S C HAUM'S oullines

SIGNALS AND SYSTEMS

HWEI P. HSU

The perfect aid for better grades!

Teaches effective problem solving

571 problems solved step-by-step

Ideal for independent study!

Use with these courses: σ Basie Cireuit Analysis \square Electrical Cireuits \checkmark Electrical Engineering Cirvuit Analysis \checkmark Introduction to Cirruit Analysis $『$ AC \& DC Circuits

SCHAUM'S OUTLINES OF

Theory and Problems of Signals and Systems

Hwei P. Hsu, Ph.D.
Professor of Electrical Engineering Fairleigh Dickinson University

SCHAUM'S OUTLINE SERIES

McGRAW-HILL
New York San Francisco Washington, D.C. Auckland Bogotá Caracas Lisbon London Madrid Mexico City Milan Montreal New Delhi San Juan Singapore Sydney Tokyo Toronto

HWEI P. HSU is Professor of Electrical Engineering at Fairleigh Dickinson University. He received his B.S. from National Taiwan University and M.S. and Ph.D. from Case Institute of Technology. He has published several books which include Schaum's Outline of Analog and Digital Communications.

Schaum's Outline of Theory and Problems of

SIGNALS AND SYSTEMS

Copyright © 1995 by The McGraw-Hill Companies, Inc. All rights reserved. Printed in the United States of America. Except as permitted under the Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a data base or retrieval system, without the prior written permission of the publisher.

4567891011121314151617181920 BAW BAW 99

ISBN 0-07-030641-9
Sponsoring Editor: John Aliano
Production Supervisor: Leroy Young
Editing Supervisor: Maureen Walker

Library of Congress Cataloging-in-Publication Data

Hsu, Hwei P. (Hwei Piao), date
Schaum's outline of theory and problems of signals and systems / Hwei P. Hsu.
p. cm.-(Schaum's outline series)

Includes index.
ISBN 0-07-030641-9

1. Signal theory (Telecommunication)—Problems, exercises, etc.
I. Title.

TK5102.92.H78 1995
621.382'23-dc20

94-44820
CIP

McGraw-Hill

A Division of The McGnzw-Hill Companies

Preface

The concepts and theory of signals and systems are needed in almost all electrical engineering fields and in many other engineering and scientific disciplines as well. They form the foundation for further studies in areas such as communication, signal processing, and control systems.

This book is intended to be used as a supplement to all textbooks on signals and systems or for selfstudy. It may also be used as a textbook in its own right. Each topic is introduced in a chapter with numerous solved problems. The solved problems constitute an integral part of the text.

Chapter 1 introduces the mathematical description and representation of both continuous-time and discrete-time signals and systems. Chapter 2 develops the fundamental input-output relationship for linear time-invariant (LTI) systems and explains the unit impulse response of the system and convolution operation. Chapters 3 and 4 explore the transform techniques for the analysis of LTI systems. The Laplace transform and its application to continuous-time LTI systems are considered in Chapter 3. Chapter 4 deals with the z-transform and its application to discrete-time LTI systems. The Fourier analysis of signals and systems is treated in Chapters 5 and 6. Chapter 5 considers the Fourier analysis of continuous-time signals and systems, while Chapter 6 deals with discrete-time signals and systems. The final chapter, Chapter 7, presents the state space or state variable concept and analysis for both discrete-time and continuous-time systems. In addition, background material on matrix analysis needed for Chapter 7 is included in Appendix A.

I am grateful to Professor Gordon Silverman of Manhattan College for his assistance, comments, and careful review of the manuscript. I also wish to thank the staff of the McGraw-Hill Schaum Series, especially John Aliano for his helpful comments and suggestions and Maureen Walker for her great care in preparing this book. Last, I am indebted to my wife, Daisy, whose understanding and constant support were necessary factors in the completion of this work.

HWEI P. HSU
MONTVILLE, NEW JERSEY

To the Student

To understand the material in this text, the reader is assumed to have a basic knowledge of calculus, along with some knowledge of differential equations and the first circuit course in electrical engineering.

This text covers both continuous-time and discrete-time signals and systems. If the course you are taking covers only continuous-time signals and systems, you may study parts of Chapters 1 and 2 covering the continuous-time case, Chapters 3 and 5, and the second part of Chapter 7. If the course you are taking covers only discrete-time signals and systems, you may study parts of Chapters 1 and 2 covering the discrete-time case, Chapters 4 and 6, and the first part of Chapter 7.

To really master a subject, a continuous interplay between skills and knowledge must take place. By studying and reviewing many solved problems and seeing how each problem is approached and how it is solved, you can learn the skills of solving problems easily and increase your store of necessary knowledge. Then, to test and reinforce your learned skills, it is imperative that you work out the supplementary problems (hints and answers are provided). I would like to emphasize that there is no short cut to learning except by "doing."

Contents

Chapter 1. Signals and Systems 1
1.1 Introduction 1
1.2 Signals and Classification of Signals 1
1.3 Basic Continuous-Time Signals 6
1.4 Basic Discrete-Time Signals 12
1.5 Systems and Classification of Systems 16
Solved Problems 19
Chapter 2. Linear Time-Invariant Systems 56
2.1 Introduction 56
2.2 Response of a Continuous-Time LTI System and the Convolution Integral 56
2.3 Properties of Continuous-Time LTI Systems 58
2.4 Eigenfunctions of Continuous-Time LTI Systems 59
2.5 Systems Described by Differential Equations 60
2.6 Response of a Discrete-Time LTI System and Convolution Sum 61
2.7 Properties of Discrete-Time LTI Systems 63
2.8 Eigenfunctions of Discrete-Time LTI Systems 64
2.9 Systems Described by Difference Equations 65
Solved Problems 66
Chapter 3. Laplace Transform and Continuous-Time LTI Systems 110
3.1 Introduction 110
3.2 The Laplace Transform 110
3.3 Laplace Transforms of Some Common Signals 114
3.4 Properties of the Laplace Transform 114
3.5 The Inverse Laplace Transform 119
3.6 The System Function 121
3.7 The Unilateral Laplace Transform 124
Solved Problems 127
Chapter 4. The z-Transform and Discrete-Time LTI Systems 165
4.1 Introduction 165
4.2 The z-Transform 165
4.3 z-Transforms of Some Common Sequences 169
4.4 Properties of the z -Transform 171
4.5 The Inverse z-Transform 173
4.6 The System Function of Discrete-Time LTI Systems 175
4.7 The Unilateral z-Transform 177
Solved Problems 178
Chapter 5. Fourier Analysis of Continuous-Time Signals and Systems 211
5.1 Introduction 211
5.2 Fourier Series Representation of Periodic Signals 211
5.3 The Fourier Transform 214
5.4 Properties of the Continuous-Time Fourier Transform 219
5.5 The Frequency Response of Continuous-Time LTI Systems 223
5.6 Filtering 227
5.7 Bandwidth 230
Solved Problems 231
Chapter 6. Fourier Analysis of Discrete-Time Signals and Systems 288
6.1 Introduction 288
6.2 Discrete Fourier Series 288
6.3 The Fourier Transform 291
6.4 Properties of the Fourier Transform 295
6.5 The Frequency Response of Discrete-Time LTI Systems 300
6.6 System Response to Sampled Continuous-Time Sinusoids 302
6.7 Simulation 303
6.8 The Discrete Fourier Transform 305
Solved Problems 308
Chapter 7. State Space Analysis 365
7.1 Introduction 365
7.2 The Concept of State 365
7.3 State Space Representation of Discrete-Time LTI Systems 366
7.4 State Space Representation of Continuous-Time LTI Systems 368
7.5 Solutions of State Equations for Discrete-Time LTI Systems 371
7.6 Solutions of State Equations for Continuous-Time LTI Systems 374
Solved Problems 377
Appendix A. Review of Matrix Theory 428
A. 1 Matrix Notation and Operations 428
A. 2 Transpose and Inverse 431
A. 3 Linear Independence and Rank 432
A. 4 Determinants 433
A. 5 Eigenvalues and Eigenvectors 435
A. 6 Diagonalization and Similarity Transformation 436
A. 7 Functions of a Matrix 437
A. 8 Differentiation and Integration of Matrices 444
Appendix B. Properties of Linear Time-Invariant Systems and Various Transforms 445
B. 1 Continuous-Time LTI Systems 445
B. 2 The Laplace Transform 445
B. 3 The Fourier Transform 447
B. 4 Discrete-Time LTI Systems 449
B. 5 The z-Transform 449
B. 6 The Discrete-Time Fourier Transform 451
B. 7 The Discrete Fourier Transform 452
B. 8 Fourier Series 453
B. 9 Discrete Fourier Series 454
Appendix C. Review of Complex Numbers 455
C. 1 Representation of Complex Numbers 455
C. 2 Addition, Multiplication, and Division 456
C. 3 The Complex Conjugate 456
C. 4 Powers and Roots of Complex Numbers 456
Appendix D. Useful Mathematical Formulas 458
D. 1 Summation Formulas 458
D. 2 Euler's Formulas 458
D. 3 Trigonometric Identities 458
D. 4 Power Series Expansions 459
D. 5 Exponential and Logarithmic Functions 459
D. 6 Some Definite Integrals 460
Index 461

To get the fully access of the document please click here

