
TE
AM
FL
Y

Team-Fly®

Visual
Basic

Programming

®

00 VBP_AB FM.qxd 3/30/03 1:05 PM Page i

Check the Web for Updates

To check for updates or corrections relevant to this book and/or CD-ROM, visit
our updates page on the Web at http://www.prima-tech.com/support/.

Send Us Your Comments

To comment on this book or any other PRIMA TECH title, visit our reader
response page on the Web at http://www.prima-tech.com/comments.

How to Order

For information on quantity discounts, contact the publisher: Prima Publish-
ing, P.O. Box 1260BK, Rocklin, CA 95677-1260; (916) 787-7000. On your letter-
head, include information concerning the intended use of the books and the
number of books you want to purchase. For individual orders, turn to the
back of this book for more information.

00 VBP_AB FM.qxd 3/30/03 1:05 PM Page ii

Visual
Basic

Programming

MICHAEL A. VINE

®

00 VBP_AB FM.qxd 3/30/03 1:05 PM Page iii

© 2001 by Prima Publishing. All rights reserved. No part
of this book may be reproduced or transmitted in any
form or by any means, electronic or mechanical,
including photocopying, recording, or by any informa-
tion storage or retrieval system without written per-
mission from Prima Publishing, except for the
inclusion of brief quotations in a review.

A Division of Prima Publishing

Prima Publishing and colophon are regis-
tered trademarks of Prima Communica-
tions, Inc. PRIMA TECH is a registered
trademark of Prima Communications, Inc.,
Roseville, California 95661.

Visual Basic is a registered trademark of Microsoft
Corporation.

All other trademarks are the property of their respective
owners.

Important: Prima Publishing cannot provide software
support. Please contact the appropriate software man-
ufacturer’s technical support line or Web site for assis-
tance.

Prima Publishing and the author have attempted
throughout this book to distinguish proprietary trade-
marks from descriptive terms by following the capital-
ization style used by the manufacturer.

Information contained in this book has been obtained
by Prima Publishing from sources believed to be reli-
able. However, because of the possibility of human or
mechanical error by our sources, Prima Publishing, or
others, the Publisher does not guarantee the accuracy,
adequacy, or completeness of any information and is
not responsible for any errors or omissions or the
results obtained from use of such information. Readers
should be particularly aware of the fact that the Inter-
net is an ever-changing entity. Some facts may have
changed since this book went to press.

ISBN: 0-7615-3553-5

Library of Congress Catalog Card Number: 2001091129

Printed in the United States of America

00 01 02 03 04 DD 10 9 8 7 6 5 4 3 2 1

Publisher:
Stacy L. Hiquet

Associate Marketing Manager:
Heather Buzzingham

Managing Editor:
Sandy Doell

Acquisitions Editor:
Melody Layne

Project Editor:
Heather Talbot

Technical Reviewer:
Duane Birnbaum

Copy Editor:
Kris Simmons

Interior Layout:
Marian Hartsough

Cover Design:
Prima Design Team

CD-ROM Producer:
Dan Ransom

Indexer:
Johnna VanHoose Dinse

Proofreader:
Jessica Ford McCarty

00 VBP_AB FM.qxd 3/30/03 1:05 PM Page iv

This book is dedicated

to my mother, Nancy,

who never ceases to amaze me

with her ability to love, nurture, and inspire.

00 VBP_AB FM.qxd 3/30/03 1:05 PM Page v

s the author, I would like to acknowledge you, the reader of this book.
Thank you for choosing this book over many others.

I would like to thank all the hard-working people at Prima Publishing
who made this book possible. A special thanks to Andy Harris, who has been an
active mentor in my teaching and writing career, Melody Layne, who helped me
transform from writer to author, and Duane Birnbaum for his professional
advice and superb technical editing.

Many thanks to my parents, family, and friends for unconditional love and
friendship—love you all.

Most importantly, I would like to thank my wife and best friend, Sheila, for
putting up with me when I was teaching, going to school, working full-time, and
writing this book and for still loving me anyway. You’re the best!

Acknowledgments

A

00 VBP_AB FM.qxd 3/30/03 1:05 PM Page vi

ichael Vine spent six years working as a network administrator for var-
ious companies in and around Florida, New Mexico, California, Indi-
ana, and Tennessee, implementing and supporting enterprise
networks and data centers.

Although networks were his bread and butter, he enjoyed programming as a hob-
byist and enthusiast for about six years. It wasn’t until he wrote a few successful
desktop and client/server-based applications that he discovered his passion for
programming and software development.

Realizing his new calling, Vine quickly made the transition from hardware to
software, and he has been working as a software engineer for the past two years.
As a software engineer, he designs, develops, and supports client/server-based sys-
tems using technologies such as Visual Basic, C/C++, PowerBuilder, Oracle,
Microsoft SQL Server, Microsoft Access, and Seagate Crystal Reports.

After returning to school to complete a few degrees, he found another passion in
teaching, and he currently teaches as a part-time instructor of computer science
at Indiana University/Purdue University at Indianapolis (IUPUI).

About the Author

M

00 VBP_AB FM.qxd 3/30/03 1:05 PM Page vii

00 VBP_AB FM.qxd 3/30/03 1:05 PM Page viii

This page intentionally left blank

Introduction xxvi

CHAPTER 1 Introduction to Problem Solving
and Visual Basic 1

CHAPTER 2 Visual Basic Fundamentals and GUI Basics 19

CHAPTER 3 Making Decisions 57

CHAPTER 4 Iteration 103

CHAPTER 5 Subprocedures, Functions,
and Controls Continued 127

CHAPTER 6 Advanced Controls 157

CHAPTER 7 Debugging and Error Handling 189

CHAPTER 8 Data Files and File Access 209

CHAPTER 9 Standard Code Modules, Multiple Forms,
and Encryption 233

CHAPTER 10 Arrays 257

CHAPTER 11 Drag and Drop 293

CHAPTER 12 Setup and Deployment 307

APPENDIX A Common ASCII Codes 325

APPENDIX B What’s on the CD 329

Index 333

Contents at a
Glance

00 VBP_AB FM.qxd 3/30/03 1:05 PM Page ix

Introduction xxvi

Introduction to Problem
Solving and Visual Basic 1

Project: How Many Programmers Does
it Take to Turn on a Light Bulb? 3
How to Solve Problems 4
STAIR 5

Stating the Problem 6
Identifying Your Tools 6
Writing an Algorithm 6
Implementing the Solution 6
Refining the Solution 6

Visual Basic Projects 8
Project Files 8
Project Templates 8

The Visual Basic Landscape 9
Constructing the Light Bulb Program 11

The Problem 11
The Implementation 13
Running Your Visual Basic Program 16

Summary 17

Visual Basic Fundamentals
and GUI Basics 19

Project: Word Art 20
Controls and Properties 20

Naming Conventions 21
Form 22
Command Buttons 24

Contents

1
C H A P T E R

2
C H A P T E R

00 VBP_AB FM.qxd 3/30/03 1:05 PM Page x

TE
AM
FL
Y

Team-Fly®

Labels 25
Text Boxes 26
Image Controls and Picture Boxes 27
Frame Controls 28
Check Boxes 29
Option Buttons 30

Variables, Numbers, and Strings 32
Variables 32
Declaring Variables and Scope 33
Option Explicit 35
Naming Conventions Continued 35
Constants 36
Arithmetic Operations 37
String Constants, Functions, and Concatenation 39
Programming Events 45
Compiling and Running Your Visual Basic Program 48
Constructing the Word Art Program 50

Summary 56

Making Decisions 57

Project: Tic-Tac-Toe 58
Boolean Logic 59
It then Else 61

Compound Conditions 64
Nested If Statements 65

Select Case Conditions 72
Timer Control 74
Building Intelligent Programs 80
Constructing the Tic-Tac-Toe Game 83

The Problem 83
The Implementation 86

Summary 101

Iteration 103

Project: Slot Machine 104
Been There, Done That 104
For Loops 105

xi
T
a

b
le

o
f C

o
n

te
n

ts

3
C H A P T E R

4
C H A P T E R

00 VBP_AB FM.qxd 3/30/03 1:05 PM Page xi

Do Loops 109
Do While 109
Loop Until 111

Random Numbers 112
Rnd Function 112
Randomized Function 113

Constructing the Slot Machine Game 116
The Problem 116
The Implementation 119

Summary 125

Subprocedures, Functions,
and Controls Continued 127

Project: Shooting Gallery 128
Subprocedures and Functions 128

Subprocedures 130
Functions 133
ByRef and ByVal Keywords 137

Interacting with the User 138
Message Box 139
Input Box 141

Playing Sounds in Visual Basic 144
Constructing the Shooting Gallery Game 147

The Problem 147
The Implementation 149

Summary 155

Advanced Controls 157

Project: The Agent Program 158
List Boxes and Combo Boxes 158

List Boxes 158
Combo Boxes 163
Drive, Directory, and File List Boxes 164

The Common Dialog Control 166
Human/Computer Interaction 172

ToolTipText 173
TabIndex 173

xii
T
a

b
l e

o
f

C
o

n
te

n
t s

5
C H A P T E R

6
C H A P T E R

00 VBP_AB FM.qxd 3/30/03 1:05 PM Page xii

Default Property 173
Building Menus 174
Pop-Up Menus 177

Microsoft Agents 177
Installing the Agent 178
Using the Agent 179

Constructing the Agent Program 181
The Problem 181
The Implementation 183

Summary 187

Debugging and Error
Handling 189

Project: The Mad Lib Game 190
Overview 190
Input Validation 191

Validate Event 192
Checking Data Types 193
Testing a Range of Values 193

Break Mode and Debug Windows 195
Inserting Breakpoints 195
The Immediate Window 197
The Watch Window 198
The Locals Window 200

Building Error-Handling Routines 200
The Err Object 202
Constructing the Mad Lib Game 204

The Problem 204
The Implementation 204

Summary 208

Data Files and File Access 209

Project: The Quiz Game 210
Data Files 211

Data File Organization 212
Sequential Access Files 213

Opening a Sequential Data File 213

xiii
T
a

b
le

o
f C

o
n

te
n

ts

7
C H A P T E R

8
C H A P T E R

00 VBP_AB FM.qxd 3/30/03 1:05 PM Page xiii

Writing Sequential Data to a File 214
Reading Data from a Sequential File 215
Closing a Sequential Data File 216

Random Access Files 218
User-Defined Types 219
Opening Random Access Files 221
Reading Data from Random Access Files 221
Editing and Creating Data in Random Access Files 222
Closing a Random Access File 223

Error Trapping for File Access 225
Constructing the Quiz Game 227

The Problem 228
The Implementation 229

Summary 232

Standard Code Modules,
Multiple Forms, and
Encryption 233

Project: Enhancing the Quiz Game
with Encryption and Multiple Forms 234

Creating and Using Multiple Forms 234
Creating an About Box 235
Creating Splash Screens 238

Code Modules 241
Encryption 245

Numbering Systems 246
Simple Encryption Algorithm 248
Login Dialog Box and Passwords 251

Constructing the Enhancements for the Quiz Game 252
The Problem 253
The Implementation 254

Summary 256

Arrays 257

Project: Video Poker (Blackjack) Game 258
Arrays 258

Declaring Arrays 260
Single Dimension Arrays 261

xiv
T
a

b
l e

o
f

C
o

n
te

n
t s

9
C H A P T E R

10
C H A P T E R

00 VBP_AB FM.qxd 3/30/03 1:05 PM Page xiv

xv
T
a

b
le

o
f C

o
n

te
n

ts

Multidimensional Arrays 262
Dynamic Arrays 265

Control Arrays 266
The PictureClip Control 269
Constructing the Video Poker Game 276

The Problem 276
The Implementation 279

Summary 291

Drag and Drop 293

Project: The Puzzle Game 294
Drag and Drop Technology 294
Drag and Drop Properties 295
Drag and Drop Events 297

The Weather Forecast Example 297
Constructing the Puzzle Game 299

The Problem 299
The Implementation 301

Summary 306

Setup and Deployment 307

The Package and Deployment Wizard 308
Running as an Add-In 308
Running Standalone 311

Understanding Distribution Files 311
Runtime Files 311
Setup Files 312
Application Files 312

Package Process 313
Deployment Process 318
Testing Your Setup Program 321
Uninstalling Your Visual Basic Program 322
Summary 324

Common ASCII Codes 325

A
A P P E N D I X

11
C H A P T E R

12
C H A P T E R

00 VBP_AB FM.qxd 3/30/03 1:05 PM Page xv

What’s on the CD 329

Running the CD with Windows 95/98/2000/NT 330
Running the CD with Macintosh OS 7.0 or Later 330
The Prima User Interface 331

Index 333

xvi
T
a

b
l e

o
f

C
o

n
te

n
t s B

A P P E N D I X

00 VBP_AB FM.qxd 3/30/03 1:05 PM Page xvi

icrosoft Visual Basic is a leader among high-level languages in support-
ing the event-driven paradigm and Rapid Application Development
(RAD). More specifically, Visual Basic’s acceptance and popularity can
be seen in many facets of application development such as database

access, Graphical User Interface (GUI) prototyping, building distributable com-
ponents, Internet scripting, desktop and client/server design, and even game
development.

Because of its common commercial uses and ease of learning, Visual Basic has
also become popular with higher education institutions all over the world for
teaching people how to program.

While this book’s primary objective is to teach you the Visual Basic language, I
will also cover some relevant computer science principals in a palatable form
suitable for beginning programmers.

What makes this book unique from other programming texts is its ability to
replace the sometimes-boring scientific, business, and financial programming
examples with games. It is this approach that should make your learning expe-
rience engaging and enjoyable.

Although there are no prerequisites for this book (math or otherwise), you will
learn concepts, procedures, and techniques that are rooted in math. This book
does, however, assume that you are familiar with at least one Microsoft operat-
ing system, such as Windows 95, 98, NT, or 2000.

How to Use This Book

To learn how to program a computer, you must acquire a complex progression of
skills. If you have never programmed at all, you will probably find it easiest to go
through the chapters in order. Of course, if you are already an experienced pro-
grammer, it might not be necessary to do any more than skim the earliest chap-
ters. In either case, programming is not a skill you can learn by reading. You’ll
have to write programs to learn. This book has been designed to make the process
reasonably painless.

Introduction

M

00 VBP_AB FM.qxd 3/30/03 1:05 PM Page xvii

xviii
I n

t r
o

d
u

c
ti

o
n

Each chapter begins with a complete program that demonstrates some key ideas
for the chapter. Then, you’ll look at a series of smaller programs that illustrate
each of the major points of the chapter. Finally, you’ll put these concepts
together to build the larger program that you saw at the opening of the chapter.
You’ll be able to see important ideas in simple, straightforward code, and you’ll
also see more involved programs that put multiple ideas together. All the pro-
grams are short enough that you can type them in yourself (which is a great way
to look closely at code), but they are also available on the CD-ROM.

Throughout the book, I’ll throw in a few other tidbits, notably the following:

These are good ideas that experienced programmers like to pass on.

There are a few areas where it’s easy to make a mistake. I’ll point them out to
you as we go.

These will suggest techniques and shortcuts that will make your life as a pro-
grammer easier.

TRICK

TRAP

HINT

IN THE REAL WORLD

As you examine the games in this

book, I’ll show you how the con-

cepts are used for purposes beyond

game development.

Definition
Providing useful references, defini-

tions reiterate a concept or key

term that was discussed in the text.

CHALLENGES

At the end of each chapter, I’ll suggest some programs that you can write with

the skills you’ve learned so far. This should help you start writing your own

programs.

00 VBP_AB FM.qxd 3/30/03 1:05 PM Page xviii

W
elcome. I’m excited that you’ve chosen this book as

your first introduction to programming using Visual

Basic. I know first-hand what an exciting and chal-

lenging opportunity this is for you. My first IT (information

technology) job was as a technical help desk representative,

so I took phone calls from confused and sometimes aggra-

vated clients wanting to understand exactly what their soft-

ware was or wasn’t doing. In this job, I learned how to use

and support the software my company sold and supported. But

the one thing I didn’t know was how the application was built

or what it took to build something like it. On rare occasions, I

could escalate a problem directly to one of the programmers,

at which time, I was afforded the so-called privilege of deal-

ing directly with one of the application developers. I used to

sit there in envy, wishing one of these programmers would

share some of his magic programming knowledge with me.

But that never happened. For some time, the whole program-

ming thing remained a mystery to me until I mustered up

enough courage to learn it on my own.

Introduction to
Problem Solving
and Visual Basic

1
C H A P T E R

During this time, learning how to program meant attending the computer sci-
ence school in my area. I was able to study such intriguing languages as COBOL,
BASIC, FORTRAN, or, if I was lucky, C or C++. I found these languages, well, let’s
say less than exciting. I wanted to learn how to reach into an empty bag and pull
out something interesting, something tangible, or something that someone
would say, “Hey, that’s pretty cool,” and “Where did you learn how to do that?”

It wasn’t until years later that I came across a new language called Visual Basic
and began to study it on my own. It wasn’t until then that I realized what I had
been missing during all those computer science courses. Anyone can learn how to
program, but not everyone can find enjoyment in it. Visual Basic transcends the
programming world by offering something that other languages taught at uni-
versities during that time could not offer. And what is this, you ask? The answer,
simply put, is instant gratification. Yes, I said it! Instant gratification—the enjoy-
ment of building something quickly and seeing your results immediately. This is
what makes Visual Basic so popular as a teaching tool and a very common plat-
form for rapidly building application prototypes in the business world.

Customers want a visual perspective of what it is you as a programmer are build-
ing for them. Visual Basic provides the facilities to do this and do it quickly,
cheaply, and efficiently. This type of rapid prototyping, known as RAD (Rapid
Application Development), has proven to be a pot of gold for not only the compa-
nies that use it, but also the developers who possess the knowledge to exploit it.

So the question now is “How do I become one of these Visual Basic and RAD
experts?” Well, the first step is understanding how to solve problems. Solving

2
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

IN THE REAL WORLD

RAD development tools such as Visual Basic provide the facilities for creating

graphical interfaces that can depict the functionality and flow of an application

before you start any major programming. Prior to RAD tools, customers often

waited many months, if not years, to see what their applications would look

like. During an extended development period, customers could and did change

their requirements for an application. For the programmers, this meant going

back to the drawing board and modifying tedious, complicated, and expensive

code to accommodate the customers’ changing needs. Visual Basic provides the

necessary RAD tools for quickly creating graphical interfaces and the ability to

change them in a moment’s notice without the legacy problems of major code

changes. RAD development environments such as Visual Basic have proven to

be a solid and popular mechanism for saving companies money and time.

TE
AM
FL
Y

Team-Fly®

problems is the core of programming. Learning how to solve problems is an
important and often overlooked concept when learning how to program. In this
chapter, I show you a few basic techniques that programmers use for decompos-
ing a problem, sifting through the rubble, and finding a solution. In addition to
learning how to solve problems, it is crucial to fully understand the tools you are
working with. Visual Basic provides a multitude of new tools for solution design,
development, implementation, and deployment. I show you how to exploit some
of these new tools so that by the end of this chapter, you will be able to build a
simple program and call yourself a Visual Basic programmer. Specifically, this
chapter covers the following topics:

• Problem solving

• Visual Basic projects

• The Visual Basic landscape

• Constructing the light bulb program

Project: How Many Programmers
Does It Take to Turn on a Light Bulb?

By the end of this chapter,
you will become familiar
with the Visual Basic facili-
ties for building simple pro-
grams. I also walk you
through how to build a sim-
ple graphical program that
turns on a graphical depic-
tion of a light bulb using the
Visual Basic IDE (Integrated
Development Environment).

Figure 1.1 depicts the light
bulb program that you will
learn to build at the end of
this chapter.

Don’t worry about the programming specifics or any Visual Basic nomenclature
when you build the light bulb program. My intention is to give you a feel for how
easy it is to build programs in Visual Basic. In subsequent chapters, you will learn
the underlying meaning of what you did in the light bulb program.

3
C

h
a

p
te

r
 1

 In
t r

o
d

u
c
t io

n
to

P
r
o

b
le

m
 S

o
lv

i n
g

a
n

d
 V

is
u

a
l B

a
s

i c

Definition
Most enterprise languages such as Visual Basic, Java,

C++, and so on) are packaged into an IDE, Integrated

Development Environment.

IDEs combine multiple components, such as debug-

ging features, compilers, text editors, help systems,

and many other features, into one graphical environ-

ment. Though common with many programming lan-

guages, IDEs are not necessary to build programs. In

fact, many programmers today use basic text editors,

such as UNIX’s vi, pico, or emacs; a mainframe time-

sharing option (TSO) editor; or something resem-

bling Microsoft’s Notepad.

How to Solve Problems

Problem solving is something you have been doing all your life. Whether you
know it or not, the way you already solve everyday problems is similar to how
programmers solve their programming problems. For example, as an adult, you
face all types of problems ranging from easily solvable to seemingly impossible.
Here are just a few:

• How do I get my employer to give me a promotion or more money?

• How do I change the toner in my printer?

• How do I pay my bills?

• How do I study for a test?

• How do I bake a cake?

• How do I fix a broken water heater?

Each of these problems, whether simple or complicated, requires some process for
obtaining and implementing a solution. It is this process that I want to focus on.

I’ll use the broken water heater as an example. To solve this problem, I first make
sure that I understand the problem correctly. This might involve going to my
water heater and looking for leaks, frozen pipes, loss of electrical power, or faulty
hardware. I might also document the make and model (gas or electric) and the
conditions surrounding the last time it was working (which will be useful later).
Next I identify all the tools necessary to solve
the problem. After that, I come up with a
plan of action, or an algorithm. In real life,
you probably would not bother documenting
all these steps on paper. But it’s the process
that I’m going through, either consciously or
subconsciously, that’s important.

After identifying the problem and finding all necessary tools, I choose the best
course of action or algorithm to implement. I might try to fix the problem

4
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

FIGURE 1.1

The light bulb
program.

Definition
An algorithm is a well-defined,

finite, step-by-step process for

solving a problem.

myself, or if I’m smart, I call a service-repair person. Either way, I take the time
to state and understand the problem and identify the tools I need so that if I go
to a hardware store for replacement parts, I know what to get. Or if I decide to
call a service-repair person, I know whom to call and what to tell her if she asks
me questions about my broken water heater.

Although the broken water heater problem is simple to solve, you know as an adult
that if you don’t understand the problems you are trying to fix, they can cost you
unnecessary time, money, and frustration. Programmers face the same issues and
consequences when developing their programs, with one major exception. Most
professional programmers or developers take the time to formally document their
thought processes in some form of
analysis and design. Without a
process for analyzing a problem and
coming up with the design, you will
find yourself in trouble time and time
again. This I promise you.

There are literally sciences and engi-
neering practices behind software
analysis and design, also known as
software engineering. As a beginning
programmer, you do not need to con-
cern yourself with the intricacies of
software engineering, but I would be
doing you a disservice if I didn’t
share some foundations for how pro-
grammers solve problems.

STAIR

Made popular at Indiana University Purdue University Indianapolis (IUPUI) by
instructor Andy Harris, STAIR is one of many processes for solving problems in
the scientific, engineering, and information technology worlds. I use parts of the
STAIR problem-solving process in each chapter to give you a feel for how you can
solve problems with it. Specifically, STAIR is an acronym for the following:

• State the problem.

• Identify the tools available for solving the problem.

• Write an algorithm.

• Implement the solution.

• Refine the solution.

5
C

h
a

p
te

r
 1

 In
t r

o
d

u
c
t io

n
to

P
r
o

b
le

m
 S

o
lv

i n
g

a
n

d
 V

is
u

a
l B

a
s

i c

Definition
Software engineering is the act of con-

structing software programs through spec-

ifications derived through a form of analy-

sis and design. Often considered to be the

Wild West of the engineering world, soft-

ware engineering is a new and constantly

changing practice. Some engineers do not

even consider software engineering a real

engineering practice because there are few

standards, guidelines, and industry-

approved certifications. Just think: What

would happen to the engineers building

skyscrapers or airplanes if their products

were allowed to have as many faults or

bugs as the software running on your com-

puter? Would you still want to fly?

Stating the Problem

Stating the problem is the first and most important part of solving any pro-
gramming problem. It begins by stating the problem, defining the problem, and
understanding the problem. Although seemingly an easy task, stating and under-
standing a problem is where most beginning and even seasoned programmers
sometimes get into trouble. If you don’t fully understand a problem, you might
find yourself creating unnecessary work or implementing an incorrect solution.
Take your time when presented with a problem to fully understand its nature
and origin before writing a single line of code. Once you have this knowledge,
everything else falls into place.

Identifying Your Tools

The next process is identifying any tools you have or might have available for
solving a problem. Defining tools can be as simple as listing the major compo-
nents that you will use for solving a problem. Or it can be a more detailed
description of specific component subsets.

Tools specific to this book include the Visual Basic programming environment
and its many facilities.

Writing an Algorithm

The algorithm is the process by which you sequentially list the steps needed to
solve a problem. Algorithms can start out as a simple paragraph, but you should
carry it further to a finite list of well-defined steps.

Implementing the Solution

Implementation is the process by which you use your tools and algorithms to
build a solution. For this book’s purpose, implementation is the process by which
you add controls to forms, modify
their properties, and write Visual
Basic code to respond to events.

Refining the Solution

The refinement process involves vari-
ous aspects of testing the solution,
fixing bugs, and making enhance-
ments. For the most part, I do not use
the refinement part of the STAIR

6
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

Definition
The word bug in a technical sense most

often means an unintentional software or

hardware problem or glitch. Its origins date

back to Admiral Grace Hopper (a computer

pioneer best known for inventing the

COBOL programming language), who told

a story of a technician removing an insect

from between the relays of a computer.

process in this book. Why, you ask? Because we programmers don’t make mis-
takes! Well, uh, okay; I’m just joking.

I can guarantee you that most programs I wrote for this book went through some
form of refinement, modification, and debugging to better them in some way.
Even though you might not see the refinement step in this book, I can promise
you it was done. So don’t worry; I’m sure you will find yourself conducting the
refinement process on your own programs because it is a natural process when
developing applications and writing code. It’s a rare if not impossible feat for any
programmer to write even the simplest program without returning to the pro-
gram design or code to make enhancements or fix bugs.

Here’s how I would use the STAIR process to solve the water heater problem:

• State the problem. My water heater does not work. Cold water comes out
of all faucets in the house, but no hot water. I had hot water last night,
but none this morning. The temperature outside has been below freezing
for the past week. The water heater is located in the garage, and all
exposed pipes are insulated but are cold to the touch. I’ve determined that
pipes are frozen. The product is made by XYZ Company and uses gas.

• Identify your tools. I have a portable heater that I could use to assist in
thawing the exposed pipes if they are frozen. I have identified a couple of
service-repair companies in the Yellow Pages.

• Write an algorithm. I choose to fix the problem myself by following these
steps:

1. Make sure the portable heater has gas.

2. Plug in the portable heater.

3. Place the portable heater next to the water heater, and turn it on.

4. Leave the heater running, and check for hot water every hour or two.

• Implement the solution. Implement the preceding algorithm.

• Refine the solution. Does the hot water ever come on? If so, did it take a
long time? Was this a good solution, and should I use it in the future? Is
there a better long-term solution?

In this book, I mostly concentrate on the S (state the problem), T (tools), A (algo-
rithm), and I (implementation) parts of STAIR to build a program at the end of
each chapter.

7
C

h
a

p
te

r
 1

 In
t r

o
d

u
c
t io

n
to

P
r
o

b
le

m
 S

o
lv

i n
g

a
n

d
 V

is
u

a
l B

a
s

i c

Visual Basic Projects

A Visual Basic project consists of many files that
directly correlate with the types of Visual Basic
components you are working with.

Project Files

Here is a list of Visual Basic project files that you
will work with throughout this book:

• The group project file (.vbg) contains a list
of all Visual Basic projects in one group.

• Project files (.vbp) list all project files and
components in the project. The project file also contains information on
the project’s environmental settings.

• The form modules (.frm) file contains textual descriptions of forms,
controls, and their properties. The form module file can also contain
form-level declarations of variables, constants, and procedures.

• The form data file (.frx) is created for each form. It contains binary
information for graphics such as pictures and icons.

• Standard modules (.bas) can contain global declarations and public and
external procedures.

Project Templates

Visual Basic provides project templates to assist you with program development
for a specific type of project. When building a new Visual Basic program, you
have the opportunity to select from a number of project templates, as shown in
Figure 1.2.

Before you start coding, you should give some thought to what type of project
you will be working with.

Deciding what type of Visual Basic project to use falls under the tools step of the
STAIR process.

You can choose from a number of project templates in Visual Basic; however, this
book concentrates on the standard EXE project.

HINT

8
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

Definition
Components are simply mod-

ularized pieces of code in a

Visual Basic application.

Components allow you to

modularize your program

because you create and use

separate pieces that work

together to build an entire

program.

Standard EXE is the default project tem-
plate and is used to build standalone
desktop applications. When you create
a standard EXE project, Visual Basic pro-
vides you with one Form object by
default. The standard EXE is the project
you will use throughout this book.

The Visual Basic
Landscape

The Visual Basic landscape consists of many windows and tools that you will use
throughout this book. You will not only become familiar with these tools and
windows, but you will also learn how to exploit all that they have to offer you as
a programmer.

Figure 1.3 shows the most common windows and toolbars you will use through-
out this book.

The menu bar contains menu commands that you have probably seen in other
Windows-based applications—such as File, Edit, View, Tools, Window, Help, and

9
C

h
a

p
te

r
 1

 In
t r

o
d

u
c
t io

n
to

P
r
o

b
le

m
 S

o
lv

i n
g

a
n

d
 V

is
u

a
l B

a
s

i c

FIGURE 1.2

New project
window showing
available project

templates.

Definition
The term object has many definitions

and applications in the world of comput-

er science and information technology.

To narrow the scope of the word

“object,” I define it for use in this book

in the following manner: Visual Basic

programs use windows called Forms

that act as containers for controls, such

as images, buttons, and labels, to name

just a few. These controls and the forms

they reside on are called objects.

others. The menu bar also has many other commands specific to Visual Basic—
such as Project, Format, Debug, Run, Query, Diagram, Add-Ins, and many others.

The toolbar includes a number of clickable icons that represent various program
functions. To find out what a specific icon represents on the menu bar, simply
move your mouse cursor over the icon and pause for a moment to see a small bal-
loon containing a description.

Toolbox is a popular facility for aiding you in designing graphical programs. It
contains clickable icons that represent objects you can place on your form. Some
of the toolbox’s objects that you will use in the light bulb program are the image,
label, frame, option button, and command button control.

The Project Container window is what its name implies, a container. Its function
is to house other windows such as form and code windows.

A form is technically a container for other objects, but I like to equate it to a can-
vas for painting a picture. You can use the toolbox to add objects to a form by

10
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

FIGURE 1.3

The Visual Basic
landscape.

Menu barToolbox Toolbar Project Explorer window

Project Container
window

Form Layout
window

Properties
window

Form

clicking an object icon on the toolbox and using your mouse to draw the control.
Or you can simply double-click the object icon in the toolbox to instantly place
the object on your form.

Once a control has been added to a form, you can resize it by using the mouse’s
pointer to click and drag the edges of the control.

The Project Explorer window contains a list of all the components included in
your Visual Basic project. Such components can include forms and code modules,
which I discuss in Chapter 9.

The Properties window contains the properties or attributes of one object. To
view an object’s properties, simply click on an object such as a form, text box,
label, image, or command button to have its properties displayed in the Proper-
ties window. The Properties window not only displays an object’s properties, but
allows you to modify the object’s properties as well.

The Form Layout window allows you to position forms relative to your screen’s
size.

The Form Code window is a container that you use to write your Visual Basic
code. Essentially, the Form Code window is a high-powered text editor that aids
you in programming and debugging.

The preceding components can be accessed from the View menu item.

Constructing the Light Bulb Program

How many programmers does it take to turn on a light bulb? The answer is one.
I walk you through how a programmer might go about solving this program
using the STAIR process.

The Problem

How do I build a program using Visual Basic that graphically depicts a light bulb
turning off and on?

The tools you have on hand are easy to identify: the Visual Basic IDE and one stan-
dard EXE project. Table 1.1 is a list of the controls and their properties for the
light bulb program.

HINT

HINT

11
C

h
a

p
te

r
 1

 In
t r

o
d

u
c
t io

n
to

P
r
o

b
le

m
 S

o
lv

i n
g

a
n

d
 V

is
u

a
l B

a
s

i c

The icons Lighton.ico and Lightoff.ico (and many other graphics) appear in the
common directory of Visual Studio (for example, C:\Program Files\Microsoft
Visual Studio\Common\Graphics). Visual Studio is Microsoft’s suite of develop-
ment tools, which include Visual Basic and many others. If you do not have
access to these graphics, you can find a multitude of free clip art in Microsoft’s
Clip Gallery at http://cgl.microsoft.com/clipgallerylive/default.asp.

Write your algorithm in the form of a list:

1. Launch Visual Basic, and select a standard EXE as project template.

2. Build the user interface using the default form that comes with the stan-
dard EXE project and the controls located in the toolbox.

3. Write code to respond to user events.

4. Test the program.

HINT

12
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

Object Property Setting

Label1 Caption The light is off.

Font MS Sans Serif, regular font, size = 18

Alignment 2- center

Frame1 Caption Light Switch:

Option1 Caption On

Option2 Caption Off

Image1 Picture (None)

Stretch True

Image2 Picture Lighton.ico

Stretch False

Visible False

Image3 Picture Lightoff.ico

Stretch False

Visible False

Command1 Caption Exit

TABLE 1.1 CONTROLS AND PROPERTIES

FOR THE LIGHT BULB PROGRAM

TE
AM
FL
Y

Team-Fly®

The Implementation

Figure 1.4 depicts one of many possible graphical implementations for the light
bulb program. You can see that I have two image controls, each with a picture of
a light bulb, one with the light bulb turned on and one with it turned off. A third
image control contains no picture. I will use this empty image control to perform
a simple image swap.

To turn the light bulb on and off, I’ve decided to use two option buttons. You gen-
erally place option buttons in a container such as a frame control. (I discuss con-
trols in more detail in Chapter 2.)

In addition to the graphical representation of the light bulb’s condition, I’ve
placed a label control on the form to give the user a textual description of the
light bulb’s status. Last but not least, I’ve included a command button on the
form to allow the user a friendly way of exiting the program.

Remember, to add these controls to a form, simply click on the control that you
want (located in the toolbox), and use your mouse pointer to draw it on the form.
You can also double-click the control in the toolbox, and Visual Basic will auto-
matically add the control to your form.

Once you have all the necessary controls on your form, you can modify their
properties accordingly, or you can modify individual control properties as you
add them.

Once you’ve completed building the graphical interface, it’s time to write code
that responds to events triggered by the user. To begin writing your program
code, you must first open the Visual Basic code window. To do so, simply double-
click one of your controls on the form.

13
C

h
a

p
te

r
 1

 In
t r

o
d

u
c
t io

n
to

P
r
o

b
le

m
 S

o
lv

i n
g

a
n

d
 V

is
u

a
l B

a
s

i c

FIGURE 1.4

A possible form
design for the light

bulb program.

There’s more than one way to navigate the code window and the graphical form
window. You may also use the function keys on your keyboard. Pressing the F7
key opens the code window for the current form. To navigate back to your form
window, press Shift+F7.

Another way to navigate between code and form windows is to use your Project
Explorer window. Simply right-click your form in the Project Explorer window
and choose either View Code or View Object.

Events make up the core component for a new programming paradigm called
event-driven programming. Event-driven programming is still a relatively new
way of thinking about how programs are written. The old way to program was to
write code in a step-by-step procedural way, which gives the user little or no con-
trol over when program actions occur. Using events allows a programmer to
write code that gives the user more control over when programming actions
occur in an application. Each control that you will use in Visual Basic, such as a
text box, command button, option button, or image control, has a number of
events associated with it.

When a user triggers an event, such as by clicking on a command button, an
event procedure—statements of code—is executed within a program block. An
event procedure for a command button’s click event looks like the following:

Private Sub Command1_Click()

‘Visual Basic code goes here

End Sub

When the light bulb program is first loaded, I want the light bulb set to the off
setting and the label control to describe its state. This is my default state for the
program. You can set default settings at design time (when you are creating your
program) or through code in the Form Load event. Here’s the Form Load event for
the light bulb program:

Private Sub Form_Load()

Image1.Picture = Image3.Picture

Option2.Value = True

End Sub

When the form loads, I set the picture property of the Image1 image control to
the picture property of Image3 (lights off). In addition, I set the value property of
the Option2 control to True. Setting the value property of an option button con-
trol to True makes it appear selected.

When the user clicks an option button, in this case either “on” or “off,” you can
write code in the click event to handle some action. I want the light bulb to turn

HINT

14
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

on when the user clicks the Option1 option button and turn off when she clicks
the Option2 option button. Here’s the code for each option button’s click event:

Private Sub Option1_Click()

Image1.Picture = Image2.Picture

Label1.Caption = “The light is on.”

End Sub

Private Sub Option2_Click()

Image1.Picture = Image3.Picture

Label1.Caption = “The light is off.”

End Sub

When the user clicks the command button, I want the program to end. I can
accomplish this by using the keyword End, which terminates the program. Here’s
the code for the Command1 control:

Private Sub Command1_Click()

End

End Sub

Here is all of the code for the light bulb program as shown in the form’s code
window:

Private Sub Command1_Click()

End

End Sub

Private Sub Form_Load()

Image1.Picture = Image3.Picture

Option2.Value = True

End Sub

Private Sub Option1_Click()

Image1.Picture = Image2.Picture

Label1.Caption = “The light is on.”

End Sub

Private Sub Option2_Click()

Image1.Picture = Image3.Picture

Label1.Caption = “The light is off.”

End Sub

This is all that is required to build a light bulb program. Hey, that wasn’t too bad,
was it?

15
C

h
a

p
te

r
 1

 In
t r

o
d

u
c
t io

n
to

P
r
o

b
le

m
 S

o
lv

i n
g

a
n

d
 V

is
u

a
l B

a
s

i c

Running Your Visual Basic Program

The Visual Basic IDE contains three modes for building, running, and testing
your programs:

• Design time is the mode in which you add controls to containers (such as
forms) and write code to respond to events.

• The runtime environment allows you to see your program running the
same way a user would. During runtime, you can see all your Visual Basic
code, but you cannot modify it.

• Break mode allows you to pause the execution of your Visual Basic pro-
gram (during runtime) to view, edit, and debug your program code.

There are three main ways to access each of these modes. You can use Visual
Basic’s Run menu as seen in Figure 1.5, function keys, or icons located on the
toolbar as depicted in Figure 1.6.

16
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

FIGURE 1.5

The Visual Basic
Run menu item.

Start program execution

Break to pause program execution

End to terminate program execution

Summary

Congratulations: You have made it through the first chapter, and you are well
on your way to becoming a Visual Basic programmer. I hope that you see how
easy it is to use Visual Basic as a programming platform for rapidly building
programs.

In the first part of the chapter, you learned about solving problems the pro-
grammer’s way. You learned how to use design tools such as the STAIR process for
breaking down a problem and implementing a solution. Later, you learned about
the files and projects associated with Visual Basic, what components compose
the Visual Basic landscape, and how to use them to your advantage. With this
introduction to problem solving and Visual Basic you should now feel confident
that you have the right background to start solving problems using the Visual
Basic IDE.

17
C

h
a

p
te

r
 1

 In
t r

o
d

u
c
t io

n
to

P
r
o

b
le

m
 S

o
lv

i n
g

a
n

d
 V

is
u

a
l B

a
s

i c

FIGURE 1.6

Visual Basic mode
access via the

toolbar.

Start program execution

Break to pause program execution

End to terminate program execution

In the next chapter, you will dive deeper into the Visual Basic GUI (graphical user
interface) world to further investigate controls, objects, and events and the tools
needed to manipulate them. I show you these techniques through a number of
fun and easy-to-use Visual Basic programs. See you in the next chapter.

18
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

CHALLENGES

1. Write the S, T, and A parts of the STAIR process for the following

problems:

• How to bake a cake

• How to drive a car

• How to type a letter

2. Modify the light bulb program to use command buttons instead of option

buttons to turn the light off and on.

3. Build a program that has one command button and one label. Make the

command button show your name in the label’s caption property when it is

clicked.

W
elcome back. Chapter 1 provided you

with an overview of how to solve prob-

lems the programmer’s way with an

introduction to the Visual Basic landscape. You

will now peel back the Visual Basic landscape

layers to expose various GUI (graphical user

interface) techniques and Visual Basic program-

ming fundamentals. To accomplish this, I show

you how to build a number of small programs

throughout this chapter, leading up to a larger

program and its design at the end of the chapter.

This chapter specifically covers the following:

• Controls and their associated properties

• Variables, numbers, and strings

• Programming events

• Compiling a Visual Basic program

Visual Basic
Fundamentals
and GUI Basics

2
C H A P T E R

Project: Word Art

As seen in Figure 2.1, the Word Art pro-
gram takes text entered by you as input
and allows text manipulation in various
fashions. It is a fun and easy way for you
to better understand the many powerful
capabilities of Visual Basic controls, vari-
ables, numbers, strings, and program-
ming events. You might find that the
Word Art program closely resembles
word processors or text editors that you
have used before. This is because the Word Art program offers many features that
today’s high-end word processors use, such as the ability to change fonts, colors,
and alignment.

After completing this chapter, you will see how easy it is to build seemingly com-
plicated graphical programs using the Visual Basic IDE. I hope you’re as excited
as I am about the possibilities, so let’s get started.

Controls and Properties

As mentioned in Chapter 1, controls are objects you can place on forms and in
other containers such as frames and picture boxes. Controls can take the form of
images, pictures, command buttons, labels, frames, and text boxes. The form you
put your controls on is also considered a control. In addition to their graphically

20
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

FIGURE 2.1

The Word Art
program.

Definition
The term GUI represents a graphical

user interface that acts as a front end

to various programming functions and

procedures. Most high-level languages

(such as Visual Basic) include the facili-

ties to create GUIs. Most GUIs consist

of windows containing buttons, labels,

text boxes, images, menus, and other

controls.

appealing presence, controls serve other functions as well. Visual Basic controls
have events, properties, and methods associated with them.

Properties of controls are considered their attributes. For example, some proper-
ties of a word processor might include font size, fore color, back color, and align-
ment. You can change the properties of controls when you’re designing your
program (also known as design-time changes) by clicking on the control or by
selecting it from the drop-down list box. You can also modify a control’s proper-
ties through program code during runtime (when your program is running). You
can start to see that the properties describe a control or object.

21
C

h
a

p
te

r
 2

 V
i s

u
a

l B
a

s
i c

 F
u

n
d

a
m

e
n

t a
l s

 a
n

d
 G

U
I B

a
s

i c
s

Naming Conventions

You should use some standards when naming your controls as you add them to
forms or other containers. Naming your controls something meaningful becomes
an invaluable part of programming when you are dealing with program code. If
you are looking at someone else’s program code, you can easily identify the type
of control by looking at the control name. This can save you from navigating
between code and form windows to verify what control you are working with.

As a general rule of thumb, you should prefix your control name with three let-
ters that signify what type of control you have and follow that with a name that
denotes the control’s purpose. For more information on naming conventions, see
“Naming Conventions Continued” later in this chapter. Table 2.1 contains some
sample control names.

IN THE REAL WORLD

Properties, methods, and events are really one in the same. In the truest sense

of programming and its relation to mathematics, properties, methods, events,

and even procedures are really just a function or part of a function in some way.

In the object-oriented world, properties are controlled by functions for reading

and writing information; methods are no more than functions that perform

some action; events are functions that respond to some intrinsic or user-con-

trolled events; procedures are simply void functions (functions that return no

value); and, well, functions are just functions (give something as input and get

something as output).

22
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

Control Name Control Type

frmMain Form used as a main interface

cmdExit Command button that exits an application

lblEmployeeName Label control that describes an employee name

txtTelephoneNum Text box control used for entering a phone number

imgPlane Image control that contains a picture of a plane

picOutput Picture box that prints some output

fraColorOptions Frame control that contains color options

optRed Option button control for the color red

chkSunday Check box control for the day Sunday

TABLE 2.1 SAMPLE CONTROL NAMES

Form

Sometimes called windows or dialog boxes, forms act as an interface to pro-
grams’ functionality. Forms also serve as containers for other controls. Figure 2.2
depicts a form.

Table 2.2 represents a few common properties of the form control.

FIGURE 2.2

A form.

TE
AM
FL
Y

Team-Fly®

23
C

h
a

p
te

r
 2

 V
i s

u
a

l B
a

s
i c

 F
u

n
d

a
m

e
n

t a
l s

 a
n

d
 G

U
I B

a
s

i c
s

Property Description

Name Control name; used to identify the control through code

BackColor Changes the back color of the form

BorderStyle Changes the border style of the form (design time only)

Caption Text that appears on the control during design time and runtime

ControlBox Determines whether or not the control menu box is visible
(TRUE or FALSE)

Enabled Enables the form; can be set to TRUE or FALSE

Font Sets the font type of the caption property

ForeColor Changes the fore color of the form

Height Used to set the height dimensions of a form (measured in twips)

Icon Displays a selected icon in the upper-left corner of the window
(also seen when the form is minimized)

Picture Assigns a picture to the form’s background

StartUpPosition Determines the position of the form when it first appears

Visible Makes the form visible or not during runtime

Width Used to set the width dimensions of a form (measured in twips)

WindowState Used to determine the state of a window (such as normal, minimized,
or maximized)

TABLE 2.2 A FEW COMMON FORM PROPERTIES

Definition
Twips are a unit of measurement

equal to 1/20 of a printer’s point.

Command Buttons

Command buttons are some of the most
common controls found in any graphi-
cally driven language. Because of their
raised, three-dimensional appearance,
they have a distinct and intrinsic graphi-
cal presence. It is almost as if they are say-
ing, “Click me, please.” Figure 2.3 depicts
a typical command button as seen on a
Visual Basic form.

Command buttons are most commonly
used for starting or triggering procedures
through an event.

Table 2.3 represents a few common properties of the command button control.

24
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

FIGURE 2.3

The command
button.

Property Description

Name Control name; used to identify the control through code

Caption Text that appears on the control during design time and runtime

Enabled Enables the command button; can be set to TRUE or FALSE

Font Sets the font type of the caption property

Picture Assigns a picture to the button face

Style Used in conjunction with the picture property to assign a picture
to the button face instead of a caption

Visible Makes the command button visible or not during runtime

TABLE 2.3 A FEW COMMON

COMMAND BUTTON PROPERTIES

Definition
Procedures are simply blocks of code

that perform a certain task. In Visual

Basic, procedures are broken down

into subprocedures and functions. The

key difference between the two is that

subprocedures do not return a value

and functions do. Remember from

math class that functions simply take

an input and return an output. You will

learn more about functions and sub-

procedures in Chapter 5.

25
C

h
a

p
te

r
 2

 V
i s

u
a

l B
a

s
i c

 F
u

n
d

a
m

e
n

t a
l s

 a
n

d
 G

U
I B

a
s

i c
s

Property Description

Name Control name; used to identify the control through code

Alignment Aligns the label’s text in the caption property

BackColor Changes the back color of the label

BackStyle Sets the control to transparent or opaque

BorderStyle Changes the border from nothing or fixed-single (sunken)

Caption Text that appears on the control during design time and runtime

Enabled Enables the label; can be set to TRUE or FALSE

Font Sets the font type of the caption property

ForeColor Changes the fore color of the label

Visible Makes the label visible or not during runtime

TABLE 2.4 A FEW COMMON LABEL PROPERTIES

FIGURE 2.4

A label control
on a form.

If you add the ampersand (&) symbol to any control’s Caption property, it under-
lines the character to its immediate right. This is a useful tool for creating short-
cut keys. Shortcut keys let a user hold down the Alt key and press the letter
underlined to invoke the click event of that control.

Labels

Label controls are often used as descriptive text for other controls that do not have
their own caption properties. A good example is the text box control, which has
no self-describing property viewable to a user in runtime. Often, a programmer
will put a label control to the left of a text box to describe what the user should
enter into the text box. Figure 2.4 depicts the label control as seen on a form.

Table 2.4 represents a few common properties of the label control.

HINT

26
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

FIGURE 2.5

A text box control
on a form.

Property Description

Name Control name; used to identify the control through code

Alignment Aligns the label’s text in the caption property

Appearance Selects from 1-3D (default) or 0-Flat

BackColor Changes the back color of the text box

BorderStyle Changes the border from nothing or fixed-single (sunken)

Enabled Enables the text box for data entry; can be set to TRUE or FALSE

Font Sets the font type of the text property

ForeColor Changes the fore color of the text displayed or entered

Locked Determines whether or not the control can be edited

Multiline Allows multiple lines (carriage returns) to be entered

PasswordChar Used for entering passwords; displays characters entered as
asterisks (*)

ScrollBars Allows a user to scroll through text vertically, horizontally, or both

Text Text entered or displayed in the text box

TABLE 2.5 A FEW COMMON TEXT BOX PROPERTIES

Text Boxes

The text box control is popular for acquiring user input and displaying various
outputs. You might find it useful when expecting a user to enter either numbers
or text or a combination of both. The text box control has no caption property,
so a label generally signifies to the user what it is you want him or her to enter
as input. Figure 2.5 depicts a text box as seen on a form.

Table 2.5 shows a few common properties of the text box control.

Image Controls and Picture Boxes

You can use both the image control and the picture box to display various graph-
ics (such as .bmp, .gif, .jpg, or .ico files). However, applying a number of graphics to
your program can consume a lot of memory and create excessive overhead. If you
plan to develop games or other graphically intensive programs with Visual Basic,
it is important for you to understand each of these control’s benefits and disad-
vantages. See Figure 2.6 for an image control and picture box located on a form.

Some benefits to the image control are that it uses much less memory and over-
head than the picture box does and that it can re-paint itself much faster than
the picture box. An advantage of the picture box is that it is actually a window or
container that can contain other controls, unlike the image control.

Table 2.6 depicts a few common properties of the image control.

27
C

h
a

p
te

r
 2

 V
i s

u
a

l B
a

s
i c

 F
u

n
d

a
m

e
n

t a
l s

 a
n

d
 G

U
I B

a
s

i c
s

FIGURE 2.6

An image control
on the left and

a picture box on
the right.

Property Description

Name Control name; used to identify the control through code

Appearance Selects from 1-3D (default) or 0-Flat

BorderStyle Changes the border from nothing or fixed-single (sunken)

Enabled Enables the picture (can be useful for clickable events); can be
set to TRUE or FALSE

Picture Assigns a picture to the image control

Stretch Stretches the original picture size to that of the image control size
(unique to image control)

Visible Makes the image visible or not during runtime

TABLE 2.6 A FEW COMMON

IMAGE CONTROL PROPERTIES

Table 2.7 depicts a few common properties of the picture box.
28

V
is

u
a

l
B

a
s

ic
P

r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

Property Description

Name Control name; used to identify the control through code

Appearance Selects from 1-3D (default) or 0-Flat

Autosize Automatically resizes the control to fit the size of the assigned graphic

BackColor Used to change the back color of the picture box

BorderStyle Changes the border from nothing or fixed-single (sunken)

Enabled Enables the picture box; can be set to TRUE or FALSE

Font Sets the font type

ForeColor Changes the fore color of any text displayed in the picture box

Picture Assigns a picture to the picture box

Visible Makes the picture box visible or not during runtime

TABLE 2.7 A FEW PICTURE BOX PROPERTIES

Frame Controls

Like a form or a picture box, the frame control is considered a container for other
controls. Frames are often used to isolate various functionalities on a form. For
example, I might use frames if I were developing a loan application that had a
section for the applicant and a section for the co-applicant on the same form. I
would put all the applicant’s labels, text boxes, and other controls in one frame
control and the co-applicant’s controls in another frame. This way, I graphically
isolate groups of items or tasks.

Frames also serve an important role when you use option buttons (sometimes
called radio buttons) or check boxes, as you will see shortly. Figure 2.7 depicts a
frame control located on a form.

Table 2.8 depicts some common properties of the frame control.

Check Boxes

You use check boxes when you want to give the user the ability to select one or
more choices. You should place check boxes in a container such as a frame control
to denote a related grouping. As with the command button, you can visually
enhance check boxes using graphics in the DownPicture and DisabledPicture
properties. Check boxes are often managed in a control array, which you will learn
about in Chapter 10. Figure 2.8 shows check boxes located in a frame control.

Table 2.9 lists a few common check box properties.

29
C

h
a

p
te

r
 2

 V
i s

u
a

l B
a

s
i c

 F
u

n
d

a
m

e
n

t a
l s

 a
n

d
 G

U
I B

a
s

i c
s

FIGURE 2.7

A frame control.

Property Description

Name Control name; used to identify the control through code

Appearance Select from 1-3D (default) or 0-Flat

BackColor Used to change the back color of the frame

BorderStyle Changes the border from nothing or fixed-single (sunken)

Caption The frame’s caption

Enabled Enables the frame; can be set to TRUE or FALSE

Font Sets the font type of the frame’s caption

ForeColor Changes the fore color of the frame’s caption

Visible Makes the frame visible or not during runtime

TABLE 2.8 A FEW COMMON FRAME PROPERTIES

Option Buttons

Option buttons are often referred to as radio buttons. The term radio button refers
to old car stereos that used push-in buttons. You could push in only one button at
a time. This still holds true with the concept behind the graphical option button.
Option buttons are similar to check boxes with one main exception. As with the
old car radio buttons, you can click only one button at a time. They are useful

30
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

FIGURE 2.8

Three check
boxes housed in
a frame control.

Property Description

Name Control name; used to identify the control through code

Alignment Aligns the check box’s caption property

BackColor Used to change the back color of the check box

Caption The check box’s caption

DisabledPicture Changes the check box’s picture property when disabled

DownPicture Changes the check box’s picture property when clicked

Enabled Enables the check box; can be set to TRUE or FALSE

Font Sets the font type of the check box’s caption

ForeColor Changes the fore color of the check box’s caption

Picture The default graphic for the check box (used in conjunction with
the style property)

Style Used to change the look of a check box, either 0-Standard or 1-Graphical

Value Used to identify the check box as checked, unchecked, or grayed

Visible Makes the check box visible or not during runtime

TABLE 2.9 A FEW COMMON

CHECK BOX PROPERTIES

when you want to give a user a selection of various items but let her select only
one out of many. As soon as a user selects one option button out of many, the rest
of the option buttons in a group become unavailable. Like check boxes, option
buttons are generally placed in a container such as a frame control. Figure 2.9
depicts option buttons located in a frame control.

A few common properties of the option button control are displayed in Table
2.10.

31
C

h
a

p
te

r
 2

 V
i s

u
a

l B
a

s
i c

 F
u

n
d

a
m

e
n

t a
l s

 a
n

d
 G

U
I B

a
s

i c
s

FIGURE 2.9

Three option
buttons located in
a frame control.

Property Description

Name Control name; used to identify the control through code

Alignment Aligns the option button’s caption property

BackColor Used to change the back color of the option button

Caption The option button’s caption

DisabledPicture Changes the option button’s picture property when disabled

DownPicture Changes the option button’s picture property when clicked

Enabled Enables the option button; can be set to TRUE or FALSE

Font Sets the font type of the option button’s caption

ForeColor Changes the fore color of the option button’s caption

Picture The default graphic for the option button (used in conjunction with the
style property)

Style Used to change the look of an option button, either 0-Standard or 1-Graphical

Value Used to identify the option button as clicked or unclicked (value is either
TRUE or FALSE)

Visible Makes the option button visible or not during runtime

TABLE 2.10 A FEW COMMON

OPTION BUTTON PROPERTIES

Variables, Numbers,
and Strings

In this section, you will roll up your sleeves and get your hands a little dirty by
learning some basic (forgive the pun) Visual Basic programming. You will get
experience through building two small programs.

Variables

Variables can temporarily store the value of data in memory during the execu-
tion of your program. They are often referred to as containers for various types
of data. But in reality, they are address placeholders to a memory location in your
computer. In addition, variables act as templates, defining what type of data
should be kept in a memory location and its allowable size. The programming
world has many different types of variables, and not every programming lan-
guage treats them the same. Visual Basic (in my opinion) must be one of the
friendliest languages to use when dealing with variables and data because
Microsoft built in a multitude of variable types for creating, storing, and using
data in Visual Basic.

Table 2.11 outlines some common Visual Basic variable types that you might use
throughout this book.

32
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

IN THE REAL WORLD

At the core level of computer architecture, data is represented in electrical cur-

rents that pass through digital circuits. Electrical currents are represented in

binary form (1s and 0s), which in turn are translated into various numbering sys-

tems that make up memory addresses of a location where data might be stored.

Languages such as C and C++ use a facility called pointers to directly access

memory locations of variables. Although pointers provide powerful capabilities

to deal directly with the operating system and memory modules, they require a

thorough knowledge of C or C++ and a basic understanding of the science

behind computer architecture. For the most part, Visual Basic takes care of

pointers and memory management for you.

TE
AM
FL
Y

Team-Fly®

The syntax for assigning a variable type to a variable name is as follows:

[declaration type] variableName As variableType

Here is an example of a variable called myInteger declared as an integer variable
type:

Dim myInteger As Integer

Declaring Variables and Scope

As mentioned earlier, variables are stored temporarily in your computer’s mem-
ory. Therefore, it is important for you to know when your variable goes out of
scope or, in other words, when you can lose the value of your variable. Variables
derive their scope from either their location in the program code or their decla-
ration type.

33
C

h
a

p
te

r
 2

 V
i s

u
a

l B
a

s
i c

 F
u

n
d

a
m

e
n

t a
l s

 a
n

d
 G

U
I B

a
s

i c
s

Variable Type Description Size

Boolean True or false 2 bytes

Byte 0 to 255 1 byte

Date Date data type, December 25, 2000 8 bytes

Double Number data type, -1.79769313486232E308 to 8 bytes
-4.94065645841247E-324 for negative values;
4.94065645841247E-324 to 1.79769313486232E308
for positive values

Integer Number data type, -32,768 to 32,767 2 bytes

Long Number data type, -2,147,483,648 to 2,147,483,647 4 bytes

Single Number data type, -3.402823E38 to -1.401298E-45 4 bytes
for negative values; 1.401298E-45 to 3.402823E38
for positive values

String String data type (holds numbers, characters, 10 bytes plus
or a combination of both) length of string

TABLE 2.11 COMMON VISUAL

BASIC VARIABLE TYPES

Variables declared in a procedure (for example, the form load event or a button
click event) with the keyword Dim have what’s known as procedure-level scope;
they are called local variables. That is, the variable maintains its value only
throughout the execution of that procedure.

You can also declare variables in a procedure with the keyword Static. Variables
declared with the keyword Static retain their value the entire time your program
is executing.

Here is an example of a variable called myString declared with the keyword Sta-
tic and the variable myDate declared with the keyword Dim:

Static myString as String

Dim myDate as Date

Note that when you declare a variable, Visual Basic provides you with a list of
all available variable types. You see this list in a pop-up window as soon as you
finish typing the keyword As in a variable declaration statement.

Variables declared with the keyword Dim in a form’s code window, but outside
of any subprocedures or functions, are considered form-level variables. These
code areas outside procedures are known as the General area.

Form-level variables are accessible to any procedures or functions located in that
form’s code window. You can use them when you want a variable to retain its
value or scope when moving from one procedure to another.

You can also declare variables in standard code modules. (I discuss standard code
modules in detail in Chapter 8.) Variables declared in a standard code module
generally have one or two types of scope. If you declare a variable inside the stan-
dard code module with the keyword Dim or Private, then it is available to only
that standard code module. However, if you declare the variable with the key-
word Public, then it is available to all modules and procedures in your applica-
tion (and it is also known as a global variable).

You should use procedure-level variables as much as possible to avoid variable
naming conflicts and unknown variable assignments.

Figure 2.10 demonstrates variables with procedure- and form-level scope.

HINT

HINT

34
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

Option Explicit

A nice feature of Visual Basic is its ability to warn you or prevent you from typ-
ing a variable name without explicitly declaring it as a variable. You should
always use this built-in safety feature. To implement it, simply type the statement
Option Explicit in the first line of a form’s code window (outside any procedures).
You only need one Option Explicit statement for any Visual Basic project. You can
also turn on Option Explicit for your standard EXE projects by clicking on the
Tools menu, choosing Options, clicking the Editor tab, and selecting Require
Variable Declaration.

Naming Conventions Continued

When creating variables, controls, or procedures, you face certain limitations on
what you can use in a name. Here are some Microsoft Visual Basic guidelines that
you should follow:

• All names must begin with a letter.

• Do not use periods or spaces in names.

• Variable names can be up to 255 characters in length.

• Control and module names can be up to 40 characters in length.

• Do not use any Visual Basic keywords.

35
C

h
a

p
te

r
 2

 V
i s

u
a

l B
a

s
i c

 F
u

n
d

a
m

e
n

t a
l s

 a
n

d
 G

U
I B

a
s

i c
s

FIGURE 2.10

Form- and
procedure-level

scope.

In addition to naming limitations, you should follow a certain naming conven-
tion just as you learned in the control section of this chapter. As a programmer,
you want to set these standards or conventions and follow them religiously
throughout your Visual Basic project.

Naming conventions in variable names are especially important to you as a pro-
grammer or any other programmer who might have to read or edit your code.
You should use variable naming conventions that denote the type and scope.
Table 2.12 has some examples.

36
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

Variable Name Variable Type Scope

liEmployeeCount Integer Local (procedure level)

fiNumberofWins Integer Form level

giEmployeeNumber Integer Global

lsName String Local

fsAccountNumber String Form level

lbHasWon Boolean Local

gdRadius Double Global

TABLE 2.12 SAMPLE VARIABLE NAMES

Constants

Constants directly contrast variables by retaining their values throughout your
program’s execution, whereas variables can lose or change their values dur-
ing program execution. Once you declare a constant, its value cannot change
during program execution. Constants generally denote numbers or strings that
do not need to change throughout the life of a program’s execution. For exam-
ple, you might want to put the version number of your program or a number
such as pi into a constant.

When naming a constant, make its name as meaningful as possible. I recom-
mend capitalizing the entire constant name so that it sticks out from other
names (such as variables). The syntax for declaring a constant is as follows:

[Public or Private] Const constantName As [type] = expression

Here are some examples:

Public Const VERSION_NUMBER as String = “Version 1.2.3”

Public Const PI as Double = 3.14

Arithmetic Operations

You will find that performing basic mathematical operations on numbers is com-
mon in programming (especially if you are developing games). Visual Basic fol-
lows the basic math rules when dealing with arithmetic operations. Adding,
subtracting, multiplying, dividing, and the associated order of operations will
look very familiar to you. Table 2.13 depicts common Visual Basic arithmetic
notations.

Visual Basic provides you with many different ways of performing operations on
numbers. One such way that you might find strange or new is the way you can
use variables in place of numbers. To give you an idea of how this works, let me
show you a small program that I wrote to add two numbers. It’s called the sim-
ple adder, as depicted in Figure 2.11.

37
C

h
a

p
te

r
 2

 V
i s

u
a

l B
a

s
i c

 F
u

n
d

a
m

e
n

t a
l s

 a
n

d
 G

U
I B

a
s

i c
s

Arithmetic Operation Visual Basic Notation

Addition a + b

Subtraction a – b

Multiplication a * b

Division a / b

Exponentiation a ^ r

TABLE 2.13 COMMON VISUAL BASIC

ARITHMETIC NOTATION

FIGURE 2.11

The simple adder
program.

The simple adder takes two numbers and adds them together. Well, that cer-
tainly sounds simple, but take a look at the code that performs this task to see
whether you can follow what is happening:

Option Explicit

Private Sub cmdAdd_Click()

Dim lsOperand1 As Single

Dim lsOperand2 As Single

Dim lsResult As Single

lsOperand1 = Val(txtOperand1.Text)

lsOperand2 = Val(txtOperand2.Text)

lsResult = lsOperand1 + lsOperand2

lblResult.Caption = lsResult

End Sub

The Option Explicit statement ensures that I explicitly declare variables before I
use them. The Private Sub cmdAdd_Click() statement begins the command but-
ton’s click event. (I discuss events in more detail later in this chapter.)

Next, I declare three variables as type Single. I used the Single type so that some-
one can enter not only a number such as 12, but also a number such as 674.0954.

Something very interesting happens in the next two lines, so take your time in
reviewing them:

lsOperand1 = Val(txtOperand1.Text)

lsOperand2 = Val(txtOperand2.Text)

Note that I have the variables lsOperand1 and lsOperand2 on the left side of an
equals (=) sign. The interesting thing here is that programmers don’t refer to this
type of operation using the word “equals.” What is occurring is that each variable
is being assigned something (known as variable assignment). So when you see a
variable assignment such as this, you want to say variable lsOperand1 is taking
on the text value of txtOperand1.Text.

Another interesting note in this variable assignment is the use of the Val func-
tion. The Val function converts a string to a number. This step is necessary
because any text (including numbers) inputted or outputted to a text box is saved

38
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

as a string. Conversely, you can use the Str function to convert a number into a
string. For example, if liMyNumber is declared as type integer, I can convert it to
a string with the following syntax:

Str(liMyNumber)

The next assignment operation, lsResult = lsOperand1 + lsOperand2, adds
lsOperand1 to lsOperand2 and assigns the result to lsResult. The last assignment,
lblResult.Caption = lsResult, takes the value of lsResult and assigns it to the cap-
tion property of a label control.

The equals sign (=) in the preceding examples is used in an assignment context.
However, you can also use the equals sign in comparisons. For example, you can
write the question “Does x equal y?” as x = y. This type of comparison appears in
conditions discussed in Chapter 3 and in loops or iteration discussed in Chapter 4.

The last piece of program code End Sub denotes that this is the end of a program
block or the end of a subprocedure or event. Figure 2.12 shows what the output
of the simple adder looks like.

Table 2.14 describes the controls and properties of the simple adder program.

String Constants, Functions,
and Concatenation

I remember an occasion during a computer science class when the professor was
energetically discussing how we could use various functions for dealing with
text. The professor was so proud of text and the functions available for manipu-
lating it that I couldn’t help but wonder why. I asked him, “So what’s so great
about text?” He looked perplexed as if I should already know why text is so great.
The professor simply answered, “Well, text is text. You can do almost anything
with text.” Needless to say, I didn’t understand his excitement over text, nor did
I learn to appreciate what he was talking about until I started programming for
a living.

HINT

39
C

h
a

p
te

r
 2

 V
i s

u
a

l B
a

s
i c

 F
u

n
d

a
m

e
n

t a
l s

 a
n

d
 G

U
I B

a
s

i c
s

FIGURE 2.12

Sample output of
the simple adder

program.

After a year or two of programming, I realized that the professor was and is still
right. Text is great, and you can do almost anything with it! How so, you ask?
Understand that almost everything in the computing world revolves around data
or information. Data can be stored in temporary locations such as variables, or it
can be persistent, living in such locations as files or databases. Learning how to
access information and manipulate it is the key to success as a programmer. I
show you some tricks for manipulating text in string variables through another
program called the name game, which is shown in Figure 2.13.

40
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

Control Property Setting

frmMain Caption Simple Adder

txtOperand1 Alignment 0 – Left Justify

Font MS Sans Serif, bold, size 10

txtOperand2 Alignment 0 – Left Justify

Font MS Sans Serif, bold, size 10

Label1 Caption +

Font MS Sans Serif, bold, size 10

cmdAdd Caption =

Font MS Sans Serif, bold, size 10

lblResult Caption Leave blank

Font MS Sans Serif, bold, size 10

TABLE 2.14 CONTROLS AND PROPERTIES

FOR THE SIMPLE ADDER PROGRAM

FIGURE 2.13

The name game.

The name game takes a string as input (your name) and searches through it for
various tidbits of information. It can tell you your first name and last name and
how many characters your name has. It is a good example of how Visual Basic
string functions can derive almost any information you want from data.

Before I show you the name game program, take a look at some of the following
common Visual Basic string functions in Table 2.15.

41
C

h
a

p
te

r
 2

 V
i s

u
a

l B
a

s
i c

 F
u

n
d

a
m

e
n

t a
l s

 a
n

d
 G

U
I B

a
s

i c
s

Function Example

Left Left(“Visual Basic”, 4) results in “Visu”

Right Right(“Visual Basic”, 3) results in “sic”

Mid Mid(“2/24/72”, 3, 2) results in “24”

UCase UCase(“Number 7”) results in “NUMBER 7”

Trim Trim(“ Bob Jones “) results in “Bob Jones”

Len Len(“February”) results in 8

InStr InStr(“Visual Basic”, “Bas”) results in 8

TABLE 2.15 COMMON STRING AND

STRING-RELATED NUMERIC FUNCTIONS

Notice that I use double quotes when directly inserting a string into one of these
functions. They are required unless you are using string variables. Also note that
these functions do not take the same number of parameters or arguments. Some
of the functions require only one argument, and others require two or three.
Here’s what each of these functions is doing and what is required for their oper-
ation to be successful:

• The Left function pulls out a string from an input string starting from the
left side of the input string. It takes two parameters: One is the input
string that you want to search through, and the other is how far you want
the function to go or stop when deriving an output string.

• The Right function is similar to the Left function, except it starts search-
ing through the input string starting from the right side. It also takes two
parameters as input.

• The Mid function can pull out a string from anywhere in an input string.
It takes three parameters as input. The first parameter is the string you
want to search through. The second parameter is the starting position of
where you want to search. And the last parameter is how far you want to
go from the starting position.

• UCase is commonly used in validating user input. It makes any lowercase
letters uppercase. It takes only one string as a parameter.

• The Trim function cuts off any spaces that precede or trail a string. But it
does not remove spaces within a string. It takes one string as a parameter.

• The Len function is a string-related numeric function. It can tell you how
many characters are contained in any given string (including spaces). It
takes only one string as its parameter and returns an integer (the number
of characters found in the string).

• InStr is another string-related numeric function. It searches through a
string and finds the starting position of what you are looking for. It takes
two parameters as input. The first parameter is the string you want to
search through, and the second parameter is what you want to search for.
The InStr function returns an integer as output (the starting position of the
string being searched for). If a match is not found, InStr returns a zero (0).

Using one or more of these string functions, you can pull out almost anything
you want from a string or text file. This capability is what makes text and strings
and their associated functions so valuable and useful.

Now let me show you the complete code for the name game so you can see how
I used some of these functions:

Option Explicit

Private Sub cmdGetName_Click()

Dim lsFirstName As String

Dim lsLastName As String

Dim lsFullName As String

Dim liSpace As Integer

Dim liFullNameLength As Integer

lsFullName = txtName.Text

liFullNameLength = Len(txtName.Text)

42
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

TE
AM
FL
Y

Team-Fly®

liSpace = InStr(lsFullName, “ “)

lsFirstName = Left(lsFullName, liSpace - 1)

lsLastName = Right(lsFullName, liFullNameLength - liSpace)

picOutput.Print “Your first name is “ & lsFirstName

picOutput.Print “Your last name is “ & lsLastName

picOutput.Print “There are “ & liFullNameLength - 1 & _

“ characters in your name”

End Sub

I have put all the necessary code for the name game in the click event of one com-
mand button. First, I declare three string variables and two integer variables. My
goal is to derive the first name, last name, and length of the name from what the
user has entered into one text box. Of course, I can give the user two separate text
boxes to enter first and last names, but hey, that takes away from the fun of
strings and their functions.

Next, I assign the text property of the txtName text box to the variable lsFullName.
Now that I have this string, I want to find out how long the user’s name is. I can
use the Len function and assign its output to an integer variable (in this case,
liFullNameLength).

Now, I want to pull out the first and last name separately. To accomplish this, I
rely on the assumption that the user entered his first name first and last name
last and used a space, and not something like a comma, to separate the names. I
use the InStr function to search for the space in the name. Once I have the start-
ing position of the space in the name, I can use the Left and Right functions to
assign output to string variables:

lsFirstName = Left(lsFullName, liSpace - 1)

When searching for the user’s first name, I use the starting position of the space
subtracted by 1 (otherwise, I end up with the space in the first name) as the stop-
ping point for the string I want:

lsLastName = Right(lsFullName, liFullNameLength - liSpace)

To get the last name, I use the length of the name (rightmost position in the
name) subtracted by the space. These two numbers represent the section in
which the last name lives.

43
C

h
a

p
te

r
 2

 V
i s

u
a

l B
a

s
i c

 F
u

n
d

a
m

e
n

t a
l s

 a
n

d
 G

U
I B

a
s

i c
s

To output this information, I use a picture box. That’s right; picture boxes aren’t
just for pictures. You can use them for outputting text as well. Take another look
at the code that completes this program:

picOutput.Print “Your first name is “ & lsFirstName

picOutput.Print “Your last name is “ & lsLastName

picOutput.Print “There are “ & liFullNameLength - 1 & _

“ characters in your name”

I’m using a method of the picture box called Print to print a string in the picture
box. Each time you call the Print method of a picture box, it adds a new line. The
Print method takes a string as its argument. Here, I pass it two strings concate-
nated, or glued together. You can accomplish concatenation in Visual Basic using
the special symbol & or the + sign. Notice that I include double quotes around a
string but that I do not need them around a variable name. Another interesting
note here is that I subtract 1 from the name length. If I didn’t do this, the name
length would represent the space between the two names. Figure 2.14 shows the
output of the name game.

Table 2.16 describes the controls and properties of the name game.

44
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

Control Property Setting

frmMain Caption The Name Game

lblName Caption Enter your name (First Name Last Name):

txtName Text Blank

cmdGetInfo Caption Get Info

picOutput Picture (None)

TABLE 2.16 CONTROLS AS PROPERTIES OF THE

NAME GAME

FIGURE 2.14

Manipulating
strings with the

name game.

Programming Events

Events make up a substantial part of the Visual Basic world. They are a key com-
ponent of what makes Visual Basic so popular and powerful. As mentioned in
Chapter 1, event-driven programming is a new way of thinking; it takes the
responsibility of designing the flow or control of a program away from the pro-
grammer and puts it in the hands of a user through the means of events. A user
triggers an event through a keyboard or mouse, and you as a programmer write
code to respond to it.

Hey, what else can I say: It’s an event-driven world, it works, and users love it
whether they know it or not. Anyone who used a program 10 or 20 years ago
knows that she had little or no say over program control. The event-driven world
has changed that. Users are now able to control program execution through pro-
grammable events.

Virtually every object or control in Visual Basic has events associated with it. It is
your job as a Visual Basic programmer to write code that responds to these
events. Now, it’s not necessary to write code for every event that a given control
may have, but you should be aware of what events a user (or a portion of code)
can trigger in your program.

You can find a list of programmable events for an object or control in the Visual
Basic code window. In Figure 2.15, I use the list boxes in the code window to view
the programmable events of a command button in the name game program.

Figure 2.16 shows another small program that exhibits the usefulness of events.
The program is called Around the World. It uses mouse events to trigger the
changing of a label’s caption property.

45
C

h
a

p
te

r
 2

 V
i s

u
a

l B
a

s
i c

 F
u

n
d

a
m

e
n

t a
l s

 a
n

d
 G

U
I B

a
s

i c
s

FIGURE 2.15

Programmable
events in the
code window.

In previous programs, I placed most if not all code into one event procedure. In
the Around the World program, I use multiple intrinsic mouse events called
DragOver (I discuss in detail DragOver and DragDrop events in Chapter 11). The
program setup is pretty simple; I use seven image controls and one label. I want
someone to be able to drag the airplane image around the window, and when the
airplane image is over an image of a country, I want the label’s caption property
to display the country name.

Here’s all the code for the Around the World program:

Option Explicit

Private Sub Form_DragOver(Source As Control, X As Single, _

Y As Single, State As Integer)

lblLocation.Caption = “”

End Sub

In this code segment, I want the label’s caption property to display nothing when
the plane is dragged over the form, but not over an image. I can accomplish this
by writing code for the form’s DragOver event. The DragOver event happens
when a user clicks on a control and drags it over something. The DragOver event
takes parameters that Visual Basic automatically creates for you when you access
a DragOver event from the code window. Do not concern yourself with these
parameters for now:

Private Sub imgFrance_DragOver(Source As Control, X As Single,_

Y As Single, State As Integer)

lblLocation.Caption = “ You’re now over France”

46
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

FIGURE 2.16

Around the World.

End Sub

Private Sub imgGermany_DragOver(Source As Control, X As Single,_

Y As Single, State As Integer)

lblLocation.Caption = “ You’re now over Germany”

End Sub

Private Sub imgMexico_DragOver(Source As Control, X As Single,_

Y As Single, State As Integer)

lblLocation.Caption = “ You’re now over Mexico”

End Sub

Private Sub imgUSA_DragOver(Source As Control, X As Single,_

Y As Single, State As Integer)

lblLocation.Caption = “ You’re now over the USA”

End Sub

Private Sub imgItaly_DragOver(Source As Control, X As Single,_

Y As Single, State As Integer)

lblLocation.Caption = “ You’re now over Italy”

End Sub

Private Sub imgJapan_DragOver(Source As Control, X As Single,_

Y As Single, State As Integer)

lblLocation.Caption = “ You’re now over Japan”

End Sub

When the plane is dragged over any of the country images, I want the label’s cap-
tion property to change to that of the country name. To make an image (in this
case, the airplane) drag-able, you have to set the DragIcon and DragMode Image
properties.

The controls and properties of the Around the World program are described in
Table 2.17.

Note that these icons can be found in the common directory of Visual Studio
(that is, C:\Program Files\Microsoft Visual Studio\Common\Graphics).

47
C

h
a

p
te

r
 2

 V
i s

u
a

l B
a

s
i c

 F
u

n
d

a
m

e
n

t a
l s

 a
n

d
 G

U
I B

a
s

i c
s

Compiling and Running
Your Visual Basic Program

So far, so good; I hope by now you have created a few fun and easy-to-use pro-
grams. You would probably like to show off some of your work. How can you
share your Visual Basic programs with others? Well, you can always bring some-
one over to your computer, open your Visual Basic project, and press F5 or click
the right-arrow button on the toolbar to run your program. But, hey, that’s not
cool. What you probably want to do is to give your friend, spouse, or client a
floppy disk with one file that she could run to view and use your program. Or
maybe you can send him your program over a network, maybe through email, or,
better yet, post it on your Web site. Hey, that would be really cool!

Most of the programs that you will learn to build in this book can be distributed
in one file. However, sometimes one file is not enough. Microsoft does provide a
Packaging and Deployment Wizard for these types of situations, which you will
learn how to use in Chapter 12.

To run your Visual Basic program outside of the design-time IDE, you need to com-
pile your project into an executable file. This process takes your project’s files and

48
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

Control Property Setting

frmMain Caption Around the World

imgPlane DragIcon (Icon)

DragMode 1 – Automatic

Picture (Icon)

imgJapan Picture (Icon)

imgItaly Picture (Icon)

imgFrance Picture (Icon)

imgUSA Picture (Icon)

imgGermany Picture (Icon)

imgMexico Picture (Icon)

lblLocation Caption Blank

TABLE 2.17 CONTROL AND PROPERTY SETT INGS

FOR THE AROUND THE WORLD PROGRAM

turns their information into machine code that is contained in one executable
file (exe). Once you create an executable file, it can be distributed and accessed by
double-clicking it or opening it in a Microsoft environment such as Windows 95,
Windows NT, Windows 98, Windows Millennium, or Windows 2000.

To compile your project, simply click the File menu and select Make *.exe, where
the asterisk (*) represents the name of your project. Begin the compiling process
as seen in Figure 2.17.

This process opens a new window where you can specify the location and name
of your executable file. You can also click the Options button to change the ver-
sion numbers of your program. Create an executable in Visual Basic as seen in
Figure 2.18.

49
C

h
a

p
te

r
 2

 V
i s

u
a

l B
a

s
i c

 F
u

n
d

a
m

e
n

t a
l s

 a
n

d
 G

U
I B

a
s

i c
s

FIGURE 2.17

Selecting to make
an exe file from
the File menu.

FIGURE 2.18

Creating an
executable file.

Constructing the Word Art Program

It’s time to build a program that allows a user to modify text entered into a text
box control.

The Problem

How should the user be able to modify the text? I want users to be able to change
the text’s alignment, font, font size, and color. I also want to keep track of how
many characters the user has entered into the text box through the use of events.

The tools you can use are controls and properties as seen in Table 2.18.

50
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

Control Property Setting

frmMain Caption Word Art

lblFont Caption Font:

txtFont Text Empty

Enabled False

txtDocument Multiline True

Scrollbars 3 – Both

fraFont Caption Font Type:

cmdArial Caption &Arial

Font Arial

cmdTimesNewRoman Caption &Times New Roman

Font Times New Roman

cmdMsSansSerif Caption &MS Sans Serif

Font MS Sans Serif

fraFontStyle Caption Font Style:

cmdRegular Caption &Regular

cmdBold Caption &Bold

Font Bold

cmdItalic Caption &Italic

Font Italic

fraSize Caption Size:

optFont8 Caption 8

TABLE 2.18 CONTROLS AND PROPERTIES

OF THE WORD ART PROGRAM

51
C

h
a

p
te

r
 2

 V
i s

u
a

l B
a

s
i c

 F
u

n
d

a
m

e
n

t a
l s

 a
n

d
 G

U
I B

a
s

i c
s

Control Property Setting

optFont10 Caption 10

optFont18 Caption 18

optFont24 Caption 24

fraAlignment Caption Alignment:

cmdLeft Caption &Left

cmdCenter Caption &Center

cmdRight Caption &Right

fraForeColor Caption Fore Color:

picForeBlack BackColor Black

Picture (None)

picForeWhite BackColor White

Picture (None)

picForeBlue BackColor Blue

Picture (None)

picForeYellow BackColor Yellow

Picture (None)

picForeGreen BackColor Green

Picture (None)

picForeRed BackColor Red

Picture (None)

fraBackColor Caption Back Color:

picBackBlack BackColor Black

Picture (None)

picBackWhite BackColor White

Picture (None)

picBackBlue BackColor Blue

Picture (None)

picBackYellow BackColor Yellow

Picture (None)

picBackGreen BackColor Green

Picture (None)

picBackRed BackColor Red

Picture (None)

TABLE 2.18 CONTROLS AND PROPERTIES

OF THE WORD ART PROGRAM (continued)

You can make a text box control appear to be something similar to the text editor
you use every day in a program like Microsoft Word, Notepad, or WordPad by
setting its Multiline and Scrollbars properties.

The process of building algorithms can be simplified by starting with a broad
approach to identifying your steps. As you can see below, I only used four steps in
my algorithm for the Word Art program.

1. Open a new Visual Basic standard EXE project.

2. Place all necessary controls on the default form.

3. Set applicable properties for each control.

4. Write code to respond to events.

The Implementation

All program code for the Word Art program can be seen below.

Option Explicit

‘form level variables

Dim fiNumberOfCharacters As Integer

Here I declare one form-level variable that I will use in various procedures. Also
note that I have a single quote in front of the phrase “form level variables.” The
single quote (‘)—or, as it is sometimes called, tick mark—denotes the start of a
comment. As a programmer, you should get in the habit of commenting sections
of your code. You will find comments useful when you return to a section of code
that you haven’t seen for some time. Comments are also useful to other pro-
grammers who might have to maintain or update your code. They help other peo-
ple know what and why you are doing something.

The three command-button click events change the text box’s FontName prop-
erty. The FontName property takes a string as its argument. I also display the cur-
rent font name in the smaller text box (txtFont) so the user will know what the
current font is:

Private Sub cmdArial_Click()

txtDocument.FontName = “Arial”

txtFont.Text = txtDocument.FontName

End Sub

Private Sub cmdMsSansSerif_Click()

txtDocument.FontName = “MS Sans Serif”

HINT

52
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

TE
AM
FL
Y

Team-Fly®

txtFont.Text = txtDocument.FontName

End Sub

Private Sub cmdTimesNewRoman_Click()

txtDocument.FontName = “Times New Roman”

txtFont.Text = txtDocument.FontName

End Sub

To set the text in a text box to either italic or bold, you can call the Font.Bold or
Font.Italic properties and set them to True:

Private Sub cmdBold_Click()

txtDocument.Font.Bold = True

End Sub

Private Sub cmdItalic_Click()

txtDocument.Font.Italic = True

End Sub

To un-bold or un-italicize text, you simply set the Font.Bold and Font.Italic prop-
erties to False:

Private Sub cmdRegular_Click()

txtDocument.Font.Bold = False

txtDocument.Font.Italic = False

End Sub

Next I change the alignment of the text with the alignment property of the text
box. You can assign the alignment property the integers 0 for left (the default), 1
for right, or 2 for center:

Private Sub cmdCenter_Click()

txtDocument.Alignment = 2

End Sub

Private Sub cmdLeft_Click()

txtDocument.Alignment = 0

End Sub

Private Sub cmdRight_Click()

txtDocument.Alignment = 1

End Sub

53
C

h
a

p
te

r
 2

 V
i s

u
a

l B
a

s
i c

 F
u

n
d

a
m

e
n

t a
l s

 a
n

d
 G

U
I B

a
s

i c
s

In the form load event, I do a little housekeeping by setting the txtFont text prop-
erty to that of the txtDocument’s FontName property. I also set the default font
size to 8 and set the label’s caption (lblNumCharacters) property:

Private Sub Form_Load()

txtFont.Text = txtDocument.FontName

optFont8.Value = True

End Sub

I can change the font size by simply assigning a valid integer to the text box’s
FontSize property:

Private Sub optFont10_Click()

txtDocument.FontSize = 10

End Sub

Private Sub optFont18_Click()

txtDocument.FontSize = 18

End Sub

Private Sub optFont24_Click()

txtDocument.FontSize = 24

End Sub

Private Sub optFont8_Click()

txtDocument.FontSize = 8

End Sub

The following events are triggered when a user clicks on one of the picture
boxes. In these events, I change either the foreground color with the text box’s
ForeColor property or the background color with the BackColor property. Either
way, I assign the property to that of a Visual Basic intrinsic color constant such
as vbYellow or vbBlack:

Private Sub picBackBlack_Click()

txtDocument.BackColor = vbBlack

End Sub

Private Sub picBackBlue_Click()

txtDocument.BackColor = vbBlue

End Sub

54
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

Private Sub picBackGreen_Click()

txtDocument.BackColor = vbGreen

End Sub

Private Sub picBackRed_Click()

txtDocument.BackColor = vbRed

End Sub

Private Sub picBackWhite_Click()

txtDocument.BackColor = vbWhite

End Sub

Private Sub picBackYellow_Click()

txtDocument.BackColor = vbYellow

End Sub

Private Sub picForeBlack_Click()

txtDocument.ForeColor = vbBlack

End Sub

Private Sub picForeBlue_Click()

txtDocument.ForeColor = vbBlue

End Sub

Private Sub picForeGreen_Click()

txtDocument.ForeColor = vbGreen

End Sub

Private Sub picForeRed_Click()

txtDocument.ForeColor = vbRed

End Sub

Private Sub picForeWhite_Click()

txtDocument.ForeColor = vbWhite

End Sub

Private Sub picForeYellow_Click()

txtDocument.ForeColor = vbYellow

End Sub

55
C

h
a

p
te

r
 2

 V
i s

u
a

l B
a

s
i c

 F
u

n
d

a
m

e
n

t a
l s

 a
n

d
 G

U
I B

a
s

i c
s

Summary

Whew! You have covered a lot of ground in this chapter, and you deserve a pat on
the back.

In this chapter, you were able to dive deeper into the Visual Basic landscape to
learn more about the controls you saw in the first chapter and new controls pre-
sented in this chapter. Along with the controls, you uncovered their associated
properties and events and how to use and manipulate them. You also took your
first step into the world of programming to unearth programming fundamentals
associated with Visual Basic variables, constants, arithmetic, strings, basic func-
tions, and naming conventions.

In addition, you learned how to exploit new events such as DragOver and learned
what events are capable of and what they should mean to you as a programmer.
Last but not least, you now know how to compile your Visual Basic programs so
you can run them from other locations or distribute them to friends, family, co-
workers, or even clients.

You did all this work by looking at various programs associated with specific top-
ics in this chapter. I hope that you had a chance to build these programs yourself.
If so, you know how far you have come since the first chapter and what a great
future you and Visual Basic can have.

See you in Chapter 3, where I cover conditions and making decisions.

56
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

CHALLENGES

1. Create a program that adds, subtracts, multiplies, and divides two numbers.

2. Build a Mad Lib game. A Mad Lib game takes various inputs from a user and

builds a story around it. You can use controls that you have learned in this

chapter to provide a user with choices or options and maybe a text box that

allows her to enter a phrase. You could then take this information to build a

funny story using strings and string concatenation displayable in either a

text box or picture box.

3. Create a whack-a-mole game with image controls and click events.

4. Design a child’s educational game that allows him to drag an icon or image

around a window to visit various places in your neighborhood, state, coun-

try, or even the solar system. Each time a place is visited, a brief textual

description should appear. Also, see whether you can figure out how to not

only drag one image over another, but also drop the image being dragged

onto the other image. Sounds like drag and drop to me.

W
elcome back, fellow programmer. You

will now move into an interesting pro-

gramming territory that computer scien-

tists like to call conditional expressions.

Conditional expressions are really a way to

include decision-making.

In this chapter, I specifically cover the following

topics:

• Boolean logic

• If conditions

• Select case conditions

• Timer control

• Intelligent programs

Making
Decisions

3
C H A P T E R

You will learn in this chapter how to make decisions the programmers’ way or,
more specifically, the Visual Basic way. You will find that once you learn condi-
tional expressions, the programming and Visual Basic world becomes even more
exciting than what you have seen so far.

How so, you ask? Well, decisions are not only a staple in programming, but they
also let you build some interesting programs—programs I like to call games!
That’s right: It’s all about decisions, and games are loaded with them. In fact, you
might have heard of an area in computer science called artificial intelligence.
Artificial intelligence (AI) is a relatively new science with math, engineering, and
theoretical foundations. Sitting on top of these mathematical, engineering,
and theoretical foundations are decisions that a software program must make to
seem intelligent.

To teach the art of decision-making in Visual Basic, I show you some history
behind conditional expressions and various programming techniques for imple-
menting decision-making through various programs. At the end of this chapter,
you will build the time-honored game of tic-tac-toe with simulated intelligence
for the chapter’s capstone experience. This is going to be an exciting and chal-
lenging chapter, so put your seat belt on and get your mouse and keyboard ready.
I know you are up for it, so let’s get started.

Project: Tic-Tac-Toe
This ain’t your sister’s tic-tac-toe game; this is tic-tac-toe with an attitude. You
don’t play this tic-tac-toe game against another person; instead, you and the com-
puter play. You will build the necessary intelligence to make the computer think
about defensive moves to keep you from winning.

As depicted in Figure 3.1, the tic-tac-toe game uses various forms of conditions to
simulate intelligence.

58
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

FIGURE 3.1

Tic-tac-toe game.

Before you learn how to build conditional expressions, I share with you the his-
tory and science behind programmable conditions.

Boolean Logic

Programmable conditions in Visual
Basic, and any other language, for that
matter, are based on a branch of math-
ematics called Boolean algebra, or
Boolean logic. Boolean logic lets you rep-
resent and manipulate two values
called true and false. Remember from
Chapter 2 that computers store data in
a binary form such as 0s and 1s. It is
easy to compare Boolean logic to com-
puter architecture if you equate true to
the binary value 1 and false to the
binary value 0. If you can see that any-
thing stored in your computer is repre-
sented by 1s and 0s, you can also see
that data stored in your computer can
also be represented by the Boolean
terms true and false.

The expressions AND, OR, and NOT rep-
resent the basic Boolean expressions for
manipulating the Boolean values true
and false. Each of these expressions
evaluates to either a true or false value.
To see how these expressions can pro-
duce Boolean values, take a look at the
following truth tables.

Figure 3.2 represents the truth table for the AND expression. The AND expression
takes two inputs, a and b. Each input can be either true or false, and two inputs
produce a total of four combinations or possibilities for output.

The only occasion when the Boolean expression AND results in a true expression
is when each input is true. Any time either or both inputs are false, the whole
expression is false.

59
C

h
a

p
te

r
 3

 M
a

k
in

g
 D

e
c
is

io
n

s

Definition
Boolean logic is named after its father,

George Boole, who was a mathemati-

cian in the 19th century. He had little for-

mal schooling but was still able to teach

himself mathematics. Though interest-

ed in other areas of mathematics,

George went on to develop his own

branch of logic containing the values

true and false and the operators AND,

OR, and NOT that manipulate them. It’s

ironic that the importance of George

Boole’s research and development into

this new branch of logic was not real-

ized until the invention on today’s com-

puter architecture.

Definition
Truth tables present the graphical repre-

sentation of Boolean expressions and

their associated inputs and outputs.

Take a real-world example of the Boolean expression AND. “I can go to the gro-
cery store if I have money and transportation.” I have two inputs for my AND
expression, money and transportation. The only time that I can go to the grocery
store is when I have money (when true) and transportation (when true). If either
of these inputs is false, then the whole expression is false.

The OR expression is similar to the AND expression in that it takes two inputs
(a and b). However, the resulting outputs are quite different, as you can see in
Figure 3.3.

The OR expression can result in a true output as long as one of the inputs is true.
The only circumstance where an output is false in an OR expression is when both
inputs are false.

For example, “My spouse will be happy with me if I cook dinner or clean the
dishes.” Here, I have “cook dinner” and “clean the dishes” as two inputs for an OR
expression. As long as I perform one of the inputs (or both of them), my spouse
will be happy. However, if I perform none of the inputs (both are false), then the
whole expression is false, and I’ll be sleeping on the sofa (but that’s another story).

As seen in Figure 3.4, the NOT expression takes one input. Because it takes only
one input, there are only two possible scenarios for the output. You can think of

60
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

FIGURE 3.2

Truth table for the
AND expression.

FIGURE 3.3

Truth table for the
OR expression.

the NOT expression as the opposite of whatever the input is. For example, the
NOT of false is true, and the NOT of true is false.

Let me show you a mathematical approach to solving Boolean expressions
through the following Boolean problems. Assume that x = 1 and y = 5:

• (y = 4) AND (x = 1) results in the value false.

• (x = 5) OR (x = 1) results in the value true.

• (x = 1) AND (y = 5) results in the value true.

• (y = x) OR (x = 5) results in the value false.

• NOT [(x = 1) OR (x = y)] results in the value false.

If Then Else

One way Visual Basic uses the Boolean values true and false is with the If Then
Else keywords. Here are some basic syntax examples:

If (condition1 = condition2) Then

‘Do this

End If

Notice that I used parentheses to surround the condition. Although they’re not
required, you should get in the habit of using them to eliminate any confusion or
incorrect results. The benefits of parentheses will be more apparent when you
learn and use compound conditions.

For the ‘Do this to happen, condition1 has to equal condition2; otherwise, the
‘Do this part will not happen.

HINT

61
C

h
a

p
te

r
 3

 M
a

k
in

g
 D

e
c
is

io
n

s

FIGURE 3.4

Truth table for the
NOT expression.

Here’s another example of an if condition:

If (condition1 = condition2) Then

‘Do this

Else

‘Do that

End If

This condition is similar to the previous one with one exception. This condition
is using the Else keyword to say “Well, okay, if condition1 does not equal condi-
tion2, then do something else (in this case, ‘Do that).

You can use the Else keyword when you want something to still happen if the
condition is not met. But what if you have many scenarios you want to check in
one condition? The answer is to use the Elseif keyword. You can use the Elseif key-
word to check one condition for many possibilities. Here’s how I would use Elseif
to find out who is the current player:

If (currentPlayer = Player1) Then

‘Assign high score to Player1

ElseIf (currentPlayer = Player2) Then

‘Assign high score to Player2

ElseIf (currentPlayer = Player3) Then

‘Assign high score to Player3

Else

‘There is no current player

End if

I’m checking the currentPlayer variable against three scenarios to see whether
the current player is Player1, Player2, or Player3. If none of these scenarios is true,
then my Else clause applies.

The statement End If is used to end an If condition. Though generally required at
the end of each logical block of conditions, you can create a one-line If condition
that requires no End If.

If (x = y) Then x = 5

The above statement serves no real purpose other than demonstrating a one-line
If condition that requires no End If.

62
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

TE
AM
FL
Y

Team-Fly®

As a computer science instructor, I can tell you that the most common problem
I see in people learning how to use conditions is not with the logic, but with
their style. What do I mean by style? With conditions, I’m referring to style as
indenting and using parentheses. I promise that if you do not get in the habit
of indenting your conditions early, it will come back to haunt you later. Condi-
tions that are not indented properly can be difficult and frustrating to read. A
general rule of thumb is to indent two spaces or one tab when using conditions.
You can come up with your own standard as long as it’s easy to read and you
stay consistent.

Take a look at the following two If conditions. They are both the same, but one is
indented correctly and uses parentheses accordingly. Can you see a difference?

Here’s the correct way:

If (condition1 = condition2) Then

If (conditionX >= conditionY) And (Temp1 = Temp2) Then

‘Go here

Else

‘Go there

End If

Else

‘Do that

End If

This is the incorrect way:

If condition1 = condition2 Then

If conditionX >= conditionY And Temp1 = Temp2 Then

‘Go here

Else

‘Go there

End If

Else

‘Do that

End If

TRAP

63
C

h
a

p
te

r
 3

 M
a

k
in

g
 D

e
c
is

io
n

s

Compound Conditions

Compound conditions are based on Boolean logic. They take the same form as
the If Then Else statements you learned earlier with one exception. Compound
conditions use Boolean expressions to evaluate a condition. Here’s an example:

If (condition1 = condition2) And (conditionX = conditionY) Then

‘Do this

End If

For the ‘Do this code to run, condition1 must equal condition2 and conditionX
must equal conditionY. There are no exceptions to the And expression; both sides
of the And expression must be true for the whole expression to evaluate as true.

If we take the same condition and replace the And expression with an Or expres-
sion, we get different possibilities:

If (condition1 = condition2) Or (conditionX = conditionY) Then

‘Do this

End If

Unlike the And expression, the Or expression needs only one side of the expres-
sion to evaluate to true for the whole expression to be true.

When necessary, compound conditions need not stop at two conditions. You can
combine multiple conditions of various types to make one compound condition.
Here’s an example that uses two And conditions and one Or condition to make a
compound condition.

If ((condition1 = condition2) And (conditionX = conditionY)) Or (condi-

tion1 = conditionX) Then

‘Do this

End If

Notice that I’ve embedded my parentheses to make clear the order of operations
in the above compound condition.

Using the following values, what do you think the compound condition would
evaluate to? In other words, would the ‘Do this part of the code execute?

condition1 = 5

condition2 = 10

conditionX = 5

conditionY = 10

64
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

If you answered either True or Yes, you are correct. I’ll place the preceding values
into the condition so that you can get a better look at what is happening.

If ((5 = 10) And (5 = 10)) Or (5 = 5) Then

‘Do this

End If

Each condition above evaluates to an equivalent Boolean expression below that
results in an overall True value.

(False And False) Or True

False Or True

True

Nested If Statements

Sometimes you need to embed conditions using If statements. For example, let’s
say you are adding an enhancement to a game that not only checks for a direct
hit but also checks for a high score. To accomplish this, you could use the fol-
lowing nested conditions:

If (directHit = target) Then

If (currentScore > highScore) Then

‘Display new high score

End If

‘Increment current score

End If

The first part of this condition checks for a direct hit. If this condition is True, a
new nested condition is checked for a high score. If there is a new high score,
then it is displayed. If there is no new high score, then nothing else happens in
the nested If condition. After the nested If condition is complete, the current
score is incremented, but only if the parent condition (first condition) evaluated
to True.

Interestingly, if the first condition is not met, then the nested If statement is
never processed. It is important to understand that nested conditions belong to
their parent (if you will) conditions. If I want to ensure that a high score is always
checked, regardless of a direct hit; then I pull the high-score condition check out
of its parent condition.

65
C

h
a

p
te

r
 3

 M
a

k
in

g
 D

e
c
is

io
n

s

The best way to understand conditions is to see them in action or, in other words,
to program. Here’s a more advanced adder program that I built using If condi-
tions and the KeyPress event.

Figure 3.5 depicts a more advanced adder program that uses conditions.

The KeyPress event is similar to the KeyDown event that you have already seen.
Remember, the KeyDown event captures all keyboard responses, such as num-
bers, letters, function keys, arrow keys, Shift, Alt, Ctrl, and many others.

In contrast, the KeyPress event only tracks alphabetic and numeric keyboard
responses. Another difference is that the KeyDown event takes the KeyCode as a
parameter, and the KeyPress event takes the KeyAscii as a parameter.

Both KeyAscii and KeyCode parameters are integers and take an ASCII value.
However, be careful: Not every ASCII value will be translated correctly from the
KeyDown to the KeyPress event. For a list of character codes and character sets,
refer to Appendix A, “Common ASCII Codes.”

The advanced adder program is a continuation of the adder program that I did
in Chapter 2. However, it has more features than its predecessor, such as a better
graphical interface and the ability to use keyboard and mouse for input. Here’s
the code that runs the advanced adder program. First I declare three form-level
variables:

Option Explicit

‘Form-level variables

Dim fsOperand1 As Single

Dim fsOperand2 As Single

Dim fbPeriodUsed As Boolean

Two of the variables house the values of the first and second operand. The third
form-level variable fbPeriodUsed tells me whether the user has already used a
period in one of the operands. What this really does is prevent the user from
entering more than one decimal in a number for a given operand.

HINT

66
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

FIGURE 3.5

The advanced
adder program.

In all of the following click events, I add the appropriate number to the Text
property of the text box. You can also see that I do more than add a number to
the text box; I concatenate it to the existing text:

Private Sub cmd0_Click()

txtDisplay.Text = txtDisplay.Text + “0”

End Sub

Private Sub cmd1_Click()

txtDisplay.Text = txtDisplay.Text + “1”

End Sub

Private Sub cmd2_Click()

txtDisplay.Text = txtDisplay.Text + “2”

End Sub

Private Sub cmd3_Click()

txtDisplay.Text = txtDisplay.Text + “3”

End Sub

Private Sub cmd4_Click()

txtDisplay.Text = txtDisplay.Text + “4”

End Sub

Private Sub cmd5_Click()

txtDisplay.Text = txtDisplay.Text + “5”

End Sub

Private Sub cmd6_Click()

txtDisplay.Text = txtDisplay.Text + “6”

End Sub

Private Sub cmd7_Click()

txtDisplay.Text = txtDisplay.Text + “7”

End Sub

Private Sub cmd8_Click()

txtDisplay.Text = txtDisplay.Text + “8”

End Sub

67
C

h
a

p
te

r
 3

 M
a

k
in

g
 D

e
c
is

io
n

s

Private Sub cmd9_Click()

txtDisplay.Text = txtDisplay.Text + “9”

End Sub

In the cmdAdd_Click() event, I assign the value of the text box’s Text property
(only if there’s something in it) to that of a variable. Note that I also use the Val
function to convert the string (which contains numbers) to a number. In addi-
tion, I perform some other cleanup to prepare for the next operand, such as set-
ting the fbPeriodUsed to False (so another operand can use it), clearing the text
box, disabling the add command button, and setting the equals command but-
ton to true:

Private Sub cmdAdd_Click()

If txtDisplay.Text <> “” Then

fsOperand1 = Val(txtDisplay.Text)

fbPeriodUsed = False

txtDisplay.Text = “”

cmdAdd.Enabled = False

cmdEquals.Enabled = True

End If

End Sub

I perform the same check in the cmdEquals_Click() event to look for an empty
text box so that if the text box is empty and the user presses the equals command
button, nothing happens. However, if the user enters a number, I assign that
number to a variable; take it and the first operand’s result (via addition); and
assign it back to the Text property of the text box. After that, I perform some
more cleanup by setting the operand variables to 0 and disabling the add and
equals command buttons:

Private Sub cmdEquals_Click()

If txtDisplay.Text <> “” Then

fsOperand2 = Val(txtDisplay.Text)

txtDisplay.Text = fsOperand1 + fsOperand2

fsOperand1 = 0

fsOperand2 = 0

cmdAdd.Enabled = False

cmdEquals.Enabled = False

68
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

End If

End Sub

The cmdClear_Click() event is strictly a housekeeping event. Just like the clear
button in any given calculator, it clears everything for a new start:

Private Sub cmdClear_Click()

txtDisplay.Text = “”

fbPeriodUsed = False

cmdAdd.Enabled = True

cmdEquals.Enabled = False

fsOperand1 = 0

fsOperand2 = 0

End Sub

The Click() event of the cmdPeriod command button is quite interesting. Here I
declare a new local variable lbPeriodFound for use only in this procedure: (Do not
confuse this local variable with fbPeriodUsed.)

Private Sub cmdPeriod_Click()

Dim lbPeriodFound As Boolean

‘Make sure period has not been deleted

If InStr(1, txtDisplay.Text, “.”) = 0 Then

fbPeriodUsed = False

End If

If fbPeriodUsed = False Then

txtDisplay.Text = txtDisplay.Text + “.”

fbPeriodUsed = True

Else

Beep

End If

End Sub

I perform this additional check to look for one case in particular. What happens
if a user successfully enters the period in a number? The fbPeriodUsed variable is
then set to True. But what happens if the user deletes the period using the delete
key and tries to re-enter a period? This is what the new condition looks for. To

69
C

h
a

p
te

r
 3

 M
a

k
in

g
 D

e
c
is

io
n

s

successfully look for this condition, I can use the string function InStr, which
searches for a pattern in a string. (In my case, I’m looking for a period.) If I do not
find the period in the string, I then set the fbPeriodUsed variable to False so the
period can be used in the condition below it.

The Sub Form_Load() event sets the fbPeriodUsed to False and disables the equals
command:

Private Sub Form_Load()

fbPeriodUsed = False

cmdEquals.Enabled = False

End Sub

The KeyPress event of the text box contains some interesting code. The first thing
you probably notice is that I perform the same check as I did in the period com-
mand button. I have to perform this check twice so if the incoming keystroke is
a period (not a mouse event on the period command button), I can see whether
it really is already in use by the current operand:

Private Sub txtDisplay_KeyPress(KeyAscii As Integer)

Dim lbPeriodFound As Boolean

‘Make sure period has not been deleted

If InStr(1, txtDisplay.Text, “.”) = 0 Then

fbPeriodUsed = False

End If

If KeyAscii = 46 Then

If fbPeriodUsed = True Then

KeyAscii = 0

Beep

Else

fbPeriodUsed = True

End If

Exit Sub

End If

If (KeyAscii < 48 Or KeyAscii > 57) Then ‘Only use numbers 0-9

KeyAscii = 0

End If

End Sub

70
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

Notice that I use the same variable lbPeriodFound in two different procedures. As
far as the operating system is concerned, these are two separate variables because
as soon as the procedure is left, the variable loses its scope.

Next I perform some tricky work with KeyAscii values. The KeyAscii value 46 rep-
resents the period (.). If the incoming keystroke is a period, then do one of two
following things. If it is a period and the period has already been used, then set
the KeyAscii value to something else (0) and use the Beep function to warn the
user that he can’t do that. However, if the period has not been used, then go
ahead and use it and set fbPeriodUsed to True. Either way, if the incoming key-
stroke is a period, I exit the procedure using the keyword Exit Sub.

The keyword Exit Sub exits the procedure immediately without performing any
further processing and returns control to the calling procedure, event, or func-
tion. It’s most often used for error-handling purposes, but I use it here because
there is no need for me to continue with the last conditional check if the incom-
ing keystroke is a period.

The last check in the KeyPress event basically indicates that you allow the user to
press only numbers on the keyboard (at least when the cursor is in this particu-
lar text box). In other words, if the KeyAscii value is not between 48 and 57 (num-
bers 0 through 9), then set the KeyAscii value to something else.

Note that some controls such as Forms and Text Boxes have their own KeyPress
and KeyDown events. In the case of the adder program, keystrokes can only be
captured when the txtDisplay Text Box has focus.

Focus can be changed with
code by setting the TabIndex
property to 0.

Private Sub Form_Load()

Command1.TabIndex = 0

End Sub

Using the SetFocus method can also change focus. The SetFocus method is only
available with controls that can receive focus.

Private Sub Command1_Click()

Option1.SetFocus

End Sub

Table 3.1 shows the controls and properties of the adder program.

TRICK

71
C

h
a

p
te

r
 3

 M
a

k
in

g
 D

e
c
is

io
n

s

Definition
Focus indicates that a control is

ready to receive input either

from the mouse or keyboard.

Select Case Conditions

Most languages provide another mechanism for generating conditions and mak-
ing decisions in addition to the If statement. Visual Basic provides this alterna-
tive with the Select Case structure. The Select Case structure is useful when you
want to check a variable or an expression against multiple possible values. Any
condition generated with the Select Case structure can also be constructed via If
statements.

Here’s the general syntax for the Select Case structure:

Select Case expression or variable

Case range, constant, or variable

‘Statements

72
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

Control Property Setting

frmMain Caption Advanced Adder

fraCalculator Caption Adder:

txtDisplay Text Empty

cmdClear Caption C

cmdAdd Caption +

cmdEquals Caption =

cmdPeriod Caption .

cmd0 Caption 0

cmd1 Caption 1

cmd2 Caption 2

cmd3 Caption 3

cmd4 Caption 4

cmd5 Caption 5

cmd6 Caption 6

cmd7 Caption 7

cmd8 Caption 8

cmd9 Caption 9

TABLE 3.1 CONTROLS AND PROPERTIES

FOR THE ADVANCED ADDER PROGRAM

TE
AM
FL
Y

Team-Fly®

Case range, constant, or variable

‘Statements

Case range, constant, or variable

‘Statements

Case Else

‘Statements

End Select

The first part of the Select Case structure tells Visual Basic what you want to com-
pare, such as properties, variables, or expressions. Each case thereafter contains
a specific scenario with values, such as variables, constants, properties, numbers,
characters, or a range. The Case Else statement executes if none of the cases is
met. There is no limit to how many cases you can have.

Here’s another example that looks for the current player of a game:

Select Case CurrentPlayer

Case Player1

‘Statements

Case Player2

‘Statements

Case Player3

‘Statements

Case Else

‘Statements

End Select

And here’s an example that uses number ranges in each case to check for the cur-
rent temperature:

Select Case CurrentTemp

Case > 90

‘Statements

Case 60 To 89

‘Statements

Case 32 To 59

‘Statements

Case Else

‘Statements

End Select

73
C

h
a

p
te

r
 3

 M
a

k
in

g
 D

e
c
is

io
n

s

Timer Control

The timer control is another built-in control available in the Visual Basic stan-
dard EXE project. You can find it within the Visual Basic toolbox during design
time. As seen in Figure 3.6, you can add the timer control to a Visual Basic form
just as you would add any other control.

Once placed on a form, the timer control is only visible during design time and
its size and position have no relevance. However, two timer control properties
that do have relevance are Enabled and Interval:

• The Enabled property is what triggers the timer control to start or stop. Its
values are Boolean (true and false).

• Interval is the number of milliseconds between the timer events. Gener-
ally speaking, 1,000 milliseconds equals 1 second, which it does mathe-
matically, but there can be some error in the interval’s precision.

Be aware that using multiple timer controls can consume substantial CPU
resources, in turn slowing the overall performance of your computer.

Timer controls can serve many purposes, such as automating the triggering of
events, functions, and subprocedures on an automatic or semi-automatic basis.
As illustrated in Figure 3.7, I’ve built a small digital clock program with the timer
control.

TRAP

74
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

FIGURE 3.6

The timer control.

FIGURE 3.7

The clock program.

I think you will be surprised about how easy it is to build the clock program.
Looking at the program code, you can see that it requires only one small proce-
dure to generate the time:

Option Explicit

Private Sub Timer1_Timer()

lblDisplay.Caption = Time

End Sub

I set the Interval property of the timer control to 1,000 milliseconds, or 1 second.
So once per second, the program triggers the Timer event, which assigns the
time function to the caption property of the label control.

The time function is a built-in Visual Basic function that returns the current sys-
tem time. In addition to the time function, Visual Basic provides the date func-
tion, which returns the current date of the system.

Unlike other functions such as Val, the date and time functions do not require
any parameters. See Chapter 5 for more information on functions.

Table 3.2 depicts the controls and properties on the clock program.

Timer controls can serve another useful purpose through animation. Using a
timer control, you can swap various images to give the appearance of movement,
such as flying, walking, running, exploding, and shooting.

The trickiest part of animation is finding the right sequence of graphics to ani-
mate. Lucky for us, I found a great Visual Basic site on the Internet
(http://www.vbexplorer.com), which lets us use its great character pictures cre-
ated by professional artist Hermann Hillmann.

Figure 3.8 shows a simple program that animates a figure to walk and run.

HINT

75
C

h
a

p
te

r
 3

 M
a

k
in

g
 D

e
c
is

io
n

s

Control Property Setting

frmMain Caption Clock

lblDisplay Caption None

Timer1 Enabled True

Interval 1000

TABLE 3.2 CONTROLS AND PROPERTIES

OF THE CLOCK PROGRAM

This simple animation program appears to show only one image that is walking
or running. But you see during the design-time view of the program in Figure 3.9
that it actually uses nine images. Eight of the images are still figures depicting a
particular movement (in this case walking forward), and the ninth image is just
an empty container.

Note that the images used for this program can be found on the CD-ROM accom-
panying this book.

Let’s take a look at how this works. Here I declare one form-level variable that I
use in the Form Load event and in the Timer event:

Option Explicit

Dim x As Integer

76
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

FIGURE 3.8

Simple animation
using the timer

control.

FIGURE 3.9

Simple animation
program during

design time.

In the Form Load event, I set the variable x to 1 (you will see why in a moment),
the walk option button to True, and the empty image control to one of the eight
images that contain a picture:

Private Sub Form_Load()

x = 1

optWalk.Value = True

imgAnimate.Picture = Image3.Picture

End Sub

For the start command button, I set the timer control’s Enabled property to True.
This starts the automatic triggering of the Timer event based on the Interval
property:

Private Sub cmdStart_Click()

Timer1.Enabled = True

End Sub

If the user wants to stop the animation, he can simply click the stop command
button, which sets the Timer’s Enabled property to False:

Private Sub cmdStop_Click()

Timer1.Enabled = False

End Sub

When the run option button is clicked, the timer’s Interval property is set to 50.

Private Sub optRun_Click()

Timer1.Interval = 50

End Sub

To slow down the character to a walking speed, I simply increase the Interval
property to 200:

Private Sub optWalk_Click()

Timer1.Interval = 200

End Sub

The actual animation occurs in the timer’s Timer event. Here you see that I use
the Select Case structure you saw earlier in this chapter:

Private Sub Timer1_Timer()

Select Case x

Case 1

imgAnimate.Picture = Image1.Picture

77
C

h
a

p
te

r
 3

 M
a

k
in

g
 D

e
c
is

io
n

s

Case 2

imgAnimate.Picture = Image2.Picture

Case 3

imgAnimate.Picture = Image3.Picture

Case 4

imgAnimate.Picture = Image4.Picture

Case 5

imgAnimate.Picture = Image5.Picture

Case 6

imgAnimate.Picture = Image6.Picture

Case 7

imgAnimate.Picture = Image7.Picture

Case 8

imgAnimate.Picture = Image8.Picture

Case Else

x = 0

End Select

‘Increment x by 1

x = x + 1

End Sub

You should also be able to see that I test the select case structure with the vari-
able x. The first time the timer event is triggered, the Select Case detects that the
variable x is equal to 1 (remember the form load event). After that, x is incre-
mented by 1. This continues to happen, and a new image is displayed each time,
until x is not equal to some number between 1 and 8. The Case Else clause detects
this, and sets x back to 1. The cycle repeats itself until someone sets the timer’s
Enabled property to False (or clicks the stop button).

Table 3.3 depicts the controls and properties used in the animation program.

If you like this type of program development, you should really enjoy Chapter 10,
where you will go much further into the world of animation.

78
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

79
C

h
a

p
te

r
 3

 M
a

k
in

g
 D

e
c
is

io
n

s

Control Property Setting

frmMain Caption Animation

Timer1 Enabled False

fraSpeed Caption Speed:

optWalk Caption Walk

optRun Caption Run

cmdStart Caption &Start

cmdStop Caption S&top

imgAnimate Picture None

Visible True

Image1 Picture Bitmap

Visible False

Image2 Picture Bitmap

Visible False

Image3 Picture Bitmap

Visible False

Image4 Picture Bitmap

Visible False

Image5 Picture Bitmap

Visible False

Image6 Picture Bitmap

Visible False

Image7 Picture Bitmap

Visible False

Image8 Picture Bitmap

Visible False

TABLE 3.3 CONTROLS AND PROPERTIES

OF THE ANIMATION PROGRAM

Building Intelligent Programs

To build the tic-tac-toe game, you need to learn a little bit more about algorithms
and decision-making. A common tool in the development of algorithms is the
decision tree. Decision trees consist of nodes and branches, where nodes act as
decisions or ending points and branches are the direction taken based on a deci-
sion or outcome. Computer scientists use decision trees to search through a list
of possible choices until they find a target.

In the case of the tic-tac-toe game, I want to build computer intelligence that
plays a defensive role by looking for a number of possible winning scenarios by
the opponent.

As seen in Figure 3.10, the game of tic-tac-toe has eight possible combinations for
a win.

Knowing that there are eight possibilities for a win in tic-tac-toe is not enough to
build a searchable decision tree. To build a defensive decision tree, I need to
know the circumstances that appear prior to an opponent reaching one of the
eight possible wins.

80
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

FIGURE 3.10

Eight possibilities
for a win in tic-

tac-toe.

X X X

X X X

X X X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

These circumstances constitute 24 possible scenarios that occur prior to a win. To
understand these scenarios, I number each possible tic-tac-toe square from 1 to 9.

Based on the numbered squares in Figure 3.11, I can start to build the 24 possible
scenarios that occur prior to a win:

(1,3) (1,2) (2,3) (4,6)

(4,5) (5,6) (7,9) (7,8)

(8,9) (1,7) (1,4) (4,7)

(2,8) (2,5) (5,8) (3,9)

(3,6) (6,9) (1,5) (3,5)

(1,9) (3,7) (5,9) (5,7)

If you are unsure about how I came up with these scenarios, take the numbers in
any scenario and place them in their corresponding areas in Figure 3.11. You
should see that any of these scenarios represents a potential win in tic-tac-toe.

Now that I have the scenarios, I can start to build my decision tree.

Decision trees should start with a question or statement, in Figure 3.12, where I
start with “Checking for a Winning Scenario.” I first check for scenario 1 (each
scenario contains an X in each corresponding square). If there is a match in sce-
nario 1, then I stop searching, or in other words, the computer puts an O in the
necessary square to prevent a win. If no match is found in scenario 1, I then look
for a match in scenario 2. If no match is found, I keep searching for a match until
the 24th possible scenario is examined. If no matches were found after the 24th
scenario, the computer then places an O in the first available square.

My decision tree in Figure 3.12 is what computer scientists call a “brute-force”
approach to solving a search scenario. In the game of tic-tac-toe, this is fine

81
C

h
a

p
te

r
 3

 M
a

k
in

g
 D

e
c
is

io
n

s

FIGURE 3.11

Tic-tac-toe game
board.

1 2 3

4 5 6

7 8 9

because I have a small number of scenarios to search through. But what about
other, more complicated games, such as chess? A brute-force approach to build-
ing a winning strategy game such as chess (via a decision tree) would take on the
proportions of exponential growth. Or in other words, I would have a lot of tree
branches in the decision tree.

82
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

FIGURE 3.12

A decision tree.

Check for �
winning�
scenario

Scenario�
1

No�
match

Match�
found

Scenario�
2

No�
match

Match�
found

Scenario�
3

No�
match

Match�
found

Scenario�
24

No�
match

Match�
found

Find�
first available�

square

TE
AM
FL
Y

Team-Fly®

Understanding that time (your time) and computing resources can be limited,
you should make intelligent decision trees by keeping two things in mind:

• Pick a good starting point for your search by thinking about where you are
(beginning point) and where you want to be (ending point).

• Make good decisions about where to go from any given node in the deci-
sion tree.

These steps should help you to limit the number of tree branches, thus elimi-
nating the possibility of exponential growth in your searches.

Constructing the Tic-Tac-Toe Game

The tic-tac-toe game will challenge everything you have learned so far. You should
now have the right knowledge base to follow most of the game’s concepts.

The Problem

Build a graphical tic-tac-toe game where you play the computer. The computer
should have logic to play defensively so that it counters potentially winning
strategies. The game should keep track of the computer’s, player’s, and tie scores.

Figure 3.13 depicts the tic-tac-toe game in design time. Its controls and properties
can be seen in Table 3.4.

83
C

h
a

p
te

r
 3

 M
a

k
in

g
 D

e
c
is

io
n

s

FIGURE 3.13

Tic-tac-toe game
in design time.

84
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

Control Property Setting

frmMain Caption Tic Tac Toe

lblStatus Caption None

Font Arial, Size 14

fraOptions Caption Options:

cmdStart Caption Start

cmdQuit Caption Quit

fraScore Caption Score:

Label1 Caption Computer:

Label2 Caption Player:

Label3 Caption Tie:

lblComputer Caption None

lblPlayer Caption None

lblTie Caption None

Timer1 Enabled False

Interval 2000

Image1 Picture None

Image2 Picture None

Image3 Picture None

Image4 Picture None

Image5 Picture None

Image6 Picture None

Image7 Picture None

Image8 Picture None

Image9 Picture None

imgEmptySquare Picture Bitmap

Visible False

imgX Picture Bitmap

Visible False

imgO Picture Bitmap

Visible False

TABLE 3.4 CONTROLS AND PROPERTIES

OF THE TIC-TAC-TOE GAME

You might notice that my algorithms are starting to get bigger. Well, that is
because my games are becoming bigger or, better yet, more complicated:

1. Create a new standard EXE project.

2. Create necessary graphics, and place all controls on the form.

3. Create applicable form-level variables.

4. Write code in the form load event to initialize any variables or control
settings.

5. Write code that responds to a user clicking on an image. This code should
check for the following situations:

• Is it the player’s turn or the computer’s turn?

• Is there already an X or O in the square?

• Has someone already won, or is there a tie?

Depending on these answers, an X can be placed in the square, or the
game will end and the score will be incremented appropriately.

85
C

h
a

p
te

r
 3

 M
a

k
in

g
 D

e
c
is

io
n

s

IN THE REAL WORLD

In the real world, programmers and software engineers take a simple algorithm

such as the one that follows and break it down even further into subalgorithms.

For instance, the algorithm that implements the artificial intelligence can have

a subalgorithm all its own. Most experienced programmers go through a type

of algorithm development to pinpoint the exact procedures and logic that they

need to follow.

Some programmers even go so far as to take their algorithms down to

pseudocode. Pseudocode is basically shorthand for programmers. It allows

developers to quickly express the programming logic in English-like language

without having to worry about the intricacies of language-specific syntax.

Here’s an example of pseudocode for checking whether the game is over:

If computer won or opponent won or tie, then

end game

increment score

else

put an X or O in the square

end if

You can see that I’m using English-like language for pseudocode, but I’m not

using procedure names, variable names, or other Visual Basic syntax.

6. Write code for the start game command button. This code should start the
game by enabling the timer control.

7. Write code in the timer’s Timer event that houses the artificial intelli-
gence. The artificial intelligence should play a defensive role in searching
the tic-tac-toe board for a potential win by the opponent. The Timer event
should also check for a win or tie and increment the score accordingly.

8. Write code to quit the game.

9. Test the program.

The Implementation

All of the following are form-level variables that I use throughout various proce-
dures and events:

Option Explicit

‘Form-level variables

Dim fbSquare1X As Boolean

Dim fbSquare2X As Boolean

Dim fbSquare3X As Boolean

Dim fbSquare4X As Boolean

Dim fbSquare5X As Boolean

Dim fbSquare6X As Boolean

Dim fbSquare7X As Boolean

Dim fbSquare8X As Boolean

Dim fbSquare9X As Boolean

Dim fbSquare1O As Boolean

Dim fbSquare2O As Boolean

Dim fbSquare3O As Boolean

Dim fbSquare4O As Boolean

Dim fbSquare5O As Boolean

Dim fbSquare6O As Boolean

Dim fbSquare7O As Boolean

Dim fbSquare8O As Boolean

Dim fbSquare9O As Boolean

Dim fbTie As Boolean

Dim fbPlayerWon As Boolean

Dim fbComputerWon As Boolean

86
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

Dim fiTieScore As Integer

Dim fiComputerScore As Integer

Dim fiPlayerScore As Integer

Dim fsWhoseTurnIsIt As String

The quit command button calls the End keyword, which terminates the
application:

Private Sub cmdQuit_Click()

End

End Sub

When the user clicks the start command button, it first disables itself (to prevent
the user from causing funny results during the game if she clicks it again). It
then sets a label caption property and calls a procedure Enable_Squares. Note
that I created this procedure just for the purpose of enabling the squares, which
you will see in a few moments. (I talk more about creating procedures in Chap-
ter 5.) Next it sets the picture property of each image control to that of the empty
picture image. And last, but not least, the Timer control is enabled:

Private Sub cmdStart_Click()

cmdStart.Enabled = False

lblStatus.Caption = “Your turn”

Enable_Squares

Image1.Picture = imgEmptySquare.Picture

Image2.Picture = imgEmptySquare.Picture

Image3.Picture = imgEmptySquare.Picture

Image4.Picture = imgEmptySquare.Picture

Image5.Picture = imgEmptySquare.Picture

Image6.Picture = imgEmptySquare.Picture

Image7.Picture = imgEmptySquare.Picture

Image8.Picture = imgEmptySquare.Picture

Image9.Picture = imgEmptySquare.Picture

Timer1.Enabled = True

End Sub

87
C

h
a

p
te

r
 3

 M
a

k
in

g
 D

e
c
is

io
n

s

The form load event sets the timer control to False and performs a number of
housekeeping chores, such as initializing form-level variables, setting various
label captions, and calling a procedure that disables all squares. Disabling
squares is important because you wouldn’t want a user clicking out of turn,
would you?

Private Sub Form_Load()

‘Set program defaults and initialize variables

Timer1.Enabled = False

fbTie = False

fbPlayerWon = False

fbComputerWon = False

fbSquare1X = False

fbSquare2X = False

fbSquare3X = False

fbSquare4X = False

fbSquare5X = False

fbSquare6X = False

fbSquare7X = False

fbSquare8X = False

fbSquare9X = False

fbSquare1O = False

fbSquare2O = False

fbSquare3O = False

fbSquare4O = False

fbSquare5O = False

fbSquare6O = False

fbSquare7O = False

fbSquare8O = False

fbSquare9O = False

lblPlayer.Caption = “0”

lblComputer.Caption = “0”

lblTie.Caption = “0”

lblStatus.Caption = “Click start game to play”

88
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

Image1.Picture = imgEmptySquare.Picture

Image2.Picture = imgEmptySquare.Picture

Image3.Picture = imgEmptySquare.Picture

Image4.Picture = imgEmptySquare.Picture

Image5.Picture = imgEmptySquare.Picture

Image6.Picture = imgEmptySquare.Picture

Image7.Picture = imgEmptySquare.Picture

Image8.Picture = imgEmptySquare.Picture

Image9.Picture = imgEmptySquare.Picture

Disable_Squares

‘You can toggle this variable for who starts

‘the game off: computer or player

fsWhoseTurnIsIt = “player”

End Sub

Because each square’s click event contains the same code for images 1 through
9, I will only show the first three. After that you should get a feel for the rest (all
code for the tic-tac-toe game can be found on the accompanying CD).

Private Sub Image1_Click()

If fsWhoseTurnIsIt = “player” Then

If fbSquare1X = False And fbSquare1O = False Then

Image1.Picture = imgX.Picture

fbSquare1X = True

Disable_Squares

If Checkforwin = False Then

fsWhoseTurnIsIt = “computer”

lblStatus.Caption = “Computer is thinking...”

End If

End If

End If

End Sub

Private Sub Image2_Click()

89
C

h
a

p
te

r
 3

 M
a

k
in

g
 D

e
c
is

io
n

s

If fsWhoseTurnIsIt = “player” Then

If fbSquare2X = False And fbSquare2O = False Then

Image2.Picture = imgX.Picture

fbSquare2X = True

Disable_Squares

If Checkforwin = False Then

fsWhoseTurnIsIt = “computer”

lblStatus.Caption = “Computer is thinking...”

End If

End If

End If

End Sub

Private Sub Image3_Click()

If fsWhoseTurnIsIt = “player” Then

If fbSquare3X = False And fbSquare3O = False Then

Image3.Picture = imgX.Picture

fbSquare3X = True

Disable_Squares

If Checkforwin = False Then

fsWhoseTurnIsIt = “computer”

lblStatus.Caption = “Computer is thinking...”

End If

End If

End If

End Sub

When this event is triggered (by a user clicking the image control), it first checks
to see whose turn it is. If it is the player’s turn, then I check whether there is
already an X or an O in the square. If not, I can then add an X to the image and
in some fashion let the game know that this square is no longer available. I
accomplish this by setting the variable fbSquare9X to True.

Next I check whether there is a win by calling a function named Checkforwin,
which returns a Boolean value. (You will see this function in just a moment.) If
there is no win, then I set the string variable fsWhoseTurnIsIt to computer.

90
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

The Timer event of the timer control contains a lot of code and rightfully so.
This event contains most of the artificial intelligence that drives the computer’s
decision-making:

Private Sub Timer1_Timer()

‘GAME INTELLIGENCE

If fsWhoseTurnIsIt = “computer” Then

‘Computer is playing a defensive role by looking for potential

‘winning combinations (by the player).

‘There are a total of 8 possible winning combinations, but there

‘are a total of 24 possible combinations prior to a player winning.

‘So a player has a chance to win, I only test for 12 scenarios,

‘ leaving the rest up to chance (the DEFAULT SECTION)

If (fbSquare1X = True And fbSquare3X = True) And _

(fbSquare2X = False And fbSquare2O = False) Then

Image2.Picture = imgO.Picture

fbSquare2O = True

If Checkforwin = False Then

fsWhoseTurnIsIt = “player”

lblStatus.Caption = “Your turn”

Enable_Squares

End If

ElseIf (fbSquare7X = True And fbSquare9X = True) And _

(fbSquare8X = False And fbSquare8O = False) Then

Image8.Picture = imgO.Picture

fbSquare8O = True

If Checkforwin = False Then

fsWhoseTurnIsIt = “player”

lblStatus.Caption = “Your turn”

Enable_Squares

End If

ElseIf (fbSquare4X = True And fbSquare5X = True) And _

(fbSquare6X = False And fbSquare6O = False) Then

Image6.Picture = imgO.Picture

fbSquare6O = True

If Checkforwin = False Then

fsWhoseTurnIsIt = “player”

lblStatus.Caption = “Your turn”

91
C

h
a

p
te

r
 3

 M
a

k
in

g
 D

e
c
is

io
n

s

Enable_Squares

End If

ElseIf (fbSquare5X = True And fbSquare6X = True) And _

(fbSquare4X = False And fbSquare4O = False) Then

Image4.Picture = imgO.Picture

fbSquare4O = True

If Checkforwin = False Then

fsWhoseTurnIsIt = “player”

lblStatus.Caption = “Your turn”

Enable_Squares

End If

ElseIf (fbSquare8X = True And fbSquare9X = True) And _

(fbSquare7X = False And fbSquare7O = False) Then

Image7.Picture = imgO.Picture

fbSquare7O = True

If Checkforwin = False Then

fsWhoseTurnIsIt = “player”

lblStatus.Caption = “Your turn”

Enable_Squares

End If

ElseIf (fbSquare2X = True And fbSquare8X = True) And _

(fbSquare5X = False And fbSquare5O = False) Then

Image5.Picture = imgO.Picture

fbSquare5O = True

If Checkforwin = False Then

fsWhoseTurnIsIt = “player”

lblStatus.Caption = “Your turn”

Enable_Squares

End If

ElseIf (fbSquare1X = True And fbSquare4X = True) And _

(fbSquare7X = False And fbSquare7O = False) Then

Image7.Picture = imgO.Picture

fbSquare7O = True

If Checkforwin = False Then

fsWhoseTurnIsIt = “player”

lblStatus.Caption = “Your turn”

Enable_Squares

End If

ElseIf (fbSquare3X = True And fbSquare6X = True) And _

(fbSquare9X = False And fbSquare9O = False) Then

92
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

TE
AM
FL
Y

Team-Fly®

Image9.Picture = imgO.Picture

fbSquare9O = True

If Checkforwin = False Then

fsWhoseTurnIsIt = “player”

lblStatus.Caption = “Your turn”

Enable_Squares

End If

ElseIf (fbSquare6X = True And fbSquare9X = True) And _

(fbSquare3X = False And fbSquare3O = False) Then

Image3.Picture = imgO.Picture

fbSquare3O = True

If Checkforwin = False Then

fsWhoseTurnIsIt = “player”

lblStatus.Caption = “Your turn”

Enable_Squares

End If

ElseIf (fbSquare1X = True And fbSquare5X = True) And _

(fbSquare9X = False And fbSquare9O = False) Then

Image9.Picture = imgO.Picture

fbSquare9O = True

If Checkforwin = False Then

fsWhoseTurnIsIt = “player”

lblStatus.Caption = “Your turn”

Enable_Squares

End If

ElseIf (fbSquare5X = True And fbSquare9X = True) And _

(fbSquare1X = False And fbSquare1O = False) Then

Image1.Picture = imgO.Picture

fbSquare1O = True

If Checkforwin = False Then

fsWhoseTurnIsIt = “player”

lblStatus.Caption = “Your turn”

Enable_Squares

End If

ElseIf (fbSquare7X = True And fbSquare5X = True) And _

(fbSquare3X = False And fbSquare3O = False) Then

Image3.Picture = imgO.Picture

fbSquare3O = True

If Checkforwin = False Then

fsWhoseTurnIsIt = “player”

93
C

h
a

p
te

r
 3

 M
a

k
in

g
 D

e
c
is

io
n

s

lblStatus.Caption = “Your turn”

Enable_Squares

End If

End If

End If ‘End fsWhoseTurnIsIt check

Each of the If and ElseIf conditions is checking for 12 out of the 24 scenarios that
I showed you in the decision-tree section in this chapter.

If you really want to challenge your friends, go ahead and add 12 more ElseIf con-
ditions to check for the remaining conditions.

Not only are the ElseIf conditions looking for one of the 12 conditions, but also
they are checking to see whether the square that would win is filled using com-
pound conditions.

If a match is found and the square is empty, the computer places an O in the
appropriate square, preventing the opponent from winning (at least for that con-
dition). After that, a check for win is done by the procedure Checkforwin.

The default section in the following code is only reached if it is still the com-
puter’s turn—or in other words, there was no match found. The default section
basically looks for the first open or available square. This move is pretty pre-
dictable, as you will see after running the tic-tac-toe game a few times. Never-
theless, you will learn how to solve this problem by generating random numbers
in Chapter 4:

If fsWhoseTurnIsIt = “computer” Then

‘DEFAULT SECTION

‘If the computer has made it this far and there were no possible

‘matches, then just select the first empty box it comes across.

‘Even though I use this code for testing the program, I’m going to

‘leave it in because I’m not testing for all defensive scenarios.

If fbSquare1X = False And fbSquare1O = False Then

Image1.Picture = imgO.Picture

fbSquare1O = True

If Checkforwin = False Then

fsWhoseTurnIsIt = “player”

lblStatus.Caption = “Your turn”

Enable_Squares

End If

ElseIf fbSquare2X = False And fbSquare2O = False Then

94
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

Image2.Picture = imgO.Picture

fbSquare2O = True

If Checkforwin = False Then

fsWhoseTurnIsIt = “player”

lblStatus.Caption = “Your turn”

Enable_Squares

End If

ElseIf fbSquare3X = False And fbSquare3O = False Then

Image3.Picture = imgO.Picture

fbSquare3O = True

If Checkforwin = False Then

fsWhoseTurnIsIt = “player”

lblStatus.Caption = “Your turn”

Enable_Squares

End If

ElseIf fbSquare4X = False And fbSquare4O = False Then

Image4.Picture = imgO.Picture

fbSquare4O = True

If Checkforwin = False Then

fsWhoseTurnIsIt = “player”

lblStatus.Caption = “Your turn”

Enable_Squares

End If

ElseIf fbSquare5X = False And fbSquare5O = False Then

Image5.Picture = imgO.Picture

fbSquare5O = True

If Checkforwin = False Then

fsWhoseTurnIsIt = “player”

lblStatus.Caption = “Your turn”

Enable_Squares

End If

ElseIf fbSquare6X = False And fbSquare6O = False Then

Image6.Picture = imgO.Picture

fbSquare6O = True

If Checkforwin = False Then

fsWhoseTurnIsIt = “player”

lblStatus.Caption = “Your turn”

Enable_Squares

End If

95
C

h
a

p
te

r
 3

 M
a

k
in

g
 D

e
c
is

io
n

s

ElseIf fbSquare7X = False And fbSquare7O = False Then

Image7.Picture = imgO.Picture

fbSquare7O = True

If Checkforwin = False Then

fsWhoseTurnIsIt = “player”

lblStatus.Caption = “Your turn”

Enable_Squares

End If

ElseIf fbSquare8X = False And fbSquare8O = False Then

Image8.Picture = imgO.Picture

fbSquare8O = True

If Checkforwin = False Then

fsWhoseTurnIsIt = “player”

lblStatus.Caption = “Your turn”

Enable_Squares

End If

ElseIf fbSquare9X = False And fbSquare9O = False Then

Image9.Picture = imgO.Picture

fbSquare9O = True

If Checkforwin = False Then

fsWhoseTurnIsIt = “player”

lblStatus.Caption = “Your turn”

Enable_Squares

End If

End If

End If ‘end fsWhoseTurnIsIt check

Each of the following conditions is checking for a win by the player by checking
each of the eight possible wins in a game of tic-tac-toe:

End Sub

Public Function Checkforwin()

Dim liSquaresOccupied As Integer

‘First, check for a win by the player

If fbSquare1X = True And fbSquare2X = True And fbSquare3X = _

True Then ‘Across

fbPlayerWon = True

ElseIf fbSquare4X = True And fbSquare5X = True And fbSquare6X = _

True Then ‘Across

fbPlayerWon = True

96
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

ElseIf fbSquare7X = True And fbSquare8X = True And fbSquare9X = _

True Then ‘Across

fbPlayerWon = True

ElseIf fbSquare1X = True And fbSquare4X = True And fbSquare7X = _

True Then ‘Up and down

fbPlayerWon = True

ElseIf fbSquare2X = True And fbSquare5X = True And fbSquare8X = _

True Then ‘Up and down

fbPlayerWon = True

ElseIf fbSquare3X = True And fbSquare6X = True And fbSquare9X = _

True Then ‘Up and down

fbPlayerWon = True

ElseIf fbSquare1X = True And fbSquare5X = True And fbSquare9X = _

True Then ‘Diagonal

fbPlayerWon = True

ElseIf fbSquare3X = True And fbSquare5X = True And fbSquare7X = _

True Then ‘Diagonal

fbPlayerWon = True

End If

I perform the same check for a win by the computer against each of the eight pos-
sible scenarios:

‘Next, check for a win by the computer

If fbSquare1O = True And fbSquare2O = True And fbSquare3O = _

True Then ‘Across

fbComputerWon = True

ElseIf fbSquare4O = True And fbSquare5O = True And fbSquare6O = _

True Then ‘Across

fbComputerWon = True

ElseIf fbSquare7O = True And fbSquare8O = True And fbSquare9O = _

True Then ‘Across

fbComputerWon = True

ElseIf fbSquare1O = True And fbSquare4O = True And fbSquare7O = _

True Then ‘Up and down

fbComputerWon = True

ElseIf fbSquare2O = True And fbSquare5O = True And fbSquare8O = _

True Then ‘Up and down

fbComputerWon = True

97
C

h
a

p
te

r
 3

 M
a

k
in

g
 D

e
c
is

io
n

s

ElseIf fbSquare3O = True And fbSquare6O = True And fbSquare9O = _

True Then ‘Up and down

fbComputerWon = True

ElseIf fbSquare1O = True And fbSquare5O = True And fbSquare9O = _

True Then ‘Diagonal

fbComputerWon = True

ElseIf fbSquare3O = True And fbSquare5O = True And fbSquare7O = _

True Then ‘Diagonal

fbComputerWon = True

End If

I handle the tie scenario a little differently. I simply check for the scenario where
every square has either an X or an O but there is no win by the computer nor
opponent:

‘And last, check for a tie game

If fbComputerWon = False And fbPlayerWon = False Then

If fbSquare1X = True Or fbSquare1O = True Then

liSquaresOccupied = liSquaresOccupied + 1

End If

If fbSquare2X = True Or fbSquare2O = True Then

liSquaresOccupied = liSquaresOccupied + 1

End If

If fbSquare3X = True Or fbSquare3O = True Then

liSquaresOccupied = liSquaresOccupied + 1

End If

If fbSquare4X = True Or fbSquare4O = True Then

liSquaresOccupied = liSquaresOccupied + 1

End If

If fbSquare5X = True Or fbSquare5O = True Then

liSquaresOccupied = liSquaresOccupied + 1

End If

If fbSquare6X = True Or fbSquare6O = True Then

liSquaresOccupied = liSquaresOccupied + 1

End If

If fbSquare7X = True Or fbSquare7O = True Then

liSquaresOccupied = liSquaresOccupied + 1

End If

If fbSquare8X = True Or fbSquare8O = True Then

liSquaresOccupied = liSquaresOccupied + 1

98
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

End If

If fbSquare9X = True Or fbSquare9O = True Then

liSquaresOccupied = liSquaresOccupied + 1

End If

‘If liSquaresOccupied = 9 (all squares are occupied) and the

‘computer nor the player has won, then we have a tie game

If liSquaresOccupied = 9 Then

fbTie = True

End If

End If

The remaining conditions look for a win or a tie and increment the score where
applicable:

‘If a win or a tie has occurred, then increment a score.

‘Turn off the timer and exit this routine

If fbTie = True Or fbPlayerWon = True Or fbComputerWon = True Then

Checkforwin = True

If fbTie = True Then

fiTieScore = fiTieScore + 1

lblTie.Caption = fiTieScore

lblStatus.Caption = “Tie Game, click start game to play”

fsWhoseTurnIsIt = “player”

ElseIf fbPlayerWon = True Then

fiPlayerScore = fiPlayerScore + 1

lblPlayer.Caption = fiPlayerScore

lblStatus.Caption = “You won, click start game to play”

fsWhoseTurnIsIt = “player”

ElseIf fbComputerWon = True Then

fiComputerScore = fiComputerScore + 1

lblComputer.Caption = fiComputerScore

lblStatus.Caption = “Computer won, click start game to play”

fsWhoseTurnIsIt = “player”

End If

The remaining code performs housekeeping, which sets the game environment
to that of a new game:

cmdStart.Enabled = True

99
C

h
a

p
te

r
 3

 M
a

k
in

g
 D

e
c
is

io
n

s

fbTie = False

fbPlayerWon = False

fbComputerWon = False

fbSquare1X = False

fbSquare2X = False

fbSquare3X = False

fbSquare4X = False

fbSquare5X = False

fbSquare6X = False

fbSquare7X = False

fbSquare8X = False

fbSquare9X = False

fbSquare1O = False

fbSquare2O = False

fbSquare3O = False

fbSquare4O = False

fbSquare5O = False

fbSquare6O = False

fbSquare7O = False

fbSquare8O = False

fbSquare9O = False

Timer1.Enabled = False

Exit Function

If neither win nor tie was found, then return the value false by assigning false to
the name of the function:

Else

Checkforwin = False

End If

The procedures Disable_Squares and Enable_Squares do exactly what their
names imply, either disable or enable the squares:

End Function

Public Sub Disable_Squares()

100
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

Image1.Enabled = False

Image2.Enabled = False

Image3.Enabled = False

Image4.Enabled = False

Image5.Enabled = False

Image6.Enabled = False

Image7.Enabled = False

Image8.Enabled = False

Image9.Enabled = False

End Sub

Public Sub Enable_Squares()

Image1.Enabled = True

Image2.Enabled = True

Image3.Enabled = True

Image4.Enabled = True

Image5.Enabled = True

Image6.Enabled = True

Image7.Enabled = True

Image8.Enabled = True

Image9.Enabled = True

End Sub

Summary

In this chapter, you covered a subset of mathematics called Boolean logic, which
is the foundation not only for programmable conditions but also computer archi-
tecture as a whole. With the knowledge of Boolean logic, you learned how to cre-
ate and use conditions in Visual Basic through If statements and Select Case
structures.

Through program examples, you learned more about Visual Basic events and con-
trols using the KeyPress event and the timer control. With a broader knowledge
of events and controls, you should now have an appetite for things to come and
a sense of possibilities limited only by your imagination.

Finally, you learned how to build intelligent games by developing decision trees,
which help programmers create effective and intelligent algorithms.

101
C

h
a

p
te

r
 3

 M
a

k
in

g
 D

e
c
is

io
n

s

I hope that this chapter has challenged you in what you have learned thus far
and inspired you to learn more about programming with Visual Basic. After a
chapter like this, it is important to realize that not only have you been learning
how to program in Visual Basic, but also you have acquired knowledge in the area
of computer science.

In the next chapter, you will build some fun games while learning about pro-
gram control through the use of loops.

102
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

CHALLENGES

1. Use the animation program from this chapter as a template to build a pro-

gram that animates a character walking forward, backward, and side-to-

side. You can find more character clips for animation on the accompanying

CD for this book.

2. Using the timer control, create a digital stopwatch program that allows a

user to start and stop a clock. The program should show how much time

has elapsed between the starting and stopping times.

3. Add the remaining 12 winning scenarios to the tic-tac-toe game’s logic in

the Timer event. Give it to your friends to play; sit back and laugh.

4. Change the tic-tac-toe’s artificial intelligence in the Timer event to play an

offensive role instead of a defensive role. Before writing any code, give

some thought to the following questions:

• What are the differences in the logic between an offensive role and a

defensive role?

• What will the decision tree look like for an offensive role?

• Should both defensive and offensive strategies be incorporated into the

game’s intelligence? What would this decision tree look like?

TE
AM
FL
Y

Team-Fly®

A
fter learning about conditions, you are ready to study another

important computer science structure called iteration. Com-

monly referred to as looping, iteration is a structure you can use

to loop through programmable statements.

Loops or iterations are controlled by known or unknown values, which

can be changed by the looping process itself or by an outside influence.

Like conditions, iteration is best learned through programming, pro-

gramming, and more programming. You will walk through a few simple

programs in this chapter that showcase the basic functionality of the

looping process in Visual Basic. After learning looping fundamentals,

you will see how you can use iteration to build more sophisticated pro-

grams such as the slot machine game at the end of this chapter.

This chapter specifically covers the following:

• Iteration basics

• For loops

• Do loops

• Random numbers

• Constructing the slot machine game

Iteration

4
C H A P T E R

Project: Slot Machine

In the slot machine game, you will learn how to build a slot machine using
Visual Basic iteration structures and random numbers. You will also learn how to
create your own timer using conditions and built-in Visual Basic functions.

The game randomizes four images when a user spins the reels. (Well, in this case,
he pushes a button.) If the resulting images make up three or four of a kind,
points are added to the player’s score. Figure 4.1 showcases the slot machine
game.

Been There, Done That

So, why loop? Well, iteration or looping is the programmer’s fundamental means
of repeating something over and over and over again. Let me show you some obvi-
ous and not-so-obvious situations where you might want to create a programma-
ble loop. First are the obvious situations for looping:

• Counting numbers

• Reading a file as input until the end-of-file marker is found

• Searching through database records

• Calculating compound interest

• Animating a figure or image

104
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

FIGURE 4.1

A slot machine
game that

randomizes images
and tracks the
player’s score.

Following are not so obvious:

• Displaying a bank’s ATM menu

• Building an autopilot system for a plane

• Launching a heat-seeking missile

• Building medical imaging or an MRI system

• Installing an operating system

The point of these looping situations is to realize that programmable iteration
is all around us. To make this more obvious, I expand on some of the not-so-
obvious situations for looping.

A bank’s ATM (automated teller machine) seems to always have a menu displayed.
When not in use, ATM menus are not sitting in a state of suspended animation.
Rather, they have logic programmed into them that is always looking for a user’s
response. In other words, the ATM program logic stays in a loop, always ready to
serve the customer through displaying a menu.

Something most people never consider when flying in a commercial plane is the
autopilot system. One would hope that when the pilot turns on the autopilot, it
stays on until the pilot turns it off. Well, that hope rests in the programmer who
wrote the autopilot system code. I hope he or she used iteration logic that says,
“When autopilot is on, stay on until autopilot is turned off.”

For Loops

For loops are often used in Visual Basic to implement iteration. They are a popu-
lar choice when you know (or will know through the use of variables) how many
times the loop should repeat.

Many languages have their own version of the for loop, and Visual Basic is no
exception. In my opinion, Visual Basic provides a friendly means for implement-
ing the for loop as shown in its general form:

For variable name = number to number Step number (optional)

‘statements

Next variable name

Here’s another example that uses the for loop to repeat five times using the inte-
ger variable liCounter:

For liCounter = 1 to 5

‘statements

Next liCounter

105
C

h
a

p
te

r
 4

 It e
r
a

t io
n

In this example, liCounter is incremented by 1 each time the Next liCounter
statement is executed. The statement For liCounter = 1 to 5 tells Visual Basic that
you want the for loop to repeat five times incrementing by 1.

This is great, but what if you want to increment by 2s, 5s, or 10s? Well, the Visual
Basic for loop implements increments through the use of the Step keyword.
Here’s an example of a for loop that increments by 10:

For liCounter = 1 to 100 Step 10

‘print liCounter

Next liCounter

What do you think the output of this for loop would be? You might guess 10, 20,
30, 40, . . . 100. But that is actually incorrect. The output would be 1, 11, 22, 33,
44, and so on. Remember that in the for loop, I tell Visual Basic that I want to
count from 1 to 100. Visual Basic accomplishes this by starting at the number 1.
When you add 10 to 1, you get 11. To get the output you might have expected, you
need to change the for statement to look something like this:

For liCounter = 0 to 100 Step 10

Also consider that for loops can decrement with negative numbers. Take the fol-
lowing code which decrements by 1.

For liCounter = 1 to -10 Step -1

‘print liCounter

Next liCounter

There are times when you may want to exit a looping construct before it has
completed all possible iterations. In Visual Basic, this can be accomplished with
the Exit Do or Exit For statements. Take the following code segment which exits
a for loop when the variable liCounter reaches the number 5.

For liCounter = 1 To 10 Step 1

If liCounter = 5 Then

Exit For

Else

Print liCounter

End If

Next liCounter

I built a small program called The Counter, which implements Visual Basic’s for
loop structure. It uses a picture box control to output the number of times a for
loop has repeated. Figure 4.2 depicts the counter program, which uses for loops
to demonstrate iteration.

HINT

106
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

Let’s take a look at The Counter program to see how the for loop is implemented:

Option Explicit

Private Sub cmdCount_Click()

Dim liCounter As Integer

picOutput.Cls

If opt1.Value = True Then

For liCounter = 1 To 20

picOutput.Print liCounter

Next liCounter

ElseIf opt2.Value = True Then

For liCounter = 1 To 20 Step 2

picOutput.Print liCounter

Next liCounter

ElseIf opt5.Value = True Then

For liCounter = 1 To 20 Step 5

picOutput.Print liCounter

Next liCounter

107
C

h
a

p
te

r
 4

 It e
r
a

t io
n

FIGURE 4.2

The Counter
program, which
uses the for loop

structure.

ElseIf opt10.Value = True Then

For liCounter = 1 To 20 Step 10

picOutput.Print liCounter

Next liCounter

End If

End Sub

Private Sub cmdExit_Click()

End

End Sub

Private Sub Form_Load()

opt1.Value = True

End Sub

Most of the code for the counter program is in the click event of the cmdClick
command button. Depending on which option button the user clicks, I use the
for loop to repeatedly print the value of liCounter to the picture box. It’s really
pretty simple!

Table 4.1 describes the controls and properties of the counter program.

108
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

Control Property Setting

frmMain Caption The Counter

picOutput Picture None

fraOptions Caption Count 1 to 20 by:

opt1 Caption 1s

opt2 Caption 2s

opt5 Caption 5s

opt10 Caption 10s

cmdCount Caption &Count

cmdExit Caption E&xit

TABLE 4.1 CONTROLS AND PROPERTIES

FOR THE COUNTER PROGRAM

Do Loops

Do loops are another popular vehicle for implementing iteration in Visual Basic.
They are especially useful when you do not know how many times you want to
repeat a process.

Any for loop you create can use a do loop instead. Although they look quite dif-
ferent syntactically, they produce the same results.

Visual Basic has four ways for implementing a do loop. You can use either the
while or until keywords. Each version of the do loop shares the common function
of iteration, yet they can produce different results. Take a look at each version of
the do loop to better understand their differences and commonalities. The four
combinations are as follows:

Do Until(condition)…Loop

Do While(condition)…Loop

Do…Loop Until(condition)

Do…Loop While(condition)

Do While

The do while loop repeats a process while a condition is true. Hey, did you notice
that I mentioned the word condition? Both versions of do loops use conditions as
their signals to loop or not loop. When I say conditions, I’m not necessarily refer-
ring to if conditions, but rather Boolean values and expressions.

Here’s the basic syntax for a do while loop:

Do While condition

‘statements

Loop

You can see that the condition is checked before the statements in a do while
loop are executed. This is such an important concept that it is worth mentioning
again. If the condition is false in a do while loop, the statements inside it are
never executed.

HINT

109
C

h
a

p
te

r
 4

 It e
r
a

t io
n

Here’s another example of a do while loop that reads a file while it does not
detect an end-of-file marker:

Do While file1.eof <> true

‘read file contents

Loop

The condition in this do while loop should be more apparent to you now that I’m
using a real-world condition. Better yet, let’s see if we can re-create the for loop
in the counter program using a do while loop:

Do While liCounter < 20

picOutput.Print liCounter

liCounter = liCounter + 1

Loop

This do while loop produces the same results as its for loop counterpart. If you
want to increment by something other than 1, you can simply change the state-
ment liCounter = liCounter + 1 to liCounter = liCounter + 2 to count by 2s, or
liCounter = liCounter + 5 to count by 5s, and so on.

Beware of the infinite loop, a common problem that most beginning programmers
encounter. Infinite loops are iterative processes that never stop. To demonstrate,
let’s take a look at a revised do while counter loop:

liCounter = 1

Do While liCounter < 20

picOutput.Print liCounter

Loop

In this example, the looping condition Do While liCounter < 20 is always true
(resulting in an infinite loop) because I do not change the value of liCounter any-
where in the loop so that it becomes greater than 20.

When creating and using loops, make sure there is a way for the loop to exit. In
the event that you find yourself in an infinite loop, don’t fret; simply press the
keys Ctrl and Break simultaneously to break the loop.

Moreover, you can put the condition (in this case, the condition after the While
keyword) at the end of a loop. This change still performs a similar looping
process, yet can produce different results. The following do loop construct is sim-
ilar to the preceding loop, but its condition is at the end of the loop. So, what’s
the difference? Essentially, the key difference is the loop is guaranteed to iterate
at least once. In other words, if the liCounter variable is already set to 5 or
greater, the code in the loop will execute at least once before exiting.

TRAP

110
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

Do

picOutput.Print liCounter

Loop While liCounter < 20

For a better look at the differences, compare the following do loops.

liCounter = 25

Do While liCounter < 20

picOutput.Print liCounter

Loop

liCounter = 25

Do

picOutput.Print liCounter

Loop While liCounter < 20

You should now be able to see that the second loop’s inner statements will exe-
cute once, where the first looping construct will not.

Loop Until

Another popular way to implement a do loop is with the loop until structure. Like
the do while structure, loop until uses a condition to loop or not loop. However,
unlike the do while loop, the loop until structure evaluates its condition after the
loop has executed. What this essentially means is that you are guaranteed your
loop’s statements will execute at least once with the loop until structure.

Here’s the basic syntax for the loop until structure:

Do

‘statements

Loop Until Condition

As mentioned earlier, loop until structures are useful when you know for certain
that you want the loop’s contents to execute at least once.

This can also be accomplished with the condition While when placed at the end
of a do loop construct.

Here’s another example of a loop until structure that displays a menu until the
user chooses to quit:

Do

‘display menu

‘process menu selection

HINT

111
C

h
a

p
te

r
 4

 It e
r
a

t io
n

Loop Until menu_selection = ‘q’

With this loop until structure, I’m guaranteed that the menu displays at least
once.

Similar to the Do While looping construct, the Until condition can be placed at
the beginning of the do loop as seen below.

Do Until menu_selection = ‘q’

‘display menu

‘process menu selection

Loop

Random Numbers

Generating random numbers is an interesting and challenging concept in the
mathematical and computer science worlds. The application of random numbers
is not limited to scientific and mathematical workings; it is also popular in the
gaming industry. For example, here are some scenarios where you might see ran-
dom numbers used in electronic games:

• Shuffling a deck of cards

• Rolling a die for a board game

• Playing slot machines

• Generating numbers for lotteries

• Spinning a roulette wheel

Each of these games tries to simulate a non-predictable random selection of num-
bers in a collection. Even though the application might display a hand of cards,
or the face of a die, the outcome is derived behind the scenes through random
number generation.

Fortunately, Visual Basic provides built-in random number generators.

Rnd Function

The rnd function returns a random number from 0 to 1, but not including 1. For
example, the rnd function could return any one of the following numbers:

.0000000

.2500000

.5000000

.7500000

112
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

TE
AM
FL
Y

Team-Fly®

Because these numbers are real numbers (decimals or fractions) and not integers,
you need to perform a little Visual Basic trickery to get whole numbers such as 1,
2, 3, 4, 5, or 6. For example, the following statement generates a random number
from 1 to 6 and assigns it to an integer variable:

LiRandomNumber = Int(6 * Rnd) + 1

I had to add 1 to the equation to get numbers from 1 to 6. This is because the rnd
function generates numbers from 0 to 1, but not including 1. So if I did not
include the addition of 1 to the equation, I would get random numbers in the
range of 0 to 5.

Also, I enclose the rnd function in the int function. Enclosing a non-integer num-
ber in the Int() function ensures that you get an integer number.

The rnd function generates a seemingly random pattern the more it is executed.
However, you will find that when first executed, the rnd function starts with the
same number each time. To solve this problem, Visual Basic provides another
function called randomize.

Randomize Function

The randomize function uses your computer’s internal clock to assist you in gen-
erating random numbers. If your program includes the randomize function, the
rnd function generates a more varied number each time it is first executed.

The randomize function requires no parameters and must be called only once in
your program. For example, you can put the randomize function in your form’s
load event:

Private Sub Form_Load()

Randomize

End Sub

To illustrate the use of random numbers, I show you a small program I wrote
called dice in Figure 4.3.

My dice program uses a number of Visual Basic fundamentals that you have
already learned so far in this book. Specifically, it uses image swapping, a timer
control, select case structures, if conditions, and random numbers.

The dice images used in the dice program were created by For the Absolute
Beginner series editor Andy Harris and appear in this book’s accompanying
CD-ROM.

HINT

113
C

h
a

p
te

r
 4

 It e
r
a

t io
n

Here’s the entire code for the dice program:

Option Explicit

Dim fiRolls As Integer

Private Sub cmdRoll_Click()

cmdRoll.Enabled = False

cmdRoll.Caption = “Rolling...”

fiRolls = 1

Timer1.Enabled = True

End Sub

Private Sub Form_Load()

imgMainDie.Picture = imgDie1.Picture

Randomize

End Sub

I’m using the randomize function in the form load event to aid the rnd function
in generating a random number:

Private Sub Timer1_Timer()

Dim fiRandomNumber As Integer

114
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

FIGURE 4.3

The dice program
simulates the
rolling of a die

through random
numbers.

Notice that I use an if condition to check a form-level integer variable called
fiRolls. I use this variable and condition to ensure that the Timer event is only
kicked off 10 times. To accomplish this, I increment fiRolls by 1 at the end of this
procedure:

If fiRolls > 10 Then

Timer1.Enabled = False

cmdRoll.Enabled = True

cmdRoll.Caption = “&Roll the Die”

End If

fiRandomNumber = Int(6 * Rnd) + 1

Here I use the rnd function to assign a random number to an integer variable.
This assignment takes place each time the Timer event is triggered. Next, the
select case structure assigns a certain picture of the die to the main picture on
the form:

Select Case fiRandomNumber

Case 1

imgMainDie.Picture = imgDie1.Picture

Case 2

imgMainDie.Picture = imgDie2.Picture

Case 3

imgMainDie.Picture = imgDie3.Picture

Case 4

imgMainDie.Picture = imgDie4.Picture

Case 5

imgMainDie.Picture = imgDie5.Picture

Case 6

imgMainDie.Picture = imgDie6.Picture

End Select

fiRolls = fiRolls + 1

End Sub

Changing the Interval property of the Timer control will slow down or speed up
the changing of the die’s face.

Table 4.2 shows the controls and properties of the dice program.

HINT

115
C

h
a

p
te

r
 4

 It e
r
a

t io
n

The dice program uses the image-swapping technique to animate a die. If a user
were to increase the size of the dice program window, she would see the six
images I have hidden on the form. I can use the border style property of the form
to prevent this.

Setting the border style property of a form prevents a user from changing the
window’s size through maximizing it or through the clip controls on the edges of
the window.

Constructing the Slot Machine Game

Like its more advanced counterparts, the slot machine game generates random
images through the use of random numbers. After generating random images,
the game’s intelligence looks for certain patterns. In this case, it looks for three
of a kind and four of a kind.

The Problem

Develop a slot machine that generates random images through the use of
random numbers. Once random numbers are assigned to images, look for a

HINT

116
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

Control Property Setting

frmMain Caption Random Numbers

Border Style 1 – Fixed Single

imgMainDie Picture None

imgDie1 Picture Bitmap

imgDie2 Picture Bitmap

imgDie3 Picture Bitmap

imgDie4 Picture Bitmap

imgDie5 Picture Bitmap

imgDie6 Picture Bitmap

cmdRoll Caption &Roll the Die

Timer1 Enabled False

Interval 500

TABLE 4.2 CONTROLS AND PROPERTIES

FOR THE DICE PROGRAM

predetermined pattern. The patterns should include three and four of a kind. If
patterns match, increment the player’s score accordingly. Table 4.3 outlines the
tools available to you.

Figure 4.4 demonstrates the slot machine game in design mode.

117
C

h
a

p
te

r
 4

 It e
r
a

t io
n

Control Property Setting

frmMain Caption Slot Machine

BorderStyle 1 – Fixed Single

fraPayouts Caption Payouts:

Label3 Caption Three of a Kind: 25 Points

Label4 Caption Four of a Kind: 50 Points

cmdQuit Caption &Quit

Frame1 Caption None

Appearance 1 – 3D

BackColor Blue

BorderStyle None

lblSpinning Caption Spinning...

Visible False

cmdSpin Caption Spin

lblScoreCaption Caption Player’s Score:

lblPlayersScore Caption None

imgSpade Picture Icon

Visible False

imgDiamond Picture Icon

Visible False

imgHeart Picture Icon

Visible False

imgClub Picture Icon

Visible False

imgSlot1 Picture None

imgSlot2 Picture None

imgSlot3 Picture None

imgSlot4 Picture None

TABLE 4.3 CONTROLS AND PROPERTIES

FOR THE SLOT MACHINE PROGRAM

The following list depicts a possible algorithm for the slot machine game.

1. Create a new standard EXE project.

2. Add all controls to the form.

3. Set all applicable control properties during design time.

4. Write code in the form load event to initialize any variables and images
and start the randomize function.

5. Write code for the click event of the command button that spins the reels:

• Declare variables.

• Get the current time and determine the number of seconds.

• Begin an iteration that loops for 5 seconds.

• While in the loop, generate random numbers and get the latest time in
seconds.

• After the loop is completed (after 5 seconds), assign images based on
random numbers generated.

• Look for four and three of a kind.

• If a match is found, increment the player’s score accordingly.

• Reset the game for the next round.

118
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

FIGURE 4.4

The slot machine
game in design

mode.

The Implementation

I only need one form-level variable to keep track of the player’s score:

Option Explicit

Dim liPlayersScore As Integer

Written in the click event of the quit command button is the Visual Basic end
keyword, which stops and exits the game:

Private Sub cmdQuit_Click()

End

End Sub

In the form load event, I assign pictures to the image controls that eventually dis-
play the outputted random images. I also set a few other variables and proper-
ties, but most important, I use the randomize function to make better use of the
rnd function:

Private Sub Form_Load()

lblPlayersScore.Caption = “0”

lblSpinning.Visible = False

imgSlot1.Picture = imgHeart.Picture

imgSlot2.Picture = imgClub.Picture

imgSlot3.Picture = imgDiamond.Picture

imgSlot4.Picture = imgSpade.Picture

liPlayersScore = 0

Randomize

End Sub

Most of the code for the slot machine game is located in the click event of the
spin command button. I declare a number of variables to hold the random num-
bers, patterns found (if any), and a number of variant variables to hold time:

Private Sub cmdSpin_Click()

Dim liRandomNumber1 As Integer

Dim liRandomNumber2 As Integer

Dim liRandomNumber3 As Integer

Dim liRandomNumber4 As Integer

Dim timeStarted

119
C

h
a

p
te

r
 4

 It e
r
a

t io
n

Dim hourStarted

Dim minutesStarted

Dim secondsStarted

Dim beginTotalNumberofSeconds

Dim currentTime

Dim currentHour

Dim currentMinutes

Dim currentSeconds

Dim endTotalNumberofSeconds

Dim timeElapsed

Dim lb3ofaKind As Boolean

Dim lb4ofaKind As Boolean

Before I enter my loop, I initialize some variables and set the images’ visible prop-
erties to False. I also get the current system time and determine the number of
seconds in it:

lb3ofaKind = False

lb4ofaKind = False

timeStarted = Time

hourStarted = Hour(timeStarted)

minutesStarted = Minute(timeStarted)

secondsStarted = Second(timeStarted)

beginTotalNumberofSeconds = ((hourStarted * 60) * 60) + _

(minutesStarted * 60) + secondsStarted

imgSlot1.Visible = False

imgSlot2.Visible = False

imgSlot3.Visible = False

imgSlot4.Visible = False

cmdSpin.Enabled = False

lblSpinning.Visible = True

DoEvents

What I essentially do is create my own timer control. To accomplish this, I assign
the current system time to a variable using the intrinsic Visual Basic function
called time. Once I have this, I can use the hour, minute, and second built-in
Visual Basic functions to extract the hours, minutes, and seconds from the cur-
rent time. With the help of a little math, I can then determine how many seconds

120
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

the current time has, which is useful when I want to determine how many sec-
onds I want the loop to iterate for.

Notice another new function called DoEvents that I add to the preceding code.
DoEvents allows other pending background processes to finish processing. In
other words, it allows your system to catch its breath before continuing. For
example, if I do not put DoEvents into this code, my loop in the next section
might start before I set the visible properties of the images to False.

My next loop is pretty straightforward; I tell Visual Basic that I want to loop for
about 5 seconds. During that time, I generate random numbers, get the next cur-
rent time, and calculate the number of seconds in it:

Do While timeElapsed < 5

liRandomNumber1 = Int((4 * Rnd) + 1)

liRandomNumber2 = Int((4 * Rnd) + 1)

liRandomNumber3 = Int((4 * Rnd) + 1)

liRandomNumber4 = Int((4 * Rnd) + 1)

currentTime = Time

currentHour = Hour(currentTime)

currentMinutes = Minute(currentTime)

currentSeconds = Second(currentTime)

endTotalNumberofSeconds = ((currentHour * 60) * 60) + _

(currentMinutes * 60) + currentSeconds

timeElapsed = endTotalNumberofSeconds - beginTotalNumberofSeconds

Loop

The next four comments serve no other purpose than reminding me that I’m
associating a unique integer to a certain image. If my random number process
generates a 1, I know to assign a heart to it and so on:

‘heart as 1

‘club as 2

‘diamond as 3

‘spade as 4

You can see the assignment process in the following select case statements:

‘swap imgSlot1

Select Case liRandomNumber1

Case 1

imgSlot1.Picture = imgHeart.Picture

Case 2

imgSlot1.Picture = imgClub.Picture

121
C

h
a

p
te

r
 4

 It e
r
a

t io
n

Case 3

imgSlot1.Picture = imgDiamond.Picture

Case 4

imgSlot1.Picture = imgSpade.Picture

End Select

‘swap imgSlot2

Select Case liRandomNumber2

Case 1

imgSlot2.Picture = imgHeart.Picture

Case 2

imgSlot2.Picture = imgClub.Picture

Case 3

imgSlot2.Picture = imgDiamond.Picture

Case 4

imgSlot2.Picture = imgSpade.Picture

End Select

‘swap imgSlot3

Select Case liRandomNumber3

Case 1

imgSlot3.Picture = imgHeart.Picture

Case 2

imgSlot3.Picture = imgClub.Picture

Case 3

imgSlot3.Picture = imgDiamond.Picture

Case 4

imgSlot3.Picture = imgSpade.Picture

End Select

‘swap imgSlot4

Select Case liRandomNumber4

Case 1

imgSlot4.Picture = imgHeart.Picture

Case 2

imgSlot4.Picture = imgClub.Picture

Case 3

imgSlot4.Picture = imgDiamond.Picture

Case 4

imgSlot4.Picture = imgSpade.Picture

End Select

122
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

TE
AM
FL
Y

Team-Fly®

Don’t let the number of If/ElseIf conditions in the next code segment worry you.
All I do is check for a four of a kind first and a three of a kind second. Notice the
method to the madness: If the program finds a four of a kind, then there is really
no sense in checking for a three of a kind. Right? Right.

You might be wondering, “How do I know what conditions to look for?” That is a
good question because most games that involve random numbers deal with
mathematical combinations. Take a look at Figure 4.5 to see a simple matrix that
shows the possible combinations for three and four of a kind.

Using the matrix in Figure 4.5, you can see a total of four possible combinations
for getting a three of a kind and only one possible combination for getting a four
of a kind.

123
C

h
a

p
te

r
 4

 It e
r
a

t io
n

FIGURE 4.5

Possible
combinations for

three and four of a
kind in a four-slot

game.

Hearts = 1, Clubs = 2, Diamonds = 3, Spades = 4

4 possibilties for 3 of a�
kind with Hearts (1)

4 possibilties for 3 of a�
kind with Clubs (2)

4 possibilties for 3 of a�
kind with Diamonds (3)

4 possibilties for 3 of a�
kind with Spades (4)

1 possible combination for�
4 of a kind with Hearts

1 possible combination for�
4 of a kind with Clubs

1 possible combination for�
4 of a kind with Diamonds

1 possible combination for�
4 of a kind with Spades

Slot 1 Slot 2 Slot 3 Slot 4

1

1

1

2

2

2

3

3

3

4

4

4

2

3

4

1

1

1

2

2

2

3

3

3

4

4

4

1

1

1

2

2

2

3

3

3

4

4

4

1

1

1

2

2

2

3

3

3

4

4

4

1

1

1

2

2

2

3

3

3

4

4

4

1

2

3

4

1

2

3

4

1

2

3

4

1

After checking for three and four of a kind, I check for a match and increment
the player’s score accordingly. Finally, I reset the game’s environment for the
next round:

‘look for four of a kind and then three of a kind

If liRandomNumber1 = 1 And liRandomNumber2 = 1 And liRandomNumber3 = 1 _

And liRandomNumber4 = 1 Then

lb4ofaKind = True

ElseIf liRandomNumber1 = 2 And liRandomNumber2 = 2 And _

liRandomNumber3 = 2 And liRandomNumber4 = 2 Then

lb4ofaKind = True

ElseIf liRandomNumber1 = 3 And liRandomNumber2 = 3 And _

liRandomNumber3 = 3 And liRandomNumber4 = 3 Then

lb4ofaKind = True

ElseIf liRandomNumber1 = 4 And liRandomNumber2 = 4 And _

liRandomNumber3 = 4 And liRandomNumber4 = 4 Then

lb4ofaKind = True

ElseIf liRandomNumber1 = 1 And liRandomNumber2 = 1 And _

liRandomNumber3 = 1 And lb4ofaKind = False Then

lb3ofaKind = True

ElseIf liRandomNumber1 = 1 And liRandomNumber2 = 1 And _

liRandomNumber4 = 1 And lb4ofaKind = False Then

lb3ofaKind = True

ElseIf liRandomNumber1 = 1 And liRandomNumber3 = 1 And _

liRandomNumber4 = 1 And lb4ofaKind = False Then

lb3ofaKind = True

ElseIf liRandomNumber2 = 1 And liRandomNumber3 = 1 And _

liRandomNumber4 = 1 And lb4ofaKind = False Then

lb3ofaKind = True

ElseIf liRandomNumber1 = 2 And liRandomNumber2 = 2 And _

liRandomNumber3 = 2 And lb4ofaKind = False Then

lb3ofaKind = True’remaining conditions to check for three of a kind

End If

124
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

To complete the necessary checks for three of a kind, you will need to add the
remaining necessary ElseIf conditions (check the CD for the complete code).

If lb3ofaKind = True Then

liPlayersScore = liPlayersScore + 25

ElseIf lb4ofaKind = True Then

liPlayersScore = liPlayersScore + 50

End If

lblPlayersScore.Caption = liPlayersScore

cmdSpin.Enabled = True

lblSpinning.Visible = False

imgSlot1.Visible = True

imgSlot2.Visible = True

imgSlot3.Visible = True

imgSlot4.Visible = True

lb3ofaKind = False

lb4ofaKind = False

End Sub

Summary

In this chapter, you learned how to go round and round with Visual Basic
through the use of iteration. You specifically learned how to loop using for, do
while, and loop until. You saw some examples of where these loops appear in our
daily lives, how to use them in Visual Basic, and how to avoid and break endless
loops.

You should also see a correlation between loops and conditions in that loops use
conditions to check for the number of iterations. Beyond loops, you now know
how to generate random numbers through the use of the rnd and randomize
functions.

125
C

h
a

p
te

r
 4

 It e
r
a

t io
n

126
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r CHALLENGES

1. Create a simple math quiz game that generates random numbers for addi-

tion and subtraction questions. After generating these random numbers,

the quiz game should prompt with a question and check whether the user

got it right.

2. Create a program that determines the interest paid on a loan over 5 years

or on a 30-year mortgage. The program should prompt a user for sale

amount, length of loan, and interest rate. It should then use Visual Basic

looping techniques to generate the amount of interest paid over the life of

the loan.

3. Modify the slot machine game to check for two of a kind and two pairs.

V
isual Basic programming fundamentals

such as variables, controls, events,

conditions, and iteration are what you

have been learning about so far. Hey, these are

programming staples, but as my good friend

Emeril Lagasse would say, “Let’s kick it up a

notch!”

Specifically, this chapter covers the following:

• Subprocedures and functions

• Interacting with the user through message

boxes and input boxes

• Playing sounds in Visual Basic

• Constructing the shooting gallery game

Subprocedures,
Functions, and

Controls
Continued

5
C H A P T E R

To become a better-rounded Visual
Basic programmer, you should invest
some time in learning how to create
subprocedures and functions. After
learning how to create and use func-
tions and subprocedures, you will be
well on your way to studying a more
dynamic and, yes, more complicated
way of programming called OOP
(object-oriented programming).

Before you even think about OOP, you
should have a firm grip on what func-
tions and modular programming are
all about because at the root of OOP
are functions and modular programs.

This chapter will help you understand
functions and subprocedures and how
they are implemented in Visual Basic.
In addition to functions and subproce-
dures, you will learn how to use other Microsoft Visual Basic controls for pur-
poses such as playing sounds.

Project: Shooting Gallery

At the end of this chapter, you will implement most of the topics discussed to cre-
ate a simple and fun game called the shooting gallery. The game, shown in Fig-
ure 5.1, uses sounds, functions, message boxes, input boxes, and additional
controls to create an interactive gaming experience.

Subprocedures and Functions

Visual Basic provides a number of facilities for creating modularized and
reusable program code. The two you will learn about in this chapter are subpro-
cedures and functions. Both subprocedures (you’ll notice the keyword Sub at the
beginning and ending of program blocks) and functions are known as proce-
dures, which let you organize large programmable problems into smaller pro-
gramming pieces.

128
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r Definition

Object-oriented programming models

program code with real-world concepts,

such as attributes, nouns, and actions.

These real-world concepts translate into

properties, methods, classes, and objects

(some of which you already know). OOP,

as it’s known, is a relatively new pro-

gramming paradigm in the computer-

science world and has yet to be thor-

oughly adopted by most programmers

and corporate developers of program-

ming languages.

Visual Basic 6.0 supports most of the

OOP concepts but lacks a full implemen-

tation of the technology behind OOP sci-

ence. Full implementations of OOP devel-

opment environments appear in lan-

guages such as C++ and Java.

In Visual Basic, the distinction between subprocedures and functions is minimal:

• Like subprocedures, functions are called with their names; however, they
return a value to the calling statement.

• Functions have data types just as variables do. These data types are
assigned to the function name and are used to denote the data type of the
returning value.

• Assigning a value to the function’s name is the resulting returned value.
This returning value can be assigned to a variable or used in a larger
expression.

In short, procedures are simply void functions. So what’s a function, and what’s
a void function? Whether you know it or not, you have already been using func-
tions in this book. Simply remember the intrinsic Visual Basic functions Left(),
Right(), Mid(), UCase(), and InStr(). Each of these functions takes a parameter as
input and returns a value as output. Subprocedures, on the other hand, return
no output or, in other words, are void of output.

Basically, you will want to use functions when you need a value return to a call-
ing statement and subprocedures when no return value is needed.

129
C

h
a

p
te

r
 5

 S
u

b
p

r
o

c
e
d

u
r
e
s

,
F
u

n
c
t io

n
s

,
a

n
d

C
o

n
t r

o
ls

C
o

n
ti n

u
e
d

FIGURE 5.1

The shooting
gallery game.

Subprocedures

There are two main ways to create a subprocedure in Visual Basic. If you know
the syntax by heart, you can simply type in the subprocedure directly, or you can
use the Add Procedure menu item depicted in Figure 5.2 to help you out. Per-
sonally, I prefer the Add Procedure menu item because it assists you in creating
a syntactically correct subprogram or function template each time.

If you choose the Add Procedure menu item, you see a dialog box that prompts
you for some information. From the Add Procedure dialog box as seen in Figure
5.3, you simply select the Sub option button (which denotes a subprocedure) and
type in the procedure name.

Procedures (subprocedures and functions) denoted as Private can only be called
by other procedures in that form. However, procedures denoted as Public
become methods or actions of that form and can be called from anywhere within
the application.

The Add Procedure dialog box creates your subprocedure template for you,
as shown in Figure 5.4. You can add all the necessary code to create reusable
procedures.

HINT

130
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

FIGURE 5.2

The Add Procedure
menu item on the

Tools menu.

131
C

h
a

p
te

r
 5

 S
u

b
p

r
o

c
e
d

u
r
e
s

,
F
u

n
c
t io

n
s

,
a

n
d

C
o

n
t r

o
ls

C
o

n
ti n

u
e
d

FIGURE 5.3

The Add Procedure
dialog box.

FIGURE 5.4

A subprogram
template created

with the Add
Procedure dialog

box.

IN THE REAL WORLD

What is reusability as it applies to programming? Reusability in programming is

in fact smart programming. When faced with routine programming tasks, smart

programmers create reusable code through classes or functions that save them

time and their employer’s money.

Although often found in the object-oriented paradigm, reusability can and

should be implemented in other paradigms, such as the event-driven model of

Visual Basic, through functions and subprocedures.

Any time you find yourself in a situation that will or could require repeated

code, go ahead and create modularized or reusable code through procedures.

The basic syntax for a subprogram is as follows:

Public Sub Procedure_Name()

‘Your code goes in here

End Sub

To illustrate a simple subprocedure, I put some silly code into the MyProcedure
subprogram of Figure 5.4 to add two numbers together.

Subprocedures can be called with or without the call keyword. Take the follow-
ing two statements in a form load event as an example.

Private Sub Form_Load()

Call MyProcedure

MyProcedure

End Sub

Each statement above calls the same subprocedure.

Subprocedures can also take parameters as seen in the Add_Two_Numbers pro-
cedure shown next.

Public Sub Add_Two_Numbers(x As Integer, y As Integer)

Dim liResult As Integer

liResult = x + y

End Sub

To call the Add_Two_Numbers procedure, you can also choose to use the Call key-
word, or not.

Private Sub Form_Load()

Call Add_Two_Numbers(5, 3)

Add_Two_Numbers 5, 3

End Sub

Note that I used parentheses to surround the parameters when I used the Call
keyword and no parentheses without the Call keyword.

Within subprocedures there may be times when you want to exit the procedure
before executing all remaining statements. This can be accomplished with the Exit
Sub command. For example, the following code exits the Add_Two_Numbers pro-
cedure before adding the two numbers if either parameter is a negative number.

Public Sub Add_Two_Numbers(x As Integer, y As Integer)

Dim liResult As Integer

132
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

TE
AM
FL
Y

Team-Fly®

If x < 0 Or y < 0 Then

Exit Sub

End If

liResult = x + y

End Sub

So far, you have been writing your Visual Basic code in events such as form load
and click events. Writing Visual Basic code in procedures is no different. The only
real difference is the code’s potential purpose. You can write Visual Basic code in
control events to respond to user actions, or you can write code in procedures to
modularize code for reusability.

Functions

As you know already, Visual Basic has many built-in or intrinsic functions. Table
5.1 outlines just a few that you have seen in the last few chapters.

The basic format for calling or referencing a function in Visual Basic is the func-
tion name followed by zero or more parameters.

In addition to built-in functions, you can
also create your own Visual Basic func-
tions know as user-defined functions.

133
C

h
a

p
te

r
 5

 S
u

b
p

r
o

c
e
d

u
r
e
s

,
F
u

n
c
t io

n
s

,
a

n
d

C
o

n
t r

o
ls

C
o

n
ti n

u
e
d

Function Name Input Output Example

Val String Number Val(“44”) is the number 44

Len String Number Len(“Michael”) is the number 7

Int Number Number Int(6.3) is the number 6

Str Number String Str(7.75) is the string 7.75

UCase String String UCase(“Michael”) is MICHAEL

TABLE 5.1 A FEW COMMON FUNCTIONS

Definition
The programmer for reusability pur-

poses creates user-defined functions

in Visual Basic through the aid of the

Add Procedure dialog box. Like built-

in functions, user-defined functions

return a single value and can be used

in expressions.

The syntax for creating a Visual Basic function is a little different from that for
subprocedures, so let’s take a look:

Public Function Function_Name(variable1 as DataType, _

variable2 as DataType, ...) As DataType

‘Your code goes here

End Function

At first glance, you should see that I do not use the keyword Sub to denote a sub-
program; instead, I use the keyword Function. Functions can take many parame-
ters as depicted in the example. What this means is that you can send your
function many different values that you want to process. Also note that the func-
tion itself is assigned a data type.

Let’s take a look at a small function that adds two integer numbers:

Public Function Add(operand1 as Integer, operand2 as Integer) _

As Integer

Add = operand1 + operand2

End Function

This might look a little strange at first because I assign the output of two integers
added together to the name of the function. Don’t worry if this seems distressing
because this is how functions in Visual Basic work.

After the two integers are added together, they are assigned to the name of
the function, in this case Add. After that, the value of the added integers
assigned to the name of the function is returned back to the calling procedure.
Let’s take a look at how I might call this function in the click event of a com-
mand button:

Private Sub Command1_Click()

Dim result as Integer

result = Add(5, 15)

End Sub

The integer variable result is assigned the returning value of the function Add,
which in this case is the number 20.

134
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

When creating functions, it is good programming practice to denote the data type
of the return value of your function. Not doing so could lead to incorrect use of
your user-defined functions by other programmers and even yourself.

For example, what is the output of the Add function example if I include the two
numbers 5.75 and 10.75 as incoming parameters? Instead of the number 16.5, I
receive the number 17.

To alleviate any misunderstanding, you can change the Add function name to
AddTwoIntegers.

If you have never seen or worked with functions before, they might seem a little
intimidating at first. The best way to understand them is to build them and use
them.

Let’s take another look at a new version of the name game from Chapter 2, shown
in Figure 5.5, that uses functions to modularize code for reusability.

At first glance, the name game appears to have much of the same code from its
counterpart in Chapter 2, and it does. The difference is in the way the code is
arranged and used.

The click event of the GetName command button finds the location of the space
in the name (with a little help from the InStr function) and passes it to the Get-
FirstName and GetLastName functions. When Visual Basic first reads a function
call, it immediately jumps to that function, passing it any parameters included.

Option Explicit

Private Sub cmdGetName_Click()

Dim lsFirstName As String

Dim lsLastName As String

Dim lsFullName As String

Dim liSpace As Integer

TRAP

135
C

h
a

p
te

r
 5

 S
u

b
p

r
o

c
e
d

u
r
e
s

,
F
u

n
c
t io

n
s

,
a

n
d

C
o

n
t r

o
ls

C
o

n
ti n

u
e
d

FIGURE 5.5

The name game
from Chapter 2 built

with functions.

liSpace = InStr(txtName.Text, “ “)

lsFirstName = GetFirstName(liSpace)

lsLastName = GetLastName(liSpace)

picOutput.Cls

picOutput.Print “Your first name is “ & lsFirstName

picOutput.Print “Your last name is “ & lsLastName

picOutput.Print “There are “ & Len(txtName.Text) - 1 & _

“ characters in your name”

End Sub

If you forget to pass parameters to a function that is expecting parameters, you
get a Visual Basic runtime error.

When the function is finished with its processing, it passes back the applicable
value to the calling procedure. In my case, I pass the first- and last-name values
back to the variables lsFirstName and lsLastName:

Public Function GetFirstName(liSpace As Integer) As String

GetFirstName = Left(txtName.Text, liSpace - 1)

End Function

Public Function GetLastName(liSpace As Integer) As String

GetLastName = Right(txtName.Text, Len(txtName.Text) - liSpace)

End Function

You can see my two functions in action. Both take the liSpace integer as a para-
meter and derive a name value using other intrinsic functions. After that, they
assign the values to the function name, which is passed back to the calling pro-
cedure as a string value.

Like subprocedures, functions can be exited from anywhere in the function
before executing all function statements. To accomplish this, use the keywords
Exit Function.

Function procedures created using the Add Procedure menu item do not have an
assigned data type or parameter list with data types. It is your job to perform
these last steps when creating functions. Before creating functions, you should
give some thought to what you want to pass into the function, what data it needs
from the outside, and what data type it should pass back (string, integer, double,
and so on).

HINT

TRAP

136
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

Okay, what’s the big deal about these functions in the so-called new name game?
Well, adding functions to the name game is not exactly what I call a productive
move for such a small program. But what if you were building a much larger pro-
gram that extracted name information in 50 or more locations in your program
code? Would it be productive to write the same code over and over again each
time you need to extract name information? Probably not, but if you modularize
your code by adding these functions, you can call them from anywhere in your
program with a simple one-line function call. Pretty cool, huh?

ByRef and ByVal Keywords

You might remember my mentioning the concept of pointers previously in this
book. Essentially, pointers are variables that contain memory addresses as their
values. Other variables that you might
declare, such as integer or string, contain a
specific data-type value. In contrast, point-
ers contain the memory address that
points to the memory address of a variable
containing a variable data type such as
integer or string. This type of reference is
called indirection.

In languages such as C, pointers save mem-
ory space and increase program perfor-
mance. They are often used to pass parameter information to functions by
reference. Passing by reference eliminates any duplicate variable data and thus
reduces program overhead. Even for experienced C programmers, the concept of
pointers and indirection can be difficult to master.

Fortunately for Visual Basic programmers, Microsoft takes care of implementing
pointers behind the scenes. When passing parameters to functions in Visual
Basic, you can note the concept of pointers with the keywords ByRef and ByVal.

When you use the ByVal keyword in a function parameter, a copy of the original
variable is sent to the function. This also means that you cannot directly change
the original value of the variable:

Public Function Send_By_Value(ByVal studentCount As Integer) _

As Integer

‘Function code

End Function

137
C

h
a

p
te

r
 5

 S
u

b
p

r
o

c
e
d

u
r
e
s

,
F
u

n
c
t io

n
s

,
a

n
d

C
o

n
t r

o
ls

C
o

n
ti n

u
e
d

Definition
Indirection applies to the science

behind pointers. Specifically, indi-

rection allows a pointer containing a

memory address to reference the

memory address of another variable

containing a valid data type.

This code block depicts a Visual Basic function where an integer parameter called
studentCount expects to receive a copy of an incoming integer variable. Any
changes made to the variable studentCount are not seen in the original variable
sent by the calling procedure.

If I want to change the original value of the integer variable, I can simply replace
the ByVal keyword with ByRef:

Public Function Send_By_Value(ByRef studentCount As Integer) _

As Integer

‘Function code

End Function

Now, any changes I make to the studentCount variable are directly made to the
original variable value. In other words, the ByRef keyword implements the con-
cept of indirection for us.

If you do not make the specification of ByRef or ByVal, Visual Basic defaults the
passing parameter to ByRef.

Interacting with the User

So far, you have been looking at games and programs that sit idle waiting for a
user to do something. Well, instead, why don’t I get aggressive and force users to
do something whether they’re ready or not? I think those users need to get in
line and shape up anyway. After all, as the programmer, I’m the one who should
make the decisions around here. Right?

Well, not quite: The software-development process doesn’t work like that any-
more. As new-generation programmers, we design program interfaces that meet
the needs of the user community, not the other way around. However, program-
mers can interact a little with the user community, forcing them to respond to
something we as programmers or users need to know about right away.

If you have been using Windows-based applications for some time, you have
probably seen what I’m talking about. For instance, error messages, dialog
boxes, and input boxes are all good examples. In this section, you will learn how
to build this interaction with the user through Visual Basic’s message boxes and
input boxes.

HINT

138
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

Message Box

Message boxes are perfect when you want to alert the user to something hap-
pening in your program. For example, an error has occurred, or a game has just
ended. Maybe you want to display a congratulatory note or a question about
retrying some action.

Microsoft operating systems such as Windows NT, 95, and 98 all use various sorts
of message boxes. For example, have you ever seen the error message box, shown
in Figure 5.6, that appears when you reference a disk drive that has no disk?

The error message in Figure 5.6 is a good example of a message box that contains
two options for a user response. Another example of a message box is shown in
Figure 5.7, which depicts a basic message box with one response option.

You create message boxes with the MsgBox function call. The basic syntax is as
follows:

MsgBox “Message”, Buttons, “Title Bar Caption”

The syntax I used to create the message box in Figure 5.7 looks like this:

MsgBox “My Message Box”, , “Chapter 5”

Notice that I did not include any button information in my message box func-
tion. If you elect not to include button information, Visual Basic displays the
default OK button.

Table 5.2 contains a list of some popular Visual Basic buttons and icons that you
can use to create various message box types.

139
C

h
a

p
te

r
 5

 S
u

b
p

r
o

c
e
d

u
r
e
s

,
F
u

n
c
t io

n
s

,
a

n
d

C
o

n
t r

o
ls

C
o

n
ti n

u
e
d

FIGURE 5.6

A Microsoft error
message box with

two response
options.

FIGURE 5.7

A simple message
box with one

response option.

Because the first parameter in the message box is a string, you can also insert a
string variable name as a parameter. You can accomplish this by first declaring a
variable and then assigning a string value to it:

Dim lsMessageString as String

lsMessageString = “Visual Basic Programming for the Absolute Beginner” &

_

“by Michael Vine, 2001”

Once a string is created, you can then use it in your message box functions as
follows:

MsgBox lsMessageString, , “Chapter 5”

You may have noticed the ampersand sign (&) and the underscore (_) symbol in
the preceding code example. You should already know that the ampersand sym-
bol is used for concatenation, but what about the underscore? In Visual Basic,
the underscore symbol is a special character called the line-continuation char-
acter. It is most useful when you have a long line of code and want to continue it
on the next line.

Give it a try the next time you have a line of code too long for one line. I’m sure
you will find it useful.

HINT

140
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

Button/Icon Constant Name Value

vbOKOnly 0 (Default)

vbOKCancel 1

vbAbortRetryIgnore 2

vbYesNoCancel 3

vbYesNo 4

vbRetryCancel 5

vbCritical 16

vbQuestion 32

vbExclamation 48

vbInformation 64

TABLE 5.2 VISUAL BASIC BUTTON

AND ICON TYPES

Input Box

Sometimes message boxes do not provide enough interaction between your pro-
gram and the user. For example, what if you want to prompt the user for his or
her name? Maybe you want to prompt a user to enter a starting level before a
game begins. You can implement these types of scenarios with the Visual Basic
input box.

You build the input box by referencing a built-in Visual Basic function called
InputBox. Its basic syntax is as follows:

InputBox(Prompt, [Title], [Default], [XPos], [YPos], _

[HelpFile], [Context])

The most commonly used parameters of the input box are prompt, title, and
default, which are described in Table 5.3.

Using these parameters, here’s how I implement an input box that prompts a
user for her name.

InputBox “What is your name?”, “My Input Box Example”, _

“Your name goes here”

The output of this InputBox function appears in Figure 5.8.

Because you normally use input boxes for gathering information, it is customary
to assign the collected data to a variable or property. For example, I can assign
the user’s response directly to the caption property of a label control.

lblOutput.Caption = “Welcome “ & _

InputBox(“What is your name?”, “My Input Box Example”, _

“Your name goes here”)

141
C

h
a

p
te

r
 5

 S
u

b
p

r
o

c
e
d

u
r
e
s

,
F
u

n
c
t io

n
s

,
a

n
d

C
o

n
t r

o
ls

C
o

n
ti n

u
e
d

Parameter Name Purpose Example

Prompt A question “What is your name?”

Title The caption of the input box “My Input Box Example”

Default Default text property “Your name goes here”

TABLE 5.3 A FEW COMMON

INPUT BOX PARAMETERS

Remember that all information stored in the text property of text boxes is stored
as the string data type. If you want to ask the user for a number and assign it to a
number variable type such as an integer, you first have to convert the string rep-
resentation of the number into a number data type using the val function:

Dim liNumber As Integer

liNumber = Val(InputBox(“Enter a number between 1 and 10”, _

“A number Question”))

To better illustrate the applications of input and message boxes, I dissect a small
program I wrote called the math quiz. As seen in Figures 5.9 and 5.10, the math
quiz program asks the user random math questions through an input box.
Depending on the answer, the user sees one of two message boxes.

TRAP

142
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r FIGURE 5.8

An example of
Visual Basic’s

input box.

FIGURE 5.9

The math quiz
program.

FIGURE 5.10

A demonstration of
the input box in the
math quiz program.

TE
AM
FL
Y

Team-Fly®

In the following code, you can see that I compare what the user enters into the
input box against the correct answer. If the user gets the problem right, I let him
know through a message box. Conversely, if the user gets the question wrong, I
also let him know through a message box (with the correct answer attached, of
course).

Option Explicit

Private Sub Form_Load()

Randomize

End Sub

Private Sub cmdAskQuestion_Click()

Ask_Question

End Sub

The command button’s click event calls the Ask_Question subprocedure.

Public Sub Ask_Question()

Dim liOperand1 As Integer

Dim liOperand2 As Integer

Dim liResult As Integer

liOperand1 = Int(200 * Rnd) + 1

liOperand2 = Int(200 * Rnd) + 1

liResult = liOperand1 + liOperand2

If Val(InputBox(“What is “ & liOperand1 & “ + “ & _

liOperand2 & “?”)) = liResult Then

MsgBox (“Correct!”)

Else

MsgBox (“Incorrect. “ & liOperand1 & “ + “ & liOperand2 & _

“ = “ & liResult)

End If

End Sub

143
C

h
a

p
te

r
 5

 S
u

b
p

r
o

c
e
d

u
r
e
s

,
F
u

n
c
t io

n
s

,
a

n
d

C
o

n
t r

o
ls

C
o

n
ti n

u
e
d

Playing Sounds in Visual Basic

Only a few versions ago, playing sounds in Visual Basic was a task not for the faint
of heart. It took an understanding of the Windows Application Programmer’s
Interface, also known as the Windows API,
and a little knowledge of C++ would have
been nice, too.

In version 6 of Visual Basic, Microsoft
included a new component (along with
many others) called the Microsoft multi-
media control. The multimedia compo-
nent is just like any other control that
you have seen so far. It contains properties and methods for playing sound and
video files.

The addition of the multimedia control is good news for beginning Visual Basic
programmers because it allows you to play sounds and video clips in Visual
Basic without having to learn the Windows API.

You can add the multimedia control by right-clicking on the toolbox or by select-
ing Project and Components from the Visual Basic menu. From the Components
window, select the multimedia control as seen in Figure 5.11.

Once you add the multimedia control to your toolbox, you can add it to your
Visual Basic application as you do any other control in the toolbox. Figure 5.12
depicts the multimedia control added to a form.

144
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

FIGURE 5.11

Adding the
Microsoft

multimedia control
to your toolbox.

Definition
The Windows API is a collection of

Microsoft Windows libraries that con-

tain various procedures for unlocking

the power of Microsoft Windows.

Surprisingly, the multimedia control is easy to work with. If you set its visible
property to true, the user can see and use the built-in interface for playing, stop-
ping, pausing, ejecting, and searching audio and video. Or you can set the visible
property to false and create your own custom interface.

The basic functionality of the multimedia graphical control is as follows:

Previous

Next

Play

Pause

Back

Step

Stop

Record

Eject

Table 5.4 lists the devices supported by the multimedia interface.

145
C

h
a

p
te

r
 5

 S
u

b
p

r
o

c
e
d

u
r
e
s

,
F
u

n
c
t io

n
s

,
a

n
d

C
o

n
t r

o
ls

C
o

n
ti n

u
e
d

FIGURE 5.12

The Microsoft
multimedia

control on a Visual
Basic form.

Whether you allow the user to use the graphical interface provided by the mul-
timedia control or build your own, you need to set a few other properties during
design time to get the multimedia control working.

Depending on when you want sounds or video to play in your application, you
can set the multimedia control properties during design time or at runtime
through events such as form load. The basic properties that you should set
appear in the following code:

‘Set initial property values

MMControl1.Notify = False

MMControl1.Wait = True

MMControl1.Shareable = False

MMControl1.DeviceType = “WaveAudio”

MMControl1.FileName = _

“C:\book\vb_chapter5\shooting_gallery\Blaster_1.wav”

‘Open the media device

MMControl1.Command = “Open”

You can see that I assign the string WaveAudio to the DeviceType property. This
tells the multimedia control that I want to play .wav files. In the FileName prop-
erty, I assign the path and filename of the .wav file that I want to play. After that,
I open the control by setting the command property to open.

Once these initial properties are set, I can play a sound using the following syntax:

MMControl1.Command = “Play”

146
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

Device Type Description

AVIVideo Audio/Visual Interlaced video (.avi file type)

CDAudio CD audio player

DAT Digital audio tape player

DigitalVideo Digital video

Sequencer MIDI devices (.mid or .rmi file types)

VCR Video cassette recorder

WaveAudio A Wave device (.wav file type)

TABLE 5.4 POPULAR DEVICES SUPPORTED

BY THE MULTIMEDIA CONTROL

It is also a good idea to close the multimedia control when your program is fin-
ished. To do so, you set the command property to close:

MMControl1.Command = “Close”

Constructing the
Shooting Gallery Game

As seen in Figure 5.13, the shooting gallery game uses many of the topics that you
have learned about in this chapter. All graphics used in the shooting gallery
game were produced by professional artist Hermann Hillmann and appear cour-
tesy of http://www.vbexplorer.com.

The Problem

Create a shooting gallery game. The game should place images randomly around
a form, allowing a user to hit it with the click of a mouse. When the user presses
the left mouse button, a laser sound plays, and if the target is hit, a grunt sound
plays. The game should allow the user to pick a level of difficulty and keep track
of the number of misses and the number of hits.

Table 5.5 outlines the controls and properties of the shooting gallery game.

147
C

h
a

p
te

r
 5

 S
u

b
p

r
o

c
e
d

u
r
e
s

,
F
u

n
c
t io

n
s

,
a

n
d

C
o

n
t r

o
ls

C
o

n
ti n

u
e
d

FIGURE 5.13

The shooting
gallery game.

148
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

Control Property Setting

frmMain Caption Shooting Gallery

BorderStyle 1 – Fixed Single

Picture Bitmap

lblGameOver Caption Game Over

Visible False

Enabled False

imgTarget Enabled True

Picture None

Stretch False

Visible False

imgStanding Enabled True

Picture Bitmap

Stretch False

Visible False

imgExplode Enabled True

Picture Bitmap

Stretch False

Visible False

Timer1 Enabled False

MMControl1 Visible False

MMControl2 Visible False

fraConsole Caption None

BorderStyle 0 – None

BackColor Black

cmdStart Caption &Start

cmdStop Caption Sto&p

Label1 Caption Hits:

Label2 Caption Misses:

lblScore Caption None

lblMisses Caption None

TABLE 5.5 CONTROLS AND PROPERTIES

OF THE SHOOTING GALLERY GAME

A draft algorithm for the shooting gallery game is outlined below.

1. Open a new standard EXE Visual Basic project.

2. Build the graphical interface for the game.

3. Set all design-time control properties.

4. Write code in the form load event to set properties and variables. Also in
the form load event, call the randomize function.

5. Write a subprocedure to set the properties of the multimedia controls.

6. Write code in the click event for the start command button. This code
should prompt a user for a level. Based on that level, it should then set the
interval property of the timer control. If a valid level is entered, start a
new game.

7. Generate random numbers in the Timer event that will be used for plac-
ing images randomly on the form. The Timer event should also check for a
win before displaying an image.

8. A click on the form is the same as saying the target was missed. For this
event, write program code that takes care of playing a laser sound and
incrementing the number of misses.

9. Write code that responds to the player hitting the target. This should
cause a new image to appear, a grunt sound to play, and the number of
hits to be incremented.

10. Write a function that checks for a win. This function should look for a
predetermined number of hits to the target.

11. Write code to respond to stopping and restarting the game. This program
code should reset all necessary variables, controls, and properties.

12. Write code to unload the multimedia control when the game is terminated.

The Implementation

The form load event starts the randomize function and sets a few control
properties:

Option Explicit

Dim fiPlayersScore As Integer

Dim fiNumberofMisses As Integer

Dim fbTargetHit As Boolean

149
C

h
a

p
te

r
 5

 S
u

b
p

r
o

c
e
d

u
r
e
s

,
F
u

n
c
t io

n
s

,
a

n
d

C
o

n
t r

o
ls

C
o

n
ti n

u
e
d

Private Sub Form_Load()

Randomize

imgTarget.Enabled = False

imgTarget.Visible = False

cmdStop.Enabled = False

lblGameOver.Visible = False

lblGameOver.Enabled = False

End Sub

In the click event of the start command button, I prompt the user for a valid level.
Depending on which valid level is entered, I set the timer’s interval property:

Private Sub cmdStart_Click()

Dim lsUserResponse As String

Dim lbResponse As Boolean

lsUserResponse = InputBox(“Enter a level from 1 to 3, 1 being _

the easiest and 3 being the hardest”)

lbResponse = False

If the response of the user is not valid, I simply send her a message box saying so,
and I set a Boolean variable to false. The following code uses this Boolean variable
to decide whether to start the game:

If lsUserResponse = “1” Then

Timer1.Interval = 1500

lbResponse = True

ElseIf lsUserResponse = “2” Then

Timer1.Interval = 1000

lbResponse = True

ElseIf lsUserResponse = “3” Then

Timer1.Interval = 750

lbResponse = True

Else

MsgBox (“Game not started.”)

lbResponse = False

End If

150
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

The built-in function LoadPicture might be new to you. It is useful when you
want to assign a picture to a picture box manually or to change the icon of your
cursor to something else. In this program, I elect to change the mouse cursor to
that of a cross-hair when the game is started:

If lbResponse = True Then

cmdStart.Enabled = False

imgTarget.Picture = imgStanding.Picture

frmMain.MouseIcon = _

LoadPicture(“C:\book\vb_chapter5\shooting_gallery\crosshair.ICO”)

Setting the MousePointer property to 99 tells Visual Basic that I want to use a cus-
tom or user-defined mouse icon. You can find out more on the MousePointer
property in Chapter 11.

frmMain.MousePointer = 99

fbTargetHit = False

Load_Sounds

cmdStop.Enabled = True

fiPlayersScore = 0

fiNumberofMisses = 0

lblScore.Caption = fiPlayersScore

lblMisses.Caption = fiNumberofMisses

Timer1.Enabled = True

lblGameOver.Visible = False

lblGameOver.Enabled = False

End If

End Sub

I wrote code in the click event of the stop command button to reset the game in
the event the user wants to stop playing before the game has ended:

Private Sub cmdStop_Click()

Unload_Sounds

frmMain.MousePointer = vbNormal

Timer1.Enabled = False

imgTarget.Enabled = False

imgTarget.Visible = False

cmdStart.Enabled = True

cmdStop.Enabled = False

cmdStart.SetFocus

151
C

h
a

p
te

r
 5

 S
u

b
p

r
o

c
e
d

u
r
e
s

,
F
u

n
c
t io

n
s

,
a

n
d

C
o

n
t r

o
ls

C
o

n
ti n

u
e
d

lblGameOver.Visible = True

lblGameOver.Enabled = True

End Sub

If the form click event is triggered, I know that the user has missed the target. In
this event, I play a laser sound and increment the number of misses:

Private Sub Form_Click()

MMControl1.Command = “Play”

MMControl1.Command = “Prev”

fiNumberofMisses = fiNumberofMisses + 1

lblMisses.Caption = fiNumberofMisses

End Sub

I created a subprocedure called Load_Sounds that handles the initialization of
my multimedia controls. Note that the path assigned to the FileName property is
unique to my file and directory system. You will want to change this path to
reflect the location of your sound or audio files:

Public Sub Load_Sounds()

‘Set initial property values for blaster sound

MMControl1.Notify = False

MMControl1.Wait = True

MMControl1.Shareable = False

MMControl1.DeviceType = “WaveAudio”

MMControl1.FileName = _

“C:\book\vb_chapter5\shooting_gallery\Blaster_1.wav”

‘Open the media device

MMControl1.Command = “Open”

‘Set initial property values for grunt sound

MMControl2.Notify = False

MMControl2.Wait = True

MMControl2.Shareable = False

MMControl2.DeviceType = “WaveAudio”

MMControl2.FileName = _

“C:\book\vb_chapter5\shooting_gallery\Pain_Grunt_4.wav”

‘Open the media device

MMControl2.Command = “Open”

End Sub

152
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

TE
AM
FL
Y

Team-Fly®

When the target is hit, I play a sound, change the current picture, and increment
the player’s score. Disabling the Timer control and calling a procedure named
pauseProgram aid this process. This procedure also calls the CheckForWin func-
tion to see if the player has won the game. If so, the game is stopped by calling
the click event of the stop command button.

Private Sub imgTarget_Click()

MMControl2.Command = “Play”

MMControl2.Command = “Prev”

Timer1.Enabled = False

imgTarget.Picture = imgExplode.Picture

pauseProgram

fiPlayersScore = fiPlayersScore + 1

Timer1.Enabled = True

If CheckForWin = True Then

cmdStop_Click

lblScore.Caption = fiPlayersScore

Exit Sub

End IflblScore.Caption = fiPlayersScore

fbTargetHit = True

imgStanding.Enabled = False

imgTarget.Visible = False

imgTarget.Enabled = False

Timer1.Enabled = True

End Sub

The timer event is triggered based on the level the user selected. Its main purpose
is to produce a random place on the form for the image to appear. I can accom-
plish this by first knowing the Height and Width properties of the form during
design time. (Simply look at the form’s properties in the Properties window dur-
ing design time.) Once I have these numbers, I can use the rnd function to gen-
erate random numbers that I assign to the top and left properties of the image.
Note that for this game, I did not use the exact width and height properties of
the form because I do not want the random images to appear in the scoreboard
area.

Private Sub Timer1_Timer()

Dim liRandomLeft As Integer

153
C

h
a

p
te

r
 5

 S
u

b
p

r
o

c
e
d

u
r
e
s

,
F
u

n
c
t io

n
s

,
a

n
d

C
o

n
t r

o
ls

C
o

n
ti n

u
e
d

Dim liRandomTop As IntegerImgTarget.Visible=True

If fbTargetHit = True Then

fbTargetHit = False

imgTarget.Picture = imgStanding.Picture

End If

liRandomLeft = (6120 * Rnd)

liRandomTop = (4680 * Rnd)

imgTarget.Left = liRandomLeft

imgTarget.Top = liRandomTop

imgTarget.Enabled = True

imgTarget.Visible = True

End Sub

The CheckForWin function is pretty straightforward; it simply looks for a prede-
termined score of 10. If the user has reached the score of 10, the function returns
a true value:

Public Function CheckForWin() As Boolean

CheckForWin = False

If fiPlayersScore = 10 Then

CheckForWin = True

End If

End Function

The following event, QueryUnload, is triggered when a user clicks the X icon in
the upper-right corner of the form’s window:

Private Sub Form_QueryUnload(Cancel As Integer, _

UnloadMode As Integer)

Unload_Sounds

End Sub

Closing the window through other means also triggers it. This is actually an
important event to know because sometimes you might find that your users do
not always use your exit or quit command buttons. If you write code for these
command buttons to perform some form of program cleanup, and the user
closes your program without using the command buttons, your code for pro-
gram cleanup never runs.

154
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

To solve this problem, it is always a good idea to acknowledge the QueryUnload
event if you want something to happen when your program terminates.

The Unload_Sounds function’s sole purpose is to close the multimedia control:

Public Sub Unload_Sounds()

MMControl1.Command = “Close”

MMControl2.Command = “Close”

End Sub

As mentioned earlier, the pauseProgram helps to ensure that processes such as
image display and sounds occur. Essentially it uses the intrinsic Second and Time
functions and a loop to pause for approximately 1 second.

Public Sub pauseProgram()

Dim currentTime

Dim newTime

currentTime = Second(Time)

newTime = Second(Time)

Do Until Abs(newTime - currentTime) >= 1

newTime = Second(Time)

Loop

End Sub

Summary

In this chapter, you learned that procedures comprise both functions and sub-
procedures. You also have a working knowledge of functions and subprocedures,
what they are, and what they can do for you. You know that learning how to
build functions is the foundation for learning more complex software engineer-
ing tools such as object-oriented programming.

I also discussed the science behind passing parameters to functions through the
use of ByVal and ByRef keywords and that these keywords are Visual Basic’s hid-
den implementation of indirection or pointers.

Beyond procedures, you learned how to interact with users through input boxes
and message boxes. In addition, you learned how easy it can be to play sounds in
Visual Basic using the Microsoft multimedia control.

After this chapter, I encourage you and challenge you to write reusable code
through functions and subprograms whenever possible. In the long run, the
practice makes you a better programmer; this I promise you.

155
C

h
a

p
te

r
 5

 S
u

b
p

r
o

c
e
d

u
r
e
s

,
F
u

n
c
t io

n
s

,
a

n
d

C
o

n
t r

o
ls

C
o

n
ti n

u
e
d

156
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r CHALLENGES

1. Modify the shooting gallery game so that it uses more than one image.

Specifically, provide images for good guys and images for bad guys. If the

user clicks (hits) a good guy, then her score should be decremented by one.

2. Using the KeyDown event, modify the shooting gallery game to use the

arrow keys for cross-hair movement and the spacebar key for the firing

mechanism.

Following are the keycodes you need to know for the arrow and space-
bar keys:

Keyboard Character Keycode

Left arrow 37

Up arrow 38

Right arrow 39

Down arrow 40

Spacebar 32

To move an image control, simply use the move method in conjunction
with the left and top properties. For example, here is how I move the
image control left if the left arrow key is pressed:

If KeyCode = 37 Then

Image1.Move Image1.Left - 50

End If

3. Using the Microsoft multimedia control, create a CD jukebox with your own

interface. The CD jukebox should allow a user to select multiple songs from

a list and play them. If you do not have CD quality music in digital format,

search the Internet for free downloadable music. There’s a bunch out there.

4. Write your own quiz game that prompts a user with a question using the

input box. If the user gets the question correct, respond with a congratula-

tory message box. And if he gets the question wrong, respond with another

message box that gives him the answer.

HINT

O
ne of Visual Basic’s biggest draws is its

ability to easily incorporate seemingly

complicated and robust controls into a

graphical environment. Menus, List Boxes,

Combo Boxes, common dialogs, animation, and

text-to-speech engines are just a few new con-

trols you learn in this chapter. It is these

advanced controls and many others that can aid

in the design of a more fluid human-to-computer

interaction.

Specifically, this chapter covers the following:

• List Boxes and Combo Boxes

• Common dialog control

• Human/computer interaction

• Microsoft agents

• Constructing the agent program

Advanced
Controls

6
C H A P T E R

Project: The Agent Program

As seen in Figure 6.1, the agent program uses some interesting technologies
developed by Microsoft to perform various character animations and text-to-
speech functions. As you will see, these programmable actions make a more
interactive and graphically appealing user experience. The agent program’s pri-
mary focus is demonstrating Microsoft Visual Basic’s easy-to-build yet powerful
and appealing object-based controls.

List Boxes and Combo Boxes

Visual Basic provides many graphical ways to display options or choices to users.
You have already learned a few such ways through option buttons and check
boxes. List Boxes and Combo Boxes also provide the user with a list of choices
through items in a selectable box. Although both List and Combo Boxes perform
similar functions, each has its own niche in fulfilling different user needs.

List Boxes

The List Box is a popular choice when you want to give the user a list of selectable
items. The programmer generally populates List Boxes with items during design
time or through program code in runtime.

As with other common Visual Basic controls, you can add the List Box to your
form by double-clicking it on the Visual Basic toolbar, shown in Figure 6.2.

You might notice that the List Box control in Figure 6.3 closely resembles a Text
Box control. You are right if you made this observation because the List
Box shares many of the Text Box’s properties. However, what makes the List Box

158
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

FIGURE 6.1

The agent program.

control unique is its ability to add many selectable items and keep track of them
through index properties.

Table 6.1 depicts many of the popular properties and methods of the List Box
control.

159
C

h
a

p
te

r
 6

 A
d

v
a

n
c
e
d

 C
o

n
tr

o
ls

FIGURE 6.2

The List Box control
located on the
Visual Basic

toolbar.

The List Box
control.

FIGURE 6.3

The List Box control
added to a form.

The most difficult part of understanding List Boxes (and Combo Boxes) is mas-
tering the ListIndex property. In reality, it is not that complicated; just know that
every time you add an item to a List Box, a corresponding index (or ListIndex) is
added as well.

Note that indexes in List and Combo Boxes start at 0. The first item in a List Box
contains the number 0 for its ListIndex property, and the fifth item in a
List Box contains the ListIndex property of 4.

This is an important concept to remember because sometimes programmers for-
get to offset a number by 1 when using the ListIndex property, which ultimately
gives them the wrong item or value. This is sometimes referred to as an off-by-1
error, which means that a programmer did not take into an account that an index
starts with 0.

Now that you have a feel for what a List Box is, let me show you a program, in Fig-
ure 6.4, that uses a List Box to display a list of various states. When a user clicks
on one of the states, a message box appears, as in Figure 6.5, showing the user the
ListIndex and the value of the item clicked.

TRAP

160
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

Name Purpose

AddItem Adds an item to the List Box

Clear Deletes all items from the List Box

Columns Determines the number of visible columns in the List Box

List(n) Holds the value of an item, where n is the index of the item in the
List Box

ListCount The total number of items in a List Box

ListIndex Index number of the currently highlighted item

Multiselect Allows a user to select one or more items in a List Box

RemoveItem n Removes an item from the List Box, where n is the index of the item

Sorted Displays items in alphabetical order

TABLE 6.1 POPULAR LIST BOX

PROPERTIES AND METHODS

Before adding any items to the List Box, I use the clear method to delete any cur-
rent items. If I did not do this, the items would be duplicated in the List Box each
time the user clicked the command button:

Option Explicit

Private Sub cmdFillListBox_Click()

lstStates.Clear

I use the AddItem method to add items to the List Box when the user clicks the
fill List Box command button:

lstStates.AddItem “Florida”

lstStates.AddItem “Alabama”

lstStates.AddItem “New York”

lstStates.AddItem “California”

lstStates.AddItem “Tennessee”

lstStates.AddItem “Georgia”

lstStates.AddItem “New Mexico”

lstStates.AddItem “North Carolina”

lstStates.AddItem “Maryland”

161
C

h
a

p
te

r
 6

 A
d

v
a

n
c
e
d

 C
o

n
tr

o
ls

FIGURE 6.4

A program that
uses the List Box
control to add the
names of states.

FIGURE 6.5

A message box
displays the

ListIndex and the
value of the item

clicked.

lstStates.AddItem “Oregon”

lstStates.AddItem “Wyoming”

lstStates.AddItem “Nevada”

lstStates.AddItem “Indiana”

lstStates.AddItem “Colorado”

lstStates.AddItem “Ohio”

lstStates.AddItem “Texas”

End Sub

Note that you can also use the List property (found in the Properties window) of
the List Box during design time to add items to a List Box.

I use a message box in the click event of the List Box to display information about
what the user has chosen. To get the index of the chosen item, I simply call the
ListIndex property that contains the index of the currently highlighted selection.
I can also get the value of the current item by passing the ListIndex property to
the list function:

Private Sub lstStates_Click()

MsgBox (“You clicked list index “ & lstStates.ListIndex & _

“ with the list property of “ & lstStates.List(lstStates._

ListIndex) & “.”)

End Sub

The End keyword in the quit command button’s click event ends the program.

Private Sub cmdQuit_Click()

End

End Sub

List Boxes are often one part of an overall design strategy for processing infor-
mation. Sometimes, it is necessary to check whether the user has selected an
item in a List Box before an action can occur. You can perform this test through
the use of conditions and the ListIndex property:

If List1.ListIndex = -1 Then

‘Alert the user

Else

‘Continue processing

End If

The ListIndex property is set to -1 if there is no current selection in the List Box.

HINT

HINT

162
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

TE
AM
FL
Y

Team-Fly®

Combo Boxes

The Combo Box is a more sophisticated cousin of the List Box. Although it shares
many of the List Box’s main properties and methods, it has one property and
graphical appearance that makes it stand apart from its cousin.

The property that determines how the Combo Box looks and works is the style
property. Depending on the setting of the style property, the Combo Box can
allow a user to enter a value into the top part of its graphical interface. You can
almost think of the Combo Box as a Text Box on top of a List Box. In fact, the
Combo Box has a Text property that can be used to grab information from the
user and input it into the Combo Box as a new item.

The style property has three settings:

0 Drop-down combo

1 Simple combo

2 Drop-down list

To illustrate each of these settings, I use a Combo Box in a program similar to the
one in Figure 6.3.

The drop-down combo style shown in Figure 6.6 allows a user to enter an item
into the top part of the Combo Box.

The drop-down combo style setting has two useful purposes. First, a user can use
the top part to aid in searching for an item. As the user enters characters, the list
part of the Combo Box searches for what the user has typed. Second, the user can
add an item to the Combo Box.

You cannot expand the height of a Combo Box when its style property is set to
drop-down combo or drop-down list.

HINT

163
C

h
a

p
te

r
 6

 A
d

v
a

n
c
e
d

 C
o

n
tr

o
ls

FIGURE 6.6

A Combo Box with
style property set to

0 – drop-down
combo.

The simple combo style has the same features and benefits as the drop-down
combo style. However, the simple combo style allows you to expand the height of
the Combo Box as shown in Figure 6.7.

The last style setting, 2 – drop-down list, shown in Figure 6.8, looks very much like
the first setting (0 – drop-down combo), but it does not allow a user to enter any-
thing into the top part of the Combo Box. In fact, when a Combo Box has the style
setting of drop-down list, its basic functionality is that of a common List Box.

Drive, Directory, and File List Boxes

The usefulness of List Boxes is evident in Microsoft’s Drive, Directory, and File List
Boxes. These custom List Boxes allow you as a programmer to display a com-
puter’s drive, directory, and file information.

Each of these custom List Boxes is part of Visual Basic’s common controls and
appears on the toolbar, as shown in Figure 6.9.

Working with the Drive, Directory, and File List Boxes is similar to using the List
and Combo Boxes. Visual Basic, however, performs much of the work necessary
to view a Microsoft Windows file system.

164
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

FIGURE 6.7

A Combo Box with
style property set to
1 – simple combo.

FIGURE 6.8

A Combo Box with
style property set to
2 – drop-down list.

Using these List Boxes is easy. To illustrate, the program depicted in Figure 6.10
allows a user to select a picture for preview.

165
C

h
a

p
te

r
 6

 A
d

v
a

n
c
e
d

 C
o

n
tr

o
ls

FIGURE 6.9

The Drive,
Directory, and File
List Box as shown

on the Visual
Basic toolbar.

The Drive List Box

The File List Box

The Directory List Box

FIGURE 6.10

A picture preview
program that uses

the Drive, Directory,
and File List Boxes.

The Drive List Box automatically loads all available drives as items. You only need
to add code in its change event to tell the Directory List Box that it should change
its path:

Option Explicit

Private Sub Drive1_Change()

Dir1.Path = Drive1.Drive

End Sub

In the change event of the Directory List Box, I simply tell the File List Box that it
needs to change its path. I do this by assigning the path of the File List Box to the
path of the Directory List Box:

Private Sub Dir1_Change()

File1.Path = Dir1.Path

End Sub

I use the click event of the File List Box to load a picture into the picture property
of a Picture Box control. I simply pass the directory path concatenated with a back-
slash and the FileName property of the File List Box to the LoadPicture function:

Private Sub File1_Click()

picDisplay.Picture = LoadPicture(Dir1.Path & “\” & File1.FileName)

End Sub

You can customize what files you want your File List Box to display by using the
Pattern property. In the form load event, I tell the File List Box that I want it to
display only bitmap files, or files that end with .bmp:

Private Sub Form_Load()

File1.Pattern = “*.bmp”

End Sub

You can assign multiple file extensions to the pattern property with semicolons.

Private Sub Form_Load()

file1.Pattern = “*.bmp; *.ico; *.gif”

End Sub

The Common Dialog Control

The Common Dialog control can be a Visual Basic programmer’s best friend. It
provides a number of pre-built custom dialog boxes for you to use. These custom

HINT

166
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

dialog boxes are common in Microsoft operating systems, which is a good thing
because most users are already familiar with what functions these dialog boxes
perform.

The Common Dialog control does not appear on the standard Visual Basic tool-
bar. To add it to your Visual Basic project, you must add it to the toolbar by find-
ing it in the Components window.

You can access the Components window by right-clicking the toolbar or choos-
ing the Components menu item from the Project menu.

You can select the Common Dialog control from the Components window as seen
in Figure 6.11.

Once you add it from the Components window, you have access to the Common
Dialog control from the toolbar as seen in Figure 6.12.

The Common Dialog control actually consists of different dialog boxes. Once
added to a form, the Common Dialog control itself is not visible during runtime.
To launch one of the dialog boxes, use one of the following show methods.

The ShowColor method opens a Color dialog box, shown in Figure 6.13:

CommonDialog1.ShowColor

The ShowOpen method opens an Open dialog box, shown in Figure 6.14:

CommonDialog1.ShowOpen

HINT

167
C

h
a

p
te

r
 6

 A
d

v
a

n
c
e
d

 C
o

n
tr

o
ls

FIGURE 6.11

Selecting the
Common Dialog

control from within
the Components

window.

168
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

FIGURE 6.12

The Common
Dialog control.

FIGURE 6.13

The Color dialog.

FIGURE 6.14

The Open dialog.

The Common
Dialog

The ShowPrinter method opens a Print dialog box, shown in Figure 6.15:

CommonDialog1.ShowPrinter

The ShowSave method opens a Save As dialog box, shown in Figure 6.16:

CommonDialog1.ShowSave

To illustrate the Common Dialog control, I built a fun little paint program,
shown in Figure 6.17, that allows you to draw using the mouse and change the
background color of the canvas.

169
C

h
a

p
te

r
 6

 A
d

v
a

n
c
e
d

 C
o

n
tr

o
ls

FIGURE 6.15

The Print dialog.

FIGURE 6.16

The Save As dialog.

FIGURE 6.17

Demonstrating the
Common Dialog

control through the
Paint program.

In the form load event, I assign the current BackColor property of the Picture Box
to a variable (more on this later):

Option Explicit

Dim lbDrawing As Boolean

Dim originalBackColor

Private Sub Form_Load()

originalBackColor = picOutput.BackColor

End Sub

In the click event, I show the Color dialog box using the Common Dialog control.
When the Color dialog box displays, execution of the Visual Basic program
pauses until the user makes a choice of colors. Once the color is chosen, execu-
tion continues by assigning the color to the BackColor property of a Picture Box.
You do this with the Color property of the Common Dialog control:

Private Sub cmdBackColor_Click()

CommonDialog1.ShowColor

picOutput.BackColor = CommonDialog1.Color

End Sub

The user also has the option of choosing the size of the line being drawn. To
accomplish this, I use a Message Box to prompt the user for a number between 1
and 10. If the user enters a valid number, I assign it to the DrawWidth property
of the Picture Box:

Private Sub cmdChangeLineSize_Click()

Dim lsDrawWidth As String

lsDrawWidth = InputBox(“Enter a Draw Width Between 1 and 10: “)

If Val(lsDrawWidth) >= 1 And Val(lsDrawWidth) <= 10 Then

picOutput.DrawWidth = lsDrawWidth

Else

MsgBox (“You entered an invalid number for the DrawWidth.”)

End If

End Sub

170
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

If the user wants to start over again, I clear the Picture Box by loading an empty
picture and assign the original BackColor (from the form load event) back to the
Picture Box:

Private Sub cmdClear_Click()

picOutput.Picture = LoadPicture()

picOutput.BackColor = originalBackColor

End Sub

Note that I could have used the Picture Boxes Cls method to clear the contents of
the picture. Executing the Cls method would, however, only clear any drawings
and not bring back the original back color.

Allowing the user to draw with the mouse requires that I use some of the Picture
Box’s mouse events. In the MouseDown event, all I need to do is tell Visual Basic
that the user has started drawing. I do this by assigning the value true to a
Boolean variable:

Private Sub picOutput_MouseDown(Button As Integer, Shift As _

Integer, X As Single, Y As Single)

lbDrawing = True

End Sub

Using the MouseMove event, I draw a single point where the cursor currently is
(providing the left mouse button is still down):

Private Sub picOutput_MouseMove(Button As Integer, Shift As _

Integer, X As Single, Y As Single)

If lbDrawing = True Then

picOutput.PSet (X, Y), picOutput.ForeColor

End If

End Sub

Drawing a point is easy: You only need to call the PSet method of the Picture Box,
which takes x and y coordinates for its parameters. Fortunately for us, we can get
the x and y coordinates from the MouseMove event. If you look at the top part of
this event, you can see that MouseMove event is passing four values, two of which
are the x and y coordinates of the mouse cursor.

171
C

h
a

p
te

r
 6

 A
d

v
a

n
c
e
d

 C
o

n
tr

o
ls

Essentially the Pset method draws a point on an object such as a Picture Box or
even a Form. As mentioned earlier, you can use the DrawWidth property of the
Picture Box to determine the size of the point or points drawn.

The lifting of the left mouse button is captured in the MouseUp event. In this
event, I set the Boolean variable to false. This essentially stops the drawing of
points in the MouseMove event:

Private Sub picOutput_MouseUp(Button As Integer, Shift As _

Integer, X As Single, Y As Single)

lbDrawing = False

End Sub

Human/Computer Interaction

Up to now, you’ve probably been designing and developing Visual Basic programs
without much concern for how a user would interact with your programs and
how your programs would interact with a user.
I hope to change this by showing you a number
of Visual Basic and Microsoft-specific tech-
niques for providing a more robust HCI
(human/computer interaction) experience.

HCI, or human/computer interaction, has been
a part of the computer science and engineering
world since the 1960s. Although HCI has been a
part of academia and engineering groups for
more than three decades, it hasn’t been until
recently that corporate IT (information technology) departments have started fac-
toring in HCI as part of their overall application-development processes. The
recent trend of corporate IT departments understanding HCI can be directly
attributed to a number of new technological factors—such as Rapid Application
Development (RAD), graphical user interfaces (GUI), the Internet, and application
prototyping languages such as Visual Basic.

The application of HCI is evident in keyboard shortcut keys, pointing devices
(such as mice, tracking balls, and touch screens), visual interfaces, audio/video
programs, fluid navigational links, and programmable events.

To find the right interaction between humans and computers, HCI experts study
the science behind computer devices and their programmable events. Although
the study of HCI is well beyond the scope of this book, I hope to introduce some
of its applications and practices using Visual Basic and Microsoft controls.

172
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

Definition
HCI is the science behind the

interaction of people and com-

puters. It covers a broad spec-

trum of physical devices, pro-

grammable controls, naviga-

tional techniques, and human/

computer ergonomics.

TE
AM
FL
Y

Team-Fly®

ToolTipText

Have you ever been faced with a description-less control on a form or application
and wondered what it does? I sure have. ToolTipText is a helpful property that
can give your controls a little more meaning to a stumped user. It is especially
useful when you’re creating toolbars or other controls that do not allow much
room for descriptive meanings.

Essentially, the ToolTipText property works when the mouse is moved over an
object. A descriptive balloon-like text window appears when your mouse comes
to rest over a control that has the ToolTipText property set.

The ToolTipText property appears in the Properties window for most controls.

TabIndex

The TabIndex properties of an application can give the user a more fluid naviga-
tional experience through the use of tab keys. Some users prefer to use keyboard
events as opposed to mouse events. In other words, a common phrase I hear from
users is “I prefer to tab around a window because it’s quicker for me to use the
keyboard than the mouse.”

As you develop your graphical interfaces, you might be unaware of how the tab
key on a keyboard will respond during program runtime. This is okay; you should
not concern yourself with the TabIndex property of controls during the beginning
stages of GUI design—because you will often find yourself removing and adding
new controls to your forms. Wait until you feel fairly comfortable that the GUI
design is completed before assigning the TabIndex properties of your controls.

Even though you might not concern yourself with tab index properties during GUI
design, Visual Basic does. Visual Basic automatically assigns (in sequential
order) a tab index property to each control you add to a form.

You can find the tab index property of a control by clicking the control during
design time and looking for the property under the Properties window.

Default Property

The default property applies to all types of applications. It’s frequently used with
login screens and data entry forms. For example, after you’ve entered your user
name and password, most login screens allow you to simply press the Enter key
to log in, whether you actually press the Enter key.

HINT

173
C

h
a

p
te

r
 6

 A
d

v
a

n
c
e
d

 C
o

n
tr

o
ls

This default process actually performs the equivalent of pressing the Enter key
on the screen to log you in. Note that you didn’t have to use the mouse, nor did
you have to tab over to the Enter key before pressing it. That’s the default prop-
erty! In other words, setting a control’s default property to true is like saying that
it’s the default control or button on your form.

As with the other properties mentioned earlier, you can access the default prop-
erty in the Properties window.

Building Menus

Like many other graphical controls, menus can provide users with clearly visible
navigational links to properties, functions, and other forms. Visual Basic pro-
vides an easy-to-use facility for creating menus with its menu editor.

The menu editor allows you to create hierarchical drop-down menus that you’ve
probably seen and used with most Windows-based programs. In fact, if you have
been programming in Visual Basic (I assume that you have been by now), you
have already been using hierarchical drop-down menus, as shown in Figure 6.18.

You can create your own hierarchical menus using the menu editor, shown in
Figure 6.19, which you access from the Tools menu.

174
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

FIGURE 6.18

Visual Basic’s
hierarchical menus.

A sample
hierarchical

menu

To demonstrate the creation of menus using the menu editor, build the menu
that you will need for the agent program using the following steps:

1. Open a new standard EXE project in Visual Basic.

2. From the Visual Basic Tools menu, select Menu Editor.

3. Start by adding the text &File to the Caption text box, and give it the
name mnuFile in the name text box.

Remember that the & (ampersand) character creates keyboard shortcuts
with the Alt key.

Note that you will follow the same Microsoft naming conventions that you’ve
used previously in other chapters for your menu names. The first three charac-
ters of the menu name are letters mnu, which are followed by the parent menu
item name.

4. Click the next command button and then the right arrow button. The
right arrow button adds two empty quotes (“”) to the bottom List Box
under your File menu item. The empty quotes denote that the menu item
directly under the File menu item will be a subitem of File. You can use
the left arrow button to remove a submenu relationship and the up and
down arrows to move the menu item to a desired location.

5. Add the text E&xit to the Caption text box, and give it the name mnuFile-
Exit. Notice that I’ve named the exit menu item mnuFileExit. This naming
convention denotes that the menu item Exit is a subitem or child of the
File parent menu item.

HINT

175
C

h
a

p
te

r
 6

 A
d

v
a

n
c
e
d

 C
o

n
tr

o
ls

FIGURE 6.19

The menu editor
allows you to

create your own
custom hierarchical

menus.

6. Click the next command button and then the left arrow button to remove
the empty quote submenu relationship. This means that the next menu
item will be a parent menu item. Enter the text &View to the Caption Text
Box, and give it the name mnuView.

7. Click the next command button and then the right arrow button to add a
child menu item. Enter the text Hide Agent into the Caption Text Box, and
give it the name mnuViewHideAgent.

8. Click the next command button, and leave the child menu item (double
quotes) in place. Add a single hyphen (-) to the Caption Text Box, and give
it the name mnuViewDash1.

9. Enter a single hyphen into the Caption Text Box of a menu item to graphi-
cally display a sunken line in the menu. This is good practice when you
want to distinguish logical submenu items that are related to the parent
menu item, but not necessarily to other child menu items within the par-
ent menu item.

10. Click the next command button, and leave the empty quotes in place.
Enter the text Advanced Character Options into the Caption Text Box, and
give it the name mnuViewAdvanced.

11. Click the next command button, and remove the empty quotes (with the
left arrow button). Enter the caption &Tools and the name mnuTools.

12. Click Next and leave the empty quotes to denote a child menu item under
mnuTools. Leave the caption blank and the name mnuToolsChangeAgent.

13. Click OK to save your work.

After you add all necessary menu items, your graphical user interface should
look like Figure 6.20.

176
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

FIGURE 6.20

A hierarchical
menu for the agent

program.

Pop-Up Menus

Pop-up menus act like floating menus when a user right-clicks on a form. The
location of the pop-up menu depends on where the mouse pointer is located on
the form.

To create pop-up menus, you simply perform the same steps that you do for creat-
ing normal menu items. For example, let’s say I want to create a pop-up menu that
displays choices a File menu group normally contains, such as Open, Save, and Exit.

First, I create my menu items using the menu editor.

If I did not want the File menu group to be visible on the menu bar, I would sim-
ply set the File menu item’s visible property to false. When the parent menu
item’s visible property is set to false, the menu group can only appear as a pop-
up menu. Note that it is not necessary to set the children menu item’s visible
property to false.

After the File menu group is created, I can use the form’s MouseUp event to trig-
ger the pop-up menu using the PopupMenu method:

Private Sub Form_MouseUp(Button As Integer, Shift As Integer, _

X As Single, Y As Single)

If Button = 2 Then

PopupMenu mnuFile

End If

End Sub

Because I want the pop-up menu to appear only when the user right-clicks the
form, I need to perform a test on what mouse button the user has clicked. I can
accomplish this by testing the value of the button variable. If the value is 2, I
know that the user has clicked the right mouse button. Note that the variable
button is passed into the MouseUp event for you.

Once I’m sure the right mouse button was clicked, I call the PopupMenu method
and pass it the name of the File menu item. This displays the child menu items
of the File menu group as a pop-up menu. Cool, huh!

Microsoft Agents

If you have been using Microsoft’s latest Office products, you may have noticed
such characters as the animated paper clip. This animated character appears on
your screen to provide help with searching a knowledge base or to provide sug-
gestions when it thinks you need assistance on a particular subject.

HINT

177
C

h
a

p
te

r
 6

 A
d

v
a

n
c
e
d

 C
o

n
tr

o
ls

The animated paper clip is what’s known as a Microsoft agent, which provides
animation and text-to-speech capabilities in component form. For a Visual Basic
programmer, Microsoft provides these agents free of charge. Although they are
free of charge, the Microsoft agent controls are copyrighted by Microsoft and
should be treated as such. To find more about Microsoft’s licensing and copyright
issues, visit Microsoft’s Web site at http://www.microsoft.com.

Installing the Agent

As of this writing, you can download Microsoft’s agent control, control docu-
mentation, program samples, and licensing information for free from
http://msdn.microsoft.com/workshop/c-frame.htm#/workshop/imedia/agent/
licensing.asp.

To completely design and develop the agent program, you need to download the
following software from Microsoft’s agent Web site (see above URL):

MSagent.exe

spchapi.exe

tv_enua.exe

Genie.exe

Merlin.exe

Download these files to a temporary directory on your PC. When you launch each
EXE file, it extracts the necessary files to your computer. I recommended that you
also download the agent documentation and sample programs for future reference.

178
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

FIGURE 6.21

The Microsoft
Agent Control 2.0 in

the Components
window.

Once all the agent files are extracted and installed, you can select the Microsoft
Agent Control 2.0 from the Components window, as shown in Figure 6.21.

After the agent component is added to your toolbox, you can add it to your form
as you do any other Visual Basic control as depicted in Figure 6.22.

Using the Agent

Using the agent control is pretty straightforward. It has a number of methods
and properties that you as the programmer can exploit to create animation and
speech.

The first thing you need to do when working with agents is declare an agent vari-
able. For the agent program, I will make the following variable form level:

Dim myCharacter As IAgentCtlCharacterEx

When the agent control is added to your form, you should see the IAgentCtlChar-
acterEx variable type after you type the word As within the variable declaration.
Essentially the IAgentCtlCharacterEx type is what is known as an object data
type. Though beyond the scope of this book, object data types can be used simi-
lar to other data types such as String, Boolean, or Integer.

179
C

h
a

p
te

r
 6

 A
d

v
a

n
c
e
d

 C
o

n
tr

o
ls

FIGURE 6.22

The Microsoft
Agent Control 2.0
in the toolbox and

on a form.

The next step in using your agent is loading the inherit character ID of the char-
acter file into the agent control:

Agent1.Characters.Load “CharacterID”, “Genie.acs”

This Load method essentially tells the control what character you will be work-
ing with. In this case, I’m explicitly telling the Agent1 control that I want to work
with the genie character.

Note that I’ve only specified the genie.acs filename as an argument. This implies
that the genie.acs file exists in the directory where the agent program files exist.
If you want the genie.acs file located in another directory, you have to explicitly
tell the load method where it is, as in “c:\temp\Genie.acs”.

The last step in creating an agent control is to create a reference to the character
object using the keyword set:

Set myCharacter = Agent1.Characters(“CharacterID”)

Now we’re ready to rock and roll with the genie agent character. The first thing
I might want to do is display the agent with the Show method:

myCharacter.Show

Next I might want to play a specific character (genie) animation using the Play
method:

myCharacter.Play animation name

Each character has a number of animation clips that you will see when you build
the agent program.

Last but not least, I might want the agent to say something. I can accomplish vis-
ible and audible speech with the Speak method:

myCharacter.Speak string

When my program terminates, I want to free up any memory allocated to the
agent with the following commands:

Set myCharacter = Nothing

Agent1.Characters.Unload “CharacterID”

HINT

TRAP

180
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

Setting the myCharacter object to Nothing releases the memory allocated for the
object. This is good practice whenever you are dealing with objects. The Unload
method of the Agent1 control unloads the character (CharacterID) from the
agent’s character property.

Constructing the Agent Program

The agent program demonstrates the functionality of Microsoft agents and some
basic human/computer interaction. After constructing the agent program, you
will be able to incorporate Microsoft agents into your own programs.

The Problem

Build a program that demonstrates the features and functionalities of the agent
control. Specifically, the agent program should provide the following:

• The ability to switch characters

• A list of all available animation clips for the current character

• The ability to play audible and visual text

• The option to hide the current character

• The option to stop the current animation

• The option to show the advanced properties of the agent control

Table 6.2 contains the controls and properties of the agent program.

A sample algorithm for the agent program is seen below.

1. Download and install all necessary Microsoft agent software.

2. Open a standard EXE project.

3. Add the Microsoft Agent Control 2.0 to the toolbox.

4. Add and configure all necessary controls (including menu items) to the
form.

5. Write code in the form load event to set program defaults, reference a
character, load all character animations in a List Box, and show the charac-
ter next to the form.

6. Write code for the play command button that plays the selected animation.

7. Write code for the speak command button. The agent should use the text
of the Text Box as dialog.

8. Write code in the stop command button to halt any animation.

181
C

h
a

p
te

r
 6

 A
d

v
a

n
c
e
d

 C
o

n
tr

o
ls

9. Enable the change agent menu item by adding code to switch between
characters.

10. Add support for the hide agent menu item.

11. Add support for the advanced properties menu item.

12. Write code to free memory used by the agent control when the program is
terminated.

182
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

Control Property Setting

frmMain Caption Microsoft Agents

Border Style 1 – Fixed Single

mnuFile Caption &File

mnuFileExit Caption E&xit

mnuView Caption &View

mnuViewHideAgent Caption Hide Agent

mnuViewDash1 Caption -

mnuViewAdvanced Caption Advanced Character &Options

mnuTools Caption &Tools

mnuToolsChangeAgent Caption None (Empty)

Frame1 Caption Animations:

lstAnimations TabIndex 0

Frame2 Caption Text to Speech:

txtText Text None

TabIndex 4

cmdPlay Caption &Animate

TabIndex 1

Default True

cmdStop Caption &Stop

TabIndex 2

cmdSpeak Caption Spea&k

TabIndex 3 Agent1

TABLE 6.2 CONTROLS AND PROPERTIES

OF THE AGENT PROGRAM

TE
AM
FL
Y

Team-Fly®

The Implementation

I’m declaring a form-level variable called myCharacter as an agent to be used
throughout the agent program:

Option Explicit

Dim myCharacter As IAgentCtlCharacterEx

In the form load event, I create and assign the genie character to the myCharac-
ter variable. This lets me start using the properties and methods of the agent
component:

Private Sub Form_Load()

‘Load genie as default character

Agent1.Characters.Load “CharacterID”, “Genie.acs”

Set myCharacter = Agent1.Characters(“CharacterID”)

Rather than load the animation names into the List Box from the form load
event, I choose to call a procedure that I wrote specifically for this situation. I cre-
ated this procedure so I could call it again if necessary during the course of the
program:

‘Change form defaults

mnuToolsChangeAgent.Caption = “&Change Agent to Merlin”

txtText.Text = “Enter a word or phrase here”

‘Populate the list box

Load_Animation_Names

The last few lines of the form load event set the Left and Top properties of the
myCharacter object to the right of the form. After which, I make the character
visible through the Show method. The numbers (5500 and 900) below represent
my Form’s Left and Top properties. Make sure you change these to reflect your
programs.

‘Set characters starting position

myCharacter.Left = (frmMain.Left + 5500) / Screen.TwipsPerPixelX

myCharacter.Top = (frmMain.Top + 900) / Screen.TwipsPerPixelY

183
C

h
a

p
te

r
 6

 A
d

v
a

n
c
e
d

 C
o

n
tr

o
ls

The Screen object (seen previously) is the entire Windows desktop area. Its prop-
erties can be used to manipulate a Form on a screen.

To remove any ambiguity or confusion for other programmers looking at your
code, you could change the above code to utilize the Form’s Width and Height
properties as seen below:

myCharacter.Left = (frmMain.Left + frmMain.Width) / _

Screen.TwipsPerPixelX

myCharacter.Top = (frmMain.Top + 0.5 * (frmMain.Height - _

myCharacter.Height _

* Screen.TwipsPerPixelY)) / Screen.TwipsPerPixelY

‘Display the character

myCharacter.Show

End Sub

Notice that in the click event of the play command button, I test to make sure
that an animation name is selected before playing an animation.

Private Sub cmdPlay_Click()

‘Check to make sure an animation is selected

If lstAnimations.ListIndex = -1 Then

cmdPlay.Enabled = False

Exit Sub

End If

‘Animation selected in the list box

myCharacter.Play lstAnimations.List(lstAnimations.ListIndex)

End Sub

Remembering that the agent’s Speak method takes a string, I can use the Text
property of a Text Box as my speak parameter:

Private Sub cmdSpeak_Click()

TRICK

184
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

‘Convert text to speech

If txtText.Text = “” Then

Exit Sub

Else

myCharacter.Speak txtText.Text

End If

I use the click event of the List Box to enable or disable the Play Command But-
ton. If I didn’t do this and a user clicked Play without an animation name
selected, she would get an error:

End Sub

Private Sub cmdStop_Click()

myCharacter.Stop

End Sub

Private Sub lstAnimations_Click()

If lstAnimations.ListIndex <> -1 Then

cmdPlay.Enabled = True

cmdPlay.Default = True

End If

Before ending the program in the exit menu item, I free all memory used by the
myCharacter object by setting it to Nothing:

End Sub

Private Sub mnuFileExit_Click()

Set myCharacter = Nothing

Agent1.Characters.Unload “CharacterID”

End

End Sub

The Load_Animation_Names() procedure uses an interesting looping technique
called For Each. If you look at the looping structure carefully, you can see that
“For each animation name in the list of myCharacter animation names, add an

185
C

h
a

p
te

r
 6

 A
d

v
a

n
c
e
d

 C
o

n
tr

o
ls

item to the List Box.” The For Each looping structure is popular when dealing
with control arrays and other object-based structures. I discuss arrays and con-
trol arrays in Chapter 10:

Public Sub Load_Animation_Names()

Dim AnimationName

lstAnimations.Clear

‘Loads the names of animations into a list box

For Each AnimationName In myCharacter.AnimationNames

lstAnimations.AddItem AnimationName

Next

End Sub

In the change agent menu item, I perform much of the same functionality as in
the form load event with some exceptions. Depending on the current character,
I unload it and load the new character. Everything else in this procedure should
be familiar:

Private Sub mnuToolsChangeAgent_Click()

‘Load the new character

If myCharacter.Name = “Merlin” Then

Set myCharacter = Nothing

Agent1.Characters.Unload “CharacterID”

Agent1.Characters.Load “CharacterID”, “Genie.acs”

Else

Set myCharacter = Nothing

Agent1.Characters.Unload “CharacterID”

Agent1.Characters.Load “CharacterID”, “Merlin.acs”

End If

Set myCharacter = Agent1.Characters(“CharacterID”)

‘Change captions

If myCharacter.Name = “Merlin” Then

mnuToolsChangeAgent.Caption = “&Change Agent to Genie”

186
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

Else

mnuToolsChangeAgent.Caption = “&Change Agent to Merlin”

End If

Load_Animation_Names

‘Set characters starting position

myCharacter.Left = (frmMain.Left + 5500) / Screen.TwipsPerPixelX

myCharacter.Top = (frmMain.Top + 900) / Screen.TwipsPerPixelY

myCharacter.Show

End Sub

Interestingly, Microsoft has already provided an advanced properties dialog win-
dow called a Property Sheet. To show the Property Sheet of the agent component,
I simply set the PropertySheet’s Visible property to true:

Private Sub mnuViewAdvanced_Click()

Agent1.PropertySheet.Visible = True

End Sub

In the hide agent menu item, I can call the Hide method of the myCharacter
object to make the character disappear:

Private Sub mnuViewHideAgent_Click()

myCharacter.Hide

End Sub

Summary

In this chapter, you made a monumental transition from learning fundamental
controls such as Labels, Text Boxes, and Command Buttons to learning more
advanced controls such as menus, List Boxes, Combo Boxes, and Drive, Directory,
and File List Boxes. In addition to these advanced controls, you learned about
the Microsoft agent software, which can provide a rich and interactive experi-
ence to your programs. Moreover, you learned how to enhance your graphical
controls and the user’s experience through the application of human/computer
interaction.

187
C

h
a

p
te

r
 6

 A
d

v
a

n
c
e
d

 C
o

n
tr

o
ls

188
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r CHALLENGES

1. Using List Boxes and the Multimedia control, build a more intuitive CD juke-

box that allows a user to select from a list of CD titles in the List Box.

2. Create a quiz game that loads a number of questions into a List Box. When

a user clicks on one of the questions, a message box should appear prompt-

ing him for the answer. You might want to add a second column to the List

Box that holds the score information.

3. Create a more interactive quiz game that uses Microsoft agents. The agent

should speak the question and alert the user whether she got it right. The

agent should also have appropriate gestures or animations for presenting

the question as well as responding to a correct or incorrect answer.

V
isual Basic provides many facilities for

debugging and error handling, some of

which you may have already discov-

ered by now. In this chapter, you will learn the

most common of these facilities for capturing and

preventing many types of errors and how to step

through and test your own code for bugs. Specifi-

cally, this chapter covers the following:

• Input validation

• Break mode and debug windows

• Building error-handling routines

• The Err object

• Constructing the mad lib game

Debugging and
Error Handling

7
C H A P T E R

Project: The Mad Lib Game

The mad lib game is a fun and easy-to-build program that solidifies many of the
programming and Visual Basic techniques you have learned so far. Shown in Fig-
ure 7.1, the mad lib game also uses concepts that you will learn in this chapter to
perform input validation for error and bug prevention.

Overview

Learning programming constructs is only half the battle in game and program
development. As a programmer, you must also strive to develop sound and bug-
free code. However, developing bug-free code is something of an unrealistic and
misleading goal for most programmers because most, if not all, high-level lan-
guages have inherited bugs themselves.

These inherited bugs might come from the programmers who developed the IDE
(Integrated Development Environment) or the developers of the operating system
where the program will run.

So what’s a programmer to do? Well, first and foremost, understand that debug-
ging is the process of uncovering an error and fixing it. If your program has an
error, it generally means one of two things: Either you have a syntax problem, or
you don’t really understand the purpose of the program or routine.

The worst way to debug or solve errors is to guess at a fix so that you keep chang-
ing code until something works. Changing code to solve an error when you have
not backed up your original code is another no-no.

190
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

FIGURE 7.1

The mad lib game.

When presented with an error or bug, it is best to take a few moments and fol-
low a scientific approach:

1. Gather data by performing multiple experiments.

2. Develop a hypothesis based on the data gathered from the experiments.

3. Repeat the first two steps until you can prove a hypothesis.

4. Back up the original source code that is performing the error.

5. Implement the fix based on the proven hypothesis.

6. Test the fix.

Providing you understand the problem and the program’s purpose, implement-
ing the fix is often the easy part. The hard part is the art or science used to find
the source of the error. Most computer science students or self-taught program-
mers are not taught proper debugging processes or they are learning how to pro-
gram in a language that does not support robust debugging facilities.
Fortunately, the latter is not the case with Visual Basic because Microsoft did an
excellent job when designing debugging facilities for the Visual Basic IDE.

Input Validation

Input validation is a great place to begin learning about error handling and bug
fixing. Good portions of program errors come from unexpected user input or
responses.

191
C

h
a

p
te

r
 7

 D
e
b

u
g

g
in

g
 a

n
d

 E
r
r
o

r
 H

a
n

d
l in

g

IN THE REAL WORLD

Most professional or corporate programming groups have some form of source-

code archive. As a professional programmer, you check your program code out

of a repository for making changes or enhancements and check it back in when

done. These enterprise source-code repositories act as your backup in the event

you need to return to the original source code.

Microsoft provides one such source-code archive and tracking tool called

SourceSafe. You can find Microsoft SourceSafe under the Microsoft Visual Stu-

dio program group (providing you have purchased the Enterprise or Profes-

sional version of Visual Studio). For more information on SourceSafe, visit

Microsoft’s Web site at http://www.microsoft.com.

For example, what do you think would happen if a user entered a letter as an
operand into a math quiz game? A better question is “How do I prevent a user
from entering a letter into a Text Box intended for numbers?” What about a game
that prompts a user for a level; would testing that the input is a number be
enough? Probably not because most games have a limited amount of levels, so
you would also need to test for a range of numbers.

In short, input validation really involves a talented programmer with enough
foresight to prevent errors before they happen.

Validate Event

Most Visual Basic controls have a validate event that occurs right before the con-
trol loses focus. However, this event is not always triggered by default. To ensure
it does, you can set the CausesValidation property of the control to true. To illus-
trate, here’s an example of testing the Text property of a Text Box for a certain
character:

Private Sub Form_Load()

Text1.CausesValidation = True

End Sub

In the form load event, I set the CausesValidation property of the Text Box to true.
I could have also set this property during design time in the properties window
of the Text Box control.

The validate event of the Text Box takes the Boolean variable Cancel as an
argument:

Private Sub Text1_Validate(Cancel As Boolean)

If Text1.Text = “A” Then

Cancel = False

Else

Cancel = True

End If

End Sub

If the user enters the letter A into the Text Box, I set the Cancel parameter to
false. This lets the user move on to the next control. However, if the user enters
anything else, I set the cancel parameter to true, essentially preventing the user
from going anywhere until she enters the letter A.

192
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

TE
AM
FL
Y

Team-Fly®

Checking Data Types

Sometimes, preventing input errors can be as easy as determining whether a user
has entered a number or a string. You might want the user to enter his or her
name, or maybe you are looking for a number such as an age. Either way, Visual
Basic provides the IsNumeric function for testing such scenarios.

The IsNumeric function takes a variable or expression as a parameter and returns
a Boolean value of true if the variable or expression is a number and false if it
is not.

You can use the IsNumeric function in conjunction with the validate event for
checking data types:

Private Sub Text1_Validate(Cancel As Boolean)

If IsNumeric(Text1.Text) = True Then

Cancel = False

Else

Cancel = True

End If

End Sub

In the example, you can see that by testing the value of the Text Box with the
IsNumeric function, I want the user to enter a number. If the IsNumeric function
returns the Boolean value false, I know that the user has entered something
other than a number.

Conversely, you could use the IsNumeric function to check for a string value. Sim-
ply change the comparison operator to not equal in the If statement.

Testing a Range of Values

You might find at times that testing a value for a particular data type is not
enough to prevent input errors. Sometimes, it is necessary to check for a range of
values. For example, you might want to prompt a user to enter a number from 1
to 100. Or maybe you want a person to choose a letter from a to z.

As you will see, testing for a range of values involves a little more thought from
the programmer. Your first thought should coincide with knowing or getting to
know the range or ranges to test and whether they are numeric or character-
based. Fortunately, testing ranges of values with numbers or strings uses the
same programming constructs in compound conditions.

193
C

h
a

p
te

r
 7

 D
e
b

u
g

g
in

g
 a

n
d

 E
r
r
o

r
 H

a
n

d
l in

g

Let’s take the 1-to-100 example mentioned earlier. I continue to use the validate
event and the IsNumeric function as part of the overall testing for a range of
numbers (1 to 100):

Private Sub Text1_Validate(Cancel As Boolean)

If IsNumeric(Text1.Text) = True Then

If Val(Text1.Text) >= 1 And Val(Text1.Text) <= 100 Then

Cancel = False

Else

Cancel = True

End If

Else

Cancel = True

End If

End Sub

I added another nested condition to my validation event to verify a numeric
range. Specifically, if the input passes the first test (that it’s a number), I check
that the number is in the range of 1 to 100 with the use of compound conditions.
If the input fails on the second If statement, I set the Cancel argument to false
and force the user to keep trying until a valid number is entered.

Testing for a range of letters is not much different, if you remember that all char-
acters (letters or numbers) can be represented with character code values. Let’s
say I want a user to enter a letter code in the range of a through m. I can still use
the validate event and the IsNumeric function to help me out, but I need to per-
form some additional tests:

Private Sub Text1_Validate(Cancel As Boolean)

If IsNumeric(Text1.Text) <> True Then

If Asc(UCase(Text1.Text)) >= 65 And Asc(UCase(Text1.Text)) _

<= 77 Then

Cancel = False

Else

Cancel = True

End If

Else

Cancel = True

End If

End Sub

194
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

The first thing I did in my validate event was change the comparison operator in
the first condition to not equals. (In other words, I’m looking for the IsNumeric
function to return a false value, which means the input was not a number.) Next
I use the Asc function, which converts a character to its corresponding character
code value.

Using compound conditions, I specifically look for a range of 65 through 77, which
represents the capital letters A through M. You might also notice that I use the
function UCase in association with the asc function. The UCase function converts
lowercase letters to uppercase letters. If I do not convert the characters to upper-
case, I have to check for the lowercase letters as well (with numbers 97 to 109).

For more information on character codes, please see Appendix A, “Common
ASCII Codes.”

Break Mode and Debug Windows

You might remember from Chapter 1 that Visual Basic contains three modes of
program operation:

• Design time is the mode by which you add controls to containers (such as
forms) and write code to respond to events.

• The runtime environment allows you to see your program running the
same way a user would. During runtime, you can see all your Visual Basic
code, but you cannot modify it.

• Break mode allows you to pause execution of your Visual Basic program
(during runtime) to view, edit, and debug your program code.

By now you should be fairly comfortable with the Visual Basic design time and
runtime environments. You may have also discovered the break mode environ-
ment, but if not, this is a good starting point for you to begin learning about
Visual Basic debugging.

Inserting Breakpoints

Visual Basic allows you to step through your pro-
gram code one line at a time. Known as stepping
or stepping into, this process allows you to
graphically see what line of code is currently exe-
cuting as well as the values of current variables
in scope.

195
C

h
a

p
te

r
 7

 D
e
b

u
g

g
in

g
 a

n
d

 E
r
r
o

r
 H

a
n

d
l in

g

Definition
Stepping, or stepping into, is

the process of executing one

Visual Basic statement at a

time.

Using function keys or menu items, you can nav-
igate through program code with ease. For
example, once in break mode, you can press the
F8 key to skip to the next line.

During break mode, it is also possible to step
over a procedure without having to execute the
procedure’s statements one at a time. Known as
procedure stepping or stepping over, this process is available during break mode if
you press Shift+F8.

Sometimes, you might want to skip ahead in program code to a predetermined
procedure or statement. Visual Basic provides this functionality through the use
of breakpoints.

You can insert breakpoints into your Visual Basic
procedures during design time or break mode, as
shown in Figure 7.2. To create or remove a break-
point, simply click in the left margin of the code
window at the program statement where you
want program execution to pause. Breakpoints
can also be inserted or removed through the F9
function key.

To skip to the next breakpoint (or to the end of the
program), simply press the function key F5.

196
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

FIGURE 7.2

Pausing program
execution through

the use of
breakpoints.

Definition
Procedure stepping, or step-

ping over, is the process of

executing a procedure all at

once.

Definition
Used in design time or

break mode, breakpoints

provide a facility for pausing

program execution at a pre-

determined procedure or

program statement.

Sometimes you want to go back in time and re-execute a particular program
statement without having to halt the entire program and re-run it.

Believe it or not, Visual Basic provides a facility for traveling back in time
while in break mode. To do so, simply click the yellow arrow in the left margin
of the code window (as shown in Figure 7.3) and drag it to a previous program
statement.

HINT

197
C

h
a

p
te

r
 7

 D
e
b

u
g

g
in

g
 a

n
d

 E
r
r
o

r
 H

a
n

d
l in

g

FIGURE 7.3

Going back in time
to re-execute

program
statements while in

break mode.

The Immediate Window

During testing or debugging, it is not always desirable to change the values of
variables and properties by modifying program code because you might forget
what you have changed and for what reason. A safer way of testing program code
is through the use of the Immediate window. Shown in Figure 7.4, the Immediate
window allows you to verify and change the values of properties and variables.

You can use the Immediate window during design time or break mode. Most pop-
ular in break mode, the Immediate window is available if you press Ctrl+G or
choose Immediate Windows from the View menu.

You can type statements that do not directly correspond with your current pro-
gram’s execution. For example, in Figure 7.4, I entered the expression

print 25 + 25

into the Immediate window. After I press the Enter key, the Immediate window
produces the result of my expression, in this case 50. The keyword print tells the
Immediate window to print the expression’s result to the Immediate window’s
screen.

I used the Immediate window in Figure 7.4 to change the value of an option
button:

print optDay.Value

True

optday.Value = False

The first statement generates the result “true,” which is the current value of the
option button. In the next statement, I change the value of the option button to
false.

You can re-execute a statement in the Immediate window by moving the cursor
to the line and pressing Enter.

In addition to calculations and property settings, the Immediate window is also
useful for viewing or changing variables.

The Watch Window

In addition to breakpoints, the Watch window, shown in Figure 7.5, can aid you
in troubleshooting or debugging program code. Accessed from the View menu,
the Watch window can track the values of expressions and break when expres-
sions are true or have been changed.

HINT

198
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

FIGURE 7.4

Changing a
property’s value

through the
Immediate window.

A basic watch expression allows you to graphically track the value of an expres-
sion throughout the life of a program. Moreover, you can create a watch
expression that pauses program execution when an expression has been changed
or is true.

For example, let’s say that you know a bug occurs in your program because the
value of a variable is being set incorrectly. You know the value of the variable is
changing, but you do not know where in the code it is being changed. Using a
watch expression (as shown in Figure 7.6), you can create an expression that pauses
program execution whenever the value of the variable in question changes.

Although you can create watch expressions within the Watch window, it is
much easier to create them by right-clicking a variable or control name in the
code window and choosing Add Watch.

HINT

199
C

h
a

p
te

r
 7

 D
e
b

u
g

g
in

g
 a

n
d

 E
r
r
o

r
 H

a
n

d
l in

g

FIGURE 7.5

Tracking
expressions

through the use of
the Watch window.

FIGURE 7.6

Pausing program
execution with a

break expression.

The Locals Window

The Locals window, shown in Figure 7.7, provides valuable information about
variables and control properties in current scope.

Accessed from the View menu, the Locals window not only supplies information
on variables and properties, but also lets you change control property values.

Building Error-Handling Routines

Whenever your program interacts with the outside world, you should provide
some form of error handling to counteract various unexpected inputs or outputs.
One way of providing error handling is writing your own error-handling routines.

Error-handling routines are the maintenance crew of your program. They can
handle any kind of programming or HCI (human/computer interaction) errors
you can think of. Like any good maintenance crew, error-handling routines
should not only identify the error, but also try to fix it or at least give the pro-
gram or interacting human a chance to.

Use the On Error GoTo statement to signify that you are going to use an error-
handling routine in your procedure:

On Error GoTo ErrorHandler

This statement can go anywhere in your procedure but should appear toward the
top, generally right after any procedure-level variable declarations.

200
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

FIGURE 7.7

Providing variable
information with the

Locals window.

ErrorHandler is the name I give my error-handling routine. (You can call it what-
ever you like.)

Once an error handler is declared, errors generated in the procedure are directed
to the error-handling routine:

Public Function Verify_Input() As Boolean

On Error GoTo ErrorHandler

‘Get input from user

Exit Function

ErrorHandler:

MsgBox (“An error has occurred.”)

Resume

End Function

It is customary to execute the Exit Function or Exit Sub statements before pro-
gram execution enters the error-handling routine. Without these statements, a
procedure that executes without any errors will execute the error handler as well.

The error handler begins by calling the name of the error handler followed by a
colon. Within the error handler, you write code to respond to the error. In the
example, I simply use a message box to denote an error has occurred.

201
C

h
a

p
te

r
 7

 D
e
b

u
g

g
in

g
 a

n
d

 E
r
r
o

r
 H

a
n

d
l in

g

IN THE REAL WORLD

The keyword goto is a carryover from an old programming practice made pop-

ular in various languages such as Basic and COBOL.

Gotos were regularly used for designing and building modularized programs. To

break programs into manageable pieces, programmers would create modules

and link them together using the keyword goto.

After years of programming with gotos, scientists, engineers, and programmers

began to realize that using too many gotos created messy, spaghetti-like code,

which at times became nearly impossible to debug.

Fortunately, event-driven and object-oriented programming techniques have

eliminated the need to use gotos.

The Resume keyword takes program execution back to the statement where the
error occurred. Note the three possible ways for returning program control back
to the procedure:

• Resume

• Resume Next

• Resume label

By itself, the keyword Resume returns program control to where the error
occurred. The Resume Next statement returns program control to the statement
after the statement where the error occurred. The Resume label statement returns
program control to a predetermined line number, as in the following code:

Public Function Verify_Input() As Boolean

On Error GoTo ErrorHandler

‘Get input from user

BeginHere:

Exit Function

ErrorHandler:

MsgBox (“An error has occurred.”)

Resume BeginHere:

End Function

Generally speaking, a message box is a good way to let a user know that an error
has occurred. However, it is not enough to let a user know that an error has
occurred; you should also let the user know what caused the error and what his
options are for resolving the error.

In the next section, you will learn how to identify specific and custom errors
using the Err object.

The Err Object

When a user encounters an error in your program, she should be provided with
a clear and precise description of the problem and a resolution. The Err object
provides Visual Basic programmers an accessible means for finding or triggering
Windows-specific errors.

Essentially, the Err object maintains information about errors that occur in the
current procedure. This information is stored in the form of properties. The most
common of its properties follow:

Source Name of object that generated the error

Number The error number of the current error (0 to 65,535)

Description A description of the current error

202
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

TE
AM
FL
Y

Team-Fly®

Here’s a bit of code that prompts a user for a file. If there are problems accessing
the file, an error is generated and the error-handling routine is called:

Public Sub Get_File()

On Error GoTo FileError

‘Get file from user

Exit Function

FileError:

Select Case Err.Number

Case 53

‘File not found

Case 71

‘Disk not ready

Case 76

‘Path not found

End Select

Resume

End Sub

I simply used a Select Case structure to check the Err Number property for some
common file access errors.

Sometimes an error in your program is similar to that of a given Err object
Description but does not trigger the specific Err Number. You can provide the
ability to trigger errors through the Err object’s Raise method.

203
C

h
a

p
te

r
 7

 D
e
b

u
g

g
in

g
 a

n
d

 E
r
r
o

r
 H

a
n

d
l in

g

Error Number Error Description

11 Division by zero

13 Type mismatch

53 File not found

61 Disk full

70 Permission denied

71 Disk not ready

76 Path not found

482 Printer error

TABLE 7.1 COMMON ERROR NUMBERS

AND DESCRIPT IONS

The Raise method allows you to trigger a specific error condition, thus display-
ing a dialog box to the user. The Raise method takes a number as a parameter. For
example, you can use the following to trigger a “Disk not ready” dialog box:

Err.Raise 71

You can check the Err’s Description property in a condition that looks for a
specific error. However, it is possible that error descriptions change from one
version of Visual Basic to another. Thus, it is advisable to use the Err’s Number
property rather than the Description property to match error conditions.

Constructing the Mad Lib Game

You can now put your newly acquired debugging and error-handling skills to the
test with a game called mad lib. The main programming concept in the mad lib
game is to prevent unwanted results (in other words, bugs). To do so, I apply the
input validation skill sets you learned earlier in this chapter.

The Problem

Build a mad lib game. The game should allow a user to enter information via Text
Boxes, Radio Buttons, and List Boxes. After that, the game should generate and
output a unique story to the player.

Table 7.2 lists the controls and properties of the mad lib game.

A draft algorithm for the mad lib game is shown below.

1. Open a new standard EXE project.

2. Create the user interface.

3. Write code to populate the List Boxes at form load.

4. Create a function that validates the user’s input prior to story generation.

5. Write code that generates a story based upon user input.

6. Write code for starting a new story. (Clear text boxes and input boxes.)

7. Write code to quit the game.

The Implementation

During form load, I call a procedure I wrote for populating all List Boxes:

Option Explicit

TRAP

204
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

Private Sub Form_Load()

Fill_ListBoxes

End Sub

I test the return value of a function called Verify_Input before creating and dis-
playing the mad lib story:

Private Sub cmdTellStory_Click()

Dim lsStory As String

Dim lsTime As String

If Verify_Input = True Then

205
C

h
a

p
te

r
 7

 D
e
b

u
g

g
in

g
 a

n
d

 E
r
r
o

r
 H

a
n

d
l in

g

Control Property Setting

frmMain Caption Chapter 7 – Mad Lib

Border Style 1 – Fixed Single

Frame1 Caption Nothing

lblName Caption Enter Your Name:

txtName Text Nothing

lblTime Caption Pick a Time:

optDay Caption Day

optNight Caption Night

lblMovement Caption Pick a Movement:

lstMovement

lblSound Caption Pick a Sound:

lstSound

lblPlace Caption Pick a Place:

lstPlace

lblObject Caption Pick an Object:

lstObject

lblAction Caption Pick an Action:

lstAction

cmdTellStory Caption &Tell Story

cmdClear Caption &New Story

cmdExit Caption E&xit

TABLE 7.2 CONTROLS AND PROPERTIES

OF THE MAD LIB GAME

Using concatenation and user input, I create a unique mad lib story, which is out-
putted to the user through the use of a Message Box:

If optDay.Value = True Then

lsTime = “Day”

Else

lsTime = “Night”

End If

lsStory = “One “ & lsTime & “ “ & Trim(txtName.Text) & _

“ was “ & lstMovement.List(lstMovement.ListIndex) & _

“ down the street when he heard a “ & _

lstSound.List(lstSound.ListIndex) & “ sound “ & _

“coming from the “ & lstPlace.List(lstPlace.ListIndex) & _

“ next door. “ & Trim(txtName.Text) & “ paused for a moment “ & _

“to see what was making the “ & _

lstSound.List(lstSound.ListIndex) & _

“ sound. When “ & Trim(txtName.Text) & _

“ went over to the “ & lstPlace.List(lstPlace.ListIndex) & _

“ he saw the “ & lstObject.List(lstObject.ListIndex) & _

“ and “ & lstAction.List(lstAction.ListIndex) & “.”

MsgBox lsStory, , “Mad Lib”

End If

The procedure Fill_ListBoxes uses the AddItem method to add items to each List
Box: (Assume that the other list boxes are populated in this procedure as well; the
complete code appears on the CD.)

End Sub

Public Sub Fill_ListBoxes()

lstAction.Clear

lstAction.AddItem “ran away”

lstAction.AddItem “smiled”

lstAction.AddItem “shouted”

End Sub

The Verify_Input function is the maintenance crew of my mad lib game. In this
function, I check all possible inputs for existence. If any of the inputs are invalid,
I return a false to the calling procedure (in this case the Command Button’s click
event):

Public Function Verify_Input() As Boolean

If txtName.Text = “” Then

MsgBox “Please enter your Name.”, , “Error”

206
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

Verify_Input = False

Exit Function

ElseIf optDay.Value = False And optNight.Value = False Then

MsgBox “Please select a Time.”, , “Error”

Verify_Input = False

Exit Function

ElseIf lstMovement.ListIndex = -1 Then

MsgBox “Please select a Movement.”, , “Error”

Verify_Input = False

Exit Function

ElseIf lstSound.ListIndex = -1 Then

MsgBox “Please select a Sound.”, , “Error”

Verify_Input = False

Exit Function

ElseIf lstPlace.ListIndex = -1 Then

MsgBox “Please select a Place.”, , “Error”

Verify_Input = False

Exit Function

ElseIf lstObject.ListIndex = -1 Then

MsgBox “Please select an Object.”, , “Error”

Verify_Input = False

Exit Function

ElseIf lstAction.ListIndex = -1 Then

MsgBox “Please select an Action.”, , “Error”

Verify_Input = False

Exit Function

Else

Verify_Input = True

End If

End Function

The click event of the Clear Command Button starts a new mad lib by setting var-
ious control properties.

Private Sub cmdClear_Click()

txtName.Text = “”

optDay.Value = False

optNight.Value = False

lstAction.ListIndex = -1

lstMovement.ListIndex = -1

lstObject.ListIndex = -1

lstSound.ListIndex = -1

207
C

h
a

p
te

r
 7

 D
e
b

u
g

g
in

g
 a

n
d

 E
r
r
o

r
 H

a
n

d
l in

g

lstPlace.ListIndex = -1

End Sub

The last subprocedure exits the mad lib game with the keyword End.

Private Sub cmdExit_Click()

End

End Sub

Summary

In this chapter, you learned how to validate input from a user. Specifically, you
learned how to test for numbers, characters, and ranges of each. In addition, you
learned new tricks for navigating through break mode with debugging tools
such as breakpoints and the Local, Immediate, and Watch windows. Finally, you
learned how to build custom error-handling routines with the On Error GoTo
statement and the Err object.

I hope this chapter has broadened your perspective on programming and
human/computer interaction. You should always strive to build bug-free code,
but in the event that an error or bug does occur, you should know how to deal
with it.

208
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

CHALLENGES

1. Build a custom error-handling routine for the math quiz program (from pre-

vious chapters). The error-handling routine should use the Err object to look

for Err Number 11 (division by zero).

2. Further modify the math quiz program to use input validation to verify that

a user has entered a number and not a string.

3. Create a custom error-handling routine for the image preview program

(Chapter 6) that uses the Err object to look for disk, path, and file access

errors.

4. Create a number-guessing game that prompts a user for a number in a

range. Use input validation to verify the user has entered a valid number in

the corresponding range.

S
o far, you have learned various

programming techniques that make

Visual Basic a popular programming

language for beginners and experienced pro-

grammers alike.

This chapter covers the following topics:

• Data files

• Sequential access files

• Random access files

• Constructing the quiz game

Data Files and
File Access

8
C H A P T E R

Some of Visual Basic’s more popular programming facilities are

• Rapid application development

• GUI design and prototyping

• Event-driven model

• String manipulation

• Debugging and error handling

The list could be much larger but would move beyond the scope of this book. You
will, however, learn about another popular programming facility in Visual Basic
known as file I/O or file input/output.

Visual Basic has many techniques for building and managing file I/O routines.
You will specifically learn how to build and use sequential and random file
access.

Project: The Quiz Game

Shown in Figure 8.1, the quiz game uses a
sequential access file to keep what is known
as persistent data. Using persistent data, the
quiz game prompts the user with questions
read from a file generated by you.

After successfully answering a question, the
quiz game determines whether the user’s
response was correct based on answers
stored in the file.

210
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r IN THE REAL WORLD

Most programming languages include some forms of libraries or functions for

handling file I/O. Some languages provide powerful and fast programming con-

structs to build and manage file I/O. Some of these languages are closely tied to

the operating system, such as C or Assembly language and can be difficult to

learn and master.

Generally speaking, other, high-level languages provide easy-to-learn and quick-

to-build file I/O routines. Visual Basic is one such language.

Definition
Unlike data stored in variables dur-

ing program execution, persistent

data is stored in files that maintain

their values when your computer’s

power is turned off.

Data Files

It is safe to assume that in one way or another, all the elements of an operating
system (also known as a file system) are files. You can think of them as everything
from the brick and mortar to the paint and wall décor of an operating system.

Files serve many different purposes:

Page files

Routing tables

Configuration files (config.sys)

Initialization files (.ini files)

Registry files

Log files

Setup files

Executable files

Database files

Document files

Spreadsheets

Email

Pictures

This list is only a small sample of file types located on your hard drive. The impor-
tant thing to note is everything that makes a functional operating system is con-
structed with files.

211
C

h
a

p
te

r
 8

 D
a

ta
F
i le

s
 a

n
d

F
il e

 A
c
c
e
s

s

FIGURE 8.1

Demonstrating
file I/O with the

quiz game.

How are these files built, accessed, and managed? The simple answer is with
other files. Specifically, programmers build programs (which themselves are
files) to build, write, save, delete, and manage other files.

Data File Organization

Each file type contains a unique and sometimes proprietary format. For example,
a Microsoft operating system such as Windows 98, Windows NT, or Windows
2000 consists of many related files, each with its own unique and proprietary
makeup. Although the files may perform separate tasks, they come together as a
whole to build an operating system.

Fortunately for us, data files as they relate to this chapter are not proprietary and
are a great starting point for learning file organization.

Data files that you create can be viewed and edited through Microsoft text edi-
tors such as Notepad and WordPad.

Used for storing and retrieving data, data files consist of three main components:

Files A related collection of data

Records Rows of data that make a file

Fields Elements composing a record

For example, a data file that contains question information for a quiz might look
like Figure 8.2.

As shown in Figure 8.2, the question.dat file contains three records, and each
record contains three fields (question number, question, and answer).

HINT

212
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

FIGURE 8.2

The data file
question.dat

consists of records
and fields.

Quiz.dat Filename

Question number Question Answer

“What is 5 + 5?”�

“What is 10 + 10?”�

“What is 20 + 20?”�

“10”�

“20”�

“40”�

“1”�

“3”�

“2”�

Record Field

TE
AM
FL
Y

Team-Fly®

The question-number field is unique from the other
fields because it provides the organizational manner
for the data file. Organization in data files is obtained
through key fields (such as the question-number field),
which uniquely identify a row.

Sequential Access Files

Data files created with sequential file access have records stored in one file after
another in sequential order. When accessing data files with sequential file
access, a program must read records in the same order they were written to the
file. In other words, if you want to access the 20th record in a data file, you first
must read records 1 to 19.

Sequential file access is useful and appropriate for small data files. If you find
that your sequential file access program is starting to run slowly, you might want
to change file access to random file access, or better yet, migrate to a relational
database management system. Visit Microsoft’s Web site (http://www.microsoft.
com) for more information on relational database management systems.

Opening a Sequential Data File

The first step in creating or accessing a data file is opening it. Microsoft provides
an easy-to-use facility for opening a data file through the Open function:

Open “Filename” For {Input | Output | Append} As #Filenumber _

[Len = Record Length]

The Open function takes three parameters: Filename describes the name or path
of the file you want to open or create. Input\Output\Append is a selection list
described in Table 8.1, and you pick the action to use. #Filenumber is a number

TRAP

213
C

h
a

p
te

r
 8

 D
a

ta
F
i le

s
 a

n
d

F
il e

 A
c
c
e
s

s

Mode Description

Input Reads records from a data file

Output Writes records to a data file

Append Writes or appends records to the end of a data file

TABLE 8.1 SEQUENTIAL ACCESS MODES

Definition
Key fields consist of

one or more fields that

uniquely identify a row

of data.

from 1 to 511 used for referencing the file, and Len is an optional parameter that
can control the number of characters buffered.

For example, I use the Open method to create a new file for output called
quiz.dat:

Open “quiz.dat” For Output As #1

The filename attribute can contain paths in addition to filenames. For example, if
you want to create employee records in a file named employee.dat on a floppy
disk, you can use the following syntax:

Open “a:\employee.dat” For Output As #1

The result of the Open function varies
depending on the initial action. If you use
the input parameter, the Open function
searches for the filename and creates a buffer
in memory. If the file is not found, Visual
Basic generates an error.

The result of the Open function for append and output is similar to that of input
with one main exception: If the file specified is not found, a new file is created
using the filename parameter as the filename.

Note that the output mode always overwrites an existing file.

Once you successfully open a data file, you can read from it, write to it, and
close it.

Writing Sequential Data to a File

To write data to a sequential file, you want to use either the output mode, which
creates a new file for writing, or the append mode, which writes records to the
end of a data file. After opening the file, you can use the Write function to write
records:

Write #Filenumber, Fields

The Write function takes two parameters, #Filenumber and a list of fields. The
#Filenumber denotes the file number used in the Open function, and the fields
parameter is a list of strings, numbers, variables, or properties that you want to
use as fields.

HINT

214
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

Definition
A buffer is an area of storage

(computer memory) where data

is temporarily stored.

For example, if I want to create a data file and write quiz records to it, I can use
the following syntax:

Open “quiz.dat” For Output As #1

Write #1, 1, “Is Visual Basic an Event Driven language?”, “Yes”

I can also use variable names for my fields list:

Write #1, liQuestionNumber, lsQuestion, lsAnswer

Either way, Visual Basic outputs numbers as numbers and strings as strings sur-
rounded with quotation marks.

Reading Data from a Sequential File

If you want to read records from a data file, you must use the input parameter
with the Open function:

Input #Filenumber, Fields

Like the Write function, the Input statement takes two parameters, the
#Filenumber and a list of fields. For example, if you want to read the first record
in a data file called quiz.dat (assuming quiz.dat contains three fields for each
record), you can use the following syntax:

Dim liQuestionNumber as Integer

Dim lsQuestion as String

Dim lsAnswer as String

Open “quiz.dat” For Input As #1

Input #1, liQuestionNumber, lsQuestion, lsAnswer

Notice that I pass three variables as the field list to the input statement. These
variables hold the contents of the first record found.

By now, you might be thinking, so far, so good, but how do I read all the records
in a data file? The answer involves something new and something old. First, you
have to use a loop to search through the data file. Second, your loop’s condition
should use the EOF function.

The EOF (end of file) function tests for the end of the data file. It takes a file num-
ber as a parameter and returns a true if the end of the file is found or false if the
end of file is not reached.

215
C

h
a

p
te

r
 8

 D
a

ta
F
i le

s
 a

n
d

F
il e

 A
c
c
e
s

s

To test for the end of file, the EOF function looks for an EOF marker that is placed
at the end of a file by the Close function:

Dim liQuestionNumber as Integer

Dim lsQuestion as String

Dim lsAnswer as String

Open “quiz.dat” For Input As #1

Do Until EOF(1)

Input #1, liQuestionNumber, lsQuestion, lsAnswer

picOutput.Print “Question number: “ & liQuestionNumber & lsQuestion

Loop

This loop iterates until the EOF function returns a true value. Inside the loop,
each record is read one at a time. After a record is read, the Print method of a Pic-
ture Box control outputs two of the fields (liQuestionNumber and lsQuestion) for
display.

Closing a Sequential Data File

Remember when your mom used to say “Put away your toys after you play with
them?” Well, I do. Working (or playing with) data files requires similar attention
to cleanup. It is always good practice to close your data files when you are done
working with them.

Closing a data file performs important housekeeping not to mention the actual
creation of your data file. Specifically, closing a data file performs the following
operations:

• It writes the EOF marker.

• In output or append mode, closing a data file writes records to the physi-
cal file in the sequential order in which they were created.

• It releases the file number and buffer for memory conservation.

The Close function takes the file number as its only parameter:

Close #FileNumber

For example, to close the file quiz.dat after writing one record, I can use the Close
function in the following way:

Open “quiz.dat” For Output As #1

Write #1, 1, “Is Visual Basic an Event Driven language?”, “Yes”

Close 1

216
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

If you use the Close function without any parameters, it closes all open sequen-
tial data files.

Figure 8.3 shows a small program called the quiz creator, which uses most of the
sequential file access techniques you have learned so far. Its main purpose is to
create a data file containing question-related records. Each time the program is
executed, it overwrites any previous file. The quiz creator can be useful to you
when building the quiz game at the end of this chapter.

As shown in Figure 8.4, the result of the quiz creator is a data file containing
records and fields that you can view by opening it in an editor such as Notepad
or WordPad.

Throughout the program’s procedures, the fiQuestionNumber form-level vari-
able keeps track of the current question:

Option Explicit

Dim fiQuestionNumber As Integer

I open the quiz.dat data file in the form load event and assign the caption prop-
erty of a label control to that of the current question number:

Private Sub Form_Load()

Open “quiz.dat” For Output As #1

fiQuestionNumber = 1

lblQuestionNumber.Caption = “Question # “ & fiQuestionNumber

End Sub

HINT

217
C

h
a

p
te

r
 8

 D
a

ta
F
i le

s
 a

n
d

F
il e

 A
c
c
e
s

s

FIGURE 8.3

The quiz creator
creates quiz

records based on
user input.

FIGURE 8.4

A data file created
with the quiz

creator program.

Note that I provide the question number to the user throughout the life of the
program. This ensures that the question numbers are sequential.

Before adding a question record, I check that the user has entered a question and
answer. If the user has entered a question and corresponding answer, I use the
Write statement to add the record. After that, I increase the current question
number by 1 and update the label’s caption property with the new question
number:

Private Sub cmdNext_Click()

If txtQuestion.Text = “” Or txtAnswer.Text = “” Then

MsgBox “Both question and answer are required.”, , “Error!”

Exit Sub

Else

Write #1, fiQuestionNumber, txtQuestion.Text, txtAnswer.Text

fiQuestionNumber = fiQuestionNumber + 1

lblQuestionNumber.Caption = “Question # “ & fiQuestionNumber

txtQuestion.Text = “”

txtAnswer.Text = “”

txtQuestion.SetFocus

End If

End Sub

Last but not least, I close the sequential file with the Close statement in the click
event of the quit Command Button:

Private Sub cmdQuit_Click()

Close #1

End

End Sub

Random Access Files

Sometimes, you want to find a specific row or record in a data file. To accomplish
this in sequential file access; you have to read all the records before the record
you are looking for. If the file is quite large and the record being sought after is
close to the end of the file, this can be a time-consuming process and a frustrat-
ing endeavor for your users.

Random access provides an alternative to sequential file access and a solution to
the problem. Containing a similar record structure as sequential access files, ran-
dom access also uses records and fields to store information.

218
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

Although random access uses similar concepts, such as files, records, and fields,
its process for storing record information is quite different from sequential
access. Whereas sequential access uses a form of delimiters (such as commas) to
separate fields, random access uses what’s known as fixed record lengths. In
other words, for random access to work properly, all records in a data file must
maintain the same record length.

Fixed record lengths are easily maintained with numbers because all numbers
have fixed byte counts. For example, integers are stored as 2 bytes and single pre-
cision numbers are stored as 4 bytes. Strings, on the other hand, are unpre-
dictable. String data types shrink and grow as needed. You can, however, force a
string data type to become a predetermined size, through the use of fixed string
lengths.

The following syntax dimensions a variable with a fixed string length of 100
characters:

Dim VariableName As String * 100

To create a fixed string length, simply use the asterisk (*) symbol followed by an
integer number.

Data will be truncated if you assign a string value larger than the size of a fixed
string length variable.

User-Defined Types

Known as structs in C, user-defined types are special variables that allow you to
create a collection of variables not limited to one variable type.

You create user-defined types in Visual Basic with the keyword Type. For exam-
ple, I can use the following syntax to create a user-defined type called quiz:

Type Quiz

QuestionID As Integer

Question As String * 100

Answer As String * 100

End Type

Depending on the desired accessibility or scope, you can declare your user-
defined type as Public or Private:

‘Public scope

TRAP

219
C

h
a

p
te

r
 8

 D
a

ta
F
i le

s
 a

n
d

F
il e

 A
c
c
e
s

s

Public Type Quiz

QuestionID As Integer

Question As String * 100

Answer As String * 100

End Type

‘Private scope

Private Type Quiz

QuestionID As Integer

Question As String * 100

Answer As String * 100

End Type

When located in Forms modules, user-defined types must be declared Private in
form-level scope (like a form-level variable). Form-level user-defined types are only
accessible to procedures in that Form module. User-defined types, however, can
also be declared in standard code modules (covered in Chapter 9), where they can
take Private or Public scope. User-defined types declared as Private in standard
code modules are only available to that module. Declared as Public, however,
they become available to the entire Visual Basic project.

Once you create your user-defined data type, it is time to create instances of its
object type. Do what? You see, when you create a user-defined type, it is only a
shell or blueprint of an object or entity. To actually use the user-defined type, you
create an instance of it through other variables. For example, to use the quiz
user-defined type created earlier, I declare a variable as type quiz (as you would
create a variable of type Integer or String or Boolean):

Dim myQuiz As Quiz

Now I can access the elements of the quiz type by
referencing the myQuiz variable. Specifically, I
can use dot notation to gain access to a user-
defined type’s element:

myQuiz.QuestionID = 10

myQuiz.Question = “Is Visual Basic an Event

Driven language?”

myQuiz.Answer = “Yes”

Don’t worry if the concept of user-defined types doesn’t sink in right away. I
promise that if you work with them a little, they will eventually grow on you.
Besides, if you plan to add object-oriented programming to your bag of tricks, the
concept of objects and instances will be important.

220
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

Definition
Dot notation uses periods

after an object’s name to cre-

ate accessibility to its proper-

ties and methods.

Opening Random Access Files

As with sequential access, you must first open a data file for random access
before you can use it. With some minor differences from sequential access files,
you use the Open statement to open random access files:

Open PathName [For Random] As FileNumber Len = RecLength

PathName is the location of the data file. [For Random] is not required because it
is the default access type. FileNumber is the data file number that’s used for ref-
erence (similar to sequential access files). Len = RecLength is the size of each
record in bytes.

An error is generated if the record length in the data file is larger than the
RecLength argument.

Here are some functions you will find useful when dealing with random access
files:

• LenB—Returns a long number containing the size of a variable in bytes or
the number of characters in a string.

• FreeFile—Returns an integer number representing the next available file
number for use in an Open statement.

Using the Open statement and my newly found friends, I can open a quiz.dat
data file for random access:

Dim FileNumber As Integer

Dim TypeSize As Long

Dim myQuiz As Quiz

TypeSize = LenB(myQuiz)

FileNumber = FreeFile

Open “Quiz.dat” For Random As FileNumber Len = TypeSize

Reading Data from Random Access Files

Reading records from random access files is surprisingly easy. Simply use the Get
statement to store the record in your previously created user-defined type:

Get FileNumber, RecordNumber, UserDefinedType

The FileNumber represents the file number previously assigned in the Open
statement; the RecordNumber is the desired record number for reading; and the
UserDefinedType houses the corresponding record’s elements.

TRAP

221
C

h
a

p
te

r
 8

 D
a

ta
F
i le

s
 a

n
d

F
il e

 A
c
c
e
s

s

Here’s another example of the Get statement that retrieves the first record in a
quiz.dat data file:

Get FileNumber, 1, myQuiz

Each field in the first record is stored in the corresponding user-defined type’s
elements (providing you built your user-defined type with elements that directly
correspond to the fields in the quiz.dat records).

You can now access the elements of the myQuiz user-defined type, which holds
the fields in the first record of the quiz.dat data file. For example, if I want to
print the elements of myQuiz to a Picture Box control, I use the following dot
notation in conjunction with the Print method:

picOutput.Print myQuiz.QuestionID

picOutput.Print myQuiz.Question

picOutput.Print myQuiz.Answer

Editing and Creating Data
in Random Access Files

One of the key benefits of using random access files is the ability to directly access
one record anywhere in a data file and edit it. To do so, use the Put statement:

Put FileNumber, RecordNumber, UserDefinedType

As with the Get statement, you work with a user-defined type to edit and save a
record.

Here’s another example, where I assign values to the myQuiz user-defined type
and write them to the fifth record in the random access file:

myQuiz.QuestionID = 5

myQuiz.Question = “What function returns the next _

available file number?”

myQuiz.Answer = “FreeFile”

Put FileNumber, 5, myQuiz

To append a record to the end of a random access file, simply add 1 to the num-
ber of the last record in the file. Use the LOF function (as demonstrated in the
next section) to find the number of the last record in a file.

You can use the LOF (length of file) function to determine the length of an
opened data file in bytes:

LOF(FileNumber)

222
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

TE
AM
FL
Y

Team-Fly®

Moreover, the LOF function is particularly useful for determining how many
records exist in a random access file. Take the length of an opened random access
file and divide it by the length of your user-defined type:

Dim llRecordCount As Long

llRecordCount = LOF(FileNumber) / Len(myQuiz)

Another useful tool in the world of file access is the Seek function. The Seek
function returns a long number representing the next record in a random access
file:

Seek(FileNumber)

Closing a Random Access File

Just like sequential access files, random access uses the Close statement for clos-
ing a data file:

Close #FileNumber

Figure 8.5 shows a complete random access file program that creates quiz
records.

The first part of the code creates form-level variables and one user-defined type
called Quiz.

Option Explicit

Private Type Quiz

QuestionNumber As Integer

Question As String * 100

Answer As String * 100

End Type

Dim myQuiz As Quiz

Dim flFileNumber As Long

Dim flTypeSize As Long

Dim flRecordNumber As Long

223
C

h
a

p
te

r
 8

 D
a

ta
F
i le

s
 a

n
d

F
il e

 A
c
c
e
s

s

FIGURE 8.5

Creating persistent
quiz records

through random
access files.

With a little help from the LenB and FreeFile functions I open my data file
(quiz2.dat) for random access in the form load event.

Private Sub Form_Load()

flFileNumber = FreeFile

flTypeSize = LenB(myQuiz)

Open “quiz2.dat” For Random As flFileNumber Len = flTypeSize

flRecordNumber = 0

End Sub

To add a record, I first check that the user has entered relevant information.
After which, I assign data to the user-defined type and insert one record into the
file with the Put statement.

Private Sub cmdAdd_Click()

If txtQuestionNumber.Text = “” Then

MsgBox “Please enter a question number.”

txtQuestionNumber.SetFocus

Exit Sub

ElseIf txtQuestion.Text = “” Then

MsgBox “Please enter a question.”

txtQuestion.SetFocus

Exit Sub

ElseIf txtAnswer.Text = “” Then

MsgBox “Please enter an answer.”

txtAnswer.SetFocus

Exit Sub

End If

myQuiz.QuestionNumber = Val(txtQuestionNumber.Text)

myQuiz.Question = txtQuestion.Text

myQuiz.Answer = txtAnswer.Text

flRecordNumber = flRecordNumber + 1

Put flFileNumber, flRecordNumber, myQuiz

txtQuestionNumber.Text = “”

txtQuestion.Text = “”

txtAnswer.Text = “”

txtQuestionNumber.SetFocus

End Sub

Before ending the program, I close the file with the Close statement.

Private Sub cmdQuit_Click()

Close flFileNumber

224
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

End

End Sub

Private Sub Form_QueryUnload(Cancel As Integer, UnloadMode _

As Integer)

cmdQuit_Click

End Sub

Error Trapping for File Access

Error trapping is always a must when dealing with file I/O, or specifically, data
files. Why? Well, have you ever tried to access your floppy disk from Windows
Explorer only to get an error message because there is no floppy disk in the
drive? Or what if the disk is in the drive, but the file is not found, or better yet,
the file is there but it is corrupt?

As you see, you face all types of potential errors when dealing with sequential or
random access files. Your best bet is to plan ahead and create error trapping or
error-handling routines. In fact, it is safe to promote error trapping in any pro-
cedure that opens, writes, reads, appends, or closes files.

Your best bet for capturing file I/O errors is using Visual Basic’s Err object. The
Err object contains preexisting codes for various known errors such as “file not
found,” “disk not ready,” and many more that you can use to your advantage.

Here’s an error-handling routine from the quiz game that uses the Err object to
check for specific errors when the game attempts to open a file in the form load
event. As in any other error-handling routine, I start off my procedure by declar-
ing my error-handling label with an On Error GoTo statement:

Private Sub Form_Load()

On Error GoTo ErrorHandler:

This strange fellow (BeginHere:) is just another label:

cmdBeginNext.Caption = “Start”

fiQuestionNumber = 1

BeginHere:

You can actually put unique labels throughout your code, but it is not advised
because your code will turn into spaghetti. Nevertheless, they can serve useful
purposes as long as you keep their existence minimal and easy to follow. As you
will see later in the code, I choose the BeginHere label as a good starting point in
this procedure.

225
C

h
a

p
te

r
 8

 D
a

ta
F
i le

s
 a

n
d

F
il e

 A
c
c
e
s

s

After opening the sequential data file, the procedure is exited, providing no
errors have occurred:

Open “quiz.dat” For Input As #1

Exit Sub

But if an error does occur in opening the file, my guess is that it will be one of
the following error conditions (error codes). You can see that I’m using the Select
Case structure to check for specific Err object codes. If an error code is found, the
user is prompted with an opportunity to fix the problem. If she chooses to retry
the operation, the program resumes execution at the BeginHere label:

ErrorHandler:

Dim liResponse As Integer

Select Case Err.Number

Case 53

‘File not found

liResponse = MsgBox(“File not found!”, vbRetryCancel, “Error!”)

If liResponse = 4 Then ‘Retry

Resume BeginHere:

Else

cmdQuit_Click

End If

Case 71

‘Disk not ready

liResponse = MsgBox(“Disk not ready!”, vbRetryCancel, “Error!”)

If liResponse = 4 Then ‘Retry

Resume BeginHere:

Else

cmdQuit_Click

End If

Case 76

liResponse = MsgBox(“Path not found!”, vbRetryCancel, “Error!”)

If liResponse = 4 Then ‘Retry

Resume BeginHere:

Else

cmdQuit_Click

End If

Case Else

MsgBox “Error in program!”, , “Error”

cmdQuit_Click

End Select

End Sub

226
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

The above error handler can be refined to simply display the Err object’s number
and description in one simple message. Once the message is generated, the
user’s response is evaluated:

Dim Message as String

If Err.Number <> 0 Then

Message = “Error # “ & Str(Err.Number) & “, “ &

Err.Description

liResponse =MsgBox(Message, vbRetryCancel, “Error”,

Err.HelpFile, Err.HelpContext)

If liResponse = 4 Then

Resume BeginHere:

Else

CmdQuit_Click

End If

End If

Constructing the Quiz Game

Using persistent data stored in a sequential file, the quiz game prompts a user
with a predetermined number of questions as seen in Figure 8.6. After each ques-
tion is answered, the quiz game evaluates the answer and outputs the corre-
sponding score.

You can generate quiz records by hand through a text editor such as Notepad or
WordPad. Better yet, you can create them through a record creator such as the
one shown in the section “Sequential Access Files” earlier in this chapter.

TRICK

227
C

h
a

p
te

r
 8

 D
a

ta
F
i le

s
 a

n
d

F
il e

 A
c
c
e
s

s

FIGURE 8.6

The quiz game.

The Problem

Create a quiz game that prompts a user with questions read from a sequential
access file. After a question is answered, the quiz game should evaluate the
answer and output the score to a Picture Box.

Figure 8.6 depicts the quiz game with its controls and properties listed in Table 8.2.

A sample algorithm for the quiz game:

1. Create a sequential access file based on a predetermined record type.

2. Create a new standard EXE project.

3. Write code in the form load event to open an existing sequential access
file. The form load event should also contain error-handling routines to
handle file I/O problems.

4. Write code to start the quiz game. This code should read the first record in
the sequential access file and then stop and wait for the player to answer
the question.

5. Write code that responds to the user prompting for the next question. This
routine should score the current question, output the score to a Picture
Box, and then read the next available record.

6. Keep reading records, displaying questions, and scoring question and
answers until the end of file (EOF) is reached.

7. Write code to close the sequential access file when the quiz is completed.

228
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

Control Property Setting

frmMain Caption Chapter 8 – Quiz Game

Border Style 1 – Fixed Single

lblQuestion Caption Empty

txtAnswer Text Empty

cmdBeginNext Caption Command1

Default True

cmdQuit Caption &Quit

picScoreSheet

TABLE 8.2 CONTROLS AND PROPERTIES

OF THE QUIZ GAME

The Implementation

The quiz game starts by declaring two form-level variables in the general section
and opening a data file for input in the form load event. An error handler also
exists in the form load event to catch any file I/O or program errors.

Option Explicit

Dim fiQuestionNumber As Integer

Dim fsCurrentCorrectAnswer As String

Private Sub Form_Load()

On Error GoTo ErrorHandler:

cmdBeginNext.Caption = “Start”

fiQuestionNumber = 1

BeginHere:

Open “quiz.dat” For Input As #1

Exit Sub

ErrorHandler:

Dim liResponse As Integer

Select Case Err.Number

Case 53

‘File not found

liResponse = MsgBox(“File not found!”, vbRetryCancel, “Error!”)

If liResponse = 4 Then ‘Retry

Resume BeginHere:

Else

cmdQuit_Click

End If

Case 71

‘Disk not ready

liResponse = MsgBox(“Disk not ready!”, vbRetryCancel, “Error!”)

If liResponse = 4 Then ‘Retry

Resume BeginHere:

Else

cmdQuit_Click

End If

Case 76

liResponse = MsgBox(“Path not found!”, vbRetryCancel, “Error!”)

If liResponse = 4 Then ‘Retry

229
C

h
a

p
te

r
 8

 D
a

ta
F
i le

s
 a

n
d

F
il e

 A
c
c
e
s

s

Resume BeginHere:

Else

cmdQuit_Click

End If

Case Else

MsgBox “Error in program!”, , “Error”

cmdQuit_Click

End Select

End Sub

The BeginNext Command Button takes care of calling procedures to read the first
and subsequent questions and scoring the user’s answer.

Private Sub cmdBeginNext_Click()

If cmdBeginNext.Caption = “Start” Then

txtAnswer.Text = “”

If Get_Question = True Then

cmdBeginNext.Caption = “Next”

txtAnswer.SetFocus

End If

Else ‘Quiz is in progress

‘verify input

If txtAnswer.Text = “” Then

MsgBox “Enter an answer.”, , “Error”

txtAnswer.SetFocus

Exit Sub

Else

‘Score previous question

Score

If Get_Question = True Then

cmdBeginNext.Caption = “Next”

txtAnswer.Text = “”

txtAnswer.SetFocus

End If

End If

End If

End Sub

230
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

The Get_Question function reads a data file for a question and a corresponding
answer. If no more question records exist, the function stops the game by setting
properties and returning false to the calling procedure.

Public Function Get_Question() As Boolean

Dim liQuestionNumber As Integer

If EOF(1) <> True Then

Input #1, liQuestionNumber, fsCurrentQuestion, _

fsCurrentCorrectAnswer

lblQuestion.Caption = “Question # “ & liQuestionNumber & _

“. “ & fsCurrentQuestion

If fiQuestionNumber <> liQuestionNumber Then

fiQuestionNumber = fiQuestionNumber + 1

End If

Get_Question = True

Else

Get_Question = False

cmdBeginNext.Enabled = False

txtAnswer.Enabled = False

lblQuestion.ForeColor = vbBlue

lblQuestion.Caption = “Quiz Completed”

End If

End Function

The Score subprocedure evaluates the user’s response to the actual answer as
reported by the data file.

Public Sub Score()

If Trim(UCase(txtAnswer.Text)) = UCase(fsCurrentCorrectAnswer) Then

picScoreSheet.Print “Question # “ & fiQuestionNumber & _

“. “ & “Correct. “

Else

picScoreSheet.Print “Question # “ & fiQuestionNumber & _

“. “ & “Incorrect. Correct Answer: “ & fsCurrentCorrectAnswer

End If

End Sub

231
C

h
a

p
te

r
 8

 D
a

ta
F
i le

s
 a

n
d

F
il e

 A
c
c
e
s

s

The last two procedures handle closing the data file and ending the game.

Private Sub cmdQuit_Click()

Close #1

End

End Sub

Private Sub Form_QueryUnload(Cancel As Integer, UnloadMode _

As Integer)

cmdQuit_Click

End Sub

Summary

In this chapter, you learned how to build file access programs using sequential
access files that read one record at a time in sequential order. You also learned
how to create more dynamic file access programs using random access files that
use fixed record lengths and user-defined types to navigate through records and
fields. In addition to building file access programs, you learned how to prevent
file I/O errors using the Err object and labels.

Moreover, this chapter covered an important computer science concept called
file structures. File structures and file organization are key components to build-
ing and managing programs such as games, applications, databases, and operat-
ing systems.

232
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

CHALLENGES

1. Using any sequential access file, build a program that populates one or

more List Boxes with fields from records. Hint: You need to use a looping

construct to iterate through the sequential file until the EOF marker is

found. While looping through the file, use the AddItem method of the List

Box control to add fields as items to the List Box.

2. Create a random access program that allows a user to navigate through an

existing random access file. The program should also allow a user to make

edits (changes) to any record found.

3. Modify the quiz game to allow the player to start the quiz over again.

4. Migrate the quiz game from sequential access to random access.

TE
AM
FL
Y

Team-Fly®

T
his chapter shows you how to add multiple

forms to your projects to create about boxes

and splash screens. You will then learn about

code modules and an intriguing and sometimes contro-

versial computer science topic called encryption.

Specifically, I show you how to encrypt data with a

basic encryption algorithm using Visual Basic func-

tions in code modules. This should be an exciting and

intriguing chapter, so get your pop or coffee ready, and

let’s go.

This chapter covers the following topics:

• Creating and using multiple Forms

• Code modules

• Encryption

• Constructing the enhancements for the quiz game

Standard Code
Modules,

Multiple Forms,
and Encryption

9
C H A P T E R

Project: Enhancing the Quiz Game
with Encryption and Multiple Forms

Although functional, the quiz game from Chapter 8 contained one major secu-
rity flaw. Any player sophisticated enough to open the sequential file can find
the answers to the questions. The enhanced quiz game in this chapter solves this
security problem by implementing encryption.

In addition to encryption, the enhanced quiz game, shown in Figure 9.1, imple-
ments an about box and splash screen to add a custom and more professional feel
to the program.

Creating and Using Multiple Forms

Life would be simple if you could write all Visual Basic programs with just one
Form. Or would it be? Sometimes programs are actually easier to build and use
with multiple Forms. This might be the case if your program requires a number
of controls. For example, your program might be easier for users if you distribute
functionality to multiple Forms rather than cram all the controls and function-
ality onto one Form.

With an ATM (automated teller machine), the first object you see is a login
screen. After successfully logging into the bank’s system, you are prompted with
another screen that displays a menu of choices. For each menu item selected, a
new screen appears. You can probably imagine a painful human-to-computer
interaction if an ATM conducted all of its functionality on one screen. Now that
would be messy!

234
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

FIGURE 9.1

Using multiple
forms and

encryption to
enhance the quiz

game.

Visual Basic makes it easy for you to create and manage multiple Forms in one
project. Hey, it’s not rocket science; it’s computer science! Okay, in all serious-
ness, what other circumstances might require the use of multiple Forms? Well,
so far the ATM example is good, but what about an options screen in your game?
Maybe you want your players to click on a menu item that launches another
Form (screen) where they can make decisions on the game’s options. Or maybe a
high-scores screen appears after a player has reached a certain amount of points,
at which time the player can enter his or her name.

If you find yourself reaching for a scenario where your program should use mul-
tiple Forms, there might not be a need for more than one Form. After you have
some experience in designing applications (and receiving user feedback), you
will find that during design phase, programs speak to you about how their lay-
out and design should look and feel.

Although this chapter covers multiple Forms as they pertain to splash screens
and about boxes, the process for loading Forms and accessing their control’s
properties and methods is the same.

Creating an About Box

As a software developer, you might want to display specific information pertain-
ing to your application and company to users or customers. Such information
could contain a company logo, address, contact information, software version,
and copyright information. In the software world, this type of information is gen-
erally contained in a Form called an about box.

To add an about box to an existing standard EXE project, simply click on the Pro-
ject menu item and select Add Form, as shown in Figure 9.2.

A dialog box appears, prompting you with multiple choices on Form types. Sim-
ply select the Form icon and press Open.

Visual Basic provides a customizable about box template, the icon for which
(About Dialog) is shown in Figure 9.3.

Once the Form is added to your existing project, you might notice that it looks
and feels just like the default Form that is loaded when a new standard EXE pro-
ject is created. The newly added Form is the same as the default Form in a stan-
dard EXE project. Both Forms contain the same properties and methods.

HINT

235
C

h
a

p
te

r
 9

 S
t a

n
d

a
r
d

C
o

d
e

M
o

d
u

le
s

,
M

u
lt ip

le
F
o

r
m

s
,
a

n
d

 E
n

c
r
y

p
t io

n

You may also notice that your Project Explorer window contains two entries
under the Forms section. You can use the Project Explorer window to navigate
between Forms by double-clicking the Form icon, as shown in Figure 9.4.

You can now add controls to your second Form. Remember that because this
is an about box, you should add information or graphics that pertain to your

236
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

FIGURE 9.2

The Add Form
command on the

Project menu.

Add Form
menu item

FIGURE 9.3

Add Form
dialog box.

company, you the programmer, and the program itself. For example, Figure 9.5
depicts a Form I used as an about box for the enhanced quiz game.

After you add controls to your Form, you can write code to access it from any
other Form in your project. With the enhanced quiz game, I wanted users to
access the about box from a menu item. To call the about box (or any other Form,
for that matter), I simply called the Show method of the Form:

Private Sub mnuHelpAbout_Click()

frmAbout.Show

End Sub

237
C

h
a

p
te

r
 9

 S
t a

n
d

a
r
d

C
o

d
e

M
o

d
u

le
s

,
M

u
lt ip

le
F
o

r
m

s
,
a

n
d

 E
n

c
r
y

p
t io

n

FIGURE 9.4

Accessing Forms
through the Project
Explorer window.

The Project
Explorer window

FIGURE 9.5

An about box for
the enhanced quiz

game.

The Show method can also take an argument as its display type. In Visual Basic,
Forms are shown as modal or modeless (default). A Form displayed in modal form
prevents the user from accessing any other Forms in the current program (pro-
ject) until she has responded to the active Form:

Private Sub mnuHelpAbout_Click()

frmAbout.Show vbModal

End Sub

Forms shown with the modeless type do not prevent the user from switching to
other Forms in the application:

Private Sub mnuHelpAbout_Click()

frmAbout.Show vbModeless

End Sub

When creating about boxes, you have only one more piece of code to write. You
should have code written to unload the Form when a user decides to close your
about box. You use the Unload Me statement:

Private Sub cmdOK_Click()

Unload Me

End Sub

The Unload keyword essentially removes a Form or control from memory. You
use the Me keyword to reference the current active object (in this case, the about
form). Note that you can also simply reference the Form followed by the Unload
method as seen next.

Private Sub cmdOK_Click()

frmAbout.Unload

End Sub

You can also use the Me keyword to access the current object’s controls, proper-
ties, and methods. To do so, simply type the keyword Me followed by a period
(the dot notation). Visual Basic provides you a list of controls, properties, and
methods to choose from.

Creating Splash Screens

Splash screens are tools software developers sometimes use to trick a user into
thinking a large program is loading faster than it would if there were no splash

HINT

238
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

screen. For instance, a large accounting program that connects to a database, per-
forms transactions, and reads initialization strings during program load might
take a few moments to complete before showing its main Form. A user could
become impatient while the program loads, or he could even misinterpret the
application as not responding. Adding a splash screen to the accounting program
can distract the user by giving him something to look at while the program fin-
ishes loading.

Some splash screens are displayed while the program’s processes are loading and
disappear once the loading processes have completed. Other splash screens stay
visible until the user does something.

Essentially, there are two ways to create splash screens. In the first way, you sim-
ply add a Form to your project just as you would for an about box. After adding
the new Form, you place code in various events to show and unload the splash
screen (again, similar to the about box).

In the second way, you can use a Visual Basic template to assist you. To find the
splash screen template, simply add a new Form to your project by clicking the
Project menu item and selecting Add Form (see Figure 9.6).

The splash screen template provides a number of built-in, ready-to-use controls
and procedure code. As shown in Figure 9.7, I used a splash screen template for
the enhanced quiz game.

239
C

h
a

p
te

r
 9

 S
t a

n
d

a
r
d

C
o

d
e

M
o

d
u

le
s

,
M

u
lt ip

le
F
o

r
m

s
,
a

n
d

 E
n

c
r
y

p
t io

n

FIGURE 9.6

Splash screen
template icon in

the Add Form
dialog box.

Before modifying any default controls provided in the splash screen template,
you should first look at the default procedure code provided by the template:

Option Explicit

Private Sub Form_KeyPress(KeyAscii As Integer)

Unload Me

End Sub

Private Sub Form_Load()

lblVersion.Caption = “Version “ & App.Major & “.” & _

App.Minor & “.” & App.Revision

lblProductName.Caption = App.Title

End Sub

Private Sub Frame1_Click()

Unload Me

End Sub

First, notice that Visual Basic added code to unload the Form from memory in
the frame click event and form KeyPress event. What this means is that the
splash screen stays visible until a user clicks anywhere on the Frame control or
presses any key. In addition, Visual Basic adds default code for you in the splash
screen’s form load event. This code uses various App properties to dynamically
assign caption properties. To customize the App object’s properties, simply right-
click your project in the Project Explorer window and choose Project Properties.

The App keyword refers to the global App object. It can be used to access the
application’s version, title, path, and names of its executable and help files.

From the Project Properties window, shown in Figure 9.8, you can change some
of the project settings as they directly apply to the splash screen templates pro-
cedure code (such as version numbers). Once you modify the project properties
to reflect your current application, they are displayed on your splash screen.

HINT

240
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

FIGURE 9.7

The splash screen
for the enhanced

quiz game.

One piece of code not provided by Visual Basic’s splash screen template is the
process by which the splash screen appears. Normally, splash screens appear at
the beginning of an application, or in other words, before any other Form in the
project appears. You can set this up through the Project Properties window. Sim-
ply change the startup object from the Startup tab to that of the splash screen,
as shown in Figure 9.9.

Code Modules

You can think of modules as containers for all Visual Basic code. The way a mod-
ule is implemented depends on its type. Visual Basic provides three types of
modules (one of which you already know about): Form, Standard, and Class.

241
C

h
a

p
te

r
 9

 S
t a

n
d

a
r
d

C
o

d
e

M
o

d
u

le
s

,
M

u
lt ip

le
F
o

r
m

s
,
a

n
d

 E
n

c
r
y

p
t io

n

FIGURE 9.8

Project properties
in the Project

Properties window.

FIGURE 9.9

Changing the
startup object

from the Project
Properties window.

For example, in a small application, you might have only one Form. All of your
code for this small application resides in the one Form module. Over time, you
might add other Forms to your project. Each of those Forms modules will have
its own code. You may at some time need to share common procedures or global
variables among your Form modules. This is when you can decide to add a stan-
dard module to your project.

Standard modules (which have the *.bas extension) are similar to Form modules
because they can have declarations and procedures. However, unlike Form mod-
ules, a standard module contains no interface.

To add a standard module to your project, simply click on the Project menu item
and select Add Module (see Figure 9.10).

An Add Module dialog box appears, as in Figure 9.11, so you can select your
module.

Once you add the standard module, you can access it from the Project Explorer
window under the Modules section. In Figure 9.12, note that the newly added
standard module contains only a code window. There is no user interface.

To see how standard code modules are implemented with other modules such as
Forms, I’ve built a small program that displays application information into a
Picture Box as seen in Figure 9.13.

242
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

FIGURE 9.10

The Add Module
command on the

Project menu item.

Add Module
menu item

TE
AM
FL
Y

Team-Fly®

243
C

h
a

p
te

r
 9

 S
t a

n
d

a
r
d

C
o

d
e

M
o

d
u

le
s

,
M

u
lt ip

le
F
o

r
m

s
,
a

n
d

 E
n

c
r
y

p
t io

n

FIGURE 9.11

Selecting the
module from

the Add Module
dialog box.

FIGURE 9.12

Viewing the
standard module’s

code window.

FIGURE 9.13

Using standard
code modules.

To build this program, first create a new standard EXE project and add the applic-
able controls as seen in Figure 9.13. After controls have been added to the Form,
add a standard code module to the project by selecting the Add Module item
from the Projects menu item.

Open the standard code module’s window (if it’s not already open) and add a new
public subprocedure as seen here:

Option Explicit

Public Sub GetAppInfo()

frmMain.picOutput.Cls

frmMain.picOutput.Print “App version: “ & App.Major & “.”; App.Minor &

“.” & App.Revision

frmMain.picOutput.Print “App title: “ & App.Title

End Sub

Notice in the code above that control names are preceded with the Form name,
in this case frmMain. To access a Form’s controls and their properties and meth-
ods from a standard code module, you must first qualify with a Form name.

Save and close the standard code module and open the Form’s code window. Find
the two Command Button’s click events and add the following code:

Option Explicit

Private Sub cmdGetAppInfo_Click()

GetAppInfo

End Sub

Private Sub cmdClose_Click()

End

End Sub

In the click event of the app info Command Button I need to reference the stan-
dard code module’s subprocedure name to execute its statements. But, why did I
not need to precede the procedure’s name with the name of the module? Simply
put, scope is why. As seen below, the standard code module’s procedure is
declared as Public.

Public Sub GetAppInfo()

This means that it becomes available to other modules in the application as if
they were intrinsic (built-in) to each module. If, on the other hand, the procedure

244
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

was declared as Private, the program would no longer work. Procedures or
variables declared as Private are only available to the module in which they
were created.

Encryption

Cryptography is the science of encoding and protecting data from those whom
you do not trust. Cryptography uses a broad spectrum of technologies, such as
encryption, digital signatures, watermarks, cryptograms, algorithms, and math-
ematics, to name just a few.

Depending on the sensitivity of the information, cryptography can be simple to
design (and break) or complicated and near break-proof. In fact, the best cryp-
tography in this country is restricted from going overseas. Not surprisingly, the
United States is not the only country concerned about controlling cryptography;
most countries have developed some forms of laws and security agencies for
securing and monitoring cryptography.

But what is cryptography? Simply put, cryptography provides a solution to a
problem. What is the problem? Is it how to encrypt messages? Not really; the
problem goes deeper than just encrypting messages.

Technologists and security analysts know that you cannot always prevent some-
one from getting your data. For example, if you send encrypted information over
the public Internet, you are always—I mean always—in danger of someone cap-
turing the encrypted data.

The problem for the person who captures the encrypted data is how to hack the
algorithm that decrypts the message. This is the root problem of cryptography.

245
C

h
a

p
te

r
 9

 S
t a

n
d

a
r
d

C
o

d
e

M
o

d
u

le
s

,
M

u
lt ip

le
F
o

r
m

s
,
a

n
d

 E
n

c
r
y

p
t io

n

IN THE REAL WORLD

Every culture and subculture has a group of persons that attempt to misuse a

product or steal information. In the world of computers, these people are known

as hackers.

The term hacker was not always synonymous with someone who committed

computer crimes. Originally, the term hacker represented someone who knew a

little more about a particular computer system than the average user. Hackers

were considered the technologists who always knew how to figure out a prob-

lem on a computer. If they didn’t know the solution off-hand, they would spend

the time necessary to hack it out.

How can you protect data once it has been received or stolen by the wrong per-
son? In other words, what kind of algorithm will take so long to hack that it is
not feasible with current technology or a realistic amount of time?

How do you disguise a message? Well, the sim-
ple answer is to take the original mes-
sage, called plaintext, and disguise it with
ciphertext.

For example, let’s say I want to send you the
phrase “Top Secret” as ciphertext. Well, first I
have to come up with a key (or algorithm) for
encrypting the message and then a key for
decrypting the message.

Using the alphabet and a swapping pattern, I
can encrypt a message by replacing one char-
acter for another. I’ll call this swapping pat-
tern move by n, where n is the number of
moves to make.

For instance, if I use a move-by-2 pattern, the plaintext letter a is replaced by the
letter c, the letter b is replaced by the letter d, and so on.

My plaintext message “Top Secret” now becomes “Vqr Ugetgv.” Hey, that was
pretty cool! Now, unless you know the key, move by 2, the message seems useless
and unreadable.

Numbering Systems

As you saw earlier, there are ways to encrypt data without using computers. But
in reality, all modern cryptography happens with some form of technology or
computers. Because this is a computer book, I show you how to create applied
encryption and decryption using Visual Basic. Before you dive into applied cryp-
tography and encryption, you need to learn some basics about computer num-
bering systems.

At the lowest level, computer hardware such as digital circuitry uses electrical
signals to represent data or decisions. Computer software can recognize these
electrical signals as either off or on. These off and on patterns are translated into
binary digits (1 for on and 0 for off), which can then be translated into an inte-
ger equivalent number. These integer equivalents are known as ASCII (American
Standard Code for Information Interchange) codes that can represent keyboard
characters.

246
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

Definition
Plaintext is a readable message.

Ciphertext is an unreadable

message in encrypted form.

Definition
Keys, like their physical counter-

parts, lock and unlock some-

thing. Keys normally refer to an

algorithm for encrypting a mes-

sage or decrypting a message.

ASCII uses 8 bits to represent one character and can encode a total of 256 char-
acters (28 = 256) ranging 0 to 255. Although the process of converting binary code
into ASCII code is beyond the scope of this book, you can get a feel for number-
ing systems by looking at Table 9.1.

ASCII codes 0 to 127 appear in Appendix A. For a complete list of ASCII codes (0
to 255), visit Microsoft’s Web site at http://www.microsoft.com or enter keyword
“ASCII” in your copy of MSDN Library.

What if we want the number 97 and not the letter a? Does the binary code
01100001 represent both? Yes, it does represent both. The only way a computer
knows how to represent binary codes is in the way you use it.

247
C

h
a

p
te

r
 9

 S
t a

n
d

a
r
d

C
o

d
e

M
o

d
u

le
s

,
M

u
lt ip

le
F
o

r
m

s
,
a

n
d

 E
n

c
r
y

p
t io

n

Binary Code ASCII Code Keyboard Character

00110000 48 0

00110001 49 1

00110010 50 2

00110011 51 3

00110100 52 4

00110101 53 5

00110110 54 6

00110111 55 7

00111000 56 8

00111001 57 9

01100001 97 a

01100010 98 b

01100011 99 c

01100100 100 d

01100101 101 e

01100110 102 f

01100111 103 g

01101000 104 h

01101001 105 i

01101010 106 j

TABLE 9.1 SAMPLE CONVERSIONS

You might remember the functions Str and Val
from earlier chapters. These functions are good
examples of how you control what the com-
puter displays or returns.

Simple Encryption Algorithm

Using Visual Basic, you are ready to take what you know about cryptography and
computer numbering systems and build a simple encryption algorithm. Before
you begin, let me refresh you with the definition of an algorithm: An algorithm
is a finite, step-by-step process for solving a problem.

With that in mind, what kind of algorithm can we write to encrypt any plaintext
message? Well, I start off with a non-technical algorithm similar to the move-by-
n key discussed earlier:

1. Create a plaintext message.

2. Begin a looping process that looks at each character in the plaintext
message.

3. For each character found, replace it with a different character.

4. Output a completed ciphertext message.

So far, so good; but what characters will I replace the plaintext characters with?
Knowing what you now know about numbering systems, you could replace plain-
text characters with ASCII codes. Here’s another more refined algorithm with a
little more technical detail:

1. Create a plaintext message.

2. Pass the plaintext message to an encrypt function.

3. Within the encrypt function, begin a looping process through the entire
plaintext message starting with the first character.

4. For each character found, replace it with its corresponding character code
(ASCII) value.

5. Output a completed ciphertext message.

Okay, this algorithm is a little more precise but still lacks a good key. In other
words, anyone understanding computer-numbering systems can translate each
ASCII value to a corresponding plaintext character. That’s no good!

A better approach to this key adds a little randomization to the algorithm. The
process of adding randomization to a key is, well, only limited by your imagina-
tion or creativity.

248
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r Definition

The Str function converts a number

to a string value. The Val function

converts a string value to a number.

One way to add randomization to the algorithm is to take the length of the
incoming string (plaintext message) and add that number to the character’s cor-
responding ASCII value. After that, I can take the ASCII code and find its new cor-
responding character value. Although certainly not hack-proof, this key is
starting to sound a little more cryptic in nature. Here’s the revised algorithm:

1. Create a plaintext message.

2. Pass the plaintext message to an encrypt function.

3. Acquire the length of the incoming string.

4. Within the encrypt function, begin a looping process through the entire
plaintext message starting with the first character.

5. For each character found, add the length of the string to its corresponding
character code (ASCII) value.

6. Convert the new ASCII value to its corresponding character value.

7. Output a completed ciphertext message.

Now let me show you how I implemented this algorithm in Visual Basic.

With the exception of the do while loop’s contents, everything in the code
should look familiar to you:

Public Function Encrypt(inString As String) As String

Dim liCurrentPosition As Integer

Dim liStringSize As Integer

Dim lsTempString As String

Dim lsCurrentCharacter As String

liCurrentPosition = 1

lsTempString = “”

liStringSize = Len(inString)

Do While liCurrentPosition <= liStringSize

lsCurrentCharacter = Chr(Asc(Mid(inString, liCurrentPosition, _

1)) + liStringSize)

liCurrentPosition = liCurrentPosition + 1

lsTempString = lsTempString & lsCurrentCharacter

Loop

Encrypt = lsTempString

End Function

249
C

h
a

p
te

r
 9

 S
t a

n
d

a
r
d

C
o

d
e

M
o

d
u

le
s

,
M

u
lt ip

le
F
o

r
m

s
,
a

n
d

 E
n

c
r
y

p
t io

n

In the loop, I first use the Mid function to
acquire all characters, one at a time in the
plaintext message. Next, I use the Asc
function to convert the character into its
corresponding character code (ASCII
value). Finally, I add the incoming string
length to the character code before using
the Chr function to convert an ASCII value
into a character.

Now you’ve seen the key implemented as
an encryption function. Can you guess
what the decryption key would look like?
All right, I won’t keep you in suspense.
Here’s the other key that unlocks the decrypted message:

Public Function Decrypt(inString As String) As String

Dim liCurrentPosition As Integer

Dim liStringSize As Integer

Dim lsTempString As String

Dim lsCurrentCharacter As String

liCurrentPosition = 1

lsTempString = “”

liStringSize = Len(inString)

Do While liCurrentPosition <= liStringSize

lsCurrentCharacter = Chr(Asc(Mid(inString, liCurrentPosition, _

1)) - liStringSize)

liCurrentPosition = liCurrentPosition + 1

lsTempString = lsTempString & lsCurrentCharacter

Loop

Decrypt = lsTempString

End Function

After looking at the decrypt function, you may notice that the only difference
between the two keys is the way the functions treat the length of the incoming
messages.

250
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r Definition

The Asc function takes a string value

as its argument and returns the corre-

sponding character code.

Asc(String)

The Chr function takes a character

code (ASCII value) as its parameter

and returns a string containing the

corresponding character value.

Chr(CharacterCode)

To be more exact, the encryption key adds the length of the incoming plaintext
message to the character code, and the decryption key subtracts the length of the
incoming ciphertext message from the character code. Voilà, that’s it! Two keys
are created in Visual Basic, one to close the door and one to open it.

The graphical output of the encrypt/decrypt program appears in Figures 9.14
and 9.15.

Login Dialog Box and Passwords

As you’ve seen, cryptography and encryption can be important security tools in
sending messages. Sometimes, however, the display of data (or the lack thereof)
can be as important as the key used to encrypt it. Passwords, for example, should
always be encrypted. But it would be cumbersome for us as users to enter an
encrypted password every time we want access to a particular system.

Wouldn’t it be easier if you could just enter your password as plaintext and leave
the encryption/decryption to the operating system? Sure it would. In fact, that is
how most (if not all) operation systems work today. You never enter an encrypted
password into a login screen. You simply enter your plaintext password for

251
C

h
a

p
te

r
 9

 S
t a

n
d

a
r
d

C
o

d
e

M
o

d
u

le
s

,
M

u
lt ip

le
F
o

r
m

s
,
a

n
d

 E
n

c
r
y

p
t io

n

FIGURE 9.14

The
encrypt/decrypt

program ready to
encrypt a plaintext

message.

FIGURE 9.15

A ciphertext
message encrypted

with the
encrypt/decrypt

program.

system access, and the operating system stores your password for future lookup
in a ciphertext (encrypted) format.

There is, however, a catch to entering plaintext passwords. Characters entered for
passwords on most login screens are converted to a mask. The mask generally
consists of a pattern using one character, such as an asterisk (*). Visual Basic pro-
vides this masking technique for all Text Box controls in the form of the Pass-
wordChar property. The PasswordChar property dictates the character shown for
each character entered into the Text Box.

In addition to password masking, Visual Basic provides the MaxLength property
for controlling the length of passwords. The MaxLength property takes an inte-
ger number representing the allowed length of the Text property.

Creating login screens in Visual Basic is easy. You can create your own with a
Form, or you can use Visual Basic’s standard login dialog template. To access
Visual Basic’s login dialog template, simply click the Project menu item and
select Add Form. When the Add Form dialog appears, choose the Log in Dialog,
as shown in Figure 9.16.

After adding the Log in Dialog template to your project, you can customize it
(code) and its controls as needed (see Figure 9.17).

Constructing the Enhancements
for the Quiz Game

As seen in Figure 9.18, the enhanced quiz game offers new features such as a
splash screen about box and encryption.

252
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

FIGURE 9.16

Selecting the Log in
Dialog template

from the Add Form
dialog.

TE
AM
FL
Y

Team-Fly®

The Problem

Enhance the quiz game from Chapter 8 to include a splash screen, about box, and
encryption for stored answers.

Necessary tools for enhancing the quiz game:

• One about box template

• One splash screen template

• One standard module

253
C

h
a

p
te

r
 9

 S
t a

n
d

a
r
d

C
o

d
e

M
o

d
u

le
s

,
M

u
lt ip

le
F
o

r
m

s
,
a

n
d

 E
n

c
r
y

p
t io

n

FIGURE 9.17

The Login Dialog
template.

Login dialog box

Text Box used for
user name

Text Box used for
password

FIGURE 9.18

The enhanced
quiz game.

The following steps are the algorithm for adding the about box:

1. Add one about box template to the existing quiz game project.

2. Customize controls on the about box form.

3. Write code to open and close the about box.

Here’s how you add the splash screen template:

1. Add one splash screen template to the existing quiz game project.

2. Customize controls on the splash screen form.

3. Change the startup object under Project Properties to that of the splash
screen.

4. Modify the splash screen’s default procedure code to show the main quiz
game after it has unloaded.

Follow these steps to add encryption to the quiz game:

1. Add one standard module to the quiz game project.

2. Implement a decryption key (as shown in the section “Simple Encryption
Algorithm” earlier in this chapter) in the standard code module.

3. Modify the quiz game’s code to pass the stored answer to the decryption
function prior to scoring an item.

The Implementation

The first code segment is the form module code for the about box:

Option Explicit

Private Sub cmdOK_Click()

Unload Me

End Sub

Next, you write the form module code for the splash screen:

Option Explicit

Private Sub Form_KeyPress(KeyAscii As Integer)

Unload Me

frmMain.Show

End Sub

Private Sub Form_Load()

lblVersion.Caption = “Version “ & App.Major & “.” & App.Minor _

254
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

& “.” & App.Revision

lblProductName.Caption = App.Title

End Sub

Private Sub Frame1_Click()

Unload Me

frmMain.Show

End Sub

Following is the standard module code for the decryption key:

Option Explicit

Public Function Decrypt(inString As String) As String

Dim liCurrentPosition As Integer

Dim liStringSize As Integer

Dim lsTempString As String

Dim lsCurrentCharacter As String

liCurrentPosition = 1

lsTempString = “”

liStringSize = Len(inString)

Do While liCurrentPosition <= liStringSize

lsCurrentCharacter = Chr(Asc(Mid(inString, liCurrentPosition, _

1)) - liStringSize)

liCurrentPosition = liCurrentPosition + 1

lsTempString = lsTempString & lsCurrentCharacter

Loop

Decrypt = lsTempString

End Function

The last segment contains the modified form module code for the quiz game:
(For a complete list of quiz game program code, see Chapter 8.)

Public Sub Score()

If Trim(UCase(txtAnswer.Text)) = _

UCase(Decrypt(fsCurrentCorrectAnswer)) Then

picScoreSheet.Print “Question # “ & fiQuestionNumber & _

“. “ & “Correct. “

Else

picScoreSheet.Print “Question # “ & fiQuestionNumber & “. “ _

255
C

h
a

p
te

r
 9

 S
t a

n
d

a
r
d

C
o

d
e

M
o

d
u

le
s

,
M

u
lt ip

le
F
o

r
m

s
,
a

n
d

 E
n

c
r
y

p
t io

n

& “Incorrect. Correct Answer: “ & Decrypt(fsCurrentCorrectAnswer)

End If

End Sub

Summary

This chapter showed you how to work with multiple Forms in Visual Basic. You
specifically learned that Visual Basic already provides some easy-to-use Form tem-
plates such as about boxes, splash screens, and login dialogs.

You also made a transition from thinking about Forms as control containers to
Form modules as control and code containers. This concept was presented with
the idea of using standard modules for sharing global variables and procedures
across a project.

Beyond modules, this chapter introduced the exciting premise and application
of cryptography and encryption. You specifically learned that cryptography is the
art, science, and technology behind safeguarding messages. You also saw how
you can design basic encryption keys through algorithms and implement them
in programming languages such as Visual Basic.

256
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

CHALLENGES

1. Add your own custom about boxes and splash screens to previous games

or programs you have built.

2. Create a new quiz creator program that encrypts the answer associated

with the question. Use the quiz creator program from Chapter 8 to aid you

in program design.

3. Add a login dialog to the new quiz creator program. The login dialog should

allow only authorized users into the quiz creator. When a user name and

password are entered, the login dialog should check the string values

against an existing encrypted sequential file of user names and passwords.

4. Modify the encryption/decryption keys in this chapter to use other random

criteria. For example, instead of using the length of the incoming string, you

could use the time of day, day of week, the rnd function, or anything else

that appears random. Hint: If you use a random number such as time of day,

you need to include that number somehow into your ciphertext. Otherwise,

you have no way of knowing what was used in the encryption key during

the decryption process.

10

I
n this chapter, you will increase your

computer science, programming, and

Visual Basic skills to include a new

structure called arrays. You will become familiar

with array concepts such as multidimensional

arrays, control arrays, dynamic arrays, upper and

lower bounds, and the PictureClip control. The

array topics covered in this chapter take you from

basic array concepts to a fully functional game

program called video poker. Specifically, this

chapter covers the following topics:

• Arrays

• Control arrays

• PictureClip control

• Constructing the blackjack game

Arrays

C H A P T E R

Project: Video Poker (Blackjack) Game

The video poker game uses arrays and a PictureClip control to simulate a popu-
lar card game known as blackjack or 21. Figure 10.1 shows the video poker game.

Arrays

Don’t worry if you find this chapter to be a bit complex at first. Most beginning
programmers find array structures a difficult concept to master. Nevertheless,
arrays are an integral component of any programming language, and you should
implement them whenever possible.

The first thing to learn about arrays is that
arrays are just variables. However, they are spe-
cial variables that contain a group of like data
types. Like variables, arrays can be classified
into various data types. For instance, you could
have an array of integers, an array of strings, an

258
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

FIGURE 10.1

Using arrays and
the PictureClip

control to create
the video poker

game.

Definition
Arrays are a grouping of mem-

ory locations containing the

same name and data type.

IN THE REAL WORLD

To array or not to array: Believe it or not, most programmers use arrays to sim-

plify their program code. Arrays provide a mechanism for keeping like data types

together and for accessing them. Surprisingly, using arrays in program code gen-

erally produces cleaner and smaller code. The tricky part, however, is identifying

when to use arrays. Generally speaking, whenever you have a number of like

data-types serving the same function, you might want to use an array.

array of doubles, or even an array of arrays (yikes). Unlike variables that contain
one data type element, arrays can contain many variable elements of the same
type.

You may remember that variables are placeholders for memory addresses that
contain the location of data. As seen in Figure 10.2, an integer variable called
myInteger points to a location in memory 4 bytes long where the integer value
lives.

Arrays, on the other hand, can contain multiple contiguous memory segments
using just one variable name. As seen in Figure 10.3, an array of integers called
myArray(4) points to a location in memory containing five contiguous 4-byte
integer data types.

You can access the individual memory locations of an array through the use of
element numbers, such as myArray(2).

259
C

h
a

p
te

r
 1

0
 A

r
r
a

y
s

FIGURE 10.2

The memory
location of an
integer value.

myInteger

name of�
variable

integer�
value

55

FIGURE 10.3

An array contains a
contiguous block of
memory locations.

myArray(0)�
�
myArray(1)�
�
myArray(2)�
�
myArray(3)�
�
myArray(4)

integer�
value

27

100

4

255

62

Array�
name

element�
number

Declaring Arrays

Arrays have what is known as upper and lower bounds. This essentially means
that an array has a starting element number and an ending element number. To
declare an array, simply dimension the array name followed by parentheses con-
taining its upper bound:

Dim ArrayName(Number of Elements) As DataType

For example, if I want to create an integer array called myArray that contains five
elements, I use the following syntax:

Dim myArray(4) As Integer

Notice that my element number is 4 instead of 5. This is because array elements
start with the element number zero (0). In other words, the lower bound is 0, and
the upper bound is 5. You can, however, specify a lower bound for an array in its
declaration:

Dim myArray(1 To 5) As Integer

Explicitly declaring a lower bound element number and upper bound element
number allows me to access the first element in myArray with element number 1.

Beginning and even experienced programmers face the notorious off-by-one
error every now and then. The off-by-one error generally represents a program
statement trying to access an array element that either does not exist or does
exist and returns an unintentional value. These off-by-one errors happen
because the programmer forgot the array’s upper and lower bounds.

As with other variables, you can declare arrays using the keywords public and
private depending on the desired scope.

It is worthy to mention that when creating fixed-size arrays, Visual Basic allo-
cates the number of bytes necessary to hold all array elements. Being memory-
conscious, you should have a pretty good idea of how many elements the array
will use throughout the life of your program. This prevents you from having to
create unnecessary element numbers and thus saves memory. However, there is
a way to create arrays that will allocate elements as needed. See the section
“Dynamic Arrays” later in this chapter for more information on dynamic ele-
ment allocation.

HINT

TRAP

260
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

The default lower bound for arrays is 0. You can, however, change the default
lower bound with the Option Base statement. The Option Base statement is used
at the module level outside of any procedures:

Option base 1

Using the above statement provides arrays (except for arrays that are declared
with a different lower bound) with the default lower bound of 1.

Single Dimension Arrays

The arrays you have seen so far are known as single dimension arrays. A single
dimension array contains a single row of like data. The best way to understand
arrays and their elements is to build and use them. Figure 10.4 shows a small pro-
gram that uses a single dimension array to print the contents of its elements.

I declared a form-level single dimension array called myArray to contain 10 inte-
ger elements:

Option Explicit

Dim myArray(9) As Integer ‘10 elements

In the form load event, I use a For loop to assign an incrementing integer value
to each element in the array. Notice that I can use a number variable to reference
an element of the array: (In this case, x is an integer variable representing an ele-
ment number.)

Private Sub Form_Load()

Dim x As Integer

‘Populate the array

For x = 0 To 9

myArray(x) = x

Next x

End Sub

TRICK

261
C

h
a

p
te

r
 1

0
 A

r
r
a

y
s

FIGURE 10.4

Accessing the
elements of a

single dimension
array.

I use another For loop to print the contents of each element in the array to a
Picture Box control:

Private Sub cmdPrint_Click()

Dim x As Integer

‘Print array elements

For x = 0 To 9

Picture1.Print “Element “ & myArray(x)

Next x

End Sub

The last two procedures handle program termination.

Private Sub cmdQuit_Click()

End

End Sub

Private Sub Form_QueryUnload(Cancel As Integer, UnloadMode As Integer)

cmdQuit_Click

End Sub

Multidimensional Arrays

Sometimes data cannot be accurately depicted and stored in a single dimension
array. Suppose you want to store the x and y coordinates of a map or grid or the
rows and columns of a record from a file. You can implement these and many
other examples through the use of a two-dimensional array. Also known as multi-
subscripted arrays, multidimensional arrays are not limited to just two dimen-
sions. Although it is not uncommon to have three- and even four-dimensional
arrays, this section concentrates on two-dimensional arrays only.

As depicted in Figure 10.5, it is easiest to visualize a two-dimensional array with
rows and columns.

Like their singular counterpart, multidimensional arrays share similar scope to
variables, and share a common name. They have like data types, and they are ref-
erenced through element numbers (or indices). The following statement creates
a two-dimensional array with four rows and four columns:

Dim myArray(3, 3) As String

This gives the array a total of 16 elements. As shown in the next segment, you can
also explicitly declare upper and lower bounds with two-dimensional arrays:

Dim myArray(1 To 4, 1 To 4) As String

262
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

TE
AM
FL
Y

Team-Fly®

Both array declarations yield the same number of elements, 16. Looping con-
structs also play an important role in multidimensional arrays. For instance, to
access a given element in a two-dimensional array, you need two loops, one inner
and one outer. To see how this works, take a look at the following program
depicted in Figure 10.6, which demonstrates a two-dimensional array.

263
C

h
a

p
te

r
 1

0
 A

r
r
a

y
s

FIGURE 10.5

A two-dimensional
array with rows

and columns.

Multidimensional (2-Dimensional) Array

Row 1�
Column 0

Row 1�
Column 1

Row 1�
Column 2

Row 1�
Column 3

Row 0�
Column 0

Row 0�
Column 1

Row 0�
Column 2

Row 0�
Column 3

Row 2�
Column 0

Row 2�
Column 1

Row 2�
Column 2

Row 2�
Column 3

Row 3�
Column 0

Row 3�
Column 1

Row 3�
Column 2

Row 3�
Column 3

Row Column

FIGURE 10.6

Working with
multidimensional

arrays.

Here I declare a two-dimensional array of string data types. Total elements in this
array are 16:

Option Explicit

Dim myArray(3, 3) As String ‘16 elements

To assign a string value to all elements in my two-dimensional array, I use an
outer loop to get the row number and an inner loop to access the column. Notice
that the inner loop iterates through all columns before moving on to the next
row:

Private Sub Form_Load()

Dim liOuterLoop As Integer

Dim liInnerLoop As Integer

‘Populate the array

For liOuterLoop = 0 To 3

For liInnerLoop = 0 To 3

myArray(liOuterLoop, liInnerLoop) = “Row “ & liOuterLoop & “, _

Column “ & liInnerLoop

Next liInnerLoop

Next liOuterLoop

End Sub

Using similar looping techniques, I print the contents of each element to a Pic-
ture Box control:

Private Sub cmdPrint_Click()

Dim liOuterLoop As Integer

Dim liInnerLoop As Integer

‘Print array elements

For liOuterLoop = 0 To 3

For liInnerLoop = 0 To 3

Picture1.Print myArray(liOuterLoop, liInnerLoop)

Next liInnerLoop

Next liOuterLoop

End Sub

The last two procedures handle the unloading of the program.

Private Sub cmdQuit_Click()

End

264
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

End Sub

Private Sub Form_QueryUnload(Cancel As Integer, UnloadMode As Integer)

cmdQuit_Click

End Sub

How many inner loops do you think it would take to assign values to each ele-
ment in a three-dimensional loop? What do you think this array would look like?
I’ll give you a hint: Visualize a Rubik’s Cube, and you get a three-dimensional
array. What about a four-dimensional loop? Can you visualize what that array
would like? You can probably see that it becomes difficult to visualize or describe
multidimensional arrays after a third dimension.

Dynamic Arrays

Fixed-sized arrays are perfect when you know the number of elements to work
with. But what about the times you’re unsure about the number of elements
needed for an array? Should you take your best guess? Maybe the answer is just
to create a huge array that would always be able to accommodate data. Well, I
think you already know that neither of these options is the correct way to solve
this problem.

Visual Basic, however, solves this problem for us through the use of dynamic
arrays. Dynamic arrays are similar to their cousins in that they share a similar
name, like data, and elements to access specific memory locations. What makes
dynamic arrays unique is their ability to be resized. Essentially, they can increase
and decrease at any time during program execution.

To declare a dynamic array, simply leave the bounds out of the parentheses:

Dim dynamicArray()

Once you declare the array, you can add elements dynamically through the
ReDim keyword. The ReDim keyword allocates the number of elements to a
dynamic array. Note that the ReDim keyword is actually an executable statement
and therefore must be used in a procedure:

ReDim dynamicArray(4)

Like static-array declarations, the ReDim statement can use variable names for
upper and lower bounds. In addition, you can set explicit bounds in a ReDim
statement:

ReDim dynamicArray(1 To 5, x To y)

265
C

h
a

p
te

r
 1

0
 A

r
r
a

y
s

Note that every time a ReDim statement is executed, any previous data stored in
the array’s elements is lost.

If you want to preserve the contents of a dynamic array while increasing its size,
use the Preserve keyword with ReDim. For example, you create a two-dimensional
array as follows:

ReDim dynamicArray(5, 5)

Later, you need to increase the size of the array, but you do not want to lose its
contents. You could you the Preserve keyword to dynamically increase the array’s
size and maintain its values:

ReDim Preserve dynamicArray(5, 10)

The Preserve keyword can only be used to increase an array’s upper bound of its
last dimension.

Control Arrays

As you have seen, arrays can have many data types. In addition to customary data
types, Visual Basic supports the concept of control arrays. You can think of this
array type as an array of objects, or in this case, an array of controls.

Control arrays support all types of Visual Basic controls. For instance, you could
have an array of Labels, Command Buttons, Option Buttons, Text Boxes, Picture
Boxes, or Images, to name just a few.

Why would you want an array of controls? Well, in short, you might want an
array of controls for the same reason you would want any other array, such as cre-
ating and maintaining less code or combining like data (in this case, like con-
trols). Beyond programming esthetics, control arrays offer the benefit of shared
procedures and events.

To create a control array in Visual Basic during design time, simply add a control
to your Form. Next, copy the control using either menu options or keyboard
shortcuts, and paste the copy in memory to the same Form. A dialog box should
appear asking whether you want to create a control array. After you select Yes in
the dialog box, the new control is added and your control array is created. After
which, you can continue to add controls to the array by pasting until you have
the desired amount.

TRAP

266
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

When a control becomes part of a control array, its name remains that of the con-
trol array, with an element or index indicating its specific identity (as shown in
Figure 10.7).

Set all necessary control properties before making a control array. Otherwise,
you will have to set control properties for each control in the array.

Double-clicking on any control in the array produces the same event. These
shared events pass an index as an argument that you can use to identify each
control in the array:

Private Sub Command1_Click(Index As Integer)

Command1(1).Caption = “Index 1”

End Sub

Beyond design time, Visual Basic offers a more dynamic approach to control
arrays in runtime. During runtime, you can dynamically add controls and
remove controls from a control array. You add and remove these dynamic con-
trols using the Load and Unload statements:

Load ObjectName(Index)

If you want to load a control into a control array, you first must create the array
in design time.

TRAP

267
C

h
a

p
te

r
 1

0
 A

r
r
a

y
s

FIGURE 10.7

Adding a control
array to a Form.

Control array
Element number

Visual Basic generates an error if you try to load an index already in use.

When you unload controls from a control array, the index must be a valid index;
otherwise, Visual Basic generates an error:

Unload ObjectName(Index)

It is also worthy to note that you cannot unload any controls from an array that
were created in design time.

Okay, let me show you how these control arrays come together to build a small
program as seen in Figure 10.8.

When the user clicks the Add Command Button, I first check whether the vari-
able fiMaxElementId is not greater than 6. In other words, I do not want any
more than 7 controls added. If I’m under the limit, I add another Label to the
array using the Load statement. After that, I use the Top property to properly
position the new Label directly underneath the previous Label:

Option Explicit

Dim fiMaxElementId As Integer

Private Sub cmdAdd_Click()

If fiMaxElementId = 0 Then

fiMaxElementId = 1

End If

If fiMaxElementId > 6 Then

Exit Sub

End If

TRAP

268
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

FIGURE 10.8

Demonstrating
dynamic control

arrays during
runtime.

fiMaxElementId = fiMaxElementId + 1

Load lblLabel(fiMaxElementId)

lblLabel(fiMaxElementId).Top = lblLabel(fiMaxElementId - 1).Top + 400

lblLabel(fiMaxElementId).Caption = “Array Element “ & fiMaxElementId

lblLabel(fiMaxElementId).Visible = True

End Sub

When the Remove button is clicked, I use the Unload statement to unload the
current control created in runtime:

Private Sub cmdRemove_Click()

If fiMaxElementId <= 1 Then

Exit Sub

End If

Unload lblLabel(fiMaxElementId)

fiMaxElementId = fiMaxElementId - 1

End Sub

When any of the Labels are clicked, they share the same click event as shown
below. Using this shared event and the incoming index, I update the Frame’s Cap-
tion property accordingly:

Private Sub lblLabel_Click(Index As Integer)

Frame1.Caption = “Label (Index “ & Index & “)”

End Sub

The remaining part of the code closes the control array program.

Private Sub cmdExit_Click()

End

End Sub

Private Sub Form_QueryUnload(Cancel As Integer, UnloadMode As Integer)

cmdExit_Click

End Sub

The PictureClip Control

Now that you have an understanding of arrays, I can move on to an interesting
control that uses an array-like concept to store images. The PictureClip control
uses a grid-like system to store icons or bitmaps in one picture. Its specific bene-
fit involves resources and efficiency.

269
C

h
a

p
te

r
 1

0
 A

r
r
a

y
s

To add the PictureClip control to your project, simply find the Components dia-
log box on the Project menu or right-click the Tools bar. Inside the Components
window, find Microsoft PictureClip Control 6.0 as seen in Figure 10.9.

Once you add the PictureClip control from the Components window, you can add
it to your Form as you do any other control. Figure 10.10 depicts a PictureClip
control added to the Toolbox and one Form.

Beyond the benefits of efficiency, the PictureClip is also popularly used for ani-
mation. You might remember learning how to animate simple graphics earlier in
this book. If you tried to create animation through image swapping, you may also

270
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

FIGURE 10.10

The PictureClip
control added

to a Form.

FIGURE 10.9

Finding the
PictureClip control
in the Components

window.

PictureClip added
to a Form

PictureClip
control located
in the Toolbox

remember a sometimes choppy effect with the animation. Well, using the Pic-
tureClip control provides you a more seamless, and therefore better, animation.

The first step in creating animation with the PictureClip control is finding a
bitmap image that contains a sequence of movements. You can try to create these
bitmaps yourself, but if you’re graphically challenged, as I am, you are probably
better off finding an artist who can do the work for you.

You might find that searching the Internet can provide you with a number of
downloadable pictures and animation stills. In fact, the CD accompanying this
book has a number of character animation stills and other graphics provided
by our friends at http://www.vbexplorer.com and created by professional artist
Hermann Hillmann.

Once you find the right picture for your PictureClip control, you need to ensure
that each subpicture is an equal part in the entire picture. In other words, the
PictureClip needs to be a uniform grid of picture cells. Setting the Row and Col-
umn property of the PictureClip control starts this process. Once you define the
columns and rows, the PictureClip creates a matrix of picture cells for you.
Although a matrix is created, you are not guaranteed that each picture in a cell
shares the same amount of real estate during a display.

To get a truly fluid animation, you need to ensure that each clipping region in
the picture is the same. To accomplish this, you can either use programming
techniques or simply modify the image. If you decide to use programming tech-
niques, you need to work with the ClipX, ClipY, ClipHeight, and ClipWidth prop-
erties. Using these properties, you can access a specific region of the picture.

The basic process for displaying a picture cell uses the GraphicCell property of
the PictureClip control. Using the GraphicCell property allows you to specify a
certain region of the matrix and apply it to a Picture Box or Image control.

The following statement assigns the first picture cell of the Picture Clip control
to the Picture property of a Picture Box:

myPicture.Picture = PictureClip1.GraphicCell(0)

The program depicted in Figure 10.11 uses a graphic that already contains uni-
form clipping regions.

After adding all necessary controls to my Form, I define my coordinate system of
8 columns and 8 rows, or 64 picture cells. Because my graphic already contains
uniform clipping regions, it is not necessary for me to grab individual regions
with ClipX and ClipY or ClipHeight and ClipWidth properties.

271
C

h
a

p
te

r
 1

0
 A

r
r
a

y
s

Note that each cell range depicts a particular movement pattern, such as run-
ning in a westward direction, running to the south, and so forth:

Option Explicit

Dim fiCounter As Integer

Dim fiDirection As Integer

‘**

‘Picture clip contains 8 columns and 8 rows

‘(64 cells).

‘Direction:

‘4 = north, (cells: 32 - 39)

‘5 = north east, (cells: 40 - 47)

‘6 = east, (cells: 48 - 55)

‘7 = south east, (cells: 56 - 63)

‘0 = south, (cells: 0 - 7)

‘1 = south west, (cells: 8 - 15)

‘2 = west, (cells: 16 - 23)

‘3 = north west, (cells: 24 - 31)

‘***

During Form load, I add a few items to a List Box, assign a default picture, and
provide default animation criteria:

Private Sub Form_Load()

Dim x As Integer

lstSpeed.AddItem “Walking”

lstSpeed.AddItem “Jogging”

lstSpeed.AddItem “Running”

picAnimate.Picture = PictureClip1.GraphicCell(0)

lstSpeed.ListIndex = 0

optDirection.Item(0).Value = True

End Sub

272
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

FIGURE 10.11

Using the
PictureClip control

to create animation.

TE
AM
FL
Y

Team-Fly®

When the user clicks the Start Command Button, I enable a Timer control after
verifying an item in a List Box is selected:

Private Sub cmdStart_Click()

If lstSpeed.ListIndex = -1 Then

Exit Sub

Else

Timer1.Enabled = True

End If

End Sub

The Stop Command Button stops all animation by setting the Timer’s Enabled
property to false:

Private Sub cmdStop_Click()

Timer1.Enabled = False

End Sub

I use the List Box entries to determine the speed of the animation. I accomplish
this by setting the Interval property of the Timer control:

Private Sub lstSpeed_Click()

Select Case lstSpeed.ListIndex

Case 0

Timer1.Interval = 250

Case 1

Timer1.Interval = 100

Case 2

Timer1.Interval = 50

End Select

End Sub

Using a multitude of Option Buttons (one for each direction), I assign the direc-
tion selected to a form-level variable and set the picture cell to the beginning pic-
ture as it relates to the selected direction:

Private Sub optDirection_Click(Index As Integer)

Select Case Index

Case 0

‘North

fiDirection = 0

fiCounter = 32

273
C

h
a

p
te

r
 1

0
 A

r
r
a

y
s

Case 1

‘Northeast

fiDirection = 1

fiCounter = 40

Case 2

‘East

fiDirection = 2

fiCounter = 48

Case 3

‘Southeast

fiDirection = 3

fiCounter = 56

Case 4

‘South

fiDirection = 4

fiCounter = 0

Case 5

‘Southwest

fiDirection = 5

fiCounter = 8

Case 6

‘West

fiDirection = 6

fiCounter = 16

Case 7

‘Northwest

fiDirection = 7

fiCounter = 24

End Select

End Sub

The Timer control’s timer event performs the actual animation. Before animat-
ing, I determine the direction selected with a select case structure. After a direc-
tion is determined, I check for a valid number for that direction and assign a
picture cell to the Picture Box. Finally, I increment the form-level variable
fiCounter, which gets the next applicable picture cell:

Private Sub Timer1_Timer()

Select Case fiDirection

Case 0

‘south

274
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

If fiCounter > 7 Then fiCounter = 0

picAnimate.Picture = PictureClip1.GraphicCell(fiCounter)

fiCounter = fiCounter + 1

Case 1

‘sw

If fiCounter > 15 Then fiCounter = 8

picAnimate.Picture = PictureClip1.GraphicCell(fiCounter)

fiCounter = fiCounter + 1

Case 2

‘west

If fiCounter > 23 Then fiCounter = 16

picAnimate.Picture = PictureClip1.GraphicCell(fiCounter)

fiCounter = fiCounter + 1

Case 3

‘nw

If fiCounter > 31 Then fiCounter = 24

picAnimate.Picture = PictureClip1.GraphicCell(fiCounter)

fiCounter = fiCounter + 1

Case 4

‘north

If fiCounter > 39 Then fiCounter = 32

picAnimate.Picture = PictureClip1.GraphicCell(fiCounter)

fiCounter = fiCounter + 1

Case 5

‘ne

If fiCounter > 47 Then fiCounter = 40

picAnimate.Picture = PictureClip1.GraphicCell(fiCounter)

fiCounter = fiCounter + 1

Case 6

‘east

If fiCounter > 55 Then fiCounter = 48

picAnimate.Picture = PictureClip1.GraphicCell(fiCounter)

fiCounter = fiCounter + 1

Case 7

‘sw

If fiCounter > 63 Then fiCounter = 56

picAnimate.Picture = PictureClip1.GraphicCell(fiCounter)

fiCounter = fiCounter + 1

End Select

End Sub

275
C

h
a

p
te

r
 1

0
 A

r
r
a

y
s

The last part of the code closes the animation program.

Private Sub cmdQuit_Click()

End

End Sub

Private Sub Form_QueryUnload(Cancel As Integer, UnloadMode As Integer)

cmdQuit_Click

End Sub

Constructing the Video Poker Game

With all your newly acquired knowledge on arrays, you are now ready to tackle a
larger program that uses many of the topics and technologies discussed in this
chapter. Specifically, the video poker game uses arrays, control arrays, and a
PictureClip control to build a blackjack game.

The Problem

Build a video poker game that implements some basic blackjack concepts (shown
in Figure 10.13). The player will play against the house using the rules and guide-
lines shown in Figure 10.12.

The image used in the PictureClip control appears on the CD-ROM (deck.bmp).

276
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

FIGURE 10.12

Rules and
guidelines for

blackjack.

Table 10.1 contains the controls and properties of the main Form for the black-
jack game.

Table 10.2 contains the controls and properties of the rules Form for the black-
jack game.

Note: Add your own Labels and Images to denote rules and provide graphical
appeal.

A sample algorithm for the blackjack game:

1. Find or create a picture depicting a deck of standard poker cards suitable
for use with the PictureClip control.

2. Open a new standard EXE project.

3. Add the PictureClip control to the project and the main Form.

4. Add the rest of the controls to the main Form.

5. Add another Form to the project for game rules.

6. Write code to initialize the deck. This should clear any scores or numbers
from the player’s and dealer’s hands.

7. Write code to deal the first hand. This should specifically assign two ran-
dom cards to the dealer and two random cards to the player.

8. Write code to calculate the player’s and dealer’s hands.

9. Write code to check for blackjack (21), tie games, busts (over 21), and the
final outcome (who won?).

10. Write code to respond to the player asking for another card.

11. Write code to evaluate the dealer’s hand. Specifically, the dealer should
take another card if the hand is 16 or less (stay if 17 or greater).

12. Write code to show the rules Form.

277
C

h
a

p
te

r
 1

0
 A

r
r
a

y
s

FIGURE 10.13

The blackjack
game.

278
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

Control Property Setting

frmMain Caption Chapter 10 – Black Jack

Border Style 2 – Sizable

MaxButton False

pcDeck Columns 13

Rows 4

fraDealer Caption Dealer

fraPlayer Caption Player

Frame1 Caption empty

cmdDeal Caption &Deal

cmdHit Caption &Hit

cmdStand Caption &Stand

cmdRules Caption &Rules

cmdQuit Caption &Quit

picCard(0)

picCard(1)

picCard(2)

picCard(3)

picCard(4)

picCard(5)

picCard(6)

picCard(7)

picCard(8)

TABLE 10.1 CONTROLS AND

PROPERTIES OF THE MAIN FORM

Control Property Setting

frmRules Caption Black Jack Rules

Border Style 1 – Fixed Single

Frame1 Caption empty

cmdOK Caption O&K

TABLE 10.2 CONTROLS AND PROPERTIES

OF THE RULES FORM

The Implementation

Before writing any code, I define my PictureClip control by identifying how each
suite relates to a particular picture cell:

Option Explicit

‘***

‘****************BLACKJACK VERSION 1.0.0***************

‘****************By MICHAEL A. VINE*************************

‘The deck.bmp picture clip contains 13 columns

‘and 4 rows (52 cards or graphic cells).

‘Graphic cells 0 to 12 are two of clubs to ace of clubs.

‘Graphic cells 13 to 25 are two of diamonds to ace of diamonds.

‘Graphic cells 26 to 38 are two of spades to ace of spades.

‘Graphic cells 39 to 51 are two of hearts to ace of hearts.

‘***

I declare two arrays for the blackjack game, one to hold the dealer’s hand and
one to hold the player’s. Notice that I have three elements in the dealer’s array
and five in the player’s. This basically says that the dealer will get three cards at
maximum and the player five:

Dim fiDealersHand(2) As Integer ‘3 elements

Dim fiPlayersHand(4) As Integer ‘5 elements

The form load event executes the Randomize statement, calls a function to ran-
domize the deck, and sets a few properties:

Dim fsWhoseTurnIsIt As String

Dim fiPlayersCardCount As Integer

Dim fiDealersCardCount As Integer

Dim fbStand As Boolean

Private Sub Form_Load()

picCard(0).Picture = picCard(8).Picture

Randomize

InitializeDeck

cmdHit.Enabled = False

cmdStand.Enabled = False

fsWhoseTurnIsIt = “dealer”

End Sub

279
C

h
a

p
te

r
 1

0
 A

r
r
a

y
s

The InitializeDeck procedure performs some housecleaning for me. Specifically, it
sets the Visible property for all pictures to false, assigns the number 99 to each ele-
ment in the player’s and dealer’s array, and initializes some form-level variables:

Public Sub InitializeDeck()

Dim liNumCards As Integer

Dim x As Integer

picCard(0).Picture = picCard(8).Picture

liNumCards = (picCard.Count - 1)

For x = 0 To liNumCards

picCard.Item(x).Visible = False

Next x

For x = 0 To 2

fiDealersHand(x) = 99 ‘No card assigned

Next x

For x = 0 To 4

fiPlayersHand(x) = 99 ‘No card assigned

Next x

fiPlayersCardCount = 0

fiDealersCardCount = 0

End Sub

I use the concept of initializing player and dealer array elements to 99 through-
out this program to tell whether a card has been dealt.

Notice that the code for Command Button Deal is minimal. It simply calls a func-
tion to initialize the deck and deal the first hand:

Private Sub cmdDeal_Click()

InitializeDeck

fbStand = False

DealFirstHand

End Sub

The process of dealing the first card is pretty straightforward. Notice that I only
need to generate a random number between 0 and 51 and assign it to the corre-
sponding picture cell of the dealer’s first card:

Public Sub DealFirstHand()

Dim liCurrentCard As Integer

Dim lbCardAlreadyDealt As Boolean

280
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

‘*************************Deal the first hand************************

lbCardAlreadyDealt = True

‘Assign dealer’s first card

liCurrentCard = Int((51 * Rnd))

picCard.Item(0).Visible = True

fiDealersHand(0) = liCurrentCard ‘Assign current card to dealer’s hand

Dealing subsequent cards, however, is another story. As you can see in the fol-
lowing code, I need to perform some checking before assigning the next card.
Specifically, I enter a loop until an available card is found. Within the loop, I gen-
erate a random number and check it against the first card dealt. You might
notice that I’m checking only against the dealer’s hand because I haven’t dealt
any cards to the player yet:

‘Assign dealer’s second card

Do Until lbCardAlreadyDealt = False

liCurrentCard = Int((51 * Rnd))

If fiDealersHand(0) <> liCurrentCard Then

fiDealersHand(1) = liCurrentCard

‘Assign current card to dealer’s hand

picCard.Item(1).Picture = pcDeck.GraphicCell(liCurrentCard)

picCard.Item(1).Visible = True

lbCardAlreadyDealt = False

End If

Loop

The process for dealing the remaining cards is pretty much the same. However,
when I deal the player’s cards, I must check the random number generated
against not only the player’s hand but also the dealer’s:

lbCardAlreadyDealt = True

‘Assign player’s first card

Do Until lbCardAlreadyDealt = False

liCurrentCard = Int((51 * Rnd))

If (liCurrentCard <> fiDealersHand(0)) And _

(liCurrentCard <> fiDealersHand(1)) Then

fiPlayersHand(0) = liCurrentCard

‘Assign current card to player’s hand

picCard.Item(3).Visible = True

picCard.Item(3).Picture = pcDeck.GraphicCell(liCurrentCard)

lbCardAlreadyDealt = False

End If

281
C

h
a

p
te

r
 1

0
 A

r
r
a

y
s

Loop

lbCardAlreadyDealt = True

‘Assign player’s second card

Do Until lbCardAlreadyDealt = False

liCurrentCard = Int((51 * Rnd))

If liCurrentCard <> fiPlayersHand(0) Then

If (liCurrentCard <> fiDealersHand(0)) And _

(liCurrentCard <> fiDealersHand(1)) Then

fiPlayersHand(1) = liCurrentCard

‘Assign current card to player’s hand

picCard.Item(4).Visible = True

picCard.Item(4).Picture = pcDeck.GraphicCell(liCurrentCard)

lbCardAlreadyDealt = False

End If

End If

Loop

cmdDeal.Enabled = False

cmdHit.Enabled = True

cmdStand.Enabled = True

fiPlayersCardCount = ScoreHand(fiPlayersHand, “players”)

fiDealersCardCount = ScoreHand(fiDealersHand, “dealers”)

If BlackJack = False Then

fraPlayer.ForeColor = vbYellow

fraPlayer.Caption = “Player - Hit or Stand?”

fraDealer.ForeColor = vbBlack

fraDealer.Caption = “Dealer”

End If

‘**

End Sub

Private Sub cmdHit_Click()

Dim liCurrentCard As Integer

Dim lbCardAlreadyDealt As Boolean

Dim lbGoForIt As Boolean

Dim x As Integer

Dim innerLoop As Integer

Dim lbMax As Boolean

282
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

TE
AM
FL
Y

Team-Fly®

If the player elects to take another card (hit), I must check a number of criteria
before dealing the card. First, I check that the array element is empty (99), and
then I enter various loops where random numbers are checked against both the
player’s and dealer’s hands:

‘********************Deal the next available card *******************

lbMax = True

lbCardAlreadyDealt = True

lbGoForIt = True

For x = 0 To 4

If fiPlayersHand(x) = 99 Then

Do Until lbCardAlreadyDealt = False

liCurrentCard = Int((51 * Rnd))

‘Check the dealer’s hand

For innerLoop = 0 To 2

If fiDealersHand(innerLoop) = liCurrentCard Then

‘lbCardAlreadyDealt = True

lbGoForIt = False

End If

Next innerLoop

‘Check the player’s existing hand

For innerLoop = 0 To 4

If fiPlayersHand(innerLoop) = liCurrentCard Then

‘lbCardAlreadyDealt = True

lbGoForIt = False

End If

Next innerLoop

If lbGoForIt = True Then

lbCardAlreadyDealt = False

Else

lbGoForIt = True

End If

If lbCardAlreadyDealt = False Then

fiPlayersHand(x) = liCurrentCard

‘Assign current card to player’s hand

picCard.Item(x + 3).Picture = _

pcDeck.GraphicCell(liCurrentCard)

picCard.Item(x + 3).Visible = True

Exit For

Else

‘Card is already in use; get another random card

283
C

h
a

p
te

r
 1

0
 A

r
r
a

y
s

liCurrentCard = Int((51 * Rnd))

End If

Loop

End If

Next x

After an available card is found, I check to see whether the player has received
the maximum number of cards allowed. If not, the player can continue to receive
cards until she has a total of five or until she has busted (gone over 21).

If the player has received her maximum number of cards, I disable various con-
trols and end the round by setting another Boolean variable (fbStand) to true and
calling the procedure DealerDrawStand:

For x = 0 To 4

If fiPlayersHand(x) = 99 Then

lbMax = False

End If

Next x

If lbMax = True Then

cmdHit.Enabled = False

cmdStand.Enabled = False

fbStand = True

cmdDeal.Enabled = True

DealerDrawStand

fiPlayersCardCount = ScoreHand(fiPlayersHand, “players”)

fiDealersCardCount = ScoreHand(fiDealersHand, “dealers”)

BlackJack

Else

fiPlayersCardCount = ScoreHand(fiPlayersHand, “players”)

fiDealersCardCount = ScoreHand(fiDealersHand, “dealers”)

BlackJack

End If

‘**

End Sub

Notice that I’m assigning the result of a function to some form-level variables.
The form-level variables tell me later who wins the hand. The important or at
least interesting thing here is that I’m passing two parameters to the function;
one in particular is an array. Did you catch that?

284
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

To send an array (all elements) to a function, simply state the array name with-
out parentheses or element number. You will see in a moment how to deal with
the array once the function receives it.

As you will see shortly, setting the form-level variable fbStand to true essentially
ends the game (providing the game is not already over through a blackjack or
bust):

Private Sub cmdStand_Click()

fbStand = True

DealerDrawStand

BlackJack

End Sub

The BlackJack function is pretty straightforward; it simply checks a number of
possible scenarios for blackjack, ties, and a number of other winning or game-
ending situations:

Public Function BlackJack() As Boolean

BlackJack = False

Each condition uses one or two form-level variables containing the dealer’s and
player’s current hands. When a condition is found to be true, I set a number of
control properties and display the game’s results through caption properties of
frame controls:

If fiPlayersCardCount > 21 Then

‘Player Busts - Dealer Wins

picCard.Item(0).Picture = pcDeck.GraphicCell(fiDealersHand(0))

cmdStand.Enabled = False

cmdHit.Enabled = False

cmdDeal.Enabled = True

fraPlayer.ForeColor = vbBlack

fraPlayer.Caption = “Player”

fraDealer.ForeColor = vbYellow

fraDealer.Caption = “Dealer Wins!”

BlackJack = True

Exit Function

End If

If fiDealersCardCount > 21 Then

‘Dealer Busts - Player Wins

picCard.Item(0).Picture = pcDeck.GraphicCell(fiDealersHand(0))

285
C

h
a

p
te

r
 1

0
 A

r
r
a

y
s

cmdStand.Enabled = False

cmdHit.Enabled = False

cmdDeal.Enabled = True

fraPlayer.ForeColor = vbYellow

fraPlayer.Caption = “You Win!”

fraDealer.ForeColor = vbBlack

fraDealer.Caption = “Dealer”

BlackJack = True

Exit Function

End If

If fiPlayersCardCount = 21 And fiDealersCardCount = 21 Then

‘Tie game

picCard.Item(0).Picture = pcDeck.GraphicCell(fiDealersHand(0))

cmdStand.Enabled = False

cmdHit.Enabled = False

cmdDeal.Enabled = True

fraPlayer.ForeColor = vbYellow

fraPlayer.Caption = “Tie Game”

fraDealer.ForeColor = vbYellow

fraDealer.Caption = “Time Game”

BlackJack = True

Exit Function

End If

If fiPlayersCardCount = 21 Then

‘Blackjack - player wins

picCard.Item(0).Picture = pcDeck.GraphicCell(fiDealersHand(0))

cmdStand.Enabled = False

cmdHit.Enabled = False

cmdDeal.Enabled = True

fraPlayer.ForeColor = vbYellow

fraPlayer.Caption = “You Win!”

fraDealer.ForeColor = vbBlack

fraDealer.Caption = “Dealer”

BlackJack = True

Exit Function

End If

If fiDealersCardCount = 21 Then

286
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

‘Blackjack - dealer wins

picCard.Item(0).Picture = pcDeck.GraphicCell(fiDealersHand(0))

cmdStand.Enabled = False

cmdHit.Enabled = False

fraPlayer.ForeColor = vbBlack

fraPlayer.Caption = “Player”

fraDealer.ForeColor = vbYellow

fraDealer.Caption = “Dealer Wins!”

cmdDeal.Enabled = True

BlackJack = True

Exit Function

End If

If fiDealersCardCount = fiPlayersCardCount And fbStand = True Then

‘Tie game

picCard.Item(0).Picture = pcDeck.GraphicCell(fiDealersHand(0))

cmdStand.Enabled = False

cmdHit.Enabled = False

cmdDeal.Enabled = True

fraPlayer.ForeColor = vbYellow

fraPlayer.Caption = “Tie Game”

fraDealer.ForeColor = vbYellow

fraDealer.Caption = “Tie Game”

BlackJack = False

Exit Function

End If

If fiDealersCardCount > fiPlayersCardCount And fbStand = True Then

‘Dealer wins

picCard.Item(0).Picture = pcDeck.GraphicCell(fiDealersHand(0))

cmdStand.Enabled = False

cmdHit.Enabled = False

cmdDeal.Enabled = True

fraPlayer.ForeColor = vbBlack

fraPlayer.Caption = “Player”

fraDealer.ForeColor = vbYellow

fraDealer.Caption = “Dealer Wins!”

BlackJack = False

Exit Function

End If

287
C

h
a

p
te

r
 1

0
 A

r
r
a

y
s

If fiDealersCardCount < fiPlayersCardCount And fbStand = True Then

‘Player wins

picCard.Item(0).Picture = pcDeck.GraphicCell(fiDealersHand(0))

cmdStand.Enabled = False

cmdHit.Enabled = False

cmdDeal.Enabled = True

fraPlayer.ForeColor = vbYellow

fraPlayer.Caption = “You Win!”

fraDealer.ForeColor = vbBlack

fraDealer.Caption = “Dealer”

BlackJack = False

Exit Function

End If

End Function

The ScoreHand function is another procedure called throughout the life of my
blackjack game. It takes two parameters, one containing an array of integers (a
poker hand) and a string telling the function whose hand is being scored:

Public Function ScoreHand(currentHand() As Integer, _

whoseHand As String) As Integer

Notice that the parameter currentHand is actually an integer array that contains
no element number. This is how the array mentioned earlier is received in the
function:

Dim cardCount As Integer

Dim x As Integer

cardCount = 0

Depending on whose hand is being scored (although the calculations are the
same), I use the select case’s unique ability to check a list of criteria or conditions.

For example, I know that picture cells 0, 13, 26, and 39 contain the number two
cards. If that condition is met, I simply add two points to the player’s hand:

If whoseHand = “players” Then

For x = 0 To 4

If currentHand(x) <> 99 Then

Select Case currentHand(x)

Case 0, 13, 26, 39 ‘Twos

cardCount = cardCount + 2

Case 1, 14, 27, 40 ‘Threes

cardCount = cardCount + 3

288
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

Case 2, 15, 28, 41 ‘Fours

cardCount = cardCount + 4

Case 3, 16, 29, 42 ‘Fives

cardCount = cardCount + 5

Case 4, 17, 30, 43 ‘Sixes

cardCount = cardCount + 6

Case 5, 18, 31, 44 ‘Sevens

cardCount = cardCount + 7

Case 6, 19, 32, 45 ‘Eights

cardCount = cardCount + 8

Case 7, 20, 33, 46 ‘Nines

cardCount = cardCount + 9

Case 8 To 11, 21 To 24, 34 To 37, 47 To 50 ‘Tens and face cards

cardCount = cardCount + 10

Case 12, 25, 38, 51 ‘Aces

cardCount = cardCount + 11

End Select

End If

Next x

Else

For x = 0 To 2

If currentHand(x) <> 99 Then

Select Case currentHand(x)

Case 0, 13, 26, 39 ‘Twos

cardCount = cardCount + 2

Case 1, 14, 27, 40 ‘Threes

cardCount = cardCount + 3

Case 2, 15, 28, 41 ‘Fours

cardCount = cardCount + 4

Case 3, 16, 29, 42 ‘Fives

cardCount = cardCount + 5

Case 4, 17, 30, 43 ‘Sixes

cardCount = cardCount + 6

Case 5, 18, 31, 44 ‘Sevens

cardCount = cardCount + 7

Case 6, 19, 32, 45 ‘Eights

cardCount = cardCount + 8

Case 7, 20, 33, 46 ‘Nines

cardCount = cardCount + 9

Case 8 To 11, 21 To 24, 34 To 37, 47 To 50 ‘Tens and face cards

cardCount = cardCount + 10

289
C

h
a

p
te

r
 1

0
 A

r
r
a

y
s

Case 12, 25, 38, 51 ‘Aces

cardCount = cardCount + 11

End Select

End If

Next x

End If

ScoreHand = cardCount

End Function

Public Sub DealerDrawStand()

Dim liCurrentCard As Integer

Dim lbCardAlreadyDealt As Boolean

Dim lbGoForIt As Boolean

Dim innerLoop As Integer

The DealerDrawStand procedure contains the logic to determine whether the
dealer should take another card. It’s actually quite simple; the dealer either
stands at 17 and greater or takes another card at 16 and less. If it is determined
that the dealer will take another card, similar logic as shown earlier is used to
loop until an available card is found.

‘********************Deal the next available card *******************

If fiPlayersCardCount < 21 And fiDealersCardCount <= 16 Then

lbCardAlreadyDealt = True

lbGoForIt = True

Do Until lbCardAlreadyDealt = False

liCurrentCard = Int((51 * Rnd))

‘Check the dealer’s hand

For innerLoop = 0 To 2

If fiDealersHand(innerLoop) = liCurrentCard Then

lbGoForIt = False

End If

Next innerLoop

‘Check the player’s existing hand

For innerLoop = 0 To 4

If fiPlayersHand(innerLoop) = liCurrentCard Then

lbGoForIt = False

End If

Next innerLoop

If lbGoForIt = True Then

lbCardAlreadyDealt = False

290
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

Else

lbGoForIt = True

End If

If lbCardAlreadyDealt = False Then

fiDealersHand(2) = liCurrentCard

‘Assign current card to player’s hand

picCard.Item(2).Picture = pcDeck.GraphicCell(liCurrentCard)

picCard.Item(2).Visible = True

Exit Do

Else

‘Card is already in use; get another random card

liCurrentCard = Int((51 * Rnd))

End If

Loop

fiDealersCardCount = ScoreHand(fiDealersHand, “dealers”)

End If

‘***

End Sub

Private Sub cmdRules_Click()

frmRules.Show

End Sub

Private Sub cmdQuit_Click()

Dim liResponse As Integer

liResponse = MsgBox(“Quit Black Jack?”, vbYesNo, “Confirm”)

If liResponse = vbYes Then

End

End If

End Sub

Private Sub Form_QueryUnload(Cancel As Integer, UnloadMode As Integer)

cmdQuit_Click

End Sub

Summary

This chapter covered a lot of ground with arrays, their components, and Visual
Basic’s implementations. Specifically, you learned how to build and use single
and multidimensional arrays. You learned some new tricks for specifying upper

291
C

h
a

p
te

r
 1

0
 A

r
r
a

y
s

and lower bounds while watching out for those nasty off-by-one errors. You also
saw some new controls such as the PictureClip and how it uses an array-like
structure for managing picture cells.

I hope this chapter has shown you how important and helpful arrays and their
spawn can be. If you found this to be an intriguing and exciting chapter, you are
definitely on the right track toward a blissful career in computer science. If not,
then don’t feel bad; you’re among the masses of beginning programmers who at
some time or another questioned whether they really wanted to learn something
like arrays.

My advice to you is sit back, relax, and think how far you have come from the first
chapter. As a component of computer science, programming is not easy,
although nothing worth getting ever is.

Congratulations on making it this far, and I look forward to showing you specific
techniques on drag-and-drop technology in the next chapter.

292
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

CHALLENGES

1. Create your own animated character with the PictureClip control and

a bitmap picture containing animation stills (such as the ones found on

the CD).

2. Using an array of Picture Boxes, build a memory game. The user should

be able to click on a Picture Box where an image is then shown. The image

should stay up long enough for the user to click on another available Picture

Box. If there is a match, then both pictures are shown and they become unavail-

able. The process continues until the user completes the memory game, time

runs out, or he gives up. For more information on memory games, simply search

the Internet with your favorite search engine for the keyword “game” or “mem-

ory game.”

3. Modify the video poker game to allow for the concept of doubling

down. Consult any blackjack literature for understanding the rules of doubling

down.

4. Modify the video poker game to allow the user and dealer to use ace

cards as low (1) and high (11) cards.

5. Modify the video poker game to allow the dealer to draw more than

one card if required.

6. Create your own card game based on poker games or other popular

card games.

TE
AM
FL
Y

Team-Fly®

11

T
his chapter is dedicated to a popular

concept and graphical programming

technique called drag and drop. You

will learn not only the concepts for dragging and

dropping, but also how the concepts are imple-

mented through Visual Basic techniques and

events. This chapter covers the following topics:

• Drag and drop technology

• Drag and drop properties

• Drag and drop events

• Constructing the puzzle game

Drag and Drop

C H A P T E R

Project: The Puzzle Game

The puzzle game will tax many of your newly learned skills to implement a chal-
lenging and fun-filled digital puzzle. Although the puzzle game uses many pre-
viously learned skills, its main objective is to demonstrate the capabilities of drag
and drop technology. After this chapter, you will be able to build not only the
puzzle game, shown in Figure 11.1, but also other intriguing games and pro-
grams using Visual Basic’s drag and drop techniques.

Drag and Drop Technology

Drag and drop technology became feasible with the advent of graphical user
interfaces (GUI) and various pointing and clicking devices, such as the mouse.
Prior to pointing devices and graphical interfaces, there was no need to click
something or drag something. If you wanted data, you simply typed a command
or statement into a prompt. Nothing to click, nothing to drag, nothing to drop:
Hey, it was the Stone Age—what can I say?

So when humans first discovered fire, I mean graphical interfaces, it was only
natural to drag and drop graphical depictions of files and folders around the
interface to perform various functions. The drag and drop capabilities greatly
reduced time in performing daily and routine system tasks such as moving, copy-
ing, and deleting files. These tasks could still be performed through command-
line syntax but took longer to perform and required detailed knowledge of
operating-system-specific syntax and schema.

294
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

FIGURE 11.1

Demonstrating
drag and drop

technology with
the puzzle game.

Graphical interfaces (in which drag and drop technology plays a key role) made
using operating systems an easier task to learn and master for the general user
population. Although using drag and drop technology was easy and intuitive for
users, programming drag and drop was another story.

With Rapid Application Development (RAD) in mind, Microsoft provided a
programmer-friendly drag and drop solution with Visual Basic events. As you will
soon see, mastering drag and drop development is no longer as difficult as you
might think.

Drag and Drop Properties

In drag and drop terminology, there are generally
two objects of consideration, source and target,
where the source is the object being dragged and
the target is the desired drop location.

To learn drag and drop programming, simply add a
few Image controls or Picture Boxes to your Form.
Next, identify what objects will be source objects and set their DragMode prop-
erty to 1 – Automatic and their DragIcon property to a similar or related picture.

For example, you can mimic the controls, properties, and form layout depicted
in Figure 11.2.

295
C

h
a

p
te

r
 1

1
 D

r
a

g
a

n
d

D
r
o

p

IN THE REAL WORLD

When working with GUI-based computer systems, it is only natural to think of

such big companies as Microsoft, Apple, IBM, Netscape, and many more. But

where did all this innovative technology such as the mouse, GUIs, Internet and

network standards, and object-based programming come from?

Surprisingly, the innovative company behind the genius is Xerox. Specifically,

Xerox PARC (Palo Alto Research Center) developed the first commercial mouse,

graphical user interface, WYSIWYG (what you see is what you get) editor,

object-based programming, Ethernet, network and Internet standards, and

many, many more first innovations.

Located in Palo Alto, California, Xerox PARC is still active in many facets of new

innovative technology development. For more information on PARC’s innova-

tive genius, go to http://www.parc.xerox.com/parc-go.html.

Definition
The source is the object

being dragged. The tar-

get is the destination.

Table 11.1 depicts the controls and properties of the weather forecast program.

296
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

Control Property Setting

frmMain Caption Chapter 11 – Drag and Drop

Border Style 1 – Fixed Single

Frame1 Caption Drag a forecast from here:

ImgForecast(0) Picture Rain.ico

DragMode 1 – Automatic

DragIcon Rain.ico

ImgForecast(1) Picture Sun.ico

DragMode 1 – Automatic

DragIcon Sun.ico

ImgForecast(2) Picture Cloud.ico

DragMode 1 – Automatic

DragIcon Cloud.ico

ImgForecast(3) Picture Snow.ico

DragMode 1 – Automatic

DragIcon Snow.ico

Frame2 Caption Drop the forecast here:

picDropBox Appearance 0 – Flat

BorderStyle 0 – None

Picture Empty

lblForeCast Caption Today’s Forecast

cmdExit Caption E&xit

TABLE 11.1 CONTROLS AND PROPERTIES

FOR THE WEATHER FORECAST PROGRAM

FIGURE 11.2

Demonstrating
source and target
objects for drag

and drop
operations.

Drag and Drop Events

The DragDrop event occurs when a control has been successfully dragged and
dropped over an object. This specifically occurs when an object is dragged
over another object and the mouse button is released. The syntax for the event
follows:

Private Sub Picture1_DragDrop(Source As Control, X As Single,_

Y As Single)

End Sub

The source argument is the control being dragged; the x and y arguments refer
to the current coordinates of the mouse pointer.

The DragOver event occurs when a drag and drop operation is in progress. It is
useful for changing the mouse pointer (through the MousePointer property) to
various icons when an object is being dragged:

Private Sub Picture1_DragOver(Source As Control, X As Single, _

Y As Single, State As Integer)

End Sub

Like the DragDrop event, DragOver has a source and x and y arguments. The
DragOver event, however, has an additional argument called State. The State
argument refers to the state of the control being dragged. The three states are

0 – Enter

1 – Leave

2 – Over

You can use the DragOver event to initiate changes other than a difference in
mouse pointer. For example, you might want to highlight the target object to sig-
nify that you are over a desired area or a restricted area. You might also want to
change the caption properties of various controls to achieve similar results.

The Weather Forecast Example

As shown in Figure 11.2, the weather forecast program demonstrates drag and
drop technology. A user can simply drag a weather icon such as rain, clouds,
snow, or sunshine to a Picture Box. Once the drag and drop operation is com-
plete, the Caption property of a Label control is updated to reflect the current
weather status.

297
C

h
a

p
te

r
 1

1
 D

r
a

g
a

n
d

D
r
o

p

You can reference the properties and methods of the source through dot notation.
For example, if I want to disable the incoming source, I can use its Enabled prop-
erty as I do with any other object or control:

Source.Enabled = False

In the DragDrop event in the following code, I use the incoming source to decide
what I want the Label’s Caption property to say. Also, notice how I used the dot
notation and a Select Case structure to access the index of the incoming source.
If you recall from Table 11.1, the images are actually based in a control array:

Option Explicit

Private Sub picDropBox_DragDrop(Source As Control, X As Single, _

Y As Single)

On Error GoTo ErrorHandler

picDropBox.Picture = Source.Picture

Select Case Source.Index

Case 0

‘Rain

lblForecast.Caption = “Today’s forecast calls for rain.”

Case 1

‘Sun

lblForecast.Caption = “Today’s forecast calls for sunshine.”

Case 2

‘Cloudy

lblForecast.Caption = “Today’s forecast calls for cloudy weather.”

Case 3

‘Snow

lblForecast.Caption = “Today’s forecast calls for snow.”

End Select

Exit Sub

ErrorHandler:

Exit Sub

End Sub

Private Sub cmdExit_Click()

End

End Sub

HINT

298
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

Private Sub Form_QueryUnload(Cancel As Integer, UnloadMode As Integer)

cmdExit_Click

End Sub

Constructing the Puzzle Game

I must admit that the puzzle game is one of my favorite games in this book. It
uses all of the drag and drop techniques you learned in this chapter to build a
digital jigsaw puzzle. After this section, you should have a clear understanding
of how to build drag and drop capabilities into your own fun and easy-to-use puz-
zle games.

The image used in the puzzle game was created by professional artist Hermann
Hillmann and provided by http://www.vbexplorer.com.

The Problem

Build a digital jigsaw program as seen in Figure 11.3. The program should allow
a user to separate an image into random pieces. After that, the user should be
able to drag the random pieces from one picture canvas and drop them into
another to build the constructed picture.

In addition to dragging and dropping random pieces from the source picture
canvas to the target picture canvas, the user should also be able to drag a puzzle
piece from a picture cell in the target canvas to another cell in the target canvas.

299
C

h
a

p
te

r
 1

1
 D

r
a

g
a

n
d

D
r
o

p

FIGURE 11.3

The puzzle game.

The game should also provide the user with an option to see the puzzle solved.

Note that the puzzle game uses two separate control arrays made up of Picture
boxes (32 in each array) to create two separate picture canvases.

A sample algorithm for the jigsaw puzzle program:

1. Identify an image suitable for use in a jigsaw puzzle.

2. Open a new standard EXE project.

3. Add all necessary controls to the Form, including both control arrays and
the PictureClip control.

300
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

Control Property Setting

frmMain Caption Chapter 11 – The Puzzle Game

Border Style 2 – Sizable

MaxButton False

Frame1 Caption Empty

Picture1(0 – 31) Appearance 0 – Flat

BorderStyle 1 – Fixed Single

DragMode 1 – Automatic

Picture None

Frame2 Caption None

Picture2(0 – 31) Appearance 0 – Flat

BorderStyle 1 – Fixed Single

DragMode 1 – Automatic

Picture None

Frame3 Caption None

cmdStart Caption &Start

cmdSolve Caption Sol&ve

cmdExit Caption E&xit

PictureClip1 Cols 4

Rows 8

Picture Bitmap

TABLE 11.2 CONTROLS AND

PROPERTIES FOR THE PUZZLE GAME

4. Using an array, the picture clip cell numbers, and the control array of Pic-
ture Boxes, write code to scramble the puzzle.

5. Write code to respond to DragDrop and DragOver events.

6. Write code to solve the puzzle.

The Implementation

The puzzle array holds integer values representing a corresponding picture cell
number. Its main purpose is to ensure that duplicate images from the Picture-
Clip control are not assigned to Picture Boxes during the scrambling process:

Option Explicit

‘***

‘** Puzzle Game by Michael Vine **

‘***

Dim puzzle(31) As Integer ‘32 elements

Notice that I use the randomize statement in the form load event, which will gen-
erate random numbers for me later. Also in the form load event, I call a subpro-
cedure I wrote called solve:

Private Sub Form_Load()

cmdSolve.Enabled = False

Randomize

Solve

End Sub

The solve procedure does two things for me. First, when called in form load, it
shows the solved version of the puzzle to the user before she tries to solve it. (This
is generally a good thing.) Second, I can reuse the solve subprocedure when the
user gives up on solving the puzzle and wants the computer to do it for her.

In the click event of the Start Command Button, I simply set some control prop-
erties and call another subprocedure I wrote called initialize puzzle. As you will
see in a moment, the initialize puzzle procedure actually scrambles the puzzle:

Private Sub cmdStart_Click()

cmdStart.Enabled = False

cmdSolve.Enabled = True

Initialize_Puzzle

End Sub

301
C

h
a

p
te

r
 1

1
 D

r
a

g
a

n
d

D
r
o

p

The first thing I do in this procedure is initialize array components with various
types of data or settings. For example, I initialize the integer puzzle array ele-
ments to 99. I do this so I can compare the puzzle’s elements later in the proce-
dure. Also, I initialize the control array objects with various back colors. I use
these back colors later to determine where the source (the argument in a Drag-
Drop event) is coming from. To reset one of the picture canvases (control array),
I use the LoadPicture method to clear any pictures from sight:

Public Sub Initialize_Puzzle()

Dim X As Integer

Dim innerLoop As Integer

Dim liRandomIndex As Integer

Dim lbUsed As Boolean

Dim lbFoundDup As Boolean

‘Initialize puzzle components

For X = 0 To 31

puzzle(X) = 99

Next X

For X = 0 To 31

Picture1(X).Enabled = True

Next X

For X = 0 To 31

Picture1(X).BackColor = vbBlue

Next X

For X = 0 To 31

Picture2(X).Enabled = True

Next X

For X = 0 To 31

Set Picture2(X).Picture = LoadPicture

Next X

For X = 0 To 31

Picture2(X).BackColor = vbWhite

Next X

The remainder of this procedure’s code may appear to be a little unnerving at
first, but don’t worry; it is not as bad as it looks. I first create a For loop structure
that will iterate 32 times (one time for each control in the control array). Next, I
enter another loop, this time a Do Until loop, which iterates until an available pic-
ture is found. This works by first creating a random number and then searching

302
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

TE
AM
FL
Y

Team-Fly®

through all puzzle array elements with another For loop to see whether it has
already been assigned. If it has been assigned, then I loop back to the beginning
of the Do Until loop where I create another random number and continue the
process until an available number is found:

‘Assign a random picture cell to each picture

For X = 0 To 31

‘Ensure a picture does not receive a duplicate picture cell

lbUsed = True

Do Until lbUsed = False

liRandomIndex = Int(32*Rnd)

lbFoundDup = False

For innerLoop = 0 To 31

If puzzle(innerLoop) = liRandomIndex Then

lbFoundDup = True

End If

Next innerLoop

If lbFoundDup = False Then

Picture1(X).Picture = PictureClip1.GraphicCell(liRandomIndex)

puzzle(X) = liRandomIndex

lbUsed = False

Exit Do

End If

Loop

Next X

End Sub

When an available number is found, it is assigned to the corresponding puzzle
array element and the corresponding control array object as a picture in a
graphic cell.

In the DragOver event, I set the mouse pointer to 12. This number tells Visual
Basic to set the mouse pointer to a no-drop icon:

Private Sub Picture1_DragOver(Index As Integer, Source As Control, _

X As Single, Y As Single, State As Integer)

Source.MousePointer = 12

End Sub

In addition to using numbers to set mouse pointers, you can also use Visual Basic
constants as shown in Table 11.3.

303
C

h
a

p
te

r
 1

1
 D

r
a

g
a

n
d

D
r
o

p

The DragDrop event in the next code segment belongs to the picture control
array that the user will use to construct the completed picture. I first determine
where the image is coming from (the source argument); after that, I either exit
the event or update the target control. Notice that I have to perform multiple
conditions to determine what control array the source is coming from. This is
because the user can drag and drop images from either control array:

Private Sub Picture2_DragDrop(Index As Integer, Source As Control, _

X As Single, Y As Single)

If Source.BackColor = vbBlack Or Source.BackColor = vbBlue Then

If Picture2(Index).BackColor = vbBlack Then

Exit Sub

ElseIf Picture2(Index).BackColor = vbWhite Then

Picture2(Index).Picture = Source.Picture

304
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

Number Constant Description

0 vbDefault Shape determined by the object

1 vbArrow Arrow pointer

2 vbCrossHair Cross-hair

3 vbIBeam I-beam

4 vbIconPointer Small square within a square

5 vbSizePointer Four pointed arrow (north, south, east, and west)

6 vbSizeNESW Double arrow pointing northeast and southwest

7 vbSizeNS Double arrow pointing north and south

8 vbSizeNWSE Double arrow pointing northwest and southeast

9 vbSizeWE Double arrow pointing west and east

10 vbUpArrow Up arrow

11 vbHourglass Hourglass

12 vbNoDrop No drop

13 vbArrowHourglass Arrow and hourglass

14 vbArrowQuestion Arrow and question

15 vbSizeAll Size all

99 vbCustom Custom icon (determined by the MouseIcon
property)

TABLE 11.3 MOUSE POINTER SETT INGS

Picture2(Index).BackColor = vbBlack

Set Source.Picture = LoadPicture

Source.BackColor = vbWhite

Exit Sub

End If

End If

If TypeOf Source Is PictureBox And Source.BackColor = vbBlue Then

Picture2(Index).Picture = Source.Picture

Set Source.Picture = LoadPicture

Picture2(Index).BackColor = vbBlack

End If

End Sub

Private Sub Picture2_DragOver(Index As Integer, Source As Control, _

X As Single, Y As Single, State As Integer)

If the user is dragging an image over the target picture array, I change the mouse
pointer to the default:

Source.MousePointer = 0

End Sub

Private Sub cmdSolve_Click()

Solve

End Sub

The solve procedure is pretty straightforward because I assign each graphic cell
of the Picture Clip control to a respective Picture Box in the control array:

Public Sub Solve()

Dim X As Integer

cmdSolve.Enabled = False

For X = 0 To 31

Picture1(X).Picture = PictureClip1.GraphicCell(X)

Next X

For X = 0 To 31

Picture1(X).Enabled = False

Next X

For X = 0 To 31

Picture2(X).Enabled = False

Next X

305
C

h
a

p
te

r
 1

1
 D

r
a

g
a

n
d

D
r
o

p

cmdStart.Enabled = True

End Sub

Private Sub cmdExit_Click()

End

End Sub

Private Sub Form_QueryUnload(Cancel As Integer, UnloadMode As Integer)

cmdExit_Click

End Sub

Summary

This chapter covered some basic history behind the development and uses of
drag and drop technology. In addition, you learned firsthand how easy it is to
create intuitive and fun programs with Visual Basic’s drag and drop events. You
learned specifically how to use DragDrop and DragOver events to control sources
and targets.

In the next chapter, you will learn how to bundle and deploy your programs and
games into a setup package using Microsoft’s setup and deployment wizards.

306
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

CHALLENGES

1. Modify the puzzle game to use an image of your choice.

2. Enhance the puzzle game to allow a user to select from multiple images.

3. Enhance the puzzle game to offer a timer. The object of the game is to fin-

ish the puzzle in the time allotted. The timer should display a digital clock

counting down the time remaining.

4. Design and develop the card game Solitaire. For information on how to play

Solitaire, see Microsoft’s Solitaire game from the Start menu under Pro-

grams, Accessories, Games, Solitaire.

12

T
his chapter covers the concepts and

application of program setup and

deployment. You will learn how to

incorporate your Visual Basic programs and

games into setup routines that can be distributed

and installed from CD-ROM, floppy disks, and

local and network folders.

Specifically, this chapter covers the following

topics:

• Package and Deployment Wizard

• Understanding distribution files

• Package process

• Deployment process

• Testing your setup program

• Uninstalling your Visual Basic program

Setup and
Deployment

C H A P T E R

The Package and Deployment Wizard

You may have noticed that your executable (EXE) files do not run on PCs other
than your own. Visual Basic programs require various files other than your pro-
gram’s executable to successfully run on another PC (assuming the PC does not
have Visual Basic installed).

Microsoft provides you with a solution to distributing your program in the form
of the Package and Deployment Wizard. As shown in Figure 12.1, the Package and
Deployment Wizard creates setup routines that provide viable package and
deployment solutions for most programs or games you will create.

There are two main ways to access the Package and Deployment Wizard:

• Run it from within Visual Basic as an add-in.

• Run it standalone.

Running as an Add-In

Running the Package and Deployment Wizard as an add-in means that you
launch its interface through an open Visual Basic project. To do so, you work the
Add-In Manager, which adds functionality to the Visual Basic environment. In

308
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

IN THE REAL WORLD

The science of distributing and running applications, programs, or games is

sometimes a highly debatable and controversial subject. The lines are generally

drawn between two sides: those who believe in platform-dependent solutions

and those who believe in platform-independent solutions.

Microsoft generally lends itself and its developers to creating and distributing

platform-dependent programs built with languages such as Visual Basic. This

means that a Visual Basic program compiled and packaged on a Microsoft Win-

dows platform is intended and only guaranteed to run on a compatible

Microsoft Windows platform.

Platform-independent languages such as Java are not tied directly to any one

hardware or software system and therefore can work with all types of operat-

ing systems. The downside to such platform-independent languages is that

they offer little to no interaction with the operating system. This is surely a

safety mechanism for end users but is sometimes a limiting developing envi-

ronment for programmers who want to tap into operating-system-specific func-

tionality.

other words, the Add-In Manager makes components such as the Package and
Deployment Wizard available within the project environment that might not
normally be accessible. Follow these steps:

1. Within a Visual Basic project, make sure all project components have been
saved and that the project has been compiled into an executable file. To
compile your project, simply open the File menu and click the Make x.exe
item (where x is the name of your project).

2. From the Add-Ins menu item, select Add-In Manager (see Figure 12.2).

309
C

h
a

p
te

r
 1

2
 S

e
tu

p
 a

n
d

D
e
p

l o
y

m
e
n

t

FIGURE 12.1

The Package and
Deployment Wizard

helps you create
distribution media.

FIGURE 12.2

Finding the Add-In
Manager on the
Add-Ins menu.

The Add-In
Manager

3. As shown in Figure 12.3, select the Package and Deployment Wizard and the
Load/Unloaded behavior check box from the Add-In Manager, and click OK.

You can now choose the Package and Deployment Wizard from the Add-Ins menu
item (see Figure 12.4).

310
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

FIGURE 12.3

Selecting the
Package and

Deployment Wizard
from the Add-In

Manager.

FIGURE 12.4

Selecting the
Package and

Deployment Wizard
from the Add-Ins

menu item.

The Package
and Deployment

Wizard

Running Standalone

To run the Package and Deployment Wizard in standalone mode, make sure your
project has been saved and compiled. Exit the project and launch the Package
and Deployment Wizard from Start, Programs, Microsoft Visual Studio 6.0,
Microsoft Visual Studio 6.0 Tools (providing Visual Basic was installed as part of
Visual Studio 6.0).

Understanding Distribution Files

Understanding Visual Basic’s distribution files is the first step in creating a
sound and successful setup package. Microsoft divides these distribution files
into three categories:

• Runtime files

• Setup files

• Application files

Runtime Files

Required by all Visual Basic applications, runtime
files are needed by your program to successfully
run after installation. Known as bootstrap files, run-
time files end with the DLL (Dynamic Link
Library) extension. These runtime files let a com-
piled Visual Basic program run on a PC where
Visual Basic is not installed:

Msvbvm60.dll

Stdole2.tlb

Oleaut32.dll

Olepro32.dll

Comcat.dll

Asyncfilt.dll

Ctl3d32.dll

311
C

h
a

p
te

r
 1

2
 S

e
tu

p
 a

n
d

D
e
p

l o
y

m
e
n

t

Definition
Bootstrap files are runtime

files required by all Visual

Basic applications.

Setup Files

Setup files install your Visual Basic program onto a user’s PC. They consist of var-
ious files for running the setup package, configuring the setup package, and
uninstalling your program from the user’s machine.

Whether you are creating a setup package that will be distributed via CD-ROM,
network drives, or floppy disk, the setup routine uses the files in Table 12.1.

Application Files

Application files are directly related to your Visual Basic program. They usually
include your program’s specific executable file, data files used for random or
sequential file access, initialization files (INI files), and any other component
files used by your project. Other such component files can include controls you
have added to your project, such as the PictureClip or Multimedia control.

Fortunately, the Package and Deployment Wizard does a pretty good job at deter-
mining all the application files needed by a Visual Basic program.

Sometimes, the Package and Deployment Wizard is unable to identify all the
application files needed for your program to successfully run.

Such files might include initialization files (INI files) and data files such as ran-
dom and sequential access files. If you do not see all your application files listed
during the packaging process, the Package and Deployment Wizard will let you
manually specify them for packaging.

TRAP

312
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

Filename Description

setup.exe Program used during installation but prior to installing your program

setup1.exe Program used specifically for installing your program

setup.lst Text file used to configure the installation process

vb6stkit.dll Dynamic link library used by the setup1.exe program

st6unst.exe Program used to uninstall your Visual Basic application from a user’s
machine

TABLE 12.1 SETUP FILES

TE
AM
FL
Y

Team-Fly®

Package Process

The packaging process involves identifying all the files necessary for deploying
and installing your Visual Basic program. Distribution files are built into a cab
(cabinet) file that expands during installation to distribute program files.

Although it is possible to create Internet packages, this chapter and section con-
centrate on creating standard packages that can be distributed on CD-ROM,
floppy disk, or network drives.

The following steps apply for all standard packages:

1. Launch the Package and Deployment Wizard either in standalone mode or
as an add-in. If launching the Package and Deployment Wizard in stand-
alone mode, use the Browse button to find your Visual Basic project. Click
the Package button (see Figure 12.5).

If you have forgotten to compile your project, the Package and Deployment
Wizard can compile it for you at this time.

2. As shown in Figure 12.6, select Standard Setup Package and click Next.

3. The Package Folder screen, shown in Figure 12.7, prompts you to select a
location where your setup package will be assembled. Find or create a des-
tination folder on your local PC or network drive, and click Next.

4. As depicted in Figure 12.8, the Included Files screen shows you what files
will be included in your setup package. (These are your distribution files.)

This is when you include additional files needed by your program that
were not identified by the Package and Deployment Wizard. After you are
certain all distribution files have been identified, click Next.

HINT

313
C

h
a

p
te

r
 1

2
 S

e
tu

p
 a

n
d

D
e
p

l o
y

m
e
n

t

FIGURE 12.5

Identifying your
project using the

Package and
Deployment

Wizard.

314
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

FIGURE 12.6

Selecting the
standard setup

package.

FIGURE 12.7

Choosing a
destination folder

for your setup
package.

FIGURE 12.8

Identifying
distribution files

during the package
process.

5. Shown in Figure 12.9, the Cab Options screen allows you to create single
or multiple cab files.

If you are going to be distributing your program via floppy disk, select the
Multiple cab file option and click Next. Otherwise, select the Single cab
option and click Next.

6. The Installation Title screen, shown in Figure 12.10, allows you to cus-
tomize your setup package’s title. After customizing your program’s title,
click Next. When running the setup program, the user sees this title.

7. The Start Menu Items screen, shown in Figure 12.11, allows you to create
and customize a program group and item for your Visual Basic program.
This program group and item are what the user sees after clicking the
Start button and Program group. Click Next to continue.

315
C

h
a

p
te

r
 1

2
 S

e
tu

p
 a

n
d

D
e
p

l o
y

m
e
n

t

FIGURE 12.9

Selecting single or
multiple cab file

options.

FIGURE 12.10

Customizing the
setup program’s

title.

8. You can change the destination path of some distribution files through the
Install Locations screen (see Figure 12.12). This option is useful if your users
will launch your program from a location other than their local drives. For
most programs, however, the default install paths are recommended.

After determining installation paths, click Next.

9. As shown in Figure 12.13, you can label one or more distribution files as
shared. This prevents your uninstall program from removing the shared
file unless there is no other program using it. For example, you might
have multiple programs on a user’s machine that also use a component in
your program. In this case, it would be appropriate to flag this file as
shared so that it would not be deleted when the program is uninstalled.

316
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

FIGURE 12.11

Customizing the
program group and

program icon.

FIGURE 12.12

Changing the
installation path of
distribution files.

Otherwise, the removal of this file during an uninstall might cause other
programs to stop working. Click Next to continue.

10. The last step in configuring your setup package is naming your script, as
shown in Figure 12.14. This allows you to reuse the script to build other
setup packages using similar configurations.

After the packaging process is finished, Visual Basic displays a packaging report,
as shown in Figure 12.15.

The packaging report displays information about your cab file and support direc-
tory. The support directory is created by default and contains all distribution
files for rebuilding your cab file. Note that the support directory and its contents

317
C

h
a

p
te

r
 1

2
 S

e
tu

p
 a

n
d

D
e
p

l o
y

m
e
n

t

FIGURE 12.13

Determining
shared files.

FIGURE 12.14

Naming your script
for future use.

are not required to install your program, nor are they required for distributing
your setup package.

In the event that your cab file is deleted, you can use files in your support direc-
tory to re-create it. Specifically, you need your DDF file (which contains informa-
tion about your Visual Basic project) and the makecab.exe file. The makecab.exe
file is generally located in the Microsoft Visual Studio\VB98\Wizards\PDWizard
directory.

The easiest way to rebuild a cab file is to go to a DOS prompt (Start menu/
Programs/Command prompt) and change directory to where the makecab.exe file
is located. From the command prompt, type the following statement:

makecab /f path\ddf_filename.ddf

path is the drive and directory location of your DDF file, and ddf_filename.ddf is
the filename of your DDF file.

Deployment Process

The Package and Deployment Wizard allows you to deploy your prepackaged
Visual Basic program to various locations. Locations can include media such as
CD-ROM, local directories, network folders, floppy disks, and even the Internet.

This section focuses on deployment methods as they relate to the standard setup
package:

1. Launch the Package and Deployment Wizard and select Deploy
(see Figure 12.16).

HINT

318
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

FIGURE 12.15

The packaging
report prepared

after the packaging
process.

2. Next, select the package you want to deploy (as shown in Figure 12.17) and
click Next.

3. For network or local folders, select the folder deployment method as
shown in Figure 12.18 and click Next.

4. After selecting folder deployment, choose an existing directory or create
your own and click Next (see Figure 12.19).

5. Next, select a name for your deployment package that can be reused in
the future and click Finish (see Figure 12.20).

Similar to the packaging process, a report is generated at the end of deployment
(see Figure 12.21).

319
C

h
a

p
te

r
 1

2
 S

e
tu

p
 a

n
d

D
e
p

l o
y

m
e
n

t

FIGURE 12.16

Selecting the
Deploy option from
the Package and

Deployment
Wizard.

FIGURE 12.17

Selecting the
package for
deployment.

320
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

FIGURE 12.18

Folder deployment
for network and
local directories.

FIGURE 12.19

Choosing an
existing deployment

directory or
creating your own.

FIGURE 12.20

Entering a
deployment

package name.

After the deployment process is finished, you can distribute your program to
users (provided you deployed to removable media such as CD or floppy disk) or
have them access the setup package from local or network folders.

Testing Your Setup Program

Once you reach the package and deployment phase, you might think testing and
debugging is over. On the contrary: Good programmers ensure their software
packages install and run correctly from a new installation.

Your best bet for testing the packaging and deployment process is to install your
program on a PC that does not contain an installation of Visual Basic or your
program.

From a clean PC (one that does not contain an installation of Visual Basic or your
program), click the Start menu and select Run.

From the Run dialog window (shown in Figure 12.22), type the following
statement:

Drive:\Setup

Drive is the drive and directory containing your setup package.

321
C

h
a

p
te

r
 1

2
 S

e
tu

p
 a

n
d

D
e
p

l o
y

m
e
n

t

FIGURE 12.21

The deployment
report.

Note that you can accomplish the same task by double-clicking your setup exe-
cutable in Windows Explorer.

It is advisable to save and close any open programs on the PC prior to running
the setup program.

The setup routine guides you through a few installation options before complet-
ing program installation. Depending on the PC’s configuration, it might be nec-
essary to restart the machine before the installation can continue. In this event,
let the setup program restart the machine. (Save and close any open programs
first.) If the PC requires a reboot, re-launch the setup routine so that it can con-
tinue with the program installation.

There may be times when the setup program prompts you to overwrite newer
files with older files contained in the setup program. It is advisable to not over-
write newer files with older ones because this might prevent other programs
from working correctly.

Again, choose not to overwrite any newer files with older versions.

After the setup routine is finished, launch your program from the Programs
menu group and test all program functionality.

Uninstalling Your Visual Basic Program

Sometimes, you or your users might need to uninstall your program. Remember
from the section “Setup Files” earlier in this chapter that Visual Basic deploys
st6unst.exe for uninstalling a program.

You run the st6unst.exe file in conjunction with the Add/Remove Programs
option in the Control Panel (see Figure 12.23).

TRAP

TRAP

322
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

FIGURE 12.22

Running your setup
program.

TE
AM
FL
Y

Team-Fly®

After you locate your program in the Add/Remove Programs window, highlight it
and click Add/Remove as seen in Figure 12.24.

Remember that you should not remove any shared files during program removal.
If shared files are found, Windows alerts you first.

323
C

h
a

p
te

r
 1

2
 S

e
tu

p
 a

n
d

D
e
p

l o
y

m
e
n

t

FIGURE 12.23

Uninstalling your
Visual Basic

program.

FIGURE 12.24

The Add/Remove
Programs dialog

box.

Summary

This chapter covered the process of building setup and deployment routines. You
learned how to use Visual Basic’s Package and Deployment Wizard to create a
setup package for your program and how to deploy it to various mediums such
as CD-ROM, floppy disk, networks, and local folders.

You went beyond creating setup packages and deployment to learn how to test
your setup routine and uninstall your program when the need arises.

324
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

A

T
he ASCII codes in Table A.1 represent

the most common character sets sup-

ported by Microsoft operating systems.

Common ASCII
Codes

A P P E N D I X

326
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

Code Character Code Character

32 Space 33 !

34 “ 35 #

36 $ 37 %

38 & 39 ‘

40 (41)

42 * 43 +

44 , 45 -

46 . 47 /

48 0 49 1

50 2 51 3

52 4 53 5

54 6 55 7

56 8 57 9

58 : 59 ;

60 < 61 =

62 > 63 ?

64 @ 65 A

66 B 67 C

68 D 69 E

70 F 71 G

72 H 73 I

74 J 75 K

76 L 77 M

78 N 79 O

TABLE A.1 COMMON ASCII CODES

327
A

p
p

e
n

d
ix

A
 C

o
m

m
o

n
A

S
C

I I C
o

d
e
s

Code Character Code Character

80 P 81 Q

82 R 83 S

84 T 85 U

86 V 87 W

88 X 89 Y

90 Z 91 [

92 \ 93]

94 ^ 95 _

96 ` 97 a

98 b 99 c

100 d 101 e

102 f 103 g

104 h 105 i

106 j 107 k

108 l 109 m

110 n 111 o

112 p 113 q

114 r 115 s

116 t 117 u

118 v 119 w

120 x 121 y

122 z 123 {

124 | 125 }

126 ~ 127 Del (delete key)

TABLE A.1 COMMON ASCII CODES

This page intentionally left blank

B

T
he CD that accompanies this book con-

tains sample Visual Basic games, a

freeware character pack, and a number

of recommended Web links. The CD also has all

the sample code and sample files that I used

throughout the book.

What’s on
the CD

A P P E N D I X

Running the CD with Windows
95/98/2000/NT

I wanted to make the CD user-friendly and consume less of your disk space, so no
installation is required to view the CD. This means that the only files transferred
to your hard disk are the ones you choose to copy or install. You can run the CD
on any operating system that can view graphical HTML pages; however, not all
the programs can be installed on all operating systems.

If autoplay is turned on, the HTML interface automatically loads into your
default browser.

If autoplay is turned off, access the CD by following these steps:

1. Insert the CD into the CD-ROM drive and close the tray.

2. Go to My Computer or Windows Explorer and double-click the CD-ROM
drive.

3. Find and open the start_here.html file. (This works with most HTML
browsers.)

The first window you see contains the Prima License Agreement. Take a moment
to read the agreement, and if you agree, click the I Agree button to accept the
license and proceed to the user interface. If you do not agree to the terms of the
license, click the I Disagree button. The CD will not load.

Running the CD with
Macintosh OS 7.0 or Later

I wanted to make the CD user-friendly and consume less of your disk space, so no
installation is required to view the CD. This means that the only files transferred
to your hard disk are the ones you choose to copy or install. You can run the CD
on any operating system that can view graphical HTML pages; however, not all
the programs can be installed on all operating systems.

Access the CD by following these steps:

1. Insert the CD into the CD-ROM drive and close the tray.

2. Double-click the icon that represents your CD-ROM.

3. Find and open the start_here.html file. (This works with most HTML
browsers.)

HINT

330
V

is
u

a
l

B
a

s
ic

P
r
o

g
r
a

m
m

in
g

f o
r
 t

h
e
 A

b
s

o
l u

te
 B

e
g

i n
n

e
r

The first window you see contains the Prima License Agreement. Take a moment
to read the agreement, and if you agree, click the I Agree button to accept the
license and proceed to the user interface. If you do not agree to the terms of the
license, click the I Disagree button. The CD will not load.

The Prima User Interface

The opening screen of the Prima user interface contains navigation buttons and
a content area. The navigation buttons appear on the left side of the browser win-
dow. Navigate through the Prima user interface by clicking on a button. Each
page loads and the content displays to the right.

For example, if you want to view the source code, click on the button labeled
Source Code. The new page that loads includes links to all the available source-
code files on the CD. Each chapter’s files are compressed for easy distribution.
You can uncompress the files using any unzip program. You can download
WinZip from http://www.winzip.com/. Alternatively, if you want to view the
uncompressed files you can navigate to the /Source Code folder on the CD. Each
chapter has a separate folder.

It is not necessary to use the Prima user interface to access the contents of the
CD-ROM. If you feel more comfortable using a file system, you can explore the
CD through your operating-system interface. You should find the file structure
logical and descriptive.

To resize the window, position the mouse over any edge or corner, click and hold
the mouse, drag the edge or corner to a new position, and release the mouse
when the size is acceptable.

To close and exit the user interface, select File, Exit.

HINT

HINT

331
A

p
p

e
n

d
ix

B
 W

h
a

t ’s
o

n
th

e
 C

D

This page intentionally left blank

TE
AM
FL
Y

Team-Fly®

Symbols
& (ampersand) symbol, 140

Alt key shortcuts, 175

_ (underscore) symbol, 140

A
About box, 235–238

add-ins, Package and Deployment Wizard,
308–310

Add Procedure dialog box, 130–131

addition notation, 37

agent control, 179–181

agent program, 157–188

problem, 181–182

agents, Microsoft, 177–181

AI (artificial intelligence), 58

intelligent programs, building, 80–83

algorithms, 4

encryption, 248–251

slot machine game, 118

writing, list, 12

alignment, text, 53

ampersand (&) symbol, 140

AND expression, 59–60

animation, PictureClip control, 270–276

App keyword, 240

application files, 312

arithmetic operations, 37–39

Around the World program, 46–48

arrays, 257–259

control arrays, 266–269

declaring, 260–261

dynamic, 265–266

elements, string values, 264

fixed-size, 260

multidimensional, 262–265

single dimension, 261–262

Asc function, 250

ASCII (American Standard Code for
Information Interchange) codes,
246–248, 326–327

converting to characters, 250

B
BackColor property, 170

.bas files, 8

blackjack game, 258

implementation, 279–291

problem, 276–278

bold text, 53

Boolean logic, 59–61

break mode, 16

breakpoints, debugging, 195–197

buffers, 214

bugs, 6

building menus, 174–176

button types, 140

buttons, command buttons, 24–25

ByRef keyword, 137–138

ByVal keyword, 137–138

C
cab files, 313–315

call keyword, 132

Index

CausesValidation property, 192

CD bundle

Macintosh OS 7.0 or later, 330–331

Prima user interface, 331

Windows 95/98/2000/NT, 330

check boxes, 29–30

CheckForWin function, 153

Checkforwin function, 90

Chr function, 250

ciphertext, 246

classes, OOP, 128

click events, option buttons, 15

Close function, 216–217

closing files

random access, 223–225

sequential data, 216–218

code modules, 241–245

Color dialog box, 167–169

combo boxes, 163–164

command buttons, 24–25

properties, 24

Common Dialog control, 166–172

compilers, 3

compiling, 48–49

components, 8–9

Components dialog box, 270

compound conditions, 64–65

concatenation, 39–44

conditions, 63

Boolean expressions, 64

compound, 64–65

Select Case, 72–73

constants, 36–37

naming conventions, 36–37

string constants, 39–44

control arrays, 266–269

controls

advanced, 157–188

advanced adder program, 72

agent, 179–181

agent program, 182

animation program, 79

Around the World program, 48

check boxes, 29–30

clock program, 75

command buttons, 24–25

Common Dialog control, 166–172

counter program, 108

dice program, 116

forms, 22

frames, 28–29

image controls, 27–28

labels, 25

light bulb project, 12

mad lib game, 205

main form, video poker, 278

name game, 44

naming conventions, 21–22, 35–36

PictureClip, 269–276

puzzle game, 300

quiz game, 228

rules form, video poker, 278

shooting gallery game, 148

slot machine game, 117

text boxes, 26

tic-tac-toe game, 84

timer controls, 74–79

weather forecast program, 296

Word Art program, 50–51

Word Art project, 20–31

counter program, 107–108

cryptography, 245

D
data files, 211–212

organization, 212–213

data types

function return values, 135

validation, 193

debug windows, 195

334
I n

d
e

x

debugging, 3, 189

breakpoints, 195–197

Err object, 202–204

Immediate window, 197–198

Locals window, 200

Watch window, 198–199

decision making, 58–102

decision tree, 81–83

declaration

arrays, 260–261

dynamic, 265

static, 265

variables, 33–35

Option Explicit, 35

default property, 173–174

deployment process, 318–321

design time, 16

devices, multimedia graphical control, 146

dice program, 113–116

Dim keyword, 34

directory list boxes, 164–166

distribution files, 311

application files, 312

runtime files, 311

setup files, 312

division notation, 37

do loops, 109–112

do while, 109–111

dot notation, 220

drag and drop, 293–295

events, 297

properties, 295–296

source, 295

target, 295

DragDrop event, 297

DragOver event, 297

DrawWidth property, 170–171

drive list boxes, 164–166

dynamic arrays, 265–266

E
editing random access file data, 222–223

electrical currents, 32

element numbers, 260

Else keyword, 61–63

Enabled property, 74

encryption

algorithm, 248–251

ciphertext, 246

keys, 246

numbering systems, 246–248

plaintext, 246

end keyword, 162

EOF function, 215

Err object, 202–204

error handling, 189

routines, building, 200–202

error numbers, 203

error trapping, file access, 225–227

events, 14. See also methods; properties

drag and drop, 297

DragDrop, 297

DragOver, 297

KeyDown, 66

KeyPress, 66

programming, 45–48

QueryUnload, 154

triggering, 14

validate, 192

exponentiation notation, 37

F
file list boxes, 164–166

files

data files, 211–213

distribution, 311–312

random access, 218–225

sequential access, 213–218

335
In

d
e

x

files (continued)

sequential data

closing file, 216–218

reading from, 215–216

writing to, 214–215

fixed-size arrays, 260

focus, 71

FontName property, 52

FontSize property, 54

for loops, 105–108

Form Code window, 11

form data files, 8

Form Layout window, 11

form-level variables, 34

Form modules, 242

form modules, 8

forms, 10–11

controls and, 22

multiple, 234–235

About box, 235–238

splash screens, 238–241

properties, 23

frames, 28–29

properties, 29

FreeFile function, 221

.frm files, 8

.frx files, 8

Function keyword, 134

functions, 24, 39–44, 128–129, 133–137

Asc, 250

CheckForWin, 153

Checkforwin, 90

Chr, 250

Close, 216–217

EOF, 215

file I/O, 210

FreeFile, 221

InStr, 42

isNumeric, 193

Left, 41

Len, 42

LenB, 221

Mid, 42, 250

numeric, string-related, 41

Open, 213–214

parameters, passing, 136

randomize, 113–116

return values, data types, 135

Right, 41

rnd, 112–113

Str, 39, 248

string, 41

subprocedures comparison, 129

time, 75

Trim, 42

UCase, 42

Unload_Sounds, 155

Val, 38–39

Verify_Input, 206

Write, 214–215

G
games

blackjack, 258

mad lib game, 190–208

tic-tac-toe, 58–101

video poker, 258

Get statement, 221–222

GetName command button, 135

goto keyword, 201

group project files, 8

GUI (graphical user interface), 20

drag and drop and, 294

H
hackers, 245

HCI (human/computer interaction), 172

default property, 173–174

error-handling, 200–202

menus, building, 174–176

pop-up menus, 177

336
I n

d
e

x

TabIndex property, 173

ToolTipText property, 173

help systems, 3

Hopper, Grace, bugs, 6

I
I/O (input/output)

functions, 210

libraries, 210

icons

toolbar, 10

types, 140

IDE (Integrated Development
Environment), 3, 190

If keyword, 61–63

If statements, nested, 65–72

image controls, 27–28

Immediate window, debugging and,
197–198

implementation, 52–55

agent program, 183–187

blackjack game, 279–291

mad lib game, 204–208

puzzle game, 301–306

quiz game, 229–232

quiz game enhancements, 254–256

shooting gallery game, 149–155

slot machine game, 119–125

tic-tac-toe game, 86–101

video poker game, 279–291

indirection, 137

infinite loops, 110

input boxes, 141–143

input validation, 191–192

data type validation, 193

validate event, 192

values, testing range, 193–195

installation

Microsoft agents, 178–179

uninstalling programs, 322–323

InStr function, 42

Int function, 133

intelligent programs, building (AI), 80–83

interacting with users, 138

input boxes, 141–143

message boxes, 139–140

interaction, human/computer. See HCI
(human/computer interaction)

IsNumeric function, 193

italic text, 53

iteration, 103–126. See also loops

K
key fields, 213

KeyAscii values, 71

KeyDown event, 66

KeyPress event, 66

keys, encryption, 246

keywords

App, 240

ByRef, 137–138

ByVal, 137–138

call, 132

Dim, 34

Else, 61–63

end, 162

Function, 134

goto, 201

If, 61–63

Me, 238

ReDim, 265

resume, 202

Static, 34

Then, 61–63

Unload, 238

L
labels, 25

Left function, 41

Len function, 42, 133

337
In

d
e

x

LenB function, 221

libraries

file I/O, 210

Windows API, 144

light bulb project, 3

implementation, 13–15

problem, constructing, 11–12

list boxes, 158–162

directory list boxes, 164–166

drive list boxes, 164–166

file list boxes, 164–166

ListIndexes, 160

ListIndex property, 161

ListIndexes, 160

LoadPicture function, 151

Load_Sounds subprocedure, 152

Locals window, 200

Login dialog box, 251–252

loops, 104–105. See also iteration

do, 109–112

do while, 109–111

for loops, 105–108

infinite, 110

loop until, 111–112

lower bound element numbers, 260

M
Macintosh, CD files, 330–331

mad lib game, 190–208

implementation, 204–208

problem, 204

MaxLength property, 252

Me keyword, 238

menu bar, 9–10

menus

building, 174–176

pop-up, 177

message boxes, 139–140

methods. See also events; properties

list boxes, 160

OOP, 128

PSet, 171–172

Show, 237–238

ShowColor, 167

ShowPrinter, 169

Microsoft

agents, 177–178

control, 179–181

installing, 178–179

SourceSafe, 191

Mid function, 42, 250

modules

code modules, 241–245

Form modules, 242

Standard, 242

mouse pointer settings, 304

MousePointer property, 151

MsgBox function, 139

multidimensional arrays, 262–265

multimedia graphical control, 145–146

multiplication notation, 37

N
name game program, 40–41

controls, 44

properties, 44

naming conventions, 21–22

constants, 36–37

variables, 35–36

nested statements, 65–72

NOT expressions, 59–60

numbering systems, encryption, 246–248

numeric functions, string-related, 41

O
object-oriented programming, 128

objects, 9

Err, 202–204

forms and, 10–11

OOP, 128

338
I n

d
e

x

On Error GoTo statement, 200

Open function, 213–214

opening files, random access, 221

Option Base statement, 261

option buttons, 30–31

click events, 15

Option Explicit, 35

OR expressions, 59–60

P
Package and Deployment Wizard, 308

as add-in, 308–310

deployment process, 318–321

packaging processing, 313–318

standalone mode, 311

packaging process, 313–318

paper clip, agent, 177–178

parameters

input boxes, 141

Open function, 213–214

passing to functions, 136

subprocedures, 132

PasswordChar property, 252

passwords, 251–252

pauseProgram procedure, 153

persistent data, 210

picture boxes, 27–28

Print method, 44

PictureClip control, 269–276

plaintext, 246

playing sounds, 144–147

pointers, indirection, 137

pointers (C and C++), 32

pop-up menus, 177

Prima user interface, CD bundle, 331

Print method, 44

picture boxes, 44

Private scope, 219–221

problem solving, 4–5

STAIR, 5–7

procedure-level scope, 34

procedure stepping, 196

procedures, 24

naming conventions, 35–36

pauseProgram, 153

program termination, 262

program termination procedures, 262

programming events, 45–48

programs, uninstalling, 322–323

Project Container window, 10

Project Explorer window, 11

forms, 236

project files, 8

Project Properties window

settings, 240–241

projects

advanced adder program, 72

agent program, 157–188

animation program, 79

Around the World program, 46–48

blackjack, 258–292

clock program, 75

counter program, 107–108

dice program, 113–116

light bulb program, 12

mad lib game, 190–208

name game program, 40–44

quiz game, 210–232

standard EXE, 9

templates, 8–9

tic-tac-toe game, 58–101

video poker, 258–292

Word Art, 20

Word Art program, 50–51

prompting users, 141–143

properties. See also events; methods

advanced adder program, 72

agent program, 182

animation program, 79

Around the World program, 48

339
In

d
e

x

properties (continued)

BackColor, 170

CausesValidation, 192

check boxes, 29–30

clock program, 75

command buttons, 24

counter program, 108

default property, 173–174

dice program, 116

drag and drop, 295–296

DrawWidth, 170–171

Enabled, 74

FontName, 52

FontSize, 54

forms, 23

frames, 29

image controls, 28

labels, 25

light bulb program, 12

list boxes, 158–160

ListIndex, 161

mad lib game, 205

main form, video poker, 278

MaxLength, 252

MousePointer, 151

name game, 44

OOP, 128

option buttons, 31

PasswordChar, 252

picture boxes, 28

puzzle game, 300

quiz game, 228

rules form, video poker, 278

shooting gallery game, 148

slot machine game, 117

TabIndex, 173

text, 43

text boxes, 26, 142

tic-tac-toe game, 84

ToolTipText, 173

weather forecast program, 296

Word Art project, 20–31, 50–51

Properties window, 11

PSet method, 171–172

Public scope, 219–221

Put statement, 222–223

puzzle game, 294–299

implementation, 301–306

problem, 299–301

Q
QueryUnload event, 154

quiz game, 210–232

encryption, 246–256

enhancements, 252–253

implementation, 254–256

problem, 253–254

forms, 234–245

implementation, 229–232

problem, 228

R
RAD (Rapid Application Development),

2–3, 295

radio buttons, 30

random access files, 218–219

closing, 223–225

creating data, 222–223

editing data, 222–223

opening, 221

reading data, 221–222

user-defined types, 219–220

random number generation, 112–116

randomization, encryption algorithm, 249

randomize function, 113–116

Randomize statement, 279

reading data

random access files, 221–222

sequential data from files, 215–216

340
I n

d
e

x

record lengths, random access files, 219

ReDim keyword, 265

ReDim statement, 265

resume keyword, 202

Resume Next statement, 202

Right function, 41

rnd function, 112–113

running programs, 48–49

runtime environment, 16

runtime files, 311

S
scope, variables, 33–35

procedure level, 34

Select Case structure, 72–73

sequential access files, 213–218

sequential data

files, closing, 216–218

reading from files, 215–216

writing to file, 214–215

setup files, 312

setup program, testing, 321–322

shooting gallery project, 128–156

problem, 147–149

Show method, 237–238

ShowColor method, 167

ShowPrinter method, 169

single dimension arrays, 261–262

slot machine game, 104–126

implementation, 119–125

software engineering, 5

sound, playing sound, 144–147

source, drag and drop, 295

source code archives, 191

SourceSafe (Microsoft), 191

splash screens, 238–241

STAIR, 5–7

standard EXE project, 9

Standard modules, 242

standard modules, 8

statements

if, nested, 65–72

Option Base, 261

Put, 222–223

Randomize, 279

ReDim, 265

Resume Next, 202

Static keyword, 34

stepping (debugging), 195

procedure stepping, 196

Str function, 39, 133, 248

string constants, 39–44

string functions, 41

subprocedures, 24, 128–133

functions comparison, 129

parameters, 132

subprograms, 132

subtraction notation, 37

T
TabIndex property, 173

target, drag and drop, 295

templates, 8–9

termination procedures, 262

text, 39–40

alignment, 53

bold, 53

ciphertext, 246

italic, 53

modifying, users, 50–55

plaintext, 246

text boxes, 26

list box comparison, 158–159

properties, 142

text editors, 3

text properties, 43

Then keyword, 61–63

tic-tac-toe game, 58–101

constructing, 83–101

time function, 75

341
In

d
e

x

timer controls, 74–79

shooting gallery game, 150

toolbar, 10

toolbox, 10

tools, problem solving and, 6

ToolTipText property, 173

Trim function, 42

truth tables, 59

TSO (time-sharing option), 3

twips, 23

U
UCase function, 42, 133

underscore (_) symbol, 140

uninstalling programs, 322–323

Unload keyword, 238

Unload_Sounds function, 155

upper bound element numbers, 260

user-defined functions, 133

user-defined types, random access files,
219–220

users

interaction, 138–143

text, modifying, 50–55

V
Val function, 38–39, 133

validate event, 192

validating input, 191–195

values, testing range, 193–195

variables, 32–33

arrays, 258–259

declaring, 33–35

form-level, 34

naming conventions, 35–36

Option Explicit, 35

scope, 33–35

types, 33

.vbg files, 8

.vbp files, 8

Verify_Input function, 206

video poker game, 258

implementation, 279–291

problem, 276–278

W
Watch window, 198–199

weather forecast program, 295–296

drag and drop events, 297–299

windows

debug, 195

Form Code, 11

Form Layout, 11

Immediate, 197–198

Locals, 200

Project Container, 10

Project Explorer, 11

Project Properties, 240–241

Properties, 11

Watch, 198–199

Windows, CD files and, 330

Windows API, 144

Word Art project, 20

controls, 20–31

properties, 20–31

Write function, 214–215

writing sequential data to files, 214–215

WYSIWYG (What You See Is What You Get),
295

X
Xerox PARC, 295

342
I n

d
e

x

TE
AM
FL
Y

Team-Fly®

Prima ad

Absolute Beginner

to come from Prima

Prima ad

Game Development

to come from Prima

Prima ad

fast & easy web development

to come from Prima

Prima ad

fast & easy

to come from Prima

Prima ad

Linux

to come from Prima

Prima ad

Need a Computer Book?

to come from Prima

Prima ad

Are You Ready for a Change

to come from Prima

License Agreement/Notice of Limited Warranty

By opening the sealed disc container in this book, you agree to the following terms and conditions. If,
upon reading the following license agreement and notice of limited warranty, you cannot agree to the
terms and conditions set forth, return the unused book with unopened disc to the place where you
purchased it for a refund.

License:
The enclosed software is copyrighted by the copyright holder(s) indicated on the software disc. You
are licensed to copy the software onto a single computer for use by a single user and to a backup
disk. You may not reproduce, make copies, or distribute copies or rent or lease the software in whole
or in part, except with written permission of the copyright holder(s). You may transfer the enclosed
disc only together with this license, and only if you destroy all other copies of the software and the
transferee agrees to the terms of the license. You may not decompile, reverse assemble, or reverse
engineer the software.

Notice of Limited Warranty:
The enclosed disc is warranted by Prima Publishing to be free of physical defects in materials and
workmanship for a period of sixty (60) days from end user’s purchase of the book/disc combination.
During the sixty-day term of the limited warranty, Prima will provide a replacement disc upon the
return of a defective disc.

Limited Liability:
THE SOLE REMEDY FOR BREACH OF THIS LIMITED WARRANTY SHALL CONSIST ENTIRELY
OF REPLACEMENT OF THE DEFECTIVE DISC. IN NO EVENT SHALL PRIMA OR THE AUTHORS
BE LIABLE FOR ANY OTHER DAMAGES, INCLUDING LOSS OR CORRUPTION OF DATA,
CHANGES IN THE FUNCTIONAL CHARACTERISTICS OF THE HARDWARE OR OPERATING
SYSTEM, DELETERIOUS INTERACTION WITH OTHER SOFTWARE, OR ANY OTHER SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL DAMAGES THAT MAY ARISE, EVEN IF PRIMA AND/OR THE
AUTHOR HAVE PREVIOUSLY BEEN NOTIFIED THAT THE POSSIBILITY OF SUCH DAMAGES
EXISTS.

Disclaimer of Warranties:
PRIMA AND THE AUTHORS SPECIFICALLY DISCLAIM ANY AND ALL OTHER WARRANTIES,
EITHER EXPRESS OR IMPLIED, INCLUDING WARRANTIES OF MERCHANTABILITY,
SUITABILITY TO A PARTICULAR TASK OR PURPOSE, OR FREEDOM FROM ERRORS. SOME
STATES DO NOT ALLOW FOR EXCLUSION OF IMPLIED WARRANTIES OR LIMITATION OF
INCIDENTAL OR CONSEQUENTIAL DAMAGES, SO THESE LIMITATIONS MAY NOT APPLY TO
YOU.

Other:
This Agreement is governed by the laws of the State of California without regard to choice of law
principles. The United Convention of Contracts for the International Sale of Goods is specifically
disclaimed. This Agreement constitutes the entire agreement between you and Prima Publishing
regarding use of the software.

	sample.pdf
	sterling.com
	Welcome to Sterling Software

