication. Floating point also

requires normalization and denormalization. This requires the capability to shift a 24-bit

operand within a 48-bit field. This can be implemented as a barrel shifter in logic or, for

faster circuit operation, using a minimum of 24 � 24-bit multiplier and 48-bit accumulator.

In processor-based implementations, normalization and denormalization are performed at

each floating-point calculation. Recent FPGA design techniques and IP are available that

allow for high-performance floating-point data paths to be implemented. This typically

requires extra mantissa bit width. The extra mantissa width eliminates the need for

normalization and denormalization at each floating-point calculation, which can significantly

reduce routing and logic resources, allowing higher performance FPGA implementation.

This technique can utilize larger multipliers, such as 27 � 27 or 36 � 36-bit precision.

The capability to efficiently implement both high-performance fixed-point and floating-point

DSP data paths allows designers the flexibility to use whatever precision is required at

different points in their systems. Even in applications where floating point is required, the

majority of the processing can still be implemented in various precision fixed-point circuits.

FPGAs can provide the flexibility to build both types of implementations.

21.6 Ecosystem

As with DSP processors, FPGA vendors also have ecosystems of tools and IP, provided

both by the FPGA manufacturers and third-party companies. Each FPGA vendor provides

comprehensive software tools to enable the various steps of synthesis, fitting, timing analysis,

and many other functions. Due to the complexity and breadth of this software, there can

be considerable variation in the feature set, robustness, and ease of use between FPGA

vendors. Third-party companies also supply tools for the FPGA development process,

especially for verification purposes.

The major FPGA vendors also supply comprehensive collections of IP modules, much of

which are for DSP applications. Interestingly, FPGA and third-party vendors also offer

several synthesizable “soft” microprocessor architectures, which are built from the

configurable logic within the FPGA. These microprocessors can deliver quite respectable

performance and run a number of operating systems, including Linux. Apart from the

relative merits of the FPGA silicon device itself, often the tools, IP, and reference designs

can play a significant factor in choosing an FPGA platform for DSP and other

applications.
.newnespress.com

http://www.newnespress.com/

Implementation Using FPGAs 255
21.7 Future Trends

It is generally perilous to forecast the future, but some trends are apparent and worth

commenting on. In terms of their processing capabilities, DSP processors are increasing

rather slowly, due to inabilities to significantly increase clock rates. Scaling by providing

more cores or more multipliers per core increases design flow complexity, and tends to be

effective only on applications where the tasks can be partitioned among several cores and

dependency between tasks is limited. More cores or more parallels within the cores also tend

to make the design process more complex, partially negating the simplicity advantage DSP

processors enjoy in design methodology.

FPGAs, in contrast, are increasing in processing capabilities with each succeeding new

product family. While FPGA circuit clock rates are increasing slowly, as with DSP

processors, the logic density of the FPGA devices is nearly doubling every 2 years. This

capability merely increases the existing parallelism of FPGAs and does not fundamentally

alter the design complexity or methodology. This is allowing ever more complex and higher

computational rate algorithms to be implemented, thereby increasing system capabilities.

Furthermore, FPGA design methodologies are also improving. Alternatives to HDL, the

main flow used by FPGA designers at the time of this writing, are now available. These

alternatives can provide higher productivity by allowing designers to work at a higher

level of abstraction. One design flow is known as “model-based” design flow. It uses the

popular tool Simulink by The MathWorks# to describe the design. The test bench can also

be implemented in Simulink, or alternatively by using another popular MathWorks# tool

called MATLAB. Use of these tools can allow very rapid design changes and verification,

compared to traditional HDL design flow. Recent innovations in this flow by one FPGA

vender can also generate a very high Fmax FPGA circuit performance, similar to the best

HDL-generated designs.

Another design methodology that multiple vendors are promoting is known as “C to gates”

design. In this flow, a software description of the hardware is used. This design flow can

lead to higher productivity and easier design reuse. A second advantage is a potential huge

new pool of FPGA designers because there is at least an order of magnitude more C

programmers than HDL-knowledgeable engineers.

Many approaches to the “C to gates” design are using a variant of the C language known

as System C, which has provisions not only to describe the normal data processing steps

and decision flow, but also to describe what is to be implemented in parallel and what in

serial (traditional) software flow. Products now exist to support this methodology, but at

present, adoption is limited due to both tool immaturity and just natural conservatism. This is

a revolutionary design methodology change that will require time rather than evolutionary

change in the FPGA design flow. Still, this is very likely the direction of the future.
www.newnespress.com

http://www.newnespress.com/

256 Chapter 21

www
In addition, many evolutionary changes are occurring in the HDL design flow. Continuous

reductions are occurring in the FPGA compile times. Partial recompile, which eases

small updates into the design, is now available from some FPGA vendors, as is partial

reconfiguration, which allows reprogramming of very small selected sections of the

FPGA circuitry while the FPGA is in operation. New debugging capabilities are

becoming available. Many of these changes are expected to narrow the design effort gap

between DSP processors and FPGAs for DSP systems and applications.
.newnespress.com

http://www.newnespress.com/

257
APPENDIX A
Q Format Shift with Fractional
Multiplication
Consider normal multiplication as follows:

104

� 512

53; 248

In this example, there is no decimal point consideration because both numbers are integers.
Now look at the same number, but with a different decimal point arrangement:

10:4
� 5:12

53:248

How do we know where to place the decimal point if doing this multiplication by hand?
One way is to use a sanity check such as 5 � 10 ¼ 50, so the answer 53.248 obviously has

the correct decimal point. But the way most of us learned in grade school was that the

product should have the same number of digits to the right of the decimal point as the two

multiplicands combined have to the right of their decimal point. The first number, 10.4,

has one digit to the right of the decimal point, and the second number, 5.12, has two digits to

the right of the decimal point. So the product, 53,248, should have three digits to the right

of the decimal point, giving 53.248.

This same concept works for fractional binary multiplication. For example, one Q1.15

number multiplied by another Q1.15 number gives a 32-bit result. But where is the decimal

point? Based on the preceding rule, the product should have 15 þ 15 ¼ 30 bits to the right

of the decimal point. Our result is then a Q2.30 number. If we use only the upper or most

significant 16 bits, as is common in many implementations, the result is a Q2.14 number.

By performing a single left shift after the multiplication, we get a Q1.15 number using the

upper 16 bits, which is the same format as our input data (or a Q1.31 number if we chose to

keep all 32 bits). This is the reason that many DSPs have fractional multiply instructions

or modes that incorporate an extra left shift of the result. In FPGA implementation, the user

258 Appendix A

www
can easily choose the output format of the multiplier and take this effect into account.

The example from Chapter 1 on numerical representation is repeated here:

0x4000 value ¼ 1=2 in Q:15

� 0x200 value ¼ 1=4 in Q:15

0x0800 0000 value ¼ 1=16 in Q31

After left shifting by one, we get
0x1000 0000 value ¼ 1=8 in Q31 the correct result!

If we use only the top 16-bit word from the multiplier output, after the left shift we get
0x1000 value ¼ 1=8 in Q15 again, the correct result!

In DSP applications, we often perform multiply accumulate operations, where the result of
many multiplies are summed to a common result (remember the FIR filter structure).

With all these additions, how can the sum be represented without overflow occurring?

How does this affect our decimal point?

The solution is to make the gain of the filter equal to one. As explained in Chapter 5 on FIR

filters, the sum of all the filter coefficients is the gain of the filter. By scaling the filter

coefficients (dividing each coefficient by the sum of the coefficients), we can easily set the

gain to unity. Then there is no possibility of overflow, and the decimal point is not e affected.

The frequency response is also unchanged because each coefficient is being scaled equally.

For example, suppose our filter coefficients are {1,3,5,3,1}. The sum of these coefficients is 13.

Therefore, our scaled coefficients are {1/13, 3/13, 5/13, 3/13, 1/13}. This allows us to represent the

coefficients in fractional format, since they are all between –1 and þ1, and guarantees

that the decimal point will not be altered in the signal as it passes through our filter. We still

need the left shift at the output of the multiplier, however. Alternately, in FPGA, we could

easily apply the left shift to the accumulated sum, instead of at each multiplier output.
.newnespress.com

http://www.newnespress.com/

259
APPENDIX B
Evaluation of FIR Design Error
Minimization
Let’s minimize the expression

Error ¼ x ¼ Ð pp jxðoÞj2dowhere

x(o) ¼ D(o) – H(o)

D(o) ¼ desired frequency response
HðoÞ ¼
X

i 1 to 1
Cie

jok ¼ actual frequency response

We start by setting the derivative of the error x with respect to the filter coefficients (the one
parameter that we have control over and want to optimize) equal to zero:

djxj=dCi ¼ 0

djxj=dCi ¼
Ð p

pðd=dCiÞf½DðoÞ HðoÞ��½DðoÞ HðoÞ��gdo ¼ 0

We then use the chain rule to differentiate each part:
djxj=dCi ¼
Ð p

pðd=dCiÞf½DðoÞ HðoÞ�g�½DðoÞ HðoÞ��do þÐ p
p½DðoÞ HðoÞ��ðd=dCiÞf½DðoÞ HðoÞ�g�do

The derivative is now a sum of two integrals. Since they are complex conjugates, the sum can
be zero only when both terms are zero. So we can consider only one of the two terms and

evaluate when it is equal to zero:

Ð p
p½DðoÞ HðoÞ��ðd=dCiÞf½DðoÞ HðoÞ�g�do ¼ 0

Now let’s try to simplify the term (d/d Ci) {[D(o) H(o)]}*:
ðd=dCiÞfjDðoÞ HðoÞjg� ¼ ðd=dCiÞfDðoÞ� ðd=dCiÞfHðoÞ�g
Notice that (d /dCi) { D(o)*} ¼ 0, since D(o)* does not depend on Ci . D(o) is our desired

response, and not dependent on Ci.

260 Appendix B

www
Recall that H(o) ¼ Pk¼ 1 to 1 Ck e
jok We have to replace the index “i” with “k,” since

we are already using “i” in this discussion as the coefficient index. Therefore,

HðoÞ� ¼
X

k 1 to 1
Ck � eþjok

We want to simplify
HðoÞ� ¼ ðd=dCiÞ
X

k 1 to 1
Ck � eþjok

()

Each coefficient Ci is independent of the others—for example, (dC1/dC2) ¼ 0. Only when
i ¼ k is there a nonzero result. Therefore, we can remove the summation and get

HðoÞ� ¼ ðd=dCiÞ
X

k 1 to 1
Ck � eþjok

()
¼ ðd=dCiÞfCi � eþjoig ¼ eþjoi

Now let’s go back and substitute the simplified result:
ðd=dCiÞ fjDðoÞ HðoÞjg� ¼ ðd=dCiÞfDðoÞ�g ðd=dCiÞfHðoÞ�g ¼ eþjoi

Now we are getting close. Let’s go back to the original integral and substitute again:
Ð p
p½DðoÞ HðoÞ��ðd=dCiÞf½DðoÞ HðoÞ�g � do ¼ Ð pp½DðoÞ HðoÞ��eþjoido

Since we are trying to find the solution when the integral equals zero, we can equate the two
terms within

Ð p
p DðoÞ�eþjoido ¼ Ð ppHðoÞ�eþjoido

Now let’s substitute for H(o) again. We get
ðp
p

X
k 1 to 1

Cke
jok�eþjoido ¼

ðp
p

X
k 1 to 1

Cke
joðk iÞdo

Our goal is to get Ck by itself on the left side, since that is what we are trying to solve for.
We can rearrange the order of summation and integration, since both are linear operations:ðp
p

X
k 1 to 1

Cke
joðk iÞdo ¼

X
k 1 to 1

Ck:
Ð p

p e
joðk iÞdo

Now let’s evaluate the integral
 Ð p
p e

joðk iÞdo
.newnespress.com

http://www.newnespress.com/

Evaluation of FIR Design Error Minimization 261
There are two cases, when k ¼ i, and when k 6¼ i:

k ¼ i
Ð p

p e
joðk iÞdo ¼ Ð pp e jo0do ¼ Ð pp 1do ¼ 2p

k 6¼ i
Ð p

p e
joðk iÞdo ¼ joðk iÞ�½e joðk iÞjp p� ¼ joðk iÞ�½e jpðk iÞ ejpðk iÞ�

Let’s consider two possibilities: the number m ¼ k – i is even, or it is odd:
m is even [e jpm ejpm] ¼ 1 – 1 ¼ 0, since both of these terms are at the point (1 þ 0j)

on the unit circle.

m is odd [e jpm ejpm] ¼ –1 – (–1) ¼ 0, since both of these terms are at the point

(–1 þ 0j) on the unit circle.
So we get a very simple result:
Ð p

p HðoÞ�eþjoido ¼
X

k 1 to 1
Ck

Ð p
p e

joðk iÞdo ¼ Ck�2p

If we substitute this into
 Ð p
p DðoÞ�eþjoido ¼ Ð ppHðoÞ�eþjoido

we finally arrive at the desired result:
Ck ¼ ð1=2pÞ� Ð pp DðoÞ�eþjoido

The kth coefficient is found by multiplying the desired frequency response by eþjoi and
integrating over the interval 2p. Each coefficient is computed independently. This method

gives the lowest value of error x, as defined in Chapter 5 on FIR filters.
www.newnespress.com

http://www.newnespress.com/

263
APPENDIX C
Laplace Transform
The Laplace transform is used for continuous or analog signals. Let’s use x(t) and y(t) to

represent the input and output signals to an analog filter, respectively. Rather than use delays,

as digital filters use, we use the differentiator instead. The input and output of the analog

filter have the following relationship:

yðtÞ ¼
X

i 0 to N

Ai � dixðtÞ=dti þ
X

i 0 to M

Bi � diyðtÞ=dti

The first term is a sum of coefficient-weighted derivatives of the input, which is analogous to
the FIR filter being a sum of weighted delayed inputs. The second term is a coefficient-

weighted sum of the derivatives of the output, which implies feedback.

These functions can be difficult to evaluate and characterize. Smart people long ago figured

out a way to map things into the s-domain using the Laplace transform, where the math

becomes much simpler. This is an introduction to that technique.

We are going to use the exponential function again to determine the response of this filter.

In this case, we use the function est, where s is a complex variable.

Notice this property of our chosen input, which we use to develop the s-transform:

dest=dt ¼ s � est and diest=dti ¼ si � est

If we apply this to our analog filter equation, we get
yðtÞ ¼
X

i 0 to N

Ai � si xðtÞ þ
X

i 0 to M

Bi � si yðtÞ

We can therefore construct a Laplace-transform-based relationship of the filter response.
We want an equation with form y(t) ¼ func(x(t)). After doing a bit of rearranging, we get

yðtÞ ¼ xðtÞ �
X

i 0 to N

Ai � si
 !,

1
X

i 0 to M

Bi � si
 !()

264 Appendix C

www
where the bracketed term is the s-transform function, denoted as H(s):

HðsÞ ¼
X

i 0 to N

Ai � si
 !,

1
X

i 0 to M

Bi � si
 !
The roots of the numerator give the zero locations of the Laplace transform, and the roots of

the denominator give the pole locations of the s-transform. These zeros and poles

characterize the filter frequency response.

Similar to digital filters, analog filters can also be defined by their impulse response. In the

digital domain, an impulse is defined as a single sample with value ¼ 1. For the analog

world, this is not as simple. The answer is to define a function called the delta dirac, known

as d(t). It is a strange function. It has infinite height and zero width, but the area under its

integral is equal to 1. It is essentially a spike located at zero along the number line. This is the

continuous signal equivalent to a digital impulse. We can define the impulse response of an

analog filter as follows:

Impulse response ¼ hðtÞ ¼ yðtÞjxðtÞ dðtÞ

So the output is the impulse response when the input is d(t).
Now recall that s is a complex number. We can evaluate the Laplace transform and determine

its zeros (values of where the transform numerator goes to zero) and its poles (values of

s where the transform denominator goes to zero), and plot these locations on the complex

number plane. In this context, the complex number plane is known as the s-plane.

Next, let’s go through a simple example to clarify:

yðtÞ ¼ xðtÞ þ dxðtÞ=dt 2 � ðdyðtÞ=dtÞ
yðtÞ ¼ xðtÞ � fð1þ sÞ=ð1þ 2sÞg

We can see that there is a single zero at s ¼ –1, and a single pole at s ¼ –1/2. The frequency
response is evaluated by setting s ¼ jo and evaluating for –1 < o < 1.

The filter’s response is determined by the pole and zero locations (see Figure C.1). Use of the

Laplace transform facilitates the design of analog filters.

We have mentioned that filters with feedback can be unstable. Let’s examine a simple case to

see when this is true:

yðtÞ ¼ A0 � xðtÞ þ � dyðtÞ=dt
yðtÞ ¼ A0 � xðtÞ þ B1 � s yðtÞ
HðsÞ ¼ A0=ð1 B1 � sÞ,

which has a single pole at s ¼ 1/B1.
.newnespress.com

http://www.newnespress.com/

-1 -1/2

Unstable
region for
poles

Stable
region for
poles

s plane

Real
axis

Imag
axis

-j

Figure C.1

Laplace Transform 265
To determine stability, we compute the impulse response of the filter. Because of the

simplicity of this example, the response of filter with x(t) ¼ d(t) can be computed directly

from the differential equation. We find that

hðtÞ ¼ ðA0=B1Þ � eðt=B1Þ for t � 0 and hðtÞ ¼ 0j for t < 0

If B1 is negative, the exponential will decay over time—this is considered a stable response.
But if B1 is positive, the impulse response will grow to infinity over time—this is an unstable

response. This leads to the following general rule with analog filters:
The
All poles must be on left side of the s-plane.

re is no restriction on the location of zeros.
www.newnespress.com

http://www.newnespress.com/

267
APPENDIX D
Z-Transform
The z-transform is used for sampled signals. It is analogous to the s-transform used with

continuous or analog signals. Let’s use xk and yk to represent the input and output signals to a

digital filter, respectively. Rather than use differentiators, as analog filters use, we use the

delay function instead. The input and output of the IIR (recursive) digital filter have the

following relationship:

yk ¼
X

i 0 to N 1

Ci xk i þ
X

i 1 to N 1

Di yk i

The first term is a sum of coefficient-weighted delayed versions of the input (this is the
familiar FIR filter expression). The second term is a coefficient-weighted sum of the delayed

versions of the output, which implies feedback.

The feedback part prevents us from using our earlier method of FIR design analysis,

described in Appendix B. But again, some smart people figured out a way to map things into

the z-domain, where the math becomes simpler. This is an introduction to that technique.

The z-transform is very useful. It can be used to determine the frequency response of an IIR

filter. It can also be used to find the coefficients of the IIR filter from the zeros’ and poles’

locations, or to do the inverse, to find the poles and zeros of the IIR filter from the coefficients.

The z-transform uses a special exponential function z i, where z is a complex variable.

The definition of the z-transform of any given sampled time sequence xi is

XðzÞ ¼
X

i 1 to 1
xi z

i

We can characterize a digital filter by its z-transform, H(z). We can show that
YðzÞ ¼ HðzÞ�XðzÞ or HðzÞ ¼ YðzÞ=XðzÞ
where
Y(z) is the z-transform of the output sampled time sequence yk.

X(z) is the z-transform of the input sampled time sequence xk.

268 Appendix D

www
Let us consider a digital filter, with an impulse response of hi. The output of this filter is

given by

yk ¼
X

i 1 to 1
hi xk i

where xk is the input sequence (we developed this in Chapter 5 of FIR filters).
Let’s take the z-transform of both xk and yk to see if we can determine H(z):

XðzÞ ¼
X

k 1 to 1
xk z

k

YðzÞ ¼
X

k 1 to 1
yk z

k ¼
X

k 1 to 1

X
i 1 to 1

hi xk i

()
z k

Now we interchange the order of summation:
YðzÞ ¼
X

i 1 to 1

X
k 1 to 1

hi xk i z
k

()

Next, we remove hi from the inner summation, as it is independent of k:
YðzÞ ¼
X

i 1 to 1
hi

X
k 1 to 1

xk i z
k

()

Next, we factor z k into 2 terms:
YðzÞ ¼
X

i 1 to 1
hi

X
k 1 to 1

xk i z
ðk iÞ z i

()

Then we remove z i from the inner summation, as it is independent of k:
YðzÞ ¼
X

i 1 to 1
hi z

i
X

k 1 to 1
xk i z

ðk iÞ
()

The bracket term in the preceding equation is simply X(z).
HðzÞ ¼
X

i 1 to 1
hi z

i is the z transform of impulse response hi:

This demonstrates that Y(z) ¼ H(z) � X(z).

Let’s look at this scenario a different way. The filter’s response has a z-transform, which is

equal to the z-transform of the output sequence yk divided by the z-transform of the input

sequence xk, denoted H(z).
.newnespress.com

http://www.newnespress.com/

Z-Transform 269
By definition, yk equals the impulse response when we set xk equal to an impulse. The

z-transform of the impulse function is equal to 1, so the z-transform of the impulse response

of the filter is simply the z-transform of the output:

HðzÞ ¼ YðzÞ=XðzÞ ¼
X

i 1 to 1
hi z

i

where hi is defined as the impulse response of the filter.
This result sounds familiar to frequency response H(o), and indeed, the two are related.

The frequency response is contained within the z-transform. The frequency response can be

found from the z-transform by replacing z with ejo, or when z is evaluated around the unit

circle on the complex z-plane:

HðoÞ ¼
X

i 1 to 1
hi e

joi

With an IIR filter, computing the impulse response sequence hi can often be difficult.
The usefulness of the z-transform is that it can be used to compute the frequency response

H(o) without first computing the impulse response hi. The z-transform can be found easily

if either the coefficients of the digital filter are available, or the poles and zeros of the

digital filter are available. Then we take the expression H(z), replace z with ejo, and then

evaluate the frequency response over the interval –p < o < p.

H(z) is simply a function of z. Our goal is to express H(z) as a function of two polynomials

in z, in the form of

HðzÞ ¼ AðzÞ=BðzÞ
With a bit of algebra, we can then rearrange the polynomials into the following form:
HðzÞ ¼
X

i 0 to N

Ci�z i

 !�
1

X
i 1 to M

Di�z i

 !

In this form, the coefficients are available by inspection. Or, if you have the coefficients, you
can easily write the z-transform of the filter.

The z-transform can also be arranged in pole – zero format. Remember, by definition, the zeros

of the z-transform are the values of z where H(z) ¼ 0 (the roots of the numerator) and the

poles of the z-transform are the values of z where H(z) ¼ 1 (the roots of the denominator):

HðzÞ ¼
Y

i 0 to M

z zeroið Þ
" #� Y

i 0 to N

ðz poleiÞ
" #
www.newnespress.com

http://www.newnespress.com/

270 Appendix D

www
To summarize, if you are given the poles and zeros, you can immediately construct the

z-transform using the preceding template. Although it may take a bit of algebra, the

z-transform can be rewritten in summation form to find the coefficients. And evaluating

the z-transform in either form over the complex unit circle gives the frequency response of

the filter. This is done by substituting ejo for z and computing over the interval –p < o < p:

HðzÞ ¼
Y

i 0 to M

ðz zeroiÞ
" #� Y

i 0 to N

ðz poleiÞ
" #

¼

HðzÞ ¼
X

i 0 to N

Ci�z i

 !�
1

X
i 0 to M

Di�z i

 !
and

Frequency response HðoÞ ¼ Hðz ¼ ejoÞjo p
o p

As with the s-plane, we can show that pole location on the z-plane is restricted for stability
reasons. All poles within the z-plane must lie within the unit circle. Zeros have no restriction

on the z-plane.
.newnespress.com

http://www.newnespress.com/

271
APPENDIX E
Binary Field Arithmetic
Binary field arithmetic is used in coding. The basic rules are very simple. Addition is as

follows:

0 þ 0 ¼ 0

0 þ 1 ¼ 1

1 þ 0 ¼ 1

1 þ 1 ¼ 0

This also corresponds to the exclusive OR or XOR operator in digital logic. Subtraction
results are identical to addition; there is no distinction between the two operations.

Multiplication is as follows:

0 � 0 ¼ 0

0 � 1 ¼ 0

1 � 0 ¼ 0

1 � 1 ¼ 1

Division is not defined or allowed.
Linearity means that if two input codewords are input to a system, X1 and X2, the output

result is the same as if the sum of two codewords X1þX2 were input instead. A more

mathematical way to express this idea is

Y1 ¼ f ðX1Þ
Y2 ¼ f ðX2Þ

For a linear system, we use
Y2 þ Y1 ¼ f ðX2X1Þ

Index
Note: Page numbers followed by f indicates figures; t indicates tables.
A

Aliasing, 22, 23, 26, 27f, 36, 63 65, 67, 98, 117,

118, 121, 198, 198f, 205, 205f, 209, 228, 229
Alpha blending, 229

Analog to digital convertor (ADC), 21, 25 26, 27,

28, 29, 37, 63, 65, 65f, 117f, 118, 119 121,

122, 235

Assembly language, 146 147, 233, 239

B

Bi linear transform, 76 78, 79, 80

Bit reversed addressing, 112, 253

Bob, 225, 226 227

C

Cartesian coordinates, 10, 11

Chrominance, 223

Code division multiple access (CDMA), 94, 150,

151, 152 155, 159 162, 163 165, 166 167,

169, 170, 171, 177 178, 180, 181, 182 183, 185t
Coding gain, 30, 125 126, 141

Common public radio interface (CPRI), 189 190

Complementary cumulative distribution function

(CCDF), 185, 186

Complex conjugate, 15, 49, 200, 214, 259

Complex exponential, 15, 16 18, 31 32, 34, 35,

38, 45, 46, 47, 57, 99t, 101 102, 104 105,

106, 108, 111 112, 115, 119, 173, 174, 176,

177, 234, 248

Complex number, 9, 10, 12, 13, 14, 15, 16, 17 18,

19, 31 32, 49, 97, 217, 264

Convolutional encoding, 131 134, 147

Crest factor reduction (CFR), 180, 185 188, 189

Cyclic prefix, 177 180, 181

Cyclic redundancy check (CRC), 141 142
273
D

Decibels, 29, 30, 125 126, 183, 184, 186, 187

Decimation, 63 67, 71, 75, 112, 119 120, 146,

224 225, 228, 248, 251 252

Deinterlacing, 225 227

Digital downconversion, 114 115, 117, 119, 120,

204

Digital predistortion (DPD), 185, 188 189

Digital to analog converters (DAC), 29, 30, 91,

114 115, 116, 122 123, 127, 162, 180,

203, 243

Digital upconversion, 91, 113, 114 116, 123, 203

Discrete Fourier transforms (DFT), 97, 98 107, 108,

109, 173, 175, 220

Doppler ambiguities, 205 206

Doppler shift, 93, 149, 182, 183, 201, 202, 203

E

Error vector magnitude (EVM), 93 94, 185,

186 187, 188

Euler equation, 16, 17, 51

Exponent, 1, 7 8, 7t, 98 99, 101, 102

F

Fast Fourier transform (FFT), 97, 98 99, 105, 105t,
106 112, 146, 175, 182, 183, 200, 204, 219,

220, 234 235, 237, 244 245, 246, 248,

251 252, 253 254

Field programmable gate array (FPGA), 6, 7 8, 52,

66 67, 113, 230, 231, 243 246, 247 254, 255,

257 258

Fixed point representation, 2 7, 7 8

Floating point representation, 7 8

Forward error correction (FEC), 125, 253

Fractional representation, 1 2, 4 7, 5t

274 Index
Frequency division duplex (FDD), 143, 145, 170,

180 181

Frequency modulation, 145 146, 197

G

Global system for mobile communications

(GSM), 149, 166, 167, 169, 178, 185,

185t, 187

I

Infinite impulse response (IIR), 44, 73 76, 77 78,

79, 80, 238, 267, 269

Interlacing, 225

Intermediate frequency (IF) subsampling, 118 123

Interpolation, 63, 67 70, 71 72, 75, 91, 180, 225,

228, 251 252

Intersymbol interference (ISI), 87, 90, 93, 149, 159,

177 180, 181

L

Laplace transform, 127 128, 263, 264

Linear phase, 37, 56, 74

Long term evolution (LTE), 83, 169, 170, 175, 176,

176t, 177, 178, 179, 180, 182 183, 186, 188,

237, 238, 253 254

Luminance, 223

M

Main lobe clutter, 206, 207, 209

Mantissa, 7 8, 7t, 254
Minimum distance, 130

Modulation, 73, 81 83, 94 95, 113, 114, 140, 142,

145 146, 148 150, 151, 161 162, 163 164,

166, 170, 173, 175 177, 180, 182 183,

185,

197

Multiple input and multiple outputs

(MIMO), 180 181, 182, 248, 253 254

N

National Television System Committee (NTSC), 225

Numerically controlled oscillator (NCO), 27 28, 123

O

Open base station architecture initiative

(OBSAI), 189 190

Orthogonal frequency division multiplexing

(OFDM), 169, 170, 171, 173, 175 178, 181,

182, 183, 185, 185t
Orthogonality, 158, 163 164, 169, 171 173, 174,

182, 183

P

Peak to average ratio (PAR), 183 186, 188

Polar coordinates, 10, 11, 17 18

Power control, 162, 164 165

Progressive, 225, 226 227

Pseudo random code, 151

Pulse compression, 196, 197, 208 209, 214

Pulse repetition frequency (PRF), 197 200,

203 204, 205, 206, 207, 208 211, 213 214,

216, 217, 218, 219, 220 221

Pulse shaping, 85 88, 90, 91, 93, 162

Q

Quadrature amplitude modulation (QAM), 82, 83,

83t, 87, 93 95, 114, 130, 145, 149, 166, 173,

175, 176, 186 187

Quadrature phase shift keying (QPSK), 81 82,

82t, 83, 83t, 84, 87, 93, 94 95, 114, 116,

149, 159, 160 161, 164, 173, 175 176,

182 183

Quantization, 7 8, 26, 27 30, 74, 111, 119 120,

125 126, 147

R

Radar range equation, 195

Radio detection and ranging (RADAR), 191 194,

195, 196, 197, 198, 199 200, 201 202,

203 204, 205, 206 209, 210 211, 213 215,

216 217, 219, 220 222, 238, 245, 253 254

Raised cosine, 88 95

RAKE receiver, 159, 177 178, 181

Range ambiguities, 198, 206, 213 214

Rayleigh fading, 148, 180

Red/Green/Blue (RGB), 223 224, 228, 231

Remote radio head (RRH), 189 190

Roll off, 88, 88t, 89, 90 91

S

Shannon capacity, 142

Side lobe clutter, 206, 207

Signal to noise power ratio (SNR), 29, 119 120,

121, 142, 181, 182 183, 214, 215

Soft decision decoding, 139, 140 141

Soft handoff, 163, 166

Synthetic array radar (SAR), 213 214, 215, 216,

217, 218 222

Index 275
T

Time division multiple access (TDMA), 94, 147,

148 150, 153, 158 159, 161 162, 163,

166 167, 169, 177 178, 181, 182 183, 185t

V

Variable rate vocoder, 162

Verilog, 246

Very long instruction word (VLIW), 235

VHDL, 246

Viterbi decoding, 125, 131, 132, 134 139, 140,

141, 147

Vocoder, 147, 149, 162, 166, 240 241
W

Walsh codes, 152 155, 155 159, 160 162, 163 164,

166, 167, 171

Weave, 225, 226 227

WiMax, 83, 93 94, 169, 185t, 188

Y

YCrCb, 223 224, 227t, 228, 231

Z

Z transform, 41, 75 76, 77 78, 267, 268, 269 270

	Cover Page
	Digital Signal Processing: Everything you need to know to get started
	Copyright
	Introduction
	Acknowledgments
	Contents
	Numerical Representation
	Integer Fixed-Point Representation
	Fractional Fixed-Point Representation
	Floating-Point Representation

	Complex Numbers and Exponentials
	Complex Addition and Subtraction
	Complex Multiplication
	Polar Representation
	Complex Multiplication Using Polar Representation

	Complex Conjugate
	The Complex Exponential
	Measuring Angles in Radians

	Sampling, Aliasing, and Quantization
	Nyquist Sampling Rule
	Quantization

	Frequency Response
	Frequency Response and the Complex Exponential
	Normalizing Frequency Response
	Sweeping across the Frequency Response
	Example Frequency Responses
	Linear Phase Response
	Normalized Frequency Response Plots

	Finite Impulse Response (FIR) Filters
	FIR Filter Construction
	Computing Frequency Response
	Computing Filter Coefficients
	Effect of Number of Taps on Filter Response

	Windowing
	Truncation of Coefficients
	Tapering of Coefficients
	Example Coefficient Windows

	Decimation and Interpolation
	Decimation
	Interpolation
	Resampling by Non-Integer Value

	Infinite Impulse Response (IIR) Filters
	IIR and FIR Filter Characteristic Comparison
	Bilinear Transform
	Frequency Prewarping

	Complex Modulation and Demodulation
	Modulation Constellations
	Modulated Signal Bandwidth
	Pulse-Shaping Filter
	Raised Cosine Filter

	Discrete and Fast Fourier Transforms (DFT, FFT)
	DFT and IDFT Equations
	First DFT Example
	Second DFT Example
	Third DFT Example
	Fourth DFT Example

	Fast Fourier Transform (FFT)
	Filtering Using the FFT and IFFT
	Bit Growth in FFTs
	Bit-Reversal Addressing

	Digital Upconversion and Downconversion
	Digital Upconversion
	Digital Downconversion
	IF Subsampling

	Error Correction Coding
	Linear Block Encoding
	Linear Block Decoding
	Minimum Coding Distance
	Convolutional Encoding
	Viterbi Decoding
	Soft Decision Decoding
	Cyclic Redundancy Check
	Shannon Capacity and Limit Theorems

	Analog and TDMA Wireless Communications
	Early Digital Innovations
	Frequency Modulation
	Digital Signal Processor
	Digital Voice Phone Systems
	TDMA Modulation and Demodulation

	CDMA Wireless Communications
	Spread Spectrum Technology
	Direct Sequence Spread Spectrum
	Walsh Codes
	Concept of CDMA
	Walsh Code Demodulation
	Example 1:
	Example 2:
	Example 3:
	Example 4:

	Network Synchronization
	RAKE Receiver
	Pilot PN Codes
	CDMA Transmit Architecture
	Variable Rate Vocoder
	Soft Handoff
	Uplink Modulation
	Power Control
	Higher Data Rates
	Spectral Efficiency Considerations
	Other CDMA Technologies

	OFDMA Wireless Communications
	WiMax and LTE
	OFDMA Advantages
	Orthogonality of Periodic Signals
	Frequency Spectrum of Orthogonal Subcarrier
	OFDM Modulation
	Intersymbol Interference and the Cyclic Prefix
	MIMO Equalization
	OFDMA System Considerations
	OFDMA Spectral Efficiency
	OFDMA Doppler Frequency Shift
	Peak to Average Ratio
	Crest Factor Reduction
	Digital Predistortion
	Remote Radio Head

	Radar Basics
	Radar Frequency Bands
	Radar Antennas
	Radar Range Equation
	Stealth Aircraft
	Pulsed Radar Operation
	Pulse Compression
	Pulse Repetition Frequency
	Detection Processing

	Pulse Doppler Radar
	Doppler Effect
	Pulsed Frequency Spectrum
	Doppler Ambiguities
	Radar Clutter
	PRF Trade-offs
	Target Tracking

	Synthetic Array Radar
	SAR Resolution
	Pulse Compression
	Azimuth Resolution
	SAR Processing
	SAR Doppler Processing
	SAR Impairments

	Introduction to Video Processing
	Color Spaces
	Interlacing
	Deinterlacing
	Image Resolution and Bandwidth
	Chroma Scaling
	Image Scaling and Cropping
	Alpha Blending and Compositing
	Video Compression
	Video Interfaces

	Implementation Using Digital Signal Processors
	DSP Processor Architectural Enhancements
	Data I/O Bandwidth
	Core Processing
	Multiple Cores or Hardware Coprocessors

	Scalability
	Floating Point
	Design Methodology
	Managing Resources
	Ecosystem

	Implementation Using FPGAs
	FPGA Design Methodology
	DSP Processor or FPGA Choice
	Design Methodology Considerations
	Dedicated DSP Circuit Blocks in FPGAs
	Adjustable Precision Multipliers
	Accumulators
	Postadder (Subtracter) and Distributed Adder
	Preadder (Subtracter)
	Coefficient Storage
	Barrel Shifter
	Rounding and Saturation
	ALU and Boolean Operations
	Specialty Operations
	Tco and Fmax

	Floating Point in FPGAs
	Ecosystem
	Future Trends

	Q Format Shift with Fractional Multiplication
	Evaluation of FIR Design ErrorMinimization
	Laplace Transform
	Z - Transform
	Binary Field Arithmetic
	Index
	A
	B
	C
	D
	E
	F
	G
	I
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	V
	W
	Y
	Z

