PREMIER REFERENCE SOURCE

SOFTWARE
ENGINEERING

Effective Teaching and
Learning Approaches
and Practices

Heidi J. C. Ellis, Steven A. Demurjian, & J. Fernando Naveda

Software Engineering:
Effective Teaching and Learning
Approaches and Practices

Heidi J. C. Ellis
Trinity College, USA

Steven A. Demurjian
University of Connecticut, USA

J. Fernando Naveda
Rochester Institute of Technology, USA

Information Science | INFORMATION SCIENCE REFERENCE
Hershey - New York

Director of Editorial Content: Kristin Klinger

Director of Production: Jennifer Neidig
Managing Editor: Jamie Snavely
Assistant Managing Editor: Carole Coulson
Typesetter: Kim Barger

Cover Design: Lisa Tosheff

Printed at: Yurchak Printing Inc.

Published in the United States of America by
Information Science Reference (an imprint of IGI Global)
701 E. Chocolate Avenue, Suite 200
Hershey PA 17033
Tel: 717-533-8845
Fax: 717-533-8661
E-mail: cust@igi-global.com
Web site: http://www.igi-global.com

and in the United Kingdom by
Information Science Reference (an imprint of IGI Global)
3 Henrietta Street
Covent Garden
London WC2E 8LU
Tel: 44 20 7240 0856
Fax: 44 20 7379 0609
Web site: http://www.eurospanbookstore.com

Copyright © 2009 by IGI Global. All rights reserved. No part of this publication may be reproduced, stored or distributed in any form or by
any means, electronic or mechanical, including photocopying, without written permission from the publisher.

Product or company names used in this set are for identification purposes only. Inclusion of the names of the products or companies does
not indicate a claim of ownership by 1GI Global of the trademark or registered trademark.

Library of Congress Cataloging-in-Publication Data

Software engineering : effective teaching and learning approaches and practices / Heidi J.C. Ellis, Steven A. Demurgian, and J. Fernando
Naveda, editors.

p.cm.
Includes bibliographical references and index.

Summary: "This book presents the latest developments in software engineering education, drawing contributions from over 20 software
engineering educators from around the globe"--Provided by publisher.

ISBN 978-1-60566-102-5 (hardcover) -- ISBN 978-1-60566-103-2 (ebook)

1. Software engineering--Study and teaching. 2. Computer software--Development--Study and teaching. I. Ellis, Heidi J. C. I
Demurjian, Steven A. 111. Naveda, J. Fernando.

QA76.758.5646254 2008
005.1'07--dc22

2008022554

British Cataloguing in Publication Data
A Cataloguing in Publication record for this book is available from the British Library.

All work contributed to this book set is original material. The views expressed in this book are those of the authors, but not necessarily of
the publisher.

If a library purchased a print copy of this publication, please go to http.://www.igi-global.com/agreement for information on activating
the library's complimentary electronic access to this publication.

Table of Contents

0] =TT o] o PO T TSRS XV
PIEIACE ..t bbb bbbttt Xvii
ACKNOWIBAGIMENT ...ttt st e st et e s teese et e sbeese e b e stesteensesbesreaneas XXV
Section |
Introduction
Chapter |
Software Engineering Education: Past, Present, and FULUIE..............c.ccoovvioviiiiieiiicieieeeceeeee e 1

Gregory W. Hislop, Drexel University, USA

Section 11
Student Learning and Assessment

Chapter 11
Constructive Alignment in SE Education: Aligning to What?cccocooooiiiiiiceeeeeeeee 15
Jocelyn Armarego, Murdoch University, Western Australia

Chapter 111

On the Role of Learning Theories in Furthering Software Engineering Education............................ 38
Emily Oh Navarro, University of California, Irvine, USA
André van der Hoek, University of California, Irvine, USA

Section 111
Innovative Teaching Methods

Chapter IV

Tasks in Software Engineering Education: The Case of a Human Aspects of Software

ENQGINEEIING COUISE.. ...ttt et ettt ettt ettt et eae e 61
Orit Hazzan, Technion - IIT, Israel
Jim Tomayko, Carnegie Mellon University, USA

Chapter V
Speaking of Software: Case Studies in Software CommuUNICALION.............ccooovivieiieriiiiiiieieie e, 75
Ann Brady, Michigan Technological University, USA
Marika Seigel, Michigan Technological University, USA
Thomas Vosecky, Michigan Technological University, USA
Charles Wallace, Michigan Technological University, USA

Chapter VI

Novel Methods of Incorporating Security Requirements Engineering into Software

Engineering Courses and CUITICUIAc.oooiiiii e 98
Nancy R. Mead, Software Engineering Institute, USA
Dan Shoemaker, University of Detroit Mercy, USA

Section 1V
Project-Based Software Engineering

Chapter VII
The Software Enterprise: Preparing Industry-Ready Software ENgineersccccocevvevvincniecennnn. 115
Kevin A. Gary, Arizona State University, USA

Chapter VIII

Teaching Software Engineering in a Computer Science Program Using the Affinity

Research Group PhilOSOPNY........c..ooiieeee e 136
Steve Roach, The University of Texas at El Paso, USA
Ann Q. Gates, The University of Texas at El Paso, USA

Chapter IX
A Framework for Success in Real Projects for Real Clients COUISES...........c.cccvevvevviivieeecieieeeeiennnan 157
David Klappholz, Stevens Institute of Technology, USA
Vicki L. Almstrum, The University of Texas at Austin, USA
Ken Modesit, Indiana University — Purdue University Ft. Wayne, USA
Cherry Owen, The University of Texas of the Permian Basin, USA
Allen Johnson, Huston-Tillotson University, USA
Steven J. Condly, HSA Learning & Performance Solutions, USA

Chapter X

Experiences in Project-Based Software Engineering: What Works, What Doesn’t.............c.cccccvee. 191
Steven A. Demurjian, University of Connecticut, USA
Donald M. Needham, United States Naval Academy, USA

Section V
Educational Technology

Chapter XI

Applying Blended Learning in an Industrial Context: An Experience Report............ccccceovvvrennen.

Christian Bunse, International University in Germany, Germany

Christian Peper, Fraunhofer Institute Experimental Software Engineering, Germany

Ines Griitzner, Fraunhofer Institute Experimental Software Engineering, Germany

Silke Steinbach-Nordmann, Fraunhofer Institute Experimental Software Engineering,
Germany

Chapter XII
Integrated Software Testing Learning Environment for Training Senior-Level Computer

SCIBNCE STUABNES ... e e e

Daniel Bolanos, Universidad Autonoma de Madrid, Spain
Almudena Sierra, Universidad Rey Juan Carlos, Spain

Section VI
Curriculum and Education Management

Chapter XI11

Software Engineering Accreditation in the United States..............ccooeviiiiieeicieeeeceee

James McDonald, Monmouth University, USA
Mark J. Sebern, Milwaukee School of Engineering, USA
James R. Vallino, Rochester Institute of Technology, USA

Chapter XIV

Software Engineering at Full Scale: A Unique Curriculum..............cccoooovieiieeceeceeee e,

Jochen Ludewig, Universitdt Stuttgart, Germany

Chapter XV

Continuous Curriculum Restructuring in a Graduate Software Engineering Program...................

Daniela Rosca, Monmouth University, USA
William Tepfenhart, Monmouth University, USA
Jiacun Wang, Monmouth University, USA
Allen Milewski, Monmouth University, USA

Chapter XVI
How to Create a Credible Software Engineering Bachelor’s Program: Navigating the

Waters of Program DeVEIOPIMENT.........ccoiiiiiiiieieiee st

Stephen Frezza, Gannon University, USA
Mei-Huei Tang, Gannon University, USA
Barry J. Brinkman, Gannon University, USA

Section VII
Professional Practice

Chapter XVII
Ensuring Students Engage with Ethical and Professional Practice CONCeptS.........cccoeveiveveriereennnnn. 327
J. Barrie Thompson, University of Sunderland, UK

Chapter XVI11
An International Perspective on Professional Software Engineering Credentials.............cccccvvnnene. 351
Stephen B. Seidman, University of Central Arkansas, USA

Compilation OF RETEFENCES ..o 362

ADOUL ThE CONTIIDULOTS .oiieiiieeeeeee ettt ettt e e e e e ettt e e e e e ettt et e s ese e aeeeeesssaeereneees 393

Detailed Table of Contents

(0] =\T1Y/0] (o TR XV

[] =1L TR XVii

Ao 110112 T [Ty 1T o S XXV
Section |

Introduction

Chapter |
Software Engineering Education: Past, Present, and FULUI€...............cooooviiiiieiiiiieeceeeeeeeee e 1
Gregory W. Hislop, Drexel University, USA

There is a strong and growing global demand for skilled software engineers. The institutions that educate
software engineers are evolving and changing to meet this need. This chapter provides an overview of
this effort to develop software engineering education. It discusses the historical development of soft-
ware engineering education, provides some perspective on current status, and identifies some of the
challenges faced by software engineering educators. The intended audience for this chapter is anyone
interested in software engineering education who has not participated in the developments to the present
time. The goal is to provide a summary background of how the discipline has evolved and pointers to
key publications that are part of that history. Since this chapter surveys foundational topics in software
engineering education, many of the topics touched on in this chapter are covered in more detail in other
chapters of this volume.

Section 11
Student Learning and Assessment

Chapter Il
Constructive Alignment in SE Education: Aligning to What?cc.oooooeiiiiiieeeeeeeeeee 15
Jocelyn Armarego, Murdoch University, Western Australia

Practitioner studies suggest that formal IT-related education is not developing the skills and knowledge
needed by graduates in daily work. In particular, a shift in focus from technical competency to the soft
and metacognitive skills is identified. This chapter argues that a framework for learning can be developed

that more closely models the experiences of practitioners, and addresses their expectations of novice
Software Engineers. Evaluation of a study incorporating three Action Research cycles shows that what
is needed is a mapping between the characteristics of professional practice and the learning model that
is applied. The research shows that a relationship also exists between learner and learning model, and
that this relationship can be exploited in the development of competent discipline practitioners.

Chapter 111

On the Role of Learning Theories in Furthering Software Engineering Education.............................. 38
Emily Oh Navarro, University of California, Irvine, USA
André van der Hoek, University of California, Irvine, USA

Learning theories describe how people learn. There is a large body of work concerning learning theories
on which to draw, a valuable resource of which the domain of software engineering educational research
has thus far not taken full advantage. In this chapter, the authors explore what role learning theories could
play in software engineering education. The authors propose that learning theories can move the field of
software engineering education forward by helping us to categorize, design, evaluate, and communicate
about software engineering educational approaches. They demonstrate this by: (1) surveying a set of
relevant learning theories, (2) presenting a categorization of common software engineering educational
approaches in terms of learning theories, and (3) using one such approach (SimSE) as a case study to
explore how learning theories can be used to improve existing approaches, design new approaches, and
structure and guide the evaluation of an approach.

Section 111
Innovative Teaching Methods

Chapter IV

Tasks in Software Engineering Education: The Case of a Human Aspects of Software

ENQGINEEITNG COUISE....ouiiiiiiiitieiieie ettt ettt ettt ettt et ettt s st et e eaeese et e s e ene et esseeseeneenes 61
Orit Hazzan, Technion - IIT, Israel
Jim Tomayko, Carnegie Mellon University, USA

The field of software engineering is multifaceted. Accordingly, students must be educated to cope with
different kinds of tasks and questions. This chapter describes a collection of tasks that aim at improving
students’ skills in different ways. The authors illustrate their ideas by describing a course about human
aspects of software engineering. The course objective is to increase learners’ awareness with respect
to problems, dilemmas, ethical questions, and other human-related situations that students may face in
the software engineering world. The authors attempt to achieve this goal by posing different kinds of
questions and tasks to the learners, which aim at enhancing their abstract thinking and expanding their
analysis perspectives. The chapter is based on the authors’ experience teaching the course at Carnegie-
Mellon University and at the Technion — Israel Institute of Technology.

Chapter V
Speaking of Software: Case Studies in Software CommuniCation..............ccccoevevievieviieicieieceenn, 75
Ann Brady, Michigan Technological University, USA
Marika Seigel, Michigan Technological University, USA
Thomas Vosecky, Michigan Technological University, USA
Charles Wallace, Michigan Technological University, USA

In this chapter, the authors describe their recent efforts to generate and use case studies to teach com-
munication skills in software development. They believe their work is innovative in several respects. The
case studies touch on rhetorical issues that are crucial to software development yet not commonly associ-
ated with the field of software engineering. Moreover, they present students with complex, problematic
situations, rather than sanitized post hoc interpretations often associated with case study assignments.
The case study project is an interdisciplinary collaboration that interweaves the expertise of software
engineers and technical communicators. Their software engineering and technical communication cur-
ricula have been enhanced through this cross-fertilization.

Chapter VI

Novel Methods of Incorporating Security Requirements Engineering into Software

Engineering Courses and CUTITICUIAc.ooouiiiii e 98
Nancy R. Mead, Software Engineering Institute, USA
Dan Shoemaker, University of Detroit Mercy, USA

This chapter describes methods of incorporating security requirements engineering into software engi-
neering courses and curricula. The chapter discusses the importance of security requirements engineering
and the relationship of security knowledge to general computing knowledge by comparing a security
body of knowledge to standard computing curricula. Then security requirements is related to standard
computing curricula and educational initiatives in security requirements engineering are described, with
their results. An expanded discussion of the SQUARE method in security requirements engineering case
studies is included, as well as future plans in the area. Future plans include the development and teaching
of academic course materials in security requirements engineering, which will then be made available
to educators. The authors hope that more educators will be motivated to teach security requirements
engineering in their software engineering courses and to incorporate it in their curricula.

Section 1V
Project-Based Software Engineering

Chapter VII
The Software Enterprise: Preparing Industry-Ready Software ENgineerscccoooeevveeevecvecnenn. 115
Kevin A. Gary, Arizona State University, USA

This chapter describes the development of a learning-by-doing approach for teaching software engineer-
ing called the Software Enterprise at the Polytechnic Campus of Arizona State University. The Capstone
experience is extended to two one-year projects and serves as the primary teaching and learning vehicle

for best practices in software engineering. Several process features are introduced in an attempt to make
projects, or more importantly the experience gained from project work, more applicable to industry
expectations. At the conclusion of the Software Enterprise students have an applied understanding of
how to leverage software process as a tool for successful project evolution. This chapter presents the
Software Enterprise, focusing the presentation on three novel aspects: a highly iterative, learner-cen-
tered pedagogical model, cross-year mentoring, and multiple projects as a novel means of sequencing
learning objectives.

Chapter VIII

Teaching Software Engineering in a Computer Science Program Using the Affinity

Research Group PRIlOSOPNY.........c.ooiiiiiici et 136
Steve Roach, The University of Texas at El Paso, USA
Ann Q. Gates, The University of Texas at El Paso, USA

This chapter describes a two-semester software engineering course that is taught in a computer science
program at the University of Texas at El Paso. The course is distinguished from other courses in that it
is based on the Affinity Research Group (ARG) philosophy that focuses on the deliberate development
of students’ team, professional and technical skills within a cooperative environment. To address the
challenge of having to teach professional and team skills as well as software engineering principles,
approaches, techniques, and tools in a capstone course, the authors have defined an approach that uses
a continuum of instruction, practice, and application with constructive feedback loops. The authors
hope that the readers will benefit from the description of the approach and how ARG components are
incorporated into the course.

Chapter IX
A Framework for Success in Real Projects for Real Clients COUISES..............ccvevvevviivieierieeiieieeiiennins 157
David Klappholz, Stevens Institute of Technology, USA
Vicki L. Almstrum, The University of Texas at Austin, USA
Ken Modesit, Indiana University — Purdue University Ft. Wayne, USA
Cherry Owen, The University of Texas of the Permian Basin, USA
Allen Johnson, Huston-Tillotson University, USA
Steven J. Condly, HSA Learning & Performance Solutions, USA

This chapter demonstrates the importance of Real Projects for Real Clients Courses (RPRCCs) in com-
puting curricula. Based on the authors’ collective experience, advice for setting up an effective support
infrastructure for such courses is offered. The authors discuss where and how to find clients, the types
of projects that they have used, and how to form and train teams. The authors also investigate the va-
riety of standards and work projects that they have used in their courses and explore issues related to
assessment and evaluation. Finally, the chapter considers the benefits of an RPRCC-centric approach
to computing curricula.

Chapter X

Experiences in Project-Based Software Engineering: What Works, What Doesn’t.............ccccceceee. 191
Steven A. Demurjian, University of Connecticut, USA
Donald M. Needham, United States Naval Academy, USA

Project-based capstone software engineering courses are a norm in many computer science (CS) and
computer science & engineering (CS&E) accredited programs. Such cap-stone design courses offer an
excellent vehicle for educational outcomes assessment to support the continuous improvement process
required for accreditation. A project-based software engineering capstone course near the end of a
student’s program can span the majority of CS and CS&E program objectives, providing a significant
means to assess attainment of these objectives in a single course location. One objective of this chapter
is to explore the role of a project-based, software engineering course in accreditation. An additional
objective is to relate over twelve combined years of experience in teaching such a course, and in the
process, highlight what works and what does not. The authors candidly examine both the successes and
the failures that they have encountered over the years, and provide a roadmap for other instructors and
departments seeking to institute such courses.

Section V
Educational Technology

Chapter XI
Applying Blended Learning in an Industrial Context: An Experience Report.............cccccoeveievennnnn. 213
Christian Bunse, International University in Germany, Germany
Christian Peper, Fraunhofer Institute Experimental Software Engineering, Germany
Ines Griitzner, Fraunhofer Institute Experimental Software Engineering, Germany
Silke Steinbach-Nordmann, Fraunhofer Institute Experimental Software Engineering,
Germany

With the rapid rate of innovation in software engineering, teaching and learning of new technologies have
become challenging issues. The provision of appropriate education is a key prerequisite for benefiting
from new technologies. Experience shows that typical classroom education is not as effective and efficient
as it could be. E-learning approaches seem to be a promising solution but e-learning holds problems
such as a lack of social communication or loose control on learning progress. This chapter describes a
blended learning approach that mixes traditional classroom education with eLearning and that makes use
of tightly integrated coaching activities. The concrete effects and enabling factors of this approach are
discussed by means of an industrial case study. The results of the study indicate that following a blended
learning approach has a positive impact on learning time, effectiveness and sustainability.

Chapter XII

Integrated Software Testing Learning Environment for Training Senior-Level Computer

SCIENCE STUABNTS ... e et 233
Daniel Bolanos, Universidad Autonoma de Madrid, Spain
Almudena Sierra, Universidad Rey Juan Carlos, Spain

Due to the increasingly important role of software testing in software quality assurance, during the last
several years, the utilization of automated testing tools, and particularly those belonging to the xUnit
family, has proven to be invaluable. However, as the number of resources available continues increasing,
the complexity derived from the selection and integration of the most relevant software testing principles,
techniques and tools into an adequate learning environment for training computer science students in
software testing, increases too. This chapter introduces an experience of teaching Software Testing for a
senior-level course. In the elaboration of the course a wide variety of testing techniques, methodologies
and tools have been selected and seamlessly integrated. An evaluation of students performance during
the three academic years that the course has been held show that students’ attitudes changed with a high
or at least a positive statistical significance.

Section VI
Curriculum and Education Management

Chapter XIII

Software Engineering Accreditation in the United States..............cccooveviiiieiiiicieeeeeeeeeeee 251
James McDonald, Monmouth University, USA
Mark J. Sebern, Milwaukee School of Engineering, USA
James R. Vallino, Rochester Institute of Technology, USA

This chapter provides a brief history of the accreditation of software engineering programs in the United
States and describes some of the experiences encountered by programs in achieving their accreditation
and by program evaluators in reviewing those programs. It also describes how the accredited programs
have addressed the most difficult issues that they have faced during the accreditation process. The au-
thors have served as leaders of the accreditation efforts at their own institutions and as ABET program
evaluators at several other academic institutions that have achieved accreditation. The objective of this
chapter is to provide those software engineering programs that will be seeking accreditation in the future
with some of the experiences of those who are familiar with the process from both the programs’ and
the evaluators’ points of view. Leaders of programs that are planning to request an accreditation review
will be well prepared for that review if they combine the information contained in this chapter with the
recommendations contained in Chapter XV of this text.

Chapter XIV
Software Engineering at Full Scale: A Unique Curriculum............c.occoooiiiiiiiiieeeeeee e 265
Jochen Ludewig, Universitdt Stuttgart, Germany

In 1996, a new Software Engineering curriculum was launched at Universitat Stuttgart. It was based on
many years of practical experience teaching computer science and also on experience in industry where
most of our graduates will find jobs. While the topics of this curriculum are not very different from those
of computer science, there is much more emphasis on problem solving, software construction, and project
work. In 2009, our traditional curriculum leading to the so called diploma (equivalent to a master’s de-
gree) will be replaced by a new curriculum according to the bachelor and master concept. This chapter
describes both the old and the new curriculum, and discusses problems and achievements.

Chapter XV
Continuous Curriculum Restructuring in a Graduate Software Engineering Program....................... 278
Daniela Rosca, Monmouth University, USA
William Tepfenhart, Monmouth University, USA
Jiacun Wang, Monmouth University, USA
Allen Milewski, Monmouth University, USA

The development, maintenance and delivery of a software engineering curriculum present special chal-
lenges not found in other engineering disciplines. The continuous advances of the field of software
engineering imposes a high frequency of changes reflected in the curriculum and course content. This
chapter describes the challenges of delivering a program meeting the needs of industry and students. It
presents the lessons learned during 21 years of offering such a program, and dealing with issues pertaining
to continuous curriculum and course content restructuring, and the influence of the student body on the
curriculum and course content. The chapter concludes with the authors’ recommendations for those who
are seeking to create a graduate program in software engineering, with a special note on the situations
where an undergraduate and graduate program will need to coexist in the same department.

Chapter XVI

How to Create a Credible Software Engineering Bachelor’s Program: Navigating the

Waters of Program DeVEIOPIMENT.........ccoiiiiiiiii et 298
Stephen Frezza, Gannon University, USA
Mei-Huei Tang, Gannon University, USA
Barry J. Brinkman, Gannon University, USA

This chapter presents a case study in the development of a Software Engineering (SE) Bachelor’s De-
gree program. It outlines issues in SE program development, various means to address those issues, and
explains how the issues were addressed in the initial and ongoing development of an undergraduate SE
program. By using SEEK and SWEBOK as requirements sources to define what an undergraduate soft-
ware engineer needs to know, the authors walk through the creation of a sample curriculum at a small,
comprehensive university in the United States. Both the current and initial curricula are presented. The
chapter discusses many items to consider in the process of planning and launching a new BSSE program,
such as accreditation, curriculum guidelines, sources of information, and potential problems.

Section VII
Professional Practice

Chapter XVII
Ensuring Students Engage with Ethical and Professional Practice Concepts.........cccccevvevveveivecnenneen, 327
J. Barrie Thompson, University of Sunderland, UK

The teaching and learning of aspects related to ethics and professional practice present significant chal-
lenges to both staff and students as these topics are much more abstract than say software design and
testing. The core of this chapter is an in-depth examination of how ethics and professional practice can

be addressed in a very practical manner. To set the scene and provide contextual information the chapter
commences with information on an international model of professionalism, a code of ethics for Software
Engineers, and different teaching and learning approaches that can be employed when addressing ethical
issues. The major part of the chapter is then devoted to detailing a particular teaching and leaning ap-
proach, which has been developed at the University of Sunderland in the UK. Finally conclusions, views
on the present situation and future developments, and details of outstanding challenges are presented.

Chapter XVIII
An International Perspective on Professional Software Engineering CredentialS...........cccccoeevvvnane. 351
Stephen B. Seidman, University of Central Arkansas, USA

This chapter provides an international perspective on professional software engineering credentials. It
distinguishes between professional licensing, certification, and other forms of credentials. It compares
and contrasts several major approaches to professional credentials: broad-based certifications, national
examinations, and job frameworks. Examples of credentials in each category are discussed in detail.
The chapter also discusses efforts to develop international standards for these credentials. The chapter
concludes with a brief description of the current landscape of professional software engineering cre-
dentials.

Compilation 0f REFEIENCEScviiiiiicc e sre e reane e 362

PAY o Jo 10} o LT 0] a1] o U] 0] =TT 393

XV

Foreword

“It is not enough to aim, you must hit.” - Italian Proverb

“Software engineering —the “engineering” of software — is part process, part technology, part resource
management, and, debatably, until recently, part luck — which make interesting challenges for educators
at the undergraduate or graduate level. Learning to be a software engineer — learning about software
— learning about engineering (the former, a nebulous topic, the latter an equally nebulous attitude of
professionalism) form the target that educators are aiming to hit. Unfortunately, with constant “innova-
tions” in methodologies, technologies, and programming languages, this is a moving target.

“The great aim of education is not knowledge but action.” Herbert Spencer (1820-1903)

Simply put, the aim of this book is to better prepare educators to better prepare students to be better
software engineers. The material in the 18 chapters of this book hits the mark by providing proven am-
munition for student learning and assessment, curriculum development, innovative teaching methods,
and project approaches that solidify classroom concepts, as well as instill an engineering mindset with
respect to responsibility, ethics, certification and licensing. It provides a synergistic experience base that
can serve the ongoing and future needs of software engineering educators.

“Nothing can add more power to your life than concentrating all your energies on a limited set of tar-
gets.” Nido Qubein

To paraphrase Yogi Berra, “Software engineering is 90% aptitude, and the other half attitude.” In my
opinion, one of the main challenges facing software engineering educators today is finding a formula
for a curriculum that balances theory and application — that channels a student’s aptitude and enhances
their ability and capability to be a software engineer. As stated earlier, software is a nebulous topic — not
all software applications require the same engineering tradeoffs, but there are key engineering concepts
that can be distilled from the experience of others, as captured in the chapters of this book, which will
help guide educators in defining and refining software engineering curriculum.

“Aim for success, not perfection. Never give up your right to be wrong, because then you will lose your
ability to learn new things and move forward with your life.” Dr. David M. Burns

XVi

Perfection is the seductive goal of all software engineering projects - yet perfection has a price
that can stand in the way of a successful software solution. The readers of this book will clearly learn
new things that I am convinced will lead to success in the classroom that will, in turn, lead to more
successful engineering graduates, that will, in turn lead to more successful engineering projects.

In closing, there is one phrase that I first heard used jokingly when I entered the job market only
4 years after the term “Software Engineering” was coined — “Ready, Fire, Aim.” At the time, | did
not appreciate its profound applicability to the real world. Software Engineering is the real world.
Academia is not, and there lies the challenge that this book addresses. Metaphorically speaking, the
material in this book will help educators get ready for software engineering students to learn as well
as the educators themselves to teach (by providing a survey of existing learning theories and blended
learning approaches as they apply to software engineering education), it will help give educators the
ammunition they need to build their software engineering programs and capstone projects (leading
to accreditation and more “experienced” students, who can better communicate and work in teams),
and finally, it better prepares the students to successfully hit the (moving) target (by giving them an
appreciation of ethics and professionalism that they can take outside the classroom).

Will Tracz, PhD
Lockheed Martin Fellow
Editor ACM Software Engineering Notes

XVii

Preface

Software plays an ever increasing role in society today. In fact, software is a factor in almost all aspects
of life including health care, entertainment, transportation, communications, and finance, among others.
Our dependency on software today is such that the spread of a computer virus can bring our way of life
to a standstill for a significant period of time. Demand for an increasing number of software professionals
has been cited in business and government circles for at least two decades, with no leveling in sight. In
addition, the methods, approaches and tools used to produce the software on which we so much depend
are also undergoing rapid expansion. As a result, academic institutions are facing an increasing pressure
to produce a greater number of students that are competent software developers.

Software engineering and software development education currently face many challenges. The ever
expanding area of software engineering knowledge makes educating the next generation of software
engineers a challenge. In addition, the current generation of students has very different interaction pat-
terns than prior generations, making assessing learning difficult. The increasing role that software plays
in our lives today (e.g., grid computing, ubiquitous computing, wearable computing, bioinformatics,
etc.) requires educators to adapt their education coverage to include these new applications. In addition,
many academic institutions must face these challenges within the constraints of program accreditations,
university mission, demographics, and even political environments. Clearly, identifying successful
approaches to handling these problems is essential to aid software engineering educators. This book
contains a generous collection of approaches that represent best practice for software engineering edu-
cation including student assessment and learning, innovative teaching methods, project-based software
engineering, professional practice and ethics, curriculum management and certification and licensing.

This book will be useful to both academicians and practitioners. Academic readers will gain an un-
derstanding of proven practices used in software engineering education that could be employed at their
institutions. Industry readers will benefit from an understanding of the synergies between educational
practices and real-world software development. All readers will gain an international view of software
engineering education. Educators can use the book as a reference for adopting novel teaching techniques
and for improving their teaching across a variety of computing courses.

The book is organized into seven sections that cover student learning and assessment, innovative
teaching methods, project-based software engineering, educational technology, curriculum and education
management, and professional practice. Below we provide a brief summary of the chapters.

I. Hislop

In order to provide context for the remainder of the book, the introductory chapter by Dr. Hislop
provides an overview of the history and current state of software engineering education. Software en-
gineering is a relatively new discipline and software engineering education is even newer. Dr. Hislop

xviii

discusses the issues that have shaped the development of software engineering education including the
genesis of a new discipline, the organizational location of software engineering, licensing, certification,
and accreditation. The issue of community where software engineering educators can exchange ideas and
collaborate is also discussed. In addition, the development and state of curriculum is presented including
a discussion of a range of educational venues from entire software engineering programs to individual
software engineering courses in other computing degrees.

1. Armarego

An appreciation of learning theory is vital to understanding how best to educate students. In fact,
experience has shown that an organized and controlled approach to educating software engineers is more
successful than ad hoc approaches. However, the software engineering education community has been slow
to explore the application of various learning theories to education. Correctly applied, learning theories
could improve the state of software engineering education by allowing educators to design, evaluate and
communicate about educational approaches, allowing the best approaches to be identified.

In the first chapter of the section on Student Learning and Assessment, “Constructive Alignment
in SE Education: Aligning to What?”, Dr. Armarego argues that learning should fit both the learner as
well as the discipline being learned. The chapter explores the alignment between the practices utilized
in the software engineering discipline and the models of learning that are used by students to absorb
software engineering knowledge in academic institutions. Dr. Armarego discusses the development of
a framework for learning that models experiences of software practitioners and suggests that the learn-
ing model used for education be characterized and mapped to fit the professional practice. The chapter
includes the results of a study which indicates that tailoring the learning models used in academia today
holds the potential for improving student software engineering learning.

I11. Navarro

Continuing on the role of learning theory in software engineering education, Chapter Il “On the
Role of Learning Theories in Furthering Software Engineering Education”, by Drs. Navarro and van
der Hoek discusses the possible uses of learning theory in software engineering education. This chap-
ter provides a survey of existing learning theories and comments on their use in software engineering
education. The authors categorize the current educational approaches in software engineering according
to the theories. An example approach which uses an interactive, graphical game to teach software en-
gineering process is used to demonstrate how learning theories can successfully be applied to software
engineering education.

V. Hazzan

The section on Innovative Teaching Methods begins with a discussion of one of the aspects of
software engineering that is perhaps most difficult to convey to students, that is, the human perspective
including teamwork, conflict resolution, and problem solving from different perspectives. Hazzan and
Tomayko present an approach to educating students to the human aspects of software engineering in
Chapter 1V titled “Tasks in Sofitware Engineering Education: The Case of a Human Aspects of Software
Engineering Course”. The approach enhances abstract thinking and expands analysis perspectives of
students using a question and task-based approach. The chapter presents a categorization of ten differ-
ent types of tasks that can be used throughout a course in order to make students more aware of the
human-related problems, dilemmas, ethical questions, and other situations that students may face in the
software engineering world. The categorization of tasks is based on the authors’ experience in teaching
a Human Aspects of Software Engineering course at two different institutions, one located in the United

Xix

States and one located in Israel. The chapter presents examples of each category of task and describes
the use of the example within a course.

V. Brady

Chapter V titled “Speaking of Sofiware: Case Studies in Sofiware Communication™ also addresses
the human aspect of software engineering education, specifically both oral and written communication.
Typically, communication is given little direct attention in software engineering courses and programs.
Teaching communication is difficult and communication in the software workplace is very complex and
fraught with subtlety.

Drs. Brady, Seigel, Vosecky, and Wallace are an interdisciplinary team containing both technical writ-
ers and software engineering educators that has created an approach to teaching communication skills to
software engineering students using case studies. The case studies are based on experiences of software
engineering students in a capstone course and are used in the pedagogical sense. These real case studies
provide students a complex situation in which to learn and understand communication.

V1. Mead

In this final chapter for Innovative Teaching Methods, titled “Novel Methods of Incorporating
Security Requirements Engineering into Software Engineering Courses and Curricula,” Drs. Mead and
Shoemaker explore the inclusion of security requirements engineering into software engineering courses
and curricula. Security engineering has emerged as a vital national and international concern, part of
almost every application designed and developed. These authors explore the integration of security into
the earliest stage of the process, namely requirements engineering. The authors identify that security is
often considered at either the system level (e.g., authentication, firewalls, etc.) or in isolation from overall
system requirements elicitation. To bolster this assertion, the authors provide a careful and detailed analy-
sis of Computing Curricula 2005: The Overview Report, trying to understand the way that security can
mesh with the desired outcomes of CC2005. The authors propose and discuss the inclusion of security
into curricula, ranging from undergraduate project-based courses to graduate courses on secure systems
development to usage of processes such as comprehensive, lightweight application security process
(CLASP) and security quality requirements engineering (SQUARE). The bulk of the chapter presents a
detailed approach using SQUARE, detailing specific curricula, course content, projects, and so on.

VII. Gary

The fourth section of the book, Project-Based Software Engineering, supports the old undisputable
proverb that states that “Experience is the best teacher.” Academics and industry professionals agree
that students that graduate with a better understanding of the real world have a better chance of early
success in their careers. With the increasing popularity of software engineering course offerings embed-
ded in a variety of computing degrees, inevitably, one must wonder how someone in a classroom could
teach students how the real world works. While it is impossible to teach experience, it is possible to
teach through experience. This observation has guided the development of many software engineering
courses being taught today.

In Chapter VII titled “The Software Enterprise: Preparing Industry-Ready Software Engineers”
Arizona State University’s Dr. Gary, describes an innovative approach to learning-by-doing called the
Software Enterprise. Under this model, students enroll in two consecutive yearlong software develop-
ment capstone courses where they learn through experience software engineering’s best practices. At
the completion of the software enterprise students have an experiential understanding of how software
process can be used to manage the evolution of software artifacts. While this chapter may be quite

XX

helpful to those new to teaching software engineering, due to the interesting way in which the software
enterprise brings together so many aspects of the software development lifecycle in two consecutive
courses, even experienced instructors may learn a thing or two.

VIIl. Roach

In the second chapter for Project-Based Software Engineering, titled “Using the Af-nity Model in
the Capstone Project Course: Teaching Sofiware Engineering in a Computer Science Program,” Drs.
Roach and Gates describe their approach for a two-semester software engineering sequence that uses
an approach that stresses cooperative (team-based) learning of professional and technical skills. This
sequence, underway at University of Texas at El Paso (UTEP), offers a combined two-course sequence
taken by students in their final year of study, combining fundamental software engineering topics with
the development of communication and team skills, which includes a practical exposure to the software
engineering code of ethics and professional practice. Unlike the approach as given in Chapter X, where
the capstone project succeeds a much earlier exposure to software engineering principles and practices,
this course offered in the Computer Science department at UTEP assumes the opposite — coupling the
first exposure of software engineering with the capstone project experience. The authors explore their
approach by detailing the curricula, student and faculty responsibilities, project and course requirements,
project management, course deliverables, and so on. The authors have evaluated their unique sequence
through a combination of surveys that has collected data from alumni and employers; they have had many
positive results and feedback. The authors conclude with a discussion of future trends ranging from the
high-level (The President’s Council of Advisors on Science and Technology reports on the importance
of networking and information technology (NIT) systems and the workforce required to support them)
to emerging technology trends (service-oriented architectures) and their impact on curricula.

IX. Klappholz

Clearly, the software industry prefers to hire students who have real-world experience as such stu-
dents are well-rounded and can more quickly contribute to a project. The presence of an actual client
can motivate students and provide direction for a project. However, involving students in projects with
real-world clients can pose problems such as locating clients, client communication issues, setting rea-
sonable scope for a project, creating functional teams, assessing the project and more.

Drs. Klappholz, Almstrum, Modesitt, Johnson and Condly present advice for involving students in
projects with real clients in Chapter IX “4A Framework for Success in Real Projects for Real Clients
Courses”. The authors discuss the importance of using real-world projects and present a taxonomy of
issues related to involving students in real projects for real clients courses. The authors discuss issues
related to client interactions including locating appropriate clients, project-related issues including
appropriate projects and scope, team-related issues including team formation and operation, product-
related issues including deliverables, and issues related to assessment and evaluation. The approach
was developed based on experiences with real-world projects with real customers at a wide variety of
U.S. institutions.

X. Demurjian

Continuing in the project area, Drs. Demurjian and Needham discuss the successful and unsuccess-
ful characteristics of a project-based capstone software engineering course in Chapter X, “Experiences
in Project-Based Software Engineering: What Works, What Doesn t”. The authors present the results
of 12 combined years of experience in offering project-based courses at two different U.S. institutions.
They demonstrate how such courses can be used to support ABET accreditation by providing educa-

XXi

tional outcomes assessment. Understanding that obtaining accreditation assessment data can be time
consuming, the authors offer guidance to instructors to help manage the assessment data collection. In
addition, the authors discuss project attributes and suggest that projects be flexible in order to allow
them to be adapted to instructor background. Team size and communication is also addressed and the
authors provide a rubric for assessing individual student effort within a team. Future plans include using
mixed teams of CS and IT majors.

XI. Bunse

In this first chapter in the Educational Technology section of this book, titled “Applying Blended
Learning in an Industrial Context: An Experience Report,” the authors Drs. Bunse Peper, Ochs, Gritzner,
and Steinbach-Nordmann, explore the usage of blended learning in software engineering education, con-
tinuing the investigation of practice-based software engineering in a classroom setting. Blended learning
is atechnique that combines multiple teaching methods into a single setting, providing a unique perspec-
tive and learning experience for students. In this chapter, the authors report on their efforts in blended
learning for model-based and object-oriented development with UML, providing an experience which
combines self-directed study, collaborative learning, learning with an on-line tutor, social learning, and
traditional classroom delivery. The unique aspect of this chapter is that these experiences are related for
both an academic and an industrial setting. The work includes a strong case study (questionnaire), data
collection, and data analysis of blended learning, offering conclusions based on these results, and explor-
ing future trends such as the use of wikis, podcasts, Weblogs, and virtual learning environments.

XI1. Bolanos

Chapter XII, titled “Integrated Software Testing Learning Environment for Training Senior-Level
Computer Science Students,” completes the Educational Technology section, Drs. Bolanos and Sierra
explore a methodology for software testing that targets senior-level computer science students. The
educational technology component in this chapter is to establish an environment that allows actual test-
ing, including: test plans, test case designs, a suite of testing automation tools, analysis and reporting
of test results, software configuration management tools (for multiple testing iterations), and a software
execution and deployment tool. This is accomplished via an actual, custom, multi-tiered, client server
software application developed for this purpose, allowing for a full range of testing (e.g., unit testing,
integration testing, functional testing, etc.). As with the prior chapter, the authors rely on a voluntary
evaluation survey (93% surveys returned for an average of 150 students taking the course per year) to
assess their course, and feed back results into future offerings. In the future, the authors expect constant
change, as the underlying development technologies evolve, and more and more testing tools become
available.

XI11. McDonald

The history of undergraduate software engineering education in the US reached a critical milestone
when the first baccalaureate programs received ABET accreditation in 2001. Since then an increasing
number of undergraduate software engineering programs are seeking ABET’s recognition. But for many
program leaders, accreditation is still an intimidating event.

For many program leaders and their faculty, a program accreditation exercise goes more or less like
this: About a year prior to the accreditation visit, the program leader must first get the faculty to under-
stand why self-assessment should not be an activity that is counted in 5-year cycles but rather, an activity
that happens almost daily, and is a natural part of teaching. Then, one lucky faculty member is sent to
at least one ABET workshop to learn about accreditation. Upon returning, the terrified faculty member,

xXii

now the in-house accreditation expert, calls an emergency meeting no one wants to attend, but everyone
attends for fear of being assigned to a laborious (and unfair) accreditation task. The race is then set and
faculty and staff rush to collect data and make some sense of it. The accreditation expert earns a couple
of course releases to help the program documents in order. About a month or so prior to the visit there
are numerous faculty meetings spiced up with incredibly long and fruitless arguments, and endless visits
to the department’s copier. The week before the ABET team arrives, tempers run high as the program
leader and the accreditation expert put the final touches on what they hope will be a great event.

But preparing for an accreditation visit does not have to be an ordeal. In Chapter XIII, the first in
the Curriculum and Education Management section of the book, titled “Software Engineering Ac-
creditation in the United States”, McDonald, Sebern and Vallino explain in simple terms many of the
issues involved in an accreditation. The authors cover issues such as making sense of ABET’s criteria,
outcomes and objectives, and data collection. One of the most valuable features of this chapter is the
way in which the authors, who collectively account for years of experience as program evaluators, pro-
gram leaders, and in-house accreditation experts; present numerous topics of interest combining their
viewpoints succinctly and straightforwardly.

XIV. Ludewig

Software Engineering curricula can resemble vanilla ice cream: they all are called by the same name,
but their flavors are quite different. The history of software engineering education is crowded with
curricula whose flavors range from strong computer science with nuances of software engineering, to
software engineering smeared with heavy blobs of computer science caramel, to the purest unadulterated
software engineering. Regardless of their structure, these curricula serve their intended audiences and
meet the academic mission of their respective universities.

In Chapter XIV “Software Engineering at Full Scale: A Unique Curriculum”, Dr. Ludewig describes
the evolution, content and structure of a software engineering curriculum developed at Universitat Stutt-
gart. The software engineering program Dr. Ludewig describes is somewhat unigue in Germany in that,
according to his account, no other university in his native Germany has a complete software engineering
curriculum. It is based on a principle of individual responsibility and consists of a defined set of initial
courses followed by allowing the student great flexibility in the latter courses. In addition, there is only
a single set of exams per semester and students are allowed to attend the course in one semester and
take the exam for that course the next year or even later.

XV. Rosca

Anyone who has had the opportunity to build an academic program from scratch can identify them-
selves with the challenges of building the program, and the thrill of seeing its student body grow over
the years. While creating a graduate level software engineering program is a formidable task, keeping it
up-to-date and maintaining its integrity are essential to ensuring the program’s success over the years.
Dedicated faculty must constantly weigh market needs against academic and technical developments such
as changes in technology, innovations in software development and maintenance processes, or new soft-
ware design trends. Then, they must determine how to bring about change to the graduate program.

In Chapter XV titled “Continuous Curriculum Restructuring in a Graduate Software Engineering
Program”, Drs. Rosca, Tepfenhart, Wang, and Milewski share with the reader their extensive experi-
ence maintaining a master’s level program at Monmouth University over the program’s 21 year history.
Due to continuous advances in the engineering of software, the authors assert that maintenance of a
software engineering graduate program offers challenges not found in other engineering programs. In
addition, the authors discuss their experience maintaining their graduate program factoring in student

XXiii

input while coexisting with their department’s baccalaureate program in software engineering. Readers
of this chapter will benefit from the authors experience maintaining Monmouth University’s graduate
software engineering degree over its 21-year history.

XVI. Frezza

It was at a NATO conference in 1968 in Garmisch, Germany, where the term Software Engineering
was first mentioned in a formal setup. At the time, the term was more a statement of aspiration than
a fact. The field of computing as we know it today was still in gestation. Sixteen years later the U.S.
Department of Defense awarded Carnegie Mellon University the contract to establish the Software
Engineering Institute (SEI) with the intent to “Advance the practice of software engineering because
quality software that is produced on schedule and within budget is a critical component of U.S. defense
systems.” One of the ways in which the SEI accomplished its mission was to enable universities to
develop masters degrees in software engineering. But no one was yet talking of undergraduate degrees
in software engineering. It was not until 1996 when the first undergraduate degrees in software engi-
neering were born in the US. Since then an increasing number of schools are taking a serious look at
undergraduate software engineering.

In Chapter XVI, Frezza and his colleagues describe in great detail the many issues that surrounded
the development of a “Credible Software Engineering Bachelors Program.” The intriguing use of the
word “Credible” should spike the reader’s interest in this chapter because, with declining enrollments
in computer science in the US and Canada, schools are being tempted with the concept of re-baptiz-
ing existing computer science programs as software engineering hoping to capitalize on the upward
trend of enrollments in software engineering. As Frezza and his colleagues explain, building a credible
undergraduate degree in software engineering requires effort, compromise, and dedication. But more
importantly, it requires academic integrity.

XVII. Thompson

The final section of the book is titled Professional Practice. Ethics is one important component of
the aspect of professional practice for software engineers. The topic of ethics is especially important
to software engineering students who will enter a global environment of software development. Upon
graduating from an academic program, students must understand their responsibilities with respect to
professional practice as well as the role of ethics.

Dr. Thompson addresses the issue of teaching ethics in software engineering education in Chapter
XV, “Ensuring Students Engage with Ethical and Professional Practice Concepts”. Dr. Thompson
provides an overview of two widely used codes of ethics, the IFIP Harmonization of Professional Stan-
dards and the ACM and IEEE-CS software engineering code of ethics and professional practice. The
author then presents an approach to teaching ethics and professional practice in a practical manner which
has resulted in increased enthusiasm on the part of students. Dr. Thompson provides insights into effec-
tive teaching of ethics including that the education be relevant to the students’ discipline, all instructors
should be competent to teach ethics, teaching should respect the values of different people groups and
that the teaching of ethics should be pervasive throughout the curriculum.

XVIII. Seidman

The final chapter of the book, titled “An International Perspective on Professional Software Engineer-
ing Credentials”, supplies an international perspective on professional software engineering credentials.
Dr. Seidman provides an overview of forms of credentialing including professional licensing, certifica-
tion and more. The chapter explains approaches to professional credentialing used world-wide including

XXiV

broad-based certifications, national examinations, and job frameworks and discusses international efforts
to develop standards for these credentials. Dr. Seidman concludes that credentialing software engineer-
ing professionals should be distinct from a specific product or tool and that credentialing will become
increasingly important as the role of software in society continues to grow.

This book is an aggregation of classroom techniques and experiences garnered from around the
world that have been proven successful in educating software engineers. It contains a collection of
best practices in the field of software engineering teaching and learning, providing an understanding of
the effective educational approaches used in software engineering education. It provides guidance to
educators who are already teaching software engineering education or are considering establishing or
expanding software engineering education within their institutions. In addition, the book can be used as
a resource by software engineering educators to learn and adopt new educational practices to improve
education. The diversity of topics and approaches presented provides a broad and international perspec-
tive on software engineering education.

Acknowledgment

We would like to acknowledge and thank the following list of reviewers:

Name
Almstrum, Vicki
Armarego, Jocelyn
Bolanos, Daniel
Bourque, Pierre
Brinkman, Barry
Carrington, David
Condly, Steve
Duggins, Sheryl
Dupuis, Robert
Hazzan, Orit
Henderson, Pete
Horton, Tom
Kaner, Cem
Klappholtz, David
Lethbridge, Tim
Liu, Chang
Ludewig, Jochen
Lutz, Mike
James McDonald
Murphy, Mike
Navarro, Emily
Owen, Cherry

Affiliation
University of Texas at Austin
Murdoch University
Autonoma University of Madrid
University of Quebec
Gannon University
University of Queensland
University of Central Florida
Southern Polytechnic State University
University of Quebec
Technion - Israel Institute of Technology
Butler University
University of Virginia
Florida Institute of Technology
Stevens Institute of Technology
University of Ottawa
Ohio University
Universitét Stuttgart
Rochester Institute of Technology
Monmouth University
Southern Polytechnic State University
University of California Irvine
University of Texas of the Permian Basin

Country
USA
Australia
Spain
Canada
USA
Australia
USA
USA
Canada
Israel
USA
USA
USA
USA
Canada
USA
Ger
USA
USA
USA
USA
USA

XXV

XXVi

Phat, Vinh
Roach, Stephen
Rosca, Daniela
Seidman, Steve
Shoemaker, Dan

Sobel, Ann

James R. Vallino
Wallace, Charles

Cogswell Polytechnical College
University of Texas at El Paso
Monmouth University
University of Central Arkansas
University of Detroit Mercy
Miami University
Rochester Institute of Technology
Michigan Technological University

USA
USA
USA
USA
USA
USA
USA
USA

Section |
Introduction

Chapter |

Software Engineering Education:
Past, Present, and Future

Gregory W. Hislop
Drexel University, USA

Abs TRACT

There is a strong and growing global demand for skilled software engineers. The institutions that educate
software engineers are evolving and changing to meet this need. This chapter provides an overview of
this effort to develop software engineering education. It discusses the historical development of soft-
ware engineering education, provides some perspective on current status, and identifies some of the
challenges faced by software engineering educators. The intended audience for this chapter is anyone
interested in software engineering education who has not participated in the developments to the present
time. The goal is to provide a summary background of how the discipline has evolved and pointers to
key publications that are part of that history. Since this chapter surveys foundational topics in software
engineering education, many of the topics touched on in this chapter are covered in more detail in other
chapters of this volume.

INTRODUCTION able cost. As a result, educational institutions are
under increasing pressure to produce educated and
capable software engineers. However, educational

institutions face many challenges in producing

The demand for skilled software developers is
growing at an extraordinary rate as software is

beingused inaneverwidening setof domains. The
increase inthe use of the internet, the phenomenal
rate of growth of available data, and new develop-
ments such as biosensors, grid computing, and
cognitive machines require software engineers
who can correctly engineer and modify these
kinds of systems within budget and at a reason-

these software engineers that extend far beyond
curriculum issues. Software engineering is still a
discipline trying to define itself and find a place
among the set of computing and engineering
disciplines. As such, this chapter will address a
mix of issues related to three themes:

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

. Context: The external issues that have
influenced the development of software
engineering education including the issue
of organizational location of software engi-
neering within a college or university, poli-
ticsrelated toemergence of anewdiscipline,
licensing, certification, and accreditation.

. Community: The collaboration, coop-
eration, and sharing of information among
software engineering educators.

* Curriculum: Thecontentandorganization
of degree programsand individual software
engineering courses in other computing
degrees.

The chapter is organized by looking at these
issues historically, in the present, and for the
future.

The intended audience for this chapter is any-
one interested in software engineering education
who has not participated in the developments to
the presenttime. The goal isto provideasummary
background of how the discipline has evolved
and pointers to key publications that are part of
that history.

DEVELOPMENT OF sOFTWARE
ENGINEERING As A DisCIPLINE

The problems of developing software were noticed
assoon as significant software developmentactivi-
ties began. The notion of software engineering as
a solution to this problem is commonly dated to
the NATO conference on this topic held in 1968
(Naur & Randell, 1969). Versions of the confer-
ence report and the report of a second conference
heldayear later are available at http://homepages.
cs.ncl.ac.uk/brian.randell/NATO/.

This conference is noteworthy for the extent
to which the range of topics currently recognized
as central to software engineering were clearly
identified even in this early effort. Organization
of software development activities was clearly

Software Engineering Education

understood, at least from a waterfall model per-
spective. Key software engineering problemssuch
as scale and complexity were clearly recognized,
as were difficulties in estimation, and even the
potential for things like construction of software
from components.

A review of this material is helpful to make
the point that software engineering has a core
set of issues and problems that are stable over
some extended period of time, and across very
substantial technology changes. On the other hand,
this same review is striking in indicating how
modest progress has been in addressing software
engineering issues decisively.

Althoughthereisbroad agreementonthe need
for solutions to the issues software engineering
addresses, the question of whether software en-
gineering should be a discipline has been a more
divisive question. Almost40years after the NATO
conference, computing professionals have not
reached consensus on how to organize computing
knowledge or the computing professions.

Inacademic discussions of the disciplines, the
key issue for software engineering has been the
relationship of software engineering to computer
science. This debate has often been described
using Venn diagrams to question whether the
two disciplines intersect, are disjoint, or whether
one is a subset of the other. A more recent set
of diagrams in Computing Curricula 2005: The
Overview Report (ACM & IEEE, 2005) clearly
shows the disciplines as distinct but with sub-
stantial intersection.

Beyond academic circles, the separation of
computing disciplines is generally ignored. The
use of job titles and professional designations is
almost completely ad hoc. With regard to soft-
ware engineering, there is “no standard defini-
tion for this term when used in a job description.
Its meaning varies widely among employers.”
(ACM & IEEE, 2005, p. 15) Like any comput-
ing profession label, the term is applied with
no particular concern for formal education or
certification of the person involved. While the

Software Engineering Education

Table 1. Infrastructure elements of a mature profession

Initial Professional Education

Accreditation

Skills Development

Certification

Licensing

Professional Development

Code of Ethics

Professional Society

designation of someone as a “systems analyst” or
“systems administrator” might be expected to be
a flexible choice, the designation of someone as
an “engineer” is generally much more restricted
due to the licensing implications associated with
engineering. Thissense of restriction clearly does
not apply to “software engineer” as the term is
commonly used today.

Although there is still variation in approach
to organizing the computing disciplines, since
the NATO conference, and particularly in the
last 20 years, there has been great progress in
establishing software engineering. A variety of
authors have discussed this progress, with Ford
and Gibbs (1996) providing a very complete
discussion from the perspective of maturity as
a profession. The infrastructure elements of the
model they propose for characterizing a mature
profession are shown in Table 1. By the measures
of this model, software engineering has made
substantial progress but still has considerable
room to develop.

This combination of substantial accomplish-
ment with continuing need for development and
lingering resistance to the very idea of software
engineering as a separate discipline may simply
be areflection of the relative newness of software
engineering. Adiscussion of software engineering
from the perspective of the history of science by
Mahoney notes that “its practitioners disagree
on what software engineering is, although most

of them freely confess that, whatever it is, it is
not (yet) an engineering discipline.” (Mahoney,
2004, p. 8).

Mahoney concludes his analysis with the ob-
servation that “software may be fundamentally
different from any of the artifacts or processes
that have been the object of traditional branches
of engineering.” He further suggests that perhaps
architecture rather than engineering should be
looked at more closely as a model for the software
profession and notes that the same NATO confer-
ence recognized as a starting point for software
engineering also contained a proposal for “soft-
ware architecture” as the appropriate model for
addressing the issues related to software.

To summarize, software engineering is built
around a stable, well-defined set of issues. Over
recent decades, software engineering has come
to exhibit many of the characteristics of a mature
profession. Atthe same time, the set of computing
disciplines continues to evolve, and a lively and
sometimes contentious discussionabout software
engineering is part of that evolution.

DEVELOPMENT OF s OFTWARE
ENGINEERING EDUCATION
PROGRAMs

Software engineering was already a curriculum
topic by the late 1960’s, and over time, many

computer science programs developed single
courses related to software engineering either
in the form of team project courses or survey
courses of software engineering topics. These
individual courses have continued to be a staple
of computer science programs and many are still
offered today.

It was about 10 years after the NATO con-
ferences before the first software engineering
degree programs began to appear. The first pro-
grams in the U.S. appeared at the Masters level,
with early efforts including degrees at Seattle
University, Texas Christian University, and the
Wang Institute. Tomayko (1998) provides a good
summary of the early years of software engineer-
ing education in the U.S, and notes that the first
efforts were largely triggered by a response to
local industry need.

The next growth phase for software engineer-
ing education was precipitated by the funding
of the Software Engineering Institute (SEI) at
Carnegie Mellon University by the U.S. Depart-
ment of Defense. The SEI started an initiative
on software engineering education almost im-
mediately. This was a powerful catalyst since
it provided funding specifically focused on SE
education. More generally, the Department of
Defense is an important source of funding for
research unrelated to education across a variety
of science and engineering areas. Any interest in
software engineering education by the SEI was
bound to attract substantial attention.

The results of the SEI effort included a cur-
riculum model for a Master of Software Engi-
neering degree, a variety of reports on software
engineering asaprofession, and afairly extensive
set of curriculum modules that were made pub-
licly available (Ardis & Ford, 1989). The SEI also
organized a variety of meetings and workshops
that allowed people from different institutions to
compare notes and share ideas on software engi-
neering education. Two of these efforts evolved
into the Working Group on Software Engineering
Education and Training and the Conference on

Software Engineering Education

Software Engineering Education and Training,
both of which continued long after the SEI had
ceased its education initiative around 1994.

Development of undergraduate programs
significantly lagged development of Masters pro-
gramsinthe U.S. Development of undergraduate
programs proceeded much more quickly in other
places, particularly in the U.K and Australia.
Cowling (1998), for example, provides a detailed
discussion of the development and evolution of
one such program. Inpart, this more rapid growth
seems to have been a result of differences in the
approach to licensing engineers, which is a key
question for an undergraduate degree with a title
including “engineering.” In particular, the U.S.
system is heavily dependent on having appropri-
ate exams, while the U.K. and Australia place
more emphasis on completion of a degree. This
latter approach makes it easier to accommodate
asubstantially different kind of engineering such
assoftware engineering thatdeals with non-physi-
cal artifacts.

The slower development of undergraduate
programs may have been influenced by the SEI
focus on Master’s level education. While the
SEI applied some effort toward development of
undergraduate education (Ford, 1991a, 1994),
not much progress had been made at the time the
SEl education initiative ended. Interested faculty
members picked up the undergraduate issues in
a volunteer continuation of the SEI software en-
gineering working group. This effort resulted in
an early set of curriculum guidelines (Bagert et
al, 1999), and many of the participants were key
contributors to the SE 2004 curriculum model
(ACM & IEEE, 2004).

The first U.S. BSSE program began in 1996
at Rochester Institute of Technology as described
by Lutz and Naveda (1997). Others soon followed
and the number of U.S. programs has continued
to grow. There are currently over 30 U.S. BSSE
programs. While growth has not been explosive,
it has been steady even during the recent years of
substantial downturn in the number of students

Software Engineering Education

majoring in computing disciplines. The chapter
in this volume by McDonald, et al provides some
details of this growth in the context of accredita-
tion.

It has been common for the U.S. institutions
to encounter organizational difficulties or other
road blocks in establishing SE degree programs.
For many years, thishasbeenaregular discussion
topic at meetings of faculty interested in software
engineering. Italso appears repeatedly in various
surveys and discussions of software engineer-
ing education. For example, Fairley (1986) notes
several examples where graduate programs in
software engineering could not be established
due to various clashes of perspective or interests
of relevant stakeholders.

Inthistext, the chapter by Frezza, etal includes
adiscussion of some of the typical political issues
that arise in establishing undergraduate software
engineering degree programs.

THE COMMUNITY OF sOFTWARE
ENGINEERING EDUCATORs

Software Engineeringisstillanew discipline, but
substantial results have been achieved already.
Degree programs are in place, undergraduate
and graduate curriculum models have been de-
veloped. Inthe U.S., ABET accreditation criteria
for Software Engineering have been approved and
13 degree programs have been accredited.

Such activity requires sustained, coordinated
effort across multiple institutions as well as in-
volvement of professional societies. Duringmuch
of this development, the software engineering
education community was quite cohesive, with a
cadre of active membersthat provided infrastruc-
ture and guidance during the maturation process
of software engineering education. Some of the
more effective activities and community support
mechanisms have been:

. CSEET, The Conference on Software En-
gineering Education and Training. The first
SEI Conference on Software Education was
held in April 1987. This conference series
continued after the SEI education initiative
endedanditisstill heldannually. Attendance
has always been modest, but that reflects the
relatively small community of SE educa-
tors. The conference provides a significant
gathering place for institutions offering SE
programs. Other conferences, notably IEEE
Frontiers of Education, SIGCSE, and the an-
nual ASEE Conference also provide outlets
for software engineering education pub-
lications. Some SE conferences including
the International Conference on Software
Engineering also include education tracks
in some years.

e WGSEET, the Working Group on Software
Engineering Educationand Training. Started
in early 1990s, as part of the SEI software
engineering education initiative (the “and
Training” was appended to the name some
years after the start). This group continued
to meet after active SEI support ended.
Volunteers met twice a year, usually before
the CSEET and IEEE Frontiersin Education
conferences to address development of soft-
ware engineering education. The WGSEET
meetings produced an early version of a
software engineering undergraduate cur-
riculum model, and reports on successful
academic-industry collaborations.

More importantly, the WGSEET provided a
general forum for community development and
exchange of ideas. This forum created common
understanding and fostered interactions that were
instrumental in producing many publications on
software engineering education. The WGSEET
activity also provided a key feed into curriculum
modeling and accreditation activities, and
facilitated creation of other projects such as

SWENET, the Network Community for Software
Engineering Educators.

* SWEEP: In1998-1999, the ACMand IEEE-
CS sponsored the Software Engineering
Education Project (SWEEP). This group
worked to create guidelines for undergradu-
ate Software Engineering curricula and
a draft set of accreditation guidelines for
undergraduate software engineering pro-
grams. Members of SWEEP started work
that evolved into the Software Engineering
curriculum model (ACM & IEEE, 2004).

. SWECC: The Software Engineering Co-
ordinating Committee was part of a joint
effort by the ACM and IEEE-CS to promote
SE as a profession. This effort provided the
starting point for development ofan SE Code
of Ethics, and an SE Body of Knowledge
project. The ACM withdrew from the group
as part of the decision to take a position
against licensing of software engineers.

. SE 2004: Theundergraduate SE Curriculum
Model grew out of some of the earlier efforts
mentioned above. But it was a clear step
beyond those efforts in having endorsement
of the IEEE-CS and the ACM. In addition,
it benefited from the more formal and more
broadly based development process that has
evolved over the history of the computing
curricula volumes.

. SWEBOK: The Guide to the Software En-
gineering Body of Knowledge, was started
as a project by SWECC in 1998. The inten-
tion “is to provide a consensually validated
characterization of the bounds of the soft-
ware engineering discipline and to provide
a topical access to the Body of Knowledge
supporting that discipline.” (SWEBOK,
2004, p. xvii). To provide a starting point,
the SWEBOK drew on prior SE standards
efforts supported by the IEEE. In addition,
the SWEBOK is notable for the effort to be

Software Engineering Education

transparent and provide a consensus result
based on broad participation.

. FASE: The Forum for Advancing Software
Engineering, is an online newsletter that
includes announcements, reports, and short
articles of interest to software engineering
educators. Itwas published monthly for many
years, and archived articles are maintained
online.

. SWENET: The Network Community for
Software Engineering Education, was an
NSF project that produced a repository of
publicly available software engineering
course modules (Hislop, Lutz & Sebern,
2006). SWENET also supported several
workshops that were effective community
building exercises for software engineering
educators. The project ended in 2005, but
the repository is still supported.

The list above represents an impressive effort
given the modest size of the software engineering
community. Atthe sametime, itis clear that some
of the mechanisms that served well in the past
have not kept up with the changes and growth in
the software engineering community.

For example, WGSEET, The Working Group
on Software Engineering Educationand Training
has ceased to exist. An effortto replace WGSEET
with SEECo, an Education Community within
the IEEE CS Technical Council on Software
Engineering, has not been a success. Similarly,
SEPLA, the Software Engineering Program
Leaders Association, was started as a spin-off of
WGSEET toallow department chairsand program
directors to interact. The group has a low activity
listserv, but has never really been active. Finally,
FASE, the online software engineering education
newsletter, was published regularly for over 10
years. But FASE has been largely inactive for the
lastseveral years because few people are choosing
to submit any material for distribution.

These changes can be taken as reflections of
the success of software engineering. Many of the

Software Engineering Education

original goals of SE educators such as creating
curriculum models and developing accreditation
standards have been accomplished. These ef-
forts now have mainstream support of the major
computing professional societies. As such, the
efforts will be widely visible, and maintained
over time.

Ontheother hand, it seems thatthe community
of software engineering educators has lost some
of the supporting structure that mechanisms like
WGSEET and FASE once provided. The oppor-
tunity for informal interaction among interested
faculty members was a valuable side effect of
those efforts. Given that the total number of SE
degree programs worldwide is still not very large,
it seems that looking for additional opportunities
for informal community interaction might be
valuable in the future too.

ACCREDITATION, CERTIFICATION,
AND LICENsING

Accreditationhasbeenaclear success for software
engineering in the U.S. Accreditation criteria
were developed in 1998-1999 and the first degree
programs were accredited in 2003. At present 13
programs are accredited, and more are expected
to complete this process over the next several
years.

SE accreditation ishandled by the Engineering
Accreditation Commission (EAC) of ABET, the
accrediting body for engineering and technology
in the U.S. After the SE accreditation effort be-
gan, ABET merged with CSAB, the accrediting
body for computer science. With the merger of
CSAB, ABET created a Computing Accreditation
Commission (CAC). The CAC currently handles
accreditation of computer science, information
systems, and information technology.

By curricular content, software engineering
clearly has strong overlap with the CAC disci-
plines. On the other hand, it makes sense to place
software engineering with the other engineering

disciplines in the EAC. As it happens, this issue
was decided simply by the sequence in which the
events happened to occur (accreditation criteria
development followed by the merger).

Licensing has beenand remainsacontroversial
issue for software engineering. Although licensing
(orchartering inthe U.K.) has proceeded relatively
smoothly in the U.K. and Canada, there has been
little progress in the U.S. Without regard to the
question of whether software engineers should
be licensed, there are several difficult issues as-
sociated with licensing.

Perhaps the most important question overall
is the body of knowledge that provides the basis
forlicense. Opinionsdiverge on whether software
engineering knowledge is mature enough to sup-
port licensing in a meaningful way. That is, will
a licensed practitioner in software engineering
have the knowledge needed to protect the public
from software risks, or, is the body of software
engineering knowledge not mature enough to
support meeting this responsibility? Shaw (1990)
discusses this issue with a broad perspective of
how a software engineering discipline might
emerge. In a more recent discussion Shaw reit-
erates this argument with the comment: “...pro-
fessional licensing carries a commitment to the
public that we can achieve a level of practice that
provides certain safety and utility properties of
the product, but such a level of practice is not yet
routinely achieved” (Shaw, 2000, p. 375).

It is also important to note that much of the
attention to licensing has revolved around the dif-
ficulty of bringing the software community into
the engineering community. This plays out in a
variety of ways, including the following:

. Software engineering is not accepted by
many engineers in traditional engineering
disciplines as being a “real” engineering
discipline

* Traditional engineeringdisciplines deal with
engineering of physical products, and core
knowledge of traditional engineering isbuilt

on the assumption thatall engineers need to
deal with aspects of chemistry and physics
and a fundamental set of engineering topics
such as statics and dynamics. For the U.S.,
where licensing relies in part on examina-
tion, this means that existing exams focus
on content that is not part of the software
engineering curriculum

. Software engineering education has largely
grown from computer science and other
computing programs. Most of the faculty
members in these programs are not engi-
neers by training, and many of the comput-
ing programs are not housed in colleges
of engineering. In fact, many computing
programsare at institutions that do not offer
any engineering programs. The notion of an
engineering license that might limit ability
of graduates to develop software is at least
a potential threat to these other computing
programs.

A good discussion of these issues in the Ca-
nadian context is provided by Parnas (2002). A
companion piece by McCalla (2002) provides
some contrasting coverage of the Canadian situ-
ation.

The licensing issue has been a difficult one
for the computing professional societies too. The
ACM in particular has adopted a clear position
opposing licensing of software engineers at the
presenttime. Details of this position are contained
in White and Simons (2002) and Knight and
Leveson (2002).

Inrecent years, the issue of licensing has been
relatively quiet. Within the U.S, only Texas has
allowed licensing for software engineers. Other
states have not followed this lead. However, the
promise of ubiquitous software, the ever increas-
ing integration of software inengineered products,
and the broad economic dependence on software
clearly indicate that the issues that have raised the
question of licensing will become more pressing

Software Engineering Education

not less. At present, it is not clear how these ques-
tions will be addressed.

Somewhat connected to the licensing issue is
the question of broad certifications for software
engineering. There have been a variety of efforts
of this sort, including the IEEE-CS Certified
Software Development Professional program.
Certifications such as this seem likely to expand
inthe future asone approach to helping employers
understand the knowledge and skills of potential
employees.

The chapter by Seidman in this text provides
an international perspective on the development
and status of certification and licensing for soft-
ware engineering.

TEACHING sOFTWARE
ENGINEERING

Software engineering degree programs share
many topics with CSandas such, share many of the
challenges in teaching and learning. At the same
time, many of the areas that make SE unique also
present different challenges in teaching. These
factors include software scale and complexity,
engineering notions of design under cost and
quality constraints, and substantial human issues
that affect various parts of SE.

Many problems and best practices in SE are
driven by the large scale and great complexity in
software systems. This creates particular chal-
lenges in teaching SE since it is difficult to give
students exposureto large systemsinanacademic
program. The number of hoursandintense immer-
sion required to grasp a large system is beyond
many students in the early years of a program,
and difficult to fit in the limited hours and term
schedules throughout a degree program. Until
students gain some understanding of scale and
complexity, it is difficult for them to really ap-
preciate the problems that SE attempts to address.
The chapter by Ludewig in this volume presents
one approach that helps students gain experience
with larger software systems.

Software Engineering Education

Software engineering focuses heavily on
group-based work. Thisisreflected by an emphasis
on team work and team projects in SE education.
Section 1V of thistextincludesaseries of chapters
thataddress variousaspects of project-based work.
The team emphasis is one mechanism to allow
students to get experience with larger software
systems.

Team projects are one example of a broader
emphasison preparing students for practice. Asan
engineering discipline, SE has a strong emphasis
on application of knowledge, and preparation for
professional practice. The chapter by Armaregoin
thisvolume explores one approachtoensuring that
SE education linesup with practice. Other chapters
in Section VI discuss issues of professionalism
and preparation for professional practice.

Software engineering also involves a variety
of human issues that range well beyond working
in teams. In this volume, the chapter by Brady et
al focuses particularly onthe issue of communica-
tion about software. The chapter by Hazzan and
Tomayko provides a survey of SE activities and
topics withanemphasis onthe human component.
The broad sweep of topics addressed by these
chapters plus the chapters on project-based work
clearly shows that SE has a human component
different from most of the traditional engineer-
ing disciplines.

The challenges in teaching SE are being
worked on as research projects by many SE
faculty members. Funding for these efforts is
competitive, but available from several sources.
The most important funding source in the U.S.
is the National Science Foundation, primarily
through funding for research and development
related to undergraduate education. As mentioned
earlier, the focused funding once provided by
the Department of Defense through the SEI is
no longer available, although the Department of
Defense did recently fund an effort to create a
new Masters level curriculum model for Software
Engineering. Various other federal agencies and
foundations provide occasional grantsthatimpact
software engineering education.

The combination of technical foundations and
the emphasis on the issues outlined above makes
teaching of SE particularly challenging. It also
implies that qualifications for SE faculty mem-
bers have distinct requirements, particularly with
regard to the importance of having faculty with
professional experience. This is a difficult issue
since the pool of candidates with academic cre-
dentials and professional experience is relatively
limited. The chapter by McDonald discusses this
issue fromanaccreditation perspective, and Rosca
et all address the issue of hiring and retaining
faculty members with the right combination of
qualifications.

Ass Ess MENT OF THE
CURRENT sTATUs OF sOFTWARE
ENGINEERING EDUCATION

Thereisnoregular census of software engineering
programs worldwide, although there have been
a variety of efforts to track the degree programs
at both the undergraduate and master’s level
including Knoke (1998), Modesitt, et al (2000),
and Bagert (Bagert & Ardis, 2003; Bagert &
Chenoweth 2005). As of 2007, there were at least
32 undergraduate software engineering programs
and 53 MSSE programs in the U.S. alone. The
worldwide numbers would at least double these
counts. There are also 3 Ph.D. programs in soft-
ware engineering in the U.S.

Software engineering programs in the U.S.
have not been immune to the downturnin student
enrollment experienced by computing programs
since about 2000. There are no reliable numbers
to measure the extent of downturn for software
engineering, but there is extensive anecdotal
evidence that it has been substantial, although
perhaps not as great as for computer science. It
would be difficult to know how to interpret en-
rollment data in any case since fully two thirds
of the BSSE programs have been started in the
years since 2000. The more interesting question

Table 2. BSSE degree programs at U.S. institutions

Software Engineering Education

Auburn University

Milwaukee School of Engineering

Butler University

Mississippi State University

California Poly — San Luis Obispo

Missouri Tech

Capitol College

Monmouth University

Champlain College

Montana Tech

Clarkson University

Penn State University — Erie

Cogswell College

Rochester Institute of Technology

Colorado Tech

Rose-Hulman Institute of Technology

Drexel University

San Jose State University

Embry-Riddle Aeronautical Univ.

South Dakota State University

Fairfield University

Southern Polytechnic State Univ.

Florida Institute of Technology

University of Michigan-Dearborn

Gannon University

University of Texas at Arlington

Indiana Wesleyan University

University of Texas at Dallas

lowa State University

University of Wisconsin-Platteville

Michigan Tech

Vermont Technical College

is how the BSSE programs will fare after the
inevitable upswing in number of students seek-
ing computing majors occurs. Itis also a positive
signthatinstitutions have continuedto start BSSE
programs during this period of lowered student
interest in computing majors.

The set of U.S. institutions currently known
to offer BSSE degrees is presented in Table 2.
It is interesting to consider some of the overall
characteristics of this group of institutions that
might have made them early adopters in develop-
ment of the BSSE.

For example, over a third of these institutions
are technology focused colleges or universities.
Onthe one hand, this might make a BSSE an easy
fit. On the other hand, most of these institutions
already have multiple computing degrees, which
could make for sharp differences of opinion about
the wisdom of adding yet another computing
degree.

A second characteristic is that a number of
these institutions have close connections with
businesses in their local market. This is certainly

10

true of some of the technical institutes, but also
true of institutions like Monmouth and some of
the branch campuses of the public institutions.

It is also interesting to note that the list has a
mix of institutional types interms of the Carnegie
Foundation’s classification scheme (Carnegie
2007). For example, there are four BSSE insti-
tutions (Auburn, Drexel, FIT, and lowa) in one
of the “Research University” categories and a
good selection of institutions across the range of
Master’s and Baccalaureate categories.

While there is a relatively broad set of insti-
tutional types, institutions with highly ranked
computer science departments are not present.
For example, in considering the top 36 computer
science departments according to the Taulbee
Survey (Zweben 2007), none of the host institu-
tions for those departments offer BSSE degrees,
eventhough several of them, including Carnegie-
Mellonandthe University of Maryland, have very
active software engineering research groups.
Since the strong reputation of these institutions
generally gives them freedom to enter new areas,

Software Engineering Education

the absence of BSSE programs probably results
from a choice rather than constraints that prevent
pursuing the BSSE.

FUTURE OF sOFTWARE ENGINEERING
EDUCATION

In thinking about what lies ahead for software
engineering education, there are several perspec-
tives that might be taken. For example, one set of
challenges has been outlined by Lethbridge, et al
(2007) as follows:

1. Making programs attractive to students,
2. Focusing education appropriately,
3. Communicating industrial reality more ef-

fectively,

4. Defining curricula that are forward-look-
ing,

5. Providing education for existing practitio-
ners,

6. Making software engineering education
more evidence-based,

7. Ensuring that software engineering educa-
tors have the necessary background, and

8. Raising the prestige and quality of software
engineering educational research.

This is an excellent list, and clearly contains
a variety of important challenges for software
engineering education. It is interesting to note
though, that most of the items in this list apply
fairly well to all, or at least several, of the comput-
ing disciplines. Thisis particularly true if viewed
in terms of not just computer science but also the
newer disciplines like information technology.
Even items 6, 7, and 8 apply more broadly if the
words “software engineering” are removed. (For
example, in IS for item 6 and IT for item 7.)

One possible conclusion from this set of chal-
lenges is that the future of software engineering
education is unavoidably linked to the other

computingdisciplines. Toalarge extentthe group
shares common challenges, and all will rise or
fall depending on how well those challenges
are addressed. In spite of a history of tensions
among the computing disciplines, cooperation,
where possible, is much more likely to result in
advances for all.

Another perspective on the future would be
to look at the model proposed by Ford shown
in Table 1. While there is substantial reason to
look favorably on the progress made against this
framework, there is still much to be done in most
of these categories. Software engineering clearly
has not reached the level of a “mature” profession
as defined by the Ford model. It seems that this
should be viewed as a comment on the relative
newness of the discipline, and certainly not as
a sign of failure. At the same time, it implies
that the SE education community needs to keep
advancing the discipline and not be content with
the accomplishments thus far achieved.

A more difficult perspective to assess is the
ongoing evolutionand tensionamong disciplines,
particularly between computer science and soft-
ware engineering. The continuing skirmishes
that seem typical as new software engineering
programs begin, and the absence of BSSE pro-
gramsininstitutionswith highly ranked computer
science programs, are two good indicators that
this evolution is not complete. One root issue is
the fact that a large percentage of CS graduates
go onto careers as practitioners rather than scien-
tists. This raises the question of whether growth
in SE programs will come largely at the expense
of CS programs. That possibility would present
difficulties for both disciplines.

Withinthe community of software engineering
educators, the sense of cohesion maintained during
the 1990’s seems to be substantially diminished. In
partthatreflects success in achieving initial goals
such as accreditation. However, foracommunity
thatisstill quite small thisis cause for concern. As
additional institutions offer software engineering
degree programs, it is important that they have

11

a community to join. Without that, it is difficult
to see how software engineering will continue to
evolve as a cohesive academic discipline.

Finally, in spite of good progress on the cur-
riculum front, the world continues to change. SE
2004 is already over 3 years old and a round of
updates will need to begin soon. For example, the
chapter by Mead in this volume discusses aspects
of system security that require increased atten-
tion in SE programs. Other issues that need to be
addressed include changes in the way software
systemsare constructed, growth of various forms
of parallel and distributed processing, and the
expanding range of devices that contain software.
Approaches to software process continue to ex-
pand as does the range of application domains with
special considerations. Thereisalsoanincreasing
demand that students have better non-technical
skills including communication and group inter-
action skills. Addressing this range of issues will
require concerted effort of the community of SE
educators for years to come.

REFERENCESs

ACM & IEEE (2005). Computing Curriculum
2005: The Overview Report. IEEE Computer So-
ciety and Association for Computing Machinery.
Piscataway, NJ: IEEE CS Press

ACM & IEEE (2004). Computing Curricula, Soft-
ware Engineering 2004: Curriculum Guidelines
for Undergraduate Degree Programs in Software
Engineering. |EEE Computer Society and As-
sociation for Computing Machinery. Piscataway,
NJ: IEEE CS Press

Ardis, M. A., & Ford, G. A. (1989). SEI Report
on Graduate Software Engineering Education.
TR CMU/SEI-89-TR-21. Pittsburgh PA: Carnegie
Mellon University.

Bagert, D. J. & Ardis, M. A. (2003). Software en-
gineering baccalaureate programs in The United

12

Software Engineering Education

States: An Overview. Proceedings, Frontiers
in Education Conference, pp. S3C-1 to S3C-6.
Piscataway, NJ: IEEE CS Press.

Bagert, D. J., & Chenoweth, S. V. (2005). Future
growth of software engineering baccalaureate
programs inthe United States, Proceedings, ASEE
Annual Conference. Portland, Oregon.

Bagert, D.J.,HilburnT.B., Hislop, G.W., Lutz, M.,
McCracken, M., & Mengel, S. (1999). Guidelines
for Software Engineering Education Version 1.0
Technical Report CMUISEI-99-TR-032. Pitts-
burgh PA: Carnegie Mellon University.

Carnegie (2007). The Carnegie Classification of
Institutions of Higher Education. Stanford, CA:
The Carnegie Foundation for the Advancement of
Teaching. Retrieved January 15,2008 from http:/
www.carnegiefoundation.org/classifications/

Cowling, A.J. (1998). The First Decade of An
Undergraduate Degree Programme in Software
Engineering. Annals of Software Engineering,
6(1-4), 61-90.

Fairley, R. (1986). Therole of academe in software
engineering education. Proceedings of the 1986
ACM Fourteenth Annual Conference on Com-
puter Science. p. 39-52. New York: ACM Press.

Ford, G. & Gibbs, N. (1996) 4 Mature Profession
of Software Engineering. Software Engineering
Institute. Technical Report CMU/SEI-96-TR-04.
Pittsburgh, PA: Carnegie Mellon University.

Ford, G. A. (1994). The Progress of Undergradu-
ate Software Engineering Education. SIGCSE
Bulletin. 26,4. New York: ACM Press.

Ford, G. A. (1991a). The SEI Undergraduate
Curriculum in Software Engineering. Proceed-
ings, 22nd SIGCSE Technical Symposium on
Computer Science Education. pp. 375-385 New
York: ACM Press.

Ford, G. A. (1991b) SEI Report on Graduate Soft-
ware Engineering Education. CMU/SEI-91-TR-2.
Pittsburgh, PA: Carnegie Mellon University.

Software Engineering Education

Hislop, G. W.,, Lutz, M. J., & Sebern, M. J. (2006).
Sharing Software Engineering Curriculum Ma-
terials. Proceedings, ASEE 2006.

Knoke, P.J. (1998). Graduate SE Program Survey
Results And Evaluation, Forum for Advancing
Software engineering Education (FASE), Vol. 8,
No. 9. (electronic newsletter) <http://www.cs.ttu.
edu/fase/v8n09.txt>

Knight,J. & Leveson, N. (2002). Should Software
Engineers be Licensed? Communications of the
ACM. 45(11), 87-90. New York: ACM Press.

Lethbridge, T. C., Diaz-Herrera, J., LeBlanc, R.
J., & Thompson, J. B. (2007). Improving software
practice through education: Challengesand future
trends. In 2007 Future of Software Engineering.
International Conference on Software Engineer-
ing. pp. 12-28. Piscataway, NJ: IEEE CS Press.

Lutz, M. J. & Naveda, J. F. (1997). The Road Less
Traveled: A Baccalaureate Degree In Software
Engineering. Proceedings, SIGCSE Technical
Symposium. p. 287-291. New York: ACM Press.

Mahoney, M.S. (2004) Finding a History for
Software Engineering. /IEEE Annals of the His-
tory of Computing. p. 8-19. Piscataway, NJ: IEEE
CS Press.

McCalla, G. (2002). Software Engineering Re-
quires Individual Professionalism. Communi-
cations of the ACM. 45(11), 98-101. New York:
ACM Press.

Modesitt, K. L., Bagert, D.J., Werth, L., & Knoke,
P.J. (2000). Annual Survey of International Soft-
ware Engineering Academic Programs - Progress

Report Number 2. Forum for Advancing Software
engineering Education (FASE), Vol. 10, No. 11.
(electronic newsletter) <http://www.cs.ttu.edu/
fase/v10n1l.txt>

Naur, P. & Randell, B. eds. (1969) Software En-
gineering: Report on a Conference Sponsored
by the NATO Science Committee, Garmisch,
Germany, 7th to 11th October 1968. Scientific
Affairs Division, NATO.

Parnas, D. L. (2002). Licensing Software Engi-
neers in Canada. Communications of the ACM.
45(11), 90-98. New York: ACM Press.

Tomayko, J. E. (1998). Forging a Discipline: An
Outline History of Software Engineering Edu-
cation. Annals of Software Engineering, 6(1-4),
3-18.

Shaw, M. (1990). Prospects for an Engineering
Discipline of Software. /[EEE Software. 7(6), 15-
24. Piscataway, NJ: IEEE CS Press.

Shaw, M. (2000). Software Engineering Educa-
tion: A Roadmap. Proceedings of the Confer-

ence on The Future of Software Engineering.
373-380.

SWEBOK. (2004). Guide to the Software En-
gineering Body of Knowledge. Piscataway, NJ:
IEEE CS Press.

White, J. & Simons, B. (2002). ACM’s Position
on Licensing of Software Engineers. Commu-
nications of the ACM. 45(11), 91-92. New York:
ACM Press.

Zweben, S. (2007). 2005-2006 Taulbee Survey.
Computing Research News. pp. 7-22.

13

Section |l
Student Learning
and Assessment

15

Chapter Il
Constructive Alignment in

SE Education:
Aligning to What?

Jocelyn Armarego
Murdoch University, Western Australia

Abs TRACT

Practitioner studies suggest that formal [T-related education is not developing the skills and knowledge
needed by graduates in daily work. In particular, a shift in focus from technical competency to the soft
and metacognitive skills is identified. This chapter argues that a framework for learning can be developed
that more closely models the experiences of practitioners, and addresses their expectations of novice
software engineers. Evaluation of a study incorporating three action research cycles shows that what is
needed is a mapping between the characteristics of professional practice and the learning model that
is applied. The research shows that a relationship also exists between learner and learning model, and
that this relationship can be exploited in the development of competent discipline practitioners.

INTRODUCTION

In the late 1960s those involved in the develop-
ment of software agreed that one mechanism for
dealing with intrinsic difficulties (eg complexity,
(in)visibility, and changeability (Brooks, 1986))
was to embed its production within an applied
science environment. Royce (1970) was the first
to note explicitly that an engineering approach
was required. The implication of this alignment

was that, like other engineering endeavours,
methods, tools and procedures must be applied
in a systematic way to contribute to the overall
purpose of the process, control it and enable the
development of a quality product.

This interest in engineering is mirrored in the
education of software developers, withinitially an
exponential growth in offerings of undergraduate
software degrees within an engineering envi-
ronment. Increasingly, education for software

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

development focuses on processand repeatability,
modelling scientific and engineering methodolo-
gies. The underlying assumption of this approach
is that ‘good’ software development is achieved
by applying scientific investigative techniques
(Pfleeger, 1999).

Practitioner-based studies (eg., Trauth, Far-
well, & Lee, 1993; Lethbridge, 2000; Lee, 2004)
assist us in building a profile of a practicing IT
professional. The synthesis of these is that the
skills and knowledge required to be active as
competent practitioners are multidisciplinary:
industry requires professionals who integrate
into the organisational structure, and, rather than
cope specifically with today’s perceived problems,
have models, skills and analytical techniques
that allow them to evaluate and apply appropri-
ate emerging technologies and to manage the
process of delivering solutions. More broadly,
software technology is seen as a rapidly shifting
landscape: new methods, tools, platforms, user
expectations, and software markets underscore
the need for education that provides professionals
with the ability to adapt quickly.

Developing Education-
Learner-Practitioner Alignments'

Freed (1992) coined the term ‘relentless inno-
vation’ to describe the capacity to invent and
implement new ideas that will impact on every
facet of life. Oliver (2000) suggested the rate of
innovation is so prolific that most of the knowl-
edge which will be used by the end of the first
decade of the twenty-first century has yet to
be invented. The speed with which technology
evolves, the multiplicity of its impact on society
and the ramifications of that impact mean that
metacognitive and knowledge construction skills
as well as adaptability become vital for profes-
sionals working with technology. Professional
practitioners with such skills become agents of
change (Garlan, Gluch, & Tomayko, 1997).

16

Constructive Alignment in SE Education

However, the basic features of most engineer-
ing training programmes have hardly been chal-
lenged since engineering schools were established
(Mulder, 2006). Ingeneral this education is based
onanormative professional education curriculum,
in which students first study basic science, then
the relevant applied science (Waks, 2001), so
that learning may be viewed as a progression to
expertise throughtask analysis, strategy selection,
try-outand repetition (Winn & Snyder, 1996). The
risk is that strict adherence to engineering and
science methodologies hampers the quintessential
creativity of the design process for software (Lu-
bars, Potts, & Richer, 1993; Maiden & Gizikis,
2001; Maiden & Sutcliffe, 1992; Thomas, Lee,
& Danis, 2002).

The aim of this chapter therefore is to explore
the degree of alignment between the actuality of
practice in the discipline and the models of learn-
ing provided in formal education for software
development. An overview of both the dominant
pedagogy for formal education in IT disciplines,
and practitioner studies undertaken over the last
15 years establishes a base for this exploration.

An Action Research project, undertaken within
Murdoch University’s Software Engineering (SE)
programme, provided the context for developing
a model for alignment between formal education
for SE and industry requirements. In order to
achieve this, several techniques, including cur-
riculum mapping and discipline decoding, were
applied during the project to establish and then
evaluate the alignments identified. The chapter
continues by exploring the importance of align-
ment between student and learning environment,
so that the eventual outcome, affinity between
discipline, learning environment and graduate
practitioner may be achieved.

CONTEXT

The context for the Action Research? project was
the SE programme within the School of Engineer-

Constructive Alignment in SE Education

ing. In an attempt to align the characteristics of
the discipline with appropriate learning environ-
ments, and to address knowledge gaps identified
by practitioners, interventions based on different
learning models were embedded inthe curriculum
over three cycles:

. Cycle 1: The Cognitive Apprenticeship
(Brown, Collins, & Duguid, 1989) model as
amechanism for enabling authentic learning
and facilitating knowledge transfer.

. Cycle 2: Problem-based learning (PBL)
(Barrows & Tamblyn, 1980) as the basis fora
model that focuses on students dealing with
ill-structured problems by taking control of
their learning. The model developed and
applied in this cycle also addresses issues
of enabling creativity within a supportive
learning environment (Armarego, 2005).

. Cycle 3: A hybrid model developed on the
basis of reflection on the interventions of the
previous two cycles. Based on the construc-
tivistparadigm, this Studio Learning model
exploits the reflective practitioner (Schon,
1983) concept of professional learning by
incorporating some elements of Cognitive
Apprenticeship with components of prob-
lem-based learning and creativity-enhanc-
ingstrategies. The focusisonthe longer-term
success of the learning strategies identified
as appropriate for SE education (Armarego,
2007a; Armarego & Fowler, 2005).

The SE curriculumat Murdochisanintegrated
one —all courses are prescribed, therefore a very
precise understanding of what knowledge students
have constructed isavailable. As Armarego (2002)
indicates, initial changes were made only to the
‘capstone’ course. However, issues identified in
the evaluation (see Armarego, 2004) indicated
changes were required earlier in the curriculum.
Cycles 1and 2 of the project addressed this aspect
by focussing on changing student perception of
‘appropriate’ learning of SE. Cycle 3 consolidated

the evolved learning model and extended it, not
only to all SE learning within the curriculum,
but to the final years of all engineering learning
(Armarego & Fowler, 2005) in the School.

CHARACTERIsTICs OF THE
DIs CIPLINE

The Engineering of s oftware

The alignment of software development with sci-
ence and engineering has been seen asameans to
leverage from the ‘status’ of these domains: the
profession of scientifically trained engineer came
into existence in the 18th and 19th centuries as
a product of the Enlightenment®. For engineers
it meant rethinking traditional technologies in
order to rationalise and optimise them. However,
Mulder (2006) notes that engineers sometimes
failed to recognise that the issue at stake was not
always a scientifically-/mathematically-solvable
optimisation problem, but a choice between ir-
reconcilable norms and values.

The implication of the alignment of software
developmentwith science and engineeringisthat,
like other engineering endeavours, methods, tools
and procedures must be applied in a systematic
way to contribute to the overall purpose of the
process, control it and enable the development of
a quality product.

However, by the late 1960s philosophers such
as Habermas (1972) criticised the ideological
character of science-based technology — success-
ful technologies were seen to challenge society
and affect it as a whole. A deep understanding of
the motives and desires of people who would be
relating to the new technology, developed through
interaction, was critical.

The Crafting of s oftware
Software development has also been described as

a ‘craft’. The negative connotations of this label

17

include an inability to consistently guarantee a
quality product, fit for the purpose for which it was
developed, produced on time and within budget.
The rates of successful projects reported in the
mid 1990s are not significantly higher than those
reported in the 1970s and 1980s (Mann, 1996),
and continue to be low in the 2000s.

There are positive implications as well for the
label ‘craft’. Each system is considered a unique
synergy between the hardware, software and
organisational context in which it will be used.
This viewpoint suggests that the development
process cannot be repeatable, as the forces at play
will differ for each context: continually chang-
ing as understanding of the characteristics of
the developing system grows in all stakeholders.
From this perspective software is a collaborative
invention. Its development is an exploratory and
self-correcting dialogue (Bach, 1999), based on
insight-driven knowledge discovery (Guindon,
1989) facilitated by opportunistic behaviour
(Guindon, 1990; Visser, 1992).

EDUCATION FOR THE DIsCIPLINE

Hannafin (1997) and Reeves (1994) suggest that
several dimensions are relevant in the description
of learning systems:

» Epistemologicalfoundations: Are concerned
withtheoriesaboutthe nature of knowledge,
and describe the world view to be dissemi-
nated. Atone extreme (objectivism), content
aims to be comprehensive and accurate,
and based on advice from experts in the
field. At the other (constructivism), content
reflects the spectrum of views in the domain,
providing multiple perspectives/options for
constructing knowledge.

e Psychological foundations: Represent be-
liefs about how individuals think and learn.
Onthiscontinuum, shaping desirable behav-
iours via stimuli, feedback, reinforcement

18

Constructive Alignment in SE Education

etc at one pole contrasts with a cognitivist
emphasis on mental models and the connec-
tions between them. The type of knowledge
tobe constructed isseentodrive the learning
strategy employed.

* Philosophical foundations : Emphasise how
to-be-learned domains are represented and
affordances provided to support learning.
An instructivist foundation stresses the im-
portance of goalsand objectives drawn from
the domain. Constructivist foundations, on
the other hand, stress the primacy of learner
intentions, experience and metacognitive
strategies through a rich environment that
can be tailored to individual needs.

These dimensions describe the nature of learn-
ing, the methods and strategies employed, and the
ways in which the discipline should be organised
and made available to the learner.

Although any software development projectis
acknowledged as knowledge-intensive, with many
concepts developed to ease or guide the process-
ing of knowing (Robillard, 1999), and learning
(Klemola & Rilling, 2002), what is actually
taught within a discipline is a complex synthesis
deriving from the ideology of the discipline, the
context of the learning and the ‘tools’ used to
facilitate that learning, all, in theory, influenced
by the needs of practitioners in the discipline.
Figure 1 describes a conceptual framework that
identifies the elements of this synthesis: the bodies
of knowledge (BoKs) and model curricula are a
distillation of expert opinion and domain-specific
texts. The breakdown is seen to cover the areas
discussed intextsand standards, either identically,
or, as noted in the SoftWare Engineering Body of
Knowledge (SWEBO0K), derived from these and
other sources to reflect a consensus and identify
mature and stable concepts (Sawyer & Kotonya,
2000) in the discipline.

At the same time, a perspective (composed
of the epistemological, psychological and philo-
sophical foundations noted above) also exerts

Constructive Alignment in SE Education

Figure 1. Influences on the learning environment for SE

Epistemaology ‘ ‘ Psychelogy ‘ ‘ Philosophy
Generic
{ attributes
influence
some
Expert Graduate
opinion echnical knowledge attributes
n\\ BOKs & Learning
::'“"';‘uh Situation !
‘urric
Practitioner
Competency level
Donrain [perspective
specific Rased on
Lexts J
Theorles of influence Maodels of
Learning Learning "™~ | Authentic
experience

influences

B

influence on each of the domain, BoKs etc and
theories of learning. Withinthe IT disciplinesthis
has led to multiple approaches to its definition
and study: the work of livari (1991) and Glass
(1992) identified and categorised these, based on
epistemological and ontological positions taken.
Theimplicationofthisisadifferentunderstanding
of the discipline and education for it dependent
on the stance (perspective) adopted. This poses
a serious challenge for the learning of software
development practice.

The accepted view, that a science/engineer-
ing approach will ensure quality, influences the
learning of SE: by implication a scientific/en-
gineering education is seen as the mechanism
to train students to be competent practitioners.
The same is true outside the science/engineer-
ing academic faculties: Benson (2003) notes that
within the emerging information systems (1S)
discipline of the 1970s, academics were migrants
to the discipline, with an overwhelming majority
having qualifications in other areas, most often
computer science. Practitionersalso relied heavily
on scientific, mathematic and engineering disci-
plines, many with engineeringand manufacturing
backgrounds.

Perspective ([————————————

These influences are mirrored in attempts at
developing model curricula, with the occasional
addition of guidelines addressing generic attri-
butes. Shackelford (2005) provides an overview
of what might be considered computing today
(the space for SE is illustrated in Figure 2). At a
fundamental level, the assumptions made on, for
example, the nature of the system or the impor-
tance of its context, and the nature of knowledge,
influence the perspective taken and how the work
is undertaken. However, each of the volumes of
the Computing Curriculum (CC-CS (Engel &
Roberts, 2001), CC-IS (Gorgone et al., 2002) and
CC-SE (LeBlanc & Sobel, 2004)), which help
determine the learning situation for a discipline,
applies the same model and draws on the same
types of sources.

Withinthe broad IT specialisations ingeneral,
the underlying assumption is that the world works
rationally and that therefore ‘good’ software de-
velopment is achieved by applying (from a choice
of) scientific investigative techniques. In this
positivist approach, borrowing from the physical
sciences, software developers build models based
on: theoretical and scientific knowledge; engi-

19

Constructive Alignment in SE Education

Figure 2. SE computing space (Shackelford, 2005) [©2005 ACM and IEEE. Reprinted by permission]

SE

Organisational Issues &
Information Systems

Application Technologies

Software Methods &
Technologies

Systems Infrastructure

Computer Hardware

& Architecture
More
Theory Theoretical Application
Principles Deployment
Innovation Configuration
More
Applied

neering knowledge — experiential and including
what skills are needed, how tools work together,
what has/has not worked in the past; biomedical
and epidemiological knowledge — experiential,
this capturesevidence about causationand social,
economic and institutional knowledge — who
and what are involved in what we are observing
(Pfleeger, 1999). By these means the ‘scientific’
software developer seek relationships that add
to an understanding of what makes software
good. These are applied to increase the number
of times good software is produced, based on
a cause-effect search: if s/he can find out what
process activities, tools, measurements cause
good software s/he can build an effective software
process that will produce good software every
time (Pfleeger, 1999).

Also applied within IS education such ap-
proaches lean towards project management-based
methods, techniquesandtools, and, while success-
ful in creating arange of artefacts, do not succeed
in the development of management information
systems (Banks, 2003). Banks concludes that
the weakness inherent in approaches which lend
themselves to ‘cookbooks’ with clearly defined

20

problems, rigid method and limited range of out-
comes but tangible skills in students is the lesser
regard for real-world influences and pressures.

Therefore, while areview of major model cur-
riculafor software development (ie IS, CSand SE)
shows that, in general terms, a graduate should
emerge from formal education with knowledge
of the basic software development processes (and
therefore, in theory be able to produce successful
software), this does not acknowledge either the
multi-disciplinary skills highlighted by practitio-
nersas missing informal education®or the generic
intellectual abilities and skills which, although
highly valued by employers, are sometimes given
only ‘“lip service’ in tertiary education curricula
(Bentley, Lowry, & Sandy, 1999).

DIs CIPLINE DECODING

One of the primary motivations for the develop-
ment of models of teaching and learning in which
practitioners can be more involved in the research
on how people think and how students learn has
been a concern with the disciplinary nature of

Constructive Alignment in SE Education

learning. The result of the decoding process is a
model of the skills identified as necessary within
a discipline.

Disciplines differ in the strategies and the
‘ways of thinking’ practitioners apply. However,
althoughthese are essential for both understanding
the discipline and acting within it, they are not
usually presented to students explicitly. Parnas
and Clements (1986) suggest that, given an ir-
rational design process (ie all design processes),
the documentation should make it appear as
though it were rational. They justify this faking
of the appearance of rationality through the need
to make the eventual maintenance task easier,
as well as enabling new members of the design
team to absorb knowledge about the project more
easily. However, as some research (eg., Nguyen
& Swatman, 2000) suggests, the process to such
simplification is hidden and leads to unreal ex-
pectations in novice undertakings. According to
Middendorf and Pace (1986), this dichotomy has
led to a gap between strategies for learning and
the skills necessary in specific disciplines.

Therefore, although practitioner studies agree
that the base case of content knowledge is cov-
ered in models used in university programmes,
a closer look reveals the depth of the mismatch
between practitioner needs and formal education
for software development.

Practitioner Perspectives

Inhis Point/Counterpoint discussion, Bach (1997)
stated that one reason SE is not more seriously
studied isthe common industry belief that most of
the books and classes that teach it are impractical
An overview of the studies undertaken to gain
a practitioner perspective indicates that such an
indictment is not too far from the mark.

Most of the studies noted below address the
requirements for software development activities
by examining the general importance of specific
topics, as perceived by different stakeholders.
Since different approaches are taken in gaining

this knowledge from different target groups: sur-
veys, focus groups, fora or interviews applied to
experienced practitioners, managers, recruitment
staff, students and recent graduates, as well as
examination of job advertisements over the dis-
ciplines of IS, CS and Engineering, some insight
into the practitioner perspective is possible.

In IS practitioner studies since the early 1990s
(eg., Trauth et al., 1993; Parker et al., 1999; Lee,
2004) a long term shift from programming and
other technical subjects to business analysis and
people-oriented skills is significant —a change in
emphasisto both genericattributesand managerial
knowledge. From the student perspective, aware-
ness of the need for ‘career resilience” has surfaced
(Waterman, Waterman, & Collard, 1994), while
a technology-relevant degree is less necessary.
Lee (1999) concluded that academic programmes
should emphasise information searching and prob-
lem formulation (as opposed to problem solving
alone) so that students can deal more effectively
with the challenges of industry. He noted that
interpersonal communication accounts for the
most important means of knowledge transfer in
technological work, with team members as the
most utilised inter-personal information source.

From a later study Lee found that one of the
reality shocks involved in the socialisation of
new graduates to work was the onus of teaching
themselves what they needed to know in order to
perform the task successfully. He concludes

...educators should also help students to develop
theirinitiatives and abilities to deal with ill-struc-
tured problems. This would require approaches
which emphasize independent learning and col-
laborative teamwork. (Lee, 2004, p 135)

Fewer studies address the skills and knowl-
edge needed in SE and CS. Turley and Bieman
(1995) examined professional Software Engineers
in an attempt to identify the competencies and
demographics that contribute to ‘excellence’ in
performance. They provide a set of thirty eight

21

competencies that express a broad range of be-
haviours required of an IT professional engaged
in the creation of software products (as opposed
to maintenance, management etc). They identify
four categories of competencies which differenti-
ate between exceptional (XP) and non-exceptional
(NXP) performers (see Table 1). Of the statisti-
cally significant competencies associated with
exceptional performance most are seen to cluster
around the theme of external focus, with only
Mastery of Skills and Techniques asaself-directed
(internal) skill. Earlier Turley (1991) concluded
thateducation needed to supportthe development
of differential skills (namely interpersonal skills
and personal attributes) through the creation of
learning situations that stress these. Lethbridge
(2000) also examined the industry perception:
his aim was to gain a practitioner ranking of
the usefulness of specific topics compiled from
the curricula of (emerging) SCE (Software and
Computer Engineering) and CS, the influence
of these on respondents’ career and how much
they had learned formally compared to what

Constructive Alignment in SE Education

was required as a professional. Of relevance to
our consideration, Lethbridge computed overall
importance of topics, based on the average of both
importance of details and influence. The results of
his work indicate the existence of significant gaps
between formal learning and importance on the
job. Of the top ten topics exhibiting considerable
gap, 50% reflect ‘soft’ knowledge (eg negotiation
(84% gap), leadership (73%), ethics and profes-
sionalism (62%)).

Studies in the Australian context support
these findings. Respondents to a study by Scott
and Yates (2002) noted that learning profes-
sion-specific content provides the ‘scaffold’ for
the important task of career-long professional
learning: the skills to undertake this are of great
importance, with the ability to know when and
when not to deploy technical expertise, and how
to continuously update it, the keys to successful
professional practice.

From Scott and Wilson (2002)’s work, the
finding is that, while the successful professional
must possess a high level of profession-specific

Table 1. Turley rankings: Competencies by participant category

Competency

XP Rank | NXP Rank

Task Accomplishment
Mastery of Skills & Techniques

Personal Attributes

Driven by a desire to contribute

Perseverance

Maintains ‘Big Picture’ view

Desire to do/bias for action

Driven by a sense of mission

Exhibits and articulates strong beliefs and convictions
Proactive role with management

NXP

Situational Skills

Responds to schedule pressures by sacrificing parts of the design process 2

Interpersonal Skills

Seeks help from others

Helps others

Willingness to confront others

1

4

Numbers indicate ranking based on statistical significance results of a t-test. Items not numbered are the result of a discriminant
analysis based on Q-sort results. Competency element in italics indicates both tests identify this as significant.

22

Constructive Alignment in SE Education

technical expertise, such skills have little value
without other skills:

...when the unexpected occurs, what is most tell-
ing is being able to tolerate the uncertainty and
ambiguity of the situation, having well developed
reciprocal networks upon which to call to iden-
tify potentially relevant solutions, being able to
‘read’ the total technical and social components
of a troubling situation, and then being able to
apply a high level of appropriate technical skill in
partnership with other team members to resolve
the situation. (Scott & Wilson, 2002, p 6)

The synthesis of these studies implies a need
to enable students to not only learn to use past
experience on a general level, but to also be able
to deal with each new problem situation in its
own terms, requiring certain generic intellectual
abilities and skills. Gott et al (1993) posit that
this adaptive/generative capability suggests the
performer not only knows the procedural steps
for problem solving but also understands when to
deploy them and why they work. The implication
of this is effort spent on higher (metacognitive)
learning skills, including abstraction and reflec-
tion. However, merely applying knowledge has
been identified as the aim of undergraduate edu-
cation, so that generally only the lower three (ie
foundational) levels of Bloom (1956)’s taxonomy
of cognitive learning have been chosen as educa-
tional objectives, since they represent

what knowledge may be reasonably learned during
an undergraduate education, (Sobel, 2003, p 6),

effectively ignoring the development of higher
level skills (analysis, synthesis, evaluation) in
formal (undergraduate) education. This runs
counter to Thomas et al (2002)’s suggestion of
a (critically) widening gap between the degree
of flexibility and creativity needed to adapt to a
changing world and the capacity to do so.

ALIGNING EDUCATION TO
PRACTICE

Reigeluth (1997) argues that the current para-
digm of education is based on standardisation,
conformity and compliance, geared to the mass
production of industrial age manufacture. This
does notequate with the needs of the late 20" /early
21% century job market, which revolves around
problem solving, teamwork, communications,
initiative taking and diverse perspectives. What
this implies is a lack of coincidence between the
actuality of practice in the discipline and the
instructional design supposed to model it — sug-
gesting the need for a new paradigm, based on
customisation, diversity and initiative, to suit the
needs of the information age.

Felder and Brent (2005) assert that traditional
engineering education does little to provide stu-
dents with the systemic perspective on individual
subjects (a global perspective) they need to func-
tion effectively, and the ones who take too long
to get it by themselves are at risk academically.
They see most engineering instruction oriented
toward students with specific traits — introverts
(favouring lecturing and individual assignments
rather than active class involvement and coop-
erative learning), intuitors (preferring emphasis
on science and math fundamentals rather than
engineering applications and operations), think-
ers (favouring objective analysis rather than in-
terpersonal considerations in decision-making),
and judgers (preferring emphasis on following
the syllabus and meeting assignment deadlines
rather than on exploration of ideas and creative
problem solving). Holt and Solomon (1996) point
outthat, whileengineering educationreliesheavily
on problem solving and engineering science, it
limits the opportunities of all learners to develop
the skills required for proficiency in two key ar-
eas: design and invention (requiring a divergent
approach), and business management (requiring
accommodative sKills). The work of Lumsdaine
and Lumsdaine (1995) suggests that between 20%

23

and 40% of student intake to engineering is lost
through not catering for students with strengths
in communications and team work or creative
problem solving, synthesis and design.

InSE, Glass (1995) suggeststhat discipline and
creativity are the odd couple of software develop-
ment — the discipline imposed by methodology,
for example, forms a frame for the opportunistic
creativity of design. The educational dilemma
becomes one of providing a base that enables
software developers to both create and engineer
the systems they build: to be adaptable to the
changing environment that is inevitable in their
chosen discipline. However, criticism has arisen
regarding engineering graduates’ ability to be
creative (Cropley & Cropley, 1998). The need
for flexibility, fluency and originality in day-to-
day dealings, which typically define the creative
effort (Guilford, 1967), is seen as lacking from
their education.

The inadequacy of formal education in train-
ing competent practitioners, then, may be partly
explained by the ‘incorrect’ learning environ-
ment that results from the poor fit between the
characteristics of the discipline identified by
practitioners and those of the learning model. A
solution can be proposed through the develop-
ment of a new framework for SE education. This
framework should:

. Be based on constructivist theory (as more
suitable for learning in domains involving
ill-structured problems (Spiro, Feltovich,
Jacobson, & Coulson, 1991) with a focus on
strategic knowledge to enhance knowledge
construction and transfer. This includes
metacognitive strategies for directing,
monitoring and evaluating learning.

. Be placed within a situated experiential
learning environment where authenticity
(with rich contextual information) is ex-
ploited (Dreyfus & Dreyfus, 1986). Focusing
on the solution of authentic problems as a
context for learning provides students with

24

Constructive Alignment in SE Education

entry to the community of practice to which
they will belong.

. Provide the student withalearning environ-
ment that has an emphasis on modelling
practice, making tacit knowledge explicit
and thus empowering students to think
independently.

Several learning models apply these concepts.
As noted previously, the project looked specifi-
cally at Cognitive Apprenticeship and problem-
based learning as exemplars. However, there is
a suggestion in the literature that efforts to help
students learn at Bloom’s higher-order levels may
be impeded by a mismatch between the kinds of
thinking actually required in specific disciplines
and generic formulae for encouraging higher-or-
der thinking (Middendorf & Pace, 1986). In the
final analysis, applying generic learning models
(even non-traditional ones) for situated, higher-
order learning that is student-centred may run
countertoanimportantstrand inthe currentthink-
ing about teaching. This stresses the disciplinary
nature of knowledge. As a tool for learning, the
model must be adapted to the discipline. The de-
velopment of a curriculum map aligns the needs
of the discipline with the educational strategies
to address these concerns.

Curriculum Mapping for
Constructive Alignment

As both curriculum development and learning
theory move away from behavioural to cognitivist
and constructivist approaches in order to address
the needs of both the discipline and changing
context for the discipline, the value of alignment
is enhanced.

The basis of a framework for a learning en-
vironment is a ‘constructive alignment’ (Biggs,
1999) of objectives, teaching context and assess-
ment tasks. Based on the discussions of Brown,
Bull, and Pendlebury (1997), aligning these
components achieves the following aims: the

Constructive Alignment in SE Education

educational expectation (learning objective) is
mapped to learning activities likely to achieve
these (teaching context) while assessment tasks
focus on the quality of the learning process. A
model of alignment, based on the work of the
engineering subject centre of the learning and
teaching support network (LTSN, 2002), was ap-
plied within the research project (see Figure 3).

In order to facilitate all the alignments re-
quired,amap of the curriculum for SE at Murdoch
University was constructed. Curriculum mapping,
as an evaluative tool attributed to English (1978),
has been used primarily in schools, with limited
use inhighereducation. Englishadvocated the use
of mapping to ensure that the constructive align-
ment described above - alignment of declaration,
delivery, learning and assessment of individual
skills - is achieved.

The outcome of these initial phases, examin-
ing curricula and learning models, and decoding
the discipline through a meta-analysis of prac-
titioner perspectives, was to confirm the need
to build into the curriculum a focus on generic
and soft skills as part of the outcomes of each
course within the programme, to address both
practitioner and discipline needs. To maximise
effectiveness, these had to be embedded into

the knowledge base constructed by the students
during their learning. This has the advantage of
enabling students to develop the requisite skills
situated within the learning context but, of course,
required extensive adaptation of the existing
learning environment.

Within the project undertaken, curriculum
mapping was tackled course by course, commenc-
ing with the initial SE course offered (identified
as ENG260), which addresses Requirements
Engineering. This was categorised firstly by the
broad area of curriculum and then by the learning
outcomes to be addressed. The map was based on
scrutiny of documentation related to the course;
inparticular syllabusand course outline informa-
tion provided to students at the commencement
of the semester. These detail topics to be covered,
assessment elements and criteria and expected
demonstrable outcomes. The data gleaned from
all of these were initially mapped to Murdoch’s
generic graduate outcomes, and then, as progress
was made in developing the activities to address
the learning outcomes identified, to these as well.
Figure 4 shows the mapping necessary for align-
ment. The Learning Objectives are determined
from the appropriate BoKs and model curricula,
tempered by our understanding of the needs of

Figure 3. Alignment between outcomes and assessment (adapted from LTSN, 2002)

Intended Outcomes determine Assessment Criteria

[Accreditation|
| @

| Generic
--------------- I | Attributes
lnd“s‘r.‘. | S—— —_
Needs [
v :
Intended Appropriatg | Emergent Assessment
Learning —+ Learning |* Learning |+ Criteria
Outcomes Activities | Outcomes
i s]
Domain : T T ==
Characteristics] Open-ended | | Additional
’ T Tasks | Outcomes
| |

Alignment feedback to Intend

ed Learning Outcomes

25

practitioners in our context. The topics addressed
(indicated as Domain) are mapped to Murdoch’s
Graduate Attributes. The Problem(s) identify
the activity that will address these objectives.
Because the course has been presented within
a PBL environment (and hence problem-driven)
these are never lectures nor simply assessment

Constructive Alignment in SE Education

items or tutorial/laboratory exercises. Students
engage withthe required contentthrough identify-
ing, exploring and subsequently solving specific
problem scenarios. These scenarios are exposed
progressively by means of triggers (Figure 5 is
one example —at this point students have no prior
knowledge of SE estimation techniques).

Figure 4. (excerpt from) Learning objectives - ENG260

Requirements Engineering

B i i |Graduate |
Objective Domain Attributes iPrnl:llem
iTo incrementally build
knowledge on:

1 Requirements Engineer Concepts Professional 1,26

e P Knowledge '

5 Elements of the SDLC, both Req.mrmfts Professional 5 6

} classical and object-oriented Progcess Knowledge

| |

| |[Toidentify: [
Components of Concents Professional 2
Requirements Specification B Enowledge

= :
SDLC Process Models hmmts Drofessional

A Enginecting Knowledge 6.2
(classical and OO) Process SowEcse

[__ |T'o be aware af: | |
Group Dynamics and
collaboration in the People Intercisciplinanty/

5 [Software Development Issuzs i o
process (Team and Social Interaction
Stakeholder)

_ Historical issues in Software Professional

i Development i Knowledge i

{_ [Ta develop skills in: [[
Creating and evaluating
deliverables of the Requirements Analysis &

7 |Requirements Phase Engineering Problem Solving/ |[2 +
(complementary models, Process Communications
documentation)

8 |Group Collaboration Pesple Social Interaction |3

P Issues/Teamwork —

26

Constructive Alignment in SE Education

Curriculum mapping may therefore be consid-
ered a traceability exercise: each ‘requirement’
(learning objective) is designed for (triggering
one or more problem component/learning object)
and may lead to an artefact (an assessment ele-
ment). The appropriate learning environment is
determined by the ‘fit” of all components to the
course and ultimately the overall programme
(thus placing emphasis on alignment of elements
identified in Figure 1 with those in Figure 3).

It should be noted that the development of the
learning environmentwas continuing throughout
the project: the initial model —based on Cognitive
Apprenticeship, evolved to amodel based on PBL
(CreativePBL) and finally to Studio Learning. As
Figure 3 indicates, alignment feedback informs
the refining of the intended learning outcomes,
and hence the learning activities, for subsequent
offerings of the course. In this context, ongoing
project evaluation indicated the process-oriented
approach advocated in PBL acted asanalignment
inhibitor by reinforcing the perception of RE isa
smooth process of sequential stages — the contin-
gency measures advocated by Andresen, Boud,
and Cohen (1995) as needing to be available in
the creative nature of design, could not be easily
incorporated.

A learning model based on the ‘studio’ ap-
proach (itself modelled on the 19th century
atelier-based training at the Parisian Ecole des
Beaux-Arts), thatalso emphasised the development

of reflective skills and sensibilities (Schon, 1983)
was implemented as the learning environment
of choice. This Studio Learning model incorpo-
rates some elements of Cognitive Apprenticeship
with components of problem-based learning and
creativity-enhancing strategies. The model sup-
ports the idea that learning is defined in terms of
dynamic sets of relationships whose interactions
and interdependencies create and control condi-
tions that are supportive of specified concepts
within a discipline.

Developing a student-Education
Alignment

Student approaches to both learning and the
learning environment can be investigated through
several diagnostic instruments. Within the study,
learning styles (Kolb, 1984; Soloman & Felder,
1999), temperament (Keirsey & Bates, 1984),
study approaches (Entwistle & Ramsden, 1983)
and relationship to learning activities (Meyer &
Boulton-Lewis, 1997) were all incorporated. The
results of these instruments help build several
profiles of the student cohorts. Important in this
context was the individual learning styles® and
individual approaches to learning. The results
confirmed other research (Entwistle & Tait,
1990, 1995; Tynjala, Salminen, Sutela, Nuutinen,
& Pitkénen, 2005) about students with specific
learning styles having a preference for surface

Figure 5. Trigger for investigation of estimation techniques

rMemo Viewer

27

learning and ‘being taught’, and indicated that
students conceptions of the characteristics of their
learning environments were related to their study
orientations and strategies.

Other research within this School (Armarego,
Fowler, & Roy, 2001) indicates that engineering
students’ motivationand success can be adversely
affected if their learning styles, and the learning
styles of the staff teaching them, are not taken
intoaccount. Thereisconsiderable evidencethata
mismatch, between lecturers’ expectations of the
way students learn and students’ own individual
preferred learning styles, disadvantage students.
Research suggests that these mismatches lead to
lack of motivation and interest in students and
affect their success (Felder, 1996; UWA, 1996;
Zywno & Waalen, 2001).

These findings were supported by the project
discussed in this chapter, strengthening indica-
tions of the importance of additional alignments
— teacher and learning environment to student.
Learning styles instruments, when applied to en-
gineering academic staff, also indicated a strong
Converger approach to teaching. The implication
of this was that the dominant teaching style did
notexhibitthe adaptability and flexibility required
by either the characteristics of the discipline or
the learning environment being developed.

The term constructive alignment, therefore,
goes beyond the need to ensure that teaching,
assessmentand every aspect of the teaching-learn-
ing environment are aligned to the main aims or
intended learning outcomes of a course. When
the course is not aligned with learner interests or
the situation constrains the student’s approach to
learning, the dependent learner mode will tend
to dominate — control of the learning process is
relinquished to the teacher, while the student
will demand carefully articulated structure, clear
guidance and clearly-defined assessment (Ar-
marego, 2007b). A dependent learner, therefore,
does not align with the discipline characteristics
described earlier in this chapter. Staff develop-
ment, to introduce experiential learning models

28

Constructive Alignment in SE Education

and ‘teaching around the learning cycle’ (Felder,
1996) are advocated (Armarego & Fowler (2005)
alsodiscusses the staff developmentimplemented
in this project).

CONCEPTUAL MODEL OF
ALIGNMENT

Theresultof the investigation described here, and
the Action Research project that underpins it, is
the development of a complex model that aligns
discipline competencies with student character-
istics with learning environment, as illustrated
in Figure 6.

This chapter argues that traditional formal
education does not meet the competency expecta-
tions of industry. Practitioner dissatisfaction with
formal education focuses on non-technical com-
ponents of competency: they look for graduates
who are flexible, adaptable in the organisational
environment and can continue learning. These
have been identified as cognitive skills related
to higher order learning, strategies to enable op-
portunism and creativity and the development of
emotional intelligence.

The three cycles of this project explored al-
ternate learning models to evaluate their appro-
priateness for addressing these issues. A shift in
focus from technical competency to the soft and
metacognitive skills that enable the competent
practice of SE was achieved. Each intervention
strategy addressed specific concerns and, through
evaluation of and reflection on the intervention,
strategies are refined for the next cycle to address
additional issues identified:

. Cycle1-Cognitive Apprenticeship: Focus
onauthenticity andtransfer of skillsacquired
to other courses and, eventually, to the
profession. This cycle highlighted student
problemsin generalising their learning, and
inwillingness to apply previous knowledge
to the ‘new’ learning. In effect they were

Constructive Alignment in SE Education

BoKs & Model
Curricula

FPrinciples

Figure 6 Conceptual model of discipline-learning- environment-student characteristics alignment

Constructivist

Practitioner
Perapectives

Discipline

P

t

=

2 %

Organisalional
Malurily

Student
, Characteristics

) Reflective
J Practitioner
Studio ‘/
Learning
i . PBL

“Maturity”

=

Approaches to
Learning

constrained by the “apprenticeship’ nature
of the model. A significant finding of this
cycle related to studentemphasison ‘correct’
answers to problem solving undertaken.
Students focussed on learning the tools and
techniques of SE at the expense of a broader
(and more abstract) understanding within
the discipline

Cycle 2 — CreativePBL.: Focus on student-
centred learning; creativity and adaptability.
This model was developed to address the
deficiencies of the Apprenticeship model that
were identified in Cycle 1. It was developed
to focus on creativity and divergent think-
ing, so that, instead of students aimed at
finding the single, best, correct answer to a
standard problem in the shortest time (con-
vergent thinking) they aimed at redefining
ordiscovering problemsand solving them by
means of branching out, making unexpected
associations, applying the knownin unusual
ways, or seeing unexpected implications.
However, process itself acted as a deterrent
to student motivation to study and to exploit
the creativity being nurtured — opportun-
ism was difficult within the process and

hence flexibility inhibited; here a focus on
process detracted from the ‘authenticity” of
the environment

Cycle 3 - Studio Learning: Focus on deep
learning; opportunism and metalearning.
This model was developed to gain leverage
from the positive elements of the models
previously applied. Here the strategy was
to reach all types of learners by ‘teaching
around the cycle’, thus enabling students
to develop the mental dexterity required
in professional practice, and introducing
the importance of contingency measures
and opportunistic creativity. The Studio
environment also provided the opportunity
for students to adopt expert strategies — the
teacher acts as guide or ‘consultant’ in
these processes and helps students to reflect
critically on their effectiveness in specific
contexts.

This research shows the gap between practi-

tioner expectations of formal education for SE
can be reduced through fine-grained alignment
of the learning environment with the characteris-
tics of the discipline. While technical knowledge

29

acquired by students is important in that it acts
as a “filter’ for graduate employment, of greater
impact on the professional competence is the
focus on soft and metacognitive skills. These are
learnable withinaformal education environment,
albeit through the application of non-traditional
learning models. The final model developed and
applied in the research project, Studio Learning,
appeared to be effective in addressing issues
raised in studies of discipline practitioners and
the education literature. The application of Studio
Learning within the Murdoch SE programme is
discussed in greater detail elsewhere (Armarego,
2007a).

The results of the alignment of this model
with the discipline/educational issues highlighted
earlier in this chapter can be summarised as the
need to:

* Providestudentswith authentic experiences
which address competencies additional
to specific discipline knowledge: students
were exposed to learning both asa ‘generic’
metacognitive activity, and as a skill to be
continually adapted and utilised within a
discipline context. Flexibility in thinking
- addressing creativity, opportunism and
divergency/convergency - was made explicit
and strategies to exploit it developed

. Provide learners with a deep understanding
of self and others in complex human activ-
ity systems in a collaborative environment.
students became aware of and learnt to
utilise each other’sstrengthsand weaknesses
in achieving the learning outcomes. They
learnt how to ‘jell’, what to do if they did
not, and to be empathetic to the contexts
of other students. They learnt to value and
exploit alternate perspectives brought to a
problem by different stakeholders (client,
teacher/consultant, other team members) to
enrich their learning. They became aware
of the need to be self-motivated and learn
independently - students were confident in

30

Constructive Alignment in SE Education

questioning their own and others’ assump-
tions within the learning environment

. Allow time to explore new ideas and to re-
flect on possible processes and outcomes:
students were willing to “‘trust’ each other’s
knowledge (implicitor not, technical or not),
accepting the multi-disciplinary nature of
the skillsand knowledge required toachieve
the learning objectives

* Be challenged: students were motivated
by the (increasing) complexity of the tasks
assigned, and were able to focus on cogni-
tive and interpersonal skills to adapt to the
changes imposed.

Techniques applied included: providing stu-
dents with information about learning theory
(PBL,situated learning, life-long learning), ensur-
ing ‘higher order learning’ was addressed with
greater emphasis on analysis and synthesis rather
than application of knowledge within courses, em-
beddingreflective practices within each course (eg
journals, performance and team-work reviews),
emphasising alternative approaches to problems
and ‘rewarding’ diversity of (feasible) solutions,
embedding change in all aspects of the problems
tackled (changing requirements, scenarios, deliv-
erables, team composition, client contact, etc) to
highlight the importance of opportunism, flex-
ibility and adaptability (Armarego, 2007c).

Not only was student feedback positive, and a
significantimprovementin their assessment marks
discernable, butobservationand analysis of subse-
quent learning (Armarego, 2007c) showed strong
indications of willingness to transfer knowledge
gained, to take control of their learning, and indi-
cated motivation to deeper learning, as indicated
by the work of Entwistle and Ramsden (1983).

However, what both practitioner studies
(especially the work of Minor (2004)) and this
research hint at is the importance of individual
characteristics and abilities. Minor’s participants
indicated a Personality component to competent
practice. Examination of student reflective com-

Constructive Alignment in SE Education

ments, in conjunction with data regarding student
learning, adds another dimension to the issue of
education for competent practice.

This research suggests that an alignment
between the learner and the (discipline-aligned)
learning model enhances student learning of that
discipline. However, further research is required
to test these findings in the context of student
transition to the workplace: at this time, reporting
of graduate success (although very encouraging)
is only anecdotal.

IMPLICATIONs FOR THE FUTURE

An increasing shortage in IT practitioners both
through disengagement with the discipline and
decreasing enrolments in tertiary institutions
suggest an imperative to address the needs of
industry and provide graduates with appropriate
competency. The implication for education is that
it is no longer adequate for academics to only be
discipline experts — knowledge and understand-
ing of the complete learning process is vital in
achieving this goal, and implies resources com-
mitted to appropriate (educational) training. The
implication for the learning environment is that
it is no longer appropriate to rely on traditional
teaching as the basis for the learning process
—these methods do notalign well with the require-
ments of the profession, and inhibit many (actual
as well as potential) students from engaging with
the discipline. This, too, requires resources to be
dedicated to invigorating the learning environ-
ments provided. The implication for the students
themselves is that dependent learning is contra-
indicated for success in the IT professions. As
learning becomes necessarily life-long, students
must embrace the skills and knowledge outside
the discipline content (the affective and softskills)
required for successful professional practice.
From the educational perspective, these must be
made explicit by, for example, moving towards
student-centred experiential learning models; by

embedding higher order, soft and affective skills
into the course; and ensuring — through mapping
and constructive alignment - that these are a mea-
surable outcome of the learning process.

CONCLUsION

Thischapter describesarelationship between the
characteristics of the discipline and established
models of learning. These characteristics inform
the development of a conceptual model for SE edu-
cation, and a learning model that addresses more
explicitly the gaps in formal education identified
by practitioners. These gaps may be considered
as a lack of alignment between the various ele-
ments which contribute to graduate competence
as practicing professionals in the discipline.

The concept of alignment is well understood
and is backed by a body of research literature: in
aneducational context constructive alignment (eg
between objectives and assessment) is considered
‘best practice’; as practitioner studies highlight,
in industry alignment between IT practice and
formal education is also considered best practice.
However, shortfallsin I T professionalsinindustry,
as well as decreasing enrolments and growing
student attrition suggest other alignments; those
between the discipline, the organisation and
education should also be explored. Yet not much
work has been published in this area.

The research that this chapter discusses con-
firms that there is a relationship between char-
acteristics exhibited by learners and the learning
environment provided. Students display aptitudes
for specific learning environments; these should
therefore exploit student learning characteristics
since those whose approaches to learning align
with the learning model appear to gain increased
benefits. If that environment is also aligned with
the characteristics of the discipline, itis suggested
that students with specific characteristics, taught
in a manner that is appropriate to the discipline,
have greater potential to becoming competent

31

practitioners: a case of the sum of the alignments
being greater that its parts.

REFERENCESs

Andresen, L., Boud, D., & Cohen, H. (1995).
Experience-based learning. In G. Foley (Ed.),
Understanding Adult Education and Training
(pp. 207-215). Sydney: Allen and Unwin.

Armarego, J. (2002). Advanced Software Design:
acaseinproblem-based learning. Paper presented
at the CSEET2002 15th Conference on Software
Engineering Education and Training, Covington
(Ke).

Armarego, J. (2004). Student perceptions of
quality learning: evaluating PBL in Software
Engineering. Paper presented at the Seeking
Educational Excellence: 13th Teaching Learning
Forum, Perth.

Armarego, J. (2005). Educating agents of change.
Paper presented at the CSEE&T2005 18th Con-
ference on Software Engineering Education and
Training, Ottawa.

Armarego, J. (2007a). Beyond PBL: preparing
graduates for professional practice. Paper pre-
sented at the CSEET2007: 20th Conference on
Software Engineering Education & Training,
Dublin.

Armarego, J. (2007b). Deconstructing student
attitude to learning: a case study in IT education.
Paper presented atthe CSITed2007: Computer Sci-
ence and IT Education Conference, Mauritius.

Armarego, J. (2007c). Educating Requirements
Engineers in Australia: effective learning for pro-
fessional practice. Unpublished PhD, University
of South Australia, Adelaide.

Armarego, J., & Fowler, L. (2005). Orienting
students to Studio Learning. Paper presented
at the Proceedings of the 2005 ASEE/AaeE 4th

32

Constructive Alignment in SE Education

Global Colloquium on Engineering Education,
Sydney.

Armarego, J., Fowler, L., & Roy, G. G. (2001).
Constructing Software Engineering Knowledge:
development of a learning environment. Paper
presented at the In search of a Software Engineer-
ing Profession: CSEE&T2001 14th Conference on
Software Engineering Education and Training,
Charlotte (NC).

Bach, J. (1997). SE education: we’re on our own.
IEEE Software, 14(6), 26,28.

Bach, J. (1999). Reframing requirements analysis.
IEEE Computer, 32(2), 120-122.

Banks, D. A.(2003). Belief, inquiry,argumentand
reflection as significant issues in learning about
Information Systems development methodologies.
InT.McGill (Ed.), Current Issues in IT Education
(pp. 1-10). Hershey (PA): IRM Press.

Barrows, H. S., & Tamblyn, R. M. (1980). Prob-
lem-based Learning, an Approach to Medical
Education. New York: Springer.

Bentley, J. F, Lowry, G. R., & Sandy, G. A.
(1999). Towards The Compleat Information
Systems Graduate: a Problem based Learning
Approach. Paper presented at the Proceedings of
the 10th Australasian Conference on Information
Systems.

Biggs, J. (1999). Teaching for Quality Learning at
University: what the student does. Buckingham
(UK): Open University Press.

Bloom, B. S. (1956). Taxonomy of Educational
Objectives: the classification of educational goals
Handbook I: cognitive domain. New York: David
Mackay.

Brooks, F. P. (1986). No silver bullet - essence
and accidents of software engineering. Paper
presented at the Proceedings of Information
Processing 86: the IFIP 10th World Conference,
Amsterdam.

Constructive Alignment in SE Education

Brown, G., Bull, J., & Pendlebury, M. (1997). As-
sessing Student Learning in Higher Education.
London: Routledge.

Brown, J. S., Collins, A., & Duguid, P. (1989).
Situated cognition and the culture of learning.
Educational Researcher, 18, 32-42.

Carr, W., & Kemmis, S. (1986). Becoming Criti-
cal: education, knowledge and action research.
Lewes (UK): Falmer.

Cropley, D. H., & Cropley, A. J. (1998). Teaching
Engineering Students to be Creative - Program
and Outcomes. Paper presented at the Australasian
Association of Engineering Education: 10th An-
nual Conference.

Dreyfus, H. L., & Dreyfus, S. E. (1986). Mind
over Machine. New York: Free Press.

Engel, G., & Roberts, E. (Eds.). (2001). Computing
Curricula 2001: Computer Science --final report:.
Joint Task Force on Computing Curricula, ACM
and IEEE Computer Society.

English, F. (1978). Quality control in curriculum
development. Arlington (VA): American Associa-
tion of School Administrators.

Entwistle, N. J., & Ramsden, P. (1983). Under-
standing Student Learning. London: Croom
Helm.

Entwistle, N. J., & Tait, H. (1990). Approaches to
learning, evaluations of teaching, and preferences
for contrasting academic environments. Higher
FEducation, 19, 169-194.

Entwistle, N. J., & Tait, H. (1995). Approaches
to studying and perceptions of the learning en-
vironment across disciplines. New directions for
teaching and learning, 64, 93-103.

Felder, G. M., & Spurlin, J. (2005). Applications,
reliability and validity of the Index of Learning
Styles. International Journal of Engineering
Education, 21(1), 1-3-112.

Felder, R. M. (1996). Matters of Style. Prism:
Journal of the American Society of Engineering
Education, 6(4), 18-23.

Felder, R. M., & Brent, R. (2005). Understand-
ing student differences. Journal of Engineering
Education, 94(1), 57-72.

Felder, R. M., & Silverman, R. L. (1988). Learn-
ing and teaching styles in engineering education.
Engineering Education, 78(8), 674-681.

Freed, G. (1992). Fifth generation innovation.
Sydney: Australian Centre for Innovation and
International Competitiveness, University of
Sydney.

Garlan, D., Gluch, D. P., & Tomayko, J. E. (1997).
Agents of Change: Educating Future Leaders in
Software Engineering. /IEEE Computer, 30(11),
59-65.

Glass, R. L. (1992). A comparative analysis of
the topic areas of Computer Science, Software
Engineering, and Information Systems. Journal
of Systems and Software, 25.

Glass, R. L. (1995). Software Creativity: Pren-
tice-Hall.

Gorgone, J. T., Davis, G. B., Valacich, J. S,
Topi, H., Feinstein, D. L., & Longenecker, H.
E. (Eds.). (2002). IS 2002: model curriculum for

undergraduate degree programs in Information

Systems. Park Ridge (IL): ACM.

Gott, S.P,,Hall, E. P., Pokorny, R. A., Dibble,E., &
Glaser, R. (1993). A naturalistic study of transfer:
adaptive expertise in technical domains. In D. K.
Detterman & R. J. Sternberg (Eds.), Transfer on
Trial: intelligence, cognition and instruction (pp.

258-288). Norwood (NJ): Ablex.

Guilford, J. P. (1967). The Nature of Human Intel-
ligence. New York: McGraw-Hill.

Guindon, R. (1989). The process of knowledge
discovery in system design. In G. Salvendy &

33

M. J. Smith (Eds.), Designing and Using Hu-
man-Computer Interfaces and Knowledge Based
Systems (pp. 727-734). Amsterdam: Elsevier.

Guindon, R. (1990). Knowledge exploited by
experts during software systems design. Inter-
national Journal of Man-Machine Studies, 33,
279-304.

Habermas, J. (1972). Theory and Practice (V. J,
Trans.). London: Heinemman.

Hannafin, M. J. (1997). The case for grounded
learning systems design: what the literature
suggests about effective teaching learning and
technology. Paper presented at the Proceedings
of ASCILITE ‘97, Perth.

Holt, J., & Solomon, F. (1996). Engineering Edu-
cation - the way ahead. Australasian Journal of
Engineering Education,, 7(1), 1-22; 83-98.

livari, J. (1991). A paradigmatic analysis of con-
temporary schools of IS development. European
Journal of Information Systems, 1(4), 249-272.

Keirsey, D., & Bates, M. (1984). Please Under-
stand Me (3 ed.): Prometheus Nemesis Book
Company.

Klemola, T., & Rilling, J. (2002). Modeling
comprehension processes in software develop-
ment. Paper presented at the Proceedings of the
first IEEE Conference on Cognitive Informatics
(ICCI’02), Calgary (Canada).

Kolb, D. A. (1984). Experiential Learning Experi-
ence asthe Source of Learning and Development,
: Prentice-Hall.

Kolb, D. A. (1995). Learning style inventory:
technical specifications. Boston: McBer & Com-

pany.

LeBlanc,R., & Sobel, A. E. K. (Eds.). (2004). Soft-
ware Engineering 2004: curriculum guidelines
forundergraduate degree programs in Software
Engineering. Los Alamitos (CA): IEEE Computer
Society Press.

34

Constructive Alignment in SE Education

Lee, D. M. S. (1999a). Knowledge/skill require-
ments and professional development of IS/IT
workers: a summary of empirical findings from
two studies. In Panel on Workforce Needs in
Information Technology, Computer Science and
Telecommunications Board, National Academy
of Sciences. Milwaukee (WI).

Lee, D. M. S. (2004). Organizational entry and
transition from academic study: examining a
critical step in the professional development of
young IS workers. In M. Igbaria & C. Shayo
(Eds.), Strategies for Managing IS/IT Personnel
(pp. 113-141). Hershey (PA): Idea Group.

Lethbridge, T. C. (2000). What knowledge is
important to a software professional? I[EEE Com-
puter, 33(5), 44-50.

LTSN. (2002). Constructive alignment and why
it is important to the learner, from http://www.
Itsneng.ac.uk/er/theory/constructivealignment.
asp

Lubars, M., Potts, C., & Richer, C. (1993). 4 re-
view of the state of the practice in requirements
modeling. Paper presented at the International
Symposium on Requirements Engineering, San
Diego.

Lumsdaine, M., & Lumsdaing, E. (1995). Thinking
preferences of engineering students: implications
forcurriculumrestructuring. Journal of Engineer-
ing Education, 84(2), 193-204.

Maiden, N. A. M., & Gizikis, A. (2001). Where
do requirements come from? IEEE Software,
18(5), 10-12.

Maiden, N. A. M., & Sutcliffe, A. G. (1992). Ex-
ploiting reusable specifications through analogy.
Communications of the ACM, 34(5), 55-64.

Mann, J. (1996). The Role of Project Escalation
in Explaining Runaway Information Systems
Development Projects: A Field Study. Georgia
State University.

Constructive Alignment in SE Education

Meyer, J. H. F., & Boulton-Lewis, G. M. (1997).
The association between university students’
perceived influences on their learning and their
knowledge, experience, and conceptions, of learn-
ing. Paper presented at the Proceedings of the 7th
European Conference for Research on Learning
and Instruction, Athens.

Middendorf, J., & Pace, D. (1986). Decoding the
disciplines: a model for helping students learn
disciplinary ways of thinking. New Directions
for teaching and learning, 98, 1-12.

Minor, O. (2004). Theory and Practice in Require-
ments Engineering: an investigation of curricula
and industry needs. Unpublished Master, Univer-
sity of Koblenz-Landau, Koblenz (Germany).

Mulder, K. F. (2006). Engineering curriculain Sus-
tainable Development: an evaluation of changes at
DelftUniversity of Technology. European Journal
of Engineering Education, 31(2), 133-144.

Nguyen, L., & Swatman, P. A. (2000). Essential
and incidental complexity in requirements models.
Paper presented at the Fourth International Con-
ference on Requirements Engineering Education,
Schaumburg (I1).

Oliver, R. W. (2000). The coming biotech age:
The business of bio material. New York: Mc-
Graw-Hill.

Parnas, D. L., & Clements, P. C. (1986). A ra-
tional design process: how and why to fake it.
IEEE Transactions on Software Engineering,
12(2), 251-257.

Pfleeger, S. L. (1999). Albert Einstein and em-
pirical software engineering. IEEE Computer,
32(10), 32-37.

Reeves, T. C. (1994). Evaluating what really
matters in computer-based education, from http://
www.medicine.mcgill.ca/ibroedu/review/Reeves
Evaluating What Really Matters in Computer-
Based Education.htm

Reigeluth, C. M. (1997). Instructional theory,
practitioner needs and new directions: somereflec-
tions. Educational Technology, 37(1), 42-47.

Robillard, P. N. (1999). The role of knowledge in
software development. Communications of the
ACM, 42(1), 87-92.

Rothman, R., Slattery, J. B., Vranek, J. L., & Resn-
ick, L. B. (2002). Benchmarking and Alignment of
Standards and Testing (CSE Report No. 566). Los
Angeles: Center for the Study of Evaluation,

National Center for Research on Evaluation, Stan-
dards, and Student Testing, Graduate School of
Education & Information Studies, UCLA.

Royce, W.W. (1970). Managing the development of
large software systems: concepts and techniques.

Paper presented at the IEEE WESCON.
Sawyer, P., & Kotonya, G. (2000). SWEBOK:

software requirements engineering knowledge
areadescription (Version 0.6 ed.): IEEE Computer
Society/ACM.

Schon, D. A. (1983). The Reflective Practitioner:
How Professionals Think in Action. New York:
Basic Books.

Scott, G., & Yates, W. (2002). Using successful
graduates to improve the quality of undergradu-
ate engineering programs. European Journal of
Engineering Education, 27(4), 60-67.

Shackelford, R. (Ed.). (2005). Computing Cur-
ricula 2005: the overview report. The Joint Task
Force for Computing Curricula 2005.

Soloman, B., & Felder, R. (1999). Index of Learning
Styles (ILS),, from http://www2.ncsu.edu/unity/
lockers/users/f/felder/public/ILSpage.html

Somekh, B. (1989). Action researchand collabora-
tive school development. InR. McBride (Ed.), The
Inservice Training of Teachers: some issues and
perspectives. Brighton: Falmer Press.

35

Spiro, R. J., Feltovich, P.J., Jacobson, M., & Coul-
son, R. (1991). Cognitive flexibility, constructiv-
ism and hypertext: random access instruction for
advanced knowledge acquisition in ill-structured
domains. Educational Technology, 31, 24-33.

Thomas, J. C., Lee, A., & Danis, C. (2002). En-
hancing creative design via software tools. Com-
munications of the ACM, 45(10), 112-115.

Trauth, E. M., Farwell, D., & Lee, D. M. S. (1993).
The IS expectation gap: industry expectation
versus academic preparation. MIS Quarterly,
17, 293-307.

Turley, R. T. (1991). Essential Competencies of
Exceptional Professional Software Engineers.
Colorado State University, Fort Collins (CO).

Turley, R. T., & Bieman, J. M. (1995). Competen-
cies of exceptional and non-exceptional software
engineers. Journal od Systems and Software,
28(1), 19-38.

Tynjala, P., Salminen, R., Sutela, T., Nuutinen, A.,
& Pitkanen, S. (2005). Factors related to study suc-
cessinengineeringeducation. European Journal
of Engineering Education, 30(2), 221-231.

UWA. (1996). Do male and female students dif-
fer in their preferred style of learning? Perth:
Institutional Research Unit, University of Western
Australia.

Visser, W. (1992). Designers’ activities exam-
ined at three levels: organisation strategies and
problem-solving processes. Knowledge-Based
Systems, 5(1), 92-104.

Waks, L. J. (2001). Donald Schon’s Philosophy
of Design and Design Education. International

Journal of Technology and Design Education,
11, 37-51.

Waterman, R. H., Waterman, J. A., & Collard, B.
A. (1994). Toward a career resilient workforce.
Harvard Business Review, 69, 87-95.

36

Constructive Alignment in SE Education

Winn, W., & Snyder, D. (1996). Cognitive per-
spectives in psychology. In D. H. Jonassen (Ed.),
Handbook of Research for Educational Com-
munications and Technology (pp. 112-142). New
York: Simon & Schuster Macmillan.

Zuber-Skerritt, O. (1995). Models for action re-
search. In S. Pinchen & R. Passfield (Eds.), Mov-
ing On: creative applications of action learning
and action research (pp. 3—29). Mt Gravatt (Qld):
Action Learning, Action Research and Process
Management Assn, Inc.

Zywno, M., & Waalen, J. (2001). The effect of
hypermedia instruction on achievement and at-
titudes of students with different learning styles.
Paper presented at the Proceedings of the 2001
American Society for Engineering Education An-
nual conference and Exposition Session 1330.

ENDNOTEs

! Whenappliedtoeducation, alignmentrefers
to the ongoing process of bringing congru-
ence to the declared, learnt and assessed
components to guide instruction design
and ultimately, student learning. Authors
on curriculum alignment agree content,
depth, emphasisand cognitive activity match
are required for sound alignment (Roth-
man, Slattery, Vranek, & Resnick, 2002).
In the context of this chapter, alignment
transcends the educational environment to
include discipline, practitioner and student
characteristics.

2 Somekh (1989) defines Action Research as
the study of a social situation, involving
the participants themselves as research-
ers, with a view to improving the quality
of action within it. This research applies
the style described as the ‘Deakin’ (Carr &
Kemmis, 1986) approach. This has merit
in being adopted for studies in educational
contexts (Zuber-Skerritt, 1995)

Constructive Alignment in SE Education

This implied rearranging political and
administrative structures in a rationalist
way in order to abandon superstition and
injustice

For software development, Zucconi (1995)
suggested the underlying disciplines of
central importance are psychology, com-
puter science and discrete mathematics,
and suggests an IT professional needs to be
well organised, able to work as a member
of a multi-disciplinary team, and within
the scope of the employer’s policies and
procedures and society’s tenets

Ingeneral, students exhibited ‘engineering’
styles. As the work of the Felders and their

colleagues (eg Felder & Spurlin, 2005; Felder
& Brent, 2005; Felder & Silverman, 1988)
indicate, engineering students are pragma-
tists with a tendency to narrow technical
interests. Converger characteristic, to seek
“single, correct answers or solutions to a
question or problem” (Kolb, 1995) becomes
the dominant learning style

Exploring the relevance of each new topic
(Diverger); making available basic informa-
tion and methods associated with the topic
(Assimilator); providing opportunities to
practice the methods (Converger) and en-
couraging exploration of the applications
(Accomodator) (Felder, 1996)

37

38

Chapter Il
On the Role of Learning
Theories in Furthering Software
Engineering Education

Emily Oh Navarro
University of California, Irvine, USA

André van der Hoek
University of California, Irvine, USA

Abs TRACT

Learning theories describe how people learn. There is a large body of work concerning learning theo-
ries on which to draw, a valuable resource of which the domain of software engineering educational
research has thus far not taken full advantage. In this chapter, we explore what role learning theories
could play in software engineering education. We propose that learning theories can move the field of
software engineering education forward by helping us to categorize, design, evaluate, and communicate
about software engineering educational approaches. We demonstrate this by: (1) surveying a set of rel-
evant learning theories, (2) presenting a categorization of common software engineering educational
approaches in terms of learning theories, and (3) using one such approach (SimSE) as a case study to
explore how learning theories can be used to improve existing approaches, design new approaches, and
structure and guide the evaluation of an approach.

INTRODUCTION In this chapter, we propose that learning
theories, which have thus far been explicitly
leveraged in software engineering education in
only a minimal way, can actually play quite a

significant role in this domain. Specifically, we

Learning theories are attempts to describe and
understand the various ways inwhich people learn.
They are an important resource for educational

research, as they can both guide us in creating
new educational approaches, and help us analyze
and improve existing approaches.

believe that learning theories can serve to move
the field of software engineering education for-
ward by helping usto categorize, design, evaluate,

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of 1GI Global is prohibited.

On the Role of Learning Theories

and communicate about software engineering
educational approaches. Categorizing approaches
in terms of learning theories can help us to un-
derstand the approaches in relation to each other,
understand how they fit together, and point out
areas of untapped potential. New approaches can
be designed to leverage certain theories whose
potential is unfulfilled or known to be especially
valuable in our domain. Learning theories can be
used to evaluate approaches by helping structure
experiments to look for the presence of these and
other theories in the processes of learners. And,
we can use our newfound knowledge to commu-
nicate in a common language—that of learning
theories—about different approaches and our
experience with them.

This chapter details this vision of principally
using learning theories in the domain of software
engineering education. We first briefly present a
setof well-known (mainly constructivist) learning
theories that are especially applicable. We then
introduce a categorization of the major software
engineering educational approaches to date in
terms of the learning theories that they appear
to have been designed around. Following this,
we discuss the role learning theories can play in
analyzing and improving the design of a software
engineering educational approach (and designing
new approaches), and focus on the analysis of one
such approach (SImSE) as a case study. We then
discuss how software engineering educational
approaches can be evaluated in terms of learning
theories, again using SimSE as a case study. We
conclude with a summary in the final section.

bACk GROUND:
LEARNING THEORIEs

To provide some background for our discussion
on the role of learning theories in software engi-
neering education, in this section we will briefly
introduce the set of learning theories that we
surveyed for the purposes of our analysis. We do

not include here an exhaustive list of all learning
theories with significant detail. Instead, the pur-
pose of this section is to simply introduce some
of the ones we have seen software engineering
educational approaches centered around most
frequently, and provide pointers to where more
information about each one can be found. In ad-
dition, we will also briefly touch on implications
andtypical or possible applications of each theory
for software engineering education.

We chose the particular set of learning theories
discussed here because of two criteria: relevancy
tosoftware engineeringand orthogonality among
the factors defining the theory. In other words,
these theories are the ones we have seen to be
most clearly and/or frequently embodied in the
software engineering educational approachesthat
we surveyed. Furthermore, there existsagreatdeal
of overlap among learning theories, and there are
several learning theories thatencompassanumber
of others. In these cases, we either group theories
that have the same basic idea, and omit those that
simply combine a number of theories.

We acknowledge that these theories fall mainly
into the constructivist paradigm (rather than the
behavioristor cognitive categories), however, given
that constructivismisthe most recently-developed
paradigm, and software engineeringisarelatively
new discipline, this is not surprising (it has been
argued elsewhere, in fact, that the evolution of
computer science education in the past decade or
so0 has been significantly influenced by construc-
tivism (Kolikant, 2001)). While itis certainly true
that most delivery methods generally containamix
of various theories that fall into each of the three
camps (constructivist, behaviorist, and cognitive),
because the constructivist aspects are the most
focused on, we have chosen to scope this survey
and analysis to focus primarily on these theories.
Surely similar surveysand analyses could be done
with cognitive and behaviorist theories that would
yield interesting results, however, such exercises
are outside the scope of the one presented here.

39

Nevertheless, some of the theories surveyed in
this chapter do have elements of cognitive and/or
behaviorist principles. For example, Learning
through Failure involves a form of “punish-
ment” (failure) meant to “extinguish” a certain
behavior.

An additional issue that should be noted is the
distinction between learning “theories,” learning
“models,” and learning “methods,” as well as
their counterparts in the domain of instructional
design (instructional design theories, models, and
methods). Because the lines between these are
blurred and often used interchangeably, it should
be noted thatinthis chapter several of the “learning
theories” we refer to can also be called by some of
these other terms. When this is the case, we will
point it out in our discussion of those theories.
However, as is frequently done in the literature,
we use the term “learning theory” broadly, as a
term that covers all of these categories.

One of best-known learning theories is Learn-
ing by Doing, a theory based upon the premise
that people learn a task best not by hearing about
it, but by actually doing it (Dewey, 1916). The
implication of this theory for instructional design
is the following: the learner should be provided
with ample opportunity to actually perform the
activitiesthey are meantto learn, rather than using
passive mediums such as lectures and readings.
Insoftware engineering education, thistranslates
to going beyond just lectures and reading assign-
ments (although, for most any domain, a certain
amount of such scaffolding is necessary to provide
the learner with the required background knowl-
edge to effectively participate in the Learning
by Doing). Software engineering educators have
recognized this, and now a standard component
of nearly all software engineering courses is
the class project—a small software engineering
project that students must develop using some of
the techniques learned in class.

Situated Learning (Lave, 1988) is an edu-
cational theory that builds upon the Learning
by Doing approach. While Learning by Doing

40

On the Role of Learning Theories

focuses on the specific learning activities that
the student performs, the Situated Learning
theory is concerned with the environment in
which the Learning by Doing takes place. In
particular, Situated Learning is based on the
belief that knowledge is situated, being in large
part a product of the activity, context, and culture
in which it is developed and used. Therefore, the
environment in which the student practices their
newly learned knowledge should be “authentic”,
resembling, as closely as possible, the environment
in which the knowledge will be used in real life.
A popular application of this theory in software
engineering education focuses on incorporating
aspectsof realism (or “authenticity”) into the class
project, such as using an industrial participant
to play the role of the customer (Hayes, 2002),
using maintenance- or evolution-based projects
(McKim & Ellis, 2004), or using large teams of
people that are distributed across geographical
locations (Favela & Pena-Mora, 2001).

Like Situated Learning, Keller’s ARCS Mo-
tivation Theory (Keller, 1983) also focuses on
motivating studentsto learn. However, rather than
focusing on the physical environment in which
they learn, Keller’s ARCS Motivation Theory
concerns itself with producing certain feelings
in the learner that are believed to promote learn-
ing. In particular, these feelings are attention,
relevance, confidence, and satisfaction.

* Attention: The attention and interest of the
learner must be engaged. Proposed meth-
ods for doing so are: introducing unique
and unexpected events; varying aspects of
instruction; and arousing information-seek-
ing behavior by having the learner solve or
generate questions or problems.

. Relevance: Learners must feel that the
knowledge is relevant to their lives. The
theory suggests that knowledge be presented
and practiced using examples and concepts
that are relevant to learners’ past, present,
and future experiences.

On the Role of Learning Theories

. Confidence: Learners need to feel personal
confidence in the learning material. This
should be done by presenting a non-trivial
challenge and enabling them to succeed at
it, communicating positive expectations,
and providing constructive feedback.

. Satisfaction: A feeling of satisfaction must
be promoted inthe learning experience. This
can be done by providing students with op-
portunities to practice their newly learned
knowledge or skills in a real or simulated
setting, and providing positive reinforce-
ments for success.

Keller’s ARCS is technically considered an
instructional design model that is rooted in vari-
ous learning theories. Two of the most directly
contributing theories are Andragogy (Knowles,
1984) and Expectancy-Value Theory (Fishbein &
Ajzen, 1975). Andragogy concernsadult learners
in particular, and focuses on their need for self-
directed, relevant, hands-on learning. Expectancy-
value theory states that in order for a learner to
put forth the effort required to learn, they must
both value the knowledge/task/exercise and expect
thatthey cansucceedatit. Because Keller’'s ARCS
combinesthese theoriesand provides more hands-
on applicability than either theory alone, we have
chosen to include it (rather than the theories it is
based on) in our survey and analysis.

While Keller’'s ARCS could be applied in a
number of different ways in software engineer-
ing education, in general it entails providing the
students with attention-grabbing, realistic, hands-
on assignments that pose a significant, yet doable
challenge. One class of approaches that explicitly
sets out to accomplish such goals is that in which
the class project is made purposely open-ended
and/or vague. This is done in two main ways:
either by allowing the students to define their
own requirements (giving students the pseudo-
experience of new product development based
on market research) (Navarro & van der Hoek,
2005b), or by allowing them to define their own

process (giving students experience in not only
following a process, but in designing the process
that they follow) (Groth & Robertson, 2001). The
stated purpose of these open-ended approaches
is to mimic common, less-structured (authentic)
real-world software engineering situations, giving
the students more ownership of the project and
therefore more interest in it, as well as a greater
feeling of confidence and satisfaction when the
project is completed.

Model-Centered Instruction (Gibbons, 2001)
(which is also considered an instructional design
theory) says educators should center all learning
activities around models of three types: models
of environments, models of cause-effect systems,
and models of human performance. Presentation
of general concepts and theories should be kept to
aminimum. Instead, Model-Centered Instruction
believes that knowledge is best learned by explo-
ration of these models. In software engineering
education, this translates to simulating realistic
situations, presenting case studies, and assigning
realistic problems for the students to solve. One
software engineering educational approach that
embodiesthistheoryisthe practice-drivenone, in
which the curriculum is largely lab- and project-
based, and lectures are used only as supporting
activities (Ohlsson & Johansson, 1995).

The Discovery Learning theory (Bruner,
1967) takes asimilar approach to model-centered
instruction in that it believes that an exploratory
style of learning is best. Discovery Learning is
based on the idea that an individual learns a piece
of knowledge most effectively if they discover it
on their own, rather than having it explicitly told
to them. This theory encourages educational ap-
proachesthatare richinexploring, experimenting,
doing research, asking questions, and seeking
answers. Educational software engineering
simulation approaches (Drappa & Ludewig, 2000;
Navarro & van der Hoek, 2005a) are specifically
designed to facilitate this type of learning—no
knowledge is made explicit in the simulation, as
it is rather discovered by students experimenting

41

with differentapproaches and seeing the effects of
their decisions on the outcome of the simulation.
These types of approaches are generally given
as structured exercises and combined with other
teaching methods (such as lectures, readings, and
projects). Including this type of scaffolding has
been found to be crucial in making Discovery
Learning maximally effective (Kirschner et al.,
2006; Roblyer, 2005).

Along the same lines as the Discovery Learn-
ingtheoryisthe Learning Through Failuretheory
(Schank, 1997). This theory is based on the as-
sumption that the most memorable lessons are
those that are learned as a result of failure. The
theory argues that: (1) Learning through failure
provides more motivation for students to learn,
S0 as to avoid the adverse consequences that they
experience firsthand when they do not perform as
taught, and (2) Failure engages students, as they
are motivated to try again in order to succeed.
Proponents of the theory argue that students
should be allowed to (and even set up to) fail to
encourage maximal learning. Although Learning
through Failure is usually applied to the realm of
e-learning, there have also been some non-e-learn-
ing software engineering educational approaches
in which the main avenue of learning is through
failure. In these “sabotage” approaches, the in-
structor purposely sets the students up for failure
by introducing common real-world complications
into projects (e.g., crashing hardware just before
a deadline), the rationale being that students will
then be prepared when these situations occur in
their future careers (Dawson, 2000).

The theory of Learning through Reflection
is primarily based on Donald Schon’s work sug-
gesting the importance of reflection activities in
the learning process (Schon, 1987). In particular,
Learning through Reflection emphasizes the need
for students toreflect on their learning experience
in order to make the learning material more ex-
plicit, concrete, and memorable. Some common
reflection activities include discussions, journal-
ing, or dialogue with an instructor (Kolb, 1984).

42

On the Role of Learning Theories

One example of this in software engineering is
(Tomayko, 1996), a practice-driven industrial
partnership approach that incorporates weekly
one-on-one mentoring sessions with a “coach”
to discuss each student’s performance and help
themreflect on their experience. The game-based
simulation described in (Drappa & Ludewig,
2000) and the industrial simulation described
in (Nulden & Scheepers, 2000) also incorporate
dialogue and reflection as post-simulation activi-
ties in which students analyze and discuss their
simulation experience with a tutor or instructor,
and reflect on what they have learned.

Finally, the theory of Elaboration (Reigeluth
& Rodgers, 1980) states that, for optimal learn-
ing, instruction should be organized in order of
complexity, from least complex to most complex.
Simplest versions of tasks should be taught first,
followed by more complicated versions. This is
a theory that is generally inherent to most cur-
ricula (as well as most other learning theories), as
coursesandtopics are usually introduced in order
of increasing complexity. In software engineering
educational approaches, applying this theory can
sometimes be difficult, as there is oftentimes no
natural way to organize the information in terms
of complexity (e.g., how can one do this for a
class project?). One approach that has been able
to do this is the industrial simulation approach
described in (Collofello, 2000). In this approach,
students are assigned very simple simulations to
beginwith, and the complexity of the simulations
isincrementally increased asthe students progress
in their knowledge.

As mentioned previously, what has been pre-
sented in this section is only a brief introduction
to the relevant learning theories. There is much
more detail to these theories than what we have
discussed, detail whichmustbe looked into further
before one can effectively apply these theories to
theireducational approaches. Typically, subtleties
are involved in each one, and care must be taken
to pay attention to these details.

On the Role of Learning Theories

LEARNING THEORY-bAsED
CATEGORIzATION OF EXIsTING
APPROACHESs

One of the main ways that learning theories can
be used in software engineering educational
research is to provide the field with a way to
analyze and categorize existing approaches, both
independently and in relation to each other. Such
a categorization can serve to help us understand
how the differentapproaches fittogetherand create
a picture of the field as a whole, so that areas of

strengths, weaknesses, and untapped potentials
can be unearthed. We have done such acategoriza-
tion, which we will present in this section.
Before creating this categorization, in order to
organize our analysis we first surveyed the major
software engineering educational approaches
published in the past several years and found that
they can be lumped into three broad groupings:
realism, topical, and simulation (these groupings
can be broken down further into sub-groupings,
as shown in Table 1). Realism approaches are
those that focus on making various aspects of

Table 1. Grouping of software engineering educational approaches

Realism 53 | Topical 48 | Simulation 8
Industrial Partnerships 16 | Formality Industrial 2
- Modify real software 1 | - Formal methods 2 | Game-Based 4
- Industrial advisor 1 | - Engineering Group Process 2
- Industrial mentor/lecturer 2 | Process (Specific) 21
- Case study 5| - PSP 14
- Real project / customer 7 |-TSP 2
Maintenance/Evolution 9 | -RUP 3
- Multi-semester 4 | -XP 2
- Single-semester 5 | Process (General) 6
Team Composition 13 | - Process engineering 3
- Long-term teams 1 | - Project management 3
- Large teams 3 | Parts of Process 3
- Different C.S. classes 1 | - Scenario-based reg. eng. 1
- Different majors 2 | - Code reviews 1
- Different universities 2 | - Usability testing 1
- Different countries 1 | Types of Software Eng. 8
- Team structure 3 | - Maintenance/Evolution 3
Non-Technical Skills 2 | - Component-based SE 2
Open-Endedness 7 | - Real-time SE 3
- Requirements 2 | Non-Technical Skills 7
- Process 5 | - Social/logistical skills 3
Practice-Driven 3 | - Interact w/ stakeholders 1
Sabotage 3 | -HCI 2
- Business aspects 1

43

the students’ project experience more closely
resemble one they would encounter in the real
world. Some of these have included industry
participation (Beckman et al., 1997; Kornecki et
al., 2003; Wohlin & Regnell, 1999), emphasizing
non-technical skills such as marketing and project
management (Gnatz et al., 2003; Goold & Horan,
2002), and focusing on making the nature and
composition of the student teams that work on the
projectmore realistic (e.g., makingthemvery large
(Blake, 2003) or composed of several sub-teams
(Navarro & van der Hoek, 2005h)). Topical ap-
proaches aim to educate students in detail about a
topic generally not covered indepth in mainstream
textbooks and lectures. These approaches do not
focus on specific delivery methods, but instead
focus on the mere addition of the topic as a crucial
component of an effective and complete education
in software engineering. Some examples of such
topics are formal methods (Abernethy & Kelly,
2000), real-time software engineering (Kornecki,
2000), and specific software processes such as the
Personal Software Process (Hilburn, 1999) or the
Rational Unified Process (Halling et al., 2002).
Finally, simulationapproaches are those that have
students practice software engineering processes
ina (usually) computer-based simulated environ-
ment. Within the realm of software engineering
simulations, there are three main types: industrial
simulations brought to the classroom (Collofello,
2000; Pfahl ez al., 2000), game-based simulations
(Drappa & Ludewig, 2000; Navarro & van der
Hoek, 2005a), and group process simulations
(Nulden & Scheepers, 2000; Stevens, 1989).

To categorize these approaches in terms of
learning theories, we carefully studied each one
to determine which learning theories appear to
have been applied (whether intentionally or un-
intentionally), and which learning theories have
clear potential to be employed. The resulting
categorization is presented in Table 2 as a matrix
of approaches and the learning theories that they
leverage. (For a complete discussion of this cat-
egorization, see (Navarro, 2005)—here we present

44

On the Role of Learning Theories

only the highlights.) The presence of three stars
in the table indicates that the approach embodies
the particular theory, or is centered around it. The
presence of two stars represents that the theory
appears to be involved in the design of that type
of approach, but is perhaps not an intrinsic part
of it, and may not be involved in all approaches
that fall within that type. The presence of one
star indicates that there is an obvious potential
forthat particular type of approach to employ that
learning theory, but there have been very few, or
no known cases of it.

Example: simulation and Learning
Theories

Asan example of how we analyzed each approach
in terms of learning theories, in this section we
will focus on the simulation category and walk
through how we determined the applicability
of each learning theory for these approaches.
First of all, all aforementioned educational soft-
ware engineering simulations allow students
to learn software processes by participating in
them (Learning by Doing), albeit virtually. This
theory is central to the paradigm of educational
simulations (hence, the three stars in the table).
These simulations alsoemploy Situated Learning
by adding realism to the learning environment,
althoughindifferentways: Industrial simulations
add realistic factors in the form of real project
datainthe simulation model; Game-based simula-
tions add realism by immersing the student in the
role of a participant in a realistic game scenario;
Group process simulationsinject realism through
the simulated characters that behave similarly to
real-world participants. Because these realistic
factors are artificial in that they are virtual (rather
than in a real-life setting), we put two stars in the
table for this theory.

Simulation approaches strongly fit with the
Keller’'s ARCS model of learning. In particular,
they are specifically designed to promote atten-
tion, relevance, confidence, and satisfaction (and

On the Role of Learning Theories

Table 2. Software engineering educational approaches and the learning theories they incorporate

o 5
S| ol 5| 3
o =1 = 5]
Elglaw| S| |8 %
sl | 8| 28| 8| 5|~ | &
35 o 5 j=)) =
> <5} < - | 3) <
e} - > b o = o
o - D > = 2 =}
k=] P b = = = o
= i) @ < e = = <
= © = [a] &) o = o
@ 2 v = S k= en
S| @ S| 8| E| &
— 5 o) § £
= g 8
—
Industrial Partnership — Real Project k| kkk | ok *
Maintenance/Evolution x% | ke * *%x
Team Composition x| wkk *
Open-Endedness *% * % *Hk *k *% *
Non-Technical Skills o *x *
Practice-Driven KKk Kk *kk *% * *
Sabotage *% * % *Hk *
Topical *% * * * * * * *
Simulation *hk *k *hk * *Hk *% * *%

have been shown to do so in some cases) in the
following ways:

Attention: A number of studies done with
educational software engineering simula-
tions have repeatedly shown that students
find these simulations enjoyable, engaging,
and an interesting challenge they are happy
to take on (Baker et al., 2003; Dantas et al.,
2004; Navarro & van der Hoek, 2005a; Sharp
& Hall, 2000; Stevens, 1989). This is par-
ticularly true for game-based simulations.
Clearly this is the result of the elements of
surprise, humor, challenge, and fun that are
integral to many game-based simulations.
Relevance: Because learners can experi-
ence firsthand how the knowledge they are
learning is relevant in a real-world situation
(the one that is portrayed in the simulation),

simulation promotes a feeling of relevance
to students’ future careers. This relevance
can be enhanced by the usage of real-world
data in the model to make the simulation
more realistic. Furthermore, as the theory
suggests, relevance isenhanced even further
if the educational approach builds on previ-
ousand presentknowledge. Simulations that
are used to demonstrate concepts that have
already been communicated to the students
inanother form (e.g., lecture or text) directly
address this.

Confidence: Simulations provide anon-triv-
ial challenge that is also doable. As students
are given the opportunity to succeed at a
simulation, they will feel asense of personal
confidence in the learning material. This is
especially true in game-based simulations,
in which students have the additional benefit
of feeling they have “won the game.”

45

. Satisfaction: As students are able to prac-
tice their knowledge and skills in a realistic
(yet simulated) setting, seeing the positive
consequences of applying their knowledge
correctly promotesatrue feeling of satisfac-
tion. Again, game-based simulations add
to this if the student is also rewarded with
a high score or some other game-relevant
measure of success.

Model-based instruction has not been utilized
at all in simulation, but has obvious potential to
be. In particular, simulations could be used as the
model (realistic situation, case study, and prob-
lem, simultaneously) that instruction is centered
around. In such a case, students would practice
a simulation (or series of simulations) for each
concept (or set of concepts) being taught. Simula-
tions would allow for ample exploration—one of
the basic tenets of model-based instruction—as
students could practice the same simulation mul-
tiple times, using a different approach each time,
learning the consequences of various actions, and,
asaresult, learning a great deal about the process
and concepts being simulated.

Theexploratory quality of simulationinand of
itself directly implementsthe Discovery Learning
theory. The nature of simulation is highly condu-
cive to allowing students to discover knowledge
on their own, as they see phenomena played out
in a simulation, and are encouraged to explore,
experiment, do research, ask questions, and seek
answers.

This type of exploratory learning is also
inherently related to the Learning through Fail-
ure theory. As students explore the simulation
and try different approaches, they are likely to
fail at least a few times. In fact, one of the basic
purposes of simulations is to allow students to
“push boundaries”, try different approaches, and
fail without fear of the drastic and severe conse-
guences that would occur in a real-world setting.
For example, a student who fails in a simulated
software project would only have to worry about

46

On the Role of Learning Theories

getting a low game score or seeing an unhappy
simulated customer, while in the real world such
a failure could cost millions of dollars or have
even more serious consequences.

Learning through Reflection has also been
incorporated into simulation approach, although
only limitedly: with the game-based simulation
SESAM (Drappa & Ludewig, 2000), and the indus-
trial simulationdescribed in (Nulden & Scheepers,
2000). As mentioned previously, dialogue and
reflection sessions have been incorporated into
these learning processes as post-simulation activi-
ties. Some dialogue activity is also an inherent
part of Problems and Programmers (Baker et al.,
2003), the educational software engineering card
game simulation. The face-to-face, competitive
nature of this physical card game has been shown
to promote rich and useful discussion between
student opponents, regarding such topics as why
they took the approach they did, the reasons
behind one person’s win and another’s loss, and
their reactions to unexpected events.

Finally, the Elaboration theory has also been
only limitedly incorporated into simulation-based
software engineering educational approaches. In
particular, Elaboration has only been leveraged
in the process used with the industrial simula-
tion described in (Collofello, 2000). This process
consists of assigning students very simple simula-
tions to begin with, and incrementally increasing
the complexity of the simulations as the students
progress in their knowledge.

Categorization Highlights

The first thing to notice in general from Table 2
is that, although learning theories are not often
explicitly discussed in software engineering edu-
cation research, they are indeed applicable in our
domain. Whether consciously or unconsciously,
people have been building approaches toward
them in various ways. If we look at how the dif-
ferent learning theories fare with respect to the
number of approaches that incorporate them, we

On the Role of Learning Theories

can clearly see that our domain has focused the
moston Learning by Doingand Situated Learning.
This is not a surprise, given the strong emphasis
on preparing students for the “real world” that is
intrinsic to the field. In contrast, Learning through
Reflection is the most under-explored theory, but
also has the most potential for greater use—every
category of approach has the potential to leverage
(or better leverage) this theory.

If we then look at each approach with respect
to the learning theories they incorporate, we can
see that most of them apply multiple theories at
once. The “topical” category has one star for each
theory because, since these approaches focus on
the topic rather than on delivery methods, they
theoretically have the potential to apply all of
the theories, depending on the way that topic is
taught. Simulation, on the other hand, directly
incorporates, or has the potential to directly in-
corporate all of the theories considered in some
way or another. While it certainly is not the case
that any teaching method that addresses more
learning theories than another is better than that
other method (consideracombination of strategies
puttogether haphazardly in some teaching method
versus one well-thought-out and tightly-focused
method cleverly leveraging one very good strat-
egy), anapproach that naturally addresses factors
and considerations of multiple learning theoriesis
one thatis most definitely worth exploring. Simu-
lation is such an approach, but one that has been
significantly underexplored in software engineer-
ing education (Navarro, 2005)—something that
we are attempting to address with the approach
described in the following section.

DETAILED ANALYsIs/DEsIGN/
DEVELOPMENT OF AN APPROACH
IN TERMs OF LEARNING
THEORIEs

In addition to providing the field with a way to
categorize and analyze existing software engi-

neering educational approaches, learningtheories
can also help in developing new approaches and
modifying existing approaches to be more effec-
tive. Categorizations such as the one presented
in the previous section can help guide the design
(or re-design) of such approaches, as areas for
potential are highlighted.

Case study: The Design of simsE

In this section, we present a case study of a soft-
ware engineering educational approach that was
actually not explicitly designed with learning
theories in mind. In looking back at our approach
in light of learning theories, however, we can see
that several of our key decisions made inits design
are highly relevant to some of these theories. We
can also see missed opportunities of ways we
could have leveraged additional learning theories
to make it more effective.

The approach is SImSE, an educational game-
based software engineering simulation environ-
ment. SImSE isacomputer-based environmentthat
facilitates the creation and simulation of realistic
software process simulation models—models that
involve real-world components not presentin typi-
cal class projects, such as large teams of people,
large-scale projects, critical decision-making,
personnel issues, multiple stakeholders, budgets,
planning, and random, unexpected events. In so
doing, itaims to provide students with a platform
through which they can experience many differ-
ent aspects of the software process in a practical
manner without the overarching emphasis on
creating deliverables that is inherent in actual
software development.

The graphical user interface of SIimSE is
shown inFigure 1. SimSE is asingle-player game
in which the player takes on the role of project
manager and must manage a team of developers
in order to successfully complete an assigned
software engineering project or task. The player
drives the process by, among other things, hiring
and firing employees, assigning tasks, monitor-

47

ing progress, and purchasing tools. At the end of
the game, the player receives a score indicating
how well they performed, and an explanatory
tool provides them with a visual analysis of their
game, includingwhichrulesweretriggered when,
a trace of events, and the “health” of various at-
tributes (e.g., correctness of the code) over time
(see Figure 2).

To date, six SImSE game models exist: a wa-
terfallmodel, aninspection model, anincremental
model, an Extreme Programming model, a rapid
prototyping model, and a Rational Unified Process
model. For more information on SiImSE, including
its design, game play, and simulation models, see
(Navarro, 2006).

The idea of SimSE was originally motivated
by the hypothesis that simulation can bring to
software engineering education many of the
same benefits it has brought to other educational
domains. Specifically, we believed that software

Figure 1. SimSE graphical user interface

u

™ reviewing the design
document now, 1o iry 1o
find any errors

On the Role of Learning Theories

engineering process education could be improved
by using simulation to allow students to practice
managing different kinds of “realistic” software
engineering processes. The constraints of the
academic environment prevent students from
having the opportunity to practice many issues
surrounding the software engineering process
in their course projects. Our approach therefore
focused on providing this opportunity through
the use of simulation.

To guide us in the design of SImSE, we per-
formed two activities: (1) a study of the domain
of software engineering education to discover
what its unique needs are, and (2) a survey of
well-known principles for successful educational
simulations fromthe research literature. Theresult
of this was a specific set of key decisions that are
listed here and discussed in light of the learning
theory (or theories) that we later discovered related
directly to them:

48

On the Role of Learning Theories

Figure 2. Graphical representation of a SimSE Game, generated by the explanatory tool

Composite (Object/Action) Graph

b and Selected Actions

t Compatite Graph
Requi tsDoc Artifact Req

100

%0

oo |

70 4

-]

50

a 4

0

0

10 4

o

[ReviewRequiremantsAChon-1. click for Action info]
o 100 200 200 40 500 000

700
Clock Ticks

000 1000 1100 1700 1300 1400

& NuMFNOWNEors o NuMUNKNOWNEMors -« PefcentEmonaous
v ReVIEWROQUINEMENISALDON-1 = CredteRaquirdmantsAcbon- 1

« PatcentComplets

= CorrectiRequremantSALHON-1

Use of the game paradigm. We could have
chosen to base our simulation approach on
the industrial simulation or group process
simulation paradigms mentioned previously,

but instead we chose the game paradigm. It

hasbeen shown that game-like features such
asgraphics, interactivity, surprising random
events, and interesting, life-like challenges
are known to hold a student’s attention and
promote a feeling of confidence and satisfac-

tion as they succeed in the game (Ferrari et

al., 1999). This directly corresponds to the

Keller’s ARCS theory, which suggests that

such qualities promote a highly effective
learning experience.
A fully-graphical user interface. To make

SImSE maximally engaging and visually

realistic, we chose to design a fully graphi-
cal, rather than textual interface. As was
shown in Figure 1, the focal point of this

interface is a typical office layout in which
the simulated process is “taking place”,
including cubicles, desks, chairs, comput-
ers, and employees who “talk” to the player
through pop-up speech bubbles over their
heads. Inaddition, graphical representations
of all artifacts, tools, customers, and projects
along with the status of each of these objects
are visible. This decision to graphically
portray simulated software engineering
situations turned out to be strongly in line
with the theory of Situated Learning—the
learneris provided withavisual context that
corresponds to the real world situations in
which the learned knowledge would typi-
cally be used.

A high level of interactivity. Keeping the
attention of the learner engaged is not only
done by making a user interface visually
appealing, but also by continuously involv-

49

50

ing the learner. Thus, rather than designing
SImSE as a continuous simulation that
simply takes an initial set of inputs and pro-
duces some predictive results, we designed
it in such a way that the player must make
decisions and steer the simulation accord-
ingly throughout the entire process. SIMSE
operates on a step-by-step, clock tick basis,
and every clock tick the player has the op-
portunity to perform actions that affect the
simulation. Keepingthe learner continuously
engaged and giving themample opportunity
to practice their skills and tackle challenges
are tactics suggested by the Keller’s ARCS
theory for promoting attention, relevance,
confidence, and satisfaction.
Customizable simulation models. SImSE
includes amodel builder tool and associated
modeling approach that allow an instructor
tobuild simulationmodels and generate cus-
tomized games based on these models. This
feature adds the (unanticipated) potential
for using SimSE in a way that follows the
theory of Elaboration—instructors could
build models of varying complexity and use
them in order of increasing complexity with
students. Although we have notyetbuiltsuch
models with SImSE, it is in our future plans
to do so, as we now know that this potential
for greater effectiveness is there.

An explanatory tool. An integral part of
SimSE is its novel explanatory tool that pro-
vides players with avisual representation of
how the simulated process progressed over
time and explanations of the rulesunderlying
the game. This feature promotes Learning
through Reflection as it allows players to
look back on their game and analyze their
decisions and how those decisions affected
the outcome. The explanatory tool output
could also potentially be used as the focal
point of a dialogue session between student
and tutor/instructor.

On the Role of Learning Theories

Complementary usage of SImSE. Rather
than design SimSE to be a standalone tool
meant to replace standard course compo-
nentssuchaslectures, readings, and projects,
we instead designed it to be used comple-
mentary to them, and have used it in such a
setting. The simulation modelswe have built
requireabasic setof knowledge and skillsin
orderto play and learn fromthem effectively,
knowledge that students conceivably obtain
in lectures and readings. Thus, in essence,
SimSE allows them to “Learn by Doing”
by learning through experience the lessons
communicated throughreadingand lectures,
as well as other lessons that are simply not
adequately teachable through passive means.
Linking the knowledge learned in SimSE
to existing knowledge also promotes the
feeling that what a student is learning is of
relevance to them, a major tenet of Keller’s
ARCS.

Simulation models that provide a clear
goal. SimSE allows the modeler to compose
a “starting narrative” for the player that ap-
pears at the start of a game, and to which the
player can refer back at any time during a
game. In the models we have built, we have
used this starting narrative to provide the
player with the exact goals of the simula-
tion, criteria for completion of these goals,
and any hints or special notes that might
help them along the way. Precisely defined
objectives not only guide students through
a simulation, but also pose a challenge that
many students find hard to resist. Achieving
the goal becomes a priority and Discovery
Learning is employed as creative thinking
is sparked in coming to an approach that
eventually achieves that goal.

Simulation models that are adequately
challenging. We have built into our simu-
lation models interesting situations that are
adequately challenging (engaging students’

On the Role of Learning Theories

attentionand making it likely thatthey learn
through failure at times) but not impossible,
promoting eventual success that leads to
confidence in the learning material and sat-
isfactioninthe experience (central principles
to Keller’s ARCS).

Looking back on the design of SimSE in light
of learning theories served to link some of our
intuition in the design of SImSE to these theories,
thereby increasing our confidence of being on the
right path with our approach. Inaddition to this, it
also revealed some missed opportunities that we
could have taken advantage of, had we originally
designed SimSE with learning theories in mind.
For example, we could have better taken advan-
tage of the Elaboration theory by designing our
models in incrementally complex versions, and
introducing themto studentsin order of increasing
complexity. In our usage of SimSE in courses and
in out-of-class studies, we also could have made
reflection amore central and structured part of the
approach by providing the student with explicit
explanatory tool exercises to complete, exercises
that would encourage the type of reflection that
would help solidify the lessons learned in the
simulation (currently, the student is simply given
the explanatory tool, and decisions about how to
use it are left up to them). As another example,
we could have better incorporated aspects of
authenticity (promoting Situated Learning) by
including more random events (a characterizing
feature of the real world) in our models. These
types of events are only used sparingly in many
of our models.

Like most software engineering educational
approaches, SImSE was not designed with learning
theories in mind. However, by looking back onits
designin lightoflearning theories, we have learned
a great deal about how SimSE promotes learning
and how it can be improved to foster greater learn-
ing, as we have seen in this section.

LEARNING THEORY-CENTRIC
EVALUATION

Although we did not explicitly use learning
theories in SImSE’s initial design, we did use
them as a central guiding factor in designing a
major part of its evaluation. Validating that the
theories an approach was designed to employ
(or appear to employ) are actually employed, as
well as discovering if an approach incorporates
aspects of any additional theories, can be highly
useful exercises—such data can be used to make
that and other similar approaches more effective
as they are tailored to exploit the characteristics
known to promote each theory (van Eck, 2006).
Thus, as partof SimSE’s evaluation, we performed
an in-depth observational study that focused on
investigating the learning processes of SImSE
players to determine whether they exhibited be-
haviors indicative of various learning theories.

Case study: simsE Evaluation setup

For this study, we used as subjects 11 under-
graduate students who had passed the introductory
software engineering course at the University of
California, Irvine. This requirement was put in
place so that they would have at least the basic
understanding of software engineering concepts
required to play SImSE. The study occurred in a
one-on-one setting—one subjectand one observer.
Each subject was first given instruction on how
to play SimSE, and was then observed playing
SimSE for about 2.5 hours. In order to evaluate
how well the explanatory tool achieves its goal of
aiding Learning through Reflection, we had eight
students play SImSE with the explanatory tool
and three without. (Differences in the behavior,
attitudes, and opinions of each group could then
be compared, though clearly, not to the extent
of being statistically significant.) While subjects
were playing, their game play and behavior were
observed and noted. Following this, the subject
was interviewed about their experience for about

51

30 minutes. In addition to any spontaneous ques-
tionsthe observer formulated based onaparticular
subject’s actions or behavior during game play,
all subjects were asked a set of standard ques-
tions. Several of these questions were designed
to specifically detect the presence of one or more
learningtheories inthe subject’s learning process.
Some questions did not target a particular theory
or set of theories, but were instead meant to evoke
insightful comments from the subject fromwhich
various learning theories could be inferred, and
from which general insights into the learning
process could be discovered. Some samples from
the standard set of questions are listed here, with
the targeted learning theory (or theories) listed in
parentheses afterwards when applicable.

. To what do you attribute the change (or lack
of) (improvement, worsening, fluctuation,
steady state) of your score with each game?
(Discovery Learning, Learning through
Failure)

. Do you feel you learned more when you
“won” or when you “lost”? Why? What
did you learn from each “win” or “loss”?
(Discovery Learning, Learning through
Failure)

. When you lost, did you feel motivated to
try again or not? Why? (Learning through
Failure)

. On a scale of 1 to 5, how much did play-
ing SimSE engage your attention? Why?
(Keller’'s ARCS)

* How much has your level of confidence
changed in the learning material since
completing this exercise? (Keller’'s ARCS)

* Did you feel that you learned any new
software process concepts from playing
SimSE that you did not know before? If so,
which ones? (answer could be indicative of
multiple theories)

* Ifyoufeelyoulearned from SimSE, what do
you believe itis about SimSE that facilitated

52

On the Role of Learning Theories

your learning? (answer could be indicative
of multiple theories)

There were also some questions primarily de-
signed for comparison between the subjects who
used the explanatory tool and those who did not.
These questions were aimed at discovering how
the player went about figuring out the reasoning
behind their scores, as well as how well they
understood this reasoning.

. Where do you think you went wrong in game
1/2/x? (Learning through Reflection)

* Please describe the process that you fol-
lowed to figure out the reasoning behind
your score, or where you went wrong/right.
(Learning through Reflection)

Following the experiment, the interviewer’s
observations and interview notes were analyzed
to try to discover which behaviors and comments
were indicative of the various learning theories,
and how, as well as to discover any other insights
about SimSE as a teaching tool that could be
gained from this data.

Evaluation Results

The learning theory thatwas most clearly involved
inevery subject’s learning processwas Discovery
Learning. All subjects were abletorecountat least
afew lessons they learned from SimSE, and none
of these lessons were ever told to them explicitly
during their experience. Rather, they discovered
them independently through exploration and
experimentation within the game. Interestingly,
although all subjects that played a model seemed
to discover the same lessons (for the most part),
no two subjects discovered them in the same
way. Every subject approached the game with a
different strategy, but came away with similar
new knowledge, suggesting that SimSE can be
applicable to a wide range of students that come

On the Role of Learning Theories

from different backgrounds with different ideas
and possibly, different learning styles. This is a
central aspect of a student-centered theory like
Discovery Learning. Since learning depends
primarily on the learner and not the instructor,
the learner is free to use their own style and ideas
in discovering the knowledge, rather than being
forced to adhere to a rigid style of instruction.

Learning through Failure also seemed to be
widely evident. Every subject seemed to take a
“divide and conquer” approach to playing SimSE,
isolating aspects of the model and tackling them
individually (or a few at a time). When subjects
described the progression of their games in the
interviews, itwas clear that the way they conquered
each aspect was by going through at least one or
two rounds of failure in which they discovered
what not to do, and from this discovering a cor-
rect approach that lead to success. When asked
explicitly about learning through failure, every
subject stated that they learned when they failed,
but the amount of learning they reported varied.
Five subjects said they learned more from failure
than success, two subjects said they learned more
when they succeeded, and four subjects said they
learned equally as much from failure and success.
All but one subject said that they were motivated
totry again after they failed. This motivation was
also evident in the behavior of several subjects,
as some, after the completion of one failed game,
hurriedly and eagerly started a new one. One
subject even tried to start a new game when the
time for the game play portion of the experiment
was up and he was already informed that it would
be the last game.

The Learning by Doing theory seemed to be
involved in most of the subjects’ learning experi-
ence. Eight out of the 11 subjects made comments
about their experience playing SimSE that hinted
at aspects of Learning by Doing. Some of their
comments included:

* “[SImSE helped me learn because it] puts
you in charge of things. It’s a good way of
applying your knowledge.”

* “[SimSE helped me learn because it is] in-
teractive, not just sitting down and listening
to something.”

Comments indicative of Situated Learning
were also rather frequent, mentioned by seven out
of the 11 subjects. Some of these included:

. “[SImSE helped me learn because] it was
very realistic and helped me learn a lot of
realistic elements of software engineering,
such as employees, budget, time, and sur-
prising events.”

. “[One of the learning-facilitating charac-
teristics of SIMSE was] seeing a real-life
project in action with realistic factors like
employee backgrounds and dialogues.”

Behaviorsand comments suggestive of Keller’s
ARCS Motivation Theory were also evident,
although certain aspects of the theory came out
stronger than others. To explain, let us look at the
four aspects of the theory (attention, relevance,
confidence, and satisfaction) individually.

First, the attention of the subjects seemed to
be quite engaged with SimSE. This was evident
in their body language, the comments made both
during game play and the interview, and their
ratings of SImSE’s level of engagement. Many
of them spent the majority of their time during
game play sitting on the edge of their seats, lean-
ing forward and fixing their eyes on the screen.
There were head nods, chuckles in response to
random events and character descriptions, shouts
of “Woo hoo!” after achieving a high score in a
game, shaking of the head when things were not
going so well for a player, and requests of, “Can
I try this one more time?”” when the experiment’s
allotted time for game play was coming toanend.
Words some subjects used to describe SimSE in
theinterviewwere “challenging”, “fun”, “interest-
ing”, “addictive”,and “amusing.” Whenexplicitly
asked how much SimSE engaged their attention,
the students rated it quite high—4.1 on average
out of five.

53

Second, relevance was rated moderately high,
but not as high as level of engagement. Five of the
subjects rated SimSE’s relevance to their future
experiencesas “pretty relevant” or “very relevant”,
five described it as “somewhat” or “partially”
relevant and one said it was not relevant at all.
Although not explicitly asked about SImSE’s
relevance to their past experiences, nearly all
of the subjects mentioned that they used some
of the knowledge they had learned in software
engineering courses to come up with their strate-
gies for playing the game, suggesting that there is
also a relevance between their past experiences
(learning the concepts in class) and their learning
experience with SImSE.

Third, most subjects felt their level of con-
fidence in the learning material (the software
process model simulated and software process
in general) had increased at least somewhat since
playing SIimSE. Four subjects reported their level
of confidence had changed “alot” or “very much”,
five said ithad changed “somewhat”, and two said
it had not changed at all.

Fourth, satisfaction was rated quite high by the
subjects. Nine out of the 11 subjects reported that
they were “quite satisfied”, “very satisfied”, “fully
satisfied”, or “pretty satisfied”, and three subjects
stated they were “somewhat satisfied.” Most of
the reported factors that contributed to a feeling
of satisfaction pertained to a subject’s increasing
success from game to game, although some also
mentioned that the sheer fun and challenge of
SimSE contributed to their satisfaction as well.

The explanatory tool did seem to promote
Learning through Reflection, to some extent. Most
of the subjects that had access to the explanatory
tool did make use of it, the duration of its use after
most games ranging from five to 25 minutes. It
was obvious that the subjects who did not have the
explanatory tool (to whom we will henceforth refer
as “non-explanatory subjects”) were significantly
more confused and less confident about the reason-
ing behind their scores and how to improve than
those who did have the explanatory tool (to whom

54

On the Role of Learning Theories

we will henceforthrefer as “explanatory subjects™).
All ofthe non-explanatory subjects expressed this,
while only one explanatory subject stated such an
opinion. The following are some of the comments
made by the non-explanatory subjects:

. “I was trying to guess what I was doing
wrong, so I probably chose the wrong areas
that I was doing wrong, and then I tried to
switch back to my original way and then
1 kind of forgot what that was and once 1
started trying to improve it, all of my little
details started changing and I didn’t know
what parts were causing my score to go
lower.”

. “I felt like I knew, oh, that’s where I went
wrong sometimes, like I should spend a
little less time there, but a lot of times I was
wrong about where it was I went wrong.”

On the other hand, most of the explanatory
subjects’ comments expressed that the explanatory
tool did, indeed facilitate their learning:

. “[The explanatory tool] showed me why I
was doing poorly—because of certain events
that were happening.”

. “Therules [described inthe explanatory tool]
are really helpful—even if someone doesn’t
know anything about software engineering
1 think the rules can teach you how to play
the game.”

Implications of Evaluation Results

Evaluating SImSE in terms of learning theories
provided us with several valuable insights into
how SImSE helps students learn. In addition, it
also helped us to discover ways to potentially
make SimSE more effective. In this subsection,
we describe how focusing on some of the theories
inourevaluation provided us with knowledge that
will help us maximize SimSE’s effectiveness.

On the Role of Learning Theories

Learning through failure: Overall, the chal-
lenge of receiving a “failing” score and trying to
improve it seemed to be a significant avenue of
learning and a strong motivating factor of SImSE.
Thisreinforced our notion that simulation models
should be made challenging enough that students
are set up to fail at times. It is these failures
that provide some of the greatest opportunities
for learning. By focusing on this aspect in our
observations, we also discovered that one of our
models (Rapid Prototyping) was not quite chal-
lenging enough, and students could sometimes get
a good score without really learning the lessons.
Thus, we have since added more challenges to
this model, and will continue to build simulation
models in the future that have an adequate level
of challenge.

Learning by doing: Several of the subjects’
comments mentioned the ability to put previously
learned knowledge into practice as a learning-fa-
cilitating characteristic of SimSE. This validates
our choice to use SimSE complementary to other
teaching methods, so that it can fulfill this im-
portant role of being an avenue through which
students can employ Learning by Doing as they
do the things they only heard about in class.

Situated learning: The realistic elements in
SimSE seem to add significantly to its educational
effectiveness. Thus, it is important that we con-
tinue to include elements of the real world in our
models, in order to situate students’ knowledge
in a realistic environment.

Elaboration: It became clear from our obser-
vations that one of our models (waterfall) is much
too large and complex for a “SimSE beginner.”
(Although the waterfall process is a simple one,
the corresponding SimSE model is quite com-
plicated, incorporating several non-technical,
managerial aspects.) By giving such a complex
model to a student who has never played SimSE
before, we were clearly violating the principles of
the elaboration theory. Thus, viewing this result
in light of that theory taught us that such a model
should not be introduced until the student has
played other, simpler models first.

Keller’s ARCS: Through this study we were
able to discover what elements of SimSE and its
models best hold students’ attention by noting
when students appeared to be most engaged,
and what kinds of things they commented about
favorably in the interviews. For example, several
students mentioned that the random events in the
models (e.g., the customer changing their mind
and requiring the team to rework part of the code)
added anelementof surprise and realism that kept
thingsentertaining. Thus, we will continue to build
these elements into our future models, as well as
try to maximize them in our current models. We
alsodiscovered which elementsstudents found un-
engaging. For instance, several subjects thought
the inspection model was boring and repetitive.
Through the interviews, we were able to detect
exactly what it was about the inspection model
that made it this way, and have recently imple-
mented changes that we anticipate will make it
more interesting for future SimSE players.

Learning through reflection: The explana-
tory tool partially fulfills its goal of facilitating re-
flection, but itis clear thatit needs to be improved.
In particular, more help needs to be given to the
user in generating meaningful, useful graphs,
and the rule descriptions need to be more easily
accessible. We have recently addressed these
issues in our development by adding attributes
to each model that are meant specifically for
explanatory graphing purposes and by making
the rule descriptions more accessible through
the user interface.

Learning theories can help structure evalua-
tions by providing ideas about what the researcher
should be looking for in the learning processes of
students. Aswe have seenwith SImSE, this can be
done even if the approach was not designed with
learning theories in mind. A careful retro-analy-
sis of the approach’s design in terms of learning
theories can reveal the aspects that a learning
theory-centric evaluation should focus on. Con-
ducting such an evaluation has the potential to
both reveal the effectiveness of an approach, as
well as guide future work in the area.

55

Certainly, not every aspect of an approach can
be evaluated this way—an evaluation focused
on learning theories should only be one part of
an evaluation plan. In addition to the evaluation
described here, SImSE’s evaluation plan also
included a pilot study, a comparative study, and
in-class studies, each of which was designed to
evaluate different aspects of SImSE to form a
comprehensive picture of its ability as a teaching
tool (see (Navarro & van der Hoek, 2007) for more
information about these studies).

sUMMARY

Learning theories are an important educational
resource of which the software engineering edu-
cational community has not yet taken full advan-
tage. Learning theories can be used to categorize,
design, evaluate, and communicate about software
engineering educational approaches, providing a
structured and informed way to move our domain
forward with approaches that are effective and
well-understood. We have shown one example
of applying learning theories to software engi-
neering education in our analysis and evaluation
of SimSE. It is our hope that educators can take
this example and apply it to other approaches and
areas of software engineering education to create
more effective teaching strategies that are rooted
in educational theory.

MORE INFORMATION
More information about SImSE, including down-

loads, evaluations, and publications, are available
at http://www.ics.uci.edu/~emilyo/SimSE/.

ACkNOWLEDGMENT

We would like to thank the reviewers of this
chapter for their highly useful and constructive

56

On the Role of Learning Theories

feedback. Effort partially funded by the National
Science Foundation under grant number DUE-
0618869.

REFERENCESs

Abernethy, K., & Kelly, J. (2000). Technology
transfer issues for formal methods of software
specification. In S. A. Mengel & P. J. Knoke
(Eds.), Proceedings of the thirteenth conference on

software engineering education and training (pp.
23-31). Austin, TX: IEEE Computer Society.

Baker, A., Navarro, E. O., & van der Hoek, A.
(2003). Problems and programmers: An educa-
tional software engineering card game. In Pro-
ceedings of the 2003 international conference
on software engineering (pp. 614-619). Portland,
Oregon.

Beckman, K., Khajenoori, K., Coulter, N., &
Mead, N. R. (1997). Collaborations: Closing the
industry-academia gap. IEEE Software, 14(6),
49-57.

Blake, B. M. (2003). A student-enacted simulation
approachtosoftware engineering education. I[EEE
Transactions on Education, 46(1), 124-132.

Bruner, J. S. (1967). On knowing: Essays for the
left hand. Cambridge, Mass.: Harvard University
Press.

Collofello, J. S. (2000). University/industry
collaboration in developing a simulation based
software project management training course. In
S. Mengel & P. J. Knoke (Eds.), Proceedings of
the thirteenth conference on software engineer-
ing education and training (pp. 161-168). Austin,
TX: IEEE Computer Society.

Dantas, A. R., Barros, M. O., & Werner, C. M. L.
(2004). Asimulation-based game for project man-
agement experiential learning. In Proceedings of’
the 2004 international conference on software

On the Role of Learning Theories

engineering and knowledge engineering. Banff,
Alberta, Canada.

Dawson, R. (2000). Twenty dirty tricks to train
software engineers. In Proceedings of the 22nd

international conference on software engineering
(pp. 209-218): ACM.

Dewey, J. (1916). Democracy and education. New
York, NY: Macmillan.

Drappa, A., & Ludewig, J. (2000). Simulation in
software engineering training. In Proceedings of

the 22nd international conference on software
engineering (pp. 199-208): ACM.

Favela, J., & Pena-Mora, F. (2001). An experience
in collaborative software engineering education.
IEEE Software, 18(2), 47-53.

Ferrari, M., Taylor, R., & VanLehn, K. (1999).
Adapting work simulations for schools. The
Journal of Educational Computing Research,
21(1), 25-53.

Fishbein, M., & Ajzen, 1. (1975). Belief, attitude,
intention, and behavior: An introduction to
theory and research. Reading, Mass.: Addison-
Wesley.

Gibbons, A. S. (2001). Model-centered instruction.
Journal of Structural Learning and Intelligent
Systems, 14(4), 511-540.

Gnatz, M., Kof, L., Prilmeier, F., & Seifert, T.
(2003). A practical approach of teaching software
engineering. InP.J. Knoke, A. Moreno & M. Ryan
(Eds.), Proceedings of the sixteenth conference

on software engineering education and training
(pp. 120-128). Madrid, Spain: IEEE.

Goold, A., & Horan, P. (2002). Foundation soft-
ware engineering practices for capstone projects
and beyond. In M. McCracken, M. Lutz & T. C.
Lethbridge (Eds.), Proceedings of the fifteenth
conference on software engineering education
and training (pp. 140-146). Covington, KY,
USA: IEEE.

Groth, D. P,, & Robertson, E. L. (2002). It’s all
about process: Project-oriented teaching of soft-
ware engineering. In D. Ramsey, P. Bourque &
R. Dupuis (Eds.), Proceedings of the fourteenth
conference on software engineering education
and training (pp. 7-17). Charlotte, NC, USA:
IEEE.

Halling, M., Zuser, W., Kohle, M., & Biffl, S.
(2002). Teaching the unified process to under-
graduate students. In M. McCracken, M. Lutz
& T. C. Lethbridge (Eds.), Proceedings of the
fifteenth conference on software engineering
education and training (pp. 148-159). Covington,
KY, USA: IEEE.

Hayes, J. H. (2002). Energizing software engi-
neering education through real-world projects
as experimental studies. In M. McCracken, M.
Lutz & T. C. Lethbridge (Eds.), Proceedings of
the fifteenth conference on software engineering
education and training (pp. 192-206). Covington,
KY: IEEE.

Hilburn, T. (1999). PSP metrics in support of
software engineering education. In H. Saiedian
(Ed.), Proceedings of the twelfth conference on
software engineering education and training (pp.
135-136). New Orleans, LA, USA: IEEE.

Keller, J. M. (1983). Motivational design of in-
struction. In C. M. Reigeluth (Ed.), Instructional
design theories and models: An overview of their
current status. Hillsdale, NJ: Erlbaum.

Kirschner, P. A., Sweller, J., & Clark, R. E. (2006).
Why minimal guidance during instruction does
notwork: Ananalysis of the failure of constructiv-
ist, discovery, problem-based, experiential, and
inquiry-based teaching. Educational Psycholo-
gist, 41(2), 75-86.

Knowles, M. (1984). Andragogy in action: Ap-
plying modern principles of adult education. San
Francisco, CA: Jossey Bass.

57

Kolb, D. A. (1984). Experiential learning: Expe-
riences as the source of learning and develop-
ment. Englewood Cliffs, NJ, USA: Prentice-Hall
International, Inc.

Kolikant, Y. B. (2001). Gardeners and cinema
tickets: High school students’ preconceptions
of concurrency. Computer Science Education,
11(3), 221-245.

Kornecki, A. J. (2000). Real-time computing in
software engineering education. In S. A. Mengel
&P.J. Knoke (Eds.), Proceedings of the thirteenth
conference on software engineering education
and training (pp. 197-198). Austin, TX, USA:
IEEE.

Kornecki, A.J., Khajenoori, S., & Gluch, D. (2003).
On a partnership between software industry and
academia. In P. J. Knoke, A. Moreno & M. Ryan
(Eds.), Proceedings of the sixteenth conference

on software engineering education and training
(pp. 60-69). Madrid, Spain: IEEE.

Lave, J. (1988). Cognition in practice: Mind, math-
ematics, and culture in everyday life. Cambridge,
UK: Cambridge University Press.

McKim, J. C., & Ellis, H. J. C. (2004). Using a
multiple term project to teach object-oriented
programming and design. In T. B. Horton & A.
E.K.Sobel (Eds.), Proceedings of the seventeenth
conference on software engineering education
and training (pp. 59-64). Norfolk, VA: IEEE.

Navarro, E. O. (2005). A survey of software
engineering educational delivery methods and
associated learning theories (Technical Report
No. UCI-ISR-05-5). Irvine, CA: University of
California, Irvine.

Navarro, E. O. (2006). SimSE: A software en-
gineering simulation environment for software
process education. Ph.D. Dissertation, University
of California, Irvine, Irvine, CA.

Navarro, E. O., & vanderHoek, A. (2005a). Design
and evaluation of an educational software process

58

On the Role of Learning Theories

simulation environmentand associated model. In
T. C. Lethbridge & D. Port (EdSs.), Proceedings of
the eighteenth conference on software engineering
education and training. Ottawa, Canada: IEEE.

Navarro, E. O., & van der Hoek, A. (2005b). Scal-
ing up: How thirty-two students collaborated and
succeeded in developing a prototype software
designenvironment. InT. C. Lethbridge & D. Port
(Eds.), Proceedings of the eighteenth conference
on software engineering education and training.
Ottawa, Canada: |IEEE.

Navarro, E. O., & van der Hoek, A. (2007).
Comprehensive evaluation of an educational soft-
ware engineering simulation environment. In H.
Edwards & R. Narayanan (Eds.), Proceedings of
the twentieth conference on software engineering
education and training. Dublin, Ireland.

Nulden, U., & Scheepers, H. (2000). Understand-
ing and learning about escalation: Simulation in
action. In Proceedings of the 3rd process simula-
tion modeling workshop (prosim 2000). London,
United Kingdom.

Ohlsson, L., & Johansson, C. (1995). A practice
driven approach to software engineering educa-
tion. IEEE Transactions on Education, 38(3),
291-295.

Pfahl, D., Klemm, M., & Ruhe, G. (2000). Using
system dynamics simulation models for software
project management education and training. In
Proceedings of the 3rd process simulation mod-
eling workshop (prosim 2000). London, United
Kingdom.

Reigeluth, C. M., & Rodgers, C. A. (1980). The
elaboration theory of instruction: Prescriptions
for task analysis and design. NSPI Journal, 19,
16-26.

Roblyer, M. D. (2005). Integrating educational
technology into teaching (4th ed.). Upper Saddle
River, NJ: Prentice Hall.

On the Role of Learning Theories

Schank,R.C.(1997). Virtual learning. New York,
NY, USA: McGraw-Hill.

Schon, D. (1987). Educating the reflective practi-
tioner. San Francisco, CA, USA: Jossey-Bass.

Sharp, H., & Hall, P. (2000). An interactive multi-
mediasoftware house simulation for postgraduate
software engineers. In Proceedings of the 22nd

international conference on software engineering
(pp. 688-691): ACM.

Stevens, S. M. (1989). Intelligent interactive video
simulation of acode inspection. Communications
of the ACM, 32(7), 832-843.

Tomayko, J. E. (1996). Carnegie Mellon’s software
development studio: A five year retrospective. In
Proceedings of the ninth conference on software
engineering education and training (pp. 119-129).
Daytona Beach, FL, USA: IEEE.

van Eck, R. (2006). Digital game-based learning:
It’s not just the digital natives who are restless.
Educause Review, 41(2), 17-30.

Wohlin, C., & Regnell, B. (1999). Achieving
industrial relevance in software engineering
education. In H. Saiedian (Ed.), Proceedings of
the twelfth conference on software engineering
education and training (pp. 16-25): IEEE Com-
puter Society.

59

Section I
Innovative Teaching Methods

61

Chapter IV
Tasks in Software Engineering

Education:
The Case of a Human Aspects of
Software Engineering Course

Orit Hazzan
Technion - IIT, Israel

Jim Tomayko
Carnegie Mellon University, USA

Abs TRACT

The field of software engineering is multifaceted. Accordingly, students must be educated to cope with

different kinds of tasks and questions. This chapter describes a collection of tasks that aim at improving
students' skills in different ways. We illustrate our ideas by describing a course about human aspects of
software engineering. The course objective is to increase learners' awareness with respect to problems,

dilemmas, ethical questions, and other human-related situations that students may face in the software

engineering world. We attempt to achieve this goal by posing different kinds of questions and tasks to

the learners, which aim at enhancing their abstract thinking and expanding their analysis perspectives.

The chapter is based on our experience teaching the course at Carnegie-Mellon University and at the

Technion — Israel Institute of Technology.

INTRODUCTION gram comprehension) and social aspects of the

profession (e.g., issues related to teamwork). As
The complexity of software developmentenviron- aresult of this multifaceted nature, the discipline
ments is well known. This complexity includes of software engineering requires that special at-
technical aspects (suchas IDEsand programming tention be given to tasks executed by software
languages), cognitive aspects (for example, pro- engineering students.

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

This chapter presents a collection of tasks
that can be integrated into software engineering
education. Thetasks presented here donotaddress
software development activities (such as design
or coding) but rather belong to peripheral topics
related to the actual development of software.
We suggest, however, that the discussion of these
topics, when supported by students’ engagingina
variety of tasks, has adirectinfluence on students’
professional skillsingeneral,and ontheir software
development performance in particular.

Weillustrate ourideas usingacourse onhuman
aspects of software engineering. The course objec-
tive is to increase software engineering students’
awareness of (a) the richness and complexity of
various facets of the human aspect of software
engineering and (b) problems, dilemmas, ques-
tions and conflicts that may arise with respect to
human aspects of software engineering during
the course of software development. The course
is based on Tomayko and Hazzan (2004), and the
tasks presented can be adapted to any software
engineering course.

The Human Aspects of Software Engineering
courseisusually attended by senior undergraduate
students or graduate students who already have
some software development experience. Beingan
elective course, it is usually taught in a relatively
small class setting. Indeed, as illustrated later on
in the chapter, these course characteristics enable
us to propose an interactive, hands-on and active
teaching and learning style.

The importance attributed toactive learning is
based on the constructivist approach. Construc-
tivism is a cognitive theory that examines the
nature of learning processes. According to this
approach, learners construct new knowledge by
rearranging and refining their existing knowledge
(cf. Davis, Maher and Nodding, 1990; Smith,
diSessa and Roschelle, 1993). More specifically,
the constructivism approach suggests that new
knowledge is constructed gradually, based on the
learner’s existing mental structures and on feed-
back that the learner receives from the learning

62

Tasks in Software Engineering Education

environments. In this process, mental structures
are developed in steps, each elaborating on the
preceding ones; although, there may, of course,
also be regressions and “blind alleys”. This con-
struction processisclosely related to the Piagetian
mechanisms of assimilation and accommodation
(Piaget, 1977). One way to support such gradual
mental constructions is by providing learners
with a suitable learning environment in which
they are active. The working assumption is that
the feedback, provided by alearning environment
in which learners learn a complex concept in an
active way, supports mental constructions of the
learned concepts.

In this chapter, we start by presenting the
course structure and then focus on the ten kinds
of tasks used throughout the course. We explain
the nature of each kind of tasks and how it may
improve students’ skills as software engineers. We
conclude with some suggestions forimplementing
our approach in other courses.

bACk GROUND: HUMAN AsPECTs
OF sOFTWARE ENGINEERING-
COURsE DEsCRIPTION

This section describes the different topics ad-
dressed in the course on Human Aspects of
Software Engineering by highlighting their im-
portance from the learners’ perspective.

Lesson 1—The Nature of Software Engi-
neering: This lesson aims at increasing learners’
awareness that the success or failure of software
development stem mainly from people-centered
reasons rather than from technology-related
reasons. By inviting learners to analyze differ-
ent development environments, we illustrate the
effects of human interaction in software develop-
ment processes.

Lesson2—Software Engineering Methods:
This lesson focuses on models of several soft-

Tasks in Software Engineering Education

ware development methods including iterative,
agile, and more. In this lesson, we highlight the
human aspects of these software development
methods.

Lesson 3—Working in Software Teams: Our
aim in this lesson is to help learners comprehend
the influence of team structures on the actual
process of software development. In this lesson,
we aim to expand learners’ considerations when
setting out to form software teams.

Lesson 4—Software as a Product: This
lesson highlights the importance of the custom-
ers in software development environments and
their significant role in discussions about human
aspects of software development. Accordingly,
special emphasis is put on different topics related
to requirements (e.g., requirement management,
gathering of requirements, and the understanding
of requirements).

Lesson 5—Software Engineering Code of
Ethics: In this lesson, learners are introduced to
the conceptof ethicsingeneral, and tothe Software
Engineering Code of Ethics in particular. Our
primary objective inthislessonistoteach students
both how to identify situations in which ethical
considerations should be integrated in software
development processes (in addition to technical,
financial and other considerations) and to perceive
the Software Engineering Code of Ethics as a
tool that can be used both in the identification of
ethical dilemmas and in solving them.

Lesson 6—International and Cultural Per-
spectiveson Software Engineering: Thislesson
highlights the potential influence of local events
on the global high-tech industry, the influence
of different cultures on software engineering
processes, and the characteristics of software
engineering processes in different places around
theworld. Diversity issues in the high-tech culture
are addressed in this lesson as well.

Lesson 7—Different Perspectives on Soft-
ware Engineering: The goal in this lesson is to
increase learners’ awarenessto different perspec-
tives on the discipline of software engineering,
each of which emphasizes different aspects of
the field. To this end, learners are introduced to
different perspectives towards software engineer-
ing and are requested to examine which elements
from each perspective fit their own perception
of software engineering. The human aspect of
software engineering is expressed by the fact
that different practitioners in the field perceive
the profession differently.

Lesson 8—The History of Software Engi-
neering: It is important to introduce students
to the history of software engineering since the
nature of this historical process in some way
reflects the nature of the field itself. Indeed, such
connections are made during the course and on
various occasions learners are asked to examine
the influence of different events in the history
of software engineering on the current status of
the field. The main milestones of this history are
highlighted, as are the interconnections among
them.

Lesson 9—Program Comprehension, Code
Inspections, and Refactoring: Thislesson high-
lights the importance of programming style and
its influence on program comprehension. Spe-
cifically, in this lesson, learners are encouraged
to observe connections between programming
style and the daily life of software developers,
for example, with respect to code inspections and
refactoring processes.

Lesson 10—L earning Processesin Software
Engineering: In this lesson, software develop-
ment processes are examined from a cognitive
perspective with the intention of increasing learn-
ers’ attention to learning processes in software
engineering in general, and to a reflective mode
of thinking in particular.

63

Lesson 11—Heuristics of Software Devel-
opment: In this lesson, learners become aware
of heuristics that can guide the performance of
different activities throughout the process of
software development. Specifically, the concept of
abstraction and its relevance and contribution to
software development processes are examined.

Lesson 12—Software as a Business: This
lesson discusses several business-related issues
in software engineering. Due to the significant
influence of the Internet as a software-based sys-
tem on world economy, this lesson also addresses
connections between the Internet and the human
aspects of software development.

Lesson 13—Case Studies in Software Engi-
neering: Inthislesson, studentsare presented with
case studies which they are requested to examine
according to the different theories presented thus
far in the course. Similar to other disciplines
that integrate case study analysis in the learning
process, the target of this task is to use and apply
theories in real-life situations.

Lesson 14—Students’” Summary Projects
and Presentations: In this lesson, students pres-
ent case studies that they have constructed, reflect
on the construction process of these case studies
and present questions for discussion based on the
case studies they have developed.

MAIN THRUsT OF THE CHAPTER:
kINDs OF QUEsTIONs

As can be seen in the course description, the
course addresses many topics related to the dif-
ferent human aspects of software engineering. It
is, however, clearly impossible to cover all of the
material cited in each topic within the framework
of such a course. Indeed, it is not our intention to
go into detail with respect to all of these topics.
Rather, we aim to increase learners’ awareness of

64

Tasks in Software Engineering Education

these topics and to provide them with tools that
will enable them to further their study of those
subjects that they find interesting and relevant.
One way to achieve this target is by giving the
learners different kinds of tasks.

In what follows, we present ten kinds of ques-
tions we use for this purpose. For each category,
we present its nature and illustrate it with several
questions. For each illustrative question we indi-
cate the learning stage at which itis presented (asa
preparation question, during the learning process,
orasasummary question) and explain how it may
improve students’ skills as software engineers in
general, and their understanding of the human
aspect of software engineering in particular.

IHlustrative example: Before we present the
ten kinds of questions, we present an illustrative
example that comprises several kinds of questions.
The question is presented first as a preparation
question in Lesson 4, which examines software
as a product and later on, the question is contin-
ued as a summary question in Lesson 12, which
discussessoftware asabusiness. The studentsare
given additional tasks with respect to each topic.
The question is presented in Table 1.

Thistwo-step task invites studentsto examine
the process of requirement gathering from dif-
ferent perspectives by executing various kinds
of tasks. First, the students are asked fo take the
customer’s perspective — a perspective that they
usually are not requested to adopt. As explained
in the question and as explicitly explained to the
students, such an experience has a value of its
own. Second, the students are asked, as software
developers, to examine the requirements they
listed when acting as customers and to analyze
their nature. Then, the students are asked to com-
pare the list they generated with features of real,
available, similar software tools. The aim of this
experience is to illustrate, first, that a lot of infor-
mation isavailable for the purpose of requirement
elicitationand, second, that requirement gathering
is a complex and multi-faceted process.

Tasks in Software Engineering Education

Table 1. lllustrative example

Step A: The question starts out as a preparation question for Lesson 4 — Software as a Product:

Question formulation:

1.

Students are usually given a list of requirements and are asked to develop a software system that meets these
requirements. This task may help you reveal some of the problems involved in defining software requirements.
For this purpose, you are asked to assume that you are a customer who needs a software system for web-based
surveys.
First, determine the kind of business you have. Based on this decision, define your requirements for the web-
based system. Write these requirements as would a person who is not a software developer.
After you finish listing the requirements, analyze them:
What kinds of requirements did you list (user-oriented, technical-oriented, performance-oriented, others)?
Compare your list with real web-based survey tools. Can you use existing tools as a resource for gathering
requirements?
This exercise is important for at least two reasons. First, you may at some time be a customer of software systems
and will have to define the requirements of the software systems you need. Second, as a software developer,
when you have real customers, such an experience may help you see the situation from the customer’s point of
view.
.Based on your experience in 81, explain why requirement changes are so predominant in software engineer-
ing.
Data indicate that the percentage of software tools that actually meet customers’ needs is relatively low. Based on

your experience in 81, explain this phenomenon.

Question formulation:

commerce.

Step B: The question continues as a summary question for Lesson 12 - Software as a Business:

This question continues the task presented in Lesson 4 - Software as a Product, in which you were asked to list
requirements for an application that supports on-line surveys.

- Expand the requirements list you constructed for the on-line survey so that it also includes a means for e-

- How might the addition of these requirements influence the development process of the on-line survey tool?

In the second part of the task, the students
are asked to expand the list that they originally
generated. The idea is to illustrate that products
can evolve in a gradual process, when customers
either improve their understanding of their needs
or when customer needs are expanded, and that
additional features can be added to a software
product as long as the development process sup-
ports the gradual addition of features. When the
students add features, they are asked to analyze
potential influences ofthis addition on the software
development process.

Insummary, throughoutthistask, the students
take the customer perspective, examine and ex-

pand their own requirements list,and analyze the
connection between the process of requirement
gathering and software development processes. It
is reasonable to assume that such a collection of
activitiesand perspectives that students take while
working on this task, expand their perspective on
software development processes in general, and
increase their awareness of the human aspects of
software engineering in particular.

We now present ten kinds of questions pre-
sented to the students during the course. Their
contribution to student learning is illustrated by
specific examples of questions taken from dif-
ferent course lessons. Questions that can be cat-

65

egorized into more than one kind of questions are
presented in the category they best illustrate. We
note that all kinds of questions can be presented
at any stage of the course.

l. Review Questions

This kind of questions asks learners to examine
and analyze the literature on a specific topic and
to summarize their findings. Such a task has
several purposes: First, when working on such
tasks, learners develop a sense of the huge extent
of resources available to them when they wish to
learn about an unfamiliar topic. Second, learners
realize that when they are stuck, with no idea of
how to proceed, they can just look for informa-
tion; as soon as they see what is available on the
problemtopic, the picture becomesclearer. Third,
as opposed to passively sitting in a lecture hall
listening to a lecture, the mental constructions
built during such a process are significant for
the learning process of the topic about which
information is sought.

Example 1: Lesson 2
Software Engineering Methods,
Summary Question

There are several inherent problems in software
development. If you are not familiar with them, just
search the web using a phrase such as “problems
with software development”. Select the five prob-
lems that are, in your opinion, the most critical
problems in software development and explain
how each of the software development methods
discussed in this lesson helps solve them.

We will address this question on three lev-
els: On the first level, it is clear that even a brief
search will highlight the fact that there are many
problems insoftware development. Onthe second
level, addressing this question may illustrate to
students that the problems they face are com-
mon in the community of software engineering

66

Tasks in Software Engineering Education

professionals. Finally, they may observe that most
of the problems are related to human aspects of
software engineering and that, if they increase
their awareness of this characteristic, they can
improve their understanding and performance
in the field.

Example 2: Lesson 1
The Nature of Software Engineering,
Preparation Question

How did the term “software engineering” come
into being?

When students are asked to answer such a
guestion before hearing the answer in the lecture,
their awareness might increase with respect to
several facts. First, they may observe that the
concept of software engineering was not invented
in one day, but rather, it was a process that led
to the establishment of the field. Second, when
delving into the details, students may recognize
that many of the same problems that character-
ized the field in its early days still exist today.
Such an acknowledgmentreflects very clearly the
complexity of the problems with which the field
deals. Third, the students are required to examine
the field of software engineering as a profession
with its own life cycle. We suggest that a task of
this kind enriches students’ perspective of their
profession, and that this perspective is broader than
the perspective students form if they passively hear
about the establishment of the field of software
engineering from their instructor in class.

Il. Concept-Exploration Questions

In these questions, students are asked to explore
new terms and to examine their connection to
software engineering. Such an examination,
we suggest, may increase learners’ awareness
of both the uniqueness of the field of software
engineering and its dynamic nature. In addition,
such understanding may enrich the students’

Tasks in Software Engineering Education

perspective with respectto their own professional
development in the field.

Example 3: Lesson 10
Learning Processes in Software
Engineering, Preparation Question

Search the Web for the concept “learning orga-
nization”. Describe the essence of this concept in
a few sentences. What direct implications does it
have for software engineering processes?

In this question, students are asked to learn a
new topic (in this case “learning organization”)
and to analyze its connection to the profession
of software engineering. It is suggested that this
skill (that is, the ability to analyze how a new
topicisconnected to one’s profession) isextremely
important in the case of software engineering
since software engineering is a relatively young
field with many buzzwords whose meaning and
targets are not always clear. Thus, one’s ability
to recognize potential connections (as well as
the ability to decide that no relationships exist) is
particularly important in our profession.

lll. Opinion Questions

These questions require the students to give their
opinion about a specific concept or situation. Usu-
ally, such questions are presented as preparation
questions that aim at fostering learners’ thinking
about the topic to be learned.

Example 4: Lesson 5
Code of Ethics of Software
Engineering, Preparation Question

In your opinion and based on your familiarity
with the notion of ethics, does the community of
software engineering need a code of ethics? If
“ves” - explain why. What principles should it
be based on? What topics should it address? If

“«

no” - explain and defend your opinion.

Thisquestionis presented to the students before
they are introduced to the software engineering
code of ethics, but after they have been exposed
to the concept of ethics. Thus, on the one hand,
they can ponder the application of the concept
with respect to software engineering, while, on
the other hand, not being influenced by the details
of the code, to which they will be exposed later.
We suggest presenting this question at this stage
(that is, before the students become familiar with
the software engineering code of ethics itself) for
at least three reasons. First, at this stage, students
can examine, for themselves, what values they, as
individuals, appreciate in the context of software
engineering. Second, at a later stage, they will be
able to compare their personal perspective with
that whichisreflected in the software engineering
code of ethics that was formulated by acommittee
representing the community of software engi-
neers. Third, working on such an activity opens
the students up to the idea that they are part of a
professional community, which, perhaps, needs
additional documents to unify itsmembers. Thus,
they may enhance their personal perception as
software engineering professionals.

IV. Re.ective Questions

Beingareflective practitioner (Schon, 1983, 1987)
isan important advantage for software engineers,
since a reflective mode of thinking can increase
one’s performance in the field beyond the ap-
plication of previous experience. This mode of
thinking has already been pursued in the context
of software engineering (cf. Cockburn, 2001;
Hazzan, 2002; Kerth, 2001). We illustrate here
how it can be integrated into software engineer-
ing education.

Example 5: Lesson 4
Software as a Product,
Summary Question

Visit a company (a software house or any other
company). Observe how people communicate

67

and behave in that company. Identify a situation
in the company workflow that can be improved
by a computational tool. Create a requirements
list for this tool. Interview different people in the
organization about this list of requirements.

Analyze and reflect: Are their impressions
consistent with yours? Have they suggested any
improvements? How would you improve the re-
quirements list based on these interviews?

This question aims at increasing the students’
awareness that there multiple opinions exist with
respect to software products. Accordingly, this
guestion suggests the option of asking different
peoples’ opinion before making final decisions.
The reflective task that concludes the question
invites the students to rethink the entire process
and see how its outcome can be used to improve
their product. Such a task, if conducted (and
reflected on) properly, shows the students that
being a reflective practitioner can improve one’s
professional performances.

V. Analysis Tasks

In these tasks, learners are requested to analyze
vast information related to software develop-
ment processes. The questions aim at increasing
learners’ awareness to the availability of this
information as well as to different ways in which
its analysis may be useful to them as software
engineers.

Example 6: Lesson 6
International Perspective on Software
Engineering, In-Process Question

The following tasks examine the NASDAQ (Na-
tional Association of Securities Dealers Automat-

ed Quotation) during the decade 1997-2007.

1. Select five years during this decade. For
eachyear, find what countries had software

68

Tasks in Software Engineering Education

companies listed on NASDAQ. What does
this list of countries say about the NASDAQ
and about the international market during
those years?

2. Examine the years 1999, 2000, 2001, and
2002 closely: Select four months in each
yvear and compare the NASDAQ level for
those months. What trends can you observe?
How can you explain them?

This question deals with an important char-
acteristic of software companies: their market
value. It also, however, looks at the financial
aspect of software development from both local
and global viewpoints. The first part of the ques-
tion asks the students to find out which countries
played a major role in specific years. Such an
examination may draw their attention to the fact
that their local market is not the only player in
this game. The second part of the question aims
at improving students’ ability to identify trends
and patterns in data provided to them. It is im-
portant that these two messages are delivered to
software engineers.

VI. Design Questions

In these questions, learners are asked to take an
active role in the design process of the field of
software engineering, arelatively young field that
is still being shaped. Accordingly, the target of
these tasks is to convey the message that, in the
future, the learners may influence the way the
field is shaped, its norms, its principles and the
work habits of its practitioners.

Example 7: Lesson 1
The Nature of Software Engineering,
Further-Review Task

Two casestudies are presented. Thenthe following
question is presented. Based on these two case
studies, construct the principles of the ideal work
place for software development.

Tasks in Software Engineering Education

Thistask is presented in the early stages of the
course (Lesson 1). It is hoped that this mode of
thinking will guide the students throughout the
entire course. This message is further pursued in
future lessons as the following task illustrates.

Example 8: Lesson 10
Learning Processes in Software
Engineering, Summary Question

Suppose you establish a software startup. Work
on the following tasks:

1. Describe the startup.

2. Lay out the basic activities you would set
up in order to make it a learning organiza-
tion.

3. Discuss what may happen if these activities
are not set up when the startup is founded
but rather a year later.

This task asks the students to think as in-
dependent people, who may at some time in
the future found their own company. It aims at
conveying the ideas that there are decisions to
be made prior to the establishment of a com-
pany, that such a construction process should be
thoughtful, and that many of the decisions made
at the early stages of the company might have a
significant and direct influence on its future. The
task achieves its goal by inviting the students to
consider different approaches to dealing with
a given situation, while exploring the different
outcomes of each action.

VIl. scenario Analysis

The target of this kind of tasks is to let learners
analyzesituationsthey may encounter in software
development processes. The underlying assump-
tion is that the actual working on such tasks, as
well as the class discussion that may follow it,
can broaden the learners’ perspective of possible

approaches to specific situations in software de-
velopment environments.

Example 9: Lesson 5
Code of Ethics of Software
Engineering, Preparation Task

Following are several cases related to software
engineering. With respect to each scenario,
express your opinion on the behavior described
and explain how you would behave in such a
case. Then, according to your decision, formulate
one or more ethical norms that, in your opinion,
should be included in the Software Engineer-
ing Code of Ethics. These norms should guide
software developers in making their decisions
in similar cases.

[The task includes several cases; for illustra-
tion purposes we present only one.]

Scenario One: Not Telling the Entire Truth

A programmer is asked to make a change in
a software application used by an international
bank. She performs all of the required tests. After
all the tests passed, she recalls that one more test
is required. This test does not pass. Since she
does not have the time required for debugging,
she submits her work and states that all the tests
passed successfully.

As described above, the target of these tasks
is to let students deal, during their studies, with
situations they may encounter in the future. This
kind of activity is further elaborated in the tenth
kind of tasks, in which the students are asked to
analyze scenarios that they have constructed.

VIII. Connection Questions
In these questions, learners are asked to discuss

connections between different topics discussed
in the course. The idea is to increase learners’

69

awareness of such connections so that they will
not perceive the different topics discussed in the
course as isolated concepts. Indeed, the com-
plexity that characterizes software development
processes can be partially explained by the fact
that the different factors involved in this process
may have a mutual influence.

Example 10: Lesson 12
Software as a Business,
Preparation Questions

Suggest possible connections between e-com-
merce and the Software Engineering Code of
Ethics.

Since there are so many ethical issues related
to on-line communication, it is impossible to
review them all in depth in one or two lessons.
This question helps minimize the gap and, at
the same time, enables students to consider the
topic from the perspective of its connections to
a topic that has been previously discussed in the
course — the Software Engineering Code of Eth-
ics. Students” work on this task serves as a basis
for a subsequent class discussion.

IX. Research Oriented Questions

The aim of these questions is to let the students
experience using some research tools they may
employ intheirfuture work for different purposes,
such as information gathering and improving
organizational processes.

Example 11: Lesson 3
Working in Software Teams,
Summary Question

Record one of your team meetings that is dedi-

cated to solving a particular problem. Listen to
the cassette and analyze the meeting: Did all

70

Tasks in Software Engineering Education

participants contribute to the discussion? Did
someone discourage the introduction of new
ideas? Atwhat points would you steer the meeting
differently? Illustrate your analysis by quoting
excerpts from the meeting.

Summarize: Didthe meeting achieveits aims?
Could it have been managed more efficiently? If
so, how?

This question has several targets. First, it
shows the students that it is possible to learn
about processes within their teams and that care-
ful examination of such processes can improve
team management. Second, working on such a
task highlights the idea that the effectiveness of
meeting can be improved when the needed atten-
tion, that such an improvement requires, is given.
Finally, the students experience using a simple
tool that can be used also in other situations and
for other purposes.

Example 12: Lesson 9

Program Comprehension,

Code Inspections, and Refactoring,
Summary Question

Write two computer programs that execute the
same task such that the programming style of
the first requires the addition of many comments
in order to understand it, whereas the second
program requires no comments (or almost no
comments) for its comprehension.

a. Giveeachprogramto astudent/software en-
gineer and ask them to explain the program
they received. Observe and document the
processes used by each. Draw appropriate
conclusions.

b. Askeach of the two programmers to make
the same modificationin the program. Trace
the change process in each case. What are
your conclusions?

Tasks in Software Engineering Education

c. Select one or more qualitative research
tools described in Lesson 4 - Software as
a Product. Design a small-scale research
outline that examines the influence of
specific programming style guidelines on
the way programmers develop a computer
program. Conduct the research and de-
scribe your conclusions.

This question is composed of two focused
parts — (a) and (b) — and a more open part — (C).
The first two parts aim at highlighting the influ-
ence of programming style on program com-
prehension processes. The third part requires
the students to be creative and to plan a small
research project for a specific target. It is hoped
that such an experience will show the students,
first, that there are cases in which a small-scale
research is needed and, second, that they are
equipped with the tools required to conduct such
a research study.

X. building Case studies / story
Telling

These questions ask students to construct sce-
narios and case studies, based on their personal
experience as well as on what has been learned
and discussed in the course. The scope of the
cases varies: from short and focused stories to
vast narratives that encompass multiple aspects
of software engineering. These tasks have several
advantages. First, students must consider what is
important, as well as less important, to include
in the case study. Second, they must integrate
different issues related to software engineering
into a single story. Third, they must analyze
what they have constructed, an activity that once
againenhancestheirawareness of differenttopics
related to software engineering. In what follows,
we illustrate the application of these ideas with
respect to stories of different scopes.

Example 13: Lesson 5
Software Engineering Code of Ethics,
Intermediate-Stage Question

Suggest a situation in software development in
which a team of software developers must make
the decision whether or not to report to their
management about a bug in a specific software
tool they developed. What does the code of eth-
ics say in such cases? How would you behave
in such a case?

This task focuses on ethical issues. It asks
the students to create a scenario that focuses on
a particular case. Itillustrates how small details
determine the nature of the situation. Whensuch
ataskisrepeated with respectto differenttopics,
this message is emphasized and highlighted.

Example 14: Lesson 5
Software Engineering Code of Ethics,
Summary Question

Compose a story that raises ethical consider-
ations. Interview software engineers about this
case. Ask them to express their opinion and
predicted behaviorin such a case. Analyze their
reactions. Are all of the reactions similar? How
do they differ from each other and from your
opinion? What do these reactions imply with
respect to software development? What lessons
will you take with you from this experience to
your future development of software?

Thistask illustrates another way in which case
studies can be used for educational purposes.
Specifically, based on a story that the students
develop, they carry outasmall-scale research that
explores different opinions related to software
engineering processes.

71

Example 15: End of the Course Task,
Case Study Construction and Analysis

At the end of the course, the students are asked
to construct and analyze a case study following
a process that guides them in their case-study
construction. The process is outlined in the Ap-
pendix to this chapter. The target of this task is
to integrate all of the material learned in the
course and to enable the students to express
their perspective on the variety of topics learned
in the course.

FUTURE TRENDs

We now propose several suggestions for the con-
tinuation of the work presented in this chapter:

Evaluation: Thischapterisorganized by kinds
of'tasks. The actual influence of these tasks is now
being examined in a qualitative research project
that examines the multi-faceted contribution of
these questionsto students’ awareness with respect
to the different topics addressed in the course.
In particular, we are exploring the development
of this awareness, as well as its influence on
students’ perception of the discipline of software
engineering.

Other categorizations: The tasks given to
the students in the Human Aspects of Software
Engineering course are presented in this chapter
according to the kind of task the students are re-
quiredtocarry out. Naturally, there are other ways
of categorizing the different tasks students work
on during the course. One such categorization is
by the learning target of the questions; another is
by the mental processes employed when working
on the tasks.

72

Tasks in Software Engineering Education

CONCLUsION

We conclude with some suggestions related to the
application of the ideas presented in this chapter
to other software engineering courses. Ingeneral,
we propose that most kinds of tasks presented
in this chapter can be applied in many software
engineering courses.

We suggest that the tasks presented in this
chapter, can contribute to students’ professional
skills while dealing with the challenges of the
profession of software engineering. In particular,
we suggest introducing questions of the kinds
presented in this chapter in courses that:

e Aim at improving students’ analytical
skills, reflection processes and problem-
solving abilities using a learning approach
that enables the students to formulate their
perspectivesand explore resourcesonwhich
to base their points of view.

e Aim at illustrating to students the multi-
faceted nature of the profession of software
engineering, in a way that guides them to
seek for different points of view, controver-
sial issues, and dilemmas and conflicts with
which they will have to cope in the future.

e aim at basing the lessons on student inter-
actions that encourage them to learn from
their peers and experience teamwork and
information sharing.

In our opinion, many of the courses taught in
software engineering programsshould target these
issues. We hope that our contribution is be in the
presentation of a collection of kinds of questions
that can be used in order to achieve these goals.

NOTE

This chapter is dedicated to my colleague Jim
Tomayko, my co-author of Human Aspects of

Tasks in Software Engineering Education

Software Engineering (2004), who passed away
in January 2006.

REFERENCESs

Cockburn, A. (2001). Agile Software Develop-
ment, Addison-Wesley Pub Co.

Davis, R. B., Maher, C. A. and Noddings, N.
(1990, eds.). Constructivist views on the teach-
ing and learning of mathematics, Journal for
Researchin Mathematics Education, Monograph
Number 4, The National Council of Teachers of
Mathematics, Inc.

Hazzan, O. (2002). The reflective practitioner
perspective in software engineering education,
The Journal of Systems and Software 63(3), pp.
161-171.

Kerth, N. (2001). Project Retrospectives: A Hand-
book for Team Reviews, Dorset House Publishing
Company.

Piaget, J. (1977). Problems of Equilibration. In
Appel, M. H and Goldberg, L. S. (1977). Topics
in Cognitive Development, Volume I: Equilibra-
tion: Theory, Research and Application, Plenum

Press, NY, pp. 3-13.

Schon, D. A. (1983). The Reflective Practitioner,
BasicBooks.

Schon, D. A. (1987). Educating the Reflective
Practitioner: Towards a New Design for Teaching
and Learning in The Profession, San Francisco:
Jossey-Bass.

Smith, J. P.,diSessa, A. A.and Roschelle, J. (1993).
Misconceptions reconceived: A constructivist
analysis of knowledge in transition, The Journal
of the Learning Sciences 3, pp. 115-163.

Tomayko, J. and Hazzan, O. (2004). Human
Aspects of Software Engineering, Charles River
Media.

73

Tasks in Software Engineering Education

APPENDIX — sIX sTAGEs OF CAsE sTUDY CONsTRUCTION
(Source: Tomayko and Hazzan, 2004, pp. 286-287)

Step 1. Select a topic: Think about a topic that you find interesting and relevant for you to dis-
Cuss.

Step 2. Analyze the nature of the topic: In this stage, you are asked to check whether the topic you
wish to focus on has enough heft to be at the center of a case study. Ask yourself questions such as:

e What software development activities are connected to the selected topic?

* Which players, that participate in software development environments, are connected to the
topic?

e What human aspects of software engineering does the topic address?

. Is the topic connected to the individual in the team or to the team as an entity?

If your answers to the above questions indicate that the topic is indeed “rich” enough and can be
connected to different issues in software development environments, it might be suitable as a central
topic for a case study.

Step 3. Imagine possible situations: Envision at least two situations in software engineering in
which the topic may be relevant. The idea is to see whether there are specific situations in software
engineering in which the topic you wish to pursue has a significant expression.

Step 4. Write the case study: Start writing the selected case study. Try to make it as vivid as pos-
sible without forgetting to include the main issues you wish to address.

Step 5. Check the scope of the case study: After completing the first draft (and editing) of the case
study, check whether other related topics can be added to the case. Make sure you do not change the
focus of the case study. Then, check issues such as: Is the main message you wanted to convey in this
case study reflected properly? Are the connections between the different topics addressed in the case
study clear?

Step 6. Develop questions about the case study: Develop stimulating questions that can be explored
with respect to the case study you just developed.

74

75

Chapter V

Speaking of Software:
Case Studies in Software
Communication

Ann Brady
Michigan Technological University, USA

Marika Seigel
Michigan Technological University, USA

Thomas Vosecky
Michigan Technological University, USA

Charles Wallace
Michigan Technological University, USA

Abs TRACT

We describe our recent efforts to generate and use case studies to teach communication skills in soft-
ware development. We believe our work is innovative in several respects. The case studies touch on
rhetorical issues that are crucial to software development yet not commonly associated with the field of
software engineering. Moreover, they present students with complex, problematic situations, rather than
sanitized post hoc interpretations often associated with case study assignments. The case study project
is an interdisciplinary collaboration that interweaves the expertise of software engineers and technical
communicators. Our software engineering and technical communication curricula have been enhanced
through this cross-fertilization.

OVERVIEW despite its fundamental importance in software

development. Two major problems appear to
We argue that the art of communication, in its prevent a more thorough treatment of communi-
oral and written forms, is given relatively little cation issues. First, although software engineers
attention in software engineering education, may be effective communicators, they typically

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

do not have practice in articulating what it is that
makes communication effective (or ineffective).
That is, their knowledge remains at a tacit level,
from which it is difficult to impart it to students.
Second, partofwhat makes communicationinthe
software workplace difficult is its intricacy and
subtlety—*"the devil isinthe details”. Studentswill
not be convinced by toy examples; only realistic
stories of software development will suffice. Yet
the prospect of creating a communication setting
of appropriate scale seems overwhelming.

Our ongoing interdisciplinary work seeks to
address both of these problems. It utilizes the
expertise of technical communicators, who are
well versed in discussing and analyzing commu-
nication. Equipped with examples from software
engineering, empirical techniques fromethnogra-
phy, and analytical techniques from rhetoric, we
have created case studies for teaching commu-
nication skills in software development, and we
have used the case studies in upper-level courses
in both software engineering and technical com-
munication. Here we use the term “case study”
not in its sense as a research tool in the social
sciences, but rather in its sense as a pedagogical
tool, currently used most prominently in law and
businessschools. Our case studies are based onthe
experiences of real software engineering students
engaged intheir capstone projects. The associated
instructional materials touch on rhetorical issues
notusually associated with software engineering:
audience, active listening, critical analysis, timing,
and planning. Moreover, they present students
with complex, problematic situations, rather than
sanitized post hoc interpretations often associated
with case study assignments.

The case study project is an interdisciplinary
collaboration that interweaves the expertise of
software engineersandtechnical communicators.
Our software engineering curriculum has been
enhanced through this cross-fertilization—both
by the insights into communication and by the
qualitative methods employed in generating the
cases. We report on the success of the project to

76

Speaking of Software

date and describe some of the future directions
we envision for this work.

MOTIVATION

We believe there is a significant gulf between the
skills that students practice in academia and the
skills they must use in the workplace. In this sec-
tion, we show that practicing software developers
acknowledge the importance of communication
skills and expect new employees to have them.
We then turn to the current state of software en-
gineering education and comment on the status
of communication skills in academia.

Communication in the s oftware
Workplace

Within the lifespan of a single project, software
engineers must engage with a wide range of
stakeholders, with very different perspectives
and goals (Poole, 2003). They must carefully
elicit requirements from clients and keep them
apprised of budget or scheduling changes. They
must consult with end users to design products
that provide both ease and value. They must also
communicate within their development team, to
maintain a clear vision of how to divide the labor
and how to handle the project risks.

Stepping up from the level of individual
projects to survey the software development
landscape, we find an astounding variety of ap-
plications. No other engineered product has such
a diverse set of potential uses. With this diversity
of uses comes a diversity of stakeholders. In the
span of a career, a software developer moves
from project to project—and most likely from
firm to firm—at each step negotiating a new
application and a new set of stakeholders with
widely varying knowledge, requirements, and
communication styles.

Several studies point to deficiencies in re-
quirements as the primary cause of large-scale

Speaking of Software

project failures (Curtis, Krasner, & Iscoe, 1988;
Davis, 1990; Glass, 1998). This can be traced to a
lack of commitment and trust between customer
and developer. Developers consider risks such
as “failure to gain user commitment” and “lack
of adequate user involvement” more important
than such serious risks as “introduction of new
technology” and “insufficient/inappropriate staff-
ing” (Keil, Cule, Lyytinen, & Schmidt, 1998).
This evidence indicates the need for improved
communication during requirements elicitation
and analysis.

Of course, communication issues are also a
source of conflict within the development team.
Demonstration of social skill sets—*“the ‘good
communicationskills’ oftenreferredtoin job post-
ings” (Reinsch & Shelby, 1997)—is now explicitly
required of newworkers (Muir, 2004). While intra-
team conflicts are often viewed as management or
organizational behavior issues, many researchers
have identified them as inherently communicative
(Putnam & Folger, 1988; Putnam & Poole, 1987;
Schultz & Anderson, 1984). Regardless of whether
the conflict is rooted in the actions of manage-
ment, the behavior of individuals, or deficiencies
in communication, improving communication
skills is one way to avoid conflict in the first place,
or resolve it should it occur. Discussing the skills
students need to negotiate work conflicts early in
their careers, Myersand Larson state that “[a] com-
municative understanding of conflict can facilitate
students’ transition to full-time employment by
helping students to interpret the nature or types of
conflicts employees experience in organizations”
(Myers & Larson, 2005).

A survey of software engineering profession-
als (McMillan & Rajaprabhakaran, 1999) ranks
four software engineering project features based
on what they felt was most important for profes-
sional development. The first two, respectively,
are “working with real users” and “developing a
working prototype.” This highlights the impor-
tance of client communication, essential to both
these aspects of development. Student work often

sufferswhencommunicationskillstaughtin class
are not applied during their coursework both in
communicating with their project teams and with
their instructor (Liu, 2005).

Communication in a software setting is es-
sentially problematic, for a number of reasons.
Software development is complex, due not only
to the functionality of the software itself, but also
to the competing and often conflicting goals of
different stakeholders. Software engineering is a
nascent field, without a time-honored, universal
lexicon. The wide range of applicationareasdraws
together stakeholders with different backgrounds
and little in the way of a common vocabulary.
Moreover, software developers work in a world
of incomplete, imperfectinformation. While they
can access the internals of the machine through
the precision of computer languages, they must
work through the less mechanical channel of
human language to understand the needs and
desires of other stakeholders. For these reasons,
instruction in communication strategies requires
grounding in realistic contexts that reflect and
simulate these difficulties.

Communication in s oftware
Engineering Education

We believe that the process of communicating
about software is not given sufficient attention in
software engineering education, given its impor-
tance and its difficulty. Instruction in communi-
cating with other stakeholders and documenting
software is typically the role of ancillary courses
in technical communication, taught through de-
partments outside of software engineering. While
these courses offer an important introduction to
effective means of workplace communication, a
single class cannot provide the extensive prac-
tice in the variety of discipline-specific contexts
needed to prepare software engineering students
adequately.

The precision of programming languages and
computer hardware is comforting to students and

77

educators in the computing disciplines, but that
very comfort can lull students away from looking
at the human problems that motivate software
development in the first place. The process of
interacting with human stakeholdersis oftenseen
as “soft” material, notworthy of serious attention.
Of the software engineering education contribu-
tions to the SIGCSE and CSEET conferences in
recent years, only a handful of papers address
issues of communication between humans in
software development.

Part of the difficulty here is that the commu-
nicative skills that developers acquire on the job
remain in a tacit form; by and large, there is no
“explicitformulationof rules” (Freedman, 1993b).
Addressing the gulf between the workplace and
academia, Alred (Alred, 2006) suggests that
“[tlhe workplace requires practitioners to seek
fundamentally different ways of responding to
their contexts and exigencies—ways that do not
requirethem, forexample, todocumenteither their
intellectual processes or establish concurrence
with scholarly or any other literature”.

It is interesting to see how the issue of com-
municationistreated inthe IEEE Software Body of
Knowledge (SWEBOK) (Abran, Moore, Bourque,
& Dupuis, 2004). Inthe “Software Requirements”
section, it states that “[o]ne of the fundamental
tenets of good software engineering is that there
be good communication between software us-
ers and software engineers”. In the section on
“Project management” — a “related discipline”
outside of software engineering itself — it notes
that “[clommunication management is also often
mentioned as an overlooked but major aspect of
the performance of individuals in a field where
precise understanding of user needs and of com-
plex requirements and designs is necessary”.

Clearly, there is some ambivalence in the
SWEBOK about the role of communication. On
one hand, it does include language emphasizing
the importance of communication in the software
process. “Communication management” is even
cited as an “overlooked” aspect. Yet it is not clear

78

Speaking of Software

that the SWEBOK helps to raise the prominence
of communication. Only communication be-
tween users and developers is included within
the bounds of “software engineering”; all other
types of communication (including intra-team
communication) are relegated to an ancillary
area. Locating communication outside of software
engineering encourages the status quo of “out-
sourcing” communication to other departments,
rather than dealing with it in the context of the
software engineering curriculum.

Vis|ION AND APPROACH

We have a vision of a new curriculum where
communication is a core skill, tightly integrated
with the other aspects of software engineering,
rather than a stand-alone topic taught outside of
the discipline. With such a curriculum, software
engineering students will become not only cre-
ative designers and thoughtful analysts but also
effective communicators. Empowering students
to participate in active communication will make
them more engaged in their profession and less
prone to frustration and burnout. Furthermore,
students with skills and interest in communi-
cation, who seek more than a cubicle-centered
“programming” view of software development,
will be attracted to the field. Margolis and Fisher
indicate that many female students seek ground-
ing in meaningful applications and become
disillusioned with computer-centrism (Margolis
& Fisher, 2002). Focusing on real software prob-
lems will likely attract those students who prefer
“computing with a purpose”.

To pursue this vision, we have assembled an
interdisciplinary team of software engineers and
technical communicators. We benefit from the
experience our technical communicators have in
preparing students forcommunication challenges.
Here we explore the role of technical communica-
tion, rhetoric, and the value of case studies.

Speaking of Software

Technical Communication

The practice of technical writing can be traced
from the fifth century BCE, through the Middle
Ages, and into the Industrial Revolution (Tebeaux
& Killingsworth, 1992). Its systematic instruction
in the United States began after the Civil War
(Connors, 2004). Histories of technical commu-
nication generally identify the Second World War
as the birth of the profession, when the boom of
wartime technologies triggered a corresponding
boom in documentation that would facilitate dis-
semination and operation—and also necessitated
a new class of workers to write and compile this
documentation. Realizing that it was not profit-
able to hire engineers to both design and write,
Westinghouse, General Motors, and General
Electric developed their own in-house technical
writing departments, and technical writing was
finally recognized in the United States as a field
of its own.

Early courses in technical communication
were grounded in what has been called a “win-
dowpane” view of language (Miller, 1979). Ac-
cordingtothisview, the technical communicator’s
role (whether that technical communicator is a
professional in technical communication or a
software developer who will work with technical
communication genres as part of her profession)
is to render technical information as clearly and
transparently as possible. The problem with this
view of technical communication is the implicit
assumption that it is possible to attain a technical
languagethatisuniversally clearandtransparent.
A corollary to this thesis is that any difficulties
in deciphering such language are due to inad-
equacies of the reader or listener, not with the
assumptions that underlie the presentation of the
information. The windowpane view of technical
communication assumes that meaning is trans-
mitted unilaterally from sender to receiver rather
than negotiated between them.

Particularly within the latter half of the twen-
tieth century, technical communication scholars

have argued for a more rhetorical and humanistic
approach to teaching and practicing technical
communication. For example, in her landmark
article “A Humanistic Rationale for Technical
Writing” (Miller, 1979), Miller argues that it is
“the common opinion that [it] is a ‘skills’ course
with little or no humanistic value is the result
of a lingering but pervasive positivistic view
of science... an efficient way of coercing minds
to submit to reality”. Consequently, students in
technical communication courses tend to look
upon writing as a “superfluous, bothersome, and
usually irrelevant aspect of their technical work™.
As a corrective, Miller recommends that we
“teach technical or scientific writing, not as a set
of technigques foraccommodating slippery words
to intractable things, but as an understanding of
how to belong to a community... to write well is
to understand the conditions of one’s own partici-
pation—the concepts, values, traditions and style
which permit identification with that community
and determine the success or failure of com-
munication.” Even more recently, scholars have
begun to focus on genres surrounding software
documentation and development, noting paral-
lels between approaches to usability testing and
research and arhetorical view of communication.
Like rhetorical approaches to communication,
usability focuses on different types of audiences
andthe particular contexts withinwhich they work
and the purposes to which documentation will be
put rather than positing a universal decontextu-
alized user for whom expert, system knowledge
must be “dumbed down” (Johnson-Eiola, 2001;
Johnson, 1998).

Such a rhetorically grounded approach to
technical communication, we believe, promises
to make students more successful communica-
tors when they enter the workplace. Rather than
learning arhetorical, rote approaches to technical
communication genres, students learnto strategi-
cally engage with and manipulate those genres
accordingtotheaudiences, purposes, and contexts
within which and with which they are working.

79

Rhetoric

In this project, we have a particular approach to
communication grounded in theories and prac-
tices of rhetoric. While the term “rhetoric” has
acquired a negative meaning of “[lJanguage that
is elaborate, pretentious, insincere, or intellectu-
ally vacuous”, we use an older definition: “[t]he
art or study of using language effectively and
persuasively” (Pickett, 2004). More precisely, we
define rhetoric as strategic communication. Soft-
ware developers are frequently confronted with
challenges that can only be met through careful
communication: for instance, understanding the
typical use of asoftware product inthe workplace,
assessing user satisfaction with a prototype, or
breaking the bad news about a missed deadline.
Successful communication requires a strategy
informed by an awareness of audience, a broad
knowledge of potential genres, and sensitivity to
the effects of style.

We see, in fact, a clean fit between rhetoric and
software engineering. The software engineering
student, like the rhetorician, can rely on the arts
of knowing how to inquire, what questions to
ask, in particular situations to make appropriate
communications foravariety of audiences. When
students are introduced to case studies, they are
exposed to communication problems that can be
analyzed and understood using these rhetorical
principles.

Revealing to software engineering students
the complexity of the rhetorical situation is the
first step in teaching them to communicate stra-
tegically (Johnson, 1998). Software engineers
produce much more than source code — design
documentation, user guides, memos to manage-
ment or other team members, to name just a few
examples — and they must learn how to consider
the broad contexts of use within which their
productsreside. For example, communicationina
small start-up will be significantly different from
that in a large corporation since institutions and
disciplines constrain and define how it is carried

80

Speaking of Software

out. In a small, recently founded company, the
communicationsystemis likely tobe organizedin
a“flat” manner; employees are likely to know one
another and thus to communicate more directly
and without regard to established protocols. Those
working in larger and more established organiza-
tions may be required to communicate through
a hierarchy of established channels. As another
example, domestic communication practices will
not necessarily work in international contexts,
since cultures and historical legacies direct and
shape organizational and stylistic conventions.
Software engineering students who understand
these subtleties are better prepared to work with
fellow members of development teams as well
as with both domestic and international stake-
holders.

Rhetoric also offers software engineering
students a practical understanding of commu-
nication as a problem solving process and gives
them strategies for moving systematically toward
a solution (Deili, 1988; Flower, 1998). While the
term “problem” has a precise and time-honored
meaning in the theory of computation, here we
consider problems of a different sort—human-
centered, not prone to mathematical formaliza-
tion. Nevertheless, as software engineers venture
into complicated contexts of communication,
they can call upon a highly recognizable array
of techniques from the problem-solving model.
Specifically, rhetoric divides planning into stages:
invention, arrangement, style, and delivery. This
breakdown into stages is particularly useful for
teaching students to engage in active listening
and critical analysis.

The first stage of planning, invention, is per-
haps the most important since it sets the require-
ments for the following three. It offers students
a method for gathering information about how
to communicate most effectively with particular
audiences in specific contexts and is based on four
sets of questions. The first question set focuses
on audience. It poses questions about the charac-
teristics of the stakeholders, about their attitudes

Speaking of Software

toward the information that the students will com-
municate, and about the knowledge they might
possess that could be useful in the development
of the software. The second question set focuses
on purpose. Here, students must consider what
their aim is in communicating with their stake-
holders—to learn, teach, inform, or persuade.
Rhetoric also provides students with a way of
knowing more than the needs of an audience and
the problems of communicating with it. Problems
do not exist in a vacuum but reside within given
contexts that shape not only the problem, but the
eventual solutions, as well. The next set of ques-
tionsthus requires thatstudent focus on the context
in which the communication will occur and can
suggest limitations to what the students intend to
communicate, such asashortturn-around or steep
learning curve. Answers to these questions can
affect the way students organize their informa-
tion or the format they chose to convey it. The
final question set requires that students focus on
themselves as communicators and how they aim
to be perceived by their stakeholders—as problem
solvers, investigators, facilitators, experts.

Decisions about the other three stages—ar-
rangement, style, and delivery—are contingent
on answers to questions posed in the first plan-
ning stage of invention, but are, nevertheless,
themselves crucial to carrying out effective
communication. The way that students arrange
information, for instance, depends upon stake-
holders’ attitudes about the information and the
students’ purpose in conveying it. The style stu-
dents choose to use—formal, informal, technical,
colloguial—depends on both how they wish to
be perceived, as well as their stakeholders’ roles
in the project. How students deliver the infor-
mation—in an informal memo or more formal
report—depends on the contexts in which users
will apply the information.

To highlight the overlap and intersection of
these stages, we use the metaphor of commu-
nication cycles (Johnson, 1998) to describe the
various documents that record and communicate

the software development process. For instance, a
typical cycle would include several technical com-
munication document genres that help to manage
aproject: aninitial problem statement memo, fol-
lowed by a project proposal, thenaseries of weekly
progress reports that describe the successes and
difficulties encountered as the project proceeds.
Often, these exigencies will be cycled back to
the problem statement and proposal, refining and
adapting them in an iterative process. Finally, as
the project comes to aclose, participants generate
a transmittal report and an oral presentation that
explain the history and outcomes of the project
to managers, clients, and teachers.

Case studies

Typically, it is impractical to involve large
numbers of students in real projects with real
stakeholders. Students who do not participate
in project-oriented courses get no exposure to
the issues surrounding such communication,
and those who do are thrust into a highly risky
and sensitive situation with little previous guid-
ance. Many in technical communication and
software engineering have reported the value
of students acquiring real-world experience in
the workplace while at the same time lamenting
the constraints: limited time and availability of
internships, expense, and less than appropriate
assignments once in the field (Blakeslee, 2001;
Freedman, 1993a; Freedman, Adam, & Smart,
1994; Lave & Wenger, 1991).

These constraints can be relieved with the
use of case studies in the classroom, where they
can be guided by the instructor (Williams & Co-
lomb, 1993). The use of case studies to simulate
stakeholder interaction has a long history, and
has been shown to be beneficial to both students
and teachers (Christensen, 1987; Gale, 1993).
Speaking fromthe perspective of business educa-
tion, Fulmer claims that the case method helps
to develop “skills of analysis, including learning
how to ask the right questions, decision making,

81

and persuasion” (Fulmer, 1992). The skills that
Fulmer describes are clearly rhetorical skills.

Two reported deficiencies of case studies
are their lack of immediacy and their failure to
present compelling, realistic situations (Gale,
1993). While acknowledging the importance of
case studies in pre-professional communications
programs, Dorn’s analysis of case studies from
business education (Dorn, 1999) finds that case-
based instruction may be of limited usefulness
in the workplace: “[the cases] typically require
students to respond to exceptional rhetorical
situations when in reality the rhetorical situations
writers usually face require more mundane and
standardized types of discourse”. For example, a
common case study in technical communication
focuses on the communication failures that led to
the destruction of the space shuttle Challenger in
1986. While this is surely a compelling story, the
circumstancesare not likely to be encountered by
many entry-level employees. Below, we describe
a means to overcome these difficulties to create
interesting cases that reflect the processes of
undergraduate student projects.

CREATING THE CAsEs

The case studies we have assembled draw from
ethnography and rhetoric—fields closely allied
with technical communication. Here we explain
how we found rich stories of communication
close to home, and how we gathered and com-
posed them.

Locating the source

The goal of building case studies for use in teach-
ing is often hampered by the secrecy surround-
ing most software development. While many of
our students and most of our faculty have had
experiences in industry- or government-spon-
sored development, the proprietary nature of
this information has typically prevented them

82

Speaking of Software

from sharing their experiences. We do, however,
have one valuable and readily available source:
the students themselves. All Software Engineer-
ing students take the “Senior Design Project”
capstone course. In this course, senior students
developreal, practical software productsintended
for actual use in accordance with requirements
from real clients and other stakeholders. These
projectstypically involve interaction with clients
outside of the Computer Science department. The
cases presenting these projects provide compel-
ling, problematic examples of communication,
and students can identify with them since they
are grounded in the real experiences of fellow
students.

Applying Ethnography to the
Educational s phere

Ethnography, as Beverly Moss explains, is “a
qualitative research method that allows a re-
searcher to gain a comprehensive view of the
social interactions, behaviors, and beliefs of a
community or social group. In other words, the
goal...is to study, explore, and describe a group’s
culture” (Moss, 1992). We used some proven
techniques from ethnography to create views
of real software development settings. Our case
studies, however, should not be mistaken for
true ethnographical studies; since our resources
were limited, we could not perform the years of
fieldwork required of such endeavors.

Our method followed a qualitative case study
approach, which attempts to “identify the im-
portant aspects or variables of the phenomenon”
chosen for examination by “closely studying in-
dividuals, small groups, or whole environments”
with the aim to identify avenues for further
research (Lauer & Asher, 1988). In our work,
that further research included the development
of case studies based on our observations, and
presented to other students as a means of simu-
lating the conditions they will encounter later in
their careers in computer science.

Speaking of Software

The desire to capture recurring patterns in
software development problems has been ex-
pressed elsewhere in the software engineering
literature. For instance, Sutcliffe et al. (A. G.
Sutcliffe, Maiden, Minocha, & Manuel, 1988)
propose that “if common abstractions in a new
application domain could be discovered early in
the requirements engineering (RE) process, then
it may be possible to reuse generic requirements
and link themto reusable designs. This could pro-
vide a conduit for reusing the wealth of software
engineering knowledge that resides in reusable
component libraries” (1073, italics ours). Put
another way, individuals and the groups within
which they work often create ways of coping with
the uncertainties of the project design process,
amassing a sizeable and valuable knowledge
base as they do. Through our case studies we
aim to capture that knowledge, reflected in the
lived experience of one individual or group of
individuals. Incorporating this knowledge and
experience into pedagogical tools, our cases have
the potential to instill that experience in others
when used in the classroom.

Gathering the Data

As the students work on their Senior Design proj-
ects, significant case study data is accumulated:
meeting minutes, email, reports for clients and
for the Senior Design instructor, and documented
code. Email is collected through ad hoc mailing
lists, which the projectteams use for communicat-
ing among themselves and with others. Further-
more, Senior Design students reflect on their daily
results and then consolidate the information they
have collected in one-page progress reports that
they submit on a weekly basis to the instructor.
Consequently, work on the case studies during
the academic year is focused on data collection,
organization and coding; summers are focused
on case study construction.

To develop these first case studies, and pilot
our approach, graduate students gathered written

material (notes, meeting minutes, versions of the
software, emails, and so forth) from the Senior
Design students. Following standard practice in
qualitative research (Agar, 1996; Kirsch & Sul-
livan, 1992; Lauer & Asher, 1988), the graduate
students acted as participant observers during the
majority of the students’ meetings. Asresearchers,
they made audio recordings, drew diagrams of
where people sat and how they moved about the
room, and recorded field notes for later reference.
Following the suggestions of Emerson, Fretz,
and Shaw, their field notes recorded fine details
(Emerson, Fretz, & Shaw, 1995) for later recall,
reconstruction, and analysis. Further, their notes
focused on key events and incidents — such as
dramatic and unexpected shifts in the client’s
requirements and expectations — and recorded
stakeholders’ reactions. These strategies brought
the cases “to life” by including details and rich
descriptions of action, thus capturing the visual
and oral ambiance of the situation and giving that
“you are there” feeling.

Asthe projectcametoaclose, the graduate stu-
dents also conducted semi-structured interviews
with the Senior Design students and their clients.
They used these interviews to triangulate early
results as Hesse-Biber and Leavy recommend
(Hesse-Biber & Leavy, 2005), and to support
findings and “earn the confidence of the reader
that the researchers have ‘gotten it right’”.

Constructing the stories

To construct the case studies, the graduate stu-
dents first assembled all the original material
chronologically into one long summary account,
with hyperlinks to the original documents, and
thendivided itinto modules. They also developed
question sets for each module to help students
identify and examine the issues, as well as some
password-protected teaching aids for the instruc-
tor giving background material and an “insider’s
view” of the situations. These were integrated
into the final chronological version.

83

To develop the thematic version, the graduate
students read through the chronological account.
Relying on the grounded theory method (Strauss
& Corbin, 1998), they started with a detailed,
line-by-line analysis of the descriptions found in
the transcripts. From this the graduate students
generated initial categories, which focused on
inherent meaning and details, aiming to identify
central ideas of “what is going on here” and label
themasemergentthemes, oftenusing termstaken
from the words of the respondents themselves.
These were then grouped into categories with
explanatory and predictive potential. For example,
one category they identified referred to the stu-
dents’ difficulties in learning and working with
an unfamiliar programming language (Matlab).
These instances were then abstracted and listed
chronologically. Other themes were then identified
and listed under their own headings. Comparing
the content and frequency of interactions across
categories, the graduate studentsbegan to see some
explanatory power. For example, questions that
arose in the “learning Matlab” category, yet were
notanswered inthe “clientinteractions” category,
stymied the students. These questions offer insight
into why the project fell behind schedule. These
comparisonsalso hold some measure of predictive
power as well—a future interaction would likely
follow the pattern of the past if no remediation
was attempted.

Presenting the stories

Our cases are presented in the style of the “realist
tale” as described by Van Maanen (Van Maanen,
1988). These are “by far the most prominent,
familiar, prevalent, and recognized form of
ethnographic writing [which] push most firmly
for the authenticity of the cultural representa-
tions conveyed by the text”. Its typical form is
a “documentary style focused on minute, but
mundane details of everyday life”. Such details
are not random, but “accumulate” to make some
important point; they “suggest intimacy and

84

Speaking of Software

establish presence” and “draw in the audience”.
Our cases aim to present the participants’ point
of view through quotations, recordings, and other
documentation, but also include their reflections.
In light of our pedagogical goal, however, we as
authors have “final word” on any depictions.

Our case studies consist of multimedia pack-
ages, combining text, audio and video material, to
capture the real process of dealing with stakehold-
ers. The cases are presented as hypertext docu-
ments. Apart from accessibility and portability,
this electronic format allows us to embed links
to the original documents instead of including
them as an appendix. For example, the text of an
email might be included in the scenario, but the
attached document that came with it is left as a
separate file. The student analyzing the case must
open that file, much as if he or she had been the
original recipient of the email. This action helps
move the reader from passive observer to ac-
tive participant, making the case more real and
interesting.

The cases are expressed in plain language and
mention specifics, preserving the vocabulary of
the application domain to convey important con-
textual information that students might otherwise
overlook. Thisencourages the kind of constructive
questioning that fleshes out important details (A.
Sutcliffe, 2003). In some instances, cases present
examples of failures incommunication, providing
students the opportunity to reflect on what went
wrong and suggest alternatives (Gale, 1993).

The presentation of the material has been
designed so that information about the project re-
quirements isimparted gradually. This simulates
the problems of Senior Design students grappling
with the issues of real clients. The raw materials of
eachcaseare organized into modules, representing
periods of time in the project history, usually one
week per module. These modules allow users to
browse throughstories, listentoaudio clips, watch
animations, and respond to questions that are
specifically aimed toward provoking inquiry into
a particular point in time, or a certain theme.

Speaking of Software

EXAMPLE: THE sEAbAsE CAsE
sTUDY

We present examples of material from the “Sea-
base” case study, where Senior Design students
(called the “CS team”) worked with faculty and
students in Mechanical Engineering to develop
control software for a ship-based crane. The
communication challenges in the project were
significant: students had to learn the culture of
mechanical engineers, as well as a new program-
ming language, Matlab. As newcomerstoaproject
that was already underway, they had to find their
place in an established work environment that
was foreign to them.

Anexcerptfromthe Module Cstoryisshownin
Figure 1. The story document includes hyperlinks
to three primary sources: the meeting minutes
for the project team leaders, the risk document
of the team, and email from a project advisor in
Mechanical Engineering. The email reveals an
interesting problem for the CS team: communica-
tions from the Mechanical Engineering faculty
members that indicates differing expectations in
what the challenging aspect of the project will
be. Here, advisor Hank Taylor indicates that “the
crane [controller] part is the ‘biggest, nastiest’

part” and a side project to design a GUI for the
crane controller is “the easiest part.” In a meet-
ing one week earlier, Nancy Smith had stated the
opposite: “The GUI design is a good project for
the CS team,” and “working on only the crane
controller would be ‘too simple.”” The questions
(showninFigure 2) and instructor notes challenge
the readers to use problem solving to resolve this
disparity.

Figure 3 includes an excerpt from the Module
E story that illustrates the notion of communica-
tion cycles. Two meetings occur in short order:
first, an informal meeting of the team in which
they prepare questions for Hank Taylor; then the
meeting with Hank. Thereisathree-step process,
in which the students formulate the questions,
pose them, and finally unpack the answers later
in Module F.

The Module E questions (shown in Figure
4) ask the readers to evaluate the effectiveness
of this process: to what extent the students were
able toarticulate their needs and interpret Hank’s
responses. Thereare other links with wider scope.
For instance, after listening to the discussion of
the code from the model crane, the readers are
asked to go back to documentation of this code
that had been circulated earlier, and determine

Figure 1. Excerpt from Module C Story, Seabase case study

Module C Story

On Wednesday of the fourth week of the semester (Sept. 22) the leaders of the three
crane project teams meet with Hank Taylor and Nancy Smith. They decide that since
the “point of meeting is to get regular coordination of the teams, they will continue the
meeting of team leaders on Wednesday from 12-1 on”. Representing the CS Team are
JoAnn, Ken and Bob; Matt and Ben come for the crane builders; and Jon is there to talk

about the platform.

Minutes of Sept. 22 Crane Team L eaders meeting

The items on JoAnn’s summary of the meeting are:

e The CS Team will work on crane, not on the platform, this term.

e Inadiscussion of scope of the CS Team’s part, Hank says the crane part is the “biggest,
nastiest part” and he thinks the GUI for the platform will take about an hour and is the

easiest part.

85

Speaking of Software

Figure 2. Module C Questions, Seabase case study

Module C Questions

1. Can you recap the project so far?

e What information has been conveyed?

e What questions remain about what has to be done?

* What would you do to answer those questions?

2. How would you characterize the interactions among Hank, Nancy, and the team mem-
bers?

3. It'sinteresting that Hank says that the “crane part” is going to be “the biggest, nastiest
part”, and that the GUI design will be easiest. On the other hand, Nancy seems to be
saying the opposite: the controller will not be very difficult, and the GUI will be more
challenging.

* Why might they have such different opinions?

* How can the CS team resolve this difference?

4. The CS team attends a Team Leader meeting. What might be the value of this kind of
meeting, instead of just meeting with Hank?

5. Critique the to-do list as given in the minutes.

» What purpose does it serve?

e Is there more information that you would add?

6. Critique the risk document, in a similar fashion.

Figure 3. Excerpt from Module E Story, Seabase case study

Module E Story

On Monday, Sept. 27, the CS team holds two meetings. The first is a “brainstorming
what-to-do meeting” in the hall. Present are Ken Lundy, Bob Marin, JoAnn Durst, and
Arnie. At this meeting they try to “get our heads straight about what we're doing and
should be doing.”

Minutes of Sept. 27 CS Team brainstorming meeting

After that, they meet with Hank Taylor to go over the code from the model crane in
Albuquerque, a “code functionality meeting.”

Minutes of Sept. code functionality meeting with CS Team and Hank

At the meeting with Hank Taylor, the purpose is to go over the code from the model
crane in Albuguerque. (Listen in on the meeting as they dissect the code.)

There is also a lot of discussion about learning Matlab. (Listen to the discussion and fol-
low along with the meeting minutes.)

86

Speaking of Software

Figure 4. Module E Questions, Seabase case study

Module E Questions

1

Discuss the outcome of each meeting.

What conclusions did they reach?

Could having roles (facilitator, agenda keeper, minute taker/poster, etc.) improve ef-
ficiency of meetings?

If so, how should these jobs be distributed?

The term “big picture” arises twice: once at the brainstorming meeting, then later at
the code functionality meeting. The CS team seems to want more of a “big picture”
of the project, while (at least in the view of the CS team) Hank is encouraging them to
“leap into coding”.

What additional “big picture” information might Hank be able to provide? What value
(if any) would it be to the CS team?

What (if anything) might the students gain from “leaping into coding”?

Did they resolve things they discussed at the “brainstorming meeting” by meeting with
Hank? Which things were, which were not?

Look back at the “Function List.” Does it make more or less sense now, based on the
two meetings?

Look back at the Risk Document from Module C.

Do you see any risks being played out?

What are the students doing to mitigate them? Is it working?

Are there any risks that should be added to or removed from the document?

Figure 5. Excerpt from Module E Instructor Notes, Seabase case study

Module E Instructor Notes

JoAnn mentions “requirements” twice in her email message:

* She makes a request for “crane requirements”. It is interesting to look ahead and see
when these requirements materialize.

» She makes this request so that the CS Team can write their requirements. The CS
Team seems to have taken on the job of writing their own requirements. It is not
clear who assigned them this task. It is probably worthwhile to discuss the problems
with developers writing their own requirements.

87

whether the conversation helped to clarify the
earlierdocumentation. Also, atthe brainstorming
meeting, it is determined that more requirements
forthe mechanical crane are needed; inthe Instruc-
tor Notes (an excerpt of which is shown in Figure
5), readers are asked to look ahead in the story to
discover when the requirements materialize.

EXAMPLE: THE sOILsIM CAsE
sTUDY

We turn now to the “SoilSim” case study, where
Senior Design students worked with an environ-
mental scientist at a local research laboratory, to
develop an educational simulation game about
soil ecology for grade-school students. An ex-
cerpt from Module C story is shown in Figure
6. The students in the story were continuing a
project that had been started by other students.

Speaking of Software

One student (Jacob) had done earlier work on
the game, but the other two students in the team
had to become familiar with both the basics of
soil ecology and the code left behind by earlier
teams. The team wrestled with understanding the
ecological mechanisms involved in the problem,
using documentation from earlier teams as well
as Jacob’s knowledge. Eventually, they realized
that they needed some criteria for validating their
simulation, and so turned to the scientist (Fritz).
The story includes Jacob’s email appeal for help,
and audio clips of the subsequent discussion be-
tween Fritz and the team.

The questions and instructor notes shown
in Figure 7 and Figure 8 focus on the second
audio clip. The themes of interest here are the
knowledge gap between client and developer
(mitigated somewhat by Jacob’s explanations to
his teammates) and the risk of changing client

Figure 6. Excerpt from Module C Story, SoilSim case study

Module C Story

Dave appoints Jacob the team-client go-between and Jacob uses e-mail to contact Fritz

about meeting with the team.
Fritz,

We were wondering if you could provide us with some sort of metric for
testing, so we can verify that Soilsim is doing what it should be doing.

Such as, if we add 10 worms to the simulation and a couple of spiders is

the program behaving like it should be? We know how the program behaves
in its current state, but we need some indicators to test for, to determine if it
is behaving correctly. If you need to play around with the program a little to
get us this information, we would be happy to meet with you and provide a
copy of the program for you to take a look at. Let me know if you need any
clarification on anything.

Thank you, Jacob

Jacob, I'd be happy to provide you that information. The best way would be
For me to see what the program is doing now, so if we could arrange a time
next week that would work for me. -- Fritz.

On February 22, week 7 of the 14-week semester, Fritz and the team meet for the first
time in the CS lab. This was an essential meeting for the team, markedly increasing
productivity. Following is the audio recording of the meeting, presented as a

chronological series of five clips.

88

Speaking of Software

Figure 7. Excerpt from Module C Questions, SoilSim case study

Module C Questions

Clip 2

1. Does a software engineer need to know biology in order to develop a biology-based
project?

2. What kind of communication obstacles might develop in a cross-disciplinary team?

3. The team has been developing the project for nearly two months, yet this is the first
time they have interacted with the client: what might be some implications?

4. What difficulties might a development team face if the overall product vision is not
stable?

5. How might a back-and-forth vision-development communication process work?

6. The client has given a discipline-specific nuanced description of the C-N process, how
does this differ from the initial overview Jacob gave the team at the beginning of the
semester?

Figure 8. Excerpt from Module C Instructor Notes, SoilSim case study

Module C Instructor Notes

Clip2

e Theclientasksthe teamabout their biology background. They had basic biology in high
school, but that’s it. The client gives a systems analogy to assist them with a big-picture
sense of the Carbon-Nitrogen cycle. This is a good place to discuss cross-disciplinary
projects and the communication obstacles relative to such projects.

* The client is explaining the project to this semester’s SoilSim team for the first time.
The only explanation the team had up until now is the overview Jacob gave at the
beginning of the semester. It might be interesting to compare and contrast the two
versions and to discuss the implications of each version for project development.

e Interestingly, as the client develops his explanation of the project he seems, as well,
to be expanding on his basic vision for the project. This is a place to discuss the value
of a stable project outcomes vision and possible effects of fluctuating goals on project
development.

e The team questions the client about the cycle and is offered a more detailed explana-
tion. This may be a place to discuss the usefulness of back-and-forth developmental
communication between the team and the client during which project vision can emerge
and eventually become stable.

expectations (as evidenced implicitly by Fritz’s
comments during the meeting).

UsING THE CAsEs

Our case studies have been used both within our
software engineering curriculumand inatechni-
cal communication setting with a wide variety of
students. The material appearsto have notonly the
depthtorecreate the complexity of communication
in a software project, but also the breadth to con-
nectwith students outside of software engineering.
We report on our findings here.

Technical Communication

We have used the Seabase case study in an in-
terdisciplinary technical communication course
that included computer science and software
engineering students along with students ma-
joring in engineering, business, and technical
communication. The case was used over a two-
and-a-half-week unit during summer 2006 and
over a four-week unit during fall 2006. Students
worked in interdisciplinary teams, each of which
included acomputer science or software engineer-
ing student. In class discussions, in memos, and
in final reports, they analyzed how the various
communication genres produced by the senior
design group (such as requirements documents,
risk documents, emails, timelines, meeting min-
utes, reports, and presentations) contributed to
action or nonaction of project stakeholders and
ultimately to the overall success or failure of
the Seabase project. For example, one in-class
exercise asked students to rewrite a set of meet-
ing minutes taken from the case after extensive
discussions about the purposes and audiences for
these documents. Similarly, in their final reports,
the teams of students not only analyzed the com-
munication-related causes of the Seabase project’s
failure but also drew on their analyses to make
recommendations that were designed to help fu-

90

Speaking of Software

ture senior design students and faculty improve
theircommunication practices. The successful use
of this case in a technical communication course
demonstrates that the lessons that it teaches about
communication and about working on interdisci-
plinary teams are applicable outside of, as well as
within, the computer science classroom.

From written student comments and the
analyses presented in their final reports, we con-
clude that students responded well to a rhetorical
approach. They came away from the case study
with a better understanding of the importance
of a rhetorical—rather than rote—approach to
problem solving and to communication cycles.
The project particularly highlighted for students
the importance of considering adocument’s vari-
ous audiences—or stakeholders. In his reflections
about the project, one student wrote, “Before this
class I had simply written paper after paper without
any thought as to who was reading it aside from
the professor who assigned it. | feel that not only
did I learn how to design a paper to fit a particular
audience, | also learned to pick an audience and
the importance of doing so.”

Students particularly liked the fact that the
case included the actual documents produced by
the senior design group for the Seabase project:
they were able to see how the documents’ lack
of rhetorical awareness (attention to factors of
audience, purpose and context) significantly
contributed to the project’s ultimate failure. For
example, in one final report students observed
how the timeline produced by the CS team lacked
dates and deliverables: “The biggest problem is
that there are no dates at all on the timeline,” they
write. “Theteam has notworked outstarting times,
durations, and, mostimportantly, deadlines.” The
students reading the case study concluded that
the document was produced in a rote manner, to
satisfy a course requirement — without aware-
ness that anyone would actually read it, use it,
or modify it in the future. The student readers
provided a revised timeline that included dates,
deadlines, and deliverables, and specified which

Speaking of Software

team members were responsible for which tasks.
In a related example, students observed in class
discussions how the risk document helped the
senior design group to catalogue risks to the
project as they occurred, but not to prevent or
manage them.

The case also provides an excellent opportu-
nity to encourage students to both discuss and
experience communicating with stakeholders
outside of one’s discipline. For example, profes-
sorsfromthe Mechanical Engineering department
seemed to consistently underestimate the amount
of work that the Computer Science students will
need to put into the project. In the Module B, a
mechanical engineering professor is quoted as
saying that “working only on the crane control-
ler would be ‘too simple.”” In the next module,
which is excerpted above in Figure 1, a different
Mechanical Engineering professor gives an en-
tirely opposite opinion (that the controller will
be the hardest part). These two modules provide
an excellent opportunity to discuss not only the
importance of clarifying stakeholder roles and
adequate documentation inreconciling conflicting
claims such as these but also to discuss strategies
for communicating across disciplines.

Although student response to the case in both
the summer and fall sessions of this course was
mostly positive, there were a couple of concerns
that need to be addressed in future classes. First,
students without experience in computer sci-
ence were initially intimidated by the technical
terminology that is employed throughout the
case. Luckily, there were computer science and
software engineering students in both sections
of the course who helped to explain not only the
terminology butalso the level of knowledge about
programs like Matlab that computer science stu-
dents would likely have going into the project. As
the case stands now, it would be difficult to teach
without the help of students or an instructor with
some expertise in the subject matter. As Schul-
lery (1999) observes, “cases should [ideally] be
applicabletoall studentsinthe class”. Butthis lack

of technical information also had the unforeseen
benefit of giving computer science and software
engineeringstudentsachanceto explain technical
information to people outside of their discipline,
a skill that will certainly come in handy as they
enter the workforce. These explanations could
be formally built into the course. (For example,
students could research an unfamiliar term and
presentashort “white paper” or similar document
on the subject to the rest of the class.)

Studying the CS team’s story was itself done
in teams, which gave the case study readers a
chance to apply immediately what they learned
from analyzing the case. Some teams had to
struggle with the very communication problems
that the case highlighted — rote, formulaic ap-
proachestodocumentdevelopment, lack of respect
for knowledge outside of one’s discipline were
especially in evidence. In particular, students
often faced the prospect of their own skills being
undervalued, the kind of power-based intra-team
conflict described by Meyers and Larson (2005).
For instance, in her evaluation of the project, one
technical communication studentwrote, “I did not
like how my team functioned. Skills possessed by
some were overlooked or notvalued. The function
of my team was to ‘please the instructor’ and not
do good job working on the assignment.” This
is an issue that could be productively addressed
in future courses: for example, students could
discuss at the beginning of the project what skills
they bring to the table and could clarify their own
roles within the group.

Because much of the content of the case was
specific to computer science and software engi-
neering, some students lost interest in the case,
particularly in the fall semester when the case
took up four weeks of a fourteen-week course.
Most students, however, seemed to find the case
interesting and relevant for what it taught about
project management (and about the management
of senior design projects in particular), collabora-
tive work, and rhetorical approaches to problem
solving and to communication cycles.

91

While students in the class benefited from
the computer science and software engineering
students’ insider knowledge of the case’s subject
matter, computer science and software engineer-
ing students left the class with concrete ideas for
improving communications with stakeholders
involved in their future projects. Finally, the case
provides multiple opportunities to consider the
challenges that women involved in male-domi-
nated computer science and software engineering
projects might face—particularly, gendered as-
sumptions that women (even in leadership posi-
tions) should assume a secretarial role.

s oftware Engineering

We use the case studies in a software engineering
course that focuses on requirements elicitation
and analysis, usability, and testing. The course is
a prerequisite for the Senior Design course and
is therefore well placed to provide instruction
on communication strategies. The curriculum
includes a team project in which students design
a prototypical user interface based on input from
real people. One of the key assessment criteria for
the project is the degree of attentiveness to their
potential users, as reflected in the prototype.

We have used the case studies as preparation
for this project; in particular, we have concentrated
ontheinstances of directcommunication between
developer and client. The students worked both
individually and in small teams on the case study
material, both in and outside of class. One week
of lecture time was devoted to the topic. We have
evaluated the use of the Seabase case study in the
fall 2006 offering of this course, using standard
qualitative evaluation methods (Brown & Enos,
2002). Details can be found in an earlier paper
(Brady, Seigel, Vosecky, & Wallace, 2007); here
we summarize our conclusions.

Our analysis found that few students at the
time of the pre-instruction evaluation had a
concept of stakeholder that included more than

92

Speaking of Software

the basics of developer, client and end user. In-
deed, one of the sixteen students evaluated had
a strong reaction against broadening the notion
of stakeholder beyond “developer” and “client”.
When asked about the kinds of information that
they would want to get from stakeholders, their
answers did not extend beyond the basic notion
of a list of desired features or services. This
belies a simplistic view of clients and end users
as nothing but sources of demands, rather than
sources of useful background and prior experi-
ence. Likewise, individual students generally did
not provide many ideas for getting information
from stakeholders, though collectively there was
a wide variety.

The post-instruction evaluation indicates
that students gained a deeper awareness of the
stakeholder concept, beyond their simple notion
of “client and user”. The evaluation also reveals
a broader understanding of the issues at play
when communicating with stakeholders: moving
beyond the simple notion of “functional require-
ments” to issues of usability and project manage-
ment. Students were able to suggest a broader set
of potential methods to get information from stake-
holders—that is, they became more creative prob-
lem solvers. Finally, the evaluation indicates that
most students found their understanding of these
concepts had changed—become more “detailed,”
“increased,” become “fuller” or “broader”—as a
result of instruction in the class.

The way in which the case study material is
disclosedto the students can have profound effects
on their attitude. Since only a week was devoted
to the Seabase case, it was necessary to give the
students accesstotheentire story, all atonce. This
particular Seabase story ends badly: the Senior
Design team was unable to produce much by the
end of the semester. (There is another case study
that follows the successful efforts of a team that
worked on Seabase one semester later.) Students
following the case were able to “jump ahead” to
the negative final results, and this clearly colored

Speaking of Software

their opinion of the team’s efforts. An easy cyni-
cism emerged, and it was difficult to elicit any
positive comments about how the Seabase project
was conducted, even though there were clearly
some good practices in place. A more effective
teaching strategy, which we intend to use in the
future, would impart the steps of the project more
gradually, temporarily hiding the outcomes from
the case study readers—just as they are hidden
from the original project participants.

FUTURE DIRECTIONs

On one level, we see several ways in which our
case study concept can be broadened and adapted
for different uses. On a higher level, we hope that
thiswork inspires further effortsacrossdisciplines
to strengthen the intrinsically interdisciplinary
field of software engineering education.

Development and New Applications
of Case studies

Our case studies are publicly available, and we
hope thatthe instructional material (questionsand
notes) surrounding them grow as more instruc-
tors use them. We hope to implement the case
studies Website as a wiki in which instructors
can contribute further questions and notes to
the case studies. Our experience shows that the
case studies also bring out issues that are not
communication-related; it would be interesting
to develop some of the other themes brought out
in the case studies.

The case studies are necessarily complex and
require time to study and understand. Currently,
students see them relatively late in their under-
graduate careers. It would be useful to introduce
some of the themes earlier in the curriculum,
but in a way that requires less of a time com-
mitment. This has led us to the idea of drawing
scenarios (Victor, 1999) from the case studies.
Victor describes scenarios as like case studies in

the level of detail and in the lack of a “specific
right answer” (100), but different in that they are
smaller in scope and do not necessarily deal with
real experiences. Our scenarios would have the
advantage of coming from real software projects,
but we would also have a certain “artistic license”
to modify the stories in order to keep them suc-
cinct. One particular extension we have in mind
is to dramatize some of the “scenes” from the
case studies and put them in video form—what
Victor calls “vignettes”. This raises the possibil-
ity of interactive video, in which students can
watch communication interchanges develop over
time, then at certain points choose from a set of
strategic options and watch the consequences of
their choices.

Involving students in Case building

One issue that must be acknowledged is the time
commitmentinvolved in developing case studies.
To pilot the methods, graduate students gathered
material, acted as participant observers during
meetings, and conducted semi-structured inter-
views with the students and their clients. At the
end of the school year they wrote up the cases
presented here. Fortunately, the students were
funded through an NSF grant, but clearly this
kind of support is not available to everyone who
wishes to make case studies.

We have been testing procedures that will
allow us to reduce the active role of the graduate
students, thereby reducing costand time commit-
ments. We have introduced one undergraduate
software engineering student to selected quali-
tative methods, and he has performed the actual
observations and recording, under the supervi-
sion of a graduate student. Also, now that Senior
Design students have been exposed to rhetorical
principles through the case studies, the written
reports that they produce as part of their projects
can speak more directly to the communication
issues we are interested in.

93

Interdisciplinarity: Encouraging
Further Reciprocation

Software engineering is a field that draws from a
wide range of disciplines. This project illustrates
the benefits of reaching across disciplinary bound-
ariesto bring outside knowledge into the software
engineering curriculum (Brady, Johnson, &
Wallace, 2006). For several decades, academic
technical communicators have engaged in extrac-
tion and incorporation, the first stages of what
Klein calls interdisciplinary exchange (Klein,
1990). Thatis, they have entered other disciplines
(including software engineering), brought back
important findings, and then applied them to tech-
nical communication practicesand pedagogy. The
resultis a rich body of studies on communication
and collaboration in real workplaces, as well as
new ideas and best practices for interface design
and composition. Our project represents the third
stage of interdisciplinary exchange: reciprocation,
in which technical communicators “give back”,
offering the fruits of their work to improve the
field of software engineering.

To further this work and encourage others
to engage in similar interdisciplinary efforts,
we wish to build a community of software de-
velopment stakeholders—both educators and
practitioners—who understand one another’s
potential contributions and who are committed to
the principle of integrating communication edu-
cation into the software engineering curriculum.
These stakeholders can describe the problems
they encounter in teaching and employing com-
munication, and the practices that they have found
effective. Working as a group, we hope to explore
how to extend current educational practices.

ONLINE CAsE sTUDIEs

We have set up an online repository of case stud-
ies at www.speaksoft.mtu.edu/cases/. Currently
the first-semester Seabase case and the SoilSim

94

Speaking of Software

case are publicly available. Three more case stud-
ies will soon be added: the second (successful)
semester of the Seabase project, the Java Logic
Simulator project (interacting with a Computer
Science professor to create an educational tool for
circuitdesign), andthe 3-D Maze project (interact-
ing with another Computer Science professor to
create a test platform for HCI research in three-
dimensional interface navigation).

ACKkNOWLEDGMENT

This work has been supported by NSF Award
#CCF-0417548. We wish to thank our colleagues
who helped design and implement the case studies:
Anne Mareck, Leroy Steinbacher, Jon Woods,
and Robert Johnson. We also deeply appreciate
the participation of the Senior Design students
whose projects we documented, and the students
who used the case studies and participated in the
evaluation. Finally, we thank our reviewers for
their helpful comments.

REFERENCESs

Abran, A., Moore, J. W., Bourque, P., & Dupuis, R.
(Eds.). (2004). Guide to the Software Engineering
Body of Knowledge. |EEE Computer Society.

Agar, M. (1996). The Professional Stranger.
Academic Press.

Alred, G. J. (2006). Bridging Cultures: The
Academy and the Workplace. Journal of Business
Communication, 43, 79-88.

Blakeslee, A. M. (2001). Bridging the Workplace
and the Academy: Teaching Professional Genres
Through Classroom-Workplace Collaborations.
Technical Communication Quarterly, 10(2),

169-192.

Brady, A., Johnson, R. R., & Wallace, C. (2006).
The intersecting futures of technical communica-

Speaking of Software

tion and software engineering: Forging a multi-
disciplinary alliance. Technical Communication,
53(3).

Brady, A., Seigel, M., Vosecky, T., & Wallace,
C. (2007). Addressing Communication Issues in
Software Development: A Case Study Approach.
Paper presented at the Conference on Software
Engineering Education and Training.

Brown, S., & Enos, T. (Eds.). (2002). The Writ-
ing Program Administrator’s Resource: A Guide
to Reflective Institutional Practice. Lawrence
Erlbaum.

Christensen, C. R. (1987). Teaching and the Case
Method. Harvard Business School.

Connors, R.J. (2004). The Rise of Technical Writ-
ing Instruction in America. In J. Johnson-Eiola
& S. Selber (Eds.), Central Works in Technical
Communication (pp. 4-19). Oxford University
Press.

Curtis, B., Krasner, H., & Iscoe, N. (1988). A
Field Study of the Software Design Process for
Large Systems. Communications of the ACM,
31(11), 1268-1287.

Davis, A. (1990). Software Requirements: Objects,
Functions, and States. Prentice Hall.

Deili, M. (1988). 4 problem solving approach to
usability testing. Paper presented at the Interna-
tional Technical Communication Conference.

Dorn, E. M. (1999). Case Method Instruction in
the Business Writing Classroom. Business Com-
munication Quarterly, 62, 41-60.

Emerson, R. M., Fretz,R. I., & Shaw, L. L. (1995).
Writing Ethnographic Fieldnotes. University of
Chicago Press.

Flower, L. (1998). Problem Solving Strategies
for Writing in College and Community. Harcourt
Brace.

Freedman, A. (1993a). Show and Tell? The Role
of Explicit Teaching in the Learning of New
Genres. Research in the Teaching of English,
27(3), 222-251.

Freedman, A. (1993b). Show and Tell? The Role
of Explicit Teaching in the Learning of New
Genres. Research in the Teaching of English,
27(3), 222-251.

Freedman, A., Adam, C., & Smart, G. (1994).
Wearing Suits to Class: Simulating Genres and
Simulations as Genre. Written Communication,
11(2), 193-226.

Fulmer, W. E. (1992). Using Cases in Management
Development Programmes. Journal of Manage-
ment Development, 11, 33-37.

Gale, F. C. (1993). Teaching Professional Writing
Rhetorically: The Unified Case Method. Journal

of Business and Technical Communication, 7(2),
256-266.

Glass, R. L. (1998). Software Runaways: Lessons
Learned from Massive Software Project Failures.
Prentice Hall.

Hesse-Biber, S. N., & Leavy, P. (2005). Qualitative
Research Inquiry. In The Practice of Qualitative
Research. Sage.

Johnson-Eiola, J. (2001). Little Machines: Un-
derstanding Users; Understanding Interfaces.
ACM Journal of Computer Documentation, 25,
119-127.

Johnson, R.R. (1998). User-Centered Technology:
A Rhetorical Theory for Computers and Other
Mundane Artifacts. SUNY Press.

Keil, M., Cule, P. E., Lyytinen, K., & Schmidt,
R. C. (1998). A framework for identifying soft-
ware project risks. Communications of the ACM,
41(2), 76-83.

Kirsch, G., & Sullivan, P. (1992). Methods and
Methodology in Composition Research. Southern
Illinois University Press.

95

Klein, J. T. (1990). Interdisciplinarity. \Wayne
University Press.

Lauer, J. M., & Asher, W. (1988). Composition
Research/Empirical Designs. Oxford University
Press.

Lave, J., & Wenger, E. (1991). Situated Learning:
Legitimate Peripheral Participation. Cambridge
University Press.

Liu, C. (2005). Using issue tracking tools to fa-
cilitate student learning of communication skills
insoftware engineering courses. Paper presented
at the Conference on Software Engineering Edu-
cation & Training.

Margolis, J., & Fisher, A. (2002). Unlocking the
Clubhouse: Women in Computing. MIT Press.

McMillan, W. W., & Rajaprabhakaran, S. (1999).
What leading practitioners say should be empha-
sized in students’ software engineering projects.
Paper presented at the Conference on Software
Engineering Education & Training.

Miller, C. R. (1979). A Humanistic Rationale
for Technical Writing. College English, 40, 610-
617.

Moss, B. J. (1992). Ethnography and Composi-
tion: Studying Language at Home. In G. Kirsch
& P. Sullivan (Eds.), Methods and Methodology
in Composition Research. Southern lllinois Uni-
versity Press.

Muir, C. (2004). Learning Soft Skills at Work:
An Interview with Annalee Luhman. Business
Communication Quarterly, 67(1), 99-101.

Myers, L. L., & Larson, R. S. (2005). Preparing
Students for Early Work Conflicts. Business Com-
munication Quarterly, 68, 306-317.

Pickett,J. P. (Ed.). (2004). The American Heritage
Dictionary of the English Language (4th ed.).
Houghton Mifflin.

96

Speaking of Software

Poole, W. G. (2003). The softer side of custom
software development: Working with the other
players. Paper presented at the Conference on
Software Engineering Education and Training.

Putnam, L. L., & Folger, J. P. (1988). Communica-
tion, Conflict, and Dispute Resolution: The Study
of Interaction and the Development of Conflict
Theory. Communication Research, 15, 349-359.

Putnam, L. L., & Poole, M. S. (1987). Conflict
and Negotiation. In F. M. Jablin, L. L. Putnam,
K. H. Roberts & L. W. Porter (Eds.), Handbook
of Organizational Communication: An Interdis-
ciplinary Perspective (pp. 549-599).

Reinsch, L. N., & Shelby, A. N. (1997). What Com-
munication Abilities Do Practitioners Need? Busi-
ness Communication Quarterly, 60(4), 7-29.

Schultz, B., & Anderson, J. (1984). Training in
the Management of Conflict: A Communication
Theory Perspective. Small Group Behavior, 15,
333-348.

Strauss, A. L., & Corbin, J. M. (1998). Basics of

Qualitative Research: Techniques and Procedures
for Developing Grounded Theory. Sage.

Sutcliffe, A. (2003). Scenario-based require-
ments engineering. Paper presented at the IEEE
International Conference on Requirements En-
gineering.

Sutcliffe, A. G., Maiden, A. M., Minocha, S., &
Manuel, D. (1988). Supporting Scenario-Based
Requirements Engineering. IEEE Transactions
on Software Engineering, 24(12), 1072-1088.

Tebeaux, E., & Killingsworth, J. M. (1992). Ex-
panding and Redirecting Historical Research in
Technical Writing: In Search of Our Past. Techni-
cal Communication Quarterly, 1(2), 5-32.

Van Maanen, J. (1988). Tales of the Field: On Writ-
ing Ethnography. University of Chicago Press.

Speaking of Software

Victor, D. A. (1999). Using Scenarios and Vi- Williams, J. M., & Colomb, G. G. (1993). The
gnettes in Cross-Cultural Business Communi- Case for Explicit Teaching: Why What You Don’t
cation Instruction. Business Communication Know Won’t Help You. Research in the Teaching
Quarterly, 62(4), 99-103. of English, 27(3), 252-264.

97

98

Chapter VI
Novel Methods of Incorporating
Security Requirements
Engineering into Software
Engineering Courses and
Curricula

Nancy R. Mead
Software Engineering Institute, USA

Dan Shoemaker
University of Detroit Mercy, USA

Abs TRACT

This chapter describes methods of incorporating security requirements engineering into software engi-
neering courses and curricula. The chapter discusses the importance of security requirements engineering
and the relationship of security knowledge to general computing knowledge by comparing a security
body of knowledge to standard computing curricula. Then security requirements is related to standard
computing curricula and educational initiatives in security requirements engineering are described, with
their results. An expanded discussion of the SOUARE method in security requirements engineering case
studies is included, as well as future plans in the area. Future plans include the development and teaching
of academic course materials in security requirements engineering, which will then be made available
to educators. The authors hope that more educators will be motivated to teach security requirements
engineering in their software engineering courses and to incorporate it in their curricula.

INTRODUCTION abled by information technology (PITAC, 2005).

Nevertheless, eventhough software plays a pivotal
Exploitable defects in software pose a threat to role inensuring every sector of our economy, the
both our national security and our way of life. President’s Information Technology Advisory
That is because our critical infrastructure is en- Council (PITAC) found that “commonly used

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of 1GI Global is prohibited.

Novel Methods of Incorporating Security Requirements Engineering into Software Engineering Courses and Curricula

software engineering practices permit danger-
ous defects, which let attackers compromise
millions of computers every year” (PITAC,
2005, p. 39).

Most defects are the result of programming or
design errors (Jones, 2005). And such defects do
not have to be identified or actively exploited in
order to be a threat (Redwine, 2006). Yet, given
that unfortunate fact, PITAC still found that “cur-
rent commercial software engineering lacks the
rigorous controls needed to [ensure defect free]
products at acceptable cost” (PITAC, 2005, p.
39). And even worse, “In the future, the nation
may face even more challenging problems as ad-
versaries—both foreign and domestic—become
increasingly sophisticated in their ability to insert
malicious code into critical software” (Redwine,
2006, p. xiv).

In fiscal terms, the exploitation of defects
costs the U.S. economy an average of $60 billion
dollars per year (Newman, 2002). However, the
real concern lies in the fact that the exploitation
of a flaw in the software that underlies basic
infrastructure services like power and com-
munication could cause a significant national
disaster. The Critical Infrastructure Taskforce
sums up that likelihood in a single statement:
“The nation’seconomy is increasingly dependent
on cyberspace. This has introduced unknown
interdependencies and single points of failure. A
digital disaster strikes some enterprise every day,
[and] infrastructure disruptions have cascading
impacts, multiplying their cyber and physical
effects” (Clark, 2002, p. 6).

The generally acknowledged solution to the
problem of exploitable defects is more secure
practice inevery aspectof the acquisition, develop-
ment, and sustainment of software and software
artifacts. Nonetheless, “informed consumers have
growing concerns about the scarcity of practitio-
ners with requisite competencies to build secure
software” (Redwine, 2006, p. xiii).

Because of the key importance of capable prac-
titioners and the general lack of proper prepara-

tion, The National Strategy to Secure Cyberspace
— Action/ Recommendation 2-14 has mandated
the Department of Homeland Security (DHS) to
“promulgate best practices and methodologies
that promote integrity, security, and reliability in
software code development, including processes
and procedures that diminish the possibilities of
erroneous code, malicious code, or trap doors
that could be introduced during development”
(NIAC, 2003, p. 35).

It would seem to be a simple task to “identify
the necessary workforce competencies, leverage
sound practices, and guide curriculum devel-
opment for education and training relevant to
software assurance” (Redwine, 2006, p. Xiv.).
However, the problem is that security is not a
mature field, and so the teaching of security
topics is done in a number of disjointed places
within higher education. That includes “software
engineering, systems engineering, information
systems security engineering, safety, security,
testing, information assurance, and project man-
agement” (Redwine, 2006, p. Xiv).

Coherent knowledge about “software as-
surance processes and practices has yet to be
integrated into the body of knowledge of the
contributingdisciplines” (Redwine, 2006, p. xiv).
Too often, the result of this lack of integration is
the graduation of a software engineering student
who develops buggy code with weak security
measures.

It is both impractical and impossible to sim-
ply drop the whole body of software assurance
knowledge into a traditional computer curricu-
lum. Therefore it is necessary to adopt a focused
strategy and a clear starting point. One of the
logical places to start the integration process is
in an area that is vital to good security practice,
but which is also well established and important
to general development. That is security require-
ments engineering.

99

Novel Methods of Incorporating Security Requirements Engineering into Software Engineering Courses and Curricula

THE IMPORTANCE OF
REQUIREMENTs ENGINEERING

Itiswell recognized thatrequirementsengineering
is critical to the success of any major develop-
ment project (Addison, 2000; Carr, 2000; Hecht,
2000; Mead, 2006; Palyagar, 2004b). Several
authoritative studies have shown thatrequirements
engineering defects cost 10 to 200 times as much
to correct once fielded than if they were detected
during requirements development (Boehm, 2001).
Other studies have shown that reworking require-
ments defects on most software development
projects costs 40 to 50 percent of total project
effort, and the percentage of defects originating
during requirements engineering is estimated at
more than 50 percent (McGibbon, 1999; Mead,
2005h). The total percentage of project budget
due to requirements defects is 25 to 40 percent
(McGibbon, 1999; Mead, 2005h).

A recent study found that the return on
investment when security analysis and secure
engineering practices are introduced early in the
development cycle ranges from 12 to 21 percent,
with the highest rate of return occurring when the
analysis is performed during application design
(Soo Hoo, 2001). Thus the costs of poor security
requirements show thateven asmall improvement
inthisareawould provide ahighvalue. By thetime
that an application is fielded and in its operational
environment, it is very difficult and expensive to
significantly improve its security.

The Problem with Developing
security Requirements

Security requirements are often identified during
the system life cycle. However, the requirements
tend to be general specifications of the functions
required, such as password protection, firewalls,
and virus detection tools. Often the security re-
quirements are developed independently of the
rest of the requirements engineering activity and
hence are not integrated into the mainstream of

100

the requirements activities. As a result, security
requirements that are specific to the system and
that provide for protection of essential services
and assets are often neglected.

In reviewing requirements documents, we
typically find that security requirements, when
they exist, are in a section by themselves and
have been copied from a generic set of security
requirements. The requirements elicitation and
analysisthatis neededto getabetter set of security
requirements seldom takes place.

Much of the study of requirements engineering
research and practice has addressed the capabili-
ties that the system will provide. So a lot of atten-
tion is given to the functionality of the system,
from the user’s perspective, but little attention is
given to what the system should not do. In one
discussion on requirements prioritization for a
specific large system, ease of use was assigned
a higher priority than security requirements. Se-
curity requirements were in the lower half of the
prioritized requirements. This occurred in part
because the only security requirements that were
considered had to do with access control.

Current research recognizes that security
requirements are negative requirements. There-
fore, general security requirements, such as “The
system shall not allow successful attacks,” are
generally not feasible because there is no consen-
sus on ways to validate them other than to apply
formal methods to the entire system, including
COTS components. We can, however, identify
the essential services and assets that must be
protected. We are able to validate that mecha-
nisms such as access control, levels of security,
backups, replication, and policy are implemented
andenforced. We canalso validate that the system
will properly handle specific threats identified by
athreat model and correctly respond to intrusion
scenarios.

If security requirements are not effectively
defined, the resulting system cannot be effec-
tively evaluated for success or failure prior to
implementation. Security requirements are often

Novel Methods of Incorporating Security Requirements Engineering into Software Engineering Courses and Curricula

missing in the requirements elicitation process
and tend to be neglected subsequently. Inaddition
to employing applicable software engineering
techniques, the organization must understand
howtoincorporate the techniques into itsexisting
software development processes (Linger, 1998).
The identification of organizational mechanisms
that promote or inhibit the adoption of security
requirements elicitation can be an indicator of the
security level of the resulting product.

RELATING sECURITY
REQUIREMENTs PRACTICEs TO
CURRICULUM MODELs

Although data exists to support the benefit of
requirements engineering in general, the data
to specifically support the benefits of security
requirementsengineeringisanecdotal. Itisgener-
ally assumed that organizations could significantly
improve the security of their systems by utilizing
a systematic approach to security requirements
engineering. Nevertheless, it was also felt that
the first step in deciding how to integrate secu-
rity requirements engineering into the bodies of
knowledge of the contributing disciplines was
to understand the precise relationship between
security requirements practices and the cur-
riculum models for each field. Thus a study was
undertaken to specifically examine how security
requirements might best fit into the curriculum
requirements of all of the traditional computer
disciplines. That effort was materially aided by
the fact that the sponsoring societies of the three
most influential areas in higher education had
just finished their own comprehensive inventory
of those curricula.

The Authoritative baseline: CC2005
That study is the Computing Curricula 2005:

The Overview Report, which is commonly
called “CC2005.” CC2005 is fully endorsed by

each of the three bodies that prepared it, which
are the ACM, the IEEE Computer Society, and
the Association for Information Systems. The
intention of CC2005 was to “offer society a
practical vision of our shared field, of the vari-
ous disciplines within it, and of the meaningful
choices that face students, educators, and their
communities. The goal of thisreportistoarticu-
late the shared identity, the separate identities
of each” (JTCC, 2005, p. 8). In that respect,
CC2005 merges the recommendations for the
content and focus of Computer Engineering,
Computer Science, Information Systems, and
Software Engineering curricula into a single
authoritative digest.

Toaccomplishthis,aworking group of ACM,
IEEE, and AIS expertsreviewed the most current
curriculum models for each of the participat-
ing disciplines. The group then “compared the
contents [specified in the five model curricula] to
one another, and synthesized what [they] believe
to be the essential descriptive and comparative
information” (JTCC, 2005, p. 5). That analysis
produced 40 topic areas. These 40 topics are
considered to be the complete set of curricular
items appropriate for all five major comput-
ing disciplines. The report specifically states
that “each one of the five discipline-specific
curricula represents the best judgment of the
relevant professional, scientific, and educational
associations and serves as a definition of what
these degree programs should be and do”(JTCC,
2005, p. 5).

In addition to the 40 topic areas, which in
effect summarize all of the knowledge input to
the teaching and learning process, CC2005 also
provides a comparative view of the capabilities
that might be expected from graduates of each
degree program (JTCC, 2005). Thus, “besides
summarizing what a student will study, [the re-
port also]...summarizes the expectations for the
student after graduation” (JTCC, 2005, p. 28). In
some respects, the 60 capability goals were the
greatest help, since they imply knowledge that

101

Novel Methods of Incorporating Security Requirements Engineering into Software Engineering Courses and Curricula

would be necessary to produce a properly trained
profession. By referencing those outcomes, it
was possible to map a relationship between re-
quirements of secure practice and the associated
CC2005 curricular areas. It was also easier to see
the places where essential knowledge capabilities
are missing or where there was a misalignment
between the capability areas and the aims of the
discipline.

Comparison of s ecurity k nowledge
to General Computing k nowledge

We mapped the commonly recognized elements
of secure practice to the CC2005 recommenda-
tions for three of the five disciplines (covered
by the CC2005 analysis). Because of significant
overlap with non-computing disciplines (JTCC,
2005, p.11)—computerengineering withelectrical
engineering and IT with business—we omitted
the two disciplines that represent each end of the
spectrum.

Using the expedient of characterizing the
concentration of references by topic, the follow-
ing eight CC2005 topic areas had a significant
degree of required security knowledge associated
with them (> 100 references): (1) Requirements,
(2) Architecture, (3) Design, (4) Verification and
Validation, (5) Evolution (e.g., maintenance), (6)
Processes, (7) Quality, and (8) Project Manage-
ment.

Using the same criterion, the following three
CC2005topicareas had moderate security content
requirements (< 100): (1) Legal/Professional/
Ethics/Society, (2) Risk Management, and (3)
Programming Languages. Finally, there is some
requirement for security knowledge (< 10) ineach
of these thirteen areas: (1) Integrative Program-
ming (integrated), (2) Information Systems De-
velopment, (3) Complexity, (4) Human Computer
Interaction, (5) Operating Systems Principles &
Design, (6) Operating Systems Configuration &
Use, (7) Platform Technologies, (8) Algorithms,
(9) Graphics and Visualization (conceptualiza-

102

tion), (10) Software Modeling and Analysis, (11)
Database Practice, (12) Business Requirements,
and (13) Engineering Economics for SW.

There is no apparent relationship between se-
cure software assurance practice and (1) Manage-
ment of Information Systems Organizations, (2)
Systems Administration, (3) Systems Integration,
(4) Mathematical Foundations, (5) Interpersonal
Communication, (6) Organizational Theory, (7)
Decision Theory, (8) Organizational Behavior,
(9) Organizational Change Management, (10)
General Systems Theory, (11) Business Models,
and (12) Functional Business Areas.

In general these findings are no surprise, since
the aim of any form of security is to foster secure
practice in the development of software. Given
that aim, the concentration of recommendations
on the primary and supporting processes of the
software life cycle and on project management
should be expected. Forthe same reason, the areas
of moderate coverage also contain no surprises
except for the emphasis on the legal/profes-
sional/ethical and social aspects. The focus on
knowledge in those areas might be indicative
of the growing awareness that software vulner-
abilities carry significant legal, social, and ethical
implications.

The areas of “little” or “no” coverage tend
to be the curricular elements that are particular
to the specific disciplines in CC2005, computer
science, software engineering and information
systems. That tends to reinforce the conclusion
that the main focus for security education ought
to be on instilling best practice in software work
rather than within the various academic studies
of computing. Whether that implies a need for
the further development of security knowledge
is a matter of conjecture outside of the goals of
our research. However, it does point to the fact
that the current security knowledge would be
best integrated into the places in each discipline
where the elements of the software life cycle are
introduced. In many higher education applica-

Novel Methods of Incorporating Security Requirements Engineering into Software Engineering Courses and Curricula

tions, those would be called the “core” areas
rather than electives.

Another Way To Look at It: The
Fit Between Security and Desired
Outcomes

One ofthe more interesting aspects of the CC2005
report is the ranking by discipline of 60 funda-
mental competencies that might be expected of
a computer graduate. The list is exhaustive, and
because there is a difference in the type of em-
ployment for each discipline, there isa difference
in what is expected. Thus there is a different set
of presumed outcomes for computer scientists,
software engineers, and IS workers. Nevertheless,
one of the best ways of evaluating the useful-
ness and current application of the requirements
of secure practice is to see just how well those
match with the priority learning outcomes for
each discipline.

The 60 expected capabilities are the direct
consequence of the 40 learning topics. Therefore
each outcome was parsed to determine which of
the 40 topics could be specifically associated with
it. Then, once the number of related topics was
determined, the total references for each topic
were compiled for the outcome.

For instance, if the outcome was to “design a
user friendly interface,” there are 255 common
security topics associated with “design” and five
referencesto “human/computer interfaces.” That
is the limit of topics that could reasonably be as-
sociated with interface design, and so the total
number of security references for this outcome is
260. Since that is somewhere between moderate
and good coverage based on the average number
of references per topic, itmightbe said that there is
areasonable level of security knowledge involved
in proper interface design.

Because employment expectations are differ-
ent, each discipline withinthe CC2005reporthada
differentsetof priority capabilities associated with
it. Thus the capability requirements are different,

inthe sense thateach discipline assignsadifferent
level of importance to each of the 60 outcomes.
The CC2005 report uses six levels of importance
to characterize potential expectations: “highest
possible expectations,” “highest expectations,”
“moderate expectations,” “low expectations,”
“little expectations,” and “no expectations.”

We arrayed the desired outcomes for computer
science, information systems, and software en-
gineering into a single table and compared the
relative level of outcome expectations for each.
Not surprisingly, we found that the priority for the
sixty outcomes is different for computer science,
information systems, and software engineering
work. Specifically, we found that secure software
practice topics fit best with software engineer-
ing curricula and least with curricula associated
with computer science programs. That is not
surprising, since the intent of secure practice is
to specify knowledge that practitioners can apply
toreal-world problems, and software engineering
is probably the best aligned of the academic disci-
plines to that objective. The fact that information
systems programs, which are also practitioner
based, tend to score closer to software engineering
in their relationship to secure practice reinforces
this opinion.

Thus it would appear that the focus of secure
practice is less academic than it is practitioner
leaning. What that indicates is that it would
be easier to introduce the current content into
programs that are focused on applications and
methods than ones in which principles and math-
ematical representationare the primary curricular
focus. One other observation is that, although the
“moderate expectations” category does not reflect
priority areas of study in all of these disciplines,
itisoverwhelmingly the bestaligned category for
each discipline. What that might indicate is that,
although secure software assurance isalegitimate
area of study for all of these fields, it is not the
highest priority inany of them. Only in the case of
software engineering, whose curricular structure
is life cycle based, is there consistent alignment

103

Novel Methods of Incorporating Security Requirements Engineering into Software Engineering Courses and Curricula

above a moderate level of expectation between
curricular outcomes and the knowledge elements
associated with secure practice.

In terms of implementation, in each of these
curricula, the practitioner orientation and the
fact that security content is not the point of the
field tends to indicate that the courses in which
secure practice content would be most easily
integrated would be those that are designed to
provide students with knowledge about specific
life cycle activities such as specification, design,
and testing and assurance.

As a final note, the measurement process
used in this study (a raw count) is inherently less
accurate than expert contextual analysis of the
meaning of each knowledge element. Therefore a
more rigorous comparison should be undertaken
to better characterize the functional relationship
between the items in the CBK and the various
curricular standards.

INCORPORATING sECURITY
REQUIREMENTs ENGINEERING
INTO MAINsTREAM ACADEMIA

Once we had better understood the relationship
between the complete body of knowledge in
security and the curricular recommendations
for all computing disciplines, we were ready to
tackle the question of how security requirements
engineering is best presented in an academic
setting.

Thetypical undergraduate curriculumdoes not
provide much room for the addition of security
requirements engineering practices other than as
part of a project course that includes security re-
quirements. Thereare, however, anumber of ways
that security requirements engineering methods
could be incorporated into a software engineer-
ing curriculum (Mead, 2006). If an undergradu-
ate project included requirements development,
the students could be given an assignment to
identify (and implement) security requirements

104

along with other more traditional requirements.
This would occur in the early part of the project.
Alternatively, if the students did not develop the
project’s requirements, they could still be asked
to recommend security requirements.

At the graduate (master’s) level, it is much
easier to see how security requirements might
be addressed. This material could be part of a
requirements course or a course on development
of secure systems, with several lectures and an
exercise or case study on security requirements.
In a graduate level project course, the students
wouldtypically be developing requirements rather
than developing software based on pre-existing
requirements, so there would be opportunity to
insert this methodology in such a course. In that
instance the studentswould apply amethod suchas
SQUARE as part of their requirements gathering
process, andthe instructor could grade the students
on the quality of the security requirements and
on the success of the implementation.

Another possibility is to incorporate the
material into a course that is part of a security
specialty within a graduate level program in
software engineering or information systems.
Typically there are several courses on informa-
tion security, at least one of which deals with the
development of secure software. Discussion of
security requirements engineering could fit into
a series of lectures and case studies. Eventually
a half-semester or full-semester course could be
devoted to security requirements engineering.
This would also allow for a comparative study of
various techniques that have been developed to
support security requirements engineering.

security Requirements Engineering
Techniques

Areport by Mead et al., which focuses on surviv-
able requirements engineering, describes several
requirements engineering techniques (Mead,
2003). In the course of assembling an elicitation
framework and applying it to a software devel-

Novel Methods of Incorporating Security Requirements Engineering into Software Engineering Courses and Curricula

opment effort, several effective approaches to
security requirements engineering were identi-
fied, including

. Comprehensive, Lightweight Application
Security Process—CLASP—isanactivity-
driven, role-based set of process components
guided by formalized best practices. CLASP
is designed to help software development
teams build security into the early stages
of existing and new-start software develop-
ment life cycles in a structured, repeatable,
and measurable way. CLASP is based on
extensive field work by Secure Software
employees in which the system resources
of many development life cycles were de-
composed to create a comprehensive set
of security requirements. These resulting
requirements formthe basis of CLASP’s Best
Practices, which can enable organizations
to systematically address vulnerabilities
that, if exploited, can result in the failure of
basic security services (e.g., confidentiality,
authentication, and authorization). [http:/
www.owasp.org/index.php/Category:
OWASP_CLASP_Project]

. Security Quality Requirements Engineering
(SQUARE). This is aprocess aimed specifi-
callyatsecurity requirementsengineering. It
is described in detail later in this chapter.

. Core security requirements artifacts (Mof-
fett, 2004). This approach takes an artifact
view and starts with the artifacts that are
needed to achieve better security require-
ments. It providesaframework thatincludes
both traditional requirements engineering
approaches to functional requirements and
an approach to security requirements engi-
neering that focuses on assets and harm to
those assets. “From requirements engineer-
ing it takes the concept of functional goals,
which are operationalised into functional
requirements, with appropriate constraints.
From security engineering it takes the con-

cept of assets, together with threats of harm
tothose assets. Security goalsaim to protect
from those threats, and are operationalised
into security requirements, which take the
form of constraints on the functional require-
ments.”

. Misuse/abuse cases. A security “misuse”
case (Sindre, 2000; Alexander, 2003), a
variation on a use case, is used to describe
a scenario from the point of view of the at-
tacker. Since use cases have proven useful
in documenting normal use scenarios, they
canalso be usedtodocument intruder usage
scenarios, and ultimately to identify security
requirements or security use cases. Asimilar
concept has been described as an “abuse”
case. One obvious application of a misuse
case is in eliciting requirements. Since use
cases are used successfully for eliciting
requirements, it follows that misuse cases
can be used to identify potential threats
and to elicit security requirements. In this
application, the traditional user interaction
with the system is diagrammed simultane-
ously with the hostile user’s interactions.

Another useful technique is attack trees for
security requirements engineering (Ellison,
2003). Formal specification approaches to se-
curity requirements, such as Software Cost
Reduction (SCR) (Heitmeyer, 2000) have also
been useful.

INTEGRATING sECURITY
REQUIREMENTs INTO sTANDARD
CURRICULA

A number of approaches can be used for integrat-
ing security requirements into standard curricula.
At the National Institute of Informatics in Japan,
the Top SE program [Honiden, 2007] includes
security requirements engineering as part of
its curriculum. The Top SE program includes

105

Novel Methods of Incorporating Security Requirements Engineering into Software Engineering Courses and Curricula

discussion of misuse cases, TROPOS (Giorgini,
2007),and goal-drivenrequirementsengineering
(KAOS) (De Landtsheer, 2005). In addition there
is a case study based on the Common Criteria.

Case studies for security requirements engi-
neering and security engineering in general have
been used at the International Institute of Infor-
mation Technology, Hyderabad (Garg, 2006) as a
means of bridging the industry/university gap.

The Networked Systems and Survivability
(NSS) program at the Software Engineering
Institute has, over three academic semesters,
experimented with a novel technique to educate
students on the development of security require-
ments engineering for software systems (Mead,
2006). In three separate course projects, thirteen
students gained hands-on experience through case
studies involving real-world software develop-
ment projects. We present an expanded discussion
of these case studies below.

A set of academic lectures has also been
developed by the SEI for security requirements
engineering and SQUARE. These are being pi-
loted at University of Detroit Mercy and will be
refined and made available to interested faculty
elsewhere.

sQUARE CAsE sTUDIEs

Using the Security Quality Requirements Engi-
neering methodology (Mead, 2005a), the students
were able to understand the importance of security
requirements in software systems, as well as to
improve the security foundation of the client
projects with which they worked. In each study;,
the students were graduate students at Carnegie
Mellon University. All were enrolled in an infor-
mation security oriented curriculum, although
their primary focus varied between security
technology and information security policy.

106

Case study selection Process

The case study clients included industry and
government projects. Specifically they included
smallto medium-size companies inthe Pittsburgh
area, a Department of Homeland Security project,
and a Department of Defense project. Some of
the considerations in project selection were (1)
the ability to get access to key stakeholders in
the organization, (2) projects that were a reason-
able size for a one-semester project for a team of
three to five students, (3) projects that were either
new or major upgrades, although we did do some
retrogressive analysis of existing projects, and (4)
projects with a significant software development
component. Note that clients were often concerned
about the amount of time this would take, so we
needed to be very sensitive to the need to man-
age meeting time and other client interactions.
We also worked with a single point of contact on
the client end so that we were not perceived as
making constant demands on the time of large
groups of staff members. We typically started
with an overview briefing of the SQUARE pro-
cess, identified key client participants, and then
limited our interactions to only those participants
until we were ready to report results.

Overview of the s QUARE Process

Security Quality Requirements Engineering is a
model developed at Carnegie Mellon University
by Nancy Mead of the Software Engineering
Institute. The motivation behind SQUARE is to
see whether good requirements engineering pro-
cesses can be adapted specifically to the problem
of identifying security requirements. If this can
be done successfully, organizations will have the
ability to identify security requirements up front
rather than as an afterthought. The SQUARE
process provides a means for eliciting, categoriz-
ing, and prioritizing security requirements for
informationtechnology systemsand applications.
Note that while there is nothing unique about the

Novel Methods of Incorporating Security Requirements Engineering into Software Engineering Courses and Curricula

steps in the process, which have existed for many
years in requirements engineering, we have seen
relatively little evidence of their application to
security requirements and even less on whether
suchaprocessissuccessful for developing security
requirements.

Many of the existing methods that were
described earlier fit nicely into the SQUARE
process. These include misuse and abuse cases,
attack trees, and formal methods. Others, such as
the Common Criteriaand SCR, suggest their own
requirementsengineering process. The SQUARE
methodology seeksto build security conceptsinto
the early stages of the development life cycle. The
model may also be useful for documenting and
analyzing the security aspects of fielded systems
and could be used to steer future improvements
and modifications to these systems.

The process is best applied by the project’s
requirements engineers and security experts in
the context of supportive executive management
and stakeholders. We believe the process works
best when elicitation occurs after risk assessment
(Step 4) has been done and when security require-
ments are specified prior to critical architecture
and design decisions. Thus, critical business
risks will be considered in the development of
the security requirements.

The SQUARE steps are summarized below.
A detailed discussion of SQUARE and how to
apply it can be found in (Mead, 2005a).

Step 1: Agree on definitions
Input: Candidate definitions from IEEE and other

standards

Techniques: Structured interviews, focus group
Participants: Stakeholders, requirements team

Output: Agreed-to definitions

Step 2: Identify security goals

Input: Definitions, candidate goals, business driv-
ers, policies and procedures, examples

Techniques: Facilitated work session, surveys,
interviews

Participants: Stakeholders, requirements engi-
neer

Output: Goals

Step 3: Develop artifacts to support security
requirements definition

Input: Potential artifacts (e.g., scenarios, misuse
cases, templates, forms)

Techniques: Work session
Participants: Requirements engineer

Output: Needed artifacts: scenarios, misuse cases,
models, templates, forms

Step 4: Perform risk assessment

Input: Misuse cases, scenarios, security goals
Techniques: Risk assessment method, analysis
of anticipated risk against organizational risk

tolerance, including threat analysis

Participants: Requirements engineer, risk expert,
stakeholders

Output: Risk assessment results
Step 5: Select elicitation techniques

Input: Goals, definitions, candidate techniques,
expertise of stakeholders, organizational style,

107

Novel Methods of Incorporating Security Requirements Engineering into Software Engineering Courses and Curricula

culture, level of security needed, cost/benefit
analysis, etc.

Techniques: Work session
Participants: Requirements engineer
Output: Selected elicitation techniques
Step 6: Elicit security requirements

Input: Artifacts, risk assessment results, selected
techniques

Techniques: Accelerated Requirements Method
(ARM), Joint Application Development (JAD),
interviews, surveys, model-based analysis,
checklists, lists of reusable requirements types,
document reviews

Participants: Stakeholders facilitated by require-
ments engineer

Output: Initial cut at security requirements
Step 7: Categorize requirements as to level
(system, software, etc.) and whether they are
requirements or other kinds of constraints

Input: Initial requirements, architecture

Techniques: Work session using a standard set
of categories

Participants: Requirements engineer, other spe-
cialists as needed

Output: Categorized requirements
Step 8: Prioritize requirements

Input: Categorized requirements and risk assess-
ment results

108

Techniques: Prioritization methods such as AHP,
Triage, Win-Win, etc.

Participants: Stakeholders facilitated by require-
ments engineer

Output: Prioritized requirements
Step 9: Requirements inspection

Input: Prioritized requirements, candidate formal
inspection technique

Techniques: Inspection method such as Fagan,
peer reviews, etc.

Participants: Inspection team

Output: Initial selected requirements, documenta-
tion of decision-making process and rationale

Novel Aspects of SQUARE Case
Studies as a Learning Vehicle

In our academic case studies (Mead, 2006), the
students had a variety of backgrounds. Some had
a background in security and some had a back-
ground in software engineering or information
technology. However, none of the students had
experience in eliciting and documenting security
requirements for software systems. It is also the
case that they did not have experience working
with methods, such as SQUARE, that were un-
der development. The students therefore had to
develop two products to complete their course
requirements: (1) a document that was delivered
to the client proposing security requirements and
supporting artifacts for the client’s projectand (2)
a process document delivered only to the faculty
advisor. This second document described how
the students went about applying each step in the
process, whether it was easy or difficult to apply,
and how it could be improved on. In other words,
they were responsible for providing feedback to

Novel Methods of Incorporating Security Requirements Engineering into Software Engineering Courses and Curricula

both the client and the faculty advisor for the
purpose of improving the SQUARE process. To
that end, the project provided them with a unique
learning opportunity.

Evaluating the Work of the Students

It’s always a challenge to find fair ways of evalu-
ating the work of students who are working as a
team but receive individual grades. The grading
criteria that were used for the case study projects
were as follows:

Client Satisfaction (25%)

. Quiality of deliverables—reports, presenta-
tions, software, demonstrations.

. Significance of the team accomplishments.

. Quiality of interactions with the client.

. How well client expectations were met.

. Effectiveness in solving the client’s prob-
lem.

e Transparency—how easily the work prod-
ucts are understood.

. Ease of use and/or implementation of the
work products.

Peer Evaluation (25%)

. Extent to which peers (team members) con-
tributed to the overall project.

. Peer expectation management. (Did each
team member meet the expectations of
the team as a whole? Was the team kept
informed? Did each team member share the
workload? Was assistance provided to other
team members?)

. “Free riding.” (An individual team mem-
ber who does not deliver work products
as expected by the team or who does not
participate in team activities will receive a
measurably lower grade.)

Quality of the Deliverables—Reports, Pre-
sentations (30%)

. Significance of the accomplishments of the
team.

. Creativity and elegance in the final product
as delivered.

* Reports and presentations of high quality.

. Completeness of the final deliverables; all
deliverables delivered as required.

. Adherence to the project plan as modified
during the term.

. Proactively taking measures to ensure that
the project is on track.

. Prompt submissions of weekly individual
project status reports.

Project Management/Teamwork/etc. (15%)

e Advisorexpectationmanagement. (Wasthe
faculty advisor kept informed? Were sched-
uled meetings and telecoms attended?)

. Client expectation management. (How well
did the team manage the expectations of the
client?)

e Teamcohesion. (Did the teamwork together
effectively? Did theteamwork to bring along
the weaker members of the team? Did the
team perform as a unit in public?)

. Communication and coordination. (Were
communications made promptly and ef-
fectively?)

Other factors (5%)

. Personal growth of the team member.

. Extentto which the project fulfilled expecta-
tions of the MISM Program.

. Effort invested.

Students who met requirements—completed
the work assigned to them, delivered acceptable
products, participated in team meetings, advisor
meetings, and client meetings, and received ac-

109

Novel Methods of Incorporating Security Requirements Engineering into Software Engineering Courses and Curricula

ceptable peer reviews—could expectto earna B.
Students who made less contribution than this, in
terms of effort expended, failure to attend meet-
ings, failure todeliver work productsas promised,
or inability to do the technical work, received a
lower grade. Students who made a greater tech-
nical contribution to the accomplishments of the
team, delivered superior products, took on extra
work, and contributed constructively to meetings
and to team interactions got a higher grade.

Assessment of the Bene.ts of This
Approach

At present, we have only qualitative data con-
firming that the SQUARE approach is beneficial.
Many of the students have gone on to positions
in the security field and have indicated that the
case study work was very useful to them. Here
are comments from two students that we have
stayed in touch with.

Hassaniswith Ernst & Young: “Thereal-world
experience | gained from the SQUARE project
gave me the perfect set of information security
projectmanagementand budgeting skillsthat were
invaluable in my job at Ernst & Young.”

Eric is working as a software engineer with
the Space and Naval Warfare Systems Center
(SPAWAR), San Diego: “While working on the
SQUARE project with Dr. Mead, | took part in
several in-depth case studies involving organi-
zations of varying size and reputation. It was a
wonderful opportunity to get a feel for how real
companies develop and manage large IT proj-
ects. This insight, along with the security focus
of SQUARE, allowed me to hit the ground run-
ning here at SPAWAR with the security projects
we’re developing. Overall it was an extremely
valuable experience and I’m grateful that | was
involved.”

Also, we received the following testimonial
from a client that was a subject of the study: “Our
company operates in a lean, fast-paced, ever-
changing environment, and | had some reserva-

110

tions as to how much time we could spend in ac-
commodating the CMU graduate students’ project
goals and their busy schedules. I was impressed
with how well we coordinated efforts in setting
meeting dates, adheringto the schedule, and shar-
ing information with minimal inconvenience to
either side. Our company provided them with an
opportunity to assess amany-faceted product, and
they responded graciously by sharing the differ-
ent techniques they used to analyze the security
aspects of our application. Their results gave us
insight that has since influenced our application
development and configuration. It was a pleasure
working with the three separate groups and their
sponsor over the two-year period.”

FUTURE PLANs

Atpresentwe are piloting workshop and academic
course materials for security requirements engi-
neering. This material will be made available to
educators who wish to incorporate such topics
into software engineering courses. In addition,
we are doing further study of the coverage of the
software assurance body of knowledge in standard
software engineering curricula. As experience
with these approaches grows, our plans include
the gathering of more quantitative data to show
the benefit of the approaches we have discussed
here. It is our hope that in the future there will
be more synergy between software assurance and
software engineering education.

REFERENCEs

Addison, T., & Vallabh, S. (2000). Controlling
Software Project Risks — an Empirical Study of
Methods Used by Experienced Project Manag-
ers. KPMG.

Alexander, I. (2003). Misuse cases: Use cases with
hostile intent. IEEE Software, 20(1), 58-66.

Novel Methods of Incorporating Security Requirements Engineering into Software Engineering Courses and Curricula

Benzel, T. (1989). Integrating security require-
ments and software development standards.
In Proceedings of the 12th National Computer
Security Conference (pp. 435-458). Fort Meade,
MD: National Computer Security Center.

Boehm, B., & Basili, V. (2001). Software defect
reduction — Top 10 list. IEEE Computer, 34(1),
135-137.

Carr, J. J. (2000). Requirements engineering
and management: The key to designing quality
complex systems. The TOM Magazine, 12(6),
400-407.

Clark,R. A., & Schmidt, H. A. (2002). A national
strategy to secure cyberspace. Washington, DC:
ThePresident’s Critical Infrastructure Protection
Board.

De Landtsheer,R., & van Lamsweerde, A. (2005).
Reasoning about confidentiality at requirements
engineering time. In Proceedings of the 10th
European Software Engineering Conference held
jointly with 13th ACM SIGSOFT International
Symposium on Foundations of Software Engineer-
ing (pp. 41-49). New York, NY: ACM.

Ellison, R. J., & Moore, A. P. (2003). Trustworthy
refinement through intrusion-aware design (Tech.
Rep. No. CMU/SEI-2003-TR-002). Pittsburgh,
PA: Software Engineering Institute, Carnegie
Mellon University. Retrieved November 1, 2007
from http://www.sei.cmu.edu/publications/docu-
ments/03.reports/03tr002.htmi

Garg, K., & Varma, V. (2006). Security: Bridging
the academia-industry gap using a case study. In
XIII Asia Pacific Software Engineering Confer-
ence Proceedings (pp. 485-492). New York, NY:
IEEE Computer Society Press.

Giorgini, P., Mouratidis, H., & Zannone, N. (2007).
Modelling Security and Trustwith Secure Tropos.
Integrating Security and Software Engineering:
Advances and Future Visions, 160-189. Hershey,
PA: IGI Global.

Hecht, H., & Hecht, M. (2000). How reliable are
requirements for reliable software? Software
Tech News, 3(4). Retrieved May 31, 2007 from
http://www.softwaretechnews.com

Heitmeyer, C., & Bharadwaj, R. (2000). Applying
the SCR requirements method to the light control
case study. Journal of Universal Computer Sci-
ence, 6(7), 650-678.

Honiden, S., Tahara, Y., Yoshioka, N., Taguchi,
K., & Washizaki, H. (2007). Top SE: Educating
superarchitects who can apply software engineer-
ing tools to practical development in Japan. In
Proceedings of 29th International Conference on
Software Engineering (ICSE’07) (pp. 708-718).
New York, NY: IEEE Computer Society.

Joint Taskforce for Computing Curricula (JTCC)
2004. (2004). Software Engineering 2004 Cur-
ricular Guidelines for Undergraduate Programs
in Software Engineering. New York, NY: ACM
and IEEE.

Joint Taskforce for Computing Curricula (JTCC)
2005. (2005). Computing curricula 2005: The
overview report. New York, NY: ACM and
IEEE.

Jones, C. (2005). Software quality in 2005: A
survey of the state of the art. Marlborough, MA:
Software Productivity Research.

Konieczka, S. (2003). Predictable releases: The
key to quality software. Boulder, CO: SCM Labs,
Inc. Retrieved November 1, 2007 from http://www.
stickyminds.com/

Kuehl, C. S. (2001, October). Improving system
requirements quality through application of an
operational conceptprocess: An essential element
in system sustainment. Paper presented at NDIA
4th Annual Systems Engineering Conference,
Dallas, TX. Retrieved November 2, 2007 from
http://www.dtic.mil/ndia

111

Novel Methods of Incorporating Security Requirements Engineering into Software Engineering Courses and Curricula

Kumar, R. L. (2002). Managingrisksin IT projects:
An options perspective. Information & Manage-
ment, 40(1), 63-74.

Lauesen, S., & Vinter, O. (2001). Preventing
requirement defects: An experiment in process
improvement. Requirements Engineering, 6(1),
37-50.

Linger,R.C.,Mead, N.R., & Lipson, H. F. (1998).
Requirements definition for survivable systems. In
Third International Conference on Requirements
Engineering (pp. 14-23). Los Alamitos, CA: IEEE
Computer Society.

McGibbon, T. (1999). 4 business case for soft-
ware process improvement revised. \Washington,
DC: DoD Data Analysis Center for Software
(DACS).

Mead, N. R. (2003) Requirements Engineering
for Survivable Systems (Tech. Rep. No. CMU/
SEI-2003-TN-013). Pittsburgh, PA: Software En-
gineering Institute, Carnegie Mellon University.
Retrieved November 2, 2007 from http://www.
sei.cmu.edu/publications/documents/03.reports
/03tn013.html

Mead, N. R., Hough, E. D., & Stehney, T. R. Il
(2005a). Security quality requirements (SQUARE)
methodology (Tech. Rep. No. CMU/SEI-2005-
TR-009). Pittsburgh, PA: Software Engineering
Institute, Carnegie Mellon University. Retrieved
November 2, 2007 from http://www.sei.cmu.
edu/publications/documents/05.reports/05tr009.
html

Mead, N. R., & Stehney, T. R. II. (2005b, May).
Security quality requirements engineering
(SQUARE) methodology. Paper presented at the
meeting of the Software Engineering for Secure
Systems (SESS05), ICSE 2005 International
Workshop on Requirements for High Assurance
Systems, St. Louis, MO.

Mead, N. R., & Hough, E. D. (2006). Security
requirements engineering for software systems:

112

Case studies in support of software engineering
education. In Proceedings of the 19th Conference
on Software Engineering Education and Training
(pp. 149-158). Los Alamitos, CA: IEEE Computer
Society Press.

Moffett, J. D., Haley, C. B., & Nuseibeh, B. (2004).
Core Security Requirements Artefacts (Technical
Report2004/23, ISSN 1744-1986). UK: The Open
University. Retrieved November 2, 2007 from
http://mcs.open.ac.uk/computing-tr/

National Infrastructure Advisory Council
(NIAC). (2003). National strategy to secure cy-
berspace. Washington, DC: U.S. Department of
Homeland Security.

Newman, Michael. (2002). Software errors cost
U.S. economy $59.5 billion annually. Gaithers-
burg, MD: National Institute of Standards and
Technology (NIST).

Palyagar, B. (2004). Measuring and influencing
requirementsengineering process quality. In Pro-
ceedings of AWRE 04, 9th Australian Workshop on
Requirements Engineering. Retrieved November
2, 2007 from http://awre2004.cis.unisa.edu.au/

Palyagar, B. (2004). A framework for validating
process improvements in requirements engineer-
ing. Retrieved November 2, 2007 from http:/mww.
ics.mg.edu.au/~bpalyaga/papers/palyagar_b.pdf

President’s Information Technology Advisory
Committee (PITAC). (2005). Cybersecurity: A
crisis of prioritization. Arlington, VA: Executive
Office of the President, National Coordination
Office for Information Technology Research and
Development.

Redwine, S. T. (Ed.). (2006). Software assurance:
A guide to the common body of knowledge to
produce, acquire and sustain secure software,
version 1.1. Washington, DC: U.S. Department
of Homeland Security

Regnell, B., & Beremark, P. (1998). A market
drivenrequirementsengineering process—Results

Novel Methods of Incorporating Security Requirements Engineering into Software Engineering Courses and Curricula

from industrial process improvement program.
Retrieved November 2, 2007 from http://www.
tts.Ith.se/Personal/bjornr/Papers/CEIRE98-REJ.
pdf

Sawyer, P., Sommerville, 1., & Viller, S. (1997).
Requirements process improvement through the
phased introduction of good practice. Software
Process Improvement and Practice, 3(1), 19-34.

Shoemaker, D., Mead, N. R., Drommi, A., Bailey,
J., & Ingalsbe, J. (2007). SWABOKs fitto common
curricular standards. In Proceedings of the 20th
Conference on Software Engineering Education

and Training. Los Alamitos, CA: IEEE Computer
Society Press.

Sindre, G., & Opdahl, A. (2000). Eliciting security
requirements by misuse cases. In Proceedings of
TOOLS Pacific 2000 (pp. 120-130). Los Alamitos,

CA: IEEE Computer Society Press.

Soo Hoo, K., Sudbury, A. W., & Jaquith, A. R.
(2001). Tangible ROI through secure software
engineering. Secure Business Quarterly, 1.

Zave, P. (1997). Classification of research efforts
in RE. ACM Computer Surveys, 29(4), 315-321.

113

Section IV
Project-Based
Software Engineering

115

Chapter VI

The Software Enterprise:
Preparing Industry—Ready
Software Engineers

Kevin A. Gary
Arizona State University, USA

Abs TRACT

“You can't teach experience” — but you can sure try. At the Polytechnic Campus of Arizona State Uni-

versity, we are developing a learning-by-doing approach for teaching software engineering called the

Software Enterprise. The Capstone experience is extended to two one-year projects and serves as the

primary teaching and learning vehicle for best practices in software engineering. Several process features

are introduced in an attempt to make projects, or more importantly the experience gained from project

work, more applicable to industry expectations. At the conclusion of the Software Enterprise students

have an applied understanding of how to leverage software process as a tool for successful project evo-

lution. This chapter presents the Software Enterprise, focusing the presentation on three novel aspects:

a highly iterative, learner-centered pedagogical model, cross-year mentoring, and multiple projects as

a novel means of sequencing learning objectives.

INTRODUCTION

Students must emerge from a “write-a-program-
get-a-grade” mentality to a “follow-a-process-pro-
duce-a-deliverable” mentality (and eventually to
“use-and-improve-processes-to-solve-customer-
problems”). This evolution from learner to prac-
titioner is a cultural mindset even at the personal

level. Junior professionals are confronted with
real-world situations immediately after graduat-
ing and entering the workforce. Professionalism
challenges junior engineers in a different way
than academic ethics. Junior professionals can
gain professionalismthrough formal and informal
mentoring relationships in professional settings
such as internships, but we should not rely solely

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

on industry to accept this burden; we must incor-
porate it into the learning environment.

The Software Enterprise, introduced four
years ago in the Division of Computing Stud-
ies at Arizona State University’s Polytechnic
campus (ASU Poly), is our attempt at preparing
new graduates for the software profession. In the
model of a polytechnic, an increased emphasis is
placed on hands-on practice over pure scientific
study. The mechanism chosen for thisapproach is
the Capstone project, which traditionally focuses
on one or two semester projects required at the
conclusion of the undergraduate degree program.
The Capstone project, an inherited requirement
from engineering disciplines, is often considered
more a “rite of passage” than a teaching and
learning opportunity. We contend the Capstone
experience provides a great opportunity to be the
primary teaching and learning model in software
engineering. Our solution is a learn-by-doing
model called the Software Enterprise.

The Software Enterprise isone part “evolution”
and one part “revolution.” It leverages some of
the better practices we have seen from the mul-
titude of Capstone software engineering projects
published over the past decade. In particular,
mentoring relationships within student teams are
emphasized, as is a careful sequencing of course
and project topics. The Software Enterprise also
presents a novel pedagogical model geared to
accelerate students’ comprehension of software
engineering. This combination of old and new is
wrapped in an applied learning program so as
to better prepare new graduates for the software
engineering profession.

This chapter is organized as follows. The next
section motivates the need for the Enterprise by
discussing some perceived shortcomings of new
computing graduates. The pedagogical innova-
tion of the Enterprise is presented next, followed
by a detailed description of how the pedagogy
is implemented at ASU Poly. We conclude with
an ongoing evaluation of the Enterprise and a
summary.

116

The Software Enterprise

bACk GROUND AND MOTIVATION

Software engineerranksas one of the fastest grow-
ingoccupations (U.S. BLS, 2007) with the highest
median salary (Morsch, 2006). Unfortunately,
many employers consider new graduates unpro-
ductive, while atthe same time those graduates feel
unprepared for thatfirstjob. Traditional computer
science education is criticized as outdated, too
theoretical, and too fractured. As educators, we
should do a better job preparing new graduates
for what lies ahead. We should expose students to
the true nature of today’s computing challenges,
strive to ground students in fundamental theory,
and provide them the modern tools a modern
discipline requires.

The Software Enterprise uses a bottom-up ap-
proachtoincorporating process best practicesand
process models viaa multi-year Capstone experi-
ence. Examplebest practices include configuration
management, unit testing, and code inspections
for software development. By software process
models we mean the incorporation of accepted
process models as a mechanism for teaching and
learning software construction, maintenance, and
projectmanagement. The ability to identify issues,
analyze risks, debate, create consensus, and work
within a team are examples of managerial skills
software engineers require perhaps more than
other engineering disciplines due to the unique
challenges in developing software products. We
also contend there is more in the intersection of
emphasizing process execution and project man-
agement skills than is given proper due. In other
words, how doesalearning facilitator demonstrate
the need for process structure while at the same
time mentor students on the judgment needed to
know when to alter the current process instance
to ensure project success?

The approach in the Software Enterprise is
to provide a process structure, and then give
teams “just enough rope” to resolve their own
process-related issues. We do this in several ways.
Traumatic “real-world events” are injected dur-

The Software Enterprise

ing project execution that force teams to exercise
soft-skills while at the same time leveraging their
process. Project teams force seniors to mentor
juniors, providing a mentoring communication
model. Students engage in reflective learning to
identify the most appropriate process techniques
andare askedto explainwhy they chose to employ
these techniques over others available.

In our personal experience in industry and
in discussions with industry advisors to our pro-
grams, a significant issue for employers hiring
new graduates is that graduates are ill-equipped
to practice the profession. Many students can
manage to get good grades in software engineer-
ing classes, but when confronted with a software
system of industry-level complexity, can they put
thatknowledge into practice? Itis our opinion that
often they cannot. We believe the culprit here is
the traditional curricular pattern often adopted
by software engineering programs shown in
Figure 1.

The traditional model, following the general
curricular patterns prescribed inthe SE2004 guide
(Association for Computing Machinery [ACM] &
The Institute for Electrical and Electronic Engi-
neers Computer Society [IEEE-CS], 2004) asks
students to first take a breadth-oriented survey-
of-the-field style course (or courses) that exposes
them to a breadth of engineering practices and
processes but typically lacks depth in any given
area. The results are students who can recite the
basic principles, but who lack the comprehension
toapply them. These types of courses are then fol-
lowed by courses that delve into a specific process
topic in significant depth, for example a Software
Design or a Software Quality Assurance course.
These courses focus on deep skills development
within the narrow process area. Students then
complete the program with the capstone project,
which asks them to apply this knowledge in
a full semester project. This approach suffers
from a “toy problem effect.” Many students do

Figure 1. Traditional software engineering curricular pattern

Intro to
Programming

Breadth-oriented
Software Eng.

//

A&D

Praject
V&V Mgmt

N/

Capstone
Project

117

not get exposure to the full engineering process
spectrum in a manner that allows them to apply
the deeper skill sets they may have developed in
a particular area. The results are students who
can claim knowledge of a particular skill, but lack
the context in which to apply this knowledge. A
typical conversation an interviewer might have
with a graduating student might be “well, yes |
did a few use cases in my Software Requirements
class, but no | have not done one of that size nor
do I understand how to use that model to drive
analysis and test planning.”

THE sOFTWARE ENTERPRISE

We propose a new methodology for evolving a
student’s competencies from knowledge to com-
prehension to applied knowledge by co-locating
lectures, problem-centered learning, and complex
process planningactivitiesintime. In other words,
disseminate information, immediately follow with
problem-centered learning techniques, and then

The Software Enterprise

ask the student teams to apply the knowledge
within an ongoing project instance that follows a
specified process. The result is a highly iterative
methodology for evolving the student’s competen-
cies in a rapid fashion (Figure 2).

Contrast this model with the traditional soft-
ware engineering instruction model shown in
Figure 1.

We believe the Enterprise method of cou-
pling disseminated knowledge to skills practice
to incorporated process tasks leads to quicker
comprehension and applied knowledge than the
traditional model. We refer to thismodel as an “It-
erative Instructor-facilitated, Learner-centered”
model. Learners are responsible for individual
study readings and exercises, for working indi-
vidually or in small teams on problem-centered
learning exercises, and for participating in
complex projects under specified process roles
(role playing). Instructors are responsible for dis-
seminating knowledge via lectures and as a filter
for reference content (research articles, industry
publications, online searches, etc.). Instructors

Figure 2. Iterative instructor-facilitated learner-centered model © 2006 ASEE. Used with permission.

Learning
Module

118

Ap iicatiu !

The Software Enterprise

are responsible for crafting scripted exercises that
allow for practice of specific skills. Instructors
are also responsible for “coaching” teams and
providing a context for projects. For example,
the instructor serves the external roles of Senior
Management and Technical Consultant for the
current set of projects.

ENTERPRISE sEQUENCE
IMPLEMENTATION

Thissectiondescribesthe implementation details
used at ASU Polytechnic from studentand faculty
perspectives.

student Curricular and Project
Trajectories

The curricular topics covered in the Enterprise
sequence are given in Table 1.

The Software Enterprise calls for two one-year
projectsthatastudent participates insequentially.
This sequence is shown in Table 2.

A student entering the Enterprise sequence
begins by taking a Tools and Process course.
In this course a student gains exposure to a set
of tools that support the software process. This
includes IDEs, data gathering and analysis tools
(metrics), testing (unit, system, integration, and
performance), build and deployment, and docu-
mentation. There is also a significant PSP com-
ponent to train new students on how to account
for time and defect injection rates. First semester
students are currently asked to participate in
requirements and design reviews plus prototype
development during the second half (elaboration
phase) of the Fall semester with the senior-level
students (the first and third semester courses are
scheduled at the same time).

The student’s second semester (Spring Year
1 in Table 2) is spent in Construction and Tran-
sition. Students spend significant time develop-
ing the software according to specific project

requirements. Students are also responsible for
verification and validation activities against the re-
quirements, and for transitioning activities suchas
packaging, deployment scripts, performance and
scalability testing, and product documentation.
Students are managed and mentored by students
completing the fourth semester of the sequence.
The completion of this semester also marks the
completion of the student’s first project.

In the third semester (Fall Year 2 in Table
2), a student begins a new project by starting
with Inception and Elaboration. Students elicit
requirements, create a vision document, docu-
mentrequirements, performrequirementsanalysis
resulting in a logical model of the system, and
construct an initial architecture realized both in
code (User Interface and Architectural prototypes)
and in an architecture description document.
These artifacts serve as the input products for
the Spring semester’s Construction and Transi-
tion phases.

In the fourth and final semester (Spring Year
2 in Table 2) of the Enterprise sequence, a student
serves as a process/project manager, quality as-
surance manager, or chief architect. As process
manager, fourth semester students are responsible
for process planning, process monitoring, and
process changes. Fourth semester students are
responsible for writing the test and deployment/
release plans for their software products. Each
studentis responsible for one or more projectsand
one or more resources (the students in semester
two). Fourth semester students are also respon-
sible for ensuring the construction follows the
architecture set forth in the Fall semester by the
architecture document, or for managing changes
to the architecture if they are desired.

Importantly, year 1 students act the learning
role of mentors to year 2 students (i.e. seniors
mentor juniors). This arrangement allows up-
perclassmen to mentor lower-division students
in a highly interactive manner. For example, the
Construction and Transition activities of second
semester participants are planned, estimated,

119

and tracked by fourth semester students. Year 2
studentsintheEnterprisea somentor inthesense
they completed Year 1 and assuch understandthe
exact situations these students face. Co-located
weekly lab meetings facilitate collaborative and
mentoring relationships.

The sequencing of topics and courses shown
in Tables 1 and 2 is done for practical reasons.
Course 1 Tools and Process, is a tool-centric
course that indoctrinates first semester juniors

Table 1. Software enterprise curricular topics

The Software Enterprise

intotheEnterprise. Atthispointintheir academic
careers, first semester juniors (in our program at
least), have not relied heavily on tools and have
not exercised thefull range of software engineer-
ing activities, at |east on ascal ableteam-oriented
project. These students are given a light introduc-
tion to concepts and a heavy emphasis on tools.
For example, build management isatopic covered
using Apache’s Ant tool (ant.apache.org). To
most students at this level, a multiple (many) file,

Course 1: Tools & Process
Intro to PSP

Course 2: Construction & Transition
GUI development

Using an IDE

Software Construction

Build Management

Unit Testing Concepts

Use case diagrams

Test-driven devel opment

Unit testing Defensive Programming
Functional testing Refactoring

Metricstools Code Reviews

CM tool Static/dynamic code analysis

Configuration Management

Course 3: Inception & Elaboration

Software Lifecycle Process

Professionalism & Ethics
Course 4: Process & Project Management
Software Development Planning

Requirements Engineering

Task Identification / WBS

Requirements Documentation

PERT, Critical Path Analysis

Requirements Elicitation

Task Scheduling / Gantt charts

Use Cases Estimation
User Stories Risk Management
Requirements Quality Inspections

Requirements Analysis

Verification and Validation

RUPAnaysis Test Planning
Structured Analysis Test Script Writing
Usability Release Management
Requirements Management Postmortem

Table 2. Software enterprise student participation trajectory

Year in Sequence ProsecT FaLL SPRING
Year 1 (Juniors) 1 Course 1 Course 2
Year 2 (Seniors/Graduates) 2 Course 3 Course 4

120

The Software Enterprise

many package compilation and assembly process
based on 3" party components (jars) is a new
experience, at least on a scalable level. Course 1
focuses on proficiency in Antto complete “builds”
and “deployments,” even in lieu of a complete
comprehension of component-based software
engineering. Our objective is to get students to
thinkintermsof building and deploying software
instead of merely compiling and running it. This
approach to Course 1 is out of practical necessity,
and results in a situation where these students are
gently broughtintothe projects; they are notturned
loose from week 1. Note that most of the topics
in Course 1 are revisited for greater conceptual
depth later in the sequence.

Course 2 coverstopicstypically notincluded in
traditional computing programs, but ones we be-
lieve essential to becoming a better programmer.
The foundation of most topics in Course 2 comes
fromthe Agile community, where code-level qual-
ity best practices are emphasized more than in
other process models. Lectures in Course 2 cover
conceptual foundations, while lab sessions put the
concepts into practice. For example, the Configu-
ration Management topic includes concepts like
codeline quality thresholds, codeline branching
patterns, and connectionsto release management;
the lab has students create sandboxes, perform
checkouts, updates, and merges. Course 2 students
play the role of software developer, configuration
manager, and build manager on project teams,
so these concepts are put directly into practice.
Whereas Course 1 gradually migrates students
toward the pedagogical model shown in Figure
2, Course 2 follows it exactly.

Course 3 resembles requirements courses in
many computing programs with any reasonable
emphasis in software engineering; however the
Enterprise course emphasizesthe communication
and understanding over specification. Significant
time (more than half a semester) is spent on the
convergentpipeline from businessideatorequire-
mentsdiscovery to prioritized requirements iden-
tified through an iterative refinement process. The

refinement process is particularly key, as teams
are asked to repeatedly revisit requirements for
clarity and maturity, expressed in terms of the
quality attributes from the IEEE-830 standard
(IEEE-CS 1998). Reflective learning is perhaps
most importantin this course, asstudents come to
realize the process of elicitingand communicating
requirements is not as simple as walking in and
asking a project sponsor what they want.

Course 3 has the most curricular content,
and the sheer breadth and depth of the material
is challenging to cover for faculty and absorb for
students. For students, this is their firstexposure to
a topic for which there is no concrete answer; re-
quirementsremainaprimarily subjective process.
This is particularly acute in the Enterprise due to
the emphasis on communication (elicitation) and
understanding (translation to architecture) over
merely learning a set of specification notations
and document formats. We also note, based on
anecdotal observationsand projectgrades, foreign
studentstendtostruggle insuchacourse. We sug-
gestthis is due to the lecture-oriented push model
prevalent in these cultures, and conclude that this
makes such a course an even more important
component of their educational experience.

By the time students reach Course 4, they are
fully immersed in the Enterprise, meaning they
are able to draw on the experiences of the previ-
ous 3 courses. They tend to be highly motivated
to excel on their projects and take true ownership
of the deliverables. Obstacles related to adapting
to the pedagogical model are completely absent
at this point, as students are now accustomed to
rapid exposure and integration of new concepts.
One common phenomenon in this course is stu-
dents complain that they wish they knew of the
techniques covered earlier, particularly in project
management. Throughout the first 3 courses stu-
dents organize team activities using a “common
sense” approach, meaning they rely on ad hoc
planningand monitoring techniques. Thisisdone
on purpose so that students understand the utility
and importance of these techniques and the chal-

121

lenges in the job of a project manager. The goal is
to combat the stereotype of a project manager’s
job as lacking in complexity, and “not as hard as
the technical stuff.” Course 4 students ultimately
take ownership of the projects; while Course 3
tasks include identifying all stakeholders, Course
4 students are truly beholden to them.

Faculty Perspective and Logistical
Issues

This section covers many of the important logis-
tical considerations faculty face in the Software
Enterprise.

Selecting a Process Lifecycle Model

The Software Enterprise uses a process meta-
model to constrain process planning and pro-
cess lifecycle model execution. The Software
Enterprise constrains projects to use one process
meta-model (a higher-order process model that
may incorporate specific lifecycle models and
process practices). This keeps major release points
in synch across teams, and provides a basis for a
higher-level of decision-making than exercised
by projects constrained to a specific process
lifecycle model. Process meta-models considered
were the Personal/Team Software Process (PSP/
TSP) (Humphrey 1997; Humphrey 2000), Agile
methods specifically extreme programming (XP)
(Beck 2000) the Rational Unified Process (RUP)
(Krutchen2000), and the Spiral/Theory-W model
(Boehm et. al. 1998).

Ourdecisionwasto use the RUP asthe process
meta-model for the Software Enterprise. We do
incorporate aspects of the Win-Win Spiral model
where relevant, such as risk analysis, risk man-
agement, phase boundary planning, prototyping,
and negotiation. Though “borrowing” activities
from the Spiral model, the RUP model is used
due to current tool support, availability of texts
and other supporting materials, definition of a
collaborative model with team roles, and inclu-

122

The Software Enterprise

sion of a Transition (deployment) phase. It also
helps that RUP’s four phases line up better on
semester boundaries than the reentrant nature of
the Spiral model.

We decided against using Agile/XP methods
at the process meta-model level. Logistically,
students do not spend enough time on a single
course to allow for the daily interactions needed
for XP (Umphress, Hendrix, & Cross, 2002). More
importantly, there is too much of a reliance on ex-
perience and constant integration to provide asuit-
able framework for student learning of software
engineering in a project setting. Stated another
way, many XP projects are successful due to the
ability and experience of the engineers involved
and their proximity to constantly collaborate.
Students simply do not have the skill level or
the consistent schedule needed to be successful
with an Agile meta-model. However, many Ag-
ile methods, specifically XP, are very helpful in
identifying practices useful during software con-
struction, and we incorporate problem-centered
learning modules based on these practices during
the second semester (Construction & Transition)
of the Enterprise sequence. Useful XP practices
include refactoring, test-driven development, pair
programming, metrics for evolution, configuration
management, customer walkthroughs, frequent
integration, and estimating velocity.

We also decided not to use the PSP/TSP at the
software lifecycle level. After reviewing the text-
book materials (Humphrey 1997; Humphrey 2000)
and online materials (Carnegie Mellon 2005) for
these processes and reviewing the literature for
examples of their application for software engi-
neering education (Borstler et. al. 2002; Hilburn
& Humphrey, 2002; Sebern 2005), we considered
them simply too burdensome to introduce at the
lifecycle model level. The PSP/TSP lacks the flex-
ibility of RUP and the Spiral model at the process
meta-level. Inaddition, the method foremploying
it implies a take-it-or-leave-it approach. Because
we could not decouple PSP/TSP activities from
each other cleanly, we also did not employ indi-

The Software Enterprise

vidual PSP/TSP modules into the sequence in the
same way as we employ XP practices discussed
above. However, as we describe below, we eventu-
ally did find it important to leverage the PSP for
first-year Enterprise participants.

Project Process Logistics

Projects proceed initerations. Dates for iterations
are set by the facilitator and typically run three
weeks. Iterationsare necessarytoensurethereare
well-defined synchronization and feedback points
during project execution. Teams are required to
indicate expectations for the iteration on aweekly
status report, which includes progress on deliv-
erables, schedule, and risks addressed. At the
conclusion of an iteration teams are expected to
revisit these expectations and indicate how well
reality matched expectations, and do a simple
causal analysis explaining any major deviations.
This is a simple yet effective form of reflective
learning.

The structure the Enterprise adopts is moti-
vated by aneed to give students enough processto
guide them, while leaving certain details forteams
to work out. This approach has worked for other
project-oriented courses inthe literature (Frailey,
2006; Umphress, Hendrix, & Cross, 2002). In
particular, teams are presented best practices
from a variety of software lifecycle models and
asked to choose which ones they wish to apply
for a given task. For example, SRS documents
may or may not include use case analyses, user
stories, or structured analysis artifacts such as
structure charts or P-specs. Teams must submit
a “rationale” document and give a presentation at
the end of each phase that explains why they used
particular techniques and did not use others. One
may argue that in doing so we reduce the utility
of the process model as a whole, and this may
be the case. But we believe it is more important
for students to assess best practices, exercise
judgment in selecting practices, and reflect on
the decisions than it is to prescribe practices by

rigidly adhering to a specificmodel. Instead of rote
execution of a prescriptive process, teams must
identify situations and determine the path that will
lead to success. Thismimics our understanding of
industry best practices by incorporating aprocess
framework but customizing best practices to the
project instances.

This is a difficult approach to integrate into
curricula for several reasons. Most process
practices are fairly coupled to a specific process
model, meaning you cannot mix and match best
practiceswithin other models easily. Forexample,
RUP test case planning is use case driven. XP
planning game estimation is tied to attributes
sketched on user story cards. As a corollary,
most software process-related teaching material
presents best practices from the perspective of
a specific process. We have not identified a text
(we currently use (Leffingwell & Widrig 2003)
for Inception and Elaboration, and (McConnell
2004) for Construction and Transition) that pres-
ents, in a suitable way, a detailed cross-section
of best practices from all the major software
process models.

Identifying Good Projects

A significant amount of prep work is required to
identify good projects (and good project sponsors),
and then match student teams to those projects.
The ideal project for the Software Enterprise is
onethat (1) comes from off-campus, (2) sponsored
by a project manager, (3) based technologically
off an existing solution or set of solutions, and (4)
vaguely defined. We arrived at these ideals through
trialanderror,and acknowledge these idealsarein
fact idealistic; no single project ever fully attains
them. These ideals are discussed next.

The best projects do not necessarily come
fromindustry, but the best projects do come from
off-campus. Some Enterprise projects have been
sponsored off-campus by other academic institu-
tions, most notably Mesa Community College and
ASU’s University Technology Office (located ona

123

different campus). Several industry projects have
chosen to meet primarily on-campus, often as the
industry sponsor’s excuse to “get out of the office.”
It is the student teams that need to be removed
fromtheir comfort zone. By conducting customer
meetings at the customer site, student teams are
much more cognizant of the business realities of
the sponsoring organization, and as a result are
better prepared and more professional. Inasense,
it forces teams to act as service organizations
(Poole, 2003). The Software Enterprise identi-
fies project sponsors through personal industry
contacts and industrial advisory boards. Only
after off-campus sponsors are accounted for are
on-campus sponsors considered.

The best projects are sponsored by project
managers, especially those with limited software
development expertise. Sponsors with significant
technical expertise are often too eager to solve
problems for the team, and also tend to not express
requirements but instead define technical tasks.
This is particularly evident in Course 3, where
project teams are charged with eliciting require-
ments, prototyping, and defining architecture.
Theseactivitiesare amongst the mostchallenging
tostudents. While certainly some benefitis gained
from technical interaction with industry mentor
types, too often these technologists become a
solution crutch. Faculty members also make poor
project sponsors, as they usually are interested in
the learning objectives and assessment criteria of
the projects. In short, they think they are teach-
ing and grading the teams instead of sponsoring
them. Thesituationisworse if the faculty member
participates in the Enterprise in any fashion due
to an inability, on both sides, to create distinct
lines between student-faculty and team-sponsor
interactions. Project managers who are not active
technically (though manage technical projects)
have worked best as they tend to follow a model
of interaction that focuses on expectations, plans,
risks, and progress on deliverables, and as such
teams become accustomed to focusing their work
the service they are to provide. Unfortunately,

124

The Software Enterprise

at this time most Enterprise projects are spon-
sored by technologists, either from industry or
academia.

The best projects leverage existing technolo-
gies. We have found that students are tremendously
lacking in their ability to work, atan implementa-
tion level, with existing source code. The main
reason for this is simple - they haven’t been asked
to yet. This is a larger problem for computing
curricula. Studentsare notasked before the Enter-
prise to examine a large body of source code and
understand its structure and style. Students are
typically naive aboutthe scale of software systems,
even ones they use every day. As an example, one
in-class exercise asked students to estimate the
lines of code in a specific software system they
use almost every day. The system in question is
about 2 million lines of code; more than half the
class estimated 10 thousand lines or less, 2 less
thanonethousand. The Enterprise requires teams
to leverage existing bodies of source code, often
taken from previous solutions or from the open
source community. Furthermore, most projects
have a significant integration requirement, be it
dataorcontrolintegration. These projectsare very
useful for their realism as well as their technical
characteristics.

The best projects are vaguely defined. The
principal objective of Course 3 is to gain a shared
understanding of the problem and solution spaces
throughelicitation, prototyping, and architecture.
Giving projects that are too “canned” reduces
the project to a big programming exercise, strip-
ping the team of the need to experience how
to perform an iterative refinement process. As
Szyperski points out, stakeholders typically are
better at expressing requirements as incremental
extensions to systems with which they are al-
ready familiar (Szyperski, 2005). However, we
do not want a system where the requirements
are readily expressed by the customer; instead
we want students to work at elicitation to draw
those requirements out. On the other hand, giv-
ing projects that are too discovery oriented are

The Software Enterprise

typically overwhelming to students at this level
asthey require research and critical inquiry skills
typically required of graduate students. Because
the entry point for projects is Course 3, we look
for projects where a sponsor has a concrete vision
oridea, but has not gone down the path of fleshing
the idea out or assigning resources to it. Sponsors
write a short narrative “elevator pitch” regarding
the project idea, and Enterprise faculty members
engage in a brief give-and-take over email or the
phone to determine whether the sponsor is at the
right point for requirements elicitation.

Projects and potential sponsors are evalu-
ated based on these attributes, though again no
project has ever been able to address all of these
perfectly. Often the burden is on the Enterprise
facilitator to note beforehand where potential
hurdles may arise, and attempt to navigate ways
to clear them.

Supporting Heavily Tooled
Environments

Professional software engineers rely heavily on
toolsto help with productivity and scalability. The
Enterprise, mostly in Course 1, exposes studentsto
tools in practical use. Table 3 below summarizes
thetoolsused, their purpose, and some short com-
ments on their utility in the Enterprise.

In many instances the specific tool chosen
out of many options is not significant, assuming
fundamental concepts taughtin the classroom can
be implemented by the tool. For example, though
there are real practical differentiators to CM tools
CVS, Subversion, and Jazz, each provide enough
functionality to be applicable to Enterprise proj-
ects. Many of the tools selected are open source
tools, done mostly for cost reasons but also in
part because these tools are popular with Agile
methodologies. A sensitive issue with opensource
tools is the level of support available, including
documentation. On the positive side mature open
sourcetools have mature communitieswillingand
able to answer questions via online forums.

Another common issue is the need for proj-
ect-specific or customer-mandated tools. Degree
programs leveraging the Enterprise sequence
all use Java as the required teaching language,
though sponsors often identify other language
needs and are accommodated by subsets of stu-
dents (a common example is embedded systems
projects in C). Project-specific tools are allowed if
ajustified need is presented. Customer-requested
or mandated tools are trickier to deal with; often
these requests are based on the customer’s per-
sonal preferences or comfort and not on project
requirements. At one time, teams were allowed
to choose several of their own tools, such as CM
repository, collaborative Websites, UML model-
ing, and office documents, but this situation was
simply untenable to support and the policy was
changed after the first year.

Putting the “Real” in Real-World
Projects

Capstone courses provide an excellent opportunity
for students to work on “real-world” projects. But
what constitutes real-world? The complexity of
the problem? Its scale? We contend it is more
contextual, and we must teach students how to
properly deal with change inthis context. Students
working in teams on class projects commonly
react perturbed when unexpected events arise,
and then expect the instructor to show lenience
in assigned deadlines and grading criteria when
they do occur. Unexpected events might include
a server failure, a personal workstation crash,
long lines in public computing facilities, group
members getting sick, faculty members going on
travel, sponsor unavailability, technical complex-
ity, personality clashes on teams, misunderstood
requirements, changing technologies; the list is
endless. Showing leniency for these events sends
the wrong message. Thetruthis, these things hap-
peninreal projects everyday. Co-workersbecome
sick, antagonistic, or take new jobs; customers
do not sit by the phone waiting to answer their

125

Table 3. Toolsin use by the enterprise

The Software Enterprise

Tool Purpose Comments

EdlipselJazz IDE Eclipse amajor platform, Jazz built on Eclipse and freely available
as abeta.

Ant Build scripts Open source standard, cross platform, Eclipse support. Considering
maven.

) . Vendor tool with reduced price for academic/bundled license w/

Jira Defect tracking
Confluence

cvs Configuration Rudimentary but popular tool, considered Subversion, how using

management CM provided in Jazz

JUnit Unit Test Eclipse plugin available

SourceforgeMetrics Metrics metrics.sourceforge.net, Eclipse plugin

PMD Static analysis Eclipse plugin, highly customizable

iRise Storyboards/U| Vendor tool w/ free academic license, www.irise.com

prototypes

MagicDraw UML Persona editi on_free for academic use, supports RUP analysis class
stereotypes and is cross-platform.

MS Excel / Jira Change Mgt Reqmrf;ments often evolve through Confluence and Word
versioning too.

MS Word Documents

Open Workbench Project Management Supports Work Breakdown Structures, PERT/Gantt Charts,
Resource models

Coverlipse Code coverage Eclipse plugin

Checkclipse Code style Eclipse plugin

Jupiter Code reviews Eclipse plugin from University of Hawaii

Academus/Sakai Course Mgmt Portal interface supports team collaboration easier.

Confluence Wiki Organized around “spaces’ makes team support easy.

Sticky notes Elicitation Brainstorming/Affinity processes, storyboarding

guestions, stakeholdersfrequently changerequire-
ments, new technol ogiesareannounced daily, and
computing facilities become unavailable. These
unfortunateeventsthat befall our studentsshould
be seen as learning opportunities in leveraging
their process to work through these issues.

The Enterprise approach is ssmple to imple-
ment: deal with it. Successful teams find ways to
work though issues, not use them as excuses and
begfor mercy fromtheir stakeholders. Tothat end
not only is there a healthy dose of “tough love,”
but we often intentionally introduce disruptive
eventsduring projectsand force studentsto solve

126

them on-the-fly. Some examples of these events
include:

. Rotateteammembers. Teamsmay exchange
membersonceeach semester. Thisexchange
is made unannounced, and teams are
typically given ashort time (afew days) to
transfer knowledge and tasks to other team
members.

. Cancel projects. Projects that fall sig-
nificantly behind or are judged to be on
an unsuccessful track are cancelled. Team
members are distributed to other projects.

The Software Enterprise

. Change requirements. Requirements
changes may be introduced by the customer
at any time.

. Change technologies. Projects typically le-
verage opensource technologiesto complete
projectimplementations. These technologies
are subject to frequent change, and teams
are asked to change with the technology.

* Rotate team roles. Though not as intrusive
as switching team members, changing roles
within a team tends to lead to greater intra-
team chemistry.

. Turnover between semesters. A common
issue with projects spanning more than
one semester is student turnover. This is
embraced as indicative of the “real world”
where team member turnover is expected.

Certainly these types of issues tend to slow
down and degrade the quality of the final software
products produced. The benefit is that teams must
rely on good process practices, organization, risk
analysis, judgment, and collaboration to work
through these problems.

Project Assessment

Student projects are graded on their ability to
define a process, follow the process, and adapt
to change. Grades are weighted for the sequence
(particularly the second year) primarily on the
ability to set, follow, and adapt activities within
the context of a process, and only secondarily on
the quality of deliverables produced. It is difficult
to construct an assessment model based on these
criteria. For one, it is difficult to directly measure
the impact of one process model against another,
particularly inasetting with naive practitioners of
the process (Which by definition students typically
are). Second, tracking process-related data on
student projects can be a significant time burden
for faculty. The validity of student process data
gathering is another issue. While the PSP/TSP
does emphasize aspects of data gathering and

data-drivenprocessimprovements, itstill remains
difficult to ask students to ascertain, for example,
the impact of a particular configuration manage-
ment policy on software quality. Additionally,
students are grade-driven, so asking for honest
reporting of process data when students are
concerned about grade impacts often leads to
optimistic reporting where sometimes the true
nature of a team’s situation is not revealed until
the end of the semester. In our view, there are no
easy answers to these issues.

Additionally, there are two key components
of Enterprise projects that have an impact on
assessment.

* Collaboration across academic years. As
discussed previously, project teams consist
of juniors and seniors collaborating on the
same team. These teamsalso meetand work
together on extended lab sessions once a
week. The energy seniors devote to mentor-
ingisincluded inthe assessment of their final
grade. Thiscan be a point of contention with
exceptionally talented students who have a
tendency to work ahead of the rest of their
team instead of pulling the team forward
with them.

. Entire class is “the company.” Student
team projects are usually pitted against
one another in a competition to show off
the best resulting product in order to obtain
the maximum grade. In the Enterprise all
project teams are part of the same company,
and the success of the company is as impor-
tant, if not more important, than individual
project success. Therefore a percentage of
the final grade is influenced by how well all
of the class projects perform, not just the
project in which the team participates. This
encourages teams to share lessons learned
and sometimes resources across projects.
This principle has been employed in other
Capstone experiences (Coppit2006; Turhan
& Bener, 2007), though the principle differ-

127

ence is that in those projects a large class
section participates on a single project as
one company, whereas Enterprise students
are one company executing many projects.
We believe this more accurately recreates
the pressures of software development and
resource sharing at many software services
shops.

EVALUATION

The Software Enterprise is currently in its fourth
year; 82 different students have enrolled in at least
one Enterprise course in the first three years and
43 students (30 new) are currently enrolled in Fall
2007. Due to the limited time it has been offered
and the relatively low population, a statistically
valid evaluation of student performance inmeeting
the overall objective of “industry preparedness”
is not feasible at this time. However, we are in
the progress of collecting longitudinal data and
share what we have learned so far.

Several types of quantitative and qualitative
assessment data are collected each year:

1. Course assessments: These are the stan-
dard rating-oriented course assessments
performed for all courses at ASU. Students
are asked to rate the quality of the learning
experience as well as provide some qualita-
tive feedback.

2. Course survey: An Enterprise-specific
coursesurvey isconducted at the end of each
semester. Students are asked quantitative
questions about the quality of the learning
experience, as well as a self-assessment of
expertise in course subject areas.

3. Affinity process: Students are posed con-
text-free questionsinsmall groupsand orga-
nize responses in naturally forming clusters
(the “affinity” for each other’s responses).
Interestingly, this process is also taught as
part of requirements elicitation.

128

The Software Enterprise

4. Impending and recent graduates survey:
Asurvey of impendingand recentgraduates
asked about perceptionsthey hold regarding
the utility of their education with respect
to their technical profession. The goal is
to repeat this study for several years to ac-
cumulate trend data about the preparedness
of our graduates.

5. Qualitative data is reflected in anonymous
student write-in responses on surveys in 1
and 2, feedback from project sponsors, and
input from two industry advisory coun-
cils.

The Affinity process (3) and course survey (2)
are particularly useful in assessing the industry-
preparedness perceptions of our students. The
graduates survey (4) will be useful when results
are complete.

Affinity process. An Affinity process is a
method for obtaining unbiased results (Kawakita,
1982). The process is as follows:

1. Explain the process to participants

2. Pose question

3. Askeach participant to write down as many
responses as possible (at least 10) regarding
the question. Only one idea (preferably one
word) should be written per post-it-note.
Allow approximately 5 minutes for this
phase.

4. Askall participants to place all of their post-
it-notes on the white board and to remain
at the board as a group. Tell participants
(without discussing it with each other) to
cluster the ideas into coherent groups by
physically moving post-it-note into close
proximity with each other. Participants
should consider all items on the board, not
just ones they created. If a dispute exists
(e.g., an idea ping pongs from one cluster to
other, copy the idea onto another post-it-note
and place in both clusters).

The Software Enterprise

5. Ask participants, as a group, to name the
clusters. They are encouraged to talk about
the names in this phase. Write the name
of each cluster on a post-it-note, place the
post-it-note along with each cluster on the
whiteboard, and circle the cluster.

6. Ask participants to individually multi-vote
on importance of each named cluster using
the voting stickers provided. Participants
may vote many times for one cluster or
may distribute their votes among many
clusters.

7. Debrief participants regarding the choices
made.

8. Collect post-it-notes from the whiteboard,
placing the cluster name post-it-note on top
of each topic group

The Affinity process was used as a means
for evaluating what students thought were the
mostrelevant concepts learned during aone-year
experience onaprojectteam. Affinity processes
are conducted at the conclusion of each academic
year, and for both year 1 and year 2 participants
of the Enterprise. One of the three questions
we ask students in this process is about their
perceptions of skill needs for junior software
engineers:

Q2: What skills are most important to junior
professionals?

This question asks students to consider what
skills they think they will need the most when
they graduate. Interestingly, students adeptly
responded with soft skills (e.g. “Proper attitude
and personality” 43%) over technical skills (e.g.
“Software skills” 19%).

This result is interesting in that it reflects un-
directed feedback regarding what skills students
believe are most important to know as impending
junior professionals, and students overwhelmingly
recognize that soft skills will be a differentiator

when they take that first job. A report on our
complete Affinity process results is available in
our previous work (Gary et. al 2006).

A common problem with an Affinity study is
an ability to align results longitudinally. While
respondents may create similar clusters fromyear
to year, they rarely create the exact same clusters,
creating an issue as to how to normalize clusters
for consistency.

Course survey. Students are asked to take an
anonymous online survey after the each semester
ends. The surveys ask students about the level of
academic exposure they had to a particular En-
terprise topic before starting the Enterprise, and
the amount of professional benefit they expect to
receive from exposure to the topic. Results are
shown in Table 4.

These results reflect the responses of 29
students, and so are not statistically valid. It is
interesting to observe anecdotally however, is
that although students perceive a lot of profes-
sional benefit to most topics, their prior academic
exposure is usually quite low.

The conclusion we draw from these studies
is that the Enterprise includes industry-relevant
topics. Anecdotally, industry partners believe
both the topics and the pedagogy will produce
better-prepared graduates. Additional anecdotal
feedback from project sponsors and faculty col-
leagues at ASU suggest greater applied com-
prehension as well, as reflected in the depth and
professionalism of the student teams and projects
atyear-end department-wide demonstration days.
However, neither the studies nor the anecdotal
feedback can determine at this time if greater
applied knowledge results from the pedagogy. To
this end, we are engaged in a longitudinal study
(assessment technique number 4, first data col-
lected December 2006) where we hope to show,
over a period of time, greater industry prepared-
ness of our graduates.

129

Table 4. Course survey results

The Software Enterprise

Survey Results Academic Exposure Professional Benefit
Topic Area none some lot lot some none
Code Reviews 57% 36% 8% 57% 43%
CM 91% 9% 91% 9%
Defensive Programming 36% 54% 9% 80% 20%
IDEs (Eclipse) 15% 54% 31% 82% 9% 9%
Metrics 82% 9% 9% 40% 20% 40%
Refactoring 73% 27% 9% 82% 18%
Deployment/Release Mgmt 92% 9% 67% 33%
Unit Testing 36% 45% 18% 90% 10%
Estimation 77% 23% 83% 17%
Project Management 69% 23% 8% T71% 23%
Quality Planning 57% 22% 22% 92% 8%
Release Management 83% 17% 62% 23% 15%
Defect Tracking 67% 11% 22% 71% 29%
Risk Management 53% 33% 13% 92% 8%
Task Planning & Sequencing 53% 20% 27% 92% 8%
Test Types (alpha, beta) 75% 8% 17% 50% 42% 8%
Analysis Modeling 75% 25% 57% 42%

RELATED REsEARCH

Software engineering in higher education is ma-
turing at a fast rate, even in the face of enrollment
declines. The field has been very active over the
past decade with new degree programs coming
online (Bagert & Chenoweth, 2005), curricular
recommendations (ACM & IEEE-CS, 2004), an
availability of a body of knowledge (IEEE-CS,
2004), and a growing body of literature on soft-
ware engineering pedagogy, much of it focused
on project-oriented coursework. There are a
large number of variations possible in software
engineering projects, and the Software Enterprise
both borrows and advocates practices taken from

130

previous works at other academic programs, as
described throughout the chapter. In this section
we draw attention to project offerings particularly
influential on the overall structure and implemen-
tation on the Enterprise.

Specific programs with exemplary project
offerings that have had a deep influence on our
evolution of the Software Enterprise include the
Software Development Studio component of the
Professional Master’s program at Carnegie Mellon
University (Tomayko 1996), the Software Devel-
opment Laboratory at the Milwaukee School of
Engineering (Sebern 2002), the Capstone projects
at Auburn University (Umphress, Hendrix, &
Cross, 2002), and the Capstone projects in the

The Software Enterprise

Masters track at the University of West Florida
(Wilde et. al, 2003).

The Software Development Studio at CMU
(Tomayko 1996) is a seminal program in project-
oriented software coursework. The Studio puts
graduate students in a terminal degree program
through a multi-semester project experience cov-
ering the full range of software process activities.
The Studio motivated a precursorto the Enterprise
called the Software Factory (Tvedt, Tesoriero, &
Gary, 2001), whichemphasized projectengagement
throughout the entire undergraduate experience.
The Software Enterprise shares the multi-semester
approach with an emphasis on soft-skill develop-
ment with the Studio. The Enterprise, however,
introduces the software phases in reverse order,
and emphasizes soft-skills development through
multi-year structured student collaborations. The
Enterprise also introduces the sequence in the
undergraduate, not graduate, program.

The reverse ordering of the process phases
is also introduced by the Software Development
Laboratory at MSOE. Sebern (Sebern 2002) ac-
knowledges the difficulty newer students have
grasping process and soft-skills concepts, and
therefore students are led from “grave to cradle”
through process phases. Unfortunately a further
description of the utility of this approach is not
provided. Sebern also discusses the issue of stu-
dentturnover, or project continuity, and describes
a pre-course for seniors preparing them for the
projectsequence. This course includes mentoring
activities fromprojectenrollees, shared advice on
the project, and basic skills preparation. This is
a model we are looking to replicate in our Year
1, first semester Tools offering.

(Umphress, Hendrix, & Cross, 2002) articulate
the motivation for using the Capstone as a teach-
ing and learning experience instead of a summa-
tive experience: “...Instructors expect them to
integrate the technical skills they’ve learned in
previous courses, learn to work synergistically
as ateam, plan and track their work, satisfy their
customer — and produce sound software. Yet,

more often than not, projects so framed teach
their participants yet another way not to develop
software.” We agree wholeheartedly. Further,
our initial iterations of the Enterprise encoun-
tered some of the same concerns described in
the paper — balancing workload, scaling of skills
sets, responsibilities within a team — to which
we responded by tightening certain parts of the
process while leaving others intentionally open-
ended. The result is our iteration-oriented RUP
meta-model incorporating best practices along
the way. This paper also influenced our thinking
around usingaprocess-oriented grading approach
instead of a product-oriented one.

The University of West Florida project (Wilde
et. al, 2003) was also influential in our thinking
in that it emphasized software evolution as well
as software process. The authors make a strong
argument that it is difficult to learn concepts in
evolution without putting them into practice,
thereby applying that classroom-oriented in-
struction in these concepts will not necessarily
translate to their successful implementation in a
Capstone project. In other words, the only option
here isto immediately apply the conceptsin order
to ground them. This is part of the foundation for
our reasoning for the iterative delivery model in
Figure 2. We wish however, that the authors also
appliedthisapproachto managementtopics, where
instead they implemented a seminar-style format.
In the Enterprise, management concepts are also
introduced using the same pedagogical model,
which is very effective in showing the value of
these tools (work breakdown structures, critical
path analysis, earned-value analysis, etc.).

Again, these are only a small cross-section of
the large body of work now available on Capstone
projectimplementations in software engineering.
To a certain extent the Enterprise contributes its
voice to the debates about the logistics of running
such courses. On a larger level, the community
now seems headed toward a larger discussion on
the impact of software engineering education,
what it is, where it has failed expectations, and

131

what the major issues are to be addressed. A re-
cent article (Lethbridge et. al 2007) articulates a
number of open questions. As a Polytechnic and
part of the only major research University in the
nation’s fifth largest metropolitan center, we are
particularly interested in the research questions
posed for communicating real-world industrial
practices more effectively tostudents. The authors
suggestthat “hard-to-teach process concepts...can
be learned reasonably well onthe job, so increased
emphasis in undergraduate programs may not be
necessary.” Thisconclusion is defeatist,and we do
not think the academic community should punt
the issue readily. To be fair, the authors present
this question in the context of a larger discussion
around the substantial issues in working with
industry, and one cannot deny that there will
always be things best learned “on the job.” Yet
as we said in the beginning, “You can’t teach
experience - butyou cansure try.” We should take
these research questionsasachallenge to produce
graduates ready for the profession by leveraging
successes from the past decade while addressing
the shortcomings through innovative instruction.
The Software Enterprise is one small step in this
direction by promoting the Capstone asateaching
and learning vehicle using an iterative hands-on
model that accelerates the student from concept
to applied understanding.

sUMMARY

In our efforts to address the difficulties encoun-
tered in a Capstone project course, we asked how
graduating students entering the marketplace gain
the skills needed to become competent profes-
sionals. We identified some key characteristics
then went about designing ways in which these
experiences could be incorporated into our proj-
ect course.

Theresultisahighly iterative, learner-centered
pedagogical model where students are exposed
to software engineering methods and tools via

132

The Software Enterprise

traditional lecture, practice them in learner-cen-
tered exercises, scale them up to large projects,
and reflect on the viability of the methods and
tools within the context of the software process.
Prior, but not widely applied, innovations by fel-
low scholars in software engineering education
are employed, namely emphasizing the ordering
in which concepts are introduced and mentor-
ing relationships. The Software Enterprise also
contributes data points to existing avenues of
evolution around software engineering project
coursework, particularly in the areas of how to
run project teams and select desirable project
sponsors. A particular emphasis is placed in the
Enterprise on process robustness, and onincorpo-
rating software development best practices from
the Agile methodologies into the undergraduate
curriculum.

The principal drawback to the Software En-
terprise approach is the complexity of executing
the highly iterative and integrated pedagogical
model shown in Figure 2. The approach requires
careful synchronization of course topics and
project objectives, adaptation to project-specific
obstacles, dealing with student team dynamics,
identifying project sponsors and setting expec-
tations, reviewing reams of project deliverables,
teaching innon-mainstream computing material,
and providing a heavily tooled environment.

The methodology also placesagreatburdenon
instructors-as-facilitators to lead students down
theright path. Knowledge from disparate sources
must be both filtered and aggregated; it must also
be packaged for digestion in a practice-oriented,
collaborative learning environment. Structured,
hands-onexercises for problem-centered learning
must be constructed. Facilitators must determine
the correct amount of guidance and support to
provide team projects thatenable learning without
causing projects to degenerate into a “thrashing”
state, alienating students from finding the right
path. Finally, instructors must rethink how learn-
ing is assessed, and how to assess the relative
success of the Enterprise sequence.

The Software Enterprise

Computer science, and software engineering
by extension, has suffered from a perception
that universities do not produce industry-ready
graduates. We believe the Software Enterprise
pedagogical approach facilitates applied com-
prehension. The Enterprise model fuses the best
of the maturing work in software engineering
education with a new delivery model for promot-
ing understanding into practice. This approach
is new and emerging, and we have had to make
several adjustmentsandtry several variations over
the past four years. Now that we believe we have
a stable platform, we are planning to undertake
broader studies of the impact of the pedagogy, and
are also examining the feasibility of extending
the Software Enterprise model to non-capstone
project courses, multidisciplinary projects, and
non-software engineering concepts.

ACkNOWLEDGMENT

This work was supported by an Arizona Board
of Regents Learner-Centered Education (LCE)
grant.

REFERENCEs

Association for Computing Machinery & Institute
for Electrical and Electronic Engineers Computer
Society (2004). Software Engineering 2004 Cur-
riculum Guidelines for Undergraduate Degree
Programs in Software Engineering. Joint Task
Force on Computing Curricula.

Beck, K. (2000). Extreme Programming Explained
— Embrace Change, Boston: Addison-Wesley.

Boehm, B., Egyed, A., Port, D., Shah, A., Kwan,
J. & Madachy, R. (1998). A Stakeholder Win-win
Approach to Software Engineering Education.
Annals of Software Engineering, 6, 295-321.

Borstler, J., Carrington, D. Hislop, G., Lisack,
S. Olsen, K. & Williams, L. (2002, Sept/Oct).
Teaching PSP: Challenges & Lessons Learned.
IEEE Software 19(5), 42-48.

Carnegie Mellon University (2005). Academic
PSP Material. Retrieved January 4, 2008 from
http://www.sei.cmu.edu/tsp/psp/download/aca-
demic.html.

Coppit, D. (2006). Implementing Large Projects
in Software Engineering Courses. Computer
Science Education 16(1), 53-73.

Frailey, D. (2006). Bringing realistic software
engineering assignments to the software engi-
neering classroom. Proceedings of CSEET’06:
The 19" Conference on Software Engineering
Education and Training. Ohau, HI.

Gary, K., Gannod, B. Gannod, G., Koehnemann,
H., Lindquist, T., & Whitehouse, R. (2005). Work
in progress — The Software Enterprise. Proceed-
ings of FIE’05: The Frontiers in Education Con-
ference. Indianapolis, IN.

Gary, K.,Gannod, G., Koehnemann, H., & Blake,
M.B. (2005). Educating Future Software Profes-
sionals on Outsourced Software Development.
Proceedings of ASEE’05: The National Confer-
ence of the American Society for Engineering
Education. Portland, OR.

Gary, K.,Gannod, B., & Koehnemann, H. (2006).
The Software Enterprise: Facilitating the Industry
Preparedness of Software Engineers. Proceedings
of ASEE’06: The National Conference of the
American Society for Engineering Education.
Chicago, IL.

Hilburn, T., & Humphrey, W. (2002, Sept/Oct).
Teaching Teamwork. IEEE Software 19(5), 72-
7.

Humphrey W.S. (1997). Introduction to the
Personal Software Process. Boston: Addison-
Wesley.

133

Humphrey W.S. (2000). Introduction to the Team
Software Process. Boston: Addison-Wesley.

Institute for Electrical and Electronic Engineers
Computer Society (1998). IEEE Recommended
Practice for Software Requirements Specifica-
tions. (IEEE standard 830-1998). New York,
NY.

Institute for Electrical and Electronic Engineers
Computer Society (2004), Guide to the Sofiware
Engineering Body of Knowledge (SWEBOK). Los
Alamitos, CA.

Kawakita, J. (1982). The Original KJ Method
(English). Tokyo: Kawakita Research Institute.

Kruchten, P. (2000). The Rational Unified Process
— An Introduction (2" ed.). Boston: Addison-
Wesley.

Leffingwell, D. & Widrig, D. (2003). Managing
Software Requirements: A Use Case Approach
(2" ed.). Boston: Addison-Wesley.

Lethbridge, T., Diaz-Herrera, J., LeBlanc, R.,
and Thompson, J.B. (2007). Improving software
practice through education: Challenges and fu-
ture trends. Proceedings of FOSE’07: Future of
Software Engineering, special track at ICSE’07:
The 29" International Conference on Software
Engineering. Minneapolis, MN.

McConnell, S. (2004). Code Complete 2 (2" ed).
Redmond WA: Microsoft Press.

Morsch, L. (2006). What some fastest-growing
jobs pay. Retrieved January 4, 2008 from http://
www.cnn.com/2006/US/Careers/01/26/ch.top.
jobs.pay/index.html.

Poole, W.G. (2003). The softer side of customer
software development: Working with the other
players. Proceedings of CSEET’03: The 16"
Conference on Software Engineering Education
and Training. Madrid, Spain.

Sebern, M. (2002). The Software Development
Laboratory: Incorporating industrial practice

134

The Software Enterprise

in an academic environment. Proceedings of
CSEET’02: The 15" Conference on Software
Engineering Education and Training. Coving-
ton, KY.

Sebern, M. (2005). Software Process: Applying
industrial strength methods in engineering edu-
cation. Proceedings of ASEE’05: The National
Conference of the American Society for Engineer-
ing Education. Portland, OR.

Szyperski, C. (2005). The making of a software
engineer: Challenges for the educator. Proceed-
ings of ICSE’05: The 27" International Conference
on Software Engineering. St. Louis, MO.

Tomayko, J.E. (1996). Carnegie Mellon’s software
development studio: a five year retrospective.
Proceedings of CSEE’96: The 9" Conference
on Software Engineering Education. Daytona
Beach, FL.

Turhan, B. &Bener, A. (2007). Atemplate for real
world team projects for highly populated software
engineering classes. Proceedings of ICSE’07:
The 29" International Conference on Software
Engineering. Minneapolis, MN.

Tvedt, J. Tesoriero, R., & Gary, K. (2001). The
Software Factory: Combining undergraduate
computer science and software engineering
education. Proceedings of ICSE’0L: The 23" In-
ternational Conference on Software Engineering.
Toronto, CA.

Umphress, D., Hendrix, T., & Cross, J. (2002,
Sept/Oct). Software Process in the Classroom:
The Capstone Experience. IEEE Software, 19(5),
78-81.

U.S. Bureau of Labor Statistics (U.S. BLS) (2007).
Economic and employment projections: 2006-
2016. Retrieved January 4,2008 from http://www.
bls.gov/news.releasefecopro.toc.htm.

Wilde, N., White, L.J., Kerr, L.B., Ewing, D.D.,
& Krueger, A. (2003). Some experiences with

The Software Enterprise

evolution and process-focused projects. Pro-
ceedings of CSEET’03): The 16" Conference on
Software Engineering Education and Training.
Madrid, Spain.

135

136

Chapter VIII
Teaching Software Engineering
in a Computer Science Program
Using the Affinity Research
Group Philosophy

Steve Roach
The University of Texas at El Paso, USA

Ann Q. Gates
The University of Texas at El Paso, USA

Abs TRACT

This chapter describes a two-semester software engineering course that is taught in a computer science
program at the University of Texas at El Paso. The course is distinguished from other courses in that it
is based on the Affinity Research Group (ARG) philosophy that focuses on the deliberate development
of students’ team, professional and technical skills within a cooperative environment. To address the
challenge of having to teach professional and team skills as well as software engineering principles,
approaches, techniques, and tools in a capstone course, the authors have defined an approach that uses
a continuum of instruction, practice, and application with constructive feedback loops. The authors
hope that the readers will benefit from the description of the approach and how ARG components are

incorporated into the course.

INTRODUCTION

The Computing Curricula 2001 (CC2001) project
is the product of a joint effort by the Computer
Society of the Institute for Electrical and Elec-
tronic Engineers (IEEE-CS) and the Association
for Computing Machinery (ACM) with the goal of

developing curricular guidelines for undergradu-
ate programs in computing. CC2001 describes
a set of recommendations for undergraduate
programs in computer science (CS) and has had
significantinfluences on curriculum development
throughoutthe world (ACM, 2004). Itincludesthe
following statement with respect to the project

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of 1GI Global is prohibited.

Teaching Software Engineering in a Computer Science Program Using the Af.nity Research Group Philosophy

component of a Computer Science Curriculum
(CC2001, 2001, p. 45):

The course descriptions . . . offer several models

for including project work in the curriculum.
The first strategy is simply to include a project
component as part of the required intermediate
or advanced course that covers the core mate-
rial on software engineering. This strategy is
illustrated by the course CS292{C,W}. Software
Development and Professional Practice, which
includes a team project along with a significant
amount of additional material. As long as students
have sufficient time to undertake the design and
implementation of a significant project, this ap-
proachisworkable. The projects in such courses,
however, tend to be relatively small in scale,
simply because the time taken up by the sofiware
engineering material cuts into the time available
for the project.

Allaccredited software engineering programs
and almost all accredited CS programs in the
United States have a capstone experience in the
undergraduate curriculum (CC2001, 2001; EAC,
2007; CAC, 2007). Like many other CS programs,
the CS program at the University of Texas at El
Paso (UTEP) combines the project experience
with an introduction to software engineering
principles. The two-semester sequence is taken
in the students’ final year of study and focuses on
fundamental software engineering topics while
developing the students’ communicationand team
skills, establishing a venue in which to engage
in meaningful discussions about the Software
Engineering Code of Ethics and Professional
Practice (ACM/IEEE-CS, 1999), providing prac-
tical experience, and supporting faculty-student
interaction.

Teaching a capstone course in a software
engineering program, where students have had
significant exposure to software engineering
concepts prior to entering the course, and teach-
ing a capstone in a CS program, where students

have usually had no prior software engineering
courses, are manifestly different from each other.
As noted in the CC2001 report, teaching the soft-
ware engineering material and having students
work together in a project setting is challenging.
UTEP has met this challenge by developing a
course that focuses on the practice of software
engineeringinaprojectthatinvolvesactual clients
and the deliberate development of professional
skillsas espoused by the A ffinity Research Group
(ARG) model.

The primary goals of the UTEP course are
to provide students with (a) a fundamental and
functional understanding of the methods, tools,
and techniques required of rigorous software
engineering so that they can identify and adopt
the practices needed in the workforce; (b) the
experience of working with an actual client to
developaproductsothatthey can learnto manage
issues, such as incomplete, ambiguous, changing
and inconsistent requirements, and to deal with
time pressures; (C) the ability to apply software
engineering principles to a software project; (d)
the ability to prepare documentation in adher-
ence to IEEE standards; and (e) the experience
of working effectively in teams.

The UTEP approach is unique in that it uses
the Affinity Research Group (ARG) model (Gates,
1999; Teller, 2001; Gates, 2007). The two principal
tenants of the ARG model that apply to software
developmentteamsinthe academic settingare the
cooperative learning paradigmand the structured,
intentional, and deliberate development of profes-
sional and technical skills. The ARG model has
processes for evaluating work products and itera-
tively revising them. These processes have been
adapted for use in the capstone project course.

Inthis chapter, we describe the techniquesand
approaches to teaching software engineering that
we have developed and used for the past decade.
Our philosophy, derived from the ARG model, is
to focus on the development of each student.

137

Teaching Software Engineering in a Computer Science Program Using the Affinity Research Group Philosophy

bACk GROUND: THE AFFINITY
REsEARCH GROUP MODEL

In 1995, the ARG model was developed at UTEP
withthe goal of involving undergraduates students
from CSand electrical and computer engineering
in research to improve recruitment, retention,
and persistence of students, particularly female
students and students from under-represented
populations. UTEP is an urban university whose
ethnic composition mirrorsthat of EI Pasowithan
80% Hispanic population. Itisacommuter school,
and a significant fraction of the undergraduate
population is “first generation”, i.e., the first gen-
eration in the family to acquire post-secondary
education. In 1995, few students in CS were on
campus other than to attend classes, and a low
number of students continued to graduate school.
With the introduction of ARGs, the culture in
the CS department transitioned to one in which
student-faculty interaction outside the classroom
increased, a larger network of students formed
study groups intheir college careers, and students
stayed on campus longer.

An ARG is a team of faculty mentor(s) and
students who work together cooperatively to ac-
complish a research task. Team members have
varying levels of expertise, capabilities, interests
and skills; and they may have a variety of edu-
cational, cultural, and familial backgrounds. The
ARG model embraces this diversity and exposes
studentsto experiencesthat facilitate the develop-
ment and transfer of knowledge and skillsamong
members of the group. The ARG model joins two
foundational ideas: interaction among students
and faculty outside the classroom increases the
likelihood of students persisting to graduation
(Astin, 1985; Rodriguez, 1994, Tinto, 1993), and
cooperative learning techniques maximize student
learning and efficacy (Johnson, 1989). In addition,
the model integrates best practices from a variety
of sources in industry, research, and education.
Using structured tasks and activities, students
develop domain expertise, gain an understand-

138

ing and appreciation of the research process and
its practice, and acquire the skills that will make
them effective leaders and successful in research,
academia, and industry. The model has demon-
strated success in increasing both the quality of
undergraduate students’ learning experiencesand
their participation in advanced studies.

A key element of the ARG model is the use
of the cooperative learning paradigm (Johnson,
1989; Johnson, 1990; Johnson, 1991; Johnson,
1992a; Johnson, 1992b; Johnson, 1995). Coop-
erative groups create higher quality products,
achieve mastery or competence of atask, develop
asocial network, and have increased self-esteem.
Structured cooperative learning techniques are
integrated into the routine functioning of the
group. The mere formation of a group, as in tra-
ditional research groups, does not ensure that it
will function cooperatively. As Johnson and col-
leagues note (Johnson, 1990, p. 4), “Cooperation
is working together to accomplish shared goals.
Within cooperative activities, individuals seek
outcomes that are beneficial to themselves and
beneficial to all other group members.”

In an ARG, group members work together to
maximize their ownand each other’s productivity
and achievement. The ARG model ensures that
structured cooperative learning techniques are
part of the group’s routine functioning. Because
teaching and practicing professional skills are
part of the research group activities, for example,
students are able to learn skills from their groups
and transfer them to other environments.

Five basic elements must be present for the
group to truly function cooperatively: positive
interdependence, face-to-face promotive interac-
tion, individual and group accountability, profes-
sional skills development, and group processing.
The ARG model incorporates all five by structur-
ing them into weekly activities and in the group’s
day-to-day functioning.

* Positive interdependence is the situation
where each team member’s success depends

on the success of the team as a whole. When
positive interdependence is present, each
member has a personal stake in the group’s
success and believes that the group values
her or his contributions. An example of
structuring positive interdependence in the
classroom is to give students a grade based
onthe average of the individual scores of the
group members on a quiz. In this situation,
each team member becomes motivated to
ensure the success of the other team mem-
bers.

Face-to-face promotive interaction 0CCUrsS
when students are situated so they can eas-
ily and comfortably talk to each other and
actively seek participation from each other.
Theexplicitgoal inthissharing processis for
members to help one another succeed and,
therefore, help the group reach its goals. It
is important to acknowledge and recognize
each member’s contribution, and a key skill
is the proper use of constructive criticism,
i.e., critiquing ideas and not the person. The
practice of constructive critique iscritical to
the improvement of both the individual and
the group, and it’s important that students
understand the need for and the role of cri-
tique in raising the quality of a product.
Individual and group accountability is
needed to ensure that individuals par-
ticipate fully. One complaint that students,

Teaching Software Engineering in a Computer Science Program Using the Affinity Research Group Philosophy

each with a given task. Constructing time-
lines and explicitly showing the dependen-
cies among individual and group tasks are
other effective techniques for structuring
individual and group accountability.
Professional skills are the skills needed to
work with people inabusinessenvironment.
They are the communication and inter-
personal skills that facilitate working rela-
tionships. Professional skills are explicitly
taught and practiced in activities designed
around one or more technical topics such as
critiquing a presentation, practicing active
listening and asking questions. Fomenting
effective professional skills makes for more
productive and successful interactionamong
group members and is essential to the main-
tenance of positive interdependence.
Group processing is the critical evaluation
of the performance of the group. It consists
of individuals assessing the quality of their
contributions to the group as well as the
group’s considerations of its recent perfor-
mance. Processing gives group membersthe
opportunity to identify potential improve-
ments for further work so that the individu-
als and the group’s performance at a higher
level. Group processing must be deliberately
structured into activities.

bRIDGING THE GAP bETWEEN
THE Abs TRACT AND CONCRETE

particularly high-achieving students, have
with respect to working on teams is that the
better students end up doing all the work
and the weaker students share the grade.
By structuring individual accountability
in the groups, the faculty mentor ensures
there are no “free rides”. Each person must
be responsible for tangibly contributing

At UTEP, we face four significant hurdles to
achieving the goals of the software engineer-
ing capstone course. Informal discussions with
computer science faculty at other institutions
indicate that these hurdles are not unique to our

her or his fair share to the group. Likewise, program.
the group as a whole is responsible for the
group’s smooth function and for delivering 1. Experiencedinstructorsrecognizethatthere

the required work. This is important when
alarge group is divided into smaller groups,

is a gap between discussion of a technique
in the classroom and endowing students

139

Teaching Software Engineering in a Computer Science Program Using the Affinity Research Group Philosophy

140

with the ability to apply the technique to
real problems. Research supports the claim
thatapplication of concepts on real problems
provides a bridge between abstract and
concrete learning (Kurfiss, 1998) and that
students learn best by doing, discussing,
or taking action (American Psychological
Association, 1992; McKeachie, 1986).

We have a CS, not a software engineer-
ing program. Students in the CS program
(Parnas, 1999) are not well-versed in many
aspects of large software system develop-
ment or management. Few students enter-
ing the capstone course have developed or
worked on software products larger than a
few thousand lines of code. Generally, they
lack understanding of and experience with
project planning, requirements elicitation,
requirements specification, modeling, de-
velopment of test plans, documentation, and
software maintenance; that is, they do not
know the material that the course is designed
tocoverbutthatisneededinordertodevelop
the software for the capstone project.

Few students have had the opportunity to
work in software teams larger than two or
three membersand, thus, they lack the expe-
rience towork well inteam situations. While
students are regularly required to work in
small groups throughout the curriculum,
these groups are typically self-selected or
unstructured.

Students lack adequate oral and written
communication skills. Technical writing
is difficult, and undergraduate students in
particular need to practice this skill. Most
good writers use an iterative process of
writing, correcting, and rewriting in which
the author strengthens the content, sharpens
the focus, improves the organization, clari-
fies the point of view, and refines the tone
(Hacker, 1991). Public speaking skills benefit
from iterative refinement.

The UTEP software engineering course is
structured as three hours of lecture per week
for a 14-week semester. The ARG model makes
extensive use of cooperative learning, and this
is transferred to the course by using cooperative
and problem based learning for one-third to two-
thirds of the lecture time. Traditional lecture is
used the rest of the time.

The ARG model stresses the development of
each student’s ability to assess her or his own
contributionsand capabilities aswell asthe ability
tocommunicate professionally. In-class exercises
focus not only on the application of software
engineering techniques such as developing a test
set to meet a test coverage criterium, but also on
the assessment and critique of each student’s and
each team’s work as well as the work of others.
In class, we explicitly structure activities to fa-
cilitate students’ learning and practice of giving
and receiving constructive criticism.

In the ARG model, research team members
are encouraged to become the team expert in a
given subject. This expertise is used by the team
as needed when the expert either produces awork
product related to the area of expertise or trains
other team members in the subject. This practice
has been transferred to the capstone project by as-
signing team roles. The ARG model also stresses
the development of each student. In the capstone
course, leadership skills are developed in each
teammember by requiring each studentto take the
lead for several team deliverables (shownin Table
1), unlike many project teams where one student
takes the lead for the duration of the project.

Students are assisted and evaluated by the
Software Engineering Guidance Team, a team
of faculty and graduate students who oversee
the project. The faculty members are Certified
Software Development Professionals (CSDP,
2007), and each have several years of industrial
software developmentexperience. Guidance Team
membersensure individual accountability in part
by interviewing individual students during group
presentationsand regularly assessing task assign-

Teaching Software Engineering in a Computer Science Program Using the Affinity Research Group Philosophy

mentsand work products produced by individuals
during the semester.

Our approach to bridging the gap between
abstract and concrete is to apply both lecture
and practice repeatedly. We call our approach
the Instruction-Practice-Application Continuum,
which is described graphically in Figure 1. In
this approach, as shown on the left side of the
figure, classroom activities are used to introduce
techniques, e.g., functional modeling, project
planning, or software inspections. These activi-
ties include traditional lectures, problem-based
instruction, and cooperative learning. Assess-
ments such as home work, quizzes, exams, and
in-class observations are used to determine how
well students grasp the concepts in the academic
setting. When necessary, topics are covered again
in class.

Inthe case of the capstone experience, the task
is to implement a solution to the problem around
whichthe projectis based. Ontheright side of Fig-
ure 1, the project is used to reinforce the concepts
learned in class. In this setting, students work in
teams to apply the techniques covered in lectures

to create project deliverables. The instructor as-
sesses the deliverables and provides constructive
feedback on drafts by conducting an informal
walk-through of the deliverable with the team and
asking questions; students improve deliverables
based on the feedback and new knowledge gained.
The purpose of the cycle on the left of the figure is
to have students learn and apply new concepts to
small problems assigned in class or as homework,
while the cycle on the right moves the students
toward higher-level thinking skills, such as analy-
sis, synthesis, and evaluation (Bloom, 1956), by
applying the newly learned material to the project.
In this cycle, students produce work products
such as models, requirements, documentation,
design, test suites, and source code. These work
products are reviewed by the course instructor
and the Guidance Team, and frequently, the work
products are returned to the students for further
improvement. When problems are identified that
are common across teams, these problems can be
addressed in the lectures. In this way, the experi-
ence of the instructors is passed to the students
in much the same way that experience is passed

Figure 1. Instruction-Practice-Application Continuum

Results Feedback

Knowledge

Create{ Revize

Daliverable

Diraft
Deliverable Final
Deliverable

Fesdback

Client

141

Teaching Software Engineering in a Computer Science Program Using the Affinity Research Group Philosophy

to apprentice tradesmen. Final versions of work
products are delivered to the clients.

THE PROj ECT

To address the issue of providing students with
the experience of developing large software sys-
tems, the course requires that students construct
software for a real client, someone who needs a
software solutiontoaproblem. Giventhe project’s
central role inthe course, selection of the projectis
a key part of preparation for the course; however,
the project is a means to an end. Our focus is on
teaching students the methods that support build-
ing complex, reliable, and maintainable systems.
The project gives them the opportunity to apply a
process and practice process improvement.

Software engineering is about managing
change, but students tend to have experience with
requirements that do not change. What they need,
then, isreal-world experience where the customer
may change the requirements during the project,
may be unclear about their own needs, and are
unsure about how to best solve their problem.
Identifyingand clarifyingambiguous, incomplete,
and inconsistent requirements, as well as manag-
ing change, are an important part of the course.
Students often lack experience in eliciting and
specifying requirements, and the comment below
from one of our clients supports the importance
of defining a requirements process:

As the SCIMITAR project lead, 1 felt the students
received a real-world immersion in the complexi-
ties of software development. They learned the
importance of listening to the customer, develop-
ing requirements, and getting feedback from the
customer. They also learned how difficult it is to
really nail down those requirements, and how much
it saves in the long run to do so. --Lon Anderson,
Army Research Laboratory (L. Anderson, personal
communication, 2003)

142

In addition to managing change in require-
ments and its impact on maintaining consistency,
the students must learn to anticipate change inde-
sign. Indeed, the best way to appreciate designing
for change is to have change looming during the
design process, and then observe what happens
to the design when change occurs.

Project Descriptions

There are endless possibilities for software engi-
neering projects, and we are frequently approached
by potential clients. To help us select appropriate
projects, we consider the following requirements
for projects:

. The client must truly want the software
product. Involvement of the client is essen-
tial. Clients participate in interviews and
demonstrations, and they are present for the
final presentations each semester. They must
be available to answer questions about the
desired product during critical junctures of
the two-semester course.

e The client must be willing to wait for two
semesters or more to receive functional
software. Two approaches can be used in
this capstone course. One is the waterfall
model and the other is an adaptation of
the agile approach called Feature-Driven
Development (FDD) (Coad,1999). The use
of waterfall is intentional: Our students are
familiar with coding, butnotas familiar with
the other aspects of software engineering.
The original version of FDD is composed
of five processes: develop an overall model,
buildafeature list, plan by feature, design by
feature, and build by feature. The modified
version of FDD (Rauda, 2005) uses the five
processes, but modifies the internal tasks of
the processes to meet the outcomes of the
course.

. The project must have sufficient scope that it
is infeasible for one or two students to com-

Teaching Software Engineering in a Computer Science Program Using the Affinity Research Group Philosophy

plete the task in two semesters. This creates
the positive interdependence thatencourages
teams to bond and work together.

. The project must be feasible, or it must be
possible to set the scope of the project for
the teams so that their part of the project is
feasible.

Project clients have ranged from researchers
in geology, agronomy, environmental sciences,
and software engineering to project managers
attempting to deliver software to customers in
the U. S. Army, for the United States Geologi-
cal Survey, and users of the geoinformatics grid
(GEON, 2007). Here are some of the projects
completed in the past several years.

. PACES: Satellite Scene Viewer: This
project provided access to the Pan American
Center for Earthand Environmental Studies
(PACES) satellite image archive by integrat-
ing ENVI image processing and Oracle
database management system software with
graphical-user interfaces.

. HATS GUI (Winter, 2006): This project
created a graphical user interface for the
High-Assurance Transformation System
(HATS) developed at Sandia National
Laboratiories. The HATS GUI facilitated
the creation and interpretation of transfor-
mation rules used to generate software for
high-assurance applications.

* Scene and Countermeasures Integration
for Munition Interaction with Targets
(SCIMITAR) (Anderson, 1999): SCIMI-
TAR is an analytical tool that evaluates
munition interaction with ground platforms
within a scene. SCIMITAR allows users
to modify and analyze images by adding
obscurants and target types onto the scene
in order to analyze aimpoint probabilities
and countermeasure effectiveness.

. Gravity Data Repository and Processing
System (GDRP) (GeoNet, 2007): GDRP

is a web-based tool that provides general
information about gravity measurements
and presentsa collection of tools for adding,
accessing, visualizing, and manipulating
data. The project was a coordinated effort
with UTEP, Arizona State University, and
U.S. Geological Survey.

Project Management

The end result of the project should be a software
productoraprototype product. Inorder to produce
aworking piece of software, project management
is essential. This is particularly relevant when
managing several software teams simultaneously.
While many resources are available to guide an
instructor in basic software project management
(Wysock, 2006; Whitehead, 2001; DeMarco,
1999; McConnell 1997), inthis sectionwe discuss
aspects of project management specific to the
academic capstone project.

Students in the UTEP course work in highly
structured and managed project teams on all
aspects of development: requirements elicitation,
feasibility, modeling and analysis, prototyping,
requirements specification, tracing, high-level and
low-level designs, implementation, and testing. In
addition, students submit formal documents (us-
ing IEEE standards when appropriate) including
feasibility report, interview report, Software Re-
quirements Specification (SRS), Software Design
Document (SDD), test plan, testing defect report,
and configuration management plan. Students
participate in walkthroughs and inspections for
designs and prototypes, and presentations of
the software requirements and finished product
are presented formally to the clients. Figure 2
shows a Gantt chart of the major deliverables for
the two-semester course following a traditional
academic year.

The verification and validation task includes
paper prototype reviews, executable prototype
reviews, inspections, walkthroughs, and struc-

143

Teaching Software Engineering in a Computer Science Program Using the Affinity Research Group Philosophy

tured testing. Clients and the Guidance Team are
present for many of the reviews.

The Project Team

The CC2001 (2001, pp. 43-44) emphasizes the
need for students to work in teams:

Few computer professionals can expect to work
in isolation for very much of the time. Software
projects are usually implemented by groups of
people working together as a team. Computer
science students therefore need to learn about
the mechanics and dynamics of effective team
participation as part of their undergraduate edu-
cation. Moreover, because the value of working
in teams (as well as the difficulties that arise)
does not become evident in small-scale projects,
Students need to engage in team-oriented projects
that extend over a reasonably long period of time,
possibly a full semester or a significant fraction
thereof.

Figure 2. Gantt Chart of course deliverables

Learning
Module

144

Application

Recruiters often tell us that they are looking
for students with demonstrated abilities to work
in teams. As educators, it is important for us to
teach team skills and to structure teams in order
to encourage the practice of professional skills
that improve communication and accountability
among members. To address the challenge of
developing effective team skills, we use the ARG
model, in particular, the cooperative paradigm, to
build strong teams. This requires that facilitators
build positive interdependence, encourage promo-
tive interaction, structure individual account-
ability, teach team and professional skills, and
discuss with the team what practices are--and are
not--successful (Johnson,1992a; Scholtes, 1996).
We strongly believe that these elements must be
present in the teams we build for this course.
Withoutthe cooperative structure, inexperienced
students will not work as a team; rather, they will
merely be a collection of students.

Teams consist of five team members assigned
by the Guidance Team. Teams persist across

Teaching Software Engineering in a Computer Science Program Using the Affinity Research Group Philosophy

semesters. Students are assigned to positions on
each team. The positions are:

* Systems analyst. The systems analyst is
responsible for identifying the purpose
of the system and the individual goals of
the customer. The analyst must know the
technology and be able to understand and
respond to what is found in observing and
talking with those who are commissioning
a new system or will be the end users of it.
This personneeds considerable communica-
tion as well as generalization skills.

o Systemsarchitect. The personinthisposition
will define the computational components
and the interactions among these compo-
nents with respect to the specification. The
architect must be able to deal with a large
amount of technical detail while at the same
time develop a superior view of the overall
system.

* Designer. The designer must know the
technology and be able to prepare detailed
specifications and models of the new system
by analyzing the requirements specification
and high-level design document.

Table 1. Deliverables by team role

* Lead programmer. The lead programmer
should have experience in code develop-
ment in different programming paradigms.
The lead programmer will manage the team
that implements the code according to the
specification and design. The person best
suited for this job is someone who is willing
to devote time to learn new technology, if
necessary.

. Verification and Validation (V & V) supervi-
sor. The V & V supervisor is in charge of
developing and administering tests that are
representative of the use of the system. This
person is also responsible for configuration
management, and verification and validation
throughout all phases of development.

Team Selection

Some instructors feel that teams should be self-
selected or homogenous (e.g., put all the “best”
students on one team). We have tried these ap-
proaches, and they have not worked well. When
everyone on the team thinks the same way, the
team may stumble down a mutually agreed
upon (but wrong) path, and students do not learn

Semester Position Deliverable
Systems analyst Software Requirements Specification
Systems architect Feasibility report and final presentation
! Designer Models, diagrams, and interface evaluation
Lead Programmer Interface prototype and tool support
V&V Tracing documents, test plan, and interview report.
Systems analyst Final user-interface design and final presentation
Systems architect Acrchitectural design document
2 Designer Detailed design document
Lead Programmer Code
V&V Tracing documents, configuration management and test plan

145

Teaching Software Engineering in a Computer Science Program Using the Affinity Research Group Philosophy

how to deal with and appreciate diverse ideas.
A number of recruiters have told us that they
recruit from different colleges and universities
simply so their workforce will be educationally,
and culturally diverse. We model this approach
in our teams.

We assign students to five-member teams
for an entire year, and it is rare that we remove
a member from a team. Because of this, we are
careful about the teams we create, and we expend
substantial effort in selecting the members, con-
sidering four general areas: personality, position
preference, experience, grade-point average, and
project- and gender-specific issues. Students are
given the position descriptions and the list of
deliverables assigned for each position. They are
asked to provide a résumé and write a letter of
application in which they specify the three posi-
tions for which they feel most qualified or have
the greatest interest. Ourteamassignment process
includes steps such as evaluating students’ letters
of application and résumés, assessing dominant
personality characteristics, and balancing the
diversity of the teams with respect to gender,
ethnicity, grades, and educational experiences.

We assess personality using the Shapes per-
sonality exercise (Bonura, 1998). This exercise is
amodified form of the Myers Briggs personality
type assessment. During the exercise, students
select the personality “shape” with which they
most identify. Students come to appreciate that
not all of their fellow students identify with the
same shape, and that there are strengths and
needs associated with each of the shapes. On
our teams, we strive to balance the four shapes
on each team.

We attempt to balance the teams with respect
to the experiences and academic achievements
of the students. We ask that students report their
cumulative and major grade pointaveragesontheir
résumés. We also do a preliminary assessment of
their writing abilities based on the letter of ap-
plication. Our goal is to balance teams in terms
of their academic histories. We attempt to have

146

several studentswith strong Englishskills or good
academic records on each team. For particular
projects, we also consider work experience and
certain courses (such as database management)
when assigning students to teams. We try to avoid
assigning friends to the same team.

The gender-specific issues include assigning
female students, when possible, to teams with
at least one other female. Although not always
necessary, the practice of having more than one
female student on ateam helps in situations when
the female’s opinions are ignored or not valued.

Development Professional Skills

Rather than assume that students know how to
work effectively in teams by the mere fact that
they are on a team, we deliberately teach stu-
dents how to work in teams by describing how
to conduct effective meetings, giving each stu-
dent the opportunity to learn how to take a lead
role, requiring students to analyze their teams’
performance, and suggesting ways to improve
individual participation and team effectiveness.
Students are assigned specific positions on their
team, and we use that position to assign the lead
for different deliverables. The leader is respon-
sible for ensuring the deliverable (refer to Table
1) is completed and that every team member
contributes to each deliverable. This person is
responsible for initiating the work (typically by
calling a team meeting and setting the agenda
for the meeting), monitoring task assignments,
collecting finished products, and delivering the
final version. Our goals in having rotating leads
are to provide students with opportunities to
practice task-planning strategies and to learn
leadership skills. It has been our experience that
some students who ordinarily would not choose
to lead a team effort turn out to be good leaders
and develop skills and exhibit talents that were
previously unrecognized.

Other approaches to developing professional
skills include using cooperative learning in the

Teaching Software Engineering in a Computer Science Program Using the Affinity Research Group Philosophy

classroom and experience sharing, where afaculty
orguest speaker discusses real-world experiences
related to effective team behaviors. To encourage
the development of basic leadership skills, we
lecture on and model setting agendas, assigning
roles in meetings, clarifying task assignments,
reaching consensus, defining tasks and timelines,
maintaining meeting minutes and checking on
progresstowardsagoal. The agendasand minutes
are used by the Guidance Team when assessing
individual accountability.

Individual Accountability

We often hear from students that they do not like
working in teams because some students do all
the work and other students sit back and get a
free ride. In class, it is not possible to fire a non-
contributing team member. We can, however,
structure the team so that itis difficult for inactive
studentsto hide. We hold studentsaccountable for
their contribution to the team effort, and we use
three essential tools for monitoring student par-
ticipation: observation, self-assessment, and direct
interview. Our formal and informal approachesto
assessing the contributions that individuals make
towards the team project give us a clear picture of
the level of contributions made by each student,
and we use these indicators to adjust individual
grades for the group project.

The team notebook, which may include an in-
dividual engineering notebook, is updated weekly
by students and contains meeting minutes, email
exchanges, and draft work products. Reviews of
these notebooks, which may be keptelectronically
(e.g., using WebCT), have frequently identified
teams in conflict and instances of team members
not performing to team expectations. These re-
views can be used to identify problems in team
functioning and allow the instructor to intervene
when necessary. Informal approaches include
observing students while they are working. The
teaching assistants for the course are in frequent
contact with students working in the laboratory,

and informally the TAs observe how project team
members behave. To help with observation, a ru-
bricisuseful totally particular behaviorsexhibited
by team members during meetings, e.g., seeking
member participation, summarizing major points,
or asking questions.

Students are required to self report their level
of contribution. Some of these statements must be
shared with (and signed by) other team members,
and some are private between the student and the
Guidance Team. In addition, members report on
what is working well in the team and what needs
to be improved.

During meetings between a team and the
instructor, the instructor interviews each team
member to assess the level of contribution. Ex-
ams are used to assess the level of competency
with respect to given topics. Frequently, these
exams expose weaknesses in students who have
not participated in the development of a team’s
work products.

One further technique for assessing student
performance ontheteam projectisthe interviewat
the final presentations. These presentations include
members of the academic community outside the
course, and questioning of individual students in
this setting is highly effective in determining the
familiarity with the course conceptsas well asthe
level of contribution toward team success.

Team Issues

Frequently, studentsworking inteams experience
conflict, and not all students are equally adept at
dealing with these situations, particularly those
that result from clashing priorities and person-
alities (Scholtes, 1996). Significant challenges
arise for the instructor of the project course when
studentsare unable to resolve team issues on their
own. In order for us to expect students to work
on a team, we have to teach them Zow to resolve
team conflicts. The process described by Johnson
(Johnson, 2005) is generally more effective than
ad hoc processes for conflict resolution.

147

Teaching Software Engineering in a Computer Science Program Using the Affinity Research Group Philosophy

The first step in assisting a team in resolving
conflicts is to identify that a team has a problem.
Frequently students will bring the problem to the
attention of the instructor. To monitor teams who
are not reporting difficulties, the Guidance Team
looks at a number of indicators. For example, a
lack of initiative shown in email trails or poor
work delivered in rough drafts is an indication
that a member of the team is not contributing. A
series of work efforts not appearing in the final
product or suggestions that appear in email, but
not in work products may indicate team members
are ignoring or discounting a team member.

Once a team issue is identified, the Guidance
Team meets with the project team. In relatively
simple cases, there may be a discussion of team
skills and techniques for ensuring that com-
munication is clear, for example summarizing
the results of team meetings and emailing task
assignments immediately after the meeting.
Follow-up meetings can be used to assess the
change in team functioning. In more complex
cases, the process may entail a lengthier process
that includes having team members voice their
perceptions and emotions and having other team
members paraphrase what their teammates have
said. Paraphrasing forces a student to listen to
and understand the position of the other students.
Often, the students come away from such an
experience with a new respect for and apprecia-
tion of their team mates. Complex cases usually
require several guided meetings before the team
is able to address issues on its own.

One source of team conflict is the case where
we have highly motivated students mixed with
less motivated students. While it is normal for
lower-achieving students to become engaged and
highly productive and valuable to project teams,
it is not uncommon for teams to have one or two
memberswho remain unmotivated and unproduc-
tive. Inthese cases, the Guidance Team negotiates
grade and deliverable adjustments for individual
students on the team.

148

In most cases, these simple interventions suf-
fice. However, in more extreme cases, we have
teams develop a code of conduct and identify
their expectations for the course and project. In
the most egregious cases, we have removed team
members from a team and had that student report
directly to the Guidance Team.

Written and Oral Communications
skills

In order to develop students’ abilities to commu-
nicate technical concepts effectively, we use the
Instruction-Practice-Apply Continuum shown in
Figure 1. The process begins in the classroom.
A common technique for ensuring individual
accountability when using cooperative learn-
ing in class is to randomly select students to
explain their group’s solution to a given in-class
problem. When students explain a solution, the
faculty member can guide the student to a clear
explanation by asking questions and helping the
student rephrase statements.

Formal presentationsare scheduled four times
during the two semesters: a paper prototype pre-
sentation, a formal presentation of the SRS, an
executable prototype presentation, and the final
presentation. For each presentation, each student
on the team is required to present some part of
the product. The presentations are evaluated both
on style and content by the Guidance Team and
the clients. The rubric for evaluating students
includes items such as use of visual aids, pace,
eye contact, gender neutrality, ability to field ques-
tions, and use of language and terminology. The
comments from the Guidance Team and clients
are summarized and returned to the students.
The common observation of the clients is that the
final presentation is significantly better than the
presentations from the first semester.

While all of our students have taken English
writing classes prior to entering the capstone
course, many of them have great difficulty with

Teaching Software Engineering in a Computer Science Program Using the Affinity Research Group Philosophy

technical writing. Improving their abilities re-
quires practice. The approach we take isto review
student writing, make editorial comments, and
have the students rewrite the work. Comments
range from the correction of simple grammatical
errors to explaining the grammar rules involved
to issues related to content and structure. Com-
mon content problems include misuse of terms,
sentencesthatimply acausal relationship that does
not exist, factual errors, sentence fragments, and
sentencesthatare incomprehensible. Anexample
of amistaken causal relationship isthis statement:
Since V'is developed using C++, most of us have
experience using C++ When shown this state-
ment, most students agree that the dependent and
independent clauses are not related.

Students in the course report that they realize
that the criteria for written work include both
technical content and grammatical composition.
This and the requirement of revising drafts until
they are acceptable, increases the students’ level
of effort in proof reading. When they believe
that their writing has value to the client, the stu-
dents are much more willing to spend the time
producing higher quality work. Our experience
has shown that students who rewrite documents
to correct these errors are less likely to repeat
them in the future.

Assessment and Evidence of
success

The structure of the course has been shaped by
advice fromalumni, recruiters, industry represen-
tatives, and academics from other institutions. In
particular, we have evidence of the effectiveness of
this course based on data collected from employ-
ers and alumni. The following correspondences
were received from former students:

Working as a software engineer is like reliving
your class times 10 and my grades are based on
performance. I would like to talk to your class to

show your students how all the material they are
learning is relevant to the real world. Microsoft
employee

1 returned from an interview with Cisco Systems
yesterday and I met a former student. She is now a
team leader. She felt that your sofiware engineer-
ing course was very helpful in her career and she
wanted me to get this feedback to you. Interviewee
at Cisco Systems

Wow, I never though I would see this SE stuff
again...but, here [am beginning a huge project
for the organization that I am in. Even though it'’s
onlyme building the system, I figured that the only
way to build something that would last is to go
through all the steps that I learned in your class!
1 just thought you would like to hear that your
class was so useful. Air Force officer

This course has changed my attitude toward
groups. 1 saw how you structured the groups and
instilled individual accountability so that each
member contributed to the final product. Alum

The continued success of the course depends
on making changes, and process improvement
is structured in the course from three different
perspectives—team, product, and course.

Team: Inadditiontoteam processing discussed
earlier, the Guidance Team regularly requests
teams to review their progress. This processing
typically occurs after some major deliverable.
Individuals on each team are asked to respond
to the following questions:

. Did you complete your task on time?

. How did you encourage participation from
another team member?

» What is working well in your team?

e What needs to be improved in your team?

The responses to these questions are consoli-
dated, made anonymous, and shared with the team

149

Teaching Software Engineering in a Computer Science Program Using the Affinity Research Group Philosophy

members. This process assists team members
and the Guidance Team in identifying problems
and reviewing with teams the skills that resolve
them. Therecurring themes, especially in the first
semester, are centered on meetings and lack of
commitment from all members.

Regarding meetings, the problems typically
center on unproductive meetings, and length
of meetings. The feedback in this area includes
review of how to conduct effective meetings, e.g.,
setting an agenda, assigning roles such as time
keeper and participation checker, creating action
items, and checking status of previous action
items. Students are also encouraged to consider
the “100-mile rule,” i.e., treat each meeting as
though each member has travelled 100 miles to
attend and, as a result, it’s imperative to arrive
on time and have a productive meeting (Scholtes,
1996).

The advice given to teams regarding lack of
commitment centers on building positive inter-
dependence and the importance of recognizing
members’ contributionsto the projectand valuing
the opinions of others. Additional advice includes
structuring individual accountability through task
assignments and deadlines. The lead is encour-
aged to keep records of individual contributions
and status through meeting minutes or e-mail
exchanges. The following response to the ques-
tion of “what worked well” reflects how one team
improved from one semester to the next:

We worked horribly as a team last semester. This
semester, however, we’ve come to terms with each
member s benefits and weaknesses. Because we 've
learned to think as a team, we now act as one. It is
much more evident that trusting of team members
produces the desired results. Everyone is willing
to spend as much time as necessary to produce
what he/she needs to. By not wanting to let down
the group, every member (including myself) works
very hard to produce a team deliverable.

Another example of reflection from a team
member is the following:

150

At the beginning of last semester when I looked at
the names of my prospective team, I didnt know
what to think, only one familiar name. Looking at
this team now, we are really a “melting pot”: one
Taiwanese, one Hispanic/American, one Indian,
one Mexican and one [anglo]. Who says that we
cant all get along together? Each one of us had
our own strengths and weaknesses in our abili-
ties and our personalities. Miraculously, what 1
lacked, someone else had to offer. What someone
else needed, I could help. This is the true defini-
tion of teamwork. And we made it work. I am truly
enriched for this experience and I thank each one
of you for that.

Product: Our assessment of the quality of the
products produced by the students is part of the
evaluations given during the final presentations
each semester. These presentations are evaluated
by the Guidance Teamaswell asthe clients. Using
these assessments, we have identified problems
in the efficacy of the testing strategies and the
specifications of pre- and post- conditions in the
detailed designs.

Considering the student as a product, we look
at Alumni Surveys to determine whether five
years after graduation alumni believe that the
program prepared them to work in teams, ap-
ply software engineering principles, model, and
design. The survey results are given in Table 2.
Recent focus group evaluations of alumni of the
course support the ideas that the Affinity model
assists students in dealing with conflict and im-
proving their communications and presentation
skills. One of the principal skills developed in
the model is the ability to constructively critique
other people’s work and to accept constructive
critique of their own work. The key factor is that
the Affinity model has helped them develop the
social and professional skills that allow them to
interact productively with the other people with
whom they work.

Course: With respect to the course, numerous
changes have been made over the years, including

Teaching Software Engineering in a Computer Science Program Using the Affinity Research Group Philosophy

introduction of new tools, improved tutorials on
use of tools, and revised strategies for teaching
concepts with which students have difficulties.
An important method that we introduced for
evaluating the course is the mapping of course
outcomesto particular tasks or questions on tests,
and assignments to determine the effectiveness
of learning. For example, Table 3 shows a small
subset of the course outcomes for the two-semester
course and the corresponding ARG component
that complement the outcome. The outcomes are
given in two levels: Level 2 is Application and

Analysis. These are outcomes inwhich the student
can apply the material in familiar situations, e.g.,
can work a problem of familiar structure with
minor changes in the details. Level 3 is Synthesis
and Evaluation. These are outcomes in which the
student can apply the material in new situations.
This is the highest level of mastery.

RELATED WORk

Since projectand team experiences are embedded
in most computer science and software engineer-

Table 2. Results of 2007 Alumni Survey (n=37)

Q17c: Prepared me to work in teams.

91.8% strongly agree or agree

Q17g: Developed ability to apply principles of software engineering.

97.3% strongly agree or agree

Q17h: Prepared to model real-world processes and objects.

81.0% strongly agree or agree

Q18: Have designed a system, component or process

91.9% yes

Q19: Quality of preparation for specific design task

29.4% excellent, 61.8% good, 8.8%
below average

Table 3. Subset of course outcomes and corresponding ARG components

Course Outcome Assessment ARG Component Description
a. Apply techniques for eliciting requirements, | Project: Interview, cli- | Asking technical questions; Preparing presentations
including conducting interviews and developing | ent interactions, and | for prototype reviews
a throw-away prototype. prototypes
a. Analyzerequirementstodetermineifthey meetthe | Exams Peerevaluation of requirements, identifying common
attributes of well-written requirements. SRS Reviews mistakes, SRS drafts
a. Exhibit responsible attitudes and work habits as | Notebooks, team | Individual accountability in project work: preparing
individualsand groups, inaccordance with profes- | memos, presentation | and documenting team meetings.
sional software engineering codes of ethics. evaluations
a. Assemble and present technical work orally. Project presentations Cooper_anveteams, delivering technical presentations;
answering questions.
a. Develop effectlve_ techmqges for coI_Iaboratlon Project Cooperative teams; professional and team skills;
and problem-solving within groups in order to . .
. : . Notebooks conflict resolution.
create finished products of high quality.
Prototype reviews, Deliberate instruction in the skills needed to perform
. - SRS reviews, design Co -]
a. Conduct a technical review. . good reviews; professional presentation based on
reviews, code re- . A
- technical merit.
views
a. Compose technical doc'uments that are grammati- Project Documents Perform good reviews; professional presentations.
cally correct and technically sound.

151

Teaching Software Engineering in a Computer Science Program Using the Affinity Research Group Philosophy

ing undergraduate programs, itis no surprise that
many faculty have encountered issues similar to
the ones we encounter, and many of the approaches
we suggest here are being used in other institu-
tions. The use of cooperative and collaborative
learning approaches, active learning, and pair
programming facilitate the integration of teams
where there are differences inthe abilities of team
members, assist team members in overcoming
communications barriers, and help to motivate
students in the team setting (Ellis, 2000; Aller,
2004; Doerschuk, 2004; Spickard-Prettyman,
2004; Mickle, 2004; Layman, 2005). Assessment
of team projects is difficult and time-consuming,
and most effective approaches include reviews
and engineering notebooks (Meyer, 2005; Cooley,
2004). There are many ways to attempt to give
academic projects a “real world” flavor by incor-
porating real clients (for example, see Ford 2004
and Bruhn 2004).

FUTURE TRENDs

The need for technology workers in the United
States in the near future will continue to grow
(Holahan, 2007; McGee, 2007a).The need for
reliable software outstrips our ability to produce it.
The President’s Council of Advisors on Science
and Technology (PCAST, 2007) reportsontheim-
portance of networkingand informationtechnology
(NIT) systems connected with the physical world.
These include embedded systems, engineered
systems, and cyber-physical systems, e.g., home
health-care devices, ground transportation moni-
toring, and environmental monitoring. Theability to
design and develop safety-critical and secure NIT
systems is a national priority. There will be a need
to educate a workforce that can work in multidisci-
plinary environments with a strong understanding
of security and verification. In addition, employers
will continue to seek project management, commu-
nications, and team skills (McGee, 2007b). Team
skills that include the ability to work with members

152

indifferentplaces, differenttime zones, and different
cultures will become more common.

The trend towards distributed team develop-
ment (see for example Ramesh 2002 and Duarte
2006) and multidisciplinary software develop-
ment will continue. An example of this is the
trend towards service orientation (SO), where
applications are constructed from resources made
available over the Internet as web or grid services.
The term SO refers to the level of abstraction in
which functionality is specified. In particular, SO
is an approach for analysis, design, and develop-
ment of modules that support principles such
as reusability, loose coupling, abstraction, and
separation of concerns (Erl, 2005). The more
familiartermservice-oriented architecture (SOA)
is used to describe “the policies, practices, and
frameworks that enable application functionality
to be provided and consumed as sets of services”
(Sprott, 2004).

There will be a need to integrate existing
software services and components to rapidly pro-
duce software solutions. Application developers
from business and scientific domains are using
web services to implement systems based on the
SOA paradigm. Web service technologies provide
the necessary mechanisms to expose shareable
resources (service-oriented modules that provide
data and functionality) over the network and al-
low the resources to be consumed by users across
heterogeneous platforms, enhancing interaction
across organizations. The needed skills include
the ability to specify functionality of services so
that services can be advertised and discovered.

The Department of Labor’s Bureau of Labor
Statistics projects that over the 2004-2014 decade
there will be increases of 46% for software engi-
neers (Hecker, 2005). There is a strong need for
software engineerswhoare familiar with software
developmenttools such asautomated testing tools
and systems that assist developers in generating
code from designs. The separation between CS
and SE will increase, but the need for developers

Teaching Software Engineering in a Computer Science Program Using the Affinity Research Group Philosophy

will require that we produce capable developers
in CS programs.

CONCLUsION

The ARG model focuses on the development of
the student. We use the cooperative learning and
the development of skills by using the iterative
feedback aspects of the ARG model to teach the
software engineering capstone course. The course
raises the level of our students to meet the needs
and expectations of our constituents, the industry
recruiters. The Instruction-Practice-Apply ap-
proach utilizes repeated application of software
engineering techniques to a real-world problem
and extensive interaction with experienced soft-
ware engineers to teach students the practice of
software engineering. As the ARG model sug-
gests, we use structured and deliberate techniques
to teach students how to work together to produce
software engineering deliverables and resolve
conflicts. Feedback from our industrial partners
indicates that the team experience and the project
are invaluable to our students. Feedback from our
alumni and students indicate that theses experi-
ences have a significant impact on their careers
by preparing them for the workplace.

CC 2001 (2001, p. 43) describestheimportance
of developing complementary curriculum, i.e.,
the constellation of skills that are taught through
internship, such as the ability to write an effective
résumé, manage time effectively, conduct library
research, maintain professional responsibility,
remain up current in the field, and engage in
life-long learning. As described in this paper, it
is clear that the UTEP SE approach provides the
benefits of complementary curriculum by sup-
porting the development of a set of transferable
skills that enhance the students overall efficacy
and ability to effectively contribute to the software
engineering workforce.

ACKkNOWLEDGMENT

This work was supported in part by the National
Science Foundation (NSF) through grants DUE-
0443061 and CNS-0540592. Any opinions,
findings, and conclusions or recommendations
expressed inthe paper are those of the authors and
do not necessarily reflect the views of the NSF.

REFERENCESs

ACM/IEEE-CS Joint Task Force on Software
Engineering Ethics and Professional Practices
(1999). The ACM/IEEE Software Engineer-
ing Code of Ethics and Professional Practice.
retrieved February 2007 from http://www.acm.
org/about/se-code.

ACM Education Board (2004), ACM Education
Board Annual Report, Fiscal Year FY 2003.

Aller, B. M., Kline, A. & Tsang, E. (2004). Work
in Progress: Improving the senior capstone. In
Proceedings ofthe 334th ASEE/IEEE Frontiersin
Education Conference (pp. TCG/12-TCG/14).

American Psychological Association (1992).
Learner-Centered Psychological Principles:
Guidelines for School Redesign and Reform.
Washington D.C.. American Psychological As-
sociation.

Anderson, L , Chenault, T., Churchman, J., &
Homack, R. (1999). Scene and Countermeasure
Integration for Munition Interaction with Targets
Army Research Lab White Sands Missile Range
NM Survivability/Lethality Analysis Director-
ate. Retrieved May 2007 from http://stinet.dtic.
mil/oai/oai?&verb=getRecord&metadataPrefix=
html&identifier=ADA368518

Astin, A. W. (1985). Achieving Academic Excel-
lence. San Francisco: Jossey-Bass.

Bloom, B. (1956). Taxonomy of Educational Ob-
Jjectives. David McKay Company, Inc.

153

Teaching Software Engineering in a Computer Science Program Using the Affinity Research Group Philosophy

Bonura, S. & Hayman, B. (1998). Shape Up! Re-
source Manual, Personality Styles and Human
Interaction—Making Them Work for You! Graphic
Business Solutions, Inc: San Diego, CA.

Bruhn, R. & Camp, J. (2004). Creating corporate

world experience in capstone courses. In Proceed-
ings of the 34th ASEE/IEEE Frontiersin Education
Conference (pp. T2G/1-T2G/6).

CAC (2007) Computing Accreditation Com-
mission Criteria for Accrediting Computing
Programs, Accreditation Board of Engineering
Technology. Retrieved March 10, 2007, from
http://www.abet.org/Linked%20Documents-
UPDATE/Criteria%20and%20PP/C001%2006-
07%20CAC%?20Criteria%209-12-06.pdf

CC2001 (2001) Computing Curricula 2001 Com-
puter Science Volume, Association of Computing
Machinery. Retrieved October 2006 from http:/
www.sigcse.org/cc2001/.

Coad, P,, Lefebvre, E. & De Luca, J. (1999). Java
Modeling in Color With UML: Enterprise Compo-
nents and Process. Prentice Hall International.

CSDP (2007) IEEE Computer Society Certi-
fied Software Development Professional,
Retrieved May 1, 2007 from http://www.
computer.org/portal/site/ieeecs/menuitem.
c5efb9b8ade9096b8a9ca0108bcd45f3/index.
jsp?&pName=ieeecs_levell&path=ieeecs/educa-
tion/certification&file=index.xml&xsl=generic.
Xsl&

Cooley, W. (2004). Individual student assess-
ment in team-based capstone design projects. In
Proceedings of the 34th ASEE/IEEE Frontiers in
Education Conference (pp. F1G-1-5).

DeMarco, T. & Lister, T. (1999). Peopleware:
Productive Projects and Teams Second Edition.
Dorset House Publishing Company, Inc.

Doerschuk, P. (2004). Incorporating team software
development and quality assurance in software
engineering education. In Proceedings of the 34th

154

ASEE/IEEE Frontiers in Education Conference
(pp. F1C/7-F1C/12).

Duarte, D. & Snyder, N. T. (2006). Mastering
Virtual Teams: Strategies, Tools, and Techniques

That Succeed, Jossey-Bass.

Ellis, H. (2000). An Experience in Collaborative
Learning: Observations of a Software Engineering
Course. In Proceedings of the 30th ASEE/IEEE
Frontiers in Education Conference (pp. T2C/1-
T2C/6).

Engineering Accreditation Commission (EAC
2007). Criteria for accrediting engineering pro-
grams effective for the 2007-2008 accreditation
cycle. Retrieved September 2007 from http://
www.abet.org.

Erl, T. (2005). Service oriented architecture: con-
cepts, techniques, and design. Prentice Hall.

Ford, R. & Lasher, W. (2004). Processes for en-
suring quality capstone design. In Proceedings
of the 34th ASEE/IEEE Frontiers in Education
Conference (S2G/13-S2G/17).

Gates, A. Q., Delgado, N., & Mondragon, O.
(2000). A structured approach for managing a
practical software engineering course. In Pro-
ceedings 30" ASEE/IEEE Frontiers in Education
Conference (pp. T1C/21 - T1C/26).

Gates, Q., Teller, P, Bernat, A., Delgado, N., &
Della-Piana, C. (1999). Expanding participationin
undergraduate research using the affinity research
group model. Journal of Engineering Education,
88(4): 409-414.

GeoNet (2007). United States Gravity Data Re-
pository System. Retrieved May 10, 2007 from
http://paces.geo.utep.edu/gdrp/.

GEON (2007). GEON: the geosciences network.
Retrieved November 2007 from: http://geongrid.
org.

Teaching Software Engineering in a Computer Science Program Using the Affinity Research Group Philosophy

Gates, A.Q.,Roach, S., Villa, E., & Kephart, K. (in
press, 2007). Affinity Research Groups: Creating
and Maintaining Effective Research Teams.

Hacker, D. (1991). The Bedford Handbook for
Writers. Boston: Bedford Book of St. Martin’s
Press.

Hecker, D. E. (2005). Occupational Employment
Projections to 2014. Monthly Labor Review. De-
partment of Labor (pp. 70-101).

Holahan, C. (2007). The myth of high-tech
outsourcing. Business Week, 4/24/07, retrieved
on 4/2007 from http://www.businessweek.
com/technology/content/apr2007/tc20070424 _
967747.htm?chan=top+news_top+news+index_
top+story.

Johnson, D., & Johnson, R. (1989). Cooperation
and competition: theory and research. Edina,
MN: Interaction Book Company.

Johnson, D., Johnson, R., & Holubec, E. (1990).
Circles of learning: cooperation in the classroom.
Edina, MN: Interaction Book Company.

Johnson, D., Johnson, R., & Smith, K. (1991).
Active learning: cooperation in the college class-
room. Edina, MN: Interaction Book Company.

Johnson, D., Johnson, R., & Holubec, E. (1992a).
Cooperation in the classroom. Edina, MN: Inter-
action Book Company.

Johnson, D., Johnson, R., & Holubec, E. (1992b).
Advanced cooperative learning. Edina, MN:

Interaction Book Company.

Johnson, D., Johnson, R., & Holubec, E. (1994).
The nuts and bolts of cooperative learning. Edina,
MN: Interaction Book Company.

Johnson, D. & Johnson, R. (2005). Teaching
students to be peacemakers, 4" Edition, Edina,
MN: Interaction Book Company.

Kerth, N. L. (2001). Software retrospectives: a

handbook for team reviews, Dorset House Pub-
lishing Company, Inc.

Kurfiss, J1.G. (1998). Critical thinking. ASHE-
ERIC Higher Education Report No. 2. Washing-
ton, D.C.: Association for the Study of Higher
Education.

Layman, L., Willimas, L., Osborne, J., Berenson,
S., Slaten,K. & Vouk, M. (2005). How and why
collaborative software development impacts the
software engineering course. In Proceedings
of the 35th ASEE/IEEE Frontiers in Education
Conference (pp. TAC/9-TAC/14).

McConnell, S. (1997). Software project survival
guide. Microsoft Press.

McGee, M. K. (2007a). Bill to increase H1-B visa
makesacomeback incongress. InformationWeek,
retrieved 4/2007 from http://www.information-
week.com/showArticle.jhtml;jsessionid=L5FSM
T3UOTFHYQSNDLPSKHSCJUNN2JVN?artic
lelD=199101679&queryText=H-1B .

McGee, M. K. & Murphy, C. (2007h). In grow-
ing job market, IT pros get more for the soft
skills. InformationWeek retrieved 10/07 from
http://www.informationweek.com/story/show-
Avrticle.jhtml?articlel D=202404815

McKeachie, W.J., Pintrich, P.R., Lin, Y.-G., &
Smith, D.A.F. (1986). Teaching and learning in
the classroom: a review of the research litera-
ture. Ann Arbor: National Center for Research to
Improve Postsecondary Teaching and Learning,
University of Michigan.

Mickle, M. H., Shuman, L., & Spring, M. (2004).
Active learning courses on the cutting edge of
technology. In Proceedings of the 34th ASEE/
IEEE Frontiers in Education Conference (pp.
T2F/19-T2F/23).

Meyer, D. G. (2005). Capstone design outcome as-
sessment: instruments for quantitative education.
In Proceedings of the 35th ASEE/IEEE Frontiers
in Education Conference (pp. FAD/7-FAD-11).

155

Teaching Software Engineering in a Computer Science Program Using the Affinity Research Group Philosophy

Parnas, D. L. (1999). Software engineering pro-
grams are not computer science programs. /EEE
Software, 16 (6):19-30.

PCAST (2007). President’s Council of Advisors
on Science and Technology. Leadership under
challenge: information technology R&D in a
competitive world: an assessment of the federal
networking and information technology R&D
program. WWW.0Stp.gov.

Ramesh, G. (2002). Managing global software
projects: how to lead geographically distributed
teams, manage processes and use quality models.
McGraw-Hill Limited.

Rauda, L. G. (2005). A Feature-Driven Develop-
ment approach for an undergraduate software en-
gineering course. Master’s Project, the University
of Texas at El Paso, May 2007.

Rodriguez, C. (1994). Keeping minority under-
graduates in science and engineering. Paper
presented at the 19th Annual Conference of the
Association for the Study of Higher Education,
Tucson, Arizona.

Scholtes, P, Joiner, B. & Streibel, B. (1996). The
Team Handbook 2™ Edition. Joiner Associates,
Inc.

SE2004 (2004) Curriculum Guidelines for Un-
dergraduate Degree Programs in Software En-
gineering, Association of Computing Machinery
and IEEE Computer Society. Retrieved December
2006 from http://sites.computer.org/ccse/.

156

Spickard-Prettyman, S., Qammar, H., Broadway,
F., Cheung, F.M. & Evans, E. (2004). The impact
of vertical integration of design teams on the
chemical engineering program. In the Proceed-
ings of the 34th ASEFE/IEEFE Frontiersin Education
Conference (T2G/15-T2G/19).

Sprott, D. & Wilkes, L. (2004). Understanding
service-oriented architecture. Microsoft Architect
Journal. Retrieved May 2007 from http:/msdn2.
microsoft.com/en-us/library/aa480021.aspx.

Teller, P. & Gates, A. Q. (2001). Using the affinity
research group model to involve undergraduate
students in computer science. Journal of Engi-
neering Education, 549-555.

Tinto, V., Goodsell Love, A., & Russo, P. (1993).
Leaving college: rethinking the causes and curses
of student attrition (2 ed.). Chicago: The University
of Chicago Press.

Whitehead, R. (2001). Leading a software devel-

opment team: a developer’s guide to successfully
leading people & projects, Addison-Wesley.

Winter, V. (2006). The high-assurance transfor-
mation system. Retrieved December 2006 from
http://faculty.ist.unomaha.edu/winter/HATS _
Page/hats_index.html.

Whitehead, R. (2001). Leading a software devel-
opment team: a developer’s guide to successfully
leading people and projects, Addison-Wesley.

Wysocki, R. (2006). Effective software project
management. John Wiley & Sons.

157

Chapter IX
A Framework for Success
in Real Projects for Real
Clients Courses

David Klappholz
Stevens Institute of Technology, USA

Vicki L. Almstrum
The University of Texas at Austin, USA

Ken Modesit
Indiana University — Purdue University Ft. Wayne, USA

Cherry Owen
The University of Texas of the Permian Basin, USA

Allen Johnson
Huston-Tillotson University, USA

Steven J. Condly
HSA Learning & Performance Solutions, USA

Abs TRACT

In this chapter, we demonstrate the importance of Real Projects for Real Clients Courses (RPRCCs)
in computing curricula. Based on our collective experience, we offer advice for setting up an effective
support infrastructure for such courses. We discuss where and how to find clients, the types of projects
that we have used, and how to form and train teams. We investigate the variety of standards and work
products that we have used in our courses and explore issues related to assessment and evaluation.
Finally, we consider the benefits of an RPRCC-centric approach to computing curricula.

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

A Framework for Success in Real Projects for Real Clients Courses

A course is underway. Students are excited, en-
gaged, eager to apply what they are learning,
eager to communicate with one another about their
project work, what they need to accomplish, and
what they must find out from outside stakehold-
ers. As a lovely bonus, the project the students
are developing is more than a toy problem or a
product that will gather dust on the back of the
shelf — they are writing software that is useful
and will be used.

Thistype of course existsand has been success-
fulin many settings, including public and private
institutions, small, medium, and large institutions,
and Historically Black and Hispanic-Serving
institutions (that is, the colleges and universities
at which the co-authors teach). Inthis chapter, we
promote the idea of Real Projects for Real Clients
Courses (RPRCCs) and discuss key issues related
to successfully planning for and executing them
in a variety of settings.

INTRODUCTION

RPRCCs are courses in which students work in
teams to develop real software for real clients,
including faculty and staff from their own in-
stitutions, for-profit companies, not-for-profit
organizations, and government agencies. To be
“real,” software must meet the needs of the client
by solving a problem or providing a service for
the clientor the organization the clientrepresents.
RPRCCs are appropriate in all Computing Cur-
ricula 2005 (Joint IEEE CS/ACM Task Force,
2005) disciplines, that is, computer science (CS),
information systems (IS), computer engineering
(CE), software engineering (SE), and information
technology (IT), which we refer to collectively as
“computing disciplines” or simply as “comput-
ing.” RPRCCs are also appropriate in the full
range of post-secondary institutions, including
community colleges, four-year colleges, and

158

universities, and can even be used at the second-
ary level.

This chapter explores the core issues covered
in a taxonomy that has been developed by the co-
authors over a number of years. The taxonomy,
which delineates issues involved in designing
and delivering RPRCCs, has been refined using
feedback from participants in workshops and
other conference activities (e.g., Almstrum, Klap-
pholz, & Modesitt, 2007; Klappholz, Almstrum,
& Modesitt, 2006). Appendix A gives the top two
levels of the current version of the taxonomy.

Inthis chapter, we explore the following basic
issues involved in developing and teaching an
RPRCC:

. Client-related issues, including where to find
them, howto vetthem for appropriatenessas
clients, and how to manage client expecta-
tions;

. Project-related issues, including possible
types of projects and how to vet projects
for appropriateness;

. Team-related issues, including how to form
teams and train them;

. Product-related issues, including standards
and required work products; and

. Issues related to assessment and evalua-
tion.

The full taxonomy details these and a large
number of additional issues. Finally, in the Fu-
ture Trends section, we argue for the notion of
RPRCC-centric computing curricula, that is,
curricula that include RPRCCs at multiple levels
of the undergraduate program.

The experiences we discuss in this chapter
can help readers understand the issues one must
consider when planning the framework for an
RPRCC. We sincerely hope that the ideas pre-
sented below will better equip instructors with
all types of experience to plan and execute suc-
cessful RPRCCs.

A Framework for Success in Real Projects for Real Clients Courses

WHY RPRCCs?

Other than using real projects and real clients,
how different is it to teach an RPRCC version of
acourse comparedtoamoretraditional version of
the same course? Several of us have observed that
teachingan RPRCC probably takes more timethan
teaching a traditional version of the same course,
especially if the instructor has never worked in
a disciplined development environment. Certain
aspects of teaching an RPRCC can be difficult
to predict and control. An RPRCC requires a
different style of planning (e.g., to find clients,
determine teams, coordinate schedules, and
manage client expectations) and a different style
of oversight (e.g., to ensure that teams are mak-
ing progress toward their goals). When starting
to teach such a course, there is a sharp learning
curve, making the first semester or two especially
demanding and risky.

Why, then, should a computing instructor put
in the added effort and a department expend the
extra resources in order to offer RPRCCs? We
argue that RPRCCsand RPRCC-centriccurricula
provide benefits to three constituencies: comput-
ing departments, computing students, and the
IT/software development workforce. We discuss
these issues below.

Benefits to the Department

The most straightforward benefit to computing
departments that offer RPRCCs has to do with
accreditation. In addition to the traditional set of
technical skills, the new criteriafrom ABET, Inc.,
the recognized accreditor for U.S. college and
university programs in applied science, comput-
ing, engineering, and technology include asecond
setofequally important professional skills, which
are also essential aspects of RPRCCs. Shu-
man, Besterfield-Sacre, and McGourty (2005)
divide these latter skills into process skills,
which include communication, teamwork, eth-
ics, and professionalism, and awareness skills,

which include lifelong learning, a knowledge of
contemporary issues, and engineering within a
societal and global context.

A second potential benefit of RPRCC:s is that
usingindustrial clients can strengthen cooperation
betweeneducational institutionsand industry. The
close interaction can help students find placement
in internships and post-graduation employment.
The relationship can also support technology
transfer and sharing of research results (Grisham,
Krasner, & Perry, 2006).

Recruiting and retention are major concerns
to most computing departments. Because stu-
dents enrolled in RPRCCs tend to be strongly
motivated by the mixture of real and theoretical
skills inherent in these courses (Hogan, Smith, &
Thomas, 2005), computing curriculathat include
RPRCCs may increase retention. RPRCCs early
inthe curriculum, for example at the pre-CS1 and
secondary levels, may convince students with
little or no programming background or who
would otherwise never select a career in software
development to consider a computing major.

The declining number of women in computing
is disheartening when compared to increasing
numbers of women in other areas of science and
engineering. In 1985, 38% of B.S. degrees in CS
were awarded to women. By 2003, their repre-
sentation had shrunk to 28%. Because RPRCCs
concentrate on interpersonal skills and because
ever