Making Everything Easi

Learn to:

= Understand object-oriented programming

* Use the leading language for Mac
programming, even if you're a novice

« Create apps for the iPhone™ and
Mac OS' X

Practice your Mac programming
skills using code samples on the CD

Neal Goldstein
Author of iPhone Application Development
For Dummies

Get More and Do More at Dummies.come®

Start with FREE Cheat Sheets

C\ﬁ'o’d‘ Cheat Sheets include
(7\!& * Checklists
* Charts
* Common Instructions
* And Other Good Stuff!

To access the Cheat Sheet created specifically for this book, go to
www.dummies.com/cheatsheet/objectivec

Get Smart at Dummies.com
Dummies.com makes your life easier with 1,000s

of answers on everything from removing wallpaper
to using the latest version of Windows.

Check out our
+Videos
* [llustrated Articles
* Step-by-Step Instructions

Plus, each month you can win valuable prizes by entering
our Dummies.com sweepstakes. *

Want a weekly dose of Dummies? Sign up for Newsletters on
+ Digital Photography
* Microsoft Windows & Office
* Personal Finance & Investing
* Health & Wellness
* Computing, iPods & Cell Phones
* eBay
* Internet
* Food, Home & Garden

Find out”“HOW” at Dummies.com

*Sweepstakes not currently available in all countries; visit Dummies.com for official rules.

Objective-C’

FOR

DUMMIES

by Neal Goldstein

WILEY
Wiley Publishing, Inc.

Disclaimer: This eBook does not include ancillary media that was packaged with the
printed version of the book.

Objective-C® For Dummies®
Published by

Wiley Publishing, Inc.

111 River Street

Hoboken, NJ 07030-5774

www.wiley.com
Copyright © 2009 by Wiley Publishing, Inc., Indianapolis, Indiana
Published by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permit-
ted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written
permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the
Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600.
Requests to the Publisher for permission should be addressed to the Permissions Department, John
Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at

http://www.wiley.com/go/permissions.

Trademarks: Wiley, the Wiley Publishing logo, For Dummies, the Dummies Man logo, A Reference for the
Rest of Us!, The Dummies Way, Dummies Daily, The Fun and Easy Way, Dummies.com, Making Everything
Easier, and related trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/

or its affiliates in the United States and other countries, and may not be used without written permission.
Objective-C is a registered trademark of Apple, Inc. All other trademarks are the property of their respec-
tive owners. Wiley Publishing, Inc., is not associated with any product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF
THE CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITH-
OUT LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE
CREATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES
CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE
UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR
OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF
A COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE
AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZATION
OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF
FURTHER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE
INFORMATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY
MAKE. FURTHER, READERS SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK
MAY HAVE CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN
IT IS READ.

For general information on our other products and services, please contact our Customer Care
Department within the U.S. at 877-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002.

For technical support, please visit www.wiley.com/techsupport.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may
not be available in electronic books.

Library of Congress Control Number: 2009935231
ISBN: 978-0-470-52275-2

Manufactured in the United States of America
109 8 765 4321

WILEY

http://www.wiley.com
http://www.wiley.com/go/permissions
http://www.wiley.com/techsupport

About the Author

Neal Goldstein is a recognized leader in making state-of-the-art and cutting-
edge technologies practical for commercial and enterprise development.

He was one of the first technologists to work with commercial developers

at firms such as Apple Computer, Lucasfilm, and Microsoft to develop com-
mercial applications using object-based programming technologies. He was

a pioneer in moving that approach into the corporate world for developers
at Liberty Mutual Insurance, USWest (now Verizon), National Car Rental, EDS,
and Continental Airlines, showing them how object-oriented programming
could solve enterprise-wide problems. His book (with Jeff Alger) on object-
oriented development, Developing Object-Oriented Software for the Macintosh
(Addison Wesley, 1992), introduced the idea of scenarios and patterns to
developers. He was an early advocate of the Microsoft .NET framework, and
successfully introduced it into many enterprises, including Charles Schwab.
He was one of the earliest developers of Service Oriented Architecture (SOA),
and as Senior Vice President of Advanced Technology and the Chief Architect
at Charles Schwab, he built an integrated SOA solution that spanned the
enterprise, from desktop PCs to servers to complex network mainframes. (He
holds three patents as a result.) As one of IBM’s largest customers, he intro-
duced them to SOA at the enterprise level and encouraged them to head in
that direction. He is currently leading an iPhone startup that is developing an
application that will radically change how people can use iPhones to manage
information.

Dedication

To my brother, Jay, who went above and beyond the call of duty to cover for
me in the real world as [wandered around in Objective-C land.

To my children, Sarah and Evan, who help me understand what is really
important

But most of all, to my wife Linda. With equanimity and grace she’s lived with
me through not just one, but two books this year. If there is ever a Nobel
Prize for patience, understanding, support, and friendship, she deserves the
first one.

Author’s Acknowledgments

Carole Jelen, agent extraordinaire, who does an extraordinary job of taking
care of business so that I can pay attention to writing.

Acquisitions Editor Kyle Looper whose understanding of programming and
the issues involved in learning how to program helped make this a far better
book. Project Editor Colleen Totz Diamond took over in mid stream and did
an outstanding job of making this book what it is. Copy Editor Melba Hopper
kept me focused on making things clear and simple. Technical reviewer
Dennis Cohen added a great second pair of eyes.

Publisher’s Acknowledgments

We’re proud of this book; please send us your comments at http://dummies.custhelp.com. For
other comments, please contact our Customer Care Department within the U.S. at 877-762-2974, out-
side the U.S. at 317-572-3993, or fax 317-572-4002.

Some of the people who helped bring this book to market include the following:

Acquisitions, Editorial, and Media Composition Services

Development Project Coordinator: Patrick Redmond

Project Editor: Colleen Totz Diamond Layout and Graphics: Samantha K. Cherolis

Acquisitions Editor: Kyle Looper Proofreaders: Context Editorial Svcs,

Copy Editor: Melba Hopper John Greenough
Technical Editor: Dennis R. Cohen Indexer: Valerie Haynes Perry
Editorial Manager: Jodi Jensen Special Help:

Media Development Assistant Project David A. Diamond, Kelly Ewing

Manager: Jenny Swisher

Media Development Associate Producers:
Josh Frank

Editorial Assistant: Amanda Graham
Sr. Editorial Assistant: Cherie Case

Cartoons: Rich Tennant
(www . the5thwave . com)

Publishing and Editorial for Technology Dummies
Richard Swadley, Vice President and Executive Group Publisher
Andy Cummings, Vice President and Publisher
Mary Bednarek, Executive Acquisitions Director
Mary C. Corder, Editorial Director
Publishing for Consumer Dummies
Diane Graves Steele, Vice President and Publisher
Composition Services

Debbie Stailey, Director of Composition Services

Contents at a Glance

JOEFOAUCEION «eeeeaeeaaeeeeeeeeeennnaaeaeeeeeeeennnnnaaseeeeeesnnnnnaes |

Part I: Getting to the Starting Line.............ccccrueccuneeceee 7

Chapter 1: Computer Programming EXposed!.........c.ccoceevirniiiinniinenieniinienieneeneenne 9
Chapter 2: Creating Your First Programi...........cccccecvevienieninsiiniieesienieniesieseeeeeie e 21
Chapter 3: The Object in ObJective-C.........cccoooiiiiiiririeieeereeetee et 55
Part II: Speaking the Language of Objective-C............. 65
Chapter 4: Language and Programming BasiCsccccceeveeiiecieevieccienieceeceeeeeeenee 67
Chapter 5: Functions and Data STrUCLUYES...........ccvevveevieeieieciieieeieeeeeee e eve e 105
Chapter 6: Adding a Little More Class to Your Program...........cccceeveveiervienveneennnnnne 139
Chapter 7: Objects Objects Everywhere..........ccccoooiivinininnenenieneeceeeeeeee 167
Chapter 8: Using the DEDUZZETcccueeiieieeieieieeeeee et a e ve s 185
Chapter 9: Using Control Statements and LOOPS.......ccoceeverviiriiriienieniienienieneesieenne 201
Part 111: Walking the Object-Oriented Walk 223
Chapter 10: Basic INheritancecccocvvierieeiiniiiniieeeeeeeeeeeeeee e 225
Chapter 11: Encapsulating ODJECtScccoveruirieiinieieiieeeeeeeeeesi et 245
Chapter 12: The Birth of an ODJECEcccueeveeiiiiiiieeeeeceeeeeee e 265
Chapter 13: Getting a Handle on Memory Management...........c.cccecevvierieneeneenennne 279

Part IU: Moving from Language to Application........... 305

Chapter 14: Getting Data from Other ODJECtScoovvevieviirciiiiiirieriecieceeeeseeeee 307
Chapter 15: Show Me the Data.........ccoceviveiiiiiieieee e 323
Chapter 16: Extending the Behavior of Objects........cccccveeieciieciieciecieciecieceeceeeeae 355
Chapter 17: Adding an iPhone User Interface.........c..cooceeverviinviinniincieniinienieneeneene 369
Chapter 18: Adding a Mac User Interface..........ccoceeveeveeieniiiniiniienieeieeieseeseesieenne 393
Part U: The Part of Tensccccccaaaaaaaaccceeeeeeeeeeeeeeees 507
Chapter 19: Ten Debugging TiPScccccceeiieierienieriieseeseesie e ereesteeeesaeseessesseesaeenns 409
Chapter 20: Ten Ways to Be a Happy Developer............ccoceevevierinvnineneeeeeseeeeene 413
Appendix: ADOUL the CDooiiiiiiiiiiiiiiiieeerete ettt 419

JRACK «.eaeeeaeeeeeeeeeeeaaeveeaeaaacneenseasneeeaeeacnseeeeeances 823

Table of Contents

JOEPOAUCEION a...aeeeeeeeeeeeaaaeaeeeeeeeennnnasaaeeeeeeesnnnnsseeeees]

About This BOOKcccuiiiiiiiiiiiieiececece ettt 2
Conventions Used in This BOOK.........ccccoeciiviiniininiiniinienienetceceeee, 2
Foolish ASSUMPIONS.......ccccviiiiiiiiceeeeeee e 3
How This Book Is Organizedcocecevienieniininieieeeeeeeeeeee e 3
Part I: Getting to the Starting Line.........cccocooeiinininniieeeee, 3
Part II: Speaking the Language of Objective-C..........cccecovrvrvrrueevuennenn. 4
Part IIl: Walking the Objective-Oriented WalKcccceccvvvvvrvienuennnnn. 4
Part IV: Moving from Language to Applicationcccceevervierieneen. 4
Part V: The Part of TENSccceeeeieieieeeeeeeeee s 5
Icons Used in This BOOKccccceiviiiiincnniniicncceercceenceeeeeeeene 5

Chapter 1: Computer Programming Exposed! 9
Why a Computer Program Is Like a Peanut Butter
and Jelly SandwiCh........coccoviiriiniiniiiiie e 10
Examining a simple computer program...........cc.ccceevveereveeneeenreennnn 12
Understanding How Computer Languages WorkKccccocevenenencecenne. 14
Creating a computer Programl........cccceeeecieerieenieerueesieeniensvesseesseseenns 14
Running a computer programccocceeervieeniieeniieenieeniieeseeeseeee 15
What Is Objective-C, ANYWAY? ..cc.coviriiiriinienieneeitenieenieeie e 17
Understanding programming languages..........ccocceeceeveerviervieneeneenne. 18
Running your program in a runtime environment..........c...cccceuc..... 19
Using frameworks and librariesc.ccocceveverenecenenenenencecene 19
Your suite of development tOOIS.........cccceecveeviinienceenieniereeeeieeien, 20
USING XCOAE 3.2ttt ettt ettt st 20
Using Objective-C Version 2.0.........cccevueeierienienienennienienieseeseennes 20
Chapter 2: Creating Your FirstProgram 21
Getting Started with the Software Development Kitcccccoevverienennen. 21
Registering as a Developerccccoevvieeiiniininnieenieneeeeeeeeee 22
Downloading the SDK.........cccccoiiiiriririeeeeeeeee et 30
Creating Your Xcode PrOJECtccceevievierininieieieeceeeteeee e 32
EXpPlOring yOur Projectccceeeieecieecieeieeierieseeseere e eve e 36
Groups & Files VIEWccceeeiiriiiiinieecsccieceeee ettt 38
Building and Running Your Applicationccccevvvvienvienciiniieniieneeneenen. 39
All that stuff in First Program.m..........cccccecevviiniiniiininniiniicnieneens 42

Customizing Xcode to Your LiKingccccceceeeieeciieiieeieeieciecieeeeeeeeenee 45

X

Objective-C For Dummies

Getting to Know the Xcode Text Editor........ccccoeevveiiecieeieeieeieceeeeeeee, 47
Accessing Documentation...........ccceeciiecieecieeiieniecieceee e 49
QUICK HEIP .ottt et 49

The header file for a Symbol...........ccccevvieriiriiinienicecceeeeee 49
Documentation WinAOWccccevviirieriienienienieneeeeieee e 50

HEIP MENU..c..oiiiiiiiiiieieteeeeece ettt b e ee 50

FINA ottt e 52

(0] o T8 1 ¢ T3 0 D JE OSSPSR 54
Working with the EXamples..........cccoooeiiieeeieciiieieececeeese e 54
Chapter 3: The Object in Objective-C............................ 55
Not All Modules Are Created Equal..........ccccocveevevienienieeeeieieieeeceeveeeene 56
Understanding How Objects Behaveccccoecevvivviinniencinciinienieneeeee, 57
Seeing the Concepts in ACHIONcccveviinieniiniieeececeee e 59
ENcapsulation.........ccooiiiiiiieiieiecie ettt 59
PolymorphiSmi.......cocviiiiieeiicecee e 61
ReUSADIE COAEooviiiieiieieciecieeteceee ettt et s r e eees 62

Part 11I: Speaking the Language of Objective-C 65

Chapter 4: Language and Programming Basics 67
It All Comes Down to Your Statements.........ccocceveeverviennieniieniennieneeneeen. 67
SYNEAK 1.uvieiieieeii ettt e steesteeete et e e teeae e e e ssae s e e seeseenseesseensesssesseenses 69
SEMANTICS ...eciiiiieieeieeeeeect ettt be et e e beebeesaeenaesns 69
Understanding How Variables Work...........cccoceeviiiinniinienciinieeieceeeee, 69
DAt tYPES ..ecuveeeiieiieeiiirieeieert ettt ettt et st besaaesaeenas 70
[AENEIIET ..ottt 72
[NitIaliZAtION ...ooureiiieiieicece e 73
Giving Instructions with Operators...........cccecveeiiecieeiecciecieceeceeeeeeeeen 74
Really learning how operators (and everything else) work in
ODJECHIVE-C ...ttt sve e ae et et e b saaesra e e 74
Using arithmetic operatorsccocoevieiniiiiniiiniienicceeeeeeeee, 75
Back to variables — floatscccocervieriienienienicceceeeee 83
Bitwise OPEratorscccceevviieciiieieeeeceesre e 86
Compound assignment OPEratorscceeceevreerreecreecreereeereeeesneenes 87
Increment and decrement Operatorsc..cceceeeeeveeveensienseeneeneenne. 89
(070311110F: W0) 0 1<) -1 (o) QNSRS 90
Cast OPEIALOT....ccueviiiiieieeiectectert ettt e ete b s besaesaaesaee e 91
SIZEOf OPEYALOYeoeieiieiieieeiecece et 91
Making Logical Decisions in Your Code........c.cccocerviervienvieniininneeneeneennen. 92
BOOI€aN tYPES...ccuiiieiieeiieeee et 93
Relational and equality Operatorscccceceveevervennensienneeneeneenne 96
LOgZICal OPEratorS......ccccccieiiieiieiecie ettt 97
Conditional OPEratorccocveviiiieriecieeeeeee e 97

Accessing Data with POINtersccccccovvvviiniieniiiniiniccceceeeeeee 98

Table of Contents

USING CONSTANESeocviiiiiiieiicie ettt et esteereeae e e e ssaesaesseesseanes 100
Declared constants (CONSL)ccceecuiivieecieeienierieceeceeie e 101
Defined constants (#define)cccoccevvieeienienienieseccieeeeeeeeeene 101

Knowing the Objective-C Reserved Words...........cccceevveeviercienienieeneenennns 102

Congratulationsccoeciirienieniineeeeeeeee et 103

Chapter 5: Functions and Data Structures....................... 105

Thinking about an Applicationccecceverieieceeniesieneeeeeeeee e 105

Defining and Declaring Data Structures...........coccevververiieniieniieniieneenenns 109

Using Defined Data TYPEScccceeeciiieiereieeiecrecctee et 112

Writing FUNCHONSooouiiiiciiciieeeece e 115
Scope Of VAriabIEsccceveeriieiiieiiiiicieceese et 124
UNIOTIS .eviiiieiiieiie ettt ettt te et et s e e be e saeesaeesbaessasnsasanesanans 126
Enumerations (ENUIM)cceceevierriiriienienienteneeneesieeie e eresaesenens 127

Declaring Function Prototypescccccoccoviiriiniininninnenienieeeeeeeseeseee 128

Extending the Functionality of a Program............cccccccecnininnnnnnnnnnne 130

Thinking about Extensibility and Enhanceability..........cccccccuerrrerenennnnen. 136

Chapter 6: Adding a Little More Class to Your Program 139

Grasping Objects and Their Classescccocevverievierienenenieieeeceeee 139

Moving from Functions and Global Data to Objects and Classes 140

Creating the Interface.........ccoocvevieiiiiiienieieccceceeee et 142
Declaring the class interface.........ccccovervienieniincenincinienieeieene 143
Scoping instance variablesccccooevviiriiniiniiniiee 148

The Implementation — Coding the Methods...........cccceeeveeviiiiineeeieneens 149
The implementation compiler directive.........cccccceevveciveciecieneennnnn. 149
Defining the createBudget: method............ccccocvvvvevieiiinciiniecienn, 150
Defining the rest of the methodsccccceviiviinieiiiiiniiieeeee 151
Entering the @end compiler directive..........ccocevvevvirviriiniienceennnn. 152

Exploring the Program LOZICcccecveieriinenieieeceeeeeeeeeee e 152
Coding the functionality in the main functioncccccecvervenennenne. 152
Building and running the application............ccccoevvevievieciiecieeiennnnn, 156
Extending the program............cccccceevvevieienreeeeiecieeeee e 156

Spreading the Wealth across Files..........ccccoevieviiiieiinieecieniecieceeeeeneee 157

Knowing the Naming COnventionsccceeveeveeveenienieneseneeeesiene e 165

Using id and ilcoooiiiiiiiiiiieeeceee e 166

Chapter 7: Objects Objects Everywhere 167

Replacing Numbers with Objects.........ccoceviiviiiiiiinniiineceeee 167
Revisiting the documentationcccccevecieeniiiciiinieeeeeee e, 170
Using an NSNumber as an argumentcc.ecceeevereeneeneenenenene 171

Taking Advantage of Array ODJectS........cccevvieveevieeniienieeieeiecieeeeeeesieenne 173
ContaiNer ClASSES.....cccuiviirierieiienteeeeee ettt sre e sane e 174
Tiptoeing through an arraycccceccevveeienvienieneeneeeneseeeeeeenn 176
Adding mutable arrays.....cc.ccoceeveeriernieriienienieneeeee e 177

Working with fixed arrays......cccccecceeevieeeiiescieeeieeee e 180

xi

Xi i Objective-C For Dummies

USING C AFTAYS ..vevieiieiieeieeieeieeteeteetesteseeseesseesteesteesseessessaesssessaesseenseanes 181
Expanding to multidimensional arrays.........c.ccceceeeeecieecreecvecceennnnne 182
Finishing up with the main function............cccocovvieviiiiiniinieeien, 183

Chapter 8: Using the Debuggerccoevvinnn, 185

Identifying the Usual SUSPECTS........cccueeieriiriinieiecieceere e 185
Catching Syntax €rrors.......cccevvereerienieenieereeieeie e eresae e 186
Crashing with runtime errors.........cccecevveveenenvenvenseneeieneeneens 188
Dealing with 10giC €rrOrS......cccevviviiiiiiiiiiiieteeceeeeee 189

Using the Debugger ..ot 191

Using BreakpOints.........cooeiiiiiiiinieeienenteteeeeeee ettt 195

Using the Static ANALYZeT.........cccvevieeiieiiieeieeeeeee e 199

Chapter 9: Using Control Statements and Loops 201

Creating Transaction ODJECESccecveriievieeciiiiiieiecee et 202
Managing all those ObJECEScccuevierieiiiiieieeeeeeee e 203
Adding the Transaction Class........cccocevvierviiriiiniieniienienecceeeeee, 203

Using switch Statements..........coccoevieeieniinieniineeeceeeeeeee e 206

Using Loop Statements to Repeat Instructionscccceeeveeveeieeeenneens 210
J N3 TS o) g [oTo] o 1SS RS SR 210
The While 100Dcicieiiiieeeeeece et 213
The do Whil€ 100Dc.coveiiiiiiceeceeeeee e 215

Adding Loops to Your Programccceeceevvienienienieneenienienieeieseennns 216

Building the New Applicationccccoecieviinieniininninieeieneeseeseeseeeee 219

Taking the Leap: Jump Statements...........ccocceeeeeviieniieneecieccieeeeceeeeeeeenne 220

Knowing the Problems with switch Statements............cccoceviiininnnene 220

Part I11: Walking the Object-Oriented Walk 223

Chapter 10: Basic Inheritanceccouias. 225
Replacing a Control Structure With Polymorphism........c.ccceceeviininninns 225

How inheritance WOrksc..cccoceviiviiininiiniiiincncccceneeene 228

Knowing what inheritance enables you to do...........ccccvveveeneennen. 230

Using inheritance effectively........cccocoevveeieniinienieseececceeeecieene 231
Implementing Inheritance in a Programcccccoevvveeviiniinciiniienienenns 232
Creating the Transaction superclass.........ccccoecevveevervierviensienceennn. 232

Adding the files for the new subclasses.........c.ccocevciirieneinenneenee. 235
Implementing the new subclasses...........cccceeevieeiiiniieecieeeeeeee 236

Modifying main to use the new classescccceeeueeciiecieecieceennnnn, 238
Considering Polymorphism and Inheritance...........c.cccecceevvivvenveneenenns 243
Chapter 11: Encapsulating Objects............................. 245
Getting to Know the Model-View-Controller (MVC) Pattern.................. 245
Implementing the MVC Patterncoccoevvevieniiniieninnecieciecieeeeseeseene 247

Get out Of/INtO MAIN........cooviiiiiiiiceiiicccec e 248

Creating @ New ProJeCt.......coovvevieieieieeeseceeeeee e 250

Table of Contents

Creating the Destination Class............ccceeveeeieeciieciiecieeieeeecee e 253
Designing the destinationcccoeceevieeienieniesieceeeeeee e 254
Implementing the methods............ccooevieievicieiiieceeeeee 255
Modifying the Budget Classcccceveeieeeieieieeceeeeeeeeeeene 257
Removing Ul type functionality from the Transaction objects...... 258

Coding the New Maincccceviiriiiiiiiiiiiieeeceee et 260

Yes, Another Two Steps Forward and One Step Back...........ccccccveeunenen. 263

Chapter 12: The Birthof anObject 265

AllOCAtING ODJECES ..c.vveeieiieiicteeeeeee ettt e ae e 265

[Nitializing ODJECESoouireieieieieeeee et 266
Invoking the superclass’s init methodccccocceevieiiiciinciecceennnnn. 267
Initializing instance variables...........cccocevviiniiniinienecceeeeeeieene 270
Returning back self..........ccocoovieiiiiiiiiiniiiteeeen 271

The Designated Initializer............coceeviiriiniiniiniiiieeeeeeee 277

Chapter 13: Getting a Handle on Memory Management............. 279

Raising and Terminating Responsible Objectsccccoccevviirviinvienieninns 280
Understanding the object life cycle.........ccoeeviiiiciiicieniieieee, 280
Using reference counting...........coccecveveneninieenienenenenceeeeneseeene 281

Running the Static ANAlYZerccocceeiiiiieienieceeeeeee e 286

Plugging the Leaks........coceeviieiiiiiirieeieciecestee et re st 289

Attending to Memory Management Subtleties —

Arrays and Autorelease..........occoocvevienienienienieeeeeee e 296
Considering objects i arraysccccecveeveereeveeseeesieeereereereeeeeenens 297
Understanding autorelease.........c..ccoceeveeeeneeneineinensenneneeeeeeeens 297
Using the autorelease Pool.........cccoocveeieeieniinieneececeeeeve e 299

Garbage Collection — Taking the Easy Way Outccccoeeevvereeneenenne 301

Some Basic Memory Management Rules You Shouldn’t Forget 303

Part IU: Moving from Language to Application 305

Chapter 14: Getting Data from Other Objects 307
Getting Data from ODJectS.......cccceceeiiieiiierieeicieeecee e 307
Working with Declared Propertiescccecevienienieneeninceeieeieeienene 309

Adding Properties.......cccoueviirieniirnirieeieeieeteeteseese e 309
Implementing declared properties...........ccoccevieveevervenvieniienceenen. 311
Accessing the instance variables from within the class............... 312
Releasing the object assigned to a property.........cccccceeeveevveevennn. 313
Using Accessors to Get Data from Objectsccccccveveecieecieeiincienieeens 316
Properly Using Propertiesc.cocceevuevvieiienieneinieesieeeeieceeeeeseeseeseeenee 320

Chapter 15: Show MetheDatacoiinnt, 323

Understanding Application-Based Data.........ccccocceeververvieniiencieniieneeneenns 324
Defining property listS......c.coveeviriiiniienienienieneeeeeeie e 324

Working with property listS........cccoveveeciecienenerireeeeeeeeesesesene 325

XI

Xi ¢/ Objective-C For Dummies

Using DICtIONATIESccocuiiiiiieiieeeeeee ettt 326
Understanding a dictionary’s keys and valuesc..cccceeerenene 326
Creating a diCtionarycccceecveeienienieeneeeeseee e 327

Adding a plist t0 YOUX Project.......ccccecuivviirienciiniiieneeeceeeeieeveeve e 329
USING PLISES c.vvieiiiiieieteteteeeese ettt st 332
Creating a mutable dictionary........c.ccceceeveevernenienienienienieneeneens 334
Creating, initializing, and using the symbol string........................ 335

Dictionaries of Dictionaries...........coccecveeierienenininieiesereeee e 336
Creating a more complex PliStcccceeeevierieneesieecieeie e 336
Managing a dictionary of dictionariesccccceeeevierviirciercrencvennnnne 340

Modifying the Plist.......ccceeiiriiniiiee e 343
Adding a new entry to the plist.......ccceeeeriiinviiniiiniiniiniceeeeee, 343
Updating the dictionary.......ccccceeeiieieeieeieceeceeeece e 345

Saving Data in a Separate Fileccociviienininieieeeeceeeeeee e 350

Saving Objects as ODJECESccciviiieeeiecieecee et 354

Chapter 16: Extending the Behavior of Objects 355

Understanding Delegationcceceevvevieienieeeeeeienieneee e 356

USING PrOTOCOISoiiiiiicieeiceteeeeeeee ettt s ere e 357
Declaring a ProtoCol..........ccciveeeeierienienienieeeeeseenre e eeeesesaeseeseens 357
Adopting a ProtoCol..........ccoceeieierieririeeeeeee e 358
Adding delegation to Transactionccecceeeciieeceeeceeesieeereeeen. 360

CALEZOTIES ..ottt ettt et b e bttt sa et ae s 362
USING CAtEZOTIES....c.ueeiiiiieieeieeieeie ettt aeeaeenee s 366
Defining informal protocols..........c.cccceevuevierieniinieeneeieeeeeeeeene 367

Chapter 17: Adding an iPhone User Interface.................... 369

Creating YOUY PrOJECtcocvvvieviiriiiiieiteiececie ettt 370

Using Interface Builder to Create a User Interface..........ccccoecvvvieniennnns 371

Implementing the User Interface in Code.........cccceevervierviinviiniinnieniinenns 379
Adding OUtIetSeoveiiiieeeee e 383
Implementing Target-Actionccceevveeienienieneeceeeee e 383
Adding the methodscocveviiiiiiiiiiicececeeee e 385

Connecting Everything Up in Interface Builder and

Running iVacation in the Simulatorccccecivviniiiniiniiniinienceeene 388

ATFINAIINOTE ..ottt 391

Chapter 18: Adding a Mac User Interface 393

Creating YOUr ProjecCt.......cocooviiviiiiiiiiiiiiiecieeeeeeee ettt 393

Using Interface Builder to Create a User Interface........c...cccccvveveeuvenennne 395

Implementing the User Interface in Code..........ocoveiininininiienenineene 398
Adding outlets, Target-Action, and the methods........................... 400

Connecting Everything in Interface Builder and

Running mVacation on the Macccccoveeviriiniiiniiniiniieeeceeee 402

Knowing What's Left t0 DOcooveeeieieiieceeeeeeeeeee e 405

The End of the Beginningc.coceeieeiiiiinieeieececeeeeee e 405

Table of Contents }°¢/

Part U: The Part of Tens........cccccccaaaacnneeeaaccccacannnneeees 07

Chapter 19: Ten Debugging Tipscoviiiiiininnnn, 409
Check for SEmMICOIONS........cccoeiirieiiieiieieeccee e 409
“Right” Is Not Always “Fight”.......cccceeiiriininiieineceeeeeeeesee e 410
When You've Blown It, You've BIoWn Itcccovvvviiiiiiiiiiiiieieeeeeeiineees 410
Compiler Warnings Are for Your Own Goodccceceveeriinieneeneenenne 410
Don’t Forget about Memory Errors........cccoeeeeveciieiiieieeciecieeieceeeeeeene 410
Get Friendly with Your Debuggercccocoviriiiiienineninieeeeeee 411
MeSSALES tO Mil.....eeviiciiiiiiiieeieceeeeceeeee ettt 411
Dialing @ Wrong NUMDETc.cociviiiriiniiiierieeciecieeeete et 411
Create a “Paper” Trailc.ccccveeiiiciieiecees et 411
Incrementally TeSt........cooieviiiiiiiiiiieetee et 412
USE YOUY BYaiN ..couveiiiiiieieieieeeeeeee ettt s 412

Chapter 20: Ten Ways to Be a Happy Developer.................. 413
Keep Everyone in the Dark...........cccoooovieiiiiiiiieiiiceceeee e, 413
Make Your Code Easy to Understand..........ccccoceeieienienenenencenienienennene. 414
Remember MEIMIOTYcccceeuieiiiriiieiieeienientesteseesieesteesteeaesaesseesaesaeesseenes 414
Start by Initializing the Right Wayccccoovevinirvieriiceeeeeee 415
Take Advantage of the Documentation..........ccccocceevirviernieniiniienieeneenennns 415
Code COAE COAE ...uvininiririeieieeeeeeteee ettt seens 415
Understand that Development Is Not Linearc.cccoeeeeveeieinieenieennen. 416
Do It Right from the Start if You Need to Do It Right from the Start........ 416
Avoid the Code Slinger Mentalityc.ccceeeevieriienieniieneenieeieeieeeeeeeeens 417
The Software Isn’t Finished until the Last User Is Dead.............c........... 417
KeeP It FUN....ooiiiieceee e e 418

Appendix: Aboutthe CD i 419
ON the CD ..ttt 419
System ReqUIrementscocceevieriieriienienieniieeieeseeee et 420
USING the CD .ottt ettt ae b s aa e s e s aaeaeanns 420
What You'll Find on the CD........cccoeviiiiiiiiieiecieeeeeeeeee e 420
TroubleShOOtINGcceiviiiieiieieeeeeeeee et 421
CUSEOMET CATEooveveiiiiiieiieeiienieeie ettt eteeteetestestesae s e e ssaesseesseesseenseenne 421

JRAEKeeaeeeaaaeaaaaceeneeeeaceeaaaannneeeeesaeaaasanceeeeeeeeee 523

X(/I Objective-C For Dummies

Introduction

men the folks at Wiley Publishing approached me about writing
Objective-C For Dummies, I thought long and hard about it. Within 480

pages, [wanted to be sure that I could explain to someone with no program-
ming experience how to actually create useful programs.

So I started to think about what makes programming so difficult.

It isn’t the concept of how programs work, which I cover easily in Part 1.
And it isn’t really the language itself (or the instruction set — I cover that in
Chapter 4). It isn’t even the user interface — all that code needed to open
and close windows, process menus and the mouse and user touches, draw
graphics, and play audio and video (did I leave anything out?). No, while all
that used to be really hard, now it’s made much easier by using the frame-
works available on the Mac and iPhone.

What is really hard, after you’ve learned the language and framework, is how
you structure your program. How you actually go about taking your idea for
an application and turning it into a robust Objective-C application.

Learning to use the tools is (relatively) easy; knowing how to use them to
create a useful application is the real challenge.

So besides explaining the instruction set and everything else involved with
coding, what I do along the way is explain the other things you need to know
(things like application architecture and design). Those things that will make
it possible for you, when you are done with this book, to go out and start
developing your first application. Nothing less.

So instead of a book that only shows you how to use all the features (instruc-
tions and frameworks) available to you, I decided to write a book that shows
you both how and why. I do that by having you start to develop an applica-
tion in Chapter 5 (once I go over the instruction set) and add to that same
application until you end up with it running on both the iPhone and Mac in
Chapters 17 and 18. Granted, this application isn’t the most exciting one in
the world, but it gives you the opportunity to use every feature of Objective-C
that you’ll need to know to go out and build your own killer app. What’s more,
you build the application incrementally, just as a professional develops a
commercial application. Occasionally, you will enter some code only to

2

Objective-C For Dummies

delete it later, which may seem annoying at times. However, you will get a
flavor for how you’ll work when you are out on your own.

And while some development will be annoying and tedious, in general it is
fun. So go enjoy yourself while you’re learning. I know I do.

About This Book

Objective-C For Dummies is a beginner’s guide to developing applications for
both the iPhone and the Mac. You don’t need any programming experience
to get started. [expect you to come as a blank slate, ready to be filled with
useful information and new ways to do things. In some ways, the less you
know, the easier it will be for you because you won’t have any preconceived
notions about programming.

This book distills the hundreds (or even thousands) of pages of Apple docu-
mentation, not to mention my own development experience, into only what’s
necessary to start you developing real applications. I'll explain not only the
language, but also along the way I'll explicitly talk about object-oriented prin-
ciples and how doing things in a certain way (that is, following those prin-
ciples) lead to more extensible and enhanceable programs, which you will
discover is the holy grail of programming.

Conventions Used in This Book

This book guides you through the process of building applications using
Objective-C.

Code examples in this book appear in a monospaced font so they stand out a
bit better. That means the code you'll see will look like this:

NSLog (@1 am an Objective-C statement.i);
Objective-C is based on C, which (I want to remind you) is case-sensitive, so
please enter the code that appears in this book exactly as it appears in the
text. I also use the standard Objective-C naming conventions — for example,
class names always start with a capital letter, and the names of methods and
instance variables always start with a lowercase letter.

All URLs in this book appear in a monospaced font as well:

www.nealgoldstein.com

Introduction 3

If you're ever uncertain about anything in the code, you can always look at
the source code on the CD. And from time to time, I'll provide updates for
the code, and post other things you might find useful on my Web site,
www.nealgoldstein. com.

Foolish Assumptions

To learn to program in Objective-C for the Mac or iPhone, you’ll need a
Macintosh computer with the latest version of the Mac OS on it. You will
also need to download the Software Development Kit (SDK). You will have to
become a registered Apple developer before you can do that. (Don’t worry; I
show you how to do both, and it doesn’t cost a cent.)

[assume that you don’t have any programming knowledge but that you have
at least a passing acquaintance with some of the ideas, and more importantly,
a desire to know how to program. In general, the code is easy and straightfor-
ward (the book isn’t written to dazzle you with fancy coding techniques).

[also assume that you're familiar with the Mac and/or iPhone and that you
are comfortable doing all the things you have to do on the Mac to run appli-
cations, including using the Finder to cruise the filesystem to see what’s
there.

How This Book Is Organized

Objective-C For Dummies has five main parts.

Part I: Getting to the Starting Line

Part I introduces you to the world of application development. You find out
how programs work and what you have to do to take an idea and turn it into
a computer program. | explain the tools available to you and how to use them
and lead you through downloading the Software Development Kit (SDK),
which includes Xcode (Apple’s development environment for the OS X and
iPhone operating systems). You get up and running on your first application,
which gives you a taste for what words like compiling and building mean. You
also find out how to become a registered Apple developer, both for the Mac
and the iPhone (and if you are an iPhone developer, what you are required to
do in order to distribute your applications through Apple’s App Store).

4

Objective-C For Dummies

Part I1: Speaking the Language
of Objective-C

As with any other skill, you have to pay your dues, and that means under-
standing the instruction set of the language and how to use some of the
language-like features made available to you in the frameworks. You start
by building an application that you will add to as you learn more and more
about Objective-C.

Think of this as getting down the vocabulary of a new language, but without
the pain and all that memorization.

Part [1I: Walking the Objective-Oriented
Walk

Once you understand the basic instruction set and the other Objective-C and
framework features, it’s time to put those instructions together to create a
program. In this part, [focus on the right way to structure your program —
what’s known as the program architecture. Having the right architecture
results in a program that not only works but also can be extended to add new
functionality easily. And not only that, it enables you to easily track down
and fix those pesky bugs that make their home in everyone’s programs. I also
show you how to deal with the mundane, but necessary, plumbing issues
such as memory management and object initialization.

While Part Il is about getting down the vocabulary, Part Il is about using the
vocabulary to create sentences and paragraphs and even entire books.

Part IU: Moving from Language
to Application

With an architecture in place, you can now begin to add more and more
functionality to your program. You start to work with data and learn some
of the tricks that framework redevelopers use to make their frameworks so
extensible.

Once you have your application doing what you want it to do, you need to
take all that functionality and make it available to the user. So, in this part, I
show you how your application fits into the user SDK-supplied frameworks
that do all the user interface heavy lifting on the Mac and the iPhone. And
because you design the application the right way from the start, you’ll be

Introduction 5

able to plug it into the user interface with minimal effort. You just do some
building of the user interface in Interface Builder (part of the SDK), add a few
lines of code, and you are there. No sweat, no bother. And yes, because you
did it the right way from the start, the same application code will run on both
the Mac and iPhone (using the frameworks for the Mac OS and iPhone).

Part U: The Part of Tens

Part V consists of voices from the trenches. I'll also show you some tips on
debugging (yes, your application will, upon occasion, have bugs) that might
shorten those late, into-the-night debugging sessions that are (unfortunately)
part and parcel of being a developer. While they may not always be fun,
solved bugs are often a great source of conversation among developers. I'll
also offer some tips about approaching application development that will
lead to good health and happiness as a developer.

Icons Used in This Book

€ CD
§‘“ When you see this icon, you can be sure that the code on the CD applies to
the current example. The CD contains the code for all projects in this book —

perfect for those who don'’t feel like typing the code.

A\

This icon indicates a useful pointer that you shouldn’t skip.

This icon represents a friendly reminder. It describes a vital point that you
should keep in mind while proceeding through a particular section of the
chapter.

This icon signifies that the accompanying explanation might be informative
(dare I say, interesting), but it isn’t essential to understanding Objective-C
application development. Feel free to skip past these tidbits if you’d like
(though skipping while trying to absorb the main concepts may be tricky).

This icon alerts you to potential problems that you may encounter along the
way. Read and obey these bits of experience to avoid trouble.

6 Objective-C For Dummies

Part |

Getting to the
Starting Line

The Sth Wave By Rich Tennant
ORICHTENNANT

“I wrote this hovse racing software program. Tt
analyzes my betting history and makes suggestions.
Right now it’s suggesting I try betting on football.”

In this part . . .

5) you've decided you want to learn to program. You
may have a good idea for a Mac or iPhone application

and realize that the first thing you need to do is find out
how to program in Objective-C. And while you may have a
vague idea about it, you know you’re going to have to
learn exactly what programming is and what’s required to
create an application.

In this part, [help you understand what you need to know
to get started. First of all, how do applications even work?
How do you translate your ideas into a computer language
that tells the computer what you want it to do, and then
how does it take those instructions and actually do them?
What is all this complier and framework stuff, and what
exactly is object-oriented programming?

You find out what makes a good application and what you
can do to make yours a good one. Finally, so that you can
get free development software from Apple, I take you
through the process of registering as an Apple developer. |
explain how you can download the Software Development
Kit (SDK), and even how to build your first program.

Chapter 1
Computer Programming Exposed!

In This Chapter
Understanding the basics of computer programming
Getting how computer languages work

Knowing how Objective-C works

Looking at it from the outside, computer programming can appear compli-
cated and a bit mysterious. But once I let you in on a few of the secrets,
you'll realize that when you write a computer program, whether it is a small
program that’s just a few lines or one that is tens or even hundreds of thou-
sands of lines, you are generally doing the same thing:

1. Getting input — from a keyboard or touch screen, or even something
stored on your computer.

The input might be instructions to the program itself — for example,

to display the Web page, developer.apple.com; or to print a docu-
ment such as Chapter 1; or to process data like “enter your Apple ID and
Password” when you log on to the Mac Dev Center (the browser is just
another program); or even to process a list of credit card transactions
stored on a computer.

2. Doing something based on, or with, the input.

Your browser may go on the Internet and access the page correspond-
ing to developer.apple.com; or your word-processing program may
display a Print dialog and print the chapter (at least that is what mine
does). Based on your input, the program may also go out and use data

it has stored or even has access to over the Internet. For example, when
you enter your Apple ID and Password, eventually a computer accesses
a database to see if your Apple ID and Password are both valid and, if so,
allows you access to the site and displays the site for you.

3. Displaying the results of your adroitness on a monitor (or storing it
away for future use).

There is no doubt that computers are engineering marvels. But what will
make you a good programmer is not your understanding of all that wizardry.

1 0 Part I: Getting to the Starting Line

No, what will make you a good programmer is taking the time to really under-
stand the world of the user, and what you can do with a computer to make
things better. For example, when I travel I often zone out on the fact that even
though it looks like monopoly money, foreign currency actually does amount
to something in dollars. I could use a computer to keep track of my budget
and convert foreign currency into dollars for me. Writing a program simply
involves detailing the steps the computer needs to follow (in a language the
computer understands — but I'll get to that). You know, something like

subtract the amount he just spent from the amount he started with
or
multiply the amount in foreign currency times the exchange rate.

[s it hard? No, not really. It can be pedestrian, but even more often it is fun.

Why a Computer Program Is Like a
Peanut Butter and Jelly Sandwich

At its heart (yes, it does have one), computer programming is actually not
that alien to most people. If you don’t believe me, take the following program-
ming test. Now, don’t peek ahead for the answer. Okay?

The Never Fail Programming Test:

Write down the recipe for making a peanut butter and jelly sandwich.

Answer:

If what you wrote down looks anything like

Recipe: Peanut Butter and Jelly Sandwich

Ingredients
Peanut Butter
Jelly
2 slices of bread

Directions
Place the two slices of bread close to each other
Spread peanut butter on one slice of bread
Spread jelly on the other slice of bread
Put one slice of bread on top of the other

then you're ready to go.

While this example may seem overly simple, it generally illustrates what
programming is all about. When you write a program in Objective-C, all you

Chapter 1: Computer Programming Exposed!

|
Figure 1-1:
The peanut
butter

and jelly
program
outputs

data.
|

are doing is providing a set of instructions for the computer to follow. The
preceding example is not perfect, but actually it is much closer to illustrat-
ing how Objective-C programming works than you might think. So, consider-
ing the peanut butter and jelly sandwich example, here is how you get your
lunch made (if you are lucky enough to have a chef):

1. You give your chef the recipe.

2. He or she gets the ingredients together and then follows the instruc-
tions on what to do with the ingredients.

Voila, a peanut butter and jelly sandwich.

Figure 1-1 shows how a computer program works, using the peanut butter
and jelly sandwich example.

int main(int argc, char*argv[]) {

char* theSandwi ch = “1 hate peanut butter and jelly”;
printf (theSandw ch);
return O;

}

Compiler

| hate peanut butter
and jelly

11

1 2 Part I: Getting to the Starting Line

This is what you do to get that output.

1. You write instructions for the computer to follow.

Unfortunately, the computer can’t speak English, or read for that matter,
so you use something called a compiler to take the instructions you have
written in the Objective-C language and translate it into something the
computer can understand.

2. You provide data for the computer to use.

In this case, you write, “I hate peanut butter and jelly,” and then the
computer follows the instructions you have given it on what to do with
that data.

Voila, you see “I hate peanut butter and jelly” displayed on your com-
puter screen.

Fundamentally, programs manipulate numbers and text, and all things consid-
ered, a computer program has only two parts: variables (and other structures),
which “hold” data, and instructions, which perform operations on that data.

Examining a simple computer program

[s there really any difference between a chef reading a recipe and creating a
peanut butter and jelly sandwich and a computer following some instructions
to display something on a monitor? Quite frankly, no.

Here is the simple Objective-C program that displays T hate peanut
butter and jelly onthe computer screen:

int main(int argc, char *argv[]) {
char* theSandwich = "I hate peanut butter and jelly";
printf (theSandwich) ;

return 0;

}
This program shows you how to display a line of text on your computer
screen. The best way to understand programming code is to take it apart line

by line:

int main(int argc, char *argv[]) {

Chapter 1: Computer Programming Exposed!

|
Figure 1-2:
A computer
program
can be com-
paredtoa
peanut but-
ter and jelly
sandwich
recipe.
|

Ignore the first line; it’s not important now. It just provides your program with
some information it can use. I'll explain exactly what that line means over the
next few chapters.

char* theSandwich = "I hate peanut butter and jelly";

theSandwich is what is known as a variable. The best way to think of it for
now is as a bucket that holds some kind of data (I get more precise in Chapter
4). char* tells you what kind of variable it is; in this case, theSandwich is

a bunch of characters (text) known as a string (while technically a string is
more than that, for now that description is good enough for our purposes). T
hate peanut butter and jelly is the data that the variable contains.

printf (theSandwich) ;

printf is an instruction that tells the computer to display (this is called an
operation) whatever data is in the theSandwich bucket.

You can also safely ignore the last two lines for the time being.

return 0;

}

Figure 1-2 shows the similarities between the program and the recipe for
making a sandwich.

Recipe: Peanut Butter and Jelly Sandwich Data

Ingredients int min(int argc, char*argv[]) {
Peanut butter j
Jelly Variables —> char* theSandw ch =
2 slices of bread “l hate peanut butter and jelly”;
Directions Instructions —> printf (theSandwi ch);
1. Place the two slices of bread close to each other A Operation —
2. Spread peanut butter on one slice of bread return 0; print the data
3. Spread jelly on the other slice of bread }

4. Putone slice of bread on top of the other

You can think of the following ingredients as variables that represent the
data. For example, peanut butter is the name you give to pureed peanuts
(and whatever else is in peanut butter), jelly the name you give to some
fruit that’s been processed and put in a jar, and so on.

13

14

Part I: Getting to the Starting Line

Peanut Butter
Jelly
2 slices of bread

Similarly

Place the two slices of bread close to each other
Spread peanut butter on one slice of bread
Spread jelly on the other slice of bread

Put one slice of bread on top of the other

are simply instructions on how to take the ingredients and make a sandwich.
Spread peanut butter on one slice of breadis the instruction.
Actually, spreading the peanut butter is the operation you are performing on
the pureed peanuts being referenced by the peanut butter variable.

Understanding How Computer
Languages Work

While conceptually it is pretty easy to understand computer programming —
all you are doing is giving it a set of instructions and some data on which to
perform those instructions — one of the challenges, as [mentioned previ-
ously, is that it’s not that easy to tell a computer what to do.

Computers don’t speak English, although computer scientists have been
working on that for years (think of trying to do that as the Computer Scientist
Full Employment Act). A computer actually has its own language made up of
ones and zeros. For that matter, Objective-C is not something a computer can
understand either, but it is a language that can be turned into those ones and
zeros by using a compiler. A compiler is nothing more than a program that
translates Objective-C instructions into computer code.

Creating a computer program

To create a computer program using a computer language, follow these steps
(see Figure 1-3):

1. Decide what you want the computer to do.

You can have the computer write a line of text on the monitor or create
an online multiplayer game that will take two years to complete. It really
doesn’t matter.

Chapter 1: Computer Programming Exposed! ’5

2. Break the task you want the computer to complete into a series of
modules that contain the instructions the computer follows to do what
you want, and then provide the data it needs to do that.

The series of modules is often referred to as your application architec-
ture. The data you provide to the computer can be some text, or graph-
ics, or where the hidden treasure is, or the euro US dollar exchange rate.

3. Run the instructions through the compiler.

A compiler is actually just another program, albeit one that uses your
instructions as data for its instructions on how to turn Objective-C into
computer code.

4. Link the result to other precompiled modules.

As you will see, the code you write is a relatively small part of what
makes up your program. The rest is made up of all the plumbing you
need to run the program, open and close windows, and do all that user
interface stuff. Fortunately, that code is provided for you in a form that
is easy to attach (link) to your program. A linker program takes your
code, identifies all the things it needs, collects all pieces together (from
the disk), and combines them into the executable program you see in
your applications or utilities folder.

5. Store that output somewhere.

You usually store the output on a hard disk, but it can be anything the
computer can access, like punch cards.

6. Run the program.

When you want to run the program (say, the user double-clicks the pro-
gram icon), the operating system (Mac OS X, for example, which is also
just another program) gets the program from where it’s stored and loads
it into memory, and then the CPU (central processing unit) executes the
instructions.

Running a computer program

Just as you don’t need to be a weatherman to know which way the wind
blows, you don’t need to be an engineer who understands the intimate
details of a computer to write a world-class application.

Most people don’t find it that difficult to learn to drive a car. While you don’t
have to know all that stuff about internal combustion engines, fuel injection,
drive trains and transmissions, you do need to know a little bit about how a
car works. That means knowing about how to turn it on, make it go forward,
make it go backward, make it stop (generally a very valuable piece of infor-
mation), make it turn left or right, and so on.

1 6 Part I: Getting to the Starting Line

int main(int argc, char*argv[]) {

char* theSandwi ch = “I hate peanut butter and jelly”;
printf (theSandw ch);
return O;

}

Compiler

Memory

Idea

CPU

| hate peanut butter
and jelly

Figure 1-3:
How pro-
gramming
works.
| C

In the same way, you do need to know a little bit about how computers work
to have what you do to write a computer program make sense.

When you run a computer program, the computer does its primary work in
a part of the machine you cannot see, the CPU, which executes the program
instructions that are loaded into the computer’s memory. (This is a fast,
temporary form of storage that is in one of those chips you see when you

Chapter 1: Computer Programming Exposed!

|
Figure 1-4:
Finding
things in
memory.
|

look inside a computer, as opposed to the hard disk which is slower and
permanent storage.) It requests the data it needs from memory, processes it,
and writes new data back to memory millions of times every second.

But if the data is all in memory, the CPU needs to be able to find a particular
instruction or piece of data. How does it do that?

The location in memory for each instruction and each piece of data is iden-
tified by an address, like the mailboxes in the post office or an apartment
house you see in Figure 1-4 (and notice that the first address for a mailbox in
your computer is always 0). But these are very small mailboxes that can hold
only one character of information at a time (not technically true, but good
enough) referred to as a byte. So for all practical purposes (although again
not technically true), you can think of the smallest division of memory as a
byte, with each byte being able to be addressed on its own. The good news
is that if you need more mailboxes, they are yours for the taking. So if you
get more than one letter a day, the number of mailboxes assigned to you will
increase to hold all the letters you need them to.

What Is Objective-C, Anyway?

Objective-C is an object-oriented programming language, which means that it
was created to support a certain style of programming. Yes, [know it is hard
to believe, but even things like programming have different styles, in fact a lot
of them, although the two heavyweights are object oriented and procedural.
Unless you'’re a dyed in the wool member of a particular camp, it is really
unnecessary to get into that discussion here (or probably ever). But you will,
[promise, intimately understand what object-oriented programming is by

the time you’re done with this book, and you’ll probably wonder why anyone
would ever want to program in any other way.

17

18

Part I: Getting to the Starting Line

But it takes more than a language to write a program; it takes a village. So
who lives in the Objective-C village? Most object-oriented development envi-
ronments consist of several parts:

v An object-oriented programming language
»* A runtime environment
v A framework or library of objects and functions

v A suite of development tools

This is where, for many people, things start to cloud up. You mean I have to
learn more than the language, and what is all this stuff about runtime envi-
ronment and frameworks and libraries? The answer is yes; but not to worry.
I'll take you slowly through each part. The following sections cover each part
of the Objective-C development environment.

Understanding programming languages

When you write a program, you write it as series of statements. Some of these
statements are about data. You may allocate areas of memory to use for data
in your program, as well as describe how data is structured. Other state-
ments are really instructions for the computer to do something.

Here is an example of an Objective-C statement that adds together b and ¢
and assigns the result to a (and you thought you’d never use all that algebra
you learned in school):

a=>b + c;

Statements like these use operators (like + or -) or tell modules (functions

or objects) to do something to, or with, the data. For now think of functions
or objects as simply a packaged series of statements that perform a task. It
might help to think of operators and modules as words you use to create sen-
tences (the statements) that tell the computer what to do. Chapters 4, 5, and
6 cover operators, functions, objects, and modules in detail.

When most people want to learn how to program, they usually focus on the
language. [want to program in C++, for example. Or C++ is a real dog, give
me Java any day. People really do become passionate about languages, and
believe me it is best to keep out of the way when an unstoppable force meets
an immovable object.

What you really should keep in mind, unless computer science is your life, is
that what you want to learn is how to create applications. What makes that

Chapter 1: Computer Programming Exposed!

easy or difficult is not just the language, but the application development
tools available to you, as well.

Objective-C has its fans and its detractors, My advice to you is to ignore both
sides and get on with your development. There are some things I really like
about the language, and others I don’t; but in essence, it is what it is, and it is
what you’ll use.

Running your program in
a runtime environment

One of features of Objective-C is its runtime system. This is one of those things
that gets linked into your program in Step 4 in the section “Creating a computer
program.” It acts as a kind of operating system (like the Mac or iPhone OS) for
an individual Objective-C program. It is this runtime system that is responsible
for making some of the very powerful features of Objective-C work.

Objective-C’s runtime environment also makes it possible to use tools like
Interface Builder (I explain Interface Builder in Chapters 17 and 18) to create
user interfaces with a minimum of work (I'm all for that, and after you learn
about Interface Builder, you will be, too).

Using frameworks and libraries

The framework you will use is called Cocoa. It came along with Objective-C
when Apple acquired NeXT In 1996 (when it was called NextSTEP). | have
worked in many development environments over my life, and Objective-C and
Cocoa are hands down my favorite.

Cocoa allows you to write applications for Mac OS X, and a version of it allows
you to write applications for the iPhone. If the operating system does the
heavy lifting vis-a-vis the hardware, the framework provides all the stuff you
need to make your application an application. It provides support for win-
dows and other user-interface items as well as many of the other things that
are needed in most applications. When you use Cocoa, to develop your appli-
cation all you need to do is add the application’s specific functionality — the
content and the controls and views that enable the user to access and use
that content — to the Cocoa framework.

Now, two excellent books explain the use of frameworks on the Mac and
iPhone. One is Cocoa Programming for Mac OS X For Dummies by Erick
Tejkowski. The other is iPhone Application Development For Dummies by Neal
Goldstein (I know, a shameless plug).

19

20

Part I: Getting to the Starting Line

Framework or library

What is the difference between a library and a application be designed (divided into modules)
framework?. A library is a set of reusable func- in a certain way (application architecture) to
tions or data structures that are yours to use. A use it. | like to think that while you use a library,
framewaork, on the other hand, has an architec- a framework uses you.

ture or programming model, which requires an

Vour suite of development tools

The two main development tools you use are Xcode and Interface Builder.
You’ll be using Xcode throughout this book, which I explain in Chapter

2. 1talk a little about Interface Builder in Chapters 17 and 18, but again,

pick up copies of iPhone Application Development For Dummies and Cocoa
Programming for Mac OS X For Dummies to really learn about the frameworks.

Using Xeode 3.2

You will be using the Xcode 3.2 developer tools package that was released
with Mac OS X 10.6 (Snow Leopard). This is an improvement over Xcode 3.1
that was included in Leopard and [will assume that you are using both Xcode
3.2 and Mac OS X 10.6 in this book.

Using Objective-C Version 2.0

You will be learning Version 2.0 of the Objective-C language, which was
released with Mac OS X 10.5, and yes, you should care. Version 2.0 has some
new and very useful features such as declared properties, fast enumeration,
and garbage collection, which greatly simplify memory management
(unfortunately, garbage collection is not available on the iPhone). As |
explain these new features, [will remind you that they are available only

in Objective-C Version 2.0, which works only with Mac OS X 10.5 or later
and the iPhone OS. If possible, I'll also indicate some workarounds if you
need to write applications that run under earlier versions of the OS, but

in general, writing applications that run under earlier versions of the OS
will be up to you.

Chapter 2
Creating Your First Program

In This Chapter
Working with the Software Development Kit

Setting up your first project

Building and running your first program

Getting up and running with the Xcode Text Editor
Knowing what’s on the CD

n Chapter 1, I provide some of the background context you need to know

in order to write computer programs, and I complete that discussion in
Chapter 3. While there is still more you need to know in order to write good
programs, it’s time for a break. In this chapter, you get a taste of what pro-
gramming is about.

But before you do that, you need to go through some administrative matters,
such as downloading the Software Development Kit (SDK) that you use to
write programs. But to do that, you first have to become a registered Apple
Developer.

Getting Started with the Software
Development Kit

Everything you need to program in Objective-C for the Mac or iPhone is
included in something known as the software development kit, or SDK. It
contains Xcode (and some tools); frameworks and libraries; and iPhone OS,
Mac OS X, and Xcode documentation — in short, everything you need to
develop applications for the Mac and iPhone. Once you have it installed on
your computer, you are ready to begin developing that killer app you have
been thinking of.

22 Part I: Getting to the Starting Line

QgN\BEH This book is designed to teach you how to use Objective-C to write both Mac

& OS X and iPhone applications. I try to alternate which comes first in each dis-
cussion (just to be fair). Deciding which platform you want to develop for is a
decision only you can make. Fortunately, the two are not mutually exclusive
when it comes to the SDK.

In order to download the SDK though, you need to register with Apple, so
let’s go through the process.

Registering as a Developer

Apple has two developer programs — one for Mac OS X developers and one
for iPhone developers. From the tools perspective, with one exception, both
are virtually the same. That one exception is that if you are registered as an
iPhone developer when you download the SDK from the iPhone Dev Center,
you get both the iPhone and Mac OS X frameworks and libraries and docu-
mentation (and the iPhone simulator). If you register as a Mac developer
and download the SDK from the Mac Dev Center, you only get the Mac OS X
frameworks and libraries and documentation.

Because you need to use the iPhone SDK in Chapter 17, [have you register as
an iPhone developer. As an iPhone developer, you also have access to both
the iPhone and Mac Dev centers.

1. Point your browser to http: //developer.apple.com/iphone.

This takes you to the iPhone Dev Center (see Figure 2-1). Once you

are registered, the iPhone and Mac Dev Centers provide a plethora of
resources for developing applications. Take some time to explore them
on your own.

MBER Apple continually updates the look and feel of its Web site, so the pages
may look different when you see them, and the site’s functionality may
be slightly different. If there are any significant changes, please go to my
Web site, www.nealgoldstein.com, where I provide updated screen-
shots and instructions.

2. Right underneath the iPhone Dev Center banner, click Register.
A new page appears giving you some information about the program.
3. Click Continue.

You see a page that asks you if you have an existing Apple ID or if you
want to create one. See Figure 2-2.

|
Figure 2-1:
The iPhone
Dev Center.
|

|
Figure: 2-2:
Create

or use an
existing
Apple ID.

Chapter 2: Creating Your First Program

23

ann iPhone Dev Center - Apple Developer Connection
I - rt u + JB hitp: [/ developer.apple.com/ighane o] (@ iphane deveaper CTJ
M
® Developer Connection 5 ADConiTunes Suppon (@ |
iPhone Dev Center |
Hi. Guest Reglster Leg in 1
Log in to get the most out of the iPhone Dev Center. D |
The iPhone Dev Center provides access 1o technical resources and information to assist you in developing with the latest technologles in iPhone O5. Log In |
with your Registered iPhone Developer Apple 1D and password, or sign-up as a free Registered iPhone Developer today. (|
Developing for IPhone OS5 3.0 Q IPhone Developer Program |
Technical Dacumentation Featured Content iPhone 03 310 Readiness Checklist 1
iFhone Developer Program Members, |
| Cetting Started Documents ¥ iPhone Apglication Programming Guide downboad the IPhone S0K 3.0 and 1
| Devebopers new to @hone 05 can read about the fallow the steps in the iPhone 05 3.0 1)
tocls, frameworks, development best-practices, & Phone Development Guide Readiness Checklist. Log *
and design methods for creating innovative
warld~class Phone appllcations & iPhone Human Interface Guidelines /
ﬂ {Phons Refarence Library W Your First iPhone Application
Fuplare a callectian of in-depth technical)
dacumentatian, sample code, guides, and
articles far ithane develapment eategorized hy
topic and framewnrks
Join the IPhone Developer Program
The iPhane Developer Program offers a
To access iPhone SDK 3.0 and additional technical resources and infarmation, log in with your Registered iPhone complete process for developing and
Developer Apple 1D and password, or sian up as a free Registered iPhone Developer today. distributing IPhone or (Pod tauch
applications. Learn Mare »
iPhone SOK 10 Getting Started Videos
Registered (Phone Developers can downioad Watch Apple eaperts discuss everything from rd
iPhone SOK 3.0, whech includes the Xcode IDE, iFhone getting started with iPhone 30K, to the tools and (Learn More) v

simubatar, and a suite of additonal toals for developing technologies used 1o create IPhone applications

ann i | iPhane Developer

[2ok o seveioer ol cam o rogamy s

¢ J(ar o

® Developer Connection

Become a i iPhone Develop

Create or use an existing Apple ID

) Create an Apple I
If you have not registered as an thone developer, signed up as an ADC member, or do not have an
iTunes, Apple Online Stare or MobileMe account, you will need 1o create an Apple 1D

Use an existing Appl
If you have already registered as an (Phone developer. are an ADC member, or have an iTunes, Apple
Online Store or MobileMe account, you ¢an use your existing Apple 1D 1o sign in

Moae: if you intend 1o enrall i the IPhons Developes Program far BUSIRESS (IFRBSES, you may (efer 1a erease 3
new Agple 1D that is dedicated to your business sactions and used for accounting purposes with Apple. If
vour Apple 1D |3 asscciated with an existing iTunes Connect account, please create a new Apple 1D 10 avoid
AEEOUNTING 3N reparting is4ues

Privacy Palicy

| What will | use this Apple ID
for?
You wall use your Apple 1D to
access cerain information and
resaurces, or to register far an
event.

Leomo | LTI

24

Part |: Getting to the Starting Line

If you do not have an Apple ID, you are asked to create one. After you
create your Apple ID, you see a page (Figure 2-3) that asks you to com-
plete your professional profile.

If you do have an Apple ID, you are sent to a page where you can log
in. After you log in, you see the page that asks you to complete your
professional profile.

4. Fill out your professional profile and then click Continue.

ANO Recome a Registered iPhane Develaper
L] = |16 hitos:sconnect.apgte.com/cai-bin/ WebObjects/Iphane.woa 39 wo/As nwiALkwsguoLL G | (@ iphone eveoper [
~
® Developer Connection
; : —
Become a Registered iPhone Developer
Skgn in Account info
Complete your professional profile
{AIl form fields are required)
What it your primary market?
D) Business 0 Medieal () meference
e
) Edugation 0 Music) Social Networking
{) Entermainment) Navigation {) Spoms
7 Finance D) News D Trave
() Games) Phatagraphy 3 Utiliries
() Heaith & Fitness 0 Froductivity Weather
D Lidestyle
What type of applicationis) do you plan on developing for iPhone and iPod touch?
| ;
] Business 2 Medical L Reference
Figure 2-3: O education O music O social Hetworking
Professional) Fntertainment 2 Mavigation O sports
.) Finance o News Ll Trave!
Profile.
) Games Photography Utilities X
|

This takes you to the Registered iPhone Developer Agreement page
where you need to accept the agreement.

5. Check the box and click I Agree (see Figure 2-4).

Next, you are asked to enter the verification code sent to the e-mail
address you provided Apple when you set up your Apple ID (see
Figure 2-5).

6. Find the e-mail and enter the verification code.

After completing the preceding steps, you are returned to the iPhone Dev
Center (see Figure 2-6).

Chapter 2: Creating Your First Program

Recome a Registered iPhone Developer &
> Ll sk JF‘\ hitps:/ fconnect. apple.cam /cgi-bin/WebDbjects/ iphone.waa/s%/wa/ ALsZnMIA LkwsgubLL. €] rﬁ' iphane deveaper C—:‘]
=
& Developer Connection
Become a Registered iPhone Developer - i >
Sign in Account info Agree to License
Registered iPhone Developer Agreement
View the IPhane Developer Terms & Condirians as POF. Last madified 20 Oy 2008
APPLE INC. m
REGISTERED IPHONE DEVELOPER AGREEMENT
THIS 15 & LEGAL AGREEMENT BETWEEN YOU AND APPLE INC. ("APPLE"} STATING THE TERMS THAT GOVERN YOUR PARTICIPATION
AS A REGISTERED IPHOME DEVELOPER. PLEASE READ THIS REGISTERED IPHONE DEVELOPER AGREEMENT (“AGREEMENT) BEFORE
PRESSING THE “I AGREE" BUTTON AND CHECKING THE BOX AT THE BOTTOM OF THIS PAGE. BY PRESSING I AGREE" YOU ARE
AGREEING TO BE BOUND BY THE TERMS OF THIS AGREEMENT. IF YOU DO NOT AGREE TO THE TERMS OF THIS AGREEMENT, PRESS
“CANCEL" AND YOU WILL BE UNABLE TO BECOME A REGISTERED IPHONE DEVELOPER. -
LI By checking this box | confirm that | have read and agree o be bound by the Agrezment above. | also confirm that | am of the legal age of
majority in the jurisdiction in which | reside (at least 18 years of age in many countries)
| CCanceia)
Gange i
Figure 2-4:
Developer ' ' :
Agreement.
| £
ann Become a Registered iPhone Developer &
[- [> Ll -I:J[v‘\ hitps:/ fconnect. apple.cam /cgi-bin/WebObjects / iphone.woa/ 23 /wa/ YDLWCY NE) 7 efLwr PR L c] rQ' oogle “]
=
® Developer Connection
Become a Registered iPhone Developer - i > it
Sign in Account info Agree to License Email verification
Enter the verification code sent to your email
| Bid not receive a verification email?
e e el S i if you i noT recelve a verificarion email, please check your hulk mall
e ar spam falder first. I you still do nat see an email fram the IPhone
1o ObjCEoek@ymailoom s thal Developer Program, you can request ancther veri amail.
WOl Ean procesd with yaur registratian
. | ., M tights reserved. | Terms of Use | Privacy Pulicy
Figure 2-5:
Enter the
verification
code.
| £

26

|
Figure 2-6:
iPhone Dev
Center.

Part |: Getting to the Starting Line

Nl TPhione Dev Center - Apple Developer Cannechon
[[» | [+ hitp:sdevelapar.appie.comishonsindex.action & Q- coople.
™
[Developer Connection Dev Centers (5] ADC om iTun - a |

iPhone Dev Center

4, Neal Goldstein

Developing for iPhone 05 3.0 -1 iPhone Developer Program

Resources for iPhone 05 3.0 Featured Content

and

Downloads & What's new In IPhone 05 3.0 d |
M (Phone SDK 3.0 Gening started videos 4 = 4y |
Celling Staried Videos - lee Programming |
Learn More
.
I Geviing Stared Documenss 1]
u
iPha Rel Lit ¥
w
Coding Haw - To's
a8 ¥ Media Player Framework it
N Your Hrst Applicatiol C o
h sample Co
a3
Downloads '

While anyone can develop applications for the Mac without paying to join a
developer program, if you want to be able to have your iPhone application
actually run on an iPhone, you have to join one of the iPhone Developer
programs (refer to Figure 2-6), which costs you something.

1. Click Learn More to access a page (shown in Figure 2-7) that tells you
a little about the program.

2. On this page, click Enroll Now (don’t worry; you aren’t committing to
anything at this point).

This step accesses a page where you can find out more about each
program (see Figure 2-8).

The iPhone developer program has two versions:

1~ Standard Program ($99 per year): For commercial developers —
meaning App Store.

v Enterprise Program ($299 per year): For in-house development and
distribution only.

Chapter 2: Creating Your First Program 2 7

GlE) IPhicae Developer Pragram = Apple DEveloper Conaeriion
| 4| = [4] hep://develaper.applec 3 & W0r Loogls p
i 1
® Developer Connection Dev Centers (3] ADC o iTunes Suppart (@, |
iPhone Developer Program
The fastest path from code to customer.
Fr
" Develop for IPhone 05 10
With ower 1,000 new APs,
Phone 05 3.0 pravides you
with a range of amazing
technalogies to create
feature~-rich applications for
Fhone and (Fod towch,
1. Develop 2. Test 3. Distribute
Develop your application with the Test and debug your code on Dustnbute on the App Store and
iPhone SDK and a wealth of iPhone using sophisticared and reach millions of (Phane and (Pod
technical resources in the iPhane elegant tools to finalize your touch wsers. Learn more »
Dev Center. Learn more ¥ application. Le. e b 1]
|
Figure 2-7:
iPhone
Developer Join the iPhone Developer Program [Frroll Now]
Program. , h z
distributing yaur free, commerelal, or in-house applicarions far iPhare and (Pad touch. "
I Enterprise Program
Phone Developer Program - Enroll Now
[+_] W hitp:/, | .apple.c ol tml &] (Q' Loogle)
i 1
® Developer Connection Dev Centers (5] ADC om fTunes Support (@ |
iPhone Developer Program
Choose Your Program
Tast
3. Distribute
iPhone Developer
University Frogram
y
on the App Store
Enterprise Program
For companies wil o re employees
wih tary in-house
| applications for iPhone and iPod touch.
H _Q. Technical Requirement:
Flgure 2-8: To develop with iPhone SOK you must have an
The iPhone el based Ma ruming Mag ©F % Leopard
developer [Envoll Now]
programs. .
Standard Program Enterprise Program I
|

28 Part I: Getting to the Starting Line

WBER
‘g'c
&

|
Figure 2-9:
Accessing
the Mac
Dev Center.
|

If you want your application to run on an iPhone, even on your own iPhone
for testing, you have to pay to join one of these programs. If you don’t, you
can run your application only on the iPhone simulator included with the
iPhone SDK.

You don’t need to decide right away, and you can start by becoming a registered
developer (which you just did) and then joining the developer program later.

Just be aware it can take some time for you to get approved for the developer
program.

If you are interested in developing for the Mac, you can make some choices
about being a developer.

1. Go back to the iPhone Dev Center page, click the Dev Centers drop-
down menu and choose Mac Dev Center; you can also do that from the
iPhone Developer Program page (see Figure 2-9).

The Mac Dev Center appears. Here you can learn about the Mac
Developer Program.

2. Choose Learn More under Join the Mac Developer Program (see
Figure 2-10).

A new page appears giving you some information about the program.
You have several options.

Nl TPhione Dev Center - Apple Developer Cannechon
[[» | [+ & hitp:ssdevelapar.appte.comishonsindex.action & Ji{ar Coogle.)
m
[Developer Connection Dev Centers ADC on iTunes Support (@, |

iPhone Dev Center

Hi, Neal Geldsteln

Developing for iPhone 05 3.0 -1 iPhone Developer Program
Resources for iPhone 05 3.0 Featured Content Jolin, Ibu JPhame Dnlaper. Frogri
The Phane Develaper Pra fers a
Downloads m

M ——

s new In IPhone 05 3.0

B Getting Started Videos

Getting Started Documents

Coding How - To's

Downloads '

|
Figure 2-10:
Mac
Developer
Center.
|

A\

Figure 2-11:
Mac
Developer
program
options.
|

Chapter 2: Creating Your First Program 2 9

AanoD Apple Developer Connection - Mac Dev Center
Lo [b 6 hap:sseveloper.apple com/mact 2 o coosle)
M
® Developer Connection Dev Centers (5] ADC on iTunes Suppart (@, |
Hi, Neal Galdstein 1 1
Developing for Mac 05 X Leopard Q Mac Developer Program
Technical Documentation Featured Technical Content Dawnlaad Mar 05 X Snaw Leapard
ADC Premir d S s
-
o
L

Jain the Mac Developer Program
The Mac Deveboper Program offers a

Mac 05 X, Lea
Ta download Xeode and access a range of develapment videos, log in with your ADC member Apple 1D or
reglster for a free ADC Online Membership.

3. Scroll down to the bottom of the page, and click compare member-
ships under the Become an ADC Member.

Another window will appear where you see a comparison between the
various memberships (see Figure 2-11). I did say that the SDK was free,
and it is, but you can pay for additional support and privileges if you like.

There are some advantages to paying the $499 for the ADC Select membership —
the hardware discount, compatibility lab, ADC on iTunes, some coding head
starts, software seeding, and two free tech support calls a year. You can find out
more about these advantages by clicking Join Now (again, you are not commit-
ting to anything yet).

L)

Premier Member Select Member Online Member Student Member

WWDC Ticket ded May purchase May purchase May purchase

« Seeding Program o Avaital

Us $3499.00 Free us $59.00

30

Part |: Getting to the Starting Line

|
Figure 2-12:
Resources
for iPhone
0S 3.0.

\\3

Downloading the SDK

Whether you are an iPhone or Mac OS developer, be sure that you are logged
in to the iPhone Dev Center. It’s now time to download the iPhone OS SDK.

As I said, doing it this way gives you everything you need to develop on the
iPhone (which you do in Chapter 17) or Mac (which you do in Chapter 18), or
even both.

1. Go back to the iPhone Dev Center and under Resources for iPhone OS
3.0, click Downloads (shown in Figure 2-12).

Nl TPhione Dev Center - Apple Developer Cannechon
[[= J [+ hutp:/scevelaper.apole.com/ihane index.action#downiaads & Ji{ar Coogle.
m
[3 Developer Connection Dev Centess (5] ADC o iTunes Suppart (@,

iPhone Dev Center

Hi, Neal Geldseln

Developing for iPhone 05 3.0 -1 iPhone Developer Program
Resources for iPhone 05 3.0 Featured Content Juin the iPhone Develaper Program
"l Downloads
cos
ﬁ . Leam dore
L Gerir d Dor L=
ii iPhone R Lit
<15 Cod
h Core O
Py s
iy
Downloads

This step takes you to the bottom of the page where you can choose the
download you want (see Figure 2-13).

2. Click iPhone SDK 3.0 (Snow Leopard), and the download starts (as
you can see if you open Safari’s Downloads window, or your browser’s
equivalent, as I did in Figure 2-14).

Since the download is 1.75GB, you really need a broadband connection,
or if not, a hobby to keep you busy while the SDK downloads.

Once the SDK is downloaded, the iPhone SDK window appears (see
Figure 2-15).

Chapter 2: Creating Your First Program

Dev Center - Apple Developer Connection

-apple.c L

e o coosl 3

M Coding Haw - To's

@ Your First Application with Core Data
h Sample Code

Downloads

\Phone SDK 3.0 Posted: June 17, 2009
Wirh pwer 1,000 new APis, Bulld: WM2736

IFhane S0 3.0 pravides develapers
with a range of new possibilivies o
enhance the funerianaliny of thele
applieations. New APIs also provide
suppart for applleatians 1o

Dewninads
.

eommunicare with hardware
aceessnies attached ta Whane ar Wod
[
iPhone O3 Accessories Buy Reporting for iPhone 05 Safari Dev Center
With iPhone 5D 3.0 you can design Use the Apple Bug Reporter to submit @ Cet the latest technical information on
applications to communicate with and track Phone 05 bug reports and developing powerful websites and web

accessories connected through the 30- enhancement requests, \ applications for Safasi

pin dock or wirelessly using Bluetooth,

|
Figure 2-13:
Choose a
download. :

|
s Nals Downloads
— iphone_sdk_3.0__snow_leopard__final.dmg
Figure2-14: | =
The
Downloads
window.

1 Download A

DO E iPhane SDK
3 items, 2.5 MB available

Abuout iPhune SDK
for Snow Leopard

iPhone SDK for
Snow Leopard

Figure 2-15:
The SDK. Packages
|

32 Part I: Getting to the Starting Line

3. Double-click iPhone SDK for Snow Leopard.
The installer launches.

4. Follow the instructions, and in no time, you’ll have the SDK installed
and ready to code.

As I said, Apple continually updates the look and feel of its Web site, so the
pages may look different when you see them, and the site’s functionality may
be slightly different. If there are any significant changes please go to my Web
site, www.nealgoldstein. com, where I provide updated screenshots and
instructions.

Creating Vour Xcode Project

To develop a Mac OS X or iPhone application, you work on what’s called an
Xcode project. Here’s how to start your foray into Xcode:

1. Launch Xcode.

After you download the SDK, it’s easy to launch Xcode. By default,
Xcode was downloaded to /Developer/Applications, where you find
<P and launch it.

Since you use Xcode a lot, you can also drag the icon for the Xcode
application onto the Dock, so you can launch it from there.

When you first launch XCode, you see the welcome screen shown in
Figure 2-16. It has some links you can explore on your own. You may
want to leave this screen up to make it easier to get to those links, but
[usually close it. If you don’t want to be bothered with the welcome
screen in the future, uncheck the Show at Launch checkbox.

A
Recent Projects
m Create a new Xcode project
AL Start a new software project for Mac 05 X or
£ iphone 05
E— 7, Getting started with Xcode
ot K _ Folicw the tutarial to leam how to get productive
- . % quickly with Xcode
Figure 2-16: ~
le Developer Connection
Xcode i
Wisit the Mac and IPhane Dev Centers at
welcomes developer.apple.com
you. : =
Open Other... ¥ show this window when Xcode launches Cancel
I

Chapter 2: Creating Your First Program

A\

|
Figure 2-17:
Xcode
Organizer.
|

|
Figure 2-18:
New Project
window.
|

If you have your iPhone connected, you may also see Figure 2-17.

2. Start the New Project Assistant by choosing Filez>New Project from
the main menu to create a new project.

You can also just press Shift+88+N.

Either way, you see the New Project window, which looks something like
Figure 2-18, depending on the kind of project you created previously.

Nl Organizer =
A = = ¢
b 4’._- v s
Uuild Clean Wan Action
PROJECTS & SOURCES
DEVICES

L el iPhone

IPHONE DEVELOPMENT

Name: Neal Galdstein®s Phone
Capacity: 31.49 GR

serial Number:
Identifier:
Software Version: | 1.0 (7a3a1) 4] | Bzsmnee srhane |
Pravisioning
=
Applications
&
» aja
+ | -
+- 8- @
AOO New Project
Choose a template for your new project:
iPhane 05 — e
o] =" crse]
T — S i
Library JoL
‘_‘ Navigarion-based OpentL F5 Tah Bar unitiry Apglicarinn
Mac 005 X i
Application
Framewurk & Library
System Plug-in :
Other i
View- based Window- based
Applicarian apqlicarion
Options [Use Core Data for storage
-

Mavigation-based Application

This temglate provides a starting point for an application that uses a navigation controlles. @
provides a user interface configured with a navigation centrotier to display a list of items,

(_ Cancel) {Choosei)

33

34

Part |: Getting to the Starting Line

|
Figure 2-19:
The New
Project
window.
|

The New Project window is where you get to choose what kind of project
you want to create. Note that the leftmost pane has two sections: one for
the iPhone OS and the other for Mac OS X.

. In the New Project window, click Application under the Mac OS X

heading.

The main pane of the New Project window refreshes, revealing several
choices, as shown in Figure 2-19. Each of these choices is actually a tem-
plate that, when chosen, generates some code to get you started. You
can then enter your own code into the template, build your application,
and then generate output in the Debugger Console window (don’t worry;
[get to that very soon).

. Select Command Line Tool in the upper-right corner, as shown in

Figure 2-19.

Note that when you select a template, a brief description of the template
displays underneath the main pane. Quite a few templates are available
for both the iPhone and Mac OS X. You don’t need any of the others
until Chapters 17 and 18, but you may want to click around just to get a
feel for what is available. Just be sure to click back to Application under
the Mac OS X heading and select Command Line Tool when you’re done
exploring.

B0, Hew Project.

Choaose a template for your new praject:

Uikrary

l iPhone 03
7
Application FA Ny v |
¥ * A ———

5
/i Cocoa Application Cocoa-AppleScripn Quanz Composer
“. Mac 05 X Applicatinn Applicatian

Application Plug-in
Sysrem Plug-in

Other

Type c 3

i Command Line Tool

This project builds a command-line toal written in €.

_ Cancel) (Choose..)

Chapter 2: Creating Your First Program

Figure 2-20:
Select
Foundation
for the
Command
Line Tool.
|

|
Figure 2-21:
Name the
new project.
|

5. In the same page, select Foundation from the Type drop-down menu,
as shown in Figure 2-20; then click Choose.

800 New Project

Choaose a template for your new praject:

l iPhone 03
¢ >
Application FA Ny v |
Uibeary L —_—
fi Cocoa Application Cocoa-AppleScripn Quanz Composer
“. Mac 05 X Applicatinn Applicatian

Framewurk & Library
Application Plug-in
ystem Plug-in
ther

Type Foundation =]

i Command Line Tool

This project builds a command-ling toal that links against the Foundation ibrary

_ Cancel) (Choose.)

Xcode displays a standard save sheet (see Figure 2-21).

Save As: "FIrst Frogral;{ (=1

Where: | (B Desktop ?

:Cancel) (FeSavens)

6. Enter a name for your new project in the Save As field. (I named my
project First Program. I suggest you do the same if you’re following
along with me.) Then choose a Save location (the Desktop or any other
folder works just fine) and click Save.

After you click Save, Xcode creates the project and opens the Project
window — which should look like what you see in Figure 2-22.

35

36

Part |: Getting to the Starting Line

|
Figure 2-22:
Your first
program.
|

A\

Groups & Files list Build and Run Info
Toolbar Breakpoints Tasks Detail view
ann | 1 First Program | | =)
[10.6] Debug | x86 64 ~| [-] [] 5 o O Q- 5tring Mat
Overview Action Bulld and Run Tasks Info Search
Groups & Files File Hame: & A Code L] 'y L
A CRres
Source First Program,1 o
o Dotumentation w| First Program.m v L4

External Framewarks anc | [u] First Pragram_Prefix pch
Frodutts §= Foundation, framework]
- (E Targers
4 Executables
r |, Find Results
| Raokmarks
sCM
! Project Symbals
- (@ Implementarian Files
[0 interface Budder Fies

Status bar Editor view

Text Editor navigation bar

Exploring your project

To develop an iPhone application, you have to work within the context of an
Xcode project. It turns out that you do most of your work on projects using

a Project window very much like the one in Figure 2-22. Notice the Project
window displays the name of your project, but I just refer to it as the Project
window. This is Command Central for developing your application; it displays
and organizes your source files and the other resources needed to build your
application.

If you refer to Figure 2-22, you see the following:

v Groups & Files list: An outline view of everything in your project
including all of your project’s files — source code, frameworks, graph-
ics, as well as some settings files. You can move files and folders
around and add new folders. If you select an item in the Groups & Files
list, the contents of the item are displayed in the topmost pane to the
right — otherwise known as the Detail view.

Notice that some of the items in the Groups & Files list are folders,
whereas others are just icons. Folders have a little triangle, called a dis-
closure triangle, next to them. Clicking the triangle to the left of a folder

Chapter 2: Creating Your First Program

expands the folder to show what'’s in it. Click the triangle again to hide
what the folder contains. The triangle points to the right when the item
is collapsed and it points down when the item is expanded.

anm m| Fircr Program.m - Firsr Program =)
[10.6 | Debug | x86 64 ~| [@] - “f-,‘\ - 6 Q- 3t

Ovendew Action Build and Run ~ Tazkx Info Search
Groups & Files = File Name: &| A Code o &

W)

v B First Pragram B[[5 First Programm v
¥ Source
| First Program_Prefix.p

Ducumentation

L3 External Framewarks anc

Products
(@) Targets
o Execurables
r L], Find Results -
L ._,‘,MUMII.I‘X» - = | BhFirst Programomil $ «<No selected symbols 2 . . ol Be
S oust Faund Fou aoh

B Project Symbols
+ (3 Imlementasion Fikes
i [@ll trrerface Builder Files

nt main (int arge, t char » argull) {
NSAutRre « pool m [[NSAutarcleaser allee] init];

g lo. Wiy

I o RS

Figure 2-23:
First

Program.m.

|

v Toolbar: Gives you quick access to the most common Xcode commands.
You can customize the toolbar to your heart’s content by right-clicking it
and selecting Customize Toolbar from the contextual menu that appears.
You can also choose Viewr>Customize Toolbar.

¢ Pressing the Build and Run button compiles, links, and launches
your application.

e The Breakpoints button turns breakpoints on and off and toggles
the Build and Run button to Build and Debug. (I explain this in
Chapter 8.)

e The Tasks button allows you to stop the execution of the program
that you've built.

¢ The Info button opens a window that displays information and set-
tings for your project.

v Detail view: Here you get detailed information about the item you
selected in the Groups & Files list.

v Text Editor navigation bar: This navigation bar displays a number of
shortcuts I explain later in this chapter in the section “Getting to Know
the Xcode Text Editor.”

v Editor view: Displays a file you selected in either the Groups & Files or
Detail view. You can edit your files here, although you can also double-
click a file in Groups & Files or Detail view to open the file in a separate
window.

37

38

Part |: Getting to the Starting Line

|
Figure 2-24:
A little more
Groups &
Files detail.
|

To see how Editor view works, check out Figure 2-23, where I clicked on
the disclosure triangle next to the Source folder in the Groups & Files
view, and then clicked on First Program.m. You can see the code in
the Editor view.

First Program.m contains code generated by Xcode, based upon the
Xcode template (a Foundation Command Line Tool) you selected. Once
you start using Xcode to develop applications, you will find that the tem-
plates make getting started very easy for you. You can also see the code
in Listing 2-1, later in the section “All that stuff in First Program.m.” If
you have problems understanding what all of that means (and since you
are new to programming, you will), don’t worry about it. [explain it all
(gently) soon.

1~ Status bar: Look here for messages about your project. For example,
when you're building your project, Xcode updates the status bar to
show where you are in the process — and if the process completed
successfully or not.

For now, just concentrate on the Groups & Files view.

Groups & Files view

The first item in the Groups & Files view, as you can see in Figure 2-24, is
labeled First Program. This is the container or folder that contains all the
“source” elements for your project, including source code, resource files,
graphics, and a number of other pieces that remain unmentioned for the time
being (but [explain those you need to know about in due course). For now, I
just want you to click the disclosure triangle next to Source.

annm " Eirst Program
[10.6] Debug | g6 64~] -] > B O A
Overview Action Buildand Run Tacks Info Search
Graups & Files File Harne: &l A Code) A ®
B W st Peagr
¥ [Source First Program, 1 o
u| First Program_Prefix.p | First Program.m v L4
] First Pragram m w| First Program_Prefix pch
r (| Dosumentation §= Foundation framewark L]
First Pragram.1
r External Frameworks anc
* = Foundation.lramewur
Praducts
- () Targets
F 4 Executables
v (), Find Results
* L Buokmarks
SCM
W Project Symbols
b (il Imalementation Files
& [l nterface Budder Fies

Chapter 2: Creating Your First Program

\\3

v Source contains two files: My First Program.m and My First Program_
Prefix.pch, which are the source code for your program and something
called a precompiled header, respectively. | talk about header files in
Chapter 6; for now, all you need to know is that precompiling them signifi-
cantly reduces the amount of time it takes to build your program.

Xcode uses the .m extension to indicate a file that holds Objective-C code
and will be processed by the Objective-C compiler. (Filenames ending in
.c are handled by the C compiler, and . cpp files are the province of the
C++ compiler — yes, you actually get all of those with Xcode as well.)

v+ External Frameworks and Libraries are code libraries that contain a
good deal of what you would normally have to write yourself to create a
functioning program — including things you need to display text in the
Debugger Console. (I know, you don’t know what that is, but I explain
that in the next section “Building and Running Your Application.”) By
choosing the Foundation Command Line Tool template, you let Xcode
know that it should add the Foundation. framework to your project,
since it expects that you need what’s in the Foundation framework in a
Foundation Command Line Tool.

Note: You use only this framework for now. Later, you use other frame-
works when you start building iPhone OS and Mac OS X applications.

v Products is the compiled application. It contains First Program. At the
moment, this file is listed in red because the file cannot be found (which
makes sense, since you haven’t compiled the project yet).

A file’s name in red lets you know that Xcode can’t find the underlying
physical file.

If you happen to open the First Program folder on your Mac, you won't see the
“folders” that appear in the Xcode window. That’s because those folders are
simply “logical” groupings that help organize and find what you're looking for;
this list of files can grow to be pretty large, even in a moderate-size project.

When you have numerous files, creating subgroups within the Classes group
and/or Resources group, or even new groups, helps you find things. You
create subgroups (or even new groups) by choosing New Project->New
Group. You then can select a file and drag it to a new group or subgroup. I
show you that in more detail in Chapter 6.

Building and Running Your Application

It’s really exciting to see what you get when you build and run a project that
you created using a template from the New Project window (but then again,
I'm easily entertained). Building and running a project is relatively simple:

39

40

Part |: Getting to the Starting Line

|
Figure 2-25:
Overview
options.
|

On the left side of the toolbar, the selection in the Overview drop-down menu
is “10.6 | Debug | x86_64" (or whatever the current Mac OS X release is).
This menu lets you choose the active software development kit (SDK), and a
number of other options for the program you are going to build. This is what
you will use in this book until you get to Chapter 17.

It tells the compiler to build a debug version for the computer you are devel-
oping on (x86_64 is a 64-bit Intel processor) using Mac OS X 10.6 (Snow
Leopard). You can also build for other platforms. The only thing you might
want to experiment with is changing from debug to release, which gives you
a smaller footprint but doesn’t include some of the debug information useful
during development.

You can see this illustrated in Figure 2-25.

10.6 | Debug | xA6_64 :g-l

v Mac 08 X 10.6 (Rase SDK)

¥ Debug
Release

v W First Program
v Firsr Program

v xB6 064
i3B6
ppC

Now for the main event — I'll explain how to build and then run this program.

1. Select the Build and Run button in the Project window toolbar.

You can also press 38+Return or choose Build=Build and Run (Run) from
the main menu to build and run the application. The status bar in the
Project window tells you all about build progress, build errors such as
compiler errors, or warnings — and (oh, yeah) whether the build was
successful. Figure 2-26 shows that this is a successful build.

2. Open the Xcode Debugger Console by choosing Run~>Console or
pressing Shift+3+R, which displays your program’s output. You can
see the Debugger Console in Figure 2-27.

And there are your results in Figure 2-28.

Figure 2-26:
A successful
build.
|

|
Figure 2-27:
Show the
Debugger
Console.
|

anmn

10.6 | Debug | x86.64 ~| | %~
et T

=oos @

m! First Program.m - First Program (=]

Chapter 2: Creating Your First Program

ginee Bulldand Run Tasks Info

¥ [Source
[3] First Program_prefix.pch
[u] First Pragram. m
¥ | Ducumentation
First Pragram.1
¥ |External Frameworks and Libranies
* K= Foundation. ramework
¥ [Peaduces
9 First Program
* (E) Targens
i Execurahles
v (4 Find Results
L Bookmarks
v Eisom
W Project Symbals
b [Imalementation Files
& [l nterface Budder Fies

Debugging of “First Program” ended normally.

Groups & Files I

File Hame

v B3 First Program B = Foundation framewark L4

4 = | WhFirst Programomill 3 «<No selected symbol» 2 %S O, @, =
Fimport <Foundation/Fuundation. b= m
oast char @ argell) {

1 # pool = [[NSAutercleascPasl allee] init)
¥
F—=—————————=-———————————— = BRID
Dsucceeded

Run

Run - Breakpoints Off
Debug - Breakpoints On
Run with Performance Tool

Attach to Process

Debugger

Show
Debugger Display
Variahles View

Activate Breakpoints

Manage Breakpoints

Enable Guard Malloc

Now that you have your first working program, I'm ready to explain to you

how it all happened.

NS

¥R

TRY
»

Ty

Clear Con3ole TR

>
»
[

~38\

Stop on Objective-C Exceptions

»

v Stop on Debugger()/DebugStr()

41

4 2 Part I: Getting to the Starting Line

aNe ™ First Program - Debugger Console =

——— e K O

| 10.6 | Debug | x86_64 - A @ & W P’!
DOverview Breakpoints Build and Run Tasks Restart Pause Clear Log

GNU gdb 6.3.50-20050815 (Apple verzion gdb-1330) (Sat May 23 05:30:07 UTC 20@d)
Copyright 7884 Free Software Foundation, Tnrc.

GDB 15 free software, covered by the GNU General Public License, and you are
welcome Lo change il and/for distribule copies of il under cerlain condilivns.
Type "show copying" to see the conditions.

There 15 absclutely no warranty for CDB. Type “show warranty" for details.
I (This GDB was configured as "xB6_6d-apple-darwin®_ tty /dev/ttys00@
Loading program into debugger.
1 - . Program loaded.
Figure 2-28: |
[Switching to process 752]

Hello Running..
World |n 2000-06-26 07:35:085.874 First Program[752:a8f] Hello, World!

H o Debugper stopped.
ObleCtlve-C' Program exiled with status value;0.) 1

(28500l O T RO e

All that stuff in First Program.m

The Objective-C code you just built and ran is shown in Listing 2-1. It dis-
played “Hello World” on the Debugger Console and connected you with
generations of C programmers who have created and run this as their first
application. Over the next few chapters, I dissect each and very element in
this program, but for now, the real point is to get you comfortable with Xcode
and the compiler, although I point out a few highlights.

Listing 2-1: Your First Program

#import <Foundation/Foundation.h>

int main (int argc, const char * argv([]) {
NSAutoreleasePool * pool = [[NSAutoreleasePool alloc]
init];

// insert code here...
NSLog (@"Hello, World!");
[pool drain];

return 0;

}

The first line you see tells the compiler to include the Foundation.h header
file of the Foundation framework.

#import <Foundation/Foundation.h>

The Foundation framework provides plumbing features such as data storage,
text and strings, dates and times, object creation, disposal persistence, and
common Internet protocols — none of which you have a clue about at this
point. But rest assured that you will not only understand but also appreciate
them by the time you are done with this book. The Foundation framework
provides commonly used functionality that is not part of the Objective-C

Chapter 2: Creating Your First Program 43

language that you use hand-in-hand with Objective-C when you code your
application. After all, it makes sense not to have to redo all of the common
things that programmers need (like display text in the Debugger Console) in
every program.

The way a program accesses the framework is through headers, and I explain
those mechanics in Chapter 6.

The next line in the listing begins the main function:
int main (int argc, const char * argvl[])

As I explain in Chapter 1, a function is a collection of instructions all neatly
packaged together to perform a task. main is the mother of all functions

and is the place where all Objective-C programs start their execution — the
instructions contained within main are always the first ones to be executed
in Objective-C programs. All Objective-C programs have one. When you start
to work with the frameworks, however, you really won’t be aware of this
because all of the startup stuff is handled within the framework. But for now,
this is where you start.

The word main is followed in the code by
(int argc, const char * argvl[])

These are function arguments, which I cover in Chapters 5 and 7. Ignore them
for now.

Before main, you also see another symbol, int. A function can return data
to its caller. For example, the function howO1dAreYou returns the age as an
int, which, as you discover in Chapter 4, is the Objective-C official term for a
whole number.

Right after the function arguments, you can find the body of the main
function enclosed in curly braces ({ }). What the function does when it is
executed is contained within these braces. The first statement (a line of
Objective-C code that terminates with a semicolon)
NSAutoreleasePool * pool =
[[NSAutoreleasePool alloc] init];
as well as

[pool drain];

have to do with memory allocation and management, which you don’t need
to know about until Chapter 13.

44

Part |: Getting to the Starting Line

WBER
@"&
&

Just a reminder about statements. In some cases (like the first of the two pre-
ceding ones), you see statements on two lines in the book. I have to do that in
order to fit the code on the book page. The code appears on one line in the
Editor and you should generally use one line for statements unless they
become too long to see all the complete line in the Project window.

Now, explore the statement
NSLog (@"Hello, World!");

All it does is display (or print, if you like) “Hello World” on the Debugger
Console. To start with, NSLog is a function, just like main. Inside of it is a
string (a variable that stores more than a single non-numerical character is
known as a string).

@"Hello, World!"

The @ sign before the quotation mark tells the compiler that this is not a C
string. It is actually a Cocoa object called an NSString that has a number

of features, including the ability to covert a “numeric” string (like “42”) to its
numeric value (42) that you can use in a computation and to compare itself
to another string. I explain more about this object later, but you use it now as
an introduction to how you use strings in Objective-C.

NSLog is really used to log an error message, not as an application’s output
function. That’s why the output is to the Debugger Console. But because
Debugger Console is so convenient, you use it to display the program’s
output until you put on a user interface in Chapters 17 and 18 (and lots of
people, me included, use it during development as a way to output program
information that is not part of the user interface).

As you saw, what is displayed in the Debugger Console when you build and
run your program is:

2009-06-26 07:35:05.874 First Program[752:a0f] Hello,
World!

2009-06-26 07:35:05.874 First Program[752:a0f] is atime stamp
and process id that tells you when and from where the output string originated.
It’s not important here, and [won’t include it when I show you output — that
means from now on, [show the preceding output as

Hello, World!

As I explain various features of Objective-C, you use this NSLog quite a bit to
see for yourself how things work, and I expect you will become rather fond of
it. It is, as I mentioned earlier, part of the Foundation framework, which was
automatically included when you used the Foundation Command Line Tool
template. If you don’t believe me, try leaving it out and see what happens.

Chapter 2: Creating Your First Program

The last line of the program is the return statement that ends the execution
of main and finishes the program:

return (0);

The zero value returned says that our program completed successfully
(remember earlier I explained that functions can return data; here is exam-
ple). As you see in Chapter 5, this is the way return statements work in
Objective-C.

Congratulations, again! You've just written, compiled, run, and deconstructed
your first Objective-C program.

Customizing Xcode to Vour Liking

Xcode has options galore, many of which won’t make any sense until you
have quite a bit of programming experience, but a few are worth thinking
about now. So let’s go through how you can set preferences in Xcode.
1. With Xcode open, choose Xcode= Preferences from the main menu.
2. Click Debugging in the toolbar, as shown in Figure 2-29.
The Xcode Preferences window refreshes to show the various preferences.

3. Select the On Start drop-down menu and choose Show Console, as I
did in Figure 2-29. Then click Apply.

MmN Xcode Preterences
0 o NN E 8
General Code Sense Building Distrit d Builds Dy Key Bind|
[2 3 4k
Fonrts and Colors® Symhol L nading Oprions:
Debugger Console Prompt =] ™ Load symbols lazily
B | nento-old - 1 _-Ser Font.) Disassemhly Style:

Instruction Pointer Highlight: | Il @ater Ointel

On Star ¥ Do Nothing # In-Editor Debugger Controls
I Show Console " -
GDB Lo Shuw Debugyer ! Auto Clear Debug Console

Figure 2-29: Show Console & Debugger
Always = Show Mini Debugger
show the
console. (“apply) (Cancel) (0K)

b5

46 Part I: Getting to the Starting Line

This step automatically opens the Debugger Console after you build
your application. This means you won’t have to open Debugger Console
to see your application’s output.

4. Click Building in the toolbar, as shown in Figure 2-29.

5. Select the Open during builds drop-down menu and choose Always
(right now it is set to Never) as I did in Figure 2-30. Then click Apply.

A.NO Xcode Preterences
A, ()] ’& (=222 g !
General Cude Sense Building Distributed Builds D Key Bind
€) v

Place Build Products in:
C} Project directory
() Customized location:
Place Intermediare Bulld Files in:

(® With build products
() Customized location:

Build Resulis Window Build Options
Open during builds ¥ Never ! a @Conunue building after errors
|

y On Errors M Use Predictive Compilation
Close after builds -]

Figure 2-30: On Issues i

For Unsaved Files:

ShOW Ask Before Building ?
the Build
Results
window. (_ Apply / :Cancel; I': 0K)
|

This opens the Build Results window and keeps it open. You might not
like this, but some people find it is easier to find and fix errors this way. I
explain this more in Chapter 8.

6. Click Documentation in the toolbar, as shown in Figure 2-31.

7. Click the Check for and install updates automatically checkbox, and
the press Check and Install Now.

This ensures that the documentation remains up to date (this also
allows you to load and access other documentation).

8. Click OK to close the Xcode Preferences window.

Now click the Build and Run button in the toolbar to build your application
" with the new preferences. You see the results in Figure 2-32.
o‘
You can also set the tab width and other formatting options in Indentation. I
set mine to 2 so that [can display more on a page. The default is 4.

Chapter 2: Creating Your First Program

Figure 2-31:
Accessing
the docu-
mentation.
|

Figure 2-32:
Building
with the

new Xcode

preferences.
|

Xeode Preferences
74 [A L)
y g i § [FE
g¢ lewtEditing Fants & Calars Indentatian File Types sousce Trees sem Dacumentatian
Documentation Sets Quick Help

+ Check for and Install updates automatically

(_Check and nstall Now)

Awaslable Sets
Apple
Whane 05 3.0 Library
Mac 05 X Snow Leopard Core Library
Xeode 3.2 Developer Tools Likrary

[Add Documentation Ser Publisher...

Universal Access:
Newver use font sizes smaller than:

Drag fields vertically to change the
order of appearance in Quick Help

Fietd
Abstract
Declararion
Parameters

Return Value
Sampla Crde
Reluted Docurments
Related AR

ENCHICEECTCY -

Only checked fields anpear in Quick Help.

=)

anNoe [First Program - Build Results

| 10.6 | Debug: '\ -& &
Overview

Build Build and Run Tasks
All Results [By 51 By Issue

‘Latest Results By Step |

o Build Succeeded
No issues

6/26/09 7:40 AM

D ing of “First Prog " ended

Cancel) [OK
3
Q »
Search
Issues Only -
@ Succeaded 2

Getting to Know the Xcode Text Editor

The main tool you use to write code for an iPhone or Mac OS application is
the Xcode Text Editor. The Text Editor has a lot of great features, such as

these:

1 Code Sense: As you type code, you can have the Editor help out by
inserting text that completes the name of whatever Xcode thinks you're

going to enter.

b7

48 Part I: Getting to the Starting Line

Using Code Sense can be really useful, especially if you are like me and
forget exactly what the arguments are for a function. When Code Sense is
active (it is by default), Xcode uses the text you typed, as well as the con-
text within which you typed it, to provide suggestions for completing what
it thinks you’re going to type. You can accept suggestions by pressing Tab
or Return. You may also display a list of completions by pressing Escape.

Try typing NSL in the Editor view and see what happens.

1 Code Folding: With code folding, you can collapse code that you’re not
working on and display only the code that requires your attention. You
do this by clicking in the column to the left of the code you want to hide.

v The Text Editor navigation bar (see Figure 2-22): This navigation bar
contains a number of shortcuts. These are shown in Figure 2-33. I explain
more about them as you use them.

Counterpart button
Included Files menu
Class Hierarchy menu

Breakpoints menu

|
Figure 2-33: Bookmarks menu
The Text |
Editor | =
navigation
bar.
|
¢ Bookmarks menu. You create a bookmark by choosing Edit>Add
to Bookmarks.
¢ Breakpoints menu. Lists the breakpoints in the current file — I
cover breakpoints in Chapter 8.
¢ Class Hierarchy menu. I explain class hierarchies in Chapter 10.
¢ Included Files menu. Lists both the files included by the current
file and the files that include the current file.
¢ Counterpart button. This allows you to switch between header and
implementation files. You discover why this is so useful in Chapter 6.
v Launching a file in a separate window: Double-click the filename in the
Groups & Files list to launch the file in a new window. This enables you
folks with big monitors, or multiple monitors, to look at more than one
file at a time.
A\

If you have any questions about what something does, just position the mouse
pointer above the button, and a tooltip explains it.

Chapter 2: Creating Your First Program

A\\S

If you have never programmed before, some of this information may not make
sense right away. But it makes sense as you do more coding while going
through this book. I suggest you come back to this section and the next two
sections as you go through Chapter 6.

Accessing Documentation

|
Figure 2-34:
Getting
quick help.
|

Like many developers, you may find yourself wanting to dig deeper when it
comes to a particular bit of code. That’s when you really appreciate Xcode’s
Quick Help, header file access, documentation window, Help menu, and Find
tools. With these tools, you can quickly access the documentation for a par-
ticular class, method, or property.

For example, what if you had a burning desire to learn more about NSLog?

Ouick Help

Quick Help is an unobtrusive window that provides the documentation for
a single symbol. It pops up inline, although you can use Quick Help as a
symbol inspector (which stays open) by moving the window after it opens.
You can also customize the display in Documentation preferences in Xcode

preferences.

To get Quick Help for a symbol, double-click the symbol in the Text Editor (in
this case, NSLog; see Figure 2-34).

T
£ 'NsLeg NE
Abstract: Logs an error message to the Apple System Log
facility.

Declaration: vold NSLog |
NSSTring sfarmat,

Sample Code: C.
Dpe

v
Availability: Mac OF X 10.0 and later

The header file for a symbol

Headers are a big deal in code because they’re the place where you find the
class declaration, which includes all of its instance variables and method
declarations — you learn about classes and headers in Chapter 6). To get
the header file for a symbol, press 88 and double-click the symbol in the Text
Editor (for example, see Figure 2-35, where I pressed 8 and then double-
clicked NSLog). This works for you classes as well.

49

50

|
Figure 2-35:
The header
file that
includes
NSLog.
|

Part |: Getting to the Starting Line

ekl

[10.6] Debug | x86.64 ~| | @]

Ovendew Action Search

th| NSOhJCRuntime.h - First Program =

S 8.0 o

Build and Run ~ Tazkx Info

=

Groups & Files File Name: &| A Code o &
v B First Program First Pragram. m 13

e

{ BEE
Source
[First Program_Prefix.p
[First Program.m
Dusumentation
External Framewarks anc
Products
1 First Program

* () Targers

(4 Executables

¥ 24, Find Results - -

[Baokmarks Find

SCM
8 Project Symbuls
I [l implemenrasion Files
» [Interface Builder Fies

< MsObCHUNtime.h: 193 <No selected symbal» = ™G &
& 4%} Q= nslog Dane

ORI Protocol sNsProtocelfroaString(Nsstring snamestr] AVAILIM

ar sMSGet5izeAndALlignment{cor ar stypePtr, [

T vuid NSLugiNSString +format,
T void NSLogvINS sformat, va_list

weol NS_FORMAT_FUMCTION(L,:
args} NS_FORMAT_FI

NSOrders

sult [NSOrderediscending =
.Comparisaniesult;

1, NSOrderedSane,

obizhi (L"

et NSComparisonResult (=Nslompsrator){ic obil, |
tionConcurrent = {1UL <= @8},
HSEnumerationReverse = {1UL << 1], . 4
:] “«r
Debugging of “First Program” ended normally. @succeeded -

Documentation window

The documentation window lets you browse and search items that are part
of the ADC Reference Library as well as any third-party documentation you
have installed.

You access the documentation by pressing 38+Option+double-clicking a
symbol to get access to an API reference that provides information about the
symbol. This enables you to get the documentation about a method to find
out more about it, or the methods and properties in a framework class. In
Figure 2-36, [pressed 38 +Option and double-clicked NSLog.

Using the documentation window, you can browse and search the developer

documentation — the API references, guides, and article collections about
particular tools or technologies — installed on your computer.

Help menu

The Help menu search field also lets you search Xcode documentation as
well as open the documentation window and Quick Help.

You can also right-click on a symbol and get a pop-up menu that gives you simi-
lar options to what you see in the Help menu. This is shown in Figure 2-37.

Chapter 2: Creating Your First Program 5 ’

T Foundation Funcions Reference

|

(ST Prefix Exac | AllDocSens + | All Languages
¥ ar) I tone |
f Hilog

* Table of Conrenss | Jump Ta... El | & Previnus | Nexe s

0 rsies WSRonge. h =
I HsLogAndHandleEveryExceptionhlask Overview
I wsiogicalTest = Funclions by Task
I3 NSLogOtherExceptionMask » Funcrions
1 HslogPagesize Revision History NSLog
3 MsLugPagesize Indax Logs an error message to the Apple System Log facility.
) nSLagToplevelFxeeprioniask void HSLog €
I3 NsLegUncaughiEsceptionMask WSString *format,
¥ Title %
B MsLegicalTest Class Reference Discussion
¥ Full Test i M Simply calls K&l agy, passing it a variable number of
W Mac U5 X Manual Fage For nns_introfn) ArgmEnT,
B NSLugicalTest Class Reference Availability
W NsExeeptisnHandler Class Referenee Avallable in iPhone 05 2.0 and later. .
Wl SpeciatPictureProtucol - [SpeciaiMacrosh See Also (
W MSLogiealTest Class Reference W5Logy
B SpecialPiciurePratocel - [SpecialMacrosm Related Sample Code
W/ Logging Messages AdelMusic
W Testing, Debugging, and Performante (PhaneCoraDatalecipes
W Camrraliing a Programi€™s Respanse 1 Fuee iFhoneUnitTests
I W Formatting Sring Objects PRTextureLoader
. W Cantraliing a Programi€™s Respanse ta Fxcn Taggedlocations
Figure 2-36: | « oususmszroe - orcsnam Declared in
The dO cu- W OTMP - [MoseMultiprocessing/MoreBlueActions.c NS0bjCRuntime. h
' Mac 05 X Manual Page For Sys:Syslogldpmp
mentation B Mac 05 X Manual Page For Sys.:Syslog$.10.00. L
.) Mac 05 X Manusl Fage For Sys:-Syslogs,8.53pm) *
window. : . N5LogPageSize .
| 3

Cut
Copy
|J

Balance

Re-Indent Selection
Shift Selection Right
Shift Selection Left

Refactor...

Mext Completion
Completion List

Select Next Placeholder
Fdit All in Scope

Code Folding »

Message Bubbles »
k Open As b

Open in Separate Editor

Reveal in Finder

Reveal in Group Tree

Add to Bookmarks

Find in Project »

Find Text in Documentation
Jump to Definition
Search in Spotlight

Get Info
|
) Compile
Flgure 2-317: Preprocess

Rig ht-click Show Assembly Code

NSLog. T Make New Mail Note
»# Add to iTunes as a Spoken Track

52

Part |: Getting to the Starting Line

|

Figure 2-38:
Project Find.
|

Find

Xcode can also help you find things in your own project. The submenu
accessed by choosing Edit=>Find provides several options for finding text in
your own project. Choosing Edit>Finde>Find or 38 +F searches in the file in
the Editor window. It opens a Find toolbar to help you navigate.

You can also use Find to go through your whole project by choosing Edit>>
Find=>Find in Project or by pressing 88+Shift+F. [pressed 8 +Shift+F, which
opened the window shown in Figure 2-38. I typed NSLog, and then in the
drop-down menu, I selected In Project.

ANN 1 First Program - Project Find
Find: [NsLag o] ¥ In &8 Open Files B Fm
S Inan ects E
Replace: = |

Display Results in Find Smart Croup

Press Find to see the results shown in Figure 2-39. [selected NSLog
@" ("Hello, World!") ; inthe top pane, and the file it’s in opened in the
bottom pane.

If you've had some programming experience, you also may realize that there
are a lot of options as far as the compiler is concerned. You have a great deal
of control over the warnings the compiler gives you, as well as the option to
turn warnings into errors so they don’t slip by you (it happens to the best of
us). So take a look at Figure 2-40. If you select First Program in the Files &
Groups list, and then click the blue info button on the toolbar you bring up a
window that has project information. If you select the Build tab and scroll all
the way down (as I did in Figure 2-40) to GCC 4.2 - Warnings, you can custom-
ize those warnings to you heart’s content. (You may have to click on the dis-
closure triangle for GCC 4.2 — Warnings.) You can even tell Xcode to always
treat warnings as errors by checking the Treat Warnings as Errors checkbox.
The configuration drop-down menu allows you to do this for Debug, Release,
or All Configurations.

|
Figure 2-39:
Finding
NSLog in
your project.
|

|
Figure 2-40:
Build con-
figuration.
|

Chapter 2: Creating Your First Program

- Xaka) .m| First Program.m: First Program - Project Find
Find: |Nstag = [P])
Replace: | = restua W ((Repiace)
] Display Results in Find Smart Group | Containg W) ®ignore case (Options...)
 Fist Prograamm

4 | » [@First Propamm:g 3 0 maing ¥ : .= ic.[e g
1 B
1| | #import «<FoundationsFoundation.hs
int main « Const char = argel]) {
NEAuL 1= pool = |[NSAutureleasePoul allec] imit];
[peal drain]}
tuen
i LR
Found "N5Log™ - | occurmence &
ane Project “First Program” Into
\ General | Build | Counfigurations G
[Active (Debug) W8 (Q Search in Build Setting
Show: | All Settings =
' Seming [value

¥YGCC 4.2 - warnings
Check Switch Statements]
Effective C++ Violations
Four Character Literals
Hidden Local Variables
Implicit Conversion to 32 Bit Type
Incomplete Ohjective-C Protorols
Inhibit All Warnings
Initializer Nut Fully Bracketed
Mismatched Heturn Type
Missing Braces and Parentheses
Missing Fields in Structure Initializers
Missing Function Prototypes
Missing Newline At End Of File g
Multiple Definition Types for Selector]
Nonvirtual Destructor
Other Warning Flags
Overioaded Virtual Funcrions
Pedantic Warnings
Pointer 5ign Comparisan
Prototype Conversion
Sign Comparison
Strict Selector Matching
Trear Missing Function Promtypes as Freors
Treat Nonconformant Code Errors as War...,
Treat Warnings as Errors
Typecheck Calls tn printf/scanf
Undeclared Selector
Uninitialized Automatic Variables
Unknown Pragma
Unused Functions
Unused Labels
Unused Parameters

DDCROCODOOmOn

Unused Values
Unused Variables

2
‘

Based On: No

54

Part |: Getting to the Starting Line

On the CD

<MBER
S

The CD that accompanies this book has a folder for each chapter starting
with Chapter 4. Each of these folders has another folder that contains the
Xcode project that provides the starting point for each chapter — labeled
(cleverly enough) Chapter XX Start Here.

That same chapter folder has a folder that contains the final version of the
project for each chapter labeled Example XX (except for Chapters 4 and 8§,
where a final version isn’t applicable) or, in those chapters with more than
one exercise, you see the exercises are labeled Example XX A, Example XX B,
and so on. | explain what is in each of the folders in the appropriate chapter.

If you want to work with anything on the CD, you have to drag it onto your
desktop (or into any other folder) to be able to build the project.

Working with the Examples

My experience both personally and in teaching is that the more you type —
that is, the more code you actually write — the more you learn, and the faster
you learn it.

You work on a single application starting in Chapter 5 that finally ends up

as an application for both the iPhone and Max OS X. This application illus-
trates all of the things you need to know to program in Objective-C. I help
you build it step by step; much like a developer creates a “real” application.
At times, you enter some code only to delete it later. Go with the flow. There
is a method behind all of this, one that has been developed to get you going
as quickly as possible and know as much as you need to, without being over-
whelmed. More important, you see not only how to do something, but also
why you should do it that way.

The best way to work through this book is to complete Chapter 4, and then
follow along with me and add to that project as you go from chapter to chap-
ter (and create the new project along the way). If you are not the linear sort,
or you want a fresh, up-to-date copy of the project, you can always use the
Start Here copy on the CD for each chapter. I do think adding to what you
have already done is better and more in tune with how you (and other devel-
opers) really work — often two steps forward and a quarter step back.

Finally, experiment as much as you can. Don’t always take my word for it;
test things out, see what happens when you change something, and play with
it until you really understand how something works. That’s how I learned
Objective-C, and I'm sure it will work for you as well.

Chapter 3
The Object in Objective-C

In This Chapter

Recognizing the importance of modules

Getting a handle on objects

Seeing encapsulation and polymorphism in action
Refining the idea of “reusable code”

n Chapter 2, you get your first taste of programming (all right, enough

with the food), and over the next 15 chapters, I show you everything you
need to know to write computer programs. While you may think that’s pretty
cool, you shouldn’t be satisfied with that alone. Your goal shouldn’t be to
simply be able to write programs using Objective-C; your goal should be to
write good programs using Objective-C.

So what makes a good program? Well, a blinding flash of the obvious answer
is one that meets the needs of the user. While that is true, it is only part of the
answer. What also makes a program good is how easy it is to make changes
toit.

[want to use the example I give you in Chapter 1 — a computer program that
tracks my expense when I travel. It keeps track of my budget and converts
foreign currency charges into dollars.

As I develop this program, [am going to have to make changes to it for three
reasons.

+~ I'll want to add new functionality. For example, starting out, the pro-
gram will work with cash and credit card transactions. I'll get that up
and running, and then eventually I'll want to be able to add ATM transac-
tions, and also track my hotel and plane reservations. I will want to be
able to do this without having to completely rewrite the program. In fact,
I would like to be able to add a new feature without changing anything at
all in the existing program and have that feature transparently incorpo-
rated into the program. The term for this is extensible, and that means
adding functionality to an existing program or module.

56 Part I: Getting to the Starting Line

1+~ I'll want to improve or change functionality. To start with I'm willing to
enter the exchange rate by hand. Eventually, I'll want the program to go
out and find the current exchange rate for me. Again, [want to be able
to do this without having to make any changes in the program except to
code the new functionality. The term for this is enhanceable. And that
means changing the way existing functionality works.

v+ I'll want to fix bugs. Hard to believe, but there will be bugs. I want to be
able to fix them, without breaking something else.

One of the problems with changing things is that often a little change in one
part of your program can have disastrous impact on the rest of it. Most of us
have had a similar experience when upgrading a program or the OS version. |
remember a fellow programmer once lamenting, “but I only changed one line
of code,” after making changes to a program and then putting it into produc-
tion (without taking it through the entire testing process) — only to have it
take down an entire mainframe complex.

To minimize the side effects of “only changing one line of code” requires
that you divide your programs into modules so that a change you make in
one module won’t have an impact on the rest of your code. I refer to this as
transparency.

A module is simply a self-contained, or independent, unit that can be com-
bined with other units to get the job done. Modules are the solution to a
rather knotty problem — even a simple program can run into hundreds of
lines of instructions, and you need a way to break them into parts to make
them understandable. But more importantly, you want to use modules
because they make programs easier to modify, which, as you saw, you invari-
ably need to do.

Not All Modules Are Created Equal

The idea of dividing your program into modules is as old as programming
itself, and you know how old that is. The programming style or paradigm |
mention in Chapter 1 dictates the way you do that.

You need to be concerned with two paradigms at this point, although with
more experience you'll probably explore others.

Functions (or things like that), and groups of functions, have historically
been the basis of modularization. This way of dividing things up into modules
is used in the programming style or paradigm known as procedural program-
ming. Going back to the example I started with — a program that helped me

Chapter 3: The Object in Objective-C

track my expenses — you will find functions like spend dollars or charge for-
eign currency, which will operate on fransaction and budget data.

In the last few years, however, the procedural paradigm has pretty much been
supplanted, at least for commercial applications, by object-oriented program-
ming. In Objective-C (and other object-oriented languages) objects (and as you
will see, their corresponding classes) are the way a program is divided up. In
an object-oriented program, you will find transaction objects and budget objects.

For years, the arguments raged about which was the better way, procedural
or object oriented, with each side pointing out the limitations in the other’s
approach. This is not the place to relive it. It will serve no value because a)
for all practical purposes the debate has been settled in favor of object-ori-
ented programming for commercial applications (except for a few fanatics),
and b) because you are learning Objective-C, which is an object-oriented lan-
guage. You experience for yourself the differences in Chapters 5 and 6.

But to give you some perspective, you can think of objects in an object-ori-
ented program as working as a team necessary to reach a goal. Functions in
a procedural program are more like the command and control structure of a
large corporation (think GM) or the army. Which is more flexible?

So let’s get on with understanding objects.

Understanding How Objects Behave

An object-oriented program consists of a network of interconnected objects,
essentially modules that call upon each other to solve a part of the puzzle. The
objects work like a team. Each object has a specific role to play in the overall
design of the program and is able to communicate with other objects. Objects
communicate requests to other objects to do something using messages.

Object-oriented programmers (including yours truly) think about objects as
actors and talk about them that way. Objects have responsibilities. You ask
them to do things, they decide what to do, and they behave in a certain way.
You do this even with objects like sandwiches. You could, for example, tell a
sandwich in an object-oriented program to go cut itself in half (ouch!), or tell
a shape to draw itself.

It’s this resemblance to real things that gives objects much of their power and
appeal. You can use them not only to represent things in the real world — a
person, an airplane reservation, a credit card transaction — but also to repre-
sent things in a computer, such as a window, button, or slider.

57

58

Part I: Getting to the Starting Line

Inventing Objective-C

Brad Cox (a computer scientist among other
things) invented Objective-C in the early 1980s.
He took SmallTalk — one of the favorite object-
oriented programming languages at the time —
and used it as a basis to add extensions to the
(non—object-oriented) standard ANSI C lan-
guage to make it object-oriented.

ANSI Cis the standard published by the Ameri-
can National Standards Institute (ANSI) for the
C programming language. Having a standard

means that there are no if, ands, or buts about
what an instruction does — and it does the
same thing no matter what computer, operating
system, or compiler you are using.

Objective-C gotits big break when itwas chosen
for the NextSTEP development environment,
which eventually became the development
system you use today on the Mac to develop
applications for the Mac and iPhone.

But what gives object-oriented programming its power is that the way objects

are defined and the way they interact with each other make it relatively easy

to accomplish the goals of extensibility and enhanceability — that is, achieve

the transparency that is the hallmark of a good program. This is accom-
plished using two features in object-oriented programming languages.

v Encapsulation is about celebrating your object’s ignorance about
how things work in the objects they use. My wife has no idea how a
computer works, but can effectively browse the Internet, create docu-
ments, and receive and send e-mail. Most people who can successfully
drive cars have no idea of how the engine works. I'll refer to this as the
[-Don’t-Care-And-Please-Don’t-Tell-Me approach.

Encapsulation makes it possible for me to change how an object car-
ries out its responsibilities or behaves (enhanceability) and to add new
responsibilities to an object (extensibility) without having to disturb
the existing code that uses those objects. One of the primary things
that objects encapsulate is their data, and while this probably evokes a
big yawn now, you will realize why this is important in Chapter 5. It also
makes it possible, as you will see in Chapter 11, to even transparently

add new objects.

v Polymorphism is about cultivating more of the same. When I get

dressed in the morning, I throw on a pair of jeans and a black T-shirt. For

me at least, one black T-shirt is as good as another, whether it comes
from Niemen Marcus or Costco. Your objects shouldn’t have to care
about how one object is different from another as long as the object
does what the requesting object needs it to do. I'll refer to this as the

More-Of-The-Same approach.

This feature in object-oriented languages makes it possible to add new
objects of the same type, and have your program handle them without
making any changes to the code that uses them. For example, I can

Chapter 3: The Object in Objective-C

create a program that processes cash and credit card transactions, and
then sometime later I can add an ATM transaction and have the pro-
gram process that new kind of transaction without having to make any
changes to the processing logic.

With respect to all the new ideas I have thrown at you, this is usually the
hardest concept for most people to grasp right away (the name polymor-
phism doesn’t help), although everyone gets it after seeing it in action.

I give you a good example later in this chapter and cover it extensively
in Chapter 11. I promise you that once you use it in your program, you’ll
wonder why you thought it was so hard in the first place.

Seeing the Concepts in Action

Reading about concepts can keep me entertained for only a short time, a very
short time, before [need some concrete examples. I want to tell you a story
about how encapsulation and polymorphism became real for me.

Encapsulation

I lived (briefly) in Minneapolis, Minnesota, where it can be not just cold, but
really cold. During that time, I invented a device (in my head at least) called
the uPhone — which was a handheld device (it looked something like Figure
3-1) that enabled me to start my car and turn on the heater before I left the
house in the morning.

1959 Cadillac Coupe deVille
uPhone Component
Interface Interface
>
> Start Start Ignition Engine
switch
N o -l
— Heat Heat [ty 5
Figure 3-1: Car heater Car heater
The uPhone. (O) control
|

60

Part I: Getting to the Starting Line

|
Figure 3-2:
The
enhance-
able

uPhone.
|

[happily used my uPhone until one day my mechanic found a new heater
for me that worked much more quickly and used a lot less gas. [was a bit
concerned, but he told me not to worry; it was plug-compatible with my

old heater — it had the same controls; all he had to do was just plug it in.
Surprisingly (to me not to him), when he installed it, my uPhone application
still worked in the same way. You can see that in Figure 3-2.

1959 Cadillac Coupe deVille
uPhone Component
Interface Interface
>
Start Start Ignition
switch
B o
Heat Heat |
Car heater New improved
(O] control car heater

The reason that worked, as you can see in Figure 3-2, was because my appli-
cation (including the uPhone, uPhone Interface, and Component Interface)
knew nothing about heaters. All the application really cared about was the
heater switch (car heater control). As long as that stayed the same, every-
thing worked. Had I not used the uPhone and Component Interfaces, but had
instead modified the heater so the uPhone actually interacted with the heater
components, | would have had a more difficult job on my hands.

To make your programs enhanceable, you want to depend on the imple-
mentation details as little as possible. As | mentioned previously, the pro-
gramming term for this [-Don’t-Care-And-Please-Don’t-Tell-Me approach is
encapsulation.

What you are doing is hiding how things are being done from what is being
done. In a program, that means hiding the internal mechanisms and data struc-
tures of a software component behind a defined interface in such a way that
users of the component (other pieces of software) only need to know what the
component does and do not have to make themselves dependent on the details
of how the component does what it promises to do. This means the following:

Chapter 3: The Object in Objective-C 6 ’

|
Figure 3-3:
The extensi-
ble uPhone.
|

v The internal mechanisms of a module can be improved without having
to make any changes in any of the modules that use it.

v The component is protected from user meddling (like me trying to
rewire a heater).

v+ Things are less complex because the interdependencies between mod-
ules have been reduced as much as possible.

This is the way modules, or objects, should work in an object-oriented pro-
gram. You want the objects to limit their knowledge of other objects to what
those objects can do — like turn on and off. That way, if you change some-
thing, you don’t have to go digging through a zillion lines of code to figure out
if there is any code in your program that is depending on something being
done a particular way and then changing that dependent code to work with
the new way it will be done. Ignorance is bliss, for the programmer that is.

Polymorphism

After my device worked so well for me, my wife decided she wanted one, too.
The problem is she had a different kind of car with a different heater control,
and my old component interface wouldn’t work. Well, this time I did have to
make some changes, but all I had to do was change the Component Interface
to the heater. I kept the uPhone Interface the same, which also meant no
changes to the uPhone, as shown in Figure 3-3.

1958 Corvette

uPhone Component
Interface Interface
_) W
Start Start Ignition

switch

Heat Heat

Car heater Wife's
(O] control car heater

62

Part I: Getting to the Starting Line

What you are looking for is a situation in which the requestor doesn’t even
care who receives the message, as long as it can get what it wants.

So the uPhone doesn’t care whether it is sending the heat message to a 1959
Cadillac, or a 1958 corvette, or even an SSC Ultimate Aero TT, as long as it can
respond to the message.

This capability of different objects to respond, each in its own way, to identi-
cal messages is called polymorphism.

While encapsulation allows you to ignore how things are done, polymor-
phism allows you to escape the specific details of differences between
objects that do the same thing in different ways. In the real world, if you can
drive a Chevy, you can drive a Caddy or any other car, as long as the controls
are more or less the same. It is not that a 1959 Cadillac and a 1958 Corvette
are the same; if they were what would be the point? What is important is that
they are different, but you can go about using them in the same way.

[used to travel a lot and rent lots of cars. Can you image if [had to spend two
hours being trained every time I rented a different car? In a program, different
objects might perform the same methods in different ways — if [spend cash,
a cash transaction object will subtract that amount from my budget. If [use
my credit card, a credit card transaction will first have to convert the amount
in foreign currency that I charged to dollars and then subtract it from the
budget.

Reusable Code

When people talk about object-oriented programming, they tend to talk about
two things. The first is all that cool encapsulation and polymorphism stuff,
which makes it easy to modify programs. Then they talk about reuse, and
that you can create reusable objects that save time and money. Years ago
there was always talk about object stores where you could buy objects that
would do what you needed them to do.

Will this book teach you how to write reusable code? Well, it depends on

what you mean by reusable. If you really think about it, when you enhance
or extend your program, what you are doing is reusing the existing code to
create essentially a “new” program. And in that respect, the answer is yes.

As you will see, the best models for reusability are found in the frameworks
you’ll use to develop applications for the iPhone and Mac. You reuse the
frameworks by adding your own application functionality to the framework

Chapter 3: The Object in Objective-C 63

that already includes the code that can display windows and controls and
menus — the whole kit and caboodle of the user interface, and then some.

I'll explain some of the things that the framework designers did to make reus-
ing their frameworks as easy as it is. You'll find that when you use those same
principles and techniques in your programs, you will have taken a giant step
forward in enabling the kind of reusability you need to make your programs
enhanceable and extensible.

64 Part I: Getting to the Starting Line

Partll
Speaking the
Language of
Objective-C

The 5th Wave By Rich Tennant
CRCHTENANT—

In this part . . .

N ow that you have the tools downloaded, it’s time to
start programming. I help you do that in this part

by first covering most of the Objective-C instruction set,
which you’ll need to get started. Think of the instruction
set as the words that Objective-C understands, along with
some rules about how you are allowed to combine them
into sentences.

[also show you the language features that will enable you
to create industrial-strength applications. This is what will
make your application suitable for commercial distribu-
tion. I also get you up to speed using some prepackaged
functionality (frameworks) that help make your program-
ming tasks easier.

You get the rundown on the vocabulary of a new language,
but as you will find out, it’s a lot easier than learning to
speak Sanskrit, for example.

Chapter 4

Language and
Programming Basics

In This Chapter

Getting a handle on statements

Working with variables

Performing actions with operators

Knowing how to make logical decisions in your code
Using pointers to access data

Getting the hang of using constants

Being aware of the Objective-C reserved words

A s I mention in Chapter 3, Objective-C is a set of extensions to standard
ANSI C. This means that at some point (that is, this chapter), you'll
have to sit down and learn the basics of the C instruction set, along with
some less than inspiring examples and detailed explanations on the basics
of the language — kind of like learning your alphabet. | know all this can be
tedious and excruciatingly boring, although when you’re just starting out
there’s no other way (we all have to pay our dues at some point). But once
you are done with this chapter, you will switch to learning Objective-C by
developing a “real world” application, which I promise is (for the most part)
much more interesting. So hang in there.

It All Comes Down to Your Statements

At the end of the day, it’s all about the instructions you give the computer.
Those instructions are called statements. You can easily recognize a state-
ment because it ends with a semicolon, as shown here:

NSLog (@"This is a statement") ;

68 Part ll: Speaking the Language of Objective-C

There are a number of different kinds of statements. In this chapter, [show
you two of them:

v Declarations of a variable allow space for data. They look something like
this:

int aNumber;

Declarations are used to allocate areas in memory where you can store
data.

v Instructions, or “do this, please.” They usually look like the following:

a= b + c;
NSLog (@"Yo Stella") ;

Instructions can consist of the following:

e Operators, which are symbols that represent operations. For exam-
ple the +, shown in the preceding example, is an arithmetic opera-
tion. I cover operators in this chapter.

¢ Functions, which are groups of statements. NSLog and printf and
main are examples of a function. I cover functions in Chapter 5.

e Objects, which group together methods (similar to a function) and
data. I cover objects in Chapter 6.

There are also other kinds of statements. One kind you’ll be using describes
how data is structured (see Chapter 5 for more on data structures). Another
kind of statement has to do with the language itself, such as typedef, which
I cover in Chapter 5. There are also control statements, such as the if state-
ment, which [will start explaining later in this chapter in the section “Making
Logical Decisions in Your Code.” I'll finish that explanation, along with loops,
in Chapter 9.

Your program will also have other lines of code. These lines will consist of
things like compiler directives such as

@implementation
as well as preprocessor directives (the preprocessor is used by the compiler
before compilation to expand macros, which are brief abbreviations for
longer constructs) such as

#include
[will explain compiler and preprocessor directives as you need to use them.
Computer languages are really like all other languages in that they have
syntax and semantics. Since the compiler will be happy to give you syntax

errors, and some things you will read will use the term semantics, I'll explain
what each means.

Chapter 4: Language and Programming Basics 69

Syntax

Syntax refers to the ways symbols may be combined to create well-formed
statements in a given language. Think of all the grammar you had to learn in
school, and you have a good idea of what syntax is. Syntax errors are what
the compiler gives you when it can’t understand the code you have written.

Semantics

But even though your code may be syntactically (grammatically) correct, it
still may be meaningless. For example, Noam Chomsky’s

Colorless green ideas sleep furiously

is syntactically correct but has no meaning (at least to most of us). Semantics
is about meaning, and it describes the behavior of a computer when execut-
ing a program in the language. It describes what you get as the result of an
operation:

a=>b + c;

For example,a = b + c means that the value of b is added to the value of c,
without modifying either of their values, and the result is assigned to a. The
previous value for a is gone and replaced with the new value. (I bet you never
thought high school algebra would come in this handy.)

Semantics also describes the results of a series of operations or statements as
well. For example, a function named computezimbabweanvalue (I explain
what functions are in Chapter 5) computes the number of Zimbabwean dollars
you can get for one U.S. dollar at the current exchange rate.

You have semantic errors when the program doesn’t do what you expect it to do.

Understanding How Variables Work

The memory in a computer is organized in bytes. A byte is the minimum
amount of memory that you can address. A byte can store a relatively small
amount of data — one single character or a small integer (generally an inte-
ger between 0 and 255). But the computer actually groups bytes together to
create and manipulate more complex data, such as integers and floating point
numbers.

Variables are nothing more than convenient names to refer to a specific piece
of data, such as a number, that is stored in memory.

70 Part ll: Speaking the Language of Objective-C

In order to use a variable in Objective-C, you must first declare it by specifying
which data type you want it to be and give it a name — called an identifier —
and, optionally, an initial value. Here is an Objective-C statement (that is, a line
of code) where the type of the variable is specified, along with a name and an
initial value:

int anInteger = 42;

Data types

When you ask for some memory to store data, the compiler has to know
what kind of data you want to store. The compiler needs to know that in
order to determine how much memory you need and how that variable can
be used (how to do math with it is one example). The kind of data you are
requesting memory for is called a data type, and this concept will become
important because not only can you use what are known as built-in types,
which I explain in this section, but you can also create your own types, which
[explain in Chapters 5 and 6.

While the minimum amount of memory that your computer can manage is
one byte, the data types you will be working with will range from that one
byte up to eight bytes (or more for your own types or some of the types
defined in the frameworks you will be using).

Table 4-1 shows the basic data types.

Table 4-1 Basic Data Types

Type What It Is Example Size

Char A character Norg 1 byte

Int An integer — a whole 42, -42,1234 4 bytes
number

Float Single precision float- 1.99999 4 bytes
ing point number

Double Double precision 1.9999999999 8 bytes

floating point number

Figure 4-1 illustrates an example of the amount of memory allocated to a
char and an int, respectively.

Chapter 4: Language and Programming Basics 7 ’

|
Figure4-1: | | 31 | Bl [32 | W [33 | B [34 | B [35 | W | 36 | [l [37 | |iY | 38 |
char and int.
|
() L J

char int

There is also a number of variations on the int, which are shown in Table 4-2.

Table 4-2 Additional Types Based on int

Type What It Is Example Size
Short A shortinteger 42,-42 1234 2 bytes
Long A double short 42,-42,1234 4 bytes
long long A double long 1.99999 8 bytes

There are also types like BOOL, void, and id, which I explain as you need to
use them.

With the exception of both the f1oat and the double, each of the types can
be signed or unsigned (this has to do with binary arithmetic and is beyond

the scope of this book). If you don’t specify signed or unsigned, the compiler
will assume signed.

int is often the default if you don’t specify a type. For example, you can
use signed and unsigned to mean a signed int and unsigned int,
respectively.
Note that

signed anInteger = 42;
is the same as

int anInteger = 42;

If it’s a kind of int, the largest value a data type can hold depends on its size
and whether it is signed or unsigned, as shown in Table 4-3.

72 Part ll: Speaking the Language of Objective-C

WMBER
s&
&

Table 4-3 Signed and Unsigned Data Types

Size Range

1 byte signed: -128to 127
unsigned:0to 255

2 bytes signed: -32768 to 32767
unsigned:0to 65535

4 bytes signed: -21474383648 to 2147483647
unsigned: 0to 4294967295

8 bytes signed—9,223,372,036,854,775,808 to
+9,223,372,036,854,775,807

unsigned 01018,446,744,073,709,551,615

For floating point numbers, such as f1oat or double, you should think
instead in terms of significant digits. For a £1oat, the number of significant
digits is 7 or 8, and for a double, the number of significant digits is 15 or 16.

Identifier

As I'said, when you declare a variable in Objective-C, not only do you specify
the data type, but you also give it a name — called an identifier — that you
can use to refer to the variable. Consider the declaration I started with:

int anInteger = 42;

In this case, the name or identifier is anInteger. I can then use anInteger
whenever [want to refer to the variable.

You do have to follow some rules when it comes to the identifier.

v Use only letters from the alphabet. For your purposes, even though
there are other choices, name your identifiers using one or more of the
26 letters of the alphabet.

+* Use uppercase to help readability. Start by using lowercase, but, as |
did with anInteger, if it helps readability and describes the variable
better, use uppercase inside the name. Be sure to give your variables a
name that describes them so that your code is more readable.

Chapter 4: Language and Programming Basics 73

v Avoid using words used by Apple or Objective-C. Also be aware that
names cannot match any of the words used by Apple (in the frame-
works) or Objective-C. I include a list of reserved words at the end of
this chapter, but don’t worry, if you make a mistake, the compiler will let
you know. Naming is generally not one of the major challenges in pro-
gramming (easy for me to say), and after a while, you get the hang of it.

1 Pay attention to upper- and lowercase. And, oh yes, this is very impor-
tant: The Objective-C language is a case-sensitive language. That means
an identifier written in uppercase letters is not equivalent to another one
with the same name but written in lowercase letters. Thus, for example,
the Neal variable is not the same as the NEAL variable or the neal vari-
able. These are three different variable identifiers.

Initialization

In a declaration, not only do you specify a type and a name, but you also may
specify an initial value — as in the declaration

int anInteger = 42;

Take a look at the equal sign; it’s not what you may think. Most people learn
the equal sign by, oh, about first grade, but the equal sign here is a little more
than that. In fact, the equal sign is an operator, more specifically the assign-
ment operator. It is an instruction that tells the computer to set that portion
of memory that am calling anInteger to the value of 42.

Specifying an initial value is called initialization, and it’s not required. For
example,

int anInteger;
works just fine. Memory will be reserved, but you can’t count on what the
value will be. Of course, sometimes you don’t care, such as when you are
going to use that variable to hold the result of a subsequent operation.
I could also declare two variables by doing the following:

int anIntegerl, anInteger2;
In this case, I reserved space for two ints: anIntegerl, and anInteger?.
Finally, note the semicolon at the end of the statement. A semicolon is
required at the end of every statement. Since an instruction can span multiple

lines, the semicolon is the way to tell the compiler that you are done with
your instruction.

74

Part ll: Speaking the Language of Objective-C

|
Figure 4-2:
The int
known
asan
Integer.
|

To summarize, the declaration 1 have been explaining is a request for memory
to hold a data type of int that I can refer to using the name anInteger,
which has an initial value of 42, as illustrated in Figure 4-2. The memory loca-
tion 32 is for illustrative purposes only. But [will return and use this example
again when [discuss pointers later in this chapter in the section “Accessing

Data with Pointers.”
(4)

aninteger

Giving Instructions with Operators

Operators perform operations on (do things to) data, which enables you to
actually do something with those pesky variables. As I explain in Chapter 1,
operators are one of the basic building blocks that you’ll work with.

In this chapter, I cover the operators you’ll need to use. Quite a few opera-
tors are available to you, but if you made it through grammar school, most of
them will be familiar.

Really learning how operators (and
everything else) work in Objective-C

Before you start coding, [want to help you understand the best way to go
through this chapter and the rest of the book. Entering the code is not meant
to be a typing exercise. As you enter each line, you should be thinking about
what will happen as a result of that line of code being executed. Then after
you build the project, you should look to see if you were correct in your
expectation. If you were, great; then continue. If not, you should reread the
explanation until you are sure you understand it. In most of this chapter
(with a few exceptions), this issue won’t be a problem. There will be times,
however, when the results of executing your code are not so obvious, or you
may not be sure you completely understood what you just read. | encourage
you (I'll actually do a bit of nagging as well) to write code that uses what [am
explaining, even if I do not have you do it in a formal exercise, to make sure
you understand it.

Chapter 4: Language and Programming Basics

<WME CD

WMBER
@&
&

In fact, one of the themes running through this book is code, code, code. My
experience both personally and in teaching is that the more you type (that
is, the more code you actually write), the more you learn and the faster you
learn it. (I know I have said this before, but just in case you thought [wasn’t
serious about it, I'll say it again.)

Using arithmetic operators

Using the lowly (or lovely, depending on your perspective) int, let’s look at
the various operations you can perform.

In Chapter 2, you created a project called My First Program. You can continue
to use that project in this chapter, or you can copy it (onto your desktop, for
example) from the CD that accompanies this book. You can find it in the
Chapter 4 Start Here folder in the Chapter 4 folder.

To use that project to start writing code, follow these steps:

1. Go to the Xcode Project Window and in the Groups & Files pane, click
the triangle next to Source to expand the folder.

2. From the Source folder, select My First Program.m — the main
function.

The contents of the file appear in the main display pane of the Xcode
editor.

3. Look for the following lines of code:

#import <Foundation/Foundation.h>

int main (int argc, const char * argv[]) {
NSAutoreleasePool * pool = [[NSAutoreleasePool
alloc] init];

// insert code here...
NSLog (@"Hello, World!") ;
[pool drain];

return 0;

}

In some cases in the book, you’ll see statements on two lines. [have to
do that in order to fit the code on the page; you should use only one line
where you can. This is especially important for strings, which will give
you an error if they are on two lines, unless you tell the compiler that’s
what you want to do. I'll show you a way to have a single string span
multiple lines in the section “Using Constants.”

75

76 Part ll: Speaking the Language of Objective-C

4. Delete everything with a strikethrough (you won’t need the memory
management features).

#import <Foundation/Foundation.h>
int main (int argc, const char * argv[]) {

—NSAutoreteasePool—*pool = {NSAutoreteasePool—

17 1 . L |
arrocC IITIrcl;

. . | 1

LI TL U COUT 1ITL T ..
r] 3 ol
[POOTL ararirj;
return O;

Your editor window should look like Figure 4-3.

[will be using this format for the balance of this chapter. So when I tell
you to start with an empty main function, this is what [mean.

ann m First Program.m - First Program

[10.6 | Debug | x86 64 ~| [@] |- | ‘_E\ - B Q- 51
Overview Action Build and Run Tacks Info Search
Groups & Files File Hame: & A Code o A
v B First Bragram B B First Programom +
¥ |Source] First Program Prefix,pch

u| First Program_Prefix.p

B First Program m

Documentation

External Framewarks anc

Products

ae

(@) Targets
o Execurables

¥4 Find Results .

+ (9] Bughkmarks < = | BFintfrogramms 2 maing * A= iC. e

] purt =Fou Fuul ol
B Project Symbols

+ (3 Imlementasion Fikes
i [@ll trrerface Builder Files

nt main (int arge, t char « argell} {

— T
Figure 4-3:
The empty

main
function.
|

5. Type the following lines of code after the first brace, and before the
return 0; statement:
int a;
int b;
int c;

Chapter 4: Language and Programming Basics 77

|
Figure 4-4:
You coded
your first
program.
|

NSLog (@" a + b = %i", c);

NSLog (@" a + b = %i",a + b);
NSLog (@" a still = %i", a);
NSLog (@" b still = %i", Db);

When you’re done typing, your code should look exactly like Figure 4-4.

Remember, [said that variables should be descriptive, except some-
times, and this is one of those times. You'll also use single letter vari-
ables like i and n in things like loops (I cover loops in Chapter 9).

Yokl m First Program.m - First Program

(1061 0ebualne | [Br] [=] = B 0 -
Info

Overview Action Bulld and Run Tashs Search

Graups & Files File Name: &) A Code [] A @
v [First Program B B Fiest Programom 7K L]
¥ |Source i First Program_Prelix.peh
«| First Program_Prefix.
B First Program.m
Dutumentation
¥ | External Frameworks ant
& [Products
(@ Targets
¥ 4 Execurables
v (4 Find Results
Ll Bookmarks = = @First Programm:18 3 0 main0 £
soM Fimpart <Foundation /Foundation, k
B Project Symibols
b [Imalementation Files
& [l taterface Builder Files

nt main {int arge, const char & argwl]] {

int a;
int b:
nt g

=2
aashi

As I said, the point of these exercises is to make sure that you understand
what I am explaining. As you enter the code, you should be thinking about
what the results of each line of code will be, and then build the program and
use the output to confirm your understanding. To do that, [want to review

what you just did:

1. You declared three variables, a, b, and ¢ (they are not initialized, so you
don’t know what their value is).

int a;
int b;
int c;
2. You assigned values to a and b.

a = 1;
o = 2¢

/8

Part ll: Speaking the Language of Objective-C

WMBER
‘x&
&

As I mentioned earlier, assignment is an operator that tells the computer
to set the area of memory represented by a to 1 and the area repre-
sented by b to 2.

. You added a and b and then assigned (placed) the result in c.

c=a+b;

In doing that, you just used another arithmetic operator, the addition
operator (the assignment operator was the first one). There are five
arithmetic operators, as shown in the following list:

¢ +: Addition

e —: Subtraction

e *: Multiplication
¢ /: Division

* %: Modulo

In a programming language, a + b is an expression. An expression is

a combination of variables, operators (and functions and messages,
which I explain in Chapters 5 and 6, respectively) that can have a value.
Computing that value is called evaluating the expression.

Although perhaps not obvious, a number like 42 or a variable like a are
also considered expressions because both have a value.

In the statement c=a+b, there are no spaces between the c and the +,
or any of the other identifiers or operators. Generally, spaces are not
needed if the compiler can tell what you mean (although feel free to use
them for readability, as I will). In this case, the compiler can recognize
the operators, so spaces are not necessary.

. You displayed the results.

NSLog (@" a + b = %i", c¢);

NSLog enables you to display in the Debugger Console (see Chapter 2
for more on displaying in the Debugger Console).

In the NSString (again, refer to Chapter 2 if this is unfamiliar), you use
a % character as a placeholder for a value, and the character that follows
it indicates the kind of value it is. This is called a string format specifier.
So, in the expression

(@" a + b = %i", c)

%1 is a string format specifier, and it says replace me with the value of
what you see after the closing ", in this case ¢, and display ¢ as an inte-
ger (1). As you can see, you follow the string you want to display with a
comma, and then a list of what you want replaced in the same order as
they are specified in the string.

Chapter 4: Language and Programming Basics

The string format specifiers supported are the format specifiers defined
for the ANSI C function printf () plus %@ for any object. Here are some
of the string format specifiers:

e 31: Signed 32-bit integer (int)
¢ 3u: Unsigned 32-bit integer (unsigned int)
¢ 3f: 64-bit floating-point number (double)

You can find all the string format specifiers by entering string format
specifiers in the Search ADC field on the Mac or iPhone Dev Center
Web sites, and then selecting the document String Programming Guide
for Cocoa: String Format Specifiers.

5. You did a computation in the NSLog function and displayed the results.
NSLog (@" a + b = %i",a + b);

Even though you did a computation in the NSLog function, a + b, the
value of the variables used as operands or arguments (such as a and
b) did not change when using the arithmetic operators you have been
using. To ensure you understood that, you displayed a and b to make
sure they were both still the same.

in b g

NSLog (@" a still = , a);
= %i", b);

NSLog (@" b still %
This is a good example of what you should do to make sure you under-
stand how something works — display the result of a line of code. In this
case, you want to make sure you understand what does happen to the
variables a and b after the expression (@" a + b = %i",a + b) is
evaluated.

There are, however, as you will see shortly, operators that do change
the value of their operands, and I will be sure to point them out when
you get to them.

With that review finished, you are ready to build and run the application. To
do that, just select the Build and Run button in the Project Window toolbar.
The status bar in the Project Window tells you all about build progress, build
errors such as compiler errors, or warnings — and (oh, yeah) whether the
build was successful.

Your results should look like Figure 4-5. If you changed your Xcode prefer-
ences in Chapter 2, the Debugger Console will open automatically. Otherwise,
you will have to open it yourself by selecting Run=>Console or pressing
Shift+38+R.

Now that you have gone through coding your first real program, [want to
show you some things about the other arithmetic operators.

79

80 Part ll: Speaking the Language of Objective-C

L N] ™ First Program - Debugger Console =
-
| 10.6 | Debug | x86_64 | [=] “‘5- ® & W r!
Overview Breakpois Build and Run Tasks Restart Pausc Clear Log

[Sessiun slarled al 2009-06-27 17:45:21 -8768.]

GNU gdb G.3.50-20058815 (Apple version gdb-134@) (Fri Jun 19 22:52:24 UTC 2009)
Copyright 2084 Free Software Foundation, Inc.

GDB is freec software, covered by the GNU General Public License, and you are
I | welcome to change it and/or distribute copies of it under certain conditions.
Type "show copying" to see the conditions.

F- _ [There 15 ahsolutely no warranty for GOK. Type “show warranty" for details.
|gllre 4'5- This LOB was configured as “xRb_bhd-apple-darwin®.tty /Jdeu/ttysonn

Th Loading program into debugger—

€ |Program luaded.

run

Debugger [Switching te process 359G]
Running..
Console |z2000-06-27 17:45:21.031 First Program[3596:a0f] a + b = 3
. 2009-06-27 17:45:21.934 First Program[3506:a8f] a + b = 3
af'ter bul|d- 2009-06-27 17:45:21_.935 First Program[3596:a8f] a still = 1
. 2009-06=-27 17:45:21.935 First Program[3i596:a8f] b still = 2
Ing your
g y Debuyyer slupped.
program. Program exited with status value:0.
I |DebG00G OGN A Sdad 2

Start with an empty main function (delete the code you typed) and do the
following:

1. Type the following lines of code between the first curly brace and the
return 0; statement:

int a;

int b;

int c;

a = 2;

o = 3¢

c =a % b;

NSLog (@" a %% b = %i", c);
c =Db % a;

NSLog (@" b %% a = %i", c);
c =a % a;

NSLog (@" a %% a = %1i", c);
c = a + b;

NSLog (@" a + b = %i", c);
c = Db + a;

NSLog (@" b + a = %i", c);
c = a - b;

NSLog (@" b - a = %i", c);

c =a * b;

NSLog (@" a * b = %i", c);

c =a * + 5

NSLog (@" a * b + 5 = %i", c);
c =a * (b+ 5);

NSLog (@" a * (b + 5) = %i", c);
c = (a *b) +5;

NSLog (@" (a * b) + 5 = %1", c);

Chapter 4: Language and Programming Basics 8 ’

e =1l ¥ as
NSLog (@" b * a = %i", c);
c =a / b;
NSLog (@" a / b = %i", c);
c =Db / a;
NSLog (@" b / a = %i", c);

Writing code to make sure you understand the arithmetic operators should
be old hat to you by now, and perhaps a little boring; you may be thinking,
“This is arithmetic!” Well, that’s true, but some things are not so obvious
when you do arithmetic on the computer. Take a look at some of the code
you just entered where the result of its execution may surprise you.

For example, an operator you probably haven’t used that much (if ever)
is $ — the modulus operator. 1t is not what it appears to be, a percentage
calculation. The result of the % operator is the remainder from the inte-
ger division of the first operand by the second (if the value of the second
operand is zero, the behavior of % is undefined).

and

c =Db % a;
NSLog (€@" b %

o°

a = %i", c);

results in

So, as you can see, a divided by b, which is 2 divided by 3, gives you
a remainder of 2. Similarly, 3 % 2 gives you a remainder of 1. However,
3 divided by 3 has no remainder, so the modulus is 0. Try a few other
values for a and b and compile the code to see what happens.

The modulus operator can come in handy at times (you can use it to tell
whether a number is even or odd, or whether it’s a multiple of another
number, for example), but it only works with integers. Notice that the
NSLog statement that displays the results has two %s. That’s because

82

Part ll: Speaking the Language of Objective-C

the % is also a control character, as you just saw (it tells the NSLog
function that what follows is formatting information), so if you want to
display an %, you have to use %%.

Look at the following statements :

c = a + b;
NSLog (@" a + b = %i", c);
c =Db + a;

NSLog (@" b + a = %1i", c);
c =a * b;
c =Db * a;
NSLog (@" b * a = %i", c);

As you would expect, the order of operands using the arithmetic opera-
tors + and * doesn’t matter, although when you are programming, it’s
generally better not to make too many assumptions.

Next, take a look at the following:

a*b+5-=11
a * (b +5) 16
(a * b) + 5 11

If parentheses were a challenge for you in high school, here’s a chance
to redeem yourself. Parentheses, as used in the preceding code, deter-
mine the order in which operations are performed. In Objective-C, * and
/ take precedence over + and -, which means that the compiler, unless
directed otherwise, will generate code that does multiplication and divi-
sion before it does the addition and subtraction. That’s why a * b (or
2*3) then + 5 = 11. By using parentheses, you can force the addition to
be performed first: a * (b + 5) = 2 * (3 + 5) equals 16.

. Select the Build and Run button in the Project Window toolbar to

build and run the application.

From now on, I'll just ask you to do this, although you can always press
88+Return, or choose Build=>Build and Run from the main menu if you
would like.

Your results in the Debugger Console should look like

a%$ b=2
b%a-=1
a%$a=20

a+ b =25
b+a-=5
a-b=-1
b-a=1
a*b==6
a*b+5=11
a* (b +5) =16
(a * b) + 5 =11

o9 0

~ o~ %
0 00

6
0
1

Chapter 4: Language and Programming Basics

83

Where you may have gotten unexpected results is when you predicted a

/ bandb
a/ b =
b/ a =

/ a.Here’s what you found:

0;
iz

Why does 2 divided by 3 equal 0, much less 3 divided by 2 equal only
1?7 As I said earlier, ints are whole numbers. If you want a decimal, you
need to declare it that way, and that is what f1oats are about.

Back to variables — floats

Floats and doubles are the types you will use if you want to see decimal
places in the results of your arithmetic calculations.

1. Delete the previous example and type the following into your project:

float a;
float b;
float c;
a = 2;
b = 3;
NSLog (@"
NSLog (@"
NSLog (@"
NSLog (@"
NSLog (@"
NSLog (@"
NSLog (@"

[oaRCERCERVEN o RNV}

+

Q oooo oo

|
I+

NN X x|

P 00 Ul 0P o 0P oP

R- -

(R,

R -

oo

-

Qo0 O

oo

S~ N~

—_ — — —

¥ Ne Se ~e o~

) 7
) 7

Q0900000

I'm going to save you some typing by just doing the computation in the
function as [showed you earlier.

2. Select the Build and Run button in the Project Window toolbar to
build and run the application.

You should see the following results in the Debugger Console:

a

[SRCERCER IR o]
AN

4L

Q oooo oo

I+

1606416408
8542208
8546304
8542208
5 = 8546304
8542208
8546304

84 Part ll: Speaking the Language of Objective-C

Were you surprised? You got this result because I didn’t have you change
how the results were to be formatted in the NSLog statement (remember the
String Format Specifiers in the first example). In the code you just entered,
you are specifying that the result is an int (see the %i shown in bold in the
following line):

NSLog (@" a * b + 5 = %i", a * b + 5);

The computer, just following your instructions, does what it is supposed

to do with the int. I had you do this because this is a common error, and a
source of great confusion for many beginning programmers (see also some
discussion of it in Chapter 18 in the debugging tip to create a “paper” trail).

Also notice the compiler warning in Figure 4-6. This warning might be useful if
you realized you actually meant to use a variable and didn’t. Here it was just
sloppiness on my part (actually I wanted to make the point).

m First Program.m - Firet Program
<
10.6 | Debug | x... = | | @~ - 0 - 5
I Debug | R a
Orvesvien Action Breakpoints Build and Run Tashs Info Search
Croups & Files File Name & A Code o A L3
B4 Firsr Program B .| First Program m K L4
Source
w! First Program_Prefin.g
[w1 First Program. m
Documentation
o External Frameworks anc
L Products
(@) Targets
4 Exccutables
¥ L4 Find Results
(S i - -
L8 Bookmarks 4 | = i First Program.m:19 ¢ [main) # | ™% Co | o
SOM Flmbott sfountations/Foundation .t 8
8 Project Symibols "
[Imalemenation Fites nt asin (int arge, const char @ sravil) {
b [l tnrerface Rullder Files float ¥
[H
c T
R H
A hi;
| . b= a);
s & % h):
= . 1", 88 b]
Figure 4-6: PR
. L . b/ oa);
A compiler PR
warning. ;
I | Dehugging of *Firit Program’ ended narmally @Succended (11 o

In order to get the results of your calculation to display correctly, and to get
rid of that annoying compiler warning, please do the following:

1. Delete the previous example and this time type the following:

float a;
float b;
//float c;

F
BF

a
b

Chapter 4: Language and Programming Basics 85

WBER
“&
&

NSLog (@" a + b = %$f", a + b);
NSLog (@" a - b = %f", a - b);
NSLog (@" b - a = %$f", b - a);
NSLog (@" a * b = %f", a * b);
NSLog (@" a * b + 5 = %f", a * b + 5);
NSLog (@" a / b = %f", a / b);
NSLog (@" b / a = %f", b / a);

The String Format Specifier $f in an NSLog function tells the function to
display a double — that is more or less the standard on the Mac for a
floating point. The difference is a £1oat that will have only 7 or 8 signifi-
cant digits, whereas a double will have 15 or 16.

Although you won’t see comments in the examples [will be taking you
through (because I'll be describing what is happening in detail in the text),
it is important that you use them in your own code. In order to have the
compiler treat something as a comment, you use two forward slashes.

//float c;

Anything to the right of a // is a comment, even if it is on the same line
as an instruction or declaration or anything else (it also turns green in
Xcode).

double a = 4.2; //This is treated as a comment

You can also comment out large blocks by starting with /* and ending the
block with * /. Be careful; these blocks can’t be nested. If you try to com-
pile the following code, the even more stuff line will not be treated as
a comment. Go try that on your own. You'll see that even more stuff
will not turn green, and you'll get a compiler error when you build it.

/* some stuff
/* some more stuff */
even more stuff */

Extensively commenting your code is critical. Use real explanations
about what something does, as well as why you wrote the code the way
you did. What and why you did something may not be obvious, not only
to someone else who reads your code, but even to you a few days later.

. Select the Build and Run button in the Project Window toolbar to

build and run the application.
You should see the following results in the Debugger Console:

5.000000
-1.000000
.000000
.000000
= 11.000000
.666667
.500000

a +

o900 0o
ENE .
Y oooo oo
(LI | { B V|
R ou ok

86 Part ll: Speaking the Language of Objective-C

This time you get what you expect.

Floating point numbers can be expressed in the following ways:

double a = 4.2;
double b = 4.2el;
double ¢ = 4.2e-1;

The following code will display a, b, and c:
NSLog (€@" a = %f, b = %f, ¢ = %f",a , b, c);

What you get is
a = 4.200000, b = 42.000000, c = 0.420000

If you want to specify the significant digits you want displayed, all
you have to use are a decimal point and a number between the % and
the £ — %.2f, as in the following:

2f, ¢ = %.2f",a ,b, c);

o°

NSLog (@"a = %.2f, b =

This displays
a =4.20, b = 42.00, c¢c = 0.42

Bitwise operators

On the computer, your data is actually stored as ones and zeros, which corre-
sponds to something called a bit. In fact, the basic computations you do are
in something called binary arithmetic.

I’'m going to leave binary arithmetic as an exercise for the reader. While I find
it fascinating, you probably don’t, and it is not usually necessary for most
programmers to know. If you need to learn it, learn it when you need to; that’s
what I always say.

If you do understand it, however, several operators are available to you that
work on the bit level. Table 4-4 describes these bitwise operators.

Table 4-4 Bitwise Operators
Operator What It Does
& Bitwise AND

Bitwise Inclusive OR

~

Bitwise Exclusive OR

Chapter 4: Language and Programming Basics

Operator What It Does

~ Unary complement (bit inversion)
<< Shift Left

>> Shift Right

Compound assignment operators

I love this feature. It enables you to compute and assign a value to a variable.
Table 4-5 describes the compound assignment operators.

Table 4-5 Compound Assignment Operators
Operator What It Does

= Addition

-= Subtraction

*= Multiplication

/= Division

%= Modulo

&= Bitwise AND

Bitwise Inclusive OR

Bitwise Exclusive OR

<<=

Shift Left

>>=

Shift Right

To make sure you understand how the compound assignment operators
work, you should code a few examples.

1. Start with an empty main function and enter the following code:

int a;
int b;
//float c;

275
BF

a
b
NSLog (@" a += b = %i", a += b);

NSLog (@" a now = %1i", a);
a = 2;

87

88

Part ll: Speaking the Language of Objective-C

NSLog (@" a -= b = %1i", a -= Db);
a = 2;
NSLog (@" a *= b = %i", a *= b);
a = 2;
NSLog (@" b /= a = %i", b /= a);
o = 3¢
NSLog (@" b %%= a = %i", b %= a);
log = 3z

NSLog (@" a *= b + 2 = %i", a *= b + 2);

I previously made the point that the arithmetic operators did not affect
the value of its operands. The compound assignment operators do
change the value of the first operand, however (assignment in the opera-
tor name does give you a hint). You use a compound assignment opera-
tor to modify the value of a variable by performing an operation on the
value currently stored in that variable. For example,

a +=Db
says that you want to take the value of b, add it to a, and store the result
in a. This is the equivalent to

a=a + b;
The results here are what you would expect, but [want to call your
attention to the last statement.

NSLog (@" a *= b + 2 = %i", a *= b + 2);
The compound assignment treats whatever is on the right side of the

assignment operator as if it were in parenthesis. That means that a *=
b + 2isequivalenttoa = a * (b + 2) andnota = a * b + 2.

. Select the Build and Run button in the Project Window to build and

run the application.

You should see the following in the Debugger Console:

a += b =5

a now = 5
a-=>b=-1

a *= b =6

b /=a=1

b %=a =1

a *= b + 2 =10

Anything to avoid typing, that’s my motto. As you saw, there are also a
set of compound assignment operators that allow you to use the bitwise
operators.

Chapter 4: Language and Programming Basics 89

Increment and decrement operators

These operators are also some of my favorites because they provide another
way to avoid typing. They are called the increment operator (++) and the dec-
rement operator (--). They increase or reduce by 1 the value stored in a vari-
able. They are equivalent to +=1 and to -=1, respectively. They can be a little
tricky to use, however.

When used on a pointer, the increment and decrement operators increment
and decrement a pointer by the size of the object being referenced.

To discover the increment and decrement operator subtleties that are impor-
tant for you to understand, you should code the following example. Before
you look at the output, see if you can predict what it will be.

1. Start with an empty main function and enter the following code:

int a;
int b;

a 2
b BF
NSLog (@" a++ = %1", a++);

NSLog (@" a now

a = 2;

NSLog (@" ++a = %1i", ++a);

NSLog (@" a now = %i", a);
a = 2;

NSLog (@" a-- = %i", a--);

NSLog (@" a now = %i", a);
a = 2;

NSLog (@" --a = %i", --a);

NSLog (@" a now = %i", a);

There is a difference depending on whether you put the ++ before or
after the variable. Where you place the operator determines when the
operation is performed. Sometimes you don’t care, but in other situa-
tions, when the operation is performed may be important.

When it is a suffix, as in a++, the value stored in a is increased after the
expression a++ = %1 is evaluated. When the ++ is a prefix, as in ++a,
the value of a is increased before the expression ++a = %i is evaluated.
Notice the difference:

NSLog (@" a++ = %1", a++);
In this case, the a replaces the %1 in the string and displays 2. After that,
a is incremented

NSLog (@" a now = %i", a);

90 Part ll: Speaking the Language of Objective-C

And as you will see, it becomes 3.

In this next series of statements, a is assigned back to 2, but in this case,
a is incremented before it replaces the %1 in the string, and as a result
displays 3.

a = 2;

NSLog (@" ++a = %i", ++a);

As I said, sometimes when the operation occurs doesn’t matter, but
when it does, it really does.

. Select the Build and Run button in the Project Window toolbar to

build and run the application.

The output in the Debugger Console should look like the following
(remember, after every operator, you reset a to 2):

a++ = 2
a now = 3
++a = 3
a now = 3
a-- = 2
a now = 1
--a =1
a now = 1

Comma operator

The comma operator (,) allows you to use two or more expressions where
only one expression is expected. It evaluates the first operand (usually an
expression) and then discards the results. It then evaluates the second oper-
and and returns that value. Obviously, the only time you’ll want to use this
is when the evaluation of the first operand changes something in the second
operand.

For example, the code

int a;
int b;

NSLog (@" a
NSLog (@" b

I
o
I
w
o
+
N

produces the output

a
b

(b =3, b+2) =25
3

Chapter 4: Language and Programming Basics

SMBER
SO

The comma operator, in the expression (b = 3, b + 2) will first evaluate
b = 3, resulting in the value of b becoming 3. The second operand is then
evaluated, adding 2 to b, which results in the comma operator returning 5.
Finally a is assigned that result, or 5. So, at the end, variable a will contain
the value 5, whereas variable b will contain value 3.

Cast operator
The cast operator (()) enables you to convert one type to another.

int 1i;
float £ = 42.9;
i = (int) f;

The previous code converts the float number 42. 9 to an integer value (42);
the remainder is lost. Here, the typecast operator was (int).

As you'll see, this is something you will become familiar with when you start
working with objects and classes (for example, you’ll use it to tell Objective-C
what the argument types are in messages you send to objects).

Sizeof operator

If you are curious about how much memory variables really use (and don’t
necessarily distrust me, but like to prove things for yourself), you can use the
sizeof operator to determine sizes.

You can discover for yourself how much memory a variable uses by doing
the following:

1. Start with an empty main function and enter the following code.

As I have been saying, in some cases in the book, you’ll see statements
on two lines. have to do that in order to fit the code on the page; you
should use only one line where you can. This is especially important for
strings, which will give you an error if they are on two lines, unless you
tell the compiler that’s what you want to do. This is especially relevant
in the following code. As I said, I'll show you a way to have a single
string on multiple lines in the section “Using Constants.”

NSLog (@" A char = %i bytes", sizeof (char));
NSLog (@" An unsigned char = %i bytes",
sizeof (unsigned char)) ;
NSLog (@" A short = %1 bytes", sizeof (short));
NSLog (@" An unsigned short =
%1 bytes", sizeof (unsigned short)) ;
NSLog (@" An int = %1 bytes", sizeof (int));

91

92 Part ll: Speaking the Language of Objective-C

NSLog (@" An unsigned int =

%1 bytes", sizeof (unsigned int));
NSLog (@" A long = %i bytes", sizeof (long));
NSLog (@" An unsigned long =

%1 bytes", sizeof (unsigned long)) ;
NSLog (@" A long long = %i bytes", sizeof(long long)) ;
NSLog (@" An unsigned long long = %i bytes",

sizeof (unsigned long long)) ;

NSLog (@" A float = %1 bytes", sizeof (float));
NSLog (@" A double = %i bytes", sizeof (double));
//There is no unsigned float or double

2. Select the Build and Run button in the Project Window toolbar to
build and run the application.

You will soon find the following in the Debugger Console:

A char = 1 bytes

An unsigned char = 1 bytes
A short = 2 bytes

An unsigned short = 2 bytes
An int = 4 bytes

An unsigned int = 4 bytes
A long = 4 bytes

An unsigned long = 4 bytes
A long long = 8 bytes

An unsigned long long = 8 bytes
A float = 4 bytes

A double = 8 bytes

If you aren’t deadly bored by now, all the more power to you. I am pretty
much done with the real boring part (at least as compared to the more inter-
esting things you’ll learn starting in the next chapter), so hang in there.

It’s time to move on to the last two operators you’ll need to know before you
get going on a real application in Chapter 5 — the logical and relational oper-
ators. This upcoming section also includes a brief discussion of the i f state-
ment, which allows you to make some logical decisions in your code. (I will
cover a few more ways to make decisions in your code in Chapter 9.) Now is
when things start to get interesting — well, at least I think so.

Making Logical Decisions in Vour Code

When you are programming, you may need to make some decisions within
your code. If the user just pressed a button, does that mean I should play
Pink Floyd’s “The Wall” or a selection from Barry Manilow’s greatest hits?

A number of control structures are available that enable you to make these
kinds of decisions. In this section, [cover one, the if statement. (I cover the
balance in Chapter 9; it’s amazing how far you can actually get without ever
making a decision.)

Chapter 4: Language and Programming Basics

In general, control structures use relational and equality operators to compare
variables. The result is a Boolean value that is either YES or NO, or true or
false. To start, [will explain what a Boolean type is.

Boolean types

A Boolean type is a variable whose value is either true or false. In
Objective-C you are lucky; you actually have two Boolean types. Objective-C
provides a type, BOOL, which can have the values YES and NO (corresponding
to true and false, respectively). In C, there is a Boolean data type, bool,
which can take on the values true and false. (You would normally use

the Objective-C version when writing Objective-C code.) Unfortunately, they
do not always behave the same way. (There is also an historic Mac OS type
Boolean that you shouldn’t use.)

The BOOL type in Objective-C is actually a typedef (you'll learn about
typedefs in Chapter 5).

typedef signed char BOOL;

And since the type of BOOL is actually char, it does not behave in the same
way as a bool in C (I'll leave exactly why as an exercise for the reader).

Keep in mind that sometimes programmers will actually assign a value to the
BOOL, and that can get you into trouble. To avoid that problem, assign only
YES or NO to an Objective-C BOOL.

Several operators return a Boolean type, and I'll give you a list of them
shortly. Of course, determining if something is true or false is kind of point-
less, unless you can do something based on that information, and that is
where the if statement cones into play.

Take a look at how if statements, logical and equality operators, and
Boolean types work to allow you to implement logic into your program:

1. Start with an empty main function and enter the following code:

int a = 5;
int b = 6;
if (a == b) NSLog(@" a is equal to b");
if (a != b) NSLog(@" a is not equal to b");
if (a > b) NSLog(@" a is greater than b");
if (a < b) NSLog(@" a is less than b");
if (a >= b)
NSLog (@" a is greater than or equal to b");
if (a <= b) NSLog(@" a is less than or equal to b");

93

94 Part ll: Speaking the Language of Objective-C

= b)) NSLog(@ " a is NOT (equal to b)");
) || (& =-=- b)) NSLog(@" a is equal to b,
or a 1s equal to --b");
if ((a <= b) && (a < ++ b)) NSLog(@" a is less than or
equal to b, and a is less than ++b");

if (a == b) NSLog(@" a is equal to b");

if (a == b) {
NSLog (@" a equal to b");
}
else {
NSLog (@" a is not equal to b");
}

BOOL z = (a ==) e

if (!z) NSLog(@" a is NOT (equal to b)");

BOOL y = (a > b);

if (y !'= YES) NSLog(@" a is NOT (greater than b)");

2. Select the Build and Run button in the Project Window toolbar to
build and run the application.

You'll see the following in the Debugger Console:

a is not equal to b

a is less than b

a is less than or equal to b

a is NOT (equal to b)

a is equal to b, or a is equal to --b

a is less than or equal to b, and a is less than ++b
a is not equal to b

a is not equal to b

a is NOT (equal to b)

a is NOT (greater than b)

Now go through it in detail:
The first line of code
if (a == b) NSLog(@" a is equal to b");
simply says, if a is equal to b, then execute the NSLog statement. If not,

do nothing. Which is what happened — nothing. (Remember, (== is the
equality operator, — the two equal signs are not misprints.)

The if keyword is used to execute a statement or block (I explain what
a block is momentarily) only if a condition is true. Its form is

if (condition) statement

Chapter 4: Language and Programming Basics 95

condition is an expression that is evaluated. If the result of the valua-
tion is true, statement is executed. If it is false, statement is ignored,
and the program chugs merrily along.

The next statement

if (a != b) NSLog(@" a is not equal to b");

says if a is not equal to b (! = is the not equal operator), execute the
NSLog function, which is what happens as you can see:

a is not equal to b

The code continues chugging along exercising each relational and logical
operator in turn until something else interesting pops up.

if (a == b) NSLog(@" a is equal to b");
else NSLog (@" a is not equal to b");

Previously, if evaluation of a compare were false, the execution bypassed
the next statement and continued. In this case, the else says, if it’s not
true, do this instead. In this example, the code in one of those two state-
ments will be executed based on the compare.

if (condition) statementl; else statement2;

The if else structures can be concatenated as well. For example:

if (x > 0) doThis;
else if (x < 0) doThat;
else takeABreak;

As you can imagine, these can get pretty complicated, and I will show
you in Chapter 9 a way to get the same result using other, more obvious
means.

Then you see the if else statements looking a little different.

if (a == b) {
NSLog (@" a equal to b");
}
else {
NSLog (@" a is not equal to b");
3

In this case, you can see that the NSLog statement is in braces, which
defines a block. A block is a group of statements enclosed in braces: { }:

{ statementl; statement2; statement3; }

If you want to execute only one statement as the result of the i f or
else, you don’t need a block. But you can choose to use a block, as you
just saw. A block is required, however, whenever you want to execute
more than one statement as a result of an if or else.

96 Part ll: Speaking the Language of Objective-C

QNING/

Finally, the lines of code
BOOL z = (a == b);
if (!z) NSLog(@" a is NOT (equal to b)");

BOOL yv = (a > b);
if (y != YES) NSLog(@" a is NOT (greater than b)");

show us that the result of a compare can be assigned to a Boolean
variable.

In this case, z is a BOOL, to which you assign the result of the compari-
son (a == b). You then use that result (remember, it is either YES or
NO) in the if statement (! z).

I'll leave it as an exercise for the reader to study the results of these opera-
tions. Admittedly, they do make more sense in context, and you will have an
opportunity to use them later in the book.

Pay real attention to the equality operator — fwo equal signs. It is all too easy
to use only one by mistake. If you do, rather than make a compare, you do an
assignment.

Relational and equality operators

In the section on Boolean types, you used a number of operators that
enabled you to compare two expressions. They allowed you to determine, for
example, if two expressions were equal, or if one was greater than the other.
When you use one of these operators, the result is the Boolean value, as you
saw in the previous section.

You used the following relational and equality operators, described in Table
4-6, in the preceding examples.

Table 4-6 Relational and Equality Operators
Operator. What It Does

== Equal to

1= Not equal to

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

Chapter 4: Language and Programming Basics

Logical operators

Logical operators are similar to the relational operators in that they return
Boolean values. In this case, instead of comparing two expressions, you are
comparing the results of two comparisons (except for the NOT operator).
Table 4-7 describes the logical operators.

Table 4-7 Logical Operators
Operator What It Does

! NOT

&& Logical AND

| | Logical OR

! (NOT) evaluates a single expression and returns the opposite Boolean
value. For example, ! (a < b) returns back NO if a is less than b, and YES if
a is greater than or equal to b.

&& (logical AND) evaluates two expressions and returns YES when both
expressions result in YES. For example, (a < b) && (a < c) returns YES
when a is less than both b and c. Otherwise, it returns NO.

| | (logical OR) evaluates two expressions and returns YES when either one
or both expressions result in YES. For example, (a < b) && (a < ¢)
returns YES when X is less than either b or c. It returns NO when a is greater
than or equal to both b and c.

Conditional operator

The conditional operator (?) evaluates an expression and enables you to do
one thing if an expression is true, and another if it is false.

condition ? resultl : result2;

If condition is true, the expression will execute resultl; if it is not true,
the expression will execute result2.

For example:

int a 5¢
int b 6

’
7

97

98 Part ll: Speaking the Language of Objective-C

(a == b) ? NSLog(@" a is equal to b"):
NSLog (@" a is not equal to b") ;
(a !'= b) ? NSLog(@" a is NOT equal to b"):

NSLog (@" a is equal to b");
If you were to build this code, you would find

a is not equal to b
a is NOT equal to b

Looks familiar, doesn’t it?

Accessing Data with Pointers

As I explained earlier, memory in your computer can be imagined as a series
of mailboxes, each one the smallest size (a byte) that a computer manages.
These mailboxes are numbered sequentially, so to get the next address,

you add 1 to the current address. Things are located in memory by these
addresses.

For example, take the following declaration:
int anInteger = 42;

Assume that anInteger (with the value 42) is located at memory address 32,
as shown earlier in Figure 4-2. In other words, memory address 32, which I
have named anInteger, contains the value 42. With me so far?

Until now, variable names have held some kind of value, an int or float for
example, as you just saw with anInteger. But they also can hold a pointer,
which is an address in memory.

Now look at this declaration:
int *anIntPointer = &anInteger

The first part of that declaration declares a variable named anIntPointer.
The * tells the compiler that this type is a pointer to an int, rather than an
int. The & (reference) operator tells the compiler you want the intPointer
initialized with the address of anInteger, the variable you declared earlier.
In other words, intPointer will have the memory address of anInteger.
Since I told you that the memory address anInteger was located at 32,
anIntPointer will hold the value 32.

Chapter 4: Language and Programming Basics 99

Think about it this way. The address of Apple Computer’s main building is
Apple Computer, Inc. 1 Infinite Loop Cupertino, CA 95014. anIntPointer
corresponds to that address, while anInteger corresponds to the building
itself.

To go from the pointer anIntPointer, which contains the address of anIn-
teger, to the actual value of anInteger, you use the dereference operator
(*) — this is called differencing a pointer.

#import <Foundation/Foundation.h>
int main (int argc, const char * argv[]) {

int anInteger = 42;
int *anIntPointer = &anInteger;

NSLog (@"anInteger = %i", anInteger);
NSLog (@"*anIntPointer = %i", *anIntPointer);

return 0;

}
This results in

anInteger = 42
*anIntPointer = 42

As you can see, dereferencing the pointer (*anIntPointer) allows you to
access the value store in the address of anInteger.

There is also another operator that can be used to deference a pointer.
The arrow operator (->) is used only with pointers to objects (as well as
structs). I'll show you how to use the arrow operator, as well as explain
more about pointers, in Chapter 5.

You will use pointers extensively when you start working with objects, and it
will become a lot clearer as you work with pointers in this context. As you’ll
find, it won’t be particularly difficult to get the hang of it.

But if you were to study C, you would find that pointers are a significant part
of the language, and you would learn something called pointer arithmetic.
This, in part, comes from C’s roots as a system programming language. Most
of you will never need to do pointer arithmetic, but just in case, you're not on
your own. C For Dummies by Dan Gookin (Wiley) can offer some insight.

7 00 Part ll: Speaking the Language of Objective-C

Using Constants

Constants, as you might expect, are expressions that have a fixed value. You
had some experience with them when you did the following:

int a = 5;
g = 5g

When you do code a = 5, you are using a literal.

Literals are not just numbers, however. The following expression is called a
string literal.

@"Hello World";

You have used string literals quite a bit already, and you will continue to

use them throughout the rest of this book. But what if you want to include a
double quote (*) in the string literal itself? (There is also a problem with spe-
cial characters such as newline or tab, which you won’t be using). To include
a double quote, all you have to do is place a backslash (\) in front of the "
(or any other special character) you want to use. For example:

\ ' will display as a single quote (*)

\ " will display as a double quote (*)

\\ will display as a backslash (\)
As I have been warning you (more than once), string literals need to be on
a single line of code. However, you can extend string literals to more than a

single line of code by putting a backslash sign (\) at the end of each unfin-
ished line.

@"string expressed on \
two lines"

You can express any character using its numerical ASCII code by writing a
backslash character (\) followed by the ASCII code as an octal (for example,
\23 or \40) or hexadecimal number (for example, \x20 or \x42).

The problem with literals, however, is that tracking down and changing their
values can be very difficult. There are other kinds of constants that provide a
better way to include a constant in your programs.

Chapter 4: Language and Programming Basics 1 0 ’

Declared constants (const)

With the const prefix, you can declare constants of a specific type in the
same way as you do with a variable:

const int aConstInt = 42;
const float aConstFloat = 42.00;

Here, aConstInt and aConstFloat are two typed constants. They are
treated just like regular variables except that their values cannot be modified
after they have been declared and initialized (obviously, you have to initialize
them).

Defined constants (#define)

Defined constants are a better solution to your need for certainty, although
they are best placed in a single file where you can easily find all of them. But
since I haven’t explained how to use more than one file in your program,
(although it is coming up in Chapter 6), I'll just go through the mechanics of
creating them.

#define allows you to define names for the constants you use:
#define identifier value

For example, you can define two new constants: aDefineInt and aDefine
Float by doing the following:

#define aDefineInt 42
#define aDefineFloat 42.00

Once you have defined aDefineInt and aDefineFloat, you can use them
throughout your code like you would a literal or declared constant.

#define is a preprocessor directive of the kind [mentioned at the start of
this chapter in the section “It All Comes Down to Your Statements.” Whenever
the preprocessor encounters #defines (aDefineInt and aDefineFloat,
for example), it replace them with the values you specified (42 and 42.00,
respectively).

The #define is not an Objective-C statement, so it doesn’t need a semicolon.
If you put one in, it becomes part of the #define.

7 02 Part ll: Speaking the Language of Objective-C

Let’s write some code where you will use constants, float declarations, and the
backslash escape code (that will allow you to define a string on two lines).

1. Start with an empty main function and enter the following code:

#define aDefineInt 42

#define aDefineFloat 42.00
#define aDefineFloat2 .4200e2
#define aDefineFloat3 4200.00e-2

const int aConstInt = 42;

const float aConstFloat = 42.00;
const float aConstFloat2 = .42000e2;
const float aConstFloat3 =4200.00e-2;

NSLog (@" aDefineInt = %i",aDefinelnt) ;

NSLog (@" aDefineFloat = %.2f",aDefineFloat) ;

NSLog (@" aDefineFloat2 .2f",aDefineFloat2) ;
(

NSLog (@" aDefineFloat3 %.2f",aDefineFloat3) ;
NSLog (@" aConstInt = %i",aConstInt) ;

NSLog (@" aConstFloat = %.2f",aConstFloat) ;
NSLog (@" aConstFloat2 %.2f",aConstFloat?2) ;

(

NSLog (@" aConstFloat3 %.2f",aConstFloat3) ;

NSLog (@" A \"\\backslash with double gquotes\" \
on two lines");

2. Select the Build and Run button in the Project Window toolbar to
build and run the application.

You should see the following in the Debugger Console:

aDefineInt = 42

aDefineFloat = 42.00

aDefineFloat2 42.00

aDefineFloat3 42.00

aConstInt = 42

aConstFloat = 42.00

aConstFloat2 = 42.00

aConstFloat3 = 42.00

A "\backslash with double quotes" on two lines

Knowing the Objective-C Reserved Words

As I mentioned, your names or identifiers cannot match any keyword of the
Objective-C language. Some of those reserved keywords are as follows:

Chapter 4: Language and Programming Basics 1 03

asm do inline sizeof
auto double int static
bool else long struct
BOOL enum new switch
break extern nil true
case false Nil typedef
char float NO union
Class for register unsigned
Class goto return void
const id SEL volatile
continue if short wchar_t

while
default IMP signed

YES

The best way to tell if a name or identifier you want to use is a reserved word
is if it changes color in the editor. If it does, it is either a keyword or is being
used somewhere in your program.

In addition, prefixes are used extensively. Cocoa prefixes all its function, con-
stant, and type names with “NS.” So don’t prefix any of your own variables or
function names with NS — doing so can cause a great deal of confusion. At a
minimum, the reader will assume it is a Cocoa function, as opposed to being
your code. At worst, the name is already being used, and you’ll get a compiler
error. (Actually, I'm not sure which is worse.)

Congratulations

Congratulations! You've gotten through the most tedious part of learning a
computer language.

Some of the things I didn’t cover in this chapter are certain kinds of control
structures, like switch statements, and things called loops, which allow you
to repeat a block of statements while a condition is true or until a condition is
met. [will show you those, | promise, when you are going to need to use them
in Chapter 9.

7 04 Part ll: Speaking the Language of Objective-C

Chapter 5
Functions and Data Structures

In This Chapter

Looking at an application

Creating data structures

Working with defined data types
Collecting statements into functions
Understanding function prototypes

Knowing what happens when you want to extend the functionality of a program

A s I mention in Chapter 1, learning to program in Objective-C involves
more than the instruction set and data types you learned about in the
last chapter. In fact, you've received a considerable amount of the instruction
set covered by now. So it’s time to get on with the more interesting aspects of
the language, the ones you’ll need to know to create the kinds of applications
you are probably interested in.

One of the most important features of Objective-C is its support for object-
oriented programming. While Objective-C is about objects, before I take you
there in Chapter 6, I am going to introduce you to two features of C that are
important to understand along the way — data structures and functions.
Data structures and functions are a fundamental part of the language, and
understanding them will make it easier for you to understand what objects
are really about.

Thinking about an Application

In Chapter 1, [mention that when I travel, I often zone out on that fact that
even though it looks like monopoly money, foreign currency actually does
amount to something in dollars. I said it would be helpful if [could use a com-
puter to let me know when I charged something on a credit card in a foreign
currency, how much that was in dollars. It would also be helpful if I could use

’ 06 Part ll: Speaking the Language of Objective-C

|
Figure 5-1:
Tracking
your
expenses.
|

that same program to generally keep track of my spending (I do tend to get car-
ried away when I am on vacation) against a budget I set at the beginning of a
trip. While this is not the most exciting application (a classic understatement if
I've ever made one), it is actually perfect for my purposes — to teach you how
to develop applications using Objective-C. It will enable me to explain all of the
Objective-C you’ll need to know to write any kind of application — even a cool
game or something that uses audio and video. (Of course, you'll still have to
learn the specifics of how to use the graphics and sound on the Mac or iPhone.)

The application you are about to start developing will help me manage my
budget when I travel by allowing me to track my spending in dollars. This will
enable me to avoid the rather embarrassing situation of ending up with only
three dollars and four days left to go in Venice.

Of course, doing this is something you really don’t even need a computer
to do; a computer just makes it easier and faster (and provides the example
application I need to teach you Objective-C). In fact, my father, who was an
accountant, did the same thing I'm planning to do using a pencil and paper
whenever he and my mom went to Europe. I'll use what he did as a basis for
how my application needs to work.

To manage his budget, he would use the form you see in Figure 5-1. Whenever
he changed dollars into euros, he put that amount in the dollars column and
subtracted it from the balance. Whenever he charged something on a credit
card, he took the amount in foreign currency, multiplied it times the exchange
rate to get the dollar amount, and then subtracted that amount from the
dollar balance. (He was an accountant after all.)

Date Amountin euros | Exchange rate | Amountin dollars | Balance in dollars

Fortunately, today with my laptop or iPhone, I am free to harness the power
of hundreds if not thousands of dollars worth of modern computer technol-
ogy to do the same thing my dad did with pencil and paper.

At this point, you have actually learned enough Objective-C to begin creating the
model for this application (also sometimes called the content engine). The model
is part of a design pattern known as Model-View-Controller (MVC) that you will
use to develop applications using the Cocoa framework. The model contains

the application-specific logic for your application — in this case, how to track
expenses and apply them to a budget. I explain MVC in detail in Chapter 11.

Chapter 5: Functions and Data Structures 1 0 7

Q

<MECD

@

|
Figure 5-2:
The
Vacation
Budget
project.
|

For the majority of this book, [will be showing you how to use what you have
already learned about Objective-C, and the additional features that make it
so powerful (objects, for example) to add more and more functionality to the
model. Then in Chapters 17 and 18, you'll create simple user interfaces for
the iPhone and Mac and see how easily it all fits together.

Enough discussion — time to code!

1. Launch Xcode.

I'll be having you create a new project here. You can do that, or you can
skip Steps 2 through 6 and start with the project in the Chapter 5 Start
Here folder, which is in the Chapter 5 folder on the CD (you’ll have to
move it to your desktop).

Remember: If you want to work with anything on the CD, you must drag it
onto your desktop (or into any other folder) to be able to build the project.

2. Start the New Project Assistant by Choosing File=>New Project from
the main menu to create a new project.

3. In the New Project window, click Application under the Mac OS X heading.

4. Select Command Line Tool from the choices displayed and then select
Foundation from the Type drop-down menu; then click Choose.

Xcode will then display a standard save sheet.

5. Enter the name Vacation Budget in the Save As field, choose a Save
location (the Desktop works just fine), and then click Save.

After you click Save, Xcode creates the project and opens the project
window — which should look like Figure 5-2.

You'll work in the Vacation Budget .m file for the balance of this chapter.

ann ™ Vacation Budger
| 10.6 | Debug | #8664 ~| [& -] = "f,;\ & @ Q-
Ovendew Action Build and Run Tazkx Info Search
Groups & Files File Narme: &| 4 Code o &
s vacation Rudget B | K™ Foundation framesark
* Source W Vacation B

] Documentation Vacation Budger.

AR A8

External Frameworks anc | [w] Vacation Budget m v
- Produsts w Vacation Budget Prefix.pch
* B Targers
4 Executables

v, Find Results
(% Boakmarks
SCM

Found 5 items in T vacation Budget

7 08 Part ll: Speaking the Language of Objective-C

6. Start with an empty main function.

I cover this in Chapter 4. You will need to delete all of the statements in
main except for return 0; so that you end up with a main function
that looks like:

#import <Foundation/Foundation.h>
int main (int argc, const char * argv[]) {

return 0;

3

7. Add the code in bold between the first brace and the return 0
statement.
<MBER . . .
Just a reminder about statements. In some cases (like the following one),
you'll see statements on two lines in the book. I have to do that in order to
fit the code on the page; you should simply use one line where you can.

#import <Foundation/Foundation.h>
int main (int argc, const char * argvl[]) {

float exchangeRate = 1.2500;
double budget = 1000.00;
double euroTransaction;

budget -= 100;

NSLog (@"Converting 100 US dollars into euros leaves
$%.2f", budget);

euroTransaction = 100*exchangeRate;

budget -= euroTransaction;

NSLog (@"Charging 100 euros leaves $%.2f", budget):;

return 0;

}
8. Leave Overview menu on the left side of the toolbar, and make sure
the selection is “10.6 | Debug | x86_64".
I explained this in Chapter 2.
9. Select the Build and Run button in the Project Window toolbar.

In Chapter 4, I gave you other options — press $8+Return or choose
Build=>Build and Run (from the main menu to build and run the appli-
cation. In this chapter, and from now on, I'll only tell you to select the
button, but feel free to do it anyway.

10. If necessary, open the Xcode Console, which displays your program’s
output, by selecting Run=>Console or by pressing Shift+38+R.

Chapter 5: Functions and Data Structures 1 09

Your output should look like the following. (Note: I removed the time stamp
and process id that tells you when and where the output string originated,
and I'll do that for the balance of this chapter and book.)

Converting 100 US dollars into euros leaves $900.00
Charging 100 euros leaves $775.00

This code is pretty simple. For a cash transaction — that is, when [am con-
verting my dollars into euros, or actually paying in dollars — you simply
subtract 100 from the budget using the compound assignment subtraction
operator to simulate a straight foreign exchange transaction.

budget -= 100;

For a charge transaction. you convert the number of euros you are charging
into dollars and store that amount as a euroTransaction.

euroTransaction = 100*exchangeRate;
Then you subtract that amount from the budget to simulate a charge transaction.
budget -= euroTransaction;

S
/. O You can find the completed project on the CD in the Example 5A folder, which
is in the Chapter 5 folder.

Defining and Declaring Data Structures

The budget-tracking system covered in the preceding section shows you how
to write a program that does something more or less useful. In this section,

[cover data structures, which are data elements grouped together under one
name, and show you how to use them in your program.

You can declare the built-in data types as variables. But what about those
situations when the data you need to work with, or on, is really more than
one variable — it is a logical collection of variables that hang out together
because they have some relationship to each other. For example, the data I
used in the preceding example are all related to each other and provide the
data needed for this whole idea of budgeting.

float exchangeRate;
double budget;
double euroTransaction;

7 ’ 0 Part ll: Speaking the Language of Objective-C

9,

SMBER

WE CD
&

Another example is an address book, where you would want all of the infor-
mation about a person grouped in a single entity. You can easily do that using
a data structure (struct). Data structures are defined in Objective-C using
the following syntax:

struct structName {

type memberlName;
type member2Name;

};...

A struct tells the compiler that this is a data structure. structName is a
name for the structure type — when you define a struct, you are actually
defining a new data type that can be used just like the built-in types such

as int and double. Within the braces { } is a list of the variables that are
included in this struct, which are called members, each one specified with
a type and a valid identifier as its name. And, yes, structures can have other
structures as members, although a structure can’t be a member of itself.

Variables included in a struct are called members.
Just as [would with any other variable, | have to declare a struct when I use it.
struct structName structVariablel, structVariable2 ... ;

When you declare a structure, the compiler reserves enough memory to hold
the data, just as it does for the built-in types (for example, 4 bytes for an int),
although here the compiler has to figure out how much to reserve by adding
up all the requirements for each of the types that will be in the structure.

In the preceding example, structVariablel and structVariable?2 are
the variables’ names (identifiers) for the structures I declared. Since [have
two declarations, memory is reserved for each. (As [mention in Chapter 4,
you can declare more than one variable of the same type in one statement.)

What you are going to do now is group exchangeRate, budget, and
euroTransaction into a struct named budget and then use the budget
struct in your program.

If you have been following along with me, I'll be extending what you just did

in the first example. If you would like to start from a clean copy of the project
from where you left off, you can use the project found in the Example 5A folder
found in the Chapter 5 folder.

1. Return to your project and add the following code in bold, right after
the first line #import <Foundation/Foundation.h>to Vacation
Budget .m.

Chapter 5: Functions and Data Structures

#import <Foundation/Foundation.h>

struct budget {
float exchangeRate;
double budget;
double euroTransaction;
};

This code defines the struct budget that contains the three variables I
referred to earlier, exchangeRate, budget, and euroTransaction

2. Delete the code you previously entered in the main function and
enter the code (in bold) as shown here:

#import <Foundation/Foundation.h>

struct budget {
float exchangeRate;
double budget;
double euroTransaction;
IF

int main (int argc, const char * argv[]) {
struct budget vacationBudget;

vacationBudget .exchangeRate = 1.2500;
vacationBudget.budget = 1000.00;

vacationBudget.budget -= 100;
NSLog (@"Converting 100 US dollars into euros leaves
$%.2f", vacationBudget.budget);
vacationBudget.euroTransaction =
100*vacationBudget .exchangeRate;
vacationBudget .budget -=
vacationBudget.euroTransaction;
NSLog (@"Charging 100 euros leaves $%.2f",
vacationBudget .budget) ;

return O;

}

3. Select the Build and Run button in the Project Window toolbar to
build and run the application.

Your output in the Debugger Console should look like this:

Converting 100 US dollars into euros leaves $900.00
Charging 100 euros leaves $775.00

111

7 ’ 2 Part ll: Speaking the Language of Objective-C

Q

<NECD

S

You can find the completed project on the CD in the Example 5B folder, which
is in the Chapter 5 folder.

The code in the preceding numbered list is not all that different from the
program you coded in the section “Thinking About an Application,” with a
couple of exceptions.

You define a struct that you named budget (you did that outside the
main function, which makes the definition usable by any function in the file
Vacation Budget.m, as you will see). You then declare a struct budget
(which allocates some memory for its variables), named europe, just as you
would declare any other variable.

As you can see, Objective-C treats this data structure (or struct) exactly
as it does its built-in types. Or at least, almost the same, since the type is
struct budget, as opposed to simply budget. (I'll show you how you can
omit the struct next).

It is important to understand the difference between the structure type name,
and a variable of this (structure) type. You can declare as many variables
(for example, europe and even england) as you like of this structure type
(struct budget), just as you can ints, floats, doubles, and so on.

Once you have declared the variable of that structure type, you can operate
directly on its members. To do that, you use the dot operator, a (), inserted
between the structure type variable’s name (identifier) and the member
name. For example:

vacationBudget.budget = 1000.00;
vacationBudget .budget -= 100;

Using Defined Data Types

When you define a struct, you are creating a new data type, but it can be a
bit awkward to use. Every time [use it [have to use

struct budget someBudget;

Since I hate having to type more than absolutely necessary, I'm going to
show you a way to avoid using struct in a declaration. This also makes a
struct look more like a built-in data type. All you need to do is use the key-
word typedef (this is another example of a statement in Objective-C that
describes how data is structured).

typedef type typeName;

Chapter 5: Functions and Data Structures 1 ’3

Here type is a built-in type, or one you created using a struct (struct
budget, for example), and typeName is the name for the new type you are
defining. For example:

typedef struct budget budget;

You can also create a new type name for a built-in type.
typedef int theTypeAlsoKnownAsInt;

You could then use that type name instead of int in the following:
theTypeAlsoKnownAsInt anInt;

To define the budget typedef in my program, all you have to do is add one
line of code (in bold).

struct budget {

float exchangeRate;
double budget;

double euroTransaction;

J 7

typedef struct budget budget;

Now you can use the new type — budget — just like any of the built-in types
(no struct required). For example:

budget vacationBudget;

To make things even easier, there is a way to define a struct and a typedef in one
fell swoop. This is then followed by the declaration of the variable of that type.

typedef struct {
float exchangeRate;
double budget;
double euroTransaction;
} budget;

struct budget vacationBudget;

This is more consistent with the way you need to think about classes and
objects, and the way I'll have you do it in your program.

You need to be aware of the two-step process I explained first, because you
may see it done that way in some of the framework header files. It enables you
to define a struct, and declare a variable of that type in one fell swoop, which is
then followed by the typedef:

7 ’4 Part ll: Speaking the Language of Objective-C

struct budget {
float exchangeRate;
double budget;
double euroTransaction;
} vacationBudget;

typedef struct budget budget;

typedef does not actually create different types — it only creates a new
name for whatever you specify. As far as the compiler is concerned, when it
sees budget, it just understands budget to be struct budget.

As you will see, you will no longer have to use struct when you declare a
variable of type budget. And just as before, with struct budget, when you
declare a variable as type budget, you are reserving memory for it.

1. Delete what you entered previously so that Vvacation Budget.m
looks like this:

#import <Foundation/Foundation.h>

int main (int argc, const char * argv[]) {

return 0;

}

2. Add the following code in bold, right after the first line, # import
<Foundation/Foundation.h>:

#import <Foundation/Foundation.h>

typedef struct {
float exchangeRate;
double budget;
double euroTransaction;
} budget;

This defines the struct budget that contains the three variables |
referred to earlier: exchangeRate, budget, and euroTransaction. It
also does the necessary typedef.

3. Enter the rest of the code shown in bold.
#import <Foundation/Foundation.h>
typedef struct {

float exchangeRate;
double budget;

Chapter 5: Functions and Data Structures 7 ’ 5

double euroTransaction;
} budget;

int main (int argc, const char * argv[]) {
budget vacationBudget;

vacationBudget .exchangeRate = 1.2500;
vacationBudget.budget = 1000.00;

vacationBudget .budget -= 100;
NSLog (@"Converting 100 US dollars into euros leaves
$%.2f", vacationBudget.budget) ;
vacationBudget.euroTransaction =
100*vacationBudget .exchangeRate;
vacationBudget .budget -=
vacationBudget.euroTransaction;
NSLog (@"Charging 100 euros leaves $%.2f",
vacationBudget .budget) ;

return 0;

}

4. Select the Build and Run button in the Project Window toolbar to
build and run the application.

Your output in the Xcode Debugger Console should look like this:

Converting 100 US dollars into euros leaves $900.00
Charging 100 euros leaves $775.00

You can find the completed project on the CD in the Example 5C folder, which
is in the Chapter 5 folder.

Writing Functions

In this section, you collect together the statements previously coded in main
that display the results of a transaction into functions that do the same thing.
One of the advantages of using a module like a function is that once you
check that this set of statements works, you don’t have to worry about that
function anymore.

The set of statements called a function has a name, and you can call that set
of statements by this name to have its code executed. This concept of using
functions is as fundamental to programming as any of the instructions in
Chapter 4. So fundamental, in fact, you can never hide from functions — it is
in a function, main, after all, where you have been doing all your work so far.

7 ’ 6 Part ll: Speaking the Language of Objective-C

The main function is required in your program because when you run your
application, main is where execution of the code will start.

Take a look at an example of main again:

int main (int argc, const char * argv[]) {
NSLog (@"Hello, World!");

return 0;

}

You see a return type (int), a name (main), some arguments inside paren-
theses, and then some instructions inside braces ({}). This structure is the
basic structure of a function. Now you will see how to create your very own
function. I'll explain the main function a bit more in Chapter 7.

For now, you’ll modify the program you just wrote to use functions. You start
by adding code to main, something that is old hat to you by now, and then
you move the code you wrote into a function.

If you have been following along with me, I'll be extending what you just did in
the previous example. If you would like to start from a clean copy of the proj-

ect where you left off, you can use the project found in the Example 5C folder,

which is in the Chapter 5 folder.

1. Start with the code you already have and add the following code in
bold, right after the line } budget.

typedef struct {

float exchangeRate;

double budget;

double euroTransaction;
} budget;

budget vacationBudget;

You've now declared the variable vacationBudget outside of the main
function, and in a way that makes it accessible to other functions, such
as the ones you are about to create. I explain why you need to do this,
which is known as variable scoping, in the next section.

2. You now add some functions. Right after the line

budget vacationBudget;

add the following lines of code:

void spendDollars (double dollars) {

vacationBudget .budget -= dollars;
}

Chapter 5: Functions and Data Structures 1 ’ 7

void chargeEuros (double euros) {

vacationBudget.euroTransaction =
euros*vacationBudget .exchangeRate;
vacationBudget .budget -=
vacationBudget.euroTransaction;

3

You probably noticed that all you did was move the line of code

vacationBudget .budget -= dollars;

from main to the new function spendbDollars, and the lines of code

vacationBudget.euroTransaction =
euros*vacationBudget .exchangeRate;
vacationBudget .budget -=
vacationBudget.euroTransaction;

from main to the new function chargeEuros.

3. In the main function, delete the commented code with the
strikethrough, and add the code in bold.

+Fbudget—vacationBudgets

vacationBudget .exchangeRate = 1.2500;
vacationBudget.budget = 1000.00;
double numberDollars = 100;

double numberEuros = 100;

+/vacatitonBudgetbudget——1665
spendDollars (numberDollars) ;

S 2 —vacationBudgetbudget)+
NSLog (@"Converting %.2f US dollars into euros leaves
$%.2f", numberDollars, vacationBudget.budget);

+FvacationBudgeteurofransaction—=

chargeEuros (numberEuros) ;
+/NSEogtetharging—166——euros—teaves—S$%2f4
vacatitonBudgetbudget)+
NSLog (@"Charging %.2f euros leaves $%.2f",
numberEuros, vacationBudget .budget) ;

As you can see, you deleted the line of code

budget vacationBudget;

7 ’ 8 Part ll: Speaking the Language of Objective-C

because you declared it in Step 2.

You declared two new variables:
double numberDollars = 100;
double numberEuros = 100;

These represent individual transactions (and there will be more, of
course), and I'll use these variables as the function arguments.

You replaced the code

vacationBudget.budget -= 100;

with
spendDollars (numberDollars) ;
which calls the function spendbDollars, passing it the number of dol-
lars (numberDollars) I just spent, as an argument.
And, similarly, you replaced the code

vacationBudget.euroTransaction =
100 *vacationBudget.exchangeRate;
vacationBudget .budget -=
vacationBudget.euroTransaction;

with

chargeEuros (numberEuros) ;
which calls the function chargeEuros to update my budget to take into
account what I just charged on my credit card in euros.

You also replaced the two NSLog statements

NSLog (@"Converting 100 US dollars into euros leaves
$%.2f", vacationBudget.budget) ;
NSLog (@"Charging 100 euros leaves $%.2f",
vacationBudget .budget) ;

with

NSLog (@"Converting %$.2f US dollars into euros leaves
$%.2f", numberDollars, vacationBudget.budget) ;

NSLog (@"Charging %.2f euros leaves $%.2f",
numberEuros, vacationBudget.budget) ;

to display the variable that contains the amount being spent.

Your code should look like Listing 5-1.

Listing 5-1: Moving Instructions into Functions

Chapter 5: Functions and Data Structures 1 ’ 9

#import <Foundation/Foundation.h>

typedef struct {
float exchangeRate;
double budget;
double euroTransaction;
} budget;

budget vacationBudget;

void spendDollars (double dollars) {

vacationBudget .budget -= dollars;
}

void chargeEuros (double euros) {

vacationBudget.euroTransaction =
euros*vacationBudget .exchangeRate;
vacationBudget .budget -= vacationBudget.euroTransaction;

}
int main (int argc, const char * argv([]) {

vacationBudget .exchangeRate = 1.2500;
vacationBudget.budget = 1000.00;
double numberDollars = 100;

double numberEuros = 100;

spendDollars (numberDollars) ;
NSLog (@"Converting %.2f US dollars into euros leaves
$%.2f", numberDollars, vacationBudget.budget) ;
chargeEuros (numberEuros) ;
NSLog (@"Charging %.2f euros leaves $%.2f", numberEuros,
vacationBudget .budget) ;

return 0;

}

4. Select the Build and Run button in the Project Window toolbar to
build and run the application.

Your output in the Debugger Console should look like this:

Converting 100 US dollars into euros leaves $900.00
Charging 100 euros leaves $775.00

7 20 Part ll: Speaking the Language of Objective-C

<NECD

N

NBER
‘x&
&

You can find the completed project on the CD in the Example 5D folder, which
is in the Chapter 5 folder.

What you have done here is simply to move things around. You haven’t
changed functionality.

At this point, the amount of code is trivial, so why you would want to move code
into functions may not be compellingly obvious. But humor me; one of the uni-
versal laws of programming is that things can get very complex very quickly, and
functions (as modules), as I explain in Chapter 3, will make your life easier.

Now, take a moment to examine what you did here.
When you entered the lines of code

void spendDollars (double dollars) {

vacationBudget .budget -= dollars;
}

You declared a function spendDollars.

Notice that all you actually did to create the function body was cut and paste
the original code that was in the main function into the new function body.
You did something called factoring your code. You changed the way things
are organized in your program without changing its (observable) behavior.
As you develop applications, you'll find yourself doing that a lot in order to
improve code readability, simplify code structure, make it consistent with the
principles of object-oriented programming that improve maintainability and
extensibility, and so on.

To be more precise, which is important when working with computers, a
function looks like this:

returnType functionName (functionArgumentl, ...) {

statements;
return expression;

}
Let me explain what each of the pieces are.

v returnType is the data type of the data returned by the function. Every
function can return something when it is finished. The function might
return something like the cost of one euro in U.S. dollars or a status indi-
cator, such as 0, that tells you the function successfully completed what
you asked it to do. In fact, that’s what you have been doing when you
end your programs with return 0 inmain.

Chapter 5: Functions and Data Structures 1 2 ’

The return value is optional. If you want to declare a function that does
not return a value, as you did in the function spendbollars, use the
data type of void. If you leave out the return type, the compiler will
assume the return type is int, and annoy you with warnings.

v functionName is the, well, name of the function; it is how you will call it.
This is what you did when you replaced the lines of code

vacationBudget.budget -= 100;
with
spendDollars (numberDollars) ; ;

This is known as calling the function. You told the compiler you want to
execute the lines of code you gathered under the function name spend-
Dollars.

Vv functionArgument (as many as needed or none) are enclosed in the
parentheses after the function name. These can be built-in types or even
your own data types. Each argument consists of a data type specifier
followed by an identifier, like all of the variable declarations you did in
Chapter 4. This allows you to pass data to the function when it is called.
The arguments, if there are more than one, are separated by commas.

The arguments, like the return value, are optional. The function declara-
tion

void spendDollars (double dollars) {

has one argument. If there were no arguments, you could declare it as

void spendNoDollars (void) {

or

void spendNoDollars () {
You could simply leave out the void in the argument list, and the com-
piler, when there are no arguments, assumes void. (As opposed to when

you leave out the return type, in which case the compiler assumes an
int.)

Just as you have been doing in the main function, you could have also declared
variables inside the functions you code. These are called local variables.

float aLocalVaraible = 1.2643;

When you declare a local variable and the function is called, memory is allo-
cated for that variable and initialized if necessary.

7 22 Part ll: Speaking the Language of Objective-C

WBER
‘x&
&

|
Figure 5-3:
The parts of
a function.
|

For example, in Step 7 in the section “Thinking about an Application,” you
declared the following local variables in main:

float exchangeRate = 1.2500;
double budget = 1000.00;
double euroTransaction;

Execution begins at the open brace and continues through to the return
statement. If the return type is void, the return statement is optional. If it
isn’t present, execution returns to the calling function at the closing brace.

Always remember that the format for calling a function includes specifying
its name and enclosing its arguments between parentheses. Even if there are
no arguments, you need the parentheses anyway. For that reason, the call to
spendNoDollars is

spendNoDollars () ;
This is how the compiler knows that this call is a call to a function and not
the identifier of a variable or some other statement. The following call would
generate admonishments from the compiler:

spendNoDollars;
All the various parts of a function are illustrated in Figure 5-3.

Return Type Function Name Function arguments

(AR 1
voi d doSomret hi ngFor Me (int useThis, float useThisToo) {

function body

}

Getting back to spendDollars: You created a new function with one argu-
ment and no return type. Also notice the general format for the name is
lowercase.

In main, you call the function spendbDollars with the variable numberDol-
lars (which is a double) as the argument. This corresponds to the double
dollars argument in the spendDollars function declaration.

At the point at which the function is called from within main, the control is
lost by main and passed to the function spendDollars.

WMBER
@&
&

Chapter 5: Functions and Data Structures 1 23

The argument is treated exactly the same way that other local variable decla-
rations are treated. That is, when you call the function

void spendDollars (double dollars) {

vacationBudget .budget -= dollars;
}

you are actually declaring a local variable double dollars that is initial-
ized when the function is called with the value that you passed in as the argu-
ment. The only difference between double dollars and something like

float numberDollars = 100;

is that the variable dol1lars sits in the declaration, separated by commas,
rather than in the body of the function.

You need to understand another thing. When you call the function
spendDollars (numberDollars) ;
the dollars function argument is a copy of numberDollars.

If you modify dollars in the spendDollars function, it will not affect
numberDollars in main. That is because when a function is called, the
arguments are copies of the variables you use as the arguments.

Within the function spendDollars, you could also further assign these argu-
ments to local variables if you wanted to; but in this function, you just use
the argument to subtract the amount from the budget.

The closing brace, }, terminates the function spendbollars, and returns
the control back to the function that called it in the first place (in this case,
main), and the program continues chugging along from the same point at
which it made the function call.

You also can have a return statement in the function. For example, if you
want to also return the value of the euro charge transaction back to main,
you can declare and implement the function in this way:

double returnDollarsSpent (double euros) {

vacationBudget.euroTransaction =

euros*vacationBudget.exchangeRate;
vacationBudget .budget -= vacationBudget.euroTransaction;
return vacationBudget.euroTransaction;

}

7 24 Part ll: Speaking the Language of Objective-C

|
Figure 5-4:
Calling a
function.
|

And the statement
return vacationBudget.euroTransaction;
will return control back to main. You can see the relationship between how a

similar function is called and its various parts in Figure 5-4.

armount | nDol | ars = returnDol | arsSpent (nunber Dol | ars);

|

doubl e returnbDol | arsSpent (doubl e nunberDol | ars) {

doubl e nunber Dol | ars; < |
Conceptually

At this point, go back to main and look at it again.
int main (int argc, const char * argv[])

main is nothing more than a function with two arguments — int argc and
const char * argv[] — thatreturns an int. (Note: The second argument
is an array, which I explain in Chapter 7.)

Scope of variables

While I haven’t gotten into classes and encapsulation yet (which I explain a
little in Chapter 3), you do need to realize that variables are not accessible
from every nook and cranny in your program. In the preceding examples,
variables are accessible only within the function in which they are declared
(that is, within the braces). This is also referred to as scoped to the function.

There is actually a little more to it than that. There can be braces (which
define a block) within a function, in which case variables are scoped within
that code block. A code block is a group of statements grouped together in a
block enclosed in braces: { }, as shown here.

{ statementl;
statement?2;
statement3; }

(You see examples of blocks in Chapter 4, where I explain if statements, and
you see a lot more of them in Chapter 9, where I explain more about loops
and control structures.)

A
gg‘

NG/

Chapter 5: Functions and Data Structures 1 2 5

That means that earlier in the main function
int main (int argc, const char * argvl[]) {

budget vacationBudget;

the variable budget was accessible only to instructions within the main
function.

So if you move the code in main
vacationBudget .budget -= dollars

into the function spendDollars , you won’t have access to vacationBudget.
budget any longer.

You may want to try this yourself.

In order to be able to access vacationBudget from any function, you have
to make it global, by moving both its definition (the struct statement) and
subsequent declaration (budget vacationBudget;) to the file scope (that
is, in the file but not within any particular function). That’s what happened
when you did the following:

#import <Foundation/Foundation.h>

typedef struct {
float exchangeRate;
double budget;
double euroTransaction;
} budget;

budget vacationBudget;

WEell, in general, this does violate some of the basic ideas of encapsulation I
mention in Chapter 3. That being said, there are a few limited occasions when
you do need variables accessible to all functions, although this is really not one
of them. In Chapter 6, using objects allow me to get rid of this global reference.

Actually, the issues of scoping, especially global scoping are more complex
than this. Fortunately, global scoping is something you won’t have to be too
concerned about until your programs become very complex, and you can
learn about it at your leisure.

Variable scoping is all nicely illustrated in Figure 5-5.

7 26 Part ll: Speaking the Language of Objective-C

typedef struct{
fl oat exchangeRate;

Global scope doubl e budget ;
doubl e euroTransaction;

} budget;

budget vacati onBudget;

}

int main (int argc, const char * argv[]){

vacat i onBudget . exchangeRat e = 1. 2500;
vacat i onBudget . budget = 1000. 00;

Variables scoped doubl e number Dol l ars = 100
e 10 the function main doubl e number Euros = 100;
Figure 5-5:
Variable
scoping. return O;
—— }
Unions

Unions allow the same portion of memory to be accessed using different vari-
able names and as (potentially) different types. I'll explain a little about them
since you may come across them in other people’s code, but I won’t get into

the topic too deeply since you are not likely to use them yourself.
While a union looks a lot like a struct, it is very different.

union theBudget {

double budget;

long long amountIWantToSpend;
} europeUnion;

Both budget and amountIWantToSpend occupy the same physical space in
memory. This is illustrated in Figure 5-6. Its size is one of the largest elements
in the declaration. Since both of them are referring to the same location in
memory, the modification of one is the same as modifying both — you cannot
store different values in them independent of each other. Using unions in this

way is of value when you need to conserve space.
Here is something else you might see:

struct theBudget ({
double budget;
union {
double euros;
double pounds;
b7
b

|
Figure 5-6:
How a union
looks in
memory.
|

Chapter 5: Functions and Data Structures 1 2 7

Using a union enables you to access the same variable using two different
names. While this is an amusing novelty, it actually violates some of the basic
principles of encapsulation that I discussed in Chapter 3.

Once again, | remind you that in a union, the members euros and pounds
occupy the same physical space. This means that modifying the value of one
is identical to modifying the value of the other.

< budget

amount|WantToSpend >

Enumerations (enum)

Enumerations allow you to create new data types in a similar way you did
earlier with the struct.

typedef enum {
valuel,
valueZz,
value3,

} enumerationName;

For example, you could create a new type of variable called currency to
store the various currencies you might use in your program with the follow-
ing declaration:

typedef enum {dollar, euro, pound} currency;

The “mechanics” of an enum actually work the same was as a struct, so the
alternative ways of defining and declaring a struct apply to an enum as well.

Enumerations are actually ints. If you don’t specify it, the integer value of
the first value (dollar) will be 0. If you display the value of dollar, you get
0, the value of the euro will be 1, and the pound will be 2. You can also spec-
ify an integer value for any of the constant values that your enumerated type
can take. If the constant value that follows it is not given an integer value, it is
assigned the value of the previous one plus 1. For example:

typedef enum {dollar=1, euro, pound} currency;

7 28 Part ll: Speaking the Language of Objective-C

In this case, dollar will be 1, euro 2, and pound 3.

The possible values that variables of this new type currency may take are
the new constant values included within braces. For example, once the cur-
rency enumeration is declared the following works:

currency aCurrency = dollar;
aCurrency = pound;

Declaring Function Prototypes

<ME CD

S
&

Up until now, you have had to define your functions (provide the code for the
function) before they were called. You may have wondered about the order I
had you enter code, or even experimented with the order and found yourself
chastised by the compiler.

With a function prototype, you inform the compiler that it will eventually see
a definition of the function — so trust me, and let me use it before you get to
it. As a result, the compiler will let you use it before it is defined, but if you
double-cross the compiler, it won’t be a happy camper, and neither will you.

To create a function prototype, all you do is this:
void spendDollars (double dollars) ;

Doing so means that you can move the implementation of spendbollars to
after main. The value of this will become obvious in the next chapter.

If you have been following along with me, I'll be extending what you just did in
the previous example. If you would like to start from a clean copy of the proj-

ect where you left off, you can use the project found in the Example 5D folder,
which is in the Chapter 5 folder.

1. Start with the code you already have and add the function prototypes

in bold and move the function definitions for spendbDollars and
chargeEuros to after main as I have in Listing 5-2.

Listing 5-2: Function Prototypes

#import <Foundation/Foundation.h>

typedef struct {
float exchangeRate;
double budget;
double euroTransaction;
} budget;

Chapter 5: Functions and Data Structures 7 2 9

budget vacationBudget;

void spendDollars (double dollars);
void chargeEuros (double euros);

int main (int argc, const char * argv([]) {

vacationBudget .exchangeRate = 1.2500;
vacationBudget .budget = 1000.00;
double numberDollars = 100;

double numberEuros = 100;

spendDollars (numberDollars) ;

NSLog (@"Converting %.2f US dollars into euros leaves
$%.2f", numberDollars, vacationBudget.budget) ;

chargeEuros (numberEuros) ;

NSLog (@"Charging %.2f euros leaves $%.2f", numberEuros,
vacationBudget .budget) ;

return 0;

}
void spendDollars (double dollars) {

vacationBudget .budget -= dollars;
}

void chargeEuros (double euros) {

vacationBudget.euroTransaction =
euros*vacationBudget .exchangeRate;
vacationBudget .budget -= vacationBudget.euroTransaction;

}

2. Select the Build and Run button in the Project Window toolbar to
build and run the application.

Your output in the Debugger Console should look like this:

Converting 100 US dollars into euros leaves $900.00
Charging 100 euros leaves $775.00

You can find the completed project on the CD in the Example 5E folder, which
is in the Chapter 5 folder.

’30 Part ll: Speaking the Language of Objective-C

Extending the Functionality of a Program

Since I am flying all the way to Europe from San Francisco, I decided that I
might as well visit London. To me there’s nothing like a spring shower with
the wind blowing hard enough to make the rain go sideways. But before I go, 1
am going to have to make some additions to my program.

Obviously, the first thing that [will need to do is create a new budget for my
trip to England. Doing that is pretty easy.

budget vacationBudgetEngland;

I'll also change the name of the old budget, vacationBudget, to vaca-
tionBudgetEurope to make things clearer. You can see that in Listing 5-3.

The problem I face, though, is how do I update the vacationBudget
England variable? Right now, with a single budget, [updated the vacation
Budget from each of the functions. But if | have two budgets, vacationBudget
Europe and vacationBudgetEngland, I need a way to let the function
know which budget it should update.

One way would be to have a set of functions for each country. I could create
spendDollarsInEurope and spendDollarsInEngland functions (and
corresponding chargeForeignCurrencyEurope and chargeForeign-
CurrencyEngland functions that would convert euros and pounds into
dollars ,respectively), and each one them would update the corresponding
budget. For example:

void spendDollarsInEurope (double dollars) {
vacationBudgetEurope.budget -= dollars;

3

void spendDollarsInEngland (double dollars) {
vacationBudgetEngland.budget -= dollars;
}

Somehow this doesn’t work for me. Adding new functions for each country
[want to visit would not only be a lot of work, but also it seems like a waste,
since, as you can see, they all are basically the same function — just operat-
ing on a different budget.

And as you could image, adding more countries would require coding and
testing new functions and would quickly get out of hand. Remember, you
want to make your programs easy to extend and enhance.

Chapter 5: Functions and Data Structures 13 ’

The alternative, which is the more sane approach, would be to pass to the
function the budget variable it should operate on as an additional argument.
So if | am spending dollars in Europe, I pass in the vacationBudgetEurope.
If I am spending dollars in England, I pass in the vacationBudgetEngland.
(I would also need to declare

That way the functions would operate on the right data.

The mechanics of doing that are not quite that straightforward. While, as
[said earlier, I can pass a struct as an argument to a function, that is not
going to get me what I want. For example, if [changed the spendDollars
function to take a budget as an argument.

void spendDollars (budget theBudget, double dollars) {
theBudget .budget -= dollars;
}

And I called it and then displayed the results (numberDollarsInEuroland
is a new variable [declared that is initialized with the amount of a dollar
transaction in Europe)

spendDollars (vacationBudgetEurope,
numberDollarsInEuroland) ;
NSLog (@"Converting %.2f US dollars into euros leaves
$%.2f", numberDollarsInEuroland,
vacationBudgetEurope.budget) ;

[would find:
Converting 100.00 US dollars into euros leaves $1000.00

Whoops! This is because, as I also said earlier, when you pass in a variable
as an argument in a function, it is copied. In order for a function to modify a
member in a budget variable, you have to use a pointer to the budget variable
as the argument. The function could then operate on the member (variable)
directly.

To do that, [will change the spendDol1ars function to take a pointer to a
budget as an argument and use that pointer to access and modify a member.

void spendDollars (budget *theBudget, double dollars) {
theBudget->budget -= dollars;
}

I could then call it and display the results:

’32 Part ll: Speaking the Language of Objective-C

spendDollars (&vacationBudgetEurope,
numberDollarsInEuroland) ;
NSLog (@"Converting %.2f US dollars into euros leaves
$.2f", numberDollarsInEuroland,
vacationBudgetEurope.budget) ;
The results will be

Converting 100.00 US dollars into euros leaves $900.00

Although I cover pointers in Chapter 4, [didn’t really explain how to use
them in this way, so I'll do that now.

Think of vacationBudgetEurope as a safety deposit box full of money. Up
until now, the function withdrew money at will. When I use a pointer, instead
of passing it the box, the function is passed the address of the box. That is
what the &vacationBudgetEurope is in the function call.

spendDollars (&vacationBudgetEurope,
numberDollarsInEuroland) ;

&vacationBudgetEurope is the address of the vacationBudgetEurope
variable.

Then in the spendDollars function itself, instead of taking money out of the
box directly, the function first finds the box using the address. That is accom-
plished in the spendDollars using the arrow operator. The arrow operator
tells the compiler | want to operate on the contents of an address.

void spendDollars (budget* theBudget, double dollars) {

theBudget->budget -= dollars;
}

The arrow operator is a dereference operator that is used with pointers to
structs (and to objects as well) with members that allow you to access a
member of an object to which you have a reference (address). What you are
doing is called dereferencing a pointer.

While for structs and objects, the arrow is commonly used, I could also
have accessed the budget variable in the way I show you in Chapter 4:

(*theBudget) .budget -= dollars;

Passing on the pointer to the appropriate budget makes adding a trip to
England pretty straightforward. I need to declare and initialize the variables
necessary for my new England excursion.

9,

budget vacationBudgetEngland;
vacationBudgetEngland.exchangeRate = 1.5000;
vacationBudgetEngland.budget = 2000.00;
double numberDollarsInPoundland = 100;
double numberPounds = 100;

And I need to xxxx the code to simulate the transactions.

spendDollars (&vacationBudgetEngland,
numberDollarsInPoundland) ;

NSLog (@"Converting %.2f US dollars into pounds
leaves $%.2f", numberDollarsInPoundland,
vacationBudgetEngland.budget) ;

chargeForeignCurrency (&vacationBudgetEngland,
numberPounds) ;

NSLog (@"Charging %.2f pounds leaves $%.2f",
numberPounds, vacationBudgetEngland.budget) ;

[also need to change the spendDollars and chargeForeignCurrency
functions as I just described, to use the pointer to the vacationBudget-
Europe and vacationBudgetEngland variables.

void spendDollars (budget* theBudget, double dollars) {

theBudget-> budget -= dollars;
}

void chargeForeignCurrency (budget* theBudget, double
foreignCurrency) {

theBudget->exchangeTransaction =
foreignCurrency*theBudget->exchangeRate;
theBudget->budget -= theBudget->exchangeTransaction;
}

I'll also change a few names, from vacationBudget to europeVacation-
Budget as I mentioned, and the struct member name from euroTransac-
tionto transaction. That, of course, requires changing the code that used
those names as well.

Well, it’s back to work. In Listing 5-3, I bolded the changes.

é,\\>\E CD If you have been following along with me, I'll be extending what you just did in

the previous example. If you would like to start from a clean copy of the proj-
O ect where you left off, you can use the project found in the Example 5E folder,
which is in the Chapter 5 folder.

Chapter 5: Functions and Data Structures 133

734 Part ll: Speaking the Language of Objective-C

1. In the main function, delete the commented code with the
strikethrough and add the code in bold in Listing 5-3.

Listing 5-3: Adding More Functionality

#import <Foundation/Foundation.h>

typedef struct {

float exchangeRate;

double budget;
+/doubte—eurofransaction;

double exchangeTransaction;
} budget;

:tgg: :EISEIEI. :TIBuc}getl
budget vacationBudgetEurope;
budget vacationBudgetEngland;

+/votd—spendbottars tdoubte dottars)i;
+Fvotd—chargekFuros tdoubte—euros)
void spendDollars (budget* theBudget, double dollars);
void chargeForeignCurrency (budget* theBudget,

double foreignCurrency);

int main (int argc, const char * argv([]) {

+FvacationBudgetexchangeRate =12560+
vacationBudgetEurope.exchangeRate = 1.2500;
+FvacationBudgetbudget—=1666-06+
vacationBudgetEurope.budget = 1000.00;
7/doubte numberbottars =166+
double numberDollarsInEuroland = 100;
double numberEuros = 100;

vacationBudgetEngland.exchangeRate = 1.5000;
vacationBudgetEngland.budget = 2000.00;
double numberDollarsInPoundland = 100;
double numberPounds = 100;

77/spendbotiarstnumberbotiars);
spendDollars (&vacationBudgetEurope,
numberDollarsInEuroland) ;
7/ NSEogte Converting % 2f S —dottars into euros teaves—
O . 7 I . ’
NSLog (@"Converting %.2f US dollars into euros leaves
$%.2f", numberDollarsInEuroland,
vacationBudgetEurope .budget) ;

+/chargeEuros{numberEuros)+

Chapter 5: Functions and Data Structures 73 5

chargeForeignCurrency (&vacationBudgetEurope,
numberEuros) ;

o . o . 7 7
UacatIOﬂBUdget -bttdgeH 7

NSLog (@"Charging %.2f euros leaves $%.2f", numberEuros,
vacationBudgetEurope.budget) ;
spendDollars (&vacationBudgetEngland,
numberDollarsInPoundland) ;
NSLog (@"Converting %.2f US dollars into pounds leaves
$%.2f", numberDollarsInPoundland,
vacationBudgetEngland.budget) ;
chargeForeignCurrency (&vacationBudgetEngland,
numberPounds) ;
NSLog (@"Charging %.2f pounds leaves $%.2f",
numberPounds, vacationBudgetEngland.budget) ;

return 0;

+/—vacatitonBudgetbudget—=dottars;
77r

void spendDollars (budget* theBudget, double dollars) {

theBudget->budget -= dollars;
}

void chargeForeignCurrency (budget* theBudget, double
foreignCurrency) {

theBudget->exchangeTransaction =
foreignCurrency*theBudget ->exchangeRate;
theBudget->budget -= theBudget ->exchangeTransaction;
}

’36 Part ll: Speaking the Language of Objective-C

<WECD

N

Your output in the Debugger Console should look like this:

Converting 100.00 US dollars into euros leaves $900.00
Charging 100.00 euros leaves $775.00

Converting 100.00 US dollars into pounds leaves $1900.00
Charging 100.00 pounds leaves $1750.00

You can find the completed project on the CD in the Example 5F folder, which
is in the Chapter 5 folder.

Thinking about Extensibility and
Enhanceability

While making the changes you just made does make it easier to add new
countries (all you need to do is declare another budget for New Zealand,
for example, and call the spendDollars and chargeForeignCurrency as
needed). This approach is fraught with danger.

For example, one problem with this kind of module design is that data itself is
accessible to all functions, and an errant function could think it was updating
vacationBudgetEngland and because of a typing or copy-and-paste error
(easily done on my part), it could end up updating vacationBudgetEurope
instead.

Perhaps you think this is one of those theoretical issues that won’t usually
happen if you're doing your job right. Well, when [was doing the code for this
example, | actually did that.

But more importantly, if you ever wanted to change the struct, you would
have to go out and find all the functions that used it and change them. For
example, what if you decided you wanted to change the budget member so
it continued to hold the starting budget, and you wanted to add a new vari-
able whatsLeft to let me know what my remaining balance was? In this pro-
gram, that’s not a problem, since there are only two functions to change. But
in a more complex program, there could be functions all over the place that
are using budget that [would have to find and change.

In addition, this program is not very extensible. If you wanted to have a dif-
ferent kind of budget for New Zealand, for example, one where I tracked my
wool purchases, you would either have add that to all the countries you
visited, even though you didn’t use it anywhere except New Zealand. Or
you would have to create a special struct for New Zealand and rewrite the
spendDollars and spendForeignCurrency to use the new struct. If

Chapter 5: Functions and Data Structures 13 7

you then needed to go back to make a change to the original struct for any
reason, you would have to remember to change both structs, and all the
functions that used them.

Changes like this happen all the time, since, as you can see so far, factoring
(or moving things around) and adding functionality is a way of life in the pro-
gramming biz.

Objects (and classes) provide the solution to both of these problems.

The first problem, the global accessibility of data and the global impact of
modifying the structure of the data, is solved by packaging data with func-
tions that own them into something called an object. Objects allow you to
implement encapsulation — as I explained in Chapter 3. This is the world of
Objective-C’s object-oriented extensions to C, and you'll be exploring objects
in Chapter 6.

Using objects also can help with the second problem. In Chapter 3, I explain
polymorphism, which enables me to add new “more of the same” functional-
ity to my program without impacting the existing code. In Chapter 10, I
show you how Objective-C makes that possible using a mechanism called
inheritance.

’38 Part ll: Speaking the Language of Objective-C

Chapter 6

Adding a Little More Class
to Your Program

In This Chapter

Understanding objects and classes
Dissecting an object-oriented program
Defining the program interface
Implementing the interface

Examining the program logic

Using more than one source file

Getting the naming conventions

Fis chapter covers objects and classes and messages, and the difference
between a program based on functions and global data and one based
on objects. I show you quite a bit about the mechanics of using objects and
classes in your program.

[also introduce you to some basic ideas about encapsulation. Encapsulation
involves more than simply hiding instance variables behind the object’s wall,
as you'll see as you read this chapter and the rest of this book.

[also explain and illustrate some of the advantages of using objects, but to
be frank, I only scratch the surface when it comes to that. As you continue
through this book, I'll illustrate, and you’ll discover on your own, many more.

Grasping Objects and Their Classes

In Chapter 5, I showed you what you would have to do to make your program
easier to extend. You created two functions, spendDollars: and charge-
ForeignCurrnecy:, that used a pointer to a budget variable. You could
then pass in the pointer to europeBudget or englandBudget depending on

7 4 0 Part Il: Speaking the Language of Objective-C

where you were (Europe or England), and the function would operate on the
data for that country.

The program architecture you created looked like the following (I'm going to
omit the function implementation for the time being):

typedef struct {

float exchangeRate;

double budget;

double exchangeTransaction;
} budget;

void spendDollars (budget *theBudget, double dollars) ;
void chargeForeignCurrency (budget *theBudget,
double foreignCurrency) ;

The problem with that, as I pointed out, is that if [wanted to change the
struct, [would have to go out and find all the functions that used it and
change them. While in a program this small that would be simple (there are
only two functions after all), in a more complex program, there could be func-
tions all over the place that were using the budget struct.

This is one of the problems that object-oriented programming solves through
encapsulation.

Moving from Functions and Global
Data to Objects and Classes

As you might guess, object-oriented programs are built around objects — no
surprises here. An object packages together data with the particular opera-
tions that can use or affect that data. A class that provided the same functional-
ity as the budget struct and the functions that used it would look like this:

@interface
Budget : NSObject {
float exchangeRate;

double budget;
double exchangeTransaction;

- (void) spendDollars: (double) dollars ;
- (void) chargeForeignCurrency: (double) foreignCurrency;

@end

Chapter 6: Adding a Little More Class to Your Program

<MBER

WMBER
@&
&

If you look carefully, you can see that I have taken (for the most part) the
elements in the budget struct and the function prototypes and moved them
into a class called Budget (ignore some of the details such as @interface and
@end).

A class definition is like a structure definition in that it defines the data
elements (which are called instance variables) that become part of every
instance. But a class expands the idea of a data structure — containing both
data and functions instead of just data. Functions, however, become methods
that both specify and implement the behavior of a class.

This class definition is a template for an object; it declares the instance vari-
ables that become part of every object of that class and the methods that all
objects of the class can use.

Whereas a class is a structure that represents an object’s type — just like a
struct did in the Chapter 5, an object is something that exists in a comput-
er’s memory. An object is an instantiation (big computer science word here)
of a class. In more down to earth terms, a class is a type (just as a budget or
an int is), and an object is like a variable.

When I use the word class, I am talking about code that you write, and when [
use the word object, | am talking about behavior at runtime.

In Chapter 5, you declared a struct of type budget and then declared two
variables of the type budget.

budget vacationBudgetEurope;
budget vacationBudgetEngland;

When you use a class, you do something similar.

Budget *europeBudget = [Budget new];
Budget *englandBudget = [Budget new] ;

Each instance of a class (object) has memory allocated for its own set of
instance variables, which store values particular to the instance.

When you create an object from a class, you are essentially creating a
struct out there in memory land that holds its instance variables. But while
every object has its own instance variables, all objects of that class share a
single set of methods. How a method knows which object’s instance variables
to use is an interesting story, and one I'll tell you shortly.

Operations (or functions) are known as the object’s methods; the data they
affect are its instance variables. In essence, an object bundles a data structure
(instance variables) and a group of functions (methods) into a self-contained
programming unit. You then ask an object to do something for you, such as
subtract the amount you just spent from your budget, by sending it a message.

141

7 42 Part Il: Speaking the Language of Objective-C

\NG/
Vg\“

When an object receives a message, it then executes the code in the appropri-
ate method.

This encapsulation solves the problem of the widespread impact that chang-
ing a data structure may have. Only an object’s methods that are packaged
with the data can access or modify that data, although an object can, and
often does, make its data available to other objects through its methods.

While on the surface, it may appear that [am just changing some terminology —
methods for functions, instance variables for struct members, and messages
for function calls — essentially, this is a very different approach.

One more thing — in Objective-C, classes have two parts:
v An interface that declares the methods and instance variables of the
class and names its superclass (don’t worry, I'll explain all that).
v An implementation that actually defines the class — the code that imple-

ments its methods.

These two parts are almost always split between two files (although there
can be more), but to make things easier, I'll postpone doing that until later, in
the section “Spreading the Wealth across Files.”

Creating the Interface

You’ll begin your journey through object-oriented wonderland with the inter-
face. The interface in the object-oriented world is the public commitment to
the behavior you can count on from an object.

[want to start with a new project. Chapter 2 explains how to do this in detail,
so if you need more information, refer to that chapter.

1. Launch Xcode.

I'll be having you create a new project here. You can do that or you can
skip Steps 2 through 6 and start with the project in the Chapter 6 Start
Here folder, in the Chapter 6 folder on the CD.

2. Start the New Project Assistant by Choosing File=>New Project from
the main menu to create a new project.

3. In the New Project window, click Application under the Mac OS X
heading.

4. Select Command Line Tool from the choices displayed and then Select
Foundation from the Type drop-down menu. Then click Choose.

Chapter 6: Adding a Little More Class to Your Program

Xcode will display a standard save sheet.

5. Enter the name Budget Object in the Save As field, choose a Save
location (the Desktop works just fine), and then click Save.

After you click Save, Xcode creates the project and opens the project
window. For more information on the project window, see Chapter 2.

6. Start with an empty main function.

I covered this in Chapter 4. You will need to delete all of the statements
in main except for return 0; so that you end up with a main function
that looks like this:

#import <Foundation/Foundation.h>
int main (int argc, const char * argv[]) {

return O;

}

Declaring the class interface

The purpose of the class interface is to give users of a class the information
they need to work with the class. The declaration of a class interface begins
with the compiler directive @interface and ends with the directive @end.
(All Objective-C compiler directives begin with @.)

@interface ClassName : ItsSuperclass {
instance variable declarations

}

method declarations
@end

In the interface, you specify:

v The class’s name and superclass.
@interface ClassName : ItsSuperclass {
A class can be based on another class called its superclass, and it inher-

its all of the methods and instance variables of that class. I'll explain all
about inheritance in Chapter 10. For now just follow along.

v The class’s instance variables. Instance variables correspond to the
members (variable declarations) in a struct.

v The class’s methods. Methods correspond to the function prototypes
discussed in Chapter 5.

143

7 44 Part Il: Speaking the Language of Objective-C

For example, here is the interface for the Budget class:
@interface Budget : NSObject {

float exchangeRate;
double budget;
double exchangeTransaction;

- (void) createBudget: (double) aBudget

withExchangeRate: (float) anExchangeRate;
- (void) spendDollars: (double) dollars ;
- (void) chargeForeignCurrency: (double) foreignCurrency;
@end

By convention, class names begin with an uppercase letter (such as Budget);
the names’ instance variables and methods typically begin with a lowercase
letter (such as exchangeRate: and spendDollars:).

There are four parts to the interface, and I'll have you enter them in the
empty main file over the next four sections. The parts appear in this order:
1. The @interface compiler directive and first line
2. The instance variables
3. The methods

4. The @end compiler directive

Enter the @interface compiler divective and first line

Enter the following code right after the first line, #import <Foundation/
Foundation.h> and before main

@interface Budget : NSObject {
@interface tells the compiler that you are declaring a new class.
Budget : NSObject declares the new class name and links it to its superclass.

In this case, Budget is both the name of the class and the name of the new
type. This is exactly the same (well, close) as declaring the struct (see
Chapter 5).

NSObject on the @interface line tells the compiler that the Budget
class is an extension of the NSObject class. As I explained, Budget will
inherit all of the methods and instance variables of NSObject. This means
that for all practical purposes, even though you don’t see them in your class

Chapter 6: Adding a Little More Class to Your Program 1 45

declaration, Budget includes all of the instance variables and all of the meth-
ods that are in NSObject.

Since Budget inherits from NSObject, it has all the functionality an
Objective-C object needs at runtime.

Enter the instance variables

After starting to declare a new class, you tell the compiler about the various
pieces of data — the instance variables and methods.

Type the following lines of code on the line after @interface Budget
NSObject {:

float exchangeRate;
double budget;
double exchangeTransaction;

}

exchangeRate, budget, and exchangeTransaction are the instance vari-
ables for objects of class Budget.

The reason they are called instance variables is that when you create an
object of class Budget, you are creating an instance of the class, which
means that for each class object you create, you allocate some amount of
memory for its variables (just as you do for the struct) — instance vari-
ables are often shortened to ivars. Notice the instance variables correspond
to the ones used in the struct:

V¥ exchangeRate is the current, well, exchange rate — the number of dol-
lars it will cost me to get one euro, or one pound, for example.

»* budget holds the amount of dollars I have left to spend in a given
country.

V¥ exchangeTransaction is the amount in U.S. dollars of a foreign cur-
rency transaction.

<MBER

Objective-C is case-sensitive. Budget and budget are not the same thing —
Budget is a class, and budget is a variable.

Since you declared budget, exchangeRate, and exchangeTransaction
in the class definition, every time a Budget object is created, it includes
these three instance variables. So every object of class Budget has its own
budget, exchangeRate, and exchangeTransaction. The closing brace
tells the compiler you're done specifying the instance variables for Budget.

7 46 Part Il: Speaking the Language of Objective-C

Enter the methods
Type the following lines of code on the line after the brace (}):

- (void) createBudget: (double) aBudget

withExchangeRate: (float) anExchangeRate;
- (void) spendDollars: (double) dollars ;
- (void) chargeForeignCurrency: (double) foreignCurrency;

In Objective-C, these lines of code are called method declarations. They make
public the behavior that the Budget has implemented — that is, this is what
the object of class Budget can do.

Method declarations are functionally similar to the function prototypes you
declared in the last chapter, although they look a lot different. So let me
explain methods.

I'll start with spendDollars: (I'll get to createBudget: : soon).
- (void) spendDollars: (double) dollars;

The leading dash signals that this is the declaration for an Objective-C
method. That’s one way you can distinguish a method declaration from a
function prototype, which has no leading dash.

Following the dash is the return type for the method, enclosed in parenthe-
ses. Methods can return the same types as functions, including standard
types (int, float, and char), as well as references to other objects (an
object reference is similar to the pointer to the struct that you used in
Chapter 5).

spendDollars: is a method that takes a single argument of type double.
Notice that instead of the parentheses used in a function to indicate argu-
ments, methods use a :. Also notice that the colon is part of the method
name, as you saw when I referred to the spendDollars: earlier.

Another difference between a function and method declaration is that in a
method declaration, both the return type and the argument type are enclosed
in parentheses. This is the standard syntax for casting one type to a another
(you can refer to Chapter 4 where I explain the cast operator, if you like).

While this method doesn’t return a value, it could, just like any function does,
and in the same way:

return someValue;
For all practical purposes, chargeForeignCurrency is the same.

- (void) chargeForeignCurrency: (double) foreignCurrency;

Chapter 6: Adding a Little More Class to Your Program

Finally, you've come to the mind-numbing part — createBudget: :

- (void) createBudget: (double) aBudget
withExchangeRate: (float) anExchangeRate;

createBudget: : is a method that initializes the values — the budget and
exchangeRate — for an object that is the budget for a particular country. In
Chapter 5, you did that in main by assigning those values to the members in
the budget struct. For example:

vacationBudgetEurope.exchangeRate = 1.2500;
vacationBudgetEurope.budget = 1000.00;

vacationBudgetEngland.exchangeRate = 1.5000;
vacationBudgetEngland.budget = 2000.00;

But because (as [explain later in this chapter in the section “Scoping
instance variables”) you don’t have access to the instance variables in a
Budget object (repeat “encapsulation” three times and click your heels),
you need to create a method to assign initial values to the instance variables.
Initialization is an important part of Objective-C, and I explain it in detail in
Chapter 12.

While you might be able to guess that the method takes two arguments, the
syntax of the declaration is probably not something you are familiar with
(talk about a classic understatement).

- (void) createBudget: (double) aBudget
withExchangeRate: (float) anExchangeRate;

When there’s more than one argument, the arguments are declared within the
method name after the colon. What makes it interesting is that the additional
arguments after the first have a name. In fact, the real method name is creat
eBudget :withExchangeRate:.

While this may appear to be confusing, operationally it is no different than
a function. For example, inside of your methods, you access the arguments
using the identifier, just as you did in the functions you used in Chapter 5. In
this case, the identifiers are aBudget and anExchangeRate.

Argument names are one of the major differences between a method and a
function.

Argument names make it easier to understand the messages in your code.
createBudget:withExchangeRate: does have a nice ring to it. When you
create your own methods, name them in the same way I just did — making
them closer to sentences. This way of naming methods makes it much easier
to match arguments with what they are used for. This solves one of the prob-
lems that you can run across when using functions in your code — you can’t

147

7 48 Part Il: Speaking the Language of Objective-C

“NG’
$

tell, when reading the code, what each of the arguments in a function call is
for without looking at the function.

This does take some getting used to, but once you do, you will like it a lot.

If a method takes an argument, it has one or more colons, corresponding to
the number of arguments. If it takes no arguments, it has no colons. If you are
not going to specify the full name, you add the number of colons correspond-
ing to the number of arguments to the name. For example, createBudget: :
indicates it takes two arguments.

Since createBudget: : won't be returning anything, I used void to indicate
that there’s no return value.

Enter the @end compiler directive
Type @end.

This tells the compiler that you have finished the interface declaration.

The interface is done! It’s the complete interface for the Budget class. Now,
anyone using this object knows that this class has three methods that can
create a new budget, spend dollars, and charge something in a foreign cur-
rency. While he or she could also see that there are three instance variables,
that should be of no concern unless he or she is going to modify that class.

Scoping instance variables

As you saw in Chapter 5, instance variables are scoped to (accessible within)
the code block they’re in. This can be a function, a code block within a func-
tion, or, in this case, a class. It is this built-in scoping mechanism that allows
an object to hide its data. But to provide flexibility, when it comes to a class
(here come the Objective-C extensions to C again), you can actually explicitly
set the scope to three different levels through the use of a compiler directive:

v @private: The instance variable is accessible only within the class that
declares it.

» @protected: The instance variable is accessible within the class that
declares it and within classes that inherit it. This is the default if you
don’t specify anything.

v @public: The instance variable is accessible everywhere.
Don’t use @public!If you do — go directly to jail, do not pass Go, and

do not collect $200. If you have to ask why, reread the first part of this
chapter, the last part of the previous chapter, and Chapter 3

Chapter 6: Adding a Little More Class to Your Program 1 4 9

There is actually another level, @package: On 64-bit machines, an instance
variable acts like @public inside the framework that defines the class, but @
private outside. [mention it because you may see it in some of the Cocoa
header files, but it’s beyond the scope of this book.

What you have just done implements one of the fundamental concepts in
object-oriented programming — encapsulation. Data and functions are now
both members of the object. You no longer use sets of global variables or
structs that you pass from one function to another as arguments. Instead,
you use objects that have their own data and functions as members.

Now that you have the interface done, it’s time to write the code that makes
this class actually do something.

The Implementation —
Coding the Methods

The @interface, which I discuss in the preceding section, defines a class’s
public interface. This is where another developer (or even you) can go to
understand the class’s capabilities and behavior. But it’s here in the imple-
mentation that the real work is described and done.

Just as with the interface, I am going to break the implementation down into
a number of steps and explain what you are doing as you go along. Here are
the steps:

1. The implementation compiler directive

2. Define the createBudget: method

3. Define the rest of the methods

4. Enter the @end compiler directive

The implementation compiler directive

Type the following line of code after the @end statement into Budget
Object.m and before main.

@implementation Budget
@implementation (like @interface) is a compiler directive that says you're

about to present the code that implements a class. The name of the class
appears after @implementation. Here is where you code the definitions of

’50 Part Il: Speaking the Language of Objective-C

the individual methods. (Here, order is unimportant — the methods don’t
have to appear in the same order as they do in the @interface.)

In fact, you can add methods in an @implementation that have not been
declared in the @interface. In other languages, these might be considered
private methods. Not so in Objective-C, which doesn’t have private methods —
those you add to the implementation that are not in the interface are still
accessible to other objects.

Defining the createBudget: method
Type the following lines of code after the @implementation Budget:

- (void) createBudget: (double) aBudget
withExchangeRate: (float) anExchangeRate {
exchangeRate = anExchangeRate;
budget = aBudget;
}

This is your brand-spanking new initialization function. The first line of

the definition of createBudget: : looks a lot like the declaration in the @
interface section (one would hope), except that instead of a semicolon at
the end, you find a brace. Notice that you have an argument named aBudget
and an instance variable budget. If you had named that argument budget,
the compiler would have needed to decide which one you meant when you
tried to access the budget variable. You will find that the compiler will tell you
in no uncertain terms that it was going to hide the instance variable from your
method code. I mutilated my beautiful code to illustrate that in Figure 6-1.

You want to use a name like aBudget in the method declaration because it
tells the reader exactly what the argument is for. In general though, as you
will see, [don’t want the user to know that this is initializing an instance vari-
able. I'll explain why, and more about encapsulation, in Chapter 14 when I
explain properties.

The body of the method, as you would expect, contains these instructions:

exchangeRate = anExchangeRate;
budget = aBudget;

As I explained earlier, in the program you coded in Chapter 5, you did this
initialization in main.

vacationBudgetEurope.exchangeRate = 1.2500;
vacationBudgetEurope.budget = 1000.00;
vacationBudgetEngland.exchangeRate = 1.5000;
vacationBudgetEngland.budget = 2000.00;

Chapter 6: Adding a Little More Class to Your Program

|
Figure 6-1:
The
compiler's
revenge.
|

anm m| Rudget Ohject.m - Budger Ohject)
[10.6 | Debug | 1386 <] @~ | -] “& e 0 Q- 51
Overview Action Breakpoims Build and Run Tsks dnfo Search
Groups & Files File Harme & A Code L] & L]
v [Budget Objeet B[4 Budget Object.m 19K L]
v Source

«| Budger Object_Prefix.
|1 Budget Object.m
Ducumentation

G Bxsermal Framvirks a4 - ..s.mqn Ubject.m:2b = [-createBudgetwithExchangeRate: = <™ iCul®s E
[Products Budget : NSObject |
F () Targens
¥ Execurahles
w (4, Find Results .
+ L% Bookmarks. |
g =om (1 Budget ble) abud thExchangei { 1 ankxchangeRrat I
Gt vaid) ereateBudge) aBudget withExehangeRate: (fleat) anExchangemate; \
B Froject symbals - (void) spenddollars ble) dollars ; |
* (3 Imalementation Files - (void) chargeForeig ency: (double) foreignCurrency; |
¥ [l teerface Builder Files !
nd
|
simplenentation Budget }
{vaid) createBudget: {double) b t withExchangeRate: (float] anExchanpeRate(:
= anfxchangeftate; }
s Loca ot hudge’ bid a|}
}
\ !
s dollars, L etl);
(vaid) chargeForeignturrency: (dauble) foreignCurrency |
= fareigrlurrencys
WSLogR=Charging %.21 in foreign currency leaves 33.21", foreignCurrency. budget):
i
end v
e —— 4 |
il succesded (2 warnings, 2 analyzer results) Qsucceeded 32 112
B h fficial obj i d don’
ut now that you are an official object-oriented programmer, you don’t want

to assign the value to the variables in this way for a couple of reasons. First,

you

made those instance variables protected (by default), so you can’t

access them. But even if you could, you wouldn’t want to because it violates

the

principle of encapsulation.

Defining the rest of the methods

Enter the following lines of code after the createBudget : : method:

(void) spendDollars: (double) dollars {

budget -= dollars;
NSLog (@"Converting %$.2f US dollars into foreign currency
leaves $%.2f", dollars, budget) ;

(void) chargeForeignCurrency: (double)
foreignCurrency {

exchangeTransaction = foreignCurrency*exchangeRate;

budget -= exchangeTransaction;

NSLog (@"Charging %.2f in foreign currency leaves $%.2f",
foreignCurrency, budget) ;

151

’52 Part Il: Speaking the Language of Objective-C

A\\S

Both of these methods are almost identical to the previous functions you
used. | have also moved the NSLog statements from main into the methods
because it enables me to track the methods as they are invoked.

You are not using these NSLog statements for any other reason than to be able

to follow what is going on in the program, so don’t get too concerned with
what is being displayed. I'll add a real user interface in Chapters 17 and 18.

Entering the @end compiler directive
Type @end.

The last line of code, @end, tells the compiler that you have finished the
implementation.

Exploving the Program Logic

Now that you have declared your objects, it’s about time to do something
with them. Although it seems as though I've been working backwards, which
is true, it’s time to get to the real meat (or tofu, if you prefer) of the program.
Just remember, | have been working backwards because in programming, and
in life, and in cooking (and in painting) most of the work is in the preparation.
Once you have everything ready, then execution should be easy, and as you
will see, it is.

Note: You are still working in the Budget Object.m file. If you need to, scroll
down to find the main function. It should look like the following:

#import <Foundation/Foundation.h>

int main (int argc, const char * argv[]) {

return 0;

3

Coding the functionality
in the main function

I'll now take you through coding the main function. I'll break this down into a
series of steps.

Chapter 6: Adding a Little More Class to Your Program

WMBER
“&
&

1. Declaring the local variables

2. Instantiating an object

3. Sending messages to your objects
4. Adding the code for England

Declaring the local variables

The first thing you do in your program is declare some local variables, just as
you did in Chapter 5.

Type the following lines of code into main after the first brace, and before the
return 0; statement:

double numberDollarsInEuroland = 100;

double numberEuros = 100;
double numberDollarsInPoundland = 100;
double numberPounds = 100;

Instantiating an object
The next thing you do is instantiate an object.

Type the following line of code after the variables you just declared:
Budget *europeBudget = [Budget new] ;

Congratulations! You have instantiated (created) your first object, and you
have sent it a message.

To create a new object, you send the new message to the class you are inter-
ested in. Messaging is an important part of working with objects in Objective-C,
and it is very different than the function calls that you have been working with.

To start with, the syntax of sending a message is
[receiver message : arguments];

The receiver of a message can be either an object or a class. One of the more
interesting features of Objective-C is that you can send messages to a class. If
you haven’t done object-oriented programming before, sending messages to
a class probably means nothing to you. But if are coming from something like
C++, it is very interesting. Class methods enable you to implement behavior
that is not object-specific, but applicable to an entire class.

The methods defined for an object are called instance methods, and the ones
defined for a class are called class methods. While I will be mentioning class
methods in this book, you won’t be using them. I'll only be referring to them

153

754 Part Il: Speaking the Language of Objective-C

when it is important to distinguish them from instance methods and where
you really need to know about them — in Chapter 13, for example.

The line of code you entered
Budget *europeBudget = [Budget new] ;

sends the new message to the Budget class. The new method (inherited from
NSObject) does two things, in this order.

1. Allocates memory for the object to hold its instance variables.
2. Sends the new object an init message.

The default init method will (more or less) initialize its instance vari-
ables to 0. This works fine for the time being. Initialization, as boring as
it sounds, is, however, a very important part of working with objects. In
Chapters 12 and 13, I'll go into detail about initialization and show you
how to write a proper init method for your objects.

At runtime, a class object for each class is created — one that knows how to
build new objects belonging to the class.

What is important here is that what is returned is a pointer to the memory
that has been allocated to hold this object’s instance variables. This is simi-
lar to what you did in Chapter 5, where you created a pointer to each of the
budget structs you declared. I explain more about memory allocation in
Chapter 13. (If you are a little fuzzy on pointers, refer to Chapter 4.)

Sending messages to your objects

Enter the following line of code after Budget *europeBudget = [Budget
newj ;

[europeBudget createBudget:

1000.00 withExchangeRate:1.2500];
[europeBudget spendDollars:numberDollarsInEuroland];
[europeBudget chargeForeignCurrency:numberEuros];

You have sent three messages to the europeBudget object you just instanti-
ated. Take a look at the first message:

[europeBudget createBudget:1000.00
withExchangeRate:1.2500];

Using the europeBudget pointer to the object, you are sending it the cre-
ateBudget : : message with 1000.00 and 1.2500 as arguments. As I explained,
the net result is the same as the initialization of the members in the structs
that you did in the main function.

Chapter 6: Adding a Little More Class to Your Program

Instead, you use this method to initialize the object with a budget and an
exchange rate. As you'll see, the initialization I've done here is pretty rudi-
mentary, especially compared to what you'll be doing in a few chapters, but it
gets the job done for now.

After initialization, the next message you send to the europeBudget object
tells it how much you just spent in dollars (it has an argument numberDol -
larsInEuroland just as the function did).

[europeBudget spendDollars:numberDollarsInEuroland];
And the third message reports a credit card transaction.
[europeBudget chargeForeignCurrency:numberEuros] ;

The question that occurred to me when I first learned about object-oriented
programming was how did the europeBudget method code (of which there
is only a single copy) get to the object’s ivars (instance variables), which are
sitting some place in memory?

The answer is very clever. When you send a message in Objective-C, a hidden
argument called self, a pointer to the object’s instance variables, is passed
to the receiving object. For example, in the code

[europeBudget spendDollars:numberDollarsInEuroland];

the method passes europeBudget as its self argument. While the code you
wrote in the method chargeForeignCurrency: looks like
NSLog (@"Converting %$.2f US dollars into foreign currency
leaves $%.2f", dollars, budget);

what the compiler is really doing is modifying your code so that it conceptu-
ally looks like this:

NSLog (@"Converting %$.2f US dollars into foreign currency
leaves $%.2f", dollars, self->budget);

This should look familiar. This is what you did in Chapter 5 to access the
struct members. The -> is the arrow operator. It is used only with pointers
to objects (as well as structs). See Chapter 4 to refresh your memory about
pointers.

As you create objects, you get a new pointer for each one, and when you
send a message to a particular object, the pointer associated with that object
becomes the self argument.

155

756 Part Il: Speaking the Language of Objective-C

<WME CD

S
2

Adding the code for England

First you need to create the Budget object for England. (I wouldn’t fancy
being in England with no money to spend after all.) Then you will be able to
send it message as well.

Type the following line of code, before the return 0; statement, to finish
main.

Budget *englandBudget = [Budget new];

[englandBudget createBudget:2000.00
withExchangeRate:1.5000] ;

[englandBudget spendDollars:numberDollarsInPoundland];

[englandBudget chargeForeignCurrency:numberPounds] ;

You just done wrote a program that implements one of the fundamental con-
cepts in object-oriented programming — encapsulation. The data and the
operations on that data are now encapsulated within the budget object.

You no longer use sets of global variables or structs that you pass from one
function to another as arguments. Instead, you have objects that have their
own data and functions embedded as members. (I know that I have said this
before, but it is worth repeating.)

Building and running the application

To build and run the application, select the Build and Run button in the
Project Window toolbar .

Your output in the Debug Console should look like the following:

Converting 100.00 US dollars into foreign currency leaves
$900.00

Charging 100.00 in foreign currency leaves $775.00

Converting 100.00 US dollars into foreign currency leaves
$1900.00

Charging 100.00 in foreign currency leaves $1750.00

You can find the completed project on the CD in the Example 6 A folder which
can be found in the Chapter 6 folder.

Extending the program

In Chapter 4 I raised two concerns about being able to extend my program.
The first one, the vulnerability you face when all of your functions have

Chapter 6: Adding a Little More Class to Your Program 15 7

access to all the data, and are dependent on that data’s structure, is mostly
solved by encapsulating the data in an object. The data becomes an internal
implementation detail; all the users of that data outside the object know
about is the behavior it can expect from an object.

But what if another object needs to know the amount left in your budget for
England, for example? This requires that you add a method that provides that
information. Notice I said information, not the instance variable. It becomes
the responsibility of an object to supply the budget information to any object
that needs it. It does not mean, however, that there has to be an instance
variable that holds that information. That makes it possible to change how
you represent that data, and also makes it possible to change what instance
variables you choose for the object. In the previous chapter, [brought up the
problems that [would run into if I wanted to change the struct that the func-
tions used. Making that change now, using classes and objects in the way you
should, would have no impact on the objects that were using that information!

So while its internal data structure is part of the class interface, in reality, an
object’s functionality should be defined only by its methods. As a user of a
class, you shouldn’t count on a one-to-one correspondence between a method
that returns some data and an instance variable. Some methods might return
information not stored in instance variables, and some instance variables
might have data that will never see the light of day outside the object.

This allows your classes to evolve over time (remember Chapter 3, where |
spoke about the inevitability of change). As long as messages are the way you
interact with a class, changes to the instance variables really don’t affect its
interface and the other objects that use this class — and that’s the point.

But what about my second concern — what if [want a new kind of budget or
want to tailor my Budget object to New Zealand to keep track of my sheep
purchases? Do [have to take the old object, copy and paste it, and add the
new features — thus creating a new object that I have to maintain in parallel
with the existing Budget object?

As you might expect, the answer is, “Of course not!” But to find out exactly how
to do that, you’ll have to wait until Chapter 10 when I talk about inheritance.

In addition, there is even more you will do to make your program even more
extensible, which you’ll discover in Chapter 11.

Spreading the Wealth across Files

So far, everything you have done has been added to a single source file. You
started out with My FirstProgram.m and then moved to Budget.m. While
this works for what you have been doing thus far, it won’t scale when you

’58 Part Il: Speaking the Language of Objective-C

9,

R

R

SMBER

<MBER

<ME CD

start to develop your own applications. As your program gets larger, scroll-
ing through a single file becomes more difficult. (There are also other issues
beyond the scope of this book that you need not be concerned about for

a while.) But there is a well thought out solution for that problem that just
about everyone uses.

When I write even the simplest programs for the iPhone or Mac, I divide
things up into multiple files.

As you've seen, the source code for Objective-C classes is divided into two
parts. One part is the interface, which provides the public view of the class.
The @interface contains all the information necessary for someone to use
the class.

The other part of a class’s source is the implementation. The @implementa-
tion contains the method definitions.

Because of the natural split in the definition of a class into interface and imple-
mentation, a class’s code is often split into two files along the same lines. One
part holds the interface components: the @interface directive for the class
and any enum, constants, #defines, and so on. Because of Objective-C’s C
heritage, this typically goes into a header file, which has the same name as the
class with an .h at the end. For example, the class Budget header file will be
called Budget .h.

All the implementation details, such as the @implementation directive for
the class, definitions of global variables, the method definitions (implementa-
tions), and so on go into a file with the same name as the class and with an .m
at the end. Budget.m will be the implementation file for your class.

I'll start by having you create a new folder in the Groups & Files pane to hold
the new files. These folders (called Groups by Xcode) provide a way to orga-
nize the source files in your project. (For example, you can make one group
for your user interface classes and another for your model classes to make
your project easier to navigate.) When you set up groups, Xcode doesn’t
actually move any files or create any directories on your hard drive. The
group relationship is just a lovely fantasy maintained by Xcode.

After that, you’ll create the files themselves.

If you have been following along with me, I'll be extending what you just did in
the previous example. If you would like to start with a clean copy of the proj-
ect where you left off, you can use the project found in the Example 6A folder,
which is in the Chapter 6 folder.

1. Select the Budget Object project icon and then choose Project=>New
Group (see Figure 6-2).

Chapter 6: Adding a Little More Class to Your Program ’59

Project 30
Class Browser {+38C
Rename...
New Group [YEN
New Smart Group »
Add to Project... LEA
Add Current File to Pre
MNew Target...
New Ruild Phase »
New Custom Executable...
Set Active Target >
Set Active Architecture »
] Set Active SDK »
. Set Active Build Configuration >
Figure 6-2: Set Active Executable >
Creatlng a Edit Project Settings
new folder. | Edit Active Target “Budget Object” X %E
—— Edit Active [xecutable “Budget Object” “C3€X
You'll get a brand-spanking new folder named New Group, already
selected and waiting for you to type in the name you want.
2. Type the name Classes, as I did in Figure 6-3.
ann Im Budget Object.m - Rudget Ohject
[10.61 Debug 11386 -| (=] @ O Q- sting Matc
| Ovenvlew Adtin Blkdand Run' Tasks Info _ Search
Groups & Files I File Name w| A Code [
v [y Budger Objrer (1
™ T
v Source
E.. Rudger Ohject_Prefi
. =;-:::I:‘|:::“'r" « - @ Budyel Objecm:1 + <No selecied symbl> ¢
¥ [Exernal Framewaries ane #impery sFoindation/Foondatioe. hs
[Products © Budget : NSObject |
() Targens
I o Execurahles
¥ O, Find Results g
L0 Bookmarks]
L - 4] createBudget: {doulile) aBudget wilhEachangeRate: (fluat) anEachangeRate;
B Project Symbals 4] spendbollars: (duuble) dollars ;
¥ [l implementation Files 11 chargeForeipnCurrency: {double) foreipnCurrency;
» [l Interface Budder Files e
Tian Budget
= (void) createbudget: (double) aBudget withExchangeRate: (float) antxchangeRate{
changefate = anExchangefate;
budyget = aBudget;
¥
= {void] spendDollars: {(double) dollars {
2t uS dollars inte fareign currency leaves $4.31", dollars, busget);
|
= {void) chargeForeignCurrency: {double) foreignCurrency {
Figure 6-3: ton = foreignCur rencysexchangefale;
A neW W20 dn rency %.21", foreignCurrency, budgell;
classes o
nt main (int arge, const char » argull) {
folder. ! !
|

’ 60 Part Il: Speaking the Language of Objective-C

|
Figure 6-4:

A Cocoa
class
template.
|

3. Select File=>New File from the main menu (or press 3+n) to get the
New File dialog.

Make sure the Classes folder is still selected; Xcode puts new files into
the selected folder.

4. In the leftmost column of the dialog, first select Cocoa under Mac OS
X, select the Objective-C class template in the top right pane as I did in
Figure 6-4, and then click Next.

You can specify this new class’s superclass. Make sure NSObject is
selected in the drop-down menu.

i)

Hew File

Choaose a template for your new file:

l iPhone 05 - - - -
Cotoa Tauch Class m]] m 5
User interface L&)
Resource [Objecuve-C class] Orjective-C Objective -C test AppbeSeript class
Code Signing protaced rase elass
ﬂ; Mac 05 X
CandCss
User Interface
Hesource
Inteeface Ruilder Kit
Other
Subclass of | NsObject 3
.m Objective-C class
An Objective-C class file, with an optional header which includes the «Cocoa/Cacoahs
header,
Cancel Next)

You'll see a new dialog asking for some more information.

5. Enter Budget.m in the File Name field and make sure the checkbox
to have Xcode create Budget.h. is checked, as I did in Figure 6-5, and
then click Finish.

Xcode will then add the files to the project as you can see in Figure 6-6
(I deleted the comments at the start of the file that Xcode automatically
puts in there). Once you've created the files, you can select or double-
click them in the list to edit them. Xcode also includes some standard code,
depending on the template, such as empty @interface and @implemen-
tations for you to fill in as well as #import <Cocoa/Cocoa.h>.

Chapter 6: Adding a Little More Class to Your Program

|
Figure 6-5:
Naming the
new files.
|

New Objective-C class

File Name: Budget.m
V! Also create "Budgeth”

Location: | ~/Desktop/Budget Object i 1L & ‘Choaose... Y

Add to Project: | Budger Object

Targets: & [Gudger Ohjerr

Cancel _Frevlous'_ _' Finish

What’s going on here? So far in this book, you've used #import
<Foundation/Foundation.h> because that was what was in the
Foundation Command Line Tool template you used when you created
the project. But when you start creating .m and .h files, Xcode assumes
that you will be using Cocoa (either for a Mac OS X or iPhone OS applica-
tion), so it includes Cocoa header files, which brings in the Foundation
headers as well.

At this point, you have the files you need to separate out the Budget
interface (into Budget .h) and implementation (into Budget.m), as you
can see in Figure 6-6.

[find it useful at this point to double-click Budget Object.m to open it in
a new window.

. Select the interface code in Budget Object.m, as shown in Figure 6-6.

. Make sure that Budget.h is open in the Editor view, as you can see in

Figure 6-6, and select everything except the #import <Cocoa/Cocoa.h>
as shown in the figure.

. Cut the interface (don’t worry, you can always undo it if it doesn’t

work) from Budget Object.m and paste it into the Budget.h file, as
shown in Figure 6-7.

101

’ 62 Part II: Speaking the Language of Objective-C

|
Figure 6-6:
Ready to cut
and paste.
|

|
Figure 6-7:
Cutand

paste.
|

o Executabl
¥, Find Resu
L Bookmark
i sam

W Project 5y
* [l Implemen
¥ [l interface |

= | B

[#import

pinterface Budget : MsUbject {

3 <Noselected =y ™% Col#y B @
L

<Cocaa/Corsa,ns

m Budget Object.m

&.ﬁi

Overview Oreakpoints Buddand Run Tasks Ungrouped Project
= | Budyel Objectm:3 3 [@interface Budget = . ™. €. 8.
#impart eFoundation/Foundation. e |

pinterface Budget : WSOBject {

float exchangeftate;
double budgel:
double exchangeTransatctiong

&
-y

8 tvnu) createBudget: (double) aBu withExchangeRate: (flo
fd) Bnmrr {double) dcl‘l:“

8 (unld} chargeFareignfurrency: {douhic) foreigniurrency;

pend

Dimplenentation Budget

= {void]) createBudget: {double) aBudget withExchangeRate: (flo

Fate = anExchangeRate;

{vaid) spendbollars: (double) dallars {

budget —= dollars;
NSLog{@"Converting %.2f Us dellars inte fareign currency lea
}
- {veid] chargeForeignCurrency: (double) TureignCurrency {
o = ei;n:w rencysenchangeRale;
budget -= ra{ranan-rnaa
NiLegle“Charging %.2f in torun'\ currency leaves $%.21", for
)
gend

int main (int arge. const char & argull) {

double nmherﬂvululnEuwlanﬁ = 1088:
duuble nusberEuros = 1

double nnhean\\ﬂrl[nwadl-nd = 109;
duuble nusberPounds = 1008;

Audgrt seurapeBudget = [Rudger mew]; 2
L 1808 M8 L £hExrhannafanasl JEANL.

I o Ak

¥, Find Resu
L Bookmark
[3=F]

@ Project 5y
+ [l Implemen
¥ [l Interface |

vbmd;ﬂnbl | I

® = | W Bur

ginterface Budget : MSORjrer {

float
double
double

= {vuid]
= veid)
{veid]

gend

_— Vi

dgethld 3 <Noselecte . = C. &, B @
#impart «Cocaa/Cocon,hs Gl

exchangeRate;
budgets
exchangeTrans

createBudget: (duublel aBudget withEs
spendDollars: (doubile} dollars ;
chargeForeignCurrency: (doublel fared

o

-

m Budget Object.m

&.ﬁi

Overview Breakpoints Suld and Run Tasks Ungrouped Propect
| Bbudgel Objectm:3 ¢ <No selected symbol> 3 . ™2 (C. #./ 0 @
#impart «Foundation/Foundarion. he

m

fisglenentation Budget
= {voud) createBudget: (double) aBudget withExchangeRate: (flo
exthangeRate = .nEulun;:ﬂ.kz.
budget = aBudge
}
{vatd] spendbellars: {doubie} dallars |
budget -= dollars;

WSLogl@"Converting %.2f US dollars into foreign currency lea
]

= {void) chargeForeignCurrency: {(double) foreignlurrency {

exthangeTransaction = fureignCurrencysexchangeRate;
budget -= exchangeTransaction;
NSLegie“Charging %.2f in fareign currency leaves $h.2t", for|

gend

int main (int argc. const char « argell) {

double numberDellarsInEuroland = 100;
duuble numberEuros = 1

double nnherﬂnllauln’wundllnd = 189;
double numberPounds = 10@;

fudgrt spuropeBudget = [Budget mewl;

[europeBudget createfudger: 180080 withFechangeRnte: 1. 2500) ;
[eurspeBudget spendallars:musherdol larsInEuraland] ;
[europeBudget chargeloreigniurrency:nunberburos);

Uudget senglandliudget = [Budpet newl;
[enuLandBudUel createBudget:2000.00 w lI|EM.I\.|||QEF.Jl.¢

spendlullar 1
Ien;lnndﬂwduet chargeForeignCurrencys

JSeen]

Meerni;l H

BN

return #;

|€ y yas

Chapter 6: Adding a Little More Class to Your Program 1 63

|
Figure 6-8:
Ready to cut
and paste.
|

9. Select the implementation code in Budget Object.m, as I have in
Figure 6-8.

10. Select Budget.m in the Groups & Files view so that you can see it in
the Editor view, as I have in Figure 6-8, and select everything except
the #import “Budget.h” as I have in Figure 6-8.

CEalE) m Budget m - Budget Object (SN Budget Object.m
[10.6] pebug— =] [# =] “g\ Q- e SN0 6 | Debugr: = - “< ® 1 k&=
e =~ C_H i
Overview Action Build and Run Tasks Search Overview Ureakpoints Buddand Run Tasks Ungrouped Project
Graups & Files File Hame: & % Code o 4 @ <+ @Budget Objectm 4 ¢ @ @implementation Budg . . €. . 0 @
B rudger0bB | | Rurgerm v L} #impart «Foundat Foundatian. b L]
Classes
B Bud inplenentation Budget
B e
o - = {void) createBudget: (double) aBudget withExchangeRate: (flc
ud <+ |BBulgem3 3 <Noseleclei <=, ™% Colfs B @
L1l Fiaport “Buget.h = wnchangeRale = anExchanpeRate;
W Hud budy = abudget;
Docum }
] implesentation Budget
Externd (vn1d) spendbollars: {deuhle) dallars {
» [Pradue y
» (@) Targets budget —s dollars; :
b o4 Executabl NsLog{p™Converting 2f us dollars into toreign currency Lea
v 4, Find Resu
L8 Bookmark = dwoid) chargeForeignCurrency: (double) foreignCurrency {
SCM e e :
@ Project Sy SAcaMgST I r uufu?.urwuw. p
[Implemen N5Logl{@*Charging %. 27 in fareign currency leaves $%.2f", for
¥ @l Inverface © }
main (int arge, t char & argv[l) {
nunberDollarsInEuroland = 100;
e nunberEures = 100;
ble nusberDollarsT 00
© numberPounds =
B t seuropeBudget
[ruropeBudget creates
[curopcBudget sy
[europetudget cf
t senglandbudget =
[englandBudget
[englandBudget
|englandBudget
}

11. Cut the implementation code in the Budget.m file and paste it into the
Budget.m file.

12. Add a line of code to the Budget Object.m file, as shown in Figure 6-9.
#import Budget.h

This imports the header file for the class, which makes the classes and
methods accessible from main. This is standard procedure, which you’ll
end up doing in virtually every project you create. The compiler needs
to know what is in the interface of any classes you refer to from main (or
any of your other classes). So to keep the compiler happy, you add the
#import Budget .h statement. Try commenting it out and see how the
compiler responds.

’ 64 Part Il: Speaking the Language of Objective-C

: w Butget m - Budget Object « Budget Object.m =

10.6 | Debug-- = |4+ ‘é\ Qr sirir

ey . e
Overview Action Build and Run Tavks Search - P 2 reakpoints Suwidand Run (aski Ungrouped Fropect
Groups & Files || File Name 4| 4 Code L A (@ < | = @ Budgel Olject.m. <Nu selected symbal> 3 - iC. - mig
v B Budger OFE || [Audgerm " 4 undat tan. b]
v [Classes
| LT
B rd int main {int argc. const char « argvll) {
¥ [50urce ; =
ud <~ BBudgeLmil 3 <Noselecler =, ™ Cy ¥ B @ e nusberbollarsInEuroland = 100;
) #import “Burdget.h L] = nusberEuras = 100;
L nsmbe Dol larsInPoundland = 1885
» [Docum impleasntation Budget numberPounds = 100;
> :
] Externg - {vold) createbudget: (double) abudget withbs fludger seurapeBudget = [F X
* L3 Pradut [europeBudget creatch o
¥ () Targets exchangeRate = anExchangeRate; [puropeudget 5 mbariolls
I o4 Executabl budget = aBudget; [eurcpeBudget char rrency:nuaberEuros];
¥ id, Hind Resu Dudget eengland L H
¥ 18 Bookmark = {void) spendDollars: icounle) dellars { lenglandBudget B0 withExchangeRate:1.5008]
FEdsem lenglandBudget sInPoundLand] ;
@ Froject Sy it _,,I"f"‘r“j:fi e - lenglandBudget rency:nusherPounds] ;
[Imglemen } return 03
¥ [l interface |]

= {woid) chargeforeignCurrency: {(double) fored

exchangeTransaction = foreignfurrencysexchar
budget
NSLuga"e

|
Figure 6-9:
Include the
new header
file.)
[4 ¥ “* — = e
| | £
13. Select the Build and Run button in the Project Window toolbar to
build and run the application.
You should get a successful build, as I did in Figure 6-10.
anm 1™ Budget Object - Debugger Console (&
(1051 Debuo 1386 -] = & 8@ 8 w A
Drverview Breakpuints Build and Run Tacks Bestass Pause Olear Lug.
[Session started at 2000-06-28 08:26:31 -0704.1
GNU gdb 6.3.50-20050815 {Apple version gdb-1340) (Fri Jum 19 22:52:24 UTC 2000)
Copyright 2804 Free Saftware Faundatisn, Ine
GOB is free software, couered by the 6Nl General Public License, and yau are
welcome to change it and/or distribute copies of it under certain conditions,
Type “show copying” o see the conditions.
There 15 absolutely no warranty for GDU. Type “show warranty" for details.
This GDB was configured as "x86_Gd-apple-darwin®, tty /dev/ttysooq
Loading program inte debugger—
Program loaded.
ISwitching to process 60531
I 218 @8:26:32.278 Budget Object[§053:a0f) Converting 10@.00 US dellars inte foredgn curremcy leaves 5009.00
28 08:26:32.293 Budgetr Object[6053:001) Charging 100. n foreign currescy Leaves $775.00
- . |20@9-06-28 @ 32,294 Budget Objact[6053:a0f] Convertimg 100.00 US dallars inta forsign corremey Leaves $1988.00
Flglll‘e 6'10. 2009-06-28 @E:26:32.294 Audget Okjoct[E0S3:and] Charging 108.20 in forsign curremcy leaves $1758.08
Oebugger stopped.
SucceSS! Fron?;u exltgs with status value:®.
I | Uebutdging of “Budget Object” ended narmally.

\y
< If you look on the text editor navigation bar (at the top of the Editor view),

you'll see a Lock button on the far right of the bar. (I explain the text editor
navigation bar in Chapter 2.) Immediately to the left of that is the Counterpart

Chapter 6: Adding a Little More Class to Your Program 1 65

button that looks like two pages overlapping. Clicking that button will switch

you from the header, or interface file, to the implementation file, and vice

versa. Right under the lock is a button that lets you split the editor view. That

enables you to look at the interface and implementation files at the same time,

or even the code for two different methods in the same or different classes. If

you have any questions about what something does, just position the mouse
RECD pointer above the button and a tooltip will explain it.

S
© O You can find the completed project on the CD in the Example 6B folder, which
is in the Chapter 6 folder.

Knowing the Naming Conventions

It is helpful to have some idea about how to name things in order to avoid
having the compiler scream at you. Here are some areas you need to pay
attention to:

v The names of files that contain Objective-C source code have the .m
extension. Files that declare class and category (a category is used to
extend a class; [explain that in Chapter 16) interfaces or that declare
protocols (I explain that in Chapter 16 as well) have the .h extension
typical of header files.

v Class, category, and protocol names generally begin with an uppercase
letter; the names of methods and instance variables typically begin with
a lowercase letter. The names of variables that hold instances also typi-
cally begin with lowercase letters.

v+ In Objective-C, identical names that serve different purposes are
allowed.

¢ A class can declare methods with the same names as methods in
other classes.

¢ A class can declare instance variables with the same names as vari-
ables in other classes.

¢ An instance method can have the same name as a class method.
¢ A method can have the same name as an instance variable.

e Method names beginning with “_”", a single underscore character,
are reserved for use by Apple.

v However, class names are in the same name space as global variables
and defined types. A program can’t have a defined type with the same
name as a class.

7 66 Part Il: Speaking the Language of Objective-C

Using id and nil

As part of its extensions to C, Objective-C adds two built-in types that you
will be using.

idis a generic type that’s used to refer to any kind of object regardless of
class — id is defined as a pointer to an object data structure. All objects,
regardless of their instance variables or methods, are of type id. You will
be using id when I explain protocols in Chapter 16. For now, just keep this
in mind.

Similarly, the keyword nil is defined as a null object, an id with a value of 0.
You'll be using it starting in Chapter 7.

id, nil, and the other basic types of Objective-C are defined in the header
file objc/objc.h.

Chapter 7
Objects Objects Everywhere

In This Chapter

Turning numbers into objects

Working with mutable arrays

Using each object in an array in a message
Getting to know C arrays

N ow that you know how to create classes and send messages to your
objects, I want to expand your ideas about what you can do with
objects. So far, what you have done is send messages from main to the
objects you created. What you will soon find out is that your objects will

be sending messages to other objects to assist them in carrying out their
responsibilities as well. You'll also discover that you don’t have to write all
of the objects you need to use in your program. The frameworks I mentioned
in Chapter 1 supply many of them for you. So you’ll not only be creating your
own objects, but also using the objects in Cocoa’s Foundation classes that
provide some of the “utility” functionality you need.

In this chapter, I'll introduce you to two of those objects. The first is
NSNumber, one of the hundred or so classes in the Foundation Framework.
All of the data types I explained in Chapter 4, signed or unsigned char,
short int, int, long int, long long int, float, double, and BOOL,
can be represented using the NSNumber class.

The second will be NSMutable arrays. Arrays are what you will use to
manage lists of objects. While right now there are not that many objects to
manage, as you develop your application, you’ll begin to see how useful they
can be. In this chapter, I'll show you how to take the NSNumber objects you
create and manage them using an NSMutableArray.

Replacing Numbers with Objects

As you learn more about object-oriented programming and the Cocoa frame-
works, you’ll discover that virtually everything you’ll work with will be an

7 68 Part Il: Speaking the Language of Objective-C

<MBER
é"\&

object. Many of these objects are things you would expect to be objects, such
as windows and controls and the like, but some of them may surprise you.

One striking example of this is NSNumber, which enables you to represent
the built-in numerical data types as objects.

While some of the reasons framework designers think it is important to use
things like NSNumber objects are based upon technical computer science
issues that are beyond the scope of this book, others are eminently practical.
You'll discover that later in this chapter when I introduce you to arrays, and
in Chapter 15 when I explain about property lists and data storage.

Up until now, you have been using a variable of type double to represent a
transaction — the amount in dollars you are converting into a foreign cur-
rency when you send the spendDollars: message.

double numberEuros = 100;
double numberPounds = 100;

In the spendDollars:, method you use the dol1lars argument, which is
also a double.

- (void) spendDollars: (double) dollars {

budget -= dollars;

NSLog (@"Converting %.2f US dollars into foreign currency
leaves $%.2f", dollars, budget) ;

}

To start with, I am going to show you how you could use an NSNumber object
instead of a double as an argument in the spendDollars: method. As |
said, NSNumber objects allow you to create objects out of the basic number
types you work with in Chapter 4 — int, long, float, double, and so on.

[am going to do this only for spendDollars: message and its arguments.
This is actually only an intermediate step in evolving this program to one that
uses the full-blown transaction objects in Chapter 11.

You start by creating an NSNumber object.

In Chapter 5, you create the Budget object by sending it a new message
like so:

Budget *europeBudget = [Budget new] ;

As I said earlier, the new message actually does two things. First, it allocates
memory for your object, and then it calls the default init method, which

Chapter 7: Objects Objects Everywhere 1 69

initializes everything to 0. While that works for your Budget object, it won’t
work for the NSNumber object because you want to initialize the NSNumber
object with a value.

So to create an NSNumber object, you separate out the new and init
messages.

NSNumber *europeDollarTransaction =
[[NSNumber alloc] initWithDouble:100.00];

So, as you can see, instead of sending the new message to the NSNumber
class, you are first sending it an alloc message.

[NSNumber alloc]

This message, just as new does, returns a pointer to the new NSNumber
object, and then using that pointer, sends the initwithDouble: message.

[[NSNumber alloc] initWithDouble:100.00];

The preceding code returns an NSNumber object initialized to contain the
value (the 100.00 as a double) you used as the argument in the initwWith-
Double: message.

There are a number of initialization methods that allow you to create
NSNumber objects from other types.

initWithChar: (char) wvalue;
initWithInt: (int) wvalue;
initWithFloat: (float) wvalue;
initWithBool: (BOOL) wvalue;

While you create an NSNumber object by initializing it with a certain type,
part of the power of NSNumber is that it is not limited by the type it is initial-
ized with. For example, to get the numeric value as a double (which you’ll
need to use in the spendDollars: method), you can send the NSNumber
object the message

[dollars doubleValue]

But NSNumber can also return its value converted into almost any of the
built-in types such as char, int, BOOL, or even an NSString (to refresh your
memory, this is what you have been using in the NSLog statements to display
something on the Debug Console).

You could also have created an NSNumber using something called a factory
method.

’ 70 Part Il: Speaking the Language of Objective-C

|
Figure 7-1:
Accessing
documenta-
tion.
|

3

NSNumber *europeChargeTransaction =
[NSNumber numberWithDouble:100.00];

This enables you to skip the new and init messages and let the class do it
for you. However, that method has some memory management implications
that are covered in Chapter 13.

Revisiting the documentation

I can’t possibly go through all the possibilities of every class with you, and
that is why in Chapter 2 [show you how to access the documentation. Until
now you haven’t used the documentation all that much since what you were
doing didn’t involve the Cocoa classes that you find in the documentation.
But all of that has now changed, and now is a good time to review how to
access the documentation for the various classes you will be using.

In Figure 7-1, I typed NSNumber into the Search field of the Help menu, and
selected Search in the Documentation window.

MNSNumber]

Menu items == NSNumber Class Reference

@ Adding Unit Tests to Your Projects

¥l Search in Rocumentation Window

This brings up the NSNumber Class Reference in the Documentation window.
I clicked the disclosure triangle next to Instance Methods, as you can see in
Figure 7-2, which displays a number of methods to create NSNumbers from
quite a few types of classes.

For example:

initWithChar: (char) wvalue;
initWithInt: (int) wvalue;
initWithFloat: (float) wvalue;
initWithBool: (BOOL) wvalue;

As you become more comfortable with coding in Objective-C and using the
framework objects, you'll find yourself exploring the APIs just to see what else
a class can do.

Chapter 7: Objects Objects Everywhere

|
Figure 7-2:
NSNumber
documen-
tation.
|

ann <" MShumber Class Reference —
L2 [») -] (o) €, NSNumber
Back/Forward Home Bookmarks Search
(ETCTED Prefiv Fxact | AllDacSets + | All Languages =
! NsNumber Class Heference LFOE
[KSHumber * Table of Contents Jump Ta. & .t Hewt o
A wshumber i
[eT— - Overiew NSNumber Class Reference @
3 NSHumberFormatter » Tasks
NSHumberFormanerenaviar » Class Methods
MsNumberFormatteriehaviar * Instance Methods Inherits from NSVakse - NSObject
NSNumbserFormatterBehavior10 0 boolvalue
R R, Avrales Conforms 10 NSCodin
A NSNumberFormarterBehaviorlo_d s NSCopying (NSVa
NSNumberFormanerfehaviarit_4 i e NSObject (NSObject}
decimalvalue
= descriptionWithLocale Framework [SystemLibrary/Frameworks | Foundation. framework
. doublevalue
PSRy Chass BAtiTsioe e Avallability Available in iFhane O3 2.0 and later,
NSNumber Class Reference
inirWithEool: |
NSHumberFarmaner Class Referonce s Declared in NSDecimalNumber.h
InitWithChar: NSValueh
NSNumberFormatter Class Reference T
InitwithDouhle:
i T InitwithFisar € jon guides Number and Value Programming Topics for Cocsa
WSHumberformaner Class Reference InitWithine ! Property List Programming Guide

Rumbier Formatters InitWithinteges:

Related sample code Crypafuercise

QTAudioContextinsert = /English.lpr InitWithLang ST/PACE Yerch
Moo B i 1t gt - Aot Inirwitht angLang Intemnational Mountains
Numberinput_IMKir_Sample - jrnink InirWithshart PhotoLocations
umberinput_ IMKit Sampie = ftrunk InitWithUnsignedChar TheElements
10.4 Symbual Changes IniWiThinsigneding:
Mumberinpur_IMKiT_Sample - ftrink InitwithUnsignedinteger
Numberinput_IMKit_Sample = ftrunk InitWishunsignediang
10.4 Symbul Charges InitWithiinsignedi anglang:
NSNumberFormarter Class Reference nitWithUnsignadshart "
Numbierinpiut_IMKIt Sample - /trnk Integervalue Overview
Imtvalue .
IsEqualToNumber: ¥ NSNumber i$ 3 subclass of ¥SValue that offers a value as any C scalar
L IPhone O 3.0 Libeary » Topics + Data Management » Dates, Times, & Numbers » Number and Valus Programmang 1opsecs for Codoa 4t

Using an NSNumber as an argument

While I'm not going to have you do any coding, I'd like to go though how you
could use an NSNumber object instead of a double as an argument in the
spendDollars: method, because it does illustrate some important things
about using an NSNumber object. To replace the double with an NSNumber,
you do the following:

1. Modify the spendDollars: method in the Budget class to take
an NSNumber object as an argument instead of a double as it does
currently.

2. Modify main to create NSNumber objects and send the new and
improved spendDollars: message (the one that has an NSNumber as
the argument) to the Budget objects.

Modifying Budget

To modify the Budget class, you need to do a couple of things.

First, you must replace the method declaration in the header with a new one
that takes an NSNumber as an argument.

171

7 72 Part Il: Speaking the Language of Objective-C

+/—void—spendbottars—tdoubte)r—dottars:
- (void) spendDollars: (NSNumber*) dollars;

Of course, you also have to change the method implementation.

- (void) spendDollars: (NSNumber*) dollars {

budget -= [dollars doubleValue];
NSLog (@"Converting %.2f US dollars into foreign
currency leaves $%.2f",
[dollars doubleValue], budget) ;
}

You deleted the previous implementation of spendDollars: and replaced
it with one that has an NSNumber as an argument. But now, instead of simply
subtracting the dollars amount from budget as you did previously

budget -= dollars;

you send the doubleValue message to the NSNumber object to get its value
as a double.

budget -= [dollars doubleValue];

You also changed the NSLog statement in same way, sending the message,
doubleValue, to the NSNumber object to get the value as a double returned.

NSLog (@"Converting %.2f US dollars into foreign
R currency leaves $%.2f", [dollars doubleValuel], budget) ;
A
As you work through the example, think about why you are deleting some
code, and what the code you are adding does.

Modifying main

In order to implement the new spendbDollars: method, you need to make
some changes to main. You start by deleting the variable, numberDol -
larsInEuroland you were using to represent the dollar transactions. You
replace it with an NSNumber object, which you created using alloc and
init and initialized with the same amounts that you used to initialize the
variables you just deleted.

Chapter 7: Objects Objects Everywhere 1 73

77/ doubte numberbottarsinkEurotand =166+
NSNumber *europeDollarTransaction =
[[NSNumber alloc] initWithDouble:100.00];

You then delete the old spendDollars: message and replace it with the new
one that uses the NSNumber argument.

+7/teuropeBudget—spendbottarsnumberbottarsInFurotandi+

[europeBudget spendDollars:europeDollarTransaction];

Taking Advantage of Array Objects

While using a number as an object is an interesting exercise in using objects
(that is, replacing a double with an NSNumber), it doesn’t really buy you any-
thing. But it turns out that there is a similar use for an NSNumber object that
can help you as you develop your program.

As you examine the program you have developed so far, you'll realize that as
you add more and more transactions, the code is going to get a bit unwieldy.

Currently, for every transaction I create, [have to code a spendDollars:
statement. For example, for every transaction where I spend dollars in
Europe I need:

[europeBudget spendDollars:numberDollarsInEuroland];

For example, if I want to process 50 transactions, I will end up with

[europeBudget spendDollars:numberDollarsInEurolandl];

[europeBudget spendDollars:numberDollarsInEuroland50];
This is not a pretty picture.

Of course, this is not a problem unique to this application. In most applica-
tions, you’ll find you need a way to be able to deal with large numbers of
objects.

Often you may not even know how many transactions there are going to be.
For example, you may be getting the transactions from a database, or from

a list of previously stored instructions, or user actions may determine how

many transactions you will have — the user adds address book entries, for
example, or enters transactions as they occur (bingo!).

7 74 Part Il: Speaking the Language of Objective-C

WMBER
@"&
&

But even if you did know how many transactions you were going to have, a
long series of messages simply makes your program too confusing, prone to
error, and hard to extend.

Since this is a common problem, there is a widely available solution —
container classes.

Container classes

In object-oriented programming, a container class is a class that is capable

of storing other objects. In Cocoa, there are several kinds available, and I'll
be explaining the two most widely used. One is a dictionary, which I cover in
Chapter 15, and the other is an array, which you’ll use in this chapter. You'll
also continue to use this array in Chapter 9 and beyond, and in no time (or at
least by the end of this book), using arrays will become second nature to you.

There are two kinds of arrays available to you in Cocoa. The first is an
NSMutableArray, which allows you to add objects to the area as needed —
that is, the amount of memory allocated to the class is dynamically adjusted
as you add more objects.

Of course, you aren’t really storing the object in an array any more than you
stored an NSNumber object in the europeDollarTransactionl variable
when you created it.

NSNumber *europeDollarTransaction =
[[NSNumber alloc] initWithDouble:100.00];

In both cases, you are storing a pointer to the object.

The second kind of array is an NSArray, which allows you to store a fixed
number of objects, which are specified when you initialize the array. Since in
this case you need the dynamic aspect of an NSMutbaleArray, I'll start my
explanation there. I explain NSArrays later in this chapter, and you actually
use an NSArray in Chapter 15.

NSMutableArray arrays (I'll just call them arrays from now on when what

[have to say applies to both NSArray and NSMutableArray) are ordered
collections that can contain any sort of object. The collection does not have
to be made up of the same objects. So you could have a number of Budget
objects, for example, or Xyz objects mixed in, but they must be objects. One
of the reasons for introducing you to NSNumbers, besides showing you how
an object can use other objects, is that when you convert your transactions
into NSNumbers, you make it possible to store them in an array.

WMBER
@ﬁ
&

Chapter 7: Objects Objects Everywhere 1 75

As I've said, arrays can hold only objects. But sometimes you may, for exam-
ple, want to put a placeholder in a mutable array and later replace it with the
“real” object. You can use an NSNul1l object for this placeholder role.

The first step in being able to eliminate all of those spendDollar: messages
is to create an NSMutableArray of the NSNumber objects I will be using in
the spendDollars: message.

NSMutableArray *europeTransactions =
[[NSMutableArray alloc] initWithCapacity:1];

This allocates and initializes the mutable array. When you create a mutable
array, you have to estimate the maximum size, which helps optimization.
This is just a formality, and whatever you put here does not limit the eventual
size. [use 1 to illustrate that; even though I specify 1, I can actually add 2 ele-
ments (or more) to the array.

To make things simpler, for the time being, I'm just going to create an array
for the spendDollars: transactions in Europe. You see why in Chapter 9.

After I create a mutable array, I can start to add objects to it.
[europeTransactions addObject:europeDollarTransaction] ;

When you add an object to an Objective-C array, the object isn’t copied, but
rather receives a retain message before it’s added to the array. When an
array is deallocated, each element is sent a release message. While you
may have no idea what retain and release are (especially since [haven’t
covered them yet), you will when you learn about memory management in
Chapter 13.

Technically (computer science-wise) what makes a collection an array is that
you access its elements using an index, and that index can be determined at
runtime. You get an individual element from an array by sending the array
the objectAtIndex: message, which returns back the array element you
requested. For example

[europeBudget spendDollars:
[[europeTransactions objectAtIndex:0] doublevalue]];

returns back the first element in the europeTransactions array (remem-
ber the first element is 0) as a double. (I send the NSNumber the dou-
blevalue message so that I can continue to use the spendDollars:
method as is — with the argument type of a double.)

In your program, the index you will use is the relative position in the array,
which starts at 0.

7 76 Part Il: Speaking the Language of Objective-C

Depending on what you are doing with the array or how you are using it
(arrays are very useful), objectAtIndex: will be one of the main array
methods that you use (although you won’t be using it in this chapter — you’ll
see why shortly).

The other method you will use is count, which gives you the number of ele-
ments in the array.

Arrays have some other methods you might find useful, such as sorting the
array, comparing two arrays, and creating a new array that contains the
objects in an existing array. In addition, mutable arrays have methods that
include inserting an object at a particular index, replacing an object, and
removing an object.

But one of the most powerful things you can do with an array is to use each
of the elements in an array as an argument in a message — which means you
won’t have to code a spendDollars: message for each transaction. You can
even send messages to all objects in the array, which will knock your socks
off when you discover what you can do with that in Chapter 10.

Tiptoeing through an array

Objective-C 2.0 provides a language feature that allows you to enumer-

ate over the contents of a collection. This is called fast enumeration, and it
became available in Mac OS X 10.5 (Leopard) with version 2.0 of Objective-C.
As I've mentioned, this book is based on that Mac OS 10.6 — and OS 3.0 on
the iPhone. (If you need to program for OS X 10.4, you will need to use an
NSEnumerator, which I'll leave as an exercise for the reader.) Enumeration
uses the for in feature (a variation on a for loop, which I explain in
Chapter 9).

What enumeration effectively does is sequentially march though an array,
starting at the first element and returning each element for you to do “some-
thing with.” The “something with” you will want to do in this case is use that
element as an argument in the spendDollars: message.

For example, this code marches through the array and sends the spend-
Dollars: message using each element in the array (an NSNumber “transac-
tion”), eliminating the need for a spendDollars: message statement for
transaction.

for (NSNumber *aTransaction in europeTransactions) {
[europeBudget spendDollars: [aTransaction doublevValuel];

}

9,

Chapter 7: Objects Objects Everywhere 1 77

<MECD

Here’s the way this works:

1. Take each entry (for) in the array (in europeTransactions)
and copy it into the variable that you’ve declared (NSNumber *
aTransaction).

2. Use it as an argument in the spendDollars: message
([europeBudget spendDollars: aTransaction]).

3. Continue until you run out of entries in the array.

The identifier aTransaction can be any name you choose. NSNumber is
the type of the object in the array (or it can be id, although I won’t get into
that here).

You may also have noticed that [europeBudget spendDollars:
aTransaction] is enclosed in braces. The braces signify a block. (Blocks
are described in Chapter 4.)

To be more formal (I just put on a tie to write this), the construct you just
used is called for in, and it looks like

for (Type aVariable in expression) { statements }
or

Type aVariable;
for (aVariable in expression) { statements }

where you fill in what is italicized. There is one catch, however — you are not
permitted to change any of the elements during the iteration, which means
you can go through the array more than once without worry:.

The for inloop is just one example of a control statement, the rest of which
I explain in Chapter 9.

Adding mutable arrays

If you have been following along with me, I extend what you did in Chapter 6.
If you would like to start with a clean copy of the project from where you left
off, you can use the project found in the Chapter 7 Start Here folder, which is
in the Chapter 7 folder.

1. In the Groups & Files list (on the left side of the project window), click
the triangles next to the Classes and Source folders to expand them, as
shown in Figure 7-3.

’ 78 Part Il: Speaking the Language of Objective-C

el m) Budget Object.m - Budget Object
| 10.6] Debug | 1386 | [%] |- ‘:} - ﬁ Q- 51
Overview Actinn Breakpuints Build and Run Tacke Info Search

Groups & Files File Name ®| A Code e 4 @

v B Budger Obyjeer B .| Budger Objeer.m (13 L4
Classes
ul BudgeLh
! Budgerm
Source E
=1 Budgel Dlsject_Pr 4 | = @ Budget Ubjectm:l * <No selected symbols 3 e, a
= iapart =Foundation/Foundathen n
Documentation
External Frameworks
Praduces

» (5 Targets « argvil) o

o Executables numberbollarsintureland = 100;

v, Find Resulrs o9;

1l . o erDollarsInPoundland = 108;
o o erPounds = 100;
pla]
& Praject Symhals
[implementation Files hExchangeRate:1.25001;
- e leuropedudget 3 LlarsInEurcland];
I | S nterface Suilder Files [rureprBudget o tnumbrrfuros];
. K t aenglandiy
_2- [englandBudget - LuchangeRate: 1, 5000);
Flgure 7 3' [englandBudget sp InFoundland];
NaVI atln [englandBudget ch cy:numberfounds];
gatng "o
:)
to the file)
to edit.
|

2. In the Source folder, click Budget Object.m, as shown in Figure 7-3,
and you see that file ready for editing.

ABE In this example, you’ll be working only in main in the Budget Object.m
2 4 file
=‘<, .

This is the way you navigate to the file you want to edit.

3. Delete the code with the strikethrough and then add the code in bold,
as shown in Listing 7-1.

Listing 7-1: main in Budget Object.m

#import <Foundation/Foundation.h>
#import "Budget.h"

int main (int argc, const char * argv([]) {

+7Fdoubte numberbottarsinFurotand—160+
double numberEuros = 100;
double numberDollarsInPoundland = 100;
double numberPounds = 100;

NSNumber *europeDollarTransaction = [[NSNumber alloc]
initwithDouble:100.00];

NSNumber *europeDollarTransaction2 = [[NSNumber alloc]
initWithDouble:200.00];

NSMutableArray *europeTransactions = [
[NSMutableArrwwwwwwwwwway alloc]
initWithCapacity:1];
[europeTransactions addObject:europeDollarTransaction];

Chapter 7: Objects Objects Everywhere 1 79

[europeTransactions addObject:europeDollarTransaction2];

Budget *europeBudget = [Budget new];
[europeBudget createBudget:1000.00

withExchangeRate:1.2500];
77/ TeuropeBudget —spendbPoltars rnumberboltarsinEurotandi+
for (NSNumber *aTransaction in europeTransactions) {

[europeBudget spendDollars:
[aTransaction doubleValuel];

}

[europeBudget chargeForeignCurrency:numberEuros];

Budget *englandBudget = [Budget new] ;

[englandBudget createBudget:2000.00
withExchangeRate:1.5000] ;

[englandBudget spendDollars:numberDollarsInPoundland] ;

[englandBudget chargeForeignCurrency:numberPounds] ;

return 0;

}

4. Select the Build and Run button in the Project Window toolbar to
build and run the application.

Your output in the Debugger Console should look like this:

Converting 100.00 US dollars into foreign currency leaves
$900.00

Converting 200.00 US dollars into foreign currency leaves
$700.00

Charging 100.00 in foreign currency leaves $575.00

Converting 100.00 US dollars into foreign currency leaves
$1900.00

Charging 100.00 in foreign currency leaves $1750.00

Let me explain what you did here. First, you added

NSMutableArray *europeTransactions = [[NSMutableArray
alloc] initWithCapacity:1];

This allocates and initializes the mutable array for you. As I said, when you
create a mutable array, you have to estimate the maximum size, which helps
optimization. This is just a formality, and whatever you put here does not
limit the eventual size.

To make it (a little) more interesting, you created two NSNumber objects

NSNumber *europeDollarTransaction =

[[NSNumber alloc] initWithDouble:100.00];
NSNumber *europeDollarTransaction2 =

[[NSNumber alloc] initWithDouble:200.00];

180

Part Il: Speaking the Language of Objective-C

<WECD

WMBER
é&
&

and added both to the array

[europeTransactions addObject:europeDollarTransaction] ;
[europeTransactions addObject:europeDollarTransaction2] ;

The next thing you should notice is that you deleted
[europeBudget spendDollars:numberDollarsInEuroland];

Instead you going to go through the array and send a spendDollars: mes-
sage for each object.

for (NSNumber *aTransaction in europeTransactions) {
[europeBudget spendDollars: [aTransaction doublevaluel];

}

As I explained, this takes each entry (for) in the array (in europeTransac-
tions) and copies it into the variable that you have declared (NSNumber

* aTransaction). You then get the value as a double ([aTransaction
doublevalue]) and use it as an argument in the spendDollars: message
until you run out of entries in the array. (aTransaction can be any name you
choose.) NSNumber is the type of the object in the array (or it can be id).

You can find the completed project on the CD in the Example 7 folder, which is
in the Chapter 7 folder.

What you have accomplished here is that no matter how many cash transac-
tions you create for Europe, you’ll only need one spendDollars: message.
While that’s pretty good, you ain’t seen nothing yet. In Chapter 10, [show
you how to extend that so that you need only one spend message for every
transaction (both cash and change and any other transaction you can come
up with) statement for all the countries you visit.

As you may have noticed, I'm not quite out of the woods yet. I still have to
declare a variable for each NSNumber object 'm adding to the array. While
this will disappear when you add the user interface in Chapters 17 and 18, it
still is annoying. I show you how to eliminate all those variable declarations in
Chapter 9.

Working with fixed arrays

Actually, NSMutableArray is a subclass (I explain that in Chapter 10) of
NSArray, which manages a static array — once you have created it, you
cannot add objects to it or remove objects from it. For example, if you create
an array with a single NSNumber to represent a transaction, later you can’t

Chapter 7: Objects Objects Everywhere 1 8 ’

add to it another NSNumber object that represents another transaction.
While only allowing a single transaction may be good for your budget, it’s not
very flexible.

NSArrays give you less overhead at a cost of less flexibility. So if you don’t
need to be able to add and remove objects, NSArrays are the preferred
choice. [show you when that makes sense, and how to use an NSArray in
Chapter 15. If you want to use an NSArray (and [suggest you experiment on
your own), you have to initialize it with the objects you want in it when you
create it.

So instead of

NSMutableArray *europeTransactions =
[[NSMutableArray alloc] initWithCapacity:1];
[europeTransactions addObject:europeDollarTransaction] ;

you would do the following:

NSArray *europeTransactions =
[[NSArray alloc] initWithObjects:
[[NSNumber alloc] initWithDouble:100.00],
nill;

Even though [added only one object to the fixed array, initWithObjects:
allows you to initialize the array with as many objects as you want, separat-
ing them with commas and terminating the list with nil as you can see.

As with a mutable array, when you add an object to an NSArray, the object
isn’t copied, but rather receives a retain message before it is added to the
array. When an array is deallocated, each element is sent a release message.

Using C Arrays

Arrays are also a part of the C language. Although most of the time you'll use
array objects, you'll also find uses for C arrays, not to mention seeing them
used in Apple documentation and code samples.

Arrays in C store elements just as an NSArray does (although they must be
of the same type), and you can think about them as an ordered list as well.

That means, for example, that you can store five values of type int in an
array without having to declare five different variables, each one with a differ-
ent identifier.

7 82 Part Il: Speaking the Language of Objective-C

To declare an array, use

double europeTransactionsArray [2];
Now you have an array with enough room for two doubles, effectively similar
to the NSMutableArray you created earlier; but this one is of fixed size, just
like an NSArray. It is really just like having a set of the same variable types,
one right after another.
To access a specific element of the array, use

europeTransactionsArray[0] = 100.00;

This places 100.00 in the first element in an array (again, element 1 is at
index 0).

You can also initialize arrays when you create them. For example
double europeTransactionsArray [2] = {100.00, 200.00};

creates a two-element array of doubles. You can access an element in the
arrays as though it is a normal variable by doing the following:

transactionl = europeTransactionsArray[0];

Expanding to multidimensional arrays

One useful aspect of arrays is multidimensional arrays. For example
int twoDArrayI[31[3] = {{1,2,3}, {4,5,6}, {7,8,9}};

declares and initializes an array that has two dimensions, like a tic-tac-toe
board. You can make three-dimensional arrays, and even more.

While there are no multidimensional array objects, in Objective C you
could have an array of arrays that accomplish the same thing. Arrays

of arrays are used extensively in Mac and iPhone programming, and you
can find them used in some of the samples on their respective Dev Center
sites.

The following code shows a two-dimensional array in C, and the way to simu-
late that two-dimensional array in Objective-C. No applause — I'll leave you
to figure this out on your own.

Chapter 7: Objects Objects Everywhere 1 83

int main() {

int twoDArray[3]1I[3] = {{1,2,3}, {4,5,6}, {7,8,9}};
NSLog (@"twoDArray[2][2] is %i", twoDArray[2][2]);

NSArray *arrayl = [[NSArray alloc] initWithObjects:
[[NSNumber alloc] initWithInt:1],
[[NSNumber alloc] initWithInt:2],
[[NSNumber alloc] initWithInt:3],
nill;

NSArray *array2 = [[NSArray alloc] initWithObjects:
[[NSNumber alloc] initWithInt:4],
[[NSNumber alloc] initWithInt:5],
[[NSNumber alloc] initWithInt:6],
nil];

NSArray *array3 = [[NSArray alloc] initWithObjects:
[[NSNumber alloc] initWithInt:7],
[[NSNumber alloc] initWithInt:8],
[[NSNumber alloc] initWithInt:9],
nil];

NSArray *arrayOfArrays = [[NSArray alloc]
initWithObjects:
arrayl, array2, array3, nil];
NSLog (@"NSArray of NSArrays equivalent is
%1", [[[arrayOfArrays objectAtIndex:2]
objectAtIndex:2] intValuel) ;
}

The results is

twoDArray[2] [2] is 9
NSArray of NSArrays equivalent is 9

Finishing up with the main function

Arrays can be passed as a parameter in C. In order to accept arrays as param-
eters, the only thing that you have to do when declaring the function is to
specify that its argument is an array by using its identifier and a pair of void
brackets []. For example, the function

void someFunction (int argl])

accepts a parameter that is an array of ints.

7 84 Part Il: Speaking the Language of Objective-C

Now that you understand arrays, I can finally explain the argument list in the
main function.

int main (int argc, const char * argv[]) {

The name of the variable argc stands for argument count and contains the
number of arguments passed to the program. The name of the variable argv
stands for argument vector and is a one-dimensional array of strings (that’s
what a char* is in C (but since you won'’t be using them, I won’t be going any
further into C strings in this book).

This finally (and thankfully) closes the chapter on main.

Chapter 8
Using the Debugger

In This Chapter

Knowing how things can go wrong
Using Xcode’s Debugger
Finding and fixing logic errors with the Debugger

N ow that things have gotten a little more interesting, so will the errors.

Let’s face it. There are always going to be errors. No matter how good
you are, how much experience you have, how careful you are, or even how
smart you are, they are a programming fact of life.

You’ll come up against three kinds of errors. Each one has a unique personal-
ity and associated techniques for finding and correcting. Here is a list of the
three types you’ll come up against:

v Syntax errors
v Runtime errors

v Logic errors

The last two types, runtime and logic errors, are what are commonly referred
to as “bugs.”

Identifying the Usual Suspects

E CD
Qé% While there is no exercise for this chapter, you can follow along with me if you
like by using the project in the Chapter 8 Start Here folder in the Chapter 8

folder on the CD. Or you can use the project you use at the end of Chapter 7.

’ 86 Part ll: Speaking the Language of Objective-C

Figure 8-1:
Syntax error.

3

Catching syntax errors

As I mentioned earlier in this book, compilers take your source code and
turn it into something the computer understands. For that process to go
smoothly, the source code you give the compiler has to be something it
understands. All of the operations and framework functionality I cover in
Chapter 4 and continue to cover have to be coded in a certain way, and the
compiler expects that you follow those rules (syntax). When you don't, it
gets visibly annoyed. So when you type New instead of new, or the subtler
[Budget new} instead of [Budget new], the compiler suddenly has no
idea what you’re talking about and generates a syntax error. In Figure 8-1, you
can see what happens when I forget the semicolon after double number
Pounds = 100.

anm m| Budger Objecr.m - Budger Object =

| 10.6 | Debug | 1386 =] | | -] ‘ﬁb w 0 Q-
Cvenview Actien Bulld and Run Tazks info Search
Groups & Files | = File Name: & 4 Code L] & L]
v B8 Budget Oyeet B | [w] Hudget (hpeetm ¥ L]
¥ [Classes

=| Budger.h

i Budget m

Source

=} Burger Ohjeer_frefis
|} Budget Object.m
4 Ducumentativn
External Framewarks ant
» (53 Products
+ (@ Targets
b Execurables nt main [int arge, t char & argu(]) {

< » | & Budger Objecr.m:11 3

& O, Find Results
b L Buckmarks
sCM 2
8 Froject Symbals e
(@l Implementatian Files
» [nterface Budder Fides

le nusberburos = 1008:
nusberFounds = 100|

reurcpelollarTransaction = ([
veurcpebollarTransactiond
wenglandbellarTransaction

00,001 6 Ewpeooed) ar 7 efome NiNem
100.00

wblrArray seur
(] [europeTransactions
leurapetransactians

ns w [[NSHutahleh a
ropebellarTransaction] D ‘surcpetialiar Tranaction” undeciursd
ropeDal larfransaction?];

1lee] initWithCapacity:1];

set seuropeludge
|europeBudget «© .2500];
i usber va

leuropeBudget iaTransactiond;

]
leuropeBudget cr ncyi numberfures]:

5 senglandudges =
[erglandRudget

wchangefate:]. SA00];
[englandtudget larfransaction);
[englandBudget © usberPounds] ; i
LH .
] v
Husild failed {2 errors) @Failed D2

It’s generally better to ignore the subsequent errors after the first syntax error
because they may be (and frequently are) a consequence of that first error.
You can see that in Figure 8-1. In this case, because of the first error, europe
DollarTransaction is never declared, and you get a subsequent syntax
error to that effect.

Chapter 8: Using the Debugger 18 7

|
Figure 8-2:
Build

Results
window.
|

If you have set your Xcode preferences to keep the Build Results window
open, as [suggest you do in Chapter 2, you'll see the results of your com-
pile in that window in Figure 8-2 (clicking the ! 2 in the lower-right corner of
the Project window opens the Build Results window). If you click an error
in the top pane, the error message bubble animates so that you can find it
in the lower pane. In addition, double-clicking the error message in the top
pane opens a new window and animates the error message in that window
as well.

You may have noticed that my Editor window is now displaying line numbers.
[did that by choosing Xcode=>Preferences (as you do in Chapter 2), selecting
Text Editing in the toolbar, and then checking the Show line numbers box. |
explain why in the section “Using the Static Analyzer,” later in this chapter.

CIakE) m Rudget Object.m: Rudget Object - Build Results &

[siobuoines -] [m=] N & @ a

Bl Buld Build and Run _ Tashs Seaich
L By issue lssues Only =

o Bulld Falled £/26/09 1:51 PM
2 errors

ale

main {int arge, cor har = argvll) {

uble nuaberEurocs = 100;
e nuaberPounds = 108

per seurapebollarTransaction = [
rr srurapedniinrTransaction? =
ber senglanddalinrTransaction =

HiMutableArray seuropelransactions = [[Ns ble all ¥i1l;
il [europeTransactions addobject;europetoliarTransaction]; 0 ureemDellarTumsacion’ undeslared |
[europeTransactions sddlbject:europeloliarTransactioni);

Huld failed (2 errors) Dalled 02

Fortunately, syntax errors are the most obvious of errors out there — when
you have one, your program won’t compile, much less run, until the error
is fixed. Many of the syntax errors are a result of typographical errors like
those I just mentioned. Others occur when you try to pass the wrong argu-
ment type to a message or function. You can see an example in Figure 8-3
when [try to pass in a string instead of a double to the initWithDouble:
method.

’ 88 Part ll: Speaking the Language of Objective-C

|
Figure 8-3:
Wrong
argument
type.

|
Figure 8-4:
Runtime
error.
|

m| Budger Object.m - Budger Ohject
10.6 | Debug | 1386 - - - 0 Q- st y
Overview Action Breakpoims Bulld and Run Tasks info Search
Groups & Files It File Name 4 A Code (-] & L]
v B8 Budget Obyjeet B | [u] Autget Onpeet.m v L4
¥ [Classes
51 Budgerh
i Budget m
[Source . =
2| Buriper Ohjecr_Pre 2 [» [ARdpeObjecumcile Bmamg s = 2, (= C. |2, @ |3
|u) Budoet Object m e nTors pie BopLIEation o 0bjective=E For Dusaiss =

* | Ducumentation
b [External Framewaris ant
& [Products

* (E) Targens

I o Execurables t main (int arge, roaargull) {
* 44, Find Results Le nusberburos = 108;
k[HBuokmarks e nuaberPounds = 1090;

i scm

il I veuropeDullarTransaction =
B Projeat Symbels” - ¢ reuropeDollarTransact iond
* [l Implementatian Files L B wenglandbollarTransaction = [

B incompabible ype for argumant 1 of ‘innWithixuble
allee] dnitWithCapacity:1];

» [nterface Budder Fides
NSMutabledrray seuropeTransactians = [[NSHutabichrray
[europeTransactians adddhjectreurapednl larTransaction];

[eurapeTransactians adalbhject:eurapelnl larTransactian?];

t seuropebudget
leuropeBudget
Tar {NSHusber vaT

leuropeBudget «

| xchangeRate:1.2500] ;
in europeTransactions) {
iaTransactiond;

ction
211

leuropeBudget cha : numberEures];
[senglandfudger = [
[englandBudget createa.

[englandliudget
[englandBudget charge

o

Husild failed (1 erron @Failed D1 o

Crashing with runtime errors

Runtime errors cause your program to stop executing — this is commonly
known as a “crash.” You are probably familiar with that happening to pro-
grams you are using, and it’s quite annoying. But it’s a little different when
it happens to a program you have written. You can see the result of that in
Figure 84 for a Foundation Command Line Tool, although when you are run-
ning on the Mac as an application or on the iPhone simulator, or the iPhone
itself, you’ll get other kinds of messages. Don’'t worry; while a message may
not tell you why, the fact that it is a runtime error is usually obvious.

anm ™ Budget Object - Debugger Console (&
'
1061 Debua [1385~ = N e » ra

Overview Build and Run Tasks Restart Continue. Clear Lug

[Session started at 2000-86-26 14:06:32 -0704.)

GNU pdb 6.3.50-20058815 {Apple version gdb-1339) (Sat May 23 05:39:87 UTC 2009)

Copyright 2804 Free Software Foundoticn, Inc.

GOB is free softuare, covered by the MU General Public Licemse, and you are

welcome to change it and/ar distribute copies of it under certain conditions,

Type “show copyimg" ta seé the conditions.

There 15 absolutely no warranty for GOB. Type “show warranty” far details.

This GDB was configured as “xBb_Gd-apple-darwin®.tty /dev/ttyseto

Loading program into debugger—

Program Loaded.

run

|Switching te process 588]

Running.

Program received signali “EXC_ARITHMETIC®.

sharedlibrary apply-lead-rules all

GIM: Program received ssgnal TEXC_ARITHMETIC @succesded

Chapter 8: Using the Debugger 1 89

|
Figure 8-5:
My own
money
machine.
|

Runtime errors can be created all sorts of ways. However, you can rule out
one way; at least it wasn’t a syntax error (although it could be a warning you
ignored). There might have been data that you hadn’t expected (a division-
by-zero error, for example), or maybe you tried to send a message to a
method that didn’t exist, or there was a problem with an argument you used
in a message. Sometimes you even get some build warnings for these errors;
sometimes you're blindsided by a crash. At other times, instead of crashing,
the program may “hang” and become incommunicado.

Dealing with logic errors

When a program doesn’t do what it is supposed to, people tend to blame the
problem on the computer. “The computer gave me the wrong answer.” Well,
computers are actually blameless creatures; they do what they are told to

do, and they do that with a vengeance. If you were to tell a computer to go
jump off a cliff, it would. It does exactly, and I mean exactly, what you tell it to
do — over and over and over again. When you have a logic error, the problem
is not that the computer didn’t do what you told it to; the problem is that it
did. You just told it to do the wrong thing. Another possibility is that you may
have forgotten to tell it to do something, like initialize an object for example.
In Figure 8-5, everything looks fine — not a compiler error in sight (ignore the
highlighted line for a second).

ano m Budget.m - Budger Object)
[10.61 Debug 11386 =] (%] | -] ﬁh o O 2 &
Overview Action Bulld and Run Tatks info Search
Groups & Files File Name & 4 Code L] & @
v B Budget Qlbjeet BB budgerm ™ "3
si] untithed.h
Classes
i) Budget b
B Budgerm .
Source - BBudgetm:17 ¥ B -spendDollars: 2 o™ |G| O W i
o] Budget Object_Prefix . Budyst, b -
u! Budgel Object.m
Documenration Budpet
External Frameworks an { | createBudger: {doohie) aBudger withExchangefate: (flnar) anExchangefate{ M
Products
» @ Targers n .-“".Id;';\;\r-rnnm;ril:\rf:
b i Executables '
4, Find Results

+ (9 ankmarks = {void) spendDollars: (NSMusbers) dollars {

M T i = [dellars duubleValuel;

W Project Symbols nvert -2 us lar
[l tmplementation Files
* (i Interface Builder Files

o ldollars doubleValuel,

1) chargeForeignCurrency: {double) foreignurrency {

foreignturrencys

WsLogi Charging %.2f in fore urrency leaves §5.2t%, foreignCurrency, b yi

[§ ;] “r
Debugging of “Budget Dbgect” ended normally. Dsucceeded

7 90 Part ll: Speaking the Language of Objective-C

WBER
\g&
&

The problem is the output looks a little screwy:

Converting 100.00 US dollars into foreign currency leaves
$1100.00

Converting 200.00 US dollars into foreign currency leaves
$1300.00

Charging 100.00 in foreign currency leaves $1175.00

Converting 100.00 US dollars into foreign currency leaves
$2100.00

Charging 100.00 in foreign currency leaves $1950.00

Think about this. I start with my $1,000 budget for Europe, and when I con-
vert $100 (U.S. dollars) into foreign currency, I am left with $1,100. While this
is a nice trick if you can do it, [doubt that is what really happened. (Somehow
[don’t think I have invented a perpetual balance increasing machine.)

Looking at the code that computes the balance (highlighted in Figure 8-5 and
in bold here)

- (void) spendDollars: (NSNumber*) dollars {
budget += [dollars doubleValue];
NSLog (@"Converting %.2f US dollars into foreign currency
leaves $%.2f", [dollars doublevValue], budget) ;
}

you can see that instead of subtracting the transaction amount from the bal-
ance (-=), I add it instead (+=). Wishful thinking I suppose, but regardless of
the cause, what [have here is a logic error.

There is also another type of error that more or less falls into the logic error
category — “typos.” This is when you send the wrong message to an object,
or use the wrong instance variable, because the names are very similar and

you simply mistype the message name or variable.

Because of the similarity of names, the error can be pretty hard to spot
because the code, at first glance, seems “right.”

All three of these errors, syntax, runtime, and logic, are the bane of a program-
mer’s existence. But get used to it. Like death and taxes, they are something
you can never escape. But what you can do is learn to deal with and dispatch
them as quickly and efficiently as possible. To do that, you’ll call upon one of
the Xcode tools that come with the SDK — the Debugger. While the Debugger
is no help with syntax errors, it is a veritable star when it comes to runtime
errors and your trusty assistant when you need to hunt down logic errors.

Using the Debugger

In Figure 8-6, | deliberately created a situation that gives me a runtime error.
(Intentionally creating a runtime error may seem a bit bizarre, but this is for

|
Figure 8-6:
About to
divide by
zero.
|

teaching purposes.)

Chapter 8: Using the Debugger 19 ’

As you can see from the highlighted code, I am going to divide by zero. If I
had done something like i/0, | would have gotten a compiler warning (which I
could choose to ignore for teaching purposes). In this case, I fooled the com-
piler (it’s generally not a good idea to try and fool the compiler; it really has
your best interests at heart). So the compiler thinks everything is fine, but at
runtime, the processor is chugging along, executing its instructions, only to
result in the unexpected exit you see in Figure 8-7.

How can the Debugger help me determine the source of a runtime error like
this one? The next section gives you the details.

CIlala) ‘= Budget Object.m - Budget Object —
| 10.6] Debug | 1386 v | [~ - [) 0 Q- s
[Adthan Breakpoints Buildand Run Take Info Search
Groups & Files File Name: & A Cude o & @
v B Burdger Qbjrer B | [w] Rurger Ohjeot m B L4
i} untitied.h
Classes
- Budger h
|} Budget.m
Source - & Budger Object.m 24 & El main(& ., -
=] Buriger Ohject_frefix e B
|u] Budget Object.m undati
Documentation rt “Budget.h 4
External Framewarks ant t wain (40T $PO<, + argvild o |
Froducts
- (B nusberEuros
(@) Targets Nmber F
¥ o4 Execurables nsbierPuurds
O Find Resuits +europebollarTransaction = 11
b L Buokmarks +eurepebellarTransactiond = [
oM +englandbollarTransaction = [
W Project Symbals IsMurablea seuropeTr lans = [[NSMurabiesrray
¥ [l tmplementation Files [europeTransactions ad ropelallarTransaction];
i — etk [europefrantactions ado europeollarTransaction?]; |
] ace Busider Fi
. seuropeudget = ewl s
leuropeBudget create get11000.00 withCxchangeRate:1.2500];
int § = &;
L= 174
ner saTronsaction in europeTransoctions) |
idget il lars:aTransaction); |
3 |
[europeRBudger cha y: numberfurss]; |
= senglandd 1; |
englandbudget < thixchangeRate:1.50001;
[1
englandDudge andDollarTransaction];
lenglandD d0ellarT 1 |
leng LandBudget ency:numberPounds]: |
LE i"
¥
Debugging terminated @iuccesded

You can also see that in Xcode’s Editor view in Figure 8-8, the offending
instruction is highlighted and there is an arrow (you'll see it as red in Xcode)
pointing to the line in the Editor view. The Editor view has also changed, and
the Xcode debugger controllers are available to you in the Editor view.

’ 92 Part ll: Speaking the Language of Objective-C

ann 1™ Budget Object - Debugger Consale (=]
[10.6] Debug | 1386 -] | = >N @& » T
Dverien Breahpuints Bulid and Run Tasks Restart Conlinue et Log

Debugger sluppel
Program exiled with status value:@,
[Session started at 2009-06-17 08:45:09 -0700.]
GHU gdb 6.3.50-20050815 (Apple version gdb-1348) (Fri Jun 19 22:52:24 UTC 2089)
Copyright 2004 Free Software Foundation, Inc.
I |GoB is free software, covered by the GNU Gemeral Public License, and you are
weleome to change it amd/or distribute copies of it under certain canditions.
. Type “show copying" to see the carditions.
Flgure 8_7- There is ahsalutely no warranty for GOB, Type "show warranty® for details,

" [This GOB wns configured as “"xBb_BA-apple-daruin®.tty Jdev/ttysann

Loafing program into debsgger—
After |erogras tonded.
run
leldlng [Switching te process 1843] m
Hunning.-
Program received signal: “EXC_ARITHMETIC".
by Zer0. |sharedlibrary spoly-load-rules all =
.

I | GOH Program recerved signal “EXC_ARTTHMETIC @succeeded

Step into method or function call
Step over method or function call | Step out of method or function

Continue execution Show Debugger

Activate/Deactivate Breakpoints Show Console
w Budget|Obidet.n] - Bfdged Objfer
10.6 | Debug | 1386 - @ - ‘:k " o Q- o chin
Overview Adtion Breakpoints Build avd Rafn [Task: Infa Search
Groups & Files. (Il File Hame: & 4 Cude -] 'y @
¥ [Buriger Object B | [u Burger Object.m B ¥
untitied.h
¥ L Classes
[5) Budger b
|} Budget.m
¥ [Source Thread-1- <com.apglem ——m > o H Bl main
\| Budger Cibjeer_frefix 4 = Budget Object.m: 25 = El maind 2 #. &

) Budger Object.m y ’
Documenitation .

[
I [Fxrernal Framewarks ant

» [Products
() Targets
¥ o4 Execurables
O Find Resuits
L Buokmarks
rEdsom

1 Project Symbals
FI eipjenmatalian Fet I NsMutab seuropefransactions = [[NsMutablefrray allec] initWithCapacity:l);
[nwerface Guilder Files 3 [europeTransactions addlbiect:europebollariransaction]:

leuropeTransactions addlbject:europelollarTransaction2];

ant main [int aryc, v argvll) o

¢ nusberfureos = 1
¢ nusberPounds = 1

r allac] imtriWithiook
roallee] dnivdit
allse] initdit

seurspebnllarTransaceion = [N
seurspebollarTransaction? = [[
wenglandbal larTransaction = [[

weuropeBudget

I Ele.}i;menuugel .-u...-.Euln;-.-l{iaoﬁ;;i-.--.-:<-_..,:.uuua-.-.v;l.zsnnl;
Figure 8-8: o et
The Editor
high- Jleurngeunnqet chargeforelgnlurrency: nusberfuros]:
lights the 1 Ry
offending 181(| Tenalandbudget <
instruction.
[G Program recebved ugnalt “EXC_ARITHMETIC™.

ansaction in eurepeTramsactions) |
allarsiaTransaction]

Diucceeded

Method or function where the error occurred

I explain most of these controls in the section “Using Breakpoints,” later in
this chapter. For now, click the Show Debugger control as I did in Figure 8-9.

Chapter 8: Using the Debugger

a\\J

|
Figure 8-9:
Selecting
the
Debugger.

WMBER
@ﬁ
&

If you have any questions about what something does, just position the mouse
pointer above the icon and a tooltip explains it.

ano ‘m Budget Object.m - Budget Object =
[10.6 | Debug | 1386 | 8- = ‘& a (7) Q; string b
[Aathan Breakpoints Buildand Run Tasks Inflo Search
Groups & Files File Name & A Cude o & @
v B Burdger Qbyjrer B | [w] Rurdger Ohjeot m B L4
i} untitied.h
anses
- Budger h
i) Budget.m =
Source Thread-1-<comapglem... | = @ o & T '* Bl main
= Budger Objecr_Prefiy 4~ & Budget Object.mZs = [maing % | iCef ey &
(o Buder Object i Pl U W AT TS T TR Show Dehugger 5
Documentation deaiire
External Framewarks ant Budg
Products 7 : M
» @ Taronts Nt main [int arue, v aravlll o
¥ o4 Execumables jouble nusberEuros = 108; |
&), Find Results 1 jouble nusberPuunds = 108; |
bE s
Vit Rodhoarks scuropebollarTransaction = | [NSHumbe |
oM seurspebollarTransaction? = [|
B Project Symbaols «englandDallarTransaction = [|
'E‘Iruulc'llell..l.lunFl-u NsMutabledrray seuropefransactions = [[N eArray allec] init |
¥ interface Builder Files [europeTransactions addlbject:eurcpebeollarTransaction]: 1
leuropeTransactions addlbject:europelollarTransaction2]; |
: seuropeBudget = [Budgel newl; |
|europeBudget createBudget; 100000 withExchangeRate:;1.25001;
F timb; |
L4 i f
. usner saTransaction in europeTramsactions) [|
lruraprtiudges sralransaction); 1
1 |
[europetudget ch ncy: numberfures]: |
; venglandBudyet |
|englandBudget "
lenylandBudge: '
|englandBudget iy s numberPounds 15
.
n e T
GO Program received tignal “EXC_ARITHMETIC” @iucceeded

When you do that, you’ll see the Debugger window in Figure 8-10.

In the upper-left pane, you can see the stack — a trace of the objects and
methods that got you to where you are now.

In this case, you are in main, which is where you started.

Stacks can be very useful in complex applications. They can help you under-
stand the path you took to get where you are. If you are tracking down a logic
error, for example, seeing the path of messages from one object to another can
be really helpful, especially if you didn’t expect the program to execute in that
order.

Looking again at the Debugger window in Figure 8-10, you can see the bottom
pane shows the source code and also highlights the instruction that caused
the problem. In the top-right pane, you can see the program’s variables. (I
show you how that can be useful in the section “Using Breakpoints.”)

193

’ 94 Part ll: Speaking the Language of Objective-C

|
Figure 8-10:
The
Debugger
window.
|

ann 'm| Budget Object.m: Budget Object - CDR —)
[osiomel o] (=] B @@ & @ O W =
Overvien mts Build and Run Tasks Restart Comtinue Siep Over Step hio Siep Oul Shuw Console
Thread-1- <cam.apple main-threads & Variahle Value Sumeary
¥ Locals
numberfuros 100
numberfounds 100

F europelaliarTransaction Oxl03ec
* eurapeDallaTransaction? 0x103ed0

¥ englandUoliarTransaction Tx102de0 dsser
europeTransactians Ox104ebl 2 uhjects
L3 Ox103ecO
1 Ox103ed0
¥ europedudqet 0104140
¥ MEOBjecT =)
exchangeRate L%
budget 1000
rransacrinn Q
0
B englandbidget axd
5. =3
nt main {int arge, const char e argvl]) { |
& nuaberfuros = 100; I
e nunberPounds = 100;)
weuropelullarTransaction = | nitWithDouble: 100.001; |
seuropelollarTransaction? = hDoul 0el;
senglandbailarTransaction = hDouble: 109, 00];
ableArray seuropeTr ns ow [r] initwithCaparityzil; |
prlransactions ando ropetol ia
pelransactions addo ropetialiart
Budget seuropeBudget = [Budget newl:
leuropeBudget createDudget:1000.09 withCxchangeRate:1,2500];
int i = @;
» =17
.
rr saTramsaction in europeTransactions) | 3
i _smmadtial Lass i o¥ canmendand s
GO Program received tignal “EXC_ARITHMETIC”. Dsucceeded

Your window may not look exactly like mine. You have a number of ways to
customize the look of the Debugger window. If you choose Run=Debugger
Display from the main menu, you can change the way information is dis-
played. I am using it as it came from the factory.

Examine the top-right pane in the Debugger window. There you’ll see a list

of the program’s variables. I clicked the disclosure triangle next to Locals as
well as the ones next to europeTransactions and europeBudget. These
are what are known as local variables. These are the variables declared in
methods and functions (like main). In the next section, I also show you some
instance variables.

As you debug a program error, the Variables pane is useful in a number of
ways:

v Checking values: Since, in this case, [have a runtime error and the
Debugger has pointed out the offending instruction, and since the
offending instruction involves dividing by the variable 1, it doesn’t take
a rocket scientist to figure out that perhaps you need to look at the
value of that variable. In this case, you can see in the Variable list that
the value is 0. At this point, [have at least tracked down the immediate
cause of the problem — division by zero.

Chapter 8: Using the Debugger 1 95

[say immediate cause because in some cases, although not here, I might
wonder how it got set to 0. (I'll show you how to watch the value of a
variable in the next section where I explain how to set a breakpoint. But
for now, just know that using a breakpoint can stop the execution of
your program at any point, and you can look back and see how you got
to that point.)

1 Checking objects: Certain logic errors you may encounter are the result
of what some people call a “feature” and others call a “design error” in
Objective-C. Objective-C allows you to send a message to a nil object
without generating a runtime error.

As you can see in Figure 8-10, you have variables that contain pointers to
objects. I clicked the disclosure triangles next to europeTransactions
and europeBudget.

europeTransactions, which is my transaction array, not only has a
correct looking pointer, it has two entries corresponding to the values
for the europeDollarTransaction and europeDollarTransac-
tion2 objects I created.

In addition, you can see europeBudget, which I created before my run-
time error is there, and messages to it were working fine. You can also
see the value for englandBudget is 0x0.

If I were to send a message to englandBudget, it would go into the
aether. So, when things don’t happen the way I expect, one of the things
I'm going to check is whether any of the object references [am using has
0x0 as its value.

o This can actually happen easily. You can forget to assign the object you

created to a variable, or as you see in Chapter 17, you can forget to make
a connection in Interface Builder.

But what about logic errors? In fact, the Debugger can help there as well.

One of the ways to figure out why something happened is to be able to see
what is going on in your program before you wander down a particular path
to oblivion (which can help you figure out runtime errors as well). For that,
the Debugger provides you with the ability to set breakpoints, which is the
subject of the next section.

Using Breakpoints

A breakpoint is an instruction to the Debugger to pause execution at that
instruction and wait for further instructions (no pun intended). If you
have a logic error, a breakpoint can help by allowing you to step your
way through your code (refer to the earlier section “Dealing with logic
errors”). By setting breakpoints at various places in my program, you can

’ 96 Part ll: Speaking the Language of Objective-C

Figure 8-11:
Setting a
breakpoint.
|

step through its execution, at the instruction level, to see exactly what it is
doing. You can also examine the variables the program is setting and using,
which allows me to determine whether that is where the problem lies.

Returning to the logic error introduced in Figure 8-5, I'm going to set a break-
point at the entry of the method I think is causing the problem, spend
Dollars:, to see if I can figure out what is going on. In Figure 8-10, I've set a
breakpoint simply by clicking in the far-left column of the Editor window.

Take a look at Figure 8-11. Notice that the Build and Run button in the toolbar
has changed to Build and Debug. In addition, the Breakpoint button to its

left has inverted. This lets you know you have a breakpoint set. If you click
that button, it temporarily turns off those breakpoints (if you think you fixed
something and want to see how your program runs without all those pesky
breakpoints) and change the Build and Debug button back to Build and Run.

- €0 «

Breakpaints Build and Debug Tasks Info

-

Action

10.6 | Debug | 1386 *
Crrerview Search
File Hame 4 A Code L] &
B [Rudgerm k3

Groups & Files
v B Budget Olyjeet

)

¥ Classes
«| Budgerh
] Budget m
¥ Sourte
=| Budger Object_Prefis. Thread-1-<com.applem... *
uil Budget Object.m <+ | dBudgetmil7 s @
Ducumentativn
External Framewarks ant
& [Products
- (@) Targens
4 Executables {

3 B -tBudgetspendDolian]

o™ 01

~spendUollars: * "™ Cy P B E
m

Budget

i) ereateBudget: | } aBudget withExchangeRate: (floar) anEschangeRate{

4, Find Results

+ L8 Buokmarks
SCM]

! = anExchangeRate;
= sbudget:

B Project Symbols
[l Imgrlementation Files
¥ [l trrerface Budlder Files [budyet == [dellars doubleValue];

NSLogig"Converting a2t u o r

1) spendDullars: (HSNusbere) dullars {

217, [dollars gounlevaluel,

1) chargeForeigniurrency: (deuble) fareignturrency |
< foreignlurrencysesch

NSLogl#"Charging %, 21 in

}

. TereignCurrency, 1B

GUR: Stopped at breakpont 1 (Wit count * 1) - ‘=spendDollars: - Line 15" @succeeded

When [build and run the program again (as you can see in the Editor window
in Figure 8-12), the program has stopped executing right at the breakpoint I set.

You can see the same source code view in the Debugger window that you
see in the Editor window. You can also see in the stack pane on the left that
you went from main to [Budget spendDollars;].In the variables pane,
you can see I clicked the disclosure triangle next to the self variable, under
Arguments. Arguments are the variables passed in as the method argu-
ments. Under self are the object’s instance variables. (I want to remind
you, as [explain in Chapter 6, that self is the “hidden” argument in every
message and is a pointer to the object’s instance variables.) You can see the

Chapter 8: Using the Debugger

Figure 8-12:
Stopping

at a break-
point.
|

exchangeRate is 1.25, as it should be, and budget is 1000 as you would
expect before the first transaction. You can also see the dollars argument,
which is the NSNumber object I created. If there were any local variables, you
would have also seen them as you did in Figure 8-10.

anmn m Budger.m: Budger Ohject - Debugger =
fosiowl.s] B 4 @& & @ & & =
Orverview Breahpoints Bulld apd Debug Tasks Restart Cuntinue Steg Over Step Inte Step Out Show Breakpuinis Consale
Thread- |- <com apple main-threads & ariahle Vahie Summary
0 ~[Budget spendDollars:| ¥ Arguments
1 main ¥ gell w1240
FrsObjeet
exchangeRar 1.25
budget 1000
transaction 0
_emd Dx2124
¥ dollars Ox102ee0)
» NSValue 1
+ Clobals
» Registers
B Veetar Reglsters
I xB7 Registers
—_— alr

4 | b | Budgetm:17

spendiinllars: 3 - C, 8 B4
- [void) createbudget: [doubl

ble] abudget withixchangeRate: [float] anExchangedate]
efate = anfxchangeRate;
= aBudgel;
W |- (void) spendBollars: (NSNusbere) dollars {
gt - [dollars deublevalua]i
NuLag(@ Lanwerting 5,21 L r
}

nocurrency Leaves 85,217, [dollars doublevalue], T

= (void) chargeforeignCurrency: (double] foreignCurrency {
= foreignCurrencys ehate; ‘

HSLogle"Charging %.2f kn forelgn turrency leaves $4.20%, forslgnburrency, b i

GOR: Stopped at breakpoint 1 (it count © 1) - '-spendDallars: - Line 15" @ucceeded

If I want to see how the budget variable gets changed (which is the result of
the logic error), I can do two things. First, I can execute the program instruc-
tion by instruction, simply by clicking the Step Into button on the Debugger
window toolbar. I can keep on clicking that Step Into button at every instruc-
tion until I get to where I want to be (which, by the way, can be a long and
winding road).

In this case, [execute budget += [dollars doublevalue]; and then go
on to the next instruction, as you can see in Figure 8-13. budget has been
changed to 1100, and the computer did exactly what I told it to do, which was
to add instead of subtract the transaction amount.

[also have another option. I can set a watch point on that variable. You can
do that only if your program is not executing, however. So when the program
stops executing at the breakpoint I just set, for example, I get the opportunity
to set a watch point. I select the variable budget in the Variable list in the
Debugger window, and then as you can see in Figure 8-14, I can select Watch
Variable from the Variable list shortcut menu, or I could select Run=>Variables
Viewr>Watch Variable. (You also see a magnifying glass next to the variable,
which you can’t see in Figure 8-14.)

197

’ 98 Part ll: Speaking the Language of Objective-C

ann 'm Budger.m: Rudger Object - GOR

il B O 08 & @ 9@ = =

Tasks Restart Caninue

I Thread-1-<com applf mln thread> & Variable Valuz Summary
¥ Arguinents
1 main self ox 10480
 HSOBject Ll
exchangeRate 125
budget 10
transaction o
_tmd 0x2024
» dollars Ox1038e0 [iNsstring *HSVAR deteript
* Glahals
¥ Registers

» Vector Registers
» uB7 Registers

1% @ -creaccBudgerwithexchangeRate: & . C. [, & @

. =
| mpart
simplenentation Budget

Flgl.ll‘e 8'13: fvoid) createBudger: (double) aBudger withExchangefiate: (flont) anFxchangeRate(|
1 1 ichangeRate = pnExchangeRate; |
Stepping | [:

H }
into the |_- |
. W | - (void) spendDollars: (NSHusbersl dollars { |
|nStrUC' ? Idullars doubleValuels |
. [NSLog[\:Llnrul: .27 05 dellors inte foroign currency leaves #w.21", [dollars deabloValuel; Badgrt); |
tion and j |
H lunid) ehargeFareigniurreney: (dauble] farsignlurrency | |

watching

foreignlurrencyses

change. | + ' :
— |00 Stop0ed e e @succrded 5

¥ Use Data Formatters
Show Type Column

View Value as... !

¥ Natural
Hexadecimal
O5Type
Decimal
Unsigned Decimal
Octal
Binary
. Edit Value
Figure 8-14: Edit Summary Format

WatCh_mg a View in Memory Browser
variable. | View in Window
—— View in Cxpressions Window

The Debugger watches that variable’s value for you, and when it changes,
alert you that it changed (see Figure 8-15).

You can also remove the breakpoint and let the program continue to execute
(by clicking Continue on the Debugger window toolbar). The next time that
variable changes, Debugger displays another alert for that value change.

Chapter 8: Using the Debugger 1 99

Flgure 8-15: Watchpoint £ Triggered in Thread 1

& 2
Debugger
alerts S Expression: **(double *) 1068872"

MNew Value: 1100

you that Old Value: 1000
the value
changes.

|

(" Disable) (0K

The Debugger window gives you a number of other options for making your
way through your program in addition to Step Into. For example, you could
try one of the following:

v Step Over gives you the opportunity to skip over an instruction.
v Step Out takes you out of the current method.
1+~ Continue tells the program to continue its execution.

v~ Restart restarts the program. (You were hoping, maybe, that if you tried
it again it would work?)

To get rid of the breakpoint, simply drag it off to the side. You can also right-
click the breakpoint and choose Remove Breakpoint from the shortcut menu
that appears.

Using the Static Analyzer

Xcode has a new Build and Analyze feature (the Static Analyzer) that ana-
lyzes your code.

The results show up like warnings and errors, with explanations of where and
what the issue is. You can also see the flow of control of the (potential) prob-
lem. I say potential because the Static Analyzer can give you false positives.

In Figure 8-16, I chose Build and Analyze from the Build menu (Build=>Build
and Analyze).

The results, as shown in the Build Results window (Figure 8-17), show
a number of potential problems — all of them associated with potential
memory leaks.

A\
Notice that the results refer to line numbers. This is why [turned line numbers
on in my Xcode preferences.

200 Part ll: Speaking the Language of Objective-C

Build Results {+%B
xR
Build and Run K
Bulild and Run - Breakpoints Off %R
Build and Debug - Breakpoints On 3Y
Clean 38K
e— | Clean All Targets
Figure 8-16:
Running
the Static
Analyzer. | show
— | Touch
ann m Budget Object.m: Budget Object - Build Results (&}
mslnebugl-:ss E “’& ‘é‘ . q,
Al Rasilts: m CTEITD oyissoe | tisuesonly =
= Huild Budget Dhject
Project Budger Object | Canfiguration Debug
¥ @ Anabyre Budget Object.m ' top/Chapter B Was os
¥ 12 Potential leak of an object allocated on line 18 and stored inte ‘esropeTransactions’
* 2 Potential leak of an object allocated on line 29 and stored into "englandBudget’
» 3 Porerial leak of an ohjerr allacared an line 14 and stored into “ruropeDollarTransarmion?*
¥ i3 Potential leak of an object allocated on line 22 and stored inte "eusopeBudgel”
* i3 Potential leak of an obgect allocated on line 13 and stored into ‘europeDollarTransactson’
» B Pocenrial leak of an shject allacared an line 15 and stered into “englandDaliarTransaczian’
wild Succeeded 6/26/09 232 PM
& anatyzer results
L =iC.[¥. %@
1 i a8
5 #import «
=import "
Int main {int arge, const char = argvll) {
|
e nuaberEurcs = 100;
. & numberPounds = 108;
Flgure 8-17' NiNusber weurapebolliarTransaction = [[NEN er alloc] initWithDouble:iod. =
. 1 WiNusber seurapefoliarTransaction? = [[mb loc] initWithbouhle i
Static NeMumber senglandOollarTransaction = [[Wetusber allacl initMithDouble: 108, 0]
Analyzer WiMutableArray seuropeTransactions = [[NSMutableaArray alloc] initwithCapacity:1]: ¥
leurcpeTransactions addObject:europelollariransaction]:
resu|ts, leuropeTransactions addlbiect:europelollarTransaction2]; L
21
I | utd sucoekld (E analyzer resuki) Qsucceeded D6 2

Note: Because | explain memory leaks in Chapter 13, I'll explain the Static
Analyzer in that chapter.

Chapter 9

Using Control Statements
and Loops

In This Chapter
Understanding how control statements and loops work
Knowing when to use — and not use — switch statements
Getting a handle on loop statements
Building your application

Using jump statements

n Chapter 7, I introduce you to NSMutableArrays to help you manage

lists of objects. You see how you can use an array of objects and then iter-
ate through the array, passing each object as an argument in a message. In
Chapter 7, you use an array for only one transaction type, spendDollars:
using one country’s budget, europeBudget. If you want to extend that to
chargeForeignCurrency:, you will need another array. And if you want
to extend that to use englandBudget, you will need to add two additional
arrays — one each for the spendDollars: and chargeForeignCurrency:
messages.

This may seem pretty awkward, and it is. To manage my objects, what I really
want is a single array that I can iterate through, one that holds all of the dif-
ferent transaction types for all of the countries I will be visiting.

And that’s what you will be doing in this and the next chapter.
Along the way, I'll also complete your knowledge of the C functionality that is

part of Objective-C — showing you how to use loops and control statements
to determine the execution sequence of instructions.

202 Part Il: Speaking the Language of Objective-C

Creating Transaction Objects

In order to start the journey to a single array that manages all of my transactions
for all of the countries I visit, I want to review how the program works currently.

I start by creating a dollar transaction for Europe

NSNumber *europeDollarTransaction =
[[NSNumber alloc] initWithDouble:100.00];

and then add it to the europeTransactions array. Currently, this array
really can hold only dollar transactions, and Europe transactions to boot,
because when I iterate through the array, [send the spendDollars: mes-
sage to the europeBudget.

for (NSNumber * aTransaction in europeTransactions) {
[europeBudget spendDollars: [aTransaction doublevValue]];

}
The way this for in statement is coded poses two problems:

v [need to know what kind of transaction is in the array so I can send the
Budget object the right message. Currently, as I iterate through the
array, | know these are dollar transactions, and I send the spendbDol-
lars: message. To use an array to process credit card transactions,

[will have to create a new array and then send europeBudget the
chargeForeignCurrency: message like so:

for (NSNumber * aTransaction in
europeCreditTransactions) {
[europeBudget chargeForeignCurrency:
[aTransaction doubleValuel];

3

v I need to know what Budget to send the message to. As I iterate through
the array, since | know these are dollar transactions for Europe, I send
the spendDollars: message to the europeBudget: object. To use
an array to process England transactions, I must create a new array and
then send englandBudget the spendDollars: message like so:

for (NSNumber * aTransaction in englandTransactions) {
[englandBudget spendDollars:
[aTransaction doubleValue]];

As you can see, this can be quite problematic. I need an array for each trans-
action type and each country. This would require a bit of coding whenever I
decided to add a new transaction or go to another country.

Not a rosy future is it? Kind of makes you want to stay home.

Chapter 9: Using Control Statements and Loops 2 03

Managing all those objects

This particular situation is not unique — managing a list of similar objects is
the kind of thing you’ll need to do in many of your applications.

As you'll see, using the features available in an object-oriented programming
language such as Objective-C will allow you to manage all of these objects in
a single array. To do that, you’ll use inheritance to create different types of
transaction objects (you haven’t seen this yet, but you will in the next chap-
ter) and take advantage of polymorphism — one of the ways to create exten-
sible programs that I speak about in Chapter 3.

But before I do that, I want to show you an interim “solution” to the multiply-
ing array problem using a C control statement called the switch statement, or

switch. This solution will still require an array for each country, but you will
be able to store both cash and credit card transactions in the same array.

In order to do that, you’ll need to extend your NSNumber-based transaction
object to store the kind of transaction it is (dollar or credit card). Then I'll
show you how to use a switch statement in main to determine which “spend”
message (spendDollars: or chargeForeignCurrency:) should be sent
to the Budget and for what amount, based on the kind of transaction it is.

Adding the Transaction class

I'll start by having you change the current NSNumber-based Transaction object
from a wrapper (an object that is there mostly to turn something into an object)
into a real transaction object with its own instance variables and methods.

If you have been following along with me, I'll be extending what you do in
Chapter 7. If you would like to start with a clean copy of the project from
where you left off, you can use the project found in the Chapter 9 Start Here
folder, which is in the Chapter 9 folder.

I'll have you start by adding a new file to your project. (I explain how to do
this in more detail in Chapter 6.)
1. Select the Classes folder in the Groups & Files list.
This tells Xcode to place the new file in the Classes folder.

2. Select File=>New File from the main menu (or press 3+n) to get the
New File dialog.

3. In the leftmost column of the dialog, first select Cocoa under Mac OS X;
then select the Objective-C class template in the top-right pane. Make
sure NSObject is selected in the subclass of the drop-down menu.

You'll see a new screen asking for some more information.

204 Part Il: Speaking the Language of Objective-C

\\3

4. Enter Transaction.m in the File Name field and make sure the checkbox
to have Xcode create Transaction.h. is checked and then click Finish.

This is a good time to read Chapter 2 (the section “Getting to Know the Xcode
Text Editor”). Many of the features I explain are now more relevant to you,
especially the Counterpart button that switches you from the header, or inter-
face file (.h), to the implementation file (.m), and vice versa.

[find it useful at this point to double-click Transaction.h to open it in a new
window.

To add the new Transaction class, you do three things:

1. Add the Transaction class interface.
2. Add the Transaction class implementation.

3. Update the Budget class.

Adding the Transaction class interface

Navigate to the Transaction.h file and add the code in bold as shown in Listing
9-1. (I deleted, and will continue to delete, the comments inserted by Xcode at
the beginning of the .h and .m files it creates — feel free to keep yours if you like.)

Listing 9-1: The New Transaction Class Interface

#import <Cocoa/Cocoa.h>
typedef enum {cash, charge} transactionType;
@interface Transaction : NSObject {

transactionType type;
double amount;

}

- (void) createTransaction: (double) theAmount
ofType: (transactionType) aType;
- (double) returnAmount;
- (transactionType) returnType;
@end

This Transaction class does what you need it to do — it stores both an
amount and its type. To do that you did the following:

1. In order to know what kind of transaction it is, you created a new type,
transactionType, by using a typedef (I explain typedefs in Chapter
5, so if you are a bit vague about what [am doing, you can refer to that
chapter) and an instance variable type. You'll use cash for the dollar
transaction and charge for the credit card ones.

Chapter 9: Using Control Statements and Loops 205

typedef enum {cash, charge} transactionType;
transactionType type;

2. You added an instance variable amount, which is the value of the
transaction.

3. You declared three new methods:

- (void) createTransaction: (double) theAmount

ofType: (transactionType) aType;
- (double) returnAmount;
- (transactionType) returnType;

The first method simply initializes the object with a type and amount. (I
explain more about initialization in Chapter 12.) The second and third
methods return the amount of the transaction and type of transac-

tion (cash or charge), respectively. As you probably know by now, you
shouldn’t access an object’s instance variables directly, and these two
methods allow main to get the data it needs. In Chapter 14, I show you
a way to have Objective-C create these kinds of methods for you (using
declared properties).

Adding the Transaction class implementation
Now that you have the class interface defined, you’ll need to implement it.

In the Transaction.m file, add the code in bold as shown in Listing 9-2.

Listing 9-2: The New Transaction Class Implementation

#import "Transaction.h"
@implementation Transaction
- (void) createTransaction: (double) theAmount ofType:
(transactionType) aType{
type = aType;
amount = theAmount;

- (double) returnAmount {

return amount;

- (transactionType) returnType {

return type;
};

@end

206 Part Il: Speaking the Language of Objective-C

This implements the methods I declared in the interface.

Now that | have created the transaction object that has an amount and know
what kind of transaction it is, [can put both cash and charge transactions in
the same array and use a switch statement to ensure that the right message
is sent to the Budget object.

Using switch Statements

A switch statement is a kind of control statement. Control statements are used to
determine what to do when a certain condition arises. I introduce one of those,
the if statement, in Chapter 4. Later in this chapter in the section “Taking the
Leap: Jump Statements,” | will introduce you to the balance of those C state-
ments. While these kinds of statements can be useful in object-oriented program-
ming, you need to be especially careful about how you use them.

For now however, you’ll work with the switch statement.

[want to review the code you will add that will implement the switch
statement.

switch ([aTransaction returnType]) {
case cash:
[europeBudget spendDollars:
[aTransaction returnAmount]];
break;
case charge:
[europeBudget chargeForeignCurrency:
[aTransaction returnAmount]];
break;
default:
break;
}

Let me explain how this works.

A switch statement is a type of control statement that allows the value of a
variable or expression to control the flow of program execution. In this case,
you are using the transactionType

As you can see in Listing 9-3, for a transactionType cash (remember, you
declared transactionType and the values it can take on in the typedef in
Listing 9-1), you send the spendDollars: message to the europeBudget
object with the amount returned back to you by the returnAmount method
as the argument.

Chapter 9: Using Control Statements and Loops 20 7

Similarly, for a transactionType charge, you send the chargeForeign-
Currency: message to the europeBudget object.

The general form of a switch statement is as follows:

switch (expression) {
case constantl:
Statement (s) to execute for case 1;
break;

case constant2:
Statement (s) to execute for case 2;
break;

default:
Default statement (s);
}

Here is the sequence:

1. Evaluate expression.
2. If expression is equal to constantl

a. Execute Statement (s) to execute for case 1 untilit
reaches a break statement.

b. Execute the break statement, which causes a jump to the end of
the switch structure.

3. If expression is not equal to constant1, see if expression is equal to
constant?2. Ifitis

a. Execute Statement (s) to execute for case 2 untilit
reaches a break statement.

b. Execute the break statement, which causes a jump to the end of
the switch structure.

4. If expression does not match any of the constants (you can include as
many case labels as values you want to check), the program will execute
Default statement (s) if thereis a default (which is optional).

In this case, the expression used by the switch statement is the transaction
Type (the constant used to “do the switch”) returned by the returnType
method. transactionType is the enum you defined in Transaction.h (in
Listing 9-1).

typedef enum {cash, charge} transactionType;

208 Part Il: Speaking the Language of Objective-C

If the transaction type returned is cash, the switch statement executes the
instructions under the cash case:

case cash:
[europeBudget spendDollars: [aTransaction returnAmount]];
break;

The break statement causes execution to transfer to the end of the switch
structure. But since the switch statement is in the array enumerator block

for (Transaction * aTransaction in transactions) {

the next Transaction object in the array is fetched, and the switch state-
ment is executed again. This goes on until all of the Transaction objects in
the transactions array are processed.

As you can see, the switch statement uses labels (case cash:, for exam-
ple). A label is made of a valid identifier followed by a colon (©). This is why
you need the break statement. If there are no breaks, all the statements fol-
lowing the label (case cash:) will be executed until the end of the switch
block or a break statement is reached.

This is actually a feature, since you can do something like the following:

typedef enum {cash, charge, atm} transactionType;
switch ([aTransaction returnType]) {
case atm:
case cash:
[europeBudget spendDollars:
[aTransaction returnAmount]];
break;
case charge:
[europeBudget chargeForeignCurrency:
[aTransaction returnAmount]];
break;
default:
break;
}
}

In this case, I decided I want a new transactionType of atm, but (for the
time being at least) [want to treat it in the same way as transactionType
of cash. This switch structure would end up executing the same block of
code for both cash and atm and a different block for charge.

There is nothing special about a switch statement — actually, it performs in
the same way as several 1 f and else instructions.

Chapter 9: Using Control Statements and Loops 209

A\\S

WMBER
@ﬁ
&

if ([aTransaction returnType] == cash) {
[europeBudget spendDollars: [aTransaction returnAmount]];
}
else {
if ([aTransaction returnType] == charge) {
[europeBudget chargeForeignCurrency:
[aTransaction returnAmount]];
}
else {
//equivalent of default
}
}

If you don’t want default behavior, then you could even use a series of if
statements, as shown here:

if ([aTransaction returnType] == cash) {
[europeBudget spendDollars: [aTransaction returnAmount]];
}
if ([aTransaction returnType] == charge) {
[europeBudget chargeForeignCurrency:
[aTransaction returnAmount]];

}

The switch statement is really useful when there are many conditions and when
using the i f else construct becomes too complicated to figure out or follow.

[s there a way to simplify all of this? Yes, and in fact object-oriented program-
ming deals specifically with making this kind of complex logic uncomplicated.
I'll show you that in the next chapter.

You can use a switch only to compare an expression to a constant. If you
need to compare an expression to something other than a constant, you are
stuck with the 1 £ else construct.

Now that you have your Transaction class and your switch statement,
you’ll need to create some Transactions and add them to the array to test it.

You could, for example, code the following:

aTransactionl = [Transaction new] ;
[aTransactionl createTransaction: n*100 ofType: cash];
[transactions addObject:aTransactionl];

aTransactionn = [Transaction new] ;
[aTransactionn createTransaction: n*100 ofType: credit];
[transactions addObject:aTransactionn] ;

2 ’ 0 Part Il: Speaking the Language of Objective-C

This is what you’ve been doing until now, and you could copy and paste to
create more transactions to test the functionality that you are building. In the
next section, however, | show you an easier way to create transactions using
loop statements.

Using Loop Statements
to Repeat Instructions

WMBER
‘x&
&

Loop statements allow you to have the same set of instructions repeated over
and over and over again — at least until some criterion is met. You actually
do that in Chapter 8 using the enumerator for in statement. In this chapter,
[expand upon that. Loops are the kind of things you’ll continue to use as you
learn more about Objective-C and programming in general.

Remember, using loops here is only a convenience in your program to create
transactions. In the real world (and in Chapters 17 and 18), you allow the
users to enter transactions through a user interface. But even so, loops, as you
will find out, are fundamental to programming — so fundamental you’ll find
them in most computer languages.

So it’s time to learn more about loops. You’ll use three kinds of loops:

v The for loop
v The while loop
v The do while loop

The for loop
In Chapter 7, I introduce you to loops with the for in loop, which enables
you to take each entry in an array and do something with it until you run out

of entries in the array.

for (NSNumber * aTransaction in europeTransactions) {
[europeBudget spendDollars: aTransaction];

}

The for inloop is a special case of something more general called a for loop.

A very simple for loop looks like this:

Chapter 9: Using Control Statements and Loops 2 ’ ’

for (int 1 = 1; 1 < 4; i++) {

NSLog (@"i = %i", i);
}

This will result in
i

i

1
2
i 3

The for loop repeats a set of statements for a specific number of times. In
the example, you have only one statement:

NSLog(@"i = %i", i);
But there can be as many as you want.

for loops use a variable as a counter to determine how many times to repeat
the loop. In this case, the counter is 1.

The easiest way to think of the for loop is that when it reaches the brace at
the end, it jumps back up to the beginning of the loop, which checks the con-
dition again and decides whether to repeat the block one more time or stop
repeating it and move on to the next statement after the block.

The execution flow for a for loop is as follows:

1. The counter is initialized (only once).
int i = 1
2. The counter is evaluated. If it is true, execution within the block continues;
otherwise, the loop ends, and the next statement after theblock is executed.
i< 4
3. The loop statement(s) that appear in a block enclosed in braces, { }, or
a single statement are executed.
NSLog(@"i = %i", 1);
4. The counter is incremented.
it++
5. Steps 2 through 4 are repeated until the condition for terminating the

loop is met. When it is, execution continues with the next statement
after the for loop statements.

2 ’ 2 Part Il: Speaking the Language of Objective-C

You'll be adding the following for loop to your program to add some transac-
tions to the array you just created.

Transaction *aTransaction ;

for (int n = 1; n < 2; n++) {
aTransaction = [Transaction new] ;
[aTransaction createTransaction:n*100 ofType:cash];
[transactions addObject:aTransaction] ;

}
Can you determine how many times this loop will be executed?

That’s right, once. You are creating one transaction of transactionType
cash for 100 (n*100) and adding it to the area.

While normally you wouldn’t use a loop to execute a statement only once, |
use it here because it’s simple enough that you can really see how the coun-
ter is evaluated and how the condition is met.

Again putting on my tie, the formal description is

for (counter; condition; update counter) {
Statement (s) to execute while the condition is true

}

As you can see, three sections follow the first parenthesis, each terminated
by a semicolon.

v Counter. The counter can be declared here, or you can use some
other variable you've already declared and initialized. In this case, it is
declared and initialized:

int n = 1

v+ Condition. The condition is some expression that returns YES or NO and
contains one of the logical or relational operators explained in Chapter 4
(you know, like ==, <, or | |, and so on). The statements in the loop will
be executed as long as the condition remains YES. In this case, it is as
long as n is less than 2.

n < 2

v Expression to update counter. The update counter can be any
expression — ++n or evenn + a where a is a variable that may be
updated in the code block. In this case, the counter is incremented by 1
each time through the loop.

n++

Chapter 9: Using Control Statements and Loops 2 ’3

for or for in?

for loops are used when you know what
the number of iterations is going to be. Since
[europeTransactions count] deter-
mines how many times you need to iterate
through the array, you could have used a for
loop instead of using the for in array iterator
in Chapter 7.

The iterator you used was

for (NSNumber * aTransaction
in europeTransactions) {
[europeBudget spendDollars:
aTransaction] ;

}

To accomplish the same thing with a for loop,
you use array’s count method, which tells you

the number of elements it has. (As | mention in
Chapter 7, this is one of the key methods you
will be using.)

(int n = 1; n <=
[europeTransactions
count]; n++) {

for

[europeBudget
spendDollars:

[europeTransactions
objectAtIndex:nl];
}

The iterator is just faster and more convenient
than coding your own for loop.

The initialization and increase fields are optional, but the semicolon must
still be there. For example, for (; n<10 ;) specifies no initialization and
no increase because the variable was initialized previously and you were

incrementing it in one of the Statement (s)

condition is true

to execute while the

You can also use the comma operator (,) to specify some pretty complex ini-
tialization and counter update. For example:

for (int n = 0, y = 10;

The while loop

n <= y;

++n, y-=2) {

The for loop is typically used when the number of iterations is known before
entering the loop, whereas the while and do while loops repeat until a cer-
tain condition is met.

2 ’4 Part Il: Speaking the Language of Objective-C

To add transactions to your array using a while loop, you code the following:

int n =1;
while (n < 3) {
aTransaction = [Transaction new] ;
[aTransaction createTransaction:n*100 ofType:charge];
[transactions addObject:aTransaction];
n++;

}

Awhile loop is similar to a for loop. As you can see, all you have to do to
turn a for loop into a while loop is the following:

1. Here’s what the counter initialization and declaration before the loop
looks like:

int n;
2. Increment the counter in the code block.

n++;

The formal while loop is

while (condition) { Statement (s) to execute while the
condition is true }

The sequence is as follows:

1. Condition is evaluated. If it is true, execution within the block contin-
ues; otherwise, the loop ends and the next statement after the block is
executed.

2. The Sstatement (s) to execute while the condition is true
block is executed — it can be either a single statement or a block
enclosed in braces { }.

3. The loop goes back to Step 1.

Notice that the Statement (s) to execute while the condition is
true might never be executed.

Obviously, the value of the condition will have to change for the loop to end.
In this case, you are changing the value of the condition in the loop, so this
acts, for all practical purposes, like a for loop. In general, however, you will
more likely test an outside condition in the while loop. For example, you
might repeatedly update the position of a ball in a maze as a user is moving
his or her iPhone. while loops are used when you don’t know precisely how
many times the loop needs to repeat.

Chapter 9: Using Control Statements and Loops 2 ’5

The do while loop

The do while loop works the same way as the while loop with one excep-
tion. The condition is evaluated after the execution of code to execute
while the condition is true instead of before, meaning that there will
always be at least one execution of Statement (s) to execute while
the condition is true even if the condition is never fulfilled.

do {
aTransaction = [Transaction new] ;
[aTransaction createTransaction: n*100 ofType:

charge] ;
[transactions addObject:aTransaction];
n++;
} while (n <= 3);

The do while loop is usually used when the condition determines the end
of the loop is a result of actions taken within the loop. For example, you could
use a do while to prompt the user to enter data; the user could then either
enter some data or press return or do something else to terminate the loop.

The formal do while loop is

do { Statement (s) to execute while the condition is true }
while (condition);

The sequence is as follows:

1. Statement (s) to execute while the condition is trueis
executed.

2. Condition is evaluated. If it is true, the loop goes back to Step 1.

You wouldn’t want to use a do while loop if there were a possibility that
you might not want to execute the code at all. In this example, if an array
could be empty, you wouldn’t want to use a do while loop to iterate
through it.

Keep in mind that you must include a trailing semicolon after the do while
loop in the preceding example, but the other loops should not be terminated
with a semicolon, adding to the confusion.

While the preceding code is a pretty lame example of a do while loop —
you'll never use it in this way — the example does illustrate the mechanics of
using a do while loop.

2 ’6 Part Il: Speaking the Language of Objective-C

Adding Loops to Vour Program

To add the switch statement and loops to main in the Budget.h file,

delete the code with the strikethrough and add the code in bold as shown
in Listing 9-3.

Listing 9-3: Adding switch Statements and Loops to the main Function

#import <Foundation/Foundation.h>
#import "Budget.h"
#import "Transaction.h"

int main (int argc, const char * argv([]) {

+Fdoubte numberkEuros—166+
double numberDollarsInPoundland = 100;
double numberPounds = 100;

NSMutableArray *transactions =

[[NSMutableArray alloc] initWithCapacity:10];
Transaction *aTransaction ;
for (int n = 1; n < 2; n++) {
aTransaction = [Transaction new];
[aTransaction createTransaction:n*100 ofType:cash];
[transactions addObject:aTransaction];
}

int n =1;
while (n < 3) {
aTransaction = [Transaction new];
[aTransaction createTransaction:n*100 ofType:charge];

[transactions addObject:aTransaction];
n++;

do {

Chapter 9: Using Control Statements and Loops 2 ’ 7

aTransaction = [Transaction new];
[aTransaction createTransaction:n*100 ofType:charge];
[transactions addObject:aTransaction];
n++;
} while (n <= 3);

Budget *europeBudget = [Budget new];
[europeBudget createBudget:1000.00
withExchangeRate:1.2500] ;

c :

switch ([aTransaction returnTypel]) {
case cash:
[europeBudget spendDollars:
[aTransaction returnAmount]];
break;
case charge:
[europeBudget chargeForeignCurrency:
[aTransaction returnAmount]]:;

break;
default:
break;

Budget *englandBudget = [Budget new] ;

[englandBudget createBudget:2000.00
withExchangeRate:1.5000] ;

[englandBudget spendDollars:numberDollarsInPoundland];

[englandBudget chargeForeignCurrency:numberPounds] ;

return 0;

}

Here are the steps you took to add the switch statement and loops:

1. So that the compiler knows what a Transaction is, you added
#import "Transaction.h"
2. You deleted the following line of code because you don’t need it any

more. (You no longer need to set the number of euros. You’'ll do that
when you create the Transaction.)

double numberEuros = 100;

2 ’ 8 Part Il: Speaking the Language of Objective-C

3. You deleted the old NSNumber transactions and the old europe
Transactions array.

NSNumber *europeDollarTransaction =

[[NSNumber alloc] initWithDouble:100.00];
NSNumber *europeDollarTransaction2 =

[[NSNumber alloc] initWithDouble:200.00];

NSMutableArray *europeTransactions = [[NSMutableArray
alloc] initWithCapacity:1];
[europeTransactions addObject:
europeDollarTransaction] ;
[europeTransactions addObject:
europeDollarTransaction2] ;

4. You declared the transactions array (notice you changed the initial
specification of the number of entries from 1 to 10) and created and
added the transactions in three different kinds of loops. You cleverly
used the counter (n) to vary the transaction amount (n*100).

NSMutableArray *transactions =
[[NSMutableArray alloc] initWithCapacity:10];
Transaction *aTransaction ;
for (int n = 1; n < 2; n++) {
aTransaction = [Transaction new];
[aTransaction createTransaction:
n*100 ofType:cash];
[transactions addObject:aTransaction];

}

int n =1;
while (n < 3) {
aTransaction = [Transaction new] ;
[aTransaction createTransaction:
n*100 ofType:chargel];
[transactions addObject:aTransaction] ;
n++;

}

do {
aTransaction = [Transaction new] ;
[aTransaction createTransaction:
n*100 ofType:chargel];
[transactions addObject:aTransaction];
nlrar 2
} while (n <= 3);

Changing the name prepares you for Chapter 10 where you manage

all transactions in a single array, regardless of transaction type or
destination — which will significantly reduce the complexity of the pro-
gram. You created a transaction array with the new transactions.

Chapter 9: Using Control Statements and Loops 2 ’ 9

5. You changed the type in the enumerator from NSNumber to
Transaction to reflect the new object type that is now in the array.

6. You replaced

[europeBudget spendDollars:aTransaction];

with the new switch structure

switch ([aTransaction returnTypel) {
case cash:
[europeBudget spendDollars:
[aTransaction returnAmount]];
break;
case charge:
[europeBudget chargeForeignCurrency:
[aTransaction returnAmount]];
break;
default:
break;
}

7. You deleted the following lines of code because you don’t need them any
more (the chargeForeignCurrency is now in the switch statement).

// [europeBudget chargeForeignCurrency:numberEuros] ;

Building the New Application

So that you can admire all the work you’ve done, it is time to build the
application.

Select the Build and Run button in the Project Window toolbar to build and
run the application.

You should see the following in the Debugger Console.

Converting 100.00 US dollars into foreign currency leaves
$900.00

Charging 100.00 in foreign currency leaves $775.00

Charging 200.00 in foreign currency leaves $525.00

Charging 300.00 in foreign currency leaves $150.00

Converting 100.00 US dollars into foreign currency leaves
$1900.00

RECD Charging 100.00 in foreign currency leaves $1750.00
S

© You can find the completed project on the CD in the Example 9 folder, which is

(@J in the Chapter 9 folder.

220 Part Il: Speaking the Language of Objective-C

Taking the Leap: Jump Statements

To finish your tour of C coding, I've provided the rest of the control state-
ments that are available in Objective-C. You'll use a few of them, such as
break (which you used in switch statements) and return in your code.
You'll use the rest occasionally (with the exception of the goto statement,
which you will/should never use).

v break. Using break, you can leave a loop even if the condition for its
end is not fulfilled. It can be used to end an infinite loop or to force it to
end before its natural end. Recall that this is how you terminate instruc-
tion execution once it starts executing instructions for a given case.

» continue. The continue statement causes the program to skip the
rest of the loop in the current iteration and jump to the start of the
next iteration.

v return. The return statement ends a method or function. You used
a return statement in main, as well as in your methods. It is included
here to remind you that you can include a return statement anywhere
in a method or function, bypassing any subsequent instructions in the
function (as well as being able to depart in the middle of a loop) to
return control back to the caller.

v goto. The goto statement allows you to make an absolute jump to
another point in the program. It is considered evil incarnate by virtually
all object-oriented programmers, and more than a few procedural ones.
As an object-oriented applications programmer, you should never use it.

v exit. The exit statement terminates your program with an exit code.
Its prototype is

void exit (int exitcode) ;
exit is used by some operating systems and may be used by calling
programs. By convention, an exit code of 0 means that the program

finished normally, and any other value means that some error or unex-
pected results happened.

Knowing the Problems with
switch Statements

While I have achieved my goal of creating a single array of transaction
objects for a given country, I still have a way to go if [want to make it possi-
ble to have a single array that handles all transaction types for all countries.

Chapter 9: Using Control Statements and Loops 22 ’

For example, if | were to add a country and a returnCountry: method to
the transaction, I'd have to add an additional switch structure within each
existing case in order to use the right budget object — makes my head hurt
to think about it. And as you can see, my program would become much more
complicated as | add more transactions and countries. While this is only one
place in this program (so far) that I need to use that kind of logic, in a real
program, you could find it all over the place.

for (Transaction * aTransaction in transactions) {

switch ([aTransaction returnTypel) {
case cash:
switch ([aTransaction returnCountry]) ({

case Europe:
[europeBudget spendDollars:
[aTransaction returnAmount]];
break;
case England:
[englandBudget spendDollars:
[aTransaction returnAmount]];
break;
}
break;
case charge:
switch ([aTransaction returnCountry]) {
case Europe:
[europeBudget chargeForeignCurrency:
[aTransaction returnAmount]];
break;
case England:
[englandBudget chargeForeignCurrency:
[aTransaction returnAmount]];
break;
}
break;
default:
break;
}
}

You can get a much more elegant solution than the switch statement by
taking advantage of inheritance and polymorphism. I cover both in Chapter 10.

222 Part Il: Speaking the Language of Objective-C

Part Il

Walking the Object-
Oriented Walk

The 5th Wave By Rich Tennant

@ Rk TENNANT

N = \\ \\‘
“They’re moving on to the memory management

section. That should daze and confuse them
enough for us to finish changing the tire.”

In this part . . .

ou've mastered the instruction set and language fea-

tures that you need, and now you're ready to start
building a real object-oriented program — one whose
code you wouldn’t be embarrassed to show to your devel-
oper friends.

In this part, you focus on what is known as the program
architecture. Think of it as analogous to the way an archi-
tect designs a building to meet the needs of its occupants.
In this case, however, you create something that not only
works but also can be extended to easily add new
functionality.

[also show you the fundamental application functionality
that every program needs to implement — memory man-
agement and object initialization.

Chapter 10
Basic Inheritance

In This Chapter

Understanding inheritance

Implementing inheritance

Understanding the connection between inheritance and polymorphism

SMBER
S

n Chapter 9, you create a Transaction object and use a switch state-

ment to manage more than one kind of transaction in a single array. The
problem with that approach is that the switch statements can rapidly get
very complicated, and a program with switch statements scattered through-
out becomes difficult to extend and enhance.

Quite frankly, this kind of complex control structure is characteristic of the
procedural program paradigm that I speak of in Chapter 3. Object-oriented
programming and Objective-C do not “improve” this control structure as
much as eliminate it as much as possible. The way this is done is by using
one of those Objective-C’s extensions to C — inheritance to take advantage
of polymorphism (which I explain in Chapter 3). As you find out as I lead you
through implementing an inheritance-based class structure in this chapter,
this greatly simplifies things, and you end up with a program that is a great
deal easier to understand and extend (the two actually go hand in hand).

Once you get into the rhythm of thinking this way, programming and making
changes becomes more fun and less dreary. You introduce fewer bugs as you
add functionality to your program, and your coding becomes completely focused
on the new functionality instead of having to go back through everything you
have done to see if you are about to break something that now works just fine.

Replacing a Control Structure
With Polymorphism

Right now you iterate through an array, and your logic in main (the
switch statement) decides whether to send the sendDollars: or

220 Parti: Walking the Object-Oriented Walk

chargeForeignCurrency: message to a Budget for that kind of
transaction, passing the transaction as an argument.

for (Transaction * aTransaction in transactions) {
switch ([aTransaction returnType]) {
case cash:
[europeBudget spendDollars:
[aTransaction returnAmount]];
break;
case charge:
[europeBudget chargeForeignCurrency:
[aTransaction returnAmount]];
break;
default:
break;
}
}

In the object-oriented universe, you have two kinds of transaction objects —
cash and credit card. Both kinds respond to a spend message, and every
transaction has a pointer to the budget it is associated with. You iterate
through the array and send the spend message to each transaction. If it is a
cash transaction in Europe, for example, it has a reference to the europe
Budget object and sends europeBudget object the spendDollars:
message. If it is a credit card transaction in England, it sends the charge
ForeignCurrency: message to englandBudget. No fuss, no bother, and
no control structure. This means you have one array that holds every trans-
action for every country you visit — much better. This enables you to that
entire switch structure with

for (Transaction* aTransaction in transactions) {
[aTransaction spend];

}
If you want a new transaction, all you need to do it code it up and add it to
the array, and if wanted to visit a new country all you have do is create a
budget for that country and attach it to the transactions that occurred in that
country.
You can see that illustrated in Figure 10-1.
Let’s start with what a transaction object looks like:

You need two instance variables

Budget *budget;
double amount;

|
Figure 10-1:
Trans-
actions and
budgets.
|

Chapter 10: Basic Inheritance 22 7

You need two methods

- (void) createTransaction: (double) theAmount
forBudget: (Budget*) aBudget;
- (void) spend;

] (Europe Budget w
C Cash Transaction
spendDollars J
chargeForeignCurrency
@redit Card Transaction

(England Budget w
C Cash Transaction

spendDollars
chargeForeignCurrency

@redit Card Transaction

As you can see, besides an initialization method, you have a method named
spend. You also have an instance variable, budget, which enables the
Transaction object to send a message to its budget; and another instance
variable, amount, which holds the amount of this transaction. Because every
type of transaction has a spend method, you can enumerate through the
array and send each object a spend message, and each object, depending on
its type, turns around and sends the right message to its budget.

So far both cash and credit card transactions look the same; the only differ-
ence is in the implementation of spend.

The cash transaction implements spend as
- (void) spend {

[budget spendDollars:amount] ;
}

The credit card looks like
- (void) spend {

[budget chargeForeignCurrency:amount] ;

}

228 Partiii: Walking the Object-Oriented Walk

A\

This ability for different objects to respond to the same message each in its
own way is an example of polymorphism, which I cover in Chapter 3, and is
one of the cornerstones of enhanceable and extensible programs.

How inheritance works

You may notice a bit of a problem here. You got rid of the complicated
switch, but now you have to maintain all those transactions. If want to make
a change or add to generic transaction functionality, you have you go back
and modify both the cash and credit card transactions. In Chapter 5, when |
discuss adding a separate struct for New Zealand to track wool purchase, I
say specifically that this is something you wanted to avoid (you may want to
refer to Chapter 5).

What [say at the end of Chapter 5 is still true, but fortunately, I don’t have
to worry about maintaining a host of similar classes. Objective-C, like other
object-oriented programming languages, permits you to base a new class
definition on a class already defined. The base class is called a superclass;
the new class is its subclass. The subclass is defined only by its extension to
its superclass; everything else remains the same. All I need to do is create a
transaction base superclass that encapsulates what is the same between a
cash and credit card transaction, and then create cash and credit card trans-
action subclasses that implement the differences.

The terms superclass and subclass can be confusing. When most people think
of super, they thing of something with more functionality, not less. In some lan-
guages, the term used is base class, which I think does a better job of convey-
ing meaning. But it is what it is, so keep this in mind.

In Figure 10-2, you see an example of a class diagram that uses the UML
(Unified Modeling Language) notation (the superclass and subclass arrows
and terms are not part of the notation; they are there to illustrate the hier-
archy of the Transaction classes in the program) — one often used by pro-
grammers to describe their classes. The name of the class is at the top of the
box, the middle section describes the instance variables, and the bottom box
shows you the methods of that (sub) class.

Figure 10-2 shows that both CashTransaction and CreditCard
Tranaction classes are subclasses of Transaction. Each inherits all
of the methods and all of the instance variables of it superclass.

Every class but NSObject (the root of all your classes, as [explain in
Chapter 5) can thus be seen as another stop on the road to increasing spe-
cialization. As you add subclasses, you are adding to the cumulative total of
what’s inherited. The CashTransaction class defines only what is needed
to turn a Transaction into a CashTransaction.

Chapter 10: Basic Inheritance 229

4 NSOBJECT h
Lots of stuff
\Lots of stuff Y,
Superclass —>/ Transaction N Subclass
budget amount
\spend Y
|
Figure 10-2: \
The 4 CashTransaction) 4 CreditCardTransaction
Transaction
class
hierarchy. \spend) \spend)

Class definitions are cumulative; each new class that you define inherits
methods and instance variables of all of its base classes. I do not have to
include the fact I am going to “re-implement” spend in the interfaces for
CashTransaction and CreditCardTransaction. All I have to do is imple-
ment spend in the @implementation.

MBER Incidentally, if you think about it, inheritance also implements a kind of encap-
sulation. You can extend the behavior of an existing object without impacting
the existing code that already works — remember, it’s all about enhanceability
and extensibility.

In Objective-C, every class has only one superclass but can have an unlimited
number of subclasses. In some languages, however, a class can have multiple
superclasses. This is known as multiple inheritance. While Objective-C does
not support multiple inheritance, it does provide some features not found in
those languages that enable you to get many of the benefits of multiple inheri-
tance, without the accompanying disadvantages. These include categories and
protocols, both of which I cover in Chapter 16.

The new class is not a copy of the methods and instance variables of its root
class, which contains all of the methods and instance variables of its root
class and so on. The new class is an extension.

230 Partiii: Walking the Object-Oriented Walk

Knowing what inheritance
enables you to do

Inheritance allows you to do a number of things that make your programs
more extensible and enhanceable. In a subclass, you can make three kinds
of changes to what you inherit from a superclass. Think of this section as
describing the mechanics of creating a subclass.

+* You can add new methods and instance variables. Although you
haven’t done that yet, this is the one of the most common reasons for
defining a subclass in general.

+* You can refine or extend the behavior of a method. You do this by
adding a new version of the same method, while still continuing to use
the code in the old method. To add a new version you implement a new
method with the same name as one that’s inherited. The new version
overrides the inherited version. In the body of the new method, you
send a message to execute the inherited version. I illustrate this later in
this chapter, in Listing 10-6, and explain it in Step 3 following the listing
(and again when I explain initialization in Chapter 12). Implementing a
new method with the same name as one that’s inherited is referred to as
overriding a method.

+* You can change the behavior of a method you inherit. You do this
by replacing an existing method with a new version. This is done by
overriding the old method. In this case, however, you do not send a
message to execute the inherited version. The old implementation is
still used for the class that defined it and other classes that inherit it,
although classes that inherit from the new class use your implementa-
tion. Changing behavior is not unusual, although it does make your code
harder to follow. If you find yourself frequently overriding a method to
completely change its behavior, you should question your design.

Even though you may override a method in a class, subclasses of the
class still do have access to the original. For obvious reasons, this is
generally not a good idea, and again should have you questioning your
design.

Although a subclass can override inherited methods, it can’t override inher-
ited instance variables. If you try to declare a new one with the same name as
an inherited one, the compiler complains.

Chapter 10: Basic Inheritance 23 ’

Using inheritance effectively

Given the preceding possibilities, here are some ways you can use inheri-
tance in your programs:

1 Create a protocol. You are actually creating a protocol with the
Transaction class. A protocol in this sense is a list of method(s) that
subclasses are expected to implement. The superclass might have
empty versions of the methods (as Transaction does), or it might
implement partial versions that you use in the subclass methods. In
either case, the superclass’s declaration (its list of methods) defines a
protocol that all its subclasses must follow.

When different classes implement similarly named methods, a program
is better able to make use of polymorphism (see the discussion of More-
Of-The-Same) in Chapter 3. Actually one of the things I really like about
Objective-C is that it provides additional ways to do this, as you see
when I explain delegation in Chapter 16. Both inheritance and delegation
are extensively used in Cocoa.

This use of inheritance is exemplified by the concept of an abstract

class — often called an abstract superclass (or abstract base class). This is
a class designed to have classes inherit from it. An abstract class brings
together the methods and instance variables that are to be used by sub-
classes. In doing that, abstract classes define the structure of an applica-
tion, and when you create your subclasses they fit effortlessly into the
application structure and work seamlessly with other objects.

You usually do not create an instance of an abstract class, since it really
can’t do anything, being dependent on its subclasses to implement the
key functionality. It does, however, contain code that each of its sub-
classes normally has to create on its own. In this case, Transaction is
an abstract class.

Unlike some other languages, in Objective-C, there is no way to specify
a class as abstract; therefore, making it possible to create an instance of
an abstract class.

+* Reuse code. Reusing code has traditionally been a poster child for inher-
itance use. There are three approaches:

¢ Increasing specialization. If classes have some things in common,
but also differ in key ways, the common functionality can be put in
a superclass that all classes can inherit. Transaction is a good
example of that.

e Implementing generic functionality, which is often coupled with
the protocol approach. In the AppKit and UIKit, user interface
objects have been created for your using pleasure. They imple-
ment as much generic functionality as they can, but it is up to you

232 Partlil: Walking the Object-Oriented Walk

<MBER
é‘,*

to add the specific functionality to make it so they do something
useful in your application. For example, a view can display itself on
the screen, scroll, and so on, but you need to implement methods
that display what you want displayed.

e Modifying a class that more or less does what you want it to do.
There may be a class that does most of what you want it to, but
you need to change some things about how it works. You can make
the changes in a subclass.

In programming, as in life, however, not much is either/or. You use inheritance
to do all those things, and often you create new subclasses to implement one
or more than one of the approaches I just described.

Implementing Inhevitance in a Program

Now it’s time to put everything you know about inheritance and polymor-
phism together and add it to your program. You have to start by making
some changes to the Transaction class.

Creating the Transaction superclass

If you have been following along with me, I extend what you do in Chapter 9.

If you prefer to start with a clean copy of the project from where you left off,
you can use the project found in the Chapter 10 Start Here folder which can be
found in the Chapter 10 folder.

Go into the Xcode editor and click on Transaction.m to edit it. Then delete

the code in Listings 10-1 and 10-2 with a strikethrough, and then add the code
in bold .

Listing 10-1: Transaction.m

#import "Transaction.h"

#import "Budget.h"

@implementation Transaction
ttransaction®type)—atypet

- (void) createTransaction: (double) theAmount forBudget:
(Budget*) aBudget {

7 tjpe - af?pe:

Chapter 10: Basic Inheritance 233

budget = aBudget;
amount = theAmount;

}
- (void) spend {

// Fill in the method in subclasses
}

- (void) trackSpending: (double) theAmount {

NSLog (@"You are about to spend another %.2f",
theAmount) ;

- -
recurn type;

®
(0]
=
Qi ~

Listing 10-2: Transaction.h

#import <Cocoa/Cocoa.h>
@class Budget;

@interface Transaction : NSObject {

Budget *budget;
double amount;

3

+/—tvoid——createfransaction—({doublte)theAmount—offype—
ttransaction®Type)—afyper

- (void) createTransaction: (double) theAmount forBudget:
(Budget*) aBudget;

- (void) spend;

- (void) trackSpending: (double) theAmount;

234 Partiii: Walking the Object-Oriented Walk

Here are the steps you took to create the Transaction superclass:

1. Changed the arguments used in createTransaction: : by deleting
aType, and passing in aBudget instead.

As I mentioned earlier, each transaction sends the right message to
the Budget object, and it has to know what Budget it needs to spend
against.

2. Created an empty spend method to be implemented in the subclasses.

3. Deleted returnAmount and returnType because you won’t need them
any more — that information was needed by the switch statement.

4. Added a new method, trackSpending:, which shows you how to send
messages to inherited methods. (I do that in the spend: methods of
CashTransaction and CreditCardTransaction.)

- (void) trackSpending: (double) theAmount;

5. Made the necessary changes (in Listing 10-2) to the interface to support
the implementation changes.

You also included a @class statement. Earlier, I explained that the com-
piler needed to know certain things about classes that you were using,
such as what methods you defined and so on, and the #import state-
ment in the implementation (.m) file solved that problem. But when you
get into objects that point at other objects, you also need to provide
that information in the interface file, which can cause a problem if there
are circular dependencies (sounds cool, but it is beyond the scope of
this book). To solve that problem, Objective-C introduces the @class
keyword as a way to tell the compiler that the instance variable budget,
whose type Budget the compiler knows nothing about (yet), is a pointer
to that class. Knowing that is enough for the compiler, at least in the
interface files. You still have to do the #import in the implementation
file when you refer to methods of that class, however.

If you examine what you have done so far, you realize that you have really
created an abstract superclass, which creates a protocol for subsequent
subclasses.

Adding the files for the new subclasses

ext, you take advantage of what you just did and create two subclasses of
Transaction, CashTransaction and CreditCardTransaction. They
inherit all of the methods and instance variables of the Transaction class,
but each implements its own spend: method. I also have both methods send

Chapter 10: Basic Inheritance 235

A\

a message to their superclass’s trackSpending: method, to show you how
to send messages to your superclass.

Object-oriented programmers like to think of subclasses like Cash
Transaction as having an “is-a” relationship to their superclasses. A
cash transaction “is-a” transaction.

Now, look at how to create the two new subclasses.
First, you need to create four new files, as you do in Chapter 6.

1. Select the Classes folder in the Groups & Files list.
This tells Xcode to place the new file in the Classes folder.

2. Select File=>New File from the main menu (or press 3+n) to get the
New File dialog box.

3. In the leftmost column of the dialog box, first select Cocoa under Mac
OS X; then select the Objective-C class template in the top-right pane.
Make sure NSObject is selected in the Subclass of drop down menu.

You see a new dialog asking for some more information.

4. Enter CashTransaction.m in the File Name field; then click Finish. You
can see a bunch of other things in that window. There’s a checkbox
you can use to have Xcode create CashTransaction.h for you — make
sure it is checked.

5. Select Filem=>New again (or press 3+n) to get the New File dialog.

6. In the leftmost column of the dialog box, first select Cocoa under Mac
OS X; then select the Objective-C class template in the top-right pane.
Make sure NSObject is selected in the Subclass of drop down menu.

You see a new dialog asking for some more information.
7. This time enter CreditCardTransaction.m in the File Name field; then
click Finish.

You should now have four new files under the classes folder,
CashTranaction.h and .m and CreditCardTransaction.h and .m.

Implementing the new subclasses

Now that you have the files for the new subclasses in place, it’s time to get
to work filling those files with code. You do that by adding and deleting
the code in Listings 10-3 through 10-6 to the CashTransaction.h and .m and
CreditCardTransaction.h and .m files.

236 Partiii: Walking the Object-Oriented Walk

Listing 10-3: CashTransaction.h

#import <Cocoa/Cocoa.h>
#import "Transaction.h"

2 . : . i o= :
@interface CashTransaction : Transaction {
}

@end

Listing 10-4: CashTransaction.m

#import "CashTransaction.h"
#import "Budget.h"

@implementation CashTransaction
- (void) spend {

[self trackSpending:amount];
[budget spendDollars:amount];
}

@end

Listing 10-5: CreditCardTransaction.h

#import <Cocoa/Cocoa.h>
#import "Transaction.h"

o . 4 5 . : o :
@interface CreditCardTransaction : Transaction {

}

@end

Listing 10-6: CreditCardTransaction.m

#import "CreditCardTransaction.h"
#import "Budget.h"

@implementation CreditCardTransaction
- (void) spend {
[super trackSpending:amount];
[budget chargeForeignCurrency:amount] ;

}

@end

Chapter 10: Basic Inheritance 23 7

To add the two new subclasses, you only had to declare the unique behavior
in each class.

1. You deleted the template-generated @interface statement and
replaced it with one that specifies Transaction as the superclass.

@interface CreditCardTransaction : NSObject {
@interface CashTransaction : Transaction ({

The deletions are necessary because when you add a new class to a
project, Xcode doesn’t know what its subclass is, so it uses NSObject.
Up until now that has been fine, but as you define your own super- and
subclasses it’s up to you to change the NSObject default to the right
superclass.

Your new subclasses inherit all of the methods and instance variables
of the Transaction class, which includes all of the instance variables
and methods it inherits from its superclass and so on up the inheritance
hierarchy. (In this case, as you can see, the Transaction superclass is
NSObject, so it ends there.) So you're cool when it comes to being able
to behave like a good Objective-C object.

While you didn’t do it here, you can also add instance variables to a sub-
class as well, and as many methods as you need.

2. You added the #imports for the Transaction and Budget interface
files since both are used by the methods in the CashTransaction and
CreditCardTransaction classes.

As I explain in Chapter 6, you need to import both interface files so the
compiler can understand what Transaction and Budget are.

3. You had CashTransaction and CreditCardTransaction send a
message to their superclass’s method, trackSpending:.

trackSpending: displays that you are about to spend some money (a
feature my wife, for one, thinks is a good idea to remind me that even
though the money looks funny, ordering another bottle of wine does cost
something). Notice, [had you do this in two different ways.

[self trackSpending:amount];
[super trackSpending:amount];

The first statement shows you how to send messages to methods that
are part of your class, which includes those that you inherit. As you can
see, even though trackSpending: is defined only in the superclass
Transaction, you have inherited trackSpending: and the message
to self works fine, although unless you have overridden it you should
really use [super trackSpending: amount].In this case self and
super are interchangeable, but as you see in the Chapter 12 section
called “Initializing objects,” that isn’t always the case.

23& Partiii: Walking the Object-Oriented Walk

Modifying main to use the new classes

Now that you have done all the spadework, you can take the final step in
making your program much more extensible and enhanceable. You use that
new inheritance-based Transaction class design in main..

To do that, add the code in bold and delete the code with a strikethrough in
Listing 10-7 to main in the Budget Object.m file.

Listing 10- 7: main in Budget Object.m

#import <Foundation/Foundation.h>
#import "Budget.h"

#import "Transaction.h"
#import "CashTransaction.h"
#import "CreditCardTransaction.h"

int main (int argc, const char * argv([]) {
77/ doubte numberPounds— 166+

Budget *europeBudget = [Budget new];

[europeBudget createBudget:1000.00
withExchangeRate:1.2500];

Budget *englandBudget = [Budget new];

[englandBudget createBudget:2000.00
withExchangeRate:1.5000];

NSMutableArray *transactions = [[NSMutableArray alloc]
initWithCapacity:10];

Transaction *aTransaction ;

for (int n = 1; n < 2; n++) {

[aTransaction createTransaction:n*100
forBudget : europeBudget] ;

[transactions addObject:aTransaction] ;

aTransaction = [CashTransaction new];

[aTransaction createTransaction:n*100
forBudget :englandBudget] ;

[transactions addObject:aTransaction];

}

int n =1;
while (n < 4) { //** now 4
+/—aFransactiomr =tFransaction mewl

aTransaction = [CreditCardTransaction new];

Chapter 10: Basic Inheritance 23 9

[aTransaction createTransaction:n*100
forBudget : europeBudget] ;
[transactions addObject:aTransaction];
aTransaction = [CreditCardTransaction new];
[aTransaction createTransaction:n*100
forBudget :englandBudget] ;
[transactions addObject:aTransaction];

n++;

for (Transaction* aTransaction in transactions) {

e . : . et

:
CastT CTdolls

return 0;

240 Partiii: Walking the Object-Oriented Walk

This is what you did in Listing 10-7:

1. You added the necessary #import statements so the compiler knows
what to do with the new classes.

#import "Transaction.h"
#import "CashTransaction.h"
#import "CreditCardTransaction.h"

2. You moved up the code that created the Budget objects because
you need use the Budget as an argument when you initialize the
Transaction.

Budget *europeBudget = [Budget new] ;
[europeBudget createBudget:1000.00
withExchangeRate:1.2500];

Budget *englandBudget = [Budget new] ;
[englandBudget createBudget:2000.00
withExchangeRate:1.5000];

3. You created cash and credit card transactions for both Europe and
England in both the for and while loops (to which one more iteration
isadded — fromn = 3ton = 4).

aTransaction = [CreditCardTransaction new] ;
[aTransaction createTransaction:n*100
forBudget : europeBudget] ;
[transactions addObject:aTransaction] ;
aTransaction = [CreditCardTransaction new] ;
[aTransaction createTransaction:n*100
forBudget :englandBudget] ;
[transactions addObject:aTransaction];

4. You changed the enumerator to send the spend message to each
Transaction object in the transactions array. You deleted

[europeBudget spend:aTransaction] ;
and replaced it with
[aTransaction spend];

This is something you find in many applications — a set of instruc-
tions that send the same message to a list of objects. This is what
polymorphism is all about — a program architecture that makes your
program easier to extend. This is because as long as it is a subclass of
Transaction, any new transactions immediately can be used in your
program without any changes to the rest of your program (except, of
course, to create and implement the transaction itself)!

5. You deleted all the stuff no longer needed, including the gratuitous do
while loop.

Chapter 10: Basic Inheritance 24 ’

Once you are done with all that deleting and adding, main looks like Listing

10-8. You can see how much “cleaner” it looks. More important, you can see

how easy it is to add a new kind of transaction to the mix. All you have to do
is create the new transaction type and add it to the array, and it makes itself
at home with the rest of the transactions.

Listing 10-8: Budget Object.m

#import <Foundation/Foundation.h>

#import "Budget.h"

#import "Transaction.h"

#import "CashTransaction.h"

#import "CreditCardTransaction.h"

int main (int argc, const char * argv([]) {
Budget *europeBudget = [Budget new];

[europeBudget createBudget:1000.00
withExchangeRate:1.2500];

Budget *englandBudget = [Budget new] ;

[englandBudget createBudget:2000.00
withExchangeRate:1.5000] ;

NSMutableArray *transactions = [[NSMutableArray alloc]
initWithCapacity:101];
Transaction *aTransaction ;
for (int n = 1; n < 2; n++) {
aTransaction = [CashTransaction new] ;
[aTransaction createTransaction:n*100
forBudget : europeBudget] ;
[transactions addObject:aTransaction] ;
aTransaction = [CashTransaction new];
[aTransaction createTransaction:n*100
forBudget :englandBudget] ;
[transactions addObject:aTransaction] ;

}

int n =1;
while (n < 4) {
aTransaction = [CreditCardTransaction new] ;

[aTransaction createTransaction:n*100
forBudget : europeBudget] ;
[transactions addObject:aTransaction] ;
aTransaction = [CreditCardTransaction new] ;
[aTransaction createTransaction:n*100
forBudget :englandBudget] ;
[transactions addObject:aTransaction];

(continued)

242 Partili: Walking the Object-Oriented Walk

Listing 10-8 (continued)
n++;

}

for (Transaction* aTransaction in transactions) ({
[aTransaction spend];

}

return 0;

}

Keep in mind that the for and while loops are there only to generate trans-
actions — think of them as simulating a user interface.

Now select the Build and Run button in the Project Window toolbar to build
and run the application.

You should see the following in the Debugger Console:

You are about to spend another 100.00

Converting 100.00 US dollars into foreign currency
leaves $900.00

You are about to spend another 100.00

Converting 100.00 US dollars into foreign currency
leaves $1900.00

You are about to spend another 100.00

Charging 100.00 in foreign currency leaves $775.00

You are about to spend another 100.00

Charging 100.00 in foreign currency leaves $1750.00

You are about to spend another 200.00

Charging 200.00 in foreign currency leaves $525.00

You are about to spend another 200.00

Charging 200.00 in foreign currency leaves $1450.00

You are about to spend another 300.00

Charging 300.00 in foreign currency leaves $150.00

You are about to spend another 300.00

Charging 300.00 in foreign currency leaves $1000.00

As expected, the output is the same, except for the additional transactions I
added for the England part of my trip (shown in bold) as well as the output
from trackSpending:.

You can find the completed project on the CD in the Example 10 folder, which
can be found in the Chapter 10 folder.

Chapter 10: Basic Inheritance 243

Considering Polymorphism
and Inheritance

You have just used one of the Objective-C extensions to C — inheritance,

to implement polymorphism (or as I like to think of it, More-Of-The-Same).

As you have seen, polymorphism is the ability of different object types to
respond to the same message, each one in its own way. Since each object can
have its own version of a method, a program becomes easier to extend and
enhance because you don’t have to change the message to add functionality.
All you have to do is create a new subclass, and it responds to the same mes-
sages in its own way.

This allows you to isolate code in the methods of different objects rather
than gathering them in a single function that has to know all the possible
cases and in control structures such as i f and switch statements. As you
have seen, this makes the code you write more extensible and enhanceable,
because when a new case comes along, you won’t have to re-code all those
if and switch statements — you need only add a new class with a new
method, leaving well enough alone as far as the code that you've already writ-
ten, tested, and debugged is concerned.

Using inheritance together with polymorphism is one of the extensions to C
that is hard to implement without language support. For this to really work,
the exact behavior can be determined only at runtime (this is called late bind-
ing or dynamic binding).

When a message is sent, the Objective-C runtime I talk about in Chapter 1
looks at the object you are sending the message to, finds the implementation
of the method matching the name, and then invokes that method.

244 Partiii: Walking the Object-Oriented Walk

Chapter 11
Encapsulating Objects

In This Chapter

Understanding the Model-View-Controller pattern

The role of interfaces
How composite objects work

Factoring your code to implement Model-View-Controller

u sing encapsulation enables you to safely tuck data behind an object’s
walls. You can keep the data safe and reduce the dependencies of other
parts of your program on what the data is and how it is structured.

Encapsulation is also useful when you apply it to application functionality.
When you limit what your objects know about other objects in your applica-
tion, changing objects or their functionality becomes much easier because it
reduces the impact of those changes on the rest of your application.

In this chapter, I'll show you a way to design, or architect, your application
that limits the knowledge that objects have of other objects.

Getting to Know the Model-Uiew-
Controller (MUC) Pattern

The Cocoa framework you’ll use on the Mac is designed around certain pro-
gramming paradigms, known as design patterns — a commonly used template
that gives you a consistent way to get a particular task done.

While you’ll need to be comfortable with several design patterns in Cocoa,
there is one that implements the kind of object encapsulation that reduces
the impact of changes to an application — the Model-View-Controller (MVC)
design pattern. This design pattern is not unique to Cocoa — a version of

it has been in use since the early days of Smalltalk (which the Objective-C
extensions to the C language were based on). It goes a long way back, and the
fact that it is still being used tells you something about its value.

246 Partii: Walking the Object-Oriented Walk

MVC divides your application into three groups of objects and encourages
you to limit the interaction between objects to others in its own group as
much as possible. It creates, in effect, a world for the application, placing
objects in one of three categories — model, view, and controller, described
in the following list — and specifies roles and responsibilities for all three
kinds of objects as well as the way they’re supposed to interact with each
other. The best example | have ever come up with, and one I used in iPhone
Application Development For Dummies, is a 60-inch flat screen TV.

1 Model objects: Model objects make up what I will call the content engine
of your application. This is where all of the objects (as opposed to the
code in the main function) you have been developing so far fit in. They
process transactions and compute what you have left in your budget. If
you were to add things such as hotel objects, train objects, and the like,
this is where they belong. They are very generous with what they can
do and are happy to share what they know with the rest of your applica-
tion. But not only do they not care about what other objects use them,
or what these other objects do with the information they provide; being
good objects, they really don’t want to know.

You can think of the model (which may be one object or several objects
that interact) as a particular television program. One that does not give
a hoot about what TV set it is being shown on.

v View objects: These objects display things on the screen and respond
to user actions. This is what is generally thought of as the user inter-
face, and pretty much anything you see on the screen is part of the view
group of objects. View objects are pros at formatting and displaying
data, as well as handing user interactions, such as allowing the user to
enter a credit card transaction, make a new hotel reservation, and add
a destination or even create a new trip. But they don’t care about where
that data comes from and are unaware of the model.

You can think of the view as a television screen that doesn’t care about
what program it is showing or what channel you just selected.

If you create an ideal world where the view knows nothing about the
model and the model knows nothing about the view, then you need

to add one more set of objects. These objects connect the model and
view — making requests for data from the model and sending that data
back for the view to display. This is the collective responsibility of con-
troller objects, described next.

1~ Controller objects: These objects connect the application’s view objects
to its model objects. They deliver to the view the data that needs to
be displayed — getting it from the model. They deliver user requests
for current data (how much money do I have left in my budget?) to the
model, as well as new data (I just spent 300 euros) to the model as well.

You can think of the controller as the circuitry that pulls the show off the
cable and sends it to the screen or that can request a particular pay-per-
view show.

Chapter 11: Encapsulating Objects 24 7

One of the advantages of using this application model is that it allows you to
separate these three parts to your application and work on them separately.
You just need to make sure each group has a well-defined interface. When the
time is right, you just connect the parts — and you have an application.

A category of functionality that is not handled by the MVC pattern exists at
the application level, or all the nuts and bolts and plumbing needed to run an
application. These objects are responsible for startup, shut down, file manage-
ment, event handling, and everything else that is not M, V, or C.

Implementing the MUC Pattern

Since you will eventually be providing user-interface functionality, it is time
to make sure that you have only model functionality (managing data, for
example) in the model objects, and similarly that all of the model functional-
ity is in model objects and not scattered in main. That way, you can easily
slide the model into place after you define the views and controllers neces-
sary for your application.

Earlier, | said what made the separation between models, views, and control-
lers possible is a well-defined interface, which I'll show you how to develop in
this chapter. You'll create an interface between the model and the sometime-
in-the-future-to-be-developed controller by using a technique called composi-
tion, which is a useful way to create interfaces.

I'm a big fan of composition, because it’s another way to hide what is really
going on behind the curtains. It keeps the objects that use the composite
object ignorant of the objects the composite object uses and actually makes
the components ignorant of each other, allowing you to switch components
in and out at will.

As it stands now, some user-interface type functionality is scattered through-
out our model, and a lot of model knowledge is in main, so I'll start by having
you take all of the user interface functionality and putting it in main. You'll
also take model functionality out of main and create a new composite

object — Destination — that will be the interface to main. You will use
main as a surrogate for both the views and controllers that you will be
adding in Chapters 17 and 18. Practically speaking, as you’ll see, controllers
need to be more intimate with views than with models, so 'm comfortable
having you place all that functionality in main and then separate it when you
develop the user interface.

248 Partiii: Walking the Object-Oriented Walk

MBER
@%
&

While it may appear to you that you have spent
a lot of time writing code, only to discard it, that
isin fact true.

As | mentioned earlier, | need to show you bhoth
the mechanics of programming in Objective-C
and how to use those mechanics to create an

Oh no, not factoring again!

you need to refine the application to use what
you have learned.

In this chapter especially, you will do a major
factoring of your code, which you will find,
when developing your own applications, is an
integral part of the development process.

application. This means that as you learn more,

Get out oflinto main

Now, take a look at the application so far and think about how functionality
is currently distributed and what you would have to do to make it consistent
with the MVC pattern.

Get out of main

In Listing 11-1, you can look at what goes on in main and begin to think about
what needs to be moved into the new Destination object.

Listing 11-1: The Current main Function

int main

(int argc, const char * argv[]) {

Budget *europeBudget = [Budget new];

[europeBudget createBudget:1000.00
withExchangeRate:1.2500];

Budget *englandBudget = [Budget new] ;

[englandBudget createBudget:2000.00

withExchangeRate:1.5000] ;

NSMutableArray *transactions =
[[NSMutableArray alloc]
Transaction *aTransaction ;
for (int n = 1; n < 2; n++) {
aTransaction = [CashTransaction new];
[aTransaction createTransaction:n*100
forBudget : europeBudget] ;
[transactions addObject:aTransaction] ;
aTransaction = [CashTransaction new] ;

initWithCapacity:10];

Chapter 11: Encapsulating Objects 24 9

[aTransaction createTransaction:n*100
forBudget : englandBudget] ;
[transactions addObject:aTransaction] ;
}

int n =1;
while (n < 4) {
aTransaction = [CreditCardTransaction new] ;
[aTransaction createTransaction:n*100
forBudget : europeBudget] ;
[transactions addObject:aTransaction];
aTransaction = [CreditCardTransaction new] ;
[aTransaction createTransaction:n*100
forBudget : englandBudget] ;
[transactions addObject:aTransaction] ;
n++;

}

for (Transaction *aTransaction in transactions) ({
[aTransaction spend];

3

return 0;

}

What comes to my mind is the following:

1. Take the creation of the Budgets for each leg of my trip out of main.
While the request for a budget for a new leg of my trip would come from
the user interface — hey, [want to go someplace new — it shouldn’t be
the user interface or controller that creates those Budget objects. It’s
not in their respective job descriptions.

2. Similarly, take the creation and management of the Transactions for
each part of my trip out of main. While a user interface is definitely
responsible for delivering transactions to the model, managing the list
of transaction objects is not something that should be in a controller
or view.

3. If you do Steps 1 and 2, then you’ll also need to take sending the mes-
sage to each Transaction to apply itself to its Budget out of main.

Get into main

While you're at it, remember that views are responsible for supplying infor-
mation to the user. Currently Budget has NSLog statements that will evolve
into user interface functionality. That functionality should be moved into
main and later into a view.

250 Partiil: Walking the Object-Oriented Walk

Creating a New Project

Now that you have some idea of what you need to move out of main, [want
you to create a new object @md Destination — that acts as the interface to
main and that becomes the composite object for each part of my trip.

Up to now, you've been experimenting with the various features of Objective-C
as you've built this program. Now that you know quite a bit, it is time to take
a more professional attitude toward this project. From this chapter on, you’ll
move away from learning about Objective-C as a language and toward how to
use the language you’ve learned to build useful applications. I'll concentrate
on architecture and the functionality you need to make your application com-
mercial quality.

I'll show you how to design this as you would a “real” application and create
a structure that will actually be the basis for an application of this type, in
case you want to move forward with it.

You'll start by creating a new project that will be the basis for your commer-
cial quality application (and also because the name Budget Object no longer
describes what the application is about). I also want you to go through creat-
ing a new project so I can show you the mechanics for reusing the classes
you’'ve developed thus far in a new project — something you’ll likely be doing
regularly.

You will be creating a new project here. You can do that, or you can skip Steps
1 through 9 (I know it’s tedious, but it’s for your own good) and start with the
Project in Example 11A , in the Chapter 11 folder on the CD.

If you have been following along with me, I'll be extending what you just did
in Chapter 10. If you would like to start from a clean copy of the project from
where you left off, you can use the project found in the Chapter 11 Start Here
folder, which is in the Chapter 11 folder.

1. Launch Xcode.

2. Start the New Project Assistant by Choosing Filem> New Project from
the main menu to create a new project.

3. In the New Project window, click Application under the Mac OS X
heading.

4. Select Command Line Tool from the choices displayed and then select
Foundation from the Type drop-down menu. Click Choose.

Xcode will then display a standard save sheet.

Figure 11-1:
Drag the
classes
folder to the
new project.
|

Chapter 11: Encapsulating Objects 25 ’

5. Enter the name Vacation in the Save As field, choose a Save location,
and then click Save.

After you click Save, Xcode creates the project and opens the project
window.

Go back to Xcode, open the previous version of the Budget Object
project (or the project found in the Chapter 11 Start Here folder,
which is in the Chapter 11 folder on the CD), and place it next to your
new project, as shown in Figure 11-1.

Drag the classes folder from the current project to the new one, as
shown in Figure 11-1.

An alternative is to click the Classes folder in the new project and
choose Project=>Add to Project and then navigate to the files you want
to add (I show you how to do that in more detail in Chapter 18).

m| Vac atho
10.6 | Debug~ ~* | @~ ’g\ Q-
Overview Action Bulld and Run ~ Tashs Search
Groups & Files File Na..4 4 Code) A
AT — L
¥ sourts AT M vacatio
<1 Vacation_Prelinpch Vacation.1
w! Vararian.m | Varationw o
Documentation W] Vacation P
External Frameworks anc
¥ [Products
b (@) rargets
o Executables
v 4, Find Resulrs
* LM Backmarks LI :-_'_'n(.ulonn? 2 e

M
@ Praject Yymhals
* (Bl Implementation Files
b [l nterface Builder Files

@B

L

»

106 Debug | ... =

Overview
Groups & Files
¥ B Rudger Object
Classes
] Budgeth
«| Budger.m
] Transaction.h
wi] Transaction.m
| CashTransaction h
» Cashiransaction.m
w] CreditCardTransactioe
«| CredirCardTransacyiar
¥ || Source
w] Budget Object_Prefix.
[] Budger Object.m
Documentation
External Frameworks anc
Pradurts

¥ 4 Find Hesults
» L1 Bookmarks
SCM
@ Project Symbols
* [l Implementation Files
* (& Inverface Builder Files

& S »
Build and Run Tasks Search

File Names 4 Code L] &]

B .| Budgerob] o BK L3
< | = FBudget Objec . =, C. & =
i T ion t m

gimpart "
t main {int arge, const char »

© weuropeButget » [Budger 1

leurapefudget
Budget senglandi
[englandfiudget

tableArray stransactions = |
+aTransaction ;
rfint n= 15 n= 3 nes
aTransaction = T
laTransaction ¢
[transactions a
aTransaction =
[aTransactian v
[transactions nddobj

int A =1;
¢« ln < 4)
aTransaction = |
laTransaction cre

[transactions o
aTransaction =
[aTransaction cre
[transactions add
nis

(Tra salransaction
[aTransaction spendl;

e

The copy dialog shown in Figure 11-2 appears.

8. Be sure to check the Copy (if needed), to copy items into the destina-
tion group’s folder, as shown in Figure 11-2.

252 Partiil: Walking the Object-Oriented Walk

Figure 11-2:
Be sure to
check Copy.
|

Figure 11-3:
Copymain
in Budget
Object.m
and paste

it into
Vacation.m.
|

1 Copy items into destination group's folder (if needed)

Reference Type:

Default

ar

Text Encoding:

)
Unicode (UTF-8) 2

Add To Targets

| o [varation

(Cancel) (Add)

9. Select and copy all of the code in Budget Object.m in the original
Xcode project and copy it. Then delete everything in Vacation.m
in the new project and paste what was in Budget Object.m into
Vacation.m (see Figure 11-3).

ann

10.6 | Debug:-- * | #vi

m| Vacation.m - Vacation

m Budget Object.m

106 Debug | ..~/ | &~

»
_ Owe Bulld and Run ~ Tasks Search Overview Ation
Graups & Files I FileNaiia| A Code 0 @ | Groups & Files I
¥ B4 vacarian B | [J) vacarione o ¥ [Budger Object
v [Classes v [Classes
1 BudgeLh (] Budgerh
|n! Budger m a
Transaction h] Transaction.h
Transaction.m i Transaction.m
] CashTransacrion b w| CashTransaction h
CashTranssction.m] Cashtransaction.m
CredinCardTransaction] CreditCardTransactios
| CredinCardTransaction = w| CredirCardTramsactios
¥ [Source < |G Vacatonm: . C. - ¥ [Source
5 Vacatian_Prefix.och e LA R U e 41 Budget Object_Prefix.
w3 vaeatian.m main [int arge, const char +] Budger Object.m

» (| Documentation
] Extermal Framewurks anc
b [Praducts

¥ (G Targets

b Executables

¥ 4 Find Results

» L] Bockmarks

» i som

@ Prajert Yymhals
o [Implementation Fikes
¥ [interface Builder Files

" WSautoreleasePool v posl = [

£7 Ansert code here...
HSLugl@"Hello, Wurldl");

Ipoal drainl;
retuen 03
!
<

» (| Documentation
*] External Frameworks anc
» [rraduets

» &) Targens

o f Exerurables

¥ 4 Find Hesults

» 1] Bookmarks

3= F

B Progect Symbinis
* (i Implementation Files
¥ [l Imerface Builder Files

Budget Ohject

» o ¥
Build and Run Tashs
File Names 4 Cade o A @
B || Budgrroh) ¢ BX L3
4 | = hBudget Objer =, ==, T, &]

Eimport <founddtion/foundation.f= |8
Eimport “Uudget
#import
Flmpurt " iv
#impurt “CreditCardTransaction

int main (int arge, const char « .2

Budget weuropeBudget = [Budget v

urspeBudget 1006
Eunget senglandBudget = |
lenglandfiudget createludget : 20BH

Array stransactions = |
ransaction

action cresteTransactid
[transactions addob
aTransaction = [Cas
[aTransaction createTransact
[transactions add0bject:aTrans

int n =1;
while (n'< 4} {

[transactions addObject:aTran:
aTransaction = |CreditCardTrai
[aTransactlon createTransactid
[transactions addobjectiaTrans
niey

ion saTransaction | |
tion spend];

9,

Q

WE CD
&

O

Chapter 11: Encapsulating Objects 253

10. To make sure the preceding steps worked, select the Build and Run

button in the Project Window toolbar to build and run the application.

You should see the following in the Debugger Console:

You are about to spend another 100.00

Converting 100.00 US dollars into foreign currency

leaves $900.00
You are about to spend another 100.00

Converting 100.00 US dollars into foreign currency

leaves $1900.00
You are about to spend another 100.00
Charging 100.00 in foreign currency leaves
You are about to spend another 100.00
Charging 100.00 in foreign currency leaves
You are about to spend another 200.00
Charging 200.00 in foreign currency leaves
You are about to spend another 200.00
Charging 200.00 in foreign currency leaves
You are about to spend another 300.00
Charging 300.00 in foreign currency leaves
You are about to spend another 300.00
Charging 300.00 in foreign currency leaves

Creating the Destination Class

WE CD
$§

O

1. Select the Classes folder in the Groups & Files list.

$775.00
$1750.00
$525.00
$1450.00
$150.00

$1000.00

Nice to see that the application still works. Now, it’s time to get down to
work.

You can find the completed project on the CD in the Example 11A folder, which
is in the Chapter 11 folder.

If you have been following along with me, I'll be extending what you just did
in the first exercise. If you would like to start from a clean copy of the project
from where you left off, you can use the project found in the Example 11A
folder, which is in the Chapter 11 folder.

The next thing I want you to do is to add the new Destination object, as
follows:

This tells Xcode to place the new file in the Classes folder.

New File dialog.

2. Select Filew>New File from the main menu (or press 38+N) to get the

254 Partiii: Walking the Object-Oriented Walk

<ME CD

7

3. In the leftmost column of the dialog, select Cocoa under Mac OS X and
then select the Objective-C class template in the top-right pane. Make
sure NSObject is selected in the Subclass of the drop-down menu.

You'll see a new screen asking for some more information.

4. Enter Destination.m in the File Name field and make sure that the
checkbox to have Xcode create Destination.h is checked; then click
Finish.

Now, take a look at designing and implementing this new Destination class.
This “design” I have been referring to is really in the @interface for the new

Destination.

To act as an interface to be used by a controller, the Destination class
needs to declare methods that do the following:

v Create Transaction objects from the transaction amounts that will be
sent from the user interface.

v Return the data the user interface needs to display.

In Listing 11-2, in the following section, you can see that the Destination
class interface that accomplishes both of the preceding tasks.

Designing the destination

Enter Listing 11-2 into the Destination.h file.

Listing 11-2: Destination.h — the Destination Design

#import <Cocoa/Cocoa.h>
@class Budget;
@interface Destination : NSObject ({

NSString *country;
NSMutableArray *transactions;
Budget *theBudget;

- (void) createWithCountry: (NSString*) theCountry
andBudget: (double) budgetAmount
withExchangeRate: (double) theExchangeRate;

- (void) spendCash: (double) aTransaction;

- (void) chargeCreditCard: (double) aTransaction;

- (double) leftToSpend;

@end

9,

A\

WE CD
é‘\

Chapter 11: Encapsulating Objects 255

The methods and instance variables you declared in this class will enable
you to do the following:

1. createWithCountry: : :’s arguments will allow you to initialize a new

Destination with the country you are headed to (as you can see, as
you factor the code, I'm having you add additional functionality that you
can use), the amount you want to budget, and the current exchange rate.

. Create the Budget object previously created in main. This was the first

goal in the section “Get out of/into main.”

3. Create and manage a Transaction array. This supports the second
goal in the section “Get out of/into main.”

4. Enable main (the controller surrogate) to send transaction amounts to
the Destination object (by sending the spendCash: and charge
CreditCard: messages). The Destination object can then, in turn,
create and manage the appropriate Transaction objects and send
them the spend: message. This was the balance of the second goal in
the section “Get out of/into main.”

5. Enable the main (by sending the 1eftToSpend) method to ask the
model for the information it needs to deliver to the surrogate user inter-
face. This displays how much money remains in the budget.

Notice the instance variables that reference other objects — the
transactions array and theBudget. This is a model for what makes
a composite object and how it gets its work done — using other objects
to distribute the work.

Object-oriented programmers like to think of composite objects like
Destination as having a “has-a” relationship to their parts. The desti-
nation has-a budget, for example.

Now, it’s time to take a look at how to implement these methods.

Implementing the methods

Enter Listing 11-3 into the Destination.m file.

Listing 11-3: Destination.m

#import "Destination.h"

#import "CashTransaction.h"
#import "CreditCardTransaction.h"
#import "Budget.h"

(continued)

250 Partiii: Walking the Object-Oriented Walk

Listing 11-3: (continued)
#import "Transaction.h"

@implementation Destination

- (void) createWithCountry: (NSString*) theCountry
andBudget: (double) budgetAmount
withExchangeRate: (double) theExchangeRate({

transactions = [[NSMutableArray alloc]
initWithCapacity:10];
theBudget = [Budget new] ;
[theBudget createBudget :budgetAmount
withExchangeRate: theExchangeRate] ;
country = theCountry;
NSLog (@"I'm off to %@", theCountry) ;

- (void) spendCash: (double) amount ({

Transaction *aTransaction = [CashTransaction new] ;

[aTransaction createTransaction:amount
forBudget : theBudget] ;

[transactions addObject:aTransaction] ;

[aTransaction spend];

}
- (void) chargeCreditCard: (double) amount ({
Transaction *aTransaction = [CreditCardTransaction new] ;

[aTransaction createTransaction:amount
forBudget: theBudget] ;

[transactions addObject:aTransaction] ;
[aTransaction spend];

- (double) leftToSpend {

return [theBudget returnBalance];

}

@end

All of this is pretty straightforward. It is either what was being done in main
before or new code to implement the new functionality.

This new functionality is as follows:
v A new method 1eftToSpend. It is there, as I said, to provide the user

interface with the data it needs to display. (This will also require adding
a new method to Budget, as you will see next.)

Chapter 11: Encapsulating Objects 25 7

» A new NSLog statement:
NSLog (@"I'm off to %@", theCountry) ;

This statement in Destination is not intended to be part of the user
interface — you are just including it to trace program execution (I also
use it to illustrate some points about memory management in Chapter
13). It uses my newly minted country instance variable.

Modifying the Budget class

Finishing the implementation of the Destination object’s functionality as
the interface to the model requires that you make changes to the Budget
class. Because the Destination object is responsible for reporting to the
controller the amount left to spend, it will need to get the amount from the
Budget object, requiring you to add a new method, returnBalance, to
Budget. And in line with factoring all of your code to move all user interface
functionality out of the model objects, you'll also need to remove the “user
interface” from Budget — that is, the NSLog statements.

1. Delete the code with the strikethrough in Listing 11-4 in the Budget.m
file. Then add the code in bold.

Listing 11-4: Budget.m

#import "Budget.h"
@implementation Budget

- (void) createBudget: (double) aBudget
withExchangeRate: (float) anExchangeRate {

exchangeRate = anExchangeRate;
budget = aBudget;
}
- (void) spendDollars: (double) dollars {

budget -= dollars;

- (void) chargeForeignCurrency: (double) foreignCurrency ({

transaction = foreignCurrency*exchangeRate;
budget -= transaction;

(continued)

258 Partiil: Walking the Object-Oriented Walk

Listing 11-4 (continued)

}
- (double) returnBalance {

return budget;
}

@end

2. Add the code in bold in Listing 11-5 to the Budget.h file.

Listing 11-5: Budget.h
#import <Cocoa/Cocoa.h>
@interface Budget : NSObject {
float exchangeRate;
double budget;
double transaction;
}
- (void) createBudget: (double) aBudget
withExchangeRate: (float)
- (void) spendDollars: (double) dollars ;
- (void) chargeForeignCurrency: (double) euros;

- (double) returnBalance;
@end

anExchangeRate;

Removing Ul type functionality
from the Transaction objects

Since you are moving all the user interface functionality out of the model,
you can delete the Transaction’s trackSpending message used by
CashTransaction and CreditCardTransaction. You'll implement com-
parable functionality in main.

Delete the code with strikethrough in Listings 11-6 through 11-9.

Chapter 11: Encapsulating Objects 259

Listing 11-6: Transaction.h

#import <Cocoa/Cocoa.h>
@class Budget;
@interface Transaction : NSObject ({

Budget *budget;
double amount;
}

- (void) createTransaction: (double) theAmount forBudget:
(Budget*) aBudget;
- (void) spend;

@end

Listing 11-7: Transaction.m

#import "Transaction.h"
#import "Budget.h"

@implementation Transaction

- (void) createTransaction: (double) theAmount forBudget:
(Budget*) aBudget ({

budget = aBudget;
amount = theAmount;

- (void) spend {

@end

Listing 11-8: CashTransaction.m

#import "CashTransaction.h"
#import "Budget.h"

@implementation CashTransaction

- (void) spend {

(continued)

260 Part lll: Walking the Object-Oriented Walk

Listing 11-8 (continued)
+Ftsetf—trackSpendingamountis
[budget spendDollars:amount] ;
}

@end

Listing 11-9: CreditCardTransaction.m

#import "CreditCardTransaction.h"
#import "Budget.h"

@implementation CreditCardTransaction

- (void) spend {

[budget chargeForeignCurrency:amount] ;

}

@end

Coding the New main

That leaves only main. As I said, the functionality that remains there will act
as a surrogate for the user interface and controller.

Since the changes you’ll need to make to main are so significant, it’s easier to
delete everything in main and start from scratch. So in the Vacation.m file,
replace main with Listing 11-10. (Notice that you no longer need that long
list of #imports in main since now its sole interface to the model is through
Destination.)

#import "Budget.h"

#import "Transaction.h"

#import "CashTransaction.h"
#import "CreditCardTransaction.h"

Listing 11-10: The New main Function in Vacation.m

#import <Foundation/Foundation.h>
#import "Destination.h"

int main (int argc, const char * argv([]) {

Destination* europe = [Destination new] ;

Chapter 11: Encapsulating Objects 26 ’

NSString* europeText = [[NSString alloc]
initWithFormat:@"%@", @"Europe"];
[europe createWithCountry:europeText andBudget:1000.00
withExchangeRate:1.25];
Destination* england = [Destination new] ;
NSString* englandText = [[NSString alloc]
initWithFormat:@"%@", @"England"];
[england createWithCountry:englandText andBudget:2000.00
withExchangeRate:1.50];

for (int n = 1; n < 2; n++) {

double transaction = n*100.00;

NSLog (@"Sending a %.2f cash transaction",
transaction) ;

[europe spendCash:transaction];

NSLog (@"Remaining budget %.2f", [europe leftToSpend]) ;

NSLog (@"Sending a %.2f cash transaction",
transaction) ;

[england spendCash:transaction];

Q

NSLog (@"Remaining budget %.2f",
[england leftToSpend]) ;

3

int n = 1;
while (n < 4) {
double transaction = n*100.00;
NSLog (@"Sending a %.2f credit card transaction",
transaction) ;
[europe chargeCreditCard:transaction];
NSLog (@"Remaining budget %.2f", [europe leftToSpendl]) ;
NSLog (@"Sending a %.2f credit card transaction",
transaction) ;
[england chargeCreditCard:transaction];
NSLog (@"Remaining budget %.2f",
[england leftToSpend]) ;
n++;

}

return 0;

}

[want to review exactly what you did when you added the new code to main.

1. You started by creating the destination objects.
Destination* europe = [Destination new] ;

One interesting thing is the way you created the country string to use
as an argument.

NSString* europeText = [[NSString alloc]
initWithFormat:@"%@", @"Europe"];

262 Part lll: Walking the Object-Oriented Walk

This initializes a new string as the result of a formatting operation, just
like you’ve been doing within the NSLog statements, except here I'm
creating an honest to goodness NSString object to use as the country
argument in createWithCountry: : :. There are alternative ways to
create a string, but there are memory management issues to consider
that I cover in Chapter 13.

2. You then initialized the Destination object for Europe and created and
initialized the Destination object for England.

[europe createWithCountry:europeText
andBudget:1000.00 withExchangeRate:1.25];
Destination* england = [Destination new] ;
NSString* englandText = [[NSString alloc]
initWithFormat:@"%@", @"England"];
[england createWithCountry:englandText
andBudget :2000.00 withExchangeRate:1.50];

3. Then you sent some transaction amounts to the Destination objects.
Notice that you are no longer creating Transaction objects, but simply
sending transaction amounts.

[europe spendCash:transaction];

[england chargeCreditCard:transaction];

4. You added NSLog statements to “simulate” user interface behavior.
The first NSLog lets you know that the user will be entering a transac-
tion. The second NSLog acts as a surrogate for displaying the updated
budget information to the user. It uses the new 1leftToSpend method.
As you will see when you create your controllers, spendCash: and
chargeCreditCard: will be the methods the controllers use to send
data to the model, and the 1eftToSpend method will be used to
request data from the model.

To make sure this worked, select the Build and Run button in the Project
Window toolbar to build and run the application.

You should see the following in the Debugger Console:

I'm off to Europe

I'm off to England

Sending a 100.00 cash transaction
Remaining budget 900.00

Sending a 100.00 cash transaction
Remaining budget 1900.00

Sending a 100.00 credit card transaction
Remaining budget 775.00

Sending a 100.00 credit card transaction
Remaining budget 1750.00

Chapter 11: Encapsulating Objects 263

S

(o

Sending a 200.00 credit card transaction
Remaining budget 525.00
Sending a 200.00 credit card transaction
Remaining budget 1450.00
Sending a 300.00 credit card transaction
Remaining budget 150.00
Sending a 300.00 credit card transaction
Remaining budget 1000.00

You can find the completed project on the CD in the Example 11B folder, which
is in the Chapter 11 folder.

If I were designing this application from scratch, rather than using as a

way to teach you about how to program in Objective-C, I'd actually end

up in the same place. The difference is that [would have started with this
Destination object in the beginning; then I would have created the Budget
and Transaction objects that the Destination needs, rather than take the
Budget and Transaction objects that already exist and make them part of
Destination.

Ves, Another Two Steps Forward
and One Step Back

NBER
\g&
&

What you’ve accomplished in this chapter is significant. You have factored
your code in a way that will make adding an iPhone user interface in Chapter
17 and a Mac user interface in Chapter 18 as easy as pie.

You have achieved this at a cost, however — the time and effort needed to
factor your code.

As I mentioned earlier, I need to show you both the mechanics of program-
ming in Objective-C and how to use those mechanics to create an application.
This means that as you learn more, you need to refine the application to use
what you have learned.

Although, to be fair, if I were talking only about application design, [would
have started with a Destination object from the beginning — and I expect
in the future, based on what you have learned in this chapter, you will, too.

26& Part lll: Walking the Object-Oriented Walk

Chapter 12

The Birth of an Object

In This Chapter

How objects are created

What it means to allocate an object
The standard way to do initialization

Initialization and superclasses and subclasses

u p until now, you have been doing initialization on an ad hoc basis,
using initialization methods such as these:

- (void) createTransaction: (double) theAmount

forBudget: (Budget*) aBudget;
- (void) createBudget: (double) aBudget
withExchangeRate: (float) anExchangeRate;

There is a standard way to do initialization, however — one designed to work
in a class hierarchy that ensures all of the super- and subclasses are initial-
ized properly.

In this chapter, I show you the how to implement these standard initializa-

tion methods. First, though, you must allocate memory for the new object, as
described in the first section of this chapter.

Allocating Objects

To create an object in Objective-C, you must do the following:

1. Allocate memory for the new object.

2. Initialize the newly allocated memory, as described in the next
section.

266 Part lll: Walking the Object-Oriented Walk

Allocation (alloc) starts the process of creating a new object by getting
the amount of memory it needs from the operating system to hold all of the
object’s instance variables. The alloc message is sent to the NSObject
class, from which all of the classes you are using are derived. But not only
does the alloc method allocate the memory for the object; it also initializes
all the memory it allocates to 0 — all the ints are 0; all the f1oats become
0.0; all the pointers are ni1; and the object’s isa instance variable points to
the object’s class (this tells an object of what class it is an instance).

Well, at least that was easy.

Initializing Objects

Initialization is not required. And if you can live with all of the instance vari-
ables initialized to 0 and nil, then there is nothing you need to do. But if
your class (or your superclass) has instance variables that you need to ini-
tialize to anything other than 0 or ni1, you are going to have to code some
kind of initialization method.

The initialization method does not have to include an argument for every
instance variable, since some will only become relevant during the course of
your object’s existence. You must make sure, however, that all the instance
variables your object needs, including objects it needs to do its work, are in a
state that enables your object to respond to the messages it is sent.

For example, right after
Destination *europe = [Destination new]
I had you code a method

- (void) createWithCountry: (NSString*) theCountry
andBudget: (double) budgetAmount
withExchangeRate: (double) theExchangeRate;

in which you created a budget, a transactions array, and set the exchange
rate.

In fact, the Destination object you created was unusable until you did that.
You may think the main job in initialization is to, well, initialize your objects
(hence, the name), but more is involved when there is a superclass and a sub-

class chain.

Start by looking at the new initializer that I'll have you code for the
CashTransaction class in Listing 12-1.

Chapter 12: The Birth of an Object 26 7

Listing 12-1: CashTransaction initializer

- (id) initWithAmount: (double) theAmount forBudget:
(Budget*) aBudget {

if (self = [super initWithAmount:theAmount
forBudget:aBudget]) {

name = @"Cash";

}

return self;

}

By convention, initialization methods begin with the abbreviation init.

(This is true, however, only for instance — as opposed to class — methods.)
If the method takes no arguments, the method name is just init. If it takes
arguments, labels for the arguments follow the “init” prefix. For example, you
have been initializing NSMutableArrays with the initWithCapacity:
method. As you can see, the initializer has to have a return type of id. You’ll
discover the reason for that later in the section “Invoking the superclass’s init
method.”

if (self = [super initWithAmount :theAmount
forBudget :aBudget]) {

I've named my new initializer initwithAmount: plus another argument
(forBudget) that completely describes what [am going to initialize. It
should be no surprise that both of these are initialized in the create
Transaction: : method you have been using to initialize a transaction.

Initialization involves these three steps:

1. Invoke the superclass’s init method.
2. Initialize instance variables.

3. Return self.

The following sections explain each step.

Invoking the superclass’s init method

This is the general form you use:

(self = [super initWithAmount:theAmount
forBudget :aBudget])

268 Part lll: Walking the Object-Oriented Walk

NG/
$

If you are having a little problem figuring this out, you might like to know that
it took me more than a few minutes to get my arms around this statement, so
don’t feel badly. Fortunately, I do understand it now, and I'll explain it to you
very slowly (which is what I wish someone had done for me).

I'll start with the easy part of the compound statement, where all I'm doing is
invoking the superclass’s init method.

[super initWithAmount:theAmount forBudget:aBudget]
In Chapter 10, you see that this is how you send a message to your superclass.

In Chapter 10, you also see that you can use self to send a message to your
superclass, and I also say that self and super are not always interchange-
able. In this case, you need to be careful to use super because the method
sending the message has the same name as the method you want to invoke in
your superclass. If you were to use self here, you would just send a message
to yourself, the initwithAmount: : method in CashTransaction, which
would turn around and send the same message to itself again, which then
would then send the same message to itself again, which would then....You get
the picture. Fortunately, the OS will put up with this for only a limited amount
of time before it gets really annoyed and terminates the program.

Notice that the superclass’s initialization method is always invoked before
the subclass does any initialization. Your superclass is equally as respect-

ful of its superclass and does the same thing; and up, up, and away you go
from superclass to superclass until you reach NSObject’s init method.
NSObject’s init method doesn’t do anything; it just returns self. It’s there
to establish the naming convention described earlier, and all it does is return
back to its invoker, which does its thing and then returns back to its invoker,
until it gets back to you.

In this case, the CashTransaction’s superclass is Transaction, and you
invoke its initialization method initwithAmount: :. As you can see in
Listing 12-2, Transaction invokes its superclass’s init method as well. But
in this case, it simply calls init (as per convention) since its superclass is
NSObject.

Listing 12-2: Transaction initializer

- (id) initWithAmount: (double) theAmount forBudget:
(Budget*) aBudget {

if (self = [super init]) {

budget = aBudget;

Chapter 12: The Birth of an Object 269

amount = theAmount;
}

return self;

}

Next, examine this unusual-looking statement:

if (self = [super initWithAmount:theAmount
forBudget :aBudget]) {

Ignore the if for the moment (I promise I'll get back to it). What you are
doing is assigning what you got back from your superclass’s init method to
self. As you remember, self is the “hidden” variable accessible to methods
in an object that points to its instance variables (if you're unclear on this,
refer to the discussion in Chapter 6). So it would seem that self should be
whatever you got back from your allocation step. Well, yes and no. Most of
the time, the answer is yes; but sometimes the answer is no, which may or
may not be a big deal. So, examine the possibilities.

When you invoke a superclass’s initialization method, one of three things can
happen.

+ You get back the object you expect. Most of the time, this is precisely
what happens, and you go on your merry way. This will be true all
the time for the classes you are working on in this part of the book —
those where you have control over the entire hierarchy — such as the
Transaction class you are working on now.

+ You get back a different object type. Getting back a different object
type is something that can happen with some of the framework classes,
but it’s not an issue here. Even when it happens, if you are playing by
the rules (a good idea if you're not the one who gets to make them), you
don’t even care.

Why, you might ask? Well, some of the framework classes such as
NSString are really class clusters. When you create an object of one of
these classes, its initialization method looks at the arguments you are
passing and returns back the object it thinks you need (big brotherish
to say the least, but effective nonetheless). Anything more about getting
back different object types is way beyond the scope of this book.

But as [said, if you follow the rules, not only will you not notice getting
back a different object type, but you won’t care. It is in these cases that
the compound statement format I've been showing you is important.

SomeClass *aPointerToSomeClass =
[[SomeClass alloc] init];

270 Prarti: Walking the Object-Oriented Walk

If you had done the following

SomeClass *aPointerToSomeClass = [SomeClass alloc]
[aPointerToSomeClass init];

init could return a different pointer, which you haven’t assigned to
aPointerToSomeClass. If you then send that object a message, you
are in for a big surprise. This is also why the return type for an initializer
needs to be id (a pointer to an object) and not the specific class you are
dealing with.

* You get nil back.

One possibility, of course, is that you simply run out of memory or some
catastrophe befalls the system, in which case, you are in deep trouble.
While there are some things you might be able to do, they aren’t for the
faint-hearted or beginners, so I'll skip them for now.

But there also may be times when returning nil is an acceptable
response to an attempt to instantiate an object, and you should be pre-
pared to deal with it. This, too, is beyond the scope of this book.

Getting back nil actually explains the statement that seems so puzzling.

if (self = [super initWithAmount:theAmount forBudget:
aBudget]) {

When nil is retuned, two things happen here. self is assigned tonil,
which as a side effect causes the if statement to be evaluated as NO. As
a result, the code block that contains the statements you would have
used to initialize your subclass are never executed.

Initializing instance variables

Initializing instance variables, including creating the objects you need, is
what you probably thought initialization is about. Notice that you are initial-
izing your instance variable after your superclass’s initialization, which you
can see in Listings 12-1 and 12-2. Waiting until after your superclass does its
initialization gives you the opportunity to actually change something your
superclass may have in initialization, but more importantly, it allows you to
perform initialization knowing that what you have inherited is initialized and
ready to be used.

In the CashTransaction initWithAmount: : initializer, all that is
done is the initialization of the name instance variable of the superclass
(Transaction) with the kind of transaction it is.

name = @"Cash";

Chapter 12: The Birth of an Object 2 7 ’

Returning back self

In the section, “Invoking the superclass’s init variable,” the self = state-
ment ensures that self is set to whatever object I get back from the super-
class initializer. After the code block that initializes the variables, you find

return self;

No matter what you get back from invoking the superclass initializer, in the
initialization method, you need to set self to that value and then return it
to the invoking method. That could be a method that wants to instantiate
the object or a subclass of that invoked the init method (the init method
being its superclass’s init method).

When you are instantiating a new object, it behooves you to determine
whether a return of nil is a nonfatal response to your request (and, if so,
coding for it). In this book, the answer will always be no, and that will gener-
ally be the case with framework objects as well. In this example

theBudget = [[Budget alloc] initWithAmount :budgetAmount
withExchangeRate: theExchangeRate] ;

getting nil back would be more than my poor app could handle and would
signal that I am in very deep trouble.

Listings 12-3 through 12-13 show the modifications you need to make in order
to finally implement initializers in the conventional way. You’ll be deleting
the initializers you had been using and creating the correct init... structure
that will enable you to more easily initialize new instance variables you may
add to existing classes, as well ensure that you can do initialization correctly
when you add new superclasses or subclasses.

If you have been following along with me, I'll be extending what you do in
Chapter 11. If you would like to start from a clean copy of the project from
where you left off, you can use the project found in the Chapter 12 Start Here
folder, which is in the Chapter 12 folder.

1. Since the changes you’ll need to make are quite specific, I'll just indi-
cate what needs to be deleted with strikethrough and what needs to
be added in bold in each file in Listings 12-3 through 12-10. (Be sure
to note the new name instance variable in Transaction.h.)

272 Partili: Walking the Object-Oriented Walk

Listing 12-3: Budget.h
+/—tvotd)——createBudget—(doubte)r—aBudget
withExchangeRate—f(ftoat)—ankExchangeRate
- (id) initwithAmount: (double) aBudget
withExchangeRate: (double) anExchangeRate ;

Listing 12-4: Budget.m

//}
- (id) initwithAmount: (double) aBudget
withExchangeRate: (double) anExchangeRate {

if (self = [super init]) {
exchangeRate = anExchangeRate;
budget = aBudget;

}

return self;

Listing 12-5: Transaction.h

NSString *name;

- (id) initwithAmount: (double) theAmount
forBudget: (Budget*) aBudget;

Listing 12-6: Transaction.m

- (id) initwithAmount: (double) theAmount
forBudget: (Budget*) aBudget {

if (self = [super init]) {
budget = aBudget;
amount = theAmount;

Chapter 12: The Birth of an Object 2 73

}

return self;

}

Listing 12-7: CashTransaction.h

- (id) initwithAmount: (double) theAmount
forBudget: (Budget*) aBudget;

Listing 12-8: CashTransaction.m

- (id) initwWithAmount: (double) theAmount
forBudget: (Budget*) aBudget {

if (self = [super initWithAmount:theAmount
forBudget :aBudget]) {
name = @"Cash";
}
return self;

}

Listing 12-9: CreditCardTransaction.h

- (id) initwithAmount: (double) theAmount
forBudget: (Budget*) aBudget;

Listing 12-10: CreditCardTransaction.m

- (id) initwithAmount: (double) theAmount
forBudget: (Budget*) aBudget {

if (self = [super initWithAmount:theAmount
forBudget :aBudget]) {
name = @"Credit card";
}
return self;

}

2. Since the changes to the Destination class and main are a bit more
involved, I've included all of the code in Listings 12-11 through 12-13.

274 Partii:Walking the Object-Oriented Walk

Listing 12-11: Destination.h

#import <Cocoa/Cocoa.h>
@class Budget;

@interface Destination : NSObject {

NSString *country;
double exchangeRate;
NSMutableArray *transactions;
Budget *theBudget;

}

a e i . :
andBudget—(doubte)budgetAmount
withExchangeRate—(tdoubte)—theExchangeRates

- (id) initWithCountry: (NSString*) theCountry
andBudget: (double) budgetAmount
withExchangeRate: (double) theExchangeRate;

- (void) spendCash: (double) aTransaction;

- (void) chargeCreditCard: (double) aTransaction;

- (double) leftToSpend;

@end

Listing 12-12: Destination.m

#import "Destination.h"

#import "CashTransaction.h"
#import "CreditCardTransaction.h"
#import "Budget.h"

#import "Transaction.h"
@implementation Destination

. lo oy .
COUULIILL Y = CIITCOUULIILL ¥y

° 7 7

Chapter 12: The Birth of an Object 2 75

77F

- (id) initWithCountry: (NSString*) theCountry andBudget:
(double) budgetAmount withExchangeRate:
(double) theExchangeRate({
if (self = [super init]) {
transactions = [[NSMutableArray alloc]
initwWithCapacity:10];
theBudget = [[Budget alloc]
initwWithAmount :budgetAmount withExchangeRate:
theExchangeRate] ;
country = theCountry;
NSLog (@"I'm off to %@", theCountry):;
}

return self;

}

- (void) spendCash: (double)amount {

forBudget—theBudgeti+
Transaction *aTransaction = [[CashTransaction alloc]
initWithAmount :amount forBudget :theBudget];
[transactions addObject:aTransaction] ;
[aTransaction spend];

}

- (void) chargeCreditCard: (double) amount {

mewts
7 tafransaction createfransactionamount
forBudget—theBudgeti+

Transaction *aTransaction =

[[CreditCardTransaction alloc]

initWithAmount :amount forBudget:theBudget];
[transactions addObject:aTransaction];
[aTransaction spend] ;

- (double) leftToSpend {

return [theBudget returnBalance];

}

@end

2 76 Part lll: Walking the Object-Oriented Walk

Listing 12-13: main in Vacation.m

#import <Foundation/Foundation.h>
#import "Destination.h"

int main (int argc, const char * argv[]) {

NSString* europeText = [[NSString alloc]
initWithFormat:@"%@", @"Europe"];

withExchangeRate+251+

Destination* europe = [[Destination alloc]
initWithCountry:europeText andBudget:1000.00
withExchangeRate:1.25];

’

NSString* englandText = [[NSString alloc]
initWithFormat:@"%@", @"England"];
+tengtand—createWirthtountryengtandfext—andBudget-206006-066
withExchangeRate 1561+
Destination* england = [[Destination alloc]
initWithCountry:englandText andBudget:2000.00
withExchangeRate:1.50];

for (int n = 1; n < 2; n++) {

double transaction n*100.00;

NSLog (@"Sending a %.2f cash transaction",
transaction) ;

[europe spendCash:transaction];

NSLog (@"Remaining budget %.2f", [europe leftToSpendl]) ;

NSLog (@"Sending a %.2f cash transaction",
transaction) ;

[england spendCash:transaction];

NSLog (@"Remaining budget %.2f", [england
leftToSpend]) ;

}

int n = 1;
while (n < 4) {
double transaction = n*100.00;
NSLog (@"Sending a %.2f credit card transaction",

transaction) ;

[europe chargeCreditCard:transaction];

NSLog (@"Remaining budget %.2f", [europe leftToSpend]) ;

NSLog (@"Sending a %.2f credit card transaction",
transaction) ;

[england chargeCreditCard:transaction];

NSLog (@"Remaining budget %.2f", [england
leftToSpend]) ;

n++;
}

return 0;

}

Chapter 12: The Birth of an Object 2 77

3. To make sure this worked, select the Build and Run button in the
Project Window toolbar to build and run the application.

You should see the following in the Debugger Console. This output
should be identical to the output in the previous example:

I'm off to Europe

I'm off to England

Sending a 100.00 cash transaction
Remaining budget 900.00

Sending a 100.00 cash transaction
Remaining budget 1900.00

Sending a 100.00 credit card transaction
Remaining budget 775.00

Sending a 100.00 credit card transaction
Remaining budget 1750.00

Sending a 200.00 credit card transaction
Remaining budget 525.00

Sending a 200.00 credit card transaction
Remaining budget 1450.00

Sending a 300.00 credit card transaction
Remaining budget 150.00

Sending a 300.00 credit card transaction
Remaining budget 1000.00

The Designated Initializer

It is possible to have more than one initializer per class. Once you have
more than one initializer in a class, according to Cocoa convention, you are
expected to designate one as the designated initializer. This designated ini-
tializer is usually the one that does the most initialization, and it is the one
responsible for invoking the superclass’s initializer. Since this initializer is the
one that does the most work, again by convention, the other initializers are
expected to invoke it with appropriate default values as needed.

While at some point you will need to explore this topic further, it is really a
framework and therefore beyond the scope of this book.

278 Partili: Walking the Object-Oriented Walk

Chapter 13

Getting a Handle on Memory

Management

In This Chapter

Understanding memory management

Finding potential memory leaks

Managing memory

Memory management for arrays and autoreleased objects

Using the garbage collector

Knowing the important memory management rules

\NG/
Vg,\\

n Chapter 12, I explain about object allocation and initialization. You start

with alloc and init.Itis alloc, if you remember, that sets aside some
memory for the object and returns back a pointer to that memory. This is
important to keep in mind, because once you create these new objects, you
become responsible for managing them.

Managing the memory allocated for your objects can be one of the few real
hassles in programming with Objective-C. And although a new feature in
Objective-C 2.0, garbage collection, makes Mac OS X programming easier, it
isn’t available on the iPhone. But a word to the wise: Even if you want to pro-
gram the Mac using only Objective-C 2.0 and garbage collection, read through
this chapter anyway because it really will help solidify your understanding of
pointers and objects and what gets passed when you include objects as argu-
ments in messages.

Memory management is not glamorous, but it trumps cool in an application.
In fact, memory management is probably the single most vexing thing about
iPhone and Mac programming. It has made countless programmers crazy,
and I can’t stress enough how important it is to build memory management
into your code from the start. Take it from me, retrofitting can be a nightmare,
and I still have dreams where “Hell” is having to go back through an infinite
number of lines of code and retrofit memory management code.

28() Partiii: Walking the Object-Oriented Walk

Raising and Terminating
Responsible Objects

What with everything else going on, managing memory can be a real chal-
lenge not only to someone new to programming, but also to those of us with
many lines of code under our belts. Allocating memory when you need it isn’t
that hard. It is realizing you don’t need an object anymore and then releas-
ing the memory back to the operating system that can be a challenge. If you
don’t do that, and your program runs long enough, eventually you run out
of memory (sooner on an iPhone than a Mac for a variety of reasons — see
the upcoming sidebar, “The iPhone challenge™) and your program will come
crashing down. Long before that you may even notice system performance
approaching “molasses in February — outdoors in Hibbing, Minnesota.” Oh,
and by the way, if you do free an object (memory) and that object is still
being used, you have “London Bridge Is Falling Down” as well. Now, if you've
created a giant application and run out of memory while all the objects you
created are being used, that’s one issue, and one I'm not going to deal with
here. But if you run out of memory because you have all these objects float-
ing around that no one is using, that’s another thing, and it’s known as a
memory leak.

But memory management isn’t really that hard, if you understand how it all
works, which also isn’t that hard if you pay attention to it. In addition, Xcode
can help you track down memory problems. [show you how to use it in the
section “Running the Static Analyzer,” later in this chapter. The problem is
that sometimes in the rush to develop an application and see things happen
on the screen, programmers ignore memory management and plan to come
back later to do it right. Trust me on this one (I speak from personal experi-
ence), this is not a strategy that leads to happy and healthy applications or
application developers.

Understanding the object life cycle

In the previous chapter, you found out how to allocate and initialize objects
using a combination of alloc and init. Many objects you allocate stay
around for the duration of your program, and for those objects, all you have
to do is, well, nothing really. When your program terminates, they are deallo-
cated, and the memory is returned to the operating system.

But some objects you use for a while get your money’s worth, and then
you're done with them. When you are done with them, you should return the
memory allocated to them back to the OS so it can allocate that memory for
new objects. This is the scenario that can cause problems.

Chapter 13: Getting a Handle on Memory Management 28 ’

The iPhone challenge

While the iPhone 0S and the Mac both use
what is known as virtual memory, unlike the
Mac, virtual memory in the iPhone is limited to
the actual amount of physical memory. This is
because when it begins to run low on memory,
the iPhone 0S frees up memory pages that con-
tain read-only content (such as code), where

all it has to do is load the “originals” back
into memory when they're needed. It doesn't,
like the Mac, temporarily store “changeable”
memory (such as object data) to the disk to
free up space and then read the data back later
when it's needed. This state of affairs limits the
amount of memory available.

Start by looking at how memory management works.

In Objective-C 2.0 (as opposed to earlier versions), you can manage memory
two ways:

1 Reference counting: You are the one responsible for doing your part in
keeping the system up to date on whether an object is currently being
used.

1 Garbage collection: The operating system takes all the responsibility
and does all the work.

First, turn your attention to reference counting.

Using reference counting

In many ways, Objective-C is like the coolest guy in your school, who now
makes a seven-figure income bungee jumping and skateboarding during the
summers, while snowboarding around the world in the winter.

In other ways, though, Objective-C is like the nerd in your class, who grew up
to be an accountant and reads the Financial Times for fun. Memory manage-
ment falls into this category.

In fact, memory management is simply an exercise in counting. To manage its
memory, Objective-C (actually Cocoa) uses a technique known as reference
counting. Every object has its own reference count, or retain count. When an
object is created via alloc or new — or through a copy message, which cre-
ates a copy of an object, but has some subtleties beyond the scope of this
book — the object’s retain count is set to 1. As long as the retain count is
greater than zero, the memory manager assumes that someone cares about
that object and leaves it alone. It is your responsibility to maintain that refer-
ence count by directly or indirectly increasing the retain count when you are

282 Partiii: Walking the Object-Oriented Walk

\NG/
&éb“

WMBER
“&
&

using an object, and then decreasing it when you are finished with it. When
the retain count goes to zero, Cocoa assumes that no one needs it anymore.
Cocoa automatically sends the object a dealloc message, and after that its
memory is returned to the system to be reused. As part of your responsibility
for memory management, you may need to override dealloc to release any
related resources the object being deallocated might have allocated.

Never invoke dealloc directly — Cocoa sends the dealloc message to your
object at the right time.

Take a look at an example now. In Vacation.m, you create a string object and
then pass that as an argument into the init method when you create the
destination object, as shown here:

NSString* englandText = [[NSString alloc]
initWithFormat:@"%@", @"England"];
Destination* england = [[Destination alloc]

initWithCountry:englandText andBudget:2000.00
withExchangeRate:1.50];

[explain why [need to create the englandText using alloc and init later
in this section as I promise to do in Chapter 11.

The Destination object remains around until the program is terminated. At
that point, everything gets deallocated, so there is really no problem and no
real (although some potential) memory management issues.

But what happens if I decide sometime along the way on my trip not to go
to England after all. [really have always wanted to go to Antarctica, and an
opportunity to hitch a ride on a rock star’s private jet presents itself, so bye-
bye England, and hello Ushuaia, Tierra del Fuego, Argentina.

Before I take off, however, I want to do one thing, besides send for my long
underwear, which I left safely packed away at a friend’s house in Minneapolis.
I need to delete England as a destination, freeing up that budget money, and
create a new destination — Antarctica.
As I said earlier, when you are doing memory management, it is your respon-
sibility to keep Cocoa informed about your use of objects, so if you don’t
need an object any longer, you send it a release message.

[england release];

release does not deallocate the object!

Let me say that again — release does not deallocate the object!

Chapter 13: Getting a Handle on Memory Management 283

All release does is decrement the retain count by 1. This is very important
to keep in mind because while one method or object in your application may
no longer need an object, it still may be needed by another method or object
in your program. That’s why you don’t dealloc it yourself, trusting Cocoa
to manage the retain count for you. But it is your job (and I repeat myself a
lot here to make sure you understand this) to keep Cocoa informed of your
object by using the release message.

Well that’s cool, and being a good citizen, the england object wants to
release all of its objects in its dealloc method. No problem here, one would
think. Destination has instance variables pointing to the objects it uses:

NSString* country;

double exchangeRate;
NSMutableArray *transactions;
Budget* theBudget;

So in the dealloc method that is invoked before the Destination object is
deallocated by the OS, those other objects can be released.

- (void) dealloc {

[transactions release];
[country release];
[theBudget release];
[super dealloc];

}

While you don’t have to release the exchangeRate because it is not an
object, do you really want to release all those other objects? What if there are
other objects in your program that still need to use those objects? Actually,
taking that into account is very easy, as long as you follow the rules.

As I said earlier, when you create an object using alloc or new, or through

a copy message, the object’s retain count is set to 1. So you are cool. In fact,
whenever you create an object like that, your solemn responsibility is to
release it when you are done. There is a flip side to this coin, however; if you
are using an object, a pointer to it is sent to you as an argument in a message,
as is the case for the NSString object in the following:

Destination* england = [[Destination alloc]
initWithCountry:englandText andBudget:2000.00
withExchangeRate:1.50];

Then it is also your responsibility to increment the retain count by sending
it the retain message, as you can see in the implementation of the init
WithCountry: :: method:

284 Partiii: Walking the Object-Oriented Walk

- (id) initwithCountry: (NSString*) theCountry andBudget:
(double) budgetAmount withExchangeRate:
(double) theExchangeRate({

if (self = [super init]) {
transactions = [[NSMutableArray alloc]
initWithCapacity:10];
theBudget = [[Budget alloc]

initWithAmount :budgetAmount
withExchangeRate: theExchangeRate] ;
exchangeRate = theExchangeRate;
country = theCountry;
[country retain];
}

return self;

}

In this method, the Destination object creates two objects on its own,
theBudget and transactions. As a result, the retain count for each is set
to 1. It also gets passed a pointer to an NSString object that was created at
another time and place. If Destination plans to use that object, it needs
to send it the retain message. That way, the retain count is increased by 1.
If the creator of that object decides it no longer needs the object and sends
it the release message, the retain count is decremented by 1. But because
the Destination object sent it a retain message, the release count is still
greater than 0 — the object lives!

In fact, that is exactly what happens. In main, after the object is created

and sent as an argument to the Destination objects, the good little code
releases the object because it really has no need for the object. When you
do release an object in your code, you are counting on the fact that other
objects are playing according to the rules, and the receiving object increases
the retain count if it needs to continue to use an object you created. This
frees the creator of an object from the responsibility of having to know any-
thing about who is using an object it has created and worrying about when it
has to free it.

In the code in main, the string object sent in the initWithCountry: ::
message is released after the message is sent, since the code in main has no
further use for the string object it created.

NSString* englandText = [[NSString alloc]
initWithFormat:@"%@", @"England"];
Destination* england = [[Destination alloc]

initWithCountry:englandText andBudget:2000.00
withExchangeRate:1.50];
[englandText release];

europeText is released as well. All’s right with the world.

\\3

Chapter 13: Getting a Handle on Memory Management 285

What really does confuse some developers is the concept of retain and
release. They worry that releasing an object will deallocate that object.
(Note that all release does is tell the memory manager that you are no
longer interested in it. The memory manager is the one that makes the life-
and-death decision.) New developers sometimes worry that as a creator they
have to be concerned about others using their objects. In reality, it is your job
to simply follow the memory management rules.

Here’s the fundamental rule of memory management:

You are responsible for releasing any object that you create using a
method whose name begins with alloc or new or contains copy,
or if you send it a retain message. You can do that by sending it
arelease or autorelease message (Which I explain shortly). In
Applespeak, if you do any of these things, you are said to own the
object (objects are allowed to have more than one owner — talk
about how to use terminology to really make things confusing).

That’s it, with corollaries of course.

If you want to continue to use an object outside the method it was
received in, save a pointer to it as an instance variable, as you just
did with the NSString object. Then you must send the object the
retain message. In Applespeak, that means you are now an owner
of the object.

In general, somewhere in your code there should be a release for every
statement that creates an object using alloc or new, or contains copy or
sends a retain message.

I'd like to explain now why I have you create a string object in the Chapter 11
section “Coding the New main” when you initialize a Destination object. |
could have had you code it this way:

Destination* england = [[Destination alloc]
initWithCountry:@"England" andBudget:2000.00
withExchangeRate:1.50];

If you had done so, the compiler would have created a string constant

that existed for the life of the program. In this case, sending it a retain or
release message has no impact (try it yourself). If there are only a couple

of these string constants, the impact is insignificant, but a lot of them could
have an impact on your memory footprint — although creating and then deal-
locating lots of small objects has its own cost in CPU use as well.

280 Partin: Walking the Object-Oriented Walk

Running the Static Analyzer

Figure 13-1:
Build

results for
the Static
Analyzer.
|

Until the release of Xcode 3.2, you had to track down memory leaks by using
the Instruments application (which I cover in the book, iPhone Application
Development For Dummies).

But as [mention in Chapter 8, Xcode has a new Build and Analyze feature (the
Static Analyzer) that analyzes your code. It is especially good at detecting
certain kinds of memory leaks — especially ones where you create an object
and then pass it to another object, and then forget to release it.

Now try running the Static Analyzer on your project as it’s developed so far.

The results show up like warnings and errors, with explanations of where and
what the issue is. You can also see the flow of control of the (potential) prob-
lem. [say potential because the Static Analyzer can give you false positives.

In this section, I extend what you do in Chapter 12. If you would like to start
from a clean copy of the project from where you left off, you can use the proj-
ect found in the Chapter 13 Start Here folder, which is in the Chapter 13 folder.

1. Chose Build and Analyze from the Build menu (Build=>Build and
Analyze).

I’'m also going to turn on line numbers in the text Editing section of
Xcode preferences.

You see four potential memory leaks in the Build Results window (see
Figure 13-1), two in Vacation.m and two in Destination.m.

n - Build Results

10.6 | Debug | 1386 - - ,r\ ‘:'X a

Overview Breakpoints Build Build and Run Task Search

TP Latest Results CEDD ey tssue Analyrer Reults Only «

Vaeation

¥ 3 Potential leak of an object allocated on line 13 and stored into "englandTeat’
2 Potential leak of an object allacated on line L1 and stored into ‘europeText
» © Analyre Destinarion.m o

tential leak ol an object allocated on line 25 and stored into “aTransaction’

i3 Potential leak of an object allocated on line 32 and stored into ‘aTransaction

f’ Build Succeeded 6/29/09 10220 AM

nalyzer resulls

Husld succesded (4 anabyzer results) @succeeded 34

Chapter 13: Getting a Handle on Memory Management 28 7

Figure 13-2:
The Static
Analyzer
results in
the Project
Window.
|

You can also see this in the Editor as well in Figure 13-2. You can work in
either the Project Window, or the Build Results window, but I am going
to work in the Project Window (see Figure 13-2).

R Vacationm = Vacation
- = A
10.6 | Debug | 1386 - |- - N 0 a-
Overview Actien Breakpolms Bulld and Run Tatks info Search
Groups & Files File Name | A Code o A ©
v [vacatian B [vacanonm 16K o
¥ L Classes
= Budgerh
! Budget m
w] Transactionh 4 » = Vacation.m:33 & B maind - - - Fe -
w| Tramsactine.m L]
] CashTransaction.h impor Fi
) CashTransattion.m L
«! CredinCardTransacrian h t main {int arge, « argell) {
] CreditCardTransaction.m
-1 Destination.h . TP R L s oL
w! Destination.m
Source Hsatrings englandfext = [[NsString alloc
<1 Vacation_Prefix.pch & Destinatiore england = |[De alloc]

i o ‘emglandTent
] Nagatian,m .

* [Documentation
External Framewarks and Libraries
Produsts

i « transaction};
ransact lan] ;
dget %.21", [eurape let

tTospend])
, transaction);

* () Targens -ty :
¥ o Exccutables transaction];
v L4, Find Results wdge 21", lengland leftiospendl):

L S Bookmarks

= neld.00;
Bn®, tramsactien);

spend])
0¥, transaction);

wiLogl
[england ¢
eftTospendl):

NiLoglp“Re
N}
¥

DSucceeded 24 ¢

Huld succeeded (4 analyrer resilts)

2. Click the first error message (right after Line 13), and in Figure 13-3
you see how you got into this predicament.

Figure 13-3 shows you that the object you created on Line 11, europe
Text, is no longer referenced after Line 12, when you use it as an argu-
ment in initWithCountry: :. It still has a retain count of 1, so even if
all the other objects that use it do release it, it continues to take up pre-
cious memory, even though it isn’t being used in main, because it hasn’t
been released.

d

Open the Destination.m file.

When you look at Destination.m, you see the same sorry story. Figure
13-4 warns you of a potential leak.

4. Click the error message on Line 28, and in Figure 13-5 you see the
scenario.

Figure 13-5 shows you that the Transaction object you created on Line
25 is never referenced after you send it the spend: message and add it
to the transactions array.

Part lll: Walking the Object-Oriented Walk

|
Figure 13-3:
The text
objects are
no longer
referenced.
|

Figure 13-4:
A potential
leak in
Destina-
tion.m.
|

Groups & Files
v By vacatian

* || Documentation
¥ External Framewarks and Libraries
[Products

(@) Targets

o Executables

¥ 4, Find Results

L Buckmarks

I Froject Symbols
[l Implementation Files
¥ [l tererface Builder Files

R R

Q- string Matching

|. L. Method revurns an Otjective-C ebject with a + 1 retain count iawning reference &

0 maind 5

* dVacationm:ll

UM T
“Destination,

T L
Fimport

int main {int arge, ronst char » argell) |

NS TR AFEEA TR o [IRESEEIRE] I35 UL A |
WW“MIMWMM
Béitinations europe = [[Destination allecl L «..m.—,‘ =
aliocated on fine 11 amd stoend imto ‘ssopsTet” s 1 et thia e amd has 41
N5Stringe englandText = |INSString alloc] initWithFormat: 8™%8", &"England”];
Destinalions england = [IDestination alloe] initWithCountry: englandTeat andBudget:

fur fint n= 15 n = 25 nee) {
double transaction = neled.od;
NSLeg (@"Sending a %.21 cash tramsactien®,
[rurope spendCash:=transacrian]
NiLogl@"Resaining budget %. 71", [europe leftToSpend]);
MsLog {p“Gending a %.2f cash transaction®, transaction);
[england spendCash:transaction];
N5Log{@"Remaining budget %.21", lengland leftToSpendl):
H

transactionl;

intono=1;

while {n < 4} {
double transactiam = neldd.ad;
NSLog{@“Sending a %, 2¢ credit card transaction®,
[eurspe chargelreditiard:transaction];
NSLog(a~Remaining budget %. 7%, [europe leftTospend]);
NSLogl@~sending 3 %,2f credit card transaction®, transaction):
[england chargelreditCard:transaction];
NSLog{@"Remaining budget %.21", i!nﬂllml leftToSpend]);

tramsactionl;

) CashTransattion.m
| CredinCardTransactian b
] Wmmtmsm.omm

v [source
E Vacation_Prefin.pch
) Vacatian m
» [Documentaticn
¥ External Framewarks and Libraries
[Products
(@) Targets
o Executables
¥ 4, Find Results
+ L% Bookmarks.

I Froject Symbols
[l Implementation Files
¥ [l tererface Builder Files

R R

Q- string Matching

wionm:z2 ¢ B
srt “Transartion. b [
gimpleaentation Destination -

= (id] initWithCountry: (NS5trings) thelountry : (dauble) bl wWAthE ng
it dzelf = [super initl)
transactions = [[NsMutableArray alloc] initwithCapacity:10):
theBudget = [lBudget alloc] InitWithisount: budgetAmount withExchangeRate: theExchangeRat)
Lountey = theCountry;
MSieg {8"I'm off to %47, theCountryl;

return selfy

=({void) spendCash: (double) smount {

Transaction saTransaction = [[CashTransaction allocl initWithAmount:amount forBudget:thefudge
[transactions addlbjectzaTransaction];
laTranssction spendl;
1 - e
~{vnid) chargeCreditCard: {dounie) amount |
Fransactian #aTransaction s [[CreditCardieansaction allse] initHithAmount:amsunt forBudget:th
=
i

[transactions addib)ect:aTransaction];
laTransaction spendl;

= fowuble) LeftToSpend {

return [theBudget returnBalancel;

|
Figure 13-5:
Alonely
Trans-
action.
|

Chapter 13: Getting a Handle on Memory Management 289

ann m! Destination.m - Vacation)
| 10,6 Debug 11386 x| | #=] = “& e O Q-
Overview Action Bulld and Run Tasks Info Search
Groups & Files File Mame & A Code o & L]
v By vacatian B |4 Destinationm 19K L]
¥ Qasses
= Budgerh
W Budget m
w] Transactionh 4 ¢ 4 Destnation.m:25 % @ -spencCash: « ™. Co o B @
) Yramsacrion, m 3 1. Method resurns an Objecrive-C object with a +1 retain count (owning referencel & 1 » | [Dane

] CashTransaction.h n 5
! CashTransaction.m
=} CredinCardTransactian h

- (i) initwithCountry: (1 inge) theCountry andBudget: (dauble] budgetAmount withExchangeRate

nLapacity: 10

] CreditCardTransaction.m t t = [y:100; i
I 5 L = budgetAmount withExchangeRate: theExchangeRat

= a
=] Destinatin.h miry = theCountryi
7 WSLop 48°T'm off o %4", theCountryl;
v (3 Soun ¥
ource 5
= Vacatian_Prefinpth
w! Vatatianm 1
» Documentation
External Framewarks and Libraries
! Producs) tion saTransaction = [[CashTransaction alloc] initWithAmuntiamount forBudget:theludoet|)
* () Targens | s adil tiaTransaction]i [Meshad returms an Cfeaive-C sbjest wish a + 1 resain coust (ewning referencet ||

¥ 4 Executables 7 laTransaction sp |
3 a 1 3 Object alieased oo line 25 and sared imo ‘aTransaction’ is na longer teferanced aher tis poin and has & resain couns of +1 iahjed leaked

-{veid) spendCash: (double) smpunt {

], Find Results
* M Bookmarks {wnid) chargeCredivCard: (dounhle) amsunt |
* oM

B Froject Symbals I g
+ (Bl Implermventation Files y {afransaction sg
¥ i@ ieverface Builder Files iz 1

= [t allae] inithithAmaunt=amount forBudget:th
:afransaction];

= (duuble 1 leftToSpend {

n [theBud returnBalancel;

1 w

a

[———- —) L

Hisld siscceeded (4 analyzer results) Dsuccerded 34

Plugging the Leaks

Now it’s time to add responsible memory management to your program.

To fix the problems discovered by the Static Analyzer, you need to release
aTransaction in the spendCash: and chargeCreditCard: methods in
Destination.m (see Listing 13-5). You also need to release europeText and
englandText in main (see Listing 13-6).

While the Static Analyzer is a giant step forward, it can’t catch everything.
You still need to be methodical about releasing objects on which you've
increased the retain count in the Transaction and Destination objects’
dellaoc methods.

Two comments about the dealloc methods. First, as you can see, you need
to send your superclass a dealloc message after you release the objects
that you need to release in the subclass. Remember, the object that creates
an object or retains it needs to release the object, so you may find yourself
releasing the same object in both a subclass’s and a superclass’s dealloc
method. That’s fine, as long as the object was created or retained by the class
that releases it.

290 Partiii: Walking the Object-Oriented Walk

[also added dealloc methods for those classes that (presently) do not

have any objects they need to release when they are deallocated. I do that to
keep you focused on how important it is to release objects. In fact, in the file
templates that you use for iPhone classes, when you create a new class file
that’s derived from anything other than NSObject, the template has a default
dealloc method that just invokes its superclass’s dealloc method.

<P One final point: If you have a dealloc method that does release objects,
when its superclass is NSObject, you really don’t need to invoke it from
dealloc. It is, however, not a bad habit to always invoke your superclass’s
dealloc method. This keeps you from getting into trouble when you factor
your code. You may find yourself creating a new superclass for a class that
previously was based on NSObject, and always invoking its superclass’s
dealloc method keeps you from having to remember to add the code to
invoke it in your (now) subclass’s dealloc method.

t CD
Qé? In this section, [expand on Chapter 12. If you want to start from a clean copy
© of the project from where you left off, you can use the project found in the
& Chapter 13 Start Here folder, which is in the Chapter 13 folder.

Add the code shown in bold in Listings 13-1 through 13-6 to the appropriate
files in your program.

Listing 13-1: Budget.m

#import "Budget.h"
@implementation Budget

- (id) initwWithAmount: (double) aBudget withExchangeRate:
(double) anExchangeRate {

if (self = [super init]) {
exchangeRate = anExchangeRate;
budget = aBudget;

}

return self;

- (void) spendDollars: (double) dollars {

budget -= dollars;

- (void) chargeForeignCurrency: (double) foreignCurrency {
transaction = foreignCurrency*exchangeRate;

Chapter 13: Getting a Handle on Memory Management 29 ’

budget -= transaction;

- (double) returnBalance {

return budget;

(void) dealloc {

[super dealloc];
}

@end

Listing 13-2: Transaction.m

#import "Transaction.h"
#import "Budget.h"

@implementation Transaction

- (void) spend {

- (id) initwWithAmount: (double) theAmount forBudget:
(Budget*) aBudget {

if (self = [super init]) {
budget = aBudget;
[budget retain];
amount = theAmount;

}
return self;

- (void) dealloc {
[budget release];
[super dealloc];

}

@end

292 Partill: Walking the Object-Oriented Walk

Listing 13-3: CashTransaction.m

#import "CashTransaction.h"
#import "Budget.h"

@implementation CashTransaction

- (id) initwWithAmount: (double) theAmount forBudget:
(Budget*) aBudget {

if (self = [super initWithAmount :theAmount
forBudget :aBudget]) {
name = @"Cash";
}

return self;

- (void) spend {
[budget spendDollars:amount] ;
- (void) dealloc {

[super dealloc];

}

@end

Listing 13-4: CreditCardTransaction.m

#import "CreditCardTransaction.h"
#import "Budget.h"

@implementation CreditCardTransaction

- (id) initwWithAmount: (double) theAmount forBudget:
(Budget*) aBudget {

if (self = [super initWithAmount: theAmount forBudget:
aBudget]) {
name = @"Credit Card";

}

return self;

- (void) spend {

[budget chargeForeignCurrency:amount] ;

Chapter 13: Getting a Handle on Memory Management 293

- (void) dealloc {

[super dealloc];
}

@end

Listing 13-5: Destination.m

#import "Destination.h"

#import "CashTransaction.h"
#import "CreditCardTransaction.h"
#import "Budget.h"

#import "Transaction.h"

@implementation Destination

- (id) initWithCountry: (NSString*) theCountry andBudget:
(double) budgetAmount withExchangeRate:
(double) theExchangeRate(
if (self = [super init]) {
transactions = [[NSMutableArray alloc]
initWithCapacity:101];
theBudget = [[Budget alloc]
initWithAmount :budgetAmount withExchangeRate:
theExchangeRate] ;
exchangeRate = theExchangeRate;
country = theCountry;
[country retain];
NSLog (@"I'm off to %@", theCountry) ;
}
return self;

}

- (void) updateExchangeRate: (double) newExchangeRate ({

exchangeRate = newExchangeRate;
}

- (void) spendCash: (double)amount {

Transaction *aTransaction = [[CashTransaction alloc]
initWithAmount :amount forBudget:theBudget];

[transactions addObject:aTransaction] ;

[aTransaction spend];

(continued)

294 Partiii: Walking the Object-Oriented Walk

Listing 13-5 (continued)

[aTransaction release];

}
- (void) chargeCreditCard: (double) amount {

Transaction *aTransaction = [[CreditCardTransaction alloc]
initWithAmount :amount forBudget:theBudget];

[transactions addObject:aTransaction];

[aTransaction spend];

[aTransaction release];

}

- (double) leftToSpend {

return [theBudget returnBalance];
}

- (void) dealloc {

[transactions release];
[theBudget release];
[country release];
[super dealloc];

}

@end

Listing 13-6: main in Vacation.m

#import <Foundation/Foundation.h>
#import "Destination.h"

int main (int argc, const char * argv([]) {

NSString* europeText = [[NSString alloc]
initWithFormat:@"%@", @"Europe"];

Destination* europe = [[Destination alloc]
initWithCountry:europeText andBudget:1000.00
withExchangeRate:1.25];

[europeText release];

NSString* englandText = [[NSString alloc]
initWithFormat:@"%@", @"England"];
Destination* england = [[Destination alloc]

initWithCountry:englandText andBudget:2000.00
withExchangeRate:1.50];

Chapter 13: Getting a Handle on Memory Management 295

[englandText release];

for (int n = 1; n < 2; n++) {
double transaction = n*100.00;
NSLog (@"Sending a %.2f cash transaction",
transaction) ;
[europe spendCash:transaction];

NSLog (@"Remaining budget %.2f", [europe leftToSpend]) ;
NSLog (@"Sending a %.2f cash transaction",
transaction) ;
[england spendCash:transaction] ;
NSLog (@"Remaining budget %.2f", [england
leftToSpend]) ;
}
int n = 1;

while (n < 4) {

double transaction = n*100.00;

NSLog (@"Sending a %.2f credit card transaction",
transaction) ;

[europe chargeCreditCard:transaction];

NSLog (@"Remaining budget %.2f", [europe leftToSpend]) ;

NSLog (@"Sending a %.2f credit card transaction",
transaction) ;

[england chargeCreditCard:transaction];

NSLog (@"Remaining budget %.2f", [england
leftToSpend]) ;

n++;

}
[england release];

return 0;

}

Notice that in the Destination methods cashTransaction: and
CreditCardTransaction:, you release the Transaction object when
you're done with it. The upcoming section “Considering objects in arrays”
explains why that is safe, even though you’ve added it to the array.

To make sure these changes worked, select the Build and Run button in the
Project Window toolbar to build and run the application.

You should see the following in the Debugger Console:
I'm off to Europe

I'm off to England
Sending a 100.00 cash transaction

296 Partiii: Walking the Object-Oriented Walk

Remaining budget 900.00

Sending a 100.00 cash transaction
Remaining budget 1900.00

Sending a 100.00 credit card transaction
Remaining budget 775.00

Sending a 100.00 credit card transaction
Remaining budget 1750.00

Sending a 200.00 credit card transaction
Remaining budget 525.00

Sending a 200.00 credit card transaction
Remaining budget 1450.00

Sending a 300.00 credit card transaction
Remaining budget 150.00

Sending a 300.00 credit card transaction
Remaining budget 1000.00

The most important result of this example is that the program still functions
in the same way as it did before you made the changes, which underlies why
it’s so easy to postpone doing memory management until you need it. But
while it doesn’t seem to add any (observable) functionality early on, cor-
rectly managing memory saves you many hours of anguish later when your
program expands to the point where memory becomes an issue, which (too)
often happens much sooner that you might expect.

If you want to trace the deallocation process, put an NSLog statement in your
dealloc method to see when objects are being deallocated. You can also
send an object the retainCount message to find out its current retain count
(it returns an unsigned int).

Attending to Memory Management
Subtleties — Arrays and Autorelease

While memory management is generally straightforward, there are a few
subtleties that may not be so obvious — only a few mind you, but they are
important.

v Objects in arrays

v Autorelease and the autorelease pool

Chapter 13: Getting a Handle on Memory Management 29 7

Considering objects in arrays

Look at the dealloc method in Destination.m:
- (void) dealloc {

[transactions release];
[theBudget release];

[country release];
[super dealloc];

}

Notice you release the transactions array. What happens to all the objects
you added to it? As you might expect, the rules are that if you want to use

an object, you must send it a retain message, and if you do, then you must
release it. The array follows those rules, and when you add an object to

an array, the array object sends the object that was just added a retain mes-
sage. When the array is deallocated, it sends release messages to all its
objects. If you want to use the object after the array is deallocated, you need
to send it (or have sent it) a retain message before the array is deallocated.

In addition, if you remove an object from a mutable array, which is the only
kind that you can add and remove objects from (refer to Chapter 7 for more
on this topic), the object that has been removed receives a release mes-
sage. So, if an array is the only owner of an object, then (by standard rules
of memory management) the object is deallocated when it is removed. If you
want to use the object after its removal, you need to send it a retain mes-
sage before you remove it from the array.

Understanding autorelease

In Chapter 2, when you initially create your first Foundation Command Line
Tool, you find some generated code that you delete (highlighted in bold in
the following code):

#import <Foundation/Foundation.h>

int main (int argc, const char * argv([]) {
NSAutoreleasePool * pool = [[NSAutoreleasePool alloc]
init];

// insert code here...
NSLog (@"Hello, World!");
[pool drain];

return 0;

298 Partill: Walking the Object-Oriented Walk

This code created an autorelease pool that is a way to manage memory for
objects when it is not possible for the object creator to easily release them.
In this section, I explain why and when this autorelease pool is used.

As I just explained, the memory management rules require you to release
objects when you are done with them, and often that is pretty easy, as shown
in the following example:

NSString* englandText = [[NSString alloc]
initWithFormat:@"%@", @"England"];

Destination* england = [[Destination alloc]
initWithCountry:englandText andBudget:2000.00
withExchangeRate:1.50];

[englandText release];

In main, the string object is created and then used as an argument in the
Destination initWithCountry: :: method. Once control is returned to
main, you can safely release that object because as far as you are concerned,
you are done with it; and if Destination needs it, well, it’s Destination’s
responsibility to retain it. But what about those circumstances where the
creator never gets control back? For example, what if [were to create a new
method called returnCountry that created a copy of the country string
and returned it back to the invoker?

- (NSString*) returnCountry {

return [country copy];

}

[might want to do that if the receiver could possibly modify it. The problem
here is that control is never returned back to returnCountry, so return
Country never has a chance to release the copy it made.

To deal with the problem of control never being returned to a creator of an
object so the creator can release it, Cocoa has the concept of an autorelease
pool, and the statement

NSAutoreleasePool * pool =
[[NSAutoreleasePool alloc] init];

creates one of those pools to be used by main. The pool is nothing more
than a collection of objects that will be released sometime in the future.
When you send autorelease to an object, the object is added to an
NSAutoreleasePool. When that pool is “cleared” (which happens on a
regular basis), all the objects in the pool are sent a release message.

Chapter 13: Getting a Handle on Memory Management 299

As glamorous as it sounds, the autorelease pool is just an array, and know-
ing what you know, you could write and manage one yourself, but why bother?

So, I can now write a returnCountry method that manages memory cor-
rectly.

- (NSString*) returnCountry {

return [[country copy] autorelease];

}

Now, memory management works just right because the returnCountry
method creates a new string, autoreleases it, and returns it to the object that
requested it. If that object wants to continue to use the string, that object has
to send a retain message to the string, since the string gets a release mes-
sage in the future.

So when is that release message sent? If you're using an AppKit or UIKit appli-
cation, the release message is sent in the main event loop that you return

to after your program handles the current event, such as a mouse click or
touch. (For more on the main event loop, see iPhone Application Development
For Dummies.) With a Foundation Command Line Tool (which you’re using
now), the release message is sent when you destroy or drain the pool.

[pool drain];

That’s as far as I'm going with how the autorelease pool works — it’s beyond
the scope of this book. Besides, I assume that you are using Cocoa for your
application, which automatically takes care of managing the autorelease pool
for you — both creating the pool and releasing it periodically.

Using the autorelease pool

You want to avoid using the autorelease pool on the iPhone when possible.
The memory allocated for an autoreleased object remains allocated for some
period of time after you're done with it and can be an issue in more memory-
intensive applications. But autorelease could be used “behind your back”
at times.

For example, Objective-C has a concept called class methods. This method
belongs to the class object (as opposed to an instance object of the class),
and class methods used to create new instances are called factory or conve-
nience methods. The objects it creates are autoreleased. The ones you will
probably be most concerned with are in the NSString class (although you’ll

300 Partini: Walking the Object-Oriented Walk

\NG/
S

find many more, even in the NSMutableArray class you have been using),
such as the following:

stringWithContentsOfFile
stringWithContentsOfURL
stringWithCString
stringWithFormat:
stringWithString:

So, instead of using

NSString *newText = [NSString stringWithFormat:
@"Yo ", name];

you have been using

NSString *newText = [[NSString alloc] initWithFormat:
@"Yo ", name];

and doing the release yourself.

Notice these methods are of the form stringWith, as opposed to init...
this naming convention is a handy way to differentiate a class method that
uses autorelease from the init methods shown in the last chapter that used
alloc.

If you do need to continue to use an autoreleased object, just like with any
other object you receive, you need to send it a retain message. In doing
so, you become responsible for managing that object, and you must send a
release message at some point, as | explained in the memory rules.

In iPhone programming, Apple recommends that you avoid using autorelease
in your own code and that you also avoid class methods that return autore-
leased objects. As I said, the memory allocated for an autoreleased object
remains allocated for some period of time after you’re done with it and can
be an issue in more memory-intensive applications. This book does not cover
these class methods, although you can find many examples of them being
used.

These methods occur most commonly, as I said, when creating an object
using a class methos, which saves you the trouble of doing an alloc, an
init.., and then a release for the object. If you look in the documentation,
as illustrated in Figure 13-6, these are under the heading Class Methods. They
all have a + instead of a - before the return type, which designates them as a
class method.

Chapter 13: Getting a Handle on Memory Management 30 ’

In Figure 13-6, you can see the NSString Class reference. In the Table of
Contents I expanded the disclosure triangle next to Class Methods, and then
clicked the stringWithFormat: class method, the counterpart to the
initWithFormat: instance method that you've been using. You can see the
+ in front of the method declaration.

ann < NSSrring Class Reforence —
[al=fila@=) (o] Q, NSString
Back(Farward Home Bookmarks Seatch
(EIED Prefiv Fwaer | AN DocSets » | All Languages -
El crsuingConvenEncodingTalsString... [om i of Contents Jump Ta, a Previeus | Next s
B cFiringts) 0 -
Wl crstringonventNsstringincodingTo. | = Overview | " "
o ; stringWithFormat:
[cFsuringConvenNEStringEncoding T Adopred Protacals |
[8 pRCOTexmssiringEncodingkey » Tasks ‘| Returns a string created by using a given format string as a template into
I 10HustoathasStringF romileviceAddress * Class Methods which the remaining arqument values are substiruted.
o D del gEncodings | + Cid)stringNithFormat:(NSString *)format, ... m
o NS defaultCstringEncoding
g :::,M lacalizedNanseOfStringEncading Paramecers
- IncalizedStringWithFarmar g
: bt - l A formar string. See Formarting String Objects for examples of how to use
¥ Title PUBWHhCOmpCRents | this methad, and String Formar Specifiers for a list of formar speeifiers
bt
NS5t Agpication Kit AGCILORE Re. string | This value must not be nil,
it CIncs Ras StringWithCharaetersiiength:
ring Class Reference
SringWithContantsOftiletenco... | Important: Raises an H5InvolidhrgumentException if formar is nil,

NSSiring Class Reference

stringWithtantentsOfFileused
NeSString UIKIt Additions Reference
stringWithCantentsOfURLenen
stringWithComenrsOfURLused [} A comma-separated list of arguments to substitule inta farmar
Webik Changes sringWith String:encading l
NSString Additians Class Reference

Mac OF X Manual Page For ghuCheckE...

Return Value
A string created by using formal as a template into which the remaining

siringWithSiring: l argument values are substituted according o the canonical locale,
®11CaICarbonAndCocos - [Cosual . stringWithUTFAString |

stringWithFormar:

| Discussion
This methed is similar (o localizedStringiithFaraat:, but using the
Canstants | wanonical locale to formal numbers. This is uselul, for example, if you want to

ColertyneDeviees-Cocoa - Uik h
» Instance Methods
Using Core Foundation with Garbage ...

ColorMatching - /ColarSynclitils.m At A Daprecated | produce “non-localized” formatting which needs to be written out to files and
I ColaréyneDevices-Coena - fLirls.m MSString Methods | parsed back later.
F_ Code Naming Basics Revislon History Availabiliy
igure 13-6: 108 IetothUtiies.h index L) Available in Mac 05 X v10.0 and later.
Class SimpleCocoaMovieQT - /QTUls.c
SimpleCacoaMavie = JQTUES.« COMPANION GLIDES a
methods. é"ll?,'j Programming Guide for . v
. alr
I | - Mac U0 X Snow Lecpard Core Libvary » Cotod » Data Management « N3Sinng Class Reference e

Notice that for class methods like these, instead of having their names start
with init (for example, initWithFormat: for an NSString), they start
with a reference to the class name (stringWithFormat:, for example).

Garbage Collection — Taking
the Easy Way Out

Objective-C 2.0 introduces automatic memory management, also called gar-
bage collection. It’s quite common in other object-oriented languages. You
just create the objects you need, and then when no one is using them any
longer, the system automatically deallocates them.

302 Partiii: Walking the Object-Oriented Walk

Figure 13-7:
Selecting
Garbage
Collection.
|

1.

N

In the Xcode Project window, select the project — Vacation (the first
line in the Groups & Files pane) — and click the blue info button on
the toolbar.

You can also select Vacation and then right-click =>Get Info, or filec>Get
Info, or you can even press 8 +I.

A window with project information appears.

In the Project “Vacation” Info window that opens, click the Build tab
and scroll down to GCC 4.2 - Code Generation (see Figure 13-7).

Using the pop-up menu next to Objective-C Garbage Collection, select
Supported or Required (see Figure 13-7). (Currently Unsupported is
checked.)

Supported gives you code that supports both garbage collection and
your own memory management. You want to do that if you need to run,
for example, on both the iPhone and Mac, or if you want to support ear-
lier versions of the Mac OS.

Configuration:

Setrin

Use 64-bir Integer Marh
CCC 4.2 - Lang

‘char’ Type Is Unsigned

Project “Vacation” Info

General Build Configurations G

Active (Debug) ¥ Qr

Show: | All Settings

g
1=
H

]

Accelerated Objective- C Dispatch
Aulu-veclorization

Call C++ Default Crors/[tors in Ohjective-(
Enable S5E3 Extensions

Enable S5E4.1 Extensiuny

Enable S5E4.2 Extensions

Enable Supplemental 55E3 Instructions
Enforce Swrict Aliasing
Feadback-Directed Dptimization
Fix & Continue

Generate Debug Symbols

Cenerate Position-Dependent Code
Generate Test Coverage Files

Inline Methods Hidden

Instructien Scheduling

Instrument Program Flow

Kernel Development Mode

Level of Debug Symbals

Make Srings Read-Only

Nn Camman Rlocks

Objective - C Garbage Collection
Optimization Level

Helax [kt Compliance

Separate PCH Symbols

Statics are Thread-Sale

Symbols Hidden by Default

Unroll Loops

B0 0000000&

werPC C4 [-mt.

OO F 0000

efault [default, .

. |
+ Unsupported

Supported [-fobjc-gc]
Required [-fobjc-gc-only]
T

=

‘Bl@ |I§,[j

Allow “asm’, “Inling’, ‘typeof’

C Language Dialect

Check Return Value of 'operator new'
Codewarrinr-Sryle Inling Assembly

[a]

90 [-std=c00]

&

Based On

WMBER
@?«
&

<MBER
é"\&

Chapter 13: Getting a Handle on Memory Management 303

The garbage collector periodically looks at your variables and objects and
follows the pointers between them. If it finds an object that has no pointers
pointing to it, the object is collected. So, it’s important to set the pointer to
nil when you no longer need an object.

You can’t use garbage collection if you're writing iPhone software.

Reference counting is a pretty simple concept. When you create the object, it is
given a reference count of 1. As other objects use this object, they use meth-
ods to increase the reference count and decrease it when they are done. When
the reference count reaches 0, the object is no longer needed, and the memory
is deallocated.

Some Basic Memory Management
Rules You Shouldn’t Forget

Although [have spent a number of pages (but who’s counting) on memory
management, it really comes down to one simple rule:

If you do anything to increase the retain count of an object, it is your
responsibility to decrease the retain account by the same amount when
you're no longer going to send messages to that object.

That’s it. Of course, the goodness lies in knowing both when you’ve increased
the retain count and when you need to decrease it.

»* You automatically increase the retain count whenever you create an
object using alloc or new or any method that contains copy.

v Assume that any object you receive whose creation you didn’t person-
ally witness dies as soon as you turn your back. It may have been passed
as an argument, for example, or perhaps you’re using one of those class
convenience methods I spoke of earlier — you know, the ones you really
shouldn’t use on the iPhone.

v As you see in Chapter 14, when I explain declared properties, assigning
an instance variable with a property attribute of retain is the moral
equivalent of sending the object the retain message yourself.

You should decrease the retain count by sending an object a release
message when you no longer need to send the object any messages. This
is always true when you are being deallocated. So override the dealloc
method to release all objects you haven’t previously released and to which
you've sent a retain message.

304 Partiii: Walking the Object-Oriented Walk

A\

At the end of the day, the number of alloc, new, copy, and retain messages
should equal (not be close to, equal) the number of release messages.

Do not make yourself crazy wondering about what is going on outside your
little world. If you follow the rules in every object, things work out correctly.
This is one of the few times when everyone acting in their best interest always
works in the best interest of the whole.

Part IV

Moving from
Language to
Application

The 5th Wave By Rich Tennant
CRETENNANT

““You can sure do a lot with an iPhone, but
T never thought dressing one up in G.I. Joe
clothes and calling it your little desk

commander would be one of them.”

In this part . . .

n this part, you begin to add more functionality to your
program. [show you how to work with data as well as
more advanced ways to extend your program.

Once you get all the application functionality up and run-
ning, you will probably be eager to make it available to the
user. In this part, you fit your application into the user
interface frameworks on the Mac and the iPhone that
make developing applications for them so easy (well,
okay, relatively easy). What will be really exciting (for me
at least) is when you experience how easy it is to take the
application you develop and just slide it into a user inter-
face. Of course, you have to create the user interface, and
I'll give you a crash course in Interface Builder, a tool that
comes with Xcode. Once you do that, just add a few lines
of code, and presto change-o, you're running iPhone and
then Mac applications (the same application code, I might
add, with some minor user interface differences).

The technical term for this accomplished feat is “way cool.”

Chapter 14
Getting Data from Other Objects

In This Chapter

Getting the data an object needs for another object

Understanding how declared properties work

Getting how the compiler synthesizes accessors

Recognizing the impact of declared properties to your program
Using accessors

Knowing the best way to use declared properties and accessors

n Chapter 11, you factor your code to create a Destination object that

manages the other objects you needed in your model. You see how the
Destination object can use other objects by sending them messages. While
most of those messages are to get an object to do something (spendDollars:,
for example), as you see when you implement returnBalance in Budget
and leftToSpend in Destination, some of these messages are about data.

That data returned by those methods is stored as instance variables, but as
you know, one object can’t and shouldn’t access another object’s instance vari-
ables directly (hence, the need for those two methods). In this chapter, I will
show you another way to get data from an object — declared properties — and
I'll also tell you about some things you need to handle with care.

Getting Data from Objects

As I refine the Vacation application, I need to start thinking more about the
practical aspects of using this application, especially as I march down the
road toward putting on a user interface.

One thing that strikes me is that this whole exchange rate thing is not very
robust. After all, the exchange rate changes often during the day, so I do
need a way to update it. Right now at least, Budget owns the exchange rate,
but there is no way to communicate with the Budget, other than through

308 Part IV: Moving from Language to Application

a Destination. So, before deciding how [want to update the exchange
rate, I really need to consider which object should own the exchange rate.
Currently, both Budget and Destination have instance variables storing it.

Peering into my crystal ball, | see in the future an exchange rate object that
will be able to get exchange rates in real time. When this happens, you’ll
create an exchange rate object that will be used by the Destination object.
To prepare for the eventuality, it makes sense for the Destination object
to own the exchange rate now. Then when you implement an exchange

rate object, you will have to make only a few changes to the Destination
object’s code, and none to the other objects that need to know the exchange
rate. They'll still use Destination to get it, and Destination will simply
turn around and ask the exchange rate object to do its bidding (no pun
intended). It makes sense then for Destination to own the exchange rate
for now, keeping the exchange rate a Destination instance variable and
creating a method that can be invoked from main to update the exchange
rate (and later by a controller).

Having its exchange rate instance variable taken away creates a problem
for Budget. How will Budget get the exchange rate it needs to compute the
budget impact of a credit card transaction?

By now, you know of course that Budget can’t, and shouldn’t be able to, access
the exchangeRate instance variable in Destination. In object-oriented
programming, a class’s instance variables are safely protected behind the
object’s walls and can’t be accessed directly. The only way to access them

is by creating accessor methods, which allow the specific instance variable of
an object to be read and (if you want) updated. But even if you were tempted
to access them directly, the compiler wouldn’t let you because, as I discuss
in Chapter 6, its scope is defined as @protected (the default) in the class. |
dare you — go try it on your own.

[also want access to the country name of a Destination. When I delete

a destination, as I did earlier in this chapter, [will give users a chance to
change their minds — [want to be able to display, “Are you sure you want to
delete country from your trip?” For now, however, I'll just display that the des-
tination country was deleted.

Well, I could write methods to return the exchange rate and the country name
as [have been doing with returnBalance in Budget and leftToSpend, or

[could use a feature of Objective-C 2.0 called declared properties. When you

use declared properties, the compiler can synthesize the accessor methods
for you.

Chapter 14: Getting Data from Other Objects 309

Working with Declared Properties

As you’ll soon discover, you will use declared properties a lot (most people
just call them properties). If you need to have an instance variable accessible
by other objects in your program, you’ll need to create accessor methods for
that particular instance variable.

Accessor methods effectively get (using a getter method) and set (using a
setter method) the values for an instance variable. For many years, program-
mers had to code these methods themselves or buy add-on tools that would
do it for them (usually advertised late at night on the Programmers Channel).
The nice folks in charge of Objective-C came to our collective rescue when
they released Objective-C 2.0 with its declared properties feature. Now the
compiler can write access methods for you, according to the direction you
give it in the property declaration. Kind of like getting the smartest kid in your
class to do your homework while you hang out with your friends at the malt
shoppe.

Objective-C creates the getter and setter methods for you by using a @prop-
erty declaration in the interface file, combined with the @synthesize decla-
ration in the implementation file. The default names for the getter and setter
methods associated with a property are whateverThePropertyNameIs for
the getter (yes, the default getter method name is the same as the property’s
name) and setWhateverThePropertyNameIs: for the setter. (You replace
what is in italics with the actual property name or identifier.) For example,
the accessors that would be generated for the exchangeRate instance vari-
able are exchangeRate as the getter and setExchangeRate: as the setter.

Adding properties

If you have been following along with me, I'll be extending what you do in
Chapter 13. If you would like to start from a clean copy of the project from
where you left off, you can use the project found in the Chapter 14 Start Here
folder, which is in the Chapter 14 folder.

Follow these steps to declare some properties for the Destination class,
and then I'll explain them in more detail.

1. Add the code in bold in Listing 14-1 Destination.h.

3 ’ 0 Part IV: Moving from Language to Application

Listing 14-1: Adding properties to the Destination class

#import <Cocoa/Cocoa.h>
@class Budget;

@interface Destination : NSObject ({

NSString* country;

double exchangeRate;
NSMutableArray *transactions;
Budget* theBudget;

- (id)

- (void)
- (void)

initWithCountry: (NSString*) theCountry

andBudget: (double) budgetAmount

withExchangeRate: (double) theExchangeRate;
spendCash: (double) aTransaction;
chargeCreditCard: (double) aTransaction;

- (double) leftToSpend;

@property (nonatomic, retain) NSString* country;
@property (readwrite) double exchangeRate;

@end

That is what you just did — coded the corresponding @property decla-
rations for country and exchangeRate. These specify how the acces-
sor methods are to behave. | explain exactly what that means in the next

section. For now, just know that you need to add them.

But while the @property statement tells the compiler that there are
accessor methods, they still have to be created. In the good old days,
you had to code these accessors methods yourself, which in a large pro-
gram was very tedious. Fortunately, Objective-C will create these acces-
sor methods whenever you include an @synthesize statement for a
property.

2. Add the line of code in bold in Listing 14-2 to the Destination.m file
after @implementation Destination and before anything else.

Listing 14-2: Adding synthesize to Destination.m

#import
#import
#import
#import
#import

"Destination.h"
"CashTransaction.h"
"CreditCardTransaction.h"
"Budget.h"
"Transaction.h"

Chapter 14: Getting Data from Other Objects

@implementation Destination

@synthesize exchangeRate, country;

What you just did by adding the @synthesize statement was direct the
compiler to create two accessor methods — one for each @property
declaration.

Implementing declared properties

At the end of the day, you need to do three things in your code in order for
the compiler to create accessors:
1. Declare an instance variable in the interface file.

2. Add a @property declaration of that instance variable in the same
interface file.

3. Add a @synthesize statement in the implementation file so that
Objective-C generates the accessors for you.

Step 1 is straightforward, but Steps 2 and 3 take some explanation.
The declaration specifies the name and type of the property and some attri-

butes that provide the compiler with information about exactly how you want
the accessor methods to be implemented.

For example, the declaration

@property (readwrite) double exchangeRate;
declares a property named exchangeRate, which is a double. The property
attribute (readwrite) tells the compiler that this property can be both
read and updated outside the object.
You also could have specified readonly, in which case, only a getter method
is required in the @implementation. If you use @synthesize in the imple-
mentation block, only the getter method is synthesized. Moreover, if you
attempt to assign a value using the accessor (I explain how to do that later for
variables you can update), you get a compiler error.

Now take a look at the following declaration:

@property (nonatomic, retain) NSString* country;

311

3 ’ 2 Part IV: Moving from Language to Application

It declares a property named country, which is a pointer to a NSString
object. Enclosed in parentheses are two attributes: nonatomic and retain.

nonatomic addresses an important technical consideration for multi-
threaded systems, which is beyond the scope of this book. nonatomic works
fine for applications like this one.

retain directs the compiler to create an access method that sends a retain
message to any object that is assigned to this property. I mention in Chapter
13 that properties can have some memory management implications.

And, oh yes, nonatomic and retain apply only to pointers to objects.

The @property declaration (like the two you placed in the interface file in
the previous section) only informs the compiler that there are accessors. As |
said, it is the @synthesize statement that tells the compiler to create them
for you. Using @synthesize results in four new methods.

exchangeRate
setexchangeRate:
country
setcountry:

If I didn’t use @synthesize and I declared the properties, it would be up

to me to implement the methods myself, according to the attributes in the
@property statement. So, if | were to write my own accessors, I would be
responsible for sending a retain message to the exchangeRate when it is
assigned to the instance variables. You may have to do that under certain cir-
cumstances, which I'll discuss later in the section “Properly Using Properties.”

Accessing the instance variables
from within the class

Once you have declared the properties, you can access them from other
objects or from main. But before I show you that, I want to show you about
accessing them within the class.

If you want to take advantage of the retain message being sent automati-
cally upon assignment, you’ll have to access the instance variable through
the accessor, even within the object walls.

Chapter 14: Getting Data from Other Objects

[self setCountry:theCountry];

You also can use the dot notation (which refugees from other object-oriented
languages will recognize).

self.country = theCountry;
When you use the setter accessor with a class to assign an object pointer,
you don’t need to send the object a retain message, like the one you had to
send to the country object in the Destination’s initWithCountry: ::

method, since the setter accessor does the retain for you.

[country retain];

Releasing the object assigned
to a property

As I said in the previous section, using an accessor will automatically send a
retain message. But you still have to release it when you are done.

Normally you send an object a release message:
[country release];
But if you use an accessor, you have a new option:
self.country = nil;
That’s because when you assign a new value to a property, the accessor
sends a release message to the previous object. As you can see, accessors

are good citizens here.

In your dealloc method, however, you should continue to send the object a
release message as you have been doing.

Now, I'd like you to update Destination.m to use properties by deleting the
code with a strikethrough in Listing 14-3 and adding the code in bold. (You've
already added the @synthesize statement, but [kept it in bold.)

313

3 ’ 4 Part IV: Moving from Language to Application

Listing 14-3: Using accessors within the Destination class

#import "Destination.h"

#import "CashTransaction.h"
#import "CreditCardTransaction.h"
#import "Budget.h"

#import "Transaction.h"

@implementation Destination
@synthesize exchangeRate, country;

- (id) initWithCountry: (NSString*) theCountry andBudget:
(double) budgetAmount withExchangeRate:
(double) theExchangeRate(
if (self = [super init]) {
transactions = [[NSMutableArray alloc]
initWithCapacity:10];

theBudget = [[Budget alloc]
initWithAmount :budgetAmount forDestination:self];
:::}IE[TIg Ei:E{ts - tiI?‘E:::}Iarrgeitatel
self.exchangeRate = theExchangeRate;

L/UulltL_y - tthuuutL_y 7
[self setCountry: theCountry];
[\,uuutJ__y J.ctCLJl_ll] 7

NSLog (@"I'm off to %@", theCountry):;

}

return self;

- (void) spendCash: (double)amount {

Transaction *aTransaction = [[CashTransaction alloc]
initWithAmount: amount forBudget: theBudget];

[transactions addObject:aTransaction] ;

[aTransaction spend];

[aTransaction release];

- (void) chargeCreditCard: (double) amount {

Transaction *aTransaction = [[CreditCardTransaction
alloc] initwWithAmount: amount forBudget:
theBudget] ;

Chapter 14: Getting Data from Other Objects 3 ’5

[transactions addObject:aTransaction] ;
[aTransaction spend];
[aTransaction release];

- (double) leftToSpend {

return [theBudget returnBalance];

- (void) dealloc {

[transactions release];
[theBudget release];
[country release];
[super dealloc];

}

@end

You did the following to Destination:

1. You changed the Budget init method, which is explained in the next
section, “Using Accessors to Get Data from Objects.”

You had to change the Budget init method in order to pass in a refer-
ence to the Destination object. Budget will need that to send a mes-
sage in order to get the exchangeRate.

2. You used an accessor to assign the theExchangeRate argument in the
initWithAmount: : method to the exchangeRate instance variable
using the dot notation.

self.exchangeRate = theExchangeRate;
3. You used an accessor to assign the theCountry argument in the initwith

Amount : method to the country instance variable using an Objective-C
message.

[self setCountry:theCountry];

4. You deleted the retain message you had sent the country because
the assigning to the country property does that for you.

3 ’ 6 Part IV: Moving from Language to Application

Using Accessors to Get Data
from Objects

Now that you have created these accessors, you can use them. You will
have to make some changes to Budget.m and Budget.h. These are shown in
Listings 14-4 and 14-5.

1. Start by deleting the code with a strikethrough in Listing 14-4 and
adding the code in bold to Budget.m.

Listing 14-4: Budget.m

#import "Budget.h"
#import "Destination.h"

@implementation Budget

i e : Joubl :
withExchangeRate—({doublte)r—anExchangeRate—{

. L 1 £ L . L Y d
IT (Serfr = [Super Imrtl) 1
:[Etg E : - EIE Etc_kQEtl
. =
LTCTLULIT STL L,

(id) initwithAmount: (double) aBudget forDestination:
(Destination*) aDestination {
if (self = [super init]) {
destination = aDestination;
[destination retain];
budget = aBudget;
}

return self;

- (void) spendDollars: (double) dollars {

budget -= dollars;

(void) chargeForeignCurrency: (double) foreignCurrency {

Chapter 14: Getting Data from Other Objects 3 ’ 7

transaction = foreignCurrency*
[destination exchangeRate];
budget -= transaction;

- (double) returnBalance {
return budget;

- (void) dealloc {
[destination release];
[super dealloc];

}

@end

You added the #import "Destination.h" to make the compiler
happy when it sees a message to the Destination object. You also did
the following:

1. Modified the init method to add a pointer to the Destination
object as an argument and removed the anExchangeRate argu-
ment. You also stored the pointer to the Destination object in a
new instance variable destination — which you also added. You
had to send it a retain message because you have not declared it
as property, nor is there any need to.

2. You changed chargeForeignCurrency: to use the getter
accessor exchangeRate to get the exchange rate from the
Destination object.

What you also may have noticed is that you left the returnBalance,
which you coded earlier, instead of replacing it with an accessor. Why
didn’t [have you make that a property as well?

[have (as you might expect) some definite opinions, and really mixed
feelings about properties, which I explain in section “Properly Using
Properties,” later in this chapter. For now though, you’ll finish the
changes to Budget.h.

2. Delete the code with a strikethrough in Listing 14-5 and add the code
in bold to Budget.h.

3 ’ 8 Part IV: Moving from Language to Application

Listing 14-5: Budget.h

#import <Cocoa/Cocoa.h>
@class Destination;

@interface Budget : NSObject {

float exchangeRate;
double budget;
double transaction;

Destination* destination;

f{doubte—anExchangeRate—
- (id) initwithAmount: (double) aBudget
forDestination: (Destination*) aDestination;

- (void) spendDollars: (double) dollars ;

- (void) chargeForeignCurrency: (double) euros;
- (double) returnBalance;

@end

There are no surprises here. You added the @class statement to make
the compiler happy, added the new instance variable, destination,
and made the changes to the init method declaration that you did in
the implementation.

Now, look at Listing 14-6, which shows the changes to Vacation.m that
allow you to change the exchange rate as needed.

3. Delete the code with a strikethrough in Listing 14-6 and add the code
in bold to main (in the file Vacation.m).

Listing 14-6: Modifying main in Vacation.m

#import <Foundation/Foundation.h>
#import "Destination.h"

int main (int argc, const char * argv([]) {
NSAutoreleasePool * pool = [[NSAutoreleasePool alloc]
init];
NSString* europeText = [[NSString alloc]
initWithFormat:@"%@", @"Europe"];
Destination* europe = [[Destination alloc]

initWithCountry:europeText andBudget:1000.00
withExchangeRate:1.25];
[europeText release];

Chapter 14: Getting Data from Other Objects 3 ’ 9

NSString* englandText = [[NSString alloc]
initWithFormat:@"%@", @"England"];
Destination* england = [[Destination alloc]
initWithCountry:englandText andBudget:2000.00
withExchangeRate:1.50];
[englandText release];

for (int n = 1; n < 2; n++) {
double transaction = n*100.00;
NSLog (@"Sending a %.2f cash transaction",
transaction) ;
[europe spendCash:transaction];

NSLog (@"Remaining budget %.2f", [europe leftToSpend]) ;
NSLog (@"Sending a %.2f cash transaction",
transaction) ;

[england spendCash:transaction] ;
NSLog (@"Remaining budget %.2f",
[england leftToSpend]) ;
}

[europe setExchangeRate:1.30];
[england setExchangeRate:1.40];

int n = 1;
while (n < 4) {
double transaction = n*100.00;
NSLog (@"Sending a %.2f credit card transaction",

transaction) ;

[europe chargeCreditCard:transaction];

NSLog (@"Remaining budget %.2f", [europe leftToSpend]) ;

NSLog (@"Sending a %.2f credit card transaction",
transaction) ;

[england chargeCreditCard:transaction];

NSLog (@"Remaining budget %.2f", [england
leftToSpend]) ;

n++;

}

NSString *returnedCountry = [england country];

NSLog (@"You have deleted the %@ part of your
trip", returnedCountry) ;

[returnedCountry release];

[england release];

[pool drain];
return 0;

320 Part IV: Moving from Language to Application

<WNECD

$
O

All you did in main was add the autorelease pool allocation and
drain back, as I explained in the last chapter. You also added state-
ments using the Destination object’s setExchangeRate: and coun-
try accessors to update the exchange rate and access the country name
and display it to the user before deleting a destination.

You also added sending a setExchange: rate message to both the
europe and england objects, which updates the exchange rate for
each, replacing the value for exchangeRate that you originally initial-
ized them with.

Being a good citizen, you also released the string returnedCountry.

Notice how easy all this is.

. Select Build and Run button in the Project Window toolbar to build

and run the application.

You should see the following in the Debugger Console:

I'm off to Europe

I'm off to England
cash transaction

Sending a
Remaining
Sending a
Remaining
Sending a
Remaining
Sending a
Remaining
Sending a
Remaining
Sending a
Remaining
Sending a
Remaining
Sending a
Remaining

You have deleted

You can find the completed project on the CD in the Example 14 folder, which

100.00
budget
100.00
budget
100.00
budget
100.00
budget
200.00
budget
200.00
budget
300.00
budget
300.00
budget

900.00

cash transaction

1900.00
credit card
770.00
credit card
1760.00
credit card
510.00
credit card
1480.00
credit card
120.00
credit card
1060.00
the England

is in the Chapter 14 folder.

transaction

transaction

transaction

transaction

transaction

transaction

part of your trip

Properly Using Properties

What you just did with the exchange rate and country data in the
Destination object may seem, well, a bit pointless to you. If the point of
object-oriented programming is to encapsulate data, what difference does it

Chapter 14: Getting Data from Other Objects 32 ’

really make if you allow direct data access or if you force the user of the data
to send a message and the supplier to code the @property and @synthesize
statements? It really seems like gratuitous code, and that this whole data
encapsulation thing is a sham.

For example, what happens when I change how I get the exchange rate from
being set by the user, and store it in a Destination instance variable, to
access it from another object — my plan as I mentioned in the beginning of
this chapter? It would seem that would break the clients of Destination
that use the exchangeRate property.

[actually agree with that criticism of properties to an extent, although as you
will see, there are ways to deal with this issue.

Putting on my methodologist hat for a second (well, only a few seconds, |
promise), let me explain this issue.

First, look at when accessing the object’s data through accessors is really the
way to do things:

v Customizing user interface objects. In a framework, the user interface
object, a window or view, for example, really needs to have certain
parameters set to make it function in the way the user needs. Instead of
forcing the user to subclass it, properties allow it to be tailored to a par-
ticular user’s (the developer’s) needs. In this case, properties are being
used to set parameters, like color, rather than to implement a class’s
responsibility to accept data.

1 Accessing instance variables. Again, in a framework, the same argu-
ment applies to accessing the instance variables. The instance variables
should become properties when they hold information about the state
of the object — is the window opened or closed, where did the user just
drag this object to on the screen, and so on.

It’s my opinion, however, that except for those and similar circumstances in
your own classes, you are much better off from an enhanceability perspective
to avoid using properties to implement an object’s responsibility to accept
data from and supply data to other objects. You should define methods that
accept or supply data and not use property that implies structural informa-
tion about the data.

That being said, some features about properties also allow you to do some
interesting things to mitigate the impact if you later decide to change an
instance variable you have made available as a property. For example:

322 Part IV: Moving from Language to Application

+ In order to deal with changes, you can implement the accessor
(instead of having it generated by the complier) to access the prop-
erty. For example, if you moved the exchange rate to an exchange rate
object, you could implement your own exchangeRate method cur-
rently synthesized by the compiler (it will only synthesize those meth-
ods if you have not implemented them in your implementation file). The
method you implemented would send a message to the new exchange
rate object to get, and then return back, the exchange rate (you prob-
ably wouldn’t need a setter in this case). If you do that though, you will
have to be sure to implement the accessor in a way that is consistent
with the property’s attributes. Creating your own accessors for proper-
ties is another topic that is beyond the scope of this book.

1 The accessor does not have to be named the same as the instance vari-
able. If you want to hide the name of the instance variable, you can use

@property (readwrite, getter=returnTheExchangeRate)
double exchangeRate;
+* The property name must have the same name as an instance variable.
For example

@property (readwrite) double er;

@synthesize country, er = exchangeRate;

directs the complier to synthesize getEr and setEr: to get and set the
instance variable exchangeRate. If you try this for yourself, you’ll find
that

[europe setEr:1.30];
[england setEr:1.40];

works just as well as setExchangeRate: does.

Chapter 15
Show Me the Data

In This Chapter

Creating and using property lists

How dictionaries work

Updating dictionaries and plists

Having a property list object (array) write itself to a file

n Chapter 1, I explain that a computer program is a set of instructions that

perform operations on data. While this is what you have been steadily doing
since Chapter 1 — coding statements that operate on data — all of the data you
have been working with so far has been “hard coded” into the program.

Once you put on the user interface, of course, that will change. The user will
be entering transactions, and you will be processing them, and probably stor-
ing both the transactions and the results as well. For example, you’ll want to
save all the credit card transactions to reconcile them against your statement
when you get home, and you definitely want the ability to store what’s left of
your budget after a series of transactions so that every time you restart the
program, you don’t start with your original budget (well, it would be nice if
you could do that, but I guess that’s not realistic).

In this chapter, I will show you how to store what’s left of your budget after
a series of transactions to a file, and then read that file when the application
starts up again. This will illustrate some of the ways you can save data. But
before I show you that, [want to make you aware of another kind of data you
need for your program, application-based data.

324 Part IV: Moving from Language to Application

Understanding Application-Based Data

|
Figure 15-1:
AppData

property list.
|

As I'look at my program, I think it would be nice to be able to display the
euro symbol (€) when I display a euro-based credit card transaction and the
pound symbol (§) when I display a pound-based one.

While I could “hard code” those symbols in my program, doing so doesn’t
give me much flexibility. Either I have to build some kind of array into my pro-
gram for the currency symbols of the places I might go (and “waste” the CPU
cycles and memory to build it every time I run the program), or I can store all
of the currency symbols in a file, and based on the country I am processing
transactions for, look up the currency symbols in that file.

When that kind of data is in a file, | won’t have to rebuild my program every
time [add or change a country, currency, or currency symbol — all [will have
to do is change the file, which as you’ll see, is pretty easy.

Fortunately, Cocoa supports an easy-to-use mechanism called a property list
to manage this kind of data. The next section covers property lists.

Defining property lists

Property lists are used extensively by applications and other system software
on Mac OS X and iPhone OS. For example, the Mac OS X Finder stores file and
directory attributes in a property list, and the iPhone OS uses them for user
defaults. You also get a property list editor with Xcode, which makes prop-
erty list files (or plists as they are referred to) easy to create and maintain in
your own programs.

Figure 15-1 shows the property list I'll show you how to build, one that will
enable you to add the euro and pound symbols to your application.

Xala) AppDataplist - Vacation

| 10.6 | Debug | 1386 =] || | - | ﬁ\ - a.
" Activn Breakpoints Build and Run Tatks Info Search

 File Name : @A Code © 4 @
B | AppDara plist

= B AppData.plist ¢ "% iCui®y -

Eurupe String
England String

Chapter 15: Show Me the Data 325

Once you know how to work with property lists, it’s actually easy, but like
most things, getting there is half the fun.

Working with property lists

Property lists are perfect for storing small amounts of data that consist pri-
marily of strings and numbers. What adds to their appeal is the ability to
easily read them into your programs, use or even modify the data, and then
write them back out again. That’s because Cocoa provides a small set of
objects that have that behavior built in.

The technical term for these objects is serializable. A serializable object can
convert itself into a stream of bytes so that it can be stored in a file and can
then reconstitute itself into the object it once was when it is read back in —
yes “beam me up, Scotty” does exist, at least on your computer.

These objects, called property list objects, that you have to work with are as
follows:

»* NSData and NSMutableData

V¥ NSDate

¥ NSNumber

V¥ NSString and NSMutableString

V¥ NSArray and NSMutableArray

V¥ NSDictionary and NSMutableDictionary

As you can see in the plist in Figure 15-1, the root is a dictionary and the
Europe and England currency symbols are strings.

You’'ll notice a division in the preceding list. That is because there are two
kinds of property list objects.

v~ Primitives: The term primitives is not a reflection on how civilized these
property objects are, but it is a word used to describe the simplest kind
of object. They are what they are.

1+~ Containers: Containers can hold primitives as well as other containers.

One thing that differentiates property list object containers (NSArray,
NSDictionary), besides their ability to hold other objects, is that they both
have methods called writeToFile: :, which write the property list to a file,
and a corresponding initWithContentsOfFile:, which initializes the

326 Part IV: Moving from Language to Application

object with the content of a file. So, if [create an array or dictionary and fill
it chock full of objects of the property list type, all | have to do to save it to a
file is tell it to go save itself or create an array or dictionary and then tell it to
initialize itself from a file.

You have already worked with arrays, and I'll introduce you to dictionaries in
the next section. The containers can contain other containers as well as the
primitive types. Thus, you might have an array of dictionaries, and each dic-
tionary might contain other arrays and dictionaries, as well as the primitive

types.

But before I tell you any more about property lists, let me explain one of the
more important property list objects — the dictionary.

You haven’t seen NSDate yet, and I won’t be using it in the book, but for
your information, it is a Cocoa class for date and time handling. NSData and
NSMutableData are wrappers (an object that is there mostly to turn some-
thing into an object) in which you can dump any kind of data and then have
that data act as an object. They are used extensively to store and manipulate
blocks of data. (I won’t be getting into them in this book, although I use them
a lot in iPhone Application Development For Dummies.)

Using Dictionaries

Dictionaries are like the city cousins of arrays. They both pretty much do the
same things, but dictionaries add a new level of sophistication.

[love dictionaries, now. But | have to admit that when [started program-
ming with Objective-C and Cocoa, trying to get my head around the idea of
dictionaries was a real challenge — not because dictionaries are hard, they
really aren’t. The “problem” was because of what you can do with them.
Not only will you use them to hold property list objects, but also you'll use
them to hold application objects — just as you did with the array that holds
Transaction objects.

So, now, I'll take you go through them slowly and with lots of illustrations.

Understanding a dictionary’s
keys and values

As I said, in many ways, dictionaries are like the arrays you used earlier —
they are a container for other objects. Dictionaries are made up of pairs of
keys and values. A key-value pair within a dictionary is called an entry. Both
the key and the value must be objects, so each entry consists of one object

Chapter 15: Show Me the Data 32 7

that is the key (usually an NSString) and a second object that is that key’s
value (which can be anything, but in a property list must be a property list
object). Within a dictionary, the keys are unique.

You use a key to look up the corresponding value. This works like your real-
world dictionary, where the word is the key, and its definition is the value.
(Do you suppose that’s why they are called dictionaries?)

So, for example, if you have an NSDictionary that stores the currency
symbol for each currency, you can ask that dictionary for the currency
symbol (value) for the euro (key).

Although you can use any kind of object as a key in an NSDictionary, keys
in property list dictionaries have to be strings, and I'll stick to that here. You
can also have any kind of object for a value, but again if you are using them in
a property list, they all have to be property list objects as well.

The same rules hold for arrays. Now you are using one to hold Transaction
objects, but if you want to write and read an array as a plist file (and you
will), they can hold only property list objects.

NSDictionary has a couple of basic methods you will be using:
v count — The count method gives you the number of entries in the
dictionary.
V¥ objectForKey: — The objectForKey: method gives the value for a

given key.

In addition, the methods writeToFile:atomically: and initWithCon-
tentsOfFile: cause a dictionary to write a representation of itself to a file
and to read itself in from a file, respectively.

If an array or dictionary contains objects that are not property list objects,
you can’t save and then restore them using the built-in methods for doing so.

Just as with an array, a dictionary can be static (NSDictionary) or mutable
(NSMutableDictionary). NSMutableDictionary adds a couple of addi-

tional basic methods — setObjectForKey: and removeObjectForKey:,
which enable you to add and remove entries, respectively.

Creating a dictionary

Enough talk; it’s time to code.

To create a dictionary in my program that will enable me to look up the cur-
rency symbol for a given country, I must add the following lines of code:

328

Part IV: Moving from Language to Application

NSDictionary *appDictionary = [[NSDictionary alloc]
initWithObjectsAndKeys:
@"€", @"Europe", @"£", @"England", nill;

This creates a dictionary for me with two keys, Europe and England. (To
get the currency symbols as I did, in Xcode select Edit>Special Characters or
press 88+option+T.)

initwWithObjectsAndKeys: takes an alternating sequence of objects and
keys, terminated by a nil value (as you can probably guess, just as with an
MBER array, you can’t store anil value in an NSDictionary).
X\
Y
< [want to point out that the order is objects and keys. I can’t begin to tell you
how often I get that backward.

This step creates the dictionary that you see in Figure 15-2.

appDi ctionary
|

Figure 15-2: Key Value

The app | Europe €

Dictionary. England ¢
|

To look up the value for a key in a dictionary, you send the objectForKey:
message.

NSLog (@"The currency symbol for the euro is %@Q",
[appDictionary objectForKey:@"Europe"]) ;

In this case, [am using the key Europe to look up the currency symbol in the
appDictionary. And lo and behold what I get is

The currency symbol for the euro is €

You can imagine using this quite a bit in applications like this one, as well

as for other things. By the way, if there’s no key, for Antarctica for example,
objectForKey: returns nil, which gives me the opportunity to respond to
the user or do whatever [might want to about it.

Chapter 15: Show Me the Data 329

On Mac OS X v10.5 and later, NSDictionary supports fast enumeration just
like its cousin NSArray. As | have been pointing out, a dictionary is very sim-
ilar to an array with obviously some extra stuff. You can, for example, iterate
through a dictionary by using the for in construct to go through the keys
of a dictionary.

for (id key in appDictionary) {
NSLog (@"key: %@, value: %@", key,
[appDictionary objectForKey:key]) ;
}

These lines of code will go through every key in the dictionary, returning the
key in the key variable, allowing you to look up that entry using the object
ForKey: method.

key: Europe, value: €
key: England, value: £

Adding a plist to Vour Project

While I'm sure you found that explanation of dictionaries fascinating, I still
haven’t shown you how to use a file instead of having to create the dictionary
in your program. If you use a file, you can use Xcode’s handy editor (which I'll
show you in a moment) to add new currencies and countries as you develop
your program.

If you have been following along with me, note that I'll be extending what you
did in Chapter 14. If you want to start from a clean copy of the project, you can
use the project found in the Chapter 15 Start Here folder on the CD.

1. In the Groups & Files listing (at the left in the Xcode project window),
select Vacation (at the top of the Groups & Files pane) and then
choose File->New File from the main menu, or press 38+n.

The New File dialog appears.

2. Choose Resource under the Mac OS X heading in the left pane, and
then select Property List, as shown in Figure 15-3.

330 Part IV: Moving from Language to Application

|
Figure 15-3:
Creating the
plist.
|

|
Figure 15-4:
New plist
file.
|

ann New File

Choaose a template for your new file:

l iPhane 05 b

Cocoa Touch Class
User interface

Resource Data Model
Code Signing
"_ Mac 05 X
Cotoa Class)
CandCas
Syne Client
[Hesourte Deseriprian
Inteeface Ruilder Kit
Other
Property List
An XML property list file,
" Cancel

3. Click the Next button.

Mapping Model

s

[Property List] Sings File

—Nexe—)

4. Enter the filename AppData.plist; then press Return (Enter) or click

Finish.

You should now see a new item called AppData.plist under Vacation,
in the Groups & Files list shown in Figure 15-4.

In the editor pane, you can see Xcode’s property list editor with the root
entry selected. (In this case, it has defaulted to a Dictionary; the other

option is Array.)

5. Click the icon at the end of the entry, as shown in Figure 15-4.

A new entry appears, as you can see in Figure 15-5.

anm AppDataplist - Vacation —
[10.6 | Debug | 1386 <] &) - & [0 O 5
Cverview Activn Breakpoints Buldand Run Taks Info Search
Groups & Files File Narme & A Code o A @
v B4 vacarian 8 [appnan plis
v Classes
] BudgeLh
w| Budger. m — — -
B Teistacon B AppData.plist # '
| Transaction,m [ke e i
=] CashTransartian h finat Dictionary 3 [0 irerm &Y

W) CashTransaction,m
w] CreditCardTransactioy
| CredinCardTransactiad
i) Destination.h
i Destination,m

v [Seurce
i) Vacatian_Prefocpeh
] Vacationm

¥] Documentation
External Framewarks anc &

+ [Produtss v

|
Figure 15-5:
Select
String.
|

|
Figure 15-6:
Enter

Europe

and €.
|

6. Click the pop-up menu arrows to choose the Type of entry, and select

String.

It can be any of the property list objects I talked about at the beginning
of this chapter, but String, which will already be selected, is the one you
want here.

®mn

[10.6] Debug | 1386 | (&

AppDataplist - Vacation —

= o @& 06 -

Cverview Activn Breakpoints Buldand Run Taks Info Search
Groups & Files File Narme & A Code o A @
v B vacatian 8 B Appnaraplist
v Classes Asray

w] BudgeLh Dierionary
] Budper.m < = B AppDataphist & gaclean ™ C. i, B3
w] Transaction h Data
] Transactin.m [wew | b Vaiu
«| CashTransaction b ¥ Roor Number

W) CashTransaction,m
w] CreditCardTransactioy
i CredinCardTransactiad
o] Destinatsan b

Hew e [sung E

i Destination,m

Source

) Vacation_Prefic peh
W] Vagation,m

¥] Documentanion

External Framewarks anc &

L Produsts v

7. In the Key field, enter Europe, and then double-click (or tab to) the

Value field and enter €, as shown in Figure 15-6.

To get the currency symbols, select Editm>Special Characters or press
38 +option+T.

®mn

[10.6] Debug | 1386 | (&

AppDataplist - Vacation —

= & @0 -

Overview Activn Breakpoints Buildand Run Taks Inlo Search
Groups & Files File Narme & A Code o A @
v B vacatian 8 B Appnaraplist
v Classes

< BudgeLh
: ':“":r:’,':c‘"l‘m.‘ < = [AppDataphist & L= e B3
] Transactin.m [hev o
=] CashTransartian h | = Roar Dictionary |
i} CashTransaction, m Eurupe Siring 314 I+

w] CreditCardTransaction
| CredinCardTransacriaf
] Destination. h
i Destination,m

Saurce

) Vacation_Prefic peh
] Vagation,m

¥] Documentanion

External Framewarks anc &

L Produsts v

8. Click the + icon at the end of the entry (row) you just added, and you

will get a new entry. This time enter England and f£.

When you are done, your plist should look like the one I showed you
earlier in Figure 15-1.

Chapter 15: Show Me the Data 33 ’

332 Part IV: Moving from Language to Application

Using plists

The only file you work with in this chapter is Vacation.m. So start by
making the following changes in order to use the plist.

Inmainin Vacation.m, add the code to main in bold and delete the code
with the strikethrough in Listing 15-1.

Listing 15-1: Using plists

#import <Foundation/Foundation.h>
#import "Destination.h"

int main (int argc, const char * argv([]) {
NSAutoreleasePool * pool = [[NSAutoreleasePool alloc]
init];

NSString* appDataPath =
@"/Users/neal/Desktop/Example 15A/AppData.plist";
NSMutableDictionary *appDictionary =
[[NSMutableDictionary alloc] initWithContentsOf
File:appDataPath];
NSString* europeSymbol = [[NSString alloc]
initWwithFormat:@"%@",
[appDictionary valueForKey:@"Europe"]l];
NSString* englandSymbol = [[NSString alloc]
initWwithFormat:@"%@",
[appDictionary valueForKey:@"England"]];

NSString* europeText = [[NSString alloc]
initWithFormat:@"%@", @"Europe"];
Destination* europe = [[Destination alloc]

initWithCountry:europeText andBudget:1000.00
withExchangeRate:1.25];
[europeText release];

NSString* englandText = [[NSString alloc]
initWithFormat:@"%@", @"England"];
Destination* england = [[Destination alloc]

initWithCountry:englandText andBudget:2000.00
withExchangeRate:1.50];
[englandText release];

for (int n = 1; n < 2; n++) {
double transaction = n*100.00;
77— NSEog—{&" Sendinga %-2f cash transaction—
transaction)—
NSLog (@"Sending a $%.2f cash transaction",
transaction) ;
[europe spendCash:transaction];

Chapter 15: Show Me the Data 333

77— NSEog &' Remainming budget %2, feurope teftFoSpendti+
NSLog (@"Remaining budget $%.2f", [europe
leftToSpend]) ;
77— NSEog—{&* Sendinga %-2f cash transaction—
transaction
NSLog (@"Sending a $%.2f cash transaction",
transaction);
[england spendCash:transaction] ;

+/—NShogtE ' Rematring budget—%2f*—ftengtand—

NSLog (@"Remaining budget $%.2f", [england
leftToSpend]) ;
}

[europe setExchangeRate:1.30];
[england setExchangeRate:1.40];

int n =1;
while (n < 4) {
double transaction = n*100.00;
tranrsaction)+
NSLog (@"Sending a %@%.2f credit card transaction",
europeSymbol, transaction);
[europe chargeCreditCard:transaction];
77— NSEog et ' Remaining budget %2, feurope teftFoSpendti+
NSLog (@"Remaining budget $%.2f", [europe
leftToSpend]) ;
transaction+
NSLog (@"Sending a %@%.2f credit card transaction",
englandSymbol , transaction);
[england chargeCreditCard:transaction];

+7/—NShogt&* Rematning budget—% 2 fengtand—

NSLog (@"Remaining budget $%.2f", [england
leftToSpend]) ;

n++;
}
NSString *returnedCountry = [england countryl];
NSLog (@"You have deleted the %@ part of your trip",

returnedCountry) ;
[returnedCountry release];
[england release];

[pool drain];
return 0;

334 Part IV: Moving from Language to Application

A\\S

\NG/
S

The first thing you did here was tell the file system where the AppData file is.

NSString* appDataPath =
@" /Users/neal /Desktop/Example 15A/AppData.plist";

As you can see, mine is on the desktop (/Users/neal/Desktop) in a folder
called Example 15A (/Example 152), and the name of the file is AppData.
plist (/AppData.plist), which is what [named it in Step 4. This is known as
a path. A path is a string that contains the location and name of a file.

Yours will be in the folder in which your project is located. You will have to
change that (unless your name is neal) to reflect your unique configuration.

You will be changing the path every time you change the location or name of
a folder your project is in.

When you start programming with either the AppKit (for the Mac) or the
UIkit (for the iPhone), you won’t have to specify the path so precisely. You
will generally have your plist files in either what’s called a bundle or in your
home directory. An application bundle contains the application executable and
any resources used by the application. It includes, for example, the application
icon, other images, localized content, and plist files. You could also will be stor-
ing your files in your home directory, or some other place where you will be
able to find it using Cocoa functionality available in your program — you won'’t
have to “hard code” it as [have here. In the case of a Foundation Command
Line Tool, however, you need to specify exactly where the plist file is.

This is a great opportunity to introduce bugs, as you move this code from
project to project. So, if something doesn’t seem to be working right, the loca-
tion of the plist file is one of the first places to check to see if it’s the cause of
the problem.

Creating a mutable dictionary

Next you create a mutable dictionary and read the file into it using the init
WithContentsOfFile: method (it needs to be mutable because I'll be
showing you how to modify in the section “Updating the dictionary.”

NSMutableDictionary *appDictionary =
[[NSMutableDictionary alloc] initWithContentsO
fFile:appbDataPath] ;

You specified where the file was located (appDataPath) and then sent a
message to the NSMutableDictionary to initialize itself with that file.

Chapter 15: Show Me the Data

eg&“%

R,

egmmm

&

NSDictionary, NSMutableDictionary, NSArray, and NSMutableArray
all have the methods initWithContentsOfFile: and writeToFile: :
that read themselves in from a file and write themselves out to a file, respec-
tively. This is one of the things that makes property list objects so useful.

As I mentioned earlier, property list containers, and only property list contain-
ers, can read themselves in from and write themselves out to a file. The other
property list objects can only store themselves, without any effort on your
part, as part of a file.

Creating, initializing, and
using the symbol string

The next thing you do is access the key Europe and create and initialize a
string europeSymbol with its value. I do the same thing for England and
englandSymbol.

NSString* europeSymbol = [[NSString alloc] initWithFormat:
@"%@", [appDictionary valueForKey:@"Europe"]l];
NSString* englandSymbol = [[NSString alloc]

initWithFormat:@"%@",
[appDictionary valueForKey:@"England"]];

The valueForKey: method looks for the key you give it (@"England"). If it
finds the key, the corresponding value is returned (in this case £), if it can’t
find the key, it returns nil.

The rest of the changes just add the right currency symbol to the NSLog state-
ments for the currency you are using — $ for your dollar-based transactions
and the amount of your budget remaining, and europeSymbol (€) and eng-
landSymbol (£) for credit card transaction in euros and pounds, respectively.

Now that you have updated the file, select the Build and Run button in the
Project Window toolbar to build and run the application.

You should see the following in the Debugger Console.

I'm off to Europe

I'm off to England

Sending a $100.00 cash transaction
Remaining budget $900.00

Sending a $100.00 cash transaction
Remaining budget $1900.00

335

336 Part IV: Moving from Language to Application

Sending a €100.00 credit card transaction
Remaining budget $770.00

Sending a £100.00 credit card transaction
Remaining budget $1760.00

Sending a €200.00 credit card transaction
Remaining budget $510.00

Sending a £200.00 credit card transaction
Remaining budget $1480.00

a €300.00 credit card transaction
Remaining budget $120.00

Sending a £300.00 credit card transaction
Remaining budget $1060.00

WECD You have deleted the England part of your trip
A

S
© ® You can find the completed project on the CD in the Example 15A folder, which
J is in the Chapter 15 folder.

Dictionaries of Dictionaries

While using a plist and dictionary this way is very clever (at least I think so),
it just barely shows what you can do with dictionaries — especially consider-
ing what you will see as you look at some of the code in the frameworks. In
that spirit, let’s make things a little more interesting.

Creating a more complex plist

Follow these steps to delete all the entries in the plist and create a more
interesting plist.

t CD
Q{; You can continue working based on what you have done or use the project
© in the Example 15A folder, which is in the Chapter 15 folder on the CD, as
your base.

1. Delete the Europe and England entries from your plist.

That will take you back to what was shown earlier in Figure 15-4. You'll
have no entries.

<MBER

Figure 15-7:
Click to

add a new
entry to the
Europe
dictionary.
|

2. In the editor window, the root entry will be selected. Click the icon
at the end of the entry, as you did in Step 5 in the earlier section
“Adding a plist to Your Project” (refer to Figure 15-4).

A new entry appears.

3. Click the pop-up menu arrows to select Dictionary for the Type of
entry you want instead of String, again, as you did in Step 5 in the
section “Adding a plist to Your Project.”

4. Type Europe as the key.

5. Click the triangle next to Europe and make sure it is pointing down,
as shown in Figure 15-7. Then select the plus icon (make sure the
triangle is pointing down; if not, you won’t see the +).

These disclosure triangles work the same way as those in the Finder
and the Xcode editor. The property list editor interprets what you want
to add based on the triangle. So, if the items are revealed (that is, the
triangle is pointing down), it assumes you want to add a sub item. If the
sub items are not revealed (that is, the triangle is pointing sideways),

it assumes you want to add an item at that level. In this case, with the
arrow pointing down, you will be adding a new entry to the Europe dic-
tionary. If the triangle were pointing sideways, you would be entering a
new entry under the root. The icon at the end of the row also helps. If
it is three lines, as you see in Figure 15-7, you are going to be creating a
new sub item of the entry in that row. A + tells you that you are going to
be creating a new item at the root level.

N 0 =

Breakpuints Build and Run Tashs Infa

10.6 | Debug | 1386 >| | M -
Dverview
Groups & Files
v B vacarian

Search
& A Code (- & L]

Action
File Name
B || AppDara plist
Classes Y
«] BudgeLh
| Budger m

4 = [AppData.plist ¢ ™% iCui®y -
i] Transaction h

] Tramsattion,m G
«| CashTransaction b Dictionary

| = Roar
Dictionary &

] CashTransaction.m Europe

Fl

w] CreditCardTransaction
| CredinCardTransactiog
1 Destination h

w] Destination,m

Sauree

i Wacation_Prefixpch
W] Vagation,m
Documentation
External Framewarks anc
Produsts

Chapter 15: Show Me the Data 33 7

338 Part IV: Moving from Language to Application

6.

Enter a String, with a Key of Currency and a Value of euro, as shown
in Figure 15-8.

This dictionary will have two entries. One will be the name of the
currency, in this case euro, with the key of Currency, and the other
will be the currency symbol with the key of Symbol. (You won’t need
the currency name until you add more functionality — on your own —
but you will have it here for future use.)

Add the second entry to the Europe dictionary, this time with the Key
of Symbol and the value of €, as shown in Figure 15-9.

Click the disclosure triangle to hide the Europe dictionary entries, as
shown in Figure 15-10.

Click the + icon next to the Europe dictionary and add the England
dictionary, as shown in Figure 15-11.

As I mentioned, since the Europe dictionary sub items are hidden, click-
ing the + icon adds a new entry to the root.

®mn

[10.6] Debug | 1386 | (&

AppDataplist - Vacation

= & @ 0
Breakpuints Build ani Run Tacks Info

Overview Activn

Figure 15-8:
Add an
entry to the
Europe
dictionary.
|

Graups & Files
v B vacatian

File Hame
B | B Apphara plisr
Classes
) BudgeLh
| Budger m
] Transaction h

4 | = B AppData.plist #

w| Transaction.m | Rew

=] CashTransartian h | = Raar

i CashTransaction.m
WCardTransaxtion

Dictionary |
IDictionary:

String

¥ Eurupe
Currency

) CredinCardTransactiod
»i] Destinatson.h

i} Destinatin.m

Sauree

] Wacation_Prefirpch

W] Vagation,m
Documentation

External Framewarks anc &
Produsts ¥

I Tala)

[10.6] Debug | 1386 | (&

AppDataplist - Vacation

= & @ 0
Breakpoints Buildand Bun Tachs Info

Overview Activn

|
Figure 15-9:
One more
entry.
|

Graups & Files
v B vacatian

File Hame
B | B Apphara plisr
Classes
) BudgeLh
| Budger m
] Transaction h

4 | = B AppData.plist #

o] Transactivn.m | =
=) CashTransarrion b | = Raar Dictionary |
Dictionary
String
Sipsle

W) CashTransaction,m
w] CreditCardTransactioy
) CredinCardTransacried
»i] Destinatson.h

i} Destinatin.m

Sauree

] Wacation_Prefirpch

¥ Eurupe
Currency

Symibal

euro

W] Vaation,m
Documentanion

External Framewarks anc &
Produts

339

Chapter 15: Show Me the Data

10. Redo Steps 6 and 7 for the England dictionary. This time use the Key
Currency and the Value pound, and the Key Symbol and the Value £.

When you are done, it should look like Figure 15-12. (Make sure you click
all the disclosure triangles to expand it all so you can see it all.)

Figure 15-10:
Another
dictionary
entry.
|

Figure 15-11:
Another
dictionary.
|

Figure 15-12:
A diction-
ary of
dictionaries.
|

10.6 | Debug | 1386 *
Dverview
Groups & Files (Il
¥ B vacatian L]
v [Classes o
4] Budgerh
|w) Budger m
] Transactionh
[u] Transactiun.m
| CashTransactian b
|u} CashTransacton.m
4] CreditCardTransaction
W} CredincardTransactiod
s} Destinatian h
W Destination.m
v [Source
[H] vacation_prefix peh
& vacation.m
¥ [Documenation
» [External Framewarks anc +
» [Produnts

Action

AppData.plist

-

File Name:
B appnan plist

4] -

Breakpuints Build and Run

Vacation

Search
& A Code (- a a

Tasks Info

B AppData.plist * HCaare a

ey
¥ Raor

ivee Value

Dictionary

» Eurupe

Dicionary 5 |12 e I+

@O0

| 10.6 | Debug | 1386 -
- Owverview

(8]

AppDataplist - Vacation

o T cm—

Tatks Info

Activn

Groups & Files i
¥ B vacatian L]
v [Classes
4] Budgerh
|w) Budger m
] Transaction h
] Transaction,m
| CashTransactian b
Wi Cashransaction.m
3] CredinCardTransatio
i CredinCardTransactiod

[ui] Destination b
|w} Destination,m
v [Source
[H] vacation_prefix peh
|} Wagationm
1 Documentation
» External Frameworks anc 4 |
* [Produtts v

File Name:
B appnan plist

4] -

&| A Code ° a e

B AppData.phist & ™ IC. 8 B3

ey
¥ Raor
¥ Eurupe

ivee Value
Dictionary

Dictignary

England

Dictionary 3 ||l e

[alka)

| 10.6 | Debug | 1386 -
- Owverview

o

AppDataplist - Vacation

®0 -

Tatks Info

Groups & Files. 11
¥ B vacatian L]
v [Classes
4] Budgerh
|w) Budger m
4] Transaction,h
5 Transactiun.m
| CashTransactian b
|u} CashTransacton.m
5] CreditCardTransactio
W} CredintardTransactiof

[ui] Destination b
|w} Destination,m

v [Source
[H] vacation_prefix peh
|} Wagationm

[Documentation

* [Products ¥

File Name:
B appnan plist

4] -

& A Code - a a

B AppData.phist & ™ IC. 8 B3

Key
¥ Raar

Currency

i ¥ Eurupe
| symial

¥ England

Symiol

Tvit |valus
Dictionary
Dictionary
String
string €
Dictionary "
String paund
String i

euro

‘ Curreney

® [External Frameworks anc & |

34 0 Part IV: Moving from Language to Application

Figure 15-13:
A diction-
ary of
dictionaries.
|

Earlier I said the entries in a dictionary can be any property list object. What
you have just done is create a dictionary of dictionaries. You have a diction-
ary for each country that enables you to find the currency (Currency) for
each country you are visiting and its associated currency symbol (Symbo1l).
Again, although you won’t be using the currency name, you will need in it the
future as you turn this into a “real” application.

The first time [saw the use of a dictionary of dictionaries in code, I had trouble
figuring it out, but you will see things like this, as well as arrays of dictionaries,
and dictionaries of arrays, and so on throughout Cocoa and sample apps.

And since a picture is worth many hours of contemplation, Figure 15-13
shows how everything fits together.

Eur opeDi cti onary
Key Value
Currency euro
Symbol €
appDictionary
Key Value
Europe Eur opeDi cti onary
England Engl andDi cti onary
Engl andDi cti onary
Key Value
Currency pound
Symbol £

Using this new “dictionary of a dictionary” is a little more complex than
before, but not much, as you will see when you write the code.

Managing a dictionary of dictionaries

Just as you did with the simple dictionary in the last version, you read in the
plist and create a dictionary.

NSMutableDictionary* appDataDictionary=|[[NSMutableDictiona
ry alloc] initWithContentsOfFile:appDataPath];

Chapter 15: Show Me the Data 34 ’

This time, however, the Europe and England keys have a value of another
dictionary instead of a currency symbol. So what you’ll need to do is treat
them as NSDictionary objects. The following code takes the value for both
the Europe and England keys and assigns it to pointers to those dictionaries.

NSDictionary* europeDictionary = [appDataDictionary
valueForKey:@"Europe"] ;
NSDictionary* englandDictionary = [appDataDictionary

valueForKey:@"England"];

Now, you can access the dictionary just as you did before using the key
Symbol to get the currency symbol and store it in the variables europe
Symbol and englandSymbol.

NSString* europeSymbol = [[NSString alloc]
initWithFormat:@"%@",
[europeDictionary valueForKey:@"Symbol"]];
NSString* englandSymbol = [[NSString alloc]
initWithFormat:@"%@",
[englandDictionary valueForKey:@"Symbol"]];

The methods that add entries to dictionaries (as well as arrays) make copies
of each key argument and add the copy to the dictionary. The value object,
on the other hand, receives a retain message to ensure that it won’t be
deallocated before the dictionary is finished with it.

To create a dictionary of dictionaries in main, you need to do the following:

1. In main in Vacation.m, shown in Figure 15-2, delete the code with
the strikethrough and add the code in bold.

[didn’t put in the whole listing for main because I made changes only to
the first few lines of code.
\NG/
§§‘“ 2. Be sure to change the appDataPath to whatever your folder name
is for this project. I duplicated my project and gave the folder a new

name Example 15B, but use your own project folder name here.

Listing 15-2: New improved plist

+NSString*—appbataPath ="/ Fsers/reat/Desktop/Exampte—

NSString* appDataPath = @"/Users/neal/Desktop/Example 15
B/AppData.plist™;

NSMutableDictionary* appDataDictionary=[[NSMutableDictiona
ry alloclinitWithContentsOfFile:appDataPath];

NSDictionary* europeDictionary = [appDataDictionary
valueForKey:@"Europe"];

(continued)

34 2 Part IV: Moving from Language to Application

Listing 15-2 (continued)

NSDictionary* englandDictionary = [appDataDictionary

valueForKey:@"England"];
NSString*—europeSymbot—{NSString—attoct—
TrritittthFormat e %e
NSString* europeSymbol = [[NSString alloc]
initWithFormat: @"%@", [europeDictionary
valueForKey:@"Symbol"]];

, tandSymbot— £ , toc

fappbictionary vatuveForkKey & Engtand*ti+
NSString* englandSymbol = [[NSString alloc]

initWwithFormat: @"%@",

[englandDictionary valueForKey:@"Symbol"]];

3. Select the Build and Go icon in the Project Window toolbar to build
and run the application.

You should see the following in the Debugger Console.

I'm off to Europe
I'm off to England

Sending a
Remaining
Sending a
Remaining

Sending a
Remaining

Sending a
Remaining

Sending a
Remaining

Sending a

$100.00 cash transaction
budget $900.00
$100.00 cash transaction
budget $1900.00

€100.00 credit card transaction
budget $770.00

£100.00 credit card transaction
budget $1760.00

€200.00 credit card transaction
budget $510.00

£200.00 credit card transaction

Remaining budget $1480.00
a €300.00 credit card transaction
Remaining budget $120.00
Sending a £300.00 credit card transaction
Remaining budget $1060.00
QAECD You have deleted the England part of your trip
;\
S
N

You can find the completed project on the CD in the Example 15B folder, which
is in the Chapter 15 folder.

o’

Modifying the plist

One thing about plists is that they can be modified. Although you don’t
want to directly modify the system-level files that you will be using (like
preferences — you should use the API provided instead), it’s open season
on your own files.

As I said, one of the limitations of this application is that each time you run
it, you start with a clean budget. While this is fun from a fantasy viewpoint, it
doesn’t help you manage your money. So, as all good things must come to an
end, you will start keeping track of the remaining budget. Each time you run
the program, you’ll start where you left off the last time.

You can do this a couple of ways. You can add a new entry to the existing
container you created earlier (AppData), or you can create a new file to store
what remains in your budget. I'll show you both ways.

You'll start by adding a new entry to the AppData plist list, a Budgets dic-
tionary. This dictionary will have keys for Europe and England. The value for
each key will be the amount of the remaining budget.

Of course, you could have used Xcode’s property list editor to add the new
entry, but I want to show you how to do this kind of thing in your program.

Adding a new entry to the plist

To save the budget data, you'll start by declaring two variables to hold the
budget balances for Europe and England.

float europeBudget = 1000;
float englandBudget = 2000;

Checking to see if the dictionary is there

You have to initialize these variables because the first time you run the pro-
gram, there will be no Budgets key and corresponding dictionary in the
AppData plist. This gives you a place to start.

Just as I did with the value for the Europe and England keys, I'll take the
value of the Budgets key and assign it to a pointer to that dictionary.

NSMutableDictionary* budgetsDictionary =
[appDataDictionary valueForKey:@"Budgets"];

Chapter 15: Show Me the Data 343

344 Part IV: Moving from Language to Application

This dictionary has to be mutable since I'll be updating the values later with
the new balances.

Since the Budgets dictionary isn’t in the plist the first time you run the
application, you’'ll need to create it. You can determine if it’s already there
by checking whether valueForKey: returns nil when you look up the
Budgets key value.

if (budgetsDictionary) {

}
else {

Creating the new entry if it'’s not there

If valueForKey: returns nil, you create the new dictionary with the default
values and add it to the plist.

NSNumber* europeBalance = [[NSNumber alloc]
initWithFloat: europeBudget];

NSNumber* englandBalance = [[NSNumber alloc]
initWithFloat: englandBudget];
budgetsDictionary = [[NSMutableDictionary alloc] initW

ithObjectsAndKeys:europeBalance, @"Europe",
englandBalance, @"England", nil];

If you remember, this is exactly what you did earlier in this chapter when I
first showed you how to create a dictionary programmatically. In this case,
you create a budgetsDictionary and initialize it with the europeBalance
object (our old friend NSNumber) and the Europe key, and the england
Balance objects and the England key.

¢MBER Since dictionaries require each entry to be an object, you are going to create
NSNumber objects for each of those balances — this is covered in Chapter 7.
(Yes, sometimes programming has a strong resemblance to the movie
Groundhog Day.)

Getting the data stored in the dictionary if it’s there

If the dictionary is there, however, you look up the remaining balances for
Europe and England using those keys, and assign those values to the two
variables you declared earlier.

if (budgetsDictionary) {

europeBudget = [[budgetsDictionary
valueForKey:@"Europe"] floatValue];
englandBudget = [[budgetsDictionary

valueForKey:@"England"] floatValue];
}

Chapter 15: Show Me the Data 345

Then to keep everyone informed, you display the amount left to spend.

NSLog (@"You have $%.2f to spend in Europe",
europeBudget) ;

NSLog (@"You have $%.2f to spend in England",
englandBudget) ;

You'll also now use these balances when you create the destination objects.

Destination* europe = [[Destination alloc]
initWithCountry: europeText
andBudget : europeBudget withExchangeRate:1.25];

Destination* england = [[Destination alloc]

initwWithCountry:englandText
andBudget : englandBudget withExchangeRate:1.50];

Updating the dictionary

Every time you run your program, you’ll save what’s left of your budget by
using setObject: forKey:. If you use setObject: forKey: on a key that’s
already there, it replaces the old value with the new one. (If you want to take
a key out of a mutable dictionary, use the removeObjectForKey: method.)
Remember, these methods work only for NSMutableDictionary objects.

First you create the europeBalance and englandBalance as objects.

NSNumber* europeBalance = [[NSNumber alloc]
initWithFloat: [europe leftToSpend]];
NSNumber* englandBalance = [[NSNumber alloc]

initWithFloat: [england leftToSpend]];

Now that you have europeBalance and englandBalance as objects, you
update the dictionary you created earlier when you read in the plist.

[budgetsDictionary setObject:europeBalance
forKey:@"Europe"] ;

[budgetsDictionary setObject:englandBalance
forKey:@"England"] ;

Now for the exciting part. Once you update the Budgets dictionary, you
write the whole file back to the plist file using the path you defined earlier
(appDataPath).

[appDataDictionary writeToFile:appDataPath
atomically:YES];

34 6 Part IV: Moving from Language to Application

Well, actually you don’t write it; in fact, you don’t do any work at all.
writeToFile:: is an NSDictionary method and does what it implies. You
are actually directing the dictionary to write itself to a file. The atomically
parameter tells it to first write the data to an auxiliary file and once that is
successful, rename it to the path you specified. This guarantees that the file
won’t be corrupted even if the system crashes during the write operation.

Now that I have written it out, I will be using the new updated dictionary
when I read it back in.

You can continue working based on what you have done or use the project
in the Example 15B folder, which is in the Chapter 15 folder on the CD, as
your base.

To add the code that keeps a running balance and saves it in a new diction-
ary in the plist, make the following changes in Listing 15-3 to main in the
Vacation.m file:

1. In Listing 15-3, delete the code in main in Vacation.m with the
strikethrough and add the code in bold.

2. Be sure to change the appDataPath to whatever your folder name
is for this project. I duplicated my project and put it in a new folder,
Example 15C, but use your own project folder name here.

Listing 15-3: Modifying the Dictionary and plist

#import <Foundation/Foundation.h>
#import "Destination.h"

int main (int argc, const char * argv([]) {
NSAutoreleasePool * pool = [[NSAutoreleasePool alloc]
init];

77/NSString*—appbataPath —=@"/Users/neat/PDesktop/Exampte—
+H4—B/AppPataptist
NSString* appDataPath = @"/Users/neal/Desktop/Example
15 C/AppData.plist";
NSMutableDictionary* appDataDictionary=[[NSMutableDictio
nary alloc]linitWithContentsOfFile:appDataPath];

NSDictionary* europeDictionary = [appDataDictionary
valueForKey:@"Europe"] ;

NSDictionary* englandDictionary = [appDataDictionary
valueForKey:@"England"];

NSString* europeSymbol = [[NSString alloc]
initWithFormat:@"%@", [europeDictionary

valueForKey:@"Symbol"]];

NSString* englandSymbol = [[NSString alloc]
initWithFormat:@"%@", [englandDictionary
valueForKey:@"Symbol"]];

Chapter 15: Show Me the Data 34 7

float europeBudget = 1000;
float englandBudget = 2000;
NSMutableDictionary* budgetsDictionary =
[appDataDictionary valueForKey:@"Budgets"] ;
if (budgetsDictionary) {
europeBudget = [[budgetsDictionary
valueForKey:@"Europe"] floatValue];
englandBudget = [[budgetsDictionary
valueForKey:@"England"] floatVvValue];
}
else {
NSNumber* europeBalance = [[NSNumber alloc]
initwithFloat: europeBudget];
NSNumber* englandBalance = [[NSNumber alloc]
initWithFloat: englandBudget];

budgetsDictionary = [[NSMutableDictionary alloc]
initWithObjectsAndKeys:
europeBalance, @"Europe",
englandBalance,@"England"”, nil];
[appDataDictionary setObject: budgetsDictionary
forKey: @"Budgets"];

NSLog (@"You have $%.2f to spend in Europe",
europeBudget);

NSLog (@"You have $%.2f to spend in England",
englandBudget);

NSString* europeText = [[NSString alloc] initWithFormat:
@"%@", @"Europe"l];
. . _ e . . 13 oc]

withExchangeRate—1+-25++
Destination* europe = [[Destination
alloc] initWithCountry:europeText
andBudget : europeBudget withExchangeRate:1.25];
[europeText release];
NSString* englandText = [[NSString alloc]
initWithFormat:@"%@", @"England"];

. . ; ;o . . 11oc
TrritittrthCountryengtandfext—andBudget26000-00—
withExchangeRate 1561+

Destination* england = [[Destination alloc]
initWithCountry:englandText
andBudget : englandBudget withExchangeRate: 1.50];

[englandText release];

for (int n = 1; n < 2; n++) {
double transaction = n*100.00;
NSLog (@"Sending a $%.2f cash transaction",
transaction) ;

(continued)

34 8 Part IV: Moving from Language to Application

Listing 15-3 (continued)

[europe spendCash:transaction];

NSLog (@"Remaining budget $%.2f", [europe
leftToSpend]) ;

NSLog (@"Sending a $%.2f cash transaction",
transaction) ;

[england spendCash:transaction];

NSLog (@"Remaining budget $%.2f", [england
leftToSpend]) ;

}

[europe setExchangeRate:1.30];
[england setExchangeRate:1.40];

int n =1;

while (n < 4) {

double transaction = n*100.00;

NSLog (@"Sending a %@%.2f credit card transaction",
europeSymbol, transaction) ;

[europe chargeCreditCard:transaction];

NSLog (@"Remaining budget $%.2f", [europe leftToSpend]) ;

NSLog (@"Sending a %@%.2f credit card transaction",
englandSymbol, transaction) ;

[england chargeCreditCard:transaction];

NSLog (@"Remaining budget $%.2f", [england leftToSpend]) ;

n++;

}

NSNumber* europeBalance = [[NSNumber alloc]
initWithFloat: [europe leftToSpend]];

NSNumber* englandBalance = [[NSNumber alloc]
initWithFloat: [england leftToSpend]];

[budgetsDictionary setObject: europeBalance
forKey:@"Europe"];

[budgetsDictionary setObject: englandBalance
forKey:@"England"];

[appDataDictionary writeToFile:appDataPath
atomically:YES];

NSString *returnedCountry = [england country];
NSLog (@"You have deleted the %@ part of your trip",
returnedCountry) ;

[returnedCountry release];
[england release];

[pool drain];

return 0;

Chapter 15: Show Me the Data 34 9

3. Select the Build and Run button in the Project Window toolbar to

build and run the application.

You should see the following in the Debugger Console:

You have $1000.00 to spend in Europe
You have $2000.00 to spend in England
I'm off to Europe

I'm off to England

Sending a
Remaining
Sending a
Remaining

Sending a
Remaining

Sending a
Remaining

Sending a
Remaining

Sending a
Remaining

Sending a
Remaining

Sending a
Remaining

$100.00 cash transaction
budget $900.00
$100.00 cash transaction
budget $1900.00

€100.00 credit card transaction
budget $770.00

£100.00 credit card transaction
budget $1760.00

€200.00 credit card transaction
budget $510.00

£200.00 credit card transaction
budget $1480.00

€300.00 credit card transaction
budget $120.00

£300.00 credit card transaction
budget $1060.00

You have deleted the England part of your trip

You’ll need to run this again to appreciate your handiwork. Before you
do, notice the amounts in the last two “Remaining budget” statements —
$120.00 and $1060.00, respectively (they are shown in bold).

. Select the Build and Run button in the Project Window toolbar to
build and run the application.

As you can see, the starting budgets (in bold) are the same as the ending
ones | had you notice in Step 3 (as you would expect).

You have $120.00 to spend in Europe
You have $1060.00 to spend in England
I'm off to Europe

I'm off to England

Sending a
Remaining
Sending a
Remaining

$100.00 cash transaction
budget $20.00
$100.00 cash transaction
budget $960.00

350 Part IV: Moving from Language to Application

Sending a
Remaining

Sending a
Remaining

Sending a
Remaining

a £200.00
Remaining

Sending a
Remaining

Sending a
Remaining

€100.00 credit card transaction
budget $-110.00

£100.00 credit card transaction
budget $820.00

€200.00 credit card transaction
budget $-370.00

credit card transaction
budget $540.00

€300.00 credit card transaction
budget $-760.00

£300.00 credit card transaction
budget $120.00

You have deleted the England part of your trip

Of course, after you run this a few times, you find yourself deeply in debt. If
you close and then reopen the project, you will actually see the new entry in
the AppData plist. Delete it in the dictionary using the Xcode plist editor by
selecting the Budgets dictionary entry and pressing Delete, and then select-
ing Filew>Save or press 38+S.

If you don’t see the Budgets dictionary in the plist, and you don’t want to

go to the trouble of closing and then opening the project, click in any Key or
Value field in the AppData plist and add and then delete a space (I know you
really haven’t changed anything, but that’s the point). Then select Filew>Save
or press 38+S. You get a message saying, “This document’s file has been
changed by another application since you opened or saved it”; click Save and
you'll go back to your original budget.

You can find the completed project on the CD in the Example 15C folder, which
is in the Chapter 15 folder.

Saving Data in a Separate File

Of course, a dictionary is just another property list object, and so is an array.
So instead of adding the new Budgets dictionary to the AppData plist, I'll
show you how to save the budget data in an array.

You declare the array you are going to save and initialize it tonil.

Chapter 15: Show Me the Data

\NG/
vg,\\

NSArray* tripBalance = nil;

You’ll be adding a new file here, so you need to create a new path for the file
you want to save.

NSString* balancePath =@i/Users/neal/Desktop/Example 15 D/
BalanceData.txt";

Notice the filename will be BalanceData. txt, and it will be in the Example
15D folder. As with appData, you will be changing the path every time you
change the location or the name of the folder your project is in.

You'll start again by reading in the data. Reading in the array you saved is
similar to reading in the plist.

if ([[NSFileManager defaultManager] fileExistsAtPath:
balancePath]) {

First, you ask the file manager ([NSFileManager defaultManager]) to
check whether the file is there. Previously, you knew the plist was there; you
just weren’t sure the Budgets entry had been added. If this is the first time
you are running the program, the file won’t be there. Alternatively, you could
have just read in the file and checked for nil.

If the file is there, you read in the array using its initwithContentsOf
File: (just as I did with the plist) and copy the values in the array to the
europeBudget and englandBudget variables as you did before.

tripBalance = [[NSArray alloc]
initWithContentsOfFile:balancePath];

europeBudget = [[tripBalance objectAtIndex:0] floatValue];

englandBudget = [[tripBalance objectAtIndex:1]

floatValue] ;
}

If the file isn’t there, you'll just continue to use the default values you initial-
ized europeBudget and englandBudget with earlier.

The following is an alternative method for reading in files:
initWithContentsOfFile:options:error:

The options: argument gives you control over file system caching and is
way, way beyond the scope of this book. The error: argument returns a

351

352 Part IV: Moving from Language to Application

9,

WE CD
é‘

O

pointer to an NSError object. I'll leave the exploration of this topic to you as
a “personal” exercise.

Again, after sleeping, eating, and drinking your way through Europe and
England, you’ll need to save what little you have left.

if (tripBalance) [tripBalance release];

tripBalance= [[NSArray alloc] initWithObjects:
europeBalance, englandBalance, nil];

[tripBalance writeToFile:balancePath atomically:YES];

You check to see if there is an array that you created when you read in

the data — that is why you have to be sure to initialize it to ni1l when

you declare it. If there is, you release it and create a new one. This is an
alternative to replacing each object in the array and means that you don’t
need a mutable array. Then, just as you did with the dictionary, you tell the
array to write itself as a file.

You can continue working based on what you have done or use the project
in the Example 15C folder, which is in the Chapter 15 folder on the CD, as
your base.

1. In Listing 15-4, delete the code in main in Vacation.m with the
strikethrough and add the code in bold.

[didn’t include the whole listing for main because you will delete only
the code you added in the previous section, “Modifying the plist.”

Instead of doing the delete and add thing, you could start again with the
Example 15B project on the CD and add the new code in the same places
you added the code in the previous section.

2. Be sure to change the appDataPath to whatever your folder name
is for this project. I duplicated my project and put it in a new folder,
Example 15D, but use your own project folder name here.

3. Notice that there is a new file balancePath. Be sure to change the
balancePath to whatever your folder name is for this project.

Listing 15-4: Saving Balance Data to an Array

+/NSString*—appbataPath—= &' /Fsers/neat/Pesktop/Exampte—
+5—€/AppPataptist:s
NSString* appDataPath = @"/Users/neal/Desktop/Example
15 D/AppData.plist";

float europeBudget = 1000;
float englandBudget =2000; ;

Chapter 15: Show Me the Data

b L o . . _
tappbatabictionary vatueForKey &' Budgets®+—

E oud . . ‘
// europeBudget = [[budgetsDictionary
valueForKey:@"Europe"] floatValue];

+/—engtandBudget =fftbudgetsbictionary—

77T

NSArray* tripBalance = nil;
NSString* balancePath =@"/Users/neal/Desktop/Example 15
D/BalanceData.txt";

if ([[NSFileManager defaultManager]
fileExistsAtPath: balancePath]) {
tripBalance = [[NSArray alloc]
initWithContentsOfFile:balancePath];
europeBudget = [[tripBalance objectAtIndex:0]
floatvalue] ;
englandBudget = [[tripBalance objectAtIndex:1]
floatvalue] ;

}

NSLog (@"You have $%.2f to spend in Europe',
europeBudget) ;

NSLog (@"You have $%.2f to spend in England",
englandBudget) ;

NSNumber* europeBalance = [[NSNumber alloc]

initWithFloat: [europe leftToSpend]];
NSNumber* englandBalance = [[NSNumber alloc]

initWithFloat: [england leftToSpend]];

(continued)

353

354

Q

Part IV: Moving from Language to Application

<MECD

>

Listing 15-4 (continued)

rKey:

atomically:YES];

if (tripBalance) [tripBalance release];

tripBalance= [[NSArray alloc] initWithObjects:
europeBalance, englandBalance, nil];

[tripBalance writeToFile:balancePath atomically:YES];

NSString *returnedCountry = [england countryl];

4. Select the Build and Run button in the Project Window toolbar to
build and run the application.

You should see the same result that you saw previously.

This time to start over, you will need to delete the new file you created —
BalanceData. txt, which you will find in your project folder.

You can find the completed project on the CD in the Example 15D folder, which
is in the Chapter 15 folder.

Saving Objects as Objects

This chapter shows you a great way to start saving your data, but there are
other ways as well.

As you develop applications, you will find that not all of your objects are
made up of property list objects. Even in this simple application, your
Destination object has an array of Transaction objects.

While most objects can eventually be deconstructed into property list
objects, this can take a lot of work and requires changing the logic you use if
you add or remove something from an object — not very extensible is it?

Cocoa does, however, provide several ways to save objects as objects. I'll
leave this, too, as an exercise for the reader.

Chapter 16
Extending the Behavior of Objects

In This Chapter

Using delegation to implement a new transaction

Defining formal and informal protocols
Using categories to extend a class

n your application so far, you have two kinds of transaction objects, a

CashTransaction and a CreditCardTransaction. As I was field test-
ing the application, sitting in a bar (bars in Italy serve coffee, so don’t get too
excited) on the Grand Canal in Venice, [needed some euros, so [went to the
ATM machine.

It dawned on me that since this was not my own bank’s ATM, I had to pay a
$2.00 transaction fee. I realized I need to add a new type of transaction — ATM.

In Chapter 11, you learn to use inheritance to create subclasses such as
CashTransaction and CreditCardTransaction to implement generic
functionality that was defined as a superclass, such as the spend functionality
in the Transaction class. I also mentioned that you could also use inheri-
tance to add new functionality, new methods, and new instance variables to a
subclass.

So it would make sense to use inheritance to create a new subclass. If I did
that it would also mean, thanks to polymorphism, the only changes I would
have to make to my program, besides defining the new class, would be to
add a new method to Destination (in addition to the existing spendCash:
and chargeCreditCard: methods) — useATM: to create the new ATM
transaction.

As you start to work with the UIKit and AppKit frameworks, you will be using

inheritance to extend the behavior of framework classes and to add your own
unique application behavior. But sometimes, for some technical and architec-
tural reason beyond the scope of this book, inheritance will not be an option.
But all is not lost. Objective-C allows you to accomplish virtually the same

356 Part IV: Moving from Language to Application

QWING/

thing using delegation, which enables you to implement methods defined
by other classes, and categories, which enable you to extend a behavior of a
class without subclassing.

While you are probably not going to use delegation and categories in your
programs (yet), they are used a lot in the frameworks. So, in order to make
using the frameworks as transparent as possible, I will explain them before
you stumble across them on you own. As I've mentioned, frameworks provide
a good model for how to create extensible and enhanceable applications, and
in this chapter, you’ll see an example of that in action.

To show you how to do that, instead of using inheritance and modifying the
code in Destination (or creating a Destination subclass) to implement
useATM:, I'll show you how to accomplish the same thing using delegation
and categories.

[am not suggesting you implement a new Transaction type this way. On
the contrary, creating a new Transaction subclass is the best way to do
that. I am only showing you how to use delegation and categories in this way
to illustrate how delegation and categories work since it is often one of the
more difficult concepts for programmers new to Cocoa and Objective-C to
understand.

Understanding Delegation

I'll start by showing you how to use delegation to create a class that imple-
ments the spend method of the Transaction (the delegator) class, one that
will behave in the same way as subclass.

Delegation is a pattern (I explain patterns in Chapter 11) used extensively in
the UIKit and AppKit frameworks to customize the behavior of an object with-
out subclassing. Instead, one object (a framework object) delegates the task
of implementing one of its methods to another object.

To implement a delegated method, you will put the code for your application-
specific behavior in a separate (delegate) object. When a request is made of
the delegator, the delegate’s method that implements the application-specific
behavior is invoked by the delegator.

The methods a class delegates are defined in a protocol — similar to the
“spend: protocol” you define in the Transaction class in Chapter 10.
Protocols can be formal or informal. I'm going to start with formal protocols
and then work my way into informal ones.

Chapter 16: Extending the Behavior of Objects

Using Protocols

\\3

The Objective-C language provides a way to formally declare a list of methods
(including declared properties) as a protocol. Formal protocols are supported
by the language and the runtime system. For example, the compiler can check
for types based on protocols, and objects can report whether they conform to
a protocol.

Declaring a protocol

You declare formal protocols with the @protocol directive. If you wanted to
create a Transaction Delegate protocol that required that its delegates imple-
ment a spend message (like its subclasses), you would code the following:

@protocol TransactionDelegate
@required

- (void) spend: (Transaction *) aTransaction;
Qoptional

- (void) transaction: (Transaction *) transaction spend:
(double) amount;

@end

Methods can be optional or required. If you do not mark a method as
optional, it is assumed to be required; but you can make that designation spe-
cific via the use of the @required keyword.

[have declared the TransactionDelegate protocol with a required
method — spend: — and an optional method transaction: spend:.

The more formal representation is

@protocol ProtocolName

method declarations
@end

The method transaction: (Transaction*) transaction spend:
(double) amount may look a little weird. The method name is
transaction:spend:, and you'll see examples of this in some of the frame-
work protocols where a pointer to the delegating object is the first argument
in the method.

357

358 Part IV: Moving from Language to Application

9,

<NE CD

In Chapter 17, you see that you can use Interface Builder to connect objects
to their delegates; or you can set the connection programmatically through
the delegating object’s setDelegate: method or delegate property. In this
chapter, I'll show you how to set the connection programmatically.

Generally, protocol declarations are in the file of the class that defines it. In
this case, you will add the TransactionDelegate protocol declaration to
the Transaction.h file.

Adopting a protocol

Adopting a protocol is similar in some ways to declaring a superclass. In both
cases, you are adding methods to your class. When you use a superclass, you
are adding inherited methods; when you use a protocol, you are adding meth-
ods declared in the protocol list. A class adopts a formal protocol by listing
the protocol within angle brackets after the superclass name.

@interface ClassName : ItsSuperclass < protocol list >

A class can adopt more than one protocol, and if so, names in the protocol
list are separated by commas.

@interface Translator : NSObject < English, Italian >

Just as with any other class, you can add instance variables, properties, and
even nonprotocol methods to a class that adopts a protocol.

In this case, you will be creating a new class, ATMTransactionDelegate
that will adopt the TransactionDelegate protocol.

If you have been following along with me, I'll now be extending what you do in
Chapter 15. If you want to start from a clean copy, you can use the project
found in the Chapter 16 Start Here folder on the CD.

1. Select the Classes folder in the Groups & Files list and then select
File=>New File from the main menu (or press 3+N) to get the New File
dialog.

This tells Xcode to place the new file in the Classes folder.

2. In the leftmost column of the dialog, first select Cocoa under Mac OS
X; then select the Objective-C class template in the top-right pane.
Make sure NSObject is selected in the Subclass of the drop-down
menu.

You'll see a new screen asking for some more information.

Chapter 16: Extending the Behavior of Objects 359

3. Enter ATMTransactionDelegate.m in the File Name field and make
sure the checkbox to have Xcode create ATMTransactionDelegate.h. is
checked; then click Finish.

This is the new class that will process the ATM transactions.

4. Add the code in bold to the ATMTransactionDelegate.h file.

#import <Cocoa/Cocoa.h>
#import "Transaction.h"

@interface ATMTransactionDelegate : NSObject
<TransactionDelegate> {

}

@end

You will need to import the header file where the protocol is declared
since the methods declared in the protocol you adopted are not
declared elsewhere — in this case, as [said, you will be declaring the
protocol in the Transaction.h file.

5. Add the spend: and dealloc methods to the
ATMTransactionDelegate.m file.

#import "ATMTransactionDelegate.h"
#import "Budget.h"

@implementation ATMTransactionDelegate
- (void) spend: (Transaction *) aTransaction {

[aTransaction.budget spendDollars:
aTransaction.amount + 2.00];

(void) dealloc {

[super dealloc]:;
}

@end

When you adopt a protocol, you must implement all the required meth-
ods the protocol declares; otherwise, the compiler issues a warning.
As you can see, the ATMTransactionDelegate class does define all
the required methods declared in the TransactionDelegate pro-
tocol. As I said, you can add instance variables, properties, and even
nonprotocol methods to a class that adopts a protocol, although your
ATMTransactionDelegate is a class that simply implements the
required protocol methods.

360 Part IV: Moving from Language to Application

WBER
“&
&

As you can see, this new transaction is at heart a dollar transaction that
adds the $2.00 “convenience” fee charged by the ATM.

Even though ATMTransactionDelegate implements a protocol that is
used by the Transaction object, it does not automatically have access
to the instance variables of the Transaction object. This means that

you will have to make amount and budget Transaction class proper-

ties and pass a pointer the Transaction object so
ATMTransactionDelegate can access those instance variables.

[am not going to implement the optional method; I just wanted to show

you how to declare one.

Adding delegation to Transaction

So far you have defined protocol based on the Transaction class that
requires Transaction class delegates to implement the spend: method.
It now becomes the responsibility of the delegator, Transaction, to
invoke the spend: method in its delegate. Here’s how you’ll do that in
Transactions.

1. Add the code in bold to the Transaction.h file.

#import <Cocoa/Cocoa.h>
@class Budget;

@interface Transaction : NSObject {

Budget *budget;
double amount;

NSString* name;
id delegate;

- (id) initwithAmount: (double) theAmount forBudget:
(Budget*) aBudget;

- (void) spend;

@property (nonatomic, retain) Budget *budget;

@property (nonatomic, retain) id delegate;

@property (readwrite) double amount;

@end

@protocol TransactionDelegate
@required

- (void) spend: (Transaction *) aTransaction;

@optional

Chapter 16: Extending the Behavior of Objects 36 ’

- (void) transaction: (Transaction*) transaction
spend: (double) amount;

@end

You did several things here:

a. Added the instance variable delegate. This is the object that will
implement the behavior you specified in the protocol. These are
generally declared to be a generic object (id) since the point here
is that you won’t know what class is implementing the delegate
behavior (although you do here).

b. Added three properties, one to be able to set the delegate, and two
others to allow the delegate access to the amount and budget
instance variable.

c. Declared the TransactionDelegate protocol.
2. Add the code in bold to the Transaction.m file.

#import "Transaction.h"
#import "Budget.h"

@implementation Transaction
@synthesize budget, delegate , amount;

- (void) spend {
if ([delegate respondsToSelector:
@selector(spend:)1])
[delegate spend:self];

- (id) initwWithAmount: (double) theAmount forBudget:
(Budget*) aBudget {
if (self = [super init]) {
self. budget = aBudget;
amount = theAmount;
}

return self;

- (void) dealloc {
[budget release];
[super dealloc];

}

@end

362 Part IV: Moving from Language to Application

You added the @synthesize statement for delegate, amount, and
budget to have the compiler generate the getters and setters for you.

Thus far, Destination has never created a Transaction object, and
its spend: method has never been invoked. Using delegation, however,
requires creating Transaction objects that invoke the delegate’s
spend: method in Transaction object’s spend: method.

Because this is a formal protocol, [can assume that since spend: is @
required, the delegate object will have implemented it. If this were an
informal protocol, I would need to determine if spend is implemented. I
can send the delegate the message.

if ([delegate respondsToSelector:
@selector (spend:)])

respondsToSelector: is an NSObject method that tells you
whether a method has been implemented. As I said, since | am making
this method @required, I don’'t have do determine that. However, |
wanted to show you how much information is available at runtime in
Objective-C, and how to implement delegation for the optional methods
of formal protocols and for all methods of informal protocols.

If the method has been implemented, I then send it the spend: message.

Categories

In order to complete the implementation of the ATM transaction, you’ll

need to add a method like destination to process an ATM transaction just

as it does cash and credit cards. The preferred approach is to add the new
method to the Destination class or add a new method to a subclass (you'd
have to add a subclass if you did have the source code, as is the case with a
framework), but instead [want to show another Objective-C feature.

One of the features of the dynamic runtime dispatch mechanism employed
by Objective-C is that you can add methods to existing classes without sub-
classing. The Objective-C term for these new methods is categories. A cat-
egory allows you to add methods to an existing class — even to one to which
you do not have the source. This is a powerful feature that allows you to
extend the functionality of existing classes.

Using categories, you can also split the implementation of your own classes
between several files.

Chapter 16: Extending the Behavior of Objects 363

How would I use categories to add the useATM: method to my Destination
class? would start by creating a new category — ATM.

@interface Destination (ATM)

This looks a lot like class interface declaration — except the category name
is listed within parentheses after the class name, and there is no superclass
(or colon for that matter). Unlike protocols, categories do have access to all
the instance variables and methods of a class. And I do mean all, even ones
declared @private, but you'll need to import the interface file for the class it
extends. You can also add as many categories as you want.

You can add methods to a class by declaring them in an interface file under
a category name and defining them in an implementation file under the same
name. What you can’t do is add additional instance variables.

The methods the category adds become honestly and truly part of the class
type; they aren’t treated as “step methods.” The methods you will add to
Destination using the ATM category become part of the Destination
class and are inherited by all the class’s subclasses, just like other methods.
The category methods can do anything that methods defined in the class
proper can do. At runtime, there’s no difference.

So, to add this new method, useATM:, to Destination, you create a cat-
egory, as follows:

1. Select the Classes folder in the Groups & Files list and then select
File>New File from the main menu (or press 38+N) to get the New File
dialog.

This tells Xcode to place the new file in the Classes folder.

2. In the leftmost column of the dialog, first select Cocoa under Mac OS

X; then select the Objective-C class template in the top-right pane.

Make sure NSObject is selected in the Subclass of the drop-down
menu.

You'll see a new screen asking for some more information.

3. Enter DestinationCategory.m in the File Name field and make sure the
checkbox to have Xcode create DestinationCategory.h. is checked;
then click Finish.

4. Be sure to change the appDataPath and balanceDataPath in main
in vacation.m to whatever your folder name is for this project.

I duplicated my project and gave it a new name, Example 16, but use
your own project name here.

364 Part IV: Moving from Language to Application

+5—b/AppPataptist s
NSString* appDataPath = @"/Users/neal/Desktop/Example
16/AppData.plist";

5P/ Batancebatatxt"+

NSString* balancePath = @"/Users/neal/Desktop/Example
l6/BalanceData.txt";

5. Delete the code with the strikethrough and add the code in bold to
the DestinationCategory.h file.

#import <Cocoa/Cocoa.h>
#import "Destination.h"

o . . . : om :
@interface Destination (ATM)

-(void) useATM: (double)amount;
Yams

@end

6. Delete the commented-out code with the strikethrough and add the
code in bold to the DestinationCategory.m file.

#import "DestinationCategory.h"
#import "Transaction.h"
#import "ATMTransactionDelegate.h"

o . . .
@implementation Destination (ATM)
-(void) useATM: (double)amount {

ATMTransactionDelegate *aTransactionDelegate =
[[ATMTransactionDelegate alloc] init];

Transaction *aTransaction = [[Transaction alloc]
initWithAmount: amount forBudget: theBudget];

aTransaction.delegate = aTransactionDelegate;

[transactions addObject:aTransaction];

[aTransaction spend];

[aTransaction release];

}

@end

Chapter 16: Extending the Behavior of Objects 365

I
Figure 16-1:
From
UseATM:
to Trans-
action
spend:
to ATM
Trans-—
action
spend:
I

A\

The new useATM: method is almost the same as the previous destination
methods; you even added the transaction to the transactions array.
The only difference here is that you are creating both a Transaction
object and a delegate that will implement the spend: message and updat-
ing the transaction object with its delegate in the useATM: method.

Figure 16-1 shows the relationship between the
DestinationCategory’s useATM:, the Transaction’s spend:, and
the ATMTransactionDelegate’s spend: methods.

Destination (ATM)

LUseATM

Create and initialize

(Transaction]

spend

(ATMTransactionDelegate W

spend J

It would have been a lot easier not to create all these new files and just
stuff the implementations and interfaces in existing files. I chose to do it
the “hard way” because [want you to understand how to structure a real
application. You’ll thank me later.

. Somewhere in the group of #imports in main in Vacation.m, add

#import "DestinationCategory.h"

. Scroll down and after the while loop in main in Vacation.m, add the

following line of code — this will be your only ATM transaction.

NSLog (@"Sending a $50.00 ATM transaction") ;
[europe useATM: 50];
NSLog (@"Remaining budget $%.2f",

[europe leftToSpend]) ;

. Delete the previous balanceData. txt file — which makes it easier to

see that your updated application works correctly.

366 Part IV: Moving from Language to Application

10. Select the Build and Run button in the Project Window toolbar to

build and run the application.

You should see the following in the Debugger Console. I've highlighted

the new transaction in bold.

You have $1000.00 to spend in Europe
You have $2000.00 to spend in England
I'm off to Europe

I'm off to England

Sending a
Remaining
Sending a
Remaining
Sending a
Remaining
Sending a
Remaining
Sending a
Remaining
Sending a
Remaining
Sending a
Remaining
Sending a
Remaining
Sending a
Remaining

You have deleted the England part of your trip

$100.00 cash transaction

budget $900.00

$100.00 cash transaction

budget $1900.00

€100.00 credit card transaction
budget $770.00

£100.00 credit card transaction
budget $1760.00

€200.00 credit card transaction
budget $510.00

£200.00 credit card transaction
budget $1480.00

€300.00 credit card transaction
budget $120.00

£300.00 credit card transaction
budget $1060.00

$50.00 ATM transaction

budget $68.00

O You can find the completed project on the CD in the Chapter 16 folder.

Using categories
You can use categories several ways:

v To extend classes defined by other implementers (instead of subclassing —
this is what you just did for Destination).

v To declare informal protocols — I told you I'd get back to this; you have
come full circle here, so let’s examine informal protocols.

Chapter 16: Extending the Behavior of Objects 36 7

Defining informal protocols

In addition to formal protocols, you can also define an informal protocol by
grouping the methods in a category declaration:

@interface Transaction (TransactionDelegate)
- (void) spend;
@end

In fact, if you added the preceding code to the Transaction.h file and changed
the ATMTransactionDelegate.h as follows:

@interface ATMTransactionDelegate : NSObject/*
<TransactionDelegate> */

your program would work the same way.

Being informal, protocols declared in categories don’t receive much language
support. There’s no type checking at compile time, for example.

An informal protocol may be useful when all the methods are optional, such
as for a delegate, but it is typically better to use a formal protocol with
optional methods.

I've included informal protocols here because they are used by Cocoa,
especially in the AppKit on the Mac.

368 Part IV: Moving from Language to Application

Chapter 17
Adding an iPhone User Interface

In This Chapter

Painlessly putting a user interface on the model
Using Interface Builder to create a user interface
Adding controls to the view

Creating a view controller

Launching the application in the iPhone Simulator

’ve been promising you all along, at least since Chapter 11, that if you

create the right class structure, putting on a user interface will be easy. As
you'll see, | wasn’t exaggerating when I said that. The only challenge will be
actually learning to create a user interface on the iPhone in this chapter and
the Mac in Chapter 18. To do that, you’ll need to know the basics of a pro-
gram called Interface Builder (part of the SDK), which you will use to build
the user interface.

Along the way, [will also tie together a number of the concepts I've talked
about that relate to creating enhanceable and extensible applications.
Frameworks, as I've said again and again, are the poster children for
enhanceability and extensibility, and now you will finally get to see why.
They are created to be reused, which as I said earlier, is the same thing
as being extensible, and you can integrate techniques that the framework
builders use into your own programs.

When you are done with this chapter and Chapter 18, though you will have
learned some about developing iPhone and Mac OS X applications, you’ll
need to learn more about both. So, | suggest you get yourself copies of iPhone
Application Development For Dummies by yours truly and Cocoa Programming
for Mac OS X For Dummies by Erick Tejkowski.

[will start with the iPhone and then move on to the Mac in the next chapter.
Even if you are interested in only one of these platforms, [encourage you to
read both chapters because I'll be discussing different aspects of extensibility
in each.

3 70 Part IV: Moving from Language to Application

Creating Vour Project

To develop an iPhone application, you work in an Xcode project — just as
you have done so far. The only difference is that this time you will be creating
an iPhone project.

1. Launch Xcode if it is not already running.
2. Choose Filem>New Project to create a new project, or press Shift+3+N.

3. In the New Project window (see Figure 17-1), click Application under
the iPhone OS heading.

Just as before, when you select a template, a brief description of the
template is displayed underneath the main pane. As you know, each of
these choices is actually a template that generates some code. In the
past, when you were using the Foundation Command Line Tool, that
code was minimal. Now, however, you are going to see a lot more.

800 New Project

Choaose a template for your new praject:

iPhone 03
l L Isins) a
e 9! {n,

i e =] i S .

e X

afs Ravigation-based oenGL ES Tab Bar Unifiry Appdication
‘. Mac 05 X Applicatian Apphicarinn Applicatian

Appliration

Framewurk & Library

Avehcanon Higin - N

eystem Plug-In —

ther

View-based Window- based
Application Application

. View-based Application

This template provides a starting poent for an apulication that uses a single view, It provides
a view cantralier 1 manage the view, and & nib Ale that cantains the view

Figure 17-1:
The New
Project
Assistant.
|

_ Cancel) ((Choose.)

4. Select View-based Application from the choices displayed and then
click Choose.

Xcode will then display a standard save sheet.

5. Enter the name ivacation in the Save As field, choose a Save loca-
tion, and then click Save.

Chapter 17: Adding an iPhone User Interface 3 7 ’

After you click Save, Xcode creates the project and opens the project
window.
If you explore the project at this point, you will see code generated for

you that does many of the things you need to do to initialize an applica-
tion. You'll also see some code commented out. I'll get to what’s relevant

to this application later.

Note that the Overview menu in the Project Window toolbar shows
Simulator - 3.0 | Debug (or whatever the latest release of the iPhone OS
is). If not, select it from the drop-down menu.

With your project set up, you are now ready to use Interface Builder — an
application is included in the SDK that you’ll use to design and build the user

interface. Interface Builder uses .xib files, which Xcode conveniently cre-
ated for you when you chose the View-based Application template.

Using Interface Builder to
Create a User Interface

Here’s how to use Interface Builder to create a user interface:

1. In the Groups & Files list (on the left side of the project window),
click the triangles next to the Classes and Resources folders to expand
them, as shown in Figure 17-2.

anm 1 Wacation
| simulator - 3.01 Debug | | & | L 'i\ @ @ Q: st
Overaen Actian Buildand Run Task: Info Search
Groups & Files File Name &| A Code L] 'y
T & 5 ConGranhics framowork o
v Classes K= Foundation,framework L4
< VacarianAppOelegate.h atatian-tnfo. plist
] WacatianAppielegate m A iVacation
] VagationViewContraller.h il Watation_Prefix,gch
! WaatianviewCentralier.m | IVacationAgpDelegate.h
Other Sources \| ivicationAppUelegate.m ¥ o
v Resources | WacationViewController.h
\ WagarianviewController. wib w| WacatinnViewCanrralier.m v o
5] MainWindow,x(b Asratinavisat antoallar vih h
Vagation-Info.plist
Framewarks
» [Products
» (@ Targets

v O}, Find Results
Figure 17-2: |/ =%™"

The |, eimstermmion e

IVa Cat|0n » [l interface Budder Filed

project

window.

|

3 72 Part IV: Moving from Language to Application

|
Figure 17-3:
Interface
Builder
windows.
|

2

2. In the Resources folder, double-click the

IVacationViewController.xib file.

Doing so launches Interface Builder. If you’ve never run this program
before, you’ll end up with something that looks like Figure 17-3. (If
you’ve already been using Interface Builder, you’ll see the windows as
you last left them.)

Interface Builder is not merely a program that builds graphical user
interfaces. As you'll see, it works with Objective-C to let you build (and
automatically create at runtime) both objects for the user interface and
the objects that provide the infrastructure for your application.

. Check to see whether the Library window (at the right in Figure

17-3) is open. If it isn’t, open it by choosing Tools=Library or press
38>+Shift+L. Make sure Objects is selected in the mode selector at the
top of the Library window and Library is selected in the drop-down
menu below the mode selector.

The Library has all the components you can use to build a user inter-
face. These include the things you see on the iPhone screen — such

as labels, buttons, and text fields — and those you need to create the
“plumbing” to support the views (and your model), such as the control-
ler I explain in Chapter 11. You won’t need to add any objects in this
chapter, but you do in Chapter 18.

olbar. ik AN ~ View

View Mode imspuctr Search Foeld i Libwary]

oi$
3
S
-
g
-
-
-,
-

Chapter 17: Adding an iPhone User Interface

|
Figure 17-4:
Adding a
Text Field.
|

As you saw, ivVacationViewController.xib was created by Xcode
when you created the project from the template. In the iVacationView-
Controller window, as you can see in Figure 17-3, a view is already here,
which is what you will see on the iPhone screen. Now you add some text
fields, buttons, and labels so that you can enter a transaction and have
the remaining budget displayed. When your application is launched,
those items will be created for you and displayed on the screen.

. Drag a Text Field item from the Library into the View window to add a

text entry field, as shown in Figure 17-4.

Notice the blue lines (at the border) displayed by Interface Builder.
They’re there to help you conform to the Apple User Interface
Guidelines. (You can see the lines best onscreen.)

A Text Field allows you to enter data, and this is where you will be able
to enter a transaction amount (yes, no more automatically generated
transactions in for and while loops — I bet you thought that would
never end).

a N Libnary
o Miew e] =
= [LOngeets | Classes Media
Jll Library ¥
Libr i Contr -
* 0®0 O
. E |
%;’H]
| L—I
-
1 2 Label Text
i H - p—
 View ’ L i
e, b
o | o
Displays a rounded rectangle thar can conrain
editable text. When a user 1aps a text fleld. a
keybuard appears, when a user Laps Return in
the keyboard, the keyboard disappears and the
text field can handle the input in an A
application-specific way. UITextField supports
owerlav views to disnlav additional infarmation. T
EACY

373

3 74 Part IV: Moving from Language to Application

5. Drag a Label item from Library window over to the View window, as
shown in Figure 17-5.

You'll see the blue lines again to help you align the items.

Labels display static text in the view (static text can’t be edited by
the user).

6. Double-click in the Label to enter 10, 000. 00 (my default budget —
don’t I wish) as I did in Figure 17-6.

This will display momentarily when the application launches and before
the application has a chance to fill in the real budget. I did that to pro-
vide enough room in the label to display the budget.

QWP Alternatively, you can widen the label by selecting it and using the selec-
tion points you’ll see. Then you’ll want to double-click the Label text and
delete the text, “Label” — that way nothing will be displayed in the Label
when you launch the application.

a &) Libnary
o Miew e | ; =
= lOhpects | (lasses Meda
Jil Library %
Libr T Contr ~
= 0®0 O
s
%; 6
I —
| | |—- I
-
1 2 Label Text
 View ’ L i
RS, b
Label
Label %
|] Implements a read-only rexr view. A lahel can
contain an arbivrary amount of text. but
T - UlLabrel may shrink, wrap, or truncate the text,
Flgure 17 5' depending un the size of the bounding
Add rectangle and properties you set. You can e
Ing a control the font, text color, alignment,
hiahlinhtina_and shadowing of the textin the 7
Label.
EIACY
I

Chapter 17: Adding an iPhone User Interface 3 75

— - T = oy Uibrary
s IV&CE‘IDHVl&NLUII\"G er.xil e
mwu_m;wm hmeum qswr.ﬁudd | [l Libary =]
©8
£ Vacation xcodeproj]
e =
1,2/ Label [ant |
l - ™ [— - k.
E— Label 71,
Figure 176 RS
My default et k.
budget. et i s i e[
) Q Filer
| V]
7. Drag in two more Labels. Double-click each and enter Transaction
and Balance, respectively.
8. Drag in two Round Rect buttons (located between the Label and Text
items); double-click each; and enter Cash and Charge, respectively.
When you are done, your window should look like Figure 17-7.
This is pretty ugly, but it shows you a lot. While I know I said this is a
crash course, I think you ought to do something about the window color.
9. Click to select the View itself (rather than any of the Labels or the Text
Field) in the View window and choose Tools=>Attributes Inspector, or
press 86+1.
The Attributes Inspector appears onscreen, as shown in Figure 17-7.
\\3

Note the four icons across the top of the Attributes Inspector window.
They correspond to the Attributes, Connections, Size, and Identity
Inspectors, respectively, in the Tools menu.

10. Click the Background field in the Attributes Inspector.

A color picker appears. If it is not the crayon box, select the crayon box
button at the top of the Colors window, as shown in Figure 17-7.

3 76 Part IV: Moving from Language to Application

|
Figure 17-7:
Changing
the back-
ground
color.
|

\\3

11.

12.

13.

14.

15.

Choose the white crayon in the Color Picker to change the View back-
ground from gray to white.

I chose white because the book’s screenshots are in black and white.
Feel free to let your imagination soar at this point.

You can see the results of your color selection in Figure 17-8.

Now, [want to show you how to do a couple more things to make the
user interface a little more iPhone-like.

Click the Label that is displaying 100,000.00.

Note that selecting the view rather than the label changes what you see
in the Attributes Inspector.

Next to Layout in the Inspector window, select center in the Alignment
control, as shown in Figure 17-8.

This will keep the amount left in your budget centered over the Balance
Label.

Finally, if you touch in a Text Field on an iPhone or click in one using the
simulator, a keyboard is automatically displayed. The default keyboard
has both text and numbers, but you can customize the keyboard using
the Inspector.

Click Text Field in the View window, click the Keyboard drop-down
menu, and select Numbers & Punctuation, as shown in Figure 17-9.

To see what your user interface will look like on the iPhone, choose
File->Simulate Interface or press 8+R. Figure 17-10 shows the final
result.

Chapter 17: Adding an iPhone User Interface 3 77

7 LTy Label Auributes
WacationViewContralier.xib RTe e - Miew A T o | ¢ | ©
ER=|m 0 - = ¥ Label -
WView Mode Imspaciar Search Firld _] Text HLAH0, 00 1
. — Y —
J 100,000.00 | Line Breaks | Truncate Tad = |
File's Qwmer First Resparnder View T i Bal i 4‘ = BB el |
- Aligrttent # Lines |
| Font [Heweticaiza] |l
Cash Font Size] Adjust to fit 0] [
u Minimum |
Charge | eler - |
\Eacadonapcdemal) o Uit ||
‘ shadow | EE—— {f]
ol [3 ey |
H. Offset V. Offset
! Enabiled |
| |
Srale Ta Fill =1
E— —d) a0 2 4
- . Background [|
Figure 17-8: — |

Tag [

Using the | orawing Copaque DOrosa i
Attributes 1 ¥ Clear Cantext Betore Drawing (1|
1 o Clip Subviewes |
Inspector 5 Asmorestza Subvirirs
to center ¢ Stretching 0.00] [z aa0 2
“ X ¥
the Label " Tl 1wl B
d- | 3l Widrh Meight L
Isplay. | Interacsion (] User Interactinn Enabled
I] Multiple Tauch
WacationViewController xib RO - View) o
0 -~) = -m
InspeeTar Search Firld |
m Sm— 1| Placehabder |
> - 100,000.00 | enoroma 1
File's Gwmer First Respander View Trar i Bal Disahled =
| Alignment [e = = :
Cash Border FREEFEE=E
U Clear Buttan | Never appears = W
Charge ¥ Clear When Editing Begans '
i B Fent | Helveria, 12.0 1
R NNRN=s FontSize W AdustTor 17 2] |1
Min Size |
Text Input Traits 1
‘ Cagitalize | Mone |
Carrection | Defauk M ||
Y Keyboard | ¢ Default] '
| popearancagg’ ! Capible |
| Humbers & Fumcniatior |
Return Key USL I
I Nomber Pug |
Phone Pad |
. - Mame Phane Pad -
Figure 17-9: 1 e s
Using the Mo
Attributes W, Allgnment V. Allgnment
[CJ Highlighted [Selected
Inspector b =
to setthe LU S — -
Dwese (soeiorm)
keyboard. L —=n"
| SE—

3 78 Part IV: Moving from Language to Application

Figure 17-10:
The user
interface in
all its glory.
|

16. Choose File~>Save or press 3+S to save what you have done.
17. Make your Xcode window the active window again.

If you can’t find it or you minimized it, just click the Xcode icon in the
Dock. The iVacation project should still be the active project. (You can
always tell the active project by looking at the project name at the top
of the Groups & Files pane.)

100,000.00

Transaction Balance

Cash

Charge

At this point, even though you haven’t put any of your code into the proj-
ect, you could build and run the project. Xcode will install it on the iPhone
Simulator and launch the Simulator, displaying the user interface.

The simulator allows you to debug your application and do some other
testing on your Mac by simulating the iPhone. Instead of touches, though,
you’ll need to use your mouse. You can also use the keyboard you see on the
iPhone, clicking one key at a time using your mouse, or the “real” keyboard
on the Mac you’re running the simulator on.

Chapter 17: Adding an iPhone User Interface

This is only a fraction, and a small one at that, of what you can do with
Interface Builder. Now it’s time to go back to Xcode and do what little coding
you need to run your application on the iPhone. Then you’ll come back to
Interface Builder, and I'll show you how to hook everything up so that when
the application is launched, you're ready to go.

Implementing the User Interface in Code

<NECD

Figure 17-11:
Copy the
classesto
the new
project.
|

As | promised earlier, the coding you will have to do is minimal to hook up
the user interface.

In this section, | extend what you do in Chapter 16. If you want to start from a
clean copy of the project from where you left off, you can use the project
found in the Chapter 17 Start Here folder, which is in the Chapter 17 folder.

The first thing you'll have to do is copy all of the classes in the Class folder in
the Groups & Files list in the Vacation project (from Chapter 16 into the iVaca-
tion project). [show you how to do that in Chapter 11 — you can see how to
do that in Figure 17-11.

m VacationViewController.m - iVacation ana h| Budget b - Vacation D
Simulater - 3... = | B ‘& B (@ sing totch) ol (1061 Debuge- x| 4 *& B song varcn 1
Overview Action Bulld and Bun Tusks Search | Overview Aation Buikd and Run Tasks Search
Groups & Files File Na...a | & Code ° 4 ® | | Goups&Files . File Naiow| % Cade e A o
B4 wacarion B [wacaonv 25K w | 7B vacaton 8 L Tramanin o 10K o
v F ek Applata.plist] Transactio
;, .\-.n.u.unnwl_j!:L,, ¥] Classes u] Destinatiur v 7% I
) WacaianApDE | iogattaclan b | Beudgech | T

« | » G Budgerh
FTCN

&
(11

o] IVacationView, 2tk cion

m [Budget.m
|l WacationView . satg@ltT snsaction b f Transaction.h

'
i CashTransaction.h .
B CashTransaction.m 1

[B CredtCardTransacriod ntortace Bidget § NSObjact {

[Other Saurces | CashTrafs:
v [Resources
A1 IVaeatinnView sl Car
+ MalnWIndow: 13 e stinatio:

" | VagationVie <y ™% Co #u

[Framewarks P s

¥ [Praduces =
(@) rargets
¥ < Executables 4 DestinationCategury.r
¥ (4, Find Resulrs
» L Bockmarks
Lg=g <]

@ Praject tymhals
» @ Implementation Files
b [l Interface Builder Files

ivacationViewCont!

B DestinatinnCategary

14) EnitWithAmounts {duuble) a
=
R ¢} spendDollars: {dusbile) d
| chargeForeignCurrency: |

double) returnBalance;

W Vacatian_Prefix peh
] Vacation.m
| Documentation
[External Frameworks anc

[Products

@ Targers

¥ (ff Executabley

¥ 4, Find Results

F [F Gookmarks

M
B Project Symbals

¥ [l implementatian Files
d to do ad) | [interface Builder Files

-

IDebugging terminated. D succeeded _,{]

379

380 Part IV: Moving from Language to Application

\NG/
&éb“

Figure 17-12:
Find and
Replace.

|

Be sure to check Copy when the Copy dialog pops up.

I also could have selected Project=>Add To Project or pressed 88+Option+A,
navigated to the Vacation project folder, and selected the classes [wanted
to add.

While developing for the iPhone and Mac OS are amazingly similar, there are
a few differences.

So far, you have used Cocoa headers. But for iPhone development, you will
have to change that. You will need to replace #import <Cocoa/Cocoa.h>
in the .h files of your classes with #import <UIKit/UIKit.h>.You can do
that one of two ways.

You can go through all of your .h files and replace the statements one by one.
Or you can do a global search and replace. Since I am basically lazy, I'll pick
the latter.

1. Press 38+Shift+F, which will bring up the Project Find window that
you see in Figure 17-12.

1 Macation - Project Find
oraahs =] | In Project $] Fird

Reprace: | simpaort

=] | rextual % (meplace

Display Results in Find Smart Group Contains #) ® 1anere case (options... |

T Tranzastion.h
#import <Cocoa/Cocoah>
redi nsactionh

#impor <Cocoa/Cocoahs

Found “Simpart <CocoafCocoshs" - 7 occurtences

2. Enter #import <Cocoa/Cocoa.h> in the Find field (if it’s not already
there) and click Find. This gives you a list of all the occurrences.
There should be seven.

3. Enter #import <UIKit/UIKit.h> and click Replace (see Figure
17-12). You’ll see a dialog asking you if you really want to do that.
Click Replace, and you’ll be ready to go.

Chapter 17: Adding an iPhone User Interface 38 ’

When you create the project, Xcode gives you two classes to start with. The
first is the ivacationAppDelegate class. This is a delegate that is imple-
mented using a formal protocol of the kind I talk about in Chapter 16. If you
click the iVacationAppDelegate.h file, you can see the following:

@interface iVacationAppDelegate
NSObject <UIApplicationDelegate>

If you look in the iVacationAppDelegate.m file, you'll see that application
DidFinishLaunching: was implemented automatically by the template.
Adding code here gives you an opportunity to do application-level initializa-
tion. You might want to restore the balance data you have been saving here,
for example. You can see that the code here does some fancy footwork with
the viewController and window. In addition, you'll see dealloc imple-
mented. You'll also often implement applicationWillTerminate:, which
will give you an opportunity to do what is necessary before your application
shuts down. It is here that you will likely save the balance data. I'll not get
into that in this book, but you are welcome to play around with it yourself.

This is a great example of how to create extensible applications using the
Objective-C features I explain in Chapter 16. The framework knows how to
do everything to create and run a “generic” iPhone application, but it can’t
know what you need to do for your particular application. To solve that
problem, the framework designers created a (formal) UlApplicationDelegate
Protocol for you to adopt, with a number of methods you can implement to
give you a say in the application running process. As I explain in Chapter 16,
this is a situation where the framework has to count on your code because it
doesn’t know what you want to do to initialize or shut down an application.
Subclassing is not an option here (the application object is created at startup,
before your individual application is even a glimmer in anyone’s eye).

But enough of the interesting stuff; you have to explore that on your own or
by reading my book, iPhone Application Development For Dummies. What you
now will be focusing on is the iVacationvViewController. In Chapter 11,

[explain the Model-View-Controller (MVC) pattern. Understanding it is criti-
cal if you are going to develop iPhone apps, so if you are a little foggy on that
topic, please refer to Chapter 11. The ivacationvViewController plays
the role of the controller in the MVC pattern. In fact, the view you created in
Interface Builder is the view part of the pattern, and all those classes you just
added are the model, with the Destination object acting as the interface
for the controller to the model. See, it does all finally fit together.

The ivacationvViewController is responsible for getting data from the
model to the view (which you created in Interface Builder) to display (that
Balance label, for example) and for sending messages to the model to

382 Part IV: Moving from Language to Application

update itself with new information (transactions, for example). ivacation
ViewController is also responsible for view control actions (Text Field
input and the Cash and Charge buttons).

You'll start by entering the code necessary to implement these view control-
ler responsibilities.

I'll start with some things you need to add to the iVacationViewController.h file.
1. Go to the Xcode project window and in the Groups & Files pane, click

the triangle next to Classes to expand the folder.

2. From the Classes folder, select iVacationViewController.h — the
header file for ivacationviewController.

3. Look for the following lines of code in the header:

#import <UIKit/UIKit.h>
@interface iVacationViewController : UIViewController{

}
@end

4. Type the following six lines of code, indicated in bold, into the
iVacationViewController.h file:

#import <UIKit/UIKit.h>
@class Destination;

@interface iVacationViewController : UIViewController

{

Destination *europe;
IBOutlet UITextField *transactionField;
IBOutlet UILabel *balanceField;

- (IBAction)spendDollars: (id)sender;
- (IBAction)chargeCreditCard: (id)sender;

@end

@class Destination declares the Destination class, just as before.

The ivacationvViewController creates the Destination object, and
Destination *Europe is an instance variable the iVacationview
Controller uses to send messages to Destination (the model interface).
I'll show you how to implement only a single destination in this example. In a
real application, you would probably have an array of destinations instead.

Chapter 17: Adding an iPhone User Interface 383

Adding outlets

Next, look at the two IBOutlets:

IBOutlet UITextField *transactionField;
IBOutlet UILabel *balanceField;

As I said, the view controller connects the view to the model. In the view,
the user will be entering the amount of a transaction in the UITextField
(the object that implements a Text Field) you just added to the view, and
you’ll be displaying the balance in the UILabel (the object that implements
the Label). But in order to get information from the Text Field and update
the Label text, you need to know where those objects are. Fortunately, the
framework is designed to allow you to do this easily and gracefully. The view
controller can refer to objects in the nib (as the . xib file is called) by using
a special kind of instance variable referred to as an outlet. To access the
UITextField and UILabel objects in your iVacation application, you need
to do two things:

1. Declare an outlet in your code.

2. Use Interface Builder to point the outlet to the text field in the view you
just created.

Then, when your application is initialized, the text field and label outlets are
automatically initialized with a pointer to the UITextField and UILabel
objects, respectively. You can then use those outlets from within your code
to get the text the user entered in the text field and display the balance in the
label field. Pretty cool, isn’t it?

The first two lines of code here declare the outlets, which will automati-
cally be initialized with a pointer to the text field (transactionField) and
label (balanceField) objects when the application is launched. But, while
this will happen automatically, it won’t automatically happen automatically.
You have to help a bit, and I'll show you how when you go back to Interface
Builder. First, though, you need to examine the IBAction statements.

Implementing Target-Action

If you have a button in your interface, you need to add a method to your code
to handle those times when somebody decides to actually tap the button.
This involves declaring the action methods for each button in the interface,
actually just as you do any other method.

- (IBAction)spendDollars: (id) sender;
- (IBAction)chargeCreditCard: (id) sender;

384 Part IV: Moving from Language to Application

Here, I declared two new methods — spendDollars: and chargeCredit
Card:. While declaring methods is not new, what is new is the keyword —
IBAction.

IBAction is one of those cool little techniques, like IBOutlet, that does
nothing in the code but provide a way to inform Interface Builder (hence,

the IB in both of them) that this method can be used as an action for Target-
Action connections. All IBAction does is act as a tag for Interface Builder —
identifying this method (action) as one you can connect to an object (namely
the button) in an .nib file. In this respect, the IBAction mechanism is simi-
lar to the IBOutlet mechanism I discussed earlier. In that case, however,
you were tagging instance variables; while in this case, you are tagging meth-
ods. Same difference.

You will see how the IBAction and IBOutlet keywords work later when
you launch Interface Builder and connect a button to its iVacationview
Controller method. IBAction is actually defined as a void, so if you think
about it, all you've done is declare a new method with a return type of void.

(IBAction) buttonPressed: (id) sender;
is functionally equivalent to
(void) buttonPressed: (id) sender;

The actual name you give the method can be anything you want, but it

must have a return type of IBAction. Usually, the action method takes

one argument — typically defined as id, a pointer to the instance variables
of an object — which is given the name sender. The control that triggers
your action will use the sender argument to pass a reference to itself. So,
for example, if your action method is called as the result of a button tap, the
argument sender will contain a reference to the specific button that was
tapped.

The Target-Action mechanism enables you to create a control object and tell it
not only what object you want to handle the event, but also the message to
send. For example, if the user touches the Cash button onscreen, you want to
send a “spendDollars” message to the view controller. But if the Charge button
on the screen is touched, you want to be able to send the same view controller
the “chargeCreditCard” message. If you couldn’t do that and every button had
to send the same message, the coding would be more complex. You would
have to determine which button had sent the message and then what to do in
response (likely using a switch statement). That would make changing the
user interface more work and more error prone.

Chapter 17: Adding an iPhone User Interface 385

Having the sender argument contain a reference to the specific button that
was tapped is a very handy mechanism, even if you're not going to take advan-
tage of that in this application. With a reference to the specific button that was
tapped, you can access the variables of the control that was tapped.

What you are doing here is implementing the third of the three major design
patterns for applications. The first was Model-View-Controller, the second was
Delegation, and this third one is Target-Action.

The Target-Action pattern is used to let your application know that a user
has done something. For example, he or she may have tapped a button or
entered some text. The control — a button, say — sends a message (the
action message) that you specify to the target you have selected to handle
that particular action. The receiving object, or the target, is usually a view
controller object.

You can also change the target and action dynamically by sending the control
setTarget: and setAction: messages.

Adding the methods

Now that you are finished with the interface specifications, it is time to imple-
ment the code.

Okay, you've declared the method; the next thing for you to do is actually add
the spendDollars: and chargeCreditCard: methods to the implementa-
tion file, iViewController.m.

1. Go back to the Classes folder in the Groups & Files list and select
iVacationViewController.m — the implementation file for ivacation
ViewController.

2. Look for the following lines of code in the implementation file:

#import "iVacationViewController.h"

@implementation iVacationViewController

3. Add this after #import "iVacationViewController.h":

#import "Destination.h"

4. Add the following lines after the @implementation iVacation
ViewController statement:

386 Part IV: Moving from Language to Application

3

- (IBAction)spendDollars: (id) sender({

NSLog (@"Sending a %.2f cash transaction",
[transactionField.text floatValue]) ;
[europe spendCash: [transactionField.text floatValuell;
balanceField.text = [[NSString alloc]initWithFormat:
@"%.2f", [europe leftToSpendl]];

- (IBAction)chargeCreditCard: (id)sender {
NSLog (@"Sending a %.2f credit card transaction",
[transactionField.text floatvalue]) ;
[europe chargeCreditCard: [transactionField.text
floatvValuel];
balanceField.text = [[NSString alloc]initWithFormat:
@"%.2f", [europe leftToSpendl]];
}

Notice that | am still tracking what my program is doing in the Debugger
Console.

balanceField. text is a property in the Label object that points to the
text the label is supposed to display. What you are having it display, in this
case, is a string you created to display the balance.

[[NSString alloc]initWithFormat:
@"%.2f", [europe leftToSpendl]];

I want to remind you that when you assign to a property in this way (using
the dot syntax), you are actually calling the setter method. You could have
coded that statement as

[balanceField setText:[[NSString alloc]initWithFormat:
@"%.2f", [europe leftToSpend]]];

The same thing is also true of transactionField. text. This could have
been coded as

[europe spendCash: [[transactionField text] floatvValuell];

This code should look familiar, since it is basically what you have been
using for the last several chapters to send transactions to the Destination
object. The only difference here is the transaction amount. Instead of the
fixed values you have been using, now you are getting the transaction
amount the user has entered. You get that by sending a message to the
transactionField object in your view, using the outlet you declared in
the interface file to retrieve the text the user enters. (Notice how easy it is

to turn a string into a float using an NSString method.)

Chapter 17: Adding an iPhone User Interface 38 7

Similarly, instead of the NSLog statement you used to use to display the
remaining balance, you are sending a message to the Label through the
balanceField outlet to update its text and display it in the view.

This is all the logic you need to connect the model and user interface — of
course, there is some plumbing left to do — and to hook up the connections
in Interface Builder.

1. Scroll down the code for iVacationViewController.m until you reach
the following lines:

/*
// Implement viewDidLoad to do additional setup after
loading the view, typically from a nib.
(void)viewDidLoad
{
[super viewDidLoad] ;
}
/*

2. Delete the /* and the */ and add the lines of code in bold:

// Implement viewDidLoad to do additional setup after
loading the view, typically from a nib.
- (void)viewDidLoad {

[super viewDidLoad] ;
NSString* europeText = [[NSString alloc]
initWithFormat: @"%@", @"Europe"];
europe = [[Destination alloc]
initWithCountry:europeText andBudget:10000.00
withExchangeRate:1.25];
[europeText release];
NSString* balanceFieldText = [[NSString alloc]
initWwithFormat:@"%.2f", [europe leftToSpend]];
balanceField.text = balanceFieldText;
[balanceFieldText release];
}

viewDidLoad is a view controller method that you are overriding.
Again, there are no surprises here in the code. The only difference is that
[added a message to the balanceField to initialize it with the starting
budget, which you may have noticed, I bumped up to $10,000. Of course,
in a “real” application, you would provide a way for the user to enter the
starting budget in a view.

3. Scroll down the code in iVacationViewController until you reach the
following lines:

- (void)dealloc {

[super dealloc];

388 Part IV: Moving from Language to Application

You can press 38+F to find something in a single file, as opposed to
shift+3+F, which finds it in all the project files.

4. Enter the following lines of code between the (void)dealloc { and
[super dealloc]; lines:

[europe release];

5. Choose File>Save or press 8+S to save what you have done.

Connecting Everything Up in Interface
Builder and Running iVacation in
the Simulator

Now it is time to go back to Interface Builder and hook up the IBOutlets to
the text and label fields and the IBActions to the buttons.

1. In the Groups & Files listing on the left, double-click the ivacation
ViewController.xib file.

2. Right-click the File’s Owner icon in the ivacationViewController.
xib window to display a list of connections (see Figure 17-13).

1l Library -
v m
100,000.00 = = P !
. . O 0
Transaction Balance d a8 8

Cash

Charge : i(é
=

= b

1.2 Label Tesl
B o™ -
| —
Round Rect Buttan
Figure 17-13: e
Con n e ct th e Imples ts a button that lrlll:ru::‘l‘: l|m“h_"0u
outlet to the
text field.

Chapter 17: Adding an iPhone User Interface 389

There you see the IBOutlets you declared, balanceField and
TransactionField under Outlets (ignore the others; you won’t
be using them) and chargeCreditCard and spendDollars under
Received Actions.

Cool isn’t it — kind of like getting to the end of a jigsaw puzzle and
finally seeing the whole picture.

3. Click the little circle next to transactionField and drag the blue line to
the Text Field, as shown in Figure 17-13, and then let go. Do the same
thing for the balanceField, clicking the circle next to it and dragging
the blue line to the Label (the 100,000.00 one).

The buttons work similarly, but there is another step involved.

4. Click the little circle next to spendDollars and drag the blue line
to the Cash button and let go. This time, as you see in Figure 17-14,
another list of connections will pop up. Select Touch Up Inside for the
connection. Do the same thing for chargeCreditCard and the Charge
button.

QWP The Touch Up Inside is the event that is generated when inside the
button is the last place the user touched before lifting his or her finger.
This setting is more or less the standard for an iPhone button control

like this.
IvacationViewControlier.xib View - e
: Objecs | Classes Media
Ell=im 9 ~© = -on
iew Mode Ingpector Search Held i Liksrary -

=

100,000.00 (‘ﬁ “ {;\ I|f\ !

Transaction Balance
’-.j:'{'_’ b

O +0 8®80®

‘HE
-

1.2 Label Tesl
H - ——
Round Rect Buttan
| Bultor
- . Implements a brattn that intercepts twuch
Figure 17-14: evints and sards an Aeton MESSagE 10 & rgt
. ohject when i's tapped. You can set the title,
image. and other appearance propenies of a
Connecting o b ol i Lokl
appearance for pach hutan stare
the button.
t-3 Q

390 Part IV: Moving from Language to Application

5. Choose File>Save or press 3+S to save what you have done.

6. Go back to the Xcode project window and select the Build and Run
button in the Project Window toolbar.

This launches the iPhone simulator. Figure 17-15 shows what happens
if you click in the Text Field, enter 100 (either clicking on the simulator
keyboard or using your Mac keyboard), and then click the Cash button.

100 900.00

Transaction Balance

Cash

Charge

B0BBOD000E
— |G E

Figure 17-15: ABC space return
Click in the

text field
to enter a
transaction.

S
© You can find the completed project on the CD in the Example 17 folder, which
is in the Chapter 17 folder.

Frankly, I could have done a lot better job with the aesthetics of this user
interface, and before showing it to a user [would. If you come up with any-
thing you are proud of, send it to me at http: //nealgoldstein. com. I'd
love to see it.

Chapter 17: Adding an iPhone User Interface 39 ’

A Final Note

This is it! For those of you who haven’t programmed before, you may be
thinking that just as you expected (and I promised), the programming
described in this book is pretty easy. But for those of you with programming
experience, the ease with which you can accomplish things using object-
oriented programming can be truly breathtaking. I still feel like a kid in candy
store when I code this way.

While there is a lot more you’ll need to do to turn iVacation into a useful
application, including saving data, you now have the knowledge and skill to
explore extending this application on your own — so go for it!

3 92 Part IV: Moving from Language to Application

Chapter 18
Adding a Mac User Interface

In This Chapter

Painlessly putting a user interface on the model

Using Interface Builder to create a user interface
Adding controls to the view

Creating a view controller

Running the application on the Mac

n this chapter, | keep the second part of the promise I've been talking
about since Chapter 11 — if you create the right class structure, putting
on a user interface will be easy.

Now that you have seen how easy it is to take your “model” and add an
iPhone user interface, I'll show you how to do the same thing for the Mac OS.
While the basic idea is the same, there are a few differences in detail that I'll
explain.

Creating Vour Project

As with the iPhone you will be working in an Xcode project.

1. Launch Xcode if it is not already running.

2. Choose Filer>New Project to create a new project. You can also press
Shift+86+N.

3. In the New Project window (see Figure 18-1), click Application under
the iPhone OS heading.

Just as before, when you select a template, a brief description of the
template is displayed underneath the main pane. As you know, each of
these choices is actually a template that generates some code. In the
past, when you were using the Foundation Command Line Tool, that
code was minimal. Now, however, you are going to see a lot more.

394 Part IV: Moving from Language to Application

Aann New Project

|
Figure 18-1:
The New
Project
assistant.

Choaose a template for your new praject:

l iPhone 05 [
A\

Application
14 N

Uikrary
Cocoa Anplication

‘; Mar 05 X

R
Framewurk & Library

< nd

Col:n.l »\Dl}IrScr ot D—.m'u comn:ncr

Application Plug-in
Sysrem Plug-in
Daher

Options _] Create document-based application

_| Use Cure Data for storage

;\ Cocoa Application

Command Line
Tanl

This praject hullds a Coraa-based application weitten in Ohjective-C

(Cancel)

|
Figure 18-2:
The Project
window.
|

(Choose...)

4. Select View-Based Application from the choices displayed and then

click Choose.

Xcode then displays a standard save sheet.

5. Enter the name mvacation in the Save As field, choose a Save loca-

tion, and click Save.

After you click Save, Xcode creates the project and opens the Project

window (see Figure 18-2).

¥ [Classes
[a) mvacatianapnDelega
wl mvacationAppDelega
L Other Sources
¥ [0 Resources
[F1 mvacation-Infa_piist
InfoPlisLstrings
[MainMenis xib

* L Framewarks
¥ [Praducts
(5D Targets
P (# Executabiles
¥ (4, Find Resulrs
» M gackmarks
L= g i)
B Praject tymhals
[Implementation Fikes
¥ [Incerface Builder Files

ann ™1 mVaeation (&
[10.6] Debug | x86.64 = | &~ (= & @ O Qs 3ing Maic
Ovendew Action Build and Run ~ Tazkx Info Search
Groups & Files File Mame: &| A Code L] 'y L
v By muacatian B 5 mManmeno vib Englisk)

Chapter 18: Adding a Mac User Interface

6. In the Groups & Files list (on the left side of the Project window),
click the triangles next to the Classes and Resources folders to
expand them.

You’ll notice there is only an mvacationAppDelegate class, but nothing
corresponding to the ivVacationviewController. That’s one difference
between the iPhone and Mac OS X templates. You'll create a class to accom-
plish the same things that ivVacationviewController did in the last chap-
ter, but for now go on to Interface Builder.

Using Interface Builder to
Create a User Interface

Just as you do in Chapter 17, you use Interface Builder to create your user
interface.

1. In the Resources folder, double-click the MainMenu.xib file.

You will also see a disclosure triangle next to the MainMenu.xib file. This
is part of the localization mechanism (this enables foreign speakers to
use your application in their native language), and [won’t get into that
here (your Xcode configuration may not show this).

Interface Builder launches.

2. Check to see whether the Library window (at the right in Figure 18-3)
is open. If it isn’t, open it by choosing Tools=>Library or 38+Shift+L.
Make sure Objects is selected in the mode selector at the top of the
Library window and select View & Cells in the drop-down menu
below the mode selector.

As you see in Chapter 17, the Library has all the components you can
use to build a user interface. This one looks a little different than the one
in iPhone though.

MainMenu.xib was created by Xcode when you created the project from
the template. In Figure 18-3, as you can see, a window is already there,
and that’s what you will see on the Mac when you launch the applica-
tion. A menu window is also there, but [won’t be getting into that, and
you can close it if you like.

Next, you need to add the Mac version of the text field, buttons, and
labels that you can use to enter a transaction and have the remaining
budget displayed. When your application is launched, those items will
be created for you automatically, just as they were on the iPhone.

395

396 Part IV: Moving from Language to Application

<P Also notice that a warning (the yellow triangle with the exclamation
point inside) is in the bottom-right corner of the MainMenu.xib-English
window. You probably won’t see it on your desktop. It has to do with the
resolution I need on one of the multiple monitors on my Mac to capture
screen shots.

3. Scroll down in the Views & Cells view to the Views & Cells - Inputs

and Values subheader. Drag a Text Field item from the Library into
the View window to add a text entry field (see Figure 18-3).

File's Owner First Responder Application

in Meny Window (mVa. M Vacation A,

Main Menu
File Edit Format View Window

[Mo Library
MainMenu.xib - Englist . m\Vacation | % Classes Media
Bmia @ a ! .
View Mute Inspector Search Field | 0 Views & Cells . =
w A b
/ ! Label - Displays text that the user
- | Label Con setect

. Text Field - Displays text that the
user can select or edit and that
sends its actian message 1 s

- Secure Text Field - Hides vext fram
..... display or other access via the user
nterface.

Search Field - Implements a text

Q field cantrol that is aptimized for
Fani Manages performing text-based searches,
13 mVacation xcodeproj al 4 Token Field - Prevides tokenized

editing similar to the address field in
Mail.app.

_ Date Picker - Provides far visually
212(3! displaying and editing an NSDate
nstance.

Combo Box - Allows yau to either
| enter tent directly fas you wauld with
T an NSTexrField) or click the

" Wrapping Text Fleld - Displays text &
4 that the user can select of edif and

About mVacation
Preferences... X, Text Flad
I Services >
An NSTextField object is a kind of NSControd
H 0 i that displays text that the user can select or
Figure 18-3: Hide mVacation ~ #H i il el
Hide Others EH targer when the user presses the Rerem key

Adding a
Text Field.

Shaw All

Cuit mVacation

®Q

while editing

- a

A Text Field item is just like the text field for the iPhone, although a
different class.

4. Drag a Label item from the Library window over to the View window,
as you do in the Chapter 17.

5. Double-click the Label to enter 100, 000. 00 (still my default budget,
talk about wishful thinking).

As I explain in Chapter 17, “Using Interface Builder to Create a User
Interface” Step 6, this will make the label wide enough to display the
budget.

Chapter 18: Adding a Mac User Interface 39 7

6. Drag in two more Labels; double-click each one; and enter
Transaction and Balance, respectively.

7. Scroll back up to the top of the Views & Cells view and drag in two
Push Buttons.

8. Double-click the first button and type Cash. Do the same thing for the
second button, but this time type Charge.

When you are done, your window should look like Figure 18-4.

Menu.xib - Englist -Yale

ER & [O -

View Mute Inspector Search Field 8 vy 5 Bl .]

100,000.00 v &
ﬁ }\ Transaction Balance Push Button - Inftercepts mouse-

[Ohjents.| Classes Media

=

o) down events and sends an action
medsage to a target ahject when
File's Qwner First Responder Application -
- . .__Cash Gradient Buttan - Intercepts
— mouse-down events and sends an
- o action message to a Larpet olject...
= . Charge |
Main Menu Window {mVa... M Vacation A Rounded Rect Button - Iniercepts

mause-dnwn events and sends an

action message B a target obiect..,
Recessed Button - Intercepts
mouse-down events and sends an
Fonil Manages actian message 1o a target shjrer

i m¥acation xcodepro) il 4 Teatured Button - Intercepis

mause -down events and sends an

action message 1o 2 Largel object.,
Rounded Textured Button -
Intercepts mouse-down events and
sends am actian message 18 a
| Square Button - Intercepts mouse
down events and sends an actian
message Lo a targel object when,
Mal u
. : = Bevel Button - Intercepts mouses i
Eile, Ediv_ Format. Miew Window Hel down events and sends an actian
About mVacation e
Preferences... X, === Push Bition
I Services >
The NsButton class ix a subclass of NSConral
T - i that intergepts mouse -down events and sends
Figure 18-4; | Hidemvacaton — H ThaC gt i don s i sens
Hide Others LEH elicked ar pressed
Your user Shaw All
Inte rface. Quit mVacation xQ
- a
|

9. Select the 100,000.00 Label and open the Inspector Window as you do
in Chapter 17 by choosing Tools=>Attributes Inspector or by pressing
8+1.

10. Select center alignment in Alignment control. This time I left the color
the same.

11. Choose File~>Save to save what you have done.
12. Make your Xcode window the active window again.

If you can’t find it, or you minimized it, just click the Xcode icon in the
Dock. The mVacation project should still be the active one. (You can
always tell the active project by looking at the project name at the top
of the Groups & Files pane.)

398 Part IV: Moving from Language to Application

Implementing the User Interface in Code

Just as on the iPhone, the coding required to hook the user interface to the

Figure 18-5:
Adding

files to the
project.
|

model is minimal.

If you have been following along with me, I'll be extending what you did in
Chapter 16. If you would like to start from a clean copy of the project from
where you left off, you can use the project found in the Chapter 18 Start Here

folder, which can be found in the Chapter 18 folder.

As with the iPhone application, you will have to copy all of the classes from
Chapter 16 into your new project. In Chapter 17, I have you drag them in. You

can do it that way or you can use Project=>Add To Project.

1. Select the classes folder in the Project window, and select
Project=>Add To Project or press 8+Option+A. Navigate to the
Vacation Project from Chapter 16 (or whichever project you are using)

as I did in Figure 18-5.

B Transaction.m

5/70/09

[« »] [33 =4] [E@Vacation 'H Q
¥ DEVICES N R — Al Date Mudified
B3 Meal Col... [Armiransactionbelegate.h 5/19/09 i
f____! Test n ATMTransactionDelegate.m 5/19/09 r
24 Macinto... =| BalanceData.txt 4:41 PM
£ iiisk [Budgeth 6/24/09
= B Budger.m 6/25/09
¥ SHARED » g build 6114/09
S Neal Gol... m CashTransaction.h S/20/09
¥ PLACES ™ CashTransaction.m 6/25/09
A Deskiop [CreditCardTransaction.h 5/20/09
43 neal B CreditCard|ransaction.m 6/25/09
A Applicati... [Destnarion.h s/20/09
"} nacuments B Destination.m S/18/09 I
(1 Applican [DestinationCategory.h 5/19/09 I
(] Deskop B DestinationCategory.m 5/20/09 I
[Transacuon.h 8/20/09 I
¥ SEARCH FOR
|
|

Jiteday [Vacation Prefix.pch 4/16/09

L) Yesterday Vacation. 1 4/16/09 .
(L) Past Week | Im Vacation.m 4:41 PM 4
(5] Al Images + ™ vacarion. xcodenral a-3u Pm I
S () (Cadad)
(_MNew Folder) (_Cancel) (ErAddis

2. Again, be sure to check “Copy items into the destination group’s

folder (if needed)...” when the dialog pops up.

While developing for the iPhone and Mac OS are amazingly similar, there are

a few differences.

In your iPhone project, you deleted #import <Cocoa/Cocoa.h> in header

files. This time you’ll leave them unchanged.

Chapter 18: Adding a Mac User Interface 399

While the iPhone Xcode template you used added a view controller class to
your project, in the case of the Mac, you’ll have to do that yourself. Here’s how:

1. Select the Classes folder in the Groups & Files list.
This tells Xcode to place the new file in the Classes folder.

2. Select File>New File from the main menu (or press 8+N) to get the
New File dialog.

3. In the leftmost column of the dialog, first select Cocoa under Mac OS
X; then select the Objective-C class template in the top-right pane.
Make sure NSObject is selected in the Subclass of the drop-down
menu.

You see a new screen asking for some more information.

4. Enter mVacationController.m in the File Name field and make sure the
checkbox “Also create mVacationController.m” is checked and then
click Finish.

[start with some things you need to add to the mVacationController.h file.

1. Go to the Xcode Project window and, in the Groups & Files pane, click
the triangle next to Classes to expand the folder.

2. From the Classes folder, select mVacationController.h — the header
file for mVacationController.

3. Look for the following lines of code in the header:

#import <Cocoa/Cocoa.h>
@interface mVacationController : NSObject(

}
@end

4. Add the following six lines of code, indicated in bold, to the mVacation
Controller .h file:

#import <Cocoa/Cocoa.h>
@class Destination;

@interface mVacationController : NSObject {
Destination *europe;
IBOutlet NSTextField *transactionField;
IBOutlet NSTextField *balanceField;

}
- (IBAction)spendDollars: (id)sender;
- (IBAction)chargeCreditCard: (id)sender;

@end

4 00 Part IV: Moving from Language to Application

The first line (eclass Destination) declares the Destination class, just
as you have been doing so far. The mvacationController will create the
Destination object and Destination *Europe; is an instance variable
the mvVacationController uses to send messages to Destination (the
model interface).

Adding outlets, Target-Action,
and the methods

The only differences between what you have to do here and what you do in
Chapter 17 are that the classes of the Label and the Text Field have changed
in the TBOutlet declarations. On the iPhone, you use a UTTextField and
UILabel; on the Mac OS, you use NSTextField for both.

The two IBAction method declarations — spendDollars: and
chargeCreditCard: are the same.

Okay, you've declared the methods; the next thing you need to do is add the
spendDollars: and chargeCreditCard: methods to the implementation
file, mVacationController.m.

1. Go back to the Classes folder in the Groups & Files listing and select
mVacationController.m — the implementation file for mVacationCon-
troller.

2. Look for the following lines of code in the implementation file:

#import "mVacationController.h"

@implementation mVacationController

3. Add this after #import "iVacationViewController .h":

#import "Destination.h"

4. Add the following code after @implementation mvVacation
Controller:

- (IBAction)spendDollars: (id) sender{

NSLog (@"Sending a %.2f cash transaction",
[transactionField.stringValue floatValuel) ;
[europe spendCash:
[transactionField.stringValue floatValue]];
[balanceField setStringValue:
[[[NSString alloc]initWithFormat:@"%.2f",
[europe leftToSpend]]Jautoreleasel]];

Chapter 18: Adding a Mac User Interface 40 ’

- (IBAction)chargeCreditCard: (id)sender {

NSLog (@"Sending a %.2f credit card transaction",
[transactionField.stringValue floatValuel]) ;
[europe chargeCreditCard:
[transactionField.stringValue floatValue]];
[balanceField setStringValue:
[[[NSString alloc]initWithFormat:@"%.2f",
[europe leftToSpend]] autorelease]];

}

This is essentially the same thing you do for the iPhone implementation

in Chapter 17 (you can refer to it if you are a little hazy on the topic). The
differences are that instead of balanceField. text and transaction
Field. text that you used on the iPhone, you are using balanceField.
stringValue and transactionField.stringValue. You'll also notice
that this time instead of the dot notation, you are sending a message to the
getters and setters in the “conventional way,” and you are using auto
Release to release the text values you created.

This is all the logic you need to connect the model and user interface. Of
course, just as with the iPhone, there is some plumbing left to do here.

1. Now you add the following code:
- (void)awakeFromNib {

[super awakeFromNib] ;

NSString* europeText = [[NSString alloc]
initWithFormat:@"%@", @"Europe"];
europe = [[Destination alloc]

initWithCountry:europeText andBudget:10000.00
withExchangeRate:1.25];
[europeText release];
[balanceField setStringValue: [[[NSString alloc]
initWithFormat:@"%.2f",

[europe leftToSpend]] autorelease]];
3

This is virtually the same code you add to the viewDidLoad: method in
Chapter 17. Instead of viewDidLoad, which you override, you are going
to use awakeFromNib. This is actually an informal protocol method, and
classes implement this method to initialize application information after
objects have been loaded from the Interface Builder nib file. An awake
FromNib message is sent to each object loaded from the nib file after all
the objects in the archive have been loaded and initialized. This is one of
the reasons I explain informal protocols in Chapter 16. This also means
that in order for this method to be invoked, you must have this object
created by the nib loading code. I'll show you how to do that shortly.

4 02 Part IV: Moving from Language to Application

2. You can also add the dealloc method while you’re at it.

- (void)dealloc {

[europe release];
[super dealloc];
}

3. Choose File>Save to save what you have done.

Connecting Everything in Interface
Builder and Running mVacation
on the Mac

Now it is time to go back to Interface Builder and hook up the IBOutlets to
the text and label fields and the IBActions to the buttons.

1.

In the Groups & Files listing on the left, double-click the MainMenu.
xib file.

2. The Library window should still be open, if not open it.

. This time, in the mode selector at the top of the Library window,

select Object & Controllers. Then drag an Object icon to the
MainMenu.xib - English window, as shown in Figure 18-6.

. Open the Identity Inspector by choosing Tools=>Identity Inspector or

press 88+6. Make sure the Object icon MainMenu.xib window is still
selected and click the Class pop-up menu. Scroll down and select
mVacationController as I did in Figure 18-7.

You do this because when your application is launched, the runtime
will go out and load and create the objects in your nib file (there’s
actually more to it, but this is more or less what happens). Adding an
mVacationController object here means that in addition to the
window and menu you see on the screen, your mvacationController
object will be created automatically as well. That also means the
awakeFromNib message will be automatically sent to the method that
you just implemented (since it is sent to all objects created from the
nib) — all’s right with the world.

The next thing you’ll do is make the same connections you made to the

view controller object (which was already in a nib file thanks to the tem-
plate), which will initialize the IBOutlets and connect the buttons to the

action methods you declared earlier in the IBAction statements.

|
Figure 18-6:
Anew
Custom
object.
|

|
Figure 18-7:
Select the
class of the
new object.
|

=7 MainMenuxib - Fnglsh

File's Owner First Responder Application
- e

= . - .
= -

Main Menu Window (mva... M Vacation A...

Fant Manager

100.000.00

Transaction Balance

Chapter 18: Adding a Mac User Interface

[-Objects. | Classes Media |

thir:h & Controllers

- Main Menu

Format View Window Help

Hide Others
Show All

Quit mVacation

13 & Cunty
Object - Provides an instance of an
HSObject subrclass that is not
available in Interface Builder

View Contraller - & camraller thar
manages a view, typically loaded
Trom a nils file.
Controtlers - Bandings
Object Comrolier - A Cocoa
bindings-compatible controlier class.
Properties of the content object of...

Array Controller - A Cocoa bindings
compatible class thas manages a
collection of chpects.

Tree Cantraller - A Cacea hindings
compatible contraller that manages a
wree of ebjects.

User Defaults Controller - A Cotoa
Iindings comparible cantraller elass
Properties of the shared Instance...

Dictionary Controfler - A Cocoa
bindings compatible class that
‘manages display and editing of the

Oljects & Contrullers - Core Datd

@ ® A

Flle's Owmer First Respander Application

0 |

Main Menu Window (mVa M Vacation A

Font Manager M Vacation C...

miacation

100,000.00

Transaction Balance

(cash)

Object
HSObkject

Provides an instance of an NSObject subclass

that is not avallable in Interface Builder. You

£an use this shject to ereate instances of your
oam classes

(%) @ File

¥ Class Ifentiny

¥ Uses Dedined, IKImageEditPanel u

About mVacation
Preferences. .. *,
Services »
Hide mVacation ®H
Hide Others EH
Show All

Quit mVacation %0

00 Main Menu
it] :

le Edic Format View Window Hel

Class mvacationtantrodler

 IKImageView

 IKPictureTaker
IKScanmeribeviceView
IKUIFilterview

| mivacationAppDelegate

Key Fath

mvacatianvieaConteallee |
> j—ujnsmuunml r—
- hsaffineTransform
b | Ksalere ot
obieatin (liMsimaien 7
Lack Narhing inherited)
Lahel x .
MNoees] Show With Selecrion

0

4 04 Part IV: Moving from Language to Application

5. Right-click the File’s Owner icon in the MainMenu.xib window to
display a list of connections, just as you do in Chapter 16.

6. Click the little circle next to balanceField and drag the blue line to
the Label (where it shows 100,000.00), as I did in Figure 18-8, and
then let go.

Library
v MainMenu.xib - English Wac
; [[\Objeers . Classes Media
= 0 - e
View Mode Inspectar Search Fleld 1@ Objects & Controllers >
f\ S Tent (10,0600 JICD ol ~
Fa% Transaction Balance Object - Provides an instance of an ||
~ NSObject subclass that is not |
avallable in Interface Builder
File's Owmer First Responder Application

- = __Cash View Coneralier - & camralier thar ||
= BB ranices aview. tpicatiy boaded ||
= ¢ 3 < fram a nils file. |

(_Charge
Main Menu Window im¥a... M Vacation A = |
Object Contreller - A Cocoa |

PR bindings-compatible controlter class. ||
== Properties of the content objea ol
" Array Controller - 4 Cocos bindings ||
compatible chass thar manages a |
collection of objects |

T Tree Controller - A Caces hindings ||
compatible contraller that manages a ||

ree of ohjects.

(' " User Defaults Contraller - A Cowoa)
0 LY hindings camparible cantralier class
¥ Properties of the shared Instance
= Dictionary Controfler - A Cocoa
— bindings campatible tlass that
Main Menu | manages display and ediring of the
File Edit Format View Window Help | .

About mVacation

Figure 18-8: Preferences *®, ‘ Object
Connecting Services > i
Provides an instance of an rFEOIum subclass
i i hat i5 ot avallable in | Builder. ¥y
the outlet sicemvacalioni e e can use this objecs o creais nseances o1 your
t th Label Hide Others LEH Sl ehtng.
0 e Show All
field. Quit mVacation ¥Q
& a
|

7. Do the same thing for the transactionField — click the circle next to it
and drag the blue line to the Text Field.

8. Drag the blue line from the circle next to spendDollars in the
Received Actions section to the Cash button and let go. This time you
won’t have to choose anything when you connect the buttons. Do the
same thing for chargeCreditCard and the Charge button.

When you are done, the result should look like Figure 18-9.

9. Go back to the Xcode Project window and click the Build and Run
button to compile and build the application.

You can click in the Transaction field to enter a transaction, and then
click one of the buttons. In Figure 18-9, you can see that | entered 100
and then clicked the Cash button — and lo and behold, the math works.

Chapter 18: Adding a Mac User Interface 405

MmO m\Vacation
100 900.00
Transaction Balance

Cash

[Charge |

|
Figure 18-9:
The Mac
version

of the
application.

<WECD

S
S/ ® You can find the completed project on the CD in the Example 17 folder, which
& is in the Chapter 17 folder.

Knowing What's Left to Do

CMBER . . I , :
ég“ Just like the iPhone application, you have a little more to do. Besides the cos-

metics and additional application functionality — for example, the menu and
other user interface functionality expected by the user of a Mac application.

The End of the Beginning

Now that you've finished Objective-C For Dummies, your adventure really
starts.

Go out there and write programs, and let me know how you are doing. You’ll
find information and ideas about programming and design on my Web site,

www.nealgoldstein.com.

Until then — happy programming until we meet again.

4 06 Part IV: Moving from Language to Application

PartV
The Part of Tens

The Sth Wave By Rich Tennant

T 1n Motgepul L
The DY‘Ne ‘IYl "
BRAATENNANT

T love ttwhen
'bheg YUR the
Old claSS{Cs.

T
L
e

SRy

In this part . . .

A long the way, | have been sprinkling words of wis-
dom based on not just my own but also other devel-

opers’ collective experience. In this part, I codify some
of them.

First, I talk a bit about debugging and give you some tips
on both avoiding bugs and where and how to look for
them. Bugs are inevitable, so it’s better to take a Zen-like
approach and “be at one” with the debugging process.

Finally, I close by giving you some ideas about how to
avoid the kinds of problems most new developers encoun-
ter in their first few applications. Think of this as a map of
places to avoid when you are alone at night, around 3:00
a.m. in a strange city.

Chapter 19

Ten Debugging Tips

In This Chapter

Checking for semicolons

Watching for lower- versus uppercase terms
Paying attention to the first syntax error
Recognizing the usefulness of compiler warnings
Looking for memory errors

Knowing your debugger’s features

Checking for messages tonil

Sending messages to the right object

Using NSLog

Testing incrementally

Solving logic errors

Wlen you’re developing an application, there are always a few things
that initially don’t work out quite the way you planned. That means

you will have to go through your code and determine what happened, and
more importantly, what to do about it.

Check for Semicolons

Semicolons are the heart and soul of Objective-C statements, and leaving one
out can cause incredible havoc. For some reason, forgetting to end a state-
ment with one is something I'm pretty good at. So when I see a lot of errors
and warnings, especially if 've just added a few lines of code, semicolons are
one of the first things I check.

510 Partv:The Part of Tens

“Right” Is Not Always “right”

Remember, Objective-C is case-sensitive and For is not the same thing as
for. Using the wrong case can send the complier into a tizzy, and while you
will get warnings and errors, what you have done may not always be obvious.

When You've Blown It, You've Blown It

It’s generally better to ignore the subsequent errors after the first syntax
error because they may be the result of that first error. This is especially true
when you leave out #import statements (or spell them wrong) or forget a
semicolon or comma, or colon, or anything else the complier uses to make
sense of your statements.

Compiler Warnings Are
for Vour Own Good

You may get only one chance to pay attention to a compiler warning. If you
don’t make any changes to the file that generated the warning, you won'’t see
the warning the next time you build your program, although if you keep the
Build Results window open and you have All Results Selected, you will still
see them.

You can also select Build=>Clean All Targets to rebuild everything, and you
probably should on a regular basis.

Don’t Forget about Memory Errors

Look for memory errors. Remember, only you (and your best friend, the
Static Analyzer) can prevent memory leaks.

While it’s bad enough when you don’t release something and you cause a
memory leak, it’s just as bad (and maybe even worse) when you do release
something that you end up sending a message to later. Your program will
crash, and tell you why (EXC_BAD_ACCESS) but you won’t have a clue where
to start. Be sure to retain objects you don’t create yourself (sent as a method
argument, for example) if you want to continue to use them.

Chapter 19: Ten Debugging Tips 4 ’ ’

Get Friendly with Your Debugger

The debugger has a lot of features that can really help you. Breakpoints are
especially helpful. Take the compiler out for a date some time and really get
to know it.

While intuitively obvious (although in the heat of the moment after a pro-
gram crash, you may forget), try reading what the Debugger Console says.
For example

2009-06-30 09:33:07.148 Vacation[2048:a0f] *** Terminating
app due to uncaught exception NSInvalidArgumentException',
reason: '-[NSCFNumber doublValue]: unrecognized selector
sent to instance 0x102al0'

makes things pretty obvious. Although not covered here, you should also get
to know the commands that you can type into the Debugger Console.

Messages to nil

In Objective-C, you can send messages to a nil object. While this enables
lots of features, in some cases it will make you crazy trying to figure out why
something doesn’t work the way it should.

Dialing a Wrong Number

One of the great features of Objective-C is its implementation of polymor-
phism. As long as the object has implemented the method you are send-

ing the message to, Objective-C will let you send the object that message.
Sometimes, however, that object may not be the one you wanted to send the
message to, so be careful of that concern.

Create a “Paper” Trail

[am a big fan of NSLog. Sure, the debugger gives you a stack trace, and you
can use breakpoints, but NSLog can create a narrative of what is going on.
Use it to display where you are in your code and the value of variables. Using
all of the tools available gives you the best chance of fixing that bug before
the next SDK and all those new devices are released.

4 ’ 2 Part V: The Part of Tens

Just be careful, though, because NSLog can also be a source of bugs — ironic
but true. If you try to use a C String like (“I'm here”), you will get complier
warnings. If you try to display a non-object using the %@ string formatter, you
may cause a program crash. What is more insidious, though, is when you

use the wrong formatter, and you don’t get what you expect, and you spend
hours tracking it down, only to find you were trying to display an int as a
float.

Incrementally Test

Most software developers quickly figure out that incremental development is
the way to go. Write a method and try to test it immediately if you can, even
if it means just putting in NSLog statements to examine the output. It is a lot
easier to debug 15 lines of code than to try to figure out why the 200 lines of
code you've been working on for two days don’t work the way you expect.

Use Vour Brain

[do use all the tools and tips I just gave you to track down bugs, but for logic
errors, which are by far the hardest, I actually find thinking about it first is
the fastest way to a solution. I find two approaches useful. First, start by
trying to figure out what would have to be true for this to happen, and then
see if that’s the fact. A second way is to ask, “How could | have made this
happen if I'd wanted it to.” And then go look to see if that’s what you did.

Chapter 20
Ten Ways to Be a Happy Developer

In This Chapter

Limiting dependencies to what objects do, not how they do it

Creating code that is easy to understand

Following memory management rules

Initializing the right way

Using the documentation

Practicing your coding

Understanding the development process

Trying to get it right the first time

Knowing what’s important — that the software works
Planning ahead to extend your code

Keeping it fun

really like writing software. When I first started I couldn’t believe that

they would actually pay me to do something that was so much fun
(believe me, I quickly got over that). Along the way I've learned a few ways
make my life as a developer easier.

Keep Everyone in the Dark

One of the things that can really cause you problems as you develop your
application is building into your code “detailed” knowledge about how things
in your program work. This ranges from data structures, to instance variable
visibility (to other objects), to how methods work, to the basic structure of
the program. As [spoke about more than once, you want to make sure you
keep your objects as ignorant as you can about their environment. While
there will always be some dependency whenever one object uses another,
limit those dependencies to what other objects do rather than to how they
do it, and limit the number of objects each one uses.

4 ’ 4 Part V: The Part of Tens

Similarly, avoid the compulsion to create switch statement-like control
structures that determine the order in which objects get called and that
dole out instructions to them. The best object-oriented programs have their
objects work like a team, with everyone playing their roles and doing their
part rather than the traditional hierarchical command and control structure
where someone is in charge and tells everyone else what to do.

Sergeant Schultz of Hogan’s Heroes captured the spirit of object-oriented
programming with his trademark line:

“I hear nothing, I see nothing, I know nothing!”

Make Vour Code Easy to Understand

Often developers think comments are for other people who are reading your
code. In reality, think about them as being for yourself when you are picking

up some code you wrote six months ago. It will amaze you how foreign it can
appear. [suggest the following:

v Use comments often, but especially when you are doing something
clever — especially if it took you a while to figure out how to do some-
thing in the first place.

1 Name your classes with descriptive names.
v Do the same thing with method names.
v Do the same thing with both local and instance variables.

1 Take advantage of argument names in method declarations to let you
know what each argument is for.

Remember Memory

While Mac OS X 10.56 does have an opt-in garbage collection function, the
iPhone does not, so if you are developing for the iPhone or an earlier version
of the Mac OS without garbage collection, this is something you need to pay
attention to early on in your program. Follow the memory management rules
in Chapter 13.

v+ Memory management is really about creating pairs of messages. Balance
every alloc, new, and retain with a release.

» When you assign an instance variable using an accessor with a retain
property attribute, you now own the object. When you’re done with it,
you’ll need to release it (or set it tonil).

Chapter 20: Ten Ways to Be a Happy Developer 4 ’5

Start by Initializing the Right Way

Even though it is just about as unglamorous as things get, initialization is
extremely important. Don’t try and back-fit later in your development cycle,
do it correctly from the start. Always use the form

- (id) init..: {

if (self = [super ..]) {
your initialization goes here

}

return self;

}

Take Advantage of the Documentation

This may sound silly, but it’s a good idea to actually read the documentation
if you want to know how something works. What I find myself doing when I
am learning something new, control right-click on a symbol and then select
Find Text in Documentation — I use this all the time.

There is of course search in the Help menu, and Option double-click on a
symbol to bring up Quick Help. Also, these two Apple Dev Center sites have a
plethora of reference material:

http://developer.apple.com/iphone/

http://developer.apple.com/mac/

Code Code Code

Every book [write has a few themes running through it, and one of those in
this book is code code code. My experience, both personally and in teaching,
is that the more you type — that is, the more code you actually write — the
more you learn, and the faster you learn it.

You should try things out to see how they work. For example, experiment
with similar methods to see how they work differently. Try everything out to
make sure that when you invoke a method, you can predict what the result
will be. Let your curiosity run free, and if something intrigues you, go explore
it. And don’t worry, there’s nothing you can do in an Xcode application that
will break anything in Xcode, much less take down your entire system. This
isn’t Windows, after all.

4 ’ 6 Part V: The Part of Tens

Understand that Development
Is Not Linear

Development is not linear. In this book, I talked about showing you how to
do something, and then having you delete the code and try it a different or
better way. If I'm trying something new, I'll often just code a rough version of
it to make sure [understand the basics before things get complicated.

You'll find yourself creating a rough application structure, implementing a
few classes, seeing if the idea works, and then going back and refining it,
especially when it comes to using inheritance and polymorphism. Personally,
even if | know I will have class hierarchy, like I did with Transaction, I'll
build out one concrete example of it — say CashTransaction — and make
sure it works. Then I create the superclass and the first subclass and make
sure [get the same results, and then go on to create other subclasses. This is
known as factoring your code, and it’s all in a day’s work.

Do It Right from the Start if You Need
to Do It Right from the Start

[just talked about the nonlinear approach to development: building some-
thing to see how it works and then doing it the right way. While that works
for some things, it doesn’t work for a few other things over a long term. There
are things you have to start doing the right way from day one of develop-
ment, including the following:

v Building your application using the Model-View-Controller pattern
v~ Initialization

»* Memory management

v Localization (I haven’t covered this but there’s lots of information avail-
able on it, including an introduction in iPhone Application Development
For Dummies)

v Error handling

While you might not always do them exactly right from the get-go, you better
go back and do them before you get very far — it becomes an enormously
error-prone task to back-fit these. I still have nightmares about going back
and retrofitting my first iPhone program to correctly manage memory.

Chapter 20: Ten Ways to Be a Happy Developer 4 ’ 7

Avoid the Code Slinger Mentality

Some programmers get so carried away with the purity of the language and
programming that they’ll spend days arguing about a point that, in the long
run, makes no difference to how well your program actually works.

Also avoid cleverness as much as you can, as well as excessive nesting of
statements. If clarity requires a few more lines of code, you are always better
off in the long run.

This is a good time to point out that your main interest should be in develop-
ing great applications, while quickly working through differences (often style
issues) that make no difference. Usually, if there is equal passion on both
sides, each side has its pros and cons, and no one is really “right.”

[like to keep in mind a quotation from Voltaire:

The perfect is the enemy of the good.

The Software Isn’t Finished until
the Last User Is Dead

If there is one thing I can guarantee about app development, it’s that Nobody
Gets It Right the First Time. The design for all applications evolves over time,
as you learn the capabilities and intricacies of the platform; as user behavior
changes in response to your application; and as the users, based on usage,
get a better idea of what they can do with technology.

Object orientation makes extending your application (not to mention fixing
bugs) easier, so pay attention to the principles.

Keep It Fun

This is another one of those ongoing themes in this and my other books (and
personally in my life as well). Programming is inherently fun (at least once
you get going), and the point is to keep it that way.

4 ’ 8 Part V: The Part of Tens

It’s important to remember this when you have spent hours trying to debug
your program, and you think all is lost. Don’t worry; you’ll eventually figure it
out. You wrote it, after all.

Take a break, play a game, go for a walk, or e-mail me ruing the day you
started programming. Whatever works — then go back, and (perhaps)
miraculously what you need to do will become obvious.

Appendix
About the CD

In This Appendix
System requirements
Using the CD with Mac
What you'll find on the CD
Troubleshooting

' his appendix shows you what’s on the CD and how to access it. I also give
you some tips for troubleshooting, just in case you run into problems.

On the CD

The CD that accompanies this book has a folder for each chapter starting
with Chapter 4 (except for Chapter 10). These are located in the Author direc-
tory on the CD. In each of these chapter folders, you will find a folder that
contains the Xcode project that provides the starting point for each chapter.
The folders are labeled by chapter. So for Chapter 4, for example, you see a
folder labeled Chapter 4 Start Here.

In that same chapter folder, you'll find a folder that contains the final version
of the project for each chapter (except for Chapter 4 where it isn’t applicable).
Some chapters will also have intermediate versions that will labeled (using
Chapter 5 as an example) Chapter 5 A, Chapter 5 B, and so on. I'll explain
what is in each.in the corresponding chapter.

4 20 Objective-C For Dummies

System Requirements

Make sure that your computer meets the minimum system requirements
shown in the following list. If your computer doesn’t match up to most of
these requirements, you may have problems using the software and files on
the CD. For the latest and greatest information, please refer to the ReadMe
file located at the root of the CD-ROM.

v A Macintosh running Apple OS X 10.5 or later

v An Internet connection

v A CD-ROM or DVD-ROM drive

If you need more information on the basics, check out Macs For Dummies by
Edward C. Baig (Wiley).

Using the CD

To install the items from the CD to your hard drive, follow these steps.

1. Insert the CD into your computer’s CD-ROM drive.
The license agreement appears.

When the CD icon appears on your desktop, double-click the icon to
open the CD and double-click the Start icon.

2. Read through the license agreement and then click the Accept button
if you want to use the CD.

The CD interface appears. The interface allows you to browse the con-
tents and install the programs with just a click of a button (or two).

What You'll Find on the CD

All the examples provided in this book are located in the Author directory on
the CD and work with Macintosh computers. These files contain much of the
sample code from the book. The structure of the Author directory is

Author/Chapter 1
Author/Chapter x

Appendix: About the CD 42’

Troubleshooting

[tried my best to create examples that work on most computers with the
minimum system requirements. Alas, your computer may differ, and some
examples may not work properly for some reason.

The likeliest problem is that you don’t have enough memory (RAM). You can
have your local computer store add more RAM to your computer. Adding
more memory can really help the speed of your computer and allow more
programs to run at the same time.

Customer Care

If you have trouble with the CD-ROM, please call Wiley Product Technical
Support at 800-762-2974. Outside the United States, call 317-572-3993. You can
also contact Wiley Product Technical Support at http: //support.wiley.
com. Wiley Publishing will provide technical support only for installation and
other general quality control items. For technical support on the applications
themselves, consult the program’s vendor or author.

To place additional orders or to request information about other Wiley
products, please call 877-762-2974.

4 22 Objective-C For Dummies

Index

o Symbols ®

- (dash), using with method declarations,
146
-- (decrement operators), 89-90
1 (NOT) logical operator, 97
1= (not equal to) operator, 96
% (modulus operator), 81
% (percent character), using in NSString, 78
%= compound assignment operator, 87
& bitwise operator, 86
&& (logical AND) operator, 97
&= compound assignment operator, 87
() (parentheses), using in operations, 82
* (asterisk), using in declarations, 98
*= compound assignment operator, 87
. (dot notation)
using with object pointer, 313
using with data structures, 112
// (slashes), using with comments, 85
/= compound assignment operator, 87
: (colon)
using with labels in switch statements, 208
using with methods and arguments, 147-148
; (semicolon)
checking for, 409
using with for loop, 213
using with statements, 43, 67, 73
? (conditional operator), 97-98
@ (at) sign, meaning of, 44
\ (backslash), using with string literals,
100, 102
~ bitwise operator, 86
~= compound assignment operator, 87
{} (curly braces)
function action in, 43
using with blocks, 95
using with struct, 110
using with variables, 110
| bitwise operator, 86
| | (logical OR) operator, 97
| = compound assignment operator, 87
} (closing brace)
terminating functions with, 123
using with instance variables, 145
~ bitwise operator, 87
++ (increment operators), 89-90
+= compound assignment operator, 87

< (less than) operator, 96
<< bitwise operator, 87
<<= compound assignment operator, 87
<= (less than or equal to) operator, 96
= (equal sign), using in declarations, 73
-= compound assignment operator, 87
== (equality operator), 94, 96
-> (arrow pointer), 98, 131
> (greater than) operator, 96
>= (greater than or equal to) operator, 96
>> bitwise operator, 87
>>= compound assignment operator, 87
" (double quote), using with string literals,
100
, (comma)
operator for expressions, 90-91
separator for loops, 213

o/ o

abstract class and superclass, 231
accessors
naming, 322
using, 309, 313
using to get data from objects, 316-320
using with properties, 322
using within Destination class, 314-315
action methods, declaring for buttons,
383-385
ADC Reference Library, browsing, 50
ADC Select membership, benefits of, 29
addresses, existence in memory, 17
alloc message, sending new message to, 169
alloc method, using, 266, 283
amount, storing in Transaction class,
204-205
anInteger int, 74
ANSI C, 58
AppData file, locating, 334
AppData property list, 324
Apple Dev Center Web sites, 415
Apple ID, creating and using, 22-24
Apple Web site, look and feel of, 22, 32
application-based data, 324. See also data
applications, building and running, 79,
82, 156. See also iPhone application;
programs
argc variable, using with C array, 184

b24

Objective-C For Dummies

argument count, using with C array, 184
argument names, using with messages, 147
argument type, including in method
declaration, 146
argument vector, using with C array, 184
arguments
in createBudget: method, 150
passing transactions as, 226
passing variables to, 131
using with country string, 261-262
using with methods, 147-148
using NSNumber objects as, 171-173
argv variable, using with C array, 184
arithmetic operators. See also operators
modulus, 81
order of operands, 82
arrays. See also C arrays; fixed arrays;
mutable arrays
adding objects to, 175
adding transactions to, 202, 212, 214
declaring, 350-351
versus dictionaries, 326
fast enumeration of, 176-177
multidimensional, 182-183
NSArray, 174-175
NSMutableArray, 174-175
objects in, 175
saving and initializing to ni1, 350-352
saving balance data to, 352-354
static, 180-181
using indexes with, 175
using with property lists, 326
arrow pointer (->), 98, 132
ASCII codes, using, 100
assignment operator, 73, 78
asterisk (*), using in declarations, 98
at (@) sign, meaning of, 44
ATM transactions
completing implementation of, 362-366
creating, 365
processing, 359
Attributes Inspector, using, 375, 377, 397
autorelease pool allocation, adding, 320
awakeFromNib protocol method, using with
Mac user interface, 401

ol e

backslash (\), using with string literals,
100, 102

balance data saved to array, 352-354

binary arithmetic, 86

bitwise operators, 86-87
blocks, defining, 95, 124
BOOL, 96
Boolean types, 93-96
break statement, using, 208, 220
breakpoints
activating and deactivating, 192
removing, 198
stopping, 197
using, 195-199, 411
verifying, 196
budget
managing, 106
revising, 130
Budget class, 140-141
class interfaces for, 144
modifying, 171-172
modifying for Destination class, 257-258
sending new message to, 154
budget instance variable, 227
budget member, changing, 136
Budget Object, creating, 143
Budget Object.m listing, 241-242
budget struct, 110-112
budget typedef, defining, 113
budget variable, changing, 197
Budget.h listing
accessors for data from objects, 318
Budget class, 258
returning back self, 272
Budget .m listing
accessors for data from objects, 316-317
Budget class, 257-258
plugging memory leaks, 290-291
returning back self, 272
bugs, fixing, 56. See also debugging tips
Build and Analyze feature, 199-200
Build and Debug button, 196
Build and Run button
location of, 79
using, 219
Build Results window, opening, 46, 187
built-in types
creating type names for, 113
id and nil, 166
bundles, placing plists in, 334
buttons
connecting, 389
connecting IBActions to, 402-405
declaring action methods for, 383-385
bytes
explained, 17
organization of memory into, 69

Index 425

oo

C arrays. See also arrays
accessing elements of, 182
declaring, 182
main function, 183-184
multidimensional arrays, 182-183
.c extension, explained, 39
cash transaction
returning, 208
tracking, 109
CashTransaction initializer listing, 267
CashTransaction.h listing, 236, 273
CashTransaction.m listing, 236, 259-260
plugging memory leaks, 292
returning back self, 273
cast operator (()), converting types with, 91
categories, 356. See also methods
creating, 363-366
defined, 362
using, 366
using with useATM: method, 363
CD for book
contents of, 53, 419-420
using, 420
char data type, memory allocated to, 70-71
char*, 13
characters, expressing with ASCII codes, 100
charge transaction, tracking, 109
chargeEuros function, calling, 118
class code, division into two files, 158
class definitions, 141, 229
class diagram, 228-229
class interfaces
for Budget class, 144
creating, 142-143
declaring, 143-144
entering @end compiler directive, 148
entering instance variables for, 145
entering methods for, 146-148
parts of, 144
@class keyword, 234
class names, case of, 144
class versus instance methods, 153-154
classes. See also container classes
abstract, 231
copying to projects, 379-380
creating interfaces for, 142-143
creating objects from, 141
evolution over time, 157
as extensions, 229
implementation part of, 142
importing header files for, 163-164
instance of, 141

interface part of, 142
modifying, 232
naming conventions, 165
versus objects, 140-141
selecting, 402-403
sending messages to, 153
specifying superclasses for, 160
using, 141
using multiple initializers with, 277
Classes folder, creating, 159-160
closing brace (})
terminating functions with, 123
using with instance variables, 145
Cocoa framework. See also design patterns
use of prefixes in, 103
using, 19-20
code
adding for England, 156
analyzing, 199-200, 286-289
factoring, 120
reusability of, 62-63
reusing, 231-232
code blocks, defining, 95, 124
code libraries, use of, 39
collections, using enumerations with, 176
colon (:)
using with labels in switch statements, 208
using with methods and arguments, 147-148
color picker, using in Interface Builder,
375-376
comma (,)
operator for expressions, 90-91
separator for loops, 213
Command Line Tool, choosing, 34
comments, indicating, 85
compiler
defined, 13
options for, 52-53
running instructions through, 15
compiler directives, 68
@end, 152
@implementation, 149-150
compiler warnings, paying attention to,
84, 410
compilers, function of, 186
composition technique, 247
compound assignment operators, 87-88
computer programming, process of, 9, 16
computer programs. See also applications;
projects
adding loops to, 216-219
building and running, 40-42
continuing to execution, 199
creating, 14-15

4 26 Objective-C For Dummies

computer programs (continued)
dividing into files, 158
extending, 156-157
extending functionality, 130-136
hiding internal mechanisms of, 60-61
I hate peanut butter and jelly example,
12-13
jumping to points in, 220
making enhanceable, 60
restarting from Debugger window, 199
running, 15-17
running in runtime environment, 19
terminating, 220
variables and instructions in, 12
writing, 10-11
condition, using with loop, 212
condition expression, using with Boolean
types, 95
conditional operator (?), 97-98
Console, showing, 45, 192
const prefix, 101
constants
comparing expressions to, 209
declared, 101
#define, 101
using, 100
container classes, 174-176. See also classes
container property list objects, 325-326, 335
content engine, 246
continue control statement, using, 220
control objects, creating, 384. See also
objects
control statements. See also statements;
switch statements
break, 220
continue, 220
exit, 220
goto, 220
return, 220
controller objects, 246
control-structure replacement. See
polymorphism
copying classes to projects, 379-380
count method
of NSDictionary, 327
using with array, 176
using with for loop, 213
counter
declaring for loop, 212
varying transaction amount with, 218
Counterpart button, 165-166
counting, role in memory management, 281

country string, creating to use argument,
261-262
Cox, Brad, 58
.cpp extension, explained, 39
createBudget: method, defining, 150-151
credit card transaction
reporting, 155
for spend, 227
CreditCardTransaction.h, 236,273
CreditCardTransaction.m, 236, 260,
273, 292-293
curly braces ({})
function action in, 43
using with blocks, 95
using with struct, 110
using with variables, 110
currency symbols
adding to NSLog statements, 335
getting, 328, 331
customer care, 421

o) e

dash (-), using with method declarations,
146
data. See also application-based data
accessing with pointers, 98-99
getting from objects, 307-308, 316-320
global accessibility, 137
providing for computers, 12
saving in separate file, 350-354
data structures
defining and declaring, 109-112
impact of changes on, 142
data types
char, 70
converting with cast operator (()), 91
creating with enumerations, 127-128
defined, 112-115
double, 70
float, 70
int, 70
signed and unsigned, 71-72
dealloc message
managing, 282-283
sending, 282
dealloc method
adding to Mac user interface, 402
invoking, 283
using, 289-290
deallocation process, tracing, 296

Debugger
displaying local variables in, 193
showing, 192
using, 191-195, 411
viewing stack in, 193
viewing variables in, 193
Debugger Console
displaying “Hello World” on, 42
displaying results in, 78
opening, 40-41, 46
paying attention to, 411
Debugger window
Continue feature, 199
customizing look of, 194
Restart feature, 199
Step Out feature, 199
Step Over feature, 199
debugging tips. See also bugs
checking for semicolons, 409
creating “paper” trail, 411-412
noticing compiler warnings, 410
noticing memory errors, 410
sending messages tonil, 411
testing incrementally, 412
thinking, 412
decimals, declaring, 83-86
declarations
defined, 74
specifying values in, 73
declared properties, implementing, 311-312.
See also properties
decrement operators (--), 89-90
#define constant, 101-102
defined data types, 112-115
delegate, example of, 381
delegation
adding to transactions, 360-362
overview of, 356
design patterns, 245. See also Cocoa
framework; MVC (Model-View Controller)
pattern
delegation, 356
Target-Action, 385
Destination class
adding Transaction object to, 362
declaring, 382
declaring methods for, 254
declaring properties for, 309-311
using accessors within, 314-315
Destination methods, releasing, 295
Destination object
adding, 253-254
creating, 261-262, 282

Index 42 7

creating objects from, 284
initializing, 262
sending transaction amounts to, 262
sending transactions to, 386
@Destination project, creating, 250-253
Destination.h listing
destination design, 254-255
returning back self, 274
Destination.m listing
adding synthesize to, 310-311
Destination class, 255-256
main in Vacation.m, 294-295
plugging memory leaks, 293-294
potential memory leak in, 287-288
returning back self, 274-275
developer programs, types of, 22
development advice
coding, 415, 417
finishing software, 417
garbage collection, 414
initialization, 415
linear approach, 416
managing objects, 413-414
managing switch statements, 414
memory management, 414
nonlinear approach, 416
using comments, 414
using documentation, 415
development tools, Xcode and Interface
Builder, 20
dictionaries. See also keys; plists
adding entries to, 337-338, 341, 344
versus arrays, 326
assigning values to keys in, 341
creating, 327-329, 340-341
iterating through, 329
keys and values, 326-327
looking up values in, 328
mutable, 334-335, 344
property list objects in, 340
storing data in, 344-345
updating, 345-350
verifying, 343-344
writing to files, 346
dictionary and plist modification, 346-348
dictionary entries, hiding, 337-338
dictionary of dictionaries
creating, 340
creating in main, 341
managing, 340-342
digits, displaying, 86

428

Objective-C For Dummies

directives

compiler and preprocessor, 68

#define, 101
do while loop

sequence of, 215

using, 215

versus while loop, 215
documentation

accessing, 170

Find, 52-53

header file for symbols, 49-50

Help menu, 50

Quick Help, 49
documentation window, features of, 50
dollars, converting to foreign currency, 219
dollars argument, 168
dot notation (.)

using with object pointer, 313

using with data structures, 112
double data type

displaying, 85

explained, 70

using, 168
double dollars variable, calling, 123
double object, 118, 123

replacing with NSNumber, 168, 171
double quote ("), using with string literals,

100

dynamic binding, 243

oF o

editor view, splitting, 165
Editor window
displaying line numbers in, 187
error displayed in, 192
else and if instructions versus switch
statements, 208-209
else structure, using with Boolean types, 95
empty main function. See also main function
for compound assignment operators, 87-88
for increment and decrement operators, 89
starting with, 75, 80-81
encapsulation
explained, 58, 142
versus inheritance, 229
overview of, 59-61
versus polymorphism, 62
use of, 245
@end directive
entering, 152
using with class interfaces, 143, 148
England, adding code for, 156

enhanceability, considering, 136-137
enumerations (enum)
changing types of, 219
fast, 176
using to create data types, 127-128
using with collections, 176
equal (=) sign, using in declarations, 73
equality operator (==), 94, 96
error: argument, using with plists, 351-352
error messages, logging, 44
error types
logic, 189-190
runtime, 188-189
syntax, 186-187
europe struct budget, 112
execution, continuing, 192
exit control statement, using, 220
expenses, tracking, 106
expressions
comparing to constants, 209
constants as, 100
defined, 78
evaluating, 78
evaluating for switch statements, 207
for updating counters, 212
using comma operator (,) with, 90-91
extensibility
considering, 136-137, 156-157
defined, 55
example, 381
extensions, classes as, 229

ofF e

% £ string format specifier, 79, 85
factoring code, 120
fast enumeration, 176, 329
file manager, using with plist, 351
files
adding to projects, 160, 398
dividing programs into, 158
naming, 160-161
naming conventions, 165
placing in folders, 235, 363
saving, 388
saving data in, 350-354
switching between, 165
Find and Replace, 380
Find feature in Xcode, using, 52-53, 388
First Program folder, opening, 39
fixed arrays, 180-181. See also arrays;
mutable arrays
floating point numbers, 72, 86

Index 4 29

floats, 70, 83-85, 121-122
turning strings into, 386
using with constants, 102
using with decimals, 83-86

folders
creating, 158-159
placing files in, 235, 363

for in statement, using, 202

for loop
versus for in, 213
execution flow, 211
using, 210-213
using with transactions, 242
versus for while loop, 214

foreign currency, converting US dollars to,

219
formatting options, setting, 46
Foundation framework, 42-43
frameworks, using, 19-20
function elements
functionArgument, 121
functionName, 121
returnType, 120-121
function prototypes, declaring, 128-129
function versus method declaration, 146
functionality
adding, 55
coding in main function, 152-156
extending for programs, 130-136
improving or changing, 56
functions. See also main function
calling, 124
defined, 43
defining blocks in, 124
ending, 220
enumerations, 127-128
execution, 122
explained, 18
including return statement in, 123-124
in instructions, 68
as methods, 141
versus methods, 147
in modules, 56-57
moving instructions into, 119
parts of, 122
passing to variables, 131
scope of variables, 124-126
statements as, 115
stepping into, 192
unions, 126-127
using modules as, 115

o(Go

garbage collection, 279, 301-303
GCC 4.2 - Warnings, customizing, 52
getter method, using, 309, 311
global variable scope, 125-126
goto control statement, using, 220
greater than (>) operator, 96
greater than or equal to (>=) operator, 96
Groups & Files view

External Frameworks and Libraries

folder, 39

First Program in, 38

Products folder, 39

Source folder, 39

o o

.h files, creating, 161, 165
header files
getting for symbols, 49-50
importing for class, 163-164
“Hello World,” displaying on Debugger
Console, 42, 44
Help menu search field, using, 50-51

o]e

%1 string format specifier, 79
IBActions
connecting to buttons, 402-405
versus IBOutlet, 384
IBOutlets
adding, 383
connecting in Mac user interface, 402-405
displaying, 389
id built-in type, 166
identifiers
defined, 70
following rules for, 72-73
Identity Inspector, opening, 402
if else construct
versus switch statements, 208-209
using with Boolean types, 95
if keyword, using with Boolean types, 94-95
if statement, 94-95
@implementation compiler directive,
149-150, 158
implementation files, looking at, 165
#import, 42, 75-76, 99, 111, 114, 119, 125
#include preprocessor directive, 68

430

Objective-C For Dummies

increment operators (++), 89-90
index, using with array, 175
inheritance
adding files for subclasses, 234-235
applying to reusable code, 231-232
capabilities of, 230
creating Transaction superclass, 232-234
versus encapsulation, 229
implementing subclasses, 235-237
modifying main for classes, 238-242
multiple, 229
overview of, 228-229
using to create protocols, 231
using with polymorphism, 243
init abbreviation, using with initialization
methods, 267
init message, separating from new message,
169
init method, invoking for superclasses,
267-270
initialization
overview of, 73-74
process of, 267
initialization function, creating, 150
initialization methods, 265-266. See also
methods
beginning, 267
invoking for superclasses, 269-270
using with NSNumber objects, 169
initializers, using multiple per class, 277
initializing instance variables, 270
initWithAmount initializer, 267
initWithDouble: message, sending, 169
input
doing something with, 9
getting for programs, 9
instance variables. See also variables
accessing, 321
accessing from within classes, 312-313
adding via inheritance, 230
defining, 141, 226
entering for class variables, 145
initializing, 270
naming, 322
scoping, 148-149
specifying for class interfaces, 143
instance versus class methods, 153-154
instructions, 209
ending, 73
functions in, 68
moving into functions, 119
objects in, 68
operators in, 68

printf example, 13
repeating with loops, 210
running through compiler, 15
skipping over, 199
statements as, 68
writing for computers, 12-14
int data type
memory allocated to, 70-71
variations on, 71
int method, calling with new message,
168-169
Interface Builder. See also Mac user interface;
UI (user interface)
color picker, 375-376
creating Mac user interface, 395-397
creating user interface, 371-379
Label item, 373
launching, 372, 395
Library window, 395
opening Library window in, 372
saving projects, 378
selecting View, 375
Text Field item, 373
using, 388-390
using with Mac user interface, 402-405
@interface compiler directive, 143-144,
149, 158
interface files, looking at, 165
interface objects, customizing, 321. See also
objects
@interface statement, deleting, 237
iPhone application. See also applications;
UI (user interface)
adding methods, 385-388
adding outlets, 383
connecting button in, 389
creating project for, 370-371
developing, 370-371
displaying keyboard in, 376
displaying user interface for, 376, 378
implementing Target-Action pattern,
383-385
replacing #import, 380
touching Text Field in, 376
iPhone developer
registering as, 22-26
Standard and Enterprise Programs, 26-27
iPhone Simulator
installing projects on, 378
launching, 390
running iVacation in, 388-390
“is-a” relationship, 235
iterator, using with for loop, 213

iVacation, running in simulator, 388-390
iVacationViewController, 381-382
ivars. See also variables

accessing, 321

accessing from within classes, 312-313

adding via inheritance, 230

defining, 141, 226

entering for class variables, 145

initializing, 270

naming, 322

scoping, 148-149

specifying for class interfaces, 143

o]o

jump statements, using, 220. See also
statements

oo

keyboard, displaying in iPhone application,
376-377
keyboard shortcuts
Attributes Inspector, 375, 397
Build and Run, 40, 82
copying classes to projects, 380
currency symbols, 328, 331
Find feature, 388
header files for symbols, 49
Identity Inspector, 402
New File dialog, 160, 363
new files, 253
New Project Assistant, 33
new projects, 370
Project Find window, 380
saving files, 388
Simulate Interface, 376
Xcode Console, 108
Xcode Debugger console, 40-41
keys. See also dictionaries
assigning values to, 341
creating for dictionaries, 328
looking for, 335
using with dictionaries, 326-327

o/ o

label and text fields, connecting in Mac UlI,
402-405
Label item
dragging from Library window, 373-374
updating text in, 387

labels, using with switch statements, 208
languages. See programming languages
late binding, 243
less than (<) operator, 96
less than or equal to (<=) operator, 96
libraries, using, 19-20
Library window
dragging Label item from, 373-374
opening in Interface Builder, 372, 395
line numbers, displaying in Editor window,
187
literals, using, 100
local variables. See also variables
calling in main, 122
declaring in main, 153
displaying in Debugger, 193
double dollars, 123
logic, implementing with Boolean types,
93-96
logic errors, encountering, 189-190, 195
logical operators, 97
loop statements. See also statements
adding to main function, 216-219
adding to programs, 216-219
do while, 215
for, 210-213
while, 213-214
loops
leaving, 220
skipping rest of, 220

ol o

.m extension, 39, 161, 165, 234
Mac Dev Center, accessing, 28-29
Mac user interface. See also Interface
Builder; UI (user interface)
adding files to project, 398
adding methods, 400-402
adding Target-Action, 400-402
adding targets, 400-402
adding text field, 396
adding view controller class to, 399
connecting elements of, 402-405
creating project for, 393-395
implementing in code, 398-402
running mvVacation on, 402-405
main function. See also empty main function;
functions
adding code for England, 156
adding switch statements to, 216-219
arguments in, 124
in Budget Object.m, 178-179, 238-239

Index 43 ’

432 Objective-C For Dummies

main function (continued)
for C array, 183-184
calling local variables in, 122
coding for Destination class, 260-263
creating dictionary of dictionaries in, 341
declaring local variables, 153
declaring vacationBudget variable for,
116
declaring variables in, 118
deleting commented code in, 117
enabling for Destination.h, 255
example, 116
getting into, 249
getting out of, 248-249
instantiating object, 153-154
listing for MVC pattern, 248-249
modifying for NSNumber, 172-173
modifying in Vacation.m, 318-319
in Program.m, 43
requirement of, 116
sending messages to objects, 154-155
using Transaction class in, 238-242
in Vacation.m listing, 260-261,
276, 294-295
MainMenu.xib, using with Mac user
interface, 395
members, using with struct, 110
memory
finding things in, 17
measuring for variables, 91-92
organization into bytes, 69
memory addresses, 98
memory errors, noticing, 410
memory leak
defined, 280
detecting, 286-289
memory management, 280
autorelease, 297-299
autorelease pool, 299-301
objects in arrays, 297
rule of, 285
rules, 303-304
using reference counting, 281-285
messages
receivers of, 153
sending to classes, 154
sending to methods in classes, 237
sending to objects, 141-142, 154-155, 411
syntax for, 153
using argument names with, 147

method behavior, altering via inheritance,
230
method declarations, entering for class
interface, 146-148
method versus function declaration, 146
methods. See also categories; initialization
methods; view controller method
adding for user interface, 385-388
adding to Mac user interface, 400-402
adding via inheritance, 230
arguments for, 147-148
coding, 149-152
continuing use of, 285
declaring for buttons, 383-385
declaring for Transaction class, 205
defining, 151-152
ending, 220
versus functions, 147
functions as, 141

implementing for Destination.m, 255-257

instance versus class, 153-154
operations as, 141
overriding, 230
releasing, 289
stepping into, 192
stepping out of, 199
model objects, 246
modules
behavior of, 61
dividing programs into, 56
examples of, 18
using like functions, 115
modulus (%) operator, 81
multidimensional arrays, 182-183
multithreaded systems, using nonatomic
with, 311-312
mutable arrays. See also arrays; fixed arrays
adding, 177-180
allocating and initializing, 175
mutable dictionary, creating, 334-335, 344
mVacation, running on Mac, 402-405
mVacationController.h file, adding to,
399-400
MVC (Model-View Controller) pattern. See
also design patterns; objects
advantage of, 247
implementing, 247-249
overview of, 246-247

My First Program, using arithmetic operators

with, 75-77

o\ o

naming conventions, 165
New File dialog, opening, 160
new message
effect of, 168-169
sending to alloc message, 169
sending to Budget class, 154
separating from init message, 169
New Project Assistant, 370
starting, 107
starting for Xcode, 33
nil object
built-in type, 166
initializing array to, 350-352
returning for initialization method, 270
returning for instantiated object, 270
sending message to, 195, 411
NOT (1) logical operator, 97
not equal to (! =) operator, 96
NS prefix, use in Cocoa, 103
NSArray, 174-175, 181
NSDictionary methods, 327, 329
NSLog function
computation in, 79
use of, 44
using to display results, 78
NSLog statements
adding currency symbols to, 335
benefits of, 411
NSMutableArray, 174-175
NSNumber object
Class Reference, 170
converting to transaction, 202
creating, 168-169
deleting for loop statement, 218
initialization methods for, 169
replacing with double, 171
using, 168
using as argument, 171-173
using instead of double, 168
using with mutable array, 179-180
values returned by, 169
NSObject class, extending, 144-145
NsString Cocoa object
% (percent) character in, 78
features of, 44
numbers, storing in property lists, 325

o () e

objc/objc.h header file, contents of, 166
object life cycle, 280-281
object pointer, assigning, 313
objectAtIndex: message, sending, 175-176
objectForKey method of NSDictionary,
327-328
Objective-C
case-sensitivity, 145
invention of, 58
overview of, 17-18
Version 2.0, 20
object-oriented environments
parts of, 18
transaction and budget objects in, 57
objects. See also control objects; interface
objects; MVC (Model-View Controller)
pattern; property list objects;
transaction objects
adding to arrays, 175
allocating, 265-266
in arrays, 175
behavior of, 57-59
checking from Variables pane, 195
versus classes, 140-141
creating, 265-266
creating from classes, 141
creating with alloc method, 283
customizing, 402-403
getting data from, 307-308, 316-320
getting pointers for, 155
initializing, 155, 266-267
instance of, 141
instantiating in main, 153-154
in instructions, 68
passing self argument to, 155
reflecting for arrays, 219
releasing, 285, 289
retain counts for, 281-282
sending messages to, 141-142, 153-155, 411
sending release messages to, 282
serializable, 325
template for, 141
objects assigned to properties, releasing,
313-315
operations
as methods, 141
order of, 82
using parentheses (()) in, 82

Index 433

434 Objective-C For Dummies

operators. See also arithmetic operators versus inheritance, 231
= (equal) sign, 73 overview of, 61-62
bitwise, 86-87 purpose of, 240
cast, 91 using with inheritance, 243
comma, 90-91 preferences, setting for Xcode, 45
compound assignment, 87-88 prefixes, use of, 103
conditional, 97-98 primitive property list objects, 325
floats, 83-86 printf example, 13
increment and decrement, 89-90 @private directive, using with instance
in instructions, 68 variables, 148-149
logical, 97 procedural programming, 56-57
relational and equality, 96 program architecture, 140
sizeof, 91-92 Program.m, 42-45
use with statements, 18 programming code, reading line by line,
using, 74-75 12-13
options: argument, using with plists, 351 programming languages, overview of, 18-19
outlets programming test, 10
adding to Mac user interface, 400-402 programs. See also applications
adding to user interface, 383 adding loops to, 216-219
connecting to text fields, 388 building and running, 40-42
output continuing to execution, 199
displaying, 40 creating, 14-15
getting from programs, 12 dividing into files, 158
storing, 15 extending, 156-157
extending functionality, 130-136
° p ° hiding internal mechanisms of, 60-61
I hate peanut butter and jelly example,
@package directive, using with instance jurrfjinlggto points in, 220
variables, 149) making enhanceable, 60
parentheses (()), using in operations, 82 restarting from Debugger window, 199
peanluot lilzltter and jelly sandwich program, running, 15-17

running in runtime environment, 19

percent character (%), using in NSString, 78 terminating, 220
plist and dictionary modification, 346-348 variables ar{d instructions in. 12
plist listing, 341-342 writing, 10-11 ’
plists. See also dictionaries Project Find window, bringing up, 380
adding complexity to, 336-340 Project window, 36
addfng entries to, 343-345 projects. See also computer programs;
adding to projects, 329-331 Xcode project
placing in bundles, 334 adding files to, 160, 398
reading in, 34.0‘341 adding plists to, 329-331
troubleshooting, 334 choosing from New Project window, 33-34
usefulness of, 335 copying classes to, 379-380
using, 332_334 . creating @Destination, 250-253
using file manager with, 351 creating for Mac user interface, 393-395
pomters' . creating iPhone application, 370-371
accessing data with, 98-99, 131-132 installing on iPhone Simulator, 378
assigning values to, 341, 343 naming, 35
dereferencing, 131 startiné 107
getting fO.T objects, 155 properties. See also declared properties
polymorphism accessing via properties, 322
example of, 226-228 adding, 309-311
explained, 58 adding to Destination class, 309-311

implementation of, 411 assigning for user interface, 386

Index 435

naming conventions, 322
proper use of, 320-322
@property declaration, using, 309-310
property list files. See plists
property list objects. See also objects
containers, 325-326, 335
dictionaries, 326-329
in dictionaries, 340
primitives, 325
property lists
defining, 324-325
using, 325-326
using with arrays, 326
@protected directive, using with instance
variables, 148
protocols
adopting, 358-360
declaring, 357-358
defining, 367
@public directive, using with instance
variables, 148

oQo

Quick Help window, features of, 49

o R e

readwrite property attribute, using, 311
red file name, meaning of, 39
reference counting, using in memory
management, 281-285
relational operators, 96
release message
versus retain, 285
sending, 175, 282-283
reserved words, 102
retain, using with declared properties,
311-312
retain counts
decrementing, 283
determining, 281-282
incrementing, 283
versus release, 285
setting for Destination object, 284
retain message
receiving, 175
releasing, 313
sending automatically, 313
using, 312-313
return statement, 45
including in functions, 123-124
using, 220

return type, 124, 146

reusing code, 62-63, 231-232

runtime environment, running programs
in, 19

runtime errors, encountering, 188-189

oS e

saving

balance data to array, 352-354

data in separate file, 350-354

files, 388

projects in Interface Builder, 378
scope

of instance variables, 148-149

of variables, 124-126
SDK (software development kit)

choosing, 40

contents of, 21

downloading, 30-32
self argument

passing to objects, 155

returning back, 271-277

using to send message to superclass, 268
semantics, 69
semicolon (;)

checking for, 409

use with statements, 43, 67, 73

using with for loop, 213
sender argument, using with button, 385
serializable objects, 325
setter and getter methods, 309
setter method, calling, 309, 313, 386
signed and unsigned data types, 71-72
Simulator. See iPhone Simulator
sizeof operator, 91-92
slashes (/ /), using with comments, 85
spend method

emptying, 234

implementing, 227
spendDollar: message

creating array for, 175

eliminating, 175

in mutable-array example, 180

sending, 202
spendDollars function

calling, 118, 122

declaring, 120

terminating, 123
spendDollars: message, 168
spendDollars: method, implementing,

172-173

stack, viewing in Debugger, 193

436 Objective-C For Dummies

statements. See also jump statements; loop switch statements. See also control
statements; switch statements statements; statements
in blocks, 95 adding to main function, 216-219
declarations, 68 form of, 207
for displaying “Hello World,” 44 versus if else construct, 208-209
executing once, 212 managing, 414
as functions, 115 problems with, 220-221
identifying, 43 sequence of, 207
including in blocks, 95, 124 using, 206-210
instructions, 68 using labels with, 208
keeping on one line, 75 switch structure, 226
recognizing, 67 symbol string. See also strings
on two lines, 44 creating, 335-336
writing programs as series of, 18 initializing, 335-336
Static Analyzer, using, 199-200, 286-289 using, 335-336
Step into feature, 192 symbols
Step Out of feature, 192, 199 getting Quick Help for, 49
Step Over feature, 192, 199 header files for, 49-50
string format specifiers, 78-79 syntax, 69
string literal, 100 syntax errors, catching, 186-188
strings. See also symbol string @synthesize statement
defined, 44 adding for delegation, 362
entering into dictionaries, 338 adding to Destination.m, 310-311
initializing, 261-262 system requirements, 420
keeping on one line, 75
storing in property lists, 325
theSandwich example, 13 o T o

turning into floats, 386
struct budget, defining with three
variables, 114

tab width, setting, 46
Target-Action pattern

struct data structure, 110 applying to Mac user interface, 400-402
avoiding in declarations, 112-115 1mplement.1ng,.383—385
changing, 136, 140 tasks, breaking 1qt0 modules, 15
creating from class objects, 141 templates, selecting, 34 o
defining, 113 text and label fields, connecting in Mac UlI,

402-405
Text Editor
Bookmarks menu, 48

passing as argument to function, 131
versus union, 126
structures. See data structures

sub items, hidden, 337-338 Breakpoints menu, 48

subclasses Class Hierarchy menu, 48
adding files for, 234-235 Code Folding, 48
capabilities of, 230 Code Sense, 47-48
implementing, 235-237 C'ountel"part button, 48
versus superclasses, 228-229 displaying tooltips in, 48

subgroups, creating, 39 Included Files menu, 48

superclasses launching files in separate windows, 48
invoking init method, 267-270 navigation bar, 48, 164 .
invoking initialization methods for, 269-270 Text Field item, using in Interface Builder, 373
specifying for class, 160 text fields _
specifying for class interface, 143 adding to Mac user interface, 396

versus subclasses, 228-229 connecting outlets to, 388
time stamp, example of, 44

tooltips, displaying, 48, 192

Touch Up Inside event, 389
trackSpending method, adding, 234
Transaction class
adding, 203-206
adding implementation for, 205-206
adding interface for, 204-205
creating protocol with, 231
using in main, 238-242
using with for loop statement, 217
Transaction initializer listing, 268-269
transaction objects. See also objects
creating, 202
creating for switch statement, 209
managing, 203-206
processing, 208
removing Ul type functionality from, 258
types of, 226, 355
Transaction superclass, creating, 232-234
transaction type, determining, 204-205
Transaction.h, 233, 259
adding delegation to, 360-361
opening in new window, 204
returning back self, 272
Transaction.m listing, 232-233, 259
plugging memory leaks, 291
returning back self, 272-273
transactions
adding delegation to, 360-362
adding to arrays, 212, 214
creating, 202
passing as arguments, 226
relating to budgets, 227
representing with double type, 168
sending to Destination object, 386
simulating, 133
transactions array, declaring, 218
transactionType, using switch statement
with, 206
transparency, defined, 56
triangles, pointing down, 337-338
typedef keyword, using with data types,
112-114, 116
typos, causing logic errors with, 190

olf o

%u string format specifier, 79
Ul (user interface). See also Interface Builder;
iPhone application; Mac user interface
adding methods for, 385-388
creating, 371-379
displaying for iPhone, 376, 378
example of, 397

Ul behavior, simulating, 262
Ul type functionality, removing from
Transaction objects, 258
UIApplicationDelegate Protocol, 381
UML (Unified Modeling Language) notation,
228-229
union function
versus struct, 126
using, 127
uPhone
extensibility of, 61-62
invention of, 59-60
US dollars, converting to foreign currency,
219
useATM: method, adding, 363-366

oo

Vacation Budget project, creating, 107
vacationBudget England variable,
updating, 130
Vacation.m, main function in, 276, 318-319
valueForKey: method, 335
values
accessing in addresses, 99
assigning, 75-77
assigning to pointers, 341, 343
checking from Variables pane, 194-195
looking up in dictionaries, 328
specifying in declarations, 73
using with dictionaries, 326-327
variables. See also instance variables; local
variables
Boolean types, 93-96
changing, 197
declaring, 70, 73, 75-77
defined, 69
descriptiveness of, 77
examples of, 13
measuring memory used by, 91-92
passing functions to, 131
passing to arguments, 131
scope of, 124-126
setting watch points on, 197-198
versus structure type names, 112
using with decimals, 83-86
using with struct, 110
viewing in Debugger, 193-194
Variables pane, using, 194-195
verification code, entering as iPhone
developer, 24-25
view controller class, adding to Mac user
interface, 399

Index 43 7

438

Objective-C For Dummies

view controller method, overriding, 387. See
also methods
view objects, 246
virtual memory, 281
void, 116-117, 120-121, 123
including in argument list, 121
return type, 122

o[/ o

watch points, setting on variables, 197-198
while loop
versus for loop, 214
sequence of, 214
using, 213
using with transactions, 242
while loop, using, 213-214
Wiley Product Technical Support, 421

o X o

Xcode, setting preferences for, 45-47

Xcode 3.2 developer tools, using, 20

Xcode Console, opening, 108

Xcode Debugger Console. See Debugger
Console

Xcode Organizer, 33

Xcode Preferences window
closing, 46
opening, 45

Xcode project. See also projects
creating, 32-36
Detail view, 36-37
Editor view, 36-38
Groups & Files list, 36
launching, 32
status bar, 36, 38
Text Editor navigation bar, 36-37
toolbar, 36-37

Xcode Text Editor
Bookmarks menu, 48
Breakpoints menu, 48
Class Hierarchy menu, 48
Code Folding, 48
Code Sense, 47-48
Counterpart button, 48
displaying tooltips in, 48
Included Files menu, 48
launching files in separate windows, 48
navigation bar, 48, 164

Xcode window, activating, 378, 397

o/ o

zero, dividing by, 191-192

Wiley Publishing, Inc.
End-User License Agreement

READ THIS. You should carefully read these terms and conditions before opening the software
packet(s) included with this book “Book”. This is a license agreement “Agreement” between
you and Wiley Publishing, Inc. “WPI”. By opening the accompanying software packet(s), you
acknowledge that you have read and accept the following terms and conditions. If you do not
agree and do not want to be bound by such terms and conditions, promptly return the Book
and the unopened software packet(s) to the place you obtained them for a full refund.

1.

License Grant. WPI grants to you (either an individual or entity) a nonexclusive license
to use one copy of the enclosed software program(s) (collectively, the “Software”) solely
for your own personal or business purposes on a single computer (whether a standard
computer or a workstation component of a multi-user network). The Software is in use
on a computer when it is loaded into temporary memory (RAM) or installed into perma-
nent memory (hard disk, CD-ROM, or other storage device). WPI reserves all rights not
expressly granted herein.

Ownership. WPI is the owner of all right, title, and interest, including copyright, in and to
the compilation of the Software recorded on the physical packet included with this Book
“Software Media”. Copyright to the individual programs recorded on the Software Media is
owned by the author or other authorized copyright owner of each program. Ownership of
the Software and all proprietary rights relating thereto remain with WPI and its licensers.

Restrictions on Use and Transfer.

(@ You may only (i) make one copy of the Software for backup or archival purposes, or
(ii) transfer the Software to a single hard disk, provided that you keep the original
for backup or archival purposes. You may not (i) rent or lease the Software, (ii) copy
or reproduce the Software through a LAN or other network system or through any
computer subscriber system or bulletin-board system, or (iii) modify, adapt, or create
derivative works based on the Software.

(b) You may not reverse engineer, decompile, or disassemble the Software. You may
transfer the Software and user documentation on a permanent basis, provided that the
transferee agrees to accept the terms and conditions of this Agreement and you retain
no copies. If the Software is an update or has been updated, any transfer must include
the most recent update and all prior versions.

Restrictions on Use of Individual Programs. You must follow the individual requirements
and restrictions detailed for each individual program in the “About the CD” appendix of
this Book or on the Software Media. These limitations are also contained in the individual
license agreements recorded on the Software Media. These limitations may include a
requirement that after using the program for a specified period of time, the user must

pay a registration fee or discontinue use. By opening the Software packet(s), you agree to
abide by the licenses and restrictions for these individual programs that are detailed in
the “About the CD” appendix and/or on the Software Media. None of the material on this
Software Media or listed in this Book may ever be redistributed, in original or modified
form, for commercial purposes.

5. Limited Warranty.

(@ WPI warrants that the Software and Software Media are free from defects in materials
and workmanship under normal use for a period of sixty (60) days from the date of pur-
chase of this Book. If WPI receives notification within the warranty period of defects in
materials or workmanship, WPI will replace the defective Software Media.

(b) WPI AND THE AUTHOR(S) OF THE BOOK DISCLAIM ALL OTHER WARRANTIES,
EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, WITH RESPECT TO
THE SOFTWARE, THE PROGRAMS, THE SOURCE CODE CONTAINED THEREIN, AND/
OR THE TECHNIQUES DESCRIBED IN THIS BOOK. WPI DOES NOT WARRANT THAT THE
FUNCTIONS CONTAINED IN THE SOFTWARE WILL MEET YOUR REQUIREMENTS OR
THAT THE OPERATION OF THE SOFTWARE WILL BE ERROR FREE.

(© This limited warranty gives you specific legal rights, and you may have other rights that
vary from jurisdiction to jurisdiction.

6. Remedies.

(@ WPI's entire liability and your exclusive remedy for defects in materials and workman-
ship shall be limited to replacement of the Software Media, which may be returned to
WPI with a copy of your receipt at the following address: Software Media Fulfillment
Department, Attn.: Objective-C For Dummies, Wiley Publishing, Inc., 10475 Crosspoint
Blvd., Indianapolis, IN 46256, or call 1-800-762-2974. Please allow four to six weeks for
delivery. This Limited Warranty is void if failure of the Software Media has resulted from
accident, abuse, or misapplication. Any replacement Software Media will be warranted
for the remainder of the original warranty period or thirty (30) days, whichever is longer.

(b) In no event shall WPI or the author be liable for any damages whatsoever (including
without limitation damages for loss of business profits, business interruption, loss of
business information, or any other pecuniary loss) arising from the use of or inability
to use the Book or the Software, even if WPI has been advised of the possibility of such
damages.

(¢) Because some jurisdictions do not allow the exclusion or limitation of liability for conse-
quential or incidental damages, the above limitation or exclusion may not apply to you.

7. U.S. Government Restricted Rights. Use, duplication, or disclosure of the Software for
or on behalf of the United States of America, its agencies and/or instrumentalities “U.S.
Government” is subject to restrictions as stated in paragraph (c)(1)(ii) of the Rights in
Technical Data and Computer Software clause of DFARS 252.227-7013, or subparagraphs (c¢)
(1) and (2) of the Commercial Computer Software - Restricted Rights clause at FAR 52.227-19,
and in similar clauses in the NASA FAR supplement, as applicable.

8. General. This Agreement constitutes the entire understanding of the parties and revokes
and supersedes all prior agreements, oral or written, between them and may not be modified
or amended except in a writing signed by both parties hereto that specifically refers to this
Agreement. This Agreement shall take precedence over any other documents that may be in
conflict herewith. If any one or more provisions contained in this Agreement are held by any
court or tribunal to be invalid, illegal, or otherwise unenforceable, each and every other pro-
vision shall remain in full force and effect.

Learn the language of the iPhone,
iPod touch®, and Mac OS X —
the fun and easy way"!

Whether you have worked in another programming
language or want to start your programming career with
Objective-C, this book is for you! This plain-English

guide will get you up and running with Objective-C, the
programming language you need to turn a great idea into
a cool application. From using the Xcode IDE to adding an
interface to knowing how and why to leverage objects,
classes, delegation, messaging, and more, this book gets
you going.

* Recipes for success — see how a computer program is like
a recipe and how the compiler turns your instructions into
computer code

* Why X? — get the hang of Xcode® 3.2 and Interface Builder, the
key Apple developer tools

* Banish bugs — understand the different types of errors your
program may encounter and how to eliminate them

* Build your masterpiece — learn about program architecture
and how to structure your application so that it can be easily
extended with new functionality

* Enter the data — prepare your app to “go live” and process data
entered by the user

N
\ Bonus CD Includes
| All code samples used in the book

Neal Goldstein is a pioneer in object-oriented programming and a master
at making cutting-edge technology practical. He leads an iPhone startup
that is developing a revolutionary application that will radically change

how people can use iPhones to manage information. Neal is the author of
iPhone Application Development For Dummies.

Please see the CD appendix for details and complete system requirements.

Programming/Object Oriented

*What object-oriented
programming is all about

*The tools you need and how to get
them

* How to get a grip on Objective-C
syntax

* Debugging tips that can save you
time

* How to add a user interface

*Ways to make your programming
successful and fun

*What property lists are and how to
use them

* How to use dictionaries and arrays

Go to Dummies.com®
for videos, step-by-step examples,
how-to articles, or to shop!

For Dummies®
A Branded Imprint of

KWILEY
$29.99 US /$35.99 CN / £21.99 UK

ISBN 978-0-470-52275-2
52999

9780470522752 H

	Objective-C for Dummies
	About the Author
	Dedication
	Author’s Acknowledgments
	Contents at a Glance
	Table of Contents
	Introduction
	About This Book
	Conventions Used in This Book
	Foolish Assumptions
	How This Book Is Organized
	Icons Used in This Book

	Part I: Getting to the Starting Line
	Chapter 1: Computer Programming Exposed!
	Why a Computer Program Is Like a Peanut Butter and Jelly Sandwich
	Understanding How Computer Languages Work
	What Is Objective-C, Anyway?

	Chapter 2: Creating Your First Program
	Getting Started with the Software Development Kit
	Creating Your Xcode Project
	Building and Running Your Application
	Customizing Xcode to Your Liking
	Getting to Know the Xcode Text Editor
	Accessing Documentation
	On the CD
	Working with the Examples

	Chapter 3: The Object in Objective-C
	Not All Modules Are Created Equal
	Understanding How Objects Behave
	Seeing the Concepts in Action
	Reusable Code

	Part II: Speaking the Language of Objective-C
	Chapter 4: Language and Programming Basics
	It All Comes Down to Your Statements
	Understanding How Variables Work
	Giving Instructions with Operators
	Making Logical Decisions in Your Code
	Accessing Data with Pointers
	Using Constants
	Knowing the Objective-C Reserved Words
	Congratulations

	Chapter 5: Functions and Data Structures
	Thinking about an Application
	Defining and Declaring Data Structures
	Using Defined Data Types
	Writing Functions
	Declaring Function Prototypes
	Extending the Functionality of a Program
	Thinking about Extensibility and Enhanceability

	Chapter 6: Adding a Little More Class to Your Program
	Grasping Objects and Their Classes
	Moving from Functions and Global Data to Objects and Classes
	Creating the Interface
	The Implementation — Coding the Methods
	Exploring the Program Logic
	Spreading the Wealth across Files
	Knowing the Naming Conventions
	Using id and nil

	Chapter 7: Objects Objects Everywhere
	Replacing Numbers with Objects
	Taking Advantage of Array Objects
	Using C Arrays

	Chapter 8: Using the Debugger
	Identifying the Usual Suspects
	Using the Debugger
	Using Breakpoints
	Using the Static Analyzer

	Chapter 9: Using Control Statements and Loops
	Creating Transaction Objects
	Using switch Statements
	Using Loop Statements to Repeat Instructions
	Adding Loops to Your Program
	Building the New Application
	Taking the Leap: Jump Statements
	Knowing the Problems with switch Statements

	Part III: Walking the Object-Oriented Walk
	Chapter 10: Basic Inheritance
	Replacing a Control Structure With Polymorphism
	Implementing Inheritance in a Program
	Considering Polymorphism and Inheritance

	Chapter 11: Encapsulating Objects
	Getting to Know the Model-View-Controller (MVC) Pattern
	Implementing the MVC Pattern
	Creating a New Project
	Creating the Destination Class
	Coding the New main
	Yes, Another Two Steps Forward and One Step Back

	Chapter 12: The Birth of an Object
	Allocating Objects
	Initializing Objects
	The Designated Initializer

	Chapter 13: Getting a Handle on Memory Management
	Raising and Terminating Responsible Objects
	Running the Static Analyzer
	Plugging the Leaks
	Attending to Memory Management Subtleties — Arrays and Autorelease
	Garbage Collection — Taking the Easy Way Out
	Some Basic Memory Management Rules You Shouldn’t Forget

	Part IV: Moving from Language to Application
	Chapter 14: Getting Data from Other Objects
	Getting Data from Objects
	Working with Declared Properties
	Using Accessors to Get Data from Objects
	Properly Using Properties

	Chapter 15: Show Me the Data
	Understanding Application-Based Data
	Using Dictionaries
	Adding a plist to Your Project
	Dictionaries of Dictionaries
	Modifying the plist
	Saving Data in a Separate File
	Saving Objects as Objects

	Chapter 16: Extending the Behavior of Objects
	Understanding Delegation
	Using Protocols
	Categories

	Chapter 17: Adding an iPhone User Interface
	Creating Your Project
	Using Interface Builder to Create a User Interface
	Implementing the User Interface in Code
	Connecting Everything Up in Interface Builder and Running iVacation in the Simulator
	A Final Note

	Chapter 18: Adding a Mac User Interface
	Creating Your Project
	Using Interface Builder to Create a User Interface
	Implementing the User Interface in Code
	Connecting Everything in Interface Builder and Running mVacation on the Mac
	Knowing What’s Left to Do
	The End of the Beginning

	Part V: The Part of Tens
	Chapter 19: Ten Debugging Tips
	Check for Semicolons
	“Right” Is Not Always “right”
	When You’ve Blown It, You’ve Blown It
	Compiler Warnings Are for Your Own Good
	Don’t Forget about Memory Errors
	Get Friendly with Your Debugger
	Messages to nil
	Dialing a Wrong Number
	Create a “Paper” Trail
	Incrementally Test
	Use Your Brain

	Chapter 20: Ten Ways to Be a Happy Developer
	Keep Everyone in the Dark
	Make Your Code Easy to Understand
	Remember Memory
	Start by Initializing the Right Way
	Take Advantage of the Documentation
	Code Code Code
	Understand that Development Is Not Linear
	Do It Right from the Start if You Need to Do It Right from the Start
	Avoid the Code Slinger Mentality
	The Software Isn’t Finished until the Last User Is Dead
	Keep It Fun

	Appendix: About the CD
	On the CD
	System Requirements
	Using the CD
	What You’ll Find on the CD
	Troubleshooting
	Customer Care

	Index

