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Preface to the
eighth edition

In this eighth edition, the aim has been to build on the broad ethos established
in the first edition and maintained throughout all subsequent editions. The
purpose of the book is to present the basic principles of fluid mechanics and
to illustrate them by application to a variety of problems in different branches
of engineering. The book contains material appropriate to an honours degree
course in mechanical engineering, and there is also much that is relevant to
undergraduate courses in aeronautical, civil and chemical engineering.

It is a book for engineers rather than mathematicians. Particular emphasis
is laid on explaining the physics underlying aspects of fluid flow. Whilst
mathematics has an important part to play in this book, specialized
mathematical techniques are deliberately avoided. Experience shows that
fluid mechanics is one of the more difficult and challenging subjects studied
by the undergraduate engineer. With this in mind the presentation has been
made as user-friendly as possible. Students are introduced to the subject in
a systematic way, the text moving from the simple to the complex, from the
familiar to the unfamiliar.

Two changes relating to the use of S units appear in this eighth edition and
are worthy of comment. First, in recognition of modern developments, the
representation of derived SI units is different from that of previous editions.
Until recently, two forms of unit symbol were in common use and both are
still accepted within SI. However, in recent years, in the interests of clarity,
there has been a strong movement in favour of a third form. The half-high
dot (also known as the middle dot) is now widely used in scientific work in
the construction of derived units. This eight edition has standardized on the
use of the half-high dot to express SI units. The second change is as follows:
for the first time SI units are used throughout. In particular, in dealing with
rotational motion, priority is given to the use of the S unit of angular velocity
(rad - s~ supplanting rev/s).

The broad structure of the book remains the same, with thirteen chapters.
However, in updating the previous edition, many small revisions and a
number of more significant changes have been made. New material has
been introduced, some text has been recast, certain sections of text have
been moved between chapters, and some material contained in earlier
editions has been omitted. Amongst the principal changes, Chapter 1
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Preface to the eighth edition

has been substantially revised and expanded. Its purpose is to provide
a broad introduction to fluid mechanics, as a foundation for the more
detailed discussion of specific topics contained in the remaining chapters.
Fluid properties, units and dimensions, terminology, the different types of
fluid flow of interest to engineers, and the roles of experimentation and
mathematical theory are all touched on here. The treatment of dimensional
analysis (Chapter 5) has been revised. A number of topics are covered for the
first time, including the losses arising from the flow through nozzles, orifice
meters, gauzes and screens (Chapter 7). The concept of the friction velo-
city has been brought in to Chapter 8, and the theory of functions of a
complex variable and its application to inviscid flows is set down in
Chapter 9. A discussion of the physics of tsunamis has been added to
Chapter 10. In Chapter 11, changes include the addition of material on
the mass flow parameters in compressible flow. Finally, in Chapter 13, the
treatment of dimensionless groups has been changed to reflect the use of
SI units, and new material on the selection of pumps and fans has been
introduced.

Footnotes, references and suggestions for further reading, which were
included in earlier editions, have been removed. The availability of
information retrieval systems and search engines on the internet has enabled
the above changes to be introduced in this edition. It is important that
students become proficient at using these new resources. Searching by
keyword, author or subject index, the student has access to a vast fund
of knowledge to supplement the contents of this book, which is intended to
be essentially self-contained.

It remains to thank those, including reviewers and readers of previous
editions, whose suggestions have helped shape this book.

February 2005
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Fundamental concepts

The aim of Chapter 1 is to provide a broad introduction to fluid mechanics,
as a foundation for the more detailed discussion of specific topics contained
in Chapters 2-13. We start by considering the characteristics of liquids and
gases, and what it is that distinguishes them from solids. The ability to
measure and quantify fluid and flow properties is of fundamental import-
ance in engineering, and so at an early stage the related topics of units and
dimensions are introduced. We move on to consider the properties of fluids,
such as density, pressure, compressibility and viscosity. This is followed
by a discussion of the terminology used to describe different flow patterns
and types of fluid motion of interest to engineers. The chapter concludes by
briefly reviewing the roles of experimentation and mathematical theory in
the study of fluid mechanics.

1.1 THE CHARACTERISTICS OF FLUIDS

A fluid is defined as a substance that deforms continuously whilst acted
upon by any force tangential to the area on which it acts. Such a force
is termed a shear force, and the ratio of the shear force to the area on
which it acts is known as the shear stress. Hence when a fluid is at rest
neither shear forces nor shear stresses exist in it. A solid, on the other hand,
can resist a shear force while at rest. In a solid, the shear force may cause
some initial displacement of one layer over another, but the material does
not continue to move indefinitely and a position of stable equilibrium is
reached. In a fluid, however, shear forces are possible only while relative
movement between layers is taking place. A fluid is further distinguished
from a solid in that a given amount of it owes its shape at any time to
that of the vessel containing it, or to forces that in some way restrain its
movement.

The distinction between solids and fluids is usually clear, but there are
some substances not easily classified. Some fluids, for example, do not
flow easily: thick tar or pitch may at times appear to behave like a solid.
A block of such a substance may be placed on the ground, and, although
its flow would take place very slowly, over a period of time — perhaps sev-
eral days — it would spread over the ground by the action of gravity. On
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2 Fundamental concepts

Liquid

Gas

the other hand, certain solids may be made to ‘flow’ when a sufficiently
large force is applied; these are known as plastic solids. Nevertheless, these
examples are rather exceptional and outside the scope of mainstream fluid
mechanics.

The essential difference between solids and fluids remains. Any fluid, no
matter how thick or viscous it is, flows under the action of a net shear
force. A solid, however, no matter how plastic it is, does not flow unless
the net shear force on it exceeds a certain value. For forces less than this
value the layers of the solid move over one another only by a certain
amount. The more the layers are displaced from their original relative pos-
itions, the greater are the internal forces within the material that resist the
displacement. Thus, if a steady external force is applied, a state will be
reached in which the internal forces resisting the movement of one layer
over another come into balance with the external applied force and so no
further movement occurs. If the applied force is then removed, the resisting
forces within the material will tend to restore the solid body to its original
shape.

In a fluid, however, the forces opposing the movement of one layer
over another exist only while the movement is taking place, and so static
equilibrium between applied force and resistance to shear never occurs.
Deformation of the fluid takes place continuously so long as a shear force is
applied. But if this applied force is removed the shearing movement subsides
and, as there are then no forces tending to return the particles of fluid to
their original relative positions, the fluid keeps its new shape.

Fluids may be sub-divided into liquids and gases. A fixed amount of a liquid
has a definite volume which varies only slightly with temperature and pres-
sure. If the capacity of the containing vessel is greater than this definite
volume, the liquid occupies only part of the container, and it forms an inter-
face separating it from its own vapour, the atmosphere or any other gas
present.

A fixed amount of a gas, by itself in a closed container, will always expand
until its volume equals that of the container. Only then can it be in equi-
librium. In the analysis of the behaviour of fluids an important difference
between liquids and gases is that, whereas under ordinary conditions liquids
are so difficult to compress that they may for most purposes be regarded
as incompressible, gases may be compressed much more readily. Where
conditions are such that an amount of gas undergoes a negligible change
of volume, its behaviour is similar to that of a liquid and it may then be
regarded as incompressible. If, however, the change in volume is not negli-
gible, the compressibility of the gas must be taken into account in examining
its behaviour.

A second important difference between liquids and gases is that liquids
have much greater densities than gases. As a consequence, when considering
forces and pressures that occur in fluid mechanics, the weight of a liquid has
an important role to play. Conversely, effects due to weight can usually be
ignored when gases are considered.
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The characteristics of fluids

1.1.1 Molecular structure

The different characteristics of solids, liquids and gases result from differ-
ences in their molecular structure. All substances consist of vast numbers of
molecules separated by empty space. The molecules have an attraction for
one another, but when the distance between them becomes very small (of
the order of the diameter of a molecule) there is a force of repulsion between
them which prevents them all gathering together as a solid lump.

The molecules are in continual movement, and when two molecules come
very close to one another the force of repulsion pushes them vigorously apart,
just as though they had collided like two billiard balls. In solids and liquids
the molecules are much closer together than in a gas. A given volume of
a solid or a liquid therefore contains a much larger number of molecules
than an equal volume of a gas, so solids and liquids have a greater density
(i.e. mass divided by volume).

In a solid, the movement of individual molecules is slight — just a vibration
of small amplitude — and they do not readily move relative to one another.
In a liquid the movement of the molecules is greater, but they continually
attract and repel one another so that they move in curved, wavy paths rather
than in straight lines. The force of attraction between the molecules is suffi-
cient to keep the liquid together in a definite volume although, because the
molecules can move past one another, the substance is not rigid. In a gas
the molecular movement is very much greater; the number of molecules in a
given space is much less, and so any molecule travels a much greater distance
before meeting another. The forces of attraction between molecules — being
inversely proportional to the square of the distance between them - are, in
general, negligible and so molecules are free to travel away from one another
until they are stopped by a solid or liquid boundary.

The activity of the molecules increases as the temperature of the sub-
stance is raised. Indeed, the temperature of a substance may be regarded as
a measure of the average kinetic energy of the molecules.

When an external force is applied to a substance the molecules tend to
move relative to one another. A solid may be deformed to some extent as the
molecules change position, but the strong forces between molecules remain,
and they bring the solid back to its original shape when the external force is
removed. Only when the external force is very large is one molecule wrenched
away from its neighbours; removal of the external force does not then result
in a return to the original shape, and the substance is said to have been
deformed beyond its elastic limit.

In a liquid, although the forces of attraction between molecules cause it to
hold together, the molecules can move past one another and find new neigh-
bours. Thus a force applied to an unconfined liquid causes the molecules to
slip past one another until the force is removed.

If a liquid is in a confined space and is compressed it exhibits elastic
properties like a solid in compression. Because of the close spacing of the
molecules, however, the resistance to compression is great. A gas, on the
other hand, with its molecules much farther apart, offers much less resistance
to compression.
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4 Fundamental concepts

1.1.2 The continuum

An absolutely complete analysis of the behaviour of a fluid would have to
account for the action of each individual molecule. In most engineering
applications, however, interest centres on the average conditions of velo-
city, pressure, temperature, density and so on. Therefore, instead of the
actual conglomeration of separate molecules, we regard the fluid as a con-
tinuum, that is a continuous distribution of matter with no empty space.
This assumption is normally justifiable because the number of molecules
involved in the situation is so vast and the distances between them are so
small. The assumption fails, of course, when these conditions are not satis-
fied as, for example, in a gas at extremely low pressure. The average distance
between molecules may then be appreciable in comparison with the smallest
significant length in the fluid boundaries. However, as this situation is well
outside the range of normal engineering work, we shall in this book regard
a fluid as a continuum. Although it is often necessary to postulate a small
element or particle of fluid, this is supposed large enough to contain very
many molecules.

The properties of a fluid, although molecular in origin, may be adequately
accounted for in their overall effect by ascribing to the continuum such
attributes as temperature, pressure, viscosity and so on. Quantities such
as velocity, acceleration and the properties of the fluid are assumed to vary
continuously (or remain constant) from one point to another in the fluid.

The new field of nanotechnology is concerned with the design and fabric-
ation of products at the molecular level, but this topic is outside the scope
of this text.

1.1.3 Mechanics of fluids

The mechanics of fluids is the field of study in which the fundamental prin-
ciples of general mechanics are applied to liquids and gases. These principles
are those of the conservation of matter, the conservation of energy and
Newton’s laws of motion. In extending the study to compressible fluids,
we also need to consider the laws of thermodynamics. By the use of these
principles, we are not only able to explain observed phenomena, but also to
predict the behaviour of fluids under specified conditions. The study of the
mechanics of fluids can be further sub-divided. For fluids at rest the study is
known as fluid statics, whereas if the fluid is in motion, the study is called
fluid dynamics.

1.2 NOTATION, DIMENSIONS, UNITS AND
RELATED MATTERS

Calculations are an important part of engineering fluid mechanics. Fluid
and flow properties need to be quantified. The overall designs of aircraft
and dams, just to take two examples, depend on many calculations, and
if errors are made at any stage then human lives are put at risk. It is vital,
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Notation, dimensions, units and related matters

therefore, to have in place systems of measurement and calculation which are
consistent, straightforward to use, minimize the risk of introducing errors,
and allow checks to be made. These are the sorts of issues that we consider
in detail here.

1.2.1 Definitions, conventions and rules

In the physical sciences, the word quantity is used to identify any physical
attribute capable of representation by measurement. For example, mass,
weight, volume, distance, time and velocity are all quantities, according to
the sense in which the word is used in the scientific world. The value of a
quantity is defined as the magnitude of the quantity expressed as the product
of a number and a unit. The number multiplying the unit is the numerical
value of the quantity expressed in that unit. (The numerical value is some-
times referred to as the numeric.) A unit is no more than a particular way
of attaching a numerical value to the quantity, and it is part of a wider
scene involving a system of units. Units within a system of units are of two
kinds. First, there are the base units (or primary units), which are mutually
independent. Taken together, the base units define the system of units. Then
there are the derived units (or secondary units) which can be determined
from the definitions of the base units.

Each quantity has a quantity name, which is spelt out in full, or it can
be represented by a quantity symbol. Similarly, each unit has a unit name,
which is spelt out in full, or it can be abbreviated and represented by a
unit symbol. The use of symbols saves much space, particularly when set-
ting down equations. Quantity symbols and unit symbols are mathematical
entities and, since they are not like ordinary words or abbreviations, they
have their own sets of rules. To avoid confusion, symbols for quantities
and units are represented differently. Symbols for quantities are shown in
italic type using letters from the Roman or Greek alphabets. Examples of
quantity symbols are F, which is used to represent force, 72 mass, and so on.
The definitions of the quantity symbols used throughout this book are given
in Appendix 4. Symbols for units are not italicized, and are shown in Roman
type. Subscripts or superscripts follow the same rules. Arabic numerals are
used to express the numerical value of quantities.

In order to introduce some of the basic ideas relating to dimensions and
units, consider the following example. Suppose that a velocity is reported as
30 m- s~ 1. In this statement, the number 30 is described as the numeric and
m -s~ ! are the units of measurement. The notation m -s~! is an abbreviated
form of the ratio metre divided by second. There are 1000 m in 1 km, and
3600 s in 1 h. Hence, a velocity of 30 m-s~! is equivalent to 108 km-h~1.
In the latter case, the numeric is 108 and the units are km-h~!. Thus, for
defined units, the numeric is a measure of the magnitude of the velocity.
The magnitude of a quantity is seen to depend on the units in which it is
expressed.

Consider the variables: distance, depth, height, width, thickness.
These variables have different meanings, but they all have one feature in
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6 Fundamental concepts

common — they have the dimensions of length. They can all be measured
in the same units, for example metres. From these introductory consid-
erations, we can move on to deal with general principles relating to the
use of dimensions and units in an engineering context. The dimension of a
variable is a fundamental statement of the physical nature of that variable.
Variables with particular physical characteristics in common have the same
dimensions; variables with different physical qualities have different dimen-
sions. Altogether, there are seven primary dimensions but, in engineering
fluid mechanics, just four of the primary dimensions — mass, length, time
and temperature — are required. A unit of measurement provides a means
of quantifying a variable. Systems of units are essentially arbitrary, and rely
upon agreement about the definition of the primary units. This book is based
on the use of SI units.

1.2.2  Units of the Systéeme International d’Unités (SI units)

This system of units is an internationally agreed version of the metric
system; since it was established in 1960 it has experienced a process of
fine-tuning and consolidation. It is now employed throughout most of the
world and will no doubt eventually come into universal use. An extens-
ive and up-to-date guide, which has influenced the treatment of SI units
throughout this book, is: Barry N. Taylor (2004). Guide for the Use
of the International System of Units (SI) (version 2.2). [Online] Avail-
able: http://physics.nist.gov/Pubs/SP811/contents.html [2004, August 28].
National Institute of Standards and Technology, Gaithersburg, MD.

The seven primary SI units, their names and symbols are given in Table 1.1.
In engineering fluid mechanics, the four primary units are: kilogram,
metre, second and kelvin. These may be expressed in abbreviated form.
For example, kilogram is represented by kg, metre by m, second by s and
kelvin by K.

From these base or primary units, all other units, known as derived or
secondary units, are constructed (e.g. m-s~! as a unit of velocity). Over
the years, the way in which these derived units are written has changed.
Until recently, two abbreviated forms of notation were in common use.
For example, metre/second could be abbreviated to m/s or m s~! where, in
the second example, a space separates the m and s. In recent years, there

Table 1.1 Primary SI units

Quantity Unit Symbol

length metre m

mass kilogram kg

time second $

electric current ampere A
thermodynamic temperature  kelvin K (formerly °K)
luminous intensity candela  cd

amount of substance mole mol
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Notation, dimensions, units and related matters

has been a strong movement in favour of a third form of notation, which
has the benefit of clarity, and the avoidance of ambiguity. The half-high
dot (also known as the middle dot) is now widely used in scientific work in
the construction of derived units. Using the half-high dot, metre/second is
expressed as m - s~ 1. The style based on the half-high dot is used throughout
this book to represent SI units. (Note that where reference is made in this
book to units which are outside the SI, such as in the discussion of conversion
factors, the half-high dot notation will not be applied to non-SI units. Hence,
SI units can be readily distinguished from non-SI units.)

Certain secondary units, derived from combinations of the primary units,
are given internationally agreed special names. Table 1.2 lists those used
in this book. Some other special names have been proposed and may be
adopted in the future.

Although strictly outside the SI, there are a number of units that are
accepted for use with SI. These are set out in Table 1.3.

The SI possesses the special property of coherence. A system of units is
said to be coherent with respect to a system of quantities and equations if the
system of units satisfies the condition that the equations between numerical
values have exactly the same form as the corresponding equations between
the quantities. In such a coherent system only the number 1 ever occurs as a
numerical factor in the expressions for the derived units in terms of the base
units.

Table 1.2 Names of some derived units

Quantity Unit  Symbol  Equivalent combination
of primary units

force Newton N kg-m-s—2

pressure and stress pascal Pa N-m2 (=kg-m~1-s72)

work, energy, quantity of heat joule ] N-m (= kg-m?-s72)

power watt W J-s7l(=kg-m?-s73)

frequency hertz Hz s1

plane angle radian rad

solid angle steradian  sr

Table 1.3 Units accepted for use with the SI

Name Quantity  Symbol Value in SI units

minute time min 1min=460s

hour time h 1h =60min = 3600 s

day time d 1d=24h=86400s

degree plane angle o 1° = (7/180) rad

minute plane angle ’ 1" = (1/60)° = (/10 800) rad

second plane angle " 1" = (1/60) = (/648 000) rad

litre volume L 1L=1dm?=10"3m?

metric ton or tonne  mass t 1t=103 kg
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1.2.3 Prefixes

To avoid inconveniently large or small numbers, prefixes may be put
in front of the unit names (see Table 1.4). Especially recommended are
prefixes that refer to factors of 103", where # is a positive or negative
integer.

Care is needed in using these prefixes. The symbol for a prefix should
always be written close to the symbol of the unit it qualifies, for example,
kilometre (km), megawatt (MW), microsecond (ps). Only one prefix at
a time may be applied to a unit; thus 10 kg is 1 milligram (mg), not
1 microkilogram.

The symbol ‘m’ stands both for the basic unit ‘metre’ and for the pre-
fix ‘milli’, so care is needed in using it. The introduction of the half-high
dot has eliminated the risk of certain ambiguities associated with earlier
representations of derived units.

When a unit with a prefix is raised to a power, the exponent applies to
the whole multiple and not just to the original unit. Thus 1 mm? means
1(mm)2 = (1072 m)?2 = 107° m?2, and not 1 m(m?) = 1073 m?2.

The symbols for units refer not only to the singular but also to the plural.
For instance, the symbol for kilometres is km, not kms.

Capital or lower case (small) letters are used strictly in accordance with
the definitions, no matter in what combination the letters may appear.

Table 1.4 Prefixes for multiples and submultiples of SI

units

Prefix Symbol Factor by which unit is multiplied
yotta Y 1024
zetta Z 1021
exa E 1018
peta P 1015
tera T 1012
giga G 107
mega M 106
kilo k 103
hecto h 102
deca da 10
deci d 10~!
centi c 10~2
milli m 10~3
micro v 1076
nano n 10~?
pico p 10-12
femto f 10~15
atto a 1018
zepto z 10—21
yocto y 10-24
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1.2.4 Comments on some quantities and units

In everyday life, temperatures are conventionally expressed using the Celsius
temperature scale (formerly known as Centigrade temperature scale). The
symbol °C is used to express Celsius temperature. The Celsius temperature
(symbol #) is related to the thermodynamic temperature (symbol T) by the
equation

t=T-T)

where Tp=273.15 K by definition. For many purposes, 273.15 can be
rounded off to 273 without significant loss of accuracy. The thermodynamic
temperature T is exactly 0.01 K below the triple-point of water.

Note that 1 newton is the net force required to give a body of mass 1 kg an
acceleration of 1 m-s=2.

The weight W and mass 7 of a body are related by
W = mg

The quantity represented by the symbol g is variously described as the grav-
itational acceleration, the acceleration of gravity, weight per unit mass, the
acceleration of free fall and other terms. Each term has its merits and weak-
nesses, which we shall not discuss in detail here. Suffice it to say that we
shall use the first two terms. As an acceleration, the units of g are usually
represented in the natural form m-s~2, but it is sometimes convenient to
express them in the alternative form N-kg ™!, a form which follows from
the definition of the newton.

Note that 1 pascal is the pressure induced by a force of 1 N acting on an
area of 1 m?. The pascal, Pa, is small for most purposes, and thus multiples
are often used. The bar, equal to 10° Pa, has been in use for many years, but
as it breaks the 103" convention it is not an SI unit.

In the measurement of fluids the name litre is commonly given to 10~3 m3.
Both 1 and L are internationally accepted symbols for the litre. However, as
the letter | is easily mistaken for 1 (one), the symbol L is now recommended
and is used in this book.

The SI unit for plane angle is the radian. Consequently, angular velocity has
the ST unit rad - s~'. Hence, as SI units are used throughout this text, angular
velocity, denoted by the symbol w, is specified with the units rad - s~ .
Another measure of plane angle, the revolution, equal to 360°, is not part
of the SI, nor is it a unit accepted for use with SI (unlike the units degree,
minute and second, see Table 1.3). The revolution, here abbreviated to rev,
is easy to measure. In consequence rotational speed is widely reported in
industry in the units rev/s. (We avoid using the half-high dot to demonstrate
that the unit is not part of the SI.) It would be unrealistic to ignore the
popularity of this unit of measure and so, where appropriate, supplementary

Temperature

Force

Gravitational
acceleration

Pressure and stress

Volume

Angular velocity
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10 Fundamental concepts

information on rotational speed is provided in the units rev/s. To distinguish
the two sets of units, we retain the symbol w for use when the angular
velocity is measured in rad-s~!, and use the symbol N when the units are
rev/s. Thus N is related to w by the expression N = w/27w.

1.2.5 Conversion factors

This book is based on the use of SI units. However, other systems of units

are still in use; on occasions it is necessary to convert data into SI units

from these other systems of units, and vice versa. This may be done by using

conversion factors which relate the sizes of different units of the same kind.
As an example, consider the identity

1inch =25.4 mm

(The use of three lines (=), instead of the two lines of the usual equals sign,
indicates not simply that one inch equals or is equivalent to 25.4 mm but
that one inch is 25.4 mm. At all times and in all places one inch and 25.4 mm
are precisely the same.) The identity may be rewritten as

25.4 mm
1 inch

and this ratio equal to unity is a conversion factor. Moreover, as the recip-
rocal of unity is also unity, any conversion factor may be used in reciprocal
form when the desired result requires it.

This simple example illustrates how a measurement expressed in one set
of units can be converted into another. The principle may be extended
indefinitely. A number of conversion factors are set out in Appendix 1.

If magnitudes are expressed on scales with different zeros (e.g. the
Fahrenheit and Celsius scales of temperature) then unity conversion factors
may be used only for differences of the quantity, not for individual points
on a scale. For instance, a temperature difference of 36 °F = 36 °F x
(1°C/1.8 °F) = 20 °C, but a temperature of 36 °F corresponds to 2.22 °C,
not 20 °C.

1=

1.2.6 Orders of magnitude

There are circumstances where great precision is not required and just a
general indication of magnitude is sufficient. In such cases we refer to
the order of magnitude of a quantity. To give meaning to the term, con-
sider the following statements concerning examples taken from everyday
life: the thickness of the human hair is of the order 10~* m; the length
of the human thumb nail is of order 10~2 m; the height of a human is of
order 1 m; the height of a typical two-storey house is of order 10 m; the
cruise altitude of a subsonic civil aircraft is of order 10* m. These examples
cover a range of 8 orders of magnitude. The height of a human is typic-
ally 4 orders of magnitude larger than the thickness of the human hair. The
cruise altitude of an airliner exceeds the height of a human by 4 orders of
magnitude. In this context, it is unimportant that the height of most humans
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is nearer 2 m, rather than 1 m. Here we are simply saying that the height
of a human is closer to 1 m rather than 10 m, the next nearest order of
magnitude.

As an example of the usefulness of order of magnitude considerations, let
us return to the concept of the continuum; we can explain why the continuum
concept is valid for the analysis of practical problems of fluid mechanics. For
most gases, the mean free path — that is the distance that on average a gas
molecule travels before colliding with another molecule — is of the order
of 1077 m and the average distance between the centres of neighbouring
molecules is about 10~2 m. In liquids, the average spacing of the molecules
is of the order 10719 m. In contrast, the diameter of a hot-wire anemometer
(see Chapter 7), which is representative of the smallest lengths at the mac-
roscopic level, is of the order 10~* m. The molecular scale is seen to be
several (3 or more) orders smaller than the macroscopic scale of concern in
engineering.

Arguments based on a comparison of the order of magnitude of quantities
are of immense importance in engineering. Where such considerations are
relevant — for example, when analysing situations, events or processes —
factors which have a minor influence can be disregarded, allowing attention
to be focused on the factors which really matter. Consequently, the physics
is easier to understand and mathematical equations describing the physics
can be simplified.

1.2.7 Dimensional formulae

The notation for the four primary dimensions is as follows: mass [M],
length [L], time [T] and temperature [®]. The brackets form part of the
notation. The dimensions, or to give them their full title the dimensional for-
mulae, of all other variables of interest in fluid mechanics can be expressed
in terms of the four dimensions [M], [L], [T] and [®].

To introduce this notation, and the rules that operate, we consider a num-
ber of simple shapes. The area of a square, with sides of length I, is /2, and
the dimensions of the square are [L] x [L] = [L x L], which can be abbrevi-
ated to [L2]. The area of a square, with sides of length 21, is 4/2. However,
although the area of the second square is four times larger than that of the
first square, the second square again has the dimensions [L?]. A rectangle,
with sides of length a and b, has an area ab, with dimensions of [L?]. The
area of a circle, with radius 7, is 772, with dimensions of [L2]. While these
figures are of various shapes and sizes, there is a common feature linking
them all: they enclose a defined area. We can say that [L2] is the dimensional
formula for area or, more simply, area has the dimensions [L2].

Let us consider a second example. If a body traverses a distance / in a
time ¢, then the average velocity of the body over the distance is //¢. Since
the dimensions of distance are [L], and those of time are [T], the dimen-
sions of velocity are derived as [L/T], which can also be written as [LT™'].
By extending the argument a stage further, it follows that the dimensions of
acceleration are [LT2].

@ i p
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Mean density

Density at a point

Since force can be expressed as the product of mass and acceleration the
dimensions of force are given by [M] x [LT™2] = [MLT2]. By similar
reasoning, the dimensions of any quantity can be quickly established.

1.2.8 Dimensional homogeneity

For a given choice of reference magnitudes, quantities of the same kind
have magnitudes with the same dimensional formulae. (The converse, how-
ever, is not necessarily true: identical dimensional formulae are no guarantee
that the corresponding quantities are of the same kind.) Since adding, sub-
tracting or equating magnitudes makes sense only if the magnitudes refer to
quantities of the same kind, it follows that all terms added, subtracted or
equated must have identical dimensional formulae; that is; an equation must
be dimensionally homogeneous.

In addition to the variables of major interest, equations in physical algebra
may contain constants. These may be numerical values, like the % in Kinetic

energy = % mu?, and they are therefore dimensionless. However, in general
they are not dimensionless; their dimensional formulae are determined from
those of the other magnitudes in the equation, so that dimensional homo-
geneity is achieved. For instance, in Newton’s Law of Universal Gravitation,
F = Gmymy/r*, the constant G must have the same dimensional formula
as Fr2 /myma, that is, [MLT2][L2]/[M][M] = [L3M~!T~2], otherwise the
equation would not be dimensionally homogeneous. The fact that G is a
universal constant is beside the point: dimensions are associated with it, and
in analysing the equation they must be accounted for.

1.3 PROPERTIES OF FLUIDS

1.3.1 Density

The basic definition of the density of a substance is the ratio of the mass of
a given amount of the substance to the volume it occupies. For liquids, this
definition is generally satisfactory. However, since gases are compressible,
further clarification is required.

The mean density is the ratio of the mass of a given amount of a substance
to the volume that this amount occupies. If the mean density in all parts of
a substance is the same then the density is said to be uniform.

The density at a point is the limit to which the mean density tends as the
volume considered is indefinitely reduced, that is lim,_,o(#2/V). As a math-
ematical definition this is satisfactory; since, however, all matter actually
consists of separate molecules, we should think of the volume reduced not
absolutely to zero, but to an exceedingly small amount that is nevertheless
large enough to contain a considerable number of molecules. The concept
of a continuum is thus implicit in the definition of density at a point.
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The relative density is the ratio of the density of a substance to some standard
density. The standard density chosen for comparison with the density of a
solid or a liquid is invariably that of water at 4 °C. For a gas, the standard
density may be that of air or that of hydrogen, although for gases the term
is little used. (The term specific gravity has also been used for the relative
density of a solid or a liquid, but relative density is much to be preferred.)
As relative density is the ratio of two magnitudes of the same kind it is merely
a numeric without units.

1.3.2 Pressure

A fluid always has pressure. As a result of innumerable molecular collisions,
any part of the fluid must experience forces exerted on it by adjoining fluid
or by adjoining solid boundaries. If, therefore, part of the fluid is arbitrarily
divided from the rest by an imaginary plane, there will be forces that may
be considered as acting at that plane.

Pressure cannot be measured directly; all instruments said to measure it
in fact indicate a difference of pressure. This difference is frequently that
between the pressure of the fluid under consideration and the pressure of the
surrounding atmosphere. The pressure of the atmosphere is therefore com-
monly used as the reference or datum pressure that is the starting point of the
scale of measurement. The difference in pressure recorded by the measuring
instrument is then termed the gauge pressure.

The absolute pressure, that is the pressure considered relative to that of a
perfect vacuum, is then given by p,ps = Pgauge + Parm- (See also Section 2.3.)

The pressure of the atmosphere is not constant. For many engineering
purposes the variation of atmospheric pressure (and therefore the variation
of absolute pressure for a given gauge pressure, or vice versa) is of no con-
sequence. In other cases, however — especially for the flow of gases — it is
necessary to consider absolute pressures rather than gauge pressures, and
a knowledge of the pressure of the atmosphere is then required.

Pressure is determined from a calculation of the form (force divided by
area), and so has the dimensions [F]/[L?] = [MLT2]/[L%] = [ML~'T—2].
Now although the force has direction, the pressure has not. The direction of
the force also specifies the direction of the imaginary plane surface, since the
latter is defined by the direction of a line perpendicular to, or normal to, the
surface. Here, then, the force and the surface have the same direction and
so in the equation

— —_
Force = Pressure x Area of plane surface

pressure must be a scalar quantity. Pressure is a property of the fluid at the
point in question. Similarly, temperature and density are properties of the
fluid and it is just as illogical to speak of ‘downward pressure’, for example,
as of ‘downward temperature’ or ‘downward density’. To say that pressure

Properties of fluids

Relative density

Pressure

Gauge pressure

Absolute pressure
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14 Fundamental concepts

Fig. 1.1

acts in any direction, or even in all directions, is meaningless; pressure is
a scalar quantity.

The SI unit of pressure is N-m~2, now termed pascal, with the abbrevi-
ation Pa. Pressures of large magnitude are often expressed in atmospheres
(abbreviated to atm). For precise definition, one atmosphere is taken as
1.01325 x 10° Pa. A pressure of 10° Pa is called 1 bar. The thousandth
part of this unit, called a millibar (abbreviated to mbar), is commonly used
by meteorologists. It should be noted that, although they are widely used,
neither the atmosphere nor the bar are accepted for use with SI units.

For pressures less than that of the atmosphere the units normally used
are millimetres of mercury vacuum. These units refer to the difference
between the height of a vertical column of mercury supported by the pressure
considered, and the height of one supported by the atmosphere.

In the absence of shear forces, the direction of the plane over which the
force due to the pressure acts has no effect on the magnitude of the pressure at
a point. The fluid may even be accelerating in a particular direction provided
that shear forces are absent — a condition that requires no relative motion
between different particles of fluid.

Consider a small prism, with plane faces and triangular section. Figure 1.1
shows one end ABC of the prism; a parallel end face A’B’C’ is at a perpendic-
ular distance [ from ABC. The rectangular face ABB’A’ is assumed vertical
and the rectangular face BCC’'B’ horizontal, but the face ACC'A’ is at any
angle. We denote the angle BAC by A and the angle ACB by C. The mean
density of the fluid inside the prism is ¢ and the average pressures at each
face are p1,py and p3, respectively.

If there is no relative motion between particles of the fluid, the forces on
the end faces ABC and A’B’'C’ act only perpendicular to those faces. The net
force towards the right is given by resolving horizontally (and parallel to the
plane ABC):

p1ABl — p3AClcos A = (p1 — p3)ABI

since AC cos A = AB. By Newton’s Second Law, this net force equals the
product of the mass of the fluid and its means acceleration (say ay) in that
direction:

(p1 — p3)ABI = 1BC ABloay
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that is,

p1—p3 = 3BC oa (1.1)

If the prism is made exceedingly small it shrinks to a point, the right-hand
side of eqn 1.1 tends to zero and so, at the point considered,

p1="03 (1.2)

The weight of the fluid in the prism is g times its mass, so the net force
vertically downwards is

p3AClcos C + %BCABng — poBCI
= BCI (pg, + %AB 0g — pz)

since AC cos C = BC.
Again by Newton’s Second Law, this net force equals the product of the
mass of the fluid and its mean acceleration vertically downwards (say a,):

BCI (p3 +1ABog - p2> = LBCABI ga,
or, after division by BCI and rearrangement:

p3 — b2 = $ABo(ay — g)

If the size of the prism is reduced AB — 0 and, at the point considered,

p3=p2 (1.3)

So, combining eqns 1.2 and 1.3, we have

b1 =p2=0p3 (1.4)

We remember that the direction of the face ACC’A” was not specified at
all, and so the result is valid for any value of the angle ACB. Moreover, the
plane ABB’A’ may face any point of the compass and therefore the pressure is
quite independent of the direction of the surface used to define it. This result
is frequently known as Pascal’s Law after the French philosopher Blaise
Pascal (1623-62), although the principle had previously been deduced by
G. B. Benedetti (1530-90) and Simon Stevin (1548-1620) in about 1586.
The only restrictions are that the fluid is a continuum, that is, the prism,
even when made very small, contains a large number of molecules, and that,
if it is moving, there is no relative motion between adjacent particles.

If, however, there is relative motion between adjacent layers in the fluid,
then shear stresses are set up and eqn 1.4 is not strictly true. The ratio of a
force perpendicular to (or normal to) an area divided by that area is known
as the normal stress. When shear stresses are present, the magnitude of the
quantity referred to as the pressure at a point is taken as the mean of the
normal stresses on three mutually perpendicular planes. Experience shows

Properties of fluids
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Saturation pressure

Cavitation

that, even when shear stresses are present, Pascal’s Law is very close to the
truth.

1.3.3 Vapour pressure

All liquids tend to evaporate (or vaporize). This is because there is at the
free surface a continual movement of molecules out of the liquid. Some of
these molecules return to the liquid, so there is, in fact, an interchange of
molecules between the liquid and the space above it. If the space above the
surface is enclosed, the number of liquid molecules in the space will - if the
quantity of liquid is sufficient — increase until the rate at which molecules
escape from the liquid is balanced by the rate at which they return to it.

Just above the liquid surface the molecules returning to the liquid create a
pressure known as the partial pressure of the vapour. This partial pressure
and the partial pressures of other gases above the liquid together make up
the total pressure there. Molecules leaving the liquid give rise to the vapour
pressure, the magnitude of which depends upon the rate at which molecules
escape from the surface. When the vapour pressure equals the partial pressure
of the vapour above the surface, the rates at which molecules leave and enter
the liquid are the same, and the gas above the surface is then said to be
saturated with the vapour. The value of the vapour pressure for which this
is so is the saturation pressure.

Since the velocity of the molecules, and hence their ability to escape
through the liquid surface, increases with temperature, so does the vapour
pressure. If the total pressure of the gas above the liquid becomes less than
the saturation pressure, molecules escape from the liquid very rapidly in the
phenomenon known as boiling. Bubbles of vapour are formed in the liquid
itself and then rise to the surface. For pure water the saturation pressure at
100 °C is approximately 10° Pa, which is the total pressure of the atmo-
sphere at sea level, so water subject to this atmospheric pressure boils at this
temperature. If, however, the external pressure to which the liquid is sub-
jected is lower, then boiling commences at a lower value of the saturation
pressure, that is at a lower temperature. Water therefore boils even at room
temperature if the pressure is reduced to the value of the saturation vapour
pressure at that temperature (for numerical data see Appendix 2).

Effects very similar to boiling occur if a liquid contains dissolved gases.
When the pressure of the liquid is sufficiently reduced the dissolved gases are
liberated in the form of bubbles; a smaller reduction of pressure is, however,
required for the release of dissolved gases than for the boiling of the liquid.
A subsequent increase of pressure may cause bubbles, whether of vapour
or of other gases, to collapse; very high impact forces may then result. The
latter phenomenon is known as cavitation, and has serious consequences in
fluid machinery. (See Section 13.3.6.)

There is a wide variation in vapour pressure among liquids, as shown in
Appendix 2. These figures clearly indicate that it is not only its high density
that makes mercury valuable in a barometer; the vapour pressure is so low
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that there is an almost perfect vacuum above the liquid column. It will also
be seen why a liquid such as petrol evaporates much more readily than water
at the same temperature.

1.4 THE PERFECT GAS: EQUATION OF STATE

The assumed properties of a perfect gas are closely matched by those of
actual gases in many circumstances, although no actual gas is perfect. The
molecules of a perfect gas would behave like tiny, perfectly elastic spheres in
random motion, and would influence one another only when they collided.
Their total volume would be negligible in comparison with the space in which
they moved. From these hypotheses the kinetic theory of gases indicates that,
for equilibrium conditions, the absolute pressure p, the volume V occupied
by mass m, and the absolute temperature Tare related by the expression

pV =mRT
that is,
p = oRT (1.5)

where ¢ represents the density and R the gas constant, the value of which
depends on the gas concerned.

Any equation that relates p, 0 and T is known as an equation of state and
eqn 1.5 is therefore termed the equation of state of a perfect gas. Most gases,
if at temperatures and pressures well away both from the liquid phase and
from dissociation, obey this relation closely and so their pressure, density
and (absolute) temperature may, to a good approximation, be related by
eqn 1.5. For example, air at normal temperatures and pressures behaves
closely in accordance with the equation. But gases near to liquefaction —
which are then usually termed vapours — depart markedly from the behaviour
of a perfect gas. Equation 1.5 therefore does not apply to substances such
as non-superheated steam and the vapours used in refrigerating plants. For
such substances, corresponding values of pressure, temperature and density
must be obtained from tables or charts.

A gas for which
p/oT = R = constant

is said to be thermally perfect.

It is usually assumed that the equation of state is valid not only when the
fluid is in mechanical equilibrium and neither giving nor receiving heat, but
also when it is not in mechanical or thermal equilibrium. This assumption
seems justified because deductions based on it have been found to agree with
experimental results.

Equation of state

Thermally perfect gas

@ i p

17



18 Fundamental concepts

Universal gas constant

Calorically perfect gas

It should be noted that R is defined by eqn 1.5 as p/oT: its dimensional

formula is therefore
T1/[Mg]_ (L
L2 L3  [MO]

where [F] is the dimensional symbol for force and [@] that for temperature.
For air the value of R is 287 J-kg™'-K™!'. Some writers define the gas
constant as p/wT, where w represents the weight divided by volume; this
form has the dimensional formula

[F/L?] = [FO/L’] = [L/©]

The dependence of a gas constant on the weight of a given volume of gas
rather than on its mass is illogical, and eqn 1.5 — used throughout this book —
is the preferred form of the equation of state for a perfect gas.

Example 1.1 A mass of air, at a pressure of 200 kPa and a
temperature of 300 K, occupies a volume of 3 m3. Determine:

(a) the density of the air;
(b) its mass.

Solution S )
2x105N-m~
(@)oo= 2 . I 1m =2.32kg-m™3
RT  287]-kg ' K ' x 300K

(b)ym =0V =2.32kg-m3 x 3 m? =6.96 kg

For a given temperature and pressure eqn 1.5 indicates that gR = constant.
By Avogadro’s hypothesis, all pure gases at the same temperature and pres-
sure have the same number of molecules in a specified volume. The density
is proportional to the mass of an individual molecule and so the product of
R and the relative molecular mass M is constant for all perfect gases. This
product MR is known as the universal gas constant, Ry; for real gases it
is not strictly constant but for monatomic and diatomic gases its variation is
slight. If M is the ratio of the mass of the molecule to the mass of a normal
hydrogen atom, MR = 8314 J - kg™ ' - K.

A gas for which the specific heat capacity at constant volume, c,, is
a constant is said to be calorically perfect. The term perfect gas, used
without qualification, generally refers to a gas that is both thermally and
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calorically perfect. (Some writers use semi-perfect as a synonym for thermally
perfect.)

Example 1.2  Find the gas constant for the following gases: CO, CO;,
NO, N, O. The relative atomic masses are: C = 12,N = 14,0 = 16.

Solution
For CO, the relative molecular mass M = 12 + 16 = 28.
Hence, for CO

Ry MR 8314].kg’'.K' R

Similarly
For COy, M =12+ (2 x 16) =44 and

R =8314/44 =189 ] kg ' - K!
For NO, M =14+ 16 =30 and

R =8314/30 =277 ] kg ' -K!
For N;O, M= (2 x 14) + 16 = 44 and

R=18314/44 =189 ] - kg~ ! . K!

1.4.1 Changes of state

A change of density may be achieved both by a change of pressure and by a
change of temperature. If the process is one in which the temperature is held
constant, it is known as isothermal.

On the other hand, the pressure may be held constant while the temperature
is changed. In either of these two cases there must be a transfer of heat to
or from the gas so as to maintain the prescribed conditions. If the density
change occurs with no heat transfer to or from the gas, the process is said
to be adiabatic.

If, in addition, no heat is generated within the gas (e.g. by friction) then
the process is described as isentropic, and the absolute pressure and dens-
ity of a perfect gas are related by the additional expression (developed in
Section 11.2):

p/o¥ = constant (1.6)

where y = ¢,/c, and ¢, and ¢, represent the specific heat capacities at con-
stant pressure and constant volume respectively. For air and other diatomic
gases in the usual ranges of temperature and pressure y = 1.4.

Isothermal process

Adiabatic process

Isentropic process
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Bulk modulus of
elasticity

Compressibility

1.5 COMPRESSIBILITY

All matter is to some extent compressible. That is to say, a change in the
pressure applied to a certain amount of a substance always produces some
change in its volume. Although the compressibility of different substances
varies widely, the proportionate change in volume of a particular material
that does not change its phase (e.g. from liquid to solid) during the compres-
sion is directly related to the change in the pressure.

The degree of compressibility of a substance is characterized by the bulk
modulus of elasticity, K, which is defined by the equation

o

sV 1.7)

Here 8§p represents a small increase in pressure applied to the material and
8V the corresponding small increase in the original volume V. Since a rise in
pressure always causes a decrease in volume, §V is always negative, and the
minus sign is included in the equation to give a positive value of K. As§V/V
is simply a ratio of two volumes it is dimensionless and thus K has the same
dimensional formula as pressure. In the limit, as §p — 0, eqn 1.7 becomes
K = —V(@p/aV). As the density o is given by mass/volume = m/V

dv
do=d(m/V) = —%dV =-e~

so K may also be expressed as

K = 0(9p/d0) (1.8)

The reciprocal of bulk modulus is sometimes termed the compressibility.

The value of the bulk modulus, K, depends on the relation between pres-
sure and density applicable to the conditions under which the compression
takes place. Two sets of conditions are especially important. If the com-
pression occurs while the temperature is kept constant, the value of K is
the isothermal bulk modulus. On the other hand, if no heat is added to or
taken from the fluid during the compression, and there is no friction, the
corresponding value of K is the isentropic bulk modulus. The ratio of the
isentropic to the isothermal bulk modulus is y, the ratio of the specific heat
capacity at constant pressure to that at constant volume. For liquids the
value of y is practically unity, so the isentropic and isothermal bulk mod-
uli are almost identical. Except in work of high accuracy it is not usual to
distinguish between the bulk moduli of a liquid.

For liquids the bulk modulus is very high, so the change of density with
increase of pressure is very small even for the largest pressure changes
encountered. Accordingly, the density of a liquid can normally be regarded as
constant, and the analysis of problems involving liquids is thereby simplified.
In circumstances where changes of pressure are either very large or very sud-
den, however — as in water hammer (see Section 12.3) — the compressibility
of liquids must be taken into account.
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As a liquid is compressed its molecules become closer together, so its
resistance to further compression increases, that is, K increases. The bulk
modulus of water, for example, roughly doubles as the pressure is raised
from 10° Pa (1 atm) to 3.5 x 108 Pa (3500 atm). There is also a decrease of
K with increase of temperature.

Unlike liquids, gases are easily compressible. In considering the flow of
gases, rather than using K, it is convenient to work in terms of the Mach
number, M , defined by the relation

M=u/a

where u is the local velocity and a is the speed of sound. For gases, compress-
ibility effects are important if the magnitude of # approaches or exceeds that
of a. On the other hand, compressibility effects may be ignored, if every-
where within a flow, the criterion %MZ <« 1 is satisfied; in practice, this
is usually taken as M < 0.3. For example, in ventilation systems, gases
undergo only small changes of density, and the effects of compressibility
may be disregarded.

1.6 VISCOSITY

All fluids offer resistance to any force tending to cause one layer to move over
another. Viscosity is the fluid property responsible for this resistance. Since
relative motion between layers requires the application of shearing forces,
that is, forces parallel to the surfaces over which they act, the resisting forces
must be in exactly the opposite direction to the applied shear forces and so
they too are parallel to the surfaces.

It is a matter of common experience that, under particular conditions, one
fluid offers greater resistance to flow than another. Such liquids as tar, treacle
and glycerine cannot be rapidly poured or easily stirred, and are commonly
spoken of as thick; on the other hand, so-called #hin liquids such as water,
petrol and paraffin flow much more readily. (Lubricating oils with small
viscosity are sometimes referred to as light, and those with large viscosity as
heavy; but viscosity is not related to density.)

Gases as well as liquids have viscosity, although the viscosity of gases is
less evident in everyday life.

1.6.1 Quantitative definition of viscosity

Consider the motion of fluid illustrated in Fig. 1.2. All particles are moving
in the same direction, but different layers of the fluid move with differ-
ent velocities (as indicated here by the lengths of the arrows). Thus one
layer moves relative to another. We assume for the moment that the paral-
lel movements of the layers are in straight lines. A particular small portion
of the fluid will be deformed from its original rectangular shape PORS to
P'Q'R’'S’ as it moves along. However, it is not the displacement of P'Q’
relative to S'R’ that is important, so much as the angle . The right-hand
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Fig. 1.2

Fig. 1.3

Fig. 1.4

diagram of Fig. 1.3 represents a smaller degree of deformation than does the
left-hand diagram, although the relative movement between top and bottom
of the portion considered is the same in each case. The linear displacement is
a matter of the difference of velocity between the two planes PQ and SR but
the angular displacement depends also on the distance between the planes.
Thus the important factor is the velocity gradient, that is, the rate at which
the velocity changes with the distance across the flow.

Suppose that, within a flowing fluid, the velocity # of the fluid varies
with distance y measured from some fixed reference plane, in such a man-
ner as in Fig. 1.4. Such a curve is termed the velocity profile. The velocity
gradient is given by &u/8y or, in the limit as §y — 0, by du/dy. The
partial derivative du/dy is used because in general the velocity varies also
in other directions. Only the velocity gradient in the y direction concerns
us here.

Figure 1.5 represents two adjoining layers of the fluid, although they are
shown slightly separated for the sake of clarity. The upper layer, supposed
the faster of the two, tends to draw the lower one along with it by means of
a force F on the lower layer. At the same time, the lower layer (by Newton’s
Third Law) tends to retard the faster, upper, one by an equal and opposite
force acting on that. If the force F acts over an area of contact A the shear
stress T is given by F/A.

Newton (1642-1727) postulated that, for the straight and parallel motion
of a given fluid, the tangential stress between two adjoining layers is pro-
portional to the velocity gradient in a direction perpendicular to the layers.

That is

v =F/A «x du/dy
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or
T=u— (1.9)

where p is a constant for a particular fluid at a particular temperature.
This coefficient of proportionality p is now known by a number of names.
The preferred term is dynamic viscosity — to distinguish it from kinematic
viscosity (Section 1.6.4) — but some writers use the alternative terms absolute
viscosity or coefficient of viscosity. The symbols u and 5 are both widely used
for dynamic viscosity; in this book u will be used. The restriction of eqn 1.9
to straight and parallel flow is necessary because only in these circumstances
does the increment of velocity du necessarily represent the rate at which one
layer of fluid slides over another.

It is important to note that eqn 1.9 strictly concerns the velocity gradient
and the stress at a point: the change of velocity considered is that occurring
over an infinitesimal thickness and the stress is given by the force acting over
an infinitesimal area. The relation T = wAu/Ay, where Au represents the
change of velocity occurring over a larger, finite distance Ay, is only true for
a velocity profile with a linear velocity gradient.

To remove the restriction to straight and parallel flow, we may substitute
‘the rate of relative movement between adjoining layers of the fluid’ for §u,
and ‘rate of shear’ for ‘velocity gradient’. As will be shown in Section 6.6.4,
if angular velocity is involved then the rate of shear and the velocity gradient
are not necessarily identical; in general, the rate of shear represents only
part of the velocity gradient. With this modification, eqn 1.9 may be used
to define viscosity as the shear stress, at any point in a flow, divided by the
rate of shear at the point in the direction perpendicular to the surface over
which the stress acts.

The dynamic viscosity u is a property of the fluid and a scalar quantity.
The other terms in eqn 1.9, however, refer to vector quantities, and it is
important to relate their directions. We have already seen that the surface
over which the stress t acts is (for straight and parallel flow) perpendicular
to the direction of the velocity gradient. (With the notation of eqn 1.9 the
surface is perpendicular to the y coordinate or, in other words, parallel to the
x—z plane.) We have seen too that the line of action of the force F is parallel
to the velocity component #. Yet what of the sense of this force? In Fig. 1.5,
to which of the two forces each labelled F does eqn 1.9 strictly apply?

If the velocity u increases with vy, then du/dy is positive and eqn 1.9 gives
a positive value of . For simplicity the positive sense of the force or stress
is defined as being the same as the positive sense of velocity. Thus, referring
again to Fig. 1.5, the value of T given by the equation refers to the stress acting
on the lower layer. In other words, both velocity and stress are considered
positive in the direction of increase of the coordinate parallel to them; and

Fig. 1.5
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the stress given by eqn 1.9 acts over the surface facing the direction in which
the perpendicular coordinate (e.g. y) increases.

For many fluids the magnitude of the viscosity is independent of the rate
of shear, and although it may vary considerably with temperature it may
be regarded as a constant for a particular fluid and temperature. Such fluids
are known as Newtonian fluids. Those fluids that behave differently are
discussed in Section 1.6.5.

Equation 1.9 shows that, irrespective of the magnitude of u, the stress is
zero when there is no relative motion between adjoining layers. Moreover,
it is clear from the equation that du/dy must nowhere be infinite, since
such a value would cause an infinite stress and this is physically impossible.
Consequently, if the velocity varies across the flow, it must do so continu-
ously and not change by abrupt steps between adjoining elements of the fluid.
This condition of continuous variation must be met also at a solid boundary;
the fluid immediately in contact with the boundary does not move relative
to it because such motion would constitute an abrupt change. In a viscous
fluid, then, a condition that must always be satisfied is that there should be
no slipping at solid boundaries. This condition is commonly referred to as
the no-slip condition.

It will be seen that there is a certain similarity between the dynamic viscos-
ity in a fluid and the shear modulus of elasticity in a solid. Whereas, however,
a solid continues to deform only until equilibrium is reached between the
internal resistance to shear and the external force producing it, a fluid con-
tinues to deform indefinitely, provided that the external force remains in
action. In a fluid it is the rate of deformation, not the deformation itself,
that provides the criterion for equilibrium of force.

To maintain relative motion between adjoining layers of a fluid, work
must be done continuously against the viscous forces of resistance. In other
words, energy must be continuously supplied. Whenever a fluid flows there
is a loss of mechanical energy, often ascribed to fluid friction, which is used
to overcome the viscous forces. The energy is dissipated as heat, and for
practical purposes may usually be regarded as lost forever.

1.6.2 The causes of viscosity

For one possible cause of viscosity we may consider the forces of attrac-
tion between molecules. Yet there is evidently also some other explanation,
because gases have by no means negligible viscosity although their molecules
are in general so far apart that no appreciable inter-molecular force exists.
We know, however, that the individual molecules of a fluid are continu-
ously in motion and this motion makes possible a process of exchange of
momentum between different layers of the fluid. Suppose that, in straight
and parallel flow, a layer aa (Fig. 1.6) in the fluid is moving more rapidly
than an adjacent layer bb. Some molecules from the layer aa, in the course
of their continuous thermal agitation, migrate into the layer bb, taking with
them the momentum they have as a result of the overall velocity of layer
aa. By collisions with other molecules already in layer bb this momentum is
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shared among the occupants of bb, and thus layer bb as a whole is speeded
up. Similarly, molecules from the slower layer bb cross to aa and tend to
retard the layer aa. Every such migration of molecules, then, causes forces
of acceleration or deceleration in such directions as to tend to eliminate the
differences of velocity between the layers.

In gases this interchange of molecules forms the principal cause of viscos-
ity, and the kinetic theory of gases (which deals with the random motions
of the molecules) allows the predictions — borne out by experimental obser-
vations — that (a) the viscosity of a gas is independent of its pressure (except
at very high or very low pressure) and (b) because the molecular motion
increases with a rise of temperature, the viscosity also increases with a rise
of temperature (unless the gas is so highly compressed that the kinetic theory
is invalid).

The process of momentum exchange also occurs in liquids. There is, how-
ever, a second mechanism at play. The molecules of a liquid are sufficiently
close together for there to be appreciable forces between them. Relative
movement of layers in a liquid modifies these inter-molecular forces, thereby
causing a net shear force which resists the relative movement. Consequently,
the viscosity of a liquid is the resultant of two mechanisms, each of which
depends on temperature, and so the variation of viscosity with temperature
is much more complex than for a gas. The viscosity of nearly all liquids
decreases with rise of temperature, but the rate of decrease also falls. Except
at very high pressures, however, the viscosity of a liquid is independent of
pressure.

The variation with temperature of the viscosity of a few common fluids is
given in Appendix 2.

1.6.3 The dimensional formula and units of dynamic viscosity

Dynamic viscosity is defined as the ratio of a shear stress to a velocity gradi-
ent. Since stress is defined as the ratio of a force to the area over which it
acts, its dimensional formula is [FL=2]. Velocity gradient is defined as the
ratio of increase of velocity to the distance across which the increase occurs,
thus giving the dimensional formula [L/T]/[L] = [T~!]. Consequently the
dimensional formula of dynamic viscosity is [FL=2]/[T~!] = [FTL~2]. Since
[F] = [MLT~2], the expression is equivalent to [ML~1T~1].

The SI unit of dynamic viscosity is Pa-s, or kg-m~!-s~!, but no special
name for it has yet found international agreement. (The name poiseuille,
abbreviated Pl has been used in France but must be carefully distinguished

Fig. 1.6
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from poise — see below. 1 Pl=10 poise.) Water at 20 °C has a dynamic
viscosity of almost exactly 1073 Pa-s.

(Data for dynamic viscosity are still commonly expressed in units from the
c.g.s. system, namely the poise (abbreviated P) in honour of J. L. M. Poiseuille
(1799-1869). Smaller units, the centipoise, cP, that is, 10~ poise, the
millipoise, mP (10~3 poise) and the micropoise, pP(10~° poise) are also
used.)

1.6.4 Kinematic viscosity and its units

In fluid dynamics, many problems involving viscosity are concerned with the
magnitude of the viscous forces compared with the magnitude of the inertia
forces, that is, those forces causing acceleration of particles of the fluid. Since
the viscous forces are proportional to the dynamic viscosity u and the inertia
forces are proportional to the density g, the ratio /g is frequently involved.
The ratio of dynamic viscosity to density is known as the kinematic viscosity
and is denoted by the symbol v so that

v=— (1.10)
o
(Care should be taken in writing the symbol v: it is easily confused with v.)

The dimensional formula for v is given by IML~'T-1)/IML73] =
[L2T~1]. It will be noticed that [M] cancels and so v is independent of the
units of mass. Only magnitudes of length and time are involved. Kinematics
is defined as the study of motion without regard to the causes of the motion,
and so involves the dimensions of length and time only, but not mass. That
is why the name kinematic viscosity, now in universal use, has been given to
the ratio u/o.

The SI unit for kinematic viscosity is m?-s~!, but this is too large for
most purposes so the mm?-s~! (= 10~®m?.s1) is generally employed.
Water has a kinematic viscosity of exactly = 10~®m?-s~! at 20.2 °C.

(The c.g.s. unit, cm? /s, termed the stokes (abbreviated S or St), honours
the Cambridge physicist, Sir George Stokes (1819-1903), who contributed
much to the theory of viscous fluids. This unit is rather large, but — although
not part of the SI — data are sometimes still expressed using the centistokes
(cSt). Thus 1 ¢St = 1072 St = 10~m?2-s7 1))

As Appendix 2 shows, the dynamic viscosity of air at ordinary temperat-
ures is only about one-sixtieth that of water. Yet because of its much smaller
density its kinematic viscosity is 13 times greater than that of water.

Measurement of dynamic and kinematic viscosities is discussed in

Chapter 6.

2

1.6.5 Non-Newtonian liquids

For most fluids the dynamic viscosity is independent of the velocity gradient
in straight and parallel flow, so Newton’s hypothesis is fulfilled. Equation 1.9
indicates that a graph of stress against rate of shear is a straight line through
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the origin with slope equal to pu (Fig. 1.7). There is, however, a fairly large
category of liquids for which the viscosity is not independent of the rate of
shear, and these liquids are referred to as non-Newtonian. Solutions (par-
ticularly of colloids) often have a reduced viscosity when the rate of shear
is large, and such liquids are said to be pseudo-plastic. Gelatine, clay, milk,
blood and liquid cement come in this category.

A few liquids exhibit the converse property of dilatancy; that is, their
effective viscosity increases with increasing rate of shear. Concentrated solu-
tions of sugar in water and aqueous suspensions of rice starch (in certain
concentrations) are examples.

Additional types of non-Newtonian behaviour may arise if the apparent
viscosity changes with the time for which the shearing forces are applied.
Liquids for which the apparent viscosity increases with the duration of the
stress are termed rheopectic; those for which the apparent viscosity decreases
with the duration are termed thixotropic.

A number of materials have the property of plasticity. Metals when
strained beyond their elastic limit or when close to their melting points
can deform continuously under the action of a constant force, and thus
in some degree behave like liquids of high viscosity. Their behaviour, how-
ever, is non-Newtonian, and most of the methods of mechanics of fluids are
therefore inapplicable to them.

Viscoelastic materials possess both viscous and elastic properties; bitu-
men, nylon and flour dough are examples. In steady flow, that is, flow not
changing with time, the rate of shear is constant and may well be given by
7/ where u represents a constant dynamic viscosity as in a Newtonian fluid.
Elasticity becomes evident when the shear stress is changed. A rapid increase
of stress from t to T 4+ 8t causes the material to be sheared through an addi-
tional angle §7/G where G represents an elastic modulus; the corresponding

Fig. 1.7
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rate of shear is (1/G)dt/dt so the total rate of shear in the material is
(t/w) + (1/G)az/ot.

The fluids with which engineers most often have to deal are Newtonian,
that is, their viscosity is not dependent on either the rate of shear or its
duration, and the term mechanics of fluids is generally regarded as referring
only to Newtonian fluids. The study of non-Newtonian liquids is termed
rheology.

1.6.6 Inviscid fluid

An important field of theoretical fluid mechanics involves the investigation
of the motion of a hypothetical fluid having zero viscosity. Such a fluid is
sometimes referred to as an ideal fluid. Although commonly adopted in the
past, the use of this term is now discouraged as imprecise. A more meaningful
term for a fluid of zero viscosity is inviscid fluid.

1.7 SURFACE TENSION

Surface tension arises from the forces between the molecules of a liquid and
the forces (generally of a different magnitude) between the liquid molecules
and those of any adjacent substance. The symbol for surface tension is y and
it has the dimensions [MT2].

Water in contact with air has a surface tension of about 0.073 N-m~! at
usual ambient temperatures; most organic liquids have values between 0.020
and 0.030 N-m~! and mercury about 0.48 N.m~!, the liquid in each case
being in contact with air. For all liquids the surface tension decreases as
the temperature rises. The surface tension of water may be considerably
reduced by the addition of small quantities of organic solutes such as soap
and detergents. Salts such as sodium chloride in solution raise the surface
tension of water. That tension which exists in the surface separating two
immiscible liquids is usually known as interfacial tension.

As a consequence of surface tension effects a drop of liquid, free from all
other forces, takes on a spherical form.

The molecules of a liquid are bound to one another by forces of molecular
attraction, and it is these forces that give rise to cobesion, that is, the tendency
of the liquid to remain as one assemblage of particles rather than to behave
as a gas and fill the entire space within which it is confined. Forces between
the molecules of a fluid and the molecules of a solid boundary surface give
rise to adhesion between the fluid and the boundary.

If the forces of adhesion between the molecules of a particular liquid and
a particular solid are greater than the forces of cohesion among the liquid
molecules themselves, the liquid molecules tend to crowd towards the solid
surface, and the area of contact between liquid and solid tends to increase.
Given the opportunity, the liquid then spreads over the solid surface and
‘wets’ it. Water will wet clean glass, but mercury will not. Water, however,
will not wet wax or a greasy surface.
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The interplay of these various forces explains the capillary rise or
depression that occurs when a free liquid surface meets a solid boundary.
Unless the attraction between molecules of the liquid exactly equals that
between molecules of the liquid and molecules of the solid, the surface near
the boundary becomes curved. Now if the surface of a liquid is curved the
surface tension forces have a resultant towards the concave side. For equi-
librium this resultant must be balanced by a greater pressure at the concave
side of the surface. It may readily be shown that if the surface has radii of
curvature Ry and R in two perpendicular planes the pressure at the concave
side of the surface is greater than that at the convex side by

1 1
y(R—1+R—2> (1.11)

Inside a spherical drop, for instance, the pressure exceeds that outside by
2y /R (since here Ry = Ry = R). However, the excess pressure inside a soap
bubble is 4y /R; this is because the very thin soap film has two surfaces, an
inner and an outer, each in contact with air. Applying expression 1.11 and
the principles of statics to the rise of a liquid in a vertical capillary tube yields

_ 4y coso

h
ogd

(1.12)

where b represents the capillary rise of the liquid surface (see Fig. 1.8), 0 rep-
resents the angle of contact between the wall of the tube and the interface
between the liquid and air, o the density of the liquid, g the gravitational
acceleration, and d the diameter of the tube. (For two liquids in contact
y represents the interfacial tension, and ¢ the difference of their densities.)
However, the assumption of a spherical interface between the liquid and air
(and other approximations) restricts the application of the formula to tubes
of small bore, say less than 3 mm. Moreover, although for pure water in a
completely clean glass tube 6 = 0, the value may well be different in engin-
eering practice, where cleanliness of a high order is seldom found, or with

Surface tension

Fig. 1.8
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Uniform flow

tubes of other materials. Equation 1.12 therefore overestimates the actual
capillary rise. Mercury, which has an angle of contact with clean glass of
about 130° in air, and therefore a negative value of cos6, experiences a
capillary depression.

Surface tension becomes important when solid boundaries of a liquid
surface are close together or when the surface separating two immiscible
fluids has a very small radius of curvature. The forces due to surface tension
then become comparable with other forces and so may appreciably affect
the behaviour of the liquid. Such conditions may occur, for example, in
small-scale models of rivers or harbours. The surface tension forces may be
relatively much more significant in the model than in the full-size structure;
consequently a simple scaling-up of measurements made on the model may
not yield results accurately corresponding to the full-size situation.

In apparatus of small size the forces due to surface tension can completely
stop the motion of a liquid if they exceed the other forces acting on it. It is
well known, for example, that a cup or tumbler may be carefully filled until
the liquid surface is perhaps 3 mm above the rim before overflowing begins.
Among other instances in which surface tension plays an important role are
the formation of bubbles, the break-up of liquid jets and the formation of
drops, the rise of water in soil above the level of the water table, and the
flow of thin sheets of liquid over a solid surface.

In most engineering problems, the distances between boundaries are
sufficient for surface tension forces to be negligible compared with the
other forces involved. The consequent customary neglect of the surface
tension forces should not, however, lead us to forget their importance in
small-scale work.

1.8 BASIC CHARACTERISTICS OF FLUIDS IN MOTION

1.8.1 Variation of flow parameters in space and time

In general, quantities such as velocity, pressure and density, which describe
the behaviour or state of a fluid, vary with respect to both space and time.
The location of a point in space can be defined using a coordinate system,
examples of which are the Cartesian system, with the variables x, y, z or the
cylindrical polar coordinates, with variables x, 7, 6. Defining time by ¢ and
using Cartesian coordinates x,y,z to define positions in space then, as an
example, the velocity u is a function of x,y, z and #. Mathematically, we
write # = u(x,y,z,t), and this is called the velocity field of the flow. Sim-
ilarly, p = p(x,y,z,t) is the pressure field. If we wish to discuss the flow
within a region or domain in a general way, without reference to any par-
ticular flow or fluid properties, then we refer to the flow field.

If, at a particular instant, the various quantities do not change from point
to point over a specified region, then the flow is said to be uniform over that
region. If however, changes do occur from one point to another, the flow is
said to be non-uniform. These changes with position may be found in the
direction of the flow or in directions perpendicular to it. This latter kind of
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Basic characteristics of fluids in motion

non-uniformity is always encountered near solid boundaries past which the
fluid is flowing. This is because of the effects of viscosity, which reduces
the relative velocity to zero at a solid boundary. In a river, for example,
the velocity of the water close to the sides and the base is less than in the
centre of the cross-section. Nevertheless it may be possible to treat the flow
as uniform over a cross-section, provided that only a region well removed
from the boundaries is considered.

1.8.2 Describing the patterns of flow

For a particular instant of time we may consider in the fluid an imaginary
curve across which, at that instant, no fluid is flowing. Such a line is called
a streamline (sometimes also known as a flow line or line of flow). At that
instant, therefore, the direction of the velocity of every particle on the line
is along the line. If a number of streamlines is considered at a particular
instant, the pattern they form gives a good indication of the flow then occur-
ring. For steady flow the pattern is unchanging, but for unsteady flow it
changes with time. Consequently, streamlines must be thought of as instant-
aneous, and the pattern they form may be regarded as corresponding to an
instantaneous photograph of the flow.

The boundaries of the flow are always composed of streamlines because
there is no flow across them. Provided that the flow is continuous, every
streamline must be a continuous line, either extending to infinity both
upstream and downstream or forming a closed curve.

A bundle of neighbouring streamlines may be imagined which form a passage
through which the fluid flows (Fig. 1.9), and this passage (not necessarily cir-
cular) is known as a stream-tube. A stream-tube with a cross-section small
enough for the variation of velocity over it to be negligible is sometimes
termed a stream filament. Since the stream-tube is bounded on all sides by
streamlines and since, by definition, there can be no velocity across a stream-
line, no fluid may enter or leave a stream-tube except through its ends. The
entire flow may be imagined to be composed of a collection of stream-tubes
arranged in some arbitrary pattern.

An individual particle of fluid does not necessarily follow a streamline, but
traces out a path-line. In distinction to a streamline, a path-line may be
likened, not to an instantaneous photograph of a procession of particles,
but to a time exposure showing the direction taken by the same particle at
successive instants of time.

Streamline

Stream-tube

Path-line

Fig. 1.9 A stream-tube.
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Streak-line

Three-dimensional flow

One-dimensional flow

Two-dimensional flow

Fig. 1.10

In experimental work a dye or some other indicator is often injected into the
flow, and the resulting stream of colour is known as a streak-line or filament
line. It gives an instantaneous picture of the positions of all particles which
have passed through the point of injection.

In general, the patterns of streamlines, path-lines and streak-lines for a
given flow differ; apart from a few special cases it is only for steady flow
that all three patterns coincide.

1.8.3 One-, two- and three-dimensional flow

In general, fluid flow is three-dimensional in the sense that the flow paramet-
ers — velocity, pressure and so on — vary in all three coordinate directions.
Considerable simplification in analysis may often be achieved, however, by
selecting the coordinate directions so that appreciable variation of the para-
meters occurs in only two directions, or even in only one.

The so-called one-dimensional flow is that in which all the flow parameters
may be expressed as functions of time and one space coordinate only. This
single space coordinate is usually the distance measured along the centre-
line (not necessarily straight) of some conduit in which the fluid is flowing.
For instance, the flow in a pipe is frequently considered one-dimensional:
variations of pressure, velocity and so on may occur along the length of the
pipe, but any variation over the cross-section is assumed negligible. In reality
flow is never truly one-dimensional because viscosity causes the velocity to
decrease to zero at the boundaries. Figure 1.10 compares the hypothetical
one-dimensional flow with a diagrammatic representation of flow subject
to the no-slip condition in, say, a pipe or between plates. If, however, the
non-uniformity of the actual flow is not too great, valuable results may often
be obtained from a one-dimensional analysis. In this the average values of
the parameters at any given section (perpendicular to the flow) are assumed
to apply to the entire flow at the section.

In two-dimensional flow, the flow parameters are functions of time and two
rectangular space coordinates (say x and y) only. There is no variation in the
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z direction and therefore the same streamline pattern could at any instant be
found in all planes in the fluid perpendicular to the z direction. The flow past
a wing of uniform cross-section and infinite span, for instance, is the same in
all planes perpendicular to its span. Water flow over a weir of uniform cross-
section and infinite width is likewise two-dimensional. In practice, where
the width is not infinite it may be satisfactory to assume two-dimensional
flow over most of the wing or weir, that is, to consider flow in a single
plane; the results may then be modified by end corrections accounting for
the three-dimensional flow at the ends.

Axi-symmetric flow, although not two-dimensional in the sense just
defined, may be analysed more simply with the use of two cylindrical
coordinates (x and ).

1.9 CLASSIFICATION AND DESCRIPTION OF FLUID FLOW

It is helpful to the understanding of fluid mechanics to broadly classify
certain different types of fluid flow, and here we introduce some of the
terminology used.

1.9.1 Internal and external flows

The distinction between internal and external flows often needs to be made.
When the motion of a fluid is between bounding surfaces the flow is described
as internal flow. Airflow management systems are widely used to control the
quality of air within buildings and vehicles; the movement of air within the
ducting which forms part of such a system is an example of an internal flow.
Conversely, when a body is surrounded by a fluid in motion, the flow around
the immersed body is described as external flow. Examples of external flows
are the flows surrounding an aircraft wing, around an entire aircraft, around
a road vehicle such as a car or lorry or around a building.

1.9.2 Laminar and turbulent flows

From about 1840, it had been realized that the flow of a fluid could be
of two different kinds. The distinction between them is most easily under-
stood by reference to the work undertaken in the early 1880s by Osborne
Reynolds (1842-1912), Professor of Engineering at Manchester University.
The apparatus used by Reynolds was as shown in Fig. 1.11. A straight length
of circular glass tube with a smoothly rounded, flared inlet was placed in
a large glass-walled tank full of water. The other end of the tube passed
through the end of the tank. Water from the tank could thus flow out along
the tube at a rate controlled by a valve at the outlet end. A fine nozzle con-
nected to a small reservoir of a liquid dye discharged a coloured filament
into the inlet of the glass tube. By observing the behaviour of the stream of
dye, Reynolds was able to study the way in which the water was flowing
along the glass tube.
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Fig. 1.11

Fig. 1.12

If the velocity of the water remained low and especially if the water in the
tank had previously been allowed to settle for some time so as to eliminate
all disturbances as far as possible, the filament of dye would pass down the
tube without mixing with the water, and often so steadily as almost to seem
stationary (Fig. 1.12a). As the valve was opened further and the velocity of
the water thereby increased, this type of flow would persist until the velocity
reached a value at which the stream of dye began to waver (Fig. 1.12b).
Further increase in the velocity of the water made the fluctuations in the
stream of dye more intense, particularly towards the outlet end of tube,
until a state was reached, quite suddenly, in which the dye mixed more or
less completely with the water in the tube. Thus, except for a region near
the inlet, the water in the tube became evenly coloured by the dye. Still
further increases of velocity caused no more alteration in the type of flow,
but the dye mixed even more readily with the water and complete mixing was
achieved nearer the inlet of the tube. The original type of flow, in which the
dye remained as a distinct streak, could be restored by reducing the velocity.

It is of particular interest that the disturbed flow always began far from
the inlet (in Reynold’s tests, usually at a length from the inlet equal to about
30 times the diameter of the tube); also that the complete mixing occurred
suddenly.
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Although Reynolds used water in his original tests, subsequent
experiments have shown that the phenomenon is exhibited by all fluids,
gases as well as liquids. Moreover, the two types of flow are to be found
whatever the shape of the solid boundaries: there is no restriction to circular
tubes.

In the first kind of flow, that occurring at the lower velocities, the particles of
fluid are evidently moving entirely in straight lines even though the velocity
with which particles move along one line is not necessarily the same as that
along another line. Since the fluid may therefore be considered as moving
in layers, or laminae (in this example, parallel to the axis of the glass tube),
this kind of flow is now called laminar flow.

The second type of flow is known as turbulent flow. As indicated in
Fig. 1.13a, the paths of individual particles of fluid are no longer everywhere
straight but are sinuous, intertwining and crossing one another in a dis-
orderly manner so that a thorough mixing of the fluid takes place. When tur-
bulent flow occurs in a cylindrical tube, for example, only the average motion
of the fluid is parallel to the axis of the tube. Turbulent flow, in short, is char-
acterized by the fact that superimposed on the principal motion of the fluid
are countless, irregular, haphazard secondary components. A single particle
would thus follow an erratic path involving movements in three dimensions
(Fig. 1.13b).

In engineering practice, fluid flow is nearly always turbulent. There are,
however, some important instances of wholly laminar flow, for example in
lubrication, and there are also many instances in which part of the flow is
laminar.

As will be discussed in much greater detail in Chapter 5, whether the
flow is laminar or turbulent depends on the magnitude of the quantity
oul/u, where | and u represent a characteristic length and velocity, and
o and p represent the density and dynamic viscosity of the fluid. The
ratio oul/p is a fundamental characteristic of the flow, and is now uni-
versally known as the Reynolds number, commonly denoted by the symbol
Re. For flow in a circular pipe, in evaluating the Reynolds number, the
characteristic length is conventionally taken as the pipe diameter d and
the representative velocity is the mean velocity over the cross section (i.e.
volume flow rate divided by cross-sectional area). Under normal engineer-
ing conditions, flow through pipes at a Reynolds number oud/u below 2000
may be regarded as laminar, and flows for Re > 4000 may be taken as
turbulent.

Laminar flow

Turbulent flow

Fig. 1.13
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Example 1.3 Water, at 20 °C, flows through a pipe of diameter 4 mm
at 3 m-s~!. Determine whether the flow is laminar or turbulent.

Solution

From Appendix 2, at 20 °C, water has a density of 103 kg-m~3 and

a dynamic viscosity u =1 x 1073 kg-m~!.s~ 1. Hence

oud 103 kg-m=3 x 3 m-s~! x 0.004 m
wo 103 kg-m=1.5-1

Re = =12 000

The Reynolds number is well in excess of 4000, so the flow is turbulent.

1.9.3 Steady and unsteady flows

Steady flow is defined as that in which the various parameters at any point
do not change with time. Flow in which changes with time do occur is
termed unsteady or non-steady. In practice, absolutely steady flow is the
exception rather than the rule, but many problems may be studied effectively
by assuming that the flow is steady.

A particular flow may appear steady to one observer but unsteady to
another. This is because all movement is relative; any motion of one body
can be described only by reference to another body, often a set of coordinate
axes. For example, the movement of water past the sides of a motor boat
travelling at constant velocity would (apart from small fluctuations) appear
steady to an observer in the boat. Such an observer would compare the water
flow with an imaginary set of reference axes fixed to the boat. To someone
on a bridge, however, the same flow would appear to change with time as
the boat passed beneath the bridge. This observer would be comparing the
flow with respect to reference axes fixed relative to the bridge.

Since steady flow is usually much easier to analyse than unsteady flow,
reference axes are chosen, wherever possible, so that flow with respect to
them is steady. It should be remembered, however, that Newton’s Laws of
Motion are valid only if any movement of the coordinate axes takes place
at constant velocity in a straight line.

The great majority of flows may be analysed assuming the fluid motion is
steady. There are, however, three cases where unsteady effects are import-
ant. In no particular order, they are as follows. First, waves formed on free
surfaces (see Chapter 10) display oscillatory effects, and therefore aspects
of their motion are unsteady. A second important topic is that of liquid
flows rapidly brought to rest. Such unsteady flows can generate very large
pressure surges, and this topic is considered in Chapter 12. There is a third
class of unsteady flows. In this type of flow, the boundary conditions of
the flow may be steady, but the flow itself is inherently unstable. The
classical example of such a case involves the flow of fluid past a circular
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cylinder. For a certain range of Reynolds numbers, although the velocity
of the flow approaching the cylinder is steady and uniform, large eddies
are shed alternately and continuously from the two sides of the cylinder to
form what is known as a Karman vortex street. This topic is considered in
Chapter 8.

It is useful to refer to another class of flows which are described as quasi-
steady. This term is applied to flows when the variables are changing slowly
with time. In these situations the fundamental fluid dynamics are essentially
the same as for steady flow, but account has to be taken of overall changes
taking place over a period of time. An example of a quasi-steady flow is the
flow that results when a large tank is drained through a small outlet pipe.
Over time the lowering of the head in the tank results in a reduced flow rate
from the tank.

Finally, a comment about turbulent flow is relevant. It has already been
shown that turbulent flows consist of irregular motions of the fluid particles,
with the effect that the instantaneous velocity at a point constantly changes
with time. Turbulent flows are usually considered to be steady by using time-
averaged values of velocity at a point. In this way they can be regarded as
steady-in-the-mean.

1.9.4 Viscous and inviscid flows

A question worth considering is: for internal and external flows, are the
effects of viscosity equally important everywhere within the flow, or are the
effects more important in some parts of the flow than in others? To answer
the question we proceed along the following lines. In Section 1.6, it has been
shown that the magnitude of the viscous shear stress depends on the velocity
gradient at right angles to the general direction of flow. In other words, the
manifestation of a fluid’s viscous properties anywhere within a flow depends
upon the local magnitude of transverse velocity gradients. Where transverse
velocity gradients are large, the effects of viscosity have an important bearing
on the characteristics of the flow. Conversely, where these velocity gradients
are small, viscosity has a much smaller influence on the behaviour of the flow.
In both internal and external flows, at high Reynolds numbers, the largest
transverse velocity gradients occur close to a bounding surface, due to the
need to satisfy the no-slip condition at the surface. Pursuing this line of
argument it is evident that in some circumstances a complex flow field can
be simplified by dividing the flow field into two regions. In parts of the flow
close to a boundary wall, analysis of the flow region must account for the
viscous properties of the fluid. But away from the immediate influence of
the boundary wall, the characteristics of the flow might not be significantly
affected by viscosity, and the flow can then be analysed assuming the fluid
is inviscid, with great advantage. The well-defined regions where viscous
effects dominate in high Reynolds number flows are known as boundary
layers and these, together with other shear layers, are the topic addressed in
Chapter 8. The region outside the shear layer can be analysed by the methods
of inviscid flow (see Chapter 9).
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1.9.5 Incompressible and compressible flows

In most cases, liquids behave as though they are incompressible, and
can be analysed on that assumption. As we have already seen, the one
important exception to this rule is when a liquid flow is brought to rest
abruptly.

For gaseous flows, the situation is rather more complicated. At low speeds,
gases essentially behave as though they are incompressible. But above a Mach
number of about 0.3, compressibility effects become important. At speeds
approaching that of sound, new phenomena, not found under conditions of
incompressible flow, occur.

The major difference between compressible and incompressible flows is
that in the former the fluid density varies throughout the flow, whereas in
the latter it is everywhere constant. Incompressible flows can be analysed by
invoking the laws relating to conservation of mass, conservation of energy
and Newton’s Laws of Motion. These fundamental laws apply equally to
compressible flows which, however, are more complex because their study
also involves the laws of thermodynamics.

1.10 THE ROLES OF EXPERIMENTATION AND THEORY
IN FLUID MECHANICS

We conclude this introductory chapter with a few, brief remarks on the
roles of experimentation and mathematical analysis in the study of fluid
mechanics.

Data derived from experimental and mathematical studies have both had
a vital influence on the development of fluid mechanics. It can be argued
that, of the two, experimentation is rather more important, for the follow-
ing reason. A mathematical theory is only as good as its ability to predict
what happens in practice; experimentation is designed to reveal what hap-
pens in the real world (although it is necessary to point out that this aim
is achieved only if the experiments are planned, conducted and interpreted
with care). Nevertheless, the role of mathematics is of major importance. For
example, it provides structure where, without it, the study of fluid mechan-
ics would be excessively fragmented and uncoordinated. Whether by explicit
design or otherwise, the layout of most introductory texts on fluid mechan-
ics, including the present volume, leans heavily on the framework provided
by mathematical analysis.

1.10.1 The role of experimentation

The ways in which viscosity and compressibility affect fluid motion can often
be very complex and, to gain an understanding of the behaviour of fluids,
engineers frequently have to resort to experimentation. The detailed geo-
metry of the shape through which, or about which, the fluid flows has an
important bearing on how elaborate the testing must be. Over the years,
a vast amount of information has been gathered from tests on the external
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flow about basic shapes, such as flat plates, circular cylinders and so on.
Similarly, in the field of internal flow, straight pipes and other compon-
ents such as flow-metering devices, bends, diffusers etc. have been widely
tested. This information forms an important database for the study of fluid
mechanics, and will be referred to extensively throughout this book. But for
more complicated geometries, to gain an understanding of the fluid mech-
anics, it is often necessary to carry out tests using purpose-made models or
test rigs.

Experiments can be of various kinds. They can be full-scale or can involve
scale models. They can involve the measurement of various quantities, such
as velocity or pressure, either at a specified point in a flow or to determine
profiles in the form of velocity or pressure distributions. Alternatively, using
flow visualization techniques, experiments may be designed to show up the
patterns of flow. Various kinds of special facilities are used. The wind tunnel
is an important tool in the investigation of the flow of air around aircraft,
vehicles and buildings. Water tanks and water tables are used to study the
hydrodynamics of ships and the flow about bridges, respectively.

1.10.2 Mathematical modelling and the equations
of fluid dynamics

We have seen that information about the behaviour of flowing fluids can
be obtained from experiments, using observation and measurement. Math-
ematics also has an essential role to play in furthering our understanding of
fluid mechanics. It is important for the student new to fluid mechanics to
appreciate a fundamental difference between experimental and theoretical
data. A result from a carefully conducted experiment is (with minor quali-
fication) unique; in contrast, a theoretical value is not. The outcome from a
theoretical study of the flow through or about a specified geometry depends
upon the assumptions on which the mathematical analysis is based. If the
assumptions are sound, the theoretical results will closely match the corres-
ponding experimental data. If the theory is incomplete, unduly simplified
or unsoundly based, then the theoretical results will differ from the experi-
mental data. It follows that to refer, without qualification, to the so-called
theoretical value of a quantity is meaningless.

In whatever way we choose to represent a flow mathematically, the fun-
damental laws of fluid mechanics, and in the case of compressible flow of
thermodynamics, must be satisfied. The equations of fluid mechanics can be
expressed in two fundamentally different ways. The differential equations of
motion are a set of equations which result when attention is focused on an
infinitesimally small element of fluid. Information on the detailed variation
in time and space of flow properties, such as velocity and pressure, results
from the solution of these equations. When information on the overall
characteristics of a flow, such as mass flow rate through a pipe system, is
required then the integral forms of the equations of motion are relevant.

The representation of any physical system by means of a set of mathemat-
ical equations is referred to as mathematical modelling. We have seen that, to
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a greater or lesser extent, fluid flows are influenced by the effects of viscosity,
by compressibility effects, by unsteadiness and, depending upon geometry,
variations in space of flow and fluid properties, which can extend over three
dimensions. In principle, all these factors can be taken into account simul-
taneously by using an appropriate, but necessarily complex, mathematical
model. In practice, the modelling of laminar flows is more straightforward
than that of turbulent flows, due to the inherent difficulties of providing
adequate representations of turbulence. Few problems of fluid mechan-
ics yield exact analytical solutions, and these are for laminar flow in or
about simple geometries. Most analytical solutions are obtained only after
the introduction of simplifying assumptions. In advanced fluid mechanics,
complex models of fluid flows, which attempt to represent viscous and com-
pressibility effects, are now routinely analysed by replacing the governing
equations by equivalent numerical equations. The power of modern com-
puters is exploited to solve such equations, and this field of study is known as
Computational Fluid Mechanics (CFD). This activity has advanced rapidly
in recent years but is beyond the scope of this book.

However, the student of fluid mechanics should be reassured. It is not
necessary to begin the study of fluid mechanics by looking at complex flow
situations. Much can be learned using simple mathematical models. In the
great majority of flows, not all of the complicating factors such as viscosity
and compressibility are of equal importance, just one or two factors often
tending to dominate. In such circumstances, the use of simple flow models
allows the role of specific factors to be investigated, thereby illuminating the
relationship between these factors and particular features of the flow. In the
next few paragraphs we shall quote several examples of the value of these
simple mathematical models.

Perhaps the simplest flow model of all is one that assumes a flow is steady
and one-dimensional, and ignores the effects of compressibility and viscosity.
When this model is applied to the flow through pipes of variable cross-
sectional area, the relationship between cross-sectional area, average flow
velocity and pressure at any cross section is revealed. Amongst other applic-
ations, this simple flow model provides an explanation of the principles of
operation of an important class of devices used for flow rate measurement,
namely the pressure differential flow-metering devices (Chapter 3).

We have already seen that low Reynolds number flows occur when velo-
cities and/or the characteristic length are small, or the fluid viscosity is large.
In such flows viscous forces dominate inertia forces over the entire flow field,
and the flow is laminar. Two-dimensional, steady, viscous flow models may
be applied to certain simple geometries, such as the flow through small-bore
tubes, and between small gaps such as occur within bearings. Laminar flows
of these kinds are considered in Chapter 6.

The constraints of the one-dimensional flow model considered in
Chapter 3 can be relaxed to allow for changes in two dimensions, yield-
ing new insights. The model of steady, two-dimensional, incompressible,
inviscid flow is considered in Chapter 9. Velocity and pressure distributions
derived using this flow model, as well as analytical techniques suited to the
flow model, are discussed there.
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A flow model which assumes steady, one-dimensional flow, but allows for
compressibility effects is considered in Chapter 11. This model highlights the
fundamental differences between flow situations in which compressibility
effects are important and the corresponding flows for which compressibility
effects are insignificant.

All of the preceding flow models assume steady flow conditions. Unsteady
flow conditions are introduced in Chapter 12.

1.11 SUMMARY

This Chapter has introduced several concepts fundamental to an understand-
ing of fluid mechanics. Some key points are:

. we have learnt how fluids differ from solids;

. fluid properties, such as viscosity, have been introduced;

. units and dimensions relevant to fluid mechanics have been introduced;

. some flow patterns and flow behaviours, together with relevant termino-
logy, have been introduced;

5. experimentation and mathematical analysis have been introduced as

important sources of information on fluid mechanics;
6. we have learnt that, although fluid flows are often complex, studying
simple mathematical models of fluid flow can lead to important results.

H W=

With this background, we are now in a position to embark on a more
detailed study of fluid mechanics which follows in the remaining chapters of
this book.

PROBLEMS

1.1 A hydrogen-filled balloon is to expand to a sphere 20 m diameter
at a height of 30 km where the absolute pressure is 1100 Pa
and the temperature —40 °C. If there is to be no stress in the
fabric of the balloon what volume of hydrogen must be added
at ground level where the absolute pressure is 101.3 kPa and the
temperature 15 °C?

1.2 Calculate the density of air when the absolute pressure and
the temperature are respectively 140 kPa and 50 °C and R =
287 ] kg 'K

1.3 Eight kilometres below the surface of the ocean the pressure is
81.7 MPa. Determine the density of sea-water at this depth if
the density at the surface is 1025 kg-m~3 and the average bulk
modulus of elasticity is 2.34 GPa.

1.4 At an absolute pressure of 101.3 kPa and temperature of 20 °C
the dynamic viscosity of a certain diatomic gas is 2 x 107> Pa-s
and its kinematic viscosity is 15 mm? - s~ 1. Taking the universal

Problems
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1.5

1.6

1.7

1.8

1.9

1.10

1.11

1.12

gas constant as 8310 J- kg_1 K~ ! and assuming the gas to be
perfect, calculate its approximate relative molecular mass.

A hydraulic ram 200 mm in diameter and 1.2 m long moves
wholly within a concentric cylinder 200.2 mm in diameter, and
the annular clearance is filled with oil of relative density 0.85
and kinematic viscosity 400 mm? - s~'. What is the viscous force
resisting the motion when the ram moves at 120 mm -s~!?

The space between two large flat and parallel walls 25 mm apart
is filled with a liquid of dynamic viscosity 0.7 Pa -s. Within this
space a thin flat plate 250 mm x 250 mm is towed at a velocity
of 150 mm-s~! at a distance of 6 mm from one wall, the plate
and its movement being parallel to the walls. Assuming linear
variations of velocity between the plate and the walls, determine
the force exerted by the liquid on the plate.

A uniform film of oil 0.13 mm thick separates two discs, each
of 200 mm diameter, mounted co-axially. Ignoring edge effects,
calculate the torque necessary to rotate one disc relative to the
other at a speed of 44 rad -s~! (7 rev/s) if the oil has a dynamic
viscosity of 0.14 Pa -s.

By how much does the pressure in a cylindrical jet of water 4 mm
in diameter exceed the pressure of the surrounding atmosphere
if the surface tension of water is 0.073 N.m~!?

What is the approximate capillary rise of water in contact with
air (surface tension 0.073 N-m™) in a clean glass tube 5§ mm in
diameter?

What is the approximate capillary rise of mercury (relative dens-
ity 13.56, interfacial tension 0.377 N-m~!, angle of contact
approximately 140°) in contact with water in a clean glass tube
6 mm in diameter? (Note: As the mercury moves it displaces
water, the density of which is not negligible.)

Calculate the Reynolds number for a fluid of density 900 kg - m—3
and dynamic viscosity 0.038 Pa - s flowing in a 50 mm diameter
pipe at the rate of 2.5 L-s~!. Estimate the mean velocity above
which laminar flow would be unlikely.

A liquid of kinematic viscosity 370 mm? -s~! flows through an
80 mm diameter pipe at 0.01 m?-s~!. What type of flow is to
be expected?
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Fluid statics

2.1 INTRODUCTION

Fluid statics is that branch of mechanics of fluids that deals primarily with
fluids at rest. Problems in fluid statics are much simpler than those associated
with the motion of fluids, and exact analytical solutions are possible. Since
individual elements of fluid do not move relative to one another, shear forces
are not involved and all forces due to the pressure of the fluid are normal to
the surfaces on which they act. Fluid statics may thus be extended to cover
instances in which elements of the fluid do not move relative to one another
even though the fluid as a whole may be moving. With no relative movement
between the elements, the viscosity of the fluid is of no concern.

In this chapter we shall first examine the variation of pressure throughout
an expanse of fluid. We shall then study the forces caused by pressure on solid
surfaces in contact with the fluid, and also the effects (such as buoyancy) of
these forces in certain circumstances.

2.2 VARIATION OF PRESSURE WITH POSITION IN A FLUID

Consider a small cylinder of fluid PQ as illustrated in Fig. 2.1. If the fluid
is at rest, the cylinder must be in equilibrium and the only forces acting on
it are those on its various faces (due to pressure), and gravity. The cross-
sectional area 8A is very small and the variation of pressure over it therefore
negligible. Let the pressure at the end P be p and that at the end O be p + §p

Fig. 2.1
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where §p may be positive or negative. The force on the end P is therefore psA
and the force on the end Q is (p + §p)SA. If the length of the cylinder is §/
its volume is A8/ and its weight og§ASI where o represents the density and
g the acceleration due to gravity. Since no shear forces are involved in a fluid
at rest, the only forces acting on the sides of the cylinder are perpendicular
to them and therefore have no component along the axis.

For equilibrium, the algebraic sum of the forces in any direction must be
zero. Resolving in the direction QP:

P+ 8p)SA — pSA + 0g5Aslcosd =0 (2.1)

Now if P is at a height z above some suitable horizontal datum plane and Q
is at height z + 38z, then the vertical difference in level between the ends of
the cylinder is 6z and 8/ cos @ = §z. Equation 2.1 therefore simplifies to

8p+ 086z =0
and in the limit as §z — 0

ap

dz
The minus sign indicates that the pressure decreases in the direction in which
z increases, that is, upwards.

If P and Q are in the same horizontal plane, then §z = 0, and consequently
8p is also zero whatever the value of 0. The argument may readily be extended
to cover any two points in the same horizontal plane by considering a series
of cylinders of fluid, PQ, OR, RS, etc. Then, in any fluid in equilibrium,
the pressure is the same at any two points in the same horizontal plane,
provided that they can be connected by a line in that plane and wholly
in the fluid. In other words, a surface of equal pressure (an isobar) is a
horizontal plane. More precisely, the surface is everywhere perpendicular to
the direction of gravity and so is approximately a spherical surface concentric
with the earth. Our concern is usually only with very small portions of that
surface, however, and they may therefore be considered plane.

A further deduction is possible from eqn 2.2. If everywhere in a certain
horizontal plane the pressure is p, then in another horizontal plane, also
in the fluid and at a distance §z above, the pressure will be p + (3p/3z)éz.
Since this pressure also must be constant throughout a horizontal plane, it
follows that there is no horizontal variation in dp/dz, and so, by eqn 2.2,
neither does pg vary horizontally. For a homogeneous incompressible fluid
this is an obvious truth because the density is the same everywhere and g does
not vary horizontally. But the result tells us that a condition for equilibrium
of any fluid is that the density as well as the pressure must be constant over
any horizontal plane. This is why immiscible fluids of different densities have
a horizontal interface when they are in equilibrium (except very close to solid
boundaries where surface tension usually causes curvature of the interface).

There are, then, three conditions for equilibrium of any fluid:

—o0g (2.2)

1. the pressure must be the same over any horizontal plane;
2. the density must be the same over any horizontal plane;

@ i p



@ i p

Variation of pressure with position in a fluid 45

3. dp/dz = —og. (Since the pressure varies only in the vertical (z) direction,
the partial derivative in eqn 2.2 may give way to the full derivative.)

To determine the pressure at any point in a fluid in equilibrium, eqn 2.2

must be integrated:
p= / —ogdz

Evaluation of the integral is not possible, however, unless the variation of o
with z known.

2.2.1 The equilibrium of a fluid of constant density

Since for all practical differences in height the variation of g is negligible,
integration of eqn 2.2 for a homogeneous fluid of constant density gives

p + 0gz = constant (2.3)

This result is valid throughout a continuous expanse of the same fluid since,
in deriving eqn 2.2, no restriction at all was placed on the value of 6.
The value of the constant in eqn 2.3 is determined by the value of p at a
point where z is specified. If the fluid is a liquid with a horizontal free sur-
face at which the pressure is atmospheric (p,) this free surface may be taken
as the datum level z = 0. For equilibrium of the surface the pressure imme-
diately below it must equal that immediately above it, and so the pressure
in the liquid at the surface is p,. Then, for a point at a depth » below the
surface, b = —z (since b is measured downwards whereas z is measured
upwards) and, from eqn 2.3,

p = pa +ogh (2.4)

The pressure therefore increases linearly with the depth, whatever the shape
of any solid boundaries may be.

Equation 2.4 shows that the pressure at a point in a liquid in equilibrium
is due partly to the weight of the liquid. Thus atmospheric pressure is usually
effective, even if indirectly, on all surfaces, and over the differences of height
normally encountered it is sensibly constant. Consequently it is often simpler
to regard atmospheric pressure as the zero of the pressure scale. A pressure
expressed relative to atmospheric pressure is known as a gauge pressure.
Equation 2.4 then reduces to p = ogh. As we shall see in Section 2.3, this
relation forms the basis of a number of methods of measuring pressure.

The direct proportionality between gauge pressure and / for a fluid of
constant density enables the pressure to be simply visualized in terms of
the vertical distance » = p/og. The quotient p/og is termed the pressure
head corresponding to p. So useful is the concept of pressure head that it
is employed whether or not an actual free surface exists above the point
in question. For a liquid without a free surface, as for example in a closed
pipe, p/og corresponds to the height above the pipe to which a free surface
would rise if a small vertical tube of sufficient length and open to atmo-
sphere — known as a piezometer tube — were connected to the pipe (Fig. 2.2).

Fig. 2.2
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Fig. 2.3

Piezometric pressure

Provided that ¢ is constant, all pressures may be expressed as heads. Thus
pressures are sometimes quoted in terms of millimetres of mercury or metres
of water.

Equation 2.3 may be divided by og to give (p/0g) + z = constant. That is,
the sum of the pressure head and the elevation above the chosen horizontal
datum plane is constant. This constant is known as the piezometric head
and corresponds to the height of the free surface above the datum plane.
The quantity p + ogz is termed the piezometric pressure.

The fact that an increase of pressure in any part of a confined fluid is
transmitted uniformly throughout the fluid is utilized in such devices as the
hydraulic press and the hydraulic jack. A large force F may be produced on
a piston of area A by subjecting it to a pressure p = F/A. This pressure p,
however, may be produced by applying a smaller force f to a smaller
piston of area a (see Fig. 2.3). If the pistons move very slowly viscous
and inertia forces may be neglected, and, if the pistons are at the same
level, the pressure at one equals that at the other. Then F/A = f/a, that
is, F = fA/a. By a suitable choice of piston areas a considerable mul-
tiplication of the force may be achieved. The work done by each force,
however, is the same (apart from the effects of friction); since the compress-
ibility of the liquid used is extremely small its volume remains practically
unchanged, so the smaller force moves through a correspondingly greater
distance.

2.2.2 The equilibrium of the atmosphere

Equation 2.2 expresses the condition for equilibrium of any fluid. For a com-
pressible fluid, however, the density varies with the pressure, so, unless the
manner of this variation is known, the equation cannot be integrated to give
the value of the pressure at a particular position. Density variations within
the atmosphere are relevant to aeronautics and meteorology; in oceano-
graphy similar considerations apply to sea-water, since at great depths there
is a small increase in the density.

Let us consider the atmosphere, with air behaving as a perfect gas.
The density may be obtained from the equation of state p = oRT (in which
p represents the absolute pressure). Then, from eqn 2.2,

o ____rg
dz = 95T TRT
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that is,

dp g dz

°L__ 8% 2.5

S =7 (2.5)
Since the value of g decreases by only about 0.03% for a 1000 m increase
in altitude it may be assumed constant. If conditions are isothermal, T =
constant, and eqn 2.5 may be integrated to give

PN__8

where p( represents the (absolute) pressure when z = 0. That is,

p/po = exp(—gz/RT) (2.6)

However, in the atmosphere the temperature varies with altitude. For the
first 11 km above the ground there is a uniform decrease, that is, T /dz =
constant = —\ where A is known as the temperature lapse rate. The observed
value of A in this region is about 0.0065 K-m™~!. From 11 km to 20 km the
temperature is constant at —56.5 °C and then beyond 20 km the temperature
rises again.

If the temperature lapse rate is constant, T = Ty — Az where T repres-
ents the temperature at z = 0. Substituting this relation into eqn 2.5 and

integrating we obtain
To— A
()= (5)
Po A To

g/Rx
(2)-0-5)

If the right-hand sides if eqns 2.6 and 2.7 are expanded in series form and
then, for small values of z, all but the first two terms are neglected, the result
in each case is

that is,

b _ 1- 8%
po RTy
that is,
b0
p="po RTOgZ = po — 0082

This corresponds to the relation p + pgz = constant (eqn 2.3) for a fluid of
constant density. Thus, for small differences of height (less than, say, 300 m
in air), sufficient accuracy is usually obtained by considering the fluid to be
of constant density. If changes of z are appreciable, however, the full relation
(eqn 2.6 or 2.7) is required.

Certain values of pg, Ty and A are used to define a standard atmosphere
which provides a set of data reasonably representative of the actual atmo-
sphere. Aircraft instruments and performance are related to these standard
conditions, and figures are subject to error if the actual conditions differ
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appreciably from the standard. A knowledge of A is important in practice, not
only for predicting conditions in the atmosphere at various altitudes, but also
for the calibration of altimeters which depend on the atmospheric pressure
for their operation. Information on the International Standard Atmosphere
is contained in Appendix 2.

In fact, however, the atmosphere is not in perfect equilibrium. The lower
part is continually being mixed by convection and winds and there are vary-
ing amounts of water vapour in it. A little more about the equilibrium of the
atmosphere will be said in Section 2.7.3.

Example 2.1 A spherical balloon, of diameter 1.5 m and total mass
1.2 kg, is released in the atmosphere. Assuming that the balloon does
not expand and that the temperature lapse rate in the atmosphere is
0.0065 K-m~!, determine the height above sea-level to which the
balloon will rise. Atmospheric temperature and pressure at sea-level
are 15 °C and 101 kPa respectively; for air, R = 287 J - kg~ ! - K~ L.

Solution -
Density of balloon = 1.2 kg/g = (1.5 m)> =0.679 kg- m~3
.. Balloon rises until atmospheric density = 0.679 kg-m~3
By eqn 2.7
In L4 —ilnTO_)Lz
Po " R Ty
.. Since o = p/RT
In2 :lnﬁ —lnl = (i —1)ln<T0_kz>
00 Po To  \Ra To
101 x 103 kg
= =1.221kg-m™>
0= 287 x 288.15 m> §m
I 0.679 9.81 Y 288.15 — 0.0065z
T 1.221 0 \ 287 x 0.0065 288.15

Whence z = 5708 m

2.3 THE MEASUREMENT OF PRESSURE

In practice, pressure is always measured by the determination of a pressure
difference. If the difference is that between the pressure of the fluid in ques-
tion and that of a vacuum then the result is known as the absolute pressure of
the fluid. More usually, however, the difference determined is that between
the pressure of the fluid concerned and the pressure of the surrounding atmo-
sphere. This is the difference normally recorded by pressure gauges and so
is known as gauge pressure. If the pressure of the fluid is below that of the
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atmosphere it is termed vacuum or suction (see Fig. 2.4). (The term high
vacuum refers to a low value of the absolute pressure.) The absolute pres-
sure is always positive but gauge pressures are positive if they are greater
than atmospheric and negative if less than atmospheric.

Most of the properties of a gas are functions of its absolute pressure and
consequently values of the absolute pressure are usually required in problems
concerning gases. Frequently it is the gauge pressure that is measured and the
atmospheric pressure must be added to this to give the value of the absolute
pressure. The properties of liquids, on the other hand, are little affected by
pressure and the pressure of a liquid is therefore usually expressed as a gauge
value. The absolute pressure of a liquid may, however, be of concern when
the liquid is on the point of vaporizing. In this book, values of pressure will
be understood to be gauge pressures unless there is a specific statement that
they are absolute values.

We now consider some of the means of measuring pressure.

2.3.1 The barometer

We have already seen that there is a simple relation (eqn 2.3) between the
height of a column of liquid and the pressure at its base. Indeed, if the
pressure of a liquid is only slightly greater than that of the atmosphere a
simple way of measuring it is to determine the height of the free surface in
a piezometer tube as illustrated in Fig. 2.2. (The diameter of the tube must
be large enough for the effect of surface tension to be negligible.) If such
a piezometer tube of sufficient length were closed at the top and the space
above the liquid surface were a perfect vacuum the height of the column
would then correspond to the absolute pressure of the liquid at the base.
This principle is used in the well-known mercury barometer.

Mercury is employed because its density is sufficiently high for a fairly
short column to be obtained, and also because it has, at normal temperatures,
a very small vapour pressure. A perfect vacuum at the top of the tube is not in
practice possible; even when no air is present the space is occupied by vapour
given off from the surface of the liquid. The mercury barometer was invented
in 1643 by the Italian Evangelista Torricelli (1608—47) and the near-vacuum
above the mercury is often known as the Torricellian vacuum. All air and

Fig. 2.4
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Fig. 2.5

other foreign matter is removed from the mercury, and a glass tube full of it
is then inverted with its open end submerged in pure mercury. The pressure
at A (Fig. 2.5) equals that at B (atmospheric because the surface curvature
is here negligible) since these points are at the same level and connected by
a path wholly in the mercury. Therefore, by eqn 2.3

Pa =pv+ogh

where p, represents the absolute pressure of the atmosphere, o the density
of the mercury and 5 the height of the column above A. The pressure of
the mercury vapour in the space at the top of the tube is represented by py.
However, at 20 °C, py is only 0.16 Pa and so may normally be neglected
in comparison with p,, which is usually about 10° Pa at sea level. Thus,
atmospheric pressure is represented by a mercury column, the height of
which is typically about
105 N-m~2

h=pa/og = =0.752m
paes (13560 kg-m=3)(9.81 N -kg ™)

For accurate work small corrections are necessary to allow for the variation
of o with temperature, the thermal expansion of the (usually brass) scale,
and surface-tension effects.

If water were used instead of mercury the corresponding height of the
column would be about 10.4 m provided that a perfect vacuum could be
achieved above the water. However, the vapour pressure of water at ordinary
temperatures is appreciable and so the actual height at, say, 15 °C would
be about 180 mm less than this value. With a tube smaller in diameter than
about 15 mm, surface-tension effects become significant.

In the aneroid barometer, a metal bellows containing a near-perfect
vacuum is expanded or contracted according to variations in the pressure
of the atmosphere outside it. This movement is transmitted by a suitable
mechanical linkage to a pointer moving over a calibrated scale.

2.3.2 Manometers

Manometers are devices in which columns of a suitable liquid are used to
measure the difference in pressure between a certain point and the atmo-
sphere, or between two points neither of which is necessarily at atmospheric
pressure. For measuring small gauge pressures of liquids simple piezometer
tubes (Fig. 2.2) may be adequate, but for larger pressures some modification
is necessary. A common type of manometer is that employing a transparent
U-tube set in a vertical plane as shown in Fig. 2.6. This is connected to the
pipe or other container in which is the fluid (A) whose pressure is to be meas-
ured. The lower part of the U-tube contains a liquid (B) immiscible with A
and of greater density. Within a continuous expanse of the same fluid the
pressure is the same at any two points in a horizontal plane when equilibrium
is achieved. Therefore, since points P and Q are in the same horizontal plane
and are joined by a continuous expanse of liquid B, the pressures at P and
QO are equal when the system is in equilibrium. Let the pressure in the pipe
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at its centreline be p. Then, provided that the fluid A is of constant density,

the pressure at P is p + 04gy (from eqn 2.3), where o4 represents the density

of fluid A. If the other side of the U-tube is open to atmosphere the (gauge)

pressure at Q is opgx where op represents the density of liquid B.
Therefore

p+o0a8y = 0B8X

and if g4 and pp are known and y and x are measured, the value of p
may be calculated. If A is a gas, o4 is negligible compared with ¢p, and
then p = opgx. The arrangement is suitable for measuring pressures below
atmospheric as illustrated in Fig. 2.7. Application of the same principles then
gives p + 048y + opgx = 0.

U-tube manometers are also frequently used for measuring the difference
between two unknown pressures, say p1 and p,. Figure 2.8 shows such an
arrangement for measuring the pressure difference across a restriction in a
horizontal pipe. (When fluid is flowing past the connections to a manometer
it is very important for the axis of each connecting tube to be perpendicular
to the direction of flow and also for the edges of the connections to be
smooth, flush with the main surface and free from burrs. To reduce the

Fig. 2.6

Fig. 2.7
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Fig. 2.8

risk of errors resulting from imperfect connections several openings round
the periphery of the pipe are often used, all connected to the manometer
via a common annulus; an average pressure is thus obtained in which the
individual, probably random, errors tend to cancel.) Again applying the
principle that pressures at P and Q must be equal for equilibrium, we have

p1+ (Y +x)oag = P2+ 048y + 0BgX
oo p1—p2 = (0B —0A)gX (2.8)

If it is desired to express this pressure difference as a head difference for

fluid A, then

hl—hzzpl_pzz(Q—B—l>x (2.9)
OA8 0A

If, for example, fluid A is water and B is mercury, then a difference x in
manometer levels corresponds to a difference in head of water = (13.56—1)x.
A common error is to use simply op /04 instead of {(¢p/04)—1} ineqn 2.9. It
should not be forgotten that the pressure at P includes a contribution made
by the column of fluid A above it. More generally, it may be shown that
a differential manometer such as this records the difference of piezometric
pressure p* = p + ogz: only when points (1) and (2) are at the same level,
as in Fig. 2.8, does the manometer reading correspond to the difference of
actual pressure p.

Many modifications of the U-tube manometer have developed for partic-
ular purposes. A common modification is to make one limb of the ‘U’ very
much greater in cross-section than the other. When a pressure difference
is applied across the manometer the movement of the liquid surface in the
wider limb is practically negligible compared with that occurring in the nar-
row limb. If the level of the surface in the wide limb is assumed constant the
height of the meniscus in only the narrow limb need be measured, and only
this limb need therefore be transparent.

For accurate measurements reasonable values of x are desirable. For small
pressure differences such values may be obtained by selecting liquid B so
that the ratio op/o4 is close to unity. If fluid A is a gas, however, this is not
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possible, and a sloping manometer may then be used. For example, if the
transparent tube of a manometer is set not vertically, but at an angle 0 to the
horizontal, then a pressure difference corresponding to a vertical difference
of levels x gives a movement s = x/sin 6 along the slope (see Fig. 2.9). If 0 is
small, a considerable magnification of the movement of the meniscus may be
achieved. Angles less than 5°, however, are not usually satisfactory, because
the exact position of the meniscus is difficult to determine, and also small
changes in the surface tension forces, arising from imperfect cleanliness of
the walls of the tube, may considerably affect the accuracy.

When large pressure differences are to be measured a number of U-tube
manometers may be connected in series. The required pressure difference
can be calculated by the application of the basic principles: (1) the pressure
within a continuous expanse of the same fluid in equilibrium is the same at
any two points in a horizontal plane; (2) the hydrostatic equation p + 0gz =
constant for a homogeneous fluid of constant density.

For the measurement of small pressure differences in liquids an inverted
U-tube manometer, as illustrated in Fig. 2.10, is often suitable. Here o < 04
and it is the upper fluid which is in equilibrium. The horizontal line PQ is
therefore taken at the level of the higher meniscus. By equating the pressures
at P and Q it may readily be shown that, for a manometer in a vertical
plane, p7 — p5 = (0a — 0B)gx where p* represents the piezometric pressure
p+oagz. If o4 — op is sufficiently small a large value of x may be obtained

Fig. 2.9

Fig. 2.10
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Micro-manometers

for a small value of p} — p3 The interface between liquids of closely similar
densities, however is very sensitive to changes in surface tension and therefore
to traces of grease and other impurities. Air may be used as fluid B: it may
be pumped through the valve V at the top of the manometer until the liquid
menisci are at a suitable level. Then, of course, gp is negligible compared
with OA-

Certain practical considerations arise in the use of manometers. (1) Since
the densities of liquids depend on temperature the temperature of the liquids
should be known for accurate results. (2) Some liquids, otherwise suitable
for use in manometers, give ill-defined menisci. (3) Fluctuations of men-
isci reduce accuracy; such movements may be reduced by restrictions in the
manometer connections (e.g. lengths of small-diameter pipe) which, under
equilibrium conditions, do not affect the pressure. (4) The density of the
fluid in the connecting tubes must be uniform; for example, water must not
contain air bubbles, nor must air contain ‘blobs’ of water. The layout of
the connecting tubes should be such as to minimize the possibility of trap-
ping air bubbles, and means should be provided for flushing the connecting
tubes through before the manometer is used. A valve by which the pres-
sure difference may be reduced to zero and the zero reading thus checked
is also desirable. (5) In tubes of less than about 15 mm diameter surface
tension effects may be appreciable and the meniscus is either raised above
or lowered below its ‘correct’ position. For example, for pure water in a
clean, vertical, glass tube, 6 mm diameter, the capillary rise is about 5 mm.
The corresponding depression for mercury is about 1.25 mm. Because of
the uncertain degree of cleanliness of tubes used in practice, however, it is
difficult to allow for surface tension effects. Fortunately these effects can be
nullified, for example in a U-tube manometer where the limbs are of equal
diameter and cleanliness, or where measurements are made of the movement
of a single meniscus in a uniform tube. Alcohol, being a solvent of grease, is
less sensitive to the cleanliness of the tube and so is frequently preferred to
water in manometers.

For measuring very small pressure differences, a wide variety of special
manometers has been developed. Several devices may be used to increase
the accuracy of a reading. For example, a meniscus may be observed
through a small telescope containing a horizontal cross-wire, and the
assembly may be raised or lowered by a slow-motion screw with a micro-
meter scale. Or a scale floating on the surface of a liquid may be optically
magnified.

When an additional gauge liquid is used in a U-tube a large differ-
ence of meniscus level may be produced by a small pressure difference.
One arrangement is illustrated in Fig. 2.11. The appropriate equilibrium
equation is

p1+oagh+ A2) + QBg(z — Az + %)

=pr+oagh— A2) + ng(z + Az — %) +ocgy (2.10)
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The amount of liquid B on each side remains constant. Therefore
alAz:aZ% (2.11)

Substituting for Az in eqn 2.10 we obtain

p1—D2 :gJ’{QC —oB (1 - 62) —QALLZ}
ai ai
Since a; is usually very small compared with a1, p1 — p2 = (oc — 0B)gY, O
when o¢ and gp are closely similar a reasonable value of y may be achieved
for a small pressure difference.

In several micro-manometers the pressure difference to be measured is
balanced by the slight raising or lowering (on a micrometer screw) of one
arm of the manometer whereby a meniscus is brought back to its original
position. Well-known micro-manometers of this type are those invented by
Chattock, Small and Krell. They suffer from the disadvantage that an appre-
ciable time is required to make a reading and they are therefore suitable only
for completely steady pressures.

2.3.3 The Bourdon gauge

Where high precision is not required a pressure difference may be indicated
by the deformation of an elastic solid. For example, in an engine indicator
the pressure to be measured acts at one side of a small piston, the other side
being subject to atmospheric pressure. The difference between these pres-
sures is then indicated by the movement of the piston against the resistance

Fig. 2.11
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Fig. 2.12

of a calibrated spring. The principle of the aneroid barometer (Section 2.3.1)
may also be adapted for the measurement of pressures other than atmo-
spheric. The most common type of pressure gauge — compact, reasonably
robust and simple to use — is that invented by Eugéne Bourdon (1808-84).
A curved tube of elliptical cross-section is closed at one end; this end is
free to move, but the other end — through which the fluid enters - is rigidly
fixed to the frame as shown in Fig. 2.12. When the pressure inside the tube
exceeds that outside (which is usually atmospheric) the cross-section tends
to become circular, thus causing the tube to uncurl slightly. The movement
of the free end of the tube is transmitted by a suitable mechanical linkage
to a pointer moving over a scale. Zero reading is of course obtained when
the pressure inside the tube equals the local atmospheric pressure. By using
tubes of appropriate stiffness, gauges for a wide range of pressures may be
made. If, however, a pressure higher than the intended maximum is applied
to the tube, even only momentarily, the tube may be strained beyond its
elastic limit and the calibration invalidated.

All gauges depending on the elastic properties of a solid require calibration.
For small pressures this may be done by using a column of mercury; for
higher pressures the standard, calibrating, pressure is produced by weights
of known magnitude exerting a downward force on a piston of known area.

2.3.4 Other types of pressure gauge

For very high pressures, piezo-electric gauges may be used in which a
crystal of quartz or other material, when subjected to the pressure of the
fluid, produces across itself a small but measurable difference of electrical
potential. Other gauges utilize the increase of electrical resistance exhib-
ited by metals under very high pressures. As there are no moving parts
these electrical gauges respond practically instantaneously to changes of
pressure.
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In a pressure transducer the pressure of the fluid acts at one side of a thin
diaphragm; movements of the diaphragm caused by changes of pressure are
indicated by an electrical strain gauge on the diaphragm. Alternatively, the
change of electrical capacitance between the moving diaphragm and a fixed
plate may be measured.

2.4 FIRST AND SECOND MOMENTS OF AREA

In the calculation of hydrostatic thrusts on submerged surfaces, first and
second moments of area are of fundamental importance. These topics will
be addressed prior to the discussion of hydrostatic thrusts.

2.4.1 First moments and centroids

Figure 2.13 shows a plane area A of which an infinitesimal element is §A.
The first moment of the elemental area §A about an axis in the plane is
defined as the product of §A and its perpendicular distance from that axis.
Consequently the first moment of the elemental area about the y-axis is given
by x8A and the first moment of the entire area about the y-axis is therefore
JaxdA. (The symbol [, indicates that the integration is performed over
the entire area.) Since individual values of x may be positive or negative
according as the element is to the right or left of the y-axis, so the integral
may be positive or negative or zero. The first moment of area about an axis
atx = kis [4(x — k)dA = f4 xdA — kA. This moment is zero when

1
k= 7/ xdA =% (2.12)
A Ja
and the axis is then known as a centroidal axis.

Similarly, moments may be taken about the x-axis, and another centroidal
axis is then found at

_ 1
y=y= Z/AydA (2.13)

Fig. 2.13
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The intersection C of these two centroidal axes is known as the centroid of
the area, and it may be shown that the first moment of the area is zero about
any axis through the centroid. An axis of symmetry is evidently a centroidal
axis since for every element on one side of the axis and contributing x3A to
the total moment there is an element on the other side contributing —x§A.
Equations 2.12 and 2.13 show that the first moment of an area about any axis
may be written as AZ where Z is the perpendicular distance of the centroid
from that axis. Both the area and the axis must of course be specified.

The position of the centroid of a volume may be determined similarly.
For example, the x coordinate of the centroid is found by summing moments
in which x is the perpendicular distance of the element § V from the yz plane.

Then
1

Or the first moment of mass of a body about the yz plane may be calculated
as, [y xdM, and the x coordinate of the centre of mass is then given by

1

i /M xdM
By taking elements of weight §(Mg), rather than of mass, we may determine
the position of the centre of gravity. For bodies small compared with the
earth, however, the variations of g are negligible and thus the centre of
gravity and the centre of mass coincide.

All the moments just considered are termed first moments because each

element of area, volume and so on is multiplied by the first power of the
appropriate distance.

2l

2.4.2 Second moment of area

The second moment of the plane area illustrated in Fig. 2.13 about the
y-axis is 4 x2dA. Similarly, the second moment of the area about the x-axis
is f4 y2dA. A second moment of area may alternatively be written as Ak? (a
suitable suffix being used to indicate the axis concerned), so in (Akz)oy, for
example, k? represents the mean value of x2. The dimensional formula of a
second moment of area is evidently [L*] and a suitable unit is m*.

The value of a second moment of area about a particular axis may always
be found by performing the appropriate integration, but a more direct
method is often possible when the second moment about another axis is
known. Consider an axis through the centroid of the area and parallel to the
given axis (say Oy in Fig. 2.13). The second moment of the area about this
new axis is

(Akz)czf(x—f)sz:fxsz—ZE/ di+fZ/ dA
A A A A

= (Ak*) oy — 2%(AX) + AX* = (Ak?) oy — AX?
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where the suffixes C and Oy indicate the axes used. Therefore
(AR?)oy = (Ak*)c + AX?

The direction of the y-axis was arbitrary; hence it may be said that the
second moment of a plane area about any axis equals the sum of the second
moment about a parallel axis through the centroid and the product of
the area and the square of the perpendicular distance between the axes.
This result is frequently known as the parallel axes theorem. Moreover, by
definition,

(AR 0y + (AR 0y = / x2dA + / J2dA
A A

=/(x2+y2)dA=/erA
A A

The last term corresponds to the second moment of the area about an axis
perpendicular to the plane of the area at the origin. Since the origin was arbit-
rarily chosen we have the perpendicular axes theorem: the second moment of
a plane area about an axis meeting the plane perpendicularly at any point P
equals the sum of the second moments of that area about two axes in the
plane that intersect perpendicularly at P.

The second moment of mass about a particular axis is /) z>dM, where z
represents the perpendicular distance of an element from the axis in ques-
tion. If the mean value of 2% is represented by k2, the second moment of
mass may alternatively be written Mk?. The second moment of mass is also
known as the moment of inertia, and k is termed the radius of gyration.
The dimensional formula of moment of inertia is [ML2] and a suitable unit
is kg - m?.

Unfortunately the second moment of area is sometimes referred to wrongly
as moment of inertia. Inertia is a property of matter and has nothing to do
with area. Second moment of area Ak?, a purely geometric quantity, and
moment of inertia Mk? are fundamentally different. In this book we use Ak?
as the symbol for second moment of area, a suitable suffix indicating the axis
about which the moment is taken.

Examples of second moments about centroidal axes are given in Fig. 2.14.

2.5 HYDROSTATIC THRUSTS ON SUBMERGED SURFACES

The pressure of a fluid causes a thrust to be exerted on every part of any
surface with which the fluid is in contact. The individual forces distributed
over the area have a resultant, and determination of the magnitude, direction
and position of this resultant force is frequently important. For a plane
horizontal surface at which the fluid is in equilibrium the matter is simple:
the pressure does not vary over the plane and the total force is given by the
product of the pressure and the area. Its direction is perpendicular to the
plane — downwards on the upper face, upwards on the lower face — and its
position is at the centroid of the plane. But if the surface is not horizontal the
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Fig. 2.14 Second moments about centroidal axes.

Fig. 2.15

pressure varies from one point of the surface to another and the calculation
of the total thrust is a little less simple.

2.5.1 Thrust on a plane surface

Figure 2.15 shows a plane surface of arbitrary shape, wholly submerged
in a liquid in equilibrium. The plane of the surface makes an angle 6 with
the horizontal, and the intersection of this plane with the plane of the free
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surface (where the pressure is atmospheric) is taken as the x-axis. The y-axis
is taken down the sloping plane. Every element of the area is subjected to
a force due to the pressure of the liquid. At any element of area §A, at a
depth b below the free surface, the (gauge) pressure is p = pgh and the
corresponding force is

SF = pSA = oghSA = ogysin05A (2.14)

As the fluid is not moving relative to the plane there are no shear stresses.
Thus the force is perpendicular to the element, and since the surface is plane
all the elemental forces are parallel. The total force on one side of the plane
is therefore

F:/ngsinedA:QgsinQ/ ydA
A A

But f4 ydA is the first moment of the area about the x-axis and may be
represented by Ay where A represents the total area and (%, ) is the position
of its centroid C. Therefore

F = ogsin Ay = ogAh (2.15)

Now ogh is the pressure at the centroid, so, whatever the slope of the plane,
the total force exerted on it by the static fluid is given by the product of
the area and the pressure at the centroid. Whether the fluid actually has a
free surface in contact with the atmosphere is of no consequence: for a fluid
of uniform density in equilibrium the result is true however the pressure is
produced.

In addition to the magnitude of the total force we need to know its line of
action. Since all the elemental forces are perpendicular to the plane, their
total is also perpendicular to the plane. It remains to determine the point at
which its line of action meets the plane. This point is known as the centre of
pressure (although centre of thrust might be a better term).

For the resultant force to be equivalent to all the individual forces its
moment about any axis must be the same as the sum of the moments of the
individual forces about the axis. The x- and y-axes are most suitable to our
purpose. From eqn 2.14 the force on an element of the area is ggy sin 6§A
and the moment of this force about Ox is therefore pgy* sin98A. Let the
centre of pressure P be at (x’,y’). Then the total moment about Ox is

Fy = / 0gy” sin 6dA
A

Substituting for the total force F from eqn 2.15 we obtain

,ogsind [, y*dA _ (AR%)Ox
~ opgsinfAy Ay

(2.16)

where (Ak2) 0y is the second moment of the area about Ox. In other words,
the slant depth (i.e. measured down the plane) of the centre of pressure equals
the second moment of the area about the intersection of its plane with that

Centre of pressure for a
plane surface
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of the free (i.e. atmospheric) surface divided by the first moment of the area
about the intersection of its plane with that of the free surface.

The centre of pressure is always lower than the centroid (except when the
surface is horizontal) as the following calculation demonstrates.

From the parallel axes theorem:

(AR 0x = (AR?)C + Ay
so eqn 2.16 becomes

2 2
Mzgiﬁiﬁ&=y+m%mMy (2.17)
y

Since a second moment of area is always positive it follows thaty’ > . QED.

We see also that the more deeply the surface is submerged, that is, the
greater the value of y, the smaller is the contribution made by the last term
in eqn 2.17 and the closer is the centre of pressure to the centroid. This
is because, as the pressure becomes greater with increasing depth, its vari-
ation over a given area becomes proportionately smaller, so making the
distribution of pressure more uniform. Thus where the variation of pressure
is negligible the centre of pressure may be taken as approximately at the
centroid. This is justifiable in gases, because in them the pressure changes
very little with depth, and also in liquids provided the depth is very large
and the area small.

The expressions 2.16 and 2.17, it is re-emphasized, give the distance to
the centre of pressure measured down the plane from the level of the free
surface and not vertically.

The x-coordinate of the centre of pressure may be determined by taking
moments about Oy. Then the moment of §F is ggy sin§Ax and the total
moment is

Fx' = / ogxysinfdA = og sin@/ xydA
A A
)

o = Jaxydd (2.18)
Ay

When the area has an axis of symmetry in the y direction, this axis may
be taken as Oy and then [, xydA is zero, that is, the centre of pressure lies
on the axis of symmetry. It will be noted from eqns 2.16 and 2.18 that the
position of the centre of pressure is independent of the angle  and of the
density of the fluid. However, a constant value of ¢ was used; the relations
are therefore valid only for a single homogeneous fluid.

For the plane lamina of negligible thickness illustrated in Fig. 2.15, the
force on one face would exactly balance the force on the other if both faces
were in contact with the fluid. In most cases of practical interest, however,
there is no continuous path in the fluid from one face of the plane to the
other and therefore the pressures at corresponding points on the two faces
are not necessarily the same. For example, the surface may be that of a plate
covering a submerged opening in the wall of a reservoir, or a canal lock-gate
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which has different depths of water on the two sides. The surface may extend
up through the liquid and into the atmosphere; only the part below the free
surface then has a net hydrostatic thrust exerted on it.

The pressures we have considered have been expressed as gauge pressures.
It is unnecessary to use absolute pressures because the effect of atmospheric
pressure at the free surface is to provide a uniform addition to the gauge
pressure throughout the liquid, and therefore to the force on any surface
in contact with the liquid. Normally atmospheric pressure also provides a
uniform force on the other face of the plane, and so it has no effect on either
the magnitude or position of the resultant net force.

It should be particularly noted that, although the total force acts at the
centre of pressure, its magnitude is given by the product of the area and the
pressure at the centroid.

Example 2.2 A cylindrical tank 2 m diameter and 4 m long, with
its axis horizontal, is half filled with water and half filled with oil of
density 880 kg - m~—3. Determine the magnitude and position of the net
hydrostatic force on one end of the tank.

Solution
We assume that the tank is only just filled, that is, the pressure in
the fluids is due only to their weight, and thus the (gauge) pressure
at the top is zero. Since two immiscible fluids are involved we must
consider each separately. In equilibrium conditions the oil covers the
upper semicircular half of the end wall.

Since the centroid of a semicircle of radius a is on the central
radius and 4a/37 from the bounding diameter, the centroid C, of
the upper semicircle is 4(1 m)/37 = 0.4244 m above the centre of

the tank, that is, (1 —0.4244) m = 0.5756 m from the top. The
pressure of the oil at this point is

ogh = (880 kg-m~3)(9.81 N-kg™1)(0.5756 m) = 4969 Pa
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and thus the force exerted by the oil on the upper half of the wall
= 4969 Pa x (%12) m? = 7805 N

By eqn 2.17 the centre of pressure is (AK?)¢ /Ay below the centroid.
Now Ak? about the bounding diameter = 7wa*/8 (see Fig. 2.14). So,
by the parallel axes theorem, for a horizontal axis through C,,

4 2
o _md (1 S\ (4N _ 47w 8\ _ 4
(AK%) ¢ = g (Zﬂa><3n> =a (8 9 =0.1098 m

Therefore, the centre of pressure P, is 0.1098 m4/%7r(l m)? x
(0.5756 m) = 0.1214 m below the centroid, that is, (0.5756 +
0.1214) m = 0.6970 m below the top.

For the lower semicircle, in contract with water, the centroid Cy, is
0.4244 m below the central diameter. The pressure here is that due to
1 m of oil together with 0.4244 m of water, that is,

(800 kg-m™3)(9.81 N - kg™ 1)(1 m)
+ (1000 kg - m~3)(9.81 N - kg~1)(0.4244 m) = 12,796 Pa

Thus the force on the lower semicircle is (12796 Pa) (%n 12m2) =

20100 N.

(AK?)c is again 0.1098 m* but we must be very careful in calcul-
ating y since there is not a single fluid between this centroid and
the zero-pressure position. However, conditions in the water are
the same as if the pressure at the oil-water interface [(880 kg-m~3)
(9.81 N. kg_l)(l m)] were produced instead by 0.88 m of water
[(1000 kg -m—3)(9.81 N~kg_1)(0.88 m)]. In that case the vertical
distance from the centroid Cy, to the zero-pressure position would be
0.4244 m + 0.88 m = 1.3044 m.

.. Centre of pressure Py, for lower semicircle is

1
0.1098 m* /(57112 m? x 1.3044 m>

= 0.0536 m below the centroid Cy,

that is, (1 4+ 0.4244 + 0.0536) m = 1.478 m below top of cylinder.
The total force on the circular end is (7805+20100) N = 27905 N,

acting horizontally. Its position may be determined by taking moments

about, for example, a horizontal axis at the top of the cylinder:

(7805 N)(0.697 m) + (20100 N)(1.478 m) = (27905 N)x

where x = distance of line of action of total force from top of cylinder
=1.260 m
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By symmetry, the centre of pressure is on the vertical diameter of the
circle.

An alternative, though algebraically more tiresome, technique
would be to consider horizontal strips of the surface of vertical thick-
ness, say, 8y; and then to integrate, over each semicircle, expressions
for forces on the strips and their moments about a horizontal axis at,
say, the top of the cylinder. However, there is no escape from dealing
separately with the surfaces in contact with each fluid.

2.5.2 Hydrostatic thrusts on curved surfaces

On a curved surface the forces pSA on individual elements differ in direc-
tion, so a simple summation of them may not be made. Instead, the resultant
thrusts in certain directions may be determined, and these forces may then
be combined vectorially. It is simplest to calculate horizontal and vertical
components of the total thrust.

Any curved surface may be projected on to a vertical plane. Take, for
example, the curved surface illustrated in Fig. 2.16. Its projection on to
the vertical plane shown is represented by the trace MN and the horizontal
projection lines may be supposed in the x-direction. Let F, represent the
component in this direction of the total thrust exerted by the fluid on the
curved surface. By Newton’s Third Law the surface exerts a force —F, on
the fluid. Consider the fluid enclosed by the curved surface, the projection
lines and the vertical plane. For this fluid to be in equilibrium the force —F,
must be equal in magnitude to the force F on the fluid at the vertical plane.
Also the two forces must be in line, that is, —F, must act through the centre
of pressure of the vertical projection.

In any given direction, therefore, the horizontal force on any surface equals
the force on the projection of that surface on a vertical plane perpendicular
to the given direction. The line of action of the horizontal force on the curved
surface is the same as that of the force on the vertical projection.

Horizontal component

Fig. 2.16
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Fig. 2.17

Vertical component

Resultant thrust

The vertical component of the force on a curved surface may be determined
by considering the fluid enclosed by the curved surface and vertical projection
lines extending to the free surface (see Fig. 2.17). (We assume for the moment
that a free surface does exist above the curved surface in question.) As the
sides of this volume are vertical the forces acting on them must everywhere
be horizontal if the fluid is in equilibrium. If the pressure at the free surface
is taken as zero then there are only two vertical forces acting on the fluid
in the space considered: (1) its own weight W (2) the reaction —F, to the
vertical component Fy, of the total force exerted on the curved surface. Hence
W = E,. Moreover, W acts at G, the centre of gravity of the fluid in that
space, and for equilibrium the line of action of F, must also pass through
G.Thus the vertical force acting on any surface equals the weight of the fluid
extending above that surface to the free (zero-pressure) surface, and it acts
through the centre of gravity of that fluid.

In some instances it is the underside of a curved surface that is subjected
to the hydrostatic pressure, whereas the upper side is not. The vertical com-
ponent of the thrust on the surface then acts upwards and equals the weight
of an imaginary amount of fluid extending from the surface up to the level of
the free (zero-pressure) surface. This is because, if the imaginary fluid were
in fact present, pressures at the two sides of the surface would be identical
and the net force reduced to zero.

If a free surface does not actually exist, an imaginary free surface may
be considered at a height p/og above any point at which the pressure p is
known. The density of the imaginary fluid must, of course, be supposed the
same as that of the actual fluid so that the variation of pressure over the sur-
face is correctly represented. The vertical component of the total force is then
equal to the weight of the imaginary fluid vertically above the curved surface.

In general the components of the total force must be considered in three
mutually perpendicular directions, two horizontal and one vertical. These
three components need not meet at a single point, so there is, in general, no
single resultant force. In many instances, however, two forces lie in the same
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plane and may then be combined into a single resultant by the parallelogram
of forces. If there is a vertical plane on which the surface has no projec-
tion (e.g. the plane perpendicular to the horizontal axis of a cylindrical
surface) there is no component of hydrostatic force perpendicular to that
plane. The only horizontal component then needing consideration is the one
parallel to that plane.

When the two sides of a surface are wholly in contact with a single fluid
of uniform density but the level of the free (atmospheric) surface on one side
is different from that on the other, the net effective pressure at any point
depends only on the difference in free surface levels. The effective pressure is
therefore uniform over the area and so the components of the resultant force
then pass through the centroids of the vertical and horizontal projections
respectively.

Example 2.3 A sector gate, of radius 4 m and length 5 m, controls the
flow of water in a horizontal channel. For the (equilibrium) conditions
shown in Fig. 2.18, determine the total thrust on the gate.

Solution

Since the curved surface of the gate is part of a cylinder, the water
exerts no thrust along its length, so we consider the horizontal and
vertical components in the plane of the diagram.

The horizontal component is the thrust that would be exerted by the
water on a vertical projection of the curved surface. The depth d of this
projection is 4 sin 30° m = 2 m and its centroid is 1 m+d/2 =2 m
below the free surface. Therefore

Horizontal force = gghA
=1000 kg-m> x 9.81 N-kg ™ x 2 m(5 x 2) m?
=1.962 x 10° N

Fig. 2.18
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Its line of action passes through the centre of pressure of the vertical
projection, that is, at a distance (Ak%)y/Ab below the free surface,
given by:

-2
(A% (AR*).+Ab™  bd?/12 “ 7

Ab Ab bdh

e m)?
- 12

/2m}+2m:2.167m

The vertical component of the total thrust=weight of imaginary
water ABC. AB=(4 —4c0s30°) m =0.536 m

Vertical force = ogV

=1000 kg - m> x 9.81 N-kg ! x 5 m{(0.536 x 1)

30 1
+nx42x%—5x2x4cos30°} m?

=6.18 x 10* N

The centre of gravity of the imaginary fluid ABC may be found by
taking moments about BC. It is 0.237 m to the left of BC.

The horizontal and vertical components are co-planar and therefore
combine to give a single resultant force of magnitude

12
{(1.962 % 10%)% + (6.18 x 104)2] N =2.057 x 10° N

at an angle arctan (61 800/196 200) = 17.5° to the horizontal.

It is instructive to obtain the result in an alternative way. Consider
an element of the area of the gate subtending a small angle 86 at O.
Then the thrust on this element = pghSA, and the horizontal com-
ponent of this thrust = pghS§A cosd where 0 is the angle between the
horizontal and the radius to the element. Now » = (1 +4sin6) m and
8A = (4860 x 5) m? = 2086 m?, so the total horizontal component =
0g [hcosOdA =

/6
1000 kg -m~> x 9.81 N-kg~! x 20 m2/ (1+4sin6)cosfdd m
0

=1.962 x 10° N

as before.
The vertical component of the thrust on an element is ogh8A sin 0
and the total vertical component = og [ hsin6dA =

/6
1000 kg-m™> x 9.81 N-kg ™! x 20 mZ/ (1+4sin6)sinfdd m
0

—6.18 x 10* N

as before.
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Since all the elemental thrusts are perpendicular to the surface their
lines of action all pass through O and that of the resultant force
therefore also passes through O.

When variations of pressure with depth may be neglected — for example,
when the fluid is gas — the magnitude of the force exerted on a curved surface
in any direction is given by the product of the (uniform) pressure and the
projected area of the surface perpendicular to that direction.

2.6 BUOYANCY

Because the pressure in a fluid in equilibrium increases with depth, the fluid
exerts a resultant upward force on any body wholly or partly immersed in
it. This force is known as the buoyancy and it may be determined by the
methods of Section 2.5.

The buoyancy has no horizontal component, because the horizontal thrust
in any direction is the same as on a vertical projection of the surface of the
body perpendicular to that direction, and the thrusts on the two faces of such
a vertical projection exactly balance. Consider the body PORS of Fig. 2.19.
The upward thrust on the lower surface PSR corresponds to the weight of
the fluid, real or imaginary, vertically above that surface, that is, the weight
corresponding to the volume PSRNM. The downward thrust on the upper
surface POR equals the weight of the fluid PORNM. The resultant upward
force exerted by the fluid on the body is therefore

weight of fluid  weight of fluid weight of fluid
correspond to — corresponding to = corresponding to
PSRNM PORNM PORS.

It may be noted that in this case there is no restriction to a fluid of uniform
density.

Since the fluid is in equilibrium we may imagine the body removed and
its place occupied by an equal volume of the fluid. This extra fluid would
be in equilibrium under the action of its own weight and the thrusts exerted
by the surrounding fluid. The resultant of these thrusts (the buoyancy) must
therefore be equal and opposite to the weight of the fluid taking the place

Fig. 2.19
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Fig. 2.20

Fig. 2.21

Fig. 2.22

of the body, and must also pass through the centre of gravity of that fluid.
This point, which corresponds to the centroid of the volume if the fluid is of
uniform density, is known as the centre of buoyancy. Its position depends on
the shape of the volume considered and it should be carefully distinguished
from the centre of gravity of the body which depends on the way in which
the weight of the body is distributed.

For a body only partly immersed in the fluid (as in Fig. 2.20) similar
considerations show that the buoyancy corresponds to the weight of fluid
equal in volume to PRQ. In general, then, the buoyancy is the resultant
upward force exerted by the fluid on the body, and is equal in magnitude to
0gV where o represents the mean density of the fluid and V the immersed
volume of the body. This result is often known as the Principle of Archimedes
(c.287-212 Bc). Incidentally, in calculating V for a partly immersed body,
any meniscus due to surface tension must be disregarded. Except for very
small bodies the vertical force directly due to surface tension is negligible.

The buoyancy is not related to — and indeed may even exceed — the weight
of fluid actually present. For example, the mirrors of astronomical telescopes
are sometimes floated in mercury; the buoyancy corresponds to the weight
of mercury having a volume equal to PORS (Fig. 2.21) and this may be many
times greater than the volume of mercury present, PORLMN.

A body may be partly immersed in each of two immiscible fluids, as shown
in Fig. 2.22. The total buoyancy is then 01¢V1| +02¢ V5. In general, however,
the centres of buoyancy of the volumes V; and V; are not on the same vertical
line and the total buoyancy force then does not pass through the centroid
of the entire volume. Where the lower fluid is a liquid and the upper a gas,
the buoyancy provided by the gas may, except in very accurate work, be
neglected and the total buoyancy assumed to be g,gV, only, acting at the
centroid of the volume V5. Buoyancy due to the atmosphere is also usually
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neglected when a body is weighed on a balance in air, although in very
accurate work a correction is applied to account for it.

If a body is otherwise unsupported it is in equilibrium in the fluid only
when its buoyancy balances its weight. If the buoyancy exceeds the weight —
as for a balloon in air or an air bubble in water — the body rises until its
average density equals that of the surrounding fluid. If the body is more
compressible than the surrounding fluid its own average density decreases
faster than that of the fluid and, unless the height of the fluid has a definite
limit, the body rises indefinitely.

For a floating body to be in vertical equilibrium, the volume immersed in
the liquid must be such as to provide a buoyancy force exactly equal to the
weight of the body.

2.7 THE STABILITY OF BODIES IN FLUIDS

2.7.1 The stability of submerged bodies

For a body not otherwise restrained it is important to know not only whether
it will rise or fall in the fluid, but also whether an originally vertical axis in the
body will remain vertical. We are not here concerned with effects of a fluid
in motion but with states of equilibrium. We must, however, distinguish
three types of equilibrium. A body in stable equilibrium will, if given a
small displacement and then released, return to its original position. If, on
the other hand, the equilibrium is unstable the body will not return to its
original position but will move further from it. In neutral equilibrium, the
body, having been given a small displacement and then released, will neither
return to its original position nor increase its displacement; it will simply
adopt its new position.

For a body wholly immersed in a single fluid — as, for example the
balloon and gondola illustrated in Fig. 2.23 — the conditions for stability

Fig. 2.23
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Fig. 2.24

of equilibrium are simple. An angular displacement from the normal
position (a) brings into action the couple Wx which tends to restore the
system to position (a). This, then, is a stable arrangement. If, however, the
centre of gravity G were above the centre of buoyancy B the couple arising
from a small angular displacement would be such as to cause the assembly to
topple over. So for a completely immersed body the condition for stability
is simply that G be below B. If B and G coincide, neutral equilibrium is
obtained.

2.7.2 The stability of floating bodies

The condition for angular stability of a body floating in a liquid is a little
more complicated. This is because, when the body undergoes an angular
displacement about a horizontal axis, the shape of the immersed volume in
general changes, so the centre of buoyancy moves relative to the body. As a
result stable equilibrium can be achieved even when G is above B.

Figure 2.24a illustrates a floating body — a boat, for example — in its
equilibrium position. The net force is zero, so the buoyancy is equal in
magnitude to the weight W of the body. There must be no moment on the
body, so the weight acting vertically downwards through the centre of gravity
G must be in line with the buoyancy acting vertically upwards through the
centre of buoyancy B. Figure 2.24b shows the situation after the body has
undergone a small angular displacement or angle of heel, 6. It is assumed
that the position of the centre of gravity G remains unchanged relative to the
body. (This is not always a justifiable assumption for a ship since some of the
cargo may shift during an angular displacement.) The centre of buoyancy B,
however, does not remain fixed relative to the body. During the movement,
the volume immersed on the right-hand side increases while that on the
left-hand side decreases, so the centre of buoyancy (i.e. the centroid of the
immersed volume) moves to a new position B’. Suppose that the line of action
of the buoyancy (which is always vertical) intersects the axis BG at M. For
small values of 6, the point M is practically constant in position and is known
as the metacentre. For the body shown in the figure, M is above G, and the
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couple acting on the body in its displaced position is a restoring couple, that
is, it tends to restore the body to its original position. If M were below G the
couple would be an overturning couple and the original equilibrium would
have been unstable.

The distance of the metacentre above G is known as the metacentric height,
and for stability of the body it must be positive (i.e. M above G). Neutral
equilibrium is of course obtained when the metacentric height is zero and G
and M coincide. For a floating body, then, stability is not determined simply
by the relative positions of B and G.

The magnitude of the restoring couple is W(GM) sin  and the magnitude
of GM therefore serves as a measure of the stability of a floating body.
A simple experiment may be conducted to determine GM. Suppose that
for the boat illustrated in Fig. 2.25 the metacentric height corresponding to
roll about the longitudinal axis is required. If a body of weight P is moved
transversely across the deck (which is initially horizontal) the boat moves
through a small angle & — which may be measured by the movement of a
plumb line over a scale — and comes to rest in a new position of equilibrium.
The centres of gravity and buoyancy are therefore again vertically in line.
Now the movement of the weight P through a distance x causes a parallel
shift of the total centre of gravity (i.e. the centre of gravity of the whole boat
including P) from G to G’ such that Px = W(GG’), W being the total weight
including P. But (GG’) = (GM) tan 6, so

(GM) = PWx cotf (2.19)

Since the point M corresponds to the metacentre for small angles of heel
only, the true metacentric height is the limiting value of GM as & — 0. This
may be determined from a graph of nominal values of GM calculated from
eqn 2.19 for various values of 6 (positive and negative).

It is desirable, however, to be able to determine the position of the meta-
centre and the metacentric height before a boat is constructed. Fortunately
this may be done simply by considering the shape of the hull. Figure 2.26
shows that cross-section, perpendicular to the axis of rotation, in which the
centre of buoyancy B lies. At (a) is shown the equilibrium position: after dis-
placement through a small angle 6 (here exaggerated for the sake of clarity)
the body has the position shown at (b). The section on the left, indicated

Fig. 2.25
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Fig. 2.26

by cross-hatching, has emerged from the liquid whereas the cross-hatched
section on the right has moved down into the liquid. We assume that there is
no overall vertical movement; thus the vertical equilibrium is undisturbed. As
the total weight of the body remains unaltered so does the volume immersed,
and therefore the volumes corresponding to the cross-hatched sections are
equal. This is so if the planes of flotation for the equilibrium and displaced
positions intersect along the centroidal axes of the planes.

We choose coordinate axes through O as origin: Ox is perpendicular to
the plane of diagrams (a) and (b), Oy lies in the original plane of flotation
and Oz is vertically downwards in the equilibrium position. As the body is
displaced the axes move with it. (The axis Ox may move sideways during the
rotation: thus Ox is not necessarily the axis of rotation.) The entire immersed
volume V may be supposed to be made up of elements like that shown —each
underneath an area § A in the plane of flotation. Now the centre of buoyancy
B by definition corresponds to the centroid of the immersed volume (the
liquid being assumed homogeneous). Its y-coordinate (y,) may therefore be
determined by taking moments of volume about the xz plane:

Vyy = /(sz)y (2.20)

(For a symmetrical body y, = 0.) After displacement the centre of buoyancy
is at B’ whose y-coordinate is y. (For ships rotating about a longitudinal
axis the centre of buoyancy may not remain in the plane shown in Fig. 2.26a
because the underwater contour is not, in general, symmetrical about a trans-
verse section. One should therefore regard B’ as a projection of the new
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centre of buoyancy on to the transverse plane represented in the diagram.)
The depth of each element of volume is now z + y tan 6, so

Vy = /y(z +ytan#)dA (2.21)
Subtraction of eqn 2.20 from eqn 2.21 gives
Vi =y = / y? tan 0dA = tan 0(Ak?)ox

where (Ak?) o represents the second moment of area of the plane of flotation
about the axis Ox (see Fig. 2.26c¢).
But, for small angular displacements, y — ¥, = (BM) tan 6 and therefore

V(BM) = (Ak*)0x
or

(AR?)0x

(BM) = v

(2.22)

The length BM, sometimes known as the metacentric radius, is therefore
equal to the second moment of the plane of flotation about the centroidal
axis perpendicular to the plane of rotation divided by the immersed volume.
BM must not be confused with the metacentric height GM.

For rolling (i.e. side to side) movements of a ship the centroidal axis about
which the second moment is taken is the longitudinal one. Stability in this
direction is normally by far the most important. For pitching movements (i.e.
stern up, bow down or vice versa) the appropriate axis is the transverse one.
The metacentres corresponding to different axes of rotation in general have
different positions. The position of B can be calculated since the contours of
the hull at various levels are normally known, and hence the position of the
metacentre may be determined from eqn 2.22.

The equation strictly applies only to very small angular displacements,
and this limitation is more important if the body does not have vertical sides
(although for ships the sides are usually approximately vertical at the water-
line). The result may legitimately be used to indicate the initial stability of the
body. It is nevertheless sufficiently accurate for most calculations involving
angles up to about 8°.

The value of BM for a ship is of course affected by change of loading
whereby the immersed volume alters. If the sides are not vertical at the
water-line the value of Ak? may also change as the vessel rises or falls in
the water. Naval architects must design vessels so that they are stable under
all conditions of loading and movement. Wide ships are stable in rolling
movements because (Ak?)(y is then large and the metacentre high.
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[ | Example 2.4 A uniform, closed cylindrical buoy, 1.5 m high, 1.0 m
diameter and of mass 80 kg is to float with its axis vertical in sea-
water of density 1026 kg-m~3. A body of mass 10 kg is attached to
the centre of the top surface of the buoy. Show that, if the buoy floats
freely, initial instability will occur.

Solution
Moments of mass about horizontal axis through O:

(10 kg)(1.5 m) + (80 kg)(%m) = {(80 + 10) kg}(OG)

.0G=0.8333m

For vertical equilibrium, buoyancy = weight.
%(1 m)?h x 1026 kg-m3g = (80 + 10) kg g

whence h = 0.1117 m.
From Fig. 2.14 Ak? of a circle about a centroidal axis = wd*/64.

CBM ARy T4 oy A
CBM= ARV = ZdY T dh =
12

= Tex o011y "= 0560m

and
0.1117

GM = OB+ BM - 0OG = ( +0.560 — 0.8333) m

=—-0.2175 m

O Since this is negative (i.e. M is below G) buoy is unstable.

Floating bodies If a floating body carries liquid with a free surface, this contained liquid
containing a liquid will move in an attempt to keep its free surface horizontal when the body
undergoes angular displacement. Thus not only does the centre of buoyancy
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move, but also the centre of gravity of the floating body and its contents.
The movement of G is in the same direction as the movement of B and
consequently the stability of the body is reduced. For this reason a liquid
(e.g. oil) which has to be carried in a ship is put into a number of separate
compartments so as to minimize its movement within the ship. It may be
shown that, for small angular movements, the effective metacentric height
is reduced by an amount p;(Ak%)' /oV for each compartment, where (Ak?)’
represents the second moment of area of the free surface of the liquid in
the compartment about its centroidal axis parallel to the axis of rotation,
o; represents the density of the liquid in the compartment and oV the total
mass of the vessel and its cargo.

As we have seen, the restoring couple caused by the hydrostatic forces acting
on a floating body displaced from its equilibrium position is W(GM) sin 6
(see Fig. 2.24). Since torque equals moment of inertia (i.e. second moment
of mass) multiplied by angular acceleration we may write

d%6

dr?

if we assume that the torque caused by the hydrostatic forces is the only one
acting on the body. (In practice a certain amount of liquid moves with the
body, but the effect of this is slight.) Here (Mk?)g represents the moment
of inertia of the body about its axis of rotation. The minus sign arises
because the torque acts so as to decrease 0 , that is, the angular acceleration
d?6/d#? is negative. Thus for small angular movements sin 6 is proportional
to —d26/dt? as for a simple pendulum. If there is no relative movement
(e.g. of liquid) within the body (Mk?)g is constant and if 6 is small so
that sin & = 6 (in radian measure) the equation may be integrated to give
2mkg/{g(GM)}/2 as the time of a complete oscillation from one side to the
other and back again.

If the only forces acting are the weight of the body and the buoyancy - both
of which are vertical —then G does not move horizontally. The instantaneous
axis of rotation therefore lies in a horizontal plane through G. Moreover, for
a body symmetrical about the axis Ox (of Fig. 2.26) the instantaneous axis
of rotation must lie in a vertical plane through Ox so that Ox does not move
vertically out of the free surface. For small angular displacements, however,
the line of intersection of these horizontal and vertical planes is very close
to G, so the axis of rotation is considered to pass through G. The moment
of inertia is consequently calculated for an axis through G.

The oscillation of the body results in some flow of the liquid round it
and this flow has been disregarded here. Reasonable agreement between
theoretical and experimental values of the period of oscillation has been
found for the rolling motion of ships but the agreement is less good for
pitching movements. In practice, of course, viscosity in the water introduces
a damping action which quickly suppresses the oscillation unless further
disturbances such as waves cause new angular displacements.

The metacentric height of ocean-going vessels is, for rotation about a
longitudinal axis, usually of the order of 300 mm to 1.2 m. Increasing the

W(GM)sin® = —(Mk?)g

Period of oscillation
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metacentric height gives greater stability but reduces the period of roll, so
the vessel is less comfortable for passengers and is subjected to strains which
may damage its structure. In cargo vessels, the metacentric height varies with
the loading although some control of its value is possible by adjusting the
position of the cargo. Some control of the period of roll is also possible:
if the cargo is placed further from the centre-line the moment of inertia of
the vessel, and consequently the period, may be increased with little sac-
rifice of stability. On the other hand, in warships and racing yachts, for
examples, stability is more important than comfort, and such vessels have
larger metacentric heights.

2.7.3 Stability of a body subject to an additional force

When an unconstrained body is in equilibrium in a fluid the only forces
relevant to its stability are the weight of the body and its buoyancy. If,
however, an additional force is provided — by, for example, an anchor chain -
stability is determined by the lines of action of the buoyancy and the resultant
downward force.

Example 2.5 For the buoy considered in example 2.4, calculate the
least vertical downward force applied at the centre of the base that
would just keep the buoy upright. What would then be the depth of
immersion?

Solution

A vertically downward force F applied at O increases the total down-
ward force from W (the total weight of the buoy) to W+F. To maintain
vertical equilibrium the buoyancy too is increased to W + F, and so
the new depth of immersion /' is given by

Qg%dzh’ =W+F

Taking moments of forces about a horizontal axis through O gives the
requirement for the restoring couple to be just zero:
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) b’ d2
W(OG) = (W + F)(OB + BM) = ngd 24 >+ 1

that is,

N2 2
(90 kg)g(0.8333 m) = (1026 kg.m*)g%(l m)? i *) + d m }

2 16
whence

b =0.2473 m

and
F= Qg%dzb/ W= (1026 x 9.81%12 x 0.2473 — 90 x 9.81) N

=1072 N a

2.7.4 Stability of a fluid itself

In the preceding sections we have considered the stability of separate, iden-
tifiable, bodies wholly or partly immersed in a fluid. We now turn attention
to the stability of parts of the fluid itself which, perhaps because of uneven
heating or cooling, have a density slightly different from that of neighbouring
fluid. These differences of density are the cause of fluid motion known as
convection currents which are frequently encountered in both liquids and
gases.

If, for example, only the lower layers of a certain bulk of fluid are heated,
an unstable condition results. This is because if some of the warmer fluid is
displaced upwards it finds itself surrounded by cooler, and therefore denser,
fluid. The buoyancy force exerted on the warmer fluid by its surroundings
is equal in magnitude to the weight of an equal volume of the surround-
ing denser fluid. As this buoyancy is greater than the weight of the newly
arrived fluid there is a net upward force on the warmer fluid which therefore
continues to rise. Heavier fluid then flows downwards to take the place
of the less dense fluid which has moved up and thus free convection is
started.

If, however, the lower layers of fluid are cooled the conditions are stable.
Fluid displaced downwards would be surrounded by cooler, denser, fluid;
it would therefore experience a buoyancy force greater than its own weight
and would return upwards to its original position.

Such movements occur on a large scale in the atmosphere. The lower
part of the atmosphere is continually being mixed by convection which is
largely due to the unequal heating of the earth’s surface. When air is heated
more in one locality than in another, it rises and then, as its pressure falls
with increase of altitude, it cools. Because air is a poor conductor of heat
the cooling takes place approximately adiabatically according to eqn 1.6.
The adiabatic temperature lapse rate in a dry atmosphere is approximately
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Fig. 2.27

0.01 K-m~! whereas the temperature change normally found in nature is
of the order of 0.0065 K-m~!. Rising air, cooling adiabatically, therefore
becomes cooler and denser than its surroundings and tends to fall back to
its original level. Normally, then, the atmosphere is stable. If, however,
the natural temperature lapse rate exceeds the adiabatic, the equilibrium is
unstable — a condition frequently responsible for thunderstorms.

2.8 EQUILIBRIUM OF MOVING FLUIDS

In certain instances the methods of hydrostatics may be used to study the
behaviour of fluids in motion. For example, if all the fluid concerned moves
uniformly in a straight line, there is no acceleration and there are no shear
forces. Thus no force acts on the fluid as a result of the motion and, in these
circumstances, the hydrostatic equations apply without change.

If all the fluid concerned is undergoing uniform acceleration in a straight
line, no layer moves relative to another, so there are still no shear forces.
There is, however, an additional force acting to cause the acceleration. Nev-
ertheless, provided that due allowance is made for this additional force the
system may be studied by the methods of hydrostatics. Fluids in such motion
are said to be in relative equilibrium.

Consider the small rectangular element of fluid of size §x x 8y x §z shown
in Fig. 2.27 (8y being measured perpendicularly to the paper). The pressure at
the centre is p, so the mean pressure over the left-hand face is p — (3p/9x) %Sx
and the mean pressure over the right-hand face p + (3p/dx) 3 8x. If the fluid
is in relative equilibrium there are no shear forces. The net force in the
(horizontal) x direction is therefore

op 1 op 1 _ o
{(p a§<39c> <p + ai&x)} 8ydz = ax3x5y5z

which by Newton’s Second Law is equal to 08x8y8zay, where o represents the
mean density of the fluid in the element and a, the component of acceleration
in the x direction. Therefore the pressure gradient in the x direction, dp/dx,
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is given by

»

= —oay (2.23)
0x

Similarly, the net force in the (vertical) z direction due to pressure is
given by

d
——p(SxSySz
a0z

The weight of the element acting vertically downwards is pgéx8ydz, so
ap
—a—SxSySz — 088x8y8z = 0dx8ydza,
N (2.24)
ap
oo =—ogtaz)
0z
In general there would also be a component of acceleration in the y direc-
tion and a corresponding pressure gradient in the y direction 9p/dy = —oa,.
For simplicity, however, we shall consider the total acceleration to be in the
x—z plane.
From eqns 2.23 and 2.24 the pressure variation throughout the fluid may
be determined. A surface of constant pressure in the fluid is one along which
9 ap

_or -
dp = 8xdx+ Bzdz =0
that is, along which

de p/ox  —a
dx — 9p/dz  g+a,

(2.25)

For constant acceleration, therefore, dz/dx is constant and a surface of con-
stant pressure has a constant slope relative to the x direction of —a, /(g +a;).
One such surface is a free surface; other constant pressure planes are parallel
to it.

For example, consider the tank illustrated in Fig. 2.28. It contains a liquid
and is given a uniform horizontal acceleration a, (the vertical acceleration
a, is zero). Once the liquid has adjusted itself to uniform conditions the free
surface settles at a slope as shown. (During the period when the liquid is
moving into its new position shear forces are involved, so the methods of
hydrostatics do not then apply.) Here tan 0 = dz/dx = —a,/g.

If, however, the acceleration is only in the vertical direction eqn 2.25 shows
that dz/dx = 0, so planes of constant pressure are horizontal. The variation
of pressure through the fluid is then given simply by eqn 2.24. A tank of fluid
allowed to fall freely would have an acceleration in the z direction (upwards)
of —g and thus uniform pressure would be obtained throughout the fluid.
But if a tank of liquid were accelerated upwards the hydrostatic pressure
variation would be intensified.

Fluid completely filling a closed tank would have no free surface, but
planes of constant pressure would still be inclined to the x direction at an
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Fig. 2.28

Fig. 2.29

angle of arctan {—a, /(g +a,)}. Pressures at particular points in the fluid may
be determined by integrating eqns 2.23 and 2.24:

p=/dp=/8—pdx+/a—pdz
ox az

= —paxx — 0(g + a;)z + constant (2.26)

for a constant-density fluid. The integration constant is determined by the
conditions of the problem - for example, that p = pam at a free surface.

All the foregoing results refer only to a horizontal x- (and y-) axis and
a vertical z-axis; it should be remembered too that z is measured upwards
from a suitable horizontal datum.

Once the direction of the constant-pressure planes is known, alternative
expressions may be obtained by considering, say, & and n axes, respectively
parallel to and perpendicular to the constant-pressure planes (see Fig. 2.29).

@ i p



@ i p

Equilibrium of moving fluids 83

Then dp/0& = 0 by definition of & but

p _ 9p [on _ —oax { 2 2]1/2 dp
_—= — —_— = = — a a = —
on  odx/ 0x  siné Q% T (& +a:) dn
since p depends only on n. Comparison with dp/dz = —pg, the equi-

librium equation for zero acceleration, shows that pressures for relative
equilibrium may be calculated by hydrostatic principles provided that
{a,zc + (g + az)z}l/2 takes the place of g; and n the place of z. However,
it is usually simpler and certainly safer to work with horizontal and vertical
axes only.

Example 2.6 A thin-walled, open-topped tank in the form of a cube [ |
of 500 mm side is initially full of oil of relative density 0.88. It is
accelerated uniformly at § m-s=2 up a long straight slope at arctan
(1/4) to the horizontal, the base of the tank remaining parallel to the
slope, and the two side faces remaining parallel to the direction of
motion. Calculate (a) the volume of oil left in the tank when no more
spilling occurs, and (b) the pressure at the lowest corners of the tank.

Solution

The forward acceleration causes the free surface to slope at angle
(180° — 0) to the forward horizontal, and the oil therefore spills over
the corner B until conditions are as shown in the diagram.

Horizontal component of acceleration

=a, =acos¢p = (5 m-s_z) X 4/«/ﬁ
Vertical component of acceleration

=a,=asing =S m-s?) x 1/\/ﬁ
From eqn 2.25
ax

tan(180° — 9) = - s
z
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that is,
ang = B _ 2T 44
a+8g (5/+/17)+9.81
tan¢ + tan 6 0.25 + 0.440

(a) . tan(¢ +6) = =0.775

T—_tangtand 1—0.25 x 0.440
.c=0.5mx0.775 =0.3875m

1
Then volume of oil left = 0.5 (0.52 - 20.5 x O.3875> m>

=0.765m> =76.5 L

(b) From eqn 2.26 p = —payx — o(a, + g)z + constant
Pressure at B is atmospheric and if B is at (0,0) then constant = 0
Point A will be at [(0.5 m) sin ¢, —(0.5 m) cos @]

S pa = —oacos@ (0.5 m)sing + g(asing + £)(0.5 m) cos ¢

4
— 02(0.5m)cos¢ = 880 kg -m39.81 N-kg '0.5 m——
0g ¢ g g Nevi

=4190 Pa

PROBLEMS

2.1  To what head of carbon tetrachloride (relative density 1.59) is

a pressure of 200 kPa equivalent?

2.2 Atank 3.5 m long and 2.5 m wide contains alcohol of relative
density 0.82 to a depth of 3 m. A 50 mm diameter pipe leads
from the bottom of the tank. What will be the reading on a
gauge calibrated in Pa connected at a point (@) 150 mm above
the bottom of the tank; (b) in the 50 mm diameter pipe, 2 m
below the bottom of the tank; (¢) at the upper end of a 25 mm
diameter pipe, connected to the 50 mm pipe 2 m below the
bottom of the tank, sloping upwards at 30° to the horizontal
for 1.2 m and then rising vertically for 600 mm? What is the

load on the bottom of the tank?

2.3 To what head of air (R = 287 ]~l<g_1 .K™!) at an absolute
pressure of 101.3 kPa and temperature of 15 °C is a pressure

of 75 mm of water equivalent?

2.4 A spherical air bubble rises in water. At a depth of 9 m its
diameter is 4 mm. What is its diameter just as it reaches the
free surface where the absolute pressure is 101.3 kPa? (Surface

tension effects are negligible.)
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2.5

2.6

2.7

2.8

2.9

2.10

2.12

Two small vessels are connected to a U-tube manometer
containing mercury (relative density 13.56) and the connect-
ing tubes are filled with alcohol (relative density 0.82). The
vessel at the higher pressure is 2 m lower in elevation than the
other. What is the pressure difference between the vessels when
the steady difference in level of the mercury menisci is 225 mm?
What is the difference of piezometric head? If an inverted U-tube
manometer containing a liquid of relative density 0.74 were
used instead, what would be the manometer reading for the
same pressure difference?

A manometer consists of two tubes A and B, with vertical
axes and uniform cross-sectional areas 500 mm? and 800 mm?>
respectively, connected by a U-tube C of cross-sectional area
70 mm? throughout. Tube A contains a liquid of relative dens-
ity 0.8; tube B contains one of relative density 0.9. The surface
of separation between the two liquids is in the vertical side of C
connected to tube A. What additional pressure, applied to the
tube B, would cause the surface of separation to rise 60 mm in
the tube C?

Assuming that atmospheric temperature decreases with increas-
ing altitude at a uniform rate of 0.0065 K- m~!, determine the
atmospheric pressure at an altitude of 7.5 km if the temperature
and pressure at sea level are 15 °C and 101.5 kPa respectively.
(R=287] kg . K1)

At the top a mountain the temperature is —5 °C and a mercury
barometer reads 566 mm, whereas the reading at the foot of
the mountain is 749 mm. Assuming a temperature lapse rate of
0.0065K-m~! and R =287 J-kg ™! - K1, calculate the height
of the mountain. (Neglect thermal expansion of mercury.)

A rectangular plane, 1.2 m by 1.8 m is submerged in water and
makes an angle of 30° with the horizontal, the 1.2 m sides being
horizontal. Calculate the magnitude of the net force on one face
and the position of the centre of pressure when the top edge of
the plane is (a) at the free surface, (b) 500 mm below the free
surface, (c) 30 m below the free surface.

What is the position of the centre of pressure for a vertical semi-
circular plane submerged in a homogeneous liquid and with its
diameter d at the free surface?

An open channel has a cross-section in the form of an equilateral
triangle with 2.5 m sides and a vertical axis of symmetry. Its
end is closed by a triangular vertical gate, also with 2.5 m sides,
supported at each corner. Calculate the horizontal thrust on
each support when the channel is brim-full of water.

A circular opening 1.2 m in diameter in the vertical side of a
reservoir is closed by a disc which just fits the opening and is
pivoted on a shaft along its horizontal diameter. Show that, if
the water level in the reservoir is above the top of the disc, the

Problems
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2.13

2.14

2.15

2.16

2.17

turning moment on the shaft required to hold the disc vertical
is independent of the head of water. Calculate the amount of
this moment.

A square aperture in the vertical side of a tank has one diagonal
vertical and is completely covered by a plane plate hinged along
one of the upper sides of the aperture. The diagonals of the
aperture are 2 m long and the tank contains a liquid of relative
density 1.15. The centre of the aperture is 1.5 m below the
free surface. Calculate the net hydrostatic thrust on the plate,
the moment of this thrust about the hinge and the position of
the centre of pressure.

A canal lock is 6 m wide and has two vertical gates which make
an angle of 120° with each other. The depths of water on the
two sides of the gates are 9 m and 2.7 m respectively. Each
gate is supported on two hinges, the lower one being 600 mm
above the bottom of the lock. Neglecting the weight of the gates
themselves, calculate the thrust between the gates and the height
of the upper hinges if the forces on them are to be half those on
the lower hinges.

The profile of the inner face of a dam takes the form of a para-
bola with the equation 18y = x2, where y m is the height above
the base and x m is the horizontal distance of the face from
the vertical reference plane. The water level is 27 m above the
base. Determine the thrust on the dam (per metre width) due to
the water pressure, its inclination to the vertical and the point
where the line of action of this force intersects the free water
surface.

A tank with vertical sides contains water to a depth of 1.2 m and
a layer of oil 800 mm deep which rests on top of the water. The
relative density of the oil is 0.85 and above the oil is air at atmo-
spheric pressure. In one side of the tank, extending through its
full height, is a protrusion in the form of a segment of a vertical
circular cylinder. This is of radius 700 mm and is riveted across
an opening 500 mm wide in the plane wall of the tank. Calcu-
late the total horizontal thrust tending to force the protrusion
away from the rest of the tank and the height of the line of
action of this thrust above the base of the tank.

A vertical partition in a tank has a square aperture of side 4,
the upper and lower edges of which are horizontal. The aper-
ture is completely closed by a thin diaphragm. On one side on
the diaphragm there is water with a free surface at a distance
b (> a/2) above the centre-line of the diaphragm. On the other
side there is water in contact with the lower half of the dia-
phragm, and this is surmounted by a layer of oil of thickness
¢ and relative density o. The free surfaces on each side of the
partition are in contact with the atmosphere. If there is no net
force on the diaphragm, determine the relation between b and
¢, and the position of the axis of the couple on the diaphragm.
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2.18

2.19

2.20

2.21

2.22

2.23

2.24

In the vertical end of an oil tank is a plane rectangular inspection
door 600 mm wide and 400 mm deep which closely fits an
aperture of the same size. The door can open about one ver-
tical edge by means of two hinges, respectively 125 mm above
and below the horizontal centre-line, and at the centre of the
opposite vertical edge is a locking lever. Determine the forces
exerted on each hinge and on the locking lever when the tank
contains an oil of relative density 0.9 to a depth of 1m above
the centre of the door and the air above the oil surface is at
a gauge pressure of 15 kPa.

A vessel of water of total mass 5 kg stands on a parcel balance.
An iron block of mass 2.7 kg and relative density 7.5 is suspen-
ded by a fine wire from a spring balance and is lowered into the
water until it is completely immersed. What are the readings on
the two balances?

A cylindrical tank of diameter 3d contains water in which a
solid circular cylinder of length / and diameter d floats with its
axis vertical. Oil is poured into the tank so that the length of
the float finally protruding above the oil surface is [/20. What
vertical movement of the float has taken place? (Relative density
of oil 0.8, of cylinder 0.9.)

A hollow cylinder with closed ends is 300 mm diameter and
450 mm high, has a mass of 27 kg and has a small hole in the
base. It is lowered into water so that its axis remains vertical.
Calculate the depth to which it will sink, the height to which
the water will rise inside it and the air pressure inside it. Dis-
regard the effect of the thickness of the walls but assume that
it is uniform and that the compression of the air is isothermal.
(Atmospheric pressure = 101.3 kPa.)

A spherical, helium-filled balloon of diameter 800 mm is to
be used to carry meteorological instruments to a height of
6000 m above sea level. The instruments have a mass of
60 g and negligible volume, and the balloon itself has a
mass of 100 g. Assuming that the balloon does not expand
and that atmospheric temperature decreases with increasing
altitude at a uniform rate of 0.0065 K-m~!, determine the
mass of helium required. Atmospheric pressure and temper-
ature at sea level are 15 °C and 101 kPa respectively; for air,
R=287] kg 1. KL

A uniform wooden cylinder has a relative density of 0.6.
Determine the ratio of diameter to length so that it will just
float upright in water.

A rectangular pontoon 6 m by 3 m in plan, floating in water,
has a uniform depth of immersion of 900 mm and is subjected
to a torque of 7600 N-m about the longitudinal axis. If the
centre of gravity is 700 mm up from the bottom, estimate the
angle of heel.

Problems
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2.25

2.26

2.27

2.28

2.29

2.30

A solid uniform cylinder of length 150 mm and diameter 75 mm
is to float upright in water. Between what limits must its
mass be?

A sea-going vessel, containing a quantity of ballast, has its
centre of gravity 300 mm, and its centre of buoyancy 1.6 m,
below the water line. The total displacement is 80 MN and
the reaction of the screw causes a heel of 0.53° when the shaft
speed is 8.8 rad - s~ (1.4 rev/s) and the shaft power is 3.34 MW.
After the removal of 400 Mg of ballast, resulting in the centre
of buoyancy being lowered by 75 mm relative to the boat? (The
sides of the vessel may be assumed vertical at the water line.)
A buoy, floating in sea-water of density 1025 kg - m~3, is conical
in shape with a diameter across the top of 1.2 m and a vertex
angle of 60°. Its mass is 300 kg and its centre of gravity is
750 mm from the vertex. A flashing beacon is to be fitted to
the top of the buoy. If this unit is of mass 55 kg what is the
maximum height of its centre of gravity above the top of the
buoy if the whole assembly is not be unstable? (The centroid of
a cone of height b is at 3h/4 from the vertex.)

A solid cylinder, 1 m diameter and 800 mm high, is of uni-
form relative density 0.85 and floats with its axis vertical in still
water. Calculate the periodic time of small angular oscillations
about a horizontal axis.

An open-topped tank, in the form of a cube of 900 mm side, has
a mass of 340 kg. It contains 0.405 m? of oil of relative density
0.85 and is accelerated uniformly up a long slope at arctan (1/3)
to the horizontal. The base of the tank remains parallel to the
slope, and the side faces are parallel to the direction of motion.
Neglecting the thickness of the walls of the tank, estimate the
net force (parallel of the slope) accelerating the tank if the oil is
just on the point of spilling.

A test vehicle contains a U-tube manometer for measuring dif-
ferences of air pressure. The manometer is so mounted that,
when the vehicle is on level ground, the plane of the U is vertical
and in the fore-and-aft direction. The arms of the U are 60 mm
apart, and contain alcohol of relative density 0.79. When the
vehicle is accelerated forwards down an incline at 20° to the
horizontal at 2 m-s~2 the difference in alcohol levels (meas-
ured parallel to the arms of the U) is 73 mm, that nearer the
front of the vehicle being the higher. What is the difference of
air pressure to which this reading corresponds?
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The principles governing
fluids in motion

3.1 INTRODUCTION

In this chapter we lay the foundations of the analysis of fluid flow by
considering first the description of motion in terms of displacement, velocity
and acceleration but without regard to the forces causing it. The Principle of
Conservation of Mass is introduced; then the inter-relation between differ-
ent forms of energy associated with the fluid flow is examined; and finally
some simple applications of these results are considered.

3.2 ACCELERATION OF A FLUID PARTICLE

In general, the velocity of a fluid particle is a function both of position and
of time. As the particle moves from, say, point A to point B, its velocity
changes for two reasons. One is that particles at B have a velocity different
from particles at A, even at the same instant of time; the other reason is
that during the time the given particle moves from A to B the velocity at B
changes. If B is at only a small distance 8s from A the particle’s total increase
of velocity §u is the sum of the increase due to its change of position and the
increase due to the passing of a time interval §#:

ou ou

ou = —38s+ —0t

as at
and so, in the limit, as §z — 0, the acceleration a; in the direction of flow is
given by:

du  duds ou

di = — = — —
S a T asdt T
or, since ds/dt = u,

du ou  ou
as=— =u—+ — 3.1
ST de ds | ot 3-1)
The full rate of increase du/d¢ for a given particle is often termed the
substantial acceleration. The term 0u/9t represents only the local or tem-
poral acceleration, that is, the rate of increase of velocity with respect to
time at a particular point in the flow. The term #(3#%/ds) is known as the
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Fig. 3.1

convective acceleration, that is, the rate of increase of velocity due to the
particle’s change of position. Although in steady flow du/9¢ is zero, the con-
vective acceleration is not necessarily zero, so the substantial acceleration is
not necessarily zero.

A particle may also have an acceleration in a direction perpendicular to
the direction of flow. When a particle moves in a curved path, it changes
direction and so has an acceleration towards the centre of curvature of
the path, whether or not the magnitude of the velocity is changing. If the
radius of the path-line is 7, the particle’s acceleration towards the centre of
curvature is #? /rp. Alternatively, if the streamline has a radius of curvature s,
the particle’s acceleration a, towards the centre of curvature of the stream-
line has in general a convective part 2 /rs and a temporal part duy, /3¢, where
uy represents the component of velocity of the particle towards the centre
of curvature. Although, at that moment, u, is zero it is, unless the flow is
steady, increasing at the rate duy,/0¢. Thus

u duy,
T dt

(3.2)

3.3 THE CONTINUITY EQUATION

The principle of the conservation of mass expresses the fact that matter can
neither be created nor destroyed. The continuity equation is a mathematical
statement of that principle. Applying the principle to a fixed region within
a fluid, see Fig. 3.1, we can write:

The rate at which mass enters the region
= The rate at which mass leaves the region

+ The rate of accumulation of mass in the region

If the flow is steady (i.e. unchanging with time) the rate at which mass is
accumulated within the region is zero. The expression then reduces to:

The rate at which mass enters the region
= The rate at which mass leaves the region
This relation may now be applied to a stream-tube whose cross-section

is small enough for there to be no significant variation of velocity over it.
A length s of the stream-tube is considered between the cross-sectional
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planes B and C (Fig. 3.2), 8s being so small that any variation in the cross-
sectional area AA along that length is negligible. Then, the volume of fluid
contained in that small piece of the stream-tube is (AA)ds. (We recall that
cross-section by definition is perpendicular to the length.) If the fluid initially
between planes B and C passes through the plane C in a short time interval 8¢,
then the rate at which fluid volume passes through C is (AA)8s/8¢, or in
the limit (AA)ds/d¢. But ds/d¢ is the linear velocity there, say u, so the
rate of volume flow is (AA)u. As in calculating a volume a length must
be multiplied by the area of a surface perpendicular to that length, so in
calculating the rate of volume flow (frequently termed the discharge and
represented by the symbol Q) the velocity must be multiplied by the area of
a surface perpendicular to it. The rate of mass flow is given by the product
of the discharge and the density.

The rate at which a mass of fluid enters a selected portion of a stream
tube — where the cross-sectional area is AAq, the velocity of the fluid 4
and its density g1 — is therefore o1(AAq)uq. For steady flow there is no
accumulation of mass within the stream-tube, so the same mass must pass
through all cross-sections of the tube in unit time. Thus

01(AADu = 02(AAy)uy = ... = constant (3.3)

For the entire collection of stream-tubes occupying the cross-section of a
passage through which the fluid flows, eqn 3.3 may be integrated to give

/ oudA = constant (3.4)
A
where u is everywhere perpendicular to the elemental area §A. If ¢ and u are
constant over the entire cross-section the equation becomes

0Au = constant (3.5)

For a fluid of constant density the continuity relation reduces to
/ udA = constant
A

which may be written
Au = constant = Q

where % represents the mean velocity, and Q is the volumetric flow rate.
For the flow of an incompressible fluid along a stream-tube, eqn 3.3 indic-

ates that uAA = constant, so as the cross-sectional area AA decreases,

the velocity increases, and vice versa. This fact at once allows a partial

Fig. 3.2
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Fig. 3.3

interpretation of the pattern formed by streamlines in steady flow: in regions
where the streamlines are close together the velocity is high, but where the
same streamlines are more widely spaced the velocity is lower. This conclu-
sion, which applies to incompressible fluids, does not necessarily apply to
the flow of compressible fluids in which large density changes occur.

3.4 BERNOULLI'S EQUATION

The velocity of a fluid in general varies from one point to another even in the
direction of flow. Since, by Newton’s First Law, a change of velocity must
be associated with a force, it is to be expected that the pressure of the fluid
also changes from point to point.

The relation between these changes may be studied by applying Newton’s
Second Law to a small element of the fluid over which the changes of velocity
and pressure are very small. The element is so chosen that it occupies part of
a stream-tube of small cross-section (see Fig. 3.3). The ends of the element
are plane and perpendicular to the central streamline, but may be of any
geometrical shape.

The forces under investigation are those due to the pressure of the fluid all
round the element, and to gravity. Other forces, such as those due to viscos-
ity, surface tension, electricity, magnetism, chemical or nuclear reactions are
assumed negligibly small. Even the assumption of negligible viscosity is less
restrictive than it may at first seem. The fluids more frequently encountered
have small values of viscosity, and except when eddies are present viscous
forces are significant only very close to solid boundaries. The behaviour of
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an actual fluid is thus often remarkably similar to that of an ideal, inviscid
one. In the absence of shearing forces, any force acting on a surface is per-
pendicular to it, whether the surface is that of a solid boundary or that of
an element of fluid.

It is also assumed that the flow is steady.

The element is of length 8s where s represents the distance measured
along the stream-tube in the direction of flow. The length &8s is so small
that curvature of the streamlines over this distance may be neglected.

The pressure, velocity and so on will (in general) vary with s, but, as
the flow is steady, quantities at a particular point do not change with time
and so, for the stream-tube considered, each variable may be regarded as
a function of s only.

At the upstream end of the element the pressure is p, and at the downstream
end p + 8p (where §p may of course be negative). At the sides of the element
the pressure varies along the length, but a mean value of p + k§p may be
assumed where k is a fraction less than unity. The pressure at the upstream
end (where the cross-sectional area is A) results in a force pA on the element
in the direction of flow; the pressure at the downstream end (where the cross-
sectional area is A + §A) causes a force (p + §p)(A + A) on the element in
the opposite direction.

Unless the element is cylindrical, the forces due to the pressure at its sides
also have a component in the flow direction. Since the force in any direction
is given by the product of the pressure and the projected area perpendicular
to that direction, the net axial force downstream due to the pressure at the
sides of the element is (p + kSp)SA since A is the net area perpendicular to
the flow direction.

The weight of the element, W, equals 9gAés (the second order of small
quantities being neglected) and its component in the direction of motion is
—0gA 8s cos where o represents the density of the fluid and 6 the angle
shown between the vertical and the direction of motion. Thus in the absence
of other forces, such as those due to viscosity, the total force acting on the
element in the direction of flow is

DA — (p+ 5p)(A +8A) + (p + k8p)SA — 0gAss cos 0
When the second order of small quantities is neglected, this reduces to
—AS8p — pgAdscosb (3.6)

Since the mass of the element is constant, this net force must, by Newton’s
Second Law, equal the mass multiplied by the acceleration in the direction
of the force, that is, pAS8s x (du/dt).

We may write ds cos6 as 8z where z represents height above some con-
venient horizontal datum plane and 8z the increase in level along the length
of the element. Then dividing by 9 Ads and taking the limit §s — 0 we obtain

1dp du dz

Bernoulli’s equation
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From eqn 3.1
du du  ou

a "o T

However for steady flow the local acceleration du/3¢ = 0 and so du/dt =
u(du/ds) (the full derivative now taking the place of the partial because for
this stream-tube u is a function of s only). We then have

1dp du dz

——4u—+g—=0 3.8

st+uds+gds (3-8)
as the required equation in differential form. This is often referred to as
Euler’s equation, after the Swiss mathematician Leonhard Euler (1707-83).
It cannot be completely integrated with respect to s unless g is either constant
or a known function of p. For a fluid of constant density, however, the result
of integration is

2
b w + gz = constant (3.9)
0 2
or, if we divide by g,
2
1 + 2 4 ¢ = constant (3.10)
g 2g

This result (in either form) is usually known as Bernoulli’s equation or
the Bernoulli equation in honour of another Swiss mathematician, Daniel
Bernoulli (1700-82) who in 1738 published one of the first books on fluid
flow. (Equations 3.9 and 3.10, however, were not developed until some
years later.)

The quantity z represents the elevation above some horizontal plane arbit-
rarily chosen as a base of measurement. The level of this plane is of no
consequence: if it were moved, say, one metre higher all the values of z for
the stream-tube considered would be reduced by 1 m, so the sum of the three
quantities in eqn 3.10 would still be constant.

The assumption that the flow is steady must not be forgotten; the result
does not apply to unsteady motion. Moreover, in the limit the cross-sectional
area of the stream-tube considered tends to zero and the tube becomes a
single streamline. Thus the sum of the three terms is constant along a single
streamline but, in general, the constant on the right-hand side of either
eqn 3.9 or eqn 3.10 has different values for different streamlines. For those
special cases in which all the streamlines start from, or pass through, the same
conditions of pressure, velocity and elevation, the constants for the several
streamlines are of course equal, but not every example of fluid motion meets
these conditions.

To sum up, the conditions to which Bernoulli’s equation applies are: the
fluid must be frictionless (inviscid) and of constant density; the flow must be
steady, and the relation holds in general only for a single streamline.

For liquids, especially when there is a free surface somewhere in the system
considered, eqn 3.10 is usually the most suitable form of the expression. The
equation may be applied to gases in those circumstances where changes of



density are small. Then eqn 3.9 has certain advantages. Simplification of
the equation is frequently possible for describing the behaviour of gases in
such conditions; because the density of gases is small, changes in the values
of z from one point to another in the flow may well have negligible effect
compared with the term p/p in eqn 3.9, and so the gz term may be omitted
without appreciable error. The equation for the flow of gases with small
density changes then becomes

p

— 4+ — = constant
o 2

or, in the form more usually employed,

1
P+ EQMZ = constant (3.11)

3.4.1 The significance of the terms in Bernoulli’s equation

The derivation of Bernoulli’s equation in Section 3.4 is based on the applic-
ation of Newton’s Second Law of Motion, which relates the rate of change
of momentum of a body to the sum of the applied forces. However, as noted
previously, the analysis incorporates a number of important simplifications.
It is assumed that the fluid is inviscid and incompressible, that the flow is
steady, and the relations have been derived along a single streamline. If, in
addition, there is no heat transfer along the streamline and no shaft work is
done (say, by a pump or turbine), then, as we shall show in Section 3.5, the
equation takes on exactly the same form as the corresponding energy equa-
tion. In these specific circumstances, the terms of the Bernoulli equation can
be interpreted as contributions in an energy balance.

Equation 3.9 states that the sum of three quantities is constant. Con-
sequently the separate quantities must be interchangeable and thus of the
same kind. The second term, #?/2, represents the kinetic energy of a small
element of the fluid divided by the mass of the element. The third term, gz,
also represents energy/mass and corresponds to the work that would be done
on the fluid element in raising it from datum level to the height z divided by
the mass of the fluid element.

Similarly, the term p/o must also represent an amount of work divided by
the mass of the fluid. We see from the expression 3.6 that the contribution
of the pressure forces to the net force acting on the element is —Adp in the
direction of motion. Therefore, the work done by this force on the element
as it moves a distance §s (i.e. from a point where the pressure is p to a point
where it is p + 8p) is given by (—AS8p)Ss. But the mass of the element is 0 A$s,
so the work done by the force divided by the mass of fluid is

—Adpds/oAss = —38p/o
If the element moves from a point where the pressure is p1 to one where
the pressure is p,, then the work done by the pressure forces divided by the

mass of fluid is f;lz —dp/o, that is, if o is constant, (p1 — p2)/0. The term
p/o in Bernoulli’s equation therefore corresponds to the work that would be

Bernoulli’s equation
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Fig. 3.4

done by pressure forces if the fluid moved from a point where the pressure
was p to one where the pressure was zero, divided by the mass of the fluid.
The work is done simply because the fluid moves. Consequently it is often
known as the flow work or displacement work.

Thus each of the terms p/o, #?/2 and gz represents energy/mass. In the
alternative form, eqn 3.10, each term represents energy/weight and so has
the dimensional formula [ML?/T2] = [ML/T2] = [L]. The quantities in
eqn 3.10 are therefore usually referred to respectively as pressure head
(or static head), velocity head and gravity head or elevation, and their
sum as the total head. In eqn 3.11 each term corresponds to energy/
volume.

The quantity p/o is sometimes misleadingly termed pressure energy. It has,
however, nothing to do with the elastic energy given to a fluid when it is
compressed — even when it is easily compressible. The fluid in fact does not
even possess the pressure energy (as it possesses kinetic energy, for example).
A transmission belt transmits energy between two pulleys simply because it
is under stress; the transmission of energy is in fact in the opposite direction
to the movement of the belt (see Fig. 3.4) and so it is clearly absurd to
regard the energy as being carried along in the belt. Likewise, a fluid under
pressure can transmit energy without necessarily possessing it. The terms
in Bernoulli’s equation, then, do not represent energy stored in a mass of
fluid but rather the total mechanical energy transmitted by this amount of
fluid. The equation may be likened to the cash-book of an honest treasurer
keeping account of the mechanical energy transactions of a small mass of
fluid, during its steady, frictionless travel along a streamline without change
density.

3.5 GENERAL ENERGY EQUATION FOR STEADY
FLOW OF ANY FLUID

The application of Newton’s Second Law of Motion to an element of fluid
yields eqn 3.8 which may be integrated to relate the pressure, velocity and
elevation of the fluid. This result, it will be remembered, is subject to a
number of restrictions, of which one is that there are no viscous forces in the
fluid. In many instances, however, viscous forces are appreciable. Moreover,
transfers of energy to or from the fluid may occur. These situations are
investigated by a general energy equation which we shall develop from the
First Law of Thermodynamics.
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3.5.1 The First Law of Thermodynamics

One of the fundamental generalizations of science is that, in the absence of
nuclear reaction, energy can be neither created nor destroyed. The First Law
of Thermodynamics expresses this principle thus:

For any mass system (i.e. any identified and unchanging collection of
matter) the net heat supplied to the system equals the increase in energy
of the system plus all the energy that leaves the system as work is done.

Or, in algebraic terms,
AQ = AE+ AW (3.12)

where E represents the energy of the system, AQ the heat transferred to the
system and AW the work done by the system while the change AE occurs.
The energy content of the system consists of:

1. Energy which may be ascribed to the substance considered as a con-
tinuum: that is, kinetic energy associated with its motion and potential
energy associated with its position in fields of external forces. The latter
is usually gravitational energy, but may also be electrical or magnetic.
Although arising from intermolecular forces, free surface energy and
elastic energy may also conveniently be included in this category.

2. Internal energy. This consists of the kinetic and potential energies of
individual molecules and atoms and is thus, in general, a function of tem-
perature and density. For a perfect gas, however, the potential energy
arising from the attractive forces between molecules is assumed zero and
the internal energy is then a function of temperature only. In any case,
the internal energy depends only on the internal state of the matter con-
stituting the system and not on the position or velocity of the system as
a whole relative to a set of coordinate axes.

The First Law of Thermodynamics, as applied to the flow of fluids, keeps
account of the various interchanges of energy that occur.

3.5.2 Derivation of the Steady-Flow Energy Equation

Let us consider the steady flow of a fluid through the device illustrated in
Fig. 3.5. Energy in the form of heat is supplied steadily to this device and
mechanical work is done by it, for example by means of a rotating shaft. This
external mechanical work is usually termed shaft work whether or not the
mechanism actually involves a rotating shaft. The arrangement might be, say,
a steam engine or turbine. (In practice, most machines involve reciprocating
parts or rotating blades, close to which the fluid flow cannot be strictly
steady. However, we assume that such unsteadiness, if present, is only local
and is simply a series of small fluctuations superimposed on steady mean
flow.) We assume that the heat is supplied at a constant net rate, the shaft
work is performed at a constant net rate, and the mass flow rate of the fluid
entering is constant and equal to that leaving. Fluid at pressure p1 and with
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Fig. 3.5

velocity #1 enters at a section where the (average) elevation is z1 and leaves
with pressure p, and velocity #; where the (average) elevation is z;.

As the fluid moves from inlet to outlet, its properties, in general, change
from one point to another. However, we assume they do not change
with time.

We fix attention on the body of fluid bounded originally by the device
itself and the planes A (at entry) and C (at exit). After a short time inter-
val 8¢ this fluid has moved forward, and is then bounded by the device
itself, entry plane B and exit plane D. During this time interval an ele-
mental mass §m (originally between planes A and B) enters the devices and,
by the principle of continuity, a mass §m also leaves to occupy the space
between planes C and D. The elements are assumed small enough for their
properties to be uniform. The element at entry has internal energy §meq
(where e represents internal energy/mass), kinetic energy %(Smu% and gravita-
tional energy 8mgz;. Changes of electrical, chemical, nuclear or free surface
energy are disregarded here. If the energy of the fluid in the device itself
(i.e. between B and C) totals E then the energy of the fluid between A and
Cis E+d8m(er + %u% + gz1).

After this fluid has moved to the position between B and D its energy is
that of the fluid between B and C plus that of the element between C and D.
In other words the total is E +8m2(e; + %u% +g27). Consequently the increase
in energy which this particular body of fluid receives is

1 1
{E +8m <e2 + Eu% +gzZ)} - [E + 8m <e1 + iu% +gz1>}

1
= 6m{(ez —e1)+ 5 (u% —u%) +g(z2 —Z1)}

@ i p



@ i p

General energy equation for steady flow of any fluid 99

During this same interval of time a net amount of heat §Q is supplied
to the system and a net amount of work §W is done by the fluid on, for
example, a rotating shaft. (If the fluid were at a higher temperature than its
surroundings heat would be transferred from the fluid to the surroundings
and so this heat would be regarded as negative. Also, § W, would be negative
if work were done on the fluid, e.g. by a pump.) The work §W, however, is
not the only work done by the fluid. In moving from its position between A
and C to that between B and D the fluid does work against the forces due
to pressure. At the outlet, where the cross-sectional area is A;, the fluid we
are considering exerts a force ppA, on the material in front of it. During
the short time interval 8¢, this end of the fluid system moves from C to D, a
distance 8s;. The force, in moving in its own direction through the distance
sy, therefore does work pyA,38s;. Similarly, the force p1 A1 at the inlet does
work —p1A18s1. (The minus sign arises because the force p1Aq exerted by
this body of fluid is in the opposite direction to the displacement 8s1.) The
total work done by the fluid considered is therefore

SW + p2A2552 — plAl(SSl

Substitution into eqn 3.12 now yields
1
8Q = sm {(62 —en+ 5 (u% -~ u%) +8(z2 —z1)}
+ W + prAr8sy — p1A18s1

Now 01A18s1 = dm = 02A;8s, and so division by §m gives

Q0 1/, 2 sW  pa Pl
(Sm_(ez el)+2(u2 u1)+g(z2 z1)+ -FQ2 o

or
1
_ (B2, ! ~ul+ g0 &+fu%+gz1 +ey—ei+w  (3.13)
02 2 o1 2

where g represents the net heat transferred to the fluid divided by mass, and
w represents the net shaft work done by the fluid divided by mass.

The relation 3.13 is known as the steady-flow energy equation. It is often
capitalized to Steady-Flow Energy Equation and referred to by the initials
SFEE. It may be expressed in words as follows:

In steady flow through any region the net heat transferred to the fluid
equals the net shaft work performed by the fluid plus the increase in flow
work, kinetic energy, gravitational energy and internal energy.

We recall that, apart from the First Law of Thermodynamics, the result is
based on the following assumptions:

1. The flow is steady and continuous, that is, the rate at which mass enters
the region considered equals that at which mass leaves the region and
neither varies with time.

2. Conditions at any point between the inlet and outlet sections 1 and 2 do
not vary with time.
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3. Heat and shaft work are transferred to or from the fluid at a constant
net rate.

4. Quantities are uniform over the inlet and outlet cross-sections 1 and 2.

5. Energy due to electricity, magnetism, surface tension or nuclear reaction
is absent. If energy due to any of these phenomena is, in fact, involved
appropriate additional terms will appear in the equations.

No assumptions are made about details of the flow pattern between inlet
and outlet and no assumption is made about the presence or absence of fric-
tion between inlet and outlet. The restrictions of assumptions 1 and 2 may in
practice be slightly relaxed. Fluctuations in conditions are permissible if they
occur through a definite cycle so that identical conditions are again reached
periodically. This happens in fluid machinery operating at constant speed
and torque. Flow in the neighbourhood of the moving blades or pistons of
the machine is cyclic rather than absolutely steady. In other words, the con-
ditions at any particular point in the fluid vary with time in a manner, which
is regularly repeated at a certain frequency. In such a case the equation may
be used to relate values of the quantities averaged over a time considerably
longer than the period of one cycle.

In practice, assumption 4 is never completely justified since viscous forces
cause the velocity to fall rapidly to zero at a solid boundary. Thermodynamic
properties may also vary somewhat over the cross-section. To allow for these
effects, appropriate correction factors may be introduced — for example, the
kinetic energy correction factor o we shall mention in Section 3.5.3. How-
ever, the use of mean values of the velocity and other quantities normally
yields results of sufficient accuracy.

3.5.3 The kinetic energy correction factor

In investigating many problems of fluid dynamics it is frequently assumed
that the flow is one-dimensional; in other words, all the fluid is regarded
as being within a single large stream-tube in which the velocity is uniform
over the cross-section. The value of the kinetic energy divided by mass is
then calculated as #?/2 where 7% represents the mean velocity, that is, the
total discharge divided by the cross-sectional area of the flow. The only
situation in which use of this mean velocity would be completely justified is
that represented by the relation:

(Z m) i =3 (mu?)
where m represents the mass and u the velocity of fluid in a short length of
a small individual stream-tube while # represents the mean velocity over the
entire cross-section of the flow (= Y (mu)/ Y m).
This equation, it may be shown, is satisfied only when all the us are equal,
a condition never reached in practice because of the action of viscosity.
The error involved in using the mean velocity to calculate the kinetic energy
divided by mass may be estimated as follows.
Instead of the entire cross-section, consider first a small element of it whose
area §A is small enough for there to be no appreciable variation of velocity
u over it. The discharge through this small element is therefore #5A and
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the mass flow rate ou8A. The rate at which kinetic energy passes through
the element is %(QM(SA)MZ and consequently the rate at which kinetic energy

passes through the whole cross-section is f%gbﬁdA.

We may also integrate the mass flow rate through an element of cross-
section so as to obtain the total mass flow rate = [ oudA. The rate at which
kinetic energy passes through the element divided by the rate of mass flow
is then:

f %Ql/t3 dA
[oudA

For a fluid of constant density this reduces to

fu3dA
2 fudA

(3.14)

Now unless # is constant over the entire cross-section this expression does
not correspond to 7% /2.

The factor by which the term %% /2 should be multiplied to give the true
rate at which kinetic energy passes through the element divided by the rate
of mass flow is often known as the kinetic energy correction factor, a. Hence
for a fluid of constant density we may write

1 u\3
S VACIRY
The value of o can never be less than unity because the mean of different
cubes is always greater than the cube of the mean.

Example 3.1 Consider fully developed turbulent flow in a circular
pipe (to be discussed more fully in Chapter 7). The velocity over
the cross-section of the pipe varies approximately in accordance with
Prandtl’s one-seventh power law

u ( y )1/ 7
— (2 (3.15)
Umax R

where R represents the radius of the pipe and u the velocity of the
fluid at a distance y from the wall of the pipe. The maximum velocity
umax occurs at the centre of the pipe where y = R. Calculate the kinetic
energy divided by mass.

Solution

Assuming the variation of density over the cross-section is negligible,
the integrals in the expression 3.14 may be evaluated by the use of
eqn 3.15. Because of axial symmetry the element of area §A may be
taken as an annulus of radius 7 and area 27787 (see Fig. 3.6). Then

soa (3 (YN (0 s [N 37
/u dA_/umaX<E) dA_W | vy 2mrdr
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the integral becomes

max 0 3/7 Z”M?nax R 3/7 10/7
37 [ ¥y 2r(R —y)(=dy) = Ry’ =y ")dy
R3/7 R 0

R3/7
23 7 . 1057 7 R 98
_ x | L Ryt07 _ L7710 = 28 R2,3
R3/7 [10 Y 170 |, T 170" Mmax
Fig. 3.6
Similarly
JA — R y 1/72 J _Znumax 0 1/7(R dy)
u = 0 Umax (E) Trar = R1/7 R y ( _J’)(_ y
2ntmax (R 17 _ .8)7
_W/O Ry —y°")dy
C 2mtmax [7 g7 7 s 49 o
- R1/7 |:8Ry - Ey 0 - @ﬂR Umax
The mean velocity
_ Total discharge  [udA 49
= = = —Uu
" Area 7R? 60 M
whence
60_
x = U
Hmax = 49
Hence kinetic energy divided by mass
98 5 5
. qudA _ WJTR Umax
2 [udA 49
Ju 2 x @nRzumax
2 _
_ 2 12 (6N o
17 2 17 \ 49 2 2

An increase 87 of r corresponds to a decrease (—8y) of y. Withr = R—y
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With this particular distribution of velocity over the cross-section the term
w2 /2 is therefore about 6% too low to represent the mean kinetic energy
divided by mass. It is usual, however, to disregard such discrepancy except
where great accuracy is required. In any case, the exact value of the correction
to be applied is much influenced by conditions upstream and is scarcely ever
known. The correction should nevertheless be remembered if the Steady-
Flow Energy Equation is applied to fully developed laminar flow in a circular
pipe (see Chapter 6), for then the mean kinetic energy divided by mass =
2% /2. Even so, as laminar flow is generally associated only with very low
velocities the kinetic energy term would in these circumstances probably be
negligible.

3.5.4 The Steady-Flow Energy Equation in practice

The Steady-Flow Energy Equation (SFEE) applies to liquids, gases and
vapours, and accounts for viscous effects. In many applications it is consid-
erably simplified because some of the terms are zero or cancel with others.
If no heat energy is supplied to the fluid from outside the boundaries, and
if the temperature of the fluid and that of its surroundings are practically
identical (or if the boundaries are well insulated) ¢ may be taken as zero.
If there is no machine between sections (1) and (2) the shaft work divided
by mass w is zero. And for fluids of constant density 01 = 0>.

If an incompressible fluid with zero viscosity flows in a stream-tube across
which there is no transfer of heat or work, the temperature of the fluid
remains constant. Therefore the internal energy is also constant and the
equation reduces to

P2 P1
(Q +2u2+gzz> ( +2u1+gz1)

This is seen to be identical with Bernoulli’s equation (3.9).

Real fluids have viscosity, and the work done in overcoming the viscous
forces corresponds to the so-called fluid friction. The energy required to
overcome the friction is transformed into thermal energy. The temperature
of the fluid rises above the value for frictionless flow; the internal energy
increases and, in general, the heat transferred from the fluid to its surround-
ings is increased. The increase of temperature, and consequently of internal
energy, is generally of no worth (the temperature rise is normally only a very
small fraction of a degree) and thus corresponds to a loss of useful energy.
Moreover, as we have defined g as the heat transferred to the fluid divided
by the mass of the fluid, a loss of heat from the system is represented by —q
and so the total loss (divided by the mass of the fluid) is ¢y — e; — g. For
a fluid of constant density it is usual to express this loss of useful energy,
resulting from friction, as head loss due to friction, b;. Therefore

hi=(ex—e1—q)/g

Further discussion of
Example 3.1
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Then for a constant-density fluid with no other heat transfer and no shaft
work performed the Steady-Flow Energy Equation reduces to

2 2
u u
TR TASRUEAs A 316

Here 11 and u; represent mean velocities over the cross-sections (1) and (2)
respectively and the kinetic energy correction factor « is taken as unity. If
we assume further that the flow occurs in a horizontal pipe of uniform cross-
section then #; = uy and 21 = 22 and so (p1 — p2)/og = h¢. That is, the
displacement work done on the fluid in the pipe is entirely used in overcoming
friction.

For an incompressible fluid the values of (¢; —e1) and the heat transfer res-
ulting from friction are in themselves rarely of interest, and so combining the
magnitudes of these quantities into the single term by is a useful simplifica-
tion. We can see that the head loss h¢ represents, not the entire disappearance
of an amount of energy, but the conversion of mechanical energy into thermal
energy. This thermal energy, however, cannot normally be recovered as
mechanical energy, and so b¢ refers to a loss of useful energy. For a com-
pressible fluid, on the other hand, that statement would not, in general, be
true since the internal energy is then included in the total of useful energy.

We shall consider the flow of compressible fluids in more detail in
Chapter 11. For the moment we look more particularly at the behaviour
of incompressible fluids.

n Example 3.2 A pump delivers water through a pipe 150 mm in dia-
meter. At the pump inlet A, which is 225 mm diameter, the mean
velocity is 1.35 m-s~! and the pressure 150 mmHg vacuum. The
pump outlet B is 600 mm above A and is 150 mm diameter. At a
section C of the pipe, 5 m above B, the gauge pressure is 35 kPa. If
friction in the pipe BC dissipates energy at the rate of 2.5 kW and the
power required to drive the pump is 12.7 kW, calculate the overall
efficiency of the pump. (Relative density of mercury = 13.56)

Solution
Mean velocity at A =uy = 1.35 m-s~
.. by continuity,

1

8 (Area)s
up=uc =1u —_
B ¢ A (Area)p c
225\* i
—1.35(15()) m-s~ - =3.038m-s

Steady-Flow Energy Equation:

1 Energy added by pump/time
P?A+7ui+gZA+ gy y pump/

2 Mass/time




General energy equation for steady flow of any fluid

Energy loss to friction/time  pc | 1

re -2
Mass/time T o tatetec
 Energy added by pump
. Time
Mass | pc —pa | e —uy
=T + +g@c —z4)
ime 0 2
Energy loss to friction
Time
Volume 1 ) 5
= Time {Pc —batse (uc - MA) +o0g(zc — ZA)}

Energy loss to friction

Time

= %(0.225 m)?1.35 m-s~! {35 000 —[13560 x 9.81(—0.150)]

1
+5 % 1000(3.038% — 1.35%) 4+ 1000 x 9.81 x 5.6] N.m~2

+2.5kW
= %(0.225)21.35{35 000 + 19950 + 3702 + 54900} N-m s~

+2.5kW = 8.6 kW
.. Overall efficiency of pump = 8.6/12.7 = 67.7%

Notice that p4, a vacuum pressure, is negative.

3.5.5 Energy transformation in a constant-density fluid

The concept of head, that is, energy divided by weight of a constant-density
fluid, is of great value in allowing a geometrical representation of energy
changes. We recall from Section 2.2.1 that steady pressures not greatly in
excess of atmospheric pressure may be measured by the rise of liquid in a
glass tube. We may therefore imagine, for example, the system depicted in
Fig. 3.7, in which such piezometer tubes are connected at certain points to
a pipe conveying liquid from a large reservoir. At a point where the (gauge)
pressure in the pipe is p the liquid will rise in the piezometer tube to a
height p/og.

At points in the reservoir far from the outlet the velocity of the liquid is
so small as to be negligible. At such a point 1 at a depth b below the free
surface, the pressure is therefore given by the hydrostatic relation p1 = ogh,
so the sum of the three terms in Bernoulli’s expression is

ogh1/og +0%/2g +21=h1 +z1 =H
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Fig. 3.7

Thus H is the total head for the streamline on which the point 1 lies.
If no energy is dissipated by friction the total head H is constant along
that streamline and may therefore be represented by a line parallel to the
datum plane.

At a point 2 in the pipe the pressure is indicated by the rise p,/og of the
liquid in the piezometer tube. (For reasons that will become apparent in
Section 3.6, there should be no appreciable curvature of the streamlines at
positions 2 and 3.) The amount by which the sum of p;, /og and z; falls short
of the total head corresponds to the velocity head u3/2g for the streamline
considered. There is a similar state of affairs at point 3, although here the
cross-section of the pipe is smaller and so the mean velocity is greater than
at 2 by virtue of the continuity equation A% = constant.

In practice, friction leads to a loss of mechanical energy, so the total head
line (sometimes known as the total energy line) does not remain horizontal,
but drops. The height of any point on this line above the datum plane always
represents the total head (p/og) + (#%/2g) + z of the fluid at the point in
question. Another line that may be drawn is that representing the sum of
the pressure head and elevation only: (p/0g) + z. This line, which would
pass through the surface levels in the piezometer tubes of Fig. 3.7, is known
as the pressure line or bydraulic grade line and is always a distance u?/2g
vertically below the total head line. The geometrical representation that these
lines afford is frequently useful, and it is therefore important to distinguish
clearly between them.

Strictly speaking, each streamline has it own total head and pressure lines.
When one-dimensional flow is assumed, however, it is usual to consider
only the streamline in the centre of the pipe, so that the z measurements
are taken to the centre line and the static head p/og is measured upwards
from there. The mean total head line is then a distance a#?/2g vertically
above the pressure line. Other conventional assumptions about these lines
are mentioned is Section 7.7.

The one-dimensional continuity relation shows that, for a fluid of con-
stant density, a reduction in the cross-sectional area causes an increase in
the mean velocity, and the energy equation (3.16) indicates that unless addi-
tional energy is given to the fluid an increase of velocity is accompanied by
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Pressure variation perpendicular to streamlines

a decrease of pressure (provided that the change of elevation z is small).
Conversely, an increase of cross-sectional area of the flow gives rise to a
decrease of velocity and an increase of pressure.

The energy equation 3.16 further indicates, however, that for a given
elevation, the velocity cannot be increased indefinitely by reducing the cross-
sectional area. Apart from exceptional circumstances, not encountered in
normal engineering practice, the absolute pressure can never become less
than zero; thus a maximum velocity is reached when the pressure has been
reduced to zero. Any further reduction of the cross-sectional area would not
bring about an increase of velocity, and therefore the discharge (i.e. area x
mean velocity) would be reduced. There would then be a consequent decrease
in the velocity at other sections. This phenomenon is known as choking.

With liquids, however, difficulties arise before the pressure becomes zero.
At low pressures liquids vaporize and pockets of vapour may thus be formed
where the pressure is sufficiently low. These pockets may suddenly collapse —
either because they are carried along by the liquid until they arrive at a region
of higher pressure, or because the pressure increases again at the point in
question. The forces then exerted by the liquid rushing into the cavities
cause very high localized pressures, which can lead to serious erosion of the
boundary surfaces. This action is known as cavitation. Furthermore, the
flow may be considerably disturbed when cavitation occurs.

In ordinary circumstances, liquids contain some dissolved air. The air is
released as the pressure is reduced, and it too may form pockets in the liquid
which are often known as air locks. To avoid these undesirable effects, the
absolute pressure head in water, for example, should not be allowed to fall
below about 2 m (equivalent to about 20 kPa).

Choking is important in the study of the flow of compressible fluids and
will be considered further in Chapter 11.

3.6 PRESSURE VARIATION PERPENDICULAR
TO STREAMLINES

Euler’s equation 3.8 (or, for a constant-density fluid, Bernoulli’s equation)
expresses the way in which pressure varies along a streamline in steady flow
with no friction. Now although, from the definition of a streamline, fluid
particles have no velocity component perpendicular to it, an acceleration
perpendicular to a streamline is possible if the streamline is curved. Since
any acceleration requires a net force in the same direction it follows that a
variation of pressure (other than the hydrostatic one) occurs across curved
streamlines.

Consider two streamlines sufficiently close together to be regarded as hav-
ing the same centre of curvature (Fig. 3.8). Between them is a small cylindrical
element of fluid of length 87 normal to the streamlines, cross-sectional area
8A, and therefore weight W = og8ASr. At radius r the pressure is p; at radius
7+ 87 the pressure is p+38p. As in the development of Euler’s equation, forces
other than those due to pressure and gravity are neglected. In any case, for
steady flow viscous forces have no components perpendicular to the stream-
lines. The net force on the element acting inwards along the streamline radius
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Fig. 3.8

is therefore
(P + 8p)SA — pSA + W cosO = 5pSA + 0g8AdrcosO

where 0 is the angle between the radius and the vertical.

By Newton’s Second Law this force equals the product of the mass of
the element and its centripetal acceleration, a,. Noting that §7cosf = §z,
z being measured vertically upwards from a suitable datum level, and using
eqn 3.2, we then have

u? ouy
SpSA + 0g8Asz = p§Adray = 0§AST | — + —
7

Dividing by §Aér and taking the limit as 7 — 0 now gives

ap 9z u? duy,

8r+Qg8r_Q<r + 8t> 3-17)
If the streamlines are straight and not changing direction with time, the
right-hand side of eqn 3.17 is zero since r = oo while #, = 0 and is not
changing. For a constant-density fluid, integration in the direction 7 then
gives p+o0gz = constant, that is, the piezometric pressure is constant normal
to the streamlines. Where 7 is not infinite the exact manner in which p varies
across the streamlines, even for steady flow, depends on the way in which #
varies with r. Two special cases, the free and forced vortex, are discussed in
Section 9.6.4 and 9.6.5.

An important consequence of the pressure variation perpendicular to
curved streamlines is the tendency of a jet of fluid to attach itself to a convex
solid body. This is known as the Coanda effect, after the Romanian engin-
eer Henri Coanda (1885-1972) who made use of it in various aeronautical
applications. It may be simply demonstrated by using a solid cylinder (e.g. a
finger) to deflect the flow from a water tap (Fig. 3.9). The curvature of
the streamlines between sections AA’ and BB’ requires a net force towards
the centre of curvature, and, as the outer edge of the stream is at atmo-
spheric pressure, the pressure at the surface of the cylinder must be below
atmospheric. Consequently the flow does not continue vertically downwards
from BB’, but bends towards the cylinder. The sub-atmospheric pressure
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in the neighbourhood of B results in a net force F on the cylinder (as
may be demonstrated by suspending the cylinder on strings so that it can
move freely).

The deflection of a jet because of a pressure difference across the stream-
lines can also arise in another way. When a jet goes into fluid of the same
kind (e.g. when an air jet escapes into the atmosphere), nearby particles of
fluid are dragged along with the jet. This is a process called entrainment.
If, however, one side of the jet is close to a large solid surface, the supply
of particles for entrainment there is restricted. Thus, particularly if the flow
pattern is essentially two-dimensional, a partial vacuum is created between
the jet and the surface, so the jet tends to attach itself to the surface.

3.7 SIMPLE APPLICATIONS OF BERNOULLI'S EQUATION

The applications of Bernoulli’s equation described in this section are of two
kinds. In the first category — the applications to the Pitot tube and the Pitot-
static tube — the Bernoulli equation is used in its original, unamended form. In
the second category, the Bernoulli equation is used in a rather different way,
forming the basis of simple mathematical models which are used to analyse
the flow through a number of devices, including orifices, nozzles and ven-
turi tubes, and over weirs. These devices are widely used for flow-metering
purposes. As a consequence of the assumptions underlying the derivation of
Bernoulli’s equation, the flow models used here ignore viscous effects and
do not properly represent the three-dimensional nature of velocity profiles
found in real flows. Nevertheless, the models provide a useful introduction
to the principles of operation of several flow-metering devices used under
conditions of incompressible, turbulent flow at high Reynolds numbers. To
yield an outcome which is applicable to real flow conditions, the results of
the analysis using the idealized flow model are adjusted by the introduction

Fig. 3.9
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Fig. 3.10

Stagnation point

Stagnation pressure

Dynamic pressure

of the so-called discharge coefficient. This dimensionless quantity is further
discussed in Chapter 5.

3.7.1 The Pitot tube and the Pitot-static tube

A point in a fluid stream where the velocity is reduced to zero is known as a
stagnation point. Any non-rotating obstacle placed in the stream produces
a stagnation point next to its upstream surface. Consider the symmetrical
object illustrated in Fig. 3.10 as an example. On each side of the central
streamline OX the flow is deflected round the object. The divergence of the
streamlines indicates that the velocity along the central streamline decreases
as the point X is approached. The contour of the body itself, however, con-
sists of streamlines (since no fluid crosses it) and the fluid originally moving
along the streamline OX cannot turn both left and right on reaching X. The
velocity at X is therefore zero: X is a stagnation point.

By Bernoulli’s equation 3.9 the quantity p + %Quz + o0gz is constant along a
streamline for the steady frictionless flow of a fluid of constant density. Con-
sequently, if the velocity # at a particular point is brought to zero the pressure
there is increased from p to p + %Quz. For a constant-density fluid the quant-

ity p+ %Quz is therefore known as the stagnation pressure of that streamline.

That part of the stagnation pressure due to the motion, %Quz, is termed the
dynamic pressure. (If heads rather than pressures are used the term tozal head
is often preferred to stagnation head.) A manometer connected to the point
X would record the stagnation pressure, and if the static pressure p were
also known %Quz could be obtained by subtraction, and hence « calculated.

Henri Pitot (1695-1771) adopted this principle in 1732 for measuring
velocities in the River Seine, and Fig. 3.11 shows the sort of device he used.
A right-angled glass tube, large enough for capillary effects to be negligible,
has one end (A) facing the flow. When equilibrium is attained the fluid at
A is stationary and the pressure in the tube exceeds that of the surrounding
stream by %guz. The liquid is forced up the vertical part of the tube to
a height

h = Ap/og = Lou*jog = u?/2g

above the surrounding free surface. Measurement of b therefore enables
u to be calculated.

Such a tube is termed a Pitot tube and provides one of the most accurate
means of measuring the velocity of a fluid. For an open stream of liquid
only this single tube is necessary, since the difference between stagnation
and static pressures (or heads) is measured directly. (In practice, however,
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it is difficult to measure the height » above the surface of a moving liquid.)
But for an enclosed stream of liquid, or for a gas, the Pitot tube indicates
simply the stagnation pressure and so the static pressure must be measured
separately.

Measurement of the static pressure may be made at the boundary of the
flow, as illustrated in Fig. 3.12a, provided that the axis of the piezometer is
perpendicular to the boundary and the connection is free from burrs, that the
boundary is smooth and that the streamlines adjacent to it are not curved.
A tube projecting into the flow (as at Fig. 3.12¢) does not give a satisfactory
reading because the fluid is accelerating round the end of the tube. The Pitot
tube and that recording the static pressure may be connected to a suitable
differential manometer: piezometer tubes are shown in Fig. 3.12 only for the
sake of illustration.

The tubes recording static pressure and stagnation pressure are frequently
combined into one instrument known as a Pitot-static tube (Fig. 3.13).
The static tube surrounds the total head tube and two or more small holes
are drilled radially through the outer wall into the annular space. The pos-
ition of these static holes is important. Downstream of the nose N the flow
is accelerated somewhat with consequent reduction of static pressure; in
front of the supporting stem there is a reduction of velocity and increase
of pressure; the static holes should therefore be at the position where these
two opposing effects are counterbalanced and the reading corresponds to
the undisturbed static pressure. Standard proportions of Pitot-static tubes
have been determined that give very accurate results. If other proportions

Fig. 3.11 Simple Pitot tube.

Fig. 3.12
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Fig. 3.13 Pitot-static tube.

Fig. 3.14

are used, a correction factor C, determined by calibration, has to be intro-
duced: # = C\/(2Ap/0). Misalignment of the tube with the flow leads to
error: fortunately, however, since total head and static readings are both
reduced, their difference is less seriously affected, and refinements of design
reduce the sensitivity to changes of direction. A good Pitot-static tube gives
errors less than 1% in velocity for misalignments up to about 15°.

When the flow is highly turbulent, individual particles of the fluid have
velocities that fluctuate both in magnitude and direction. In such cir-
cumstances, a Pitot tube records a value of Ap rather higher than that
corresponding to the time-average component of velocity in the direction
of the tube axis. This is partly because the mean pressure difference cor-
responds to the mean value of #? rather than to the square of the mean
velocity. Although these errors are not large they should not be overlooked
in accurate work.

An adaptation of the Pitot-static tube is the so-called Pitometer (Fig. 3.14).
The static tube faces backwards into the wake behind the instrument, where
the pressure is usually somewhat lower than the undisturbed static pressure.
Such an instrument therefore requires calibration to determine the correction
factor C (which may not be constant over more than a limited range of
velocities), but it has the advantages of cheapness and compactness.

The use of a Pitot tube in the flow of a compressible fluid is discussed in
Section 11.7.

3.7.2 Flow through a sharp-edged orifice

An orifice is an aperture through which fluid passes and its thickness (in the
direction of flow) is very small in comparison with its other measurements.
An orifice used for flow-metering purposes has a sharp edge (the bevelled side
facing downstream as in Fig. 3.15) so that there is the minimum contact with
the fluid. If a sharp edge is not provided, the local flow pattern in the orifice
depends on the thickness of the orifice and the roughness of its boundary
surface.
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The diagram illustrates an orifice in one side of an open reservoir contain-
ing a liquid. The reservoir and the free surface are so large in comparison
with the orifice that the velocity of the fluid at the free surface is negligibly
small. The liquid issues from the orifice as a free jet, that is, a jet unimpeded
by other liquid, and therefore under the influence of gravity.

Fluid approaching the orifice converges towards it. Because an instantan-
eous change of direction is impossible, the streamlines continue to converge
beyond the orifice until they become parallel at the section cc. Parallel flow
is attained at only a short distance (about half the diameter if the orifice is
circular) from the orifice. The jet may diverge again beyond section cc, so
this is then the section of minimum area. It is termed the vena contracta
(Latin: contracted vein).

At low velocities some curvature of the streamlines results from the down-
ward deflection of the jet by gravity and the vena contracta may be ill defined.
The curvature, however, is generally negligible close to the orifice. When a
jet of liquid is discharged vertically downwards, gravity causes further accel-
eration of the liquid and so, by the principle of continuity pAu = constant,
a further reduction of the cross-sectional area; the vena contracta is then
defined as the section at which marked contraction from the orifice ceases.

Since the streamlines are parallel and, we assume, sensibly straight at
the vena contracta, the pressure in the jet there is uniform. (A non-uniform
pressure over the section would cause accelerations perpendicular to the axis,
and thus curved or non-parallel streamlines.) The pressure in the jet at the
vena contracta therefore equals that of the fluid — usually the atmosphere —
surrounding the jet, any small difference due to surface tension being ignored.
The vena contracta is the only section of the jet at which the pressure is
completely known.

If the flow is steady and frictional effects are negligible Bernoulli’s equation
may be applied between two points on a particular streamline. Taking a
horizontal plane through the centre of the orifice as the datum level and
considering the points (1) and (2) in Fig. 3.15, we have

L

2
u
A gy = B

+0
og 2g og 2g

We suppose that the reservoir is sufficiently large and the point (1) sufficiently
far from the orifice for the velocity # to be negligible. Subject to this proviso

Fig. 3.15
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Coefficient of velocity

Coefficient of

contraction

Coefficient of discharge

the actual position of the point (1) is immaterial. Then, since hydrostatic
conditions prevail there, pq corresponds to the depth of point (1) below the
free surface. With p,m taken as zero (its variation from the free surface of
the reservoir to the orifice being negligible) p1 = 0g(h — z1). Consequently
(P1/0g) +z1="h

h=—= e u=.,Qgh) (3.18)

If the diameter of the orifice is small in comparison with b, the velocity
of the jet is uniform across the vena contracta. Evangelista Torricelli (1608—
47), a pupil of Galileo, demonstrated experimentally in 1643 that the velo-
city with which a jet of liquid escapes from a small orifice is proportional
to the square root of the head above the orifice, so eqn 3.18 is often known
as Torricelli’s formula. The equation refers to the velocity at the vena con-
tracta: in the plane of the orifice itself neither the pressure nor the velocity
is uniform and the average velocity is less than that at the vena contracta.

In the foregoing analysis friction and surface tension have been neglected,
so the velocity corresponding to eqn 3.18 is referred to as the ideal velocity.
The velocity actually attained at the vena contracta is slightly less, and a
coefficient of velocity Cy is defined as the ratio of the actual (mean) velocity
to the ideal. In other words, the actual mean velocity = C,/(2gh).

The coefficient of contraction C. is defined as the ratio of the area of the
vena contracta to the area of the orifice itself.

Because of the two effects of friction and contraction the discharge from
the orifice is less than the ideal value and the coefficient of discharge Cq is
defined as the ratio of the actual discharge to the ideal value.

_Actual discharge
4~ Tdeal discharge

Area of vena contracta x Actual velocity there

Ideal cross-sectional area x Ideal velocity

Area of vena contracta x Actual velocity
= =C. x Cy 3.19
Area of orifice x Ideal velocity ¢ ( )

For a large vertical orifice the velocity in the plane of the vena contracta
varies with the depth below the level of the free surface in the reservoir. The
total discharge is therefore not calculated simply as A.u (where A. represents
the area of the vena contracta) but has to be determined by integrating the
discharges through small elements of the area.

Consider, for example, a large, vertical, rectangular orifice of breadth b
and depth d discharging into the atmosphere. A vena contracta of breadth
b and depth d. is formed as shown in Fig. 3.16. The streamlines here are
parallel and practically straight; thus the pressure at any point in the plane of
the vena contracta is atmospheric and for steady conditions the velocity at a
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depth b below the free surface in the reservoir is Cy+/(2gh). Through a small
element of the vena contracta at this depth, the discharge equals velocity x
area, which equals Cy+/(2gh)b.8h. Therefore if H. represents the depth at
the centre of the vena contracta, the total discharge is:

He+de/2
0= cvbm/(zg)/ h'2db
He—d./2

32 3/2
= %vacv (2g) !(Hc + %) - <Hc - %) }

(The value of C, may not be exactly the same for all streamlines; the value
in the equation must therefore be regarded as an average one.)

The difficulty now arises of determining the values of b, d. and H,. They
vary with the corresponding values of b, d, and H for the orifice itself, but
the relation is not a simple one. To circumvent the difficulty we may write
b, d and H respectively in place of b, d. and H, and introduce a coefficient
of contraction Cc. Then

2 d\3/2 4\ 32
0 =2C.Cby/(2g) {(H + 7) - (H - 7> }
3 2 2
3/2 3/2
v (e d) - (n-4)")

It is important to note that the integration is performed, not across the plane
of the orifice, but across the plane of the vena contracta. The latter is the only
plane across which the pressure is sensibly uniform and the velocity at every
point known. When H > d, however, the orifice may usually be regarded as
small so that the ideal velocity at the vena contracta has the uniform value

/(2gH). The simpler formula

0 = Cybdy/(2gH)

then gives an error of less than 1%.

Fig. 3.16
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Of the three coefficients the one most easily determined is the coefficient
of discharge. For a liquid the amount emerging from the orifice in a known
time interval may be determined by weighing or by direct measurement of
volume, and the discharge then compared with the ideal value. The coeffi-
cient of contraction may be determined by direct measurement of the jet with
calipers, although the accuracy is not usually high. One way of determining
the actual velocity of a small jet is to allow it to describe a trajectory in the
atmosphere, under the influence of gravity. If air resistance is negligible the
horizontal component u, of the jet velocity remains unchanged, and after a
time ¢ a particle leaving the vena contracta has travelled a horizontal distance
X = uyt. Since there is a uniform downward acceleration g, and the vertical
component of velocity is initially zero for horizontal discharge, the vertical
distance y travelled in the same time is %gtz. Elimination of ¢ from these
expressions gives #, = # = x(g/2y)'/? and so # may be determined from
the coordinates of a point in the trajectory (which is a parabola). Although
this result does not account for air resistance or for the possible influence of
one particle on the trajectory of another, it is sufficiently near the truth for
most purposes.

u Example 3.3 Water flows through a sharp-edged orifice in the side
of a tank and discharges as a jet into the atmosphere.

h Tank

(a) The free surface in the tank is a height » above the centre of the
orifice. The jet of water, on leaving the tank, strikes a surface
distance y vertically below and at a horizontal distance x from the
orifice. Derive an expression for the coefficient of velocity in terms
of x, y and h.

(b) Water discharges through a sharp-edged orifice of diameter 11 mm
into a pond, the surface of which is 0.6 m below the centre of the
orifice. The jet strikes the surface at a horizontal distance of 2 m
from the orifice. At the vena contracta plane the diameter of the
jet is 8.6 mm. If the free surface in the tank is 1.75 m above the
orifice, determine the rate of discharge.
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Solution

(a) We consider first the horizontal and vertical components of the
motion of the fluid in the jet. Assuming no effects of air resistance the
trajectory is parabolic. Hence

1
x=uyt and y= zgt2

which can be combined on eliminating ¢ to yield

Uy =x £
2y
On substitution of this relation in the definition of coefficient of
velocity there results
U g 1 x
CV = =X =
V2gh 2y \J2gh  2\/yb
(b) From the definition of the coefficient of contraction
8.6\°
= —_— = . 11
Cc ( T ) 0.6
The coefficient of velocity is evaluated from the equation derived in
part (a). Thus

2
C, = m = 0.976
2/0.6 mx 1.75 m

Hence the coefficient of discharge is

Cq=Cy x C. =0.976 x 0.611 = 0.596

The flow rate is calculated as

O = Cy4Az,/2gh = 0.596 x %(0.011 m)zx/l x9.81m-s2 x1.75m

=332x10"4m3.s71

Equation 3.18 strictly applies only to a fluid of constant density. It may,
however, be used for a gas, provided that the drop in pressure across the
orifice is small compared with the absolute pressure, so that the change of
density is small. For » we may substitute p/og and then

"= (2—”) (3.20)
0

The values of the coefficients must be determined experimentally. For
well-made, sharp-edged, circular orifices producing free jets, the coeffi-
cient of velocity is usually in the range 0.97-0.99, although slightly smaller
values may be obtained with small orifices and low heads. For orifices not

Values of orifice
coefficients
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Fig. 3.17

Fig. 3.18

Submerged orifice

sharp-edged nor of negligible thickness the coefficient may be markedly
lower.

The coefficient of contraction for a circular sharp-edged orifice is about
0.61-0.66. For low heads and for very small orifices, however, the effects
of surface tension may raise the value to as much as 0.72. If the orifice is
near the corner of a tank, for example, or if there are obstructions that pre-
vent the full convergence of the streamlines approaching the orifice, then the
coefficient is increased. Roughness of the walls near the orifice may reduce the
velocity of the fluid approaching it and so curtail the contraction. The con-
traction after the orifice can be eliminated almost entirely by a bell-mouthed
approach to the orifice (Fig. 3.17) or the provision of a short length with
uniform diameter immediately before the final exit. But although the coeffi-
cient of contraction is then unity, friction materially reduces the coefficient
of velocity. It also reduces the velocity at the edge of the jet, and so the
velocity over the cross-section is non-uniform.

The coefficient of discharge for a small sharp-edged orifice is usually in
the range 0.6-0.65.

For a particular orifice and a particular fluid the coefficients are practic-
ally constant above a certain value of the head (the coefficients are in fact
functions of Reynolds number). A good deal of information about the coeffi-
cients has been obtained and may be found in various hydraulics handbooks.

A submerged orifice is one that discharges a jet into fluid of the same kind.
The orifice illustrated in Fig. 3.18, for example, discharges liquid into more
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Simple applications of Bernoulli’s equation

of the same liquid. A vena contracta again forms, and the pressure there
corresponds to the head /,. Application of Bernoulli’s equation between
points 1 and 2 gives

&+Z1+

’ﬁ 0
og 2g

s s
=h+—="+n+—=h+0+-=
2g  og 2g 2g

so the ideal velocity v, = /{2g(h1 — b3)}. In other words, Torricelli’s
formula is still applicable provided that 4 refers to the difference of head
across the orifice. Except for very small orifices, the coefficients for a sub-
merged orifice are little different from those for an orifice producing a
free jet.

The kinetic energy of a submerged jet is usually dissipated in turbulence
in the receiving fluid.

The use of Bernoulli’s equation is strictly permissible only for steady flow.
Unless the reservoir of Fig. 3.15, for example, is continuously replenished,
the level of the free surface falls as fluid escapes through the orifice. Provided
that the free surface is large compared with the orifice, however, the rate
at which it falls is small, and the error involved in applying Bernoulli’s
equation is negligible. Such conditions may be termed quasi-steady. But an
assumption of quasi-steady flow should always be checked to see whether
the rate of change of b is negligible in comparison with the velocity of
the jet.

Quasi-steady flow will be further considered in Section 7.10. Flow through
an orifice for which the upstream velocity is no# negligible will be discussed
in Section 3.7.4.

3.7.3 The venturi-meter

The principle of the venturi-meter was demonstrated in 1797 by the Italian
Giovanni Battista Venturi (1746-1822) but it was not until 1887 that the
principle was applied, by the American Clemens Herschel (1842-1930),
to a practical instrument for measuring the rate of flow of a fluid. The
device consists essentially of a convergence in a pipe-line, followed by a
short parallel-sided throat and then a divergence (see Fig. 3.19) known as a
diffuser. Continuity requires a greater velocity at the throat than at the inlet;
there is consequently a difference of pressure between inlet and throat, and
measurement of this pressure difference enables the rate of flow through the
meter to be calculated.

We suppose for the moment that the fluid is inviscid (so that no energy
is dissipated by friction) and that the velocities #1 at the inlet and #; at the
throat are uniform and parallel over the cross-sections (which have areas A4
and Aj respectively). For the steady flow of a constant-density fluid we may
apply Bernoulli’s equation to a streamline along the axis between sections 1
and 2. Into this equation values of #1 and #; may be substituted from the

Quasi-steady flow
through an orifice
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Fig. 3.19

continuity relation Q = Aju1 = Ayu, to give

2 2
b, Q2+z1=p—2+ QZ
08  2gA7 08  2gA;5

+2 (3.21)

Hence the ideal discharge is given by

1/2
Oiden = 2g{(p1/0g +z1) — (P2/0g + 22)} /
o (1/A3) — (1/A%)

12
[ o] (3.22)

(A1/A2)? -1

The change in piezometric head {p1/0g + z1) — (p2/0g + 22)} = Ah may
be measure directly by a differential manometer. It will be recalled from
Section 2.3.2 that the difference of levels in the manometer is directly pro-
portional to the difference of piezometric head, regardless of the difference
of level between the manometer connections.

In practice, friction between sections 1 and 2, although small, causes p,
to be slightly less than for the assumed inviscid fluid and so Ab is slightly
greater. As the use of this value of Ab in eqn 3.22 would give too high a
value of Q a coefficient of discharge Cq is introduced. The actual discharge
is then given by

20Ah 172 C4A A
g } =G A2 oealyl/2 (3.23)

=CiA1{— P S
0=t 1{(1‘\1/1‘\2)2 —1 2_ A1

(Remember that Ab is the difference of piezometric head of the fluid in the
meter, not the difference of levels of the manometer liquid.)

The coefficient of discharge also accounts for effects of non-uniformity of
velocity over sections 1 and 2. Although Cy4 varies somewhat with the rate
of flow, the viscosity of the fluid and the surface roughness, a value of about
0.98 is usual with fluids of low viscosity.
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Simple applications of Bernoulli’s equation

To ensure that the pressure measured at each section is the average,
connections to the manometer are made via a number of holes into an annu-
lar ring. The holes are situated where the walls are parallel so that there
is no variation of piezometric pressure across the flow. To discourage the
formation of eddies, sharp corners at the joins between the conical and the
parallel-sided sections are avoided.

Rapidly converging flow, as between the inlet and throat of a
venturi-meter, causes the velocity to become more uniform over the cross-
section. Over the short length involved the loss of head to friction, by,
is negligible in comparison with (p1 — p2)/og. For a single streamline
Bernoulli’s equation then gives

% k
u% = u% —1-2;}7(1771 P2>
o8

where p* represents the piezometric pressure p+9gz. On a nearby streamline,
slightly different values #1 + 681 and uy +8u, may be found instead of #; and
uy. If the streamlines are straight and parallel at these sections, however, no
difference of piezometric pressure across the flow can be sustained and so all
streamlines have the same values of p and of p;. Subtracting the Bernoulli

equations for the two streamlines therefore gives

(g + duz)* — 3 = (u1 + Sur)” —
Hence 2uy8uy = 2uq8uq, higher orders of the small quantities being
neglected.
Cuy (g 28141
Cuy \wy) w
Since uq < uy,
[8at2]  |8u1|
—_— < —
uy uq

in other words, the proportionate variation of velocity is less after the con-
traction than before it. This is why a rapid contraction is placed before the
working section of a wind tunnel or water tunnel, where a uniform velocity
is especially important.

In a few extreme cases, where friction between inlet and throat of a venturi-
meter is very small, the uniformity of velocity may be so much improved at
the throat as to outweigh the effect of friction and give a value of Cy slightly
greater than unity. (A Cy greater than unity may also result from faulty
manometer connections.) For accurate and predictable results, it is desirable
that the venturi-meter be approached by a sufficient length of straight pipe
for the flow to be reasonably uniform and to be free from large eddies and
similar disturbances, caused by fittings upstream of the flow-meter.

The function of the diverging part of the meter is to reduce the velocity
gradually, with the aim of restoring the pressure as nearly as possible to its
original value. In a rapidly diverging tube complete pressure recovery is not
possible as the flow tends to separate from the walls, eddies are formed and
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Fig. 3.20

energy is dissipated as heat. The greater the angle of divergence the greater
this dissipation of energy. On the other hand, a small angle results in a
large overall length and therefore a large loss by ‘ordinary’ friction at the
walls. The best compromise has been found for a total angle of divergence
about 6° (see Section 7.6.3). Larger angles have, however, been used, with
a consequent reduction in overall length (and cost). Only 80-90% of the
drop in pressure between inlet and throat is recovered in the diverging part.

A common ratio of diameters d,/dq is 0.5. (Thus Ay/A; = 0.25 and
uy/uy = 4.) Although a smaller throat area gives a greater and more accur-
ately measured difference of pressure, the subsequent dissipation of energy
in the diverging part is greater. Moreover, the pressure at the throat may
become low enough for dissolved gases to be liberated from the liquid, or
even for vaporization to occur.

To save expense, large venturi-meters are sometimes made by welding a
plate of sheet metal to the inside of a pipe, thus producing a D-shaped throat
(Fig. 3.20).

Example 3.4 A horizontal venturi tube, 280 mm diameter at the
entrance and 140 mm diameter at the throat, has a discharge coef-
ficient of 0.97. A differential U-tube manometer, using mercury as
the manometric fluid, is connected between pressure tappings at the
entrance and at the throat. The venturi tube is used to measure the
flow of water, which fills the leads to the U-tube and is in contact
with the mercury. Calculate the flow rate when the difference in the
mercury level is 50 mm. Take the densities of water and mercury as
103 kg-m~3 and 13.6 x 103 kg - m~3 respectively.

Solution
Denote conditions at the entrance and in the throat by suffixes 1
and 2, respectively, and the difference in levels in the manometer by
x. Also represent the densities of the water and mercury by oy and
om respectively.

Considering the pressure balance in the two limbs of the manometer
(see Section 2.3.2) it follows that

p1+ owxg = P2 + O0mxg
Hence

50 mm

o 3 ke.-m—3 _
X 1000 mm/m x 10° kg-m™ x (13.6 — 1)

p1—p2=9.81m-s2

= 6180 N.m 2
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Since
Ab = p1—1P2
ow8
the flow rate is obtained by substituting in the relation
2gAb 12
=CyA 1 ————
0= Cuh {(Al/Az>2 - 1}
5 ) 1/2
0.97 JT<280 > 2 x 6180 N-m
=0.97 x — m
4\1000 103 kg -m—3 x [(28/14)* — 1]
=0.0542 m3.s7! O

3.7.4 The flow nozzle and orifice meter

The nozzle meter or flow nozzle illustrated in Fig. 3.21 is essentially a venturi-
meter with the divergent part omitted, and the basic equations are the same
as those for the venturi-meter. The dissipation of energy downstream of
the throat is greater than for a venturi-meter but this disadvantage is often
offset by the lower cost of manufacturing the nozzle. The pressure in the
manometer connection in the wall of the pipe at section 2 may not be that at
the throat of the nozzle because of non-uniformities in the region of separated
flow surrounding the jet from the nozzle. Nor may the upstream connection
be made at a point sufficiently far from the nozzle for the flow to be uniform.
These deviations, however, are allowed for in values of C4. The coefficient
depends on the shape of the nozzle, the diameter ratio d,/d1, the Reynolds

Fig. 3.21
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Fig. 3.22

number of the flow, and the location of the wall pressure tappings, but, as
it does not depend on what happens beyond the throat, it is little different
from that for a venturi-meter.

A still simpler and cheaper arrangement is a sharp-edged orifice fitted
concentrically in the pipe (Fig. 3.22). Application of Bernoulli’s equation
between a point 1 upstream of the orifice and the vena contracta (2) gives,

for an inviscid fluid and uniform velocity distribution:

2 2
Q:ﬁ_ﬁ+ﬁ:Ab+ul
2¢ 08 o8 2g 2g

For a real fluid we introduce a coefficient of velocity:
ur = Cy{2g(Ah +u7/29))'? (3.24)

We now put #1 = Q/A1 and uy = Q/A:. = Q/C.A, where Q represents
the discharge, A, the cross-sectional area of the vena contracta, A, the area
of the orifice itself and C. the coefficient of contraction. Then

CchAoAl CdAO(ZgAh)l/z

2gAMY? =
a2_cczan 2 B TS AT A, A

=7

since C,C. = Cy (eqn 3.19).
The discharge coefficient C may be introduced by writing

5 12
1—(Ao/A1)
C=Ciy— 5
1 - C5(Ao/A1)?
so that finally

o= CAo(2gAh)'/?
T {1 - (Ao/A1)2H2
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Simple applications of Bernoulli’s equation

For consistency with the mathematical model, the downstream manometer
connection should strictly be made to the section where the vena contracta
occurs, but this is not feasible as the vena contracta is somewhat vari-
able in position. In practice, various positions are used for the manometer
connections and C is thereby affected.

Much of the kinetic energy of the jet from either a flow nozzle or an orifice
is dissipated downstream of the device and so the overall loss of useful energy
(see Section 7.6.6) is considerably larger than for a venturi-meter.

The accuracy of any measuring device may be affected by swirling motion
or non-uniformity of the flow approaching it. Therefore if pipe-bends, valves
and so on which cause such disturbances are not at least 50 times the pipe dia-
meter upstream, straightening grids are often fitted in front of the metering
device.

The use of differential-pressure flow-metering devices for flow rate
measurement is widespread, particularly at high Reynolds numbers,
and national and International Standards have been published. These
Standards are based on certain specific designs of orifice plates, ven-
turi tubes and nozzles, for which (a) the geometry is precisely defined;
and (b) the flow characteristics have been established through extensive
testing.

Example 3.5 A fluid of relative density 0.86 flows through a pipe of
diameter 120 mm. The flow rate is measured using a 6 cm diameter
orifice plate with corner tappings, which are connected to the two
limbs of a differential U-tube manometer using mercury as the mano-
metric fluid. The discharge coefficient is 0.62. Calculate the mass
flow rate when the difference in the mercury levels in the U-tube
1s 100 mm.

Solution
Denote conditions at the measurement points upstream and down-
stream of the orifice plate by suffixes 1 and 2, respectively, and
the difference in levels in the manometer by x. Also represent
the densities of the flowing fluid and mercury by of and on
respectively.

Considering the pressure balance in the two limbs of the manometer
(see Section 2.3.2) it follows that

p1 +ofxg = p2 + O0mxXg
Hence

100 mm

— % 10%°kg-m3 x (13.6 — 0.
XlOOOmm/mX 0° kg-m™ x (13.6 — 0.86)

p1—pr=9.81m-s2

=12500 N-m~2
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Fig. 3.23

Since
Ab = pl - PZ
ot
the volumetric flow rate is obtained by substituting in the relation
2gAb 172
o)
Q 1- (Ao/Al)2
1/2
coc X () [ 2N )
o 4 \ 100 0.86 x 103 kg-m=3 x [1 — (6/12)%]
=0.00976 m® -s~!
Hence
m = 0;0 = 0.86 x 10° kg-m™ x 0.00976 m> -s~' = 8.39 kg-s~!

3.7.5 Notches and sharp-crested weirs

A notch may be defined as a sharp-edged obstruction over which flow of a
liquid occurs. As the depth of flow above the base of the notch is related to
the discharge, the notch forms a useful measuring device. It is formed in a
smooth, plane, vertical plate and its edges are bevelled on the downstream
side so as to give minimum contact with the fluid. The area of flow is most
commonly either rectangular or V-shaped. A large rectangular notch is more
often termed a sharp-crested weir.

The pattern of flow over a notch is quite complex. Owing to the curvature
of the streamlines (Fig. 3.23) there is no cross-section of the flow over which
the pressure is uniform. Any attempt, therefore, to discover analytically
the relation between the rate of flow and the depth at the notch can be
based only on drastic simplifying assumptions. It is nevertheless useful in
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Simple applications of Bernoulli’s equation

showing the essential form of the relation between depth and discharge even
though the formula so obtained will have to be modified by an experimentally
determined coefficient.

The sheet of liquid escaping over the notch or weir is known as the nappe.
If the pressure underneath it is atmospheric, the nappe (except at very low
rates of flow) springs clear of the notch plate. For a notch extending across
the entire width of a channel, atmospheric air may not be able to get under
the nappe, and the liquid then clings to the downstream side of the notch
plate and the discharge is unpredictable. So to obtain flow of a predictable
and consistent nature, the space underneath the nappe must be ventilated, if
necessary by providing an air vent as shown in Fig. 3.23.

Consider a sharp-edged, rectangular notch as shown in Fig. 3.24. The crest
is horizontal and normal to the general direction of flow. The classical ana-
lysis, usually ascribed to the German engineer Julius Weisbach (1806-71),
requires these assumptions:

1. Upstream of the notch, the velocities of particles in the stream are uniform
and parallel; thus the pressure there varies according to the hydrostatic
equation p = ggh. (In practice it is often necessary to install baffles to
achieve reasonably steady and uniform conditions.)

2. The free surface remains horizontal as far as the plane of the notch, and all
particles passing through the notch move horizontally, and perpendicular
to its plane.

3. The pressure throughout the nappe is atmospheric.

4. The effects of viscosity and surface tension are negligible.

These assumptions give the idealized pattern of flow shown in Fig. 3.24.
At section 1, (p1/0g) + z1 = height H of the free surface. So for a typical
streamline Bernoulli’s equation gives

H + u%/2g=0 + M%/Zg +22
sy ={2g(H — 2 + u3 /2g)}1/?

This shows that uy varies with z;. In the plane of the notch the discharge
through a horizontal element of depth 8z, is #3582z, and so the idealized

Fig. 3.24
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Fig. 3.25 Suppressed weir.

total discharge

H
Qideal = b/O uydz

(the datum of 2z, being taken at the crest of the notch). Hence
H
Oideal = b (2g)/0 (H—-2z+ u%/Zg)l/z dzy
2 2503217
= —gb\/@ [(H — 2 +ut/29) ]0

= 200 [H e — g 3.29)

Since #1 depends on Q, solution of eqn 3.25 is troublesome except by trial
and error. However, u% /2g is frequently negligible in comparison with H
and then the equation becomes

2
Qideal = 30/ Q) H2

An experimentally determined coefficient of discharge now has to be inserted
to account for the simplifying assumptions used in the mathematical model.
The contraction of the nappe as it passes through the notch is a significant
factor and the coefficient is considerably less than unity. Its value depends
primarily on H and H/Z where Z is the height of the crest above the bed
of the approach channel. The effects of viscosity and surface tension are
appreciable only when H is small.

A suppressed weir is one for which the breadth b is the same as the width
of the approach channel. The nappe then contracts in the vertical direction
only and not horizontally (see Fig. 3.25).

When the notch is symmetrically placed in the width of a channel and
has the proportions shown in Fig. 3.26, full contraction of the nappe takes
place in the horizontal direction. The contraction at each side of the nappe
is about H/10; thus the width of the nappe and consequently the coefficient
of discharge vary with H.

The V notch scores over the rectangular notch in producing a nappe with
the same shape whatever the value of H, and thus, it has a less variable
discharge coefficient.
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With the same assumptions used in deriving the expression for the
discharge through a rectangular notch, we have

uy = (2g(H — 2 + u2 /2g)}/?

For a V notch, however, the cross-sectional area of the approach channel is
usually so much greater than that of the notch that u% /2g may be neglected.
The idealized discharge through an element of the notch (as in Fig. 3.27) is
therefore bdz,{2g(H — z2)}1/? and, if each side makes an angle 6/2 with the
vertical, b = 2z, tan(9/2). The total idealized discharge is therefore

0 H
Qugeat = 2120 5./ C9) /0 o (H — ) 2dz

H
=2tan g,/(zg)/ (H — h)b'/2db
0

where b = H — z,. Hence

6 2030 25 "
Oideal = 2tan 5/ (2g) | HP?'= — Zh
2 3 570,
=15 tan E\/(Zg)H (3.26)

The actual discharge Q is therefore

8 0
Q0= Ecd tan T/(Zg)HS/2

The angle 0 is seldom outside the range 30°-90°. If the head H is sufficient
for the nappe to spring clear of the notch plate and the width of the approach
channel is at least four times the maximum width of the nappe, Cq is about
0.59 for water flow. As a result of viscosity and surface tension effects the
value increases somewhat as the head falls.

Fig. 3.26

Fig. 3.27
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The classical notch formulae 3.25 and 3.26 are the result of a simple, but
imperfect, mathematical model of the flow. In practice the head H is not
the depth of flow over the crest but the upstream level of the free surface
measured relative to the crest. As the liquid approaches the notch the free
surface level falls appreciably. (This does not, however, affect the result of
the integration markedly since H — 2z, + u% /2g is small when z, approaches
H.) The head should be measured at a point upstream before the fall of the
surface has begun and ideally where the velocity of the stream is negligible.
When this ideal is not possible, allowance must be made for the velocity at
the point of measurement. As a first approximation u% /2g, the head cor-
responding to the velocity of approach, is assumed negligible and a value
of QO obtained. From this approximate value of Q, #u; is calculated as O
divided by the cross-sectional area of flow at the point where H is measured.
Hence u% /2g is calculated and, for a rectangular notch for example, may
be substituted in eqn 3.25 to determine a more accurate value of Q. Since
u%/2g is small in comparison with H, (H + u3/2g)3/* is often used rather
than (H + 14%/2g)3/2 - (u%/Zg)3/2. The formula is in any case based on the
assumption of a uniform value of #7 although in fact the discharge over the
notch can be appreciably affected by non-uniform conditions upstream. In
comparison with such indeterminate errors the omission of (u% /2g)3/% is of
no account.

[ Example 3.6 Water flows over a sharp-crested weir 600 mm wide.
The measured head (relative to the crest) is 155 mm ata point where the
cross-sectional area of the stream is 0.26 m? (see Fig. 3.28). Calculate
the discharge, assuming that Cqy = 0.61.

Fig. 3.28

Solution
As a first approximation,

0= %CN(Zg)bHW

2
_ §0.61\/(19.62 m-s-2)0.6 m(0.155 m)3/2

=0.0660 m>-s~!




0.0660 m3 -s~1
*. Velocity of h=""""" "> _0254m-s!
.. Velocity ot approac 026 m2 m-s
2 1 2
254 m-
#0234 m-sT) 5o 103 m

2¢  19.62m-s2

SoH+ u%/Zg = (0.155+0.00328) m = 0.1583 m

Second approximation: O = 20.61,/(19.62)0.6(0.1583)%? m3 .s~!

=0.0681m>-s7!

Further refinement of the value could be obtained by a new calcula-
tion of #1(0.0681 m? - s~ = 0.26 m?), a new calculation 0fH+u%/2g
and so on. One correction is usually sufficient, however, to give a value
of O acceptable to three significant figures.

PROBLEMS

3.1

3.2

3.3

3.4

3.5

A pipe carrying water tapers from a cross-section of 0.3 m? at
A to 0.15 m? at B which is 6 m above the level of A. At A
the velocity, assumed uniform, is 1.8 m-s~! and the pressure
117 kPa gauge. If frictional effects are negligible, determine the
pressure at B.

A long bridge with piers 1.5 m wide, spaced 8 m between
centres, crosses a river. The depth of water before the bridge is
1.6 m and that between the piers is 1.45 m. Calculate the volume
rate of flow under one arch assuming that the bed of the river is
horizontal, that its banks are parallel and that frictional effects
are negligible.

A pipe takes water from a reservoir where the temperature is
12 °C to a hydro-electric plant 600 m below. At the 1.2 m
diameter inlet to the power house the gauge pressure of the
water is 5.5 MPa and its mean velocity 2 m-s~1. If its tem-
perature there is 13.8 °C at what rate has heat passed into
the pipe as a result of hot sunshine? (Note: The change of
atmospheric pressure over 600 m must be accounted for: mean
atmospheric density = 1.225 kg - m~3. Specific heat capacity of
water = 4.187 kJ - kg1 - K1)

In an open rectangular channel the velocity, although uniform
across the width, varies linearly with depth, the value at the free
surface being twice that at the base. Show that the value of the
kinetic energy correction factor is 10/9.

From a point 20 m away from a vertical wall a fireman directs
a jet of water through a window in the wall at a height of
15 m above the level of the nozzle. Neglecting air resistance

Problems
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3.6

3.7

3.8

3.9

3.10

3.11

determine the angle at which the nozzle must be held when the
supply pressure at the nozzle is only just sufficient, and calculate
this minimum pressure if Cy for the nozzle is 0.95. (The velocity
head in the hose may be neglected.)

The air supply to an oil-engine is measured by being taken
directly from the atmosphere into a large reservoir through a
sharp-edged orifice 50 mm diameter. The pressure difference
across the orifice is measured by an alcohol manometer set at
a slope of arcsin 0.1 to the horizontal. Calculate the volume
flow rate of air if the manometer reading is 271 mm, the rel-
ative density of alcohol is 0.80, the coefficient of discharge for
the orifice is 0.602 and atmospheric pressure and temperature
are respectively 755 mm Hg and 15.8 °C. (You may assume
R=287] kg7 ! . K1)

Oil of relative density 0.85 issues from a 50 mm diameter orifice
under a pressure of 100 kPa (gauge). The diameter of the vena
contracta is 39.5 mm and the discharge is 18 L-s~!. What is
the coefficient of velocity?

A submarine, submerged in sea-water, travels at 16 km-h~1.
Calculate the pressure at the front stagnation point situ-
ated 15 m below the surface. (Density of sea-water =
1026 kg-m~3.)

A vertical venturi-meter carries a liquid of relative density 0.8
and has inlet and throat diameters of 150 mm and 75 mm
respectively. The pressure connection at the throat is 150 mm
above that at the inlet. If the actual rate of flow is 40 L-s~!
and the coefficient of discharge is 0.96, calculate (a) the pres-
sure difference between inlet and throat, and (b) the difference
of levels in a vertical U-tube mercury manometer connected
between these points, the tubes above the mercury being full of
the liquid. (Relative density of mercury = 13.56.)

A servo-mechanism is to make use of a venturi contraction in
a horizontal 350 mm diameter pipe carrying a liquid of relat-
ive density 0.95. The upper end of a vertical cylinder 100 mm
diameter is connected by a pipe to the throat of the venturi
and the lower end of the cylinder is connected to the inlet.
A piston in the cylinder is to be lifted when the flow rate
through the venturi exceeds 0.15 m3.s~!. The piston rod is
20 mm diameter and passes through both ends of the cyl-
inder. Neglecting friction, calculate the required diameter of
the venturi throat if the gross effective load on the piston rod
is 180 N.

A sharp-edged notch is in the form of a symmetrical trapezium.
The horizontal base is 100 mm wide, the top is 500 mm wide
and the depth is 300 mm. Develop a formula relating the dis-
charge to the upstream water level, and estimate the discharge
when the upstream water surface is 228 mm above the level
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of the base of the notch. Assume that Cy = 0.6 and that the
velocity of approach is negligible.

The head upstream of a rectangular weir 1.8 m wide is 80 mm.
If C4 = 0.6 and the cross-sectional area of the upstream flow
is 0.3 m?, estimate, to a first approximation, the discharge
allowing for the velocity of approach.

Problems
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The momentum
equation

4.1 INTRODUCTION

It is often important to determine the force produced on a solid body by
fluid flowing steadily over or through it. For example, there is the force
exerted on a solid surface by a jet of fluid impinging on it; there are also
the aerodynamic forces (lift and drag) on an aircraft wing, the force on a
pipe-bend caused by the fluid flowing within it, the thrust on a propeller and
so on. All these forces are associated with a change in the momentum of the
fluid.

The magnitude of such a force is determined essentially by Newton’s
Second Law. However, the law usually needs to be expressed in a form par-
ticularly suited to the steady flow of a fluid: this form is commonly known as
the steady-flow momentum equation and may be applied to the whole bulk
of fluid within a prescribed space. Only forces acting at the boundaries of
this fluid concern us; any force within this fluid is involved only as one half
of an action-and-reaction pair and so does not affect the overall behaviour.
Moreover, the fluid may be compressible or incompressible, and the flow
with or without friction.

4.2 THE MOMENTUM EQUATION FOR STEADY FLOW

In its most general form, Newton’s Second Law states that the net force
acting on a body in any fixed direction is equal to the rate of increase of
momentum of the body in that direction. Since force and momentum are
both vector quantities it is essential to specify the direction. Where we are
concerned with a collection of bodies (which we shall here term a system)
the law may be applied (for a given direction) to each body individually. If the
resulting equations are added, the total force in the given fixed direction
corresponds to the net force acting in that direction at the boundaries of
the system. Only these external, boundary forces are involved because any
internal forces between the separate bodies occur in pairs of action and
reaction and therefore cancel in the total. For a fluid, which is continuum
of particles, the same result applies: the net force in any fixed direction on a
certain defined amount of fluid equals the total rate of increase of momentum
of that fluid in that direction.
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The momentum equation for steady flow

Our aim now is to derive a relation by which force may be related to the
fluid within a given space. We begin by applying Newton’s Second Law to a
small element in a stream-tube (shown in Fig. 4.1) The flow is steady and so
the stream-tube remains stationary with respect to the fixed coordinate axes.
The cross-section of this stream-tube is sufficiently small for the velocity to be
considered uniform over the plane AB and over the plane CD. After a short
interval of time §# the fluid that formerly occupied the space ABCD will have
moved forward to occupy the space A’B'C’'D’. In general, its momentum
changes during this short time interval.

If u, represents the component of velocity in the x direction then the
element (of mass 8m) has a component of momentum in the x direction
equal to u,8m. The total x-momentum of the fluid in the space ABCD at the
beginning of the time interval 8¢ is therefore

Z U om

ABCD

The same fluid at a time 8¢ later will have a total x-momentum

Z udm

A'B'C'D’

The last expression may be expanded as

Z U dm — Z uém + Z udm

ABCD ABB'A’ DCC'D’

The net increase of x-momentum during the time interval 8¢ is therefore

A'B'C'D’ after 5t ABCD before 8¢

Fig. 4.1

@ i p

135



@ i p

136 The momentum equation

ABCD ABB'A’ DCC'D’

— ( Z ux8m>
ABCD before §¢
=( Z U om — Z ux8m>
after §t

DCC'D’ ABB'A’

= ( Z uxdm — Z uyxdm + Z ux8m>
after 8¢

since, as the flow is assumed steady, ()" #x6m) 45, is the same after 5t as
before §¢. Thus, during the time intereval §¢, the increase of x-momentum
of the batch of fluid considered is equal to the x-momentum leaving the
stream-tube in that time minus the x-momentum entering in that time:

( Z ux8m> —< Z uxém)
DCC'D’ ABB'A’

For a very small value of §¢ the distances AA’, BB’ are very small, so
the values of u,, for all the particles in the space ABB’A’ are substantially
the same. Similarly, all particles in the space DCC’D’ have substantially the
same value of u,, although this may differ considerably from the value for
particles in ABB’A’. The u, terms may consequently be taken outside the
summations.

Therefore the increase of x-momentum during the interval 8¢ is

(u" Z 8m)DCC’D’ B (ux Z 8m>ABB/A’ @1

Now (- 8m) iy is the mass of fluid which has crossed the plane CD
during the interval 8¢ and so is expressed by #18¢, where 71 denotes the rate
of mass flow. Since the flow is steady, (3_8m) ,pp, ,, also equals 725¢. Thus
expression 4.1 may be written #2(sy, — ux,)8t, where suffix 1 refers to the
inlet section of the stream-tube, suffix 2 to the outlet section. The rate of
increase of x-momentum is obtained by dividing by §¢, and the result, by
Newton’s Second Law, equals the net force F; on the fluid in the x direction

Fy = m(uy, —uy,) (4.2)

The corresponding force in the x direction exerted by the fluid oz its
surroundings is, by Newton’s Third Law, —F,.

A similar analysis for the relation between force and rate of increase of
momentum in the y direction gives

Ey = rn(uy, —uy,) (4.3)

In steady flow 71 is constant and so 72 = g1 A1u1 = 02 Auy where o repres-
ents the density of the fluid and A the cross-sectional area of the stream-tube
(A being perpendicular to u).

We have so far considered only a single stream-tube with a cross-sectional
area so small that the velocity over each end face (AB, CD) may be considered
uniform. Let us now consider a bundle of adjacent stream-tubes, each of
cross-sectional area §A, which together carry all the flow being examined.
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The velocity, in general, varies from one stream-tube to another. The space
enclosing all these stream-tubes is often known as the control volume and it
is to the boundaries of this volume that the external forces are applied. For
one stream-tube the ‘x-force’ is given by

OF; = m(uxy — ttx,) = 028A2101ty, — 018 A1 U1ty

The total force in the x direction is therefore
F, = /dF = /Qzuzuxszz - / 0111y, dAq (4.4a)

(The elements of area §A must everywhere be perpendicular to the
velocities #.) Similarly

F, = /Qzuzuyszz —/QluluyldAl (4.4b)
and
Fz :/Qzuzuzszz—/glmuzldAl (44C)

These equations are required whenever the force exerted on a flowing fluid
has to be calculated. They express the fact that for steady flow the net force
on the fluid in the control volume equals the net rate at which momentum
flows out of the control volume, the force and the momentum having the
same direction. It will be noticed that conditions only at inlet 1 and outlet 2
are involved. The details of the flow between positions 1 and 2 therefore do
not concern us for this purpose. Such matters as friction between inlet and
outlet, however, may alter the magnitudes of quantities at outlet.

It will also be noticed that eqns 4.4 take account of variation of ¢ and
so are just as applicable to the flow of compressible fluids as to the flow of
incompressible ones.

The integration of the terms on the right-hand side of the eqns 4.4 requires
information about the velocity profile at sections 1 and 2. By judicious choice
of the control volume, however, it is often possible to use sections 1 and 2
over which o, u, u, and so on do not vary significantly, and then the equations
reduce to one-dimensional forms such as:

Fy = 0oup Ay, — 011 Aty = 1it(tty, — thy,)

It should never be forgotten, however, that this simplified form involves
the assumption of uniform values of the quantities over the inlet and outlet
cross-sections of the control volume: the validity of these assumptions should
therefore always be checked. (See Section 4.2.1.)

A further assumption is frequently involved in the calculation of F.
A contribution to the total force acting at the boundaries of the control
volume comes from the force due to the pressure of the fluid at a cross-section
of the flow. If the streamlines at this cross-section are sensibly straight and
parallel, the pressure over the section varies uniformly with depth as for a
static fluid; in other words, p* = p+ gz is constant. If, however, the stream-
lines are not straight and parallel, there are accelerations perpendicular to
them and consequent variations of p*. Ideally, then, the control volume
should be so selected that at the sections where fluid enters or leaves it the
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streamlines are sensibly straight and parallel and, for simplicity, the density
and the velocity (in both magnitude and direction) should be uniform over
the cross-section.

Newton’s Laws of Motion, we remember, are limited to describing
motions with respect to coordinate axes that are not themselves acceler-
ating. Consequently the momentum relations for fluids, being derived from
these Laws, are subject to the same limitation. That is to say, the coordinate
axes used must either be at rest or moving with uniform velocity in a straight
line.

Here we have developed relations only for steady flow in a stream-tube.
More general expressions are beyond the scope of this book.

4.2.1 Momentum correction factor

By methods analogous to those of Section 3.5.3 it may be shown that
where the velocity of a constant-density fluid is not uniform (although
essentially parallel) over a cross-section, the true rate of momentum flow
perpendicular to the cross-section is not p#?A but o [u*dA = Bow*A. Here
u = (1/A) [udA, the mean velocity over the cross-section, and g is the
momentum correction factor. Hence

1 u\2
F=2 /A (a) da
It should be noted that the velocity # must always be perpendicular to the
element of area dA. With constant g, the value of 8 for the velocity distribu-
tion postulated in Section 3.5.3 is 100/98 = 1.02 which for most purposes
differs negligibly from unity. Disturbances upstream, however, may give a
markedly higher value. For fully developed laminar flow in a circular pipe
(see Section 6.2) B = 4/3. For a given velocity profile 8 is always less than o,
the kinetic energy correction factor.

4.3 APPLICATIONS OF THE MOMENTUM EQUATION

4.3.1 The force caused by a jet striking a surface

When a steady jet strikes a solid surface it does not rebound from the sur-
face as a rubber ball would rebound. Instead, a stream of fluid is formed
which moves over the surface until the boundaries are reached, and the fluid
then leaves the surface tangentially. (It is assumed that the surface is large
compared with the cross-sectional area of the jet.)

Consider a jet striking a large plane surface as shown in Fig. 4.2. A suit-
able control volume is that indicated by dotted lines on the diagram. If the x
direction is taken perpendicular to the plane, the fluid, after passing over the
surface, will have no component of velocity and therefore no momentum in
the x direction. (It is true that the thickness of the stream changes as the fluid
moves over the surface, but this change of thickness corresponds to a negli-
gible movement in the x direction.) The rate at which x-momentum enters
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the control volume is [ o1u1u,, dA; = cos@fglu%dAl and so the rate of
increase of x-momentum is — cos 6 | Q]u%dAl and this equals the net force on
the fluid in the x direction. If the fluid on the solid surface were stationary and
at atmospheric pressure there would of course be a force between the fluid
and the surface due simply to the static (atmospheric) pressure of the fluid.
However, the change of fluid momentum is produced by a fluid-dynamic
force additional to this static force. By regarding atmospheric pressure as
zero we can determine the fluid-dynamic force directly.

Since the pressure is atmospheric both where the fluid enters the con-
trol volume and where it leaves, the fluid-dynamic force on the fluid can
be provided only by the solid surface (effects of gravity being neglected).
The fluid-dynamic force exerted by the fluid on the surface is equal and
opposite to this and is thus cos6 [ Qlu%dAl in the x direction. If the jet has
uniform density and velocity over its cross-section the integral becomes

Qlu%COSQ/dAl = 0101uq cosb

(where Q1 is the volume flow rate at inlet).

The rate at which y-momentum enters the control volume is equal to
sinf [ o1ujdA;. For this component to undergo a change, a net force in
the y direction would have to be applied to the fluid. Such a force, being
parallel to the surface, would be a shear force exerted by the surface on the
fluid. For an inviscid fluid moving over a smooth surface no shear force is
possible, so the component sin [ 01#45dA; would be unchanged and equal
to the rate at which y-momentum leaves the control volume. Except when
6 = 0, the spreading of the jet over the surface is not symmetrical, and for
a real fluid the rate at which y-momentum leaves the control volume differs
from the rate at which it enters. In general, the force in the y direction may be
calculated if the final velocity of the fluid is known. This, however, requires
further experimental data.

When the fluid flows over a curved surface, similar techniques of
calculation may be used as the following example will show.

Fig. 4.2
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[ Example 4.1 A jet of water flows smoothly on to a stationary curved
vane which turns it through 60°. The initial jet is 50 mm in diameter,
and the velocity, which is uniform, is 36 m - s~ 1. As a result of friction,
the velocity of the water leaving the surface is 30 m-s~!. Neglecting
gravity effects, calculate the hydrodynamic force on the vane.

Solution
Taking the x direction as parallel to the initial velocity (Fig. 4.3) and
assuming that the final velocity is uniform, we have

Force on fluid in x direction
= Rate of increase of x-momentum
= 0Quy cos 60° — pQuq
— (1000 kg-m™3) {%(0.05)2 m? x 36 m- 5_1]
x (30cos60°m-s~ ' —36m-s 1)
= —1484 N
Similarly, force oz fluid in y direction
= 0Qu; sin60° — 0
= {1000%(0.05)236 kg - 5_1] (30sin 60°m - s~

= 1836 N

Fig. 4.3

The resultant force on the fluid is therefore /(14842 +18362) N
= 2361 N acting in a direction arctan {1836/(—1484)} = 180° —
51.05° to the x direction. Since the pressure is atmospheric both where
the fluid enters the control volume and where it leaves, the force on
the fluid can be provided only by the vane. The force exerted by the
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fluid on the vane is opposite to the force exerted by the vane on the
fluid.

Therefore the fluid-dynamic force F on the vane acts in the direction
shown on the diagram.

If the vane is moving with a uniform velocity in a straight line the problem
is not essentially different. To meet the condition of steady flow (and only to
this does the equation apply) coordinate axes moving with the vane must be
selected. Therefore the velocities concerned in the calculation are velocities
relative to these axes, that is, relative to the vane. The volume flow rate Q
must also be measured relative to the vane. As a simple example we may
suppose the vane to be moving at velocity ¢ in the same direction as the jet.
If cis greater than uy, that s, if the vane is receding from the orifice faster than
the fluid is, no fluid can act on the vane at all. If, however, c is less than #1,
the mass of fluid reaching the vane in unit time is given by 0A(#1 — ¢) where
A represents the cross-sectional area of the jet, and uniform jet velocity and
density are assumed. (Use of the relative incoming velocity #1 — ¢ may also
be justified thus. In a time interval §¢ the vane moves a distance ¢§t, so the
jet lengthens by the same amount; as the mass of fluid in the jet increases by
0Acést the mass actually reaching the vane is only gAu18t — 9AcSt that is,
the rate at which the fluid reaches the vane is 0A(#1 — ¢).) The direction of
the exit edge of the vane corresponds to the direction of the velocity of the
fluid there relative to the vane.

The action of a stream of fluid on a single body moving in a straight
line has little practical application. To make effective use of the principle
a number of similar vanes may be mounted round the circumference of a
wheel so that they are successively acted on by the fluid. In this case, the
system of vanes as a whole is considered. No longer does the question arise
of the jet lengthening so that not all the fluid from the orifice meets a vane;
the entire mass flow rate pAuq, from the orifice is intercepted by the system
of vanes. Such a device is known as a turbine, and we shall consider it further
in Chapter 13.

4.3.2 Force caused by flow round a pipe-bend

When the flow is confined within a pipe the static pressure may vary from
point to point and forces due to differences of static pressure must be taken
into account. Consider the pipe-bend illustrated in Fig. 4.4 in which not
only the direction of flow but also the cross-sectional area is changed. The
control volume selected is that bounded by the inner surface of the pipe and
sections 1 and 2. For simplicity we here assume that the axis of the bend is in
the horizontal plane: changes of elevation are thus negligible; moreover, the
weights of the pipe and fluid act in a direction perpendicular to this plane and
so do not affect the changes of momentum. We assume too that conditions
at sections 1 and 2 are uniform and that the streamlines there are straight
and parallel.
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Fig. 4.4

If the mean pressure and cross-sectional area at section 1 are py and Aq
respectively, the fluid adjacent to this cross-section exerts a force p1A1 on
the fluid in the control volume. Similarly, there is a force pA, acting at
section 2 on the fluid in the control volume. Let the pipe-bend exert a force F
on the fluid, with components F, and F,, in the x and y directions indicated.
The force F is the resultant of all forces acting over the inner surface of
the bend. Then the total force in the x direction oz the fluid in the control
volume is

p1A1 — p2Ascos6 + F,
This total ‘x-force’ must equal the rate of increase of x-momentum

00(uy cos 6 — uq)

Equating these two expressions enables Fy to be calculated.
Similarly, the total y-force acting o the fluid in the control volume is

—p2Ajsin€ + Fy = 0Q(uz sinf — 0)

and F, may thus be determined. From the components F, and F, the mag-
nitude and direction of the total force exerted by the bend on the fluid can
readily be calculated. The force exerted by the fluid on the bend is equal and
opposite to this.

If the bend were empty (except for atmospheric air at rest) there would
be a force exerted by the atmosphere on the inside surfaces of the bend.
In practice we are concerned with the amount by which the force exerted
by the moving fluid exceeds the force that would be exerted by a stationary
atmosphere. Thus we use gauge values for the pressures p1 and p; in the
above equations. The force due to the atmospheric part of the pressure is
counterbalanced by the atmosphere surrounding the bend: if absolute values
were used for p1 and p; separate account would have to be taken of the force,
due to atmospheric pressure, on the outer surface.

Where only one of the pressure p1 and p; is included in the data of the
problem, the other may be deduced from the energy equation.

Particular care is needed in determining the signs of the various terms in
the momentum equation. It is again emphasized that the principle used is
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that the resultant force on the fluid in a particular direction is equal to the
rate of increase of momentum in that direction.

The force on a bend tends to move it and a restraint must be applied
if movement is to be prevented. In many cases the joints are sufficiently
strong for that purpose, but for large pipes (e.g. those used in hydroelectric
installations) large concrete anchorages are usually employed to keep the
pipe-bends in place.

The force F includes any contribution made by friction forces on the
boundaries. Although it is not necessary to consider friction forces separately
they do influence the final result, because they affect the relation between pq
and p;.

Example 4.2 A 45° reducing pipe-bend (in a horizontal plane) tapers n
from 600 mm diameter at inlet to 300 mm diameter at outlet (see
Fig. 4.5). The gauge pressure at inlet is 140 kPa and the rate of flow of
water through the bend is 0.425 m? - s~ 1. Neglecting friction, calculate
the net resultant horizontal force exerted by the water on the bend.

Solution
Assuming uniform conditions with straight and parallel streamlines at
inlet and outlet, we have:

0.45m3 .51
=2 1,503 m 5!
2(0.6 m)2
425 m3 57!
Uy = % =6.01m-s!
2(0.3 m)2

By the energy equation
p2=p1+ 730 (“% - “%)
=1.4 x 10° Pa+ 500 kg-m~3(1.503% — 6.01%) m? - s>
=1.231 x 10° Pa

Fig. 4.5
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In the x direction, force on water in control volume
=p1A| — prArcos45° + F, = 00Q(uy cos 45° — uq)
= Rate of increase of x-momentum

where F, represents x-component of force exerted by bend on water.

Therefore
1.4 % 10° 1@%0.62 m2 — 1.231 x 10° Pa%0.32 m?2 cos 45° + F,

=1000 kg-m~30.425 m>-s71(6.01 cos 45° — 1.503) m-s~!

that is (39 580 — 6150) N + F,, = 1168 N whence F, = —32260 N.
In the y direction, force on water in control volume

= —p2A;sin45° + F, = 00 (u5sin45° — 0)
= Rate of increase of y-momentum, whence

Fy =1000 x 0.425(60.1 sin45°) N + 1.231 x 105%0.32 sin45° N
=7960 N

Therefore total net force exerted on water = /(32 260% + 7960%) N =
33230 N acting in direction arctan {7960/(—32260)} = 180° —
13.86° to the x direction.

Force F exerted on bend is equal and opposite to this, that is, in the
O direction shown on Fig. 4.5.

For a pipe-bend with a centre-line not entirely in the horizontal plane the
weight of the fluid in the control volume contributes to the force causing the
momentum change. It will be noted, however, that detailed information is
not required about the shape of the bend or the conditions between the inlet
and outlet sections.

4.3.3 Force at a nozzle and reaction of a jet

As a special case of the foregoing we may consider the horizontal nozzle
illustrated in Fig. 4.6. Assuming uniform conditions with streamlines straight
and parallel at the sections 1 and 2 we have:

Force exerted in the x direction on the fluid between planes 1 and 2
= p1A1 — p2As + Fx = 00z — u1)

If a small jet issues from a reservoir large enough for the velocity within it
to be negligible (except close to the orifice) then the velocity of the fluid
is increased from zero in the reservoir to u at the vena contracta (see
Fig. 4.7). Consequently the force exerted on the fluid to cause this change is
00 —0) = 00QCy/(2gh). An equal and opposite reaction force is therefore
exerted by the jet on the reservoir.
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The existence of the reaction may be explained in this way. At the vena
contracta the pressure of the fluid is reduced to that of the surrounding atmo-
sphere and there is also a smaller reduction of pressure in the neighbourhood
of the orifice, where the velocity of the fluid becomes appreciable. On the
opposite side of the reservoir, however, and at the same depth, the pressure
is expressed by ogh and the difference of pressure between the two sides of
the reservoir gives rise to the reaction force.

Such a reaction force may be used to propel a craft — aircraft, rocket, ship
or submarine — to which the nozzle is attached. The jet may be formed
by the combustion of gases within the craft or by the pumping of fluid
through it. For the steady motion of such a craft in a straight line the pro-
pelling force may be calculated from the momentum equation. For steady
flow the reference axes must move with the craft, so all velocities are meas-
ured relative to the craft. If fluid (e.g. air) is taken in at the front of the craft
with a uniform velocity ¢ and spent fluid (e.g. air plus fuel) is ejected at the
rear with a velocity #, then, for a control volume closely surrounding the
craft,

The net rate of increase of fluid momentum backwards (relative to the
craft) is

/ ou?dA; — f octdAq (4.5)

where A1, A, represent the cross-sectional areas of the entry and exit ori-
fices respectively. (In some jet-propelled boats the intake faces downwards
in the bottom of the craft, rather than being at the front. This, however,
does not affect the application of the momentum equation since, wherever
the water is taken in, the rate of increase of momentum relative to the
boat is 0Qc. Nevertheless, a slightly better efficiency can be expected with

Fig. 4.6

Fig. 4.7
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Rocket propulsion

a forward-facing inlet because the pressure there is increased — as in a Pitot
tube — so the pump has to do less work to produce a given outlet jet velocity.)

Equation 4.5 is restricted to a craft moving steadily in a straight line
because Newton’s Second Law is valid only for a non-accelerating set of
reference axes.

In practice the evaluation of the integrals in eqn 4.5 is not readily accom-
plished because the assumption of a uniform velocity — particularly over
the area A; — is seldom justified. Moreover, the tail pipe is not infre-
quently of diverging form and thus the velocity of the fluid is not everywhere
perpendicular to the cross-section.

In a jet-propelled aircraft the spent gases are ejected to the surroundings
at high velocity — usually greater than the velocity of sound in the fluid.
Consequently (as we shall see in Chapter 11) the pressure of the gases at
discharge does not necessarily fall immediately to the ambient pressure. If
the mean pressure p, at discharge is greater than the ambient pressure p,
then a force (py — pa)A, contributes to the propulsion of the aircraft.

The relation 4.5 represents the propulsive force exerted by the engine on
the fluid in the backward direction. There is a corresponding forward force
exerted by the fluid on the engine, and the total thrust available for propelling
the aircraft at uniform velocity is therefore

(P2 — )y + / gu2dA; - / 02dA (4.6)

It might appear from this expression that, to obtain a high value of the total
thrust, a high value of p; is desirable. When the gases are not fully expanded
(see Chapter 11), however, that is, when py > p,, the exit velocity u, relative
to the aircraft is reduced and the total thrust is in fact decreased. This is a
matter about which the momentum equation itself gives no information and
further principles must be drawn upon to decide the optimum design of a
jet-propulsion unit.

A rocket is driven forward by the reaction of its jet. The gases constituting
the jet are produced by the combustion of a fuel and appropriate oxidant;
no air is required, so a rocket can operate satisfactorily in a vacuum. The
penalty of this independence of the atmosphere, however, is that a large
quantity of oxidant has to be carried along with the rocket. At the start of
a journey the fuel and oxidant together form a large proportion of the total
load carried by the rocket. Work done in raising the fuel and oxidant to a
great height before they are burnt is wasted. Therefore the most efficient use
of the materials is achieved by accelerating the rocket to a high velocity in a
short distance. It is this period during which the rocket is accelerating that is
of principal interest. We note that the simple relation F = ma is not directly
applicable here because, as fuel and oxidant are being consumed, the mass
of the rocket is not constant.

In examining the behaviour of an accelerating rocket particular care is
needed in selecting the coordinate axes to which measurements of velocities
are referred. We here consider our reference axes fixed to the earth and all
velocities must be expressed with respect to these axes. We may not consider
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our reference axes attached to the rocket, because the rocket is accelerating
and Newton’s Laws of Motion are applicable only when the reference axes
are not accelerating.

If Newton’s Second Law is applied to all the particles in a system and the
resulting equations are added, the result is:

Rate of increase of total momentum of the system of particles

= Vector sum of the external forces

(When the vector sum of the external forces is zero, the total momentum
of the system of particles is consequently constant: this is the Principle of
Conservation of Linear Momentum.) The system must be so defined that,
whatever changes occur, it always consists of the same collection of particles.
Here the system comprises the rocket and its fuel and oxidant at a particular
time .

If, at time ¢, the total mass of rocket, fuel and oxidant = M and the
velocity of the rocket (relative to the earth) = v, then the total momentum
of the system = Mu. Let the spent gases be discharged from the rocket at a
rate 77 (mass/time). Then, at a time §¢ later (8¢ being very small) a mass 728t
of spent gases has left the rocket. These gases then have an average velocity
u relative to the earth, and therefore momentum 718tu. For consistency u is
considered positive in the same direction as v, that is, forwards.

At time ¢+ 8¢ the velocity of the rocket has become v+ é8v, so the
momentum of the whole system (relative to the earth) is now

(M — mét) (v + v) + mdtu

Since all velocities are in the same (unchanging) direction the momentum
has increased by an amount

(M — m8t) (v + Sv) + médiu — Mv = Mév + mét(u — v — §v)

This increase has occurred in a time interval 8¢, so the rate of increase =
M(8v/8t) + rir(u — v — Sv) which, in the limit as §# and §v both tend to zero,
becomes

@
dt

But, when 8§t — 0, u represents the (mean) absolute velocity of the gases
at the moment they leave the rocket. So u# — v is the difference between the
absolute velocity of the jet and the absolute velocity of the rocket, both being
considered positive in the forward direction. Therefore # — v = the velocity
of the jet relative to the rocket (forwards) = —u;, where u, is the (mean)
rearward velocity of the jet relative to the rocket. We may usefully express
the relation 4.7 in terms of u,: though not necessarily constant, it is, for a
given fuel and oxidant and shape of nozzle, a quantity normally known to
rocket designers. The rate of increase of momentum is equal to the vector
sum of the external forces on the system (in the forward direction), and hence

M— + m(u — v) (4.7)

M— —mu, =Y F (4.8)
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Now the vector sum of the external forces on the system is not the same as
the net force on the rocket. The system, we recall, consists of the rocket plus
the gases that escape from it. The jet reaction on the rocket and the force
exerted on the escaping gases constitute an action-and-reaction pair and
their sum therefore cancels in the total. The propulsive force may readily be
deduced, however. The force (forwards) applied to the spent gases to change
their momentum from mdtv to #dtu is mét(u — v) /8t = m(u — v) = —rnu,.
Therefore the corresponding reaction (forwards) on the rocket = 7ru,.
In addition, however, a contribution to the propulsive force is made by
(P2 —Pa)Ay, where p; represents the mean pressure of the gases at discharge,
pa the ambient pressure and A, the cross-sectional area of the discharge
orifice. The total propulsive force is therefore ru, + (p — pa)A;. In the
absence of gravity, air or other resistance, (py — pa)A; is the sole external
force. In these circumstances eqn 4.8 shows that the propulsive force is
re + Y F = M(dv/dp).

Since M represents the mass of the rocket and the remaining fuel and
oxidant at the time ¢ it is a function of ¢t. Consequently the rocket
acceleration is not constant even if 72, u, and the propulsive force are
constant.

This method of analysis is not the only one possible, but of the correct
methods it is probably the most simple, direct and general. It is incorrect
to argue that force equals rate of increase of momentum = (d/dt)Mv =
M(dv/dt) + v(dM/d¢), where M and v refer to the mass and velocity
of the rocket. This is wrong because the system to which the argument
is applied (the rocket) does not always consist of the same collection of
particles.

4.3.4 Force on a solid body in a flowing fluid

The momentum equation may be used to determine the fluid-dynamic force
exerted on a solid body by fluid flowing past it. The equal and opposite force
exerted by the body on the fluid corresponds to a change in the momentum
of the fluid.

Figure 4.8 shows a stationary body immersed in a fluid stream that is oth-
erwise undisturbed. The steady uniform velocity well upstream of the body
is Uoo. A wake forms downstream of the body and there the velocity in gen-
eral differs from Uy and is no longer uniform. We consider, for simplicity,
a body round which the flow is two-dimensional, that is, the flow pattern
is the same in all planes parallel to that of the diagram. A suitable control
volume is one with an inner boundary on the solid body and an outer rect-
angular boundary ABCD, where AD and BC are parallel to the direction of
Uo and where each of the planes AB, BC, AD is far enough from the body
for the flow at these planes to be unaffected by the presence of the body.
If u,, the component of velocity in the x direction (i.e. parallel to Uy), is
measured at the plane CD then the mass flow rate through an element of
that plane, of thickness 8y and of unit breadth, is pu,8y. The rate of increase
of x-momentum of this fluid is therefore gu,8y(uy — Us) and the total rate
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of increase of x-momentum is

D
/ oux(uyx — Uoo)dy
C

By the momentum equation the rate of increase of x-momentum of the
fluid equals the sum all the forces acting on it in the x direction between
the upstream plane AB and the plane CD. The forces concerned are F, the
x-component of the force exerted by the body directly on the fluid, and also
any force resulting from the pressure p in the plane CD being different from
the upstream pressure poo. (Another force might be gravity, but this need
not be considered separately if we use piezometric pressure p* = p + 0gz
in place of p.) The pressure downstream of a body is frequently less than
the upstream pressure because of the turbulence in the wake. At the plane
CD, the total pressure force on the fluid in the control volume is fCD pdy
(per unit breadth) acting upstream whereas at plane AB the total force
is f; Poody acting downstream. The net pressure force in the x direction
(i.e. downstream) is therefore

A D D
/ Poody — f pdy = / (Poo — p)dy
B C C

since AB = DC. Thus the momentum equation is

D D
F; +/ (Poo —p)dy = / ot (ux — Uso) dy
C C
Beyond C and D, however, u, = Uy and p = poo and so we may put —oo

and +oo0 as limits of integration instead of C and D since the regions beyond
C and D would make no contribution to the integrals. Hence

Fy = / {Q”x(“x —Uw) — (P — P)} dy (4.9)

Fig. 4.8
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If the body is not symmetrical about an axis parallel to Uy, there may be
a change of momentum in the y direction and consequently a component of
force in that direction. Originally the fluid had no component of momentum
in the y direction. If the stream is deflected by the body so that a component
of velocity uy is produced, the corresponding rate at which y-momentum
passes through an element in the plane CD is guy8yu, and the total rate
of increase of y-momentum experienced by the fluid is [°7_ ouyu,dy. This
equals the component of force on the fluid in the y direction.

Planes AD and BC are far enough from the body for the (piezometric) pres-
sures at them to be equal and so there is no net pressure force on the control
volume in the y direction. The rate of increase of y-momentum therefore
directly equals the component of force on the body in the —y direction.

The fluid-dynamic force on a body in a stream of fluid may thus be deduced
from measurements of velocity and pressure in the wake downstream of the
body. In many cases, of course, the force on a body can be determined by
direct measurement. In other instances, however, the direct method may
be impracticable because of the size of the body. It may even be ruled out
because the fluid would exert a force not only on the body itself, but on
the members supporting it from the measuring balance, and this latter force
might falsify the result. Nevertheless, measurements of velocity and pressure
downstream of the body are not without difficulties. For example, close
to the body the flow is frequently highly turbulent, so to obtain accurate
values of the magnitude and direction of the velocity the plane CD should
be chosen at a location downstream of the body where the wake has become
more settled.

4.3.5 Momentum theory of a propeller

A propeller uses the torque of a shaft to produce axial thrust. This it does by
increasing the momentum of the fluid in which it is submerged: the reaction
to the force on the fluid provides a forward force on the propeller itself, and
this force is used for propulsion. Besides the momentum and energy equa-
tions further information is needed for the complete design of a propeller.
Nevertheless, the application of these equations produces some illuminating
results, and we shall here make a simple analysis of the problem assuming
one-dimensional flow.

Figure 4.9 shows a propeller and its slipstream (i.e. the fluid on which
it directly acts) and we assume that it is unconfined (i.e. not in a duct, for
example). So that we can consider the flow steady, we shall assume the pro-
peller is in a fixed position while fluid flows past it. Far upstream the flow
is undisturbed as at section 1 where the pressure is p1 and the velocity u;.
Just in front of the propeller, at section 2, the pressure is p, and the mean
axial velocity uy. Across the propeller the pressure increases to p3. Down-
stream of the propeller the axial velocity of the fluid increases further, and for
a constant-density fluid, continuity therefore requires that the cross-section
of the slipstream be reduced. At section 4 the streamlines are again straight
and parallel; there is thus no variation in piezometric pressure across them
and the pressure is again that of the surrounding undisturbed fluid.
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This is a simplified picture of what happens. For one thing, it suggests that
the boundary of the slipstream is a surface across which there is a discontinu-
ity of pressure and velocity. In reality the pressure and velocity at the edge
of the slipstream tail off into the values outside it. In practice too, there is
some interaction between the propeller and the craft to which it is attached,
but this is not amenable to simple analysis and allowance is usually made
for it by empirical corrections.

The fluid in the vicinity of the propeller has rotary motion about the pro-
peller axis, in addition to its axial motion. The rotary motion, however, has
no contribution to make to the propulsion of the craft and represents a waste
of energy. It may be eliminated by the use of guide vanes placed downstream
of the propeller or by the use of a pair of contra-rotating propellers.

Certain assumptions are made for the purpose of analysis. In place of the real
propeller we imagine an ideal one termed an actuator disc. This is assumed to
have the same diameter as the actual propeller; it gives the fluid its rearward
increase of momentum but does so without imparting any rotational motion.
Conditions over each side of the disc are assumed uniform. This means, for
example, that all elements of fluid passing through the disc undergo an equal
increase of pressure. (This assumption could be realized in practice only if the
propeller had an infinite number of blades.) It is also assumed that changes of
pressure do not significantly alter the density and that the disc has negligible
thickness in the axial direction. Consequently the cross-sectional areas of the
slipstream on each side of the disc are equal and so #; = u3 by continuity.
(At the disc the fluid has a small component of velocity radially inwards
but this is small enough to be neglected and all fluid velocities are assumed
axial.) The fluid is assumed frictionless.

Consider the space enclosed by the slipstream boundary and planes 1 and 4
as a control volume. The pressure all round this volume is the same, and,

Fig. 4.9

Actuator disc
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for the frictionless fluid assumed, shear forces are absent. Consequently the
only net force F on the fluid in the axial direction is that produced by the
actuator disc. Therefore, for steady flow,

F = 00 (g — 1) (4.10)
This is equal in magnitude to the net force on the disc. Since there is no
change of velocity across the disc this force is given by (p3 — p2)A. Equating

this to eqn 4.10 and putting O = Au,, where A represents the cross-sectional
area of the disc, we obtain

p3 — D2 = oup (us4 — uq) (4.11)
Applying Bernoulli’s equation between sections 1 and 2 gives
P+ gout =p2 + 0153 (4.12)

the axis being assumed horizontal for simplicity. Similarly, between
sections 3 and 4:

p3 + o1l = pa + Joui (4.13)

Now u#; = u3 and also p; = p4 = pressure of undisturbed fluid. Therefore,
adding eqns 4.12 and 4.13 and rearranging gives

ps—p2 =1} (ud 1) (4.14)

Eliminating p3 — p» from eqns 4.11 and 4.14 we obtain

u| + Uy
2

(4.15)

uy =

The velocity through the disc is the arithmetic mean of the upstream and
downstream velocities; in other words, half the change of velocity occurs
before the disc and half after it (as shown in Fig. 4.9). This result, known
as Froude’s theorem after William Froude (1810-79), is one of the principal
assumptions in propeller design.

If the undisturbed fluid be considered stationary, the propeller advances
through it at velocity #q. The rate at which useful work is done by the
propeller is given by the product of the thrust and the velocity:

Power output = Fu1 = 0Q (us — uq) uq (4.16)

In addition to the useful work, kinetic energy is given to the slipstream which
is wasted. Consequently the power input is

00 (ug —ur) uy + 300 (ug — uy)? (4.17)
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since u4 —u1 is the velocity of the downstream fluid relative to the earth. The
ratio of the expressions 4.16 and 4.17 is sometimes known as the Froude
efficiency:

Power output uq
Power input 4 + %(“4 —uy)

]]Fr = (418)

This efficiency, it should be noted, does not account for friction or for the
effects of the rotational motion imparted to the fluid. A propulsive force
requires a non-zero value of #4 —u1 (see eqn 4.10) and so even for a friction-
less fluid a Froude efficiency of 100% could not be achieved. Equation 4.18
in fact represents an upper limit to the efficiency. It does, however, show that
a higher efficiency may be expected as the velocity increase u4 — u1 becomes
smaller. The actual efficiency of an aircraft propeller is, under optimum
conditions, about 0.85 to 0.9 times the value given by eqn 4.18. At speeds
above about 650 km - h~!, however, effects of compressibility of the air (at
the tips of the blades where the relative velocity is highest) cause the effi-
ciency to decline. Ships’ propellers are usually less efficient, mainly because
of restrictions in diameter, and interference from the hull of the ship.

The thrust of a propeller is often expressed in terms of a dimensionless
thrust coefficient Ct = F/ %QM%A. It may readily be shown that

2
L —
T+ Jad+cCp

Since the derivation of eqn 4.18 depends only on eqns 4.10, 4.16 and 4.17
no assumption about the form of the actuator is involved. Equation 4.18
may therefore be applied to any form of propulsion unit that works by
giving momentum to the fluid surrounding it. The general conclusion may
be drawn that the best efficiency is obtained by imparting a relatively small
increase of velocity to a large quantity of fluid. A large velocity (u4 — 11)
given to the fluid by the actuator evidently produces a poor efficiency if u1,
the forward velocity of the craft relative to the undisturbed fluid, is small.
This is why jet propulsion for aircraft is inefficient at low speeds.

For a stationary propeller, as on an aircraft before take-off, the approach
velocity uq is zero and the Froude efficiency is therefore zero. This is also
true for helicopter rotors when the machine is hovering. No effective work
is being done on the machine and its load, yet there must be a continuous
input of energy to maintain the machine at constant height. With #; = 0,
eqn 4.15 gives uy = %u4 and eqn 4.10 becomes F = oQu4 = 0Auy x 2u;.
From eqn 4.17, power input = %QQuﬁ = %Fu4 = Fuy = /(F?/20A). This
result shows that, for a helicopter rotor to support a given load, the larger the
area of the rotor, the smaller is the power required. The weight of the rotor
itself, however, increases rapidly with its area, and so the rotor diameter is,
in practice, limited.

The foregoing analysis of the behaviour of propellers is due to
W. J. M. Rankine (1820-72) and William Froude. Although it provides
a valuable picture of the way in which velocity changes occur in the slip-
stream, and indicates an upper limit to the propulsive efficiency, the basic
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assumptions — particularly those of lack of rotary motion of the fluid and the
uniformity of conditions over the cross-section — lead to inaccuracy when
applied to actual propellers. To investigate the performance of an actual
propeller having a limited number of blades, a more detailed analysis is
needed. This, however, is outside the scope of the present book.

4.3.6 Momentum theory of a wind turbine

A wind turbine is similar to a propeller but it takes energy from the fluid
instead of giving energy to it. Whereas the thrust on a propeller is made as
large as possible, that on a wind turbine is, for structural reasons, ideally
small. The flow pattern for the wind turbine is the opposite of that for the
propeller: the slipstream widens as it passes the disc. Again, however, a one-
dimensional flow analysis can be used and it is found that #; = % (u1 + uq).

The rate of loss of kinetic energy by the air = 300 (43 — #3) and, for a
frictionless machine, this would equal the output of the wind turbine. The
efficiency 7 is customarily defined as the ratio of this output to the power in
the wind that would pass through the area A if the disc were not present.
Hence

300 (uf —u3) _ Auy (uf —u3) (w1 + ug) (uf — 1)

%Q (Auyq) u% Au% 214?

This expression has a maximum value when #4/u1 = 1/3 and the efficiency
n then = 16/27 = 59.3% and provides a useful upper limit to achievable
efficiency. Efficiencies achieved in practice are less than this. Since the wind
is a resource which is widely available, the use of wind turbines to generate
electricity is of considerable current interest. These modern wind turbines are
designed using more advanced theory than that set out here, and the blades
are constructed with aerofoil profiles. In contrast, the traditional windmill
used for milling corn has sails of simple design and construction, and the
efficiency of these machines can be as low as 5%.

u Example 4.3

(a) Using actuator disc theory, show that half the change of velocity
of the wind passing through a wind turbine occurs upstream and
half in the wake of the turbine.

(b) A wind turbine, 12 m in diameter, operates at sea level in a wind
of 20 m-s~1. The wake velocity is measured as 8 m-s~!. Estimate
the thrust on the turbine.

(c) Calculate the power being generated by the turbine.




@ i p

Applications of the momentum equation 155

—
—
=
—
N
—
—
w
=
—~
~
=

1112

S

TIYRYRRRReeY

£

Assume a sea level air density of 1.2 kg-m™—3.

Solution
(a) Applying Bernoulli’s equation upstream of the turbine, between
sections 1 and 2

p1+ %Qu% =p2+ %QM%
Applying Bernoulli’s equation downstream of the turbine, between
sections 3 and 4

1.2 1.2
P3 + z0u3 = pa + y0uy
Since uy = u3 and p; = p4 = atmospheric pressure, these two
equations can be combined to yield

P2 —p3= %Q (M% —%2;)

Loss of momentum between sections 1 and 4 is equal to the thrust on
the wind turbine. Thus

F =00 (u1 —ug) = 0Auy (11 — ug)

But the thrust can also be expressed as

F=(py—p3)A

So, from the two expressions for F
F/A =Py —p3 = ous (41 — u4)
Equating the two expressions for (p2 — p3)
%Q (M% - Mi) = ouy (u1 — uyg)

from which it follows that

_ (1 + ug)
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ul+u
(b)FZQAMz(Ml—M4)=QA(1274)(M1—M4)

2 sl
=1.2kg'm_3><%><(12rn)2><%x12m~5_1
=22.8x10° N

M2 MZ M2 MZ
— 174 174
(C)P—QQ<2 2) QAM2<2 2)
_palntus) (1
2 2 2
2 sl
:1.2kg~m_3x%(12m)2x%

2 2

(@om-s)T (8m-sT)’
< )

= 319000 W = 319 kW

4.1

4.2

4.3

PROBLEMS

A stationary curved vane deflects a 50 mm diameter jet of water
through 150°. Because of friction over the surface, the water
leaving the vane has only 80% of its original velocity. Calculate
the volume flow rate necessary to produce a fluid-dynamic force
of 2000 N on the vane.

The diameter of a pipe-bend is 300 mm at inlet and 150 mm at
outlet and the flow is turned through 120° in a vertical plane.
The axis at inlet is horizontal and the centre of the outlet section
is 1.4 m below the centre of the inlet section. The total volume
of fluid contained in the bend is 0.085 m3. Neglecting friction,
calculate the magnitude and direction of the net force exerted
on the bend by water flowing through it at 0.23 m3-s~! when
the inlet gauge pressure is 140 kPa.

Air at constant density 1.22 kg - m~3 flows in a duct of internal
diameter 600 mm and is discharged to atmosphere. At the outlet
end of the duct, and coaxial with it, is a cone with base diameter
750 mm and vertex angle 90°. Flow in the duct is controlled
by moving the vertex of the cone into the duct, the air then
escaping along the sloping sides of the cone. The mean velocity
in the duct upstream of the cone is 15 m-s~! and the air leaves
the cone (at the 750 mm diameter) with a mean velocity of
60 m-s~! parallel to the sides. Assuming temperature changes

@ i p



4.4

4.5

4.6

4.7

4.8

4.9

and frictional effects to be negligible, calculate the net axial
force exerted by the air on the cone.

Two adjacent parallel and horizontal rectangular conduits A
and B, of cross-sectional areas 0.2 m?> and 0.4 m? respec-
tively, discharge water axially into another conduit C of cross-
sectional area 0.6 m? and of sufficient length for the individual
streams to become thoroughly mixed. The rates of flow through
A and B are 0.6 m3-s~1 and 0.8 m? -5~ respectively and the
pressures there are 31 kPa and 30 kPa respectively. Neglecting
friction at the boundaries, determine the energy lost by each
entry stream (divided by mass) and the total power dissipated.
A boat is driven at constant velocity ¢ (relative to the undis-
turbed water) by a jet-propulsion unit which takes in water
at the bow and pumps it astern, beneath the water surface,
at velocity u relative to the boat. Show that the efficiency of
the propulsion, if friction and other losses are neglected, is
2¢/(c + u).

Such a boat moves steadily up a wide river at 8 m-s~! (rela-
tive to the land). The river flows at 1.3 m - s~ 1. The resistance to
motion of the boat is 1500 N. If the velocity of the jet relative to
the boat is 17.5 m-s~!, and the overall efficiency of the pump
is 65%, determine the total area of the outlet nozzles, and the
engine power required.

A toy balloon of mass 86 g is filled with air of density
1.29 kg-m—3. The small filling tube of 6 mm bore is pointed
vertically downwards and the balloon is released. Neglecting
frictional effects calculate the rate at which the air escapes if
the initial acceleration of the balloon is 15 m -s=2.

A rocket sled of 2.5 Mg (tare) burns 90 kg of fuel a second
and the uniform exit velocity of the exhaust gases relative to
the rocket is 2.6 km - s~!. The total resistance to motion at the
track on which the sled rides and in the air equals KV, where
K =1450 N-m~!.s and V represents the velocity of the sled.
Assuming that the exhaust gases leave the rocket at atmospheric
pressure, calculate the quantity of fuel required if the sled is to
reach a maximum velocity of 150 m-s~1.

A boat travelling at 12 m-s~! in fresh water has a 600 mm
diameter propeller which takes water at 4.25 m3 -s~! between
its blades. Assuming that the effects of the propeller hub and the
boat hull on flow conditions are negligible, calculate the thrust
on the boat, the efficiency of the propulsion, and the power
input to the propeller.

To propel a light aircraft at an absolute velocity of 240 km - h~!
against a head wind of 48 km-h~! a thrust of 10.3 kN is
required. Assuming an efficiency of 90% and a constant air
density of 1.2 kg - m~3 determine the diameter of ideal propeller
required and the power needed to drive it.

Problems
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4.10 An ideal wind turbine, 12 m diameter, operates at an efficiency
of 50% ina 14 m-s~! wind. If the air density is 1.235 kg - m~3
determine the thrust on the wind turbine, the air velocity
through the disc, the mean pressures immediately in front of
and behind the disc, and the shaft power developed.




Physical similarity and
dimensional analysis

5.1 INTRODUCTION

In fluid mechanics the concept of physical similarity and the process of
dimensional analysis are closely intertwined. A large part of the progress
made in the study of fluid mechanics and its engineering applications has
come from experiments conducted on scale models. It is obvious enough that,
to obtain meaningful results from model tests, the model must be geomet-
rically similar to the full-scale version. Much less obvious are the similarity
conditions which must be satisfied within the flowing fluid to ensure that
the model tests replicate what happens at full-scale. Such considerations are
addressed in this chapter. Physical similarity in fluid mechanics is discussed,
important dimensionless groups are introduced, the methods of dimensional
analysis are considered and the chapter concludes with some applications of
similarity principles to model testing.

No aircraft is now built before exhaustive tests have been carried out on
small models in a wind-tunnel; the behaviour and power requirements of a
ship are calculated in advance from results of tests in which a small model of
the ship is towed through water. Flood control of rivers, spillways of dams,
harbour works and similar large-scale projects are studied in detail with
small models, and the performance of turbines, pumps, propellers and other
machines is investigated with smaller, model, machines. There are clearly
great economic advantages in testing and probably subsequently modifying
small-scale equipment; not only is expense saved, but also time. Tests can
be conducted with one fluid — water, perhaps — and the results applied to
situations in which another fluid — air, steam, oil, for example — is used.

In all these examples, results taken from tests performed under one set of
conditions are applied to another set of conditions. This procedure is made
possible and justifiable by the laws of similarity. By these laws, the behaviour
of a fluid in one set of circumstances may be related to the behaviour of
the same, or another, fluid in other sets of circumstances. Comparisons are
usually made between the prototype, that is, the full-size aircraft, ship, river,
turbine or other device, and the model apparatus. As already indicated, the
use of the same fluid with both prototype and model is not necessary. Nor is
the model necessarily smaller than the prototype. The flow of fluid through
an injection nozzle or a carburettor, for example, would be more easily
studied by using a model much larger than the prototype. So would the flow
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Scale factor

of gas between small turbine blades. Indeed, model and prototype may even
be of identical size, although the two may then differ in regard to other
factors, such as velocity and viscosity of the fluid.

For any comparison between prototype and model to be valid, the sets of
conditions associated with each must be physically similar. Physical similar-
ity is a general term covering several different kinds of similarity. We shall
first define physical similarity as a general proposition, and then consider
separately the various forms it may take.

Two systems are said to be physically similar in respect to certain specified
physical quantities when the ratio of corresponding magnitudes of these
quantities between the two systems is everywhere the same.

If the specified physical quantities are lengths, the similarity is called geo-
metric similarity. This is probably the type of similarity most commonly
encountered and, from the days of Euclid, most readily understood.

5.2 TYPES OF PHYSICAL SIMILARITY

5.2.1 Geometric similarity

Geometric similarity is similarity of shape. The characteristic property of
geometrically similar systems, whether plane figures, solid bodies or patterns
of fluid flow, is that the ratio of any length in one system to the corresponding
length in the other system is everywhere the same. This ratio is usually known
as the scale factor.

Geometric similarity is perhaps the most obvious requirement in a model
system designed to correspond to a given prototype system. Yet perfect geo-
metric similarity is not always easy to attain. Not only must the overall shape
of the model be geometrically similar to that of the prototype, but the inev-
itable roughness of the surfaces should also be geometrically similar. For a
small model the surface roughness might not be reduced according to the
scale factor — unless the model surfaces can be made very much smoother
than those of the prototype. And in using a small model to study the move-
ment of sediment in rivers, for example, it might be impossible to find a
powder of sufficient fineness to represent accurately the properties of sand.

5.2.2 Kinematic similarity

Kinematic similarity is similarity of motion. This implies similarity of lengths
(i.e. geometric similarity) and, in addition, similarity of time intervals. Then,
since corresponding lengths in the two systems are in a fixed ratio and
corresponding time intervals are also in a fixed ratio, the velocities of cor-
responding particles must be in a fixed ratio of magnitude at corresponding
times. Moreover, accelerations of corresponding particles must be similar. If
the ratio of corresponding lengths is 7; and the ratio of corresponding time
intervals is 7;, then the magnitudes of corresponding velocities are in the
ratig r1/r; and the magnitudes of corresponding accelerations in the ratio
/77
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A well-known example of kinematic similarity is found in a planetarium.
Here the heavens are reproduced in accordance with a certain length scale
factor, and in copying the motions of the planets a fixed ratio of time intervals
(and hence velocities and accelerations) is used.

When fluid motions are kinematically similar the patterns formed by
streamlines are geometrically similar (at corresponding times). Since the
boundaries consist of streamlines, kinematically similar flows are possible
only past geometrically similar boundaries. This condition, however, is not
sufficient to ensure geometric similarity of the stream-line patterns at a dis-
tance from the boundaries. Geometrically similar boundaries therefore do
not necessarily imply kinematically similar flows.

5.2.3 Dynamic similarity

Dynamic similarity is similarity of forces. If two systems are dynamically
similar then the magnitudes of forces at similarly located points in each sys-
tem are in a fixed ratio. Consequently the magnitude ratio of any two forces
in one system must be the same as the magnitude ratio of the corresponding
forces in the other system. In a system involving fluids, forces may be due
to many causes: viscosity, gravitational attraction, differences of pressure,
surface tension, elasticity and so on. For perfect dynamic similarity, there-
fore, there are many requirements to be met, and it is usually impossible to
satisfy all of them simultaneously. Fortunately, in many instances, some of
the forces do not apply at all, or have negligible effect, so it becomes possible
to concentrate on the similarity of the most important forces.

The justification for comparing results from one flow system with those for
another is that the behaviour of the fluid is similar in the two systems. As we
have seen, one necessary condition is that the boundaries be geometrically
similar. In addition, however, similarity of forces is necessary because the
direction taken by any fluid particle is determined by the resultant force act-
ing on it. Consequently, complete similarity of two flows can be achieved
only when corresponding fluid particles in the two flows are acted on by
resultant forces that have the same direction and are in a fixed ratio of
magnitude. Moreover, the same conditions apply to the components of
these resultant forces. The directions of component forces are determined
either by external circumstances (as for gravity forces, for example) or by
the flow pattern itself (as for viscous forces). In dynamically similar flows,
therefore, the force polygons for corresponding individual particles are geo-
metrically similar, and so the component forces too have the same ratio
of magnitude between the two flows. Dynamic similarity, then, produces
geometric similarity of the flow patterns. It should be noted, however, that
the existence of geometric similarity does not, in general, imply dynamic
similarity.

Before examining dynamic similarity in more detail we may note in passing
that we have not exhausted the list of types of similarity, even of fluids.
For example, some investigations may call for thermal similarity in which
differences of temperature are in fixed ratio between model and prototype.
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In chemical similarity there is a fixed ratio of concentrations of reactants at
corresponding points.

One important feature, common to all kinds of physical similarity, is that
for the two systems considered certain ratios of like magnitudes are fixed.
Geometric similarity requires a fixed ratio of lengths, kinematic similarity a
fixed ratio of velocities, dynamic similarity a fixed ratio of forces, and so on.
Whatever the quantities involved, however, the ratio of their magnitudes is
dimensionless. In the study of mechanics of fluids the type of similarity with
which we are almost always concerned is dynamic similarity. We now turn
our attention to some of the force ratios that enter that study.

5.3 RATIOS OF FORCES ARISING IN DYNAMIC SIMILARITY

Forces controlling the behaviour of fluids arise in several ways. Not every
kind of force enters every problem, but a list of the possible types is usefully
made at the outset of the discussion.

1. Forces due to differences of piezometric pressure between different points
in the fluid. The phrase ‘in the fluid’ is worth emphasis. Dynamic
similarity of flow does not necessarily require similarity of thrusts on
corresponding parts of the boundary surfaces and so the magnitude of
piezometric pressure relative to the surrounding is not important. For the
sake of brevity, the forces due to differences of piezometric pressure will
be termed pressure forces.

Forces resulting form the action of viscosity.

Forces acting from outside the fluid — gravity, for example.

Forces due to surface tension.

Elastic forces, that is, those due to the compressibility of the fluid.

Rl

Now any of these forces, acting in combination on a particle of fluid,
in general have a resultant, which, in accordance with Newton’s Second
Law, F = ma, causes an acceleration of the particle in the same direction
as the force. And the accelerations of individual particles together determ-
ine the pattern of the flow. Let us therefore examine a little further these
accelerations and the forces causing them.

If, in addition to the resultant force F, an extra force (—ma) were applied
to the particle in the same direction as F, the net force on the particle would
then be F — ma, that is, zero. With zero net force on it, the particle would,
of course, have zero acceleration. This hypothetical force (—ma), required
to bring the acceleration of the particle to zero, is termed the inertia force: it
represents the reluctance of the particle to be accelerated. The inertia force
is, however, in no way independent of the other forces on the particle; it
is, as we have seen, equal and opposite to their resultant, F. Nevertheless,
since our concern is primarily with the pattern of the flow, it is useful to add
inertia forces to our list as a separate item:

(6. Inertia forces.)

If the forces on any particle are represented by the sides of a force poly-
gon, then the inertia force corresponds to the side required to close the
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polygon. Now a polygon can be completely specified by the magnitude and
direction of all the sides except one. The remaining, unspecified, side is
fixed automatically by the condition that it must just close the polygon.
Consequently, if for any particular particle this hypothetical inertia force is
specified, one of the other forces may remain unspecified; it is fixed by the
condition that the force polygon must be completely closed, in other words,
that the addition of the inertia force would give zero resultant force.

For dynamic similarity between two systems, the forces on any fluid
particle in one system must bear the same ratios of magnitude to one another
as the forces on the corresponding particle in the other system. In most cases
several ratios of pairs of forces could be selected for consideration. But,
because the accelerations of particles (and hence the inertia forces) play an
important part in practically every problem of fluid motion, it has become
conventional to select for consideration the ratios between the magnitude of
the inertia force and that of each of the other forces in turn. For example,
in a problem such as that studied in Section 1.9.2, the only relevant forces
are inertia forces, viscous forces and the forces due to differences of pres-
sure. The ratio chosen for consideration in this instance is that of |Inertia
force| to |Net viscous force| and this ratio must be the same for correspond-
ing particles in the two systems if dynamic similarity between the systems is
to be realized. (There is no need to consider separately the ratio of |Inertia
force| to |Pressure force| since, once the inertia force and net viscous force are
fixed, the pressure force is determined automatically by the condition that
the resultant of all three must be zero.) In a case where the forces involved
are weight, pressure force and inertia force, the ratio chosen is |Inertia force|
to |Weight|.

We shall now consider the various force ratios in turn.

5.3.1 Dynamic similarity of flow with viscous forces acting

There are many instances of flow that is affected only by viscous, pressure
and inertia forces. If the fluid is in a full, completely closed conduit, gravity
cannot affect the flow pattern; surface tension has no effect since there is no
free surface, and if the velocity is well below the speed of sound in the fluid
the compressibility is of no consequence. These conditions are met also in the
flow of air past a low-speed aircraft and the flow of water past a submarine
deeply enough submerged to produce no waves on the surface.

Now for dynamic similarity between two systems, the magnitude ratio of
any two forces must be the same at corresponding points of the two systems
(and, if the flow is unsteady, at corresponding times also). There are three
possible pairs of forces of different kinds but, by convention, the ratio of
|Inertia force| to |Net viscous force| is chosen to be the same in each case.

The inertia force acting on a particle of fluid is equal in magnitude to
the mass of the particle multiplied by its acceleration. The mass is equal to
the density o times the volume (and the latter may be taken as proportional
to the cube of some length [ which is characteristic of the geometry of the
system). The mass, then, is proportional to ol3. The acceleration of the
particle is the rate at which its velocity in that direction changes with time and
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Reynolds number

so is proportional in magnitude to some particular velocity divided by some
particular interval of time, that is, to #/¢, say. The time interval, however,
may be taken as proportional to the chosen characteristic length I divided
by the characteristic velocity, so that finally the acceleration may be set
proportional to u + (I/u) = u?/I. The magnitude of the inertia force is thus
proportional to olu? /I = ou*I?.

The shear stress resulting from viscosity is given by the product of viscosity
w and the rate of shear; this product is proportional to uu/l. The magnitude
of the area over which the stress acts is proportional to /> and thus the
magnitude of viscous force is proportional to (uu/l) x > = pul.

Consequently, the ratio

. . olPu?*  oul
is proportional to =
wul w

|Inertia force|

|Net viscous force|

The ratio gul/u is known as the Reynolds number. For dynamic similarity of
two flows past geometrically similar boundaries and affected only by viscous,
pressure and inertia forces, the magnitude ratio of inertia and viscous forces
at corresponding points must be the same. Since this ratio is proportional
to Reynolds number, the condition for dynamic similarity is satisfied when
the Reynolds numbers based on corresponding characteristic lengths and
velocities are identical for the two flows.

The length / in the expression for Reynolds number may be any length that
is significant in determining the pattern of flow. For a circular pipe completely
full of the fluid the diameter is now invariably used — at least in Great Britain
and North America. (Except near the inlet and outlet of the pipe the length
along its axis is not relevant in determining the pattern of flow. Provided
that the cross-sectional area of the pipe is constant and that the effects of
compressibility are negligible, the flow pattern does not change along the
direction of flow — except near the ends as will be discussed in Section 7.9.)
Also by convention the mean velocity over the pipe cross-section is chosen
as the characteristic velocity u.

For flow past a flat plate, the length taken as characteristic of the flow
pattern is that measured along the plate from its leading edge, and the char-
acteristic velocity is that well upstream of the plate. The essential point is
that, in all comparisons between two systems, lengths similarly defined and
velocities similarly defined must be used.

5.3.2 Dynamic similarity of flow with gravity forces acting

We now consider flow in which the significant forces are gravity forces,
pressure forces and inertia forces. Motion of this type is found when a free
surface is present or when there is an interface between two immiscible fluids.
One example is the flow of a liquid in an open channel; another is the wave
motion caused by the passage of a ship through water. Other instances are
the flow over weirs and spillways and the flow of jets from orifices into the
atmosphere.
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The condition for dynamic similarity of flows of this type is that the
magnitude ratio of inertia to gravity forces should be the same at corres-
ponding points in the systems being compared. The pressure forces, as in
the previous case where viscous forces were involved, are taken care of by
the requirement that the force polygon must be closed. The magnitude of the
inertia force on a fluid particle is, as shown in Section 5.3.1, proportional
to ou*l*> where o represents the density of the fluid, / a characteristic length
and u a characteristic velocity. The gravity force on the particle is its weight,
that is, o (volume) g which is proportional to gl3g where g represents the
acceleration due to gravity. Consequently the ratio
12142 2

|Inertia force| . u

. Q
is proportional to ——— = —
oPg Ig
In practice it is often more convenient to use the square root of this ratio so
as to have the first power of the velocity. This is quite permissible: equality
of u/(lg)'/? implies equality of #?/Ig.

|Gravity force|

The ratio u/(Ig)'/? is known as the Froude number after William Froude
(1810-79), a pioneer in the study of naval architecture, who first introduced
it. Some writers have termed the square of this the Froude number, but the
definition Froude number = u/(Ig)'/? is now more usual.

Dynamic similarity between flows of this type is therefore obtained by
having values of Froude number (based on corresponding velocities and cor-
responding lengths) the same in each case. The boundaries for the flows must,
of course, be geometrically similar, and the geometric scale factor should be
applied also to depths of corresponding points below the free surface.

Gravity forces are important in any flow with a free surface. Since the
pressure at the surface is constant (usually atmospheric) only gravity forces
can under steady conditions cause flow. Moreover, any disturbance of the
free surface, such as wave motion, involves gravity forces because work must
be done in raising the liquid against its weight. The Froude number is thus a
significant parameter in determining that part of a ship’s resistance which is
due to the formation of surface waves.

5.3.3 Dynamic similarity of flow with surface tension forces acting

In most examples of flow occurring in engineering work, surface tension
forces are negligible compared with other forces present, and the engineer
is not often concerned with dynamic similarity in respect to surface tension.
However, surface tension forces are important in certain problems such as
those in which capillary waves appear, in the behaviour of small jets formed
under low heads, and in flow of a thin sheet of liquid over a solid surface.
Here the significant force ratio is that of [Inertia force| to |Surface tension
force|. Again, pressure forces, although present, need not be separately con-
sidered. The force due to surface tension is tangential to the surface and
has the same magnitude perpendicular to any line element along the surface.
If the line element is of length Al then the surface tension force is y (Al)

Froude number
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Weber number

Cauchy number

Mach number

where y represents the surface tension. Since inertia force is proportional to
ou?I* (Section 5.3.1) and Al is proportional to the characteristic length I,

the ratio
|Inertia force] ) . ol?u?>  olu?
is proportional to =
Y 14

|Surface tension force|

The square root of this ratio, u(ol/y)'/?, is now usually known as the
Weber number after the German naval architect Moritz Weber (1871-1951)
who first suggested the use of the ratio as a relevant parameter. Sometimes,
however, the ratio (olu?/y) and even its reciprocal are also given this name.

5.3.4 Dynamic similarity of flow with elastic forces acting

Where the compressibility of the fluid is important the elastic forces must
be considered along with the inertia and pressure forces, and the magnitude
ratio of inertia force to elastic force is the one considered for dynamic simil-
arity. Equation 1.7 shows that for a given degree of compression the increase
of pressure is proportional to the bulk modulus of elasticity, K. Therefore, if /
again represents a characteristic length of the system, the pressure increase
acts over an area of magnitude proportional to [?, and the magnitude of the
force is proportional to K/2. Hence the ratio

|Inertia force| . olPu*  ou?

is proportional to K2 = K

|Elastic force|

The parameter pu?/K is known as the Cauchy number, after the French
mathematician A. L. Cauchy (1789-1857). However, as we shall see in
Chapter 11, the velocity with which a sound wave is propagated through
the fluid (whether liquid or gas) is @ = /(Ks/0) where K represents the
isentropic bulk modulus. If we assume for the moment that the flow under
consideration is isentropic, the expression pu*/K becomes u? /a?.

In other words, dynamic similarity of two isentropic flows is achieved if,
along with the prerequisite of geometric similarity of the boundaries, #?/a*
is the same for corresponding points in the two flows. This condition is equi-
valent to the simpler one that #/a must be the same at corresponding points.
This latter ratio is known as the Mach number in honour of Ernst Mach
(1838-1916), the Austrian physicist and philosopher. It is very important in
the study of the flow of compressible fluids. It should be remembered that
a represents the local velocity of sound, which, for a given fluid, is determ-
ined by the values of absolute pressure and density at the point where u is
measured.

If the change of density is not small compared with the mean density,
then thermodynamic considerations arise. In particular, the ratio of principal
specific heat capacities y must be the same in the two cases considered. Where
appreciable changes of temperature occur, the ways in which viscosity and
thermal conductivity vary with temperature may also be important. These
matters are outside the scope of this book, but it is well to remember that
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equality of the Mach numbers is not in every case a sufficient criterion for
dynamic similarity of the flow of compressible fluids.

Effects of compressibility usually become important in practice when the
Mach number exceeds about 0.3. Apart from its well-known significance
in connection with high-speed aircraft and missiles, the Mach number also
enters the study of propellers and rotary compressors.

5.4 THE PRINCIPAL DIMENSIONLESS GROUPS OF FLUID
DYNAMICS

It is appropriate at this point to summarize the principal dimension-
less groups to emerge from the considerations of dynamic similarity in
Section 5.3. These dimensionless groups are of fundamental importance in
fluid dynamics and are set out in Table 5.1. In every case [ represents a
length that is characteristic of the flow pattern. It is always good practice to
be specific about the definition of /, even in the few cases where it is usually
determined by convention. Similarly, # represents a velocity that is charac-
teristic of the flow pattern and again it should be defined so as to remove
uncertainty. For example, for incompressible flow through circular pipes, [
is usually replaced by the pipe diameter d, and u is taken as the mean flow
velocity, defined as the volumetric flow rate divided by cross-sectional area.

5.5 OTHER DIMENSIONLESS GROUPS

We have already dealt in Section 5.4 with a small but important collection
of independent dimensionless groups, including Reynolds number, Mach
number, Froude number and Weber number. Besides these dimensionless
groups, there are numerous others that have their place in the study of fluid
mechanics. A number of these fall into one or other of three important
sub-sets expressing in a dimensionless form (i) differences in pressure (or
head); (ii) forces on bodies; or (iii) surface shear stresses (friction) resulting

Table 5.1 Principal dimensionless groups in fluid dynamics

Dimensionless Name Represents Recommended
group magnitude ratio of symbol
these forces

Inertia f
oul/u Reynolds number M Re
[Viscous force|

|Inertia force|

Ioy1/2 Froud b —_— F
u/(lg) roude number |Gravity force| ’

Inertia f
u/(lo/y)1/? Weber number [Inertia .orce| We
|Surface tension force|

Inertia f
uja Mach number 7| et l_a orce| M
|Elastic force|
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from fluid motion. These can be broadly classified as pressure coefficients,
force coefficients and friction coefficients, respectively. Amongst the force
coefficients are the lift and drag coefficients, of fundamental importance
in aircraft aerodynamics. The friction coefficients include amongst their
number the friction factor associated with pipe flow, and the skin friction
coefficient used to describe in a dimensionless form the surface shear stresses
of external fluid flow. Examples of dimensionless groups which fall outside
these named categories are the Strouhal number, which arises in the treat-
ment of cyclical phenomena, and the mass flow parameter, which is a useful
concept when dealing with compressible flows in pipes. Apart from the pres-
sure coefficients, which will be discussed explicitly, albeit briefly, all other
dimensionless groups will be considered as they arise.

5.5.1 The pressure coefficient and related coefficients

Pressure forces are always present and are therefore represented in any
complete description of fluid flow. When expressed in dimensionless form,
the ratio of pressure forces to other types of forces appears. For example,
the ratio

|Pressure force| .

. Ap*I2 Ap*
is proportional to b _2b

ol2u?  ou?

|Inertia force|

where Ap* represents the difference in piezometric pressure between two
points in the flow. In fluid dynamics, it has become normal practice to use
the ratio Ap*/%guz, the % being inserted so that the denominator represents
kinetic energy divided by volume or, for an incompressible fluid, the dynamic
pressure of the stream (see Section 3.7.1). This latter form is usually known
as the pressure coefficient, denoted by the symbol Cp,.

Several other similar coefficients are, in essence, variants of the pressure
coefficient. Amongst these are the static and total pressure loss coefficients,
widely used to describe the dissipation of mechanical energy that occurs in
internal fluid flows, and the pressure recovery coefficient more specifically
used to describe the properties of diffusers. Also in this category are the
corresponding head loss coefficients.

5.5.2 The discharge coefficient

The discharge coefficient is an important dimensionless parameter which
relates the flow rate through a differential-pressure flow-metering device,
such as an orifice plate, nozzle or venturi tube, to the pressure distribu-
tion the flow generates. It was first introduced in Chapter 3, where it was
used to adjust theoretical values of mass flow rate (or volumetric flow rate),
derived from simplistic mathematical models of fluid motion which ignored
the effects of viscosity, to yield improved comparisons with the behaviour
of real flows. The method of dimensional analysis provides a more rigorous
justification for the use of the discharge coefficient, since, from the outset,
the analysis takes full account of the viscous nature of real fluids.
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Consider the incompressible flow along a straight section of circular pipe
in which there is a constriction due to the presence of an orifice plate, nozzle
or venturi tube. Denote the diameter of the pipe by D and the diameter at the
minimum cross-sectional area by d. The pressure varies along the pipe partly
as a result of viscous effects but mainly as a consequence of the geometry
of the constriction, which causes the flow to accelerate. The difference in
piezometric pressure Ap* measured between two arbitrary points along the
pipe, denoted by suffices a and b, depends on the positions at which the
pressures are measured. In the most general case, the position of each tapping
can be specified in terms of cylindrical polar coordinates x, 7, 6. In practice,
for flow-metering, the pressure tappings are located at the circumference
of the pipe and efforts are made to ensure that the flow approaching the
device is axisymmetric. Hence the positions of the pressure tappings are
fully specified by the distance along the pipe axis, x, and x;, measured
from some arbitrary datum. The positions x, and x;, are chosen so that the
measured pressure difference is a maximum, or close to a maximum, for a
given flow rate. In practice this requires an upstream tapping to be located
in the pipe upstream of the constriction, and the downstream tapping to be
at, or close to, the plane of minimum cross-section. Besides the effects of D,
d, x, and xp, the magnitude of Ap* is determined by the mean velocity of
the flow in the pipe, u, and the fluid density, o, and dynamic viscosity, u.
Hence, for a device of specified geometry, we may write

Ap* = f(D’ d’xtl:xb’ Uy 0, L)

Dimensional analysis (see Section 5.6) yields the relation for the dimen-
sionless pressure coefficient

A”*/(%Q”Z) = f1(d/D,x4/D,x}/D, ouD/ 1) (5.1)

Denote the cross-sectional area of the pipe by Ay and the minimum cross-
sectional area at the constriction by A;. The continuity equation, evaluated
in the upstream pipe, yields m = oA u, which when substituted in equation 1
gives after rearrangement

m [ [41202p")"2] = f2(d/D,xa/D,xy/D,euD/w)  (5:2)

It has become established practice in flow-metering to use the throat area A,
rather than Ay as the reference cross-sectional area. Hence eqn 5.2 can be
replaced by

m [ [42208p")" 2] = £1(d/D, x4/ D, xp/Dy0uD/p)  (5.3)

The dimensionless group 72/ [A3 (ZQAp*)l/Z] is sometimes referred to as the
flow coefficient.

A universal practice in flow-metering is to use the discharge coefficient
C, rather than the flow coefficient, although the two are closely related.
The discharge coefficient C; is defined by the equation

m(1 —22)1/2

17 A 200p")17 -4)
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where 1 = A>/A{ = (d/D)? and the dimensionless quantity (1 — %)~ /2 is
known as the velocity of approach factor. A comparison of equations 5.3
and 5.4 shows that C; can be expressed by the relation

Cd=f4(d/sza/D’xb/D39uD/M) (5.5)

In summary Cy is shown to depend on the area ratio of the constriction (as
well as on the basic geometry of the flow-metering device), the positions of
the two pressure tappings, and the Reynolds number.

The given derivation of eqn 5.5 applies to the flow through differential-
pressure flow-metering devices used in internal flow systems. Weirs and
notches are devices used for flow-rate measurement for fluid motion where a
free surface exists. An approach, starting with the appropriate independent
variables and again based on the methods of dimensional analysis, can be
used to derive relationships for the discharge coefficients for these devices.

5.5.3 Cavitation number

In some instances of liquid flow the pressure at certain points may become
so low that vapour cavities form — this is the phenomenon of cavitation
(see Section 13.3.6). Pressures are then usefully expressed relative to py,
the vapour pressure of the liquid at the temperature in question. A signi-
ficant dimensionless parameter is the cavitation number, (p — pv)/%g u?
(which may be regarded as a special case of the pressure coefficient). For
fluid machines a special definition due to D. Thoma is more often used (see
Section 13.3.6).

Ratios involving electrical and magnetic forces may arise if the fluid is per-
meable to electrical and magnetic fields. These topics, however, are outside
the scope of this book.

5.6 DIMENSIONAL ANALYSIS

When used effectively, dimensional analysis has a vital role to play in the
field of fluid mechanics. It can be used to reduce theoretical equations to
dimensionless forms, but the most important application is in relation to
experimental work. In the latter application, dimensional analysis is the tool
which enables the principles of physical similarity to be applied to solve
practical problems. Dimensional analysis alone can never give the complete
solution of a problem. However, the efficient use of dimensional analysis
assists all aspects of experimentation, including the planning and execution
stages, and the interpretation of results.

5.6.1 Introduction to dimensional analysis

As a starting point for the discussion of dimensional analysis we select a
familiar equation from the world of applied mechanics. Consider a body



moving in a straight line with constant acceleration a. If the body has an
initial velocity u, then after time ¢ the distance s travelled is given by

s=ut+ %at2 (5.6)

where we have taken s = 0 at # = 0. Using the terminology of mathematics,
in eqn 5.6 s is described as the dependent variable and ¢, # and a are the
independent variables. The fact that s depends upon ¢, # and a can be written
in the mathematical form

s =¢(t,u,a) (5.7)

where the symbol ¢ () simply stands for ‘some function of’.

Suppose that we know the general functional relationship (5.7) but do
not know the precise form of eqn 5.6. We could, in principle, investigate the
relation by means of experiment. We could systematically vary ¢, holding «
and a constant, then vary u, holding ¢ and a constant, and finally vary a,
holding # and u constant. In this way we could build up a picture of how s
varied with #, # and a. Clearly this would be a time-consuming task, and if we
wished to plot the results they would occupy many charts. The tests would
reveal that s depended linearly on # and a, and that the relationship between
s and # was quadratic. It would still require some ingenuity to combine the
results to yield eqn 5.6.

The quantities s, ¢, # and a, respectively, have the dimensions [L], [T],
[LT~!] and [LT~2]. By inspection, it is easily verified that the quantities s, uz
and at? which appear in eqn 5.6 all have the dimensions [L], demonstrating
that the equation satisfies the requirement of dimensional homogeneity (see
Section 1.2.7).

The equation can be written in a dimensionless form by dividing all terms
in eqn 5.6 by ut, yielding

s at
= =1+ (5.8)

Alternatively, eqn 5.8 can be written in functional form as

s at

The quantities s/ut and at /u are said to be dimensionless or non-dimensional.
Equation 5.8 is equivalent to eqn 5.6 but now, instead of having the four
variables of eqn 5.6 — that is s, ¢, # and a — we have just two, s/ut and at/u.
Expressing the relation in dimensionless form, the number of variables has
effectively been reduced by two.

At this stage we must take stock. To derive the two dimensionless groups
s/ut and at/u, we have taken advantage of the fact that we knew the ori-
ginal relationship, eqn 5.6, between s, #, # and a. When we first come to
investigate a new problem in fluid mechanics, such detailed information is
not generally available. But, in fluid mechanics, it is always possible to write
down functional relations similar to the functional relation (5.7), which can
be established from a careful assessment of the physical processes at play.
So, we need a technique which, starting from the functional relation (5.7),

Dimensional analysis
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allows us to derive the corresponding dimensionless relation (5.9). This is
the province of dimensional analysis. Underlying this technique is the fact
that, where a number of independent variables affect a dependent variable,
all the variables relate to each other, not in a haphazard manner, but in a
highly structured way.

Using the methods of dimensional analysis shortly to be set out in
Section 5.6.2, the dimensionless functional relation (5.9) is easily obtained
from eqn 5.7. The precise relationship between s/ut and at/u can be
established by experiment using a few simple tests. Because the individual
variables within a dimensionless group must behave exactly as the whole
group, it is only necessary to vary one of the dependent variables system-
atically. For example, if ¢ is varied while # and a are held constant, the
distance s travelled in time # can be measured, and the four quantities s, ¢,
u and a recorded. The quantities s/ut and at/u can then be evaluated, the
simple linear eqn 5.8 is readily found by plotting these values, and eqn 5.1
can be obtained by multiplying eqn 5.8 throughout by ut.

The above example involves kinematic similarity (the dimensions L and T
alone were involved). It illustrates some of the terminology used in dimen-
sional analysis and demonstrates the benefits that emerge from the use of
dimensionless groups. As has been shown earlier in this chapter, for flowing
fluids geometric similarity and dynamic similarity (involving the dimensions
M, L and T) are of particular importance.

5.6.2 The process of analysis

There are a number of different techniques that can be used to perform
a dimensional analysis. The method set out here is based on the so-called
Buckingham Pi Theorem. This has a number of virtues in that it is com-
paratively straightforward and logical, and is therefore easy to understand.
The Buckingham Pi Theorem gets its name from the fact that the analysis
yields products of variables, each of which in the original formulation of the
theorem was denoted by the symbol I, the capital Greek Pi, the mathemat-
ical notation for a product of variables. Here, instead of emphasizing that
dimensional analysis leads to products of variables, we choose to emphas-
ize the fact that it involves dimensionless groups. So instead of using the
symbol I1, we shall use N to denote a non-dimensional quantity or num-
ber. The process of dimensional analysis is most easily handled by using a
routine which moves through a sequence of steps. These will be set out first
and then, to illustrate the process of analysis, an example will be worked
through in detail. Comments on various aspects of dimensional analysis
follow in Section 5.6.3.
The process of dimensional analysis is as follows:

Step 0 Ensure that the objectives and scope of the investigation are clearly
defined.

Step 1 Set down the dependent variable to be investigated, and all the
relevant independent variables that have an effect on the depend-
ent variable. In many respects, this is the most important stage



Step 2

Step 3

Step 4

Step 5

Step 6

Step 7

of the analysis, and its correct implementation requires a clear
understanding of the physics of the problem under investigation.
Set down the dimensions of all of the variables, including the
dependent and independent variables.

Denote the total number of variables (dependent plus independent)
by 7. Denote the number of base dimensions [M, L, T, ®] appearing
at Step 2 by j, where j will, depending upon the investigation in
question, be equal to 2, 3 or 4. For most problems in incompressible
fluid dynamics j = 3.

From among the independent variables, select j repeating variables, so
that all the base dimensions identified at Steps 2 and 3 are represented
amongst the repeating variables. The choice of repeating variables is
to some extent flexible, but experience shows that analysis is simpli-
fied if variables with uncomplicated dimensional formulae are chosen
as repeating variables.

Using the j repeating variables, employ each of the remaining (1 — j)
variables in turn to form k dimensionless groups.

The final functional relation for the dimensionless groups is obtained
by expressing the dimensionless group incorporating the dependent
variable as a function of the remaining (k — 1) dimensionless groups.
At this stage the dimensional analysis is complete. However, it is
helpful to carry out a check calculation.

Calculate (n — k) = m. Then m is usually equal to j. (In a few quite
exceptional cases m1 is less than j.)

Example 5.1 An experiment to determine the force arising from the
steady low-speed flow past a smooth sphere is planned. Assume the
sphere is immersed in the fluid so that free surface effects are absent.
Carry out a dimensional analysis.

Solution
Step 1

F = ¢(d’M’Q’I’L)

where F = force on sphere, d = diameter of sphere, # = fluid
velocity, ¢ = fluid density, and u = dynamic viscosity.
Step 2

Fool d | uw | e | m
MLT*Z‘ L \ LT-! \ ML-3 ‘ML*lT*

Step 3 Evaluaten = 5;j =3
Step 4 Select j = 3 repeati